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Preface 

Civil engineering structures such as buildings, bridges, stadiums, and offshore 

structures play an import role in our daily life. However, constructing these struc-

tures requires lots of budget. Thus, how to cost-efficiently design them satisfying 

all required design constraints is an important factor to structural engineers. Tradi-

tionally, mathematical gradient-based optimal techniques have been applied to  

the design of optimal structures. While, many practical engineering optimal prob-

lems are very complex and hard to solve by traditional method. In the past few 

decades, nature-inspired computation, such as evolutionary algorithm has attracted 

more and more attention. Nature serves as a fertile source of concepts, principles, 

and mechanisms for designing artificial computation system to tackle complex 

problems. 

Swarm intelligence algorithm, which was inspired by the social behaviour of 

animals such as fish schooling and bird flocking, was developed in recent years 

because they do not require conventional mathematical assumptions and thus pos-

sess better global search abilities than the traditional optimization algorithms. The 

most efficient algorithms are particle swarm optimizer and group search opti-

mizer. These intelligent based algorithms are very suitable for continuous and dis-

crete design variable problems such as ready-made structural members and have 

been vigorously applied to various structural design problems and obtained good 

results. This book gathers our latest research work related with particle swarm 

optimizer algorithm and group search optimizer algorithm as well as their applica-

tion to structural optimal design. The aim of  the book is to provide a reference for 

researchers and engineers for sharing of latest developments in the research and 

application of structural optimal design with swarm intelligent algorithms. The 

readers can understand the full spectrum of the algorithms and apply the algo-

rithms to their own research problems. 

We would like to express our sincere appreciations to National Natural Science 

Foundation of China (project number: 10772052) and the Natural Science Foundation 

of Guangdong Province (project numbers: 8151009001000042, 9151009001000059) 

for founding the research work. Thanks are also given to Springer Berlin / Heidelberg 

for publishing this book. 
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Chapter 1 

Introduction of Swarm Intelligent Algorithms 

It is fairly accepted fact that one of the most important human activities is decision 

making. It does not matter what field of activity one belongs to. Whether it is po-

litical, military, economic or technological, decisions have a far reaching influence 

on our lives. Optimization techniques play an important role in structural design, 

the very purpose of which is to find the best ways so that a designer or a decision 

maker can derive a maximum benefit from the available resources. The methods 

of optimization can be divided into two category such as traditional optimization 

algorithms and modern optimization algorithms. The traditional optimization algo-

rithms turn into an independent subject began in 1947 when Dantzig [1, 2] pro-

posed the simplex method for solving general linear optimization problems. From 

then on, study on the optimization method is booming. Many methods of optimi-

zation are proposed [3] sequentially as follow: unconstrained optimization meth-

ods, large-scale unconstrained optimization methods, nonlinear least squares 

methods, linear constrained optimization methods, nonlinear constrained optimi-

zation methods and so on. These traditional mathematical gradient-based optimal 

techniques have been applied to the design of optimal structures [4]. While, many 

practical engineering optimal problems are very complex and hard to solve by tra-

ditional method [5].  

With the development of modern technology especially computer technology, 

also due to the traditional optimization algorithms have some limitations difficult 

to overcome. People began to seek and propose some efficient optimization meth-

ods which were called modern intelligent optimization algorithms. In the past few 

decades, nature-inspired computation has attracted more and more attention [6]. 

Nature serves as a fertile source of concepts, principles, and mechanisms for de-

signing artificial computation system to tackle complex problems. Among them, 

the most successful are evolutionary algorithms [7], which draw inspiration from 

evolution by natural selection. The several different  types of evolutionary algo-

rithms include genetic algorithms, artificial neural network algorithm, genetic 

programming, evolutionary programming and evolutionary strategies. 

Genetic algorithm is a widely applied and efficient method of random search 

and optimization which develops based on the theory of evolution. Its main 

features are the groups search strategy and the information exchange between in-

dividuals, moreover, the search does not depend on gradient information. It is de-

veloped by professor Holland [8] from University of Michigan USA in the early 

70s. Professor Holland published the first monograph which discussed the genetic 
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algorithm systematically named "Adaptation in Natural and Artificial Systems". 

Holland elaborated the basic theory and method of genetic algorithm systemati-

cally in his book, and proposed the template theory which is extremely important 

for the development of the theory of genetic algorithm. Artificial neural network is 

an engineering system based on the understanding of the human brain structure 

and operational mechanism, and then simulates the structure and intelligent behav-

ior. Some scholars had proposed the first mathematical model of artificial neural 

network in the early 40s of last century [9], and from then on people pioneered the 

study of neuroscience theory. Subsequently, more scholars had proposed percep-

tual model, making the artificial neural network technology to a higher level. 

Artificial intelligence went through the prosperity in the 80s of last century 

[10]. People experiencing hard problems because of the method had not overcome 

the limitations of classical computing thinking. Prospects for the study of artificial 

intelligence once again lost its luster. At the same time, as people kept understand-

ing of the nature of life, life science is developed at an unprecedented rapid speed. 

The study of artificial intelligence began out of the shackles of classical logic 

computing, and people from the bold exploration of new channels of non-classical 

computation. As a pioneer in artificial intelligence, Minsky [11] thinks "we should 

be inspiration from biology rather than physics……", the research of heuristic cal-

culation of biology became a new direction of artificial intelligence. In this con-

text, social animals (such as ant colonies, bees, birds, etc.) from the organizational 

behavior had aroused widespread attention; many scholars established the mathe-

matical modeling of this behavior and its simulation for computer. This creates a 

so-called "swarm intelligence" [12]. The beauty lies in social animals is that the 

behavior of individuals is very simple, but when they work together they will able 

to emergent a very complex (intelligent) behavior characteristics. For example: the 

ability of individual ants is extremely limited, but the composition of these simple 

ant colony will able to complete such as nesting, foraging, migration, nest clean-

ing and other complex behaviors; a group of blind behavior of bees can build 

seems fine cellular; birds without centralized control are able to synchronize flight 

and so on [13]. 

People founded the bionics in the mid-20th century [14], and proposed many 

new methods for solving complex optimization problems which based on the 

mechanism of biological evolution, such as genetic algorithms, evolutionary pro-

gramming and evolutionary strategies. Swarm intelligence algorithm, as a new 

evolutionary computing technology had focused more and more researchers. It has 

a very special connection with artificial life, in particular, evolutionary strategy 

and genetic algorithm. The group in swarm intelligence means "a group agent that 

can communicate directly with each other or indirect communication (by changing 

the local environment), this group could solve the main problems with distributed 

collaboration", while swarm intelligence refers to “No intelligence agents have 

shown the main characteristics of intelligent behavior by cooperation with each 

other". Swarm intelligence provides the basis that people finds solutions for solv-

ing complex distributed problems in the premise of absence of centralized control 

and does not provide a global model [15]. 

Introduction of Swarm Intelligent Algorithms 
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Modern swarm intelligent optimization algorithms are very active and devel-

oped rapidly in recent years. In swarm intelligence optimization family, the most 

typical ones include ant colony optimization (ACO) [16], particle swarm optimi-

zation (PSO) [17] and group search optimization (GSO) [18]. The ant colony op-

timization algorithm is the simulation of the process of ants’ foraging behavior. 

The particle swarm optimization derived from the swarm behavior of bird flocking 

or fish schooling. Broadly speaking, the two swarm intelligent algorithm men-

tioned were inspired by some aspects of animal behavior, which is a scientific 

study of everything animals do. The group search optimization was inspired by 

animal searching behavior which may be described as an active movement by 

which an animal finds or attempts to find resources such as food, mates or nesting 

sites. 

Particle swarm optimization was firstly invented together by Kennedy, who is 

American social psychologists, and Eberhart, who is an electric engineer, in 1995 

[19]. It is a new random optimization algorithm based on swarm intelligence algo-

rithm. This algorithm is derived from the simulation of foraging birds’ behaviors 

which is optimum tools based on iterating. It initialized to a set of random solu-

tions by system and search for the optimal value through the iterating. The birds’ 

searching bound is corresponding to the range of design variables. The food that 

birds find is corresponding to the optimal solution of the objective function. Every 

bird, that is, each particle's position in the searching space is corresponding to a 

feasible solution in the design space. PSO dues to its algorithm is simple and easy 

to implement, without gradient information, fewer parameters and other character-

istics in the continuous optimization problems and discrete optimization problems 

have shown good results, especially owing to its natural real coding feature is 

suited to dealing with real optimization problem. In recent years, it becomes the 

hot research area in the field of international intelligence optimization research 

[20]. As a novel optimization search algorithm, during its emergence in over ten 

years, researchers have mainly focused on the research about the structure of algo-

rithms and improvement of performance, including parameter settings, particle di-

versity, population structure and algorithm integration [21]. 

PSO has a very broad application in engineering design and optimization. Par-

ticle swarm algorithm is applied to evolution of neural networks, extraction of 

fuzzy neural network rule, circuit design, digital filter design, semiconductor de-

vice synthesis, layout optimization, the controller parameters optimization, system 

identification and state estimation [22-24]. In the field of electric power system, 

particle swarm optimization algorithm is used to achieve energy optimization, 

control voltage, improve reliability of power and optimize allocation of capacitor 

problems. In the robot control, PSO is applied in vibration inhibition path planning 

of the robot and mobile robot path planning. In the field of transportation, PSO is 

applied in route planning, the layout of base station and optimization problems. In 

the field of computer, PSO is applied in task allocation, pattern recognition, image 

processing and data excavation and other issues. In the field of industrial produc-

tion, PSO is applied in raw materials hybrid optimization and the computer-

controlled grinding optimization. In the field of biology, PSO is applied in 

biomedical image registration, the geometric arrangement of image data, the gene 
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classification and other issues. In the field of electromagnetism, PSO is applied in 

solving the nonlinear magnetic medium magnetic fields and optimization of multi-

layer plane shield in the electromagnetic field. 

Group search optimization was first proposed by He et al. [25], the method is 

inspired from the behavior of biological communities in search of resources and 

developing. Group-living is a widespread phenomenon in the animal kingdom; 

group members benefit from sharing information or cooperating with each other 

by living together. One consequence of sharing information is that group search-

ing allows group members to increase patch finding rates as well as to reduce the 

variance of search success. This has usually led to the adoption of two foraging 

strategies [14] within groups: (1) producing, e.g., searching for food; and (2) join-

ing (scrounging), e.g., joining resources uncovered by others. Joining is a ubiqui-

tous trait found in most social animals such as birds, fish, spiders and lions. In 

order to analyze the optimal policy for joining, two models have been proposed: 

Information-Sharing (IS) and Producer-Scrounger (PS). The IS model assumes 

foragers search concurrently for their own resource, whilst searching for opportu-

nities to join. On the other hand, foragers in the PS model are assumed to use 

producing or joining strategies exclusively. The GSO is a population-based opti-

mization algorithm and employs producer-scrounger model and animal scanning 

mechanism. Producer-scrounger model for designing optimum searching strate-

gies was inspired by animal searching behavior and group living theory. In order 

not to entrap in local minima, GSO also employs "rangers" foraging strategies. 

The population of the GSO algorithm is called a group and each individual in the 

population is called a member just as PSO does. There are three kinds of members 

in the group: (1) producer, performs producing strategies, searching for food; (2) 

scrounger, performs scrounging strategies, joining resources uncovered by others; 

(3) ranger, employs random walks searching strategies for randomly distributed 

resources. At each iteration, the member who located the most promising resource 

is producer, a number of members except producer in the group are selected as 

scroungers, and the remaining members are rangers. 

Compared with the particle swarm optimization algorithm, group search opti-

mization is a relatively new swarm intelligent optimization algorithm, so the ap-

plication research of group search optimization algorithm is still in the initial stage 

in the field of international research, mainly used in nuclear technology, cancer 

treatment research and the field of structural optimization [26]. As swarm intelli-

gence optimization algorithm, it is self-evident for the applied prospect in every 

field, that needs researchers make further study for it. 
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Chapter 2 

Application of Particle Swarm Optimization 

Algorithm to Engineering Structures 

Abstract. In this chapter, we present an approach that integrates the finite element 
method (FEM) with a particle swarm optimization (PSO) algorithm to deal with 
structural optimization problems. The proposed methodology is concerned with 
two main aspects. First, the problem definition must be established, expressing an 
explicit relationship between design variables and objective functions as well as 
constraints. The second aspect is to resolve the minimization problem using the 
PSO technique, including the use of finite element method. In this chapter, particle 
swarm optimizer is extended to solve structural design optimization problems in-
volving problem-specific constraints and mixed variables such as integer, binary, 
discrete and continuous variables. The standard PSO algorithm is very efficient to 
solve global optimization problems with continuous variables, especially the PSO 
is combined with the FEM to deal with the constraints related with the boundary 
conditions of structures controlled by stresses or displacements. The proposed 
algorithm has been successfully used to solve structure design problems. The cal-
culation results show that the proposed algorithm is able to achieve better conver-
gence performance and higher accuracy in comparison with other conventional 
optimization methods used in civil engineering.  

2.1   Introduction 

In the past decades, many optimization algorithms have been applied to solve 

structural design optimization problems. Among them, evolutionary algorithms 

(EAs) such as genetic algorithms (GAs), evolutionary programming (EP) and evo-

lution strategies (ES) are attractive because they do not apply mathematical as-

sumptions to the optimization problems and have better global search abilities 

over conventional optimization algorithms [1].  

Most structural optimal design problems are hard to solve for both conventional 

optimization algorithms and EAs, because they involve problem-specific con-

straints. To handle these constrains, many different approaches have been pro-

posed. Normally, constrained problems are solved as unconstrained. The most 

common approach of them is penalty functions [2]. However the major drawback 

of using penalty functions is that they require additional tuning parameters. In 
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particular, the penalty coefficients have to be fine tuned in order to balance the 

objective and penalty functions. Inappropriate penalty coefficients will make the 

optimization problem intractable [3]. Another difficulty for solving structural op-

timization problems is that structural optimal design problems may contain inte-

ger, discrete, and continuous variables, which are referred to as mixed-variable 

nonlinear optimization problems. Recently a new EA called particle swarm opti-

mization (PSO) have been proposed. Originally PSO was proposed to handle 

continuous optimization problems. Now the standard PSO has been extended to 

handle mixed-variable nonlinear optimization problems more effectively [4]. 

This paper’s objective is to offer a practical methodology for optimization of 

truss structures. It takes advantage of FEM software and PSO minimization strat-

egy. It is desired that this methodology can be practically implemented in struc-

tural optimization.  

2.2   Problem Statement 

The aim of structure optimization is to determine the values for some design 

variables: 

{ }1 2
, , ,

n
X x x x= A   

where 
i

x  denote properties such as cross-section of bars, inertia, elastic modulus 

of materials, co-ordinates of nodes or bar joints, thickness of plates and other 

magnitudes, including economical or aesthetics aspects, if the latter can ever be 

quantified; and n  is the total number of design variables. 

Minimizing an objective function: 

( ) ( )1 2
, , ,

n
f X f x x x= A  

Where f  is an objective function. It could be the weight, the cost or any other 

relevant objective with respect to the designer’s/design criteria. The minimization 

is, at the same, subject to m design constraints: 

( ) ( )1 2
, , 0

i n
g X g x x x= =A ,   1i m= A  

Almost all constraints refer to the maximum allowed stresses or displacements, 

according to normative and material capabilities.  

A structural design optimization problem can be formulated as a nonlinear pro-

gramming problem. In contrast to generic nonlinear problems which only contain 

continuous or integer variables, a structural design optimization usually involves 

continuous, binary, discrete and integer variables. The binary variables are usually 

involved in the formulation of the design problem to select alternative options. 

The discrete variables are used to represent standardization constraints such as the 

diameters of standard sized bars. The integer variables are referred as to the num-

bers of objects which are design variables, such as the number of bars. To solve 

the mixed-variable nonlinear optimization problem, Sandgren [5] and Shih [6] 
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have proposed nonlinear branch and bound algorithms based on the integer pro-

gramming. Cao and Wu [7] developed mixed-variable evolutionary programming 

with different mutation operators associated with different types of variables. 

Considering the mixed variables, the structural optimization formulation can be 

expressed as follows: 

( )min f X                                                     (2.1) 

subject to: 

( ) 0
i

h X =      1, 2,i m= A     

( ) 0
i

g X ≥     1,i m p= + A  

where ( )f X  is the scalar objective function, ( )
i

h X  and ( )
i

g X  are the equal-

ity and inequality constraints, respectively.  

The variables vector
N

X R∈ represents a set of design variables which can be 

written as: 

1 1 1 1
, , , , , , , , , , ,

C B I D

C

B

C C B B I I D D

n n n nI

D

T

X

X
X x x x x x x x x

X

X

= =

⎛ ⎞⎜ ⎟⎜ ⎟ ⎡ ⎤⎣ ⎦⎜ ⎟⎜ ⎟⎝ ⎠
A A A A  

where  

                   
Cl C Cu

i i i
x x x≤ ≤ ,     1, 2,

C
i n= A                               (2.2) 

{ },
B Bl Bu

i i i
x x x∈ ,     1, 2,

B
i n= A  

Il I Iu

i i i
x x x≤ ≤ ,      1, 2,

I
i n= A  

Dl D Du

i i i
x x x≤ ≤ ,     1, 2,

D
i n= A  

 

where C
nC

X R∈ , B
nB

X R∈ , I
nI

X R∈ and D
nD

X R∈  denote feasible subsets of 

comprising continuous, binary, integer and discrete variables, respectively. 
Cl

i
x ,

Bl

i
x ,

Il

i
x and

Dl

i
x are the lower bounds of the i th variables of 

C
X ,

B
X ,

I
X and 

D
X , respectively.  

Cu

i
x ,

Bu

i
x ,

Iu

i
x and

Du

i
x are the upper bounds of the ith variables of 

C
X ,

B
X ,

I
X and 

D
X , respectively. 

C
n ,

B
n ,

I
n and 

D
n  are the numbers of continu-

ous, binary, integer and discrete variables, respectively. The total number of vari-

able is
C B I D

N n n n n= + + + . 
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2.3   Particle Swarm Optimizer 

The PSO is a population-based optimization algorithm which was inspired by the 

social behavior of animals such as fish schooling and birds flocking [8, 9]. Similar 

to other evolutionary algorithms, it can solve a variety of hard optimization 

problems but with a faster convergence rate, specially, it can handle constrains 

with mixed variables. Another advantage is that it requires only a few parameters 

to be tuned which making it attractive from an implementation viewpoint.  

In PSO, its population is called a swarm and each individual is called a particle. 

Each particle flies through the problem space to search for optima. Each particle 

represents a potential solution of solution space, all particles form a swarm. The 

best position passed through by a flying particle is the optimal solution of this par-

ticle and is called pbest, and the best position passed through by a swarm is con-

sidered as optimal solution of the global and is called gbest. Each particle updates 

itself by pbest and gbest. A new generation is produced by this updating. The 

quality of a particle is evaluated by value the adaptability of an optimal function. 

In PSO, each particle can be regard as a point of solution space. Assume the 

number of particles in a group is M , and the dimension of variable of a particle is 

N. The i th particle at iteration k has the following two attributes: 

 

(1) A current position in an N-dimensional search space which represents a po-

tential solution:
,1 , ,

( , )
k k k k

i i i n i N
X x x x= A A , where 

,
[ , ]

k

i n n n
x l u∈ is the nth dimen-

sional variable, 1 n N≤ ≤ , 
n

l and 
n

u are the lower and upper bounds for the nth 

dimension, respectively. 

(2) A current velocity, 
,1 , ,

( , , )
k k k k

i i i n i N
V v v v= A A , which controls its fly speed and 

direction. 
k

i
V is restricted to a maximum velocity 

max max,1 max, max,
( , , )

k k k k

n N
V v v v= A A . 

At each iteration, the swarm is updated by the following equations: 

              
1

1 1 2 2
( ) ( )

k k k k k k

i i i i g i
V V c r P X c r P Xω

+
= + − + −

  
                        (2.3) 

                     
1 1k k k

i i i
X X V

+ +
= +                                                (2.4) 

where 
i

P  is the best previous position of the ith particle (also known as pbest) and 

g
P is the global best position among all the particles in the swarm (also known as 

gbest). They are given by the following equations: 

             
( )

( )

:

:

i i i

i

i i i

P f X P
P

X f X P

≥
=

<

⎧⎨⎩                                              (2.5) 

   { } ( ) ( ) ( ) ( )( )
0 1 0 1
, , , min ,

g M g M
P P P P f P f P f P f P∈ =A A             (2.6) 
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where f is the objective function, M is the total number of particles. 
1
r  and 

2
r  are 

the elements generated from two uniform random sequences on the interval [0,1]: 

1
(0,1)r U∼ ; 

2
(0,1)r U∼ and ω  is an inertia weight [10] which is typically cho-

sen in the range of [0, 1]. A larger inertia weight facilitates global exploration and 

a smaller inertia weight tends to facilitate local exploration to fine-tune the current 

search area. Therefore the inertia weight ω  is critical for the PSO’s convergence 

behavior. A suitable value for the inertia weight ω  usually provides balance be-

tween global and local exploration abilities and consequently results in a better 

optimum solution. Initially the inertia weight was kept constant. However some 

literatures indicated that it is better to initially set the inertia to a large value, in 

order to promote global exploration of the search space, and gradually decrease it 

to get more refined solutions. 
1

c  and 
2

c  are acceleration constants which also con-

trol how far a particle will move in a single iteration. The maximum velocity 
max

V  

is set to be half of the length of the search space in one dimension. 

The right first part of equation (2.3) represents the current position of particles, 

and has the function to balance the global and local search. The second part makes 

the particles have powerful global search abilities. The third part means particles 

share information themselves.  

2.4   Mixed-Variable Handling Methods 

In its basic form, the PSO can only handle continuous variables. To handle integer 

variables, simply truncating the real values to integers to calculate fitness value 

will not affect the search performance significantly [11]. The truncation is only 

performed in evaluating the fitness function. That is the swarm will ‘fly’ in a con-

tinuous search space regardless of the variable type. Binary variables, since they 

can be regarded as integer variables within the range of [0, 1], are not considered 

separately. 

For discrete variables of the ith particle
i

X , the most straightforward way is to 

use the indices of the set of discrete variables with 
D

n  elements. 

,1 ,
, ,

D

D D D

i i i n
X x x= ⎡ ⎤⎣ ⎦A  

For particle i, the index value j of the discrete variable 
,

D

i j
x  is then optimized in-

stead of the discrete value of the variable directly. In the population, the indices of 

the discrete variables of the ith particle should be the flout point variables before 

truncation. That is [1, 1)
D

j n∈ + , 
D

n  is the number of discrete variables. Hence, 

the fitness function of the ith particle 
i

X  can be expressed as follows: 

  ( )
i

f X    1, 2, ,i M= A                                          (2.7) 
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where 

, ,
:

C

i j i j i
x x X∈            1, ,

C
j n= A  

i
X = { ( ), ,

:
I B

i j i j i i
INT x x X X∈ ∪     1, ,

I B
j n n= +A                 (2.8) 

, ( ) , ( )
:

D

ii INT j i INT j
Xx x ∈      [1, 1)

D
j n∈ +  

where C
nC

X R∈ , B
nB

X R∈ , I
nI

X R∈ and D
nD

X R∈ denote the feasible subsets of 

continuous, binary, integer and discrete variables of particle 
i

X , respectively. 

( )INT x  denotes the greatest integer less than the real value x . 

2.5   The Constraint Handling Method 

EAs are heuristic optimization techniques which have been successfully applied to 

various optimization problems. However, they are not able to handle constrained 

optimization problems directly. In the past few years, much work has been done to 

improved EAs performance to deal with constrained optimization problems. By 

maintaining a feasible population, PSO algorithms have been applied to con-

strained optimization problems. The technique starts from a feasible initial popula-

tion. A closed set of operators is used to maintain the feasibility of the solutions. 

Therefore, the subsequent solutions generated at each iteration are also feasible. 

Algorithms based on this technique are much more reliable than those based on a 

penalty approach. For structural design problems, reliability is crucial since almost 

all of the constraints need to be satisfied. 

For the PSO algorithm, the intuitive idea to maintain a feasible population is for 

a particle to fly back to its previous position when it is outside the feasible region. 

This is the so called ‘fly-back mechanism’. Since the population is initialized in 

the feasible region, flying back to a previous position will guarantee the solution 

to be feasible. From literatures, the global minima of optimal design problems are 

usually close to the boundaries of the feasible space, as shown in Figure 2.1. Fly-

ing back to its previous position when a particle violates the constraints will allow 

a new search closer to the boundaries. Figures 2.2 and 2.3 illustrate the search 

process of the ‘fly-back mechanism’. In Figure 2.2, the ith particle would fly into 

the infeasible search space at the kth iteration. At the next iteration as shown in 

Figure 2.3, this particle is set back to its previous position
1k

i
X

−

 and starts a new 

search. Assuming that the global best particle 
g

P  stays in the same position, the di-

rection of the new velocity 
1k

i
V

+

 will still point to the boundary but closer to global 

best particle 
g

P . Since 
g

P  is inside the feasible space and 
k

i
Vω  is smaller than 

k

i
V , 

the chance of particle 
i

X  flying outside the boundaries at the next iteration will be 

decreased. This property makes the particles more likely to explore the feasible  

search space near the boundaries. Therefore, such a ‘fly-back mechanism’ is suit-

able for structural design problems. 
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Fig. 2.1 Global minimum in the feasible space 

 

Fig. 2.2 Xi at iteration k would fly outside the feasible search space 
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Fig. 2.3 Xi flies back to its previous position and starts a new search 

2.6   Application of the PSO in Structural Optimization Problems  

The proposed constraint handling technique requires a feasible initial population 

to guarantee that the solutions of successive generations are feasible. For structure 

optimization design problems, a feasible initial population usually is easily ob-

tained since their feasible search spaces are usually large and feasible particles can 

be easily generated. Small size populations are preferred to minimize the time to 

find a feasible initial population.  

For a practical structure optimization design problem, since the number of vari-

ables N is big, it is necessary to use finite element method (FEM) [12, 13] to obtain 

a feasible initial population. The updated particles are also used by FEM to adjust 

particle position so that the stress and deformation constraints are not violated. 

In standard PSO, parameters ω , 
1

c and 
2

c  are constant for all particles. While 

we try using matrix instead of constants so that each particle has different calcula-

tion parameter value, which augments search space and accelerates the conver-

gence velocity. 

The constraints handling is also improved to fit the structural optimization 

problem solving. Denote k

i
X  the ith particle in kth iteration, randomly take a parti-

cle 
1k

j
X

−

 from previous generation. If any variables in k

i
X  violate the constraints, 

then put
1k k

i j
X X

−

= ，and go into next iteration. Repeat equations (2.1)～(2.4) until 

global best position is founded. when k

i
X  violates constraints, do not put 1k k

i i
X X

−

=  

but
1k k

i j
X X

−

=  will accelerate the convergence speed and prevent premature. Com-

pared with penalty function method, this handling method does not need extra 
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parameters, but requires that initial particles must meet the constraints and belong 

to feasible solution space. This demand can be easily met by using FEM. 

Table 2.1 lists the calculation flow of the PSO algorithm for structural design 

problems: 

Table 2.1 The PSO  algorithm calculation flow 

Set k = 1; 

Initialize positions and velocities of all particles; 

FOR (each particle i in the initial population) 

WHILE (the constraints are violated) 

Re-initialize current particle Xi 

END WHILE 

END FOR 

WHILE (the termination conditions are not met) 

FOR (each particle i in the swarm) 

Check feasibility: Check the feasibility of the current particle. If 
k

i
X  

is outside the feasible region, then reset 
k

i
X  to the 

randomly chosen previous generation particle 1k

j
X

− ; 

Calculate fitness: Calculate the fitness value ( )
k

i
f X  of current parti-

cle using Eq. (2.8); 

Update pbest: Compare the fitness value of pbest with ( )
k

i
f X . If 

( )
k

i
f X  is better than the fitness value of pbest, then 

set pbest to the current position 
k

i
X ; 

Update gbest: Find the global best position of the swarm. If the 

( )
k

i
f X  is better than the fitness value of gbest, then 

gbest is set to the position of the current particle 
k

i
X  ; 

Update velocities: Calculate velocities 
k

i
V  using Eq. (2.3); 

Update positions: Calculate positions 
k

i
X  using Eq. (2.4); 

END FOR 

Set k = k +1 

END WHILE 

2.7   Examples 

The two examples are used to show that the application of PSO to structural opti-

mization problems is feasible and effective. Both of them take cross-sections of a 

truss structure as an optimization objective. 
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(1) Optimization design for a three-bar truss structure 

A three bar truss structure is shown in Figure 2.4. The optimization objective is 

the volume of bars of truss. Denote the cross-section of bar 
i

x  as variable. There 

are two load conditions: 1) P1=2000 kN, P2=0 kN. 2) P1=0 kN, P2=2000 kN  

Objective function is as follows: 

1

min                    3
n

i i

i

V A l n
=

= ⋅ =∑  

[ ] [ ]-
. .                     

i
s t σ σ σ

+
≤ ≤  

min maxi
A A A≤ ≤  

Material parameters are 
5 2

min
1. 10

i
A m

−
= × , 

3 2

max
1. 10

i
A m

−
= × , 

[ ] 7
2. 10 kPaσ

+
= × ，[ ] 7

1.5 10 kPaσ
−

= × , 
8

2. 10 kPaE = × . Calculation parame-

ters are 3N = , 50M = ,  300max =iter . Where V is total volume of truss, li and Ai is 

bar’s length and area respectively, 
iσ is Bar’s stress. 

 

Fig. 2.4 A three-bar truss structure subject to loads 

Except for the PSO method, the Matlab optimal toolbox, the Stress ratio 

method and the analytical method were used to compare the solutions, which were 

expressed in Table 2.2. 

Matlab toolbox is a traditional optimal method with faster convergence speed, 

but it requires definite objective function and constraint condition, which made it 

limited to deal with complex problems. Stress ratio method is a conventional 

optimal method used for truss structure. Table 2.1 shows that the PSO method has 

the best precision. By 30 iterations, optimal solution reatched 100％ analytical so-

lution. The Matlab toobox method and the Stress ratio method has 1.43% and 

6.63% error respectively.  
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Table 2.2 A three-bar truss structure optimization results 

Optimal results 
Variables 

(m
2
) PSO 

Matlab 

toolbox 

Stress ratio 

method 

Analytical 

solution 

)1(x  0.79051e-4 0.8698e-4 0.9898e-4 0.789e-4 

)2(x  0.40308e-4 0.2166e-4 0.0144e-4 0.408e-4 

)3(x  0.79051e-4 0.8698e-4 0.9898e-4 0.789e-4 

V (m
3
) 2.639e-4 2.6767e-4 2.8141e-4 2.639e-4 

Error (%) 0 1.43 6.63  

 

 

(2) Optimization design for a 15-bar truss structure  

A 15-bar truss structure is shown in Figure 2.5. The optimization objective is 

the volume of bars of truss. Denote the cross-section of bar 
i

x  as variables. The 

constraints are lower and upper bounds of cross-sections and stresses of bars.  

The objective function is： 

1

min                    15
n

i i

i

V A l n
=

= ⋅ =∑  

[ ]. .                     0
i i

s t σ σ σ
+

≤ ≥  

     [ ]           0
i i

σ σ σ
−

≥ ≤  

min maxi
A A A≤ ≤  

 

Fig. 2.5 A 15-bar truss structure subjected to loads 
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Material parameters are 
5 2

min
8. 10

i
A m

−
= × , 

3 2

max
1. 10

i
A m

−
= × , 

[ ] 4
7. 10 kPaσ

+
= × ， [ ] 4

3.5 10 kPaσ
−

= − × , 
8

2. 10 kPaE = × , V : total volume of bars 

of truss, ,i il A：Bar’s length and area respectively, 
iσ ：bar’s stress.  

The calculation parameters� 15N = , 100M = , 
max

300iter = .  

Except for the PSO method, Matlab optimal toolbox and Ansys program are 

used to compare the solutions, which were expressed in Table 2.3. 

Table 2.3 A fifteen-bar truss structure optimization results 

Optimization results Variables 

(m
2
) PSO Matlab toolbox Ansys 

)1(x  0.00068933 0.00067985 0.00069575    

)2(x  0.00039448 0.00039634 0.00040504 

)3(x  0.00016872 0.00016884 0.00018412 

)4(x  8e-005 8e-005 8e-005 

)5(x  8e-005 8e-005 8.0419e-005 

)6(x  8e-005 8e-005 8e-005 

)7(x  0.00036965 0.00037436 0.00038024 

)8(x  0.00023148 0.0002304 0.00024087 

)9(x  8e-005 8e-005 8e-005 

)10(x  8.7203e-005 8e-005 8.9916e-005 

)11(x  0.00023734 0.00025073 0.00024610 

)12(x  8e-005 8e-005 8.0905e-005 

)13(x  0.00025026 0.00024761 0.00026109 

)14(x  0.0001193 0.00011939 0.00012775 

)15(x  0.00016581 0.00016529 0.00016720 

V (m
3
) 0.014011 0.014014 0.014734 

 

 

 

The Ansys program is a commercial software package [14]. It consumes long 

time and the optimal course is complicated. It is not easy convergent for complex 

problem. Moreover it can only deal with limited variables. 

From Table 2.3 it can be seen that the PSO method is simple and has more op-

timal results compared with other two methods. Ansys analysis results is less pre-

cision and need more time to converge. 
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2.8   Conclusions  

This chapter has presented a mixed-variable PSO algorithm to deal with structural 

optimization problems. The structural design optimization problem involves prob-

lem-specific constraints and mixed variables such as integer, binary, discrete and 

continuous variables. The PSO is combined with the FEM to deal with the con-

straints related with the boundary conditions of structures controlled by stresses or 

displacements. 

The work presented in this chapter consists of three aspects. The first is that the 

FEM was used to generate a initial feasible particle swarm and deal with boundary 

conditions. The second is that the randomly ‘fly back’ scheme was used to guaran-

tee the variety of particles to fit the need of civil engineering. The third is that the 

problem solving dimensions were not limited to the number of objective functions, 

variables and constraints, the proposed algorithm can be extended to larger prob-

lems with further modification required. The proposed algorithm has been suc-

cessfully applied to solve two structural design problems through comprehensive 

simulation studies. The simulation results show that application of PSO to the 

structural optimization problems is feasible and effective, and the proposed algo-

rithm is able to achieve better convergence performance and higher accuracy in 

comparison with other conventional optimization methods used in civil 

engineering.  
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Chapter 3 

Optimum Design of Structures with Heuristic 

Particle Swarm Optimization Algorithm 

Abstract. This chapter introduces the application of an improved particle swarm 
algorithm to optimal structure design. The algorithm is named heuristic particle 
swarm optimization (HPSO). It is based on heuristic search schemes and the stan-
dard particle swarm algorithm. The efficiency of HPSO for pin connected structures 
with continuous variables and for pin connected structures and plates with discrete 
variables is compared with that of other intelligent algorithms, and the implemen-
tation of HPSO is presented in detail. An optimal result of a complex practical 
double-layer grid shell structure is presented to value the effectiveness of the 
HPSO. 

3.1   Introduction 

In the last 30 years, a great attention has been paid to structural optimization, since 

material consumption is one of the most important factors influencing building 

construction. Designers prefer to reduce the volume or weight of structures through 

optimization. Many traditional mathematical optimization algorithms have been 

used in structural optimization problems. The traditional optimal algorithms pro-

vide a useful strategy to obtain the global optimal solution in a simple model. 

However, many practical engineering optimal problems are very complex and 

hard to solve by the traditional optimal algorithms. Recently, evolutionary algo-

rithms (EAs), such as genetic algorithms (GAs), evolutionary programming (EP) 

and evolution strategies (ES) have become more attractive because they do not 

require conventional mathematical assumptions and thus possess better global 

search abilities than the conventional optimization algorithms [1]. For example, 

GAs have been applied for structural optimization problems [2, 3, 4]. 

A new evolutionary algorithm called particle swarm optimizer (PSO) was de-

veloped by Kennedy and Eberhart [5], which was inspired by the social behaviour 

of animals such as fish schooling and bird flocking. It is a population-based algo-

rithm, which is based on the premise that social sharing of information among 

members of a species offers an evolutionary advantage. With respect to other  

algorithms such as evolutionary algorithms, a number of advantages make PSO  
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an ideal candidate to be used in optimization tasks. The algorithm can handle  

continuous, discrete and integer variable types with ease. In addition, its easiness of 

implementation makes it more attractive for the applications of real-engineering 

optimization problems. Furthermore, it is a population-based algorithm, so it can be 

efficiently parallelized to reduce the total computational effort. The PSO has fewer 

parameters and is easier to implement than the GAs [6]. The PSO also shows a 

faster convergence rate than the other EAs for solving some optimization problems. 

The foundation of PSO is based on the hypothesis that social sharing of infor-

mation among conspecifics offers an evolutionary advantage. It involves a number 

of particles, which are initialized randomly in the search space of an objective 

function. These particles are referred to as swarm. Each particle of the swarm 

represents a potential solution of the optimization problem. The particles fly 

through the search space and their positions are updated based on the best positions 

of individual particles in each iteration. The objective function is evaluated for each 

particle and the fitness values of particles are obtained to determine which position 

in the search space is the best. 

In each iteration, the swarm is updated using the following equations: 

       ( ) ( )1

1 1 2 2- -k k k k k k

i i i i g iV V c r P X c r P Xω+ = + +                       (3.1) 

                    
1 1k k k

i i iX X V+ += +
                                              (3.2) 

where Xi and Vi represent the current position and the velocity of the ith particle 

respectively; Pi is the best previous position of the ith particle (called pbest) and Pg 

is the best global position among all the particles in the swarm (called gbest); r1 and 

r2 are two uniform random sequences generated from U(0, 1); and ω is the inertia 

weight used to discount the previous velocity of the particle persevered.  

The PSO model is based on the following two factors: 

(1) The autobiographical memory, which remembers the best previous position 

of each individual (
i

P ) in the swarm; and 

(2) The publicized knowledge, which is the best solution (
g

P ) found currently by 

the population. 

Angeline [7] pointed out that although PSO may outperform other evolutionary 

algorithms in the early iterations, its performance may not be competitive as the 

number of generations is increased. Recently, many investigations have been un-

dertaken to improve the performance of the standard PSO (SPSO). He [8] et al. 

found that adding the passive congregation model to the SPSO may increase  

its performance. Therefore, they improved the SPSO with passive congregation 

(PSOPC), which can improve the convergence rate and accuracy of the SPSO  

efficiently. 
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3.2   Constraint Handling Method: Fly-Back Mechanism 

Most structural optimization problems include the problem-specific constraints, 

which are difficult to solve using the traditional mathematical optimization algo-

rithms [9]. Penalty functions have been commonly used to deal with constraints. 

However, the major disadvantage of using the penalty functions is that some tuning 

parameters are added in the algorithm and the penalty coefficients have to be tuned 

in order to balance the objective and penalty functions. If appropriate penalty co-

efficients cannot be provided, difficulties will be encountered in the solution of the 

optimization problems [10, 11]. To avoid such difficulties, a new method, called 

‘fly-back mechanism’, was developed. 

For most of the optimization problems containing constraints, the global mini-

mum locates on or close to the boundary of a feasible design space. The particles are 

initialized in the feasible region. When the optimization process starts, the particles 

fly in the feasible space to search the solution. If any one of the particles flies into 

the infeasible region, it will be forced to fly back to the previous position to guar-

antee a feasible solution. The particle which flies back to the previous position may 

be closer to the boundary at the next iteration. This makes the particles to fly to the 

global minimum in a great probability. Therefore, such a ‘fly-back mechanism’ 

technique is suitable for handling the optimization problem containing the con-

straints. Compared with the other constraint handling techniques, this method is 

relatively simple and easy to implement. Some experimental results have shown 

that it can find a better solution with a fewer iterations than the other techniques. 

3.3   A Heuristic Particle Swarm Optimization (HPSO) 

The heuristic particle swarm optimizer (HPSO) [12] is based on the PSOPC and a 

harmony search (HS) scheme, and uses a ‘fly-back mechanism’ method to handle 

the constraints. The pseudo-code for the HPSO algorithm is listed in Table 3.1. 

When a particle flies in the searching space, it may fly into infeasible regions. In 

this case, there are two possibilities. It may violate either the problem-specific 

constraints or the limits of the variables, as illustrated in Fig. 3.1. Because the 

‘fly-back mechanism’ technique is used to handle the problem-specific constraints, 

the particle will be forced to fly back to its previous position no matter whether it 

violates the problem-specific constraints or the variable boundaries. If it flies out of 

the variable boundaries, the solution cannot be used even if the problem-specific 

constraints are satisfied. In our experiments, particles violate the variables’ 

boundary frequently for some simple structural optimization problems. If the 

structure becomes complicated, the number of occurrences of violating tends to 

rise. In other words, a large amount of particles’ flying behaviours are wasted, due 

to searching outside the variables’ boundary. Although minimizing the maximum 

of the velocity can make fewer particles violate the variable boundaries, it may also  
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variables 

boundary

problem-specified 

constraints boundary

feasible space

particle

infeasible space

In this region, the particle violates the 

variables boundary, but satisfies the 

problem-specified constraints.

In this region, the particle satisfies the 

variables boundary, but violates the 

problem-specified constraints.

In this region, the particle satisfies

 the variables boundary and the 

problem-specified constraints.

In this region, the particle violates 

the variables boundary and the 

problem-specified constraints.

 

Fig. 3.1 The particle may violate the problem-specific constraints or the variables’ boundary 

prevent the particles to cross the problem-specific constraints. Therefore, we hope 

that all of the particles fly inside the variable boundaries and then to check whether 

they violate the problem-specific constraints and get better solutions or not. The 

particles, which fly outside the variables’ boundary, have to be regenerated in an 

alternative way. Here, we introduce a new method to handle these particles. It is 

derived from one of the ideas in a new meta-harmony algorithm called harmony 

search algorithm [13, 14]. 

Harmony search algorithm is based on natural musical performance processes 

that occur when a musician searches for a better state of harmony, such as during 

jazz improvisation [15]. The engineers seek for a global solution as determined by 

an objective function, just like the musicians seek to find musically pleasing har-

mony as determined by an aesthetic [16]. The harmony search algorithm includes a 

number of optimization operators, such as the harmony memory (HM), the har-

mony memory size (HMS), the harmony memory considering rate (HMCR), and 

the pitch adjusting rate (PAR). In this paper, the harmony memory (HM) concept 

has been used in the PSO algorithm to avoid searching trapped in local solutions. 

The other operators have not been employed. How the HS algorithm generates a 

new vector from its harmony memory and how it is used to improve the PSO al-

gorithm will be discussed as follows. 
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Table 3.1 The pseudo-code for the HPSO 

Set k=1; 

Randomly initialize positions and velocities of all particles; 

 FOR (each particle i in the initial population)   

  WHILE (the constraints are violated) 

   Randomly re-generate the current particle Xi 

  END WHILE 

 END FOR 

WHILE (the termination conditions are not met) 

 FOR (each particle i in the swarm) 

  Generate the velocity and update the position of the current particle (vector) Xi 

  Check feasibility stage I: Check whether each component of the current vector  

violates its corresponding boundary or not. If it does, select the corresponding  

component of the vector from pbest swarm randomly. 

  Check feasibility stage II: Check whether the current particle violates the problem 

specified constraints or not. If it does, reset it to the previous position Xik-1. 

  Calculate the fitness value f(Xik) of the current particle. 

  Update pbest: Compare the fitness value of pbest with f(Xik). If the f(Xik) is better  

                than the fitness value of pbest, set pbest to the current position Xik. 
  Update gbest: Find the global best position in the swarm. If the f(Xik) is better than  

the fitness value of gbest, gbest is set to the position of the current particle Xik. 

 END FOR 

Set k=k+1 

END WHILE 

 
In the HS algorithm, the harmony memory stores the feasible vectors, which  

are all in the feasible space. The harmony memory size determines how many 

vectors it stores. A new vector is generated by selecting the components of different 

vectors randomly in the harmony memory. Undoubtedly, the new vector does not 

violate the variables boundaries, but it is not certain if it violates the prob-

lem-specific constraints. When it is generated, the harmony memory will be up-

dated by accepting this new vector if it gets a better solution and deleting the worst 

vector.  

Similarly, the PSO stores the feasible and “good” vectors (particles) in the pbest 

swarm, as does the harmony memory in the HS algorithm. Hence, the vector (par-

ticle) violating the variables’ boundaries can be generated randomly again by such a 

technique-selecting for the components of different vectors in the pbest swarm. 

There are two different ways to apply this technique to the PSO when any one of the 

components of the vector violates its corresponding variables’ boundary. Firstly, all 

the components of this vector should be generated. Secondly, only this component 

of the vector should be generated again by such a technique. In our experiments,  

the results show that the former makes the particles moving to the local solution 

easily, and the latter can reach the global solution in relatively less number of  

iterations. 
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Therefore, applying such a technique to the PSOPC can improve its perform-

ance, although it already has a better convergence rate and accuracy than the  

PSO.  

3.4   The Application of the HPSO on Truss Structures with 

Continuous Variables 

In this section, five pin-connected structures commonly used in literature are se-

lected as benchmark problems to test the HPSO. The proposed algorithm is coded in 

Fortran language and executed on a Pentium 4, 2.93GHz machine.  

The examples given in the simulation studies include  

• a 10-bar planar truss structure subjected to four concentrated loads as shown in 

Fig. 3.2;  

• a 17-bar planar truss structure subjected to a single concentrated load at its free 

end as shown in Fig. 3.5;  

• a 22-bar spatial truss structure subjected to three load cases;  

• a 25-bar spatial truss structure subjected to two load cases;  

• a 72-bar spatial truss structure subjected to two load cases.  

All these truss structures are analyzed by the finite element method (FEM). 

The PSO, PSOPC and HPSO schemes are applied respectively to all these ex-

amples and the results are compared in order to evaluate the performance of the new 

algorithm. For all these algorithms, a population of 50 individuals is used; the in-

ertia weight ω decrease linearly from 0.9 to 0.4; and the value of acceleration con-

stants c1 and c2 are set to be the same and equal to 0.8. The passive congregation 

coefficient c3 is given as 0.6 for the PSOPC [8] and the HPSO algorithms. The 

maximum number of iterations is limited to 3000. The maximum velocity is set  

as the difference between the upper bound and the lower bound of variables, which 

ensures that the particles are able to fly into the problem-specific constraints’  

region. 

3.4.1   Numerical Examples 

(1) The 10-bar planar truss structure 

The 10-bar truss structure, shown in Fig. 3.2, has previously been analyzed by many 

researchers, such as Lee [16], Schmit [17], Rizzi [18], and Li [19]. The material 

density is 0.1 lb/in
3
 and the modulus of elasticity is 10,000 ksi. The members are 

subjected to the stress limits of ±25 ksi. All nodes in both vertical and horizontal 

directions are subjected to the displacement limits of ±2.0 in. There are 10 design 

variables in this example and the minimum permitted cross-sectional area of each 

member is 0.1 in
2
. Two cases are considered: Case 1, P1=100 kips and P2=0; Case 2, 

P1=150 kips and P2=50 kips.  
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Fig. 3.2 A 10-bar planar truss structure 

For both load cases, the PSOPC and the HPSO algorithms achieve the best so-

lutions after 3,000 iterations. However, the latter is closer to the best solution than 

the former after about 500 iterations. The HPSO algorithm displays a faster con-

vergence rate than the PSOPC algorithm in this example. The performance of  

the PSO algorithm is the worst among the three. Tables 3.2 and 3.3 show the solu-

tions. Figs. 3.3 and 3.4 provide a comparison of the convergence rates of the three 

algorithms. 

Table 3.2 Design results for the 10-bar planar truss structure (Case 1) 

Optimal cross-sectional areas (in.
2
) 

Li [19]  Li [19]  Li [19]  Variables 
Schmit [17] Rizzi [18] Lee [16] 

PSO PSOPC HPSO 

1 A1 33.43 30.73 30.15 33.469 30.569 30.704 

2 A2 0.100 0.100 0.102 0.110 0.100 0.100 

3 A3 24.26 23.93 22.71 23.177 22.974 23.167 

4 A4 14.26 14.73 15.27 15.475 15.148 15.183 

5 A5 0.100 0.100 0.102 3.649 0.100 0.100 

6 A6 0.100 0.100 0.544 0.116 0.547 0.551 

7 A7 8.388 8.542 7.541 8.328 7.493 7.460 

8 A8 20.74 20.95 21.56 23.340 21.159 20.978 

9 A9 19.69 21.84 21.45 23.014 21.556 21.508 

10 A10 0.100 0.100 0.100 0.190 0.100 0.100 

Weight (lb) 5089.0 5076.66 5057.88 5529.50 5061.00 5060.92 
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Table 3.3 Design results for the 10-bar planar truss structure (Case 2) 

Optimal cross-sectional areas (in.
2
) 

Li [19] Li [19] Li [19] Variables Schmit  

[17] 

Rizzi  

[18] 

Lee  

[16] PSO PSOPC HPSO 

1 A1 24.29 23.53 23.25 22.935 23.743 23.353 

2 A2 0.100 0.100 0.102 0.113 0.101 0.100 

3 A3 23.35 25.29 25.73 25.355 25.287 25.502 

4 A4 13.66 14.37 14.51 14.373 14.413 14.250 

5 A5 0.100 0.100 0.100 0.100 0.100 0.100 

6 A6 1.969 1.970 1.977 1.990 1.969 1.972 

7 A7 12.67 12.39 12.21 12.346 12.362 12.363 

8 A8 12.54 12.83 12.61 12.923 12.694 12.894 

9 A9 21.97 20.33 20.36 20.678 20.323 20.356 

10 A10 0.100 0.100 0.100 0.100 0.103 0.101 

Weight (lb) 4691.84 4676.92 4668.81 4679.47 4677.70 4677.29 
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Fig. 3.3 Convergence rates of the three algorithms for the 10-bar planar truss structure  

(Case 1) 
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Fig. 3.4 Convergence rates of the three algorithms for the 10-bar planar truss structure  

(Case 2) 

The curves of stability of 10-bar truss structure with three different algorithms 

(PSO, PSOPC and HPSO) is shown in Fig. 3.5. The stability curves come from the 

best results of 100 independent calculation times. The standard deviation of PSO, 

PSOPC and HPSO is 664.07891, 12.84174 and 3.8402 respectively. It can be seen 

from Fig. 3.5 that the HPSO has the best stability. 
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Fig. 3.5 The stability of the 10-bar truss structure with three algorithms  
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(2) The 17-bar planar truss structure 

The 17-bar truss structure, shown in Fig. 3.6, had been analyzed by Khot [20], Adeli 

[21], Lee [16] and Li [19]. The material density is 0.268 lb/in.
3
 and the modulus of 

elasticity is 30,000 ksi. The members are subjected to the stress limits of ±50 ksi. 

All nodes in both directions are subjected to the displacement limits of ±2.0 in.  

 

 

Fig. 3.6 A 17-bar planar truss structure 

Table 3.4 Comparison of the designs for the 17-bar planar truss 

Optimal cross-sectional areas (in.
2
) 

Li [19] Li [19] Li [19] Variables 
Khot [20] Adeli [21] Lee [16] 

PSO PSOPC HPSO 

1 A1 15.930 16.029 15.821 15.766 15.981 15.896 

2 A2 0.100 0.107 0.108 2.263 0.100 0.103 

3 A3 12.070 12.183 11.996 13.854 12.142 12.092 

4 A4 0.100 0.110 0.100 0.106 0.100 0.100 

5 A5 8.067 8.417 8.150 11.356 8.098 8.063 

6 A6 5.562 5.715 5.507 3.915 5.566 5.591 

7 A7 11.933 11.331 11.829 8.071 11.732 11.915 

8 A8 0.100 0.105 0.100 0.100 0.100 0.100 

9 A9 7.945 7.301 7.934 5.850 7.982 7.965 

10 A10 0.100 0.115 0.100 2.294 0.113 0.100 

11 A11 4.055 4.046 4.093 6.313 4.074 4.076 

12 A12 0.100 0.101 0.100 3.375 0.132 0.100 

13 A13 5.657 5.611 5.660 5.434 5.667 5.670 

14 A14 4.000 4.046 4.061 3.918 3.991 3.998 

15 A15 5.558 5.152 5.656 3.534 5.555 5.548 

16 A16 0.100 0.107 0.100 2.314 0.101 0.103 

17 A17 5.579 5.286 5.582 3.542 5.555 5.537 

Weight (lb) 2581.89 2594.42 2580.81 2724.37 2582.85 2581.94 

www.allitebooks.com
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There are 17 design variables in this example and the minimum permitted 

cross-sectional area of each member is 0.1in.
2
. A single vertical downward load of 

100 kips at node 9 is considered. Table 3.4 shows the solutions and Fig. 3.7 com-

pares the convergence rates of the three algorithms. 

Both the PSOPC and HPSO algorithms achieve a good solution after 3,000 it-

erations and the latter shows a better convergence rate than the former, especially at 

the early stage of iterations. In this case, the PSO algorithm is not fully converged 

when the maximum number of iterations is reached.  
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Fig. 3.7 Convergence rates of  the three algorithms for the 17-bar planar truss structure 

(3) The 22-bar spatial truss structure 

The 22-bar spatial truss structure, shown in Fig. 3.8, had been studied by Lee [16] 

and Li [19]. The material density is 0.1 lb/in.
3
 and the modulus of elasticity is 

10,000 ksi. The stress limits of the members are listed in Table 3.5.  

Table 3.5 Member stress limits for the 22-bar spatial truss structure 

Variables 
Compressive stress limitations 

(ksi) 
Tensile stress  

Limitation (ksi) 

1 A1 24.0 36.0 

2 A2 30.0 36.0 

3 A3 28.0 36.0 

4 A4 26.0 36.0 

5 A5 22.0 36.0 

6 A6 20.0 36.0 

7 A7 18.0 36.0 
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All nodes in all three directions are subjected to the displacement limits of ±2.0 

in. Three load cases are listed in Table 3.6. There are 22 members, which fall into 7 

groups, as follows: (1) A1~A4, (2) A5~A6, (3) A7~A8, (4) A9~A10, (5) A11~A14, (6) 

A15~A18, and (7) A19~A22. The minimum permitted cross-sectional area of each 

member is 0.1 in.
2
. 

 

Fig. 3.8 A 22-bar spatial truss structure 

Table 3.6 Load cases for the 22-bar spatial truss structure 

Case 1 (kips) Case 2 (kips) Case 3 (kips) 
Node 

PX PY PZ PX PY PZ PX PY PZ 

1 -20.0 0.0 -5.0 -20.0 -5.0 0.0 -20.0 0.0 35.0 

2 -20.0 0.0 -5.0 -20.0 -50.0 0.0 -20.0 0.0 0.0 

3 -20.0 0.0 -30.0 -20.0 -5.0 0.0 -20.0 0.0 0.0 

4 -20.0 0.0 -30.0 -20.0 -50.0 0.0 -20.0 0.0 -35.0 

 

In this example, the HPSO algorithm has converged after 50 iterations, while the 

PSOPC and PSO algorithms need more than 500 and 1000 iterations respectively. 

The optimum results obtained by using the HPSO algorithm are significantly better 

than that obtained by the HS and the PSO algorithms. Table 3.7 shows the optimal 

solutions of the four algorithms and Fig. 3.9 provides the convergence rates of three 

of the four algorithms. 
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Table 3.7 Comparison of the designs for the 22-bar spatial truss structure 

Optimal cross-sectional areas (in.
2
) 

Li [19] Li [19] Li [19] Variables 
Lee [16] 

PSO PSOPC HPSO 

1 A1 2.588 1.657 3.041 3.157 

2 A2 1.083 0.716 1.191 1.269 

3 A3 0.363 0.919 0.985 0.980 

4 A4 0.422 0.175 0.105 0.100 

5 A5 2.827 4.576 3.430 3.280 

6 A6 2.055 3.224 1.543 1.402 

7 A7 2.044 0.450 1.138 1.301 

Weight (lb) 1022.23 1057.14 977.80 977.81 
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Fig. 3.9 Convergence ratesof the three algorithms for the 22-bar spatial truss structure 

(4) The 25-bar spatial truss structure 

The 25-bar spatial truss structure shown in Fig. 3.10 had been studied by several 

researchers, such as Schmit [17], Rizzi [18], Lee [16] and Li [19]. The material 

density is 0.1 lb/in.
3
 and the modulus of elasticity is 10,000 ksi. The stress limits of 

the members are listed in Table 3.8. All nodes in all directions are subjected to the 

displacement limits of ±0.35 in. Two load cases listed in Table 3.9 are considered. 

There are 25 members, which are divided into 8 groups, as follows: (1) A1, (2) 

A2~A5, (3) A6~A9, (4) A10~A11, (5) A12~A13, (6) A14~A17, (7) A18~A21 and  

(8) A22~A25. The minimum permitted cross-sectional area of each member is  

0.01 in
2
. 
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Fig. 3.10 A 25-bar spatial truss structure 

Table 3.8 Member stress limits for the 25-bar spatial truss structure 

Variables 
Compressive stress  

limitations (ksi) 
Tensile stress  

limitation (ksi) 

1 A1 35.092 40.0 

2 A2 11.590 40.0 

3 A3 17.305 40.0 

4 A4 35.092 40.0 

5 A5 35.902 40.0 

6 A6 6.759 40.0 

7 A7 6.959 40.0 

8 A8 11.802 40.0 

Table 3.9 Load cases for the 25-bar spatial truss structure 

Case 1 Case 2 
Node PX 

(kips) 
PY 

(kips) 
PZ 

(kips) 
PX 

(kips) 
PY 

(kips) 
PZ 

(kips) 

1 0.0 20.0 -5.0 1.0 10.0 -5.0 

2 0.0 -20.0 -5.0 0.0 10.0 -5.0 

3 0.0 0.0 0.0 0.5 0.0 0.0 

6 0.0 0.0 0.0 0.5 0.0 0.0 
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For this spatial truss structure, it takes about 1000 and 3000 iterations, respec-

tively, for the PSOPC and the PSO algorithms to converge. However the HPSO 

algorithm takes only 50 iterations to converge. Indeed, in this example, the PSO 

algorithm did not fully converge when the maximum number of iterations is 

reached. Table 3.10 shows the solutions and Fig. 3.11 compares the convergence 

rate of the three algorithms. 

Table 3.10 Comparison of the designs for the 25-bar spatial truss structure 

Optimal cross-sectional areas (in.
2
) 

Li [19] Li [19] Li [19] Variables 
Schmit [17] Rizzi [18] Lee [16]

PSO PSOPC HPSO 

1 A1 0.010 0.010 0.047 9.863 0.010 0.010 

2 A2~A5 1.964 1.988 2.022 1.798 1.979 1.970 

3 A6~A9 3.033 2.991 2.950 3.654 3.011 3.016 

4 A10~A11 0.010 0.010 0.010 0.100 0.100 0.010 

5 A12~A13 0.010 0.010 0.014 0.100 0.100 0.010 

6 A14~A17 0.670 0.684 0.688 0.596 0.657 0.694 

7 A18~A21 1.680 1.677 1.657 1.659 1.678 1.681 

8 A22~A25 2.670 2.663 2.663 2.612 2.693 2.643 

Weight (lb) 545.22 545.36 544.38 627.08 545.27 545.19 
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Fig. 3.11 Convergence rates of the three algorithms for the 25-bar spatial truss structure 
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The curves of stability of 10-bar truss structure with three different algorithms 

(PSO, PSOPC and HPSO) is shown in Fig. 3.12. The stability curves come from the 

best results of 100 independent calculation times. The standard deviation of PSO, 

PSOPC and HPSO is 256.7491, 1.04208 and 0.02664 respectively. It can be seen 

from Fig. 3.12 that the HPSO has the best stability in this example. 
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Fig. 3.12 The stability of the 25-bar truss structure with three algorithms  

(5)   The 72-Bar Spatial Truss Structure 

The 72-bar spatial truss structure shown in Fig. 3.13 had also been studied by many 

researchers, such as Schmit [17], Khot [20], Adeli [21], Lee [16], Sarma [22] and Li 

[19]. The material density is 0.1 lb/in.
3
 and the modulus of elasticity is 10,000 ksi. 

The members are subjected to the stress limits of ±25 ksi. The uppermost nodes are 

subjected to the displacement limits of ±0.25 in. in both the x and y directions. Two 

load cases are listed in Table 3.11. There are 72 members classified into 16 groups: 

(1) A1~A4, (2) A5~A12, (3) A13~A16, (4) A17~A18, (5) A19~A22, (6) A23~A30 (7) 

A31~A34, (8) A35~A36, (9) A37~A40, (10) A41~A48, (11) A49~A52, (12) A53~A54, (13) 

A55~A58, (14) A59~A66 (15) A67~A70, (16) A71~A72. For case 1, the minimum per-

mitted cross-sectional area of each member is 0.1 in 
2
. For case 2, the minimum 

permitted cross-sectional area of each member is 0.01 in.
2
. 
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Fig. 3.13 A 72-bar spatial truss structure 

Table 3.11 Load cases for the 72-bar spatial truss structure 

Case 1 Case 2 
Node 

PX (kips) PY (kips) PZ (kips) PX (kips) PY (kips) PZ (kips) 

17 5.0 5.0 -5.0 0.0 0.0 -5.0 

18 0.0 0.0 0.0 0.0 0.0 -5.0 

19 0.0 0.0 0.0 0.0 0.0 -5.0 

20 0.0 0.0 0.0 0.0 0.0 -5.0 

For both the loading cases, the PSOPC and the HPSO algorithms can achieve the 

optimal solution after 2500 iterations. However, the latter shows a faster conver-

gence rate than the former, especially at the early stage of iterations. The PSO 

algorithm cannot reach the optimal solution after the maximum number of itera-

tions. The solutions of the two loading cases are given in Tables 3.12 and 3.13 

respectively. Figs. 3.14 and 3.15 compare the convergence rate of the three algo-

rithms for the two loading cases. 
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Table 3.12 Comparison of the designs for the 72-bar spatial truss structure (Case 1) 

Optimal cross-sectional areas (in.
2
) 

Li [19] Li [19] Li [19] Variables 
Schmit [17] Adeli [21] Khot [20] Lee [16]

PSO PSOPC HPSO 

1 A1~A4 2.078 2.026 1.893 1.7901 41.794 1.855 1.857 

2 A5~A12 0.503 0.533 0.517 0.521 0.195 0.504 0.505 

3 A13~A16 0.100 0.100 0.100 0.100 10.797 0.100 0.100 

4 A17~A18 0.100 0.100 0.100 0.100 6.861 0.100 0.100 

5 A19~A22 1.107 1.157 1.279 1.229 0.438 1.253 1.255 

6 A23~A30 0.579 0.569 0.515 0.522 0.286 0.505 0.503 

7 A31~A34 0.100 0.100 0.100 0.100 18.309 0.100 0.100 

8 A35~A36 0.100 0.100 0.100 0.100 1.220 0.100 0.100 

9 A37~A40 0.264 0.514 0.508 0.517 5.933 0.497 0.496 

10 A41~A48 0.548 0.479 0.520 0.504 19.545 0.508 0.506 

11 A49~A52 0.100 0.100 0.100 0.100 0.159 0.100 0.100 

12 A53~A54 0.151 0.100 0.100 0.101 0.151 0.100 0.100 

13 A55~A58 0.158 0.158 0.157 0.156 10.127 0.100 0.100 

14 A59~A66 0.594 0.550 0.539 0.547 7.320 0.525 0.524 

15 A67~A70 0.341 0.345 0.416 0.442 3.812 0.394 0.400 

16 A71~A72 0.608 0.498 0.551 0.590 18.196 0.535 0.534 

Weight (lb) 388.63 379.31 379.67 379.27 6818.67 369.65 369.65 

Table 3.13 Comparison of the designs for the 72-bar spatial truss structure (Case 2) 

Optimal cross-sectional areas (in.
2
) 

Sarma [22] 
Li [19] Li [19]  Li [19] Variables Adeli 

[21] 
Simple 

GA 
Fuzzy  

GA 

Lee [16]

PSO PSOPC HPSO 

1 A1~A4 2.755 2.141 1.732 1.963 40.053 1.652 1.907 

2 A5~A12 0.510 0.510 0.522 0.481 0.237 0.547 0.524 

3 A13~A16 0.010 0.054 0.010 0.010 21.692 0.100 0.010 

4 A17~A18 0.010 0.010 0.013 0.011 0.657 0.101 0.010 

5 A19~A22 1.370 1.489 1.345 1.233 22.144 1.102 1.288 

6 A23~A30 0.507 0.551 0.551 0.506 0.266 0.589 0.523 

7 A31~A34 0.010 0.057 0.010 0.011 1.654 0.011 0.010 

8 A35~A36 0.010 0.013 0.013 0.012 10.284 0.010 0.010 

9 A37~A40 0.481 0.565 0.492 0.538 0.559 0.581 0.544 

10 A41~A48 0.508 0.527 0.545 0.533 12.883 0.458 0.528 

11 A49~A52 0.010 0.010 0.066 0.010 0.138 0.010 0.019 

12 A53~A54 0.643 0.066 0.013 0.167 0.188 0.152 0.020 

13 A55~A58 0.215 0.174 0.178 0.161 29.048 0.161 0.176 

14 A59~A66 0.518 0.425 0.524 0.542 0.632 0.555 0.535 

15 A67~A70 0.419 0.437 0.396 0.478 3.045 0.514 0.426 

16 A71~A72 0.504 0.641 0.595 0.551 1.711 0.648 0.612 

Weight (lb) 376.50 372.40 364.40 364.33 5417.02 368.45 364.86 
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Fig. 3.14 Convergence rates of the three algorithms for the 72-bar spatial truss structure 

(Case 1) 
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Fig. 3.15 Convergence rates of the three algorithms for the 72-bar spatial truss structure 

(Case 2) 
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3.5   The Application of the HPSO on Truss Structures with 

Discrete Variables 

In the past thirty years, many algorithms have been developed to solve structural 

engineering optimization problems. Most of these algorithms are based on the 

assumption that the design variables are continuously valued and the gradients of 

functions and the convexity of the design problem satisfied. However, in reality, the 

design variables of optimization problems such as the cross-section areas are dis-

cretely valued. They are often chosen from a list of discrete variables. Furthermore, 

the function of the problems is hard to express in an explicit form. Traditionally, the 

discrete optimization problems are solved mathematically by employing round-off 

techniques based on the continuous solutions. However, the solutions obtained by 

this method may be infeasible or far from the optimum solutions [23]. 

Most of the applications of the PSO algorithm to structural optimization prob-

lems are based on the assumption that the variables are continuous. Only in few 

papers PSO algorithm is used to solve the discrete structural optimization problems 

[24, 25]. 

In this section, the HPSO algorithm, which is based on the standard particle 

swarm optimize (SPSO) and the harmony search scheme, is applied to the discrete 

valued structural optimization problems. 

3.5.1   Mathematical Model for Discrete Structural Optimization 

Problems 

A structural optimization design problem with discrete variables can be formulated 

as a nonlinear programming problem. In the size optimization for a truss structure, 

the cross-section areas of the truss members are selected as the design variables. 

Each of the design variables is chosen from a list of discrete cross-sections based on 

production standard. The objective function is the structure weight. The design 

cross-sections must also satisfy some inequality constraints equations, which re-

strict the discrete variables. The optimization design problem for discrete variables 

can be expressed as follows: 

                ( )1 2min , ,..., d
f x x x ， 1,2, ,d D= A                         (3.3) 

subjected to: ( )1 2, ,..., 0d

q
g x x x ≤ ， 1, 2, ,d D= A ， 1, 2, ,q M= A  

{ }1 2
, , ,d

d p
x S X X X∈ = A  

where ( )1 2
, , ...,

d
f x x x  is the truss’s weight function, which is a scalar function. 

And 
1 2
, , ...,

d
x x x  represent a set of design variables. The design variable 

d
x  be-

longs to a scalar
d

S , which includes all permissive discrete variables{ }1 2
, , ...

p
X X X . 

www.allitebooks.com

http://www.allitebooks.org
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The inequality ( )1 2
, , ..., 0

d

q
g x x x ≤  represents the constraint functions. The letter 

D and M are the number of the design variables and inequality functions respec-

tively. The letter p is the number of available variables.  

3.5.2   The Heuristic Particle Swarm Optimizer (HPSO) for Discrete 

Variables 

The heuristic particle swarm optimizer (HPSO) algorithm, which is based on the 

PSOPC algorithm and the harmony search scheme, is introduced by Li [19] and is 

first used in continuous variable optimization problems. The HPSO algorithm then 

was used for discrete problems [26]. Similarly, The HPSO algorithm for the dis-

crete valued variables can be expressed as follows: 

( ) ( ) ( )( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2 3 3

k k k k k k k k

i i i i g i i iV V c r P x c r P x c r R xω+ = + − + − + −       (3.4) 

( )( 1) ( ) ( 1)k k k

i i i
x INT x V+ += +     1 i n≤ ≤                                 (3.5) 

where 
i

x  is the vector of a particle’s position, and 
d

i
x  is one component of this 

vector. After the (k+1)th iterations, if ( )
d d

i
x x LowerBound<  or 

( )
d d

i
x x UpperBound> , the scalar 

d

i
x  is regenerated by selecting the corre-

sponding component of the vector from pbest swarm randomly, which can be de-

scribed as follows: 

          ( )
dd

i b t
x P= , ( )( )1,t INT rand n=                                        (3.6) 

where ( )
d

b t
P  denotes the dth dimension scalar of pbest swarm of the tth particle, 

and t denotes a random integer number.  

In this section, the HPSO algorithm is tested by five truss structures. The algo-

rithm proposed is coded in FORTRAN language and executed on a Pentium 4, 

2.93GHz machine. 

The PSO, the PSOPC and the HPSO algorithms for discrete variables are applied 

to all these examples and the results are compared in order to evaluate the per-

formance of the HPSO algorithm for discrete variables. For all these algorithms, a 

population of 50 individuals are used, the inertia weight ω, which starts at 0.9 and 

ends at 0.4, decreases linearly, and the value of acceleration constants c1 and c2 are 

set to 0.5 [27]. The passive congregation coefficient c3 is set to 0.6 for the PSOPC 

and the HPSO algorithms. All these truss structures have been analyzed by the finite 

element method (FEM). The maximum velocity is set as the difference between the 

upper and the lower bounds, which ensures that the particles are able to fly across 
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the problem-specific constraints’ region. Different iteration numbers are used for 

different optimization structures, with smaller iteration number for smaller variable 

number structures and larger one for large variable number structures. 

3.5.3   Numerical Examples 

(1) A 10-bar planar truss structure 

A 10-bar truss structure, shown in Fig. 3.16, has previously been analyzed by many 

researchers, such as Wu [24], Rajeev [28], Ringertz [29] and Li [26]. The material 

density is 0.1 lb/in
3
 and the modulus of elasticity is 10,000 ksi. The members are 

subjected to stress limitations of ±25 ksi. All nodes in both directions are subjected 

to displacement limitations of ±2.0 in. P1=105 lb, P2=0. There are 10 design vari-

ables and two load cases in this example to be optimized. For case 1: the discrete 

variables are selected from the set D={1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 2.63, 2.88, 

2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 

4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 16.90, 18.80, 

19.90, 22.00, 22.90, 26.50, 30.00, 33.50} (in
2
)；For case 2: the discrete variables 

are selected from the set D={0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 

6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 

14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, 20.0, 20.5, 21.0, 

21.5, 22.0, 22.5, 23.0, 23.5, 24.0, 24.5, 25.0, 25.5, 26.0, 26.5, 27.0, 27.5, 28.0, 28.5, 

29.0, 29.5, 30.0, 30.5, 31.0, 31.5} (in
2
). A maximum number of 1000 iterations is 

imposed. 

 

Fig. 3.16 A 10-bar planar truss structure 
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Table 3.14 and Table 3.15 give the comparison of optimal design results for the 

10-bar planar truss structure under two load cases respectively. Fig.3.17 and 

Fig.3.18 show the comparison of convergence rates for the 10-bar truss structure. 

From the Table 3.14 and Table 3.15, we find the results obtained by the HPSO 

algorithm are larger than those of Wu’s [24]. However, it is found that Wu’s results 

do not satisfy the constraints of this problem. It is believed that Wu’s results need to 

be further valuated. For both cases of this structure, the PSO, PSOPC and HPSO 

algorithms have achieved the optimal solutions after 1,000 iterations. But the latter 

is much closer to the best solution than the former in the early iterations.  

Table 3.14 Design results for the 10-bar planar truss structure (case 1) 

Li [26] Li [26] Li [26] 
Variables (in

2
) Wu [24] Rajeev [28]

PSO PSOPC HPSO 

A1 26.50 33.50 30.00 30.00  30.00 

A2 1.62 1.62 1.62  1.80 1.62 

A3 16.00 22.00 30.00  26.50 22.90 

A4 14.20 15.50 13.50  15.50 13.50 

A5 1.80 1.62 1.62  1.62 1.62 

A6 1.62 1.62 1.80  1.62 1.62 

A7 5.12 14.20 11.50  11.50 7.97 

A8 16.00 19.90 18.80  18.80 26.50 

A9 18.80 19.90 22.00  22.00 22.00 

A10 2.38 2.62 1.80  3.09 1.80 

Weight (lb) 4376.20 5613.84 5581.76 5593.44 5531.98 

 

Table 3.15 Design results for the 10-bar planar truss structure (case 2) 

Li [26] Li [26] Li [26] Variables 
(in

2
) 

Wu [24] Ringertz [29] 
PSO PSOPC HPSO 

A1 30.50 30.50 24.50 25.50 31.50 

A2 0.50 0.10 0.10 0.10 0.10 

A3 16.50 23.00 22.50 23.50 24.50 

A4 15.00 15.50 15.50 18.50 15.50 

A5 0.10 0.10 0.10 0.10 0.10 

A6 0.10 0.50 1.50 0.50 0.50 

A7 0.50 7.50 8.50 7.50 7.50 

A8 18.00 21.0 21.50 21.50 20.50 

A9 19.50 21.5 27.50 23.50 20.50 

A10 0.50 0.10 0.10 0.10 0.10 

Weight (lb) 4217.30 5059.9 5243.71 5133.16 5073.51 
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Fig. 3.17 Convergence rates for the 10-bar planar truss structure (Case 1) 
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Fig. 3.18 Convergence rates for the 10-bar planar truss structure (Case 2) 
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(2) A 15-bar planar truss structure 

A 15-bar planar truss structure, shown in Fig. 3.19, has previously been analyzed by 

Zhang [30] and Li [26]. The material density is 7800 kg/m
3
 and the modulus of 

elasticity is 200 GPa. The members are subjected to stress limitations of ±120 MPa. 

All nodes in both directions are subjected to displacement limitations of ±10mm. 

There are 15 design variables in this example. The discrete variables are selected 

from the set D= {113.2, 143.2, 145.9, 174.9, 185.9, 235.9, 265.9, 297.1, 308.6, 

334.3, 338.2, 497.8, 507.6, 736.7, 791.2, 1063.7} (mm
2
). Three load cases are 

considered: Case 1: P1=35 kN, P2=35 kN, P3=35 kN; Case 2: P1=35 kN, P2=0 kN, 

P3=35 kN; Case 3: P1=35 kN, P2=35 kN, P3=0 kN. A maximum number of 500 

iterations is imposed. 

 

Fig. 3.19 A 15-bar planar truss structure 

Table 3.16 and Fig. 3.20 give the comparison of optimal design results and con-

vergence rates of 15-bar planar truss structure respectively. It can be seen that, after 

500 iterations, three algorithms have obtained good results, which are better than 

the Zhang’s. The Fig. 3.20 shows that the HPSO algorithm has the fastest conver-

gence rate, especially in the early iterations. 
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Table 3.16 Comparison of optimal designs for the 15-bar planar truss structure 

Li [26] Li [26] Li [26] 
Variables (mm

2
) Zhang [30] 

PSO PSOPC HPSO 

A1 308.6 185.9 113.2 113.2 

A2 174.9 113.2 113.2 113.2 

A3 338.2 143.2 113.2 113.2 

A4 143.2 113.2 113.2 113.2 

A5 736.7 736.7 736.7 736.7 

A6 185.9 143.2 113.2 113.2 

A7 265.9 113.2 113.2 113.2 

A8 507.6 736.7 736.7 736.7 

A9 143.2 113.2 113.2 113.2 

A10 507.6 113.2 113.2 113.2 

A11 279.1 113.2 113.2 113.2 

A12 174.9 113.2 113.2 113.2 

A13 297.1 113.2 185.9 113.2 

A14 235.9 334.3 334.3 334.3 

A15 265.9 334.3 334.3 334.3 

Weight (kg) 142.117 108.84 108.96 105.735 
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Fig. 3.20 Comparison of convergence rates for the 15-bar planar truss structure 
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(3) A 25-bar spatial truss structure 

A 25-bar spatial truss structure, shown in Fig. 3.21, has been studied by Wu [24], 

Rajeev [28], Ringertz [29], Lee [13] and Li [26]. The material density is 0.1 lb/in.
3
 

and the modulus of elasticity is 10,000 ksi. The stress limitations of the members 

are ±40000 psi. All nodes in three directions are subjected to displacement limita-

tions of ±0.35 in. The structure includes 25 members, which are divided into 8 

groups, as follows: (1) A1, (2) A2~A5, (3) A6~A9, (4) A10~A11, (5) A12~A13, (6) 

A14~A17, (7) A18~A21 and (8) A22~A25. There are three optimization cases to be 

implemented. Case 1: The discrete variables are selected from the set D= {0.1, 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 

2.2, 2.3, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4} (in
2
). The loads are shown in Table 3.17; Case 2: 

The discrete variables are selected from the set D= {0.01, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 

2.8, 3.2, 3.6, 4.0, 4.4, 4.8, 5.2, 5.6, 6.0} (in
2
). The loads are shown in Table 3.18. 

Case 3: The discrete variables are selected from the American Institute of Steel  

Construction (AISC) Code, which is shown in Table 3.19. The loads are shown in 

Table 3.18. A maximum number of 500 iterations is imposed for three cases. 

 

Fig. 3.21 A 25-bar spatial truss structure 

Table 3.17 The load case 1 for the 25-bar spatial truss structure 

Loads 
 Load Cases Nodes 

Px (kips) Py (kips) Pz (kips) 

1 1.0 -10.0 -10.0 

2 0.0 -10.0 -10.0 

3 0.5 0.0 0.0 
Case 1 1 

6 0.6 0.0 0.0 



48 3 Optimum Design of Structures with HPSO Algorithm

 

Table 3.18 The load case 2 and case 3 for the 25-bar spatial truss structure 

Loads 
Load Cases Nodes 

Px (kips) Py (kips) Pz (kips) 

1 0.0 20.0 -5.0 
2 

2 0.0 -20.0 -5.0 

1 1.0 10.0 -5.0 

2 0.0 10.0 -5.0 

3 0.5 0.0 0.0 

Case 2 & 3 

3 

6 0.5 0.0 0.0 

Table 3.19 The available cross-section areas of the ASIC code 

No. in
2
 mm

2
 No. in

2
 mm

2
 

1 0.111 71.613 33 3.840 2477.414 

2 0.141 90.968 34 3.870 2496.769 

3 0.196 126.451 35 3.880 2503.221 

4 0.250 161.290 36 4.180 2696.769 

5 0.307 198.064 37 4.220 2722.575 

6 0.391 252.258 38 4.490 2896.768 

7 0.442 285.161 39 4.590 2961.284 

8 0.563 363.225 40 4.800 3096.768 

9 0.602 388.386 41 4.970 3206.445 

10 0.766 494.193 42 5.120 3303.219 

11 0.785 506.451 43 5.740 3703.218 

12 0.994 641.289 44 7.220 4658.055 

13 1.000 645.160 45 7.970 5141.925 

14 1.228 792.256 46 8.530 5503.215 

15 1.266 816.773 47 9.300 5999.988 

16 1.457 939.998 48 10.850 6999.986 

17 1.563 1008.385 49 11.500 7419.340 

18 1.620 1045.159 50 13.500 8709.660 

19 1.800 1161.288 51 13.900 8967.724 

20 1.990 1283.868 52 14.200 9161.272 

21 2.130 1374.191 53 15.500 9999.980 

22 2.380 1535.481 54 16.000 10322.560 

23 2.620 1690.319 55 16.900 10903.204 

24 2.630 1696.771 56 18.800 12129.008 

25 2.880 1858.061 57 19.900 12838.684 

26 2.930 1890.319 58 22.000 14193.520 

27 3.090 1993.544 59 22.900 14774.164 

28 1.130 729.031 60 24.500 15806.420 

29 3.380 2180.641 61 26.500 17096.740 

30 3.470 2238.705 62 28.000 18064.480 

31 3.550 2290.318 63 30.000 19354.800 

32 3.630 2341.931 64 33.500 21612.860 
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Table 3.20, Table 3.21 and Table 3.22 show the comparison of optimal design 

results for the 25-bar spatial truss structure under three load cases. While Fig. 3.22, 

Fig. 3.23 and Fig. 3.24 show comparison of convergence rates for the 25-bar spatial 

truss structure under three load cases. For all load cases of this structure, three 

algorithms can achieve the optimal solution after 500 iterations. But Fig. 3.22, 3.23 

and 3.24 show that the HPSO algorithm has the fastest convergence rate.  
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Fig. 3.22 Comparison of convergence rates for the 25-bar spatial truss structure (case 1) 

Table 3.20 Comparison of optimal designs for the 25-bar spatial truss structure (case 1) 

Case 1 

Li [26] Li [26] Li [26] Variables (in
2
)

Wu [24] Rajeev [28] Lee [13]
PSO PSOPC HPSO 

A1 0.1 0.1 0.1 0.4 0.1 0.1 

A2~A5 0.5 1.8 0.3 0.6 1.1 0.3 

A6~A9 3.4 2.3 3.4 3.5 3.1 3.4 

A10~A11 0.1 0.2 0.1 0.1 0.1 0.1 

A12~A13 1.5 0.1 2.1 1.7 2.1 2.1 

A14~A17 0.9 0.8 1.0 1.0 1.0 1.0 

A18~A21 0.6 1.8 0.5 0.3 0.1 0.5 

A22~A25 3.4 3.0 3.4 3.4 3.5 3.4 

Weight (lb) 486.29 546.01 484.85 486.54 490.16 484.85 
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Table 3.21 Comparison of optimal designs for the 25-bar spatial truss structure (case 2) 

Case 2 

Li [26] Li [26] Li [26] 
Variables 

 (in
2
) Wu [24] Ringertz [29] Lee [13]

PSO PSOPC HPSO 

A1 0.4 0.01 0.01 0.01 0.01 0.01 

A2~A5 2.0 1.6 2.0 2.0 2.0 2.0 

A6~A9 3.6 3.6 3.6 3.6 3.6 3.6 

A10~A11 0.01 0.01 0.01 0.01 0.01 0.01 

A12~A13 0.01 0.01 0.01 0.4 0.01 0.01 

A14~A17 0.8 0.8 0.8 0.8 0.8 0.8 

A18~A21 2.0 2.0 1.6 1.6 1.6 1.6 

A22~A25 2.4 2.4 2.4 2.4 2.4 2.4 

Weight (lb) 563.52 568.69 560.59 566.44 560.59 560.59 
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Fig. 3.23 Comparison of convergence rates for the 25-bar spatial truss structure (case 2) 
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Table 3.22 Comparison of optimal designs for the 25-bar spatial truss structure (case 3) 

Case 3 

Li [26] Li [26] Li [26] 
Variables 

(in
2
) Wu [24] 

PSO PSOPC HPSO 

A1 0.307 1.0 0.111 0.111 

A2~A5 1.990 2.62 1.563 2.130 

A6~A9 3.130 2.62 3.380 2.880 

A10~A11 0.111 0.25 0.111 0.111 

A12~A13 0.141 0.307 0.111 0.111 

A14~A17 0.766 0.602 0.766 0.766 

A18~A21 1.620 1.457 1.990 1.620 

A22~A25 2.620 2.880 2.380 2.620 

Weight (lb) 556.43 567.49 556.90 551.14 
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Fig. 3.24 Comparison of convergence rates for the 25-bar spatial truss structure (case 3) 

(4) A 52-bar planar truss structure 

A 52-bar planar truss structure, shown in Fig. 3.25, has been analysed by Wu [24] 

Lee [13] and Li [26]. The members of this structure are divided into 12 groups: (1) 

A1~A4, (2) A5~A6, (3) A7~A8, (4) A9~A10, (5) A11~A14, (6) A15~A18, and (7) 

A19~A22. The material density is 7860.0 kg/m
3
 and the modulus of elasticity is 

2.07×10
5 
MPa. The members are subjected to stress limitations of ±180 MPa. Both 

of the loads, Px =100 kN, Py =200 kN are considered. The discrete variables are 

selected from the Table 3.19. A maximum number of 3,000 iterations is imposed.  
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Fig. 3.25 A 52-bar planar truss structure 

Table 3.23 Comparison of optimal designs for the 52-bar planar truss structure 

Li [26] Li [26] Li [26] 
Variables (mm

2
) Wu [24] Lee [13] 

PSO PSOPC HPSO 

A1~A4 4658.055 4658.055 4658.055 5999.988 4658.055 

A5~A10 1161.288 1161.288 1374.190 1008.380 1161.288 

A11~A13 645.160 506.451 1858.060 2696.770 363.225 

A14~A17 3303.219 3303.219 3206.440 3206.440 3303.219 

A18~A23 1045.159 940.000 1283.870 1161.290 940.000 

A24~A26 494.193 494.193 252.260 729.030 494.193 

A27~A30 2477.414 2290.318 3303.220 2238.710 2238.705 

A31~A36 1045.159 1008.385 1045.160 1008.380 1008.385 

A37~A39 285.161 2290.318 126.450 494.190 388.386 

A40~A43 1696.771 1535.481 2341.93 1283.870 1283.868 

A44~A49 1045.159 1045.159 1008.38 1161.290 1161.288 

A50~A52 641.289 506.451 1045.16 494.190 792.256 

Weight (kg) 1970.142 1906.76 2230.16 2146.63 1905.495 
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Table 3.23 and Fig. 3.24 give the comparison of optimal design results and con-

vergence rates of 52-bar planar truss structure respectively. From Table 3.23 and 

Fig. 3.26, it can be observed that only the HPSO algorithm achieves the good op-

timal result. The PSO and PSOPC algorithms do not get optimal results when the 

maximum number of iterations is reached. 
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Fig. 3.26 Comparison of convergence rates for the 52-bar planar truss structure 

(5) A 72-bar spatial truss structure 

A 72-bar spatial truss structure, shown in Fig. 3.27, has been studied by Wu [24] 

Lee [13] and Li [26]. The material density is 0.1 lb/in.
3
 and the modulus of elasticity 

is 10,000 ksi. The members are subjected to stress limitations of ±25 ksi. The up-

permost nodes are subjected to displacement limitations of ±0.25 in. both in x and y 

directions. Two load cases are listed in Table 3.24. There are 72 members, which 

are divided into 16 groups, as follows: (1) A1~A4, (2) A5~A12, (3) A13~A16, (4) 

A17~A18, (5) A19~A22, (6) A23~A30 (7) A31~A34, (8) A35~A36, (9) A37~A40, (10) 

A41~A48, (11) A49~A52, (12) A53~A54, (13) A55~A58, (14) A59~A66 (15) A67~A70, (16) 

A71~A72. There are two optimization cases to be implemented. Case 1: The discrete 

variables are selected from the set D={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 

1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 

3.0, 3.1, 3.2} (in
2
); Case 2: The discrete variables are selected from the Table 3.19. 

A maximum number of 1,000 iterations is imposed. 
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Fig. 3.27 The 72-bar spatial truss structure 

Table 3.24 The load cases for the 72-bar spatial truss structure 

Load Case 1 Load Case 2 
Nodes 

PX (kips) PY (kips) PZ (kips) PX (kips) PY (kips) PZ (kips) 

17 5.0 5.0 -5.0 0.0 0.0 -5.0 

18 0.0 0.0 0.0 0.0 0.0 -5.0 

19 0.0 0.0 0.0 0.0 0.0 -5.0 

20 0.0 0.0 0.0 0.0 0.0 -5.0 

Table 3.25 and Table 3.26 are the comparison of optimal design results.  
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Table 3.25 Comparison of optimal designs for the 72-bar spatial truss structure (case 1) 

Li [26] Li [26] Li [26] 
Variables (in

2
) Wu [24] Lee [13] 

PSO PSOPC HPSO 

A1~A4 1.5 1.9 2.6 3.0 2.1 

A5~A12 0.7 0.5 1.5 1.4 0.6 

A13~A16 0.1 0.1 0.3 0.2 0.1 

A17~A18 0.1 0.1 0.1 0.1 0.1 

A19~A22 1.3 1.4 2.1 2.7 1.4 

A23~A30 0.5 0.6 1.5 1.9 0.5 

A31~A34 0.2 0.1 0.6 0.7 0.1 

A35~A36 0.1 0.1 0.3 0.8 0.1 

A37~A40 0.5 0.6 2.2 1.4 0.5 

A41~A48 0.5 0.5 1.9 1.2 0.5 

A49~A52 0.1 0.1 0.2 0.8 0.1 

A53~A54 0.2 0.1 0.9 0.1 0.1 

A55~A58 0.2 0.2 0.4 0.4 0.2 

A59~A66 0.5 0.5 1.9 1.9 0.5 

A67~A70 0.5 0.4 0.7 0.9 0.3 

A71~A72 0.7 0.6 1.6 1.3 0.7 

Weight (lb) 400.66 387.94 1089.88 1069.79 388.94 

Table 3.26 Comparison of optimal designs for the 72-bar spatial truss structure (case 2) 

Li [26] Li [26] Li [26] 
Variables (in

2
) Wu [24] 

PSO PSOPC HPSO 

A1~A4 0.196 7.22 4.49 4.97 

A5~A12 0.602 1.80 1.457 1.228 

A13~A16 0.307 1.13 0.111 0.111 

A17~A18 0.766 0.196 0.111 0.111 

A19~A22 0.391 3.09 2.620 2.88 

A23~A30 0.391 0.785 1.130 1.457 

A31~A34 0.141 0.563 0.196 0.141 

A35~A36 0.111 0.785 0.111 0.111 

A37~A40 1.800 3.09 1.266 1.563 

A41~A48 0.602 1.228 1.457 1.228 

A49~A52 0.141 0.111 0.111 0.111 

A53~A54 0.307 0.563 0.111 0.196 

A55~A58 1.563 1.990 0.442 0.391 

A59~A66 0.766 1.620 1.457 1.457 

A67~A70 0.141 1.563 1.228 0.766 

A71~A72 0.111 1.266 1.457 1.563 

Weight (lb) 427.203 1209.48 941.82 933.09 
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The Fig. 3.28 and Fig. 3.29 are comparison of convergence rates for the 72-bar 

spatial truss structure in two load cases.  
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Fig. 3.28 Comparison of convergence rates for the 72-bar spatial truss structure (case 1) 
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Fig. 3.29 Comparison of convergence rates for the 72-bar spatial truss structure (case 2) 
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For both of the cases, it seems that Wu’s results [24] achieve smaller weight. 

However, we discovered that both of these results do not satisfy the constraints. The 

results are unacceptable.  

In case 1, the HPSO algorithm gets the optimal solution after 1000 iterations and 

shows a fast convergence rate, especially during the early iterations. For the PSO 

and PSOPC algorithms, they do not get optimal results when the maximum number 

of iterations is reached. In case 2, the HPSO algorithm gets best optimization result 

comparatively among three methods and shows a fast convergence rate. 

3.6   The Weight Optimization of Grid Spherical Shell Structure 

A double-layer grid steel shell structure with 83.6 m span, 14.0 m arc height and 1.5 

shell thickness is shown in Fig. 3.30. The elastic module is 210 GPa and the density 

is 7850 kg/m3. There are 6761 nodes and 1834 bars in this shell. The 1834 bars 

were divided into three groups, which were upper chord bars, lower chord bars and 

belly chord bars. All chords were thin circular tubes and their sections were limited 

to Chinese Criterion GB/T8162-1999 [31], which has 779 types of size to choose. 

The circumference nodes of lower chords are constrained. 50 kN vertical load is 

acted on each node of upper chords. The maximum permit displacement for all 

nodes is 1/400 of the length of span, that is ±0.209 m. The maximum permit stress 

for all chord bars is ±215 MPa. The stability of compressive chords is considered 

according to Chinese Standard GB50017-2003 [32]. The maximum slenderness 

ratio for compressive chords and tensile chords are 180 and 300 respectively.  

 

Fig. 3.30 The double layer reticulated spherical shell structure 

 
The optimization results [26] are shown in Table 3.27. The convergence velocity 

is shown in Fig. 3.31. It can be seen from Fig. 3.31 that HPSO can be used effec-

tively to optimize the complicated engineering structures and can obtained a global 

optimization solution.  
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Table 3.27 The optimal solution for the double layer reticulated spherical shell structure 

Upper chord bars Lower chord bars Belly chord bars Weight (kg) 

φ108×4 φ83×3.5 φ89×3.5 148811.71 
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Fig. 3.31 The convergence rate of the HPSO for the double layer grid spherical shell structure 

As there are only three group optimal variables chosen in this example, the 

convergence rate is considerably fast, within only about 120 iterations. Anyway, the 

weight optimization for a reticulated shell structure with 1834 bars is a very com-

plicated engineering problem. It is almost impossible to get a global optimal solu-

tion using a traditional optimal method. It is desired that the HPSO has an ability of 

handling complex structural optimization problems effectively. 

3.7   The Application of the HPSO on Plates with Discrete 

Variables 

3.7.1   Numerical Examples 

(1) Quadrate plate 

This example is taken from the literature [33]. The material parameters of this plate 

is as follows: Elastic modulus is 210 GPa, Poisson's ratio is 0.3, density is 7.85×10
3
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kg/m
3
, allowable stress is 120 MPa, allowable displacement is 0.0005 m, the four 

corners of plate are clamped, the plate is affected by uniform load of 200 kN/m
2
，

the size of plate is 1 m×1 m, and the calculation model is shown in Fig. 3.32. 

A

 

Fig. 3.32 Quadrate plate  

In optimization process, the selected range of discrete variables is based  

on the boundary of thickness in small deflection theory of plate: 

(1/80-1/100) ≤ h/l ≤ (1/5-1/8), whose maximum and minimum values is taken as 

boundary. 40 discrete values of plate thickness is as follows: [0.01, 0.016, 0.02, 

0.026, 0.03, 0.034, 0.038, 0.042, 0.046, 0.052, 0.056, 0.06, 0.064, 0.07, 0.074, 

0.078, 0.082, 0.086, 0.09, 0.094, 0.1, 0.104, 0.108, 0.112, 0.116, 0.122, 0.128, 

0.134, 0.14, 0.146, 0.15, 0.156, 0.16, 0.166, 0.17, 0.176, 0.18, 0.186, 0.19, 0.2]. 

Consider the structural weight as objective function, thickness as design vari-

ables, and then the result of the plate thickness is 0.078 m by PSO, PSOPC and 

HPSO three optimization algorithms, and the weight convergence is 612.3 kg.  

Fig. 3.33 provide a comparison of the convergence rates of the three algorithms, 

where the vertical axis is the weight of the plate, while horizontal axis is the number 

of iterations. 

In the literature [33] 

4 /
r c

fql B∆ =                                                    (3.7) 

where ∆  is the largest displacement under the uniform loads. In this case, 

f=0.02551, q is uniform load and 
r

l  is the length of square plate, respectively. 

( )3 2/ 12 1
c

B Eh µ⎡ ⎤= −⎣ ⎦                                           (3.8) 



60 3 Optimum Design of Structures with HPSO Algorithm

 

where E is elastic modulus, h is thickness of plate, µ is Poisson's ratio.  Substitute 

equation (3.8) into equation (3.7), then 

( )
1/3

2 412 1 /
r

h fql Eµ⎡ ⎤= − ∆⎣ ⎦                                     (3.9) 

The theory solution of optimized thickness can be gotten according to equation 

(3.9). For the optimized square plate, the maximum stress of the plate is 110.35 

MPa by Ansys (finite element analyze software), and the maximum displacement is 

0.0003498 m. The optimized results of the plate are shown in Table 3.28. 
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Fig. 3.33 Comparison of convergence rates of three algorithms for the quadrate plate 

Table 3.27 The optimal result of the quadrate plate 

Constraints 

Design variable  

constraints 

(Thickness) 

0.01≤ 0.2h ≤  
(m) 

Allowable stress 
constraints 
120 (MPa) 

Allowable  
displacement  
constraints 
0.0005(m) 

Results 
Optimized thickness 

(m) 
Maximum stress

(MPa) 

Maximum dis-
placement 

(m) 

Optimization  
results 

0.078 110.35 0.0003498 

Theoretical solution 0.081 / 0.0005 
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From Fig. 3.33 it can be seen that optimized results can be obtained by the three 

optimization algorithm with 40 iterations, however, the convergence rate of the 

HPSO algorithm is faster than other two algorithms. From Table 3.28 we can see 

that the feasibility and effectiveness of particle swarm optimization in plate opti-

mization design. In the case of the plate optimization. The particle swarm optimi-

zation algorithm can get thinner and lighter plate, which can save more material.  

(2) Combination of four plates 

The structural model of combination of four plates shown in Fig. 3.34, take the 

thickness of plate as the independent design variables, and the same material and 

material parameters as previous example are used, except that the allowable de-

flection of the plate is 0.005 m. Two adjacent sides of the plates are clamped, each 

plate is affected by uniform load of 50 kN/m
2
,and the size of each plate is 0.5×0.5 

m
2
. The calculation model is shown in Fig. 3.34. 

The selected discrete variables are the same as the previous example in optimi-

zation process. The boundary of plate thickness is 1/100 / 1/ 5h l≤ ≤ , 36 discrete 

values in total are as follows: [0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.012, 0.014, 

0.016, 0.018, 0.02, 0.022, 0.024, 0.026, 0.028, 0.03, 0.032, 0.034, 0.036, 0.038, 

0.04, 0.044, 0.048, 0.052, 0.056, 0.060, 0.064, 0.068, 0.072, 0.076, 0.08, 0.084, 

0.88, 0.092, 0.096, 0.1] 

Fig. 3.35 provide a comparison of the convergence rates of the three algorithms, 

where the vertical axis is the weight of the plate, and the horizontal axis is the 

number of iterations. 

Consider the structural weight as objective function, thickness as design vari-

able. The thickness of each plate is H1, H2, H3 and H4, respectively. The three  

optimization algorithm (HPSO, PSOPC, PSO) were used separately with 3000 

iterations and the optimal result is 247.28 kg, 262.975 kg and 298.3 kg respectively. 

 
 

Fig. 3.34 Combination of four plates 
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Fig. 3.35 Comparison of convergence rates of three algorithms for a combination plate 
 

The optimized results obtained by different optimization algorithm and Ansys 

are shown in Table 3.28. 

Table 3.28 The optimal result of the combination plate 

Constraints HPSO  PSO  PSOPC 

Variable 

constraints 

(Thickness) 

Thickness 

Optimized 

thickness 

(m) 

Max. 

stress 

(MPa) 

Optimized 

thickness

(m) 

Max. 

stress 

(MPa) 

Optimized 

thickness 

(m)  

Max 

Stress 

MPa

H1 0.036 56.102 0.036 69.561 0.028 106.116 

H2 0.032 71.004 0.03 100.168 0.030 92.439 

H3 0.032 71.004 0.048 39.128 0.038 57.614 

0.005 ~  

0.1h ~  
(m) H4 0.026 107.556 0.038 62.432 0.038 57.614 

Displacemen

t constraints 

0.005 

(m) 

Maximum 

displacement 
0.003731(m) 0.001092(m) 0.002803(m) 

 

Table 3.28 and Fig. 3.35 illustrate that the result obtained by PSO and PSOPC 

algorithm with 3000 iterations is not converge, while the HPSO algorithm in 1000 

iterations can get preferably results, which showed the superiority of HPSO algo-

rithm in the calculation of complex plate issues. 
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(3) Combination of nine plates 

The structural model of combination of nine plates shown in Fig. 3.36. The opposite 

sides of the plate are clamped. The thickness of each plate is considered as the 

independent design variables. The material and geometrical parameters are the 

same as the previous combination of four plates.  

The selected conditions of discrete variables are the same as the combination of 

four plates in optimization process. Fig. 3.37 provide a comparison of the conver-

gence rates of the three algorithms, where the vertical axis is the weight of the plate, 

while horizontal axis is for the number of iterations. 

Consider the structural weight as objective function, thickness as design vari-

able. The thickness of each plate is H1-H9 respectively. The maximum iteration 

times is 3000. Convergence results for the three optimization algorithm is 537.73 

kg, 580.09 kg and 573.05 kg respectively. The maximum stress and strain is shown 

in Table 3.29.  

Fig. 3.37 illustrate that the convergence rate and optimized result of HPSO al-

gorithm is obviously better than PSO algorithm and PSOPC algorithm.   

The results in Table 3.29 show that HPSO algorithm is very effective when the 

structure with more independent variables. 

The thickness for the combination plate optimized by HPSO algorithm is shown 

in Fig. 3.38. 

 

Fig. 3.36 Combination of plate 
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Table 3.29 The optimal result of the combination plate 

Constraints HPSO  PSO  PSOPC  

variable 

constraints 

(Thickness) 

Thickness 

Optimized 

thickness 

(m) 

Max 

Stress 

(MPa) 

Optimized 

thickness 

(m) 

Max 

Stress

(MPa)

Optimized 

thickness  

(m) 

Max 

stress 

(MPa) 

H1 0.032 67.029 0.032 60.001 0.036 66.973 

H2 0.038 47.533 0.030 68.267 0.044 44.833 

H3 0.028 87.548 0.040 38.400 0.060 24.110 

H4 0.038 47.533 0.032 60.001 0.036 66.973 

H5 0.034 59.375 0.034 53.149 0.038 60.108 

H6 0.030 76.264 0.036 47.408 0.034 75.084 

H7 0.024 119.162 0.032 60.001 0.036 66.973 

H8 0.024 119.162 0.032 60.001 0.040 54.248 

0.005 ~
0.1h ~  

(m) 

H9 0.026 101.535 0.030 68.267 0.044 44.833 

Displacement 

constraints 

0.005 

(m) 

Maximum 

displacement 
0.001604 (m) 0.001154 (m) 0.0007581 (m) 
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Fig. 3.37 Convergence rates of three algorithms for the combination of nine plates 
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Fig. 3.38 Thickness for the combination plate 

3.8   Conclusions Remarks 

In this chapter, a heuristic particle swarm optimizer (HPSO), based on the particle 

swarm optimizer with passive congregation (PSOPC), and the harmony search (HS) 

algorithm are presented. The HPSO algorithm handles the constraints of variables 

using the harmony search scheme in corporation with the ‘fly-back mechanism’ 

method used to deal with the problem-specific constraints. Compared with the PSO 

and the PSOPC algorithms, the HPSO algorithm does not allow any particles to fly 

outside the boundary of the variables and makes a full use of algorithm flying  

behaviour of each particle. Thus this algorithm performs more efficient than the 

others. 

The efficiency of the HPSO algorithm presented is tested for optimum design of 

planar and spatial pin-connected structures with continuous and discrete variables, 

as well as plates. A double-layer grid shell structure was also used to test the HPSO. 

All the results show that the HPSO algorithm has better global/local search be-

haviour avoiding premature convergence while rapidly converging to the optimal 

solution. And the HPSO algorithm converges more quickly than the PSO and the 

PSOPC algorithms, in particular, in the early iterations. 

A drawback of this HPSO algorithm at present is that its convergence rate will 

slow down when the number of the iterations increase. Further study is being 

conducted for improvement. 
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Chapter 4 

Optimum Design of Structures with Group 

Search Optimizer Algorithm 

Abstract. This chapter introduces a novel optimization algorithm, group search opti-
mizer (GSO) algorithm. The implementation method of this algorithm is presented in 
detail. The GSO was used to investigate the truss structures with continuous variables 
and was tested by five planar and space truss optimization problems. The efficiency of 
GSO for frame structure with discrete variables was valued by three frame structures. 
The optimization results were compared with that of the particle swarm optimizer 
(PSO), the particle swarm optimizer with passive congregation (PSOPC) and the heu-
ristic particle swarm optimizer (HPSO), ant colony optimization algorithm (ACO) and 
genetic algorithms (GA). Results from the tested cases illustrate the competitive ability 
of the GSO to find the optimal results. 

4.1   Introduction 

Over the past decade a family of group intelligence optimization algorithms, nota-

bly inspired by animal ethology, have been used extensively in various scientific 

and engineering problems such as logic circuit design, control design, power sys-

tems design and so on. Moreover, these group intelligence optimization algorithms 

have been gradually used in structural optimization problems. The most promising 

algorithms among this family are Ant Colony Optimizer (ACO)
 
[1, 2] and Particle 

Swarm Optimizer (PSO) [3-9]. With respect to other traditional algorithms, a 

number of advantages make PSO and improved PSO ideal candidates to be used 

in structural optimization tasks. For examples, they can handle target functions 

and constraint functions without any specific operation. However, some disadvan-

tages exist in these algorithms, such as the PSO, the particle swarm optimizer with 

passive congregation (PSOPC) and the heuristic particle swarm optimizer (HPSO) 

need to handle the constraints at each searching iteration. Such a technique leads 

to a long computation time when dealing with large and sophisticated structures. 

Thus researches concentrate on creating new algorithms, which can overcome 

such disadvantages while maintain the advantages. Group search optimizer (GSO) 

has a markedly superior search performance for complex structural optimization 

problems, which makes itself a promising optimization algorithm for further in-

vestigation [10, 11]. 
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This chapter firstly introduces the basic idea of GSO algorithm, then, describes 

the optimization settings, finally, five typical structural optimization problems 

were tested to value the probability of GSO for optimal structure design.  

4.2   Group Search Optimizer (GSO) 

The GSO algorithm was firstly proposed by He [12]. It is based on the biological 

model: Producer-Scrounger (PS) model [9], which assumes group members search 

either for ‘finding’ (producer) or for ‘joining’ (scrounger) opportunities. Animal 

scanning mechanisms (e.g., vision)
 
[13, 14] are incorporated to develop the GSO 

algorithm. GSO also employs ‘rangers’ which perform random walks to avoid en-

trapment in local minima. 

The population of the GSO algorithm is called a group and each individual in 

the population is called a member. In an n-dimensional search space, the th
i  mem-

ber at the th
k  searching bout (iteration), has a current position

k n

iX R∈ , a head an-

gle 
1

1 ( 1)( ,..., )k k k n

i i i n
Rϕ ϕ ϕ −

−= ∈  and a head direction 1( ) ( ,..., )
k k k k n

i i i inD d d Rϕ = ∈  which 

can be calculated from 
k

i
ϕ  via a Polar to Cartesian coordinates transformation:  
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1

1

1
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i ip
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d

ϕ
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ϕ
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 (4.1) 

In GSO, a group consists three kinds of members: producers and scroungers 

whose behaviors are based on the PS model, and rangers who perform random 

walk motions. Recently, Couzin [15] suggested that the larger the group, the 

smaller the proportion of informed individuals need to guide the group with better 

accuracy. Therefore, for accuracy and convenience of computation, we simplify 

the PS model by assuming that there is only one producer at each searching bout 

and the remaining members are scroungers and rangers. It is also assumed that the 

producer, the scroungers and the rangers do not differ in their relevant phenotypic 

characteristics. Therefore, they can switch between the three roles. At each itera-

tion, a group member, located in the most promising area, conferring the best fit-

ness value, is chosen as the producer. The producer’s scanning field of vision is 

generalized to a n-dimensional space, which is characterized by maximum pursuit 

angle 
1

max

n
Rθ

−
∈  and maximum pursuit distance 

1

max
l R∈  as illustrated in a 3D 

space [16] in Fig. 4.1.  
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Fig. 4.1 Scanning field in 3D space 

In the GSO algorithm, at the 
th

k  iteration the producer 
p

X  behaves as follows: 

 

(1) The producer will scan at zero degree and then scan laterally by randomly 

sampling three points in the scanning field: one point at zero degree:  

                           
1 max

( )
k k k

z p p
X X rl D ϕ= +                                      (4.2) 

one point in the right hand side hypercube:    

                   
1 max 2 max

( / 2)
k k k

l p p
X X rl D rϕ θ= + −                              (4.3) 

and one point in the left hand side hypercube: 

                       
1 max 2 max

( / 2)
k k k

r p p
X X rl D rϕ θ= + +                              (4.4) 

where 
1

1
r R∈  is a normally distributed random number with mean 0 and standard 

deviation 1 and 
1

2

n

r R
−

∈  is a random sequence in the range (0, 1). 

(2) The producer will then find the best point with the best resource (fitness 

value). If the best point has a better resource than its current position, then it will 

fly to this point. Or it will stay in its current position and turn its head to a new 

angle: 

                             
1

2 max

k k
rϕ ϕ α+

= +                                          (4.5) 

where, 
max

α   is the maximum turning angle. 

(3) If the producer cannot find a better area after a iterations, it will turn its 

head back to zero degree: 

                                    
k a kϕ ϕ+ =

                                               (4.6) 

where, a is a constant. 
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At the 
th

k  iteration, the area copying behaviour of the 
th

i  scrounger can be 

modeled as a random walk towards the producer: 

                         

1

3
( )

k k k k

i i p i
X X r X X

+
= + −

                                   (4.7) 

where, 
3

n
r R∈ is a uniform random sequence in the range (0, 1). 

Besides the producer and the scroungers, a small number of rangers have been 

also introduced into our GSO algorithm. Random walks, which are thought to be 

the most efficient searching method for randomly distributed resources, are em-

ployed by rangers. If the 
th

i  group member is selected as a ranger, at the 
th

k  itera-

tion, firstly, it generates a random head angle 
i

ϕ : 

1

2 max

k k
rϕ ϕ α+

= +
                                                (4.8) 

where, 
max

α  is the maximum turning angle; and secondly, it chooses a random dis-

tance: 

1 maxi
l a r l= ⋅

                                                     (4.9) 

and move to the new point: 

1 1
( )

k k k k

i i i i
X X l D ϕ+ +

= +
                                      (4.10) 

To maximize their chances of finding resources, the GSO algorithm employs 

the fly-back mechanism [17] to handle the problem specified constraints: When 

the optimization process starts, the members of the group search the solution in the 

feasible space. If any member moves into the infeasible region, it will be forced to 

move back to the previous position to guarantee a feasible solution. The pseu-

docode for structural optimization by GSO is listed in Table 4.1. 

Table 4.1 Pseudocode for structural optimization by GSO algorithm 

  Set k = 0; 

Randomly initialize positions 
i

X  and head angles 
i

ϕ  of all members; 

FOR (each member i  in the group) 

WHILE (the constraints are violated) 

Randomly re-generate the current member Xi 

END WHILE 

END FOR 

WHILE (the termination conditions are not met) 

FOR (each members i  in the group) 

Calculate fitness: Calculate the fitness value of current member: ( )
i

f X  

Choose producer: Find the producer 
p

X  of the group; 
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Table 4.1 (Contd.) 

Perform producing:  1) The producer will scan at zero degree and then scan 

laterally by randomly sampling three points in the 

scanning field using equations (4.2) to (4.4). 

2) If any point violates the constraints, it will be re-

placed by the producer’s previous position. 

3) Find the best point with the best resource (fitness 

value). If the best point has a better resource than its 

current position, then it will fly to this point. Otherwise 

it will stay in its current position and turn its head to a 

new angle using equation (4.5). 

4) If the producer can not find a better area after a it-

erations, it will turn its head back to zero degree using 

equation (4.6); 

Perform scrounging:  Randomly select 80% from the rest members to perform 

scrounging using equation (4.7); 

Perform ranging:    For the rest members, they will perform ranging: firstly, 

generate a random head angle using equation (4.8); 

and secondly, choose a random distance 
i

l  from the 

Gauss distribution using equation (4.9) and move to 

the new point using equation (4.10); 

Check feasibility:    Check whether each member of the group violates the 

constraints. If it does, it will move back to the previous 

position to guarantee a feasible solution. 

END FOR 

Set k = k + 1; 

END WHILE 

4.3   The Application of the GSO to Truss Structure Optimal 

Design 

In this item, five pin connected structures commonly used in literature are selected 

as benchmark structures to test the GSO. The examples given in the simulation 

studies include 

(1) A 10-bar planar truss structure as shown in Fig. 4.2; 

(2) A 17-bar planar truss structure as shown in Fig. 4.4; 

(3) A 22-bar space truss structure as shown in Fig. 4.6; 

(4) A 25-bar space truss structure as shown in Fig. 4.8; 

(5) A 72-bar space truss structure as shown in Fig. 4.10. 

Every structure has its own displacement constraints and stress constraints. All the 

stresses and displacements of these truss structures are analyzed by the finite ele-

ment method (FEM). The PSO, PSOPC, HPSO and GSO schemes are applied, re-

spectively, to all these examples and the results are compared in order to evaluate 
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the performance of the new algorithm. For all these four algorithms, the maximum 

number of iterations is limited to 3000 and the population size is set to at 50; the 

inertia weight ω  decrease linearly from 0.9 to 0.4; and the value of acceleration 

constants c1 and c2 are set to be the same and equal to 0.8. The passive congrega-

tion coefficient c3 is given as 0.6 for the PSOPC and the HPSO algorithms. For the 

GSO algorithm, 20% of the population will be selected as rangers; the initial head 

angle
0

ϕ of each individual is set to be /4π . The constant a is given by 

round ( 1)n + . The maximum pursuit angle 
max

θ  is 
2

/aπ . The maximum turning 

angle maxα  is set to be 
2

/2aπ . The maximum pursuit distance 
max

l  is calculated 

from: 

2

max

1

( )
=

= − = −∑ni i i i

i

l U L U L                                       (4.11) 

Where 
i

L  and 
i

U  are the lower and upper bounds for the 
th
i  dimension 

respectively.  

4.3.1   The 10-Bar Planar Truss Structure 

The 10-bar planar truss structure, shown in Fig. 4.2, has previously been analyzed 

by many researchers.  

 

 

 

Fig. 4.2 The 10-bar planar truss structure 

The material density is 0.1 lb/in
3
 and the modulus of elasticity is 10,000 ksi. The 

members are subjected to the stress limits of ±25 ksi. All nodes in both vertical and 

horizontal directions are subjected to the displacement limits of ±2.0 in. There are 

10 design variables in this example and the minimum permitted cross-sectional area 

of each member is 0.1 in
2
. The two loads are : P1＝100 kips, P2＝0 kips. 
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Table 4.2 shows the optimal design results and Fig. 4.3 provides a comparison 

of the convergence rates of the four algorithms.
 
All these four algorithms achieve 

good solution after 3000 iterations. The HPSO and GSO algorithm shows better 

convergence rate than the others, especially at the early stage of iterations. 

Table 4.2 Comparison of optimal design results for the 10-bar truss structure 

Optimal cross-sectional areas (in.
2
) 

Variables 
GSO [10] PSO [8] PSOPC [8] HPSO [8] 

1 A1 31.289 31.560 30.569 30.704 

2 A2 0.251 0.100 0.100 0.100 

3 A3 22.606 20.974 22.974 23.167 

4 A4 14.831 18.381 15.148 15.183 

5 A5 0.166 0.836 0.100 0.100 

6 A6 0.227 3.849 0.547 0.551 

7 A7 8.775 6.085 7.493 7.460 

8 A8 20.724 25.878 21.159 20.978 

9 A9 21.700 19.804 21.556 21.508 

10 A10 0.490 0.100 0.100 0.100 

Weight(lb) 5128.94 5365.79 5061.00 5060.92 
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Fig. 4.3 Comparison of convergence rates for the 10-bar truss structure 

4.3.2   The 17-Bar Planar Truss Structure 

The 17-bar planar truss structure is shown in Fig. 4.4. The material density is 0.268 

lb/in
3
 and the modulus of elasticity is 30,000 ksi. The members are subjected to  
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Fig. 4.4 The 17-bar planar truss structure 

the stress limits of ±50 ksi. All nodes in both directions are subjected to the dis-

placement limits of ±2.0 in. There are 17 design variables in this example and the 

minimum permitted cross-sectional area of each member is 0.1 in
2
. A single verti-

cal downward load of 100 kips at node 9 is considered. 

Table 4.3 Comparison of optimal design results for the 17-bar truss structure 

Variables Optimal cross-sectional areas (in.
2
) 

 GSO [10] PSO [8] PSOPC [8] HPSO [8] 

1 A1 15.940 14.915 15.981 15.929 

2 A2 0.646 1.607 0.100 0.104 

3 A3 12.541 12.738 12.142 12.016 

4 A4 0.331 0.299 0.100 0.101 

5 A5 7.361 9.458 8.098 8.091 

6 A6 4.920 3.738 5.566 5.578 

7 A7 11.072 11.558 11.732 11.883 

8 A8 0.335 0.100 0.100 0.104 

9 A9 8.535 6.065 7.982 7.955 

10 A10 0.385 1.767 0.113 0.101 

11 A11 4.525 5.844 4.074 4.094 

12 A12 0.237 1.523 0.132 0.100 

13 A13 6.034 5.449 5.667 5.677 

14 A14 3.916 4.638 3.991 3.969 

15 A15 5.149 4.184 5.555 5.552 

16 A16 0.605 1.653 0.101 0.101 

17 A17 5.416 4.264 5.555 5.590 

Weight(lb) 2613.96 2658.18 2582.85 2582.01 
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Fig. 4.5 Comparison of convergence rates for the 17-bar truss structure 

Table 4.3 shows the 17-bar planar truss structure optimization solutions and 

Fig. 4.5 compares the convergence rates of the above four algorithms. Fig. 4.5 

shows both the PSOPC and HPSO algorithms achieve a good solution after 3000 

iterations, their results are statistically better than that of GSO and PSOPC. How-

ever, the GSO and HPSO algorithm provide similar convergence rates, which are 

better than that of the PSO and PSOPC.  

4.3.3   The 22-Bar Space Truss Structure 

The 22-bar space truss structure is shown in Fig. 4.6. The material density is 0.1 

lb/in
3
 and the modulus of elasticity is 10,000 ksi. The stress limits of the members 

are listed in Table 4.4. All nodes in all three directions are subjected to the 
 

 
Fig. 4.6 The 22-bar space truss structure 
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displacement limits of ±2.0 in. Three load cases are listed in Table 4.5. There are 

22 members, which fall into 7 groups, as follows: (1) A1–A4, (2) A5–A6, (3) 

A7–A8, (4) A9–A10, (5)A11–A14, (6) A15–A18, and (7) A19–A22. The minimum per-

mitted cross-sectional area of each member is 0.1 in
2
. 

Table 4.4 Member stress limitations for the 22-bar space truss structure 

Variables 
Compressive stress 

limits (ksi)

Tensile stress 

limits (ksi)

1 A1 24.0 36.0 

2 A2 30.0 36.0 

3 A3 28.0 36.0 

4 A4 26.0 36.0 

5 A5 22.0 36.0 

6 A6 20.0 36.0 

7 A7 18.0 36.0 

Table 4.5 Load cases for the 22-bar space truss structure 

Case 1 (kips) Case 2 (kips) Case 3 (kips) 
Node 

PX PY PZ PX PY PZ PX PY PZ 

1 -20.0 0.0 -5.0 -20.0 -5.0 0.0 -20.0 0.0 35.0 

2 -20.0 0.0 -5.0 -20.0 -50.0 0.0 -20.0 0.0 0.0 

3 -20.0 0.0 -30.0 -20.0 -5.0 0.0 -20.0 0.0 0.0 

4 -20.0 0.0 -30.0 -20.0 -50.0 0.0 -20.0 0.0 -35.0 

Table 4.6 Comparison of optimal design results for the 22-bar truss structure 

Optimal cross-sectional areas (in
2
) 

Variables 
GSO [10] PSO [8] PSOPC [8] HPSO[8] 

1 A1 2.803 2.702 2.623 2.613 

2 A2 1.197 1.191 1.154 1.151 

3 A3 0.332 0.354 0.355 0.346 

4 A4 0.458 0.405 0.418 0.419 

5 A5 2.634 2.679 2.792 2.797 

6 A6 2.104 1.794 2.099 2.093 

7 A7 2.003 2.357 2.010 2.022 

Weight (lb) 1026.02 1026.33 1023.91 1023.90 
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Fig. 4.7 Convergence rates of four algorithms for the 22-bar truss structure 

Table 4.6 shows the optimal solutions of the four algorithms and Fig. 4.7 pro-

vides the convergence rates of the four algorithms. In this example, the GSO and 

HPSO algorithm have converged after about 100 iterations, while the PSOPC and 

PSO algorithms need more than 1500 and 2000 iterations, respectively. But the 

optimum results obtained by using the HPSO and PSOPC algorithm are slightly 

better than that obtained by the GSO and the PSO algorithms. It can be seen form 

Fig. 4.7 that The GSO has much better convergence rate than PSO and PSOPC, 

while it has same convergence level with that of HPSO. 

4.3.4   The 25-Bar Space Truss Structure 

The 25-bar space truss structure is shown in Fig. 4.8. The material density is 0.1 

lb/in
3
 and the modulus of elasticity is 10,000 ksi. The stress limits of the members 

are listed in Table 4.7. All nodes in all directions are subjected to the displacement 

limits of ±0.35 in. Two load cases listed in Table 4.8 are considered. There are 25 

members, which are divided into 8 groups, as follows: (1) A1, (2) A2–A5, (3) 

A6–A9, (4) A10–A11, (5) A12–A13, (6) A14–A17, (7) A18–A21 and (8) A22–A25. The 

minimum permitted cross-sectional area of each member is 0.01 in
2
. 
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Fig. 4.8 The 25-bar space truss structure 

Table 4.7 Member stress limitations for the 25-bar space truss structure 

Variables 
Compressive stress 

limits (ksi) 

Tensile stress 

limits (ksi) 

1 A1 35.092 40.0 

2 A2 11.590 40.0 

3 A3 17.305 40.0 

4 A4 35.092 40.0 

5 A5 35.902 40.0 

6 A6 6.759 40.0 

7 A7 6.959 40.0 

8 A8 11.802 40.0 

Table 4.8 Load cases for the 25-bar space truss structure 

Case 1 Case 2 
Node 

PX (kips) PY (kips) PZ (kips) PX (kips) PY (kips) PZ (kips) 

1 0.0 20.0 -5.0 1.0 10.0 -5.0 

2 0.0 -20.0 -5.0 0.0 10.0 -5.0 

3 0.0 0.0 0.0 0.5 0.0 0.0 

6 0.0 0.0 0.0 0.5 0.0 0.0 
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Table 4.9 Comparison of optimal designs for the 25-bar truss structure 

Optimal cross-sectional areas (in
2
) 

Variables 
GSO [10] PSO [8] PSOPC [8] HPSO [8] 

1 A1 0.119 0.010 0.010 0.010 

2 A2~A5 1.838 1.704 1.948 1.970 

3 A6~A9 2.773 3.433 3.054 3.016 

4 A10~A11 0.017 0.010 0.010 0.010 

5 A12~A13 0.031 0.010 0.010 0.010 

6 A14~A17 0.729 0.921 0.684 0.694 

7 A18~A21 1.988 1.734 1.683 1.681 

8 A22~A25 2.610 2.333 2.644 2.643 

Weight (lb) 552.20 552.94 545.21 545.19 
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Fig. 4.9 Convergence rates of four algorithms for the 25-bar truss structure 

Table 4.9 shows the optimization solutions and Fig. 4.9 compares the conver-

gence rate of the four algorithms. It can be seen from Fig. 4.9 that, for this space 

truss structure, it takes about 1200 and 2700 iterations for the PSOPC and the PSO 

algorithms to converge, respectively. However the HPSO and GSO algorithm take 

less than 500 iterations to converge. The optimum result obtained by using the 

GSO algorithm is slightly better than that obtained by the PSO algorithm, but has 

same level with that of the HPSO and PSOPC algorithms.  



82 4 Optimum Design of Structures with Group Search Optimizer Algorithm

 

4.3.5   The 72-Bar Space Truss Structure 

The 25-bar space truss structure is shown in Fig. 4.10. The material density is 0.1 

lb/in
3
 and the modulus of elasticity is 10,000 ksi. The members are subjected to 

the stress limits of ±25 ksi. The uppermost nodes are subjected to the displacement 

limits of ±0.25 in. in both the X and Y directions. Two load cases are listed in 

Table 4.10. There are 72 members classified into 16 groups: (1) A1–A4, (2) A5–

A12, (3) A13–A16, (4) A17–A18, (5) A19–A22, (6) A23–A30, (7) A31–A34, (8) A35–A36, 

(9) A37–A40, (10) A41–A48,(11) A49–A52, (12) A53–A54, (13) A55–A58, (14) A59–A66 

(15) A67–A70, (16) A71–A72. For case 1, the minimum permitted cross-sectional 

area of each member is 0.1 in
2
. For case 2, the minimum permitted cross-sectional 

area of each member is 0.01 in
2
. 

 

 

Fig. 4.10 The 72-bar space truss structure 

Table 4.10 Load conditions for the 72-bar space truss structure 

Case 1 Case 2 
Node 

PX (kips) PY (kips) PZ (kips) PX (kips) PY (kips) PZ (kips) 

17 5.0 5.0 -5.0 0.0 0.0 -5.0 

18 0.0 0.0 0.0 0.0 0.0 -5.0 

19 0.0 0.0 0.0 0.0 0.0 -5.0 

20 0.0 0.0 0.0 0.0 0.0 -5.0 
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The optimization solutions for two loading cases are given in Tables 4.11 and 

4.12, respectively. Fig. 4.11 and Fig. 4.12 give the convergence rates of the four 

algorithms for the two loading cases. 

Table 4.11 Comparison of optimal design results for the 72-bar truss structure (Case 1) 

Optimal cross-sectional areas (in
2
) 

Variables 
GSO [10] PSO [8] PSOPC [8] HPSO [8] 

1 A1~A4 3.129 3.156 1.940 1.889 

2 A5~A12 0.539 6.835 0.508 0.510 

3 A13~A16 0.133 13.218 0.100 0.100 

4 A17~A18 0.152 26.802 0.100 0.100 

5 A19~A22 1.161 0.976 1.299 1.265 

6 A23~A30 0.410 1.893 0.524 0.510 

7 A31~A34 0.102 0.812 0.102 0.100 

8 A35~A36 0.101 1.344 0.100 0.100 

9 A37~A40 0.489 0.800 0.518 0.523 

10 A41~A48 0.366 0.228 0.510 0.519 

11 A49~A52 0.101 11.251 0.100 0.100 

12 A53~A54 0.100 13.261 0.103 0.100 

13 A55~A58 0.152 48.118 0.157 0.156 

14 A59~A66 0.676 0.255 0.549 0.548 

15 A67~A70 0.590 3.656 0.357 0.411 

16 A71~A72 0.633 24.707 0.580 0.568 

Weight (lb) 409.86 5894.87 380.10 379.63 
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Fig. 4.11 Comparison of convergence rates for the 72-bar truss structure (Case 1) 
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Table 4.12 Comparison of optimal designs for the 72-bar truss structure (Case 2) 

Optimal cross-sectional areas (in
2
) 

Variables 
GSO [10] PSO [8] PSOPC [8] HPSO [8] 

1 A1~A4 3.056 1.439 1.652 1.907 

2 A5~A12 0.356 3.137 0.547 0.524 

3 A13~A16 0.014 0.014 0.100 0.010 

4 A17~A18 0.083 21.029 0.101 0.010 

5 A19~A22 1.347 0.875 1.102 1.288 

6 A23~A30 0.432 0.450 0.589 0.523 

7 A31~A34 0.072 0.226 0.011 0.010 

8 A35~A36 0.040 0.022 0.010 0.010 

9 A37~A40 0.431 0.391 0.581 0.544 

10 A41~A48 0.488 0.468 0.458 0.528 

11 A49~A52 0.056 22.716 0.010 0.019 

12 A53~A54 0.096 49.589 0.152 0.020 

13 A55~A58 0.177 24.017 0.161 0.176 

14 A59~A66 0.726 0.606 0.555 0.535 

15 A67~A70 0.430 7.217 0.514 0.426 

16 A71~A72 1.015 0.184 0.648 0.612 

Weight (lb) 404.45 4993.69 368.45 364.86 
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Fig. 4.12 Comparison of convergence rates for the 72-bar truss structure (Case 2) 
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It can be seen from Fig. 4.11 and Fig. 4.12 that for both loading cases, the op-

timum results achieved by the PSOPC and the HPSO algorithms are better than 

that of the GSO algorithm. Indeed, in this example, the PSO algorithm did not 

fully converge when the maximum number of iterations is reached. However, in 

terms of the convergence rate, the GSO algorithm has the best performance espe-

cially in Case 2. Fig.4.12 also shows that the GSO algorithm may outperform the 

other three algorithms for large dimension problems. 

4.4   The Application of GSO to Frame Cross-Section 

Optimization 

Since the stochastic algorithms are introduced to the civil structural design, a lot of 

corresponding research results has been proposed. But the researches on the frame 

optimization study are less than others. Some researches, such as Saka and 

Kameshki, used genetic algorithm to do frame cross-section optimization work 

[18] and seismic cross-section optimum design work based on the semi-rigid as-

sumption [19]. Camp [20] used ant colony algorithm to do steel frame structural 

optimal cross-section design. Chuang [21] used simulated annealing algorithm to 

do cross-section design to improve the particle swarm optimization algorithm. Zhu 

[22] improved genetic algorithm and used it for framework structural topology op-

timization. Group search optimization with the simple constraint handling (the 

penalty function processing) can avoid a large number of structural re-analysis, 

and had a good application to truss optimal design [10]. In this item, some frame 

optimization problems used by literatures are taken to prove that GSO is feasible 

and robust and has the obvious advantage over traditional algorithms. It is ex-

pected that GSO can work well in a more complex and bigger frame structure op-

timal design. 

4.4.1   The Optimal Model of Frame Cross-Section Optimization 

The minimum-weight mathematical model of frame cross-section optimization is, 
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where Ai and Li represent the cross-section and length of the ith element respec-

tively. ujl represents the displacement of l direction of jth node. W is the weight of 

the structure. 
i

g
σ

and 
u

jl
g  represent the stress constraint and the displacement con-

straint respectively. D is a set of discrete cross-section. 
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For frame structures, the working stress of component is mainly coming from the 

combination of moment stress and axial force. Ignoring the impact of shear stress, the 

maximum stress of the combination of moment stress and axial force is as follows: 

( )

( )

( )

( )

k ykk x

k

k k kx y

MMN

A W W
σ = + +  (4.13)

where Ak represents the cross-section of the kth component; (Mk)x and (Mk)y repre-

sent the strong-axis and the weak-axis bending moment respectively; (Wk)x and 

(Wk)y represent the strong axis and the weak axis bending modulus respectively. 

4.4.2   Numerical Examples 

In this item, three planar frame structures commonly used in literature are selected 

as benchmark problem to test the GSO. The proposed algorithm is coded in 

Matlab language. All results of optimization are modelled and checked by ANSYS 

to make sure that all of them are correct.  

The examples given in the simulation studies include:  

 

• a single-bay and 8-storey frame structure as shown in Fig. 4.13; 

• a 2-bay and 5-storey frame structure as shown in Fig. 4.15; 

• a 3-bay and 24-storey as shown in Fig. 4.18. 

 

All these frame structures are optimized by GSO, HPSO (the previous chapter’s 

method) respectively and analysed by the finite element method (FEM). The re-

sults are compared in order to evaluate the performance of the new algorithm. For 

the two algorithms, the maximum number of iterations is limited to 1000 and the 

population size is set to 50; the inertia weight ω  decrease linearly from 0.9 to 0.4; 

and the value of acceleration constants c1 and c2 are set to be the same and equal 

to 0.8. The passive congregation coefficient c3 is given as 0.6 for the HPSO algo-

rithms. For the GSO algorithm, 20% of the population is selected as rangers; the 

initial head angle 0ϕ  of each individual is set to be /4π . The constant a is given 

by round ( 1)n + . The maximum pursuit angle max
θ  is 2/aπ . The maximum turn-

ing angle α  is set to be 2/2aπ . The maximum pursuit distance max
l  is calculated 

from: 

2

max

1

( )
n

u l u l

i i i i

i

l d d d d
=

= − = −∑E E  (4.14)

where 
l

i
d  and 

u

i
d  are the lower and upper bounds for the 

th
i  dimension. 

(1) A Single-Bay and 8-Storey Frame Structure Optimal Design 

The single-bay and 8-storey planar frame shown in Fig. 4.13 had been studied by 

several researchers, such as Chuang [21], Camp [23] and so on. The material 
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Fig. 4.13 A single-bay and 8-storey planar frame 

 

 

density is 0.283 lb/in.
3
 and the modulus of elasticity is 10,000 ksi. Especially, 

there are not the stress limits of the members. But all nodes in horizontal direc-

tions are subjected to the displacement limits of ±2.0 in. There are 23 members, 

which fall into 8 groups, as follows: A1 (1, 3, 4, 6), A2 (7, 9, 10, 12), A3 (13, 15, 

16, 18), A4 (19, 21, 22, 24), A5 (2, 5), A6 (8, 11), A7 (14, 17), A8 (20, 23). Discrete 

section set for the variables is selected from the W-beam of U.S. AISC, total of 

268 groups (AISC 2001) [21]. The optimal model is only one load case: nodes 

2-17, have the vertical direction loads of -100 kips; nodes 2-9, have the horizontal 

direction loads respectively, as follows, 0.272, 0.544, 0.816, 1.088, 1.361, 1.633, 

1.905, 2.831 kips. 

The optimization results of single-bay and 8-storey planar frame are listed in 

Table 4.13. And it is worth noticing that the optimal result of Chuang [21] is 

7060.2840 lb with 3000 iterations (GSO with 1000 iterations), and the detail result 

of Camp [23] is not listed in table but with a optimal weight of 7380 lb. Compared 

with the optimal results of these optimizers, It is obvious that the GSO and HPSO 

are both good at this optimization problem. As Fig. 4.14 shows, the convergence 

rate of GSO is faster than HPSO's. Being of unique searching mechanism, GSO 

runs with the same iteration times as HPSO but with much fewer structural analy-

sis times. In order to verify the correctness of optimal results of Matlab program, 

the optimization results of GSO and HPSO are all modeled and checked with  
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Table 4.13 Comparison of optimal design for the single-bay and 8-storey frame structure 

Variables Chuang [21] Camp [23] HPSO GSO 

A1 W18×40 - W21×44 W18×40 

A2 W16×31 - W14×30 W16×26 

A3 W16×26 - W16×26 W16×26 

A4 W12×19 - W14×22 W12×16 

A5 W18×35 - W18×35 W18×35 

A6 W18×35 - W16×26 W18×35 

A7 W18×35 - W16×26 W18×35 

A8 W12×16 - W16×26 W16×26 

Weight (lb) 7060.2840 7380.0000 7157.4096 6949.5744 
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Fig. 4.14 Convergence curves for the single-bay and 8-storey frame structure 

commercial ANSYS program. The calculation results show that the biggest dis-

placement 1.998 in. of nodes (the displacement of node 10 in x direction) meet the 

displacement constraints. 

(2) A 2-Bay and 5-Storey Frame Structure Optimal Design 

The 2-bay and 5-storey frame structure, shown in Fig. 4.15, has previously been 

analysed by Chuang [21]. The material density is 7800 N/m
3
 and the modulus of 

elasticity is 2.058×10
11

 N/m
2
. The members are subjected to stress limitations of 

± 1.666×10
8
 N/m

2
. Node 1, 2, 3 in x directions are subjected to displacement limi-

tations of ± 4.58 cm. There are 23 variables together and they are divided into 

15 groups, as follows: A1(1, 2, 3)，A2(4, 5, 6)，A3(7, 8, 9)，A4(10, 11, 12)， 
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Fig. 4.15 A 2-bay and 5-storey frame structure 

Table 4.14 Cross-section group for the 2-bay and 5-storey planar frame structure 

Section No. Area (cm
2
) Bending modulus (cm

3
) Moment of inertia (cm

4
) 

1 51.38 282.83 2545.50 

2 57.66 356.08 3560.80 

3 63.67 435.25 4787.70 

4 69.81 537.46 6710.20 

5 79.81 579.13 7239.10 

6 80.04 678.13 9505.10 

7 91.24 731.20 10236.80 

8 97.00 938.83 15021.30 

9 109.80 1007.10 16113.50 

10 121.78 1319.35 23748.20 

11 136.18 1405.75 25303.40 

12 150.09 1757.77 35155.40 

13 166.09 1864.44 37288.70 

14 182.09 1971.10 39422.10 

15 / / / 

 

A5(13, 14, 15)， A6(16)， A7(17)， A8(18)， A9(19)， A10(20)， A11(21)，

A12(22)，A13(23)，A14(24)，A15(25). The discrete variables are selected from the 

set D listed in Table 4.3. Three load cases are considered: Case 1: G+0.9(Q+W); 

Case 2: G+W; Case 3: G+Q. Cross-section group are displayed in Table 4.14. The 

details of loads are listed in Table 4.15. A maximum number of 1000 iterations is 

imposed in calculation.  
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Table 4.15 The details about the loads of 2-bay and 5-storey frame structure 

Load Acting position Type Direction Value 

Member 16-25 Distributed load -y 11.76kN/m 

Node 1 ,3 Concentrated load -y 19.6kN Dead load 

/G Node 4, 6, 7,8, 9, 

12, 13, 15 
Concentrated load -y 40.2kN 

Live load 

/Q 
Member 16-25 Distributed load -y 10.78kN/m 

Node 1 Concentrated load +x 5.684kN 

Node 4 Concentrated load +x 7.252kN 

Node 7 Concentrated load +x 6.664kN 

Node 10 Concentrated load +x 5.978kN 

Wind load 

/W 

Node 13 Concentrated load +x 6.272kN 

Considering stress constraints and multi-load cases, the 2-bay and 5-storey 

frame optimization model is more complicated than the single-bay and 8-storey 

one. As Table 4.16 shows, the result of Chuang [21] seems to be the best one, but 

it violates the stress constraints when checked with ANSYS program. Table 4.16 

and Fig. 4.16 give the comparison of optimal design results and convergence rates 

of 2-bay and 5-storey frame structure respectively. It can be seen that, after about 

400 iterations, two algorithms have obtained good results.  

Table 4.16 Comparison of optimal designs 2-bay and 5-storey planar frame structure 

Variables Chuang [21] HPSO GSO 

A1 6 6 6 

A2 4 4 4 

A3 4 4 4 

A4 3 1 2 

A5 1 2 2 

A6 8 8 8 

A7 8 6 6 

A8 6 8 6 

A9 4 3 6 

A10 6 8 6 

A11 3 2 4 

A12 6 6 6 

A13 1 2 2 

A14 4 6 6 

A15 1 3 3 

Weight (kg) 71611.1370 72977.346 72903.4956 

Feasibility No Yes Yes 
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Fig. 4.16 Convergence curves for the 2-bay and 5-storey planar frame structure 

The Fig. 4.15 shows that the GSO algorithm has the faster convergence rate 

than HPSO, especially in the early iterations. The checking results of all the opti-

mization are listed on Table 4.6 and the moment curve of Case 2 is shown in 

Fig. 4.17. 
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Fig. 4.17 Moment curve for the 2-bay and 5-storey planar frame structure (In Case 2) 
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Table 4.17 The checking detail of the optimal results of 2-bay and 5-storey planar frame 

structure 

Load case Constraints Details of the calculating results 

Max stress Member 18  1.5409×10
8
 N/m

2
 

1 1,    2,    3 max dis-

placement 

Node 2   

4.1775 cm 

Max stress 
Member 2    

1.1123×10
8
 N/m

2
 

2 
1,     2,    3 max dis-

placement 

Node 1   

4.5620 cm 

Max stress 
Member 25   

 1.6213×10
8
 N/m

2
 

3 
1，2，3 max dis-

placement 

Node 1  

 0.1887 cm 

(3) A 3-Bay and 24-Storey Frame Structure Optimal Design 
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Fig. 4.18 A 3-bay and 24-storey frame structure 

A 3-bay and 24-storey frame structure, shown in Fig. 4.18, is an actual project. 

It has three spans of 6 m (20 ft), 3.6 m (12 ft), 8.7 m (28 ft) respectively. The op-

timal model is only one load case: the wind loads, w = 25629.86 N; and the dis-

tributed loads, w1 = 4380 N/m; w2 = 6360 N/m; w3 = 10901 N/m; w4 = 5950 N/m. 

Saka and Kameshki [18] optimized this frame structure with genetic algorithm and 

got the result (in weigh) of 100,000.72 kg in accordance with the code of BS5990 

and AISC2001. Camp Charles V [20] did it with ant colony algorithm and got the 

result (in weigh) of 114,099.20 kg. 
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To make this optimization with practical significance of engineering applica-

tion, this section does the optimization with GSO in accordance with the code of 

GB50017-2003 (Chinese code). The material density is 7850 kg/m
3
, the modulus 

of elasticity is 206 GPa and Poisson's ratio is 0.27. The members are subjected to 

stress limitations of [σ] = ± 230 MPa. The model is subjected to the displacement 

constraints: the maximum horizontal displacement is 0.2448 m (1/500 the total 

floors), the maximum layer-relative displacement is 0.009 m (1/400 floors). 168 

members are divided into 20 groups as shown in Table 4.18. Considering the 

property of H type steel (GB/T11263-200, Chinese code), HW type steel (group 

29 in H type steel) is chosen as the steel frame columns, and HM type steel (group 

62 in H type steel) is chosen as the steel frame beams. GSO is taken to make the 

optimization with these constraints, noted by GSO-2. Besides, The result of an-

other constraint condition, with the maximum layer-relative displacement of 0.012 

m (1/300 floors), is noted by GSO-1. 

As the inflexible searching mechanism that HPSO requires all the initial popu-

lation particles are workable and needs to calculate all the particles at each itera-

tion. HPSO need too much computing time to work well in this 3-bay and 

24-storey frame optimization. Thus, only GSO is taken to make this optimization. 

Besides, in order to make the optimization run well and save computing time, the 

upper boundary value of the variables is offered to the initialization particles. The 

optimal results with the different constraints are listed in Table 4.18. It is worthy 

noticing that the results of GSO-1 and GSO-2 seems to be quite different from the 

results of Saka [18] and Camp [20], the reason is the different constraints of dif-

ferent design code, such as the GB50017-2003 (Chinese), BS5990 (UK) and AISC 

2001 (UAS). Another reason for the different results of GSO is the different selec-

tion of cross-section. Overall, as Fig. 4.8 shows, the GSO algorithm has a good 

convergence rate in this 3-bay and 24-storey frame optimization and can find the 

optimal solution in 100 iterations. 

Table 4.18 Comparison of optimal designs for the 3-bay and 24-storey frame structure 

Variables Members Variables Members 

A1 1~23
th
 storey & 1,3

rd
 bay beams A11 19-21

st
 storey side column 

A2 24
th 

storey & 1,3
rd

 bay beams A12 22-24
th
 storey side column 

A3 1~23
th
 storey & 2

nd
 bay beams A13 1-3

rd
 storey interior column 

A4 24
th 

storey & 2
nd

 bay beams A14 4-6
th
 storey interior column 

A5 1-3
rd

 storey side column A15 7-9
h
 storey interior column 

A6 4-6
th
 storey side column A16 10-12

th
 storey interior column 

A7 7-9
h
 storey side column A17 13-15

th
 storey interior column 

A8 10-12
th
 storey side column A18 16-18

th
 storey interior column 

A9 13-15
th
 storey side column A19 19-21

st
 storey interior column 

A10 16-18
th
 storey side column A20 22-24

th
 storey interior column 
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Fig. 4.19 Convergence rates for the 3-bay and 24-storey frame structure (case 2) 

Table 4.19 Comparison of optimal designs for the 3-bay and 24-storey frame structure 

Variables Camp [20] (ACO) Saka [18] (GA) GSO-1 GSO-2 

A1 W30×90 838×292×194 UC 850×300a 850×300a 

A2 W8×8 305×102×25 UC 200×100b 300×150a 

A3 W25×250 457×191×82 UC 850×300a 800×300b 

A4 W8×21 305×102×25 UC 100×50 125×60 

A5 W14×145 305×305×198 UC 400×400d 500×500c 

A6 W14×132 356×368×129 UC 350×350d 400×400b 

A7 W14×132 305×305×97 UC 350×350a 400×400b 

A8 W14×132 356×368×129 UC 350×350a 400×400c 

A9 W14×68 305×305×97 UC 400×400a 350×350b 

A10 W14×53 203×203×71 UC 350×350a 350×350b 

A11 W14×43 305×305×118 UC 300×300a 300×300b 

A12 W14×43 152×152×23 UC 300×300a 350×350b 

A13 W14×145 305×305×137 UC 400×400b 500×500a 

A14 W14×145 305×305×198 UC 350×350b 500×500a 

A15 W14×145 356×368×202 UC 350×350d 500×500a 

A16 W14×120 356×368×129 UC 350×350b 400×400b 

A17 W14×90 356×368×129 UC 300×300b 400×400b 

A18 W14×61 356×368×153 UC 300×300a 400×400a 

A19 W14×30 203×203×60 UC 250×250b 400×400a 

A20 W14×26 254×254×89 UC 100×100 125×125 

Weight 

(kg) 
100 000.72 114 099.20 112404.65 128923.63 
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4.5   Conclusions 

GSO is a novel optimization algorithm, based on animal searching behavior and 

group living theory. In this chapter, the principle of the GSO algorithm and its im-

plementation method on truss structure and frame structure design is presented in 

detail. 

The efficiency of the GSO algorithm presented in this paper is tested for opti-

mum design of five pin connected structures and three frame structures. The truss 

structure optimal results show that the GSO algorithm converges much quickly 

than the PSO and the PSOPC while its convergence rate is at the same level with 

that of HPSO. The frame structure results show that the GSO spends less times 

than HPSO to get the optimal solutions as GSO need less analysis times. Which 

means GSO may be effectively used to optimal structural design if possibly im-

proved. In particular, the GSO algorithm may outperform the other three algo-

rithms when the variable dimension is bigger. 

The GSO algorithm is conceptually simple and easy to implement than other 

three algorithms. In most of tested cases, the performance of GSO is not sensitive 

to some parameters such as maximum pursuit angle. These features make it par-

ticularly attractive for sophisticate practical engineering problems. 

The optimum designs of truss structures of this chapter are based on continuous 

variables, while the practical engineering tasks are discrete variables. The effi-

ciency of GSO needs to be proved on discrete variable structures. Three frame 

structures are used to test the efficiency and robust property of GSO. In addition, 

the improvement of the performance of GSO algorithm will also be the subject of 

forward investigation work. 
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Chapter 5 

Improvements and Applications of Group 

Search Optimizer in Structural Optimal Design 

Abstract. This chapter introduces the improvement and application of swarm al-
gorithm named Group Search Optimizer (GSO) in civil structure optimization 
design. GSO is a new and robust stochastic searching optimizer, as it is based on  
PS (produce and scrounger) model and the animal scanning mechanisms. An im-
proved group search optimizer named IGSO was presented based on harmony 
search mechanism and GSO. The implementation of IGSO for different optimal 
purposes is presented in detail, including the application of IGSO to truss structure 
shape optimal design, to truss structure dynamic optimal design, to truss structure 
topology optimization design. Different truss structures are used to test the GSO 
and IGSO in structural shape optimization, dynamic optimization and topology 
optimization. 

5.1   Introduction 

In the last 30 years, a great attention has been paid to structural optimization, since 

material consumption is one of the most important factors influencing building 

construction. The optimal design and research on structures is always the core of the 

researchers’ and engineers’ work. There is great and considerable economic sig-

nificance to propose a new optimal structure, a new structure type, or to apply 

optimal design in the practical project successfully. However, many practical en-

gineering optimal problems are very complex and hard to solve by the traditional 

optimal algorithms [1-3]. Thanks to the development of computer technology and 

random algorithms (random researching algorithms), there is a researching trend 

that this newborn random algorithms has been taking place in the traditional opti-

mization theory. Since 1990s, evolutionary algorithms (EA) [4], such as genetic 

algorithms (GA) [5], evolutionary programming (EP) [6] and evolution strategies 

(ES) [7] have become more attractive, because they do not require conventional 

mathematical assumptions and thus possess better global search abilities than the 

conventional optimization algorithms. For example, GA has been applied for 

structural optimization problems [8]. Recently, swarm intelligence algorithm is 

considered one of the most important random algorithms [9-11], and group search 

optimizer (GSO) [12] is considered the most robust one of them. GSO is widely 

applied to structural optimal design which is still the most common optimization 



98 5 Improvements and Applications of GSO in Structural Optimal Design

 

problem, such as the cross-section optimal design [13]. Based on the research re-

sults that we have achieved about swarm intelligence optimization algorithm in the 

past five years, we try to introduce the GSO and its effectiveness. In this chapter, the 

authors focus on improving the algorithm and developing its application in the 

complex structural optimal design, such as topology optimization, dynamic optimal 

design and shape optimization. 

5.2   Group Search Optimizer 

The group search optimizer algorithm was firstly proposed by He et al [12]. It is 

based on the biological Producer-Scrounger (PS) model [14], which assumes group 

members search either for ‘finding’ (producer) or for ‘joining’ (scrounger) oppor-

tunities. Animal scanning mechanisms (e.g., vision) are incorporated to develop the 

GSO algorithm. GSO also employs ‘rangers’ which perform random walks to avoid 

entrapment in local minima. 

The population of the GSO algorithm is called a group and each individual in the 

population is called a member. In an n-dimensional search space, the th
i  member at 

the th
k  searching bout (iteration), has a current position

k n

iX R∈ , a head angle 
1

1 ( 1)( ,..., )k k k n

i i i n
Rϕ ϕ ϕ −

−= ∈  and a head direction 1( ) ( ,..., )
k k k k n

i i i inD d d Rϕ = ∈  which can 

be calculated from 
k

i
ϕ  via a Polar to Cartesian coordinates transformation:  
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In GSO, a group consists of three kinds of members: producers, scroungers whose 

behaviors are based on the PS model, and rangers who perform random walk mo-

tions. Recently, Couzin [15] suggested that the larger the group, the smaller the 

proportion of informed individuals needed to guide the group with better accuracy. 

Therefore, for accuracy and convenience of computation, the PS model is simpli-

fied by assuming that there is only one producer at each searching bout and the 

remaining members are scroungers and rangers. It is also assumed that the pro-

ducer, the scroungers and the rangers do not differ in their relevant phenotypic 

characteristics. Therefore, they can switch between the three roles. At each itera-

tion, a group member, located in the most promising area, conferring the best fitness 

value, is chosen as the producer. The producer’s scanning field of vision is gener-

alized to a n-dimensional space, which is characterized by maximum pursuit angle 
1

max

n
Rθ −

∈  and maximum pursuit distance 
1

max
l R∈  as illustrated in a 3D space 

[16] in Fig. 5.1.  
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Fig. 5.1 Scanning field in 3D space 

In the GSO algorithm, at the 
th

k  iteration the producer 
p

X  behaves as follows: 

(1) The producer will scan at zero degree and then scan laterally by randomly 

sampling three points in the scanning field: one point at zero degree:  

1 max
( )

k k k

z p p
X X rl D ϕ= +

                                               
(5.2) 

one point in the left hand side hypercube:  

1 max 2 max
( / 2)

k k k

l p p
X X rl D rϕ θ= + −

                                   
(5.3) 

and one point in the right hand side hypercube: 

 
1 max 2 max

( / 2)
k k k

r p p
X X rl D rϕ θ= + +

                                   
(5.4) 

where 
1

1
r R∈  is a normally distributed random number with mean 0 and standard 

deviation 1 and 
1

2

n
r R

−
∈  is a random sequence in the range (0, 1). 

(2) The producer will then find the best point with the best resource (fitness 

value). If the best point has a better resource than its current position, then it will fly 

to this point. Otherwise it will stay in its current position and turn its head to a new 

angle: 

1

2 max

k k
rϕ ϕ α+

= +
                                                     

(5.5) 

where 
max

α  is the maximum turning angle. 
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(3) If the producer cannot find a better area after a iterations, it will turn its head 

back to zero degree: 

k a kϕ ϕ+ =                                                                (5.6) 

where a is a constant. 

At the 
th

k  iteration, the area copying behavior of the 
th

i  scrounger can be mod-

eled as a random walk towards the producer: 

1

3
( )

k k k k

i i p i
X X r X X

+
= + −                                            (5.7) 

where 
3

n
r R∈  is a uniform random sequence in the range (0, 1). 

Besides the producer and the scroungers, a small number of rangers have been 

also introduced into our GSO algorithm. Random walks, which are thought to be the 

most efficient searching method for randomly distributed resources, are employed 

by rangers. If the 
th

i  group member is selected as a ranger, at the 
th

k  iteration, 

firstly, it generates a random head angle 
i

ϕ : 

1

2 max

k k
rϕ ϕ α+

= +                                                      (5.8) 

where 
max

α  is the maximum turning angle; and then, it chooses a random distance: 

1 maxi
l a r l= ⋅                                                               (5.9) 

and move to the new point: 

1 1
( )

k k k k

i i i i
X X l D ϕ+ +

= +                                           (5.10) 

To maximize their chances of finding resources, the GSO algorithm employs the 

fly-back mechanism [11] to handle the problem specified constraints: When the 

optimization process starts, the members of the group search the solution in the 

feasible. If any member moves into the infeasible region, it will be forced to move 

back to the previous position to guarantee a feasible solution. The pseudocode for 

GSO is listed in Table 5.1. 
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Table 5.1 Pseudocode for the GSO algorithm 

Set k = 0; 

Randomly initialize positions 
i

X  and head angles 
i

ϕ  of all members; 

FOR (each member i  in the group) 

   WHILE (the constraints are violated) 

       Randomly re-generate the current member Xi 

   END WHILE 

END FOR 

WHILE (the termination conditions are not met) 

    FOR (each members i  in the group) 

   Calculate fitness: Calculate the fitness value of current member: ( )
i

f X  

  Choose producer: Find the producer 
p

X  of the group; 

Perform producing:  1) The producer will scan at zero degree and then scan laterally by 

                                      randomly sampling three points in the scanning field using  

                                     equations (5.2) to (5.4). 

2) If any point violates the constraints, it will be replaced by the  

    producer’s previous position. 

3) Find the best point with the best resource (fitness value). If the  

    best point has a better resource than its current position, then it  

    will fly to this point. Otherwise it will stay in its current position 

    and turn its head to a new angle using equation (5.5). 

4) If the producer can not find a better one area after a iterations, it  

    will turn its head back to zero degree using equation (5.6); 

Perform scrounging:  Randomly select 80% from the rest members to perform  

                                     scrounging using equation (5.7); 

Perform ranging:       For the rest members, they will perform ranging:  

1). Generate a random head angle using equation (5.8);  

2). Choose a random distance 
i

l  from the Gauss distribution  

using equation (5.9) and move to the new point using equation  

(5.10); 

Check feasibility:    Check whether each member of the group violates the constraints.  

                                   If it does, it will move back to the previous position to guarantee  

                                    a feasible solution. 

  END FOR 

  Set k = k + 1; 

END WHILE 
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5.3   The Improvement of GSO (IGSO) 

The GSO algorithm just needs to find the best member as producer who is followed 

by the other members except the rangers. We can sort the members by the fitness 

without constraints, and then check the constraints by the sequence. For this, it is 

not needed to check all the members’ constraints to find the producer, so GSO will 

save much computational time. More details about GSO can be found in reference 

[12] and [13]. Besides, there are two improvements for GSO as follow: 

(1) Based on the main idea of harmony search algorithm [11-17], a harmony 

memory, the storage of best position of the members in the iteration history, is 

incorporated into the GSO algorithm. When the ith dimension of the S is out of the 

boundary of the design space, the algorithm will choose a member randomly from 

the harmony memory, and use the corresponding dimension to replace the ith di-

mension of the member. This mechanism can make full use of the personal best 

optimum information.  

(2) Many studies about structure optimization show that the optimum (local and 

global) often locate in or nearly to the boundary of the design space, however, the 

members always fly out of the design space frequently during the optimization. In 

order to avoid the members’ flying out, a new searching mechanism, called ad-

hering to the boundary, is utilized to improve the failed searching behavior in this 

paper. With this searching mechanism, the members which fly out of the design 

space will have an opportunity (10% in improved GSO) to adhere to the boundary, 

so they can search from the boundary to the inside design space in the next iteration. 

Apparently, the mechanism can raise convergence speed. Even if the optimum 

locates in the boundary, the algorithm will converge to the optimum quickly. The 

mechanism can be expressed as:  

for {X}=[x1,x2,...,xi,...,xn]
T
 

if xi>ximax (or xi<ximin) 

then xi=ximax (or xi=ximin) 

that is {X}=[x1,x2,...,ximax (or Ximin),...,xn]
T
 

where {X}is a member’s position, xi is the ith dimension of the member, the ximax is 

the upper boundary of ith dimension of the design space. 

The previous improved methods for GSO is named IGSO algorithm. A pseudo 

code for IGSO algorithm is listed in Table 5.2. 
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Table 5.2 Pseudo code for IGSO algorithm 

Set k = 0, iter=0; 

WHILE (iter=0 or all the members violate the constraints) 

Randomly initialize positions and head angles of all members;   

Modify variables with;  

Calculate fitness with constraints, iter=1; 

Build the harmony searching population; 

END WHILE 

Choose producer: Find the producer of the group; 

WHILE (the termination conditions are not met) 

FOR (each members i in the group) 

Perform producing:  

1) The producer will scan at zero degree and then scan laterally by randomly

sampling three points in the scanning field, and modify topology 

variables with one of the two methods. 

2) If any point violates the constraints, it will be replaced by the producer’s

previous position. 

3) Find the best point with the best resource (fitness value). If the best point

has a better resource than its current position, then it will fly to this point.

Otherwise it will stay in its current position and turn its head to a new

angle. 

4) If the producer can not find a better area after a iterations, it will turn its

head back to zero degree; 

Perform scrounging:   

Randomly select 80% from the rest members to perform scrounging, and

     modify variables with one of the two methods; 

Perform ranging:         

For the rest members, they will perform ranging, and modify variables with

     one of the two methods; 

Check feasibility:        

Check whether each member of the group violates the constraints. If it does, use 

the two new searching mechanisms to refresh the members’ position. 

END FOR 

Calculate fitness without constraints and Sort: Calculate the fitness value of current 

member:  

     Check the constraints  by the sequence and Choose producer: Find the producer; 

      Update the harmony searching population; 

      Set k = k + 1; 

END WHILE 

5.4   The Application of the IGSO on Truss Shape Optimization 

With the development of social economy, people demand more of the civil struc-

tures, such as the internal space of building, the outer shape and so on. However, 

what kind of structure or shape is best and how to propose a optimal shape for a civil 

structure always troubles structure designers. Compared with truss cross-section 

optimization design, truss shape optimization adds shape variables and makes the 

optimization problem more complicated. With the discrete cross-sectional variables  
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and the shape variables, the optimization problem is essentially a nonlinear opti-

mization problem mixed various discrete variables. The traditional optimal theory, 

such as mathematical programming and the full stress criteria, can't handle with this 

highly non-linear discrete optimization well. In this section, IGSO is taken to make 

truss shape optimizations, and the result of several numerical examples show the 

algorithm is robust to solve this kind of optimization problem. 

5.4.1   Mathematical Models 

The mathematical models for shape optimization of truss structures generally have 

two kinds of variables, cross-sectional variables of bar and shape variables of nodes' 

coordinate. In this section, the objective of truss shape optimization is still the 

lightest weight of the structure. It is worth mentioning that there are many optimi-

zation models contain only shape variables, when bars' cross section has been as-

sumed. According to the literatures [18], the mathematical model of truss shape 

optimization is as follows, 

( )

( )

[ ] ( )

( )

[ ]

1

min max

min . ,

. . 0 1, 2, ,

0 1, 2, , ; 1, 2,

( 1, 2, , ) ,

N

i j i i i

i

i i j

i i i

u

jl jl jl

i i

Weight A C A L

L L C

s t g i n

g u u i n l N

A s i n A A A

σ

ρ

σ σ

=

=

=

= − ≥ =

= − ≥ = =

∈ = ∈

⎡ ⎤⎣ ⎦

∑
A

A A

A 或

                  (5.11) 

where Ai represents the cross-section of the ith bar. ρi represents the density of the ith 

bar. Cj represents the coordination of jth node. [σ] and [δ] represent the allowable 

stress and the allowable displacement respectively. S is a set of discrete 

cross-section of bar. It is worthy noticing that it is needed to check geometric 

variability of the optimal structures. Because a larger range of shape variables' value 

is set, the optimization process will encounter some infeasible structures. 

5.4.2   Numerical Examples 

In this section, five structures commonly used in literature are selected as bench-

mark problems to test the GSO, HPSO and IGSO. All these trusses are analysed  

by the finite element method (FEM), and the whole calculating programmes are 

coded with Matlab, and all the optimal trusses are modelled and checked by Ansys 

program. 
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The examples given in the simulation studies include: 

• a 52-bar spatial truss; 

• a 10-bar planar truss; 

• a 15-bar planar truss A; 

• a 15-bar planar truss B; 

• a 18-bar planar truss; 

• a 40-bar planar truss; 

• a 25-bar spatial truss structure A; 

• a 25-bar spatial truss structure B; 

• a 39-bar spatial truss. 

All these frame structures are analysed by the finite element method (FEM). The 

GSO, HPSO are applied, respectively, to all these examples and the results are 

compared in order to evaluate the performance of the new algorithm IGSO. For all 

these four algorithms, the maximum number of iterations is limited to 1000 and the 

population size is set to at 50; the inertia weight ω  decrease linearly from 0.9 to 

0.4; and the value of acceleration constants c1 and c2 are set to be the same and equal 

to 0.8. The passive congregation coefficient c3 is given as 0.6 for the HPSO algo-

rithms. For the GSO algorithm and IGSO, 20% of the population is selected as 

rangers; the initial head angle 0ϕ of each individual is set to be / 4π . The constant a 

is given by round ( 1)n + . The maximum pursuit angle max
θ  is 2/aπ . The maximum 

turning angle α  is set to be 2/2aπ . The maximum pursuit distance max
l  is calculated 

from: 

2
max

1

( )
n

u l u l
i i i i

i

l d d d d
=

= − = −∑E E  

where 
l

i
d  and 

u

i
d  are the lower and upper bounds for the 

th
i  dimension. 

(1) A 52-Bar Spatial Truss 

The 52-bar spatial truss structure, shown in Fig. 5.2, has previously been analysed 

by Chuang [20]. The material density is 7850 kg/m
3
 and the modulus of elasticity is 

2.1×10
5 
MPa. All the members’ area is assumed as 10 cm

2
. Node 1 in z direction is 

subjected to displacement limitations of ± 0.01m. The shaping variables grouping 

and the relative boundary are given in this section as: 9 m ≤ z1 ≤14 m, 1 m ≤ x2 ≤ 7 

m, 7 m ≤ z2 ≤10 m, 7 m ≤ x6 ≤13 m, 4 m ≤ z6 ≤6 m. When node 2 moves, nodes 3, 4 

and 5 must move to make sure that the structure is symmetric in xy and yz plane. 

And so when node 6 moves, nodes 7 to 13 must move in the same time. Four work 

cases are considered:  

Case 1, node 1 is acted by P1, -3.0×105 N in y direction;  

Case 2, node 1 to 13 are acted by P1, -0.3×10
5
 N in y direction;  
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Case 3, node 1, P1, -1.5×10
5
 N and node 4, 5 are acted by P2, 1.0×105 N in y 

direction;  

Case 4, node 1 is acted by P1,- 1.5×105 N, node 2, 3 and 4 are acted by P2, 

-0.7×10
5
 N in y direction.  

The connection nodes of each bar, described as Bar number(node 1, node 2) , is 

given as follows: 1(1, 2), 2(1, 3), 3(1, 4), 4(1, 5), 5(2, 3), 6(3, 4), 7(4, 5), 8(5, 2), 9(2, 

6), 10(3, 8), 11(4, 10), 12(5, 12), 13(2, 7), 14(3, 7), 15(3, 9), 16(4, 9), 17(4, 11), 

18(5, 11), 19(5, 13), 20(2, 13), 21(6, 7), 22(7, 8), 23(8, 9), 24(9, 10), 25(10, 11), 

26(11, 12), 27(12, 13), 28(13, 6), 29(6, 21), 30(7, 20), 31(8, 19), 32 (9, 18), 33(10, 

17), 34 (11, 16), 35(12, 15), 36(13, 14), 37(6, 14), 38(6, 20), 39(8, 20), 40(8, 18), 

41(10, 18), 42(10, 16), 43(12, 16), 44(12, 14), 45(7, 21), 46(7, 19), 47(9, 19), 48(9, 

17), 49(11, 17), 50(11, 15), 51(13, 15), 52(13, 21). 

The 52-bar spatial truss optimization problem is subjected to four work cases, 

with the fixed cross-sectional variables. As Table 5.3 listed, the IGSO and HPSO 

get the same optimal result. The GSO gets a worse optimal result. All the three 

algorithms can get the better optimal result than the one of literatures. As Fig. 5.10 

shows, the convergence rate of GSO and IGSO is both faster than the one of HPSO 

in early iterations, and the one of IGSO is best. All of them can find the final op-

timal result with about 250 iterations. It is worthy noticing that the IGSO and GSO 

are not needed to check the constraints of all particles, but HPSO is needed. Be-

cause of this, the IGSO and GSO can save a lot of computing time. The convergence 

rate of IGSO for 52-bar truss is shown in Fig. 5.3 and the optimal structure with 

IGSO is shown in Fig. 5.3. 

 

Fig. 5.2 A 52-bar spatial truss 
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Table 5.3 Comparison of the designs for the 52-bar spatial truss  

Variables 
Wang 

[19] 

PSO-SA 

[20] 
HPSO GSO IGSO 

z1 9.620 9.000 9.000 9.007 9.000 

x2 2.100 1.706 1.693 1.711 1.693 

z2 7.410 7.403 7.407 7.401 7.407 

x6 7.210 7.000 7.000 7.001 7.000 

z6 4.080 4.000 4.000 4.009 4.000 

Weight (kg) 3195.7559 3168.0756 3167.6756 3167.7056 3167.6756 
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Fig. 5.3 Convergence curves for the 52-bar spatial truss I 
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Fig. 5.4 The optimized 52-bar spatial truss 

(2) A 10-Bar Planar Truss 

The 10-bar truss structure, shown in Fig. 5.5, had been analyzed by Luo [20] as a 

shape optimization with dynamic constraints. But it is taken to check the algorithms 

as shape optimization without the dynamic constraints in this section. The material 

density is 7680 kg/m.
3
 and the modulus of elasticity is 210 GPa. The members are 

subjected to the stress limits of ±100 MPa. There are 10 size variables and 5 shape 

variables. Discrete values considered for this example are taken from the set 

D[0.001, 0.01] (m
2
) with the interval of 0.0005 m

2
. The shape variables group and 

the relative boundary are given in this section as: -2.5≤y1≤2.5, 0≤x2≤2.5, 

-2.5≤y2≤2.5, 2.5≤x3≤5, -2.5≤y3≤2.5 (m). The vertical downward load of 100 kips on 

node 4 and 9 are considered.  

 

Fig. 5.5 A 10-bar planar truss 

Table 5.4 lists the optimal results. Fig. 5.6 shows the convergence rate. It is 

shown from table 5.11 that the optimization results of GSO and IGSO is superior to 

HPSO's. And as Fig. 5.6 shown, GSO and IGSO both have a good convergence rate 

in the early 100 iterations, and approach the global optimal result with 500 itera-

tions. But the HPSO can't escape from the local optimal solution, which means 

HPSO is poorer in the ability of global searching than GSO and IGSO. Compared 

the GSO and IGSO in convergence rate, GSO is good as IGSO; but in the optimal 

result, GSO is better than IGSO. The optimal structure with GSO is shown in  

Fig. 5.7.   
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Table 5.4 Comparison of the optimal results for the10-bar planar truss 

Variables HPSO GSO IGSO 

A1 0.0055 0.0020 0.0020 

A2 0.0025 0.0020 0.0020 

A3 0.0010 0.0010 0.0010 

A4 0.0010 0.0010 0.0010 

A5 0.0010 0.0010 0.0010 

A6 0.0010 0.0010 0.0010 

A7 0.0010 0.0010 0.0010 

A8 0.0010 0.0010 0.0010 

A9 0.0010 0.0010 0.0010 

A10 0.0070 0.0010 0.0010 

y1 -0.846 -0.438 -0.438 

x2 0.100 2.476 2.421 

y2 -0.746 0.332 0.293 

x3 4.996 3.663 3.713 

y3 2.400 0.979 1.034 

Weight (kg) 275.5959 235.1748 235.2951
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Fig. 5.6 Convergence curves for the 10-bar planar truss 
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Fig. 5.7 The optimized 10-bar planar truss 

(3) A 15-Bar Planar Truss A 

The 15-bar truss structure, shown in Fig. 5.8, has previously been analysed by many 

researchers, such as Wu [18] and Tang [21]. The material density is 2.768×10
3
 

kg/m
3
 and the modulus of elasticity is 6.89×104 MPa. The members are subjected to 

the stress limits of ±172.25 MPa. There are 15 size variables and 8 shape variables 

(x2 = x6, x3 = x7, y2, y3, y4, y6, y7, y8) in this example. Discrete values considered for 

this example are taken from the set D={0.072, 0.091, 0.112, 0.142, 0.174, 0.185, 

0.224, 0.284, 0.348, 0.615, 0.697, 0.757, 0.860, 0.960, 1.138, 1.382, 1.740, 1.806, 

2.020, 2.300, 2.460, 3.100, 3.840, 4.240, 4.640, 5.500, 6.000, 7.000, 8.600, 9.219, 

11.077, 12.374} (×10
-3

 m
2
). The shape variables group and the relative boundary 

are 2.54≤ x2 ≤3.556, 5.588≤ x3 ≤6.60, 2.54≤ y2 ≤3.556, 2.54≤ y2 ≤ 3.556, 1.27≤ y4 

≤2.286, -0.508≤ y6 ≤0.508, -0.508≤ y7 ≤ 0.508, -0.508 ≤ y8 ≤ 1.524 (m). Only one 

case is considered: Case 1, node 8 is acted by P, -44.45 kN in y direction. Table 5.5 

give the optimal result. Fig. 5.9 shows the convergence of the optimal algorithm. 

 

Fig. 5.8 A 15-bar planar truss structure A 

As Table 5.5 listed, the GSO, HPSO and IGSO achieve the almost same optimal 

results as Tang [21], and in which the one of GSO is better than the IGSO's and 

HPSO's.  
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Table 5.5 Comparison of the optimal results for the15-bar planar truss A 

Variables Wu [18] Tang [21] HPSO GSO IGSO 

A1 1.174 0.954 1.081 1.081 1.081 

A2 0.954 0.954 0.539 0.954 0.954 

A3 0.440 0.287 0.270 0.141 0.220 

A4 1.333 1.081 1.081 1.081 1.081 

A5 0.954 0.440 0.954 0.539 0.539 

A6 0.174 0.141 0.141 0.347 0.270 

A7 0.440 0.111 0.270 0.111 0.111 

A8 0.440 0.111 0.111 0.174 0.220 

A9 1.081 1.764 1.333 0.141 0.220 

A10 1.333 0.539 0.287 0.174 0.220 

A11 0.174 0.220 0.539 0.220 0.220 

A12 0.174 0.111 0.347 0.141 0.111 

A13 0.347 0.440 0.270 0.539 0.539 

A14 0.347 0.141 0.174 0.347 0.270 

A15 0.440 0.287 0.270 0.141 0.220 

x2 123.189 119.186 100.000 107.371 112.822 

x3 231.595 251.751 235.4 234.566 231.804 

y2 107.189 132.931 124.3 121.529 121.762 

y3 119.175 122.394 139.1 111.338 112.118 

y4 60.462 50.815 50.700 50.699 52.863 

y6 -16.728 4.380 -8.300 14.417 15.658 

y7 15.565 1.059 -3.500 -4.714 -3.175 

y8 36.645 51.030 50.600 47.350 52.860 

Weight (kg) 120.528 79.078 84.6106 76.5114 77.0853 

As Fig. 5.9 shows, all the three algorithms can converge to the global optimal 

solution with 1000 iterations. The optimal structures obtained by GSO and IGSO 

are shown in Fig. 5.10 respectively. 
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Fig. 5.9 Convergence curves for the 15-bar planar truss A 



112 5 Improvements and Applications of GSO in Structural Optimal Design

 

 

50 100 150 200 250 300 350

0

50

100

150

 0 50 100 150 200 250 300 350

0

50

100

150

 

Fig. 5.10 The optimized 15-bar planar truss A 

(4) A 15-Bar Planar Truss B 

The 15-bar truss structure B, shown in Fig. 5.11, has previously been analysed by 

Sun [21]. Young’s modulus is specified as 1.379×10
7 

N/cm
2
, and the material 

density as 0.2768 N/cm
3
. The stress limit is ±17243.5 N/cm

2
 for all members, and 

the displacement limit is ±5.08 cm in y direction of node 5. Considering of the 

symmetry of 15-bar, there are 7 groups of size variable, as follows: A1(11, 12, 13, 

14), A2(1, 2), A3(5, 6), A4(7, 8), A5(9, 10), A6(3, 4), A7(15). The shape variable 

group and the relative boundary are given in this section as: -1245 ≤x3=-x7≤ -25, 

-1245≤x4=-x8≤-25, 100≤y4=y8≤1600, 200≤y6≤2200(cm). Discrete values consid-

ered for this example are taken from the set D= {0.0645,0.645, 0.968, 1.29, 1.613, 

1.935, 3.266, 4.194, 5.161, 6.452, 22.581, 25.806, 29.032, 32.258, 35.484, 38.71, 

41.935, 45.161, 48.387, 51.613, 54.839, 58.064, 61.29, 64.516, 67.742, 70.968, 

71.613, 72.258, 72.903, 73.548, 74.193, 77.419, 80.645, 83.871, 87.097, 90.322, 

93.548, 96.774, 103.226, 116.129, 129.032, 141.935, 154.838, 167.742, 180.645} 

(cm
2
). This model has only one load case: Case 1, node 4, 6, 8 all have a -4.45×10

5 

N vertical load. Table 5.6 give the optimal result. Fig. 5.12 shows the convergence 

of the optimal algorithm. 

 

Fig. 5.11 A 15-bar planar truss B 
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Table 5.6 Comparison of the designs for the 22-bar spatial truss structure 

Variables Sun [21] HPSO GSO IGSO 

A1 22.581 0.0645 0.968 0.0645 

A2 45.161 45.161 45.161 45.161 

A3 0.645 0.0645 0.645 0.645 

A4 0.645 0.0645 0.645 0.0645 

A5 0.645 0.968 0.0645 0.0645 

A6 25.806 22.581 22.581 22.581 

A7 0.645 0.645 0.0645 0.0645 

x3 -829.08 -1174.396 -1049.826 -1175.06 

x4 -1234.44 -1222.54 -1212.417 -1220.748 

y4 312.49 100.029 122.05 102.879 

y6 773.91 945.877 929.511 948.897 

Weight (N) 4798.5 2228.2 2289.8 2161.9 

The result of Sun [21] is obtained with traditional optimization method. There 

are not the boundary values of shape variables in the original optimization model. In 

this section, a suitable boundary of shape variables is given to make the optimiza-

tion run well. As Table 5.6 lists, the result 2161.9 N of IGSO is the best of the four 

algorithms. As the convergence curve in Fig. 5.12 shows, IGSO is superior to the 

GSO and HPSO in convergence rate. And all the three algorithms can approach the 

global optimal solution well with 1000 iterations. The optimal truss obtained by 

IGSO is shown in Fig. 5.13. 
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Fig. 5.12 Convergence curves for the 15-bar B planar truss 
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Fig. 5.13 The optimized 15-bar planar truss B 

(5) A 18-Bar Planar Truss 

The 18-bar truss structure, shown in Fig. 5.14, has previously been analysed by 

many researchers, such as Rajeev [23], Hasan [24] and Kaveh [25]. The material 

density is 0.1 lb/in
3
 and the modulus of elasticity is 10,000 ksi. The members are 

subjected to the stress limits of ±20 ksi. There are 25 members, which are divided 

into 8 groups, as follows: (A1) 1, 2, 3, 4; (A2) 6, 7, 8, 9; (A3) 11, 12, 13, 14; (A4) 15, 

16, 17, 18. Discrete values considered for this example are taken from the set D= 

[2, 20] (in
2
) with the interval of 0.25 in

2
. The shape variable group and the relative 

boundary are given in this section as: -225≤y3=y5=y7=y9≤245, 775≤x5≤1225, 

525≤x5≤975, 275≤x7≤725, 25≤x9≤475 (in). Only one case is considered: 

Case 1, node 1, 2, 4, 6, 8 are acted by P, -20 kips in y direction. This model has not 

any displacement limit of node, but considers the Euler stress constraint. The for-

mula of calculating the Euler stress is given, as follows: 

   
2

i
i

i

EA

L

α
σ =  (ksi)                                               (5.16) 

Where α represents Euler buckling coefficient. Li represents the length of i
th

 bar. E 

represents the modulus of the material. Ai represents the area of i
th

 bar. The value of 

α is 4 in this 18-bar planar truss optimization. 

Table 5.7 give the optimal result. Fig. 5.15 shows the convergence of the optimal 

algorithm. 
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Fig. 5.14 A 18-bar planar truss 

With lots of research to the 18-bar truss optimization, we know its solution space 

is complicated and full of the infeasible solution area. With the rigor searching 

rules, HPSO can't work well in this optimization, because it takes a lot of time to 

find 50 initial particles which all meet the constraints. Only the GSO and IGSO are 

taken to make this optimization. As Table 5.7 lists, both the GSO and IGSO have a 

good accuracy in this 18-bar truss optimization. It can be seen from Fig. 5.15 both 

the two algorithms have a good convergence rate. The rate of IGSO is faster in early 

iterations, but the final result of it is inferior to GSO's with 1000 iterations. The 

optimal structures obtained by GSO and IGSO are shown in Fig. 5.16 respectively. 

Table 5.7 Comparison of the optimal results for the18-bar planar truss 

Variables Rajeev [23] Hasan [24] Kaveh [25] GSO IGSO 

A1 12.50 12.50 13.00 12.25 12.25 

A2 16.25 18.25 18.25 18.25 18.25 

A3 8.00 5.50 5.50 4.75 4.75 

A4 4.00 3.75 3.00 4.25 4.25 

X3 891.90 933 913 916.9 920.812 

Y3 145.30 188 182 191.971 170.912 

X5 610.60 658 648 654.224 640.506 

Y5 118.20 148 152 156.1 139.87 

X7 385.40 422 417 423.5 409.416 

Y7 72.50 100 103 102.571 91.774 

X9 184.40 205 204 207.519 198.775 

Y9 23.40 32 39 28.579 29.504 

Weight (lb) 4616.800 4574.280 4566.210 4538.7676 4553.116 
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Fig. 5.15 Convergence curves for the 18-bar planar truss 
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Fig. 5.16 The optimized 18-bar planar truss 
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(6) A 40-Bar Planar Truss 

The 40-bar planar truss structure [26], shown in Fig. 5.17, is taken to test the three 

algorithms. The material density is 7800 kg/m
3 
(7.8 t/m

3
) and the modulus of elas-

ticity is 196.13 GPa (2×10
7 
t/m

2
). The stress limits of the members are subjected to 

±156.91 MPa (16000 t/m
2
). Node 4 and 5 in y directions are subjected to the dis-

placement limits of ±0.035 m (1/600 span). There are 40 members, which fall into 

19 groups, as follows: (A1) 1, 7; (A2) 2, 6; (A3) 3, 5; (A4) 4; (A5) 8, 14; (A6) 9, 13; 

(A7) 10, 12; (A10) 16, 21; (A11) 17, 20; (A12) 18, 19; (A13) 23, 36; (A14) 24, 35; (A15) 

25, 34; (A16) 26, 33; (A17) 30, 29; (A18) 31, 28; (A19) 32, 27. Discrete values con-

sidered for this example are taken from the set D=[0.001, 0.7] (m
2
) with the interval 

of 0.001 m
2
. Considering the symmetry, the shape variable group and the relative 

boundary are given in this paper as,1≤y9=y16≤5, 1≤y10=y15≤5, 1≤y11=y14≤5, 

1≤y12=y13≤5 (m). Only one case is considered: Case 1, node 2, 3, 4, 5, 6 and 7 are 

acted by P=10t in y direction. 

Table 5.8 gives the optimal result and Fig. 5.18 shows the convergence rate. 

 

Fig. 5.17 A 40-bar planar truss 
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Table 5.8 Comparison of the optimal results for the 40-bar planar truss 

Variables HPSO GSO IGSO 

A1 0.0055 0.0015 0.001 

A2 0.001 0.001 0.001 

A3 0.0105 0.001 0.001 

A4 0.001 0.001 0.001 

A5 0.001 0.001 0.0025 

A6 0.0025 0.003 0.0035 

A7 0.003 0.0035 0.004 

A8 0.0245 0.0035 0.004 

A9 0.0025 0.001 0.001 

A10 0.001 0.001 0.001 

A11 0.001 0.001 0.001 

A12 0.001 0.001 0.001 

A13 0.001 0.001 0.001 

A14 0.001 0.001 0.001 

A15 0.0015 0.001 0.001 

A16 0.005 0.001 0.001 

A17 0.004 0.0025 0.003 

A18 0.001 0.001 0.001 

A19 0.001 0.001 0.001 

y9 1.006 1.069 1.021 

Y10 2.791 2.307 1.894 

Y11 3.541 2.851 2.355 

Y12 3.396 3.287 2.954 

Weight (kg) 3653.0103 2080.6733 2165.3412 

 
The original model of this 40-bar truss comes from Qian [26]. As table 8 lists, the 

optimal result of GSO and IGSO is superior to the one of HPSO, and as Fig. 5.25 

shows, GSO and IGSO is almost good at the global searching, and can find the final 

solution with less 200 iterations. Compared with convergence rate and result, IGSO 

is inferior to the GSO and HPSO. The optimal truss obtained by IGSO is shown in 

Fig. 5.19. 
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Fig. 5.18 Convergence curves for the 40-bar planar truss 
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Fig. 5.19 The optimized 40-bar planar truss 

(7) A 25-Bar Spatial Truss Structure A 

This 25-bar spatial truss example is a sizing and geometry optimization model in 

Wu [18] and Kaveh [25], and the geometry is shown in Fig. 5.20. Young’s modulus 

is specified as 10000 ksi, and the material density as 0.1 lb/in
3
. The stress limit is 

±40 ksi for all members and the displacement limit of node 1~6 in all three direc-

tions are ±0.35 in. Because of the symmetry of the truss, there are 8 sizing variables 

as table 5.16 listed and 5 shape variables. Discrete values considered for this ex-

ample are taken from the set D={ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 

1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4} 

(in
2
). With the symmetry, the shaping variables grouping and the relative boundary  

are given in this paper as, 20≤x4=x5=-x3=-x6≤60, 40≤y3=y4=-y5=-y6≤80, 

90≤z3=z4=z5=z6≤130, 40≤x8=x9=-x7=-x10≤80, 100≤y7=y8=-y9=-y10≤140 

(in.). The bar grouping detail and load case is listed on Table 5.9 and Table 5.10  
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respectively.. The optimal results are shown in Table 5.11. The convergence rate is 

shown in Fig. 5.21. The optimal structure is shown in Fig. 5.22. 

 

Fig. 5.20 A 25-bar spatial truss structure 

Table 5.9 The bar grouping detail of 25-bar Spatial Truss A 

Variables Members Connective of Node 

A1 1 (1,2) 

A2 2,3,4,5 (1,4),(2,3),(1,5),(2,6) 

A3 6,7,8,9 (2,5),(2,4),(1,3),(1,6) 

A4 10,11 (3,6),(4,5) 

A5 12,13 (3,4),(5,6) 

A6 14,15,16,17 (3,10),(6,7),(4,9),(5,8) 

A7 18,19,20,21 (3,8),(4,7),(6,9),(5,10) 

A8 22,23,24,25 (3,7),(4,8),(5,9),(6,10) 

Table 5.10 Load cases for the 25-bar spatial truss structure 

Variables Fx (kips) Fy (kips) Fz (kips) 

1 1.0 -10.0 -10.0 

2 0.0 -10.0 -10.0 

3 0.5 0.0 0.0 

6 0.6 0.0 0.0 
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Table 5.11 Comparison of the optimal results for the 25-bar spatial truss A 

Variables Wu [18] Kaveh [25] HPSO GSO IGSO 

A1 0.1 0.1 0.1 0.1 0.1 

A2 0.2 0.1 0.2 0.1 0.1 

A3 1.1 1.1 1.0 1.0 1.0 

A4 0.2 0.1 0.1 0.1 0.1 

A5 0.3 0.1 0.1 0.1 0.1 

A6 0.1 0.1 0.1 0.1 0.1 

A7 0.2 0.1 0.1 0.2 0.2 

A8 0.9 1.0 1.0 0.9 0.9 

z1 41.070 36.230 34.084 32.149 31.754 

x2 53.470 58.560 50.650 52.742 53.335 

z2 124.600 115.590 129.978 128.230 127.058 

x6 50.800 46.460 47.838 42.401 42.485 

z6 131.480 127.950 129.584 132.603 132.979 

Weight (lb) 136.1977 124.0015 124.6025 121.3684 121.4642 
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Fig. 5.21 Convergence curves for the 25-bar spatial truss A 

As can be seen from Table 5.11, all the three optimization algorithms used in this 

section have achieved results better than Wu [18] and Kaveh [25] with 1000 itera-

tions. From which the 121.3684 lb result of GSO is the best. As Fig. 5.22 shows, all 

the three algorithms have a good convergence speed. They can get the global op-

timal solution with less than 200 iterations. The optimal structure obtained by GSO 

is shown in Fig. 5.22. 
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Fig. 5.22 The optimized 25-bar spatial truss A 

(8) The 25-Bar Spatial Truss Structure B 

The 25-bar spatial truss B is the continuation of 25-bar spatial truss A with addi-

tional Euler buckling stress constraint. The Euler buckling stress is calculated from 

equation (5.16), and its value of α is 8 in this example. Considering the Euler 

buckling stress constraint, parts of the original solution space become infeasible, so 

that the optimization is nonlinear and complicated than the truss model A. 

Table 5.12 Comparison of the optimal results for the 25-bar spatial truss B 

Variables Wu [18] Chuang [20] HPSO GSO IGSO 

A1 0.9 0.1 0.5 0.1 0.1 

A2 0.8 0.9 0.9 0.9 0.9 

A3 1.3 1.2 1.1 1.3 1.2 

A4 0.5 0.1 0.1 0.1 0.1 

A5 0.3 0.2 0.2 0.2 0.2 

A6 0.6 0.3 0.4 0.3 0.3 

A7 1.2 0.9 1 0.9 0.9 

A8 1.6 1.2 1.4 1.1 1.2 

z1 22.22 20.143 20 20.46 20.881 

x2 49.01 52.235 47.526 53.437 51.852 

z2 106.98 97.152 105.186 93.601 96.705 

x6 44.60 40.000 40 23.451 40.048 

z6 102.44 100.00 100 100.93 100.011 

Weight (lb) 301.5968 226.0832 246.7083 223.5674 226.2017 
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As Table 5.12 lists, the GSO and IGSO achieve almost the same optimal results 

as Chuang [20]. As Fig. 5.23 shows, the GSO and IGSO both can converge to the 

global optimal solution with 500 iterations, but the HPSO converges to the local 

optimal solution. It is noticed that the HPSO need to calculate the constraints of 

every particle, but the GSO and IGSO does not need. The optimal structure obtained 

by GSO is shown in Fig. 5.24. 
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Fig. 5.23 Convergence curves for the 25-bar spatial truss B 

-100
-50

0
50

100
-100

-50
0

50
100

0

50

100

150

200

 

Fig. 5.24 The optimized 25-bar spatial truss B 
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(9) A 39-Bar Spatial Truss 

The 39-bar spatial truss structure shown in Fig. 5.25 had been studied by Thi [27] 

and PSO-SA [20]. The material density is 7.85×10
-6 

kg/mm
3
 and the modulus of  

elasticity is 2.1×10
6 

N/mm
2
. The stress limits of the members are subjected to  

±150 N/mm
2
. All nodes’ coordination can be changed except node 1~3 and node 

13~15. Considering the symmetry, the shape variable group and the relative 

boundary in Fig. 5.25 are given as: 500≤x1≤4000, 1000≤x2≤5000, 2000≤x3≤6000, 

1000≤x4-6≤4000 (mm). Node 14 and 15 in y direction are subjected to the dis-

placement limit of ±3 mm. 39 members, which are divided into 5 groups consid-

ering the symmetry are listed in Table 5.13. The initial coordinate of nodes is shown 

in Table 5.14. Discrete values of cross-section considered for this example are taken 

from the set D={112.0, 142.0, 174.0, 185.0, 185.0, 227.0, 267.0, 308.0, 328.0, 

349.0, 379.0, 430.0, 480.0, 569.0, 582.0, 656.0, 691.0, 870.0, 903.0, 935.0, 940.0, 

1010.0, 1150.0, 1190.0, 1220.0, 1230.0, 1510.0, 1550.0, 1920.0, 2120.0, 2270.0, 

2320.0} (mm
2
).  

 

Fig. 5.25 A 39-bar spatial truss structure 
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Table 5.13 The category of 39-bar spatial truss’s members 

Member Connection nodes 

1~3 (1, 4), (2, 5), (3, 6) 

4~6 (4, 7), (5, 8), (6, 9) 

7~9 (7, 10), (11, 14), (12, 15) 

10~12 (10,13), (11,14), (12,15) 

13~39 

(2, 6), (3, 5), (5, 9), (6, 8), (8, 12), (9, 11), (11, 15), (12, 14), (3, 4),

 (1, 6), (6, 7), (4, 9), (9, 10), (7, 12), (12, 13), (10, 15), (2, 4), (1, 5), 

(5, 7), (4, 8), (8, 10), (7, 11), (11, 13), (10, 14), (13, 14), (14, 15),  

(13, 15) 

Table 5.14 Node’s coordinates of 39-bar spatial truss 

Coordination (mm) Coordination (mm) 
Node 

x y z 
Node 

x y z 

1 0.0 4000.0 0.0 9 2361.3 -1363.3 10877.9 

2 -3464.1 -2000.0 0.0 10 0.0 1720.3 14441.4 

3 3464.1 -2000.0 0.0 11 -1489.9 -860.2 14441.4 

4 0.0 3386.4 6345.3 12 1489.9 -860.2 14441.4 

5 -2932.7 -1693.0 6345.3 13 0.0 1120.0 16000.0 

6 2932.7 -1693.0 6345.3 14 -970.0 -560.0 16000.0 

7 0.0 2726.5 10877.9 15 970.0 -560.0 16000.0 

8 -2361.3 -1363.3 10877.9 / / / / 

 
The optimal results are shown in Table 5.15. The convergence rate if the IGSO 

algorithm is shown in Fig. 5.26. 

Table 5.15 Comparison of the optimal results for the 39-bar spatial truss 

Variables Thi [27] PSO-SA [20] HPSO GSO IGSO 

A1 1920 1550 1550 1550 1550 

A2 1010 1230 1230 1230 1230 

A3 656 870 903 870 903 

A4 227 308 267 328 308 

A5 227 227 227 227 227 

X1 1705.71 1821.364 1814.5 1915.336 1901.615 

X2 3563.70 3410.253 3539.9 3354.98 3444.49 

X3 4524.76 4212.206 4194.2 4083.028 4251.895 

X4 3361.76 3313.114 3337.7 3283.978 3322.667 

X5 2727.62 2681.664 2714.9 2687.627 2690.444 

X6 1689.01 1593.758 1590.9 1636.006 1628.618 

Weight (kg) 725.7238 716.4761 716.5523 716.7290 716.5285 
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Fig. 5.26 Convergence curves for the 39-bar spatial truss 

As can be seen from Table 5.15, all the GSO, HPSO and IGSO can find the 

similar optimization results as the literatures. The 716.5285 kg result of IGSO is 

almost the same as the literature results of 716.4761 kg [20]. As Fig. 5.26 shows, all 

the three algorithms find the final optimal structure with 400 iterations, and IGSO  

is the best and fastest one. The optimal structure obtained by IGSO is shown in  

Fig. 5.27. 
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Fig. 5.27 The optimized 39-bar spatial truss 
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5.5   The Application of IGSO in Truss Shape Optimization with 

Dynamic Constraint 

Dynamic properties optimal design is an important research topic of structural 

seismic design. However, with the highly nonlinear objective function or constraint 

function for dynamic optimization model, the traditional optimizers, such as the 

distributed-parameter method [28], full stress criterion and mathematical pro-

gramming [29-31], can't work well in the complex structure optimal design now. 

Thanks to the stochastic searching algorithms, people have found the shortcut to 

make this kind dynamic optimal design.  

In this section, two types of optimization models, based on the natural frequen-

cies constraints and the natural frequencies objective, were developed to deal with 

truss structure geometry optimization problems. A number of truss structure ex-

amples were calculated based on GSO or IGSO. 

5.5.1   Two Kinds of Mathematical Model for Truss Dynamic Shape 

Optimization Problems 

In engineering practice, the main requirement of structure dynamic properties is a 

suitable natural frequency which can't too small and must far away to the frequency 

of outer force sources (avoiding the resonate action). And some other requirements 

are specifically to the vibration mode, structure damping, the mass distribution and 

stiffness distribution etc. Generally, the optimal models are established according 

two major purposes. Firstly, the minimum weight objective with frequency con-

straints. Secondly, the natural frequency objective with weight constraints. Both 

optimal models have some constraints of static analysis, such as the corresponding 

displacement, stress constraints and so on. 

(1) The Minimum Weight Optimal Model with Frequency Constraints (Model I)  

Generally, the minimum weight optimal model with frequency constraints can be 

defined as:  
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where Ai represents the cross-section of the ith bar. Cj represents the coordination of 

jth node. freqlimit is the minimum of Nth natural frequency. [freqmin, freqmax] is the 

allowable frequency interval of Nth natural frequency. [σ] and [δ] represent the 

allowable stress and the allowable displacement respectively. S is a set of discrete 

cross-section of bar. 

(2) The Maximum Natural Frequency with Maximum Weight Limit (Model II) 

Generally, the optimal model of the maximum natural frequency with weight con-

straints can be defined as:  
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where Ai represents the cross-section of the ith bar. Cj represents the coordination of 

jth node. weightlimit is the maximum of the whole structure weight. [σ] and [δ] 
represent the allowable stress and the allowable displacement respectively. S is a set 

of discrete cross-section of bar. 

5.5.2   Numerical Examples 

In this section, five pin-connected structures commonly will be designed (modified 

the optimization problem of liberation) as benchmark problem to test the GSO and 

IGSO. The proposed algorithm is coded in Matlab language and ANSYS APDI 

language.  

The examples given in the simulation studies include: 

• a 40-bar planar truss structure in Model I as shown in Fig. 5.28; 

• a 15-bar spatial truss structure in Model I as shown in Fig. 5.31; 

• a 25-bar spatial truss structure in Model I as shown in Fig. 5.34; 

• a 10-bar planar truss A structure in Model I as shown in Fig. 5.37; 

• a 10-bar planar truss B structure in Model II . 

All these frame structures are analysed by the finite element method (FEM). The 

GSO, IGSO are applied to all these examples respectively and the results are 

compared in order to evaluate the performance of the new algorithm. For the  

two algorithms, the maximum number of iterations is limited to 1000 and the 

population size is set to at 50. 20% of the population was selected as rangers. The 

initial head angle 0ϕ of each individual is set to be / 4π . The constant a is given by 
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round ( 1)n + . The maximum pursuit angle max
θ  is 2/ aπ . The maximum turning 

angle α  is set to be 2/ 2aπ . The maximum pursuit distance max
l  is calculated from 

equation (5.14). 

(1) A 40-Bar Planar Truss Structure (Using Model I) 

The 40-bar planar truss [18] (Model I) is shown in Fig. 5.28. The material density is 

7800 kg/m
3 
(7.8 t/m

3
) and the modulus of elasticity is 196.13 GPa (2×10

7 
t/m

2
). The 

stress limits of the members are subjected to ±156.91 MPa (16000 t/m
2
). Node 4 

and 5 in y directions are subjected to the displacement limits of ±0.035 m (1/600 

span).  

The 1
st
 natural frequency ω1≥200 rad/s is taken to as the dynamic constraint of the 

optimization. 

Table 5.16 gives the optimal results. Fig. 5.29 shows the convergence curves. 

 

Fig. 5.28 A 40-bar planar truss 
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Fig. 5.29 Convergence curves for the 40-bar planar truss 
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As Table 5.16 shows, the weight of the optimal structure with shape optimization 

for GSO is 2080.6733 kg. When the 1st frequency is taken as constraint, an optimal 

structure obtained by GSO weighs 2292.6556 kg, and the one by IGSO weighs 

2228.7329 kg. By comparing three trusses with the corresponding 1st frequency, we 

can know the optimal truss with shape optimization is lightest but violated the 

frequency constraint. Thus the results show that parts of the solution space of the 

original shape optimization become infeasible because of the involving of fre-

quency constraint. And the whole solution space becomes non-continuous and 

non-linear. It can be seen from Fig. 5.29 that both the GSO and IGSO algorithm  

can work well in this optimal problem, and can get the optimal solution with about 

350 and 100 iterations respectively. The optimal structure with IGSO is shown in 

Fig. 5.30. 

Table 5.16 Comparison of the optimal results for the 40-bar planar truss 

Variables Shape optimization GSO IGSO 

A1 0.0015 0.002 0.0015 

A2 0.0010 0.001 0.001 

A3 0.0010 0.001 0.001 

A4 0.0010 0.001 0.001 

A5 0.0010 0.001 0.001 

A6 0.0030 0.003 0.003 

A7 0.0035 0.003 0.003 

A8 0.0035 0.003 0.003 

A9 0.0010 0.001 0.001 

A10 0.0010 0.001 0.001 

A11 0.0010 0.001 0.001 

A12 0.0010 0.001 0.001 

A13 0.0010 0.001 0.001 

A14 0.0010 0.001 0.001 

A15 0.0010 0.001 0.001 

A16 0.0010 0.001 0.001 

A17 0.0025 0.005 0.004 

A18 0.0010 0.001 0.001 

A19 0.0010 0.001 0.001 

y9 1.069 1.003 1.009 

Y10 2.307 2.297 2.408 

Y11 2.851 3.659 3.728 

Y12 3.287 4.165 4.35 

Weight (kg) 2080.6733 2292.6556 2228.7329 

ω1(rad/s) 164.733 200.002 200.454 
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Fig. 5.30 The optimized 40-bar planar truss 

(2) A 15-Bar Spatial Truss Structure (Using Model I) 

The 15-bar spatial truss structure, shown in Fig. 5.31, has been analysed by Sadek 

[32] and Kang [33] Wang [34]. Its Young’s modulus is specified as 68.9 GPa, and 

the material density is 2778 kg/m
3
. Because of the symmetry of the truss, there are 7 

shape variables. The initial coordination of nodes is listed as, 1(-0.635, -0.635, 

2.54), 2(-0.635, 0.635, 2.54), 3(0.635, 0.00, 2.54), 4(-0.635, -0.635, 0.00), 5(-0.635, 

0.635, 0.00), 6(0.635, 0.635, 0.00), 7(0.635, -0.635, 0.00)(m). All the members’ 

area is fixed: the areas of bar 1~7 are 12.90 cm
2
, and the areas of bar 8~15 are 6.45 

cm
2
. All the nodes’ z coordination is fixed. And every node is allowed to moves 

among the range of ± 12.7 cm in x and y directions. Besides, the connection of bars 

is given as follows: 1(1, 2), 2(2, 3), 3(1, 3), 4(1, 4), 5(2, 5), 6(3, 7), 7(3, 6), 8 (2, 4), 

9(1, 5), 10(3, 4), 11(2, 6), 12(2, 7), 13(3, 5), 14(1, 7), 15(1, 6). 

Table 5.17 and Table 5.18 give the optimal results with different frequency 

constraints. Fig. 5.32 shows the convergence curves. 

 

Fig. 5.31 A 15-bar spatial truss 
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Table 5.17 Comparisons of optimal designs of node coordinates for (ω1 ≥ 520Rad/s) 

ω1 ≥ 520 rad/s 
Variables 

Sadek [32] Wang [34] GSO IGSO 

x2 -0.508 -0.508 -0.506 -0.506 

y2 0.508 0.508 0.506 0.506 

x3 0.508 0.508 0.506 0.506 

x5 -0.611 -0.633 -0.622 -0.629 

y5 0.620 0.618 0.641 0.643 

x6 0.531 0.508 0.515 0.508 

y6 0.558 0.544 0.510 0.506 

ω1 521.135 520.034 520.151 520.038 

Weight (kg) 89.23 89.14 89.045 89.035 

The optimal weight of 15-bar spatial truss with two different frequency con-

straints of 520 rad/s and 580 rad/s respectively was compared with that of Sadek 

[32] and Wang [34]. As Table 5.17 and Table 5.18 list, both optimizer algorithms 

have achieved similar optimization results to the literature. The best optimization 

weighs is 89.035 kg with the 1st minimum frequency constraint of 520 rad/s. Al-

though GSO and IGSO have found the similar optimal results with different 1st 

frequency constraints, the difference between the design variables is obvious. 

Compared with two results, IGSO is better than GSO in the weight of structure. As 

is shown in Fig. 5.32, the convergence speed of two optimizers is the same well. 

The optimal structures with two optimizer algorithms are shown in Fig. 5.33. 

Table 5.18 Comparisons of optimal designs of node coordinates for (ω1 ≥ 580Rad/s) 

ω1 ≥ 580 rad/s 
Variables 

Sadek [32] Wang [34] GSO IGSO 

x2 -0.508 -0.508 -0.507 -0.506 

y2 0.508 0.508 0.506 0.506 

x3 0.508 0.508 0.506 0.506 

x5 -0.740 -0.762 -0.725 -0.735 

y5 0.744 0.762 0.746 0.728 

x6 0.574 0.540 0.571 0.560 

y6 0.612 0.540 0.562 0.586 

ω1 585.448 580.006 580.029 580.017 

Weight (kg) 90.14 89.92 89.88 89.88 

 



5.5   The Application of IGSO in Truss Shape Optimization with Dynamic Constraint 133

 

0 100 200 300 400 500 600 700 800 900 1000

89

90

91

92
W

e
ig

h
t

Iteration

 GSO   (w1= 520 rad/s)

 IGSO(w1= 520 rad/s)

 GSO   (w1= 580 rad/s)

 IGSO(w1= 580 rad/s)

(Kg)

 

Fig. 5.32 Convergence curves for the 15-bar spatial truss 
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Fig. 5.33 The optimized 15 bar spatial truss 

(3) A 25-Bar Spatial Truss Structure (Using Model I) 

This 25-bar spatial truss example is a sizing and geometry optimization model in 

Wu [18] and Kaveh [25], and the geometry is shown in Fig. 5.34. Young’s modulus 

is specified as 6.895×10
4 

MPa, and the material density as 2767.99 kg/m
3
. The 

stress limit is ±172.25MPa for all members and the displacement limit of node 1~6 

in all three directions are ±0.0089 m. Because of the symmetry of the truss, there  

are 8 sizing variables as table 5.16 listed and 5 shape variables. Discrete values  

considered for this example are taken from the set D={0.645, 1.290, 1.936,  

2.580, 3.226, 3.871, 4.516, 5.161, 5.806, 6.452, 7.097, 7.742, 8.387, 9.032, 9.677, 

10.323, 10.968, 11.613, 12.258, 12.903, 13.548, 14.194, 14.839, 15.484, 16.129, 

16.774, 17.419, 18.065, 19.355, 20.645} (×10
-4

 m
2
). Considering the symmetry, the 

shaping variable group and the relative boundary are given in this paper as: 2.54 
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≤x4=x5=-x3=-x6≤ 3.556, 5.588 ≤y3=y4=-y5=-y6≤ 6.604, 2.54 ≤z3=z4=z5=z6≤ 3.556, 

2.54 ≤x8=x9=-x7=-x10≤ 3.556, 1.27 ≤y7=y8=-y9=-y10≤ 2.286 (m). The load case is 

listed on Table 5.10. This 25-bar spatial truss is from the 25-bar spatial truss A in 

previous items, and just adopts international system of units. And the dynamic 

constraint is the minimum 1
st
 natural frequency of 250 rad/s. 

 

Fig. 5.34 A 25-bar spatial truss 

Table 5.19 Comparison of the optimal results for the 25-bar spatial truss 

Variables Shape optimization GSO IGSO 

A1 1.290 0.645 0.645 

A2 0.645 1.290 1.936 

A3 7.097 6.452 5.806 

A4 0.645 0.645 0.645 

A5 0.645 0.645 0.645 

A6 0.645 0.645 0.645 

A7 0.645 1.290 1.936 

A8 5.806 6.452 5.161 

z1 0.812 0.737 0.627 

x2 1.251 1.454 1.386 

z2 3.137 2.957 3.237 

x6 1.041 1.1 1.076 

z6 2.994 3.195 3.421 

Weight (kg) 55.101 58.9012 57.8614 

ω1 (rad/s) 193.488 250.282 250.825 
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Fig. 5.35 Convergence curves for the 25-bar spatial truss 

Table 5.19 gives the optimal results. It can be seen from Table 5.19 that the op-

timization result (weight) with 1st frequency constraint is almost the same with the 

optimal result without the frequency constraint. In other word, the frequency con-

straint has little influence on the optimal result of this optimization problem. The 

weight of the optimal structure with shape optimization is 55.101 kg. The weight of 

the optimal structure of GSO and IGSO with frequency is 57.8614 kg and 58.9012 

kg respectively. The 1st frequency of this structure with the frequency constraint is 

193.488 rad/s. The 1st frequency of this optimal structure with GSO and IGSO is 

250.283 rad/s and 250.82 rad/s respectively. As Fig. 5.35 show, convergence speed 

of IGSO is much faster than the of GSO, and both two optimizers can approach the 

optimal solution well with less than 50 iterations, and find the optimal solution with 

1000 iterations. The optimal structure with IGSO is shown in Fig. 5.36. 
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Fig. 5.36 The optimized 25-bar spatial truss 

(4) A 10-Bar Planar Truss Structure (Using Model I) 

The 10-bar truss structure (Model I), shown in Fig. 5.37, had been analysed by Luo 

[20]. The material density is 7680 kg/m.
3
 and the modulus of elasticity is 210GPa. 

The members are subjected to the stress limits of ±100 MPa. There are 10 size 

variables and 5 shape variables. Discrete values considered for this example are 

taken from the set D=[0.001, 0.01] (m
2
) with the interval of 0.0005 m

2
.The shape 

variable group and the relative boundary are given as: -2.5≤y1≤2.5, 0≤x2≤2.5, 

-2.5≤y2≤2.5, 2.5≤x3≤5, -2.5≤y3≤2.5 (m). The vertical downward load of -100 kips 

on node 5 and 6 are considered. The 1
st
 natural frequency, ω1≥600 rad/s is taken to 

as the dynamic constraint of this optimization. 

 

Fig. 5.37 A 10-bar planar truss 

As Table 5.20 listed, the optimization result (weight) with 1st frequency con-

straint is almost the same as the optimal result without the constraint. The weight of 

the optimal structure with shape optimization is 235.1748 kg and the corresponding 

1st natural frequency is 583.566 rad/s. The 1st frequency of the optimal structure 
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with GSO and IGSO is 636.628 rad/s and 651.630 rad/s respectively, and the weight 

is 2504276 and 242.1666 kg respectivly. As Fig. 5.38 shown, IGSO’s convergence 

speed is much faster than GSO's, and IGSO can find the optimal solution with about 

100 iterations. The optimal structure with IGSO is shown in Fig. 5.39. 

Table 5.20 Comparison of the optimal results for the 10-bar planar truss (Model I) 

Variables Shape Optimization GSO IGSO 

A1 0.0020 0.0020 0.0020 

A2 0.0020 0.0015 0.0020 

A3 0.0010 0.0010 0.0010 

A4 0.0010 0.0010 0.0010 

A5 0.0010 0.0015 0.0010 

A6 0.0010 0.0010 0.0010 

A7 0.0010 0.0010 0.0010 

A8 0.0010 0.0010 0.0010 

A9 0.0010 0.0010 0.0010 

A10 0.0010 0.0010 0.0010 

y1 -0.438 -1.057 -1.077 

x2 2.476 2.353 2.229 

y2 0.332 0.099 0.322 

x3 3.663 4.633 3.828 

y3 0.979 2.094 1.067 

Weight(Kg) 235.1748 250.4276 242.1666 

ω1(Rad/s) 583.566 636.628 651.630 
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Fig. 5.38 Convergence curves for the 10-bar planar truss (Model I) 
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Fig. 5.39 The optimized 10-bar planar truss (Model I) 

(5) A 10-Bar Planar Truss Structure (Using Model II) 

The 10-bar truss is the optimization model II, the maximum natural frequency with 

maximum weight limit. Different from the previous 10-bar truss (model I), the 

weight of structure is the optimization constraint. The maximum weight limit of 

original model [20] is 1000 kg. In this section the maximum weight of 600 kg and 

800 kg are used as the constraints respectively to test the IGSO and to get the in-

fluence of different constraint conditions on the searching ability of IGSO. 

Table 5.21 Comparison of the optimal results for the 10-bar planar truss (Model II) 

IGSO Luo [20] 
Variables 

< 600kg < 800kg < 1000kg < 1000kg 

A1 0.0065 0.0095 0.01 0.0074 

A2 0.005 0.0065 0.0085 0.0027 

A3 0.0015 0.0015 0.0015 0.0059 

A4 0.001 0.001 0.001 0.0012 

A5 0.0045 0.007 0.008 0.0033 

A6 0.0025 0.0025 0.0055 0.0047 

A7 0.001 0.001 0.001 0.0047 

A8 0.001 0.001 0.001 0.0011 

A9 0.001 0.002 0.0015 0.0086 

A10 0.001 0.001 0.001 0.0010 

y1 -2.132 -2.252 -2.287 -2.003 

x2 2.493 2.488 2.5 2.353 

y2 -0.125 -0.108 -0.263 0.511 

x3 4.061 4.159 4.184 3.803 

y3 1.479 1.495 1.485 1.041 

ω1 (rad/s) 925.383 983.388 1012.753 893.3 

Weight (kg) 599.999 799.998 999.998 727.1 
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Because the optimal model II is much more complex than the model I, and re-

quires much more computing time, IGSO is only used to optimize the model II. As 

Table 5.21 shows, the value of weight constraint for trusses is proportional to the 1st 

frequency of the optimal structure obtained by IGSO. As Fig. 5.40 shows, IGSO can 

approach the optimal solution with different weight constraints and has good global 

convergence ability with about 150 iterations. The optimal structures with three 

weight constraints are shown in Fig. 5.41 by IGSO (1000 iterations). 
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Fig. 5.40 Convergence curves for the 10-bar planar truss (Model II) 
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Fig. 5.41 The optimized 10-bar planar truss (Model II) 
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5.6   The Application of IGSO in Truss Topology Optimization 

It is always the main work of the structural engineers to design reliable structures or 

other optimal objects with a minimum cost. Because of the wide application of 

truss-structures, the optimal design of truss structures has been an active area of 

structural optimization. Various techniques based on classical optimization meth-

ods have been developed to find optimal truss-structures for a long time. However, 

these classical optimization methods were unable to solve the nonlinear program-

ming (NLP) problem well, such as sizing, geometry (configuration) optimization, 

etc. In this chapter, GSO and IGSO are used to the topology optimization of truss 

structures [35-40] by two topology methods. 

5.6.1   Topology Optimization Model 

Usually, most of optimization problems can be classified into three main categories: 

(i) sizing, (ii) geometry (configuration), and (iii) topology optimization. In the 

sizing optimization of trusses, cross-sectional areas (Ai) of members are selected as 

design variables. The changes in nodal coordinates (Cj) are chosen as design vari-

ables in the geometry optimization of trusses. However, the connections of mem-

bers are determined as variables in the strictly topology optimization of a truss. 

Usually, the generalized topology optimization considers all the above three opti-

mization simultaneously. In this paper, a group of topology variables {T} was 

employed to represent the connectivity of members, the formulation of the 

truss-structure optimization problem as a nonlinear programming (NLP) problem 

can be defined as: 
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(5.19) 

where Ti is the ith member connection (1 for presence and 0 for absence). Ai is the 

ith member’s cross-sectional areas. D is a set of discrete cross-sectional areas. Cj is 

the jth node’s coordinate. 
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5.6.2   Topology Methods 

As the topology variable Ti gets rid of the restriction of classical ground structures 

[35], the random topology of the objective structures can be any possible topology 

which includes all the workable and failed topology (violating constraints G3 or 

G4). It means the global optimal topology can be obtained. In comparison, the 

optimization with ground structure theory always converges to local optima. 

However, this optimal model, which is built for stochastic optimization methods, 

has a great deal of opportunity to approach the global optima. For guiding the 

random topology which may be subject to the constraints G3 and G4, the structural 

property of the truss topology variables is discussed in this paper. Firstly, we must 

make sense of several concepts, (i) support node, (ii) load node, (iii) undeleted 

node, (iv) erasable node. As Fig. 5.42 shows, the 5th point of part (b), the 6th point 

of part (c) and the 6th point of part (f) are all erasable node, but the 5th of part (e) is 

an undeleted node. 

 

   
(a) 12-bar truss (b) (c) 

   
(d)10-bar truss (e) (f) 

Fig. 5.42 The erasable node and undeleted node in topology of truss optimization 

For a simple truss structure, the phenomenon of failed topology (PFT) may be 

not so obvious, but for a complex structure, which includes a great number of to-

pology variables, the PFT must be serious and obvious and make the optimization 

failed. Two truss topology methods, including heuristic topology and discrete to-

pology variables, are proposed here to ease the PFT in this paper. The rules, which 

can guide the random topology of trusses, can be drawn by analyzing the truss 

structures, as follows: 

Rule.1: The erasable nodes, without any loads, can be deleted on the cases that 

there are less than two bars connecting to it. Then the bars, which 

connect to the deleted nodes, will be deleted at the same time. 

Rule.2: The support nodes must be connected with one or more than one bar. For 

the planar trusses, the total amount of support link-bars must be greater 

than or equal to 3.   
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Rule.3: The load nodes must be connected with two or more than two bars. (In 

addition, it can’t be connected with two bars which locate on the same 

straight line.) 

Rule.4: The undeleted nodes must be connected with three or more than three 

bars. 

(1) Heuristic Topology (HT) Method  

Based on the rules about the truss topology property, a presented topology method, 

heuristic topology (HT) [39], is improved on some details in this paper, and the 

program of the new heuristic topology is executed as follows: 

Step.1: checking the erasable nodes, delete the erasable nodes which are con-

nected with less than three bars. 

Step.2: checking the load nodes, choose the connectable node randomly from the 

existing erasable nodes and undeleted nodes, then create the bar to 

connect them, till the load nodes match the rule 3. 

Step.3: checking the support nodes, choose the connectable node randomly from 

the existing erasable nodes and undeleted nodes, then create the bar to 

connect them, till the support nodes match rule 2. 

Step.4:  checking the undeleted nodes and temp undeleted nodes, and stop this 

step till all the undeleted nodes match rule 4. 

In addition, sometimes, there is not any connectable node included in the existing 

erasable nodes and undeleted nodes on running Step.2 and Step.3 of the above 

topology program. The connectable node, which belongs to the temp undeleted 

nodes, will be created to fit the structure on this case. 

The topology methods presented in the references, as well as the improved  

heuristic topology in this paper, can’t make sure that the topology structures are all 

workable, but the unworkable topology can be selected easily to save a lot of un-

necessary computational time. The 15-bar truss, which is shown in Fig. 5.43, is a 

failed topology, whereas it can match the rules of heuristic topology well. Therefore 

reference [21] and [39] as well as this paper still check the singularity of the 

structural global stiffness matrix (the constraint G4) in order to make sure the to-

pology is workable. 

  

Fig. 5.43 The failed topology of 15-bar truss 
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(2) Discrete Topology (DT) Variable Method  

Now we suppose that there are n topology variables (0-1 type) in the structural 

optimal model shown by Fig. 5.51, as {T}=[T1 T2 … Tn]
T. So the Part II has four 

topology variables, as [Ti Tj Tk Tl]
T. Considering the property of the truss, we can 

find there are only five workable bar-combinations, such as [1 1 1 0]T and other four 

combinations shown by Fig. 5.44 (a) to (e). Use a discrete topology variable DT1∈

[1 2 3 4 5] to represent all of the five combinations, for example, DT1=1 represents 

the Fig. 5.51 (a) combinations [1 1 1 0]T, then for other truss structures, we can get 

{DT}=[DT1 DT2 … DTn]
T with the same rule above. This processing is the discre-

tization of topology variables and is called discrete topology variable method in this 

paper. By this process, the number of topology variables is reduced greatly, and the 

efficiency of structural topology optimization is raised obviously, because most of 

fail topology configurations have been deleted. 

 

Fig. 5.44 Discretization of topology variables 

Generally, all or part of the topology variables can be transformed to discrete 

topology variables and the possible fail topologies can be deleted, such as the 

ten-bar truss example in this paper. When all topology variables are transformed to 

discrete topology variables, it is the case of Topology Group [41], which is only a 

special case of this discrete topology variable method. The discrete topology vari-

able method is different from the Heuristic topology method, and the optimal results 

of IGSO show that it is a simple and effective topology method. 

5.6.3   Numerical Example 

In this section, five pin-connected structures commonly designed as benchmark 

problems are used to test the GSO and IGSO. The proposed algorithm is coded in 

Matlab language and ANSYS APDI language.  

The examples given in the simulation analysis include: 

• a 5-bar planar truss structure with HT; 

• a 12-bar spatial truss structure with HT; 

• a 10-bar spatial truss structure with HT; 

• a 15-bar planar truss A structure with HT; 

• a 25-bar planar truss B structure with DT. 
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The GSO, IGSO are applied respectively to all these examples and the results are 

compared in order to evaluate the performance of the new algorithm. For all these 

two topology algorithms, the maximum number of iterations is limited to 1000 and 

the population size is set to 50. 20% of the population is selected as rangers; the 

initial head angle 0ϕ of each individual is set to be / 4π . The constant a is given by 

round ( 1)n + . The maximum pursuit angle max
θ  is 2/ aπ . The maximum turning 

angle α  is set to be 2/ 2aπ . The maximum pursuit distance max
l  is calculated from 

equation (5.14). 

(1) A 5-Bar Planar Truss Structure 

The 5-bar truss structure is shown in Fig. 5.45. It was analysed by Sun [22] as a 

testing structure without practical unit. The material density, the length of bar and 

the modulus of elasticity all are assumed as 1. The members are subjected to the 

stress limits of ± 20. There are 5 size variables and 5 topology variables. Discrete 

values considered for this example are taken from the set D={0.3, 0.5, 1, 1.5, 2.25, 

2.5, 2.75, 3, 3.5, 4.6, 5, 5.4, 5.8, 6, 6.5, 7.219, 7.5, 8, 8.9, 10, 11, 12, 14.143, 15, 15, 

15.5, 20, 30, 35}. Two working cases are considered: Case 1, P1x=5, P1y=-50; Case 

2, P2x=5, P2y=-50. 

 

Fig. 5.45 A 5-bar planar truss 

Sun [22] made the topology optimization with different initial values of the 

particles in traditional optimization algorithm. The GSO and IGSO are used to 

optimize this 5-bar truss structure with HT. As Table 5.22 lists, the IGSO and GSO 

both find the same optimal solution as Sun did with less than 20 iterations. Because 

the 5-bar truss topology optimization is simple and fewer iterations are required, the 

convergence curves were not given in this example. The optimal truss obtained by 

IGSO is shown in Fig. 5.46. 
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Table 5.22 Comparison of the optimal results for the 5-bar planar truss 

Variables Sun [22] GSO IGSO 

A1 1 1 1 

A2 2.5 2.5 2.5 

A3 10 10 10 

A4 0 0 0 

A5 15 15 15 

Weight 33.5012 33.5012 33.5012 
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Fig. 5.46 The optimized 5-bar planar truss 

(2) A 12-Bar Planar Truss Structure 

The 12-bar truss structure, shown in Fig. 5.47, was analysed by Sun [22]. The ma-

terial density is 0.02768 N/cm
3
, and the modulus of elasticity is 6.987×10

6
 N/cm

2
. 

The members are subjected to the stress limits of ±17243.5 N/cm
2
. And the dis-

placement limit is 5.08 cm in y direction of node 2 and 4. There are 12 size variables 

and 12 topology variables. As the different section sets used in Sun [22], discrete 

values considered in this example are taken respectively from the two sets 

D1={129.03, 167.74, 180.64, 225.81, 264.52, 296.77, 322.58} (cm
2
). and D2={6.45, 

19.35, 32.26, 51.61, 67.74, 77.42, 96.77, 109.68, 141.94, 145.84, 167.74, 180.64, 

187.10, 200, 225.81} (cm
2
). Two working cases are considered: Case 1, 

P2y=-4.45×10
5
 N, Case 2, P4y=-4.45×10

5
 N. 

Sun [22] did not consider the node coordinates variable in this example, only  

two set of original section variables were used to find the optimal solution. The HT 

was used in this simple topology optimization example. As the cross-section vari-

able contained in the section set D1 is relatively small, it is easy for HT to get  

the optimal topology results which is displayed in Table 5.22. It can be seen from 

Table 5.29 that the algorithms HT used in this example have achieved better results 

than the literature [22]. It also shows that for a little complex example, the tradi-

tional method has its limitations.  

It can be seen from Fig. 5.48 that for the cross-section variables D1, the com-

bination of GSO and IGSO with HT respectively need less than 20 iterations to 

converge to the optimal solution. Whereas for the variable cross-section D2, 100 
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times were needed to get the optimal value. IGSO converges faster than GSO does. 

The optimized truss structures with respect to the two cross-section sets D1 and D2 

are shown in Fig. 5.49 respectively. 

 

Fig. 5.47 A 12-bar planar truss 

Table 5.23 Comparison of the optimal results for the 12-bar planar truss 

Section set D1 Section set D2 
Variables 

Sun [22] HT & GSO HT & IGSO Sun [22] HT & GSO HT & IGSO 

A1 167.74 167.74 167.74 167.74 180.64 180.64 

A2 - - - - - - 

A3 129.03 129.03 129.03 109.68 96.77 96.77 

A4 129.03 129.03 129.03 96.77 96.77 96.77 

A5 129.03 129.03 129.03 51.61 19.35 19.35 

A6 - - - - - - 

A7 - - - 32.26 19.35 19.35 

A8 129.03 129.03 129.03 96.77 109.68 109.68 

A9 129.03 129.03 129.03 141.94 141.94 141.94 

A10 - - - - - - 

A11 - - - - - - 

A12 - - - - - - 

Weight (N) 23281 23281 23281 20477 19659.8 19659.8 
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Fig. 5.48 Convergence curves for the 12-bar planar truss 
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Fig. 5.49 The optimized 12-bar planar truss 

(3) A 10-Bar Planar Truss Structure 

In this section, the performance of the topology optimization is studied on a 10-bar 

truss used by Wu [18] and Tang [21]. The geometry of 10-bar truss is shown in  

Fig. 5.50. The stress limit is 172.25 MPa in both tension and compression for all 

members. Young’s modulus is specified as 6.89×10
4 
MPa, and the material density 

is 2.768 kg/m
3
. Joints 4, 5 and 6 are allowed to move only in the vertical direction. 

Discrete values considered for this example are taken from the set D={1.045, 1.161, 

1.535, 1.690, 1.858, 1.993, 2.019, 2.181, 2.342, 2.477, 2.497, 2.697, 2.897, 3.097, 

3.206, 3.303, 3.703, 4.658, 5.142, 7.419, 8.710, 8.968, 9.161, 10.000, 10.322, 

12.129, 12.839, 14.194, 14.774, 17.097, 19.355, 21.613} (×10
-3

 m
2
). More details 

can be found from literature [18]. 
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Fig. 5.50 A 10-bar planar truss 

In 10-bar truss topology optimization, two topology methods HT and DT with 

respective to GSO and IGSO are both used respectively. In the first step, all the 

topology variables are condensed to one discrete topology variable. In the second 

step, the heuristic topology method was used with GSO and IGSO respectively. The 

population of the GSO and IGSO is 50, which contains 2 at the two searching angles 

(left and right). It can be seen from Table 5.24 that DT&IGSO and HT&IGSO both 

get the better optimal result (1244.9 kg and 1239.6 kg) compared with references. 

(DT&IGSO means IGSO with DT, and HT&IGSO means IGSO with HT). The 

finally optimal trusses are shown respectively in Fig. 5.52. 

Table 5.24 Comparison of the optimal results for the 10-bar planar truss (Model II) 

Variables Wu [18] Tang [21] 
DT& 

GSO 

DT& 

IGSO 

HT& 

GSO 

HT& 

IGSO 

A1 6.387 8.710 7.419 8.710 10.000 8.710 

A2 6.064 0.000 4.658 0 0 0 

A3 7.419 5.142 8.710 7.419 5.142 7.419 

A4 0.968 4.658 2.342 4.658 4.658 5.142 

A5 0.000 1.045 0 0 3.097 0 

A6 7.742 0.000 3.703 0 0 0 

A7 7.419 2.897 4.658 3.703 0 3.703 

A8 2.323 2.019 1.690 1.535 3.703 1.993 

A9 0.000 8.710 3.703 8.710 0.322 7.419 

A10 6.710 0.000 3.303 0 0 0 

Y1 20.0 22.6 20.13 19.47 21.741 20.010 

Y2 14.1 13.4 13.22 11.75 12.205 12.386 

Y3 4.7 - 46.00 - 21.347 - 

Weight (kg) 1476.0 1276.3 1351.6 1244.9 1318.9 1239.6 
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Fig. 5.51 Convergence curves for the 10-bar planar truss 

 

Fig. 5.52 The optimized 10-bar planar truss 

(4) A 15-Bar Planar Truss Structure (Model A) 

In this example, the performance of the topology optimization is studied on a 15-bar 

cantilever truss by Wu [24], Tang [21] and Raj [23]. The geometry of 15-bar truss is 

shown in Fig. 5.53. A tip load of 44.45 kN is applied to the truss. The stress limit is 

172.25 MPa for all members. Young’s modulus is specified as 6.89×10
4
 MPa, and 

the material density as 2.768 kg/m
3
. The x and y coordinates of joint 2, 3, 6 and 7 are 

movable. The x coordinates of node 6 and 7 are almost same as that of joint 2 and 3 

respectively. Joint 4 and 8 are allowed to move only in the y direction. Hence, this 

problem has 38 design variables including 15 sizing variables (cross-sectional area 

of members), 8 configuration variables (x2=x6, x3=x7, y2, y3, y4, y6, y7, y8) and 15 

topology variables. Discrete values considered in this example are taken from the 
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set D={0.072, 0.091, 0.112, 0.142, 0.174, 0.185, 0.224, 0.284, 0.384, 0.615, 0.697, 

0.757, 0.860, 0.960, 1.138, 1.382, 1.740, 1.806, 2.020, 2.300, 2.460, 3.100, 3.840, 

4.240, 4.640, 5.500, 6.000, 7.000, 8.600, 9.219, 11.077, 12.374} (×10
-3

 m
2
). More 

details can be found from literature [21] and [23]. 

 

Fig. 5.53 A 15-bar planar truss 

Table 5.25 Comparison of the optimal results for the 10-bar planar truss (Model A) 

Variables 
Wu 

[18] 

Tang  

[21] 

Raj  

[23] 

DT& 

GSO 

DT& 

IGSO 

HT& 

GSO 

HT& 

IGSO 

A1 0.757 0.697 0.615 8.60 6.15 8.60 6.97 

A2 0.615 0.348 0.615 6.15 6.15 2.84 6.15 

A3 0.284 0.000 0.000 0 0 0 0 

A4 0.86 0.697 0.697 6.15 6.97 6.15 6.97 

A5 0.615 0.615 0.348 6.15 3.48 6.15 2.84 

A6 0.112 0.284 0.348 2.84 3.48 3.48 2.84 

A7 0.284 0.000 0.000 1.74 0 0.72 0 

A8 0.284 0.091 0.000 1.42 1.12 1.74 0.72 

A9 0.697 0.000 0.000 0 0 0 0 

A10 0.86 0.174 0.284 0 2.84 0 1.74 

A11 0.112 0.174 0.142 2.24 1.42 2.84 1.74 

A12 0.112 0.348 0.072 3.48 0 6.15 0 

A13 0.224 0.091 0.224 1.74 2.84 0 3.48 

A14 0.224 0.284 0.348 3.48 3.48 3.48 3.48 

A15 0.284 0.000 0.000 0  0 0 0 

X2 3.129 2.841 2.728 3.008 2.54 2.602 2.54 

X3 5.883 6.158 6.209 5.589 5.829 5.872 6.142 

Y2 2.723 2.642 3.186 2.699 3.172 2.803 3.183 

Y3 3.027 2.774 2.979 3.515 2.763 3.172 2.581 

Y4 1.536 - - - - - - 

Y6 0.425 0.275 0.041 0.122 -0.012 -0.003 0.14 

Y7 0.395 0.283 0.459 0.071 0.092 0.180 -0.264 

Y8 0.931 1.241 1.275 1.385 1.356 1.524 0.193 

Weight (kg) 54.672 35.308 34.094 39.009 33.862 37.892 33.543 
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Both HT and DT are used in this example. Partial discrete topology variables are 

used in this structure. The best optimal results of twenty random computation about 

the 15-bar truss by different optimal method is listed in Table 5.24. The finally 

optimal trusses are shown respectively in Fig. 5.55. The better optimal results 

33.862 kg and 33.543 kg of DT&IGSO and HT&IGSO respectively are obtained. 

Only 80 generations, 48 population and 50 members were needed in computation, 

which shows the two topology methods incorporated IGSO are powerful techniques 

for topology optimization. The obvious distinction of Euclidean distance between 

the results with the two methods, to some extend, shows the complexity of the 

design space of the topology optimization. 
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Fig. 5.54 Convergence curves for the 15-bar planar truss A 

  

(a) DT                                                             (b) HT 

Fig. 5.55 The optimized 15-bar planar truss A 
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(5) A 15-Bar Planar Truss Structure B 

A different configuration of 15-bar truss topology example is from Sun [22], and 

the geometry is shown in Fig. 5.56. Young’s modulus is specified as 6.897×10
6 

N/cm
2
, and the material density as 0.02768 N/cm

3
. The stress limit is ±17243.5 

N/cm
2
 for all members, and the displacement limit is ±2.032 cm in y direction of 

node 5. Because of the symmetry, there are 15 design variables including 8 sizing 

variables (A1=A2, A3=A4, A5=A6, A7=A8, A9=A11, A12=A13, A11=A14, A15), 4 con-

figuration variables (x3=-x7, x4=-x8, y4=y8, y6) and 3 topology variables (2 discrete 

topology variables). Discrete values considered for this example are taken from the 

set D={6.452, 9.677, 22.581, 32.258, 45.161, 70.968, 83.871, 103.226, 129.032, 

161.29, 193.548} (cm
2
). This model has two load cases, case 1: node 3, 5, 7  

all have a vertical load, -4.45×10
5
 N; case 2: node 4, 6, 8 all have a vertical 

load,-4.45×10
5
 N. 

 

Fig. 5.56 A 15-bar planar truss B 

Table 5.26 is the optimal results of 10-bar planar truss (Model B). Fig. 5.57 is the 

convergence rate curve. 

Because of the symmetry of this truss, [T3, T4, T7, T8, T9, T11, T12, T13], can be 

discretized to DT1, and [T5, T6] to DT2. Reference [28] did not give the limitation of 

shaping variables, so the relative boundary are given in this paper as, -123≤x3≤123, 

-123≤x4≤123, 123≤y4≤123 and 123≤y6≤123 (cm).  

It can be seen from Table 5.32 that the DT&IGSO can get better optimal result 

(2009.9N) than reference [22] did. As the Fig. 5.57 shows, the optimizer has found a 

good solution with about 50 iterations. The population of member is 48 and the 

iteration is 500 times.  

The finally optimal truss is shown in Fig. 5.58 and the checking detail of the 

optimal result with Ansys is listed on Table 5.26. 
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Table 26 Comparison of the optimal results for the 10-bar planar truss (Model B) 

Variables Sun [22] DT & GSO DT & IGSO 

A1 (cm
2
) 70.968 70.968 70.968 

A3 (cm
2
) 45.161 45.161 32.258 

A5 (cm
2
) 32.258 32.258 32.258 

A7 (cm
2
) 0.000 0.000 6.452 

A9 (cm
2
) 6.452 6.452 0.000 

A11 (cm
2
) 6.452 6.452 6.452 

A12 (cm
2
) 6.452 6.452 6.452 

A15 (cm
2
) 32.258 32.258 32.258 

x3 (cm) -189.992 -417.5 -445.2 

x4 (cm) -228.224 -426.2 -453.7 

y4 (cm) 310.642 73.3 78.4 

y6 (cm) 401.869 222.0 273.6 

Weight (kg) 3494 2226.1 2009.9 
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Fig. 5.57 Convergence curves for the 15-bar planar truss B 

 

Fig. 5.58 The optimized 15-bar planar truss B 
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Table 5.27 Comparison of the optimal results for the 10-bar planar truss (Model II) 

Load case Stress /Disp. Element /Node Value 

Min stress ○3, ○4 -17239.963 N/cm2 

Max stress ○5, ○6 13960.399 N/cm2 1 

Max-displacement 5 -2.030 cm 

Min stress ○3, ○4 -15684.340 N/cm2 

Max stress ○5, ○6 702.938 N/cm2 2 

Max-displacement 5 -1.838 cm 

(6) A 25-Bar Spatial Truss Structure 

This 25-bar spatial truss example is a sizing and geometry optimization model in [18], 

and the geometry is shown in Fig. 5.59. However, it becomes a topology optimal 

problem with adding the topology variables now. Young’s modulus is specified as 

10000 ksi, and the material density as 0.1lb/in
3
. The stress limit is ±40 ksi for all 

members and the displacement limit of node 1~6 is ±0.35 in.. Because of the sym-

metry of the truss, there are 16 design variables including 8 sizing variables (as table 4 

listed) and 5 configuration variables and 3 topology variables. Discrete values con-

sidered for this example are taken from the set D={0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 

0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 

3.2, 3.4} (in.
2
). With the symmetry, the shaping variables grouping and the relative 

boundary are given in this paper as, 20≤x4=x5=-x3=-x6≤60, 40≤y3=y4=-y5=-y6≤80, 

90≤z3=z4=z5=z6≤130, 40 ≤x8=x9=-x7=-x10≤ 80, 100≤y7=y8=-y9=-y10≤140 (in.). The 

load case is listed on Table 5.5. More details can be found in reference [30]. 

 

Fig. 5.59 The optimal topology of 25-bar truss 
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With the previous analysis, we can know most of bars of the 25-bar spatial truss 

are indispensable. That means most of topology variables are fixed as Tk=1. 

Therefore, some other topology methods are not fit for this problem, such as DOF 

[21], Heuristic topology [39] and so on. However, the result shows discretization 

part of topology variables incorporated with IGSO works well. As Table 5.28 

shows, the optimal results of the sizing and geometry optimization are 136.1977 lb 

[18] and 121.3684 lb with GSO, the results of the DT&GSO and DT&IGSO 

are120.455 lb and 118.2341 lb respectively. The convergence curve of Fig. 5.67 

shows the IGSO is more efficient than GSO. The topology method incorporating 

GSO and IGSO are both powerful techniques for topology optimization. The finally 

optimal trusses are shown respectively in Fig. 5.68. As the 15-bar example does, A 

checking optimal result with Ansys is taken to this example, and the detail is that the 

min-stress bar is Bar 24 (-15.7831 ksi) and the max-stress bar is Bar 17 (11.2317 

ksi). The max-displacement node is node 1 with -0.35 in. value in y direction. The 

optimized structure is shown in Fig. 5.61. 

Table 5.28 Comparison of the optimal results for the 25-bar planar truss 

Variables Wu [18] GSO DT & GSO DT & IGSO 

A1 (in
2
) 0.1 0.1 0.1 - 

A2 (in
2
) 0.2 0.1 0.1 0.1 

A3 (in
2
) 1.1 1.0 1.1 1.0 

A4 (in
2
) 0.2 0.1 - - 

A5 (in
2
) 0.3 0.1 - - 

A6 (in
2
) 0.1 0.1 0.1 0.1 

A7 (in
2
) 0.2 0.2 0.2 0.2 

A8 (in
2
) 0.9 0.9 0.9 0.9 

x4 (in) 41.07 32.149 33.743 36.026 

y3 (in) 53.47 52.742 50.597 59.044 

z3 (in) 124.60 128.23 128.847 20.085 

x8 (in) 50.80 42.401 42.500 46.717 

y7 (in) 131.48 132.603 128.956 134.817 

Weight (lb) 136.1977 121.3684 120.4550 118.2341 
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Fig. 5.60 The optimal topology of 25-bar truss 
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Fig. 5.61 The optimal topology of 25-bar truss 

5.7   Conclusions Remarks 

In this chapter, an intelligent algorithm, Group Search Optimizer is introduced to 

deal with civil engineering optimization problem. The GSO is improved (named 

IGSO) to make sure it is workable and efficient in the complex structural optimal 

design. According to one of the characteristics of the solution space of structural 

optimization, which indicates the optimum is usually located near to the boundary, 

a new searching mechanism, called adhering to the boundary, is presented to im-

prove the searching behaviour of IGSO. The calculation results show IGSO can 
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raise convergence speed greatly. Even if the optimum locates in the boundary, the 

algorithm will converge to the optimum quickly.  

Different optimal problems such as size optimization, geometry optimization, 

dynamic optimization and topology optimization were solved with the IGSO pre-

sented in this chapter. Two topology algorithm, incorporated with IGSO, named 

HT&IGSO and DT&IGSO were produced and the results proved that the algo-

rithms are workable and robust for the structural topology optimal design. 
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Chapter 6 

Optimum Design of Structures with Quick 

Group Search Optimization Algorithm 

Abstract. Based on the basic principles of an optimization algorithm, group search 
optimization (GSO) algorithm, two improved GSO, named quick group search 
optimizer (QGSO) and quick group search optimizer with passive congregation 
(QGSOPC), are presented in this chapter to deal with structural optimization design 
tasks. The improvement of QGSO has three main aspects: first, increase the number 
of ‘ranger’ when the target stops going forward. Second, use the search strategy of 
particle swarm optimizer (PSO) by considering the best group member and the best 
personal member. Employ the step search strategy to replace the visual search 
strategy. Third, reproduce the ‘ranger’ with hybrid of the group best member and 
the personal best member. the QGSOPC is a hybrid QGSO with passive 
congregation. The QGSO is tested by planar and space truss structures with 
continuous variables and discrete variables. The QGSOPC is only tested by discrete 
variables. The calculation results of QGSO and QGSOPC are compared with that of 
the GSO and HPSO. The results show that the QGSO and QGSOPC algorithms can 
handle the constraint problems with discrete variables efficiently, and the QGSOPC 
has more efficient search ability, faster convergent rate and less iterative times to 
find out the optimum solution. 

6.1   Introduction 

Bionic optimization algorithms, notably Evolutionary Algorithms (EAs) [1] had 

been widely used to solve various scientific and engineering problems and have 

been extensively used in structural optimization problems recently. Thereinto, Ant 

Colony Optimizer (ACO), Particle Swarm Optimizer (PSO) and Group Search 

Optimization inspired by Dorigo [2], Kenndy & Eberthart [3], and Barnard [4] 

respectively are three typical representatives. The ‘Individual Behavior’ of group is 

mainly considered by ACO and PSO. It is based on the evolutionary theory to 

consider such evolution behaviour. These two algorithms belong to ‘evolutionary 

strategies’ areas in a way. ACO is good at solving complex and combination 

optimization problems with discrete variables but shows a low evolutionary 

velocity [5]. PSO suits for continuous and discrete variables optimization problems 

but is easy to entrap in local minima. Also they are time consuming in optimizing 
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complex structures [6-8]. As we know, gregarious is a common phenomenon in the 

animality, ‘information communion’ and ‘mutual cooperation’ is another important 

aspect of group behavior. Group Search Optimizer (GSO) is such an optimization 

algorithm which is based upon this group speciality and also has been successfully 

used in structural optimal design with continuous variables [9-11]. However, as the 

practical engineering problems use the bars, the areas of cross-sections of which are 

produced by a certain specifications, structural optimization with discrete variable 

design works more obvious significance and value of practical application. 

To improve the efficiency of GSO for structural optimization, the basic principle 

of GSO has been ameliorated in this chapter. Then an improved algorithm for 

structural optimization is proposed, named a quick group search optimizer (QGSO). 

Compared with the basic GSO algorithm and the improved PSO algorithm named 

HPSO, this algorithm (QGSO) has preferable convergence rate and accuracy. 

6.2   The Introduction of GSO 

GSO is inspired by the food searching behavior and group living theory of social 

animals, such as birds, fish and lions. The foraging strategies of these animals 

mainly include: (1) producing, e.g., searching for food; and (2) joining 

(scrounging), e.g., joining resources uncovered by others. GSO also employs 

‘rangers’ which perform random walks to avoid entrapment in local minima. 

Therefore, in GSO, a group consists of three kinds of members: producers, 

scroungers and rangers. At each iteration, a group member, located in the most 

promising area, conferring the best fitness value, is chosen as the producer. It 

locates in the most promising area and stay still. The other group members are 

selected as scroungers or rangers by random. Then, each scrounger make a random 

walk towards the producer, and each rangers make a random walk in arbitrary 

direction. It is also assumed that the producer, scroungers and rangers do not differ 

in their relevant phenotypic characteristics. Therefore, they can switch among the 

three roles. The GSO behaves as follows: 

In an n-dimensional search space, the 
th
i  member at the 

th
k  searching bout 

(iteration) has a current position k n

i
X R∈ , a head angle 

1

1 ( 1)( , ..., )
k k k n

i i i n Rϕ ϕ ϕ −
−= ∈  

and a head direction 1
( ) ( , ..., )

k k k k n

i i i in
D d d Rϕ = ∈  which can be calculated from 

k

i
ϕ  via a 

Polar to Cartesian coordinates transformation: 
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(6.1) 

In GSO, a group consists of three kinds of members: producer scroungers and 

rangers. In the GSO algorithm, at the 
thk  iteration, the producer 

p
X  behaves as 

follows: 
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(1) The producer will scan at zero degree and then scan laterally by randomly 

sampling three points in the scanning field: one point at zero degree:  

1 max ( )k k k

z p pX X rl D ϕ= +  (6.2) 

one point in the left hand side hypercube:  

1 max 2 max
( / 2)k k k

l p p
X X rl D rϕ θ= + −  (6.3) 

and one point in the right hand side hypercube: 

1 max 2 max
( / 2)k k k

r p p
X X rl D rϕ θ= + +  (6.4) 

where 
1

1r R∈  is a normally distributed random number with mean 0 and standard 

deviation 1 and 
1

2

n
r R

−∈  is a random sequence in the range (0, 1). The maximum 

pursuit distance max
l  is calculated from: 

2

max

1

( )
=

= − = −∑ni i i i

i

l U L U L  (6.5) 

where 
i

L  and 
i

U  are the lower and upper bounds for the 
th
i  dimension. 

(2) The producer will then find the best point with the best resource (fitness 

value). If the best point has a better resource than its current position, then it will fly 

to this point. Or it will stay in its current position and turn its head to a new angle: 

1

2 max

k k rϕ ϕ α+ = +  (6.6) 

where 
maxα  is the maximum turning angle. 

(3) If the producer cannot find a better area after a iterations, it will turn its head 

back to zero degree: 

k a kϕ ϕ+ =  (6.7) 

where a is a constant. 

At the th
k  iteration, the area copying behavior of the 

thi  scrounger can be 

modeled as a random walk towards the producer: 

1

3( )k k k k

i i p i
X X r X X

+ = + −  (6.8) 

where 
3

n
r R∈  is a uniform random sequence in the range (0, 1). 

Besides the producer and the scroungers, a small number of rangers have been 

also introduced into GSO algorithm. Random walks, which are thought to be the 

most efficient searching method for randomly distributed resources, are employed 

by rangers. If the th
i  group member is selected as a ranger, at the 

th
k  iteration, 

firstly, it generates a random head angle 
iϕ : 
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1

2 max

k k
rϕ ϕ α+ = +  (6.9) 

where maxα  is the maximum turning angle; and secondly, it chooses a random 

distance: 

1 maxil a r l= ⋅  (6.10) 

and move to the new point: 

1 1( )k k k k

i i i i
X X l D ϕ+ += +  (6.11) 

6.3   Constraint Handling Method 

In various fields of science and engineering, extremal problem solving is difficult 

because of the particle constraint. Solving these extremal optimal problems with 

constraint is called constrained optimization (CO). 

A constraint condition for the minimization problem is concerned, not only to 

make the objective function value continuous reduction in the iterative process, but 

also to take note of the feasibility of the solution. In general, the conditions for 

solving constrained extremum problems are usually changed into unconstrained 

optimization problem, nonlinear programming problem into a linear programming 

problem, complex problems into simple problems. 

There are many traditional methods such as Feasible Direction, Gradient 

Projection Method, and Active Set Method etc, to solve constrained optimization 

problems. These methods have different scope and limitations, most of them 

requires gradient information, the objective function or constraints continuously 

differentiable.
 
However, in practical engineering, it’s incapable of knowing the 

objective function or it can’t be expressed in an explicit function. 

Penalty functions have been commonly used to deal with constraints. However, 

the major disadvantage of using the penalty functions is that some tuning 

parameters are added in the algorithm and the penalty coefficients have to be tuned 

in order to balance the objective and penalty functions [12]. 

Another way to handle constraints is ‘fly-back mechanism’ [13]. For most of the 

optimization problems containing constraints, the global minimum locates on or 

close to the boundary of a feasible design space. The particles are initialized in 

the feasible region. When the optimization process starts, the particles fly in the 

feasible space to search the solution. If any one of the particles flies into the 

infeasible region, it will be forced to fly back to the previous position to guarantee a 

feasible solution. The particle which flies back to the previous position may be 

closer to the boundary at the next iteration. This makes the particles to fly to the 

global minimum in a great probability. Therefore, such a ‘fly-back mechanism’ 

technique is suitable for handling the optimization problem containing the 

constraints. Compared with the other constraint handling techniques, this method is 

relatively simple and easy to implement. Some experimental results show that it can 

find a better solution with a fewer iterations than the other techniques. 
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The constraint handling methods used in the QGSO will be introduced in this 

chapter. 

6.4   The Quick Group Search Optimizer (QGSO) 

The QGSO inherits the Producer-Scrounger model from the GSO, and employs the 

random search strategy. The improvement has three main aspects: first, increase the 

number of ‘ranger’ when the target stops going forward. Second, use the search 

strategy of PSO by considering the best group member and the best personal 

member. Employ the step search strategy to replace the visual search strategy. 

Third, reproduce the ‘ranger’ with hybrid of the group best member and the 

personal best member. The QGSO behaves as follows [14]: 

In a n-dimensional search space, the 
th
i member at the 

th
k  searching bout 

(iteration) has a current position ∈k n

iX R , which is randomly initialized before the 

iterative process begins. A group member, conferred the best fitness value, is 

chosen as the producer. Its position is made of k

Gbest
X . Randomly, the rest members 

are selected by a certain probability ( 3w ) as scroungers. Every scrounger goes 

forward by a random walk: 

1

1 2 ,( ) ( )k k k k k k

i i Gbest i i Pbest i
X X w r X X w r X X+ = + − + −  (6.12) 

 

where  
1
∈ nr R  is a random sequence in the range (0, 1), 

1
w  and 

2
w are the 

information transfer factor like the acceleration constants in HPSO. While taking a 

walk, the scroungers are not along to accept the information of the producer, but 

also consider the best position they have ever been (
,

k

i Pbest
X ). 

,

k

i PbestX  is the best 

position the 
th

i  member at the 
th

k  searching bout has ever been. 

Purposefully looking for the next producer, the other members selected as 

rangers will then perform ranging: 

1
0.9

k k k

i Pbest Gbest
X leftflag X changeflag X

+ = × × + ×  (6.13) 

where 0.9 is a mutation of dimension, considering that ranger is hybridized by the 

best group member and the best personal member. changeflag is the flag to permit 

the dimension to mutate, leftflag is the flag without mutation. They are calculated 

from: 

changeflag=rand(n,1)< w4 (6.14) 

leftflag=ones(n,1)-changeflag (6.15) 

where rand(n, 1) is a function to provide a random sequence of n dimensions; and 

ones(n,1) is the function to provide a n dimensions with 1. 4w  is the component 

mutation probability. The equation (6.14) returns a vector of Boolean value by 
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comparing the random numbers and the component mutation probability ( 4w ) of 

operation ‘<’. The equation (6.13) shows that based on the best place they have ever 

been, the rangers exchange information with producer by a certain probability. 

Therefore, there is enough information to make the rangers find the next producer 

quickly. 

Table 6.1 The pseudo-code for the QGSO 
 

Set k=1; 

Randomly initialize positions and velocities of all member; 

 FOR (each particle i in the initial group)   

  WHILE (the constraints are violated) 

   Randomly re-generate the current particle Xi 

  END WHILE 

 END FOR 

WHILE (the termination conditions are not met) 

 FOR (each member i in the group) 

  Calculate the fitness value of current member: ( )
i

f X , find the producer of the group, 

and make its position
k

best
X . If a random number <

3
w , then 

iX  is selected as scrounger 

to execute equation (6.12). Otherwise, 
i

X  is selected as ranger to execute equation 

(6.13). 

  Check feasibility stage I: Check whether each component of the current vector 

violates its corresponding boundary or not. If it does, select the corresponding 

component of the vector from pbest swarm randomly. 

  Check feasibility stage II: Check whether the current particle violates the problem 

specified constraints or not. If it does, reset it to the previous position Xik-1. 

  Calculate the fitness value f(Xik) of the current particle. 

  Update pbest: Compare the fitness value of pbest with f(Xik). If the f(Xik) is better 

than the fitness value of pbest, set pbest to the current position Xik. 
  Update gbest: Find the global best position in the swarm. If the f(Xik) is better than the 

fitness value of gbest, then gbest is set to the position of the current particle Xik. 

 END FOR 

Set k=k+1 

END WHILE 

 

 
To handle the constraint problems, two methods will be used: 

Firstly, for the members out of the variables’ boundary, a harmony search (HS) 

scheme will be employed. There is a matrix named “Pbest” stores the best fitness 

value of each member. When one of the components of the vector (member) 

violates its variables’ boundary, it will be replaced by corresponding component of 

the vector from “Pbest” matrix randomly. 

Secondly, for the members out of the stress or the displacement boundary, they 

will be punished by given a biggish value. 
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6.4.1   The QGSO Algorithm for the Discrete Variables 

A structural optimization design problem with discrete variables can be formulated 

as a nonlinear programming problem. In the size optimization for a truss structure, 

the cross-section areas of the truss members are selected as the design variables. 

Each of the design variables is chosen from a list of discrete cross-sections based on 

production standard. The objective function is the structure weight. The design 

cross-sections must also satisfy some inequality constraints equations, which 

restrict the discrete variables. The optimization design problem for discrete 

variables can be expressed as follows [15]: 

( )1 2
min , , ...,

d
f x x x ， 1, 2, ,d D= L  

subjected to: ( )1 2
, , ..., 0

d

q
g x x x ≤ ， 1, 2, ,d D= L ， 1, 2, ,q M= L  

{ }1 2
, , ,

d

d p
x S X X X∈ = L  

where ( )1 2
, , ...,

d
f x x x  is the truss’s weight function, which is a scalar function. 

And 
1 2
, , ...,

d
x x x  represent a set of design variables. The design variable 

d
x  

belongs to a scalar
d

S , which includes all permissive discrete 

variables { }1 2
, , ...

p
X X X . The inequality ( )1 2

, , ..., 0
d

q
g x x x ≤  represents the 

constraint functions. The letter D and M are the number of the design variables and 

inequality functions respectively. The letter p is the number of available variables. 

Considering the areas of cross-sections aren’t continuum, when the QGSO 

algorithm is used to optimize problems with discrete variables, a mapping function 

is usually created to make the discrete section areas correspond to the continuum 

integers from small to large. Suppose a discrete set An with n discrete variables, by 

arranging from small to large: 

1 2
{ , , , , }

n j n
A X X X X= L L ， 1 j n≤ ≤  

Employ a mapping function to replace the discrete values of 
n

A  with its serial 

numbers like this: 

( )
j

h j X=  

The discrete values were replaced by the serial numbers to keep the searching with 

continuum values and avoid declining of search efficiency. Suppose that there are p 

members in the search space with D dimension. And the position of the 
th
i  member 

is denoted with vector 
i

x  as: 

1 2
( , , , , , )

d D

i i i i i
x x x x x= L L  ，1 d D≤ ≤ ， 1, ,i p= L  
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in which, {1, 2, , , , }∈ L L
d

i
x j n corresponds to the discrete variables 

1 2
{ , , , , }

j n
X X X XL L by mapping function ( )h j . After that, all of the members 

will search in the continuum space which is the integer space. Each component of 

vector 
i

x  is integer. Accordingly, expressions (12) and (13) become: 

k+1 k k k k k

i i 1 g i 2 i i
X =Floor(X +w r(P -X )+w r(P -X ))  (6.16) 

1

0 9 leftflag changeflag
k k k

i i g
X Floor( . P P )

+

= × × + ×  (6.17) 

in which Floor is a function rounding to negative infinity. For the discrete variable 

cases, there is no change for the objective function and constraints before being 

substitution into equation. The iterated integers are turn into areas of cross-sections 

correspondingly by the mapping function. 

6.5   The Application of the QGSO on Truss Structures with 

Continuous Variables 

In this section, five pin-connected structures commonly used in literature are 

selected as benchmark problems to test the QGSO.  

The examples given in the simulation studies include  

 

• a 10-bar planar truss structure subjected to four concentrated loads;  

• a 17-bar planar truss structure subjected to a single concentrated load at its free 

end;  

• a 22-bar spatial truss structure subjected to three load cases;  

• a 25-bar spatial truss structure subjected to two load cases;  

• a 72-bar spatial truss structure subjected to two load cases.  

 

All these truss structures are analysed by the finite element method (FEM). For each 

structural optimization problems, the objective function is the weight of a truss. The 

areas of cross-sections of bar members are normally selected as the design 

variables. 

The QGSO, GSO, HPSO schemes are applied respectively to the examples and 

the results are compared in order to evaluate the performance of the modified 

algorithm. The population size is set to at 50. For the GSO algorithm, 20% of the 

population is selected as rangers; the initial head angle 
0

ϕ  of each individual is set 

to be /4π . The constant a is given by round ( 1)n + . The maximum pursuit angle 

max
θ  is 

2
/aπ . The maximum turning angle α  is set to be 2

/2aπ . For the HPSO 

algorithm, the inertia weight (w) is starting at 0.9 and ending at 0.4 by linearity 

descending. The acceleration constants 
1

c  and 
2

c  is set to be 0.8. The passive 

congregation coefficient 
3

c  is 0.6. For the QGSO algorithm, when target goes 

forward, the parameters are set as: information transfer factor 
1

w =
2

w =4, selected 
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probability 
3

w =0.2, component mutation probability 
4

w =0.65. Otherwise the 

parameters are set as: information transfer factor 
1

w =0.8, 
2

w =1.5, selected 

probability 
3

w =0.35, component mutation probability 
4

w =0.85. 

6.5.1   Numerical Examples 

(1) The 10-Bar Planar Truss Structure 

The 10-bar truss structure, shown in Fig. 6.1, has previously been analyzed by many 

researchers, such as Lee [16], Schmit [17], Rizzi [18], and Li [19]. The material 

density is 0.1 lb/in
3
 and the modulus of elasticity is 10,000 ksi. The members are 

subjected to the stress limits of ±25 ksi. All nodes in both vertical and horizontal 

directions are subjected to the displacement limits of ±2.0 in.. There are 10 design 

variables in this example and the minimum permitted cross-sectional area of each 

member is 0.1 in.
2
. P1=100 kips and P2=0.  

 

 

 

Fig. 6.1 A 10-bar planar truss structure 

For these case, the GSO and the QGSO algorithms achieve the best solutions 

after 3,000 iterations. However, the latter is closer to the best solution than the 

former after about 500 iterations. The QGSO algorithm displays a faster 

convergence rate than the GSO and HPSO algorithm in this example. The 

performance of the GSO algorithm is the worst among the three. Tables 6.2 shows 

the solutions. Fig. 6.2 provides a comparison of the convergence rates of the three 

algorithms. 
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Table 6.2 Comparison of the designs for the 10-bar planar truss (Case 1) 

Variables

Optimal cross-sectional areas (in.
2
) 

Schmit [17] Rizzi [18] Lee [16] 
Li [19] 

HPSO 
GSO QGSO 

1 A1 33.43 30.73 30.15 30.704 30.569 30.949 

2 A2 0.100 0.100 0.102 0.100 0.100 0.100 

3 A3 24.26 23.93 22.71 23.167 22.974 23.010 

4 A4 14.26 14.73 15.27 15.183 15.148 15.049 

5 A5 0.100 0.100 0.102 0.100 0.100 0.100 

6 A6 0.100 0.100 0.544 0.551 0.547 0.533 

7 A7 8.388 8.542 7.541 7.460 7.493 7.540 

8 A8 20.74 20.95 21.56 20.978 21.159 21.388 

9 A9 19.69 21.84 21.45 21.508 21.556 21.089 

10 A10 0.100 0.100 0.100 0.100 0.100 0.101 

Weight (lb) 5089.0 5076.66 5057.88 5060.92 5128.94 5062.29 
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Fig. 6.2 Comparison of the convergence rates of the three algorithms for the 10-bar truss 

structure 

(2) The 17-Bar Planar Truss Structure 

The 17-bar truss structure, shown in Fig. 6.3, had been analyzed by Khot [20], Adeli 

[21], Lee [16] and Li [19]. The material density is 0.268 lb/in
3
 and the modulus of 

elasticity is 30,000 ksi. The members are subjected to the stress limits of ±50 ksi. 

All nodes in both directions are subjected to the displacement limits of ±2.0 in.. 

There are 17 design variables in this example and the minimum permitted 

cross-sectional area of each member is 0.1 in.
2
. A single vertical downward load of  
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Fig. 6.3 A 17-bar planar truss structure 
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Fig. 6.4 Comparison of the convergence rates of the three algorithms for the 17-bar truss 

structure 

100 kips at node 9 is considered. Table 6.3 shows the solutions and Fig. 6.4 

compares the convergence rates of the three algorithms. 

Both the GSO and QGSO algorithms achieve a good solution after 3,000 

iterations and the latter shows a better convergence rate than the former, especially 

at the early stage of iterations.  

(3) The 22-Bar Spatial Truss Structure 

The 22-bar spatial truss structure, shown in Fig. 6.5, had been studied by Lee [16] and 

Li [19, 9]. The material density is 0.1 lb/in.
3
 and the modulus of elasticity is 10,000 

ksi. The stress limits of the members are listed in Table 6.4. All nodes in all three 

directions are subjected to the displacement limits of ±2.0 in. Three load cases are  
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Table 6.3 Comparison of the designs for the 17-bar planar truss 

Variables 

Optimal cross-sectional areas (in.
2
)

Khot [20] Adeli [21] Lee [16] 
Li [19] 

HPSO 
GSO QGSO 

1 A1 15.930 16.029 15.821 15.896 15.940 16.133 

2 A2 0.100 0.107 0.108 0.103 0.646 0.150 

3 A3 12.070 12.183 11.996 12.092 12.541 12.151 

4 A4 0.100 0.110 0.100 0.100 0.331 0.100 

5 A5 8.067 8.417 8.150 8.063 7.361 8.263 

6 A6 5.562 5.715 5.507 5.591 4.920 5.485 

7 A7 11.933 11.331 11.829 11.915 11.072 11.822 

8 A8 0.100 0.105 0.100 0.100 0.335 0.103 

9 A9 7.945 7.301 7.934 7.965 8.535 7.686 

10 A10 0.100 0.115 0.100 0.100 0.385 0.101 

11 A11 4.055 4.046 4.093 4.076 4.525 4.087 

12 A12 0.100 0.101 0.100 0.100 0.237 0.101 

13 A13 5.657 5.611 5.660 5.670 6.034 5.760 

14 A14 4.000 4.046 4.061 3.998 3.916 4.000 

15 A15 5.558 5.152 5.656 5.548 5.149 5.427 

16 A16 0.100 0.107 0.100 0.103 0.605 0.142 

17 A17 5.579 5.286 5.582 5.537 5.416 5.515 

Weight (lb) 2581.89 2594.42 2580.81 2581.94 2582.85 2582.93 

 

Fig. 6.5 A 22-bar spatial truss structure 
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listed in Table 6.5. There are 22 members, which fall into 7 groups, as follows: (1) 

A1~A4, (2) A5~A6, (3) A7~A8, (4) A9~A10, (5) A11~A14, (6) A15~A18, and (7) 

A19~A22. The minimum permitted cross-sectional area of each member is 0.1 in.
2
. 

Table 6.4 Member stress limits for the 22-bar spatial truss structure 

Variables 
Compressive stress  

limitations (ksi) 

Tensile stress  

Limitation (ksi) 

1 A1 24.0 36.0 

2 A2 30.0 36.0 

3 A3 28.0 36.0 

4 A4 26.0 36.0 

5 A5 22.0 36.0 

6 A6 20.0 36.0 

7 A7 18.0 36.0 

Table 6.5 Load cases for the 22-bar spatial truss structure 

Node 
Case 1 (kips) Case 2 (kips) Case 3 (kips) 

PX PY PZ PX PY PZ PX PY PZ 

1 -20.0 0.0 -5.0 -20.0 -5.0 0.0 -20.0 0.0 35.0 

2 -20.0 0.0 -5.0 -20.0 -50.0 0.0 -20.0 0.0 0.0 

3 -20.0 0.0 -30.0 -20.0 -5.0 0.0 -20.0 0.0 0.0 

4 -20.0 0.0 -30.0 -20.0 -50.0 0.0 -20.0 0.0 -35.0 

Table 6.6 Comparison of the designs for the 22-bar spatial truss structure 

Variables 

Optimal cross-sectional areas (in.
2
) 

Lee [16] 
Li [19] 

HPSO  

Li [9] 

GSO  
QGSO 

1 A1 2.588 2.613 2.803 2.772 

2 A2 1.083 1.151 1.197 1.2243 

3 A3 0.363 0.346 0.332 0.3694 

4 A4 0.422 0.419 0.458 0.4042 

5 A5 2.827 2.797 2.634 2.6182 

6 A6 2.055 2.093 2.104 1.8667 

7 A7 2.044 2.022 2.003 2.2652 

Weight (lb) 1022.23 1023.90 1026.02 1025.22 

In this example, all the algorithms have converged after 50 iterations. The 

optimum speed obtained by using the QGSO algorithm is better than that obtained 

by the HPSO and GSO algorithms. Table 6.6 shows the optimal solutions of the 

four algorithms and Fig. 6.6 and 6.7 provide the convergence rates of three of the 

four algorithms. 
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Fig. 6.6 Comparison of the convergence rates of the three algorithms for the 22-bar truss 

structure 
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Fig. 6.7 Comparison of convergence rates of three algorithms for the 22-bar truss structure 

(Magnified partly) 
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(4) The 25-Bar Spatial Truss Structure 

The 25-bar spatial truss structure shown in Fig. 6.8 had been studied by several 

researchers, such as Schmit [17], Rizzi [18], Lee [16] and Li [19, 9]. The material 

density is 0.1 lb/in.
3
 and the modulus of elasticity is 10,000 ksi. The stress limits of 

the members are listed in Table 6.8. All nodes in all directions are subjected to the 

displacement limits of ±0.35 in.. Two load cases listed in Table 6.7 are considered. 

There are 25 members, which are divided into 8 groups, as follows: (1) A1, (2) 

A2~A5, (3) A6~A9, (4) A10~A11, (5) A12~A13, (6) A14~A17, (7) A18~A21 and (8) 

A22~A25. The minimum permitted cross-sectional area of each member is 0.01 in.
2
. 

 

 

 

Fig. 6.8 A 25-bar spatial truss structure 

Table 6.7 Member stress limits for the 25-bar spatial truss structure 

Variables 
Compressive stress 

limitations (ksi) 

Tensile stress 

limitation (ksi) 

1 A1 35.092 40.0 

2 A2 11.590 40.0 

3 A3 17.305 40.0 

4 A4 35.092 40.0 

5 A5 35.902 40.0 

6 A6 6.759 40.0 

7 A7 6.959 40.0 

8 A8 11.802 40.0 
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Table 6.8 Load cases for the 25-bar spatial truss structure 

Node 

Case 1 Case 2 

PX 

(kips) 

PY 

(kips) 

PZ 

(kips) 

PX 

(kips) 

PY 

(kips) 

PZ 

(kips) 

1 0.0 20.0 -5.0 1.0 10.0 -5.0 

2 0.0 -20.0 -5.0 0.0 10.0 -5.0 

3 0.0 0.0 0.0 0.5 0.0 0.0 

6 0.0 0.0 0.0 0.5 0.0 0.0 

 

 

For this spatial truss structure, it takes about 50 iterations for the QGSO 

algorithm to converge. Table 6.9 shows the solutions and Fig. 6.9 and 6.10 

compares the convergence rate of the three algorithms. 

 

Table 6.9 Comparison of the designs for the 25-bar spatial truss structure 

Variables 

Optimal cross-sectional areas (in.
2
) 

Schmit 

[17] 

Rizzi 

[18] 

Lee 

[16] 

Li [19]

HPSO 

Li [9] 

GSO  
QGSO 

1 A1 0.010 0.010 0.047 0.010 0.010 0.011  

2 A2~A5 1.964 1.988 2.022 1.970 1.948 1.783  

3 A6~A9 3.033 2.991 2.950 3.016 3.054 3.289  

4 A10~A11 0.010 0.010 0.010 0.010 0.010 0.010  

5 A12~A13 0.010 0.010 0.014 0.010 0.010 0.011  

6 A14~A17 0.670 0.684 0.688 0.694 0.684 0.716  

7 A18~A21 1.680 1.677 1.657 1.681 1.683 1.733  

8 A22~A25 2.670 2.663 2.663 2.643 2.644 2.549  

Weight (lb) 545.22 545.36 544.38 545.19 552.20 545.70 
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Fig. 6.9 Convergence rate of the three algorithms for the 25-bar truss structure 
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Fig. 6.10 Convergence rates of three algorithms for the 25-bar truss structure (Magnified in 

part) 
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(5) The 72-Bar Spatial Truss Structure 

The 72-bar spatial truss structure shown in Fig. 6.11 had also been studied by many 

researchers, such as Schmit [17], Khot [20], Adeli [21], Lee [16], Sarma [22] and Li 

[19, 9]. The material density is 0.1 lb/in.
3
 and the modulus of elasticity is 10,000 ksi. 

The members are subjected to the stress limits of ±25 ksi. The uppermost nodes are 

subjected to the displacement limits of ±0.25 in. in both the x and y directions. Two load 

cases are listed in Table 6.10. There are 72 members classified into 16 groups: (1) 

A1~A4, (2) A5~A12, (3) A13~A16, (4) A17~A18, (5) A19~A22, (6) A23~A30 (7) A31~A34, (8) 

A35~A36, (9) A37~A40, (10) A41~A48, (11) A49~A52, (12) A53~A54, (13) A55~A58, (14) 

A59~A66 (15) A67~A70, (16) A71~A72. For case 1, the minimum permitted cross-sectional 

area of each member is 0.1 in.
2
. For case 2, the value is 0.01 in.

2
 

 

 

Fig. 6.11 A 72-bar spatial truss structure 

Table 6.10 Load cases for the 72-bar spatial truss structure 

Node 

Case 1 Case 2 

PX (kips) PY (kips) PZ (kips)
PX 

(kips) 
PY (kips) PZ (kips) 

17 5.0 5.0 -5.0 0.0 0.0 -5.0 

18 0.0 0.0 0.0 0.0 0.0 -5.0 

19 0.0 0.0 0.0 0.0 0.0 -5.0 

20 0.0 0.0 0.0 0.0 0.0 -5.0 
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For the both loading cases, the QGSO algorithm can achieve the optimal solution 

after 50 iterations. it shows the fastest convergence rate in the three algorithms, 

especially at the early stage of iterations. The solutions of the two loading cases are 

given in Tables 6.11 and 6.12 respectively. Figs. 6.12, 6.13 and 6.14 compare the 

convergence rate of the three algorithms under the two loading cases. 

Table 6.11 Comparison of the designs for the 72-bar spatial truss structure (Case 1) 

Variables 

Optimal cross-sectional areas (in.
2
) 

Schmit [17] Adeli [21] Khot [20] Lee [16]
Li [19] 

HPSO  

Li [9] 

GSO 
QGSO 

1 A1~A4 2.078 2.026 1.893 1.7901 1.889 3.129 1.880 

2 A5~A12 0.503 0.533 0.517 0.521 0.510 0.539 0.513 

3 A13~A16 0.100 0.100 0.100 0.100 0.100 0.133 0.100 

4 A17~A18 0.100 0.100 0.100 0.100 0.100 0.152 0.102 

5 A19~A22 1.107 1.157 1.279 1.229 1.265 1.161 1.244 

6 A23~A30 0.579 0.569 0.515 0.522 0.510 0.410 0.511 

7 A31~A34 0.100 0.100 0.100 0.100 0.100 0.102 0.100 

8 A35~A36 0.100 0.100 0.100 0.100 0.100 0.101 0.106 

9 A37~A40 0.264 0.514 0.508 0.517 0.523 0.489 0.523 

10 A41~A48 0.548 0.479 0.520 0.504 0.519 0.366 0.517 

11 A49~A52 0.100 0.100 0.100 0.100 0.100 0.101 0.100 

12 A53~A54 0.151 0.100 0.100 0.101 0.100 0.100 0.111 

13 A55~A58 0.158 0.158 0.157 0.156 0.156 0.152 0.156 

14 A59~A66 0.594 0.550 0.539 0.547 0.548 0.676 0.553 

15 A67~A70 0.341 0.345 0.416 0.442 0.411 0.590 0.407 

16 A71~A72 0.608 0.498 0.551 0.590 0.568 0.633 0.569 

Weight (lb) 388.63 379.31 379.67 379.27 379.63 409.86 379.99 
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Table 6.12 Comparison of the designs for the 72-bar spatial truss structure (Case 2) 

Variables 

Optimal cross-sectional areas (in.
2
) 

Adeli 

[21] 

Sarma [22] 

Lee [16]
Li [19] 

HPSO 

Li [9] 

GSO 
QGSO Simple 

GA 

Fuzzy  

GA 

1 A1~A4 2.755 2.141 1.732 1.963 1.907 3.056 1.8704 

2 A5~A12 0.510 0.510 0.522 0.481 0.524 0.356 0.5151 

3 A13~A16 0.010 0.054 0.010 0.010 0.010 0.014 0.0104 

4 A17~A18 0.010 0.010 0.013 0.011 0.010 0.083 0.01 

5 A19~A22 1.370 1.489 1.345 1.233 1.288 1.347 1.281 

6 A23~A30 0.507 0.551 0.551 0.506 0.523 0.432 0.5182 

7 A31~A34 0.010 0.057 0.010 0.011 0.010 0.072 0.01 

8 A35~A36 0.010 0.013 0.013 0.012 0.010 0.040 0.0102 

9 A37~A40 0.481 0.565 0.492 0.538 0.544 0.431 0.5165 

10 A41~A48 0.508 0.527 0.545 0.533 0.528 0.488 0.515 

11 A49~A52 0.010 0.010 0.066 0.010 0.019 0.056 0.011 

12 A53~A54 0.643 0.066 0.013 0.167 0.020 0.096 0.1188 

13 A55~A58 0.215 0.174 0.178 0.161 0.176 0.177 0.1657 

14 A59~A66 0.518 0.425 0.524 0.542 0.535 0.726 0.5423 

15 A67~A70 0.419 0.437 0.396 0.478 0.426 0.430 0.4381 

16 A71~A72 0.504 0.641 0.595 0.551 0.612 1.015 0.5972 

Weight (lb) 376.50 372.40 364.40 364.33 364.86 404.45 363.91 
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Fig. 6.12 Convergence rates of the three algorithms for the 72-bar truss structure (Case 1) 
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Fig. 6.13 Convergence rates of three algorithms for the 72-bar truss structure (Case 1, 

Magnified in part) 
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Fig. 6.14 Convergence rates between the three algorithms for the 72-bar spatial truss 

structure (Case 2) 
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6.6   The Application of the QGSO on Truss Structures with 

Discrete Variables 

In the past thirty years, many algorithms have been developed to solve structural 

engineering optimization problems. Most of these algorithms are based on the 

assumption that the design variables are continuously valued and the gradients of 

functions and the convexity of the design problem satisfied. However, in reality, the 

design variables of optimization problems such as the cross-section areas are 

discretely valued. They are often chosen from a list of discrete variables. 

Furthermore, the function of the problems is hard to express in an explicit form. 

Traditionally, the discrete optimization problems are solved by mathematical 

methods by employing round-off techniques based on the continuous solutions. 

However, the solutions obtained by this method may be infeasible or far from the 

optimum solutions. 

So there is more engineering significance in structural optimization with discrete 

variables [23]. 

The QGSO, GSO, HPSO schemes are applied respectively to the examples and 

the results are compared in order to evaluate the performance of the modified 

algorithm. For both algorithms, the population size is set to at 50. For the GSO 

algorithm, 20% of the population is selected as rangers; the initial head angle 0ϕ  of 

each individual is set to be /4π . The constant a is given by round ( 1)+n . The 

maximum pursuit angle 
max

θ  is 2
/aπ . The maximum turning angle α  is set to be 

2/2aπ . For the HPSO algorithm, the inertia weight (w) is starting at 0.9 and ending 

at 0.4 by linearity descending. The acceleration constants 1c  and 2c  is set to be 0.5. 

The passive congregation coefficient 3c  is 0.6. For the QGSO algorithm, when 

target goes forward, the parameters are set in this: information transfer factor 

1w = 2w =4, selected probability 3w =0.2, component mutation probability 

4w =0.65.Otherwise the parameters are set in this: information transfer factor 

1w =0.8, 2w =1.5, selected probability 3w =0.35, component mutation probability 

4w =0.85. 

In this section, five pin connected structures commonly used in literature are 

selected as benchmark problems to test the QGSO. The examples given in the 

simulation studies include: 

 

(1) A 10-bar planar truss structure (two cases)；  

(2) A 15-bar planar truss structure; 

(3) A 25-bar spatial truss structure; 

(4) A 52-bar spatial truss structure; 

(5) A 72-bar spatial truss structure; 

(6) A double-layer grid steel shell structure; 
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6.6.1   Numerical Examples 

(1) A 10-Bar Planar Truss Structure 

A 10-bar truss structure, shown in Fig. 6.15, has previously been analyzed by many 

researchers, such as Wu [24], Rajeev [25], Ringertz [26] and Li [14]. The material 

density is 0.1 lb/in
3
 and the modulus of elasticity is 10,000 ksi. The members are 

subjected to stress limitations of ±25 ksi. All nodes in both directions are subjected 

to displacement limitations of ±2.0 in.. P1=105 lb, P2=0. There are 10 design 

variables and two load cases in this example to be optimized. For case 1: the 

discrete variables are selected from the set D={1.62, 1.80, 1.99, 2.13, 2.38, 2.62, 

2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 

4.59, 4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.50, 13.50, 13.90, 14.20, 15.50, 16.00, 

16.90, 18.80, 19.90, 22.00, 22.90, 26.50, 30.00, 33.50} (in.
2
)； For case 2: the 

discrete variables are selected from the set D={0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 

4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 

12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, 

20.0, 20.5, 21.0, 21.5, 22.0, 22.5, 23.0, 23.5, 24.0, 24.5, 25.0, 25.5, 26.0, 26.5, 27.0, 

27.5, 28.0, 28.5, 29.0, 29.5, 30.0, 30.5, 31.0, 31.5} (in.
2
). A maximum number of 

1000 iterations is imposed. 

 

 

 

Fig. 6.15 A 10-bar planar truss structure 

Table 6.13 and Table 6.14 give the comparison of optimal design results for the 

10-bar planar truss structure under two load cases respectively. Fig.6.16 and Fig.6.17 

show the comparison of convergence rates for the 10-bar truss structure. From the 

Table 6.13 and Table 6.14, It can be find that the results obtained by the three 

algorithms are larger than those of Wu’s. However, it is found that Wu’s results do 

not satisfy the constraints of this problem. It is believed that Wu’s results need to be  
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Table 6.13 Comparison of optimal designs for the 10-bar planar truss structure (case 1) 

Variables 

(in
2
) 

Wu [24] 
Rajeev 

[25] 

Li [14] 

HPSO  
GSO QGSO

A1 26.50 33.50 30.00 26.500 33.500 

A2 1.62 1.62 1.62 1.620  1.620 

A3 16.00 22.00 22.90 26.500 22.900 

A4 14.20 15.50 13.50 15.500 14.200 

A5 1.80 1.62 1.62 1.620  1.620 

A6 1.62 1.62 1.62 1.620  1.620 

A7 5.12 14.20 7.97 11.500 7.970 

A8 16.00 19.90 26.50 22.000 22.900 

A9 18.80 19.90 22.00 22.000 22.000 

A10 2.38 2.62 1.80 1.800  1.620 

Weight (lb) 4376.20 5613.84 5531.98 5558.02
5490.7

4 

Table 6.14 Comparison of optimal designs for the 10-bar planar truss structure (case 2) 

Variables

(in
2
) 

Wu 

[24] 

Ringertz 

[26] 

Li [14]

HPSO 
GSO QGSO

A1 30.50 30.50 31.50 28.500 29.500 

A2 0.50 0.10 0.10 0.100 0.100 

A3 16.50 23.00 24.50 23.000 23.500 

A4 15.00 15.50 15.50 16.500 15.500 

A5 0.10 0.10 0.10 0.100 0.100 

A6 0.10 0.50 0.50 0.500 0.500 

A7 0.50 7.50 7.50 7.500 7.500 

A8 18.00 21.0 20.50 22.000 21.500 

A9 19.50 21.5 20.50 21.500 21.500 

A10 0.50 0.10 0.10 0.100 0.100 

Weight 

(lb) 

4217.

30 
5059.9 5073.51

5074.78

7 
5067.33

 

 

further valuated. For both cases of this structure, the HPSO, GSO and QGSO 

algorithms have achieved the optimal solutions after 1,000 iterations. But the 

QGSO has the best solution than the GSO in the early iterations and has the fastest 

convergence rate.  

(2) A 15-Bar Planar Truss Structure 

A 15-bar planar truss structure, shown in Fig. 6.18, has previously been analyzed by 

Zhang [27] and Li [14]. The material density is 7800 kg/m
3
 and the modulus of 

elasticity is 200 GPa. The members are subjected to stress limitations of ±120 MPa. 

All nodes in both directions are subjected to displacement limitations of ±10 mm.  
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Fig. 6.16 Comparison of convergence rates for the 10-bar planar truss structure (Case 1) 
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Fig. 6.17 Comparison of convergence rates for the 10-bar planar truss structure (Case 2) 
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Fig. 6.18 A 15-bar planar truss structure 

Table 6.15 Comparison of optimal designs for the 15-bar planar truss structure 

Variables (mm
2
) Zhang [27]

Li [14] 

HPSO 
GSO QGSO 

A1 308.6 113.2 113.200  113.200  

A2 174.9 113.2 113.200  113.200  

A3 338.2 113.2 113.200  113.200  

A4 143.2 113.2 113.200  113.200  

A5 736.7 736.7 736.700  736.700  

A6 185.9 113.2 113.200  113.200  

A7 265.9 113.2 113.200  113.200  

A8 507.6 736.7 736.700  736.700  

A9 143.2 113.2 113.200  113.200  

A10 507.6 113.2 113.200  113.200  

A11 279.1 113.2 113.200  113.200  

A12 174.9 113.2 113.200  113.200  

A13 297.1 113.2 113.200  113.200  

A14 235.9 334.3 334.300  334.300  

A15 265.9 334.3 334.300  334.300  

Weight (kg) 142.117 105.735 105.735 105.735 

There are 15 design variables in this example. The discrete variables are selected 

from the set D= {113.2, 143.2, 145.9, 174.9, 185.9, 235.9, 265.9, 297.1, 308.6, 

334.3, 338.2, 497.8, 507.6, 736.7, 791.2, 1063.7} (mm
2
). Three load cases are 

considered: Case 1: P1=35 kN, P2=35 kN, P3=35 kN; Case 2: P1=35 kN, P2=0 kN, 

P3=35 kN; Case 3: P1=35 kN, P2=35 kN, P3=0 kN. A maximum number of 500 

iterations is imposed. 
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Table 6.15 and Fig. 6.19 give the comparison of optimal design results and 

convergence rates of 15-bar planar truss structure respectively. It can be seen that, 

after 500 iterations, three algorithms have obtained good results, which are better 

than the Zhang’s. The Fig. 6.19 shows that the QGSO algorithm has the fastest 

convergence rate, especially in the early iterations. 
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Fig. 6.19 Comparison of convergence rates for the 15-bar planar truss structure 

(3) A 25-Bar Spatial Truss Structure 

A 25-bar spatial truss structure, shown in Fig. 6.20, has been studied by Wu [24] 

and Li [14, 9]. The material density is 0.1 lb/in.
3
 and the modulus of elasticity is 

10,000 ksi. The stress limitations of the members are ±40000 psi. All nodes in three 

directions are subjected to displacement limitations of ±0.35 in. The structure 

includes 25 members, which are divided into 8 groups, as follows: (1) A1, (2) 

A2~A5, (3) A6~A9, (4) A10~A11, (5) A12~A13, (6) A14~A17, (7) A18~A21 and (8) 

A22~A25. The discrete variables are selected from the American Institute of Steel 

Construction (AISC) Code, which is shown in Table 6.16. The loads are shown in 

Table 6.17. A maximum number of 500 iterations is imposed for three cases. 

Table 6.18 shows the comparison of optimal design results for the 25-bar spatial 

truss structure under three load cases. While Fig. 6.21 shows comparison of 

convergence rates for the 25-bar spatial truss structure under three load cases. For 

this structure, three algorithms can achieve the optimal solution after 500 iterations. 

But Fig. 6.21 shows that the QGSO algorithm has the fastest convergence rate. 
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Table 6.16 The available cross-section areas of the ASIC code 

No. in
2
 mm

2
 No. in

2
 mm

2
 

1 0.111 71.613 33 3.840 2477.414 

2 0.141 90.968 34 3.870 2496.769 

3 0.196 126.451 35 3.880 2503.221 

4 0.250 161.290 36 4.180 2696.769 

5 0.307 198.064 37 4.220 2722.575 

6 0.391 252.258 38 4.490 2896.768 

7 0.442 285.161 39 4.590 2961.284 

8 0.563 363.225 40 4.800 3096.768 

9 0.602 388.386 41 4.970 3206.445 

10 0.766 494.193 42 5.120 3303.219 

11 0.785 506.451 43 5.740 3703.218 

12 0.994 641.289 44 7.220 4658.055 

13 1.000 645.160 45 7.970 5141.925 

14 1.228 792.256 46 8.530 5503.215 

15 1.266 816.773 47 9.300 5999.988 

16 1.457 939.998 48 10.850 6999.986 

17 1.563 1008.385 49 11.500 7419.340 

18 1.620 1045.159 50 13.500 8709.660 

19 1.800 1161.288 51 13.900 8967.724 

20 1.990 1283.868 52 14.200 9161.272 

21 2.130 1374.191 53 15.500 9999.980 

22 2.380 1535.481 54 16.000 10322.560 

23 2.620 1690.319 55 16.900 10903.204 

24 2.630 1696.771 56 18.800 12129.008 

25 2.880 1858.061 57 19.900 12838.684 

26 2.930 1890.319 58 22.000 14193.520 

27 3.090 1993.544 59 22.900 14774.164 

28 1.130 729.031 60 24.500 15806.420 

29 3.380 2180.641 61 26.500 17096.740 

30 3.470 2238.705 62 28.000 18064.480 

31 3.550 2290.318 63 30.000 19354.800 

32 3.630 2341.931 64 33.500 21612.860 

Table 6.17 The load case 2 and case 3 for the 25-bar spatial truss structure 

Load Cases Nodes 
Loads 

Px (kips) Py (kips) Pz (kips) 

1 
1 0.0 20.0 -5.0 

2 0.0 -20.0 -5.0 

2 

1 1.0 10.0 -5.0 

2 0.0 10.0 -5.0 

3 0.5 0.0 0.0 

6 0.5 0.0 0.0 
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Fig. 6.20 A 25-bar spatial truss structure 
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Fig. 6.21 Comparison of convergence rates for the 25-bar spatial truss structure 
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Table 6.18 Comparison of optimal designs for the 25-bar spatial truss structure 

Variables 

(in
2
) 

Wu [24] 
Li [14] 

HPSO  

Li [9] 

GSO 
QGSO 

A1 0.307 0.111 0.111  0.111  

A2~A5 1.990 2.130 2.130  2.380  

A6~A9 3.130 2.880 2.880  2.880  

A10~A11 0.111 0.111 0.111  0.111  

A12~A13 0.141 0.111 0.111  0.111  

A14~A17 0.766 0.766 0.766  0.602  

A18~A21 1.620 1.620 1.620  1.457  

A22~A25 2.620 2.620 2.620  2.880  

Weight (lb) 556.43 551.14 551.14 554.38 

(4) A 52-Bar Planar Truss Structure 

A 52-bar planar truss structure, shown in Fig. 6.22, has been analysed by Wu [24] 

Lee [28] and Li [14]. The members of this structure are divided into 12 groups: (1) 

A1~A4, (2) A5~A6, (3) A7~A8, (4) A9~A10, (5) A11~A14, (6) A15~A18, and (7) 

A19~A22. The material density is 7860.0 kg/m
3
 and the modulus of elasticity is 

2.07×10
5
 MPa. The members are subjected to stress limitations of ±180 MPa. Both 

of the loads, Px =100 kN, Py =200 kN are considered. The discrete variables are 

selected from the Table 6.16. A maximum number of 3,000 iterations is imposed.  

 
Fig. 6.22 A 52-bar planar truss structure 
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Table 6.19 Comparison of optimal designs for the 52-bar planar truss structure 

Variables (mm
2
) Wu [24] Lee [28]

Li [14] 

HPSO 
GSO QGSO 

A1~A4 4658.055 4658.055 4658.055 4658.060  4658.060  

A5~A10 1161.288 1161.288 1161.288 1161.290  1161.290  

A11~A13 645.160 506.451 363.225 363.230  494.190  

A14~A17 3303.219 3303.219 3303.219 3303.220  3303.220  

A18~A23 1045.159 940.000 940.000 940.000  940.000  

A24~A26 494.193 494.193 494.193 494.190  494.190  

A27~A30 2477.414 2290.318 2238.705 2238.710  2238.710  

A31~A36 1045.159 1008.385 1008.385 1008.380  1008.380  

A37~A39 285.161 2290.318 388.386 641.290  494.190  

A40~A43 1696.771 1535.481 1283.868 1283.870  1283.870  

A44~A49 1045.159 1045.159 1161.288 1161.290  1161.290  

A50~A52 641.289 506.451 792.256 494.190  494.190  

Weight (kg) 1970.142 1906.76 1905.495 1903.365 1902.605 

 

 

Table 6.19 and Fig. 6.23 give the comparison of optimal design results and 

convergence rates of 52-bar planar truss structure respectively. From Table 6.19 

and Fig. 6.23, it can be observed that the QGSO algorithm not only achieves the 

best optimal result but also has the fastest convergent rate. 
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Fig. 6.23 Comparison of convergence rates for the 52-bar planar truss structure 
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(5) A 72-Bar Spatial Truss Structure 

A 72-bar spatial truss structure, shown in Fig. 6.24, has been studied by Wu [24] 

Lee [28] and Li [14, 9]. The material density is 0.1 lb/in.
3
 and the modulus of 

elasticity is 10,000 ksi. The members are subjected to stress limitations of ±25 ksi. 

The uppermost nodes are subjected to displacement limitations of ±0.25 in. both in 

x and y directions. Two load cases are listed in Table 6.20. There are 72 members, 

which are divided into 16 groups, as follows: (1) A1~A4, (2) A5~A12, (3) A13~A16, 

(4) A17~A18, (5) A19~A22, (6) A23~A30 (7) A31~A34, (8) A35~A36, (9) A37~A40, (10) 

A41~A48, (11) A49~A52, (12) A53~A54, (13) A55~A58, (14) A59~A66 (15) A67~A70, (16) 

A71~A72. The discrete variables are selected from the Table 6.16. A maximum 

number of 1,000 iterations is imposed. Table 6.21 gives the optimal results and 

Fig. 6.25 gives the convergence rates. 

 

 

 

 

Fig. 6.24 The 72-bar spatial truss structure 
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Table 6.20 The load cases for the 72-bar spatial truss structure 

Nodes 
Load Case 1 Load Case 2 

PX (kips) PY (kips) PZ (kips) PX (kips) PY (kips) PZ (kips) 

17 5.0 5.0 -5.0 0.0 0.0 -5.0 

18 0.0 0.0 0.0 0.0 0.0 -5.0 

19 0.0 0.0 0.0 0.0 0.0 -5.0 

20 0.0 0.0 0.0 0.0 0.0 -5.0 

 

 

 

Table 6.21 Comparison of optimal designs for the 72-bar spatial truss structure (case 1) 

Variables (in
2
) Wu [24] Lee [28]

Li [14] 

HPSO  

Li [9] 

GSO  
QGSO 

A1~A4 1.5 1.9 2.1 3.0  2.0  

A5~A12 0.7 0.5 0.6 1.5  0.5  

A13~A16 0.1 0.1 0.1 0.1  0.1  

A17~A18 0.1 0.1 0.1 0.1  0.1  

A19~A22 1.3 1.4 1.4 2.6  1.3  

A23~A30 0.5 0.6 0.5 1.5  0.5  

A31~A34 0.2 0.1 0.1 0.1  0.1  

A35~A36 0.1 0.1 0.1 0.1  0.1  

A37~A40 0.5 0.6 0.5 1.6  0.5  

A41~A48 0.5 0.5 0.5 1.4  0.5  

A49~A52 0.1 0.1 0.1 0.1  0.1  

A53~A54 0.2 0.1 0.1 0.4  0.1  

A55~A58 0.2 0.2 0.2 0.4  0.2  

A59~A66 0.5 0.5 0.5 1.6  0.6  

A67~A70 0.5 0.4 0.3 1.3  0.4  

A71~A72 0.7 0.6 0.7 1.3  0.6  

Weight (lb) 400.66 387.94 388.94 967.68 385.54 
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Fig. 6.25 Comparison of convergence rates for the 72-bar spatial truss structure 

It can be seen from Fig. 6.25 that the QGSO algorithm gets the optimal solution 

after 1000 iterations and shows a fast convergence rate and the best result, 

especially during the early iterations. For the GSO algorithm, it gets into the local 

minima.  

(6) The Weight Optimization of Grid Spherical Shell Structure 

A double-layer grid steel shell structure with 83.6m span, 14.0m arc height and 1.5 

shell thickness is shown in Fig. 6.26. The elastic module is 210 GPa and the density 

is 7850 kg/m3. There are 6761 nodes and 1834 bars in this shell. The 1834 bars were 

divided into three groups, which were upper chord bars, lower chord bars and belly 

chord bars. All chords were thin circular tubes and their sections were limited to 

Chinese Criterion GB/T8162-1999, which has 379 types of size to choose. The 

circumference nodes of lower chords are constrained. 50 kN vertical load is acted 

on each node of upper chords. The maximum permit displacement for all nodes is 

1/400 of the length of span, that is ±0.209 m. The maximum permit stress for all 

chord bars is ±215 MPa. The stability of compressive chords is considered 

according to Chinese Standard GB50017-2003. The maximum slenderness ratio for 

compressive chords and tensile chords are 180 and 300 respectively.  

For each algorithm, the population size is set to at 50 and the maximum number 

of iteration is limited to 200. For the GSO algorithm, 20% of the population is 

selected as rangers; the initial head angle 
0

ϕ  of each individual is set to be /4π . 

The constant a is given by round ( 1)+n . The maximum pursuit angle 
max

θ  is 
2

/ aπ . The maximum turning angle α  is set to be 2
/ 2aπ .For the HPSO algorithm, 

the inertia weight (w) is starting at 0.9 and ending at 0.4 by linearity descending. 

The acceleration constants 
1

c  and 
2

c  is set to be 0.8. The passive congregation 

coefficient 
3

c  is 0.6. For the QGSO algorithm, when target goes forward, the  
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Fig. 6.26 The double layer reticulated spherical shell structure 

parameters are set in this: information transfer factor 
1

w =
2

w =4, selected 

probability 
3

w =0.2, component mutation probability 
4

w =0.5.Otherwise the 

parameters are set in this: information transfer factor 
1

w =0.8, 
2

w =1.5, selected 

probability 
3

w =0.35, component mutation probability 
4

w =0.6. 

Considering that there are 379 types of size to choose in this structure which 

feasible region is much bigger than the one in the truss structures, the mutation 

factor in the ranger searching will not meet the requirement and the ranger 

performance will be changed into: 

1

1
k k k

i i g
)X leftflag ( P changeflag P

+

−= × + ×         (6.18) 

Where ( 1)
k

i
P −  is called the mutation operation and the mutation direction is set 

into -1because -1 is the negative gradient direction of the integer space. While 

adding the gradient information into the hybrid process, the ranger can search more 

efficiently. Scrounger searches as equation (6.12). 

When handling constraint, no more group classify, for the members out of the 

stress or the displacement boundary, they will be punished by given a biggish value. 

With the above modification, QGSO algorithm is more suited for practical 

engineering optimum problems. 

The optimization results are shown in Table 6.22. The convergence velocity is 

shown in Fig. 6.27. It can be seen from Fig. 6.27 that QGSO can be used effectively 

to optimize the complicated engineering structures and can obtained the best 

optimization solution.  
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Table 6.22 The optimal solution for the double layer reticulated spherical shell structure 

Algorithm

s 

Upper chord 

bars 

Lower chord 

bars 
Belly chord bars Weight (kg) 

HPSO  φ108×4 φ83×3.5 φ89×3.5 148811.71 

GSO φ108×4 φ95×3.5 φ95×4 163954.70 

QGSO φ83×4 φ76×3.5 φ102×3.5 139107.97 
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Fig. 6.27 The convergence rate of the HPSO for the double layer grid spherical shell structure 

The compared results show that the QGSO has a markedly superior preferable 

convergence rate and accuracy. It means that the QGSO algorithm can find the best 

solution in the shortest time. So the QGSO algorithm provides an effective and 

feasible approach for the structural optimization problems, especially for the 

practical large scale structures. 

6.6.2   Conclusion 

The QGSO algorithm is based on the basic principle of GSO. It is also a group 

intelligent random optimization algorithm but has a markedly superior performance 

on convergence rate and accuracy than GSO. 

Compared with HPSO, QGSO has a little better convergence accuracy, and in 

the aspect of convergence rate, the QGSO converges more quickly than the HPSO 

especially in the high-dimensional optimization problems. 

When used for discrete variable problems, the QGSO expresses good properties 

than the GSO or the HPSO does, especially in term of convergence rate. 

The quick convergence of QGSO makes it particularly attractive for sophisticate 

engineering structures, and is a banausic optimization algorithm. 



6.7   Stability Studies 197

 

6.7   Stability Studies 

With the development of intelligent optimization algorithms, many traditional 

mathematical optimization algorithms have been replaced by this new algorithm in 

structural optimization. The merit of the new optimization algorithms is that they do 

not require conventional mathematical assumptions and posses better global search 

abilities than the traditional optimization algorithms. But the new algorithm also 

has its disadvantages. Without the conventional mathematical assumption, it is hard 

to testify whether the bionic optimization algorithms convergence to the optimal 

result at each optimization computation. So the stability of the bionic optimization 

algorithms is very important.  

It is not difficult to find these bionic algorithms come with a random number, so 

there is a certain randomicity while using it and we use statistical methods in 

studying this randomicity. By applying different optimization algorithms for the 

same problem in continuous computing times, we can find out a relatively stable 

algorithm by comparing the average, standard deviation values and curves.  

6.8   The Quick Group Search Optimizer with Passive 

Congregation (QGSOPC) 

Based on the quick group search optimizer (QGSO), this section presents a quick 

group search optimizer with passive congregation (QGSOPC) and it will be verified 

by a planar truss, two spatial trusses and a double-layer grid steel shell structure 

with discrete variables. Compared with QGSO, GSO and HPSO algorithms, the 

results show that the QGSOPC algorithms have the best stability of convergence 

rate and accuracy. 

As the PSOPC algorithm, QGSOPC is a hybrid QGSO with passive 

congregation as follow: 

1

1 2 5

k k k k k k k k

i i g i i i i i
X Floor( X wr( P X ) w r( P X ) w r( R X ))

+
= + − + − + −  (6.19)

1

1
k k k

i i g
)X leftflag ( P changeflag P

+

−= × + ×  (6.20) 

Where Ri is a member selected randomly from the group, W5 is the passive 

congregation coefficient. The other parameters and equations is the same as QGSO 

algorithm. 

In this section, four pin connected structures commonly used in literature are 

selected as benchmark problems to test the QGSOPC. The examples given in the 

simulation studies include: 

 

(1) A 25-bar spatial truss structure; 

(2) A 52-bar planar truss structure; 

(3) A 72-bar spatial truss structure; 

(4) A double-layer grid steel shell structure; 
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The QGSOPC, QGSO, GSO, HPSO schemes are applied respectively to the 

examples and the results are compared in order to evaluate the performance of the 

modified algorithm. For all the algorithms, the population size is set to at 50 and 

compute in 50 times continuously. For the GSO algorithm, 20% of the population is 

selected as rangers; the initial head angle 0ϕ  of each individual is set to be /4π . 

The constant a is given by round ( n 1)+ . The maximum pursuit angle 
max

θ  is 
2

/aπ . 

The maximum turning angle α  is set to be 2
/2aπ .For the HPSO algorithm, the 

inertia weight (w) is starting at 0.9 and ending at 0.4 by linearity descending. The 

acceleration constants C1 and C2 are set to be 0.8. The passive congregation 

coefficient C3 is 0.6. For the QGSO algorithm, when target goes forward, the 

parameters are set in this: information transfer factors w1= w2=4, selected 

probability w3=0.2, component mutation probability w4=0.65. Otherwise the 

parameters are set in this: information transfer factors w1=0.8, w2=1.5, selected 

probability w3=0.35, component mutation probability w4=0.85. For the QGSOPC 

algorithm, w5 is set to be 0.6 when target goes forward, otherwise is set to be 2.0. 

The other parameters are the same as the QGSO algorithm. 

6.8.1   Numerical Examples 

(1) A 25-Bar Spatial Truss Structure 

A 25-bar spatial truss structure, shown in Fig. 6.20, has been studied by Wu [24] 

and Li [14]. The material density is 0.1 lb/in.
3
 and the modulus of elasticity is 

10,000 ksi. The stress limitations of the members are ±40000 psi. All nodes in three 

directions are subjected to displacement limitations of ±0.35 in. The structure 

includes 25 members, which are divided into 8 groups, as follows: (1) A1, (2) 

A2~A5, (3) A6~A9, (4) A10~A11, (5) A12~A13, (6) A14~A17, (7) A18~A21 and (8) 

A22~A25. The discrete variables are selected from the American Institute of Steel 

Construction (AISC) Code, which is shown in Table 6.16. The loads are shown in 

Table 6.17. A maximum number of 500 iterations is imposed for three cases. 
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Fig. 6.28 Convergence rates of the 25-bar spatial truss structure (Mean in 50 times) 
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Fig. 6.29 Convergence stability for the 25-bar spatial truss structure optimal design 
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Fig. 6.28 is the convergence rates and Fig. 6.29 is the stability of the four 

algorithms. Table 6.23 gives the optimal results. 

Table 6.23 Optimization results of the 25-bar spatial truss structure 

Optimization 

algorithm 

Mean  

in 50 times 

Standard 

deviation 

The Best   

solution in 50 times

The Worse  

solution in 50 times 

QGSOPC 552.700 2.1411 551.137 558.844 

QGSO 569.210 18.1144 551.137 649.482 

GSO 562.764 15.7826 551.137 641.157 

HPSO [26] 553.248 2.6717 551.137 562.944 

 

It can be seen from Fig. 6.28 that the QGSOPC algorithm has the best 

convergence rate. Fig. 6.29 shows QGSOPC has the best convergence stability. 

Data in Table 6.23 prove the stability of the QGSOPC algorithm. 

(2) A 52-Bar Planar Truss Structure 

A 52-bar planar truss structure, shown in Fig. 6.21, has been analysed by Wu [24] 

Lee [28] and Li [14]. The members of this structure are divided into 12 groups: (1) 

A1~A4, (2) A5~A6, (3) A7~A8, (4) A9~A10, (5) A11~A14, (6) A15~A18, and (7) 

A19~A22. The material density is 7860.0 kg/m
3
 and the modulus of elasticity is 

2.07×105 MPa. The members are subjected to stress limitations of ±180 MPa. Both 

of the loads, Px =100 kN, Py =200 kN are considered. The discrete variables are 

selected from the Table 6.16. A maximum number of 3,000 iterations is imposed.  

Fig. 6.30 is the convergence rates and Fig. 6.31 is the stability of the four 

algorithms. Table 6.24 gives the optimal results. 
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Fig. 6.30 Comparison of convergence rates for the 52-bar planar truss structure optimal 

design (Mean in 50 times) 
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Fig. 6.31 Comparison of convergence accuracy for the 52-bar planar truss structure optimal 

design 

Table 6.24 Compare of optimization results of the 52-bar spatial truss structure 

Optimization 

algorithm 

Mean  

in 50 times 

Standard 

deviation 

The Best   

solution in 50 times

The Worse  

solution in 50 times 

QGSOPC 1929.95 62.7928 1902.605 2177.479 

QGSO 2112.664 292.2927 1902.605 3326.917 

GSO 2037.638 149.1894 1902.605 2349.302 

HPSO [26] 1982.464 77.9442 1903.365 2261.448 

 

From Fig. 6.30 and Fig. 6.31, it is showed that QGSOPC algorithm has the best 

convergence stability. Results in Table 6.24 proves this conclusion. 

(3) A 72-Bar Spatial Truss Structure 

A 72-bar spatial truss structure, shown in Fig. 6.24, has been studied by Wu [24] 

Lee [28] and Li [14]. The material density is 0.1 lb/in.
3
 and the modulus of elasticity 

is 10,000 ksi. The members are subjected to stress limitations of ±25 ksi. The 

uppermost nodes are subjected to displacement limitations of ±0.25 in. both in x and 

y directions. Two load cases are listed in Table 6.20. There are 72 members, which 

are divided into 16 groups, as follows: (1) A1~A4, (2) A5~A12, (3) A13~A16, (4) 

A17~A18, (5) A19~A22, (6) A23~A30 (7) A31~A34, (8) A35~A36, (9) A37~A40, (10) 

A41~A48, (11) A49~A52, (12) A53~A54, (13) A55~A58, (14) A59~A66 (15) A67~A70, (16) 

A71~A72. The discrete variables are selected from the Table 6.16. A maximum 

number of 1,000 iterations is imposed. 

Fig. 6.32 is the convergence rates and Fig. 6.33 is the stability of the four 

algorithms. Table 6.25 gives the optimal results. 
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Fig. 6.32 Convergence rates for the 72-bar truss structure optimal design (Mean in 50 times) 
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Fig. 6.33 Convergence stability for the 72-bar truss structure optimal design 
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Table 6.25 Optimization results of the 25-bar spatial truss structure 

Optimization 

algorithm 

Mean  

in 50 times 

Standard 

deviation 

The Best   

solution in 50 times

The Worse  

solution in 50 times 

QGSOPC 386.9935 0.890642 385.543 387.943 

QGSO 392.3947 14.67056 385.543 453.336 

GSO 983.5541 9.228858 971.652 1004.429 

HPSO [14] 389.7171 2.802837 385.543 398.264 

 

 

Fig. 6.32 shows that QGSOPC and QGSO have the fastest convergence rate; 

GSO is trapped in local minimum. So the stability of GSO algorithm was not 

presented in the Fig. 6.33. It is shown in the Fig. 6.32, the most stable algorithm is 

QGSOPC. Data in the Table 6.25 prove the stability of the QGSOPC algorithm. 

(4) A Double-Layer Grid Steel Shell Structure 

A double-layer grid steel shell structure with 83.6 m span, 14.0 m arc height and 1.5 

shell thickness is shown in Fig. 6.26. The elastic module is 210 GPa and the density 

is 7850 kg/m
3
. There are 6761 nodes and 1834 bars in this shell. The 1834 bars were 

divided into three groups, which were upper chord bars, lower chord bars and belly 

chord bars. All chords were thin circular tubes and their sections were limited to 

Chinese Criterion GB/T8162-1999, which has 379 types of size to choose. The 

circumference nodes of lower chords are constrained. 50 kN vertical load is acted 

on each node of upper chords. The maximum permit displacement for all nodes is 

1/400 of the length of span, that is ±0.209 m. The maximum permit stress for all 

chord bars is ±215 MPa. The stability of compressive chords is considered 

according to Chinese Standard GB50017-2003. The maximum slenderness ratio for 

compressive chords and tensile chords are 180 and 300 respectively. 

For the QGSOPC algorithm, W5 is set to be 0.6 when target goes forward, 

otherwise is set to be 2.0. The other parameters are the same as the QGSO 

algorithm. And as to test the efficiency of the QGSOPC algorithm for this structure, 

the population size of QGSOPC is set to be 25 which is half of the other three 

algorithms. 

Fig. 6.34 is the convergence rates of the four intelligent algorithm. Table 6.26 

gives the optimal results. 

From Fig. 6.33 it is showed that the QGSOPC algorithm has the best global 

search capacity and can find the best solution in the shortest time. Besides, the 

population size of QGSOPC is half of other three algorithms. Table 6.26 shows 

QGSOPC finds the lightest structure. 
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Fig. 6.34 Convergence rates for the double-layer grid steel shell structure optimal design 

Table 6.26 Optimization results of the double-layer grid steel shell structure 

Algorithms
Upper chord 

bars 

Lower chord 

bars 

Belly chord 

bars 
Weight (kg) 

HPSO φ108×4 φ83×3.5 φ89×3.5 148811.71 

GSO φ108×4 φ95×3.5 φ95×4 163954.70 

QGSO φ83×4 φ76×3.5 φ102×3.5 139107.97 

QGSOPC φ76×3 φ76×3 φ89×3.5 113794.05 

6.8.2   Conclusion 

From the numerical examples showed in this section, it is triumphant to add the 

passive congregation model to the QGSO. Because QGSOPC algorithm emphasises 

on information transmission and as to getting forward in a society, there is 

important to communicate with other members besides the best position it had been 

and the best member in the group. Therefore, information of the other members 

decides you will not be over-confidence with the best individual. And the key to 

prevent the algorithm from going into the local minimum is the passive 

congregation coefficient. Also using the target progress or not decision-making 

system is a good respond to the individual transmission of information between 

members. So with QGSOPC algorithm, no matter in convergent rate or accuracy of 

convergence, there is the best stability to ensure the optimization results. 

6.9   Conclusion Remark 

Based on the group search optimizer (GSO) and the particle swarm optimizer with 

passive congregation (PSOPC), a quick group search optimizer (QGSO) and a 
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quick group search optimizer with passive congregation (QGSOPC) are presented 

in this chapter. The QGSO and QGSOPC algorithms can handle the constraint 

problems with discrete variables efficiently. The QGSOPC has more efficient 

search ability, faster convergent rate and less iterative times to find out the optimum 

solution. 

It is successful to use QGSOPC in section optimization of truss structures. It is 

desired that QGSOPC can be used for topology optimization or other structural 

optimal design tasks in the future. 

Currently, QGSOPC is only used in the single-objective optimization design, it 

is also desired that it can be further applied to multi-objective optimization design in 

the follow-up research work. 
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Chapter 7 

Group Search Optimizer and Its Applications 

on Multi-objective Structural Optimal Design 

7 GSO a nd Its Applications on Multi-objective Structural  Optimal Design 

Abstract. There are some problems in multi-objective optimization of engineering 
structures, such as, the difficulties in dealing with the constraints, the complexity of 
program and the low computational efficiency. To solve these problems, an 
improved group search optimizer, named Multi-objective Group Search Optimizer 
(MGSO), and combined with Pareto solutions theory is presented in this chapter. 
Different types of examples are employed to evaluate the performance of MGSO, 
including truss structures and frame structures with continuous variables or discrete 
variables. The calculation results show the feasibility, practicality and superiority of 
MGSO in structure optimal design. As a stochastic algorithm, MGSO has excellent 
performance in terms of convergence rate. Only the best individual is needed to be 
selected and partial constraints are needed to be checked to find the producer, thus a 
great deal of computational time is saved. The MGSO is of obvious advantages for 
complex engineering problems especially for high-dimensional ones. 

7.1   Introduction 

Multi-objective optimal problems are the kind of problem that has multiple 

objective functions. In the practical engineering, there are many optimal problems 

that have relations with multiple objectives. The results of multi-objective 

optimization problems are all of those potential solutions that the components of the 

corresponding objective vectors cannot be all simultaneously improved. This is 

known as the concept of Pareto optimality. The designer chooses the final solution 

from these Pareto-optimal solutions according to the practical situations [1]. 

Classical optimization methods suggest converting the multi-objective optimization 

problem to a single-objective optimization problem by emphasizing one particular 

Pareto-optimal solution at a time. When such a method is used to find multiple 

objective optimal solutions, it has to be applied many times, hopefully finding a 

different solution at each simulation run. With the development of computer 

technology, more and more stochastic optimization algorithms are applied to 

multi-objective optimization. There is a rapid development of genetic algorithm 

[2-5] and Particle Swarm Optimization (PSO) algorithm [6-9] for multi-objective 
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structural optimal design. The disadvantages of genetic algorithm are that it has 

slow convergence rate in some cases and is complex in programming. It is also easy 

to converge to local optimal solution in the process of evolution. For PSO it is not 

only needed to find the overall best individual (gbest) in the group, but also need to 

find the best individual of the history (pbest). For the practical complex structures, it 

is a very time-consuming process. This paper introduces a novel intelligence 

optimization algorithm named Group Search Optimizer (GSO) [10], and it is 

improved to a multi-objective optimization algorithm. This improved algorithm 

converges fast, only needs to find the best individual of a group at each iteration, 

and does not need to check the constraints for all individuals. Therefore, it can save 

a lot of computing time and get better results. For complex engineering problems, It 

has obvious advantages. There will be possible application of the method to 

stochastic optimization for robustness, involving mean value and variance of the 

objective function just as Doltsinis reported in reference [11]. 

7.2   Multi-objective Optimization Concepts 

7.2.1   Multi-objective Optimization Problem 

A general multi-objective optimization problem (MOP) includes a set of n  

parameters (decision variables), a set of k objective functions, and a set of 

m constraints. Objective functions and constraints are functions of the decision 

variables. The optimization goal is as follows: 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( )

( )

1 2

1 2

1 2

1 2

, , ...,

, , ..., 0

, , ...,

, , ...,

k

m

n

k

maximize f f f f

subject to e e e

where x x x

y y y

= =

 = ≤

= ∈

= ∈

y x x x x

e x x x x

x X

y Y

                 (7.1) 

where x  is the decision vector, y  is the objective vector, X  is denoted as the 

decision space, and Y  is called the objective space. The constraints ( ) 0≤e x  

determine the objective set of feasible solutions. 

7.2.2   Feasible Set 

The feasible set 
f

X  is defined as the set of decision vectors x  that satisfy the 

constraint ( )e x : 

( ){ }0
f

X = ∈ ≤x X e x                                           (7.2) 

The image of
f

X , i.e., the feasible region in the objective space, is denoted as: 

( ) ( ){ }
ff f XY f X f∈= = ∪x x .                                    (7.3) 
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Considering the generality, a maximization problem is assumed here. For 

minimization or mixed maximization/minimization problems the definitions 

presented in this section are similar. 

7.2.3   For Any Two Objective Vectors u and v: 

{ }

{ }

1,2,..., :

1,2,..., :

i i

i i

iff i k u v

iff i k u v

iff

= ∀ ∈ =

≥ ∀ ∈ ≥

> ≥ ∧ ≠

u v

u v

u v u v u v

                             (7.4) 

The relations ‘ ≤ ’ and ‘ < ’ are defined similarly. 

7.2.4   Pareto Optimality 

The concept of Pareto optimality was formulated by Vilfredo Pareto in 19
th

 century. 

A decision vector 
f

X∈x  is said to be non-dominated regarding a set 
f

A X⊆  if 

for any vector a : 

:A∈a a xf                                                      (7.5) 

Moreover, x  is said to be Pareto optimal if x  is non-dominated regarding 
f

X . 

7.2.5   Pareto Dominance 

For any two decision vectors  a and b , that a dominates b is denoted as:  

( ) ( )iff f f>a b a bf  

That a  weakly dominates b  is denoted as:  

( ) ( )iff f f ≥a b a bf  

That a is indifferent from b is denoted as:  

( ) ( ) ( )~ ( )iff f f f f≥ ∧ ≥/ /a b a b b a                            (7.6) 

The definitions for a minimization problem ( ~,,pp ) are analogical. 

7.2.6   Pareto Optimal Set and Pareto Front 

Let 
f

A X⊆ . The function ( )p A gives the set of non-dominated decision vectors 

in A : 
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( ) { }p A A= ∈a a                                                   (7.7) 

The set ( )p A is the non-dominated set regarding A . The corresponding set of 

objective vectors ( )( )f p A is the non-dominated front set regarding A . 

Furthermore, the set ( )p f
X p X= is called the Pareto optimal set and the set 

( )p p
Y f X= is denoted as the Pareto optimal front. 

7.2.7   Pareto Constraint-Dominance 

For multi-objective optimization problems with constrains, a solution u  is said to 

Pareto constraint-dominate a solution v , if only one of the following three 

conditions is true. Firstly, the solution u  is feasible and solution v  is not. 

Secondly, solution u  and v  are both infeasible, but solution u  has a smaller 

constraint violation degree. Thirdly, solutions u  and v  are both feasible and 

solution u  dominates solution v . 

7.2.8   The Measure of Multi-objective Optimization Results  

Unlike single-objective optimization problem, a multi-objective optimization 

problem has two goals [1]. Firstly, optimization can converge closer to the true 

Pareto front. Secondly, try to get the widest and most uniform distribution of Pareto 

front of non-dominated solutions. 

7.3   Group Search Optimizer 

7.3.1   Group Search Optimizer for Continuous Variables 

Group search optimizer is based on the Producer-Scrounger (PS) model of 

biological models [10, 12]. PS model assumes that the group members search either 

for ‘finding’ (producer) or for ‘joining’ (scrounger) opportunities. GSO also 

employs ‘rangers’ who perform random walks to avoid entrapment in local minima. 

The GSO algorithm just needs to find the best member as producer who is followed 

by the other members except the rangers. The members are sorted by the fitness 

values without constraints, and then the constraints are checked by sequence. For 

this method, not all the members’ constraints are needed to be checked to find the 

producer, so GSO can save a great deal of computational time.  

At each iteration, a group member, located in the most promising area, 

conferring the best fitness value, is chosen as the producer. It then stops and scans 

the environment to seek resources (optima). Scanning is an important component of 

search orientation; it is a set of mechanisms by which animals move sensory 

receptors and some times their bodies or appendages so as to capture information 

from the environment. Scanning can be accomplished through physical contact or 
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by visual, chemical, or auditory mechanisms. In the GSO, vision, as the main 

scanning mechanism used by many animal species, is employed by the producer. 

To perform visual searches, many animals encode a large field of view with retinas 

having variable spatial resolution, and then use high-speed eye movements to direct 

the highest resolution region towards potential target locations. In our GSO 

algorithm, basic scanning strategies is employed. The scanning field of vision is 

generalized to a n-dimensional space, which is characterized by maximum pursuit 

angle 1

max

n

α
−

∈ R and maximum pursuit distance 1

max
l ∈ R .  

The population of the GSO algorithm is called a group and each individual in the 

group is called a member. In an n-dimensional search space, the 
th

i  member at the 

th
k  searching bout (iteration) has a current position k n

i
X ∈ R , a head 

angle
1

1 ( 1)
( , ..., )

k k k n

i i i n
ϕ ϕ ϕ

−

−
= ∈ R and a head direction

1
( ) ( , ..., )

k k k k n

i i i in
D d dϕ = ∈ R , which 

can be calculated from k

i
ϕ  via a Polar to Cartesian coordinate transformation: 

1

1

1

cos( )

n

k k

i ip

p

d ϕ
−

=

= ∏                                                 (7.8) 

1

( 1)
sin( ) cos( )

n

k k k

ij i j ip

p i

d ϕ ϕ
−

−

=

= ⋅∏                                           (7.9) 

( 1)
sin( )

k k

in i n
d ϕ

−
=                                                 (7.10) 

At the 
th

k iteration the producer 
p

X behaves as follows: 

(1) The producer will scan at zero degree and then scan laterally by randomly 

sampling three points in the scanning field[13, 14]: one point at zero degree:  

1 max
( )

k k k

z p p
X X rl D ϕ= +                                            (7.11) 

one point in the left hand side hypercube:                     

1 max 2 max
( / 2)

k k k

l p p
X X rl D rϕ θ= + −                                   (7.12) 

and one point in the right hand side hypercube: 

1 max 2 max
( / 2)

k k k

r p p
X X rl D rϕ θ= + +                                    (7.13) 

where 1

1
r ∈ R  is a normally distributed random number with mean 0 and standard 

deviation 1 and 1

2

n

r
−

∈ R is a random sequence in the range (0, 1). 

(2) The producer will then find the best point with the best resource (fitness 

value). If the best point has a better resource than its current position, then it will fly 

to this point. Otherwise, it will stay in its current position and turn its head to a new 

angle: 

1

2 max

k k
rϕ ϕ α

+
= +                                               (7.14) 

where 
max

α is the maximum turning angle. 
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(3) If the producer cannot find a better area after a iterations, it will turn its head 

back to zero degree: 

k a k
ϕ ϕ

+
=                                                    (7.15) 

where a is a constant. At the
th

k iteration the area copying behavior of the 
th

i  

scrounger can be modeled as a random walk towards the producer: 

1

3
( )

k k k k

i i p i
X X r X X

+ = + −                                     (7.16) 

where 
3

n

r ∈ R  is a uniform random sequence in the range (0, 1). 

Besides the producer and the scroungers, a small number of rangers have also 

been introduced into our GSO algorithm. In nature, group members often have 

different searching and competitive abilities. Subordinates, who are less efficient 

foragers than the dominant, will be dispersed from the group. This may result in 

ranging behavior. The ranging animals-rangers, perform search strategies, which 

include random walks and systematic search strategies to locate resources 

efficiently. In the GSO algorithm, random walks, which are thought to be the most 

efficient searching method for randomly distributed resources, are employed by 

rangers. If the 
th

i  group member is selected as a ranger, at the 
th

k  iteration, it 

generates a random head angle
i

ϕ : 

1

2 max

k k
rϕ ϕ α

+
= +                                              (7.17) 

where 
max

α  is the maximum turning angle; and it chooses a random distance: 

1 maxi
l a rl= ⋅                                                    (7.18) 

and move to the new point: 

1 1
( )

k k k k

i i i i
X X l D ϕ

+ +
= +                                         (7.19) 

7.3.2   Group Search Optimizer for Discrete Variables 

A structural optimization design problem with discrete variables can be formulated 

as a nonlinear programming problem. In the size optimization for a truss structure, 

the cross-section areas of the truss members are selected as the design variables. 

Each of the design variables is chosen from a list of discrete cross-sections based on 

production standard. The objective function is the structure weight. The design 

cross-sections must also satisfy some inequality constraints equations, which 

restrict the discrete variables. The optimization design problem for discrete 

variables can be expressed as follows: 

( )1 2
min , , ...,

d
f x x x ， 1, 2, ,d D= L  
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subjected to:      

( )1 2
g , , ..., 0

d

q
x x x ≤ ， 1, 2, ,d D= L ， 1, 2, ,q M= L  

{ }
1 2
, , ,

d

d p
x S X X X∈ = L  

where ( )1 2
, , ...,

d
f x x x  is the truss’s weight function, which is a scalar function. 

And (
1 2
, , ...,

d
x x x ) represent a set of design variables. The design variable 

d
x  

belongs to a scalar 
d

S , which includes all permissive discrete 

variables { }1 2
, , ...

p
X X X . The inequality ( )1 2

, , ..., 0
d

q
g x x x ≤  represents the 

constraint functions. The letter D and M are the number of the design variables and 

inequality functions respectively. The letter p is the number of available variables. 

Considering the areas of cross-sections aren’t continuum, when the GSO 

algorithm is used to optimize problems with discrete variables, a mapping function 

is usually created to make the discrete section areas correspond to the continuum 

integers from small to large. Suppose a discrete set  
d

S   with p discrete variables, by 

arranging from small to large: 

1 2
{ , , , , }

jd p
S X X X X= L L ，1 j p≤ ≤  

Employ a mapping function h(j) to replace the discrete values of 
d

S  with its serial 

numbers like this: 

( )
j

h j X=  

The discrete values were replaced by the serial numbers to keep the searching with 

continuum values and avoid declining of search efficiency. Suppose that there are n 

members in the search space with D dimension. And the position of the 
th
i  member 

is denoted with vector 
i

x  as: 

1 2
( , , , , , )

d D

i i i i i
x x x x=x L L  ，1 ≤ ≤d D， 1, ,i n= L  

in which, {1, 2, , , , }
d

i
x j n∈ L L corresponds to the discrete variables 

1 2
{ , , , , }

j p
X X X XL L by mapping function ( )h j . After that, all of the members 

will search in the continuum space which is the integer space. Each component of 

vector 
i

x  is integer. 

7.4   Multi-objective Group Search Optimizer (MGSO) and 

Calculation Procedure 

The GSO algorithm can not be directly applied to multi-objective optimization 

problems although it has been applied successfully to single-objective optimization 

problems [15-17]. Since the multi-objective optimization problems are essentially 

different from the single objective optimization problems. The former is usually a 

set of a group or several groups of solutions, while the latter is only a single solution 
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or a group solution. However, the successful application of genetic algorithms and 

particle swarm algorithm to multi-objective optimization problems, and the 

similarity of GSO algorithm to PSO and to GA show that GSO may deal with 

multi-objective optimization problem efficiently. 

7.4.1   Key Issues of Multi-objective GSO Algorithm  

The difference between MGSO and GSO is in the comparison rules of the fitness of 

individuals. In MGSO, the fitness of individuals is compared by domination 

relations. Then, an optimal Pareto set is archived. A producer is selected from any 

individuals in the optimal Pareto set archived. An external archive is needed to be 

setup. The main objective of the external archive is to store a history of 

non-dominated individuals found along the search process, and try to keep those 

produces a well-distributed Pareto front. The key issues of MGSO are as follows: 

 

(1) How to maintain and update the external archives to get a well-distributed 

Pareto front.  

The key issue in the external archive management is to decide whether a new 

solution should be added to or not. When a new solution is found during MGSO 

evolutionary process, it is compared with each of the solution in the archive. If this 

new solution is dominated by an individual in the archive (i.e., the solution is 

dominated by the archive), then such solution is discarded, otherwise, the solution is 

stored in the archive. If there are solutions in the archive that are dominated by the 

new element, then such solutions are removed. If the archive reaches its maximum 

allowable capacity after adding the new solution, a decision has to be made 

regarding removal of one of its individuals. Several density estimation methods are 

proposed for multi-objective evolutionary algorithms to maintain the archive size, 

whenever the archive reaches maximum allowed capacity. In this article, the 

crowding distance calculation proposed by Deb [4] is used. To get an estimation of 

the density of solutions surrounding a particular solution in the population, the 

average distance of two points on either side of this point along each of the 

objectives are calculated. This quantity serves as an estimation of the perimeter of 

the cuboids formed by using the nearest neighbors as the vertices (call this the 

crowding distance). The crowding-distance computation requires sorting the 

population according to each objective function value in ascending order of 

magnitude. Thereafter, for each objective function, the boundary solutions 

(solutions with smallest and largest function values) are assigned an infinite 

distance value. All other intermediate solutions are assigned a distance value equal 

to the absolute normalized difference in the function values of two adjacent 

solutions. This calculation is continued for other objective functions. The overall 

crowding-distance value is calculated as the sum of individual distance values 

corresponding to each objective. The crowding distance is calculated as: 
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l I=  

[ ]
distance

, 0for each i set I i =  

for each objective m , ( ),I sort I m=  

[ ] [ ]
distance distance

1I I l= = ∞  

( )2 1for i to l=   −  

[ ] [ ] [ ] [ ]( )
( )max mindistance distance

1 . 1 .

m m

I i m I i m
I i I i

f f

+ − −
= +

−
 

where, l is the series number sorted according to some objective function. I is the 

number of population. sort (I, m) is the series of an individual respect to the mth 

objective function value. I[i-1].m and I[i+1].m represent two individuals adjacent to 

the ith individual when sorted by mth objective function value. max

m
f  and min

m
f  is the 

maximum and minimum value of the mth objective function respectively. I[i]distance 

represents the crowding distance value of the ith individual.  

(2) How to select an individual from the external archive as the producer. 

If the crowding distances of the individuals in the external archive are all infinite, 

then randomly select an individual as a producer. If there are individuals whose 

crowding distances are not infinite in the external archive, then randomly select an 

individual whose crowding distance is not infinite as the producer. 

(3) The mechanism to handle constraints  

The mechanism proposed in this paper to handle constraints is to ensure a 

feasible solution better than the infeasible solutions. The fitness of individuals who 

violate the constraint is given to infinity (inf) or 0, in order to ensure the individuals 

that do not violate constraints are better than the individuals that violate constrains. 

This approach is not only effective but also very simple. 

7.4.2   The Structure of Multi-objective Search Group Optimizer  

Step 1: Randomly initialize positions and head angles of all members.  

Step 2: Check if each initial individual is in the feasible region, if it is not in the 

feasible region, then reinitialize the individual. 

Step 3: Setup an external archive for collection of non-dominated solution, and 

setup the maximum capacity of the external archive M . When the number of 

non-dominated solutions N does not exceed M , the non-dominated solutions 

are directly copied to the external archive. If the non-dominated solutions are 

more than M , then the crowding distances of non-dominated solutions are 

sorted by decreasing sequence, and the ( -N M ) particles at the back will be 

deleted. An individual in the external selection is randomly chosen as a 

producer.  

Step 4: Perform producing. Firstly, the producer scans at zero degree and then scans 

laterally by randomly sampling three points in the scanning field as equation 

(7.11), (7.12) and (7.13). Secondly, if any point violates the constraints, it 

will be replaced by the producer’s previous position. Thirdly, compare the 

new points with the original point. If any new point dominates the original 
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point, the producer will jump to this point. If the new points and the original 

point are non-dominant relationship, then randomly select a new point as a 

producer. If all the new points are dominated by the original point, the 

producer will remain in its original point, and switch the direction to the next 

iteration according to equation (7.14). If the producer can not find a better 

point after a iterations, it will turn its head back to zero degree according to 

equation (7.15). 

Step 5: Perform scrounging. Randomly select 80% from the rest members to 

perform scrounging, and follow the producer according to equation (7.16). 

Step 6: Perform ranging. For the rest members, they will perform ranging according 

to equation (7.17), (7.18) and (7.19). 

Step 7: Check feasibility. Check whether any member of the group violates the 

constraints. If it does, use the mechanisms to handle it.  

Step 8: Calculate the fitness value of current members. Find all non-dominated 

solutions, update the external archive, and update the producer and search 

angle. 

Step 9: Check whether the maximum number of iterations is reached, if it is, then 

stop the calculation, otherwise, go to step 4 to continue the computation. 

7.5   Truss Optimization 

Structural optimization is consistent with the structure from the use of functional 

requirements and meets the structural strength, stability and rigidity of all feasible 

design, the relative standard by designers to find the optimal solution. It enables 

designers to shift from passive to active analysis of the design. Optimization can be 

divided into: a given type of structure, materials, layout and geometry of the case, 

the optimal size of the component sections, making the structure of the smallest 

quality or the most economical, this optimization is called size optimization; if the 

structure’s shape is uncertain in advance, compared to structural shape 

optimization; further optimize the layout of the structure, this is the topology 

optimization. 

There are generally three ways for the design of complex structures: First, to 

simplify the overall structure into separate components to optimize, the method can 

not accurately take into account the overall effect of the structure; Second, build a 

calculation model, repeated a spreadsheet, but there is the larger workload and a 

design review enumeration algorithm is feasible by design, not the optimal design 

in theory; The third way is applied finite element optimization module to optimize 

the complex structures. However, for the complex steel structure, its stability (the 

overall stability of structural systems, the overall stability of components and local 

stability of plates) is also an important factor in the success of optimized design and 

it will lead to the fail optimization of finite element software. 
In the past few decades, structural optimization has become a hot research 

project Truss structure are widely used in engineering, because of its low cost, light 

weight and simple construction, etc. Its applications related to bridge design, 

building structure and the grid frame and other aspects. It is playing an increasingly 

important role in the actual construction. For the truss structure, in the case of a 
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given, material, topological layout and shape, the optimal size of each bar of the 

cross section called size optimization to the lightest and most economical structure. 

In the size optimization variables are cross-sectional areas of the bars. In the field of 

structural optimization, the objective function of single-objective optimization is 

generally the total weight of the structure, natural frequency and deflection and so 

on. For the optimization of space truss design, designers are often most concerned 

about the weight of the structure optimization and base frequency. There are many 

single-objective optimization of truss design results, but multi-objective 

optimization results is less. Since Zadeh introduced into concept of multi-scale 

optimization into engineering optimization, Stadler sum of the multi-scale 

optimization in mechanics, more and more multi-objective optimization results 

emerge. In reference [18], a detailed description of traditional methods about 

multi-objective optimization of space truss was introduced. 

Recently, genetic algorithm (GA), simulated annealing (SA) and particle swarm 

optimization (PSO) algorithm and other heuristic optimization algorithms began to 

rise in the field of engineering optimization. There are some key parameters in GA 

(such as population size, crossover and mutation rate) which are not easy to 

determine, and GA has big calculate volume, large time-consuming and other 

shortcomings. SA simulates annealing process of solids, using Metropolis 

acceptance criteria, and with a group parameter called the cooling schedule to 

control algorithm process, and obtained the approximate optimal solution. This 

algorithm also does not require the continuity and differentiability of the function. It 

can handle the programming problems which have continuous - discrete -integer 

nonlinear variables. When used in optimization it can provide a better solution. 

When SA is used for structural optimization, there is much re-analysis, large 

computational capacity, low efficiency, and parameters are controlled with 

difficulty. For particle swarm optimization, its computation is required to verify 

whether each particle violates constraint during each iteration. For the complex 

structure of actual projects, this is a very time-consuming process of calculation and 

analysis.  

In this paper, MGSO algorithm is applied to the size and shape optimization of 

truss structure, and it is explained with examples respectively. 

7.5.1   The Size Optimization of Truss 

The size optimization of truss is in the case of a given type of structure, materials, 

layout and geometry, optimizing the size of the component sections, making the 

structure of the smallest quality or the most economic. In this chapter, it will design 

the optimal structure that satisfies all constraints in the premise of the lightest 

weight of the structure, while the maximum displacement of the node is minimum. 

To n-bars truss structure system, the basic parameters (including the elastic 

modulus, material density, the maximum allowable stress, etc.) are known, and the 

optimization’s target is that identify the optimal n-bar truss section area so that the 

structure is of the smallest total weight, the smallest maximum nodes’ 

displacement, in a given load conditions. Therefore, mathematical models can be 

expressed as: 
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Where 1 2[ , , ..., ]
T

nA A A A= are design variables for the cross section, n is the group 

number of design variables for the cross section bar, 
1

f and
2

f  are two objective 

functions of multi-objective optimization. W is the total weight of the structure, 

i
L ,

i
A and

i
ρ were the bar length, section area, and density of the th

i group bars, 

respectively. For a specific node, 
x

u ,
y

u and
z

u is the displacement of the 

x , y and z direction, respectively. ( )
i

g A
σ are the stress constraints. [ ]

i
σ and

i
σ are 

allowable stress and the worst stress of the th
i group bars under various conditions , 

and K is the total number of bars. 
min

A  and 
max

A are the minimum and maximum 

section size, respectively. 

10-Bar Truss 

The schematic representation of a 10-bar truss structure is shown in Fig. 7.1. A tip load 

of 444.5 kN is applied to the truss. The stress limit is 172.25 MPa in both tension and 

compression for all members. Young’s modulus is specified as 6.89×10
4
 MPa, and the 

material density is 2.768×10
3
 kg/m

3
. Node 2, 3, 5 and 6 are allowed to move only in the 

y direction. f1and f2 are design objectives, f1 is the total mass of the structure W, and f2 is 

the maximum displacements δ which is the maximum displacement of the node 2, 3, 5 

and 6 along the load direction. Rod stress is less than permitted stress, and the bar area 

is between 6.452 mm
2
 and 258064 mm

2
. 

 

Fig. 7.1 The 10-bar planar truss structure 

This example is the plane truss structure optimization problem with continuous 

variable. The variable is the cross-sectional area, and the variable dimension is 10. 

The population of the GSO is 300, and the capacity of the external archive is 50. 
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The minimum cross-sectional area is 6.452 mm
2
, and the maximum cross-sectional 

area is 25806.4 mm
2
. The constraint is that the stress of bars must meet the 

allowable stress. The objective functions are the total mass of the structure W and 

the maximum displacement δ of the node 2, the node 3, the node 5 and the node 6, 

and the displacement is along the load direction. The ideal optimization result is the 

smallest of total weight and the maximum of the minimum displacement. Using 

Matlab for finite element analysis, respectively, through 50, 150 and 250 

independent iterations, the results are shown in Fig. 7.2, Fig. 7.3 and Fig. 7.4. The 

Pareto optimal front after 250 iterations is shown in Fig. 7.5.  

The Pareto optimal front of the elite set after 50 iterations is shown in Fig. 7.2 , 

and the boundary values are as follows: the (max W, min δ) is (6741.1 kg, 0.0266 

m),and the (min W, max δ) is (1568.6 kg, 0.1111 m). So, after 50 iterations the ideal 

solution (min W, minδ) is (1568.6 kg, 0.0266 m). Seeing from Fig. 7.2, MGSO 

algorithm has not been uniform Pareto optimal front after 50 iterations. 

The Pareto optimal front of the elite set after 150 iterations is shown in Fig. 7.3. 

The Pareto front boundary values are as follows: the (max W, min δ) is (6604.6 kg, 

0.0263 m), and the(min W, maxδ) is (1050.3 kg, 0.1352 m). Compared Fig. 7.3 with 

Fig. 7.2, after 50 iterations the ideal solution (min W, min δ) is (1568.6 kg, 

0.0266 m), and after 150 iterations the ideal solution (min W, min δ) is (1050.3 kg,  

0.0263 m). Whether for the target min W or the target min δ, the Pareto optimal 

front after 150 iterations is better than the Pareto optimal front after 50 iterations. 

Seeing from Fig. 7.3, after iteration 150 the Pareto optimal front of the elite set is 

smooth, but uneven, and there is fault zone in the Pareto optimal front. According to 

the computer system of crowding distance, in that region there are no feasible 

Pareto optimal solutions or the Pareto optimal solutions are too stacked. 

 

 

 

Fig. 7.2 The Pareto optimal front of the elite set after 50 iterations 
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Fig. 7.3 The Pareto optimal front of the elite set after 150 iterations 

 

 

 

 
Fig. 7.4 The Pareto optimal front of the elite set after 250 iterations 
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Fig. 7.5 The Pareto optimal front after 250 iterations  

The Pareto optimal front of the elite set after 250 iterations is shown in Fig. 7.4. 

The Pareto front boundary values are as follows: the (max W, min δ) is (6906.9 kg, 

0.0251 m), and the(min W, maxδ) is (920.2167 kg, 0.1479 m). Therefore, after 250 

iterations the ideal solution (920.2167 kg, 0.0251 m) has significantly improved, 

compared with the ideal solution (1050.3 kg, 0.0263 m) after 150 iterations. From 

Fig. 7.4, the Pareto optimal front after 250 iterations is of a wider distribution than 

150 iterations, and the distribution does not appear fault. Thus, the Pareto optimal 

front obtained by MGSO algorithm distributes widely, evenly and smoothly. 

The Pareto optimal front corresponding to all the Pareto optimal solutions after 

250 iterations is shown in Fig. 7.5. The results of this paper are basically the same 

with the SM-MOPSO’s results in the reference [18], and MGSO can get more 

uniform and wider Pareto optimal front than MOPSO reported in reference [19], 

which proves MGSO algorithm is feasibility and superiority. Table 7.1 lists the 

comparison of three algorithms SM-MOPSO, MOPSO and MGSO after 250 

iterations for computing 5 times randomly. It can be seen form Table 7.1, the 

MGSO is better than MOPSO, and the optimal result of SM-MOPSO is a little bit 

better than MGSO, but the calculation of MGSO is much simpler and it has much 

higher efficiency than SM-MOPSO. At the same time, it is known that the 

computing performance of MGSO is every stable. 
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Table 7.1 Comparison of three algorithms’ results 

Algorithm 

The weight target’s 

minimum /kg 

The displacement target’s 

minimum /m 

The best 

value 

The worst 

value 

The best 

value 

The worst 

value 

 Chuang [19] 

MOPSO 
883 1346.5 0.025 0.025 

An [18] 

SM-MOPSO 
720.34 743.32 0.025 0.025 

MGSO 920.22 940.45 0.0251 0.0257 

7.5.2   The Shape Optimization of Truss 

After years of exploration and research, the optimization of only considering the 

truss section has matured. The shape optimization of truss refers to optimize the 

location of space truss’s nodes. In the design of truss shape optimization, discrete 

variables, such as the section size of bars, and continuous variable, such as the 

nodes’ coordinates, are mixed. It not only increases the difficulty of solving the 

problem, but also it is often difficult to process optimization convergence. 

Currently, traditional methods usually use hierarchical optimization method to deal 

with such issues. However, most of hierarchical optimization methods usually find 

the optimal solution in the conventional mathematical programming, which is easy 

to fall into local optimal solution.  

In this chapter, the total weight of the truss and the special node’s displacement 

are the objective functions. The cross-section dimensions and coordinate variables 

are changed to a unified design variables dealing with the difficulties of different 

types design variables. 

The shape optimization of truss is, in the case of a given type of structure, 

materials, layout and geometry, optimizing the size of the component sections, 

making the structure of the smallest quality or the most economic. In this chapter, 

the aim is to design the optimal structure that satisfies all constraints in the premise 

of the lightest weight of the structure, while the maximum displacement of the node 

is minimum. For a n-bars truss structure system, the basic parameters, including the 

elastic modulus, material density, the maximum allowable stress, etc., are known, 

and the optimization target is to identify the optimal cross-sectional area of bars and 

the optimal nodes’ location so that the structure is of the smallest total weight, the 

smallest maximum nodes’ displacement, in a given load conditions. Therefore, 

mathematical models can be expressed as: 

( )
1

1

min
M

i i i

i

f W Al Xρ
=

= =∑  

{ }{ }2
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Where 1 2[ , , ..., ]
M

T
A A A A= are design variables for the cross section and they are 

discrete variables. 
1

f and
2

f  are two objective functions of multi-objective 

optimization, M is the total number of bars, and 
c

n  is the number of nodes’ 

coordinates. ( )1, 2,...,
n G

g n n= are the constraints of stress and displacement, 
G

n   is 

the total number of constraints, S is discrete set of bars’ cross-section, and 
s

n is the 

number of discrete variables in S. 
i

L、
i

A and
i

ρ  are the bar length, the section area, 

and the density of the th
i group bars, respectively, and max

k
X and min

k
X are the 

maximum and minimum  nodes’ coordinate. 

25-Bar Truss 

In this section, the performance of the MOGSO is studied on a 25-bar truss shown 

in Fig. 7.6. The materials are aluminum alloy, density is 2.768×103 kg/m
3
 , and 

elastic modulus is 6.888×1010 N/m
2
. f1and f2 are design objectives, f1 is the total 

mass of the structure W, and f2 is the maximum displacements δ which is the 

maximum displacement of all nodes .Rod stress limit is 172.25 MPa in both tension 

and compression for all members. Discrete values considered for this example are 

taken from the set S={0.072，0.091，0.112，0.142，0.174，0.185，0.224，

0.284，0.348，0.615，0.697，0.757，0.860，0.960，1.138，1.382，1.740，

1.806，2.020，2.300，2.460，3.100，3.840，4.240，4.640，5.500，6.000， 

 
 

 

Fig. 7.6 The 25-bar spatial truss structure 
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7.000，8.600，9.219，11.077，12.374} (×10
-3

 m
2
). The coordinates of node 3, 4, 

5, and 6 are spatial variables, and they are x1, x2 and x3; the coordinates of node 7, 

8, 9, and10 are planar variables, and they are x4 and x5; the coordinates of node 1 

and 2 are unchanged. Boundaries of sizing variables are: 0.508≤x1≤1.524，

1.016≤x2≤2.032， 2.286≤x3≤3.302， 1.016≤x4≤2.032， 2.540≤x5≤3.356 (m). 

Structural loading conditions are in Table 7.2. 

Table 7.2 The load cases of a 25-bar spatial truss 

Node Fx (N) Fy (N) Fz (N) 

1 4448 -44482 -44482 

2 0.0 -44482 -44482 

3 2224 0.0 0.0 

6 2669 0.0 0.0 

 
This example belongs to mixed variables optimal problem of space truss 

structure, and the variables are the cross-sectional areas of the bars and the 

coordinates of the specified nodes. The cross-sectional areas of the bars are divided 

into 8 groups, so the cross-sectional areas’ variables are 8-dimensional variable, and 

the coordinates’ variables are 5-dimensional. In this case, variables dimension are 

13, including eight discrete variables and five continuous variables. The number of 

population is 300, and the capacity of elite set M is set to 50. After 100, 200 and 500 

iterations, the results are shown in Fig. 7.7, Fig. 7.8 and Fig. 7.9 respectively. 

Fig. 7.10 is the Pareto optimal front results. 

Fig. 7.7 indicates the Pareto optimal front of the elite set after 100 iterations. The 

boundary values are as follows: the (max W, min δ) is (969.47086 lb, 0.06177 in.), 

and the (min W, max δ) is (89.2046 lb, 1.05158 in.). After 100 iterations the ideal 

solution (min W, min δ) is (89.2046 lb, 0.06177 in.). From the Fig. 7.7, it is known 

that the Pareto optimal front of the elite set after 100 iterations is widely distributed, 

but the curve is not smooth, and the result has not converged. 

The Pareto optimal front of the elite set after 200 iterations is shown in Fig. 7.8. 

The boundary values are as follows: the (max W, min δ) is (1032.5620 lb, 0.05637 

in.), and the (min W, max δ) is (83.53463 lb, 1.5616 in.). Compared Fig. 7.7 with 

Fig. 7.8, after 100 iterations the min W is 89.2046 lb, and after 200 iterations the 

min W is 83.53463 lb. For 100 iterations and 200 iterations the total mass W is not a 

big change, but after 200 iterations the max δ is 1.5616 in., much greater than the 
max δ after 100 iterations which is 1.05158 in.. In the multi-objective optimization 

design, the region is called as the sensitive areas where an objective function along 

with other subtle changes has dramatic changes. The solutions should avoid being 

selected from the sensitive areas, and generally the final optimal solution is selected 

in the gentle curve segment. After 200 iterations the min δ is 0.05637 in., far less 

than the min δ after 100 iterations which is 0.06177 in.. Although the Pareto optimal  
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Fig. 7.7 The Pareto optimal front of the elite set after 100 iterations 

 

 

Fig. 7.8 The Pareto optimal front of the elite set after 200 iterations 



226 7 GSO and Its Applications on Multi-objective Structural Optimal Design

 

 

Fig. 7. 9 The Pareto optimal front of the elite set after 500 iterations 

 

Fig. 7.10 The Pareto optimal front after 500 iterations 

front appears sensitive areas, the distribution of Pareto optimal front is much wider, 

indicating the good local search capability of MGSO. 

Fig. 7.9 is the Pareto optimal front of the elite set after 500 iterations, and the 

boundary values are as follows: the (max W, min δ) is (1074.93181 lb, 0.0549 in.), 

and the (min W, max δ) is (63.6239 lb, 1.2099 in.) . Compared Fig. 7.8 with Fig. 7.9, 

the min W and the min δ are reduced significantly, and the distribution’s uniformity 

of the Pareto optimal front is of a marked increase, indicating that MGSO is an 

excellent multi-objective algorithm. 
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Fig. 7.10 indicates the Pareto optimal front corresponding to all Pareto optimal 

solutions after 500 iterations. From Fig. 7.10, it is known that MGSO can get a wide 

and uniform Pareto optimal front, and for structural shape optimization MGSO is a 

good algorithm. Following the comparison of the results of SM-MOPSO and 

MOPSO cited in the literature [18, 19], it is obtained that MGSO has apparent 

correctness and superiority. 

40-Bar Truss 

Taking the planar 40 truss bridge for an example, the structure is shown in Fig. 7.11. 

All bars are the same materials, density is 7800 kg/m
3
, and elastic modulus is 

1.9613×10
11

 N/m
2
. The allowable stress is ±1.5691×10

8
 N/m

2
 for all members. At 

node 2, node 3, node 4, node 5, node 6 and node 7, the load P = 9.80665×10
4
 N. This 

example is designed for multi-objective optimization, and the objective functions 

are the total weight of the structure W and the maximum vertical displacement δ of 

node 9, node 10, node 11, node 12, node 13, node 14, node 15 and node 16. In other 

words, δ = max (D9, D10, D11, D12, D13, D14, D15, D16), and D9, D10, D11, D12, D13, 

D14, D15 and D16 are the vertical displacements of node 9, node 10, node 11, node 12, 

node 13 , node 14, node 15 and node 16. Bars’ stress is less than allowable stress, 

and the bar cross-sectional area is between the upper and lower limits. The 

minimum area is 0.001 m
2, and the maximum area is 0.05 m

2
. At the same time the 

cross-sectional areas of all bars must be multiple of 0.0005 m
2
. Node 9, node 10, 

node 11, node 12, node 13, node 14, node 15 and node 16 can be moved along the 

vertical direction and the boundary of coordinates’ variables is 1 m ≤ xi ≤ 5 m. 

This example is of continuous variables and discrete variables optimization 

problems. According to the symmetry of the structure, the variables of 

cross-sectional areas are 19-dimensional which are discrete variables, and the 

variables of nodes’ coordinates are four-dimensional position which are continuous 

variables. Therefore, in this case the variables are 23-dimensional, including 

19-dimensional discrete variables and four-dimensional continuous variables. The 

number of population is 300, and the capacity of the elite set M is 50. The results are 

shown in Fig. 7.12, Fig. 7.13 and Fig. 7.14 after 100, 200 and 500 iterations 

respectively. 

 

Fig. 7.11 The 40-bar planar truss structure 
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Fig. 7.12 The Pareto optimal front of the elite set after 100 iterations 

 

 

 

Fig. 7.13 The Pareto optimal front of the elite set after 200 iterations 
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Fig. 7.14 The Pareto optimal front of the elite set after 500 iterations 

The Pareto front of the elite set after 100 iterations is shown in Fig. 7.12. The 

boundary values are as follows: the (max W, min δ) is (43256.26285 kg, 9.62636×10
-4
 

m), and the (min W, max δ) is ( 7677.27588 kg, 0.01771 m). It is known that the Pareto 

front after 100 iterations has large width but it is unevenly distributed. 

Fig. 7.13 shows the Pareto front of the elite set after 200 iterations. The boundary 

values are as follows: the (max W, min δ) is (41071.45054 kg, 9.37465× 10
-4

 m), and 

the (min W, max δ) is (6609.92518 kg, 0.0178 m). After 200 iterations the min 

W is 6609.92518 kg, and the min W is 7677.27588 kg for 100 iterations. So, it is 

known that the Pareto optimal front after 200 iterations is wider and more uniform 

than the one after 100 iterations. 

The Pareto front of the elite set after 500 iterations is shown in Fig. 7.14. The 

boundary values are as follows:  the (max W, min δ) is (35704.71038 kg, 

7.68596×10
-4

 m), and the (min W, max δ) is (4326.07903 kg, 0.0215 m). Compared 

Fig. 7.14 with Fig. 7.13, the Pareto optimal front after 500 iterations has wider 

distribution, but the improvement of uniformity is not obvious. 

The Pareto optimal front of all the Pareto optimal solutions after 500 iterations is 

displayed in Fig. 7.15. The width and the uniformity of the Pareto optimal front 

show the feasibility of MGSO for shape optimization. 
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Fig. 7.15 The Pareto optimal front after 500 iterations 

7.5.3   The Dynamic Optimization of Truss 

In this item, the dynamic optimization of truss will focus on designing the optimal 

structure that satisfies all constraints in the premise of the lightest weight of the 

structure, while fundamental frequency of the structure is maximum. For a n-bar 

truss structure system, the basic parameters, including the elastic modulus, material 

density, the maximum allowable stress, etc., are known, and the optimization’s 

target is to identify the optimal cross-sectional area of bars and the optimal nodes’ 

location so that the structure is of the smallest total weight and the maximum 

fundamental frequency in a given load conditions. The mathematical models can be 

expressed as: 

min.  
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=
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A A A A= are design variables for the cross section and they are 

discrete variables. 
1

f and
2

f  are two objective functions of multi-objective 

optimization, M is the total number of bars, and 
c

n
 
is the number of nodes’ 

coordinates variables. W is the total weight of the structure, and ω  is the 
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fundamental frequency of the structure. ( , )
n

g A X are the constraints of stress and 

displacement, 
G

n is the total number of constraints, S is discrete set of bars’ 

cross-section, and ns is the number of discrete variables in S. 
i

L ,
i

A and
i

ρ  are the bar 

length, section area, and density of the th
i group bars, respectively, and max

k
X and 

min

k
X are the maximum and minimum nodes’ coordinate. 

As the computational complexity of the frequency, the dynamic optimization has 

much double counting, and it is more time-consuming than the static optimization. To 

save computing time, in this article the dynamic optimization takes the less number of 

iterations, setups the less capacity of elite set M, compared to the static optimization. 

10-Bar Truss  

Taking the planar 10-bar truss structure for an example, the structure is shown in 

Fig. 7.16. All bars are the same materials, density is 7.68×10
3
 kg/m

3
, and elastic 

modulus is 2.1×10
11

 N/m
2
. The allowable stress is ±1×10

8
 N/m

2
 for all members. The 

position of node 1 can be moved along the vertical direction, the locations of node 2 

and node 3 can be moved along the horizontal and vertical directions. The vertical 

coordinates variables of node 1 is x1; the horizontal and vertical coordinates variables 

of node 2 are x2 and x3; the horizontal and vertical coordinates variables of node 3 are 

x4 and x5, where -2.5 m ≤ x1 ≤ 2.4 m, 0.1 m ≤ x2 ≤ 2.5 m, -2.5 m ≤ x3 ≤ 2.4 m, 

2.5 m ≤ x4 ≤ 5 m, 0 ≤ x5 ≤ 2.4 m. There is vertical load 100 kN, at node 5 and node 6 

respectively. Bars’ stress is less than allowable stress, and the bar cross-sectional area 

is between the upper and lower limits. The minimum area is 0.001 m
2
, and the 

maximum area is 0.01 m
2
. At the same time the cross-sectional areas of all bars must 

be multiple of 0.0005 m
2
.  

This example is a continuous and discrete variable mixed optimization problems 

of the plane truss structure. The bars’ cross-sectional areas are discrete variables, 

whose number are 10; the nodes’ coordinate variables are continuous variables, 

whose number are 5. The population of the GSO is 300, and the capacity of the 

external archive is 30. The multi-objective optimization results are listed in 

Fig. 7.17, Fig. 7.18 and Fig. 7.19, after 50 and 100 iterations respectively. 

 

 

Fig. 7.16 The 10-bar planar truss structure 
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Fig. 7.17 The Pareto optimal front of the elite set after 50 iterations 

 

 

 

Fig. 7.18 The Pareto optimal front of the elite set after 100 iterations 
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Fig. 7.19 The Pareto optimal front after 100 iterations 

After 50 iterations, the Pareto optimal front of the elite set for the maximum 

fundamental frequency and the lightest weight of the 10-bar truss is shown in 

Fig. 7.17. The boundary values are as follows: the (max W, maxω) is (821.1588 kg, 

980.8905 Hz), and the (min W, minω) is (412.9979 kg, 496.1717 Hz). It is known 

from Fig. 7.17 that the Pareto optimal solutions are widely distributed after 50 

iterations, and the ideal optimal result (min W, maxω) is (412.9979 kg, 980.8905 

Hz). Although only after 50 iterations, the Pareto optimal solutions distributes 

widely and quite uniformly. It is said that MGSO is a good algorithm for searching. 

By comparison with single-objective optimization results, the result of dynamic 

optimization of MGSO is verified and is correct. 

The Pareto optimal front of the elite set after 100 iterations is shown in Fig. 7.18. 

The boundary values are as follows: the (max W, maxω) is (1037.345 kg, 1041.1 Hz), 

and the (min W, minω) is (380.5196 kg, 616.7485 Hz). After 100 iterations the ideal 

solution (min W, maxω) is (380.5196 kg, 1041.1 Hz). Compared with the ideal 

solution (412.9979 kg, 980.8905 Hz) after 50 iterations, both optimization goals min 

W and maxω have been significantly improved. It indicates that the MGSO algorithm 

is still a good performance for the complex dynamic optimization problems. 

The Pareto optimal front of the all Pareto optimal solutions after 100 iterations is 

listed in Fig. 7.19. It is known that MGSO algorithm can get uniform Pareto optimal 

front, converge speedily, and be an ideal multi-objective optimization algorithm for 

highly nonlinear dynamic optimization problem.  

40-Bar Truss  

Taking the planar 40 truss bridge for an example, the structure is shown in Fig. 7.20. 

All bars are the same materials, density is 7800 kg/m
3
, and elastic modulus is 

1.9613×10
11

 N/m
2
. The maximum allowable displacement of all nodes [δ] is   
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Fig. 7.20 The 40-bar planar truss structure 

0.035m. The maximum allowable stress is 1.5691×10
8
 N/m

2
 for all members. At 

node 2, node 3, node 4, node 5, node 6 and node 7, the load P is 9.80665 × 10
4
 N. 

This example is designed for multi-objective optimization, and the objective 

functions are the total weight of the structure W and the fundamental frequency of 

the structure ω . The ideal structure is that the total mass is minimum and the 

fundamental frequency is maximum. Bars’ stress is less than allowable stress, and 

the bar cross-sectional area is between the upper and lower limits. The minimum 

area is 0.001 m
2
, and the maximum area is 0.05 m

2
. At the same time the 

cross-sectional areas of all bars must be multiple of 0.0005 m
2
. Node 9, node 10, 

node 11, node 12, node 13, node 14, node 15 and node 16 can be moved along the 

vertical direction and the boundary of coordinates’ variables is 1 m ≤ xi ≤ 5m. 

This example is also a continuous variables and discrete variables mixed 

optimization problems. According to the symmetry of the structure, the variables of 

cross-sectional areas are 19-dimensional which are discrete variables, and the 

variables of nodes’ coordinate positions are 4-dimensional which are continuous 

variables. Therefore, in this case the variables are 23-dimensional, including 

19-dimensional discrete variables and 4-dimensional continuous variables. The 

number of GSO population is 300, and the capacity of the elite set M is 30. After 50 

iterations, the multi-objective optimization results are listed in Fig. 7.21. 

The Pareto optimal front after 50 iterations is shown in Fig. 7.21 The boundary 

values are as follows: the (max W, maxω ) is (10255.1303 kg, 197.3186 Hz), and 

the (min W, minω ) is (5501.8 kg, 137.5998 Hz). The span of structural quality is 

from 5501.8 kg to 10255.1303 kg, and it shows that the Pareto front after 50 

iterations is wide spread. MGSO is a feasible algorithm for dynamic multi-objective 

optimization algorithm. The example indicates that the dynamic optimization is 

much more complex than static optimization, its computing time is growing 

exponentially, and the procedure is much more difficult than static optimization. 

For the practical significance of dynamic optimization, but obviously, it is very 

worthy of study. 
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Fig. 7.21 The Pareto optimal front after 100 iterations 

7.6   The Optimization of Frame 

In addition to all the advantages of a traditional steel structures, modern light steel 

structures have more prominent features, which mainly include: light envelope, 

constant load, high-strength material, new structural system, standardized design, 

factory production, easy lifting by small machines, labor intensity light, fast 

construction speed, low construction cost and so on. Common steel structures used in 

modern engineering structures were steel truss structures, as well as frame structures. 

In the field of structural optimization, genetic algorithms and particle swarm 

optimization algorithm, etc., are also widely used, including the weight of truss 

structure optimization, shape optimization and topology optimization.  

For solving highly nonlinear problems, such algorithms demonstrated strong 

vitality and applicability than the traditional full stress criteria and mathematical 

programming method, and they were more suitable for complex structures. 

Research in this item mainly focused on the frame structures. Many research 

progresses have been achieved such as frame section optimization with genetic 

algorithm and the section optimal design of frame based on semi-rigid assumptions 

and seismic by Saka and Kameshki, etc.. Camp optimized the cross-section of 

framework with ant colony algorithm, etc.  

Unit as rigid frame structure, there are two mathematical models for the 

optimization. The first mathematical model is as follows: 

    min. 
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M

i i i

i

f W Alρ
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Where
i

A  are design variables for the cross sections, 
1

f and
2

f  are two objective 

functions of multi-objective optimization. 
i

g
σ are the stress constraints. n is the 

number of design variables for the cross section bar, W is the total weight of the 

structure, E is the total dynamic strain energy, and 
i

L ,
i

A and
i

ρ are the bar length, 

section area, and density of the th
i group bars, respectively. Section D is the discrete 

set.  

The second mathematical model is as follows: 
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Where
i

A  are design variables for the cross section, 
1

f and
2

f  are two objective 

functions of multi-objective optimization. 
i

g
σ are the stress constraints. n is the number 

of design variables for the cross section bar, W is the total weight of the structure, and 

i
L ,

i
A and

i
ρ are the bar length, section area, and density of the th

i group bars, 

respectively. U is the displacement value of given node j on the direction under the 

condition to allow the most negative displacement, and Section D is the discrete set.  

Considering the stress constraints, the actual stress of the components of the 

framework is mainly on account of the role of bending and axial force, neglecting 

shear effects, so the maximum stress by the combination of bending and axial force, 

combined stress is expressed as follows: 

( )
( )

( )

( )
kk yk x

k

k k kx y

MMN

A W W
σ = + +

 

(7.25) 

Where 
k

N  is the axial force of the component, 
k

A  is cross-sectional area of the 

component, ( )
k x

M  and ( )
k y

M  are the bending moment of strong axis and weak 

axis around component section, ( )
k x

W and ( )
k y

W  are flexural modulus corresponds 

to the strong axis and weak axis.  

7.6.1   The One Bay Eight Storey Planar Frame 

The geometry of structure is shown in Fig. 7.22. The elastic modulus E is 2.9×10
4
 

ksi, and the density ρ is 0.283 lb/in
3
. In this example the bars have not the allowable  
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Fig. 7.22 One bay eight storey planar frame 

stress limit, and only the node 9 and the node 10 have the maximum displacement 

limit on the x direction, which is [δ] = ± 2 in.. The cross-section variables are 

grouped into: A1(1, 3, 4, 6), A2(7, 9, 10, 12), A3(13, 15, 16, 18), A4(19, 21, 22, 24), 

A5(2, 5), A6(8, 11), A7(14, 17), A8(20, 23). The selection of discrete variables use the 

AISC specification of the U.S. (AISC 2001), reported in reference [19]. The model 

is only one load case: there is a vertical force -100 kips at node 2 to 17, and there are 

horizontal forces 0.272 kips, 0.544 kips, 0.816 kips, 1.088 kips, 1.361 kips, 1.633 

kips, 1.905 kips and 2.831 kips at node 2 to 9, respectively. The objective functions 

are the total weight W of the structure and the total dynamic strain energy E of the 

structure. 

This example is a discrete variable optimization problem of the plane frame 

structure. The variables are the cross-sectional areas of the frame’ bars, and the 

variables’ dimension is 8. The objective functions are the total weight W and the 

total dynamic strain energy E, and the ideal situation of the optimized structure is 

the lightest total weight min W and the minimum total dynamic strain energy min E. 

The number of GSO population is 300, and the capacity of the elite set M is set to 

50. The results are shown in Fig. 7.23, Fig. 7.24, Fig. 7.25 and Fig. 7.26, after 100, 

200 and 500 iterations respectively. 
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Fig. 7.23 The Pareto optimal front of the elite set after 100 iterations 

After 100 iterations the Pareto optimal front of the elite set is placed in 

Fig. 7.23 , and the boundary values are as follows: the (max W, min E) is (109351.2 

lb, 0.0235 kips. in), and the (min W, max E) is (10327.9152 lb, 0.4925 kips. in). 

 

 

 

Fig. 7.24 The Pareto optimal front of the elite set after 200 iterations 
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Fig. 7.25 The Pareto optimal front of the elite set after 500 iterations 

 

 

 

Fig. 7.26 The Pareto optimal front after 500 iterations 
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The Pareto optimal front of the elite set after 200 iterations is displayed in 

Fig. 7.24. The boundary values are as follows: the (max W, min E) is (133517.136 

lb, 0.0219 kips. in); the (min W, max E) is (9362.772 lb, 0.5633 kips. in). Compared 

Fig. 7.24 and Fig. 7.23, the min W and the min E after 200 iterations are much less, 

and the Pareto optimal front is much wider than the results after 100 iterations. It 

shows that MGSO has good global search capability, and not easily falls into local 

optimum. 

The Pareto optimal front of the elite set after 500 iterations is listed in Fig. 7.25. 

The boundary values are as follows: the (max W, min E) is (114723.672 lb, 0.01829 

kips. in); the (min W, max E) is (8204.0568 lb, 0.63551 kips. in). From Fig. 7.25, it 

is known that after 500 iterations the min W and the min E have significantly been 

improved, and the Pareto optimal front is more uniform. MGSO converges rapidly, 

not only has good global search capability, but also has good local search capability. 

The Pareto front corresponding to all the Pareto optimal solution after 500 

iterations is shown in Fig. 7.26. After 500 iterations the ideal optimal solution (min 

W, min E) is (8204.0568 lb, 0.01829 kips. in), and the min W is similar to the 

single-objective optimization result reported in the literature [19]. It illustrates that 

MGSO is feasible and correct.  

7.6.2   The Two Bay Five Story Planar Frame 

Fig. 7.27 is a two-bay 5-story plane frame, load cases is shown in Table 7.3. Elastic 

modulus E=2.058×10
11

 N/m
2
 ,density ρ=7.8×10

4
 N/m

3
, allowable stress 

[σ]= ± 1.666×10
8
 N/m

2
, the allowable displacement on x-direction of 1, 2, 3 node 

[δ]= ± 4.58 cm. Variable groups: A1(1，2，3)，A2(4，5，6)，A3(7，8，9)，

A4(10， 11， 12)，A5(13， 14， 15)，A6(16)，A7(17)，A8(18)，A9(19)，

A10(20)，A11(21)，A12(22)，A13(23)，A14(24)，A15(25). Cross sections are 

selected from Table 7.4. 

This example is a discrete variable optimization problem of the plane frame 

structure. The variables are the cross-sectional areas of the frame’ bars, and the 

variables’ dimension is 15. The variables are grouped into: A1(1, 2, 3), A2(4, 5, 6 ), 

A3(7, 8, 9), A4(10, 11, 12), A5 (13, 14, 15), A6 (16), A7 (17), A8 (18), A9 (19), A10 (20), 

A11 (21), A12 (22), A13 (23), A14 (24), A15 (25). The objective functions are the total 

weight W and the maximum level drift δ, and the ideal situation of the optimized 

structure is the lightest total weight min W and the minimum maximum level drift 

min δ. The number of GSO population is 300, and the capacity of the elite set M is 

set to 50. The results are shown in Fig. 7.28, Fig. 7.29, Fig. 7.30 and Fig. 7.31, after 

100, 200 and 500 iterations respectively. 

After 100 iterations the Pareto optimal front of the elite set is placed in 

Fig. 7.28 , and the boundary values are as follows: the (max W, min δ) is 

(165158.8848 N, 1.00924 cm), and the (min W, max δ ) is (77943.9492 N, 4.51741 

cm). From Fig. 7.28, it is known that MGSO can get a uniform and smooth Pareto 

optimal front after 100 iterations. 
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Fig. 7.27 Two bay five story planar frame 

Table 7.3 Load case of two bay five storey planar frame 

Load combination 

Load type Add site Load type 
Load 

direction 

Load 

size 

Constant load G

Component 16-25 Uniform load -y 
11.76k

N/m 

Node 1, 3 
Concentrated 

load 
-y 19.6kN 

Node 4, 6, 7, 8, 9, 12, 13, 

15 

Concentrated 

load 
-y 40.2kN 

Live load Q Component 16-25 Uniform load -y 
10.78k

N/m 

Wind load W 

Node 1 
Concentrated 

load 
+x 

5.684k

N 

Node 4 
Concentrated 

load 
+x 

7.252k

N 

Node 7 
Concentrated 

load 
+x 

6.664k

N 

Node 10 
Concentrated 

load 
+x 

5.978k

N 

Node 13 
Concentrated 

load 
+x 

6.272k

N 

Load 

combination 

G+0.9(Q+W) 

G+W 

G+Q 
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Table 7.4 Cross-section group for two bay five storey frame 

Section number 
Sectional area 

(cm2) 
Flexural modulus(cm3)

Sectional moment 

of inertia (cm4) 

1 51.38 282.83 2545.50 

2 57.66 356.08 3560.80 

3 63.67 435.25 4787.70 

4 69.81 537.46 6710.20 

5 79.81 579.13 7239.10 

6 80.04 678.13 9505.10 

7 91.24 731.20 10236.80 

8 97.00 938.83 15021.30 

9 109.80 1007.10 16113.50 

10 121.78 1319.35 23748.20 

11 136.18 1405.75 25303.40 

12 150.09 1757.77 35155.40 

13 166.09 1864.44 37288.70 

14 182.09 1971.10 39422.10 

 

 

 

Fig. 28 The Pareto optimal front of the elite set after 100 iterations 

The Pareto optimal front of the elite set after 200 iterations is showed in 

Fig. 7.29. The boundary values are as follows: the (max W, min δ) is (172434.249 N, 

0.9660 cm), and the (min W, max δ) is (71284.4964 N, 5.8630 cm).  
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Compared with Fig. 7.28, it is known from Fig. 7.29 that the Pareto optimal front 

after 200 iterations has wider distribution than the Pareto optimal front after 100 

iterations. The min W after 200 iterations is 71284.4964 N, which is smaller 

compared with the min W =77943.9492 N of 100 iterations. Although the 

uniformity of the Pareto optimal front does not increase, the distributed span 

increases significantly. So MGSO is an effective multi-objective approach. 

The Pareto optimal front of the elite set after 500 iterations is showed in 

Fig. 7.30. The boundary values are as follows: the (max W, min δ) is (174772.962 N, 

0.9580 cm), and the (min W, max δ) is (68989.2606 N, 5.7551 cm).  
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Fig. 7.29 The Pareto optimal front of the elite set after 200 iterations 

 

Fig. 7.30 The Pareto optimal front of the elite set after 500 iterations 

 

Fig. 7.31 The Pareto optimal front after 500 iterations 

Compared Fig. 7.29 with Fig. 7.30, it is noticed that the distribution of the Pareto 

front does not increase significantly, but the uniformity is good. 

The Pareto front corresponding to all the Pareto optimal solution after 500 

iterations is shown in Fig. 31. The Pareto optimal front after 500 iterations is 

uniform, and MGSO is an effective multi-objective algorithm. 
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7.7   Conclusions  

A new multi-objective group search optimizer which uses Pareto dominance and a 

crowding-distance based selection mechanism is presented in this paper. It is used 

for size optimization, shape optimization and dynamic optimization of truss 

structures and frame structures with continuous and discrete mixed variables. Seven 

numerical examples show the robust performance of the MGSO technique. 

Calculation results show that MGSO uses smaller populations, less generations and 

achieves better convergence rate, MGSO Pareto optimal solution distributes well, 

MGSO has simple constraint handling property, and has an obvious advantage for 

high-dimensional optimization problem. Meanwhile, its program is easy to 

implement, It is desired that MGSO is an efficient, practical multi-objective 

optimizer for the structural optimization of complex projects.  
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Chapter 8 

Prospecting Swarm Intelligent Algorithms 

As reviewed in previous chapters, there are only a few optimization algorithms in-

spired by animal behavior, including ACO, PSO and GSO. Although, PSO and 

GSO both are swarm intelligence (SI) optimization algorithms and draw inspira-

tion from animal social forging behavior, both of them were initially proposed for 

continuous function optimization problems, then they were developed for discrete 

optimization problems, they have some obvious differences. It is not difficult  to 

note from previous discussion that there are major difference between PSO and 

GSO. The first and the most fundamental one is that the PSO was originally de-

veloped from the models of coordinated animal motion. Animal swarm behavior, 

mainly bird flocking and fish schooling, serves as the metaphor for the design of 

PSO. The GSO was inspired by general animal searching behavior. A genetic so-

cial foraging model, e.g., PS model was employed as the framework to derive 

GSO. Secondly the producer of GSO is quite similar to the global best particle of 

PSO, the major difference is the producer performs producing, which is a search 

strategy that differs from the strategies performed by the scroungers and the dis-

persed members. While, in PSO each individual performs the same searching 

strategy. Thirdly, in GSO the producer remembers its head angle when it starts 

producing. In PSO each individual maintains memory to remember the best place 

it visited. Finally, unlike GSO, there is no dispersed group members that perform 

ranging strategy in PSO. 

Although the GSO and the evolutionary algorithm (EA) were inspired by com-

pletely different disciplines, as a population-based algorithm GSO shares some 

similarity with some EAs. For example, they all use the concept of fitness to guide 

search toward better solutions. The scrounging behavior of scroungers in GSO is 

similar to the crossover operator, e.g., extended intermediate crossover of real-

coded genetic algorithm. It can be seen from previous chapters that the GSO can 

get better results for some problems than other heuristic algorithms. The main rea-

son is that GSO is more like a hybrid heuristic algorithm, and combines the 

searching strategy of direct search, such as EAs and PSO. Therefore it is possible 

for GSO to better handle problems that are difficult for a single heuristic optimiza-

tion algorithm. 
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Based on their initial differences, PSO and GSO have inherent advantages and 

disadvantages and need to be continuously developed and improved. SI gradually 

shows its extensive use and strong vitality with over ten years’ development. Its 

inherent parallelism features make it an effective solving method for dealing with 

the distributed processing problems based on the massive information. SI con-

stantly makes progress and developments because of the advantages above. The 

natural system provides a useful elicitation for the artificial intelligence processing 

systems and the design of algorithms. SI as an important component of nature sys-

tem has shown potential advantages such as flexibility, stability, distributed con-

trol and self-organizing capacity. An increasing complex of information process-

ing requirements in engineering problems, especially the dynamic characteristics 

of outstanding issues, provide a broad space for the application research of SI. SI 

depends on probabilistic search algorithm, which is different from most other ap-

plication algorithms that based on gradient optimization algorithms. Although, lots 

of evaluation functions are usually used in the probabilistic search algorithm, 

compared with the gradient method and traditional evolution algorithms, SI still 

has the obvious advantages. 

However, the SI as an optimization algorithm, which inspires from the phe-

nomenon of groups of organisms in nature, has no mature and strict mathematical 

theory as a guide. Therefore, it leaves much to be developed and improved for SI. 

For example, the algorithm model itself need to be improved in the search effi-

ciency of solution space. The basic principle of the algorithm need rigorous 

mathematical demonstration. The parameters of algorithm have influence on the 

algorithm performance. The choosing and setting of parameters has no generally 

applicable method, and often relies on experience. All of these make the SI have 

strong dependence on the practical issues. There are cases in practical engineering 

which make the algorithms powerless on some problems. The SI algorithm need 

be improved greatly.  

Nevertheless, The idea of SI algorithm comes from nature. It is established by 

simulating biological behavior. From this point, the synthetic predator search 

(SPS) algorithm inspired from the area-restricted searching behavior [1] can be 

added to the category of SI. The social and civilization (SC) algorithm  inspired 

from the intra- and intersociety of animal societies, e.g., from human and social 

insect societies [2] is also a member of SI. SI algorithm is conceptually simple and 

easy to implement.  It can be founded that SI is not sensitive to all of the parame-

ter for different type of structures and shows the robustness of the algorithm. SI 

can handle a variety of large scale optimization problems which makes it particu-

larly attractive for practical engineering optimization.  

Besides, there is studies of simple single-celled organism for decades. Two dif-

ferent stochastic optimization algorithms were developed from the study of bacte-

ria recently, one of them is the bacterial chemotaxis (BC) algorithm based on  bac-

terial chemotaxis model [3], and the other is the bacterial foraging algorithm (BF) 

based on the chemotatic (foraging) behavior of e. coli bacteria [4]. Although only 

small-scale optimization problems were tackled  by these two algorithms, the po-

tential of bacterial-inspired algorithm remains to be explored.  
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Civil engineering structures such as buildings, bridges, stadiums, and offshore 

structures play an import role in our daily life. Constructing these structures re-

quires lots of budget. Thus, how to cost-efficiently design structures satisfying all 

required design constraints is an important factor to structural engineers. Although 

traditional mathematical gradient-based optimal techniques have been applied to 

the design of optimal structures. While, many practical engineering optimal prob-

lems are very complex and hard to solve by traditional method. The intelligent 

based algorithms are very suitable for continuous and discrete design variable 

problems such as ready-made structural members and have been vigorously ap-

plied to various structural design problems and obtained good results. So the SI 

algorithms leaves much to be studied and desired. The readers can study the full 

spectrum of the algorithms form different points and apply the algorithms to their 

own research problems.  
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