
www.allitebooks.com

http://www.allitebooks.org

Table	of	Contents
Introduction

Who	This	Book	Is	For
What	This	Book	Covers
How	This	Book	Is	Structured
What	You	Need	to	Use	This	Book
Conventions
Source	Code
Errata
p2p.wrox.com

Part	I:	HTML	and	CSS
Lesson	1:	Introduction	to	HTML5

What	Is	a	Markup	Language?
The	Simplest	HTML	Page	Possible
An	HTML	Template
Understanding	Elements	and	Attributes
Try	It

Lesson	2:	Basic	HTML
Structuring	Text
Links	and	Images
Try	It

Lesson	3:	Lists	and	Tables
Lists
Tables
Try	It

Lesson	4:	Introduction	to	CSS
CSS	Selectors
CSS	Files	and	Inline	Styles
Specificity
Inheritance
Browser	Defaults
Chrome	Scratch	Pad
Try	It

Lesson	5:	Structuring	Pages	with	CSS

www.allitebooks.com

http://www.allitebooks.org

The	Box	Model
Display	Type
Positioning	Elements
Controlling	Positions
Try	It

Lesson	6:	HTML	Forms
What	Is	a	Form?
Adding	Fields	to	a	Form
HTML5	Input	Fields
Try	It

Lesson	7:	Semantic	Tags
Grouping	and	Segmenting	Content
Styling	Semantic	Tags	with	CSS
Microformats
Summing	Up
Try	It

Lesson	8:	HTML5	Validation
Adding	Validation	Rules
Customizing	Validation
Disabling	Validation
Try	It

Lesson	9:	Drag	and	Drop
Understanding	Events
Drag	and	Drop	Example
Try	It

Lesson	10:	Dynamic	Elements
Summary	and	Details	Tags
Progress	Bar	and	Meter
Range	Element
Polyfills
Try	It

Part	II:	Dynamic	HTML5	Web	Applications	with	JavaScript	and	jQuery
Lesson	11:	JavaScript

JavaScript	Console
Data	Types
Control	Structures

www.allitebooks.com

http://www.allitebooks.org

Truthy	and	Falsy	Values
Dynamic	Typing
Try	It

Lesson	12:	Debugging
Try	It

Lesson	13:	Functions
Closures
Hoisting	and	Block	Scope
Arguments
Bind
Try	It

Lesson	14:	Objects
Object	Literals
Prototypes
Constructor	Functions
Modules
Try	It

Lesson	15:	JSON
Replacing	and	Reviving
Try	It

Lesson	16:	Document	Object	Model
Nodes	and	Objects
Try	It

Lesson	17:	jQuery	Selection
Loading	jQuery
Selecting	Elements
Pseudo-selectors
Selection	Within	a	Context
Wrapped	Objects
Try	It

Lesson	18:	jQuery	Traversal	and	Manipulation
Traversal
Chaining
Manipulation
Changing	Elements
Iteration

www.allitebooks.com

http://www.allitebooks.org

Try	It
Lesson	19:	jQuery	Events

Registering	Event	Listeners
Delegated	Event	Listeners
Form	Events
Screen	Events
Animation
Try	It

Lesson	20:	Data	Attributes	and	Templates
Template	Tag
Data	Attributes
Using	the	Template
Try	It

Lesson	21:	jQuery	Plugins
jQuery	UI
Writing	a	Plugin
Try	It

Part	III:	HTML5	Multimedia
Lesson	22:	HTML5	Audio

File	Formats
Audio	Tag
Controlling	Playback
Try	It

Lesson	23:	HTML5	Video
File	Formats
Controlling	Volume
Controlling	Playback	Speed
Controlling	Video	Size
Media	Source	Extensions
Encrypted	Media	Extensions
Web	Cryptography
Try	It

Lesson	24:	Canvas:	Part	I
Simple	Drawing
Drawing	Lines
Circles	and	Curves

www.allitebooks.com

http://www.allitebooks.org

Drawing	Text
Try	It

Lesson	25:	Canvas:	Part	II
Linear	Gradients
Shadows
Images
Transforming	Shapes
Basic	Animation
Try	It

Lesson	26:	CSS3:	Part	I
Selectors
CSS	Borders
Custom	Fonts
Try	It

Lesson	27:	CSS3:	Part	II
Linear	Gradients
Calc	Function
Text	Effects
2D	Transformations
Transitions
Try	It

Lesson	28:	CSS3	Media	Queries
Adding	Media	Queries
External	Stylesheets
Try	It

Part	IV:	HTML5	APIs
Lesson	29:	Web	Servers

URLs
Choosing	a	Web	Server
Try	It

Lesson	30:	Web	Storage
Client-Side	Storage
Web	Storage	API
Storing	Structured	Data
Try	It

Lesson	31:	IndexedDB

www.allitebooks.com

http://www.allitebooks.org

Creating	a	Database
Storing	Data
Reading	Data
Deleting	Data
Try	It

Lesson	32:	Application	Cache
Manifest	Files
Updating	Resources
Cache	Events
Try	It

Lesson	33:	Web	Workers
JavaScript	Event	Model
Web	Workers
Try	It

Lesson	34:	Files
FileReader	API
Other	File-Related	APIs
Try	It

Lesson	35:	AJAX
AJAX	Requests
Try	It

Lesson	36:	Promises
Working	with	Promises
Creating	Promises
Try	It

Part	V:	Mobile
Lesson	37:	Responsive	Web	Design

Testing	Screen	Resolution
Flexible	Grids
Media	Queries
Try	It

Lesson	38:	Location	API
Monitor	Movement
Loading	the	Application
Try	It

Lesson	39:	jQuery	Mobile:	Part	I

www.allitebooks.com

http://www.allitebooks.org

Understanding	jQuery	Mobile
JQUERY	Mobile	Pages
Try	It

Lesson	40:	jQuery	Mobile:	Part	II
UI	Components
Events
Try	It

Copyright
About	the	Author
Credits
Acknowledgments
Advertisement
End	User	License	Agreement

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

kindle:embed:0001?mime=image/jpg
http://www.allitebooks.org

List	of	Illustrations
Figure	1.1

Figure	1.2

Figure	1.3

Figure	1.5

Figure	1.6

Figure	2.1

Figure	2.2

Figure	2.3

Figure	2.4

Figure	2.5

Figure	3.1

Figure	3.2

Figure	3.3

Figure	3.4

Figure	3.5

Figure	3.6

Figure	3.7

Figure	4.1

Figure	4.2

Figure	4.3

Figure	4.4

Figure	4.5

Figure	5.1

Figure	5.2

Figure	5.3

Figure	5.4

Figure	5.5

Figure	5.6

Figure	5.7

Figure	5.8

Figure	5.9

Figure	5.10

Figure	5.11

Figure	6.1

Figure	6.2

Figure	6.3

Figure	6.4

Figure	6.5

Figure	6.6

Figure	6.7

Figure	6.8

Figure	6.9

Figure	7.1

Figure	8.1

Figure	8.2

Figure	8.3

Figure	8.4

Figure	8.5

Figure	9.1

Figure	9.2

Figure	10.1

Figure	10.2

Figure	10.3

Figure	10.4

Figure	10.5

Figure	10.6

Figure	10.7

Figure	11.1

Figure	11.2

Figure	11.3

Figure	12.1

Figure	12.2

Figure	12.3

Figure	12.4

Figure	12.5

Figure	12.6

Figure	12.7

Figure	12.8

Figure	12.9

Figure	12.10

Figure	15.1

Figure	16.1

Figure	16.2

Figure	16.3

Figure	17.1

Figure	17.2

Figure	18.1

Figure	18.2

Figure	18.3

Figure	18.4

Figure	18.5

Figure	19.1

Figure	19.2

Figure	20.1

Figure	21.1

Figure	21.2

Figure	21.3

Figure	21.4

Figure	22.1

Figure	22.2

Figure	22.3

Figure	22.4

Figure	23.1

Figure	24.1

Figure	24.2

Figure	24.3

Figure	24.4

Figure	24.5

Figure	24.6

Figure	24.7

Figure	24.8

Figure	24.9

Figure	24.10

Figure	24.11

Figure	24.12

Figure	25.1

Figure	25.2

Figure	25.3

Figure	25.4

Figure	25.5

Figure	25.6

Figure	25.7

Figure	25.8

Figure	25.9

Figure	26.1

Figure	26.2

Figure	26.3

Figure	26.4

Figure	26.5

Figure	26.6

Figure	26.7

Figure	27.1

Figure	27.2

Figure	27.3

Figure	27.4

Figure	27.5

Figure	27.6

Figure	27.7

Figure	27.8

Figure	27.9

Figure	28.1

Figure	28.2

Figure	28.3

Figure	29.1

Figure	29.2

Figure	30.1

Figure	31.1

Figure	31.2

Figure	31.3

Figure	32.1

Figure	32.2

Figure	33.1

Figure	33.2

Figure	33.3

Figure	33.4

Figure	34.2

Figure	34.1

Figure	34.3

Figure	34.4

Figure	34.5

Figure	35.1

Figure	35.2

Figure	35.3

Figure	35.4

Figure	36.1

Figure	37.1

Figure	37.2

Figure	37.3

Figure	37.4

Figure	37.5

Figure	37.6

Figure	37.7

Figure	37.8

Figure	37.9

Figure	37.10

Figure	38.1

Figure	38.2

Figure	38.3

Figure	38.4

Figure	38.5

Figure	38.6

Figure	38.7

Figure	38.8

Figure	39.1

Figure	39.2

Figure	39.3

Figure	39.4

Figure	39.5

Figure	39.6

Figure	40.1

Figure	40.2

Figure	40.3

Figure	40.4

Figure	40.5

Figure	40.6

Figure	40.7

Figure	40.8

List	of	Tables
Table	22.1

Table	23.1

Table	26.1

Introduction
THE	BASIC	TECHNOLOGIES	BEHIND	THE	WEB	are	now	almost	a	quarter	of	a
century	old.	HTML	dates	all	the	way	back	to	1993,	the	same	year	the	first	popular	web
browser,	Mosaic,	appeared	on	the	scene.

You	may	have	thought,	therefore,	that	the	technologies	behind	the	Web	would	have
entered	a	comfortable	middle-age—still	improving	around	the	edges	maybe—but	not
innovating	with	the	pace	and	excitement	of	their	early	years.

In	fact,	nothing	could	be	further	from	the	truth.	The	last	ten	years	have	been	some	of	the
most	exciting	and	innovative	in	the	history	of	the	Web,	and	this	pace	of	change	is
continuing	to	accelerate.	As	a	result,	the	Web	is	no	longer	the	preserve	of	simple
“websites.”	It	is	the	realm	of	“web	applications”:	feature-rich	applications	that	just	happen
to	run	inside	web	browsers.

A	whole	new	class	of	computing	devices	has	accentuated	the	pace	of	this	change.	Web
browsers	are	no	longer	the	preserve	of	desktops	and	laptops:	They	now	appear	on	a
myriad	of	devices	from	smart	phones	to	smart	TVs.	The	fact	that	web	browsers	are	the	one
universal	feature	across	these	diverse	devices	has	served	to	enhance	the	appeal	of	browser-
based	web	applications:	You	write	the	web	application	once,	and	your	users	use	it	from
any	device	they	choose.

This	innovation	of	the	last	decade	did	not	happen	by	accident.	Various	standards
committees	have	been	hard	at	work	for	more	than	a	decade	devising	a	set	of	standards	that
have	been	grouped	under	the	umbrella	of	“HTML5.”	These	standards	have	now	made
their	way	into	all	the	major	web-browsers.

If	you	are	familiar	with	HTML,	the	term	HTML5	may	simply	imply	a	new	version	of	the
HTML	markup	language—which	may	be	interesting—but	not	revolutionary.	In	fact,
HTML5	is	far	more	than	a	markup	language;	it	is	a	set	of	programming	APIs,
implemented	by	browsers,	that	allow	web	pages	to	perform	tasks	that	had	never	before
been	possible.

For	example,	it	is	now	possible	for	an	HTML	page	to	store	massive	amounts	of	data	in
your	browser,	operate	without	a	network	connection,	request	more	information	from	a	web
server	as	and	when	it	needs	it,	and	perform	complex	computations	in	the	background
without	interfering	with	your	browsing	experience.

The	goal	of	this	book	is	to	teach	you	how	to	write	web	applications.	In	order	to	achieve
this,	you	need	to	understand	more	than	HTML5.	You	need	to	understand	a	set	of	related
technologies.	More	importantly,	however,	you	need	to	understand	how	these	technologies
work	together.

HTML5,	for	instance,	is	closely	tied	to	JavaScript.	In	many	cases,	if	you	want	to	use
HTML5,	you	need	to	do	so	through	a	JavaScript	API.	It	is	thus	not	possible	to	master
HTML5	without	also	mastering	JavaScript.

JavaScript	is	also	approaching	middle	age,	yet	it	too	continues	to	evolve	in	tandem	with

HTML5.	Historically	considered	something	of	an	oddity,	JavaScript	has	turned	into	a	rich
and	expressive	programming	language,	capable	of	much	more	than	the	simple	tasks	(such
as	form	validation)	that	it	was	consigned	for	so	many	years.

A	large	part	of	the	appeal	of	JavaScript	is	the	myriad	of	enormously	useful,	freely
available	libraries	that	are	written	in	the	language.	Chief	among	these	is	jQuery,	a
JavaScript	library	that	has	taken	on	a	life	of	its	own	and	come	to	redefine	the	way
programmers	add	dynamic	features	to	their	web	pages.	You	can	write	web	applications
without	learning	jQuery,	but	your	code	will	lack	the	conciseness	of	expression	the	jQuery
library	affords.

Finally,	in	order	to	produce	visually	appealing	web	applications	you	will	need	to	learn
Cascading	Style	Sheets.	Just	like	all	other	web	technologies,	CSS	also	continues	to	grow
and	evolve,	and	the	newest	version	of	CSS—called	CSS3—means	that	web	pages	can
achieve	dazzling	visual	effects.

Who	This	Book	Is	For
This	book	is	for	anyone	who	wants	to	learn	how	to	build	dynamic	websites	and	web
applications	using	standards-based	technologies.

You	may	have	experience	with	HTML4,	although	that	is	not	required	because	the	early
lessons	provide	an	in-depth	look	at	all	of	the	most	important	features	of	HTML.	More
experienced	readers	may,	on	the	other	hand,	choose	to	skip	these	lessons.

This	book	contains	many	code	examples	based	on	JavaScript.	It	is	expected	that	you	have
some	programming	experience	before	reading	this	book,	although	not	necessarily	with
JavaScript.	If	you	have	no	experience	with	programming,	you	may	want	to	prepare	with
some	online	tutorials	and	exercises	before	beginning.

Finally,	this	book	is	for	programmers	who	want	to	learn	by	doing.

www.allitebooks.com

http://www.allitebooks.org

What	This	Book	Covers
HTML5	is	a	“versionless”	standard.	The	specifications	behind	HTML5	continue	to	grow
and	evolve,	but	this	evolution	is	not	matched	with	“official”	or	versioned	releases.

As	such,	this	book	does	not	focus	on	a	specific	version	of	HTML5;	instead,	it	focuses	on
the	aspects	of	HTML5	that	have	achieved	widespread	adoption	in	all	of	the	most	common
web	browsers.

The	JavaScript	language	does	contain	versioned	releases,	but	unlike	most	programming
languages,	you	have	no	control	over	the	version	that	your	users	will	choose	because	this	is
a	byproduct	of	the	browser	that	they	select.	As	a	result,	this	book	will	not	focus	on	a
specific	version	of	JavaScript:	It	will	focus	on	the	features	that	are	universally	available	in
all	the	major	browsers.

This	book	will	use	a	number	of	JavaScript	libraries	that	are	subject	to	change	over	time.
Whenever	a	library	is	used,	a	specific	version	will	be	specified.	In	many	cases,	a	more
recent	version	of	the	library	will	work	without	issue,	although	the	code	is	only	guaranteed
to	work	with	the	specified	version.

This	book	is	intended	as	a	hands-on	guide.	Each	lesson	includes	code	and	exercises	that
you	can	follow	along	with,	and	even	augment	if	you	choose.	It	is	important	that	you
follow	along	with	these	exercises	because	it	is	this	process	that	will	consolidate	your
understanding	of	how	the	technologies	really	work.

How	This	Book	Is	Structured
This	book	is	split	into	five	sections.	The	first	two	sections	are	intended	to	be	read	in	order
because	they	provide	you	with	the	foundation	knowledge	required	to	add	more	complex
functionality.	The	remaining	three	sections	can	be	read	in	any	order	you	choose.

The	first	section	of	the	book	provides	an	introduction	to	HTML	and	CSS	and	looks	at	how
to	build	static	web	pages	with	these	technologies.	By	the	end	of	this	lesson,	you	will	have
a	solid	foundation	on	which	to	start	adding	more	complex	functionality.

In	the	second	section,	you	turn	your	attention	to	JavaScript	and	jQuery,	and	look	at	how	a
static	web	page	can	be	converted	into	a	dynamic	web	application.

The	third	section	of	the	book	looks	at	the	multimedia	capabilities	of	web	browsers	and
how	you	can	harness	these	through	technologies	such	as	the	Canvas	API	and	CSS3.

Once	you	have	an	understanding	of	JavaScript,	you	can	turn	your	attention	to	the	HTML5
APIs	that	allow	you	to	store	data	inside	the	browser,	access	data	from	web	servers,	and
execute	tasks	on	background	processes.	It	is	these	features	that	truly	turn	your	website	into
a	feature-rich	web	application.

In	the	final	section	of	the	book,	you	will	turn	your	attention	to	mobile	devices	and	address
the	question	of	how	you	can	convert	your	web	application	into	a	mobile	web	application
that	functions	on	any	mobile	device	your	users	may	choose	to	use.

A	large	portion	of	this	book	is	structured	around	the	development	of	a	sample	web
application.	If	you	choose	to	skip	a	lesson,	you	will	therefore	need	to	download	a
completed	version	of	that	lesson’s	web	application	before	starting	the	next	lesson.

What	You	Need	to	Use	This	Book
In	order	to	complete	most	of	the	exercises	in	this	book,	you	will	need	nothing	more	than	a
text	editor	and	the	Chrome	web	browser.

If	you	have	a	favorite	text	editor,	you	can	continue	to	use	it	for	this	book.	If	you	do	not
have	a	text	editor	installed,	Notepad++	(http://notepad-plus-plus.org)	is	a	good
option	for	Windows,	Text	Wrangler
(http://www.barebones.com/products/textwrangler)	is	a	good	choice	for	Macs,	and
EMacs	is	a	good	choice	for	Linux.	You	may	also	choose	to	use	an	Integrated	Development
Environment	(IDE)	such	as	Eclipse.

The	Chrome	web	browser	has	been	chosen	for	this	book	not	so	much	for	the	capabilities
of	the	browser	itself,	but	for	the	developer	tools	that	accompany	it.	You	can	choose	to	use
an	alternative	web	browser	if	you	wish,	but	the	examples	will	focus	on	Chrome.

The	Chrome	web	browser	is	subject	to	frequent	updates,	and	it	is	assumed	that	you	will
use	the	latest	version	of	the	browser.

In	later	sections	of	this	book,	you	will	also	need	a	web	server.	A	lesson	is	provided	to
guide	you	through	the	process	of	installing	and	configuring	a	web	server.

The	source	code	for	the	samples	is	available	for	download	from	the	Wrox	website	at:
www.wrox.com/go/html5jsjquery24hr

http://notepad-plus-plus.org
http://www.barebones.com/products/textwrangler
http://www.wrox.com/go/html5jsjquery24hr

Conventions
To	help	you	get	the	most	from	the	text	and	keep	track	of	what’s	happening,	we’ve	used	a
number	of	conventions	throughout	the	book.

Warning
Warnings	hold	important,	not-to-be-forgotten	information	that	is	directly	relevant	to
the	surrounding	text.

Note
Notes	indicate	notes,	tips,	hints,	tricks,	or	asides	to	the	current	discussion.

As	for	styles	in	the	text:

We	highlight	new	terms	and	important	words	when	we	introduce	them.

We	show	keyboard	strokes	like	this:	Ctrl+A.

We	show	filenames,	URLs,	and	code	within	the	text	like	so:
persistence.properties.

We	present	code	in	two	different	ways:
We	use	a	monofont	type	with	no	highlighting	for	most	code	examples.

We	use	bold	to	emphasize	code	that	is	particularly	important	in	the	present

context	or	to	show	changes	from	a	previous	code	snippet.

Source	Code
As	you	work	through	the	examples	in	this	book,	you	may	choose	either	to	type	in	all	the
code	manually	or	to	use	the	source	code	files	that	accompany	the	book.	All	the	source
code	used	in	this	book	is	available	for	download	at	www.wrox.com.	For	this	book,	the	code
download	is	on	the	Download	Code	tab	at:
www.wrox.com/go/html5jsjquery24hr

You	can	also	search	for	the	book	at	www.wrox.com	by	ISBN	(the	ISBN	for	this	book	is
978-1-1190-0116-4)	to	find	the	code.	A	complete	list	of	code	downloads	for	all	current
Wrox	books	is	available	at	www.wrox.com/dynamic/books/download.aspx.

Most	of	the	code	on	www.wrox.com	is	compressed	in	a	.ZIP	or	.RAR	archive,	or	a	similar
archive	format	appropriate	to	the	platform.	Once	you	download	the	code,	just	decompress
it	with	an	appropriate	compression	tool.

http://www.wrox.com
http://www.wrox.com/go/html5jsjquery24hr
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com

Errata
We	make	every	effort	to	ensure	that	there	are	no	errors	in	the	text	or	in	the	code.	However,
no	one	is	perfect,	and	mistakes	do	occur.	If	you	find	an	error	in	one	of	our	books,	such	as	a
spelling	mistake	or	faulty	piece	of	code,	we	would	be	very	grateful	for	your	feedback.	By
sending	in	errata,	you	may	save	another	reader	hours	of	frustration,	and	at	the	same	time,
you	will	be	helping	us	provide	even	higher	quality	information.

To	find	the	errata	page	for	this	book,	go	to

www.wrox.com/go/html5jsjquery24hr	and	click	the	Errata	link.	On	this	page	you	can
view	all	errata	that	has	been	submitted	for	this	book	and	posted	by	Wrox	editors.

If	you	don’t	spot	“your”	error	on	the	Book	Errata	page,	go	to
www.wrox.com/contact/techsupport.shtml	and	complete	the	form	there	to	send	us	the
error	you	have	found.	We’ll	check	the	information	and,	if	appropriate,	post	a	message	to
the	book’s	errata	page	and	fix	the	problem	in	subsequent	editions	of	the	book.

http://www.wrox.com/go/html5jsjquery24hr
http://www.wrox.com/contact/techsupport.shtml

p2p.wrox.com
For	author	and	peer	discussion,	join	the	P2P	forums	at	http://p2p.wrox.com.	The	forums
are	a	Web-based	system	for	you	to	post	messages	relating	to	Wrox	books	and	related
technologies	and	interact	with	other	readers	and	technology	users.	The	forums	offer	a
subscription	feature	to	email	you	topics	of	interest	of	your	choosing	when	new	posts	are
made	to	the	forums.	Wrox	authors,	editors,	other	industry	experts,	and	your	fellow	readers
are	present	on	these	forums.

At	http://p2p.wrox.com,	you	will	find	a	number	of	different	forums	that	will	help	you,
not	only	as	you	read	this	book,	but	also	as	you	develop	your	own	applications.	To	join	the
forums,	just	follow	these	steps:

1.	 Go	to	http://p2p.wrox.com	and	click	the	Register	link.

2.	 Read	the	terms	of	use	and	click	Agree.

3.	 Complete	the	required	information	to	join,	as	well	as	any	optional	information	you
wish	to	provide,	and	click	Submit.

4.	 You	will	receive	an	email	with	information	describing	how	to	verify	your	account
and	complete	the	joining	process.

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

Note
You	can	read	messages	in	the	forums	without	joining	P2P,	but	in	order	to	post	your
own	messages,	you	must	join.

Once	you	join,	you	can	post	new	messages	and	respond	to	messages	other	users	post.	You
can	read	messages	at	any	time	on	the	Web.	If	you	would	like	to	have	new	messages	from	a
particular	forum	emailed	to	you,	click	the	Subscribe	to	this	Forum	icon	by	the	forum	name
in	the	forum	listing.

For	more	information	about	how	to	use	the	Wrox	P2P,	be	sure	to	read	the	P2P	FAQs	for
answers	to	questions	about	how	the	forum	software	works,	as	well	as	many	common
questions	specific	to	P2P	and	Wrox	books.	To	read	the	FAQs,	click	the	FAQ	link	on	any
P2P	page.

www.allitebooks.com

http://www.allitebooks.org

Part	I
HTML	and	CSS

Lesson	1:	Introduction	to	HTML5

Lesson	2:	Basic	HTML

Lesson	3:	Lists	and	Tables

Lesson	4:	Introduction	to	CSS

Lesson	5:	Structuring	Pages	with	CSS

Lesson	6:	HTML	Forms

Lesson	7:	Semantic	Tags

Lesson	8:	HTML5	Validation

Lesson	9:	Drag	and	Drop

Lesson	10:	Dynamic	Elements

Lesson	1

Introduction	to	HTML5
This	lesson	is	an	introduction	to	the	HTML5	markup	language.	The	HTML5	markup
language	is	a	language	for	structuring	and	expressing	the	content	of	a	web	page	in	a
manner	that	can	be	consistently	interpreted	by	a	web	browser.

If	you	are	already	familiar	with	HTML,	much	of	this	chapter	will	look	very	familiar.	It	is
still	important	that	you	read	through	this	lesson,	however,	because	there	are	a	number	of
important	changes	in	HTML5,	and	many	of	these	are	very	subtle.

If	you	are	not	familiar	with	HTML,	or	have	only	a	passing	familiarity,	this	lesson	will
provide	you	with	the	background	you	need	to	understand	the	basics	of	an	HTML	web
page.	This	lesson	is	only	an	introduction,	however;	the	material	in	this	lesson	will	be
enhanced	in	the	remainder	of	this	section.

What	Is	a	Markup	Language?
A	markup	language	is	a	language	for	annotating	a	document	with	a	set	of	tags.	These	tags
are	used	to	provide	additional	meaning	and	structure	to	the	text	of	the	document,	or
provide	instructions	on	the	manner	in	which	it	should	be	displayed	to	the	reader.

For	instance,	a	tag	may	state	that	one	portion	of	the	text	is	a	header,	while	another	portion
is	a	paragraph	of	text.	Consider	the	following	document	fragment:

<h1>This	is	a	heading</h1>

<p>This	is	a	paragraph	of	text</p>

In	this	example,	the	tags	can	be	clearly	differentiated	from	the	content	of	the	document	by
the	angle	brackets.	The	following	represents	the	start	of	a	heading:

<h1>

while	this	represents	the	end	of	the	heading:

</h1>

Note
HTML	defines	six	categories	of	header	from	h1	to	h6.	The	lower	the	number,	the	more
important	the	header	is.

The	entire	h1	structure—including	the	start	tag,	the	end	tag,	and	its	textual	content—is
referred	to	as	an	element.

The	HTML5	markup	language	specifies	the	tags	that	can	be	used	in	an	HTML	document,
how	they	should	be	used,	and	what	additional	information	(called	attributes)	they	can
contain.

In	the	early	days	of	HTML,	many	of	the	tags	included	in	the	markup	language	instructed
the	browser	how	to	present	information.	For	instance,	tags	were	used	to	dictate	font	size
and	color.

The	HTML	markup	language	is	no	longer	responsible	for	dictating	the	presentation	of	a
document,	and	in	HTML5	most	of	the	remaining	presentation	tags	have	been	removed.
Presentation	is	now	the	sole	preserve	of	another	technology	called	Cascading	Style	Sheets,
which	will	be	examined	later	in	this	section.

Instead,	the	HTML5	markup	language	is	responsible	for	conveying	the	meaning	of	the
various	components	of	the	document	and	how	they	interact	with	other	components.

Note
Browsers	can	still	provide	their	own	default	styles	for	tags,	however,	and	this	is	why
an	h1	element	will	appear	in	large,	bold	text.

HTML5	greatly	enhances	the	expressiveness	of	earlier	version	of	HTML,	however,	and
allows	sections	of	the	document	to	be	marked	as,	amongst	other	things,	headers,	footers,
and	asides.

Earlier	versions	of	HTML	were	based	on	a	technology	called	SGML,	which	is	a	language
for	expressing	markup	languages.	As	of	HTML5,	the	HTML	markup	language	is	not
based	on	any	other	technology.	This	has	removed	a	number	of	restrictions	from	the
language;	therefore,	if	you	are	familiar	with	HTML,	you	will	notice	in	the	sections	that
follow	that	a	number	of	the	old	rules	no	longer	apply.

The	Simplest	HTML	Page	Possible
When	learning	any	technology,	it’s	always	a	good	idea	to	start	out	with	the	simplest
implementation	possible.	In	HTML5,	the	simplest	page	you	can	possibly	write	is	as
follows:

<!DOCTYPE	html>

hello	world!!!

Open	your	favorite	text	editor,	enter	this	text,	and	save	the	document	as	hello.html.

Now,	open	Chrome,	and	select	Ctrl-O	in	Windows	or	-O	on	a	Mac,	navigate	to	the	file	you
have	just	saved,	and	select	“Open”.	This	should	look	like	Figure	1.1	when	loaded	in	the
web	browser.

Figure	1.1

This	may	not	look	like	a	web	page;	after	all,	there	are	no	tags	in	the	page	except	the
strange	looking	tag	on	the	first	line	of	the	document.

With	the	page	open	in	Chrome,	now	select	to	open	the	developer	tools:

Command+Option+I	on	OS	X

F12	or	Ctrl+Shift+I	on	Windows

This	should	open	the	window	shown	in	Figure	1.2	below	the	web	page.

Figure	1.2

This	is	the	web-browser’s	internal	representation	of	the	web	page.	As	you	can	see,	this	has
normalized	the	structure	of	the	document,	and	does	provide	a	set	of	tags	nested	inside	one
another.	On	the	outermost	level	is	the	html	element,	and	inside	this	are	two	elements:	head
and	body.	The	content	of	the	body	element	is	the	text	you	wrote	in	the	text	editor.

The	document	has	been	normalized	to	conform	to	the	rules	of	the	Document	Object	Model
(DOM).	The	DOM	will	turn	out	to	be	enormously	important	throughout	this	book	because
much	of	the	power	of	modern	web	pages	comes	from	their	ability	to	manipulate	the	DOM
after	the	page	has	loaded.

The	manner	in	which	a	Document	Object	Model	should	be	constructed	from	an	HTML

page	has	been	a	contentious	issue	since	HTML	first	appeared.	Historically,	different
browsers	would	generate	different	models	for	the	same	HTML,	and	this	made	it	very
difficult	to	write	cross-browser	web	pages.

In	order	to	counteract	cross-browser	issues,	the	World	Wide	Web	Consortium	(W3C),
which	is	the	standards	body	behind	web	standards	such	as	HTML,	decided	to	recommend
a	set	of	standards	placing	the	onus	on	the	web	page	developer.	These	standards,	called
HTML	Strict	and	XHTML,	forced	the	web	page	developer	to	create	a	normalized	web
page,	and	therefore	made	it	easy	for	web	browsers	to	render	pages	consistently.

This	approach	did	not	work	very	well.	The	real	power	behind	HTML	is	not	the	standards
bodies,	but	the	browser	vendors	because	they	ultimately	decide	what	is	a	valid	web	page.
They	did	not	want	to	enforce	this	strictness	on	web	pages	because	failing	to	load	web
pages	would	only	serve	to	make	their	browser	look	deficient.

As	the	W3C	continued	on	with	their	strict	standards,	a	rival	group	called	WHATWG
started	work	on	a	rival	standard	that	would	eventually	become	HTML5.	The	members	of
this	group	were	made	up	of	participants	from	the	main	browser	vendors,	and	their	goals
were	far	more	pragmatic.	Rather	than	creating	a	whole	new	set	of	standards,	this	group
first	looked	at	what	browsers	were	already	doing	and,	where	possible,	formed	standards
from	this.

W3C	eventually	abandoned	their	efforts	for	strictness	and	joined	WHATWG’s	efforts,	and
the	two	groups	each	publish	a	version	of	the	HTML5	standard.

A	large	part	of	the	HTML5	standard	describes	how	browser	vendors	should	create	a
normalized	DOM	from	a	non-normalized	HTML	document.	This	is	why	Chrome	created
the	DOM	that	it	did	in	the	preceding	example,	and	why	Firefox,	IE,	and	Safari	would
create	exactly	the	same	structures.

An	HTML	Template
In	the	previous	section,	you	wrote	the	simplest	web	page	you	could	write.	In	this	section,
you	will	write	a	web	page	following	a	basic	template	that	is	intended	to	represent	the
simplest	HTML	structure	you	should	write.

I	will	first	present	the	template,	and	then	I	will	walk	you	through	it	line	by	line.	Open	a
new	document	in	your	text	editor,	and	save	the	following	as	template.html:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

</head>

<body>

							This	is	the	body	of	the	document.

</body>

</html>

If	you	open	this	in	Chrome,	and	then	view	the	DOM	in	the	developer	tools,	it	will	look
like	the	example	in	Figure	1.3.

Figure	1.3

As	you	can	see,	in	this	case	there	is	far	closer	alignment	between	the	content	you	provided
in	the	HTML	file	and	the	normalized	structure	generated	by	the	browser.

Let’s	now	walk	through	each	line	in	the	document	and	examine	its	purpose.

The	first	line	in	the	document	is	as	follows:

<!DOCTYPE	html>

This	line	defines	the	document	type	of	the	page.	Because	there	have	been	many	different
HTML	standards	over	the	years,	the	browser	uses	this	line	to	understand	which	of	these
standards	the	page	is	using,	and	then	uses	the	rules	applicable	for	this	standard	to	interpret
the	content	of	the	page	and	render	it	accordingly.

This	is	the	HTML5	document	type	definition,	and	comes	as	a	pleasant	surprise	for
developers	who	may	be	accustomed	to	copying	and	pasting	DOCTYPE	declarations	such
as:

<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	4.01//EN"	

"http://www.w3.org/TR/html4/strict.dtd">

The	other	main	surprise	about	this	document	type	definition	is	that	it	does	not	include	a
version	number:	The	document	type	is	simply	html.

Although	the	specification	is	referred	to	as	HTML5,	it	defines	a	“living-standard”	that	will
be	subject	to	incremental	change	as	and	when	browser	vendors	implement,	and	agree	on,
new	features.	Put	another	way,	there	will	never	be	another	version	of	HTML,	but	HTML
will	always	continue	to	evolve.

The	next	line	contains	the	opening	html	tag,	which	encapsulates	the	remainder	of	the
document:

<html	lang="en">

This	tag	contains	an	attribute	called	lang,	which	has	been	given	the	value	en.	Attributes
provide	a	mechanism	for	providing	extra	meaning	to	tags.	This	particular	attribute	is
stating	that	the	language	of	the	document	is	English.

www.allitebooks.com

http://www.allitebooks.org

Note
The	ISO	standard	639-1	defines	the	set	of	two-letter	codes	that	can	be	used	for
languages.	These	can	also	be	paired	with	a	country	code,	for	instance	en-US.	Country
codes	are	defined	in	the	ISO	standard	3166.

As	with	many	aspects	of	HTML5,	although	the	specification	defines	the	attributes	and
their	expected	values,	it	is	up	to	the	browser	to	decide	what	to	do	with	this	information.
The	browser	may	use	this	information	to	suggest	a	translation	to	a	non-English	speaker,	or
it	may	do	absolutely	nothing	with	this	information.

The	next	element	in	the	document	is	the	head	element.	This	is	the	section	of	the	document
where	you	can	provide	important	metadata	about	the	document,	along	with	links	to	other
files	needed	by	the	document.	The	head	section	never	contains	any	visual	components	of
the	web	page.	In	this	particular	case,	the	head	contains	one	important	piece	of	metadata:

<meta	charset="utf-8"/>

This	specifies	that	the	character	encoding	of	the	document	is	UTF-8.	I	will	not	cover
character	encodings	in	this	section,	but	the	specification	recommends	setting	this.

There	is	one	other	element	that	is	commonly	added	to	the	head	element:	the	title
element.	This	is	the	text	that	the	browser	will	display	in	the	title	bar	when	the	web	page	is
loaded.	Therefore,	add	the	following	inside	the	head	section:

<title>Basic	template</title>

and	then	view	the	page	in	Chrome;	the	tab	header	will	appear	as	follows:

Figure	1.4

Next	you	come	to	the	body	element.	This	is	where	all	the	visual	elements	of	the	page	will
be	described.	In	this	particular	example,	the	body	consists	of	a	single	text	string,	but	it	is
this	area	of	the	document	that	you	will	enhance	in	the	chapters	ahead	to	create	interesting
web	pages.

Understanding	Elements	and	Attributes
Even	though	the	examples	you	have	created	are	very	simple,	you	can	already	see	that
elements	can	be	nested	inside	one	another,	and	as	a	result,	create	a	tree-like	structure.

Every	HTML	document	has	a	single	top-level	element,	which	is	always	the	html	element
(the	document	type	element	is	not	part	of	the	document	as	such).

In	addition,	every	element	in	the	document	can	have	zero	or	more	children.	The	html
element	has	two	children:	head	and	body.	The	head	element	in	turn	has	a	child	of	its	own:
the	meta	element.

Every	element	in	the	document	(except	the	html	element)	has	one	(and	only	one)	parent.
The	parent	of	the	head	element	is	the	html	element.	The	parent	of	the	meta	element	is	the
head	element.

As	you	will	see,	the	structure	of	pages	will	become	considerably	more	complex,	and	the
degrees	of	nesting	will	increase	enormously.	No	matter	how	complex	the	pages	become,
however,	all	the	elements	will	follow	these	simple	rules.

You	have	examined	how	elements	consist	of	an	opening	and	closing	tag;	for	instance	the
opening	of	the	head	tag	is	<head>	while	the	closing	is	an	identically	named	tag	preceded
by	a	forward	slash	</head>.

Some	elements	do	not	require	any	content:	The	tag	and	its	attributes	provide	all	the
information	that	is	required.	In	this	case,	the	start	and	the	end	tag	can	be	combined	into	the
following	construct:

<meta	charset="utf-8"/>

The	forward	slash	before	the	end	of	the	tag	indicates	that	the	tag	is	being	closed.	This	is
the	direct	equivalent	of	the	following:

<meta	charset="utf-8"/>

You	should	always	ensure	that	all	tags	are	closed	in	the	reverse	order	they	are	opened.	For
example,	you	should	never	write	markup	as	follows:

<p>Hello</p>

In	this	case,	the	strong	element	is	supposed	to	be	the	child	of	the	p	element,	but	the	p
element	ends	before	the	strong	element.

Note
The	strong	tag	is	used	to	indicate	that	a	piece	of	text	is	important.	Although	this	is
often	confused	with	the	now	deprecated	bold	tag,	it	is,	in	fact,	still	a	valid	HTML5
tag.	This	tag	is	not	considered	a	presentation	tag	because	it	indicates	that	text	is
important,	not	how	this	text	should	be	styled.	You	may	decide	that	strong	elements
are	colored	red	rather	than	with	a	bold	font.

If	you	add	this	to	your	template.html	file	before	the	ending	body	tag,	and	then	view	the
normalized	structure	in	Chrome,	you	will	notice	that	the	browser	has	rearranged	these
tags,	as	you	can	see	in	Figure	1.5.

Figure	1.5

Although	the	HTML5	specification	does	have	rules	for	fixing	up	your	mistakes,	it	is
generally	best	not	to	make	mistakes	in	the	first	place	because	the	rules	of	the	HTML5
specification	may	not	be	what	you	intended.

I	generally	find	it	best	to	write	tags	in	lowercase.	As	it	turns	out,	tag	names	are	entirely
case	insensitive	because	they	are	automatically	converted	to	lowercase	in	the	DOM.	The
following	is	therefore	valid,	but	should	be	avoided	for	obvious	readability	reasons:

<HEADER>this	is	a	header</header>

The	final	feature	I	will	cover	in	this	lesson	is	attributes.	You	have	already	seen	two
examples	of	attributes,	on	the	html	tag	and	on	the	meta	tag.	Many	other	tags	also	support
attributes,	and	you	will	examine	these	throughout	the	book.

Attributes	often	consist	of	a	name/value	pair.	When	an	attribute	has	a	value,	the	value	can
either	be	included	in	single	or	double	quotes.	The	following	are	equivalent:

<meta	charset="utf-8"/>

<meta	charset='utf-8'/>

A	tag	can	contain	more	than	one	attribute,	in	which	case	they	are	simply	separated	by
white	space:

<p	id="firstParagraph"	class="bold">

Additionally,	some	attributes	do	not	have	a	value.	These	are	referred	to	as	Boolean
attributes.	The	presence	of	the	attribute	is	all	that	is	required.	For	instance:

<input	read-only/>

In	this	case,	the	attribute	is	called	read-only,	but	the	presence	of	the	attribute	is	enough	to
indicate	that	the	element	is	read-only.	It	is	still	possible	to	add	a	value	to	a	Boolean
attribute,	but	it	has	no	meaning.	For	instance,	the	following	input	field	is	still	read-only:

<input	read-only="false"/>

Attribute	names	should	also	be	written	in	lowercase	(because	this	is	how	they	will	be
represented	in	the	DOM).	Generally	attribute	names	will	also	use	hyphens	if	they	contain
more	than	one	word.

Try	It
In	this	Try	It,	you	will	duplicate	the	template	html	page	outlined	in	the	lesson.	You	may
choose	to	skip	this	portion	if	you	are	familiar	with	HTML,	but	the	simple	act	of	typing
code	word	for	word	enhances	your	understanding.

If	you	get	stuck	in	this	example,	you	can	refer	back	to	the	example	earlier	in	the	lesson,	or
use	the	screencast	to	guide	you	though	the	process.

Lesson	Requirements
You	will	need	a	text	editor	and	a	web	browser.

Step-by-Step
1.	 Open	your	text	editor	and	create	a	new	document.

2.	 Add	the	HTML5	doctype	to	the	document.

3.	 Add	an	html	element	(both	the	opening	and	closing	tags)	below	the	document	type.

4.	 Indicate	the	language	of	the	document	using	an	attribute	on	the	html	tag.

5.	 Add	a	head	element	inside	the	html	element.	You	will	need	both	an	opening	and	a
closing	tag.

6.	 Add	a	title	inside	the	head	element,	and	give	the	document	a	name.	Remember	that
this	needs	to	be	a	child	of	the	head	element.

7.	 Add	a	body	element	inside	the	html	element	just	below	the	closing	head	tag.

8.	 Add	a	meta	element	to	the	head	indicating	that	the	charset	is	UTF-8.

9.	 Add	any	text	you	like	to	the	body	of	the	document.	Any	text	that	you	add	should	be
displayed	back	to	you	when	you	open	the	web	page	in	Chrome.

10.	 Save	the	document	with	a	.html	extension.

11.	 Open	the	document	in	Chrome	and	inspect	the	Document	Object	Model	in	the
developer	tools.

When	you	open	this	in	Chrome,	and	then	open	the	development	tools	to	inspect	the
elements,	the	markup	should	look	like	Figure	1.6.

Figure	1.6

There	is	also	a	complete	example	in	the	Lesson	1	folder	on	the	book’s	website	called
tryit.html.

Reference
Please	select	the	video	for	Lesson	1	online	at	www.wrox.com/go/html5jsjquery24hr.
You	will	also	be	able	to	download	the	code	and	resources	for	this	lesson	from	the
website.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	2

Basic	HTML
This	lesson	provides	a	basic	introduction	to	the	most	common	HTML	tags.	If	you	are
already	familiar	with	HTML	and	are	reading	this	book	primarily	to	learn	about	HTML5,
you	could	choose	to	skip	the	next	two	lessons,	although	each	lesson	does	include	material
that	is	specific	to	HTML5.

In	the	previous	lesson,	you	created	an	HTML	template.	In	this	lesson,	you	will	start	adding
content	to	the	body	of	this	template	using	some	of	the	most	common	HTML	tags.

Structuring	Text
You	will	begin	by	examining	the	ways	you	can	structure	text	in	a	web	page.	HTML
originally	started	life	as	a	means	of	sharing	research	papers;	thus,	text	formatting	has
always	been	an	important	part	of	HTML.

Begin	by	opening	the	template.html	file	created	in	the	previous	chapter.	Replace	the
body	of	the	web	page,	as	shown	in	the	following	markup:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

</head>

<body>

				<h1>This	is	a	top	level	heading</h1>

				<h2>This	is	a	second	level	heading</h2>

				<h3>This	is	a	third	level	heading</h3>

</body>

</html>

The	body	now	contains	three	separate	header	elements.	If	you	open	this	in	Chrome,	it
should	look	like	Figure	2.1.

Figure	2.1

Notice	that	the	h1	element’s	text	is	displayed	in	a	larger	font	than	the	h2	element.	As	it
happens,	this	has	nothing	to	do	with	the	HTML	specification;	this	is	simply	the	default
style	provided	by	the	web	browser,	just	as	the	font	is	the	default	font	of	the	browser.	In
Lesson	4,	you	will	see	how	this	can	be	overridden	with	Cascading	Style	Sheets	(CSS).

You	will	also	notice	that	each	heading	is	displayed	on	a	new	line.	This	is	not	because	the
elements	are	placed	on	new	lines	in	the	HTML	file;	in	fact,	white	space	is	mostly	ignored
in	HTML.	In	order	to	prove	this,	change	the	h1	tag	as	follows:

<h1>This	is					a					top

									level	heading</h1>

	 	

					<h2>This	is	a	second	level	heading</h2>

If	you	reload	the	web	page,	you	will	see	that	this	change	makes	no	difference	to	the	way
the	headings	display.	Although	a	single	whitespace	character	is	displayed	as	a	space	inside

www.allitebooks.com

http://www.allitebooks.org

an	element,	a	sequence	of	whitespace	characters,	even	if	it	contains	new-line	characters,	is
collapsed	down	to	a	single	white	space	character.

HTML	does	provide	a	special	character	sequence,	 ,	for	adding	extra	whitespace
characters,	but	new	lines	should	be	created	using	the	tags	introduced	shortly.

Note
The	ampersand	character,	followed	by	a	sequence	of	characters	and	terminated	by	a
semicolon,	indicates	that	this	is	a	special	character	sequence.

There	are	a	number	of	special	character	sequences	in	HTML.	Perhaps	the	most
common	ones	you	will	encounter	are	<	and	>,	which	are	used	for	the	less	than
(<)	and	greater	than	(>)	characters	respectively.	These	are	required	because	the	<
and	>	characters	have	special	meaning	in	HTML.	In	case	you	were	wondering,	nbsp
stands	for	“non-breaking	space.”

So	what	did	generate	the	new	lines	after	each	heading?	These	appear	because	the	elements
h1	through	h6	are	block	elements.	All	visual	HTML	elements	have	a	display	type,	the
most	common	of	which	are	block	and	inline.	Whenever	a	block	element	ends,	the	next
element	automatically	begins	on	a	new	line.

Next,	you	can	continue	by	adding	some	paragraphs	to	the	body:

<p>This	is	the	first	paragraph</p>

<p>This	is	the	second	paragraph</p>

If	you	refresh	the	web	page,	it	will	look	like	what	you	see	in	Figure	2.2.

Figure	2.2

Each	paragraph	appears	on	a	new	line,	and	there	is	a	space	between	each	paragraph.

It	is	actually	possible	to	omit	the	ending	tag	from	a	p	tag.	In	fact,	there	are	many	cases
where	the	ending	tag	can	be	omitted	because	the	next	tag	in	the	document	implies	it.	I
usually	find	it	easier	to	add	the	ending	tag	in	these	cases,	but	the	specification	makes	this
entirely	optional.	You	will	see	throughout	the	examples	that	I	sometimes	omit	the	closing
tag	and	sometimes	include	it.

What	about	XHTML?
If	you	are	already	familiar	with	HTML,	you	may	be	aware	of	XHTML,	which	is	an
XML-based	version	of	HTML.	HTML5	extends	and	replaces	XHTML	as	well	as
HTML.	In	order	to	serialize	an	HTML5	page	to	XML,	all	tags	must	be	closed,	and	the
document	as	a	whole	must	be	well-formed.	In	addition,	the	html	tag	should	be
declared	as	follows:

<html	xmlns="http://www.w3.org/1999/xhtml">

and	the	content	type	of	the	document	should	be	set	to	application/xhtml+xml	rather
than	text/html	when	it	is	served	to	the	browser.

If	you	are	not	already	familiar	with	XHTML,	you	can	ignore	it	for	the	duration	of	this
book:	It	is	typically	only	used	if	you	have	a	need	to	process	an	HTML	page	with	XML
parsers	and	tools.

The	text	in	a	paragraph	will	automatically	wrap	if	it	reaches	the	far	right	side	of	the
browser.	Additionally,	if	the	user	resizes	their	browser,	the	text	will	automatically	be
adjusted:	This	process	is	referred	to	as	a	browser	reflow.

Sometimes	the	browser	will	break	your	paragraphs	in	an	inconvenient	place,	especially	if
it	contains	very	large	words.	In	order	to	give	you	more	control	over	line	breaks,	HTML5
has	introduced	a	tag	called	wbr	that	can	be	added	anywhere	inside	a	paragraph	as	a	hint	to
the	browser	that	this	would	be	a	good	place	to	add	a	line	break.

If	you	would	like	a	line	break	within	a	paragraph,	you	can	use	the	br	tag.	This	is	also	a
self-closing	tag	so	it	can	be	used	as	follows:

<p>This	is	a	paragraph
that	spans	two	lines</p>

HTML	supports	several	other	tags	for	encapsulating	blocks	of	text.	The	final	one	you	will
look	at	in	this	section	is	the	blockquote	element,	which	can	be	used	to	capture	quoted
text,	optionally	with	a	citation:

<blockquote>Tell	me	and	I	forget.	Teach	me	and	I	remember.	Involve	me	and	I	

learn.

				<cite>Benjamin	Franklin</cite>

</blockquote>

This	structure	is	slightly	more	complex:	The	blockquote	tag	contains	the	quote,	while
cite,	which	is	an	optional	child	tag,	captures	the	source	of	the	quote.	Figure	2.3	shows	an
example	of	this	tag	in	Chrome.

Figure	2.3

Notice	that	the	blockquote	is	indented	and	that	the	cite	element	displays	in	italics.

Again,	these	are	browser	defaults	rather	than	part	of	the	HTML5	specification.

Finally,	as	your	web	pages	become	more	complex,	you	may	find	cases	where	you	would
like	to	add	comments	to	remind	you	what	the	markup	means.	Comments	can	be	added	as
follows,	and	will	not	display	to	the	user:

<!--	This	is	a	comment	-->

Links	and	Images
HTML	pages	naturally	consist	of	far	more	than	text.	This	section	will	introduce	two	of	the
most	fundamental	tags	found	in	most	web	pages:	hyperlinks	and	images.

I	will	assume	you	know	what	hyperlinks	are:	They	are	a	mechanism	for	referencing
another	HTML	document	and	can	be	clicked	to	allow	the	user	to	navigate	to	that
document.

Start	by	creating	a	new	page	in	the	same	folder	as	the	page	you	developed	in	the	previous
section,	but	call	this	one	page2.html.	Add	some	contents	to	this	page	so	that	you	can
distinguish	it	when	it	loads.

Now,	in	the	original	HTML	file,	add	the	following	paragraph:

<p>Please	click	here	to	view	page	2</p>

If	you	reload	the	page,	this	HTML	will	generate	the	text	found	in	Figure	2.4.

Figure	2.4

Notice	that	the	text	displayed	to	the	user	is	derived	from	the	content	of	the	a	tag,	while	the
page	that	is	loaded	when	the	link	is	clicked	can	be	found	in	the	href	attribute.

This	particular	URL	is	referred	to	as	a	relative	URL	because	it	does	not	start	with	a
forward	slash	or	a	domain	name.	The	browser	will	attempt	to	find	page2.html	in	a
location	relative	to	the	page	currently	being	displayed.

If	you	had	created	page2.html	in	a	subfolder	called	sub,	the	URL	would	be	represented	as
follows:

<p>Please	click	here	to	view	page	2</p>

When	running	a	website	inside	a	web	server,	it	is	also	possible	to	use	absolute	URLs.
These	begin	with	a	leading	/	and	require	the	full	path	for	the	file	to	be	specified.

It	is	also	possible	to	add	URLs	to	other	websites.	For	example:

Link	to	Google

You	will	also	notice	that	the	a	tag	does	not	cause	an	implicit	new	line	to	be	generated	in
the	document.	This	is	because,	unlike	most	of	the	other	tags	you	have	examined,	it	has	a
display	type	of	inline.

Hyperlinks	can	be	surprisingly	complex.	As	you	progress	through	the	book	you	will	see
more	interesting	features	of	hyperlinks,	such	as	the	manner	in	which	they	can	encode
parameters,	but	for	now	a	basic	understanding	is	sufficient.

Images	can	be	inserted	into	an	HTML	page	with	the	img	tag.	I	seldom	use	the	img	tag
anymore:	I	typically	use	CSS	to	embed	images	as	the	background	of	other	tags	because

this	provides	greater	control	for	positioning	the	image,	but	it	is	important	to	understand
how	this	tag	works.

You	can	either	find	an	image	you	would	like	to	use	or	download	photo1.jpg	from	the
Lesson	2	files	at	the	book’s	website.

Now,	add	the	following	to	the	HTML	page:

<p>This	is	a	photo	I	took	in	Cambridge

<img	src="photo1.jpg"

title="Cambridge,	England"	width="200"></p>

If	you	view	this	in	Chrome,	it	will	display	in	much	the	same	way	as	you	see	in	Figure	2.5.

Figure	2.5

This	is	the	first	tag	you	have	examined	with	multiple	attributes.

The	src	attribute	is	used	to	specify	the	location	of	the	file.	Just	like	hyperlinks,	this
can	be	an	absolute	or	a	relative	URL,	or	it	can	even	reference	an	image	on	another
website.

The	title	attribute	is	used	to	specify	a	tooltip	that	will	be	displayed	to	the	reader
when	the	reader	hovers	over	the	image	with	her	mouse	cursor,	and	to	describe	the
image	to	screen	readers.

The	width	attribute	is	used	to	specify	the	width	of	the	image	in	pixels.	It	is	also
possible	to	specify	a	height,	but	if	just	width	or	height	is	specified,	the	image	will
be	scaled	appropriately.

Browsers	support	many	different	image	types,	but	by	far	the	most	common	are	PNG,	GIF,
and	JPEG	images.

The	img	tag	previously	supported	a	number	of	other	presentation-orientated	attributes.
These	are	deprecated	in	HTML5,	and	CSS	properties	should	be	used	instead.

Note
When	a	feature	is	deprecated,	it	is	still	available	to	use,	and	will	probably	still	work,
but	it	is	strongly	suggested	that	you	find	an	alternative	because	support	may	be
removed	entirely	in	the	future.

Try	It
This	Try	It	is	an	opportunity	to	experiment	with	the	tags	that	have	been	discussed	in	this
lesson.	You	do	not	necessarily	need	to	follow	this	lesson	exactly;	just	try	to	create	an
interesting	web	page	from	the	tags	that	have	been	introduced.

Lesson	Requirements
You	will	need	the	template.html	file	from	Lesson	1,	a	text	editor,	and	a	web	browser.

Step-by-Step
1.	 Open	the	template.html	page	in	your	text	editor.

2.	 Add	an	h1	element	to	the	page	and	include	some	header	text.

3.	 Add	some	paragraphs	to	the	web	page	using	the	p	tag,	and	split	some	paragraphs
across	multiple	lines	with	the	br	tag.

4.	 Add	a	quote	to	the	page	along	with	a	citation,	using	the	blockquote	and	cite	tags.

5.	 Find	an	image	you	would	like	to	include	in	the	page,	and	add	it	at	the	bottom.	Make
the	image	a	fixed	width,	and	allow	the	browser	to	determine	the	correct	height.

6.	 Add	a	hyperlink	to	your	page	to	point	to	another	page	in	a	subfolder	of	the	current
page.

7.	 Add	a	hyperlink	to	an	external	website	such	as	Google.

8.	 Although	I	have	not	covered	it,	attempt	to	turn	the	image	into	a	hyperlink	so	that	it
loads	another	page	when	it	is	clicked.	Hint:	The	image	will	need	to	be	a	child	element
of	the	hyperlink.

My	example	can	be	found	in	the	Lesson	2	resources	on	the	tryit.html	website.

Reference
Please	select	the	video	for	Lesson	2	online	at	www.wrox.com/go/html5jsjquery24hr.
You	will	also	be	able	to	download	the	code	and	resources	for	this	lesson	from	the
website.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	3

www.allitebooks.com

http://www.allitebooks.org

Lists	and	Tables
In	this	lesson,	you	will	look	at	two	important	ways	content	can	be	structured	in	web	pages:
lists	and	tables.

Lists
Lists	are	common	to	anyone	who	has	worked	with	word	processing	tools	such	as
Microsoft	Word:	They	are	the	bulleted	and	numbered	lists	that	are	used	for	capturing	a
sequence	of	points.	HTML	lists	are	very	similar	to	these	lists.	In	this	section,	I	introduce
the	three	types	of	list	provided	by	HTML.

Unordered	lists
Unordered	lists	are	used	to	create	the	familiar	set	of	bullet	points	seen	in	Word	documents.
In	order	to	create	an	unordered	list,	a	set	of	li	elements	is	placed	inside	an	ul	element.	li
stands	for	“list	item,”	while	ul	stands	for	“unordered	list.”

The	following	is	an	example:

<!DOCTYPE	html>

<html	lang="en">

				<head>

								<meta	charset="utf-8">

				</head>

				<body>

								

												This	is	the	first	point

												This	is	the	second	point

												This	is	the	third	point

								

				</body>

</html>

If	you	save	this	in	an	HTML	file	and	open	it	in	Chrome,	it	will	display	like	the	example	in
Figure	3.1.

Figure	3.1

The	li	tag	is	self-closing,	so	I	have	omitted	the	ending	tag.	Obviously,	this	could	have
been	included	without	affecting	the	display	of	the	list.

Although	unordered	lists	are	simple,	once	they	are	combined	with	CSS,	they	can	become
very	powerful.	Whenever	you	see	a	horizontal	list	of	navigation	links	at	the	top	of	a	web
page,	there	is	a	good	chance	that	they	were	created	from	an	unordered	list.

Ordered	Lists
Ordered	lists	are	identical	to	unordered	lists,	except	they	use	the	ol	tag	rather	than	the	ul
tag.	The	only	visual	difference	between	the	two	lists	is	that	ordered	lists	are	numbered:

				This	is	the	first	point

				This	is	the	second	point

				This	is	the	third	point

Figure	3.2	illustrates	how	this	displays.

Figure	3.2

Any	element	can	be	used	as	the	content	for	an	li	tag;	thus,	it	is	possible	to	nest	lists	within
lists.	The	following	example	lists	an	unordered	list	inside	an	ordered	list:

				point	1

								

												sub	point	1

												sub	point	2

								

				

				point	2

								

												sub	point	1

												sub	point	2

								

				

				point	without	sub	points

The	result	of	this	can	be	seen	in	Figure	3.3.

Figure	3.3

Description	Lists
Description	lists	are	probably	the	least	used	type	of	list.	They	are	a	type	of	list	where	each
entry	captures	a	name-value	group.	Each	group	in	turn	consists	of	one	or	more	names,
followed	by	one	or	more	definitions.	Consider	the	following	list,	which	captures
information	about	the	drinks	served	by	a	cafe:

<dl>

			<dt>Coffee</dt>

							<dd>Cappuccino</dd>

							<dd>Espresso</dd>

							<dd>Mocha</dd>

				<dt>Tea</dt>

							<dd>Earl	grey</dd>

							<dd>Green	tea</dd>

							<dd>Chai	tea</dd>

</dl>

This	list	contains	two	groups:	coffee	and	tea.	Each	group	then	consists	of	a	set	of
beverages	relating	to	that	group.	You	can	see	the	result	of	this	in	Figure	3.4.

Figure	3.4

Definition	lists	were	originally	specified	purely	in	terms	of	terms	and	definitions.	The
HTML5	standard	broadens	the	suggested	uses	of	definition	lists	and	encourages	you	to
think	in	terms	of	groups	with	names	and	values.

Tables
Tables	are	a	more	complex	structure	than	lists	and	support	the	familiar	notion	of	rows	and
columns.

Throughout	the	course	of	this	book,	you	will	write	a	web	application	from	scratch,	and
this	web	application	will	utilize	a	table.	The	web	application	will	perform	basic	Customer
Relationship	Management	(CRM)	capabilities;	in	particular,	it	will	keep	track	of	a	set	of
contacts	and	the	last	date	they	were	contacted.

In	order	to	start	this	web	application,	create	a	folder	somewhere	on	your	file	system	called
CRM.	This	will	hold	all	the	files	needed	by	the	web	application.

Next,	add	a	file	called	contacts.html	to	this	folder,	and	populate	it	with	the	basic
HTML5	template	outlined	in	Lesson	1.

You	will	now	create	a	table	in	the	body	of	the	web	page	for	capturing	the	following
information:

Contact	name

Phone	number

Email	address

Contact’s	company

Date	last	contacted

To	start,	begin	by	creating	an	opening	and	closing	table	tag	in	the	body	of	the	web	page:

<table>

</table>

HTML	tables	are	row	orientated:	You	add	one	row	at	a	time	using	the	tr	(table	row)
element	and	provide	values	for	all	the	relevant	columns.	The	rows	can	either	be	added	to
the	header,	body	or	footer	of	the	table.	Add	the	following	inside	the	table	element:

<thead>

				<tr>

								<th>Contact	name</th>

								<th>Phone	number</th>

								<th>Email	address</th>

								<th>Company	name</th>

								<th>Last	contacted</th>

				</tr>

</thead>

The	row	in	the	thead	element	contains	five	children	of	its	own:	These	th	(table	heading)
elements	are	the	individual	cells	in	the	row	of	the	table.

Next,	you	will	add	two	rows	to	the	body	of	the	table.	The	body	of	the	table	is	encapsulated
in	a	tbody	element.	The	individual	cells	in	the	body	use	the	td	(table	datum)	element
rather	than	the	th	element.	Add	the	following	after	the	end	of	the	thead	element:

<tbody>

				<tr>

								<td>William	Smith</td>

								<td>555-642-7371</td>

								<td>william@testing.com</td>

								<td>ACME	Industries</td>

								<td>2014-10-21</td>

				</tr>

				<tr>

								<td>Bob	Morris</td>

								<td>555-999-2991</td>

								<td>bob@testing.com</td>

								<td>ABC	Corp</td>

								<td>2014-09-12</td>

				</tr>

</tbody>

Next,	you	will	add	a	footer	row	to	the	table.	The	footer	will	simply	state	how	many	rows
are	in	the	table;	thus,	it	only	needs	to	occupy	a	single	cell.	This	presents	a	dilemma
because	you	want	all	the	rows	in	the	able	to	have	the	same	number	of	columns.	The
solution	to	this	is	to	utilize	the	colspan	attribute	with	the	td	element	to	specify	that	a
single	td	spans	multiple	columns.	Add	the	following	after	the	end	of	the	tbody	element:

<tfoot>

				<tr>

								<td	colspan="5">2	contacts	displayed</td>

				</tr>

</tfoot>

Finally,	you	will	add	a	caption	for	the	table.	This	can	be	added	anywhere	in	the	table,
provided	it	is	a	direct	child	of	the	table	element	itself:

<caption>Sales	leads</caption>

The	complete	web	page	should	now	look	as	follows:

<table>

				<thead>

								<tr>

												<th>Contact	name</th>

												<th>Phone	number</th>

												<th>Email	address</th>

												<th>Company	name</th>

												<th>Last	contacted</th>

								</tr>

				</thead>

				<tbody>

								<tr>

												<td>William	Smith</td>

												<td>555-642-7371</td>

												<td>william@testing.com</td>

												<td>ACME	Industries</td>

												<td>2014-10-21</td>

								</tr>

								<tr>

												<td>Bob	Morris</td>

												<td>555-999-2991</td>

												<td>bob@testing.com</td>

												<td>ABC	Corp</td>

												<td>2014-09-12</td>

								</tr>

				</tbody>

				<tfoot>

								<tr>

												<td	colspan="5">2	contacts	displayed</td>

								</tr>

				</tfoot>

				<caption>Sales	leads</caption>

</table>

If	you	open	the	page	in	Chrome,	it	should	display	as	you	see	in	Figure	3.5.

Figure	3.5

You	will	notice	that	the	columns	in	the	table	have	sized	themselves	according	to	the	data
that	has	been	added	to	them,	but	the	last	row	in	the	table	spans	column	boundaries.

Technically,	you	could	have	avoided	using	the	thead,	tbody,	and	tfoot	tags,	and	just
wrapped	every	row	in	a	tr	element	directly	within	the	table	element.	There	are,	however,
a	number	of	reasons	why	it	is	worth	adding	the	extra	structure	to	the	table	that	these	tags
afford:

It	will	help	you	style	the	different	components	of	the	table	differently.	Usually,	the
header	and	footer	rows	will	be	styled	differently	from	the	rows	in	the	body	of	the
table.

You	can	add	extra	functionality	to	the	table	such	as	sorting	and	filtering.	In	this	case,
you	would	not	want	to	sort	or	filter	the	header	and	footer	rows.

Prior	to	HTML5,	the	table	tag	supported	a	number	of	attributes	for	controlling	the
presentation	of	the	table	such	as	the	border	size,	the	width	of	the	table,	the	background
color	of	the	table,	and	the	padding	that	should	surround	each	cell.	These	have	all	been
removed	in	HTML5,	and	you	should	not	use	them.

Note
In	the	early	days	of	website	development,	it	was	common	to	use	tables	as	a	layout
mechanism.	This	is	now	strongly	discouraged	because	CSS	provides	more	than
enough	power	to	lay	out	complex	web	pages	by	itself.	Tables	should	only	be	used	for
data	where	data	needs	to	be	stored	in	columns	and	rows.

Try	It
In	this	Try	It,	you	will	experiment	with	lists	and	tables.	As	with	the	previous	lesson,	you
do	not	need	to	follow	this	lesson	implicitly,	the	most	important	thing	is	to	experiment	with
the	tags	and	discover	for	yourself	the	way	they	can	be	combined	to	create	interesting	web
pages.

Lesson	Requirements
You	will	need	the	template.html	file	from	Lesson	1,	a	text	editor,	and	a	web	browser.

Step-by-Step
1.	 Open	the	template.html	page	in	your	text	editor.

2.	 Start	by	creating	a	simple	numbered	list	of	all	the	tags	that	you	have	learned	about	in
this	lesson—for	instance	table,	tfoot,	and	thead.

3.	 Now,	imagine	that	you	want	to	categorize	these	based	on	whether	they	are	relevant	to
tables	or	lists.	Try	to	convert	the	numbered	list	into	a	description	list.	Each	category
should	be	captured	in	a	dt	element,	while	the	tag	names	should	be	placed	in	dd
elements.	The	goal	is	to	create	a	structure	that	looks	like	Figure	3.6.

4.	 Now	you	will	add	a	table	to	the	web	page	to	present	the	same	information	in	the	same
way.	Create	a	table	with	the	following	columns:

Tag	name

Category	(for	example,	list,	table)

Description

Figure	3.6

Ensure	that	the	table	utilizes	the	thead	and	the	tbody	elements.

Provide	a	caption	for	the	table.

The	first	few	rows	of	the	table	may	look	like	Figure	3.7.

Figure	3.7

www.allitebooks.com

http://www.allitebooks.org

Reference
Please	select	the	video	for	Lesson	3	online	at	www.wrox.com/go/html5jsjquery24hr.
You	will	also	be	able	to	download	the	code	and	resources	for	this	lesson	from	the
website.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	4

Introduction	to	CSS
The	first	three	lessons	of	the	book	introduced	you	to	a	large	number	of	tags,	but	it	has	so
far	not	been	possible	to	style	the	presentation	of	these	tags	when	they	appear	onscreen.	As
mentioned,	HTML5	has	removed	most	of	the	remaining	presentation-based	tags	and
attributes,	and	presentation	and	style	are	instead	the	responsibility	of	another	technology
called	Cascading	Style	Sheets	(CSS).

The	main	reason	for	this	is	a	concept	called	“separation	of	concerns.”	The	HTML	markup
language	is	responsible	for	providing	the	content	of	the	page,	while	CSS	is	responsible	for
the	presentation	and	styling	of	this	content.	This	means	it	is	possible	to	change	either
without	affecting	the	other.

For	instance,	it	is	usually	possible	to	completely	restyle	an	existing	web	page	without
changing	the	HTML	at	all.	Additionally,	it	is	possible	to	change	the	content	of	a	web	page
without	needing	to	change	the	CSS	at	all.

This	lesson	will	introduce	the	fundamentals	of	CSS,	and	will	mainly	focus	on	the	way
individual	elements	can	be	styled.	In	the	next	lesson,	you	will	consolidate	this	knowledge,
and	also	look	at	how	CSS	behaves	when	elements	interact	with	one	another.

The	HTML5	specification	includes	a	companion	specification	called	CSS3—version	3	of
Cascading	Style	Sheets—that	greatly	enhances	the	power	of	CSS.	You	will	look	in-depth
at	CSS3	later	in	the	book,	but	for	the	next	two	lessons	you	will	focus	on	the	fundamentals
of	CSS.

Note
The	capabilities	of	CSS	are	truly	astounding,	so	this	lesson	will	not	introduce	you	to
everything	CSS	can	do.	The	aim	of	this	lesson	is	instead	to	provide	you	with	a	sound
understanding	of	the	fundamentals:	once	these	are	understood	it	is	easy	to	find
information	about	specific	features.

CSS	Selectors
In	this	section,	you	will	get	started	with	CSS	by	styling	the	web	page	developed	in	Lesson
2.	This	page	utilized	header	and	paragraph	elements	to	format	text,	and	also	included
images	and	hyperlinks.	Ensure	you	have	the	following	HTML	available	to	work	with	in
this	section:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

</head>

<body>

				<h1>This	is	a	top	level	heading</h1>

				<h2>This	is	a	second	level	heading</h2>

				<h3>This	is	a	third	level	heading</h3>

				<p>This	is	the	first	paragraph</p>

				<p>This	is	the	second	paragraph</p>

<blockquote>

								Tell	me	and	I	forget.	Teach	me	and	I	remember.	Involve	me	and	I	

learn.

								<cite>Benjamin	Franklin</cite>

				</blockquote>

<p>Please	click	here	to	view	page	2</p>

<p>This	is	a	photo	I	took	in	Cambridge

</p>

</body>

</html>

As	you	will	see,	CSS	can	be	included	in	a	web	page	in	three	different	ways.	This	section
will	focus	on	a	single	approach:	adding	CSS	within	a	style	element	in	the	head	of	the
web	page.

In	order	to	apply	a	style	to	an	element,	you	first	need	a	way	of	selecting	the	elements	that
you	wish	to	style.	CSS	provides	four	key	selection	mechanisms,	the	most	simple	of	which
is	to	select	the	elements	based	on	their	tag	name.	For	instance,	if	you	wanted	to	select	all
the	h1	elements	in	the	document	and	display	them	in	a	red	font,	you	could	add	the
following	to	the	head	section:

<style>

				h1	{

								color:	red;

				}

</style>

If	you	refresh	the	web	page,	the	top	header	will	display	in	red.

Note
A	number	of	colors	can	be	referenced	directly	by	name,	but	it	is	more	common	to
represent	colors	as	a	string	such	as	#FF0000.	This	is	a	hash,	followed	by	three	sets	of
hexadecimal	numbers	specifying	the	ratio	of	red,	green,	and	blue	respectively.	There
are	many	resources	online	for	finding	colors	using	this	format,	and	you	will	see	many
examples	throughout	this	book.

This	simple	example	demonstrates	most	of	what	you	need	to	know	about	the	syntax	of
CSS.	You	start	by	specifying	the	selector:	h1	in	this	case.	Next,	you	place	a	set	of	stylistic
properties	between	curly	brackets	where	each	stylistic	property	is	in	the	form	of	a
name/value	pair.	In	this	case,	the	name	of	the	property	is	color	(technically	this	is
foreground	color),	while	the	value	is	red.	A	colon	separates	the	name	and	value,	and	the
whole	construct	is	concluded	with	a	semicolon.	I	will	refer	to	this	entire	construct	as	a
CSS	rule.

It	is	possible	to	add	multiple	stylistic	properties	to	the	same	selection.	The	following	rule
also	specifies	the	font-family	and	the	fact	that	the	text	should	be	underlined.

<style>

				h1	{

								color:	red;

								text-decoration:underline;

								font-family:	Arial,	Helvetica,	sans-serif;

				}

</style>

Figure	4.1	shows	the	result.

Figure	4.1

The	font-family	property	has	a	more	interesting	value	than	color.	Many	fonts	are
proprietary;	therefore,	you	cannot	be	sure	which	fonts	the	user’s	browser	will	provide.	The
value	of	the	property	therefore	contains	a	list	of	fonts	in	priority	order.	In	this	case,	the
value	states:

Try	to	use	Arial	if	it	is	available.

If	that	is	not	available	use	Helvetica.

If	that	is	not	available	use	any	sans-serif	font.

Imagine	now	that	you	want	this	style	to	apply	to	all	the	headings	in	the	web	page.
Obviously,	you	could	duplicate	this	rule	three	times	and	select	h1,	h2	and	h3	in	three
separate	rules.	You	always	want	to	avoid	duplication	if	you	can,	however,	because	it	leads
to	maintenance	issues.

There	are,	in	fact,	two	ways	you	can	achieve	this	without	duplication.	The	first	is	by
specifying	the	three	different	tags	separated	by	a	comma:

h1,	h2,	h3	{

				color:	red;

				text-decoration:underline;

				font:	Arial,	Helvetica,	sans-serif;

}

A	more	elegant	solution,	however,	is	to	use	classes.	Any	element	can	be	assigned	one	or
more	classes	with	the	class	attribute.	A	class	is	just	an	arbitrary	name	you	choose	and
usually	describes	some	aspect	that	a	set	of	elements	have	in	common.	For	example:

<h1	class="redHeader">This	is	a	top	level	heading</h1>

<h2	class="redHeader">This	is	a	second	level	heading</h2>

<h3	class="redHeader">This	is	a	third	level	heading</h3>

In	this	case,	redHeader	is	the	class	name.	It	is	then	possible	to	style	all	elements	with	this
class	using	the	following	selector:

.redHeader	{

				color:	red;

				text-decoration:underline;

				font:	Arial,	Helvetica,	sans-serif;

}

Notice	the	dot	at	the	start	of	the	selector:	This	always	implies	that	you	are	selecting
elements	by	a	class.	If	you	redisplay	the	web	page,	all	three	headers	will	display	with	the
specified	properties.

If	you	want	to	assign	two	classes	to	an	element,	the	class	names	are	separated	by	a	space.
For	example:

<h1	class="redHeader	pageHeading">This	is	a	top	level	heading</h1>

You	can	then	select	elements	based	on	either	of	these	classes.

Another	common	way	to	select	elements	is	by	their	id.	Any	element	can	be	given	an	id,
but,	unlike	classes,	IDs	must	be	unique	within	a	document.	The	following	is	an	example	of
a	paragraph	with	an	id:

<p	id="firstParagraph">This	is	the	first	paragraph</p>

It	is	then	possible	to	create	a	CSS	rule	that	selects	this	element	as	follows:

#firstParagraph	{

				font-weight:	bold;

}

Notice	that	the	selector	begins	with	a	#	to	indicate	it	is	based	on	id.	This	particular
example	will	display	the	paragraph	with	the	matching	id	in	bold.

The	final	common	way	to	select	elements	is	via	pseudo-classes.	These	allow	you	to	select
elements	based	on	features	that	cannot	be	expressed	by	the	other	selectors,	for	instance,
every	even	numbered	row	in	a	table.

If	you	consider	the	firstParagraph	example,	you	may	notice	that	there	is	a	potential
issue	lurking	here.	If	a	new	paragraph	is	added	before	the	current	first	paragraph,	you
would	need	to	remember	to	swap	the	id	onto	this	element—which	would	be	easy	to
forget.	A	better	option	is	to	state	that	you	want	the	first	paragraph	to	be	in	bold,	without
specifying	which	paragraph	is	the	first	in	the	document.	This	can	be	achieved	as	follows:

p:first-of-type	{

				font-weight:	bold;

}

This	selector	first	selects	all	the	p	elements,	and	then	limits	this	selection	to	just	the	first
element	found	of	its	type.	Because	all	the	elements	returned	have	the	type	of	p,	the	first-
of-type	selector	will	return	the	first	p	element	in	the	document.	Pseudo-class	selectors
always	begin	with	a	single	or	double	colon.

Pseudo-classes	are	also	useful	for	providing	styles	to	elements	based	on	their	state.	For
instance,	if	you	wanted	links	to	turn	green	when	the	user	hovered	over	them,	you	could
use	the	following	selector:

a:hover	{

				color:	green;

}

There	is	no	way	to	perform	this	selection	without	pseudo-classes.

Note
CSS	actually	supports	two	related,	but	technically	distinct,	mechanisms:	pseudo-
classes	and	pseudo-elements.	Technically,	the	selectors	you	have	looked	at	are
pseudo-classes	because	they	select	elements	that	you	could	not	select	via	other
selectors.	CSS	also	supports	pseudo-elements:	These	allow	a	portion	of	an	element	to
be	selected,	such	as	the	first	letter	in	a	paragraph,	or	the	first	line	in	a	paragraph.

Pseudo-element	selectors	are	supposed	to	use	a	double	colon	rather	than	a	single
colon,	but	some	browsers	do	not	support	the	double	colon	syntax,	so	the	single	colon
syntax	is	regularly	used	for	both	types	of	selector.

When	selecting	the	first	paragraph	in	the	document,	you	are	actually	combining	two	types
of	selector:	an	element	selector	and	a	pseudo-class	selector.	It	turns	out	that	you	can
combine	selectors	in	many	interesting	ways.

For	example,	if	I	wanted	to	select	all	the	h1	elements	that	had	the	class	redParagraph,	I
could	use	the	following	selector:

h1.redHeader	{

				text-align:	center;

}

Notice	that	there	is	no	space	between	the	element	selector	and	the	class	selector.
Alternatively,	if	I	wanted	to	select	all	h1	elements	that	had	both	the	redHeader	and
pageHeader	classes,	I	could	use	the	following:

h1.redHeader.pageHeader	{

				text-align:	center;

}

Alternatively,	you	can	select	elements	only	when	they	are	children	of	elements	returned	by
other	selections.	For	instance,	you	can	specify	that	the	cite	element	should	be	capitalized,
but	only	when	it	is	a	child	of	a	blockquote	element	(which,	as	it	happens,	it	always	is):

blockquote	cite	{

				text-transform:	uppercase;

}

Notice	in	this	case	there	is	a	space	between	the	two	selections.	This	will	match	cite
elements	if	they	are	a	descendant	of	a	blockquote	element,	even	if	blockquote	is	not	their
immediate	parent.	Another	way	to	think	about	this	is	two	distinct	selections.	CSS	first
selects	all	the	blockquote	elements,	and	then	it	searches	for	any	cite	elements	that	are
descendants.

With	the	>	operator,	it	is	possible	to	specify	that	the	selection	should	only	occur	if	the
element	is	an	immediate	child	of	the	first	selection:

blockquote	>	cite	{

				text-transform:	uppercase;

}

CSS	Files	and	Inline	Styles
So	far,	you	have	used	the	style	element	to	add	CSS	to	a	web	page.	Although	this	is	an
easy	way	of	adding	CSS,	it	has	the	disadvantage	that	you	cannot	use	the	same	CSS	across
multiple	pages.

It	is	therefore	far	more	common	to	place	all	the	CSS	in	a	file	with	a	.css	extension	and
link	it	to	each	web	page	that	needs	to	use	it.	In	order	to	try	this	out,	save	the	styles	you
have	added	so	far	in	a	file	called	examples.css.	Place	this	in	the	same	folder	as	the
HTML	page,	but	do	not	include	the	style	element.

Now,	remove	the	whole	style	element	from	the	head	of	the	document,	and	replace	it	with
the	following:

<link	rel="stylesheet"	type="text/css"	href="examples.css">

Again,	the	href	attribute	is	using	a	relative	URL	to	load	the	style	sheet,	but	it	could	also
use	an	absolute	URL.	If	you	reload	the	web	page	it	should	display	the	same	as	before.

An	alternative	way	of	specifying	CSS	properties	is	via	the	style	attribute	on	individual
elements.	Although	this	approach	is	generally	discouraged,	it	can	be	useful	when	a	style	is
unique	to	a	single	element.	As	you	will	also	see,	these	styles	have	a	higher	precedence,	so
it	can	be	a	useful	approach	for	overriding	global	styles.	The	following	is	an	example:

<blockquote	style="color:	#888888;font-size:12px;">

Notice	that	the	inline	styles	use	the	same	basic	syntax:	Colons	separate	names	and
properties,	and	semicolons	separate	styles.	Obviously,	they	do	not	include	a	selector
because	they	are	applied	to	the	element	they	are	declared	on.

Specificity
The	same	element	may	match	multiple	CSS	rules.	When	this	occurs,	all	the	properties
defined	in	all	the	rules	are	applied	to	the	element.	You	have	already	seen	an	example	of
this	with	the	h1	element.

Imagine,	however,	if	you	had	the	following	in	your	style	sheet:

									h1	{

													color:	blue;

									}

									h1.redHeader	{

													color:	green;

									}

									.redHeader	{

													color:	pink;

									}

All	three	of	these	styles	match	the	first	header	in	the	document;	therefore,	what	color
should	it	be	assigned?	The	answer	to	this	lies	in	a	concept	called	specificity.	In	order	to
determine	the	style	to	use,	CSS	assigns	points	to	each	rule	that	matches	an	element	based
on	its	selector:

If	the	selector	matches	on	an	element	or	pseudo-element	1	point	is	assigned.

If	it	matches	on	class	or	pseudo-class,	10	points	are	assigned.

If	it	matches	based	on	id,	100	points	are	assigned.

If	the	style	is	contained	in	a	style	attribute	on	the	element,	1,000	points	are	assigned
—which	usually	ensures	it	automatically	wins.

You	can	therefore	determine	which	of	these	three	rules	should	be	used:

Rule	1	matches	on	an	element	so	it	receives	1	point.

Rule	2	matches	on	an	element	and	a	class	so	it	receives	11	points.

Rule	3	matches	on	a	class	so	it	receives	10	points.

As	a	result,	the	color	of	the	header	should	be	green.

It	is,	of	course,	possible	that	two	styles	will	have	the	same	specificity.	In	this	case,	the	rule
defined	last	will	have	precedence.	If	the	two	rules	are	in	the	same	external	style	sheet,	the
rule	that	occurs	closest	to	the	end	will	win.	If	they	are	in	separate	style	sheets,	the	last
style	sheet	declared	in	the	web	page	will	win.

There	is	one	important	exception	to	this	rule.	If	a	style	is	so	important	that	you	never	want
it	to	be	overwritten	by	a	rule	with	a	higher	specificity,	you	can	assign	it	a	tag	called
important.	For	instance,	if	the	following	two	rules	were	defined:

									h1	{

													color:	blue;

													text-align:	center	!important;

									}

									h1.redHeader	{

													color:	green;

													text-align:	left

									}

the	color	will	be	green	because	of	specificity,	but	the	text	will	be	aligned	in	the	center
because	it	is	marked	as	important.	It	is	best	not	to	overuse	this	approach,	but	it	works
well	in	an	emergency.

Inheritance
Obviously,	it	is	annoying	to	need	to	style	every	single	element.	There	are	many	cases
where	you	want	many	elements	to	share	the	same	style,	and	therefore	it	would	be
convenient	to	specify	that	the	style	applies	to	an	element	and	all	its	descendants.	This
concept	is	called	inheritance	because	styles	are	inherited	from	a	parent.

CSS	supports	this	concept	for	many,	but	not	all,	styles.	For	instance,	you	may	want	all	the
text	in	the	document	to	use	the	same	font	family.	You	could	therefore	specify	the
following:

body	{

				font-family:	Arial,	Helvetica,	sans-serif;

}

Because	all	the	visual	elements	in	the	document	have	the	body	element	as	a	parent	(even	if
not	a	direct	parent),	all	the	elements	in	the	document	will	inherit	this	style.	Likewise,	if
you	were	to	specify	the	following:

blockquote	{

				text-decoration:	underline;

}

the	text	for	both	the	blockquote	and	cite	elements	will	be	underlined.

Inheritance	does	not	always	make	sense,	however.	Imagine	that	you	used	the	border
property	to	add	a	1-pixel	solid	black	border	around	the	blockquote.

blockquote	{

				border:	1px	solid	black;

}

Should	a	separate	border	be	drawn	around	the	cite	element?	I	think	you	can	probably
agree	that	borders	should	not	be	inherited,	and,	in	fact,	they	are	not.

If	you	would	like	to	inherit	a	non-inherited	style,	you	can	do	so	by	using	the	following
syntax:

cite	{

				border:	inherit;

}

Browser	Defaults
All	browsers	have	a	set	of	default	styles	that	they	apply	to	elements.	These	defaults
include	font	types	and	sizes,	the	space	between	lines	and	paragraphs	and	the	weight	of	the
fonts	on	table	headers.	Browser	defaults	are	only	used	when	you	do	not	provide	your	own
style	for	an	element.

One	problem	with	browser	defaults	is	that	they	tend	to	vary	between	browser	vendors.
This	may	mean	your	web	page	looks	perfect	in	Chrome	but	looks	terrible	in	IE	because	it
is	picking	up	a	default.

Because	of	these	issues,	it	is	common	to	completely	remove	the	browser	defaults.	This	is
typically	performed	using	a	separate	style	sheet	called	reset.css	(you	will	find	examples
on	the	Internet),	which	is	then	the	first	style	sheet	that	is	loaded	on	each	page.

Chrome	Scratch	Pad
When	experimenting	with	CSS,	it	can	be	an	annoyance	to	make	changes	to	the	style	sheet,
save	the	changes,	and	reload	the	web	page.	Fortunately,	Chrome	makes	it	easy	to
experiment	with	styles	directly	in	the	browser.	In	order	to	demonstrate	this,	right-click	on
the	first	h1	element	and	choose	Inspect	Element.

On	the	left-hand	side	of	the	console,	you	will	see	the	control	shown	in	Figure	4.2.

Figure	4.2

This	is	telling	you	all	the	rules	that	match	the	element,	from	the	most	specific	at	the	top,	to
the	least	specific	at	the	bottom.	Any	time	that	a	style	is	not	used	because	of	specificity,	a
line	is	drawn	through	it.

At	the	bottom	of	this	panel,	you	can	see	the	styles	inherited	from	the	browser	defaults
(called	“user	agent	stylesheet”)	and	those	inherited	from	other	elements	(for	instance,
body).

This	can	be	very	useful	for	determining	why	certain	styles	are	used.	For	instance,	have	a
look	at	the	example	in	Figure	4.2	and	determine	which	rule	provided	the	text-align
property	and	why.

You	can	also	change	styles,	or	add	styles	to	any	of	these	rules:	Thesechanges	will	be

reflected	in	the	web	page	in	real	time.	You	can	also	eliminate	any	styles	you	want	by
clearing	the	checkbox	that	appears	next	to	them	when	you	hover	over	them.

Additionally,	if	you	click	on	the	very	first	rule	called	element.style,	you	can	add	new
rules	just	for	this	element.	For	instance,	you	could	make	the	color	of	the	header	blue	by
adding	the	property	demonstrated	in	Figure	4.3.

Figure	4.3

Try	It
In	this	Try	It,	you	will	style	the	table	that	you	created	in	Lesson	4	to	hold	contact
information.

Lesson	Requirements
You	will	need	the	contacts.html	file	from	Lesson	4,	a	text	editor,	and	a	web	browser.

Step	by	Step
1.	 Start	by	creating	a	file	called	contacts.css	in	the	same	folder	as	contacts.html.

2.	 Add	a	link	in	the	head	section	of	contacts.html	to	the	CSS	file	following	the
instructions	earlier	in	the	lesson.

3.	 Set	the	font	family	for	the	entire	document	to	use	Arial,	Helvetica,	sans-serif.
Remember	that	you	will	need	a	rule	that	matches	the	body	element.

4.	 Add	a	1-pixel	solid	black	border	to	the	elements	table,	th,	and	td.	You	will	find	an
example	of	a	border	style	earlier	in	this	lesson.

5.	 Load	the	page	in	Chrome.	You	will	notice	that	there	is	a	double	border	around	cells
(see	Figure	4.4)	because	each	cell	has	its	own	border,	and	there	is	a	gap	between
these.	To	fix	this,	add	a	new	style	to	this	rule	with	the	property	border-collapse,
and	a	value	of	collapse.	This	will	collapse	the	duplicate	borders	into	a	single	border.

6.	 Add	some	space	between	the	content	and	the	border	of	each	cell	(td	element).	Add	a
property	called	padding,	and	set	this	to	5px.

7.	 Add	a	style	for	the	thead	element.	Set	the	background	to	the	color	#3056A0,	and	set
the	color	to	white.

8.	 Set	the	caption	for	the	table	to	display	in	bold,	but	ensure	this	is	only	applied	if
caption	is	a	child	of	a	table	element.

9.	 Set	the	font	of	the	tfoot	element	to	be	three-quarters	the	size	of	the	font	used
elsewhere.	Hint:	Setting	the	font	to	2em	would	double	the	size	of	the	font	(you	will
look	at	this	setting	further	in	the	next	lesson).	In	addition,	set	the	text	alignment	to	be
on	the	right-hand	side	of	the	table.

10.	 Every	second	row	of	the	table	body	should	be	given	a	background	color	of	#E6E6F5.
In	order	to	select	every	second	row,	use	the	pseudo-class	selector	tr:nth-
child(even),	but	ensure	this	is	only	applied	to	children	of	tbody	because	thead	and
tbody	also	have	tr	elements.

When	complete,	the	table	should	look	like	the	screenshot	in	Figure	4.5.

Figure	4.4

Figure	4.5

Reference
Please	select	the	video	for	Lesson	4	online	at	www.wrox.com/go/html5jsjquery24hr.
You	will	also	be	able	to	download	the	code	and	resources	for	this	lesson	from	the
website.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	5

Structuring	Pages	with	CSS
In	the	previous	lesson,	you	looked	at	how	individual	elements	could	be	styled	with	CSS.
This	lesson	builds	on	this	knowledge	and	looks	at	how	elements	come	to	occupy	the
screen	position	that	they	do,	how	this	can	be	manipulated,	and	how	this	impacts	other
elements	around	them.

The	Box	Model
The	box	model	is	one	of	the	most	important	CSS	concepts	and	dictates	the	width	and
height	each	element	will	occupy	onscreen.	The	box	model	starts	from	the	observation	that
all	elements	in	the	document	occupy	rectangular	boxes,	but	the	rules	for	calculating	their
height	and	width	are	not	as	straightforward	as	you	may	think.

For	a	start,	the	height	and	width	occupied	by	an	element	is	greater	than	the	height	and
width	required	for	the	content	of	the	element	for	several	reasons.	For	instance,	the	element
may	have	a	border	that	occupies	additional	space.	In	the	previous	lesson,	you	created
borders	that	were	1	pixel	in	size.	Thus,	these	borders	added	2	pixels	to	the	height	and
width	required	for	the	element.

Padding	may	also	be	added	between	the	content	and	the	border,	as	with	the	table	cells	in
the	previous	lesson.	Finally,	it	may	also	be	necessary	to	add	additional	margin	between	the
element	and	its	neighboring	elements.

The	total	space	occupied	by	the	element’s	box	can	therefore	be	visualized	in	Figure	5.1.

Figure	5.1

In	order	to	see	this	in	action,	create	a	web	page	as	follows:

<!DOCTYPE	html>

<html	lang="en">

				<head>

									<meta	charset="utf-8">

									<style>

												h1	{

																width:400px;

																height:30px;

																padding:10px;

																border:2px	solid	#999999;

																background:#dddddd;

																margin:	10px	20px	20px	10px;

												}

									</style>

				</head>

<body>

				<h1>This	is	a	header</h1>

</body>

</html>

This	code	declares	an	h1	element	with	the	following	sizes	(working	from	the	inside	of	the
box	to	the	outside):

A	width	of	400	pixels	and	a	height	of	30	pixels.	If	these	were	omitted,	the	element
would	have	a	default	height	and	width	calculated	from	the	content	of	the	element.

Ten	pixels	of	padding	between	the	content	and	the	border.	When	specifying	a	single
value,	the	value	is	automatically	applied	to	the	top,	right,	left,	and	right	of	the	box.

A	2-pixel	border.

A	margin	between	itself	and	its	neighbors,	but	this	has	different	values	on	each	side.
Therefore,	four	values	are	provided.	You	can	remember	which	side	these	apply	to
with	the	acronym	TRouBLe	(Top,	Right,	Bottom,	Left).	For	instance,	in	this	case	the
left	margin	is

10	pixels.

It	is	also	possible	to	specify	the	border,	padding,	or	margin	for	any	side	individually	by
using	properties	such	as	margin-left,	border-top,	and	padding-right.

Open	this	web	page	and	view	it	in	Chrome.	Right-click	on	the	h1	element,	and	select
Inspect	Element.	Ensure	the	element	is	selected	in	the	Elements	tab,	and	then	take	a	look
to	the	bottom	right	of	the	console.	It	should	show	a	box	like	the	one	in	Figure	5.2,	which	is
a	visualization	of	the	box	model	for	the	element.

Figure	5.2

You	can	therefore	use	this	to	determine	how	much	height	and	width	the	element	will	need
onscreen:

The	width	will	need	10	+	2	+	10	+	400	+	10	+	2	+	20	=	454	pixels.

The	height	will	need	10	+	2	+	10	+	30	+	10	+	2	+	20	=	74	pixels.

One	other	interesting	aspect	you	may	notice	about	the	box	model	is	the	scope	of	the
background	color.	The	background	color	fills	the	content	and	the	padding,	but	not	the
margin	or	border.

If	you	add	two	more	h1	elements	to	the	document	and	then	refresh	the	web	page,	you	will

notice	that	there	is	a	margin	between	the	elements,	as	shown	in	Figure	5.3.

Figure	5.3

You	may	notice	something	unusual	here	however.	Each	of	the	headers	has	a	top	margin	of
10	pixels	and	a	bottom	margin	of	20	pixels.	You	might	therefore	expect	that	there	would
be	30	pixels	between	each	element.

If	you	select	the	top	element	in	Chrome,	however,	you	will	notice	that	the	bottom	margin
is	only	20	pixels	(as	demonstrated	by	the	fact	the	space	taken	by	the	element	extends
down	to	the	top	of	the	next	element).	You	can	see	this	in	Figure	5.4.	The	top	margin	for
the	second	header	has	been	ignored.

Figure	5.4

This	is	referred	to	as	collapsed	margins.	The	top	and	bottom	margin	of	block	elements	are
collapsed	into	a	single	margin	that	is	calculated	as	the	greatest	of	the	top	and	bottom
margin:	20	pixels	in	this	case.	Working	around	collapsing	margins	can	be	a	headache;
therefore,	it	is	often	better	to	rely	on	only	top	or	bottom	margins,	not	both.

Display	Type
I	have	alluded	to	display	types	several	times	already	in	this	book,	but	now	is	the	time	to
look	at	this	property	in	more	depth.	Every	element	has	a	display	type	and	is	initially
defaulted	to	the	appropriate	type	for	each	tag.	There	are	quite	a	number	of	display	types,
but	you	really	need	to	understand	only	four	of	them.

By	default,	h1	elements	have	a	display	type	of	block.	As	mentioned	previously,	block
elements	insert	a	break	in	the	document	meaning	the	next	element	will	appear	below	the
previous	element.	It	is	possible	to	control	both	the	height	and	width	of	a	block	element,
as	you	saw	in	the	previous	section.

The	next	most	widely	used	block	type	is	inline.	Add	the	following	rule	to	the	style
section	and	refresh	the	web	page:

h1	{

				display:	inline;

}

This	will	now	display	as	you	see	in	Figure	5.5.	As	you	can	see,	inline	elements	sit
alongside	one	another.	If	they	exceed	the	width	of	the	page,	they	will	then	automatically
wrap	to	a	new	line.	Although	it	is	possible	to	control	the	width	of	an	inline	element,	it	is
not	possible	to	control	their	height:	This	is	automatically	calculated.

Figure	5.5

Additionally,	it	is	only	possible	to	add	margin	and	padding	to	the	left	and	right	of	the
element,	not	to	the	top	and	bottom.	As	you	can	see,	the	elements	are	positioned	at	the	very
top	of	the	web	page,	without	any	margin	between	the	headers	and	the	address	bar.

The	third	major	category	of	display	type	is	inline-block.	When	elements	are	assigned
this	display	type,	they	sit	alongside	one	another,	just	like	inline	elements,	but	it	is
possible	to	specify	their	height,	and	add	margin	and	padding	to	all	four	sides.

The	final	display	type	to	understand	is	none.	When	an	element	is	assigned	this	display
type	the	element	is	hidden	from	the	viewer	but	remains	in	the	document.	Change	the
second	header	as	follows	and	then	refresh	the	web	page:

<h1	style="display:none">This	is	a	header	that	is	hidden</h1>

If	you	reload	the	page,	you	will	see	that	there	is	no	sign	of	this	element:	It	does	not	even
leave	an	empty	space	for	the	position	it	would	hold	if	it	had	visibility.	It	is	common	to
dynamically	hide	and	show	content	with	JavaScript	by	manipulating	the	display	type,	as
you	will	see	later	in	this	book.

Positioning	Elements
Now	that	you	understand	the	box	model,	it	is	possible	to	start	looking	at	how	different
elements	interact.

Imagine	that	you	want	to	create	a	web	page	split	into	five	sections:

A	100-pixel	high	header	that	spans	the	width	of	the	page

A	50-pixel	high	footer	that	spans	the	width	of	the	page

A	content	section	broken	into	three	sections:

An	area	to	the	left	where	menus	can	be	positioned:	This	should	occupy	20
percent	of	the	width	and	have	a	minimum	height	of	500	pixels.

An	area	on	the	right	for	advertising	material:	This	will	also	occupy	20	percent	of
the	width	and	have	a	height	of	500	pixels.

A	main	content	section	in	the	middle	occupying	as	much	of	the	remaining	space
as	it	requires.

The	screen	therefore	consists	of	the	five	boxes	seen	in	Figure	5.6.	The	first	question	you
might	want	to	ask	yourself	is:	What	type	of	element	is	each	of	these	boxes?	Essentially,
they	are	just	containers	for	other	elements,	and	you	may	want	to	encapsulate	many
different	elements	inside	each	of	these	containers.

Figure	5.6

HTML	supports	a	tag	I	have	not	discussed	so	far	called	a	div.	This	is	potentially	the	most
widely	used	tag	in	HTML:	It	is	a	block	element	with	no	default	presentation	itself;	it	is
simply	used	as	a	container	to	group	other	elements	together.

HTML	supports	a	second	related	tag	called	a	span	(perhaps	the	second	most	widely	used
tag	in	HTML).	This	is	the	same	as	a	div,	except	it	is	an	inline	element	rather	than	a
block	element.

You	will	start	by	creating	a	page	called	structure.html	with	the	following	body:

<body>

				<div	id="header">This	is	the	header</div>

				<div	id="sidebar">This	is	the	sidebar</div>

				<div	id="content">This	is	the	main	content</div>

				<div	id="advertising">These	are	adverts</div>

				<div	id="footer">This	is	the	footer</div>

</body>

Because	these	are	block	elements,	you	will	notice	that	the	five	elements	simply	sit	on	top
of	each	other	for	now.	I	have	added	id	attributes	to	the	elements	to	allow	them	to	be	styled
individually	in	CSS.

In	order	to	style	the	header	element,	add	a	style	element	with	the	following	value:

#header	{

				height:100px;

				background:pink;

}

When	I	am	laying	out	a	web	page,	I	find	it	convenient	to	give	every	element	a	distinctive
background	color	to	start—this	allows	me	to	see	exactly	how	much	space	has	been
allocated	to	each	element.

If	you	view	this	web	page	in	Chrome,	you	will	see	that	the	header	has	a	white	margin
around	it.	This	is	the	result	of	a	style	inherited	from	the	body	element;	therefore,	you
should	also	add	the	following	to	the	styles	section	to	remove	this:

body	{

				margin:	0;

}

Now,	add	the	following	for	the	sidebar	element:

#sidebar	{

				width:20%;

				background:orange;

				height:500px;

				float:left;

}

Notice	that	the	width	element	uses	a	percent	for	the	unit	rather	than	pixels:	This	means	it
will	utilize	20	percent	of	the	space	potentially	available	to	it,	which	for	a	top-level	element
like	this	is	the	entire	width	of	the	screen.	Sizes	are	also	commonly	expressed	in	the
following	formats:

mm:	Millimeters

in:	Inches

em:	1	em	is	the	equivalent	size	of	the	current	font;	this	measurement	therefore	allows
elements	to	be	sized	in	relation	to	the	standard	font	size.

This	element	also	declares	a	height.	This	property	ensures	that	the	element	occupies	500
pixels	of	vertical	space.

The	most	interesting	property	here,	however,	is	the	float	property.	Because	you	need
three	block	elements	to	sit	alongside	each	other,	you	need	to	control	how	they	interact
with	each	other	horizontally.	The	float	property	can	be	used	to	position	block	elements	to

either	the	left	or	the	right	of	the	area	available	to	them,	and	in	addition,	this	suppresses	the
break	that	would	normally	accompany	block	elements	in	the	left-to-right	flow.

Although	using	the	float	property	is	similar	to	declaring	the	display	type	as	inline-
block,	it	has	the	additional	benefit	that	it	is	possible	to	position	elements	to	the	left	or	the
right	of	their	available	space.	By	comparison,	inline-block	elements	always	float	to	the
left	of	the	available	space.

Next,	you	will	add	style	for	the	content	element.	You	will	leave	this	without	any	style,
except	you	will	specify	that	it	should	float	to	the	left	of	its	available	space,	which	will
position	the	element	directly	to	the	right	of	the	sidebar	element.	Add	the	following	to	the
styles:

#content	{

				float:left;

}

With	this	in	place,	you	want	to	place	the	element	with	the	id	of	advertising	on	the	right
side	of	the	screen.	The	style	for	this	element	is	therefore	virtually	identical	to	sidebar,
except	you	will	request	that	it	floats	right:

#advertising	{

				width:20%;

				background:blue;

				height:500px;

				float:right;

}

Notice	that	this	is	not	sitting	directly	up	against	the	content	element;	instead,	it	is	being
positioned	directly	against	the	right	of	the	screen.

Finally,	you	come	to	the	footer.	It	may	seem	that	you	can	simply	add	the	following:

#footer	{

				height:50px;

				background:pink;

}

If	you	try	loading	this	page,	however,	you	will	see	that	the	footer	div	sits	beside	the
content	div.	You	need	to	request	that	this	element	drops	below	the	floated	elements
preceding	it	with	the	following	property:

clear:	both;

In	this	case,	both	refers	to	the	fact	that	this	element	should	drop	below	both	left	and	right
floated	elements.

If	you	load	the	page,	you	will	see	that	it	looks	exactly	as	expected	(see	Figure	5.7).	Once
the	page	structure	is	in	place,	you	can	then	start	adding	content	to	each	of	the	divs.

Figure	5.7

Controlling	Positions
Up	until	this	point,	the	position	elements	that	have	been	placed	onscreen	have	been	a
product	of	the	elements	that	appear	before	them	in	the	DOM	and	the	properties	of	the
element	itself.	Elements	are	simply	laid	out	in	the	order	they	appear	in	the	web	page	and
take	up	as	much	space	as	they	need.	This	then	impacts	the	position	assigned	to	elements
that	appear	after	them	in	the	DOM.

This	is	technically	called	static	positioning,	but	it	is	only	one	of	several	ways	of
positioning	elements.	This	section	will	briefly	look	at	three	other	ways	of	positioning
elements.

In	order	to	demonstrate	positioning,	start	by	creating	the	following	web	page,	which
consists	of	three	boxes.	These	three	boxes	are	sufficient	to	demonstrate	the	various
approaches	to	positioning:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

				<style>

							.box	{

										height:200px;

										width:200px;

										display:inline-block

								}

				</style>

</head>

<body>

				<div	class="box"	style="background:red"/>

				<div	id="middleBox"	class="box"	style="background:green"/>

				<div	id="lastBox"	class="box"	style="background:blue"/>

</body>

</html>

If	you	view	the	web	page,	you	will	see	that	it	consists	of	three	boxes	sitting	alongside	one
another	(see	Figure	5.8).

Figure	5.8

Imagine	that	that	we	want	to	move	the	second	box	(with	the	id	of	middleBox)	50	pixels	to
the	right	and	50	pixels	down	without	impacting	the	third	box	at	all.	This	is	not	possible

with	static	positioning	because	adding	50	pixels	of	width	to	the	second	element	would
push	the	third	element	50	pixels	right.

In	order	to	achieve	this,	add	the	following	rule	to	the	style	section:

#middleBox	{

				position:	relative;

				top:50px;

				left:	50px;

}

This	starts	by	setting	the	position	of	the	middleBox	element	to	relative.	This	means	that
you	want	to	set	its	position	relative	to	the	default	position	it	would	be	given	on	the	page.

Once	the	position	property	has	been	set,	you	can	start	using	the	left,	right,	top,	and
bottom	properties	to	move	the	element	to	a	different	position	on	the	screen.	In	this	case,
you	then	want	to	specify	that	you	want	50	pixels	of	space	added	to	the	left	and	50	pixels
of	space	added	to	the	top.	If	you	view	this,	you	will	see	the	screen	displayed	in	Figure	5.9.

Figure	5.9

Notice	that	the	elements	now	overlap	one	another:	The	third	box	is	simply	given	the
position	it	would	have	held	if	you	had	not	moved	the	second	element	to	the	right.

It	is	also	possible	to	use	a	position	of	absolute	to	position	an	element	relative	its	parent.
Try	changing	the	preceding	style	as	follows:

	#middleBox	{

				position:	absolute;

				top:	150px;

				left:	150px;

}

Because	the	parent	of	middleBox	is	the	body	element	itself,	you	are	effectively	positioning
the	element	relative	to	the	browser	window.	If	you	view	the	page	now,	it	should	look	like
what	you	see	in	Figure	5.10.

Figure	5.10

Using	absolute	positioning	removes	the	element	from	the	flow	of	the	page,	and	therefore
the	position	of	the	third	box	is	also	impacted.

You	can	also	control	which	of	these	elements	sits	in	the	foreground	and	which	are
relegated	to	the	background.	This	is	controlled	by	a	CSS	property	called	z-index.	The
element	with	the	highest	z-index	will	be	placed	in	the	foreground.	Therefore,	if	you	add
the	following	to	the	style	of	middleBox,	it	will	be	relegated	to	the	background:

z-index:-1;

The	final	main	type	of	positioning	is	fixed.	This	is	similar	to	absolute	positioning,
except	elements	are	positioned	relative	to	the	browser	window.	In	the	preceding	example,
fixed	and	absolute	positioning	would	achieve	the	same	result.

Try	It
In	this	step-by-step,	you	will	pick	up	the	CRM	application	from	the	previous	lesson	and
add	more	structure	to	the	overall	web	page.	This	will	include	adding	a	header,	a	footer,
and	an	area	for	adding	new	contacts	(although	we	will	not	populate	this	until	the	next
lesson).

Lesson	Requirements
You	will	need	the	CRM	application	as	it	stood	at	the	end	of	Lesson	4.	You	will	also	need	a
text	editor	and	the	Chrome	web	browser.

Step-by-Step
1.	 Open	the	contacts.html	page	and	add	a	div	immediately	after	the	opening	body	tag.

In	the	body	of	the	tag,	enter	Contacts.	Assign	the	id	of	header	to	this	tag.

2.	 Wrap	a	div	tag	around	the	table,	and	give	this	the	id	of	contactList.	The	opening
tag	should	be	immediately	before	the	opening	table	tag,	while	the	closing	tag	should
be	immediately	after	the	closing	table	tag.

3.	 Add	another	div	immediately	before	the	closing	body	tag	and	give	this	the	id	of
footer.	Add	a	copyright	statement	to	this	div.

4.	 Add	one	final	div	immediately	after	the	header	div,	and	give	this	the	id	of
contactDetails.	This	is	where	you	will	eventually	place	a	new	form	for	adding
contacts.	Add	an	h2	element	to	this	with	the	text	Contact	Details.

5.	 Open	contacts.css.	Start	by	adding	a	margin:	0	property	to	the	body	rule	to	ensure
you	remove	white	space	from	around	the	header.

6.	 Create	a	rule	for	the	div	with	the	id	of	header.	This	should	specify	that	the
background	and	color	are	the	same	as	for	the	thead	element	rule	from	the	last
lesson.	Additionally,	add	a	text-align	property	with	a	value	of	center,	and	a	line-
height	property	with	a	value	of	70px.

line-height	is	similar	to	height,	but	it	will	ensure	that	the	text	is	vertically	aligned.
If	you	had	simply	specified	height,	the	text	would	be	positioned	near	the	top	of	the
div.	Also	add	a	font-size	of	3em:	three	times	larger	than	the	standard	font.

7.	 contactDetails	and	contactList	need	to	share	a	number	of	properties,	so	create	a
rule	that	matches	both	of	these	elements.	Add	a	border	with	a	1px	solid	line	and	a
color	of	#999999.	Also	add	margin	and	padding	of	15px	around	all	sides.

8.	 Add	a	style	for	the	footer	div.	This	should	be	the	same	as	the	header,	except	the
line-height	should	be	40,	and	the	font-size	should	be	0.8em.

9.	 Black	font	can	be	quite	overpowering,	so	set	the	color	property	of	the	body	to
color:	#333333,	which	is	a	very	dark	grey.

If	you	open	the	page,	it	should	look	like	the	example	in	Figure	5.11.	If	you	need

assistance,	the	finished	version	can	be	downloaded	from	the	Lesson	5	resources,	or	you
can	watch	the	screencast	online.

Figure	5.11

Reference
Please	select	the	video	for	Lesson	5	online	at	www.wrox.com/go/html5jsjquery24hr.
You	will	also	be	able	to	download	the	code	and	resources	for	this	lesson	from	the
website.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	6

HTML	Forms
The	HTML	tags	examined	up	until	this	point	have	all	been	used	to	display	content	to	the
user.	This	lesson	examines	HTML	forms,	which	allow	the	user	to	submit	data	back	to	the
web	server.	Any	time	you	enter	data	into	text	fields,	or	select	values	from	drop-down	lists,
you	are	using	HTML	forms.

This	lesson	will	provide	an	introduction	to	HTML	forms,	but	will	also	look	at	some	of	the
interesting	changes	that	have	occurred	to	forms	in	HTML5.	These	changes	were	originally
called	Web	Forms	2.0,	but	have	since	been	integrated	into	the	HTML5	standard.
Therefore,	even	if	you	are	familiar	with	HTML	forms,	this	lesson	is	recommended.

What	Is	a	Form?
A	form	is	a	set	of	input	fields,	grouped	together	inside	a	single	element,	with	the	purpose
of	obtaining	a	set	of	information	from	the	user.	Forms	have	historically	consisted
primarily	of	the	following	fields:

Text	fields

Select	lists

Text	boxes	(multiline	text	fields)

Checkboxes

Radio	buttons

Password	fields

As	you	will	see	shortly,	this	list	has	been	greatly	enhanced	with	HTML5.

In	addition,	fields	contain	a	Submit	button	that	causes	their	contents	to	be	posted	to	a
specified	URL	on	the	server.	The	server	can	then	process	this	data	as	required	and	return	a
new	web	page	as	a	result.

In	this	book,	you	will	make	extensive	use	of	forms	but	will	not	post	their	contents	to	a
server.	You	will	instead	extract	and	process	their	data	using	JavaScript.	In	this	chapter,	I
will	present	a	more	conventional	view	of	forms	but	will	not	provide	server-side	code	for
processing	the	form	information	because	this	would	require	me	to	introduce	a	whole	new
set	of	technologies.

This	section	of	the	lesson	introduces	a	very	simple	form	and	examines	its	component
parts.	You	will	then	create	a	more	complicated	form	for	the	Contacts	web	page.

Create	a	new	page	called	simpleform.html	and	add	the	following	body	to	it:

<body>

				<form	action="submit.html"	method="post">

								<label	for="firstName">First	Name</label>:

									<input	id="firstName"	name="firstName"	type="text"/>

								<p>

								<label	for="lastName">Last	Name</label>:

								<input	id="lastName	"	name="lastName"	type="text"/>

								<p>

								<input	type="submit"	value="Submit">

				</form>

</body>

If	you	open	this	in	Chrome,	it	will	look	like	Figure	6.1.

Figure	6.1

Notice	that	all	the	input	fields	are	nested	inside	a	form	element.	All	of	the	input	fields
within	a	form	should	represent	a	related	set	of	data	that	is	processed	together.

The	form	element	contains	two	important	attributes.	The	action	attribute	is	the	address	on
the	web	server	that	the	contents	of	the	form	will	be	posted	to	when	the	form	is	submitted.
It	is	assumed	that	this	address	will	be	capable	of	processing	the	contents	of	the	form	and
redirecting	the	user	to	a	new	web	page	as	a	result.

The	method	attribute	refers	to	the	HTTP	method	that	will	be	used	to	send	the	data	to	the
server.	When	you	simply	type	an	address	in	a	browser	address	bar,	you	are	using	an	HTTP
method	called	GET.	This	is	a	simple	mechanism	for	requesting	a	web	page,	although	it	can
contain	data	if	required.

When	you	send	form	data	to	the	server,	you	typically	have	a	large	quantity	of	data	that
needs	to	be	sent;	therefore,	you	use	the	HTTP	POST	method.	With	this	method,	all	the	input
fields	and	their	values	are	included	in	the	body	of	the	HTTP	request	rather	than	encoded	in
the	URL.	You	do	not	need	to	understand	HTTP	methods	to	progress	through	the	book,
although	you	will	look	at	them	in	slightly	more	detail	when	AJAX	is	introduced.

In	this	particular	case,	the	form	consists	of	two	labels	and	two	input	fields.

Obviously,	labels	do	not	allow	the	user	to	provide	input;	thus,	you	may	be	wondering	why
you	need	to	use	them	rather	than	just	adding	text	to	the	form.	Labels	have	the	following
benefits:

Clicking	on	the	label	puts	the	cursor	focus	in	the	input	field.	This	relies	on	the	fact
that	the	value	of	the	for	attribute	is	the	id	of	the	input	field	that	it	relates	to.

Labels	provide	more	structure	to	the	document	because	they	make	it	obvious	that	the
label	is	associated	with	a	specific	input	field.

HTML	uses	an	element	called	input	for	many,	but	not	all,	input	fields.	For	this	reason,	an
attribute	is	added	to	the	element	specifying	the	type	of	input	it	accepts.	In	this	particular
case,	you	have	specified	that	the	type	is	text	(which	is	the	default).

Finally,	a	button	is	added	to	the	form	allowing	it	to	be	submitted.	Notice	that	this	is	also	an
input	element,	but	because	it	is	given	a	type	of	submit,	it	displays	as	a	button	rather	than
an	input	field.

When	the	submit	button	is	clicked,	the	fields	are	serialized	into	a	textual	string	of
name/value	pairs.	The	name	attribute	for	each	input	field	is	used	as	the	name,	and	the
current	value	of	the	field	is	used	as	the	value.	The	textual	string	is	then	placed	in	the	body
of	an	HTTP	request	and	posted	to	the	server.

If	I	enter	Dane	and	Cameron	into	the	two	fields,	and	then	press	the	submit	button,	it	will

post	an	HTTP	request	to	the	server,	as	shown	in	Figure	6.2	(this	was	captured	from	the
Network	tab	of	Chrome’s	developer	tools	after	first	clicking	the	Preserve	Log	option).

Figure	6.2

Adding	Fields	to	a	Form
In	this	section,	you	create	the	form	for	capturing	information	about	a	person	in	your
Contacts	web	application.

To	complete	this	section,	open	the	contacts.html	file	as	it	stood	at	the	end	of	Lesson	5,
or	download	it	from	the	book’s	website.

Start	by	adding	the	following	content	to	the	contactDetails	div:

<div	id="contactDetails"><h2>Contact	details</h2>

				<form	method="post">

								<div	class="formRow">

												<label	for="contactName">Contact	name</label>

												<input	name="contactName"	id="contactName"	type="text"/>

								</div>

				</form>

</div>

This	adds	a	form	with	a	single	input	field.	The	label	and	input	elements	have	been
placed	in	a	div	with	a	class	of	formRow,	which	ensures	that	each	pair	will	be	placed	on	a
row	of	its	own.

Because	you	want	all	your	labels	and	fields	to	have	a	consistent	size,	add	the	following	to
contacts.css:

label	{

				width:150px;

				display:	inline-block;

				vertical-align:	top;

}

input	{

				width:200px;

}

Notice	that	you	need	to	change	the	display	type	of	the	label	in	order	to	set	its	width.

You	can	now	add	input	fields	for	the	email	address	and	phone	number	fields:

<div	class="formRow">

					<label	for="phoneNumber">Phone	number</label>

					<input	name="phoneNumber"	id="phoneNumber"	type="text"/>

</div>

<div	class="formRow">

				<label	for="emailAddress">Email	address</label>

				<input	name="emailAddress"	id="emailAddress"	type="text"/>

</div>

Because	you	also	want	some	space	between	each	row,	add	the	following	to	the	style	sheet.
Figure	6.3	shows	what	the	form	should	look	like.

.formRow	{

				margin-bottom:10px;

}

Figure	6.3

Next	you	will	add	a	field	for	capturing	the	company	of	the	contact.	In	this	case,	you	may
want	the	user	to	select	from	a	list	of	companies	that	have	already	been	added	into	the
system.	This	can	be	achieved	with	a	different	input	type	called	a	select	list.	Start	by	adding
this	to	the	form:

<div	class="formRow">

				<label	for="companyName">Company	name</label>

				<select	name="companyName"	id="companyName">

								<option	value="-1">Please	select</option>

								<option	value="1">ABC	Incorporated</option>

								<option	value="2">XZY	Ltd</option>

								<option	value="3">ACME	iInternational</option>

				</select>

</div>

Notice	that	the	select	list	is	encapsulated	inside	an	element	called	select.	Within	this,	you
have	a	series	of	option	elements	providing	the	various	possibilities.	Each	option	consists
of	two	values:	The	text	between	the	opening	and	closing	option	tag	is	the	text	that	will	be
presented	to	the	user.	Each	option	tag	also	has	a	value	attribute,	however,	and	this	is	the
value	that	will	be	assigned	to	the	field	when	the	form	is	submitted.

It	is	possible	for	the	text	and	the	value	to	carry	the	same	value,	but	it	is	also	common	for
them	to	differ.	For	instance,	in	this	case	the	value	may	represent	a	unique	code	for	each
company,	as	assigned	by	an	accounting	system.

By	default,	a	select	list	selects	the	first	option,	although	it	is	possible	to	add	a	selected
attribute	to	any	other	option	to	make	it	the	default.	This	is	a	Boolean	attribute;	thus,	it	does
not	require	a	value.	For	example:

<option	value="3"	selected>ACME	iInternational</option>

You	will	now	add	one	more	field	for	capturing	notes	about	the	contact.	This	will	be
slightly	different	from	the	other	text-based	fields	because	you	want	to	provide	space	for	a
large	amount	of	text	to	be	captured.	You	will	notice	that	the	input	fields	you	have	used	up
until	now	do	not	even	allow	line	breaks,	so	they	are	not	appropriate	for	capturing	large
quantities	of	text.

You	therefore	want	to	add	a	different	input	type	called	a	textarea:

<div	class="formRow">

				<label	for="notes">Notes</label>

				<textarea	cols="40"	rows="6"	name="notes"	></textarea>

</div>

Notice	that	the	text	area	allows	you	to	specify	the	number	of	columns	and	rows	that	the
textarea	contains.	Although	these	dictate	the	size	of	the	element,	and	therefore	are	semi-
presentational,	they	are	still	valid	attributes	in	HTML5.

With	this	in	place,	the	form	should	now	look	like	Figure	6.4.

Figure	6.4

Finally,	add	a	submit	button	to	the	bottom	of	the	form.	Because	you	want	this	to	be
smaller	than	other	input	fields,	you	will	use	an	inline	style.

<div	class="formRow">

				<input	style="width:70px"	type="submit"	value="Save"/>

</div>

HTML5	Input	Fields
There	is	one	final	field	you	should	add:	You	want	to	capture	the	date	that	the	contact	was
last	spoken	to	or	emailed	by	your	staff.	Users	generally	expect	to	provide	this	information
by	selecting	a	date	from	a	calendar.

Up	until	the	release	of	HTML5,	you	needed	to	resort	to	JavaScript	libraries	in	order	to
achieve	this.	One	of	the	great	enhancements	in	HTML5	is	the	introduction	of	a	whole	set
of	new	input	types,	including	a	date	input	type.	This	allows	browsers	to	provide	native
support	for	selecting	dates.

In	order	to	see	this	in	action,	add	the	following	row	to	the	form,	before	the	row	with	the
submit	button:

<div	class="formRow">

				<label	for="lastContacted">Last	contacted</label>

				<input	name="lastContacted"	id="lastContacted"	type="date"/>

</div>

Notice	that	the	only	difference	between	this	and	other	input	fields	is	that	the	type	has	been
specified	as	date.	If	you	open	this	in	Chrome,	however,	you	will	see	that	a	date	picker	has
been	provided	for	you,	as	shown	in	Figure	6.5.

Figure	6.5

The	great	thing	about	native	support	for	calendars	is	that	different	browsers	can	implement
them	in	the	most	appropriate	way	they	see	fit.	For	instance,	if	you	viewed	this	page	on	an
iPad,	the	date	picker	would	look	like	the	example	in	Figure	6.6.

Figure	6.6

As	you	can	see,	this	has	been	optimized	for	a	touch-based	operating	system.

The	main	problem	with	the	date	input	type	is	that	all	browsers	do	not	support	it.	This

means	that,	for	now,	you	will	probably	need	to	rely	on	a	technique	called	polyfills,	as
outlined	later	in	Lesson	10.

HTML5	actually	specifies	many	additional	input	types.	As	with	the	date	input	type,	the
specification	does	not	tell	browsers	how	they	should	implement	each	type,	and	in	fact,
many	are	not	widely	supported,	but	the	following	are	some	of	the	input	types	that	have
been	included	in	the	specification:

email:	Allows	the	user	to	capture	an	email	address.

color:	Allows	the	user	to	capture	a	color,	presumably	from	a	color	picker.

number:	Limits	the	user	to	entering	a	number	in	an	input	field,	and	allows	the	user	to
increase	or	decrease	the	value	by	a	step	amount.

range:	Lets	the	user	specify	a	number	from	a	possible	range	of	numbers.	This	will
also	be	introduced	in	Lesson	10.

tel:	Lets	the	user	capture	a	telephone	number.

url:	This	lets	the	user	capture	a	URL.

datetime:	This	is	similar	to	date,	but	allows	the	user	to	select	time	as	well	as	date
information.

time:	This	is	also	similar	to	date,	but	limits	the	selection	to	the	time	of	day.

In	order	to	see	what	these	elements	do,	change	the	email	address	and	phone	number	fields
to	use	email	and	tel	respectively.	If	you	now	reload	the	page,	you	probably	will	not
notice	any	difference.

As	you	will	see	in	Lesson	8,	this	is	not	entirely	true;	HTML5	provides	native	support	to
validate	fields	based	on	their	type.	In	addition,	although	Chrome	on	a	desktop	does	not
treat	these	types	any	differently	from	text	fields,	this	may	not	be	true	of	other	browsers.

For	instance,	if	you	were	to	click	on	either	of	these	fields	in	a	mobile	phone	or	tablet
browser,	you	can	envisage	that	the	software-based	keyboard	would	change	to	reflect	the
keys	needed	by	the	input	type.	The	same	would	be	true	if	the	input	type	was	set	to	number.

It	is	worth	reiterating	that	one	of	the	key	strengths	with	the	HTML5	specification	is	that	it
does	not	second-guess	how	browsers	should	implement	features.	A	browser	on	a	phone
may	therefore	attempt	to	auto-complete	phone	numbers	based	on	the	user’s	phone	book	if
it	determines	this	is	useful	to	the	user.

Datalist	Element
HTML5	also	contains	a	new	input	type	called	a	datalist.	This	is	similar	to	a	select	list,
but	it	does	not	limit	the	user	to	the	values	in	the	list:	It	allows	the	user	to	type	his	or	her
own	value	if	required.	The	following	is	an	example:

<input	list="companies"	name="companyName">

<datalist	id="companies">

				<option	value="ABC	Incorporated">

				<option	value="XZY	Ltd">

				<option	value="ACME	iInternational">

</datalist>

As	you	can	see,	this	element	is	made	up	of	two	distinct	tags.	The	first	is	an	input	field,
which,	because	its	type	is	not	specified,	defaults	to	a	text	input	field.	This	specifies	a
special	attribute	called	list.

The	next	element	is	a	datalist,	which	has	the	same	id	as	the	list	specified	on	the	input
field.	This	then	provides	a	default	list	for	the	user	to	select	from,	and	also	allows	the	value
to	be	autocompleted	as	the	user	types.

Although	you	will	not	use	this	in	the	contacts	web	page,	if	you	were	to	add	it,	it	would
display	as	you	see	Figure	6.7.

Figure	6.7

Form	Attributes
In	addition	to	new	input	types,	HTML5	provides	a	number	of	new	attributes	for	existing
input	types.	You	will	look	at	several	of	these	in	Lesson	8	when	you	look	at	HTML5
validation,	but	it	is	worth	mentioning	a	number	of	them	in	this	lesson.

The	placeholder	attribute	allows	you	to	provide	a	hint	to	users	to	help	them	enter	a	value.
For	instance,	if	you	changed	the	telephone	input	field	as	follows:

<input	placeholder="Include	area	code"	name="phoneNumber"	type="tel"/>

the	field	would	display	as	you	see	in	Figure	6.8.	Notice	the	gray	text	in	the	field.	This	will
disappear	as	soon	as	the	user	starts	typing	in	the	field.

Figure	6.8

The	autocomplete	attribute	can	be	used	to	specify	whether	the	browser	should	attempt	to
autocomplete	text	entered	by	the	user	based	on	values	that	they	have	provided	before.	The
following	is	an	example	that	turns	autocomplete	off	on	the	contact	name	field:

<input	autocomplete="off"	name="contactName"	type="text"/>

The	autocomplete	attribute	can	also	be	used	on	the	form	as	a	whole.

The	autofocus	attribute	is	used	to	automatically	set	the	cursor	in	a	specific	field	when	the
page	loads.	It	has	always	been	possible	to	do	this	with	JavaScript,	but	this	attribute	makes
it	far	simpler.	For	instance,	if	you	added	the	following	to	contact	name	field,	you	will
notice	that	the	cursor	is	in	this	field	when	the	page	loads:

<input	autofocus	autocomplete="off"	name="contactName"	type="text"/>

Finally,	the	form	attribute	can	be	used	to	specify	that	an	input	field	is	part	of	a	form,	even
if	it	is	not	nested	inside	of	it.	If	this	attribute	is	given	a	value	corresponding	to	the	id	of	a
form,	it	will	be	included	in	the	post	to	the	server	when	the	form	is	submitted,	regardless	of
where	it	is	placed	in	the	page.

This	can	be	useful	if	you	have	a	field	that	is	located	in	a	completely	different	area	of	the
screen	from	other	fields.

Try	It
In	this	Try	It,	you	will	experiment	with	the	various	form	elements	and	input	fields
introduced	in	this	lesson.	This	Try	It	also	covers	the	few	remaining	form	elements	not
covered	so	far	in	the	lesson.

You	are	encouraged	to	experiment	here;	the	goal	is	to	gain	an	understanding	of	how	the
form	elements	work.	If	you	get	stuck,	my	version	is	available	on	the	book’s	website	in	a
file	called	tryit.html,	or	you	can	watch	the	screencast	online.

Lesson	Requirements
You	will	also	need	a	text	editor	and	a	web	browser.

Step-by-Step
1.	 Start	by	creating	a	simple	HTML5	web	page	that	you	can	use	to	add	the	elements

outlined	in	this	lesson.

2.	 Begin	by	adding	a	form	element	to	the	web	page	and	adding	a	method	of	post	to	this.
Because	you	will	not	submit	this	form,	you	do	not	need	to	add	an	action.

3.	 Start	by	adding	a	simple	text	input	field	with	the	name	of	fullName.	Use	the
placeholder	attribute	to	provide	a	hint	to	the	user,	and	request	that	this	field	receives
focus	when	the	page	loads.

4.	 Add	a	label	for	this	field,	and	use	the	for	attribute	to	specify	the	id	of	the	field	that
this	relates	to.

5.	 You	want	to	add	radio	buttons	to	specify	whether	the	person	is	male	or	female.	Add
the	following	markup	to	the	web	page:

<label	for="male">Male</label>

<input	checked	type="radio"	name="gender"	id="male"	value="male">

<label	for="female">Female</label>

<input	type="radio"	name="gender"	id="female"	value="female">

Notice	in	this	example	that	both	input	types	are	given	the	same	name.	This	is	how	the
browser	knows	that	the	two	radio	buttons	are	connected,	and	ensures	that	only	one
can	be	selected.	When	the	form	is	submitted,	the	field	will	be	given	the	value	of	the
radio	button	currently	selected.

6.	 Add	a	checkbox	to	the	form	asking	if	the	user	wants	to	subscribe	to	your	newsletter.
A	checkbox	is	identical	to	a	radio	button,	but	the	type	of	the	input	field	is	checkbox.
In	addition,	you	do	not	need	to	specify	a	value	with	checkboxes:	The	value	of	the
field	will	be	set	to	either	on	or	off.

7.	 Add	a	textarea	for	capturing	notes.	This	should	be	sized	to	capture	5	rows	and	30
columns.

8.	 Add	a	“Date	of	birth”	input	field	that	uses	an	input	type	of	date.

9.	 Add	a	salary	field	to	the	form.	Specify	this	as	type	number,	and	define	a	step
attribute	with	a	value	of	500.

10.	 Add	a	submit	button	to	the	bottom	of	the	form	to	allow	the	contents	to	be	submitted.

11.	 Ensure	that	you	have	added	a	
	before	each	label	to	make	sure	the	inputs	are
placed	on	separate	lines.

The	finished	result	should	look	something	like	the	screenshot	in	Figure	6.9,	but	you
are	encouraged	to	experiment,	and	try	out	the	other	features	outlined	in	this	lesson.

Figure	6.9

You	should	notice	one	new	feature	on	this	form:	if	you	enter	a	value	into	the	salary
field,	Chrome	provides	up	and	down	arrows	for	increasing	and	decreasing	this	value
by	the	step	amount.	This	also	ensures	that	the	value	is	rounded	down	to	a	multiple	of
the	step	amount.

Reference
Please	select	the	video	for	Lesson	6	online	at	www.wrox.com/go/html5jsjquery24hr.
You	will	also	be	able	to	download	the	code	and	resources	for	this	lesson	from	the
website.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	7

Semantic	Tags
Most	of	the	tags	you	have	encountered	up	until	this	point	will	be	familiar	to	anyone	who
has	worked	with	earlier	versions	of	HTML.	In	this	lesson,	you	will	explore	a	new	set	of
tags	defined	in	HTML5	called	semantic	tags.

If	you	consider	the	lessons	you	have	looked	at	so	far,	thanks	to	the	power	of	CSS,	it	is
possible	to	create	the	body	of	even	complex	web	pages	entirely	from	span	and	div	tags.	In
fact,	many	web	pages	are	created	exactly	like	this.

Each	element	that	appears	on	a	page—from	a	header	banner,	to	a	table	cell,	to	an	image—
is	responsible	for	providing	the	presentation	for	a	rectangular	area	of	the	screen,	and
therefore	a	div	or	span	can	fulfill	this	role.

Although	this	approach	works	from	a	presentation	perspective,	the	individual	tags	do	not
contain	any	meaning	about	their	purpose	in	the	web	page:	They	are	therefore	said	to	lack
semantic	meaning.	Not	only	that,	it	would	be	very	difficult	to	deduce	from	the	markup
what	role	each	element	played	in	the	web	page.

Note
The	“semantic	web”	was	a	term	coined	by	the	inventor	of	the	World	Wide	Web,	Tim
Berners-Lee.	He	envisaged	a	web	of	data	that	could	be	processed	by	machines	as	well
as	people.	Although	Tim’s	vision	remains	largely	unfulfilled,	the	tags	you	will	look	at
in	this	chapter	are	one	step	along	the	line	to	achieving	this.

Let’s	look	at	a	concrete	example.	A	header	section	for	a	web	page	could	be	defined	as
follows:

<div	class="header">This	is	the	header</div>

You	will	notice	that	the	class	name	does	describe	the	purpose	of	the	div,	but	is	just	an
arbitrary	name:	I	could	just	as	easily	have	called	this	class	headSection	or	head.

In	many	ways,	it	would	be	better	if	there	were	a	semantic	tag	called	header,	and	everyone
used	this	to	indicate	the	header	of	their	pages.

The	rationale	for	semantic	tags	comes	from	the	observation	that	if	the	browser	knows	this
is	a	header,	it	may	be	able	to	provide	additional	services	or	features	to	the	reader	based	on
this	fact:

It	may	decide	to	render	the	information	differently	on	different	devices.	For	instance,
on	a	small	screen	device	such	as	a	phone,	it	may	only	show	the	header	when	the	user
taps	near	the	top	of	the	page.

It	may	support	different	modes.	For	instance,	a	user	may	indicate	that	he	or	she	wants
to	read	the	content	of	the	page	without	any	distractions	(similar	to	the	Reader	mode
in	Safari);	therefore,	the	header	could	be	temporarily	removed.

It	may	provide	support	for	alternative	browsers,	such	as	screen	readers	for	the
visually	impaired.	For	instance,	it	would	help	the	screen	reader	understand	that	this	is
the	title	section	of	the	page	and	should	be	read	first.

In	addition	to	these	benefits,	there	are	clear	benefits	to	the	web	page	developer.	Pages
consisting	of	heavily	nested	div	tags	can	become	very	difficult	to	maintain.	Not	only	is	it
easy	to	miss	an	ending	tag,	but	it	becomes	difficult	to	determine	which	tag	needs	which
style	applied	to	it.

In	order	to	support	these	benefits,	there	needs	to	be	a	way	to	definitively	mark	an	element
as	the	header.	Therefore,	the	HTML5	specification	defines	a	set	of	semantic	tags,
including	the	following:

<header>This	is	the	header</	header	>

This	lesson	will	walk	you	through	the	most	important	semantic	tags	and	look	at	how	you
can	structure	a	web	page	with	these	tags.

As	it	happens,	few	of	these	tags	do	currently	provide	any	of	the	potential	benefits	outlined.

Still,	I	recommend	that	you	take	advantage	of	these	tags	because	they	will	make	your	code
easier	to	read	and	comprehend,	and	they	may	offer	advantages	in	the	future.

Grouping	and	Segmenting	Content
Many	of	the	semantic	tags	are	used	for	building	the	core	structure	of	a	web	page—for
instance,	the	header,	the	footer,	sections	of	content,	and	asides.	The	example	that	follows
contains	a	number	of	semantic	tags:	Start	by	reading	through	this	example.	you	will	then
look	at	the	meaning	of	each	tag:

<body>

				<header>This	is	the	header</header>

				<main>

								<aside>This	is	where	the	advertising	goes</aside>

								<section>This	is	the	first	section	in	the	page</section>

								<section>This	is	the	second	section	in	the	page</section>

				</main>

				<footer>This	is	the	footer</footer>

</body>

As	you	can	see,	this	example	is	taking	advantage	of	a	number	of	tags	that	you	have	not
encountered	so	far.	The	next	sections	will	describe	these	tags	and	explain	where	they
should	be	used.	It	will	also	cover	a	number	of	other	tags	not	found	in	this	example.

Header
The	header	tag	is	used	to	group	introductory	information	such	as	the	title	of	the	page	and
any	relevant	header	imagery.	The	header	should	also	contain	the	main	navigation	links	for
the	page.

There	can,	in	fact,	be	more	than	one	header	on	a	page:	Each	section	may	have	its	own
header	element,	while	the	page	as	a	whole	may	have	its	own	header	element.

Footer
The	footer	tag	is	used	to	group	information	that	should	appear	at	the	bottom	of	a	web
page	or	section.	For	instance,	this	may	contain	copyright	information	or	contact
information.

As	with	headers,	it	is	possible	to	have	multiple	footers	in	a	page,	and	footers	do	not
need	to	be	paired	with	headers.

Main
The	main	tag	should	surround	the	content	that	forms	the	central	functionality	or	content	of
the	web	page.	There	should	only	be	one	main	tag	on	a	page,	and	it	cannot	be	nested	inside
other	elements	such	as	header,	section,	or	footer.

I	have	not	placed	the	headers	and	footers	inside	the	main	element,	but	this	is	a	choice	I
have	made.	The	HTML5	specification	leaves	you	a	wide	degree	of	discretion	over	how
and	where	you	use	the	tags,	and	how	they	interact	with	other	tags.	It	would	therefore	also
be	perfectly	valid	to	nest	the	header	and	footer	inside	the	main	element.

Section
Sections	are	used	to	capture	discreet	subdivisions	of	a	document.	For	example,	in	the	web
page	you	have	been	developing,	the	editable	portion	of	the	screen	may	be	considered	a
section,	and	the	list	of	contacts	may	be	considered	another	section.

In	order	to	determine	if	a	portion	of	the	web	page	is	a	section,	consider	whether	you
could	pick	up	this	whole	area	of	the	page	and	reposition	it	elsewhere	within	the	web	page.
If	so,	it	is	a	good	candidate	to	be	tagged	as	a	section.

Aside
Asides	are	used	for	content	that	is	loosely	associated	with	other	content	around	it,	but
which	could	be	considered	separate.	It	may	also	be	used	for	advertising	material	or	other
unrelated	information.	An	aside	will	often	be	visually	separated	from	the	content	around
it	with	a	border	or	font.

Article
An	article	is	similar	to	a	section	in	that	it	contains	self-contained	information,	but	it	is
generally	used	for	segregating	textual	content,	such	as	blog	posts	or	reviews,	rather	than
just	generic	sections	of	the	document.

Some	people	prefer	to	see	the	article	tag	not	as	a	magazine	article,	but	instead	like	an
article	of	clothing:	something	that	exists	in	its	own	right,	but	can	be	mixed	and	matched
with	other	articles.

I	personally	prefer	to	use	article	only	for	self-composed	text	blocks	that	could	be
extracted	from	one	web	page	and	embedded	in	another.	For	this	reason,	article	is	not
appropriate	for	the	contacts	web	page	because	this	page	does	not	contain	self-contained
text	blocks.

Nav
A	nav	element	provides	a	container	for	the	main	navigation	links	on	the	page.	This	allows
them	to	be	located	by	alternative	browsers	such	as	screen	readers.

This	is	an	easy	element	to	overuse:	The	specification	does	not	expect	all	navigation	links
to	be	encapsulated	in	a	nav	element,	only	the	primary	navigation	options	for	the	page.

Address
The	address	tag	is	not	new	at	all,	but	it	does	fit	in	with	the	other	semantic	tags,	and	is	part
of	the	HTML5	specification.	This	element	is	used	to	define	the	address	or	contact	details
of	the	maintainer	of	the	page.

Styling	Semantic	Tags	with	CSS
If	you	save	the	markup	from	the	previous	section	in	a	file	called	semantic.html	and	then
open	it	in	Chrome,	you	may	be	disappointed	with	the	results	(see	Figure	7.1).

Figure	7.1

Although	the	semantic	tags	imply	presentation	information	in	their	names,	browsers
typically	do	not	style	them	differently	from	regular	div	elements:	They	are	simple	block
components.	For	instance,	the	header	tag	tells	the	browser	the	content	of	the	element
contains	header	information;	it	does	not	tell	it	what	to	do	with	this.

Semantic	elements	need	to	be	styled	with	CSS,	just	like	regular	elements.	In	addition,	you
can	style	these	tags	any	way	you	like—there	is	nothing	(except	common	sense)	to	stop
you	from	placing	the	footer	at	the	top	of	the	page	and	the	header	at	the	bottom	of	the
page.

In	order	to	style	these	tags,	place	the	following	in	a	style	section	in	the	head	of	the	page:

header,	footer	{

				padding:	30px	0	30px	0;

				width:100%;

				background:#B3B2CF;

				text-align:center;

}

header	{

				font-size:22px;

}

section	{

				float:	left;

				padding:	10px;

				margin:20px;

				width:70%;

				border:	1px	solid	black;

}

aside	{

				position:relative;

				float:right;

				padding:	10px;

				margin:20px;

				width:150px;

				height:200px;

				border:	1px	solid	black;

}

footer	{

				clear:	both;

				margin-top:	50px;

				font-size:18px;

}

If	you	now	refresh	the	page	the	various	elements	will	be	displayed	in	an	appropriate	style
for	their	names.

Microformats
So	far	you	have	examined	the	way	semantic	tags	can	be	used	for	encapsulating	a	portion
of	a	page,	and	labeling	it	according	to	its	role	in	the	page.	Semantic	tags	can,	however,
also	exist	on	a	micro	scale.

Consider	the	elements	in	the	contacts	web	page	displaying	date	information.	Currently,
these	are	placed	in	td	elements,	but	HTML5	provides	a	new	element	called	time	for
encapsulating	date	and	time	information	in	a	more	meaningful	way.	This	element	allows
the	date	and	time	information	to	be	provided	in	a	human-readable	and	machine-readable
manner	simultaneously.	For	instance

<time	datetime="2014-08-20">20th	August	2014</time>

This	could	also	have	been	written:

<time	datetime="2014-08-20">August	2014</time>

Notice	that	in	each	case,	the	same	information	is	provided	twice.	The	first	version	of	the
date	is	presented	in	an	attribute	and	conforms	to	the	ISO	standards	for	dates	(and	times	if
required).	The	second	version	appears	between	the	tags	and	is	the	version	that	will	be
displayed	to	the	user.

Although	dates	and	times,	in	all	their	myriad	of	formats,	are	very	easy	for	a	human	to	read
and	comprehend,	they	can	be	notoriously	difficult	for	a	computer	to	process.	By	allowing
tags	to	always	provide	an	ISO-compliant	version	of	the	date,	it	suddenly	becomes	trivial
for	a	computer	to	process	the	element	and	comprehend	its	meaning.

Features	such	as	this	are	referred	to	as	microformats	and	are	widely	used	in	computing	to
provide	semantic	meaning	to	search	engines	and	other	automated	clients,	while	providing
human-friendly	versions	of	the	same	data	to	humans.

Microformats	have	not	been	officially	included	in	the	HTML5	specification	at	this	point,
although	the	time	element	is	an	example	of	a	microformat.	There	are	several	standards	for
additional	microformats,	and	it	is	likely	that	HTML5	will	be	expanded	to	support	these	in
the	future.

Summing	Up
It	would	be	overly	optimistic	to	think	that	semantic	tags	are	going	to	revolutionize	your
approach	to	web	page	development.	They	are,	in	many	ways,	one	of	the	least	interesting
features	of	HTML5	because	they	do	not	provide	any	visual	or	functional	capabilities	that
could	not	be	achieved	with	HTML4.

They	do,	however,	have	an	important	role	to	play	in	enhancing	the	readability	of	your
code,	and	may	provide	other	benefits	in	the	future	once	browsers	begin	incorporating
features	that	rely	on	semantic	tags.	In	many	ways,	it	is	not	until	web	page	developers	start
using	these	tags	consistently,	and	en	masse,	that	browser	vendors	will	begin	to	provide
functional	support	for	them.

As	a	final	note,	it	is	also	important	not	to	overuse	the	semantic	tags.	There	is	still	nothing
wrong	with	using	div	and	span	elements	for	structuring	sections	of	a	page:	Save	the
semantic	tags	for	the	main	building	blocks	of	the	web	page.

Try	It
In	this	Try	It,	you	will	take	the	web	application	from	Lesson	6	and	add	semantic	tags	in
the	appropriate	places.

Lesson	Requirements
You	will	need	the	files	from	the	end	of	Lesson	6,	a	text	editor,	and	a	web	browser.

Step-by-Step
1.	 Open	the	contacts.html	page	in	your	text	editor.

2.	 Locate	the	div	with	the	class	header	and	convert	this	into	a	header	element	without	a
class.

3.	 Locate	the	div	with	the	class	footer	and	convert	this	into	a	footer	element	without	a
class.

4.	 Convert	the	div	with	the	id=	“contactDetails”	into	a	section.

5.	 Convert	the	div	with	the	id=	“contactList”	into	a	section.

6.	 Surround	the	two	sections	with	a	main	element	and	give	this	an	attribute	id=
“contactScreen”.

7.	 Find	the	td	elements	containing	dates	and	convert	these	to	time	elements	with	both	a
human	readable	and	machine-readable	form.

8.	 Save	contacts.html.

9.	 Open	contacts.css	and	change	the	selector	for	the	header	class	from	an	id	selector
to	an	element	selector.

10.	 Also	change	the	selector	for	the	footer	from	an	id	selector	to	an	element	selector.

11.	 Save	contacts.css.

12.	 Open	contacts.html	in	Chrome.	The	page	should	not	look	any	different.

13.	 Right-click	the	header	element	and	choose	“Inspect	Element.”

14.	 Confirm	that	this	has	the	element	type	header.

Reference
Please	select	the	video	for	Lesson	7	online	at	www.wrox.com/go/html5jsjquery24hr.
You	will	also	be	able	to	download	the	code	and	resources	for	this	lesson	from	the
website.

Lesson	8

HTML5	Validation
When	the	user	submits	a	form,	it	is	common	to	perform	validation	of	the	data	the	user	has
entered	within	the	browser.	This	allows	any	issues,	such	as	missing	data,	to	be	resolved
before	the	form	is	sent	to	the	server,	and	generally	provides	a	superior	user	experience.

Form	validation	has	traditionally	been	performed	with	JavaScript:	In	fact,	until	recently
this	was	the	most	common	use	of	JavaScript	within	web	pages.	HTML5	provides	built-in
form	validation,	and	allows	fields	to	be	validated	based	on	attributes	added	directly	to	the
fields	themselves.	This	lesson	will	look	at	how	you	can	enable	validation	on	the	form
created	in	Lesson	6.

The	HTML5	form	validation	specification	is	not	perfect—it	lacks	some	of	the	rules	you
would	expect	in	a	complete	validation	framework.	It	does,	however,	have	the	advantage	of
being	a	native	solution	and	is	very	easy	to	use.	It	is	therefore	necessary	to	decide	at	the
outset	of	a	project	whether	HTML5	validation	is	sufficient,	or	whether	you	will	use	one	of
the	many	JavaScript	libraries	available—for	instance,	jQuery	validation.

Adding	Validation	Rules
This	section	will	add	form	validation	to	the	contacts.html	web	page	as	it	stood	at	the	end
of	Lesson	7.	If	you	would	like	to	follow	along,	open	this	file	now,	or	download	it	from	the
book’s	website.

The	most	common	form	of	validation	is	specifying	that	a	field	is	mandatory.	You	can
indicate	that	the	user	is	required	to	provide	a	value	for	a	field	by	simply	adding	the
required	attribute	to	it.	This	is	a	Boolean	attribute,	so	it	does	not	require	a	value:

<input	required	autofocus	autocomplete="off"

name="contactName"	id="contactName"	type="text"	/>

If	you	open	this	page	in	Chrome,	you	will	not	initially	notice	any	difference.	If	you	now
press	Enter	in	the	Contact	name	field	without	first	providing	a	value,	however,	you	will
receive	the	message	shown	in	Figure	8.1.

Figure	8.1

Unfortunately,	you	only	receive	this	error	when	you	press	Enter	in	the	field,	or	press	the
Submit	button	without	providing	a	value	for	the	field.	Tabbing	out	of	the	field	is	not
enough	to	trigger	the	validation	message.

With	field	validation,	it	is	generally	better	to	provide	immediate	feedback	to	the	user	when
a	field	is	invalid.	Users	can	become	frustrated	when	told	a	number	of	fields	are	invalid
when	they	submit	the	form	because	they	need	to	locate	each	of	these	individually	and
provide	values.

One	way	to	provide	immediate	feedback	to	a	user	is	via	a	pair	of	CSS	pseudo-classes
called	valid	and	invalid.	In	order	to	demonstrate	these,	add	the	following	to	the
contacts.css:

.validated:invalid	{

				background:#FAC3C9;

}

.validated:valid	{

				background:#BDF0A8;

}

These	rules	will	set	the	background	color	of	an	element	a	shade	of	pink	if	it	is	invalid	or	a
shade	of	green	if	it	is	valid.

Notice	that	you	have	specified	that	these	rules	only	apply	if	the	element	is	tagged	with	the
validated	class.	Technically,	all	input	fields	can	be	valid	or	invalid,	even	ones	with	no

rules	applied	to	them,	such	as	submit	buttons.	Rather	than	have	these	appear	green,	you
will	explicitly	add	a	class	when	you	want	an	element	to	use	these	styles.	Therefore,	add
the	validated	class	to	the	input	field:

<input	required	autofocus	autocomplete="off"

name="contactName"	id="contactName"		class="validated"		type="text"	/>

If	you	reload	the	web	page	it	should	initially	display	with	the	pink	background,	as	shown
in	Figure	8.2.

Figure	8.2

If	you	now	type	some	text	into	the	field,	you	will	notice	that	it	immediately	turns	green.

Another	common	validation	rule	for	a	field	relates	to	the	number	of	characters	it	can
contain.	It	is	common	to	specify	both	a	minimum	and	a	maximum	number	of	characters
for	a	field.

The	HTML5	specification	specifies	two	new	attributes	called	min	and	max	that	look
promising	in	this	respect.	Unfortunately	these	are	only	useful	for	validating	that	a	number
is	between	a	minimum	and	maximum	value;	they	are	of	no	use	at	all	for	textual	data.

The	specification	does	provide	an	attribute	called	maxlength	that	can	be	used	to	control
the	maximum	number	of	characters	that	can	be	added	to	a	field.	This	works	by	physically
preventing	the	user	from	typing	into	the	field	when	this	limit	is	reached.	The	only	way	to
perform	validation	for	a	minimum	length,	however,	is	to	use	the	pattern	attribute.	This
accepts	a	regular	expression.	For	example:

<input	required	autofocus	autocomplete="off"	name="contactName"

				type="text"	class="validated"	id="contactName"	pattern=".{5,100}"/>

Note
Regular	expressions	are	a	formal	language	for	expressing	textual	patterns	and
checking	if	a	string	of	text	matches	this	pattern.	In	this	particular	case	the	“.”
matches	any	single	character,	while	the	two	numbers	in	curly	brackets	specify	that
this	must	occur	between	5	and	100	times.	I	will	not	explain	regular	expressions	in	any
more	detail	in	this	book,	but	there	are	many	online	resources	available	for	learning
more.

If	you	reload	the	web	page	and	start	typing	into	it,	you	will	notice	that	the	background
does	not	turn	green	until	you	type	the	fifth	character.	Additionally,	if	you	type	more	than
100	characters,	it	will	turn	pink	again.

You	can	add	similar	validation	to	the	phone	number	field:

<input	required	pattern="	[0-9()]{5,15}"	placeholder="Include	area	code"

name="phoneNumber"	type="tel"	id="phoneNumber"	class="validated"/>

In	this	case,	you	ensure	that	the	number	of	characters	is	between	five	and	fifteen,	and	you
are	limiting	the	characters	the	field	will	accept	to	numbers,	brackets,	and	spaces.

When	you	come	to	the	email	address	field,	things	become	slightly	more	interesting.	If	you
simply	add	the	required	attribute,	you	may	be	pleasantly	surprised	by	the	resulting
behavior:

<input	required	name="emailAddress"	id="emailAddress"	type="email"	

class="validated"	/>

If	you	start	typing	into	the	field,	you	will	notice	that	it	does	not	turn	green	until	you	enter
the	@	symbol.	Because	the	type	has	been	specified	as	email,	the	browser	automatically
checks	that	the	value	adheres	to	the	rules	for	email	addresses.

For	the	select	box,	you	also	want	to	ensure	that	the	user	selects	a	genuine	value,	not	the
first	entry	from	the	list.	You	can	achieve	this	as	follows:

<select	required	name="companyName"	id="companyName"	class="validated">

				<option	value="">Please	select</option>

				<option	value="1">ABC	Incorporated</option>

				<option	value="2">XZY	Ltd</option>

				<option	value="3">ACME	iInternational</option>

</select>

Notice	that,	in	addition	to	setting	the	select	box	to	required,	you	have	also	specified	that
the	value	of	the	first	option	is	an	empty	string.	This	does	not	count	as	a	value;	therefore,
the	select	will	turn	green	only	if	the	user	selects	another	value	from	the	list	of	options.

Finally,	for	the	notes	field,	you	will	simply	specify	a	maximum	number	of	characters	that
can	be	entered	because	this	field	is	not	mandatory.

<textarea	cols="40"	rows="6"	name="notes"	id="notes"	class="validated"

				maxlength="1000"></textarea>

This	means	that	the	field	will	appear	green	when	the	screen	first	loads	because	even	an
empty	value	is	valid.

Note
The	textarea	element	does	not	support	the	pattern	attribute.	This	means	there	is	no
straightforward	way	to	ensure	a	textarea	contains	a	minimum	quantity	of	text.

You	do	not	need	to	add	any	information	to	the	last	contacted	field.	This	field	is	not
mandatory,	and	Chrome	has	provided	an	input	mask	to	ensure	that	the	user	cannot	enter	an
invalid	date.

Customizing	Validation
The	browser	itself	has	generated	all	the	validation	messages	that	have	been	displayed	up
until	this	point.	This	brings	some	benefits;	for	instance,	the	messages	are	automatically
localized	based	on	the	user’s	location	and	operating	system	settings.

If	you	look	at	the	error	that	is	generated	when	the	contact	name	is	less	than	five	characters,
however,	it	will	appear	as	in	the	example	in	Figure	8.3.

Figure	8.3

This	does	not	tell	the	user	what	the	pattern	should	be;	therefore,	it	is	unlikely	they	would
know	how	to	resolve	the	issue.

It	is	possible	to	control	the	validation	messages	displayed	to	users,	but	unfortunately	it	is
not	as	straightforward	as	you	might	expect	and	needs	to	be	accomplished	with	JavaScript.

Note
The	next	example	contains	relatively	simple	JavaScript.	You	may,	however,	decide	to
return	to	this	example	after	reading	Lesson	11.

In	order	to	customize	the	contact	name	message,	add	the	following	immediately	before	the
closing	html	tag.

<script>

			var	contactName	=	document.getElementById('contactName')

			contactName.oninvalid	=	function(e)	{

							e.target.setCustomValidity("");

							if	(!e.target.validity.valid)	{

										if	(e.target.value.length	==	0)	{

													e.target.setCustomValidity("Contact	name	is	required.");

										}	else	if	(e.target.value.length	<	5)	{

													e.target.setCustomValidity("Contact	name	must	be	at	least	5	

characters.");

										}

							}

				};

</script>

Note
This	needs	to	be	placed	at	the	bottom	of	the	page	because	it	attempts	to	access	the
contactName	field	when	it	executes.	If	it	were	added	to	the	head	tag	the	field	would
not	have	been	present	when	this	code	executed.	Although	placing	JavaScript	at	the
end	of	the	page	is	an	acceptable	solution	to	this	problem,	you	will	look	at	a	more
elegant	solution	later	in	the	book.

If	you	enter	four	characters	in	the	field,	it	should	now	display	the	message	you	have
specified	(see	Figure	8.4).

Figure	8.4

In	this	code,	you	add	an	event	listener	to	the	contactName	field,	after	retrieving	it	with	the
native	DOM	API.	You	then	request	that	the	browser	sends	you	an	event	every	time	its
validity	status	changes.	When	you	receive	that	event,	you	first	determine	whether	the	field
is	invalid	by	accessing	property	on	the	field	itself.

If	the	field	is	invalid,	you	can	determine	the	current	value	of	the	field,	and	therefore
determine	which	of	the	validation	rules	has	been	breached	and	create	the	appropriate
message.

Once	you	determine	the	message	you	want	to	display	to	the	user,	you	can	call	the
setCustomValidity	function	on	the	field	to	set	this	value.

Disabling	Validation
HTML5	provides	a	number	of	additional	attributes	for	controlling	validation.

A	novalidate	attribute	can	be	added	to	the	form	in	order	to	disable	validation.	If	this	is
added,	fields	are	still	marked	as	valid	and	invalid,	so	the	CSS	styling	you	added	to	the	web
page	will	still	work,	but	error	messages	will	not	be	displayed	to	the	user,	and	it	is	possible
for	the	user	to	submit	the	web	page,	even	if	it	is	invalid.

Because	HTML5	validation	is	enabled	by	default,	this	option	is	sometimes	useful.	For
instance,	any	time	a	field	is	marked	as	type	email,	validation	will	be	automatically	added,
even	if	you	did	not	want	it.

It	is	also	possible	to	mark	individual	fields	with	the	attribute	formnovalidate	to	disable
validation.	It	is	common	to	add	this	attribute	dynamically	to	fields	when	specific
circumstances	are	met:	For	instance,	some	fields	do	not	need	to	be	validated	if	specific
data	is	entered	elsewhere	in	the	form.	This	is	a	form	of	cross-field	validation.

This	can	also	be	used	to	disable	the	default	validation	on	a	field—for	instance,	to	allow	an
email	field	to	contain	an	invalid	email	address.

Try	It
In	this	Try	It,	you	will	add	validation	to	the	form	you	created	in	the	Try	It	for	Lesson	6.
You	can	download	this	from	the	book’s	website	or	use	the	version	you	created	in	Lesson
6.

The	book’s	website	contains	a	completed	version	of	this	exercise	under	the	name
tryit.html.	You	can	also	view	the	screencast	if	you	need	additional	help.

Lesson	Requirements
You	will	need	the	tryit.html	from	Lesson	6,	a	text	editor,	and	a	browser.

Step-by-Step
1.	 Open	the	tryit.html	file	in	your	text	editor.

2.	 Add	attributes	to	the	fullName	field	so	that	it	is	mandatory	for	the	user	to	enter	a
value,	and	the	minimum	length	of	7	characters,	and	a	maximum	length	of	50
characters.

3.	 For	the	notes	field,	make	the	field	mandatory	and	add	a	pattern	that	ensures	the	field
contains	no	more	than	500	characters	of	text.

4.	 Change	the	salary	field	to	define	a	minimum	salary	of	$20,000,	and	a	maximum
salary	of	$200,000.	Although	this	was	not	shown	in	the	lesson,	it	can	be	achieved
with	the	min	and	max	attributes,	but	make	sure	not	to	include	commas	or	the	dollar
sign	in	the	numbers.

5.	 Add	a	style	to	the	web	page	so	that	any	invalid	input	field	or	textarea	displays	with
a	red	border.	Although	it	may	not	seem	like	it,	the	line	around	an	input	field	or
textarea	is	just	a	simple	border	and	can	therefore	be	modified	with	CSS.

The	finished	version	of	the	form	should	display	as	you	see	in	Figure	8.5	when	a	validation
error	occurs.

Figure	8.5

Reference
Please	select	the	video	for	Lesson	8	online	at	www.wrox.com/go/html5jsjquery24hr.
You	will	also	be	able	to	download	the	code	and	resources	for	this	lesson	from	the
website.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	9

Drag	and	Drop
Drag	and	drop	has	been	a	common	paradigm	in	user	interface	design	for	decades.	What	is
less	known	is	that	drag	and	drop	has	been	supported	by	web	browsers	for	well	over	a
decade	and	first	appeared	in	IE5	in	1999.

The	implementation	of	drag	and	drop	that	has	been	standardized	in	HTML5	is	largely	the
same	version	from	IE5.	Where	possible,	HTML5	standards	are	based	on	existing
implementations.	This	is	both	a	strength	and	a	weakness	of	HTML5.	A	drag	and	drop
standard	developed	from	the	ground	up	would	have	significantly	improved	and
streamlined	the	API	outline	in	this	lesson,	but	it	would	have	taken	longer	for	browsers	to
adopt.

Drag	and	drop	is	a	technique	allowing	elements	to	be	dragged	from	their	original	location
on	the	screen,	and	dropped	in	a	different	area	of	the	screen.	Drag	and	drop	follows	the
following	process:

The	drag	processes	begins	with	a	mouse	down	event.	This	selects	the	element	that
will	be	the	source	of	the	event.

While	holding	the	mouse	button	down,	the	user	can	move	the	element	around	the
screen	with	his	or	her	mouse.

The	process	ends	when	the	user	releases	the	mouse	button.	The	element	that	the
mouse	is	over	at	the	time	becomes	the	target	of	the	drag-and-drop	event.

Drag	and	drop	can	therefore	be	seen	as	an	approach	for	connecting	two	different	elements
that	are	related	in	some	way.

Note
Before	beginning,	it	is	worth	mentioning	that	this	lesson	will	use	simple	JavaScript.
Although	this	should	be	easy	to	follow	if	you	have	some	programming	experience,	you
may	opt	to	return	to	this	lesson	after	reading	Lesson	11.

Understanding	Events
The	drag-and-drop	API	relies	heavily	on	events.	Nodes	within	the	DOM	generate	events
when	the	user	performs	various	operations	on	them.	For	example:

Clicking	the	mouse

Typing	text	into	them

Hovering	over	them	with	the	mouse

Dynamic	web	applications	are	largely	based	on	writing	JavaScript	code	to	respond	to
these	events	and	performing	some	operation	as	a	result.	This	is	often	referred	to	as	“event-
driven	programming”.

Responding	to	events	involves	the	following	process:

A	JavaScript	function	is	registered	with	a	node	in	the	DOM	for	a	specific	type	of
event.

When	the	event	occurs,	the	browser	automatically	calls	this	JavaScript	function,	and
passes	it	an	Event	object.	This	object	contains	context	about	the	event	that	has
occurred—for	instance,	the	element	that	generated	it.

The	JavaScript	function	can	respond	to	the	event	in	any	way	it	needs,	including
manipulating	the	DOM.

In	this	lesson	you	will	use	native	DOM	events.	In	the	next	section,	you	will	start	using
jQuery	to	listen	to	events.	Therefore,	this	lesson	will	not	look	in-depth	at	how	event
handling	works.

Drag	and	Drop	Example
In	this	section,	you	will	write	a	simple	drag-and-drop	example,	consisting	of	a	screen	that
looks	like	Figure	9.1.

Figure	9.1

You	will	then	implement	the	following	drag-and-drop	functionality:

The	user	can	drag	any	of	the	colored	boxes	on	the	top	line	to	any	of	the	white	boxes
on	the	second	line.

If	the	user	drops	a	colored	box	on	a	white	box,	it	will	adopt	the	color	for	itself.

When	a	colored	box	is	dragged,	its	color	should	appear	lighter	to	indicate	it	is	the
source	of	the	event.

When	a	colored	box	is	over	the	top	of	a	white	box,	the	white	box’s	border	should	be
enhanced	to	show	it	is	the	target	for	a	drop.

Although	simple,	this	example	is	sufficient	to	demonstrate	all	the	important	drag-and-drop
events.

Start	by	creating	a	web	page	called	boxes.html	with	the	following	content:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

				<style>

								.box	{

												height:200px;

												width:200px;

												display:inline-block;

												border:	2px	solid	black;

								}

				</style>

				</head>

				<body>

								<div	class="box"	style="background:red"></div>

								<div	class="box"	style="background:green"></div>

								<div	class="box"	style="background:blue"></div>

								<p>

								<div	class="box"></div>

								<div	class="box"></div>

								<div	class="box"></div>

				</body>

</html>

Most	visual	elements	can	be	marked	as	draggable	to	make	them	available	to	be	the	source
of	a	drag-and-drop	operation;	therefore,	add	the	following	attribute	to	each	of	the	boxes	on
the	top	row:

<div	draggable="true"	class="box"	style="background:red"></div>

Next,	you	want	the	browser	to	invoke	a	JavaScript	function	when	the	user	starts	to	drag	a
box.	Within	this	function,	you	will	extract	the	color	of	the	element	being	dragged	and
store	it	away	for	later	in	the	drag-and-drop	process.	This	will	ensure	that	the	color	is
available	to	the	target	element	when	the	drop	event	occurs.

Start	by	adding	the	following	to	each	of	the	boxes	on	the	top	row:

<div	ondragstart="startDragging(event)"	draggable="true"	class="box"

				style="background:red"></div>

ondragstart	is	triggered	when	the	mouse	is	clicked	on	a	draggable	element.	When	this
occurs,	the	startDragging	JavaScript	function	will	be	invoked	(you	will	write	this
function	shortly).	This	is	an	arbitrary	name	for	the	function;	you	could	call	it	anything	you
wanted.

When	the	function	is	called,	you	want	to	pass	information	about	the	event	to	it	(providing
context	about	the	event).	Thus,	you	place	event	between	brackets	to	indicate	it	will	be
passed	as	a	parameter	to	the	function.	The	event	object	will	be	created	and	populated	by
the	browser	itself;	your	code	simply	needs	to	pass	it	on.

In	this	lesson,	you	will	embed	JavaScript	directly	in	the	head	section	of	the	web	page.
JavaScript	can	be	added	by	simply	including	it	within	a	script	element.	Therefore,	add
the	following	just	below	the	end	of	the	style	element:

<script>

function	startDragging(evt)	{

				evt.dataTransfer.setData("Color",	evt.target.style.background);

				evt.target.style.opacity	=	0.3;

}

</script>

Note
Functions	that	are	invoked	when	events	occur	are	commonly	called	“callback
functions.”	You	are	responsible	for	implementing	these	functions,	but	you	then	ask	the
event	handling	framework	to	invoke	them	at	the	appropriate	time.

The	event	object	contains	a	wide	variety	of	information	about	the	event	that	has	occurred,
but	most	importantly,	it	allows	you	to	access	the	element	that	has	caused	the	event	by
invoking	evt.target.

A	JavaScript	object	represents	each	node	in	the	DOM.	Once	you	have	access	to	the	object,
you	can	start	inspecting	it	and	interacting	with	it.	For	instance,	you	can	access	the	current
CSS	styles	of	the	element	with	the	code	evt.target.style.

Additionally,	the	event	object	provides	a	dataTransfer	object	that	enables	you	to	store
information	for	the	duration	of	the	drag-and-drop	operation.	You	are	storing	an	arbitrary
parameter	called	Color,	which	is	given	the	value	of	the	background	color	for	the	source
element.

On	the	second	line	of	the	function,	you	are	manipulating	the	style	of	the	element	that
caused	the	event	using	the	native	DOM	API	to	set	the	opacity	level	of	the	element.

Note
Opacity	describes	the	transparency	of	an	element.	If	an	element	has	opacity	of	1.0,	it
has	no	transparency.	As	the	value	moves	toward	0,	the	element	becomes	more
transparent,	which	in	this	example,	will	make	the	color	appear	faded.

Next,	you	want	to	provide	functionality	to	the	boxes	on	the	second	line	of	the	web	page:
These	are	the	boxes	that	will	act	as	the	targets	for	the	drag-and-drop	operation.

To	start,	you	will	add	the	functionality	so	that	the	border	of	the	box	is	set	to	4	pixels	in
size	if	the	user	hovers	over	it	with	the	mouse	down,	and	then	is	set	back	to	normal	if	the
user’s	mouse	leaves	the	box.	Remember,	the	user	may	move	her	mouse	over	the	element
without	releasing	the	mouse	button.

Add	the	following	to	the	three	boxes	on	the	second	row:

<div	ondragenter="setBorderSize(event,	'4px')"	

ondragleave="setBorderSize(event,	'2px')"	class="box"></div>

This	registers	the	same	JavaScript	function	with	two	different	events,	ondragenter	and
ondragleave,	but	passes	a	different	parameter	to	the	function	in	each	case.	This	is	simply
a	design	decision	on	my	part	to	reduce	the	number	of	functions	that	I	needed	to	write.	I
could	have	just	as	easily	implemented	this	with	two	JavaScript	functions.

The	implementation	of	the	function	is	as	follows:

function	setBorderSize(evt,	size)	{

				evt.currentTarget.style.border	=		size	+	"	solid	black";

}

This	implementation	should	look	familiar	now;	the	only	interesting	aspect	is	that	I	am
using	the	size	parameter	passed	in	to	set	the	size	of	the	border	but	assuming	it	is	still
solid	and	black.

In	order	to	drop	the	source	onto	the	target	you	need	to	add	two	additional	event	listeners:

<div	ondrop="drop(event)"	ondragover="allowDrop(event)"

				ondragenter="setBorderSize(event,	'4px')"

				ondragleave="setBorderSize(event,	'2px')"	class="box"></div>

First,	you	need	to	listen	for	an	ondragover	event.	This	event	will	be	called	to	determine
whether	or	not	the	element	the	mouse	is	hovering	over	is	a	valid	target	for	the	drop	event.

You	may	be	wondering	why	I	did	not	change	the	border	in	the	ondragover	event.	This
event	is	called	every	time	the	mouse	moves	by	event	one	pixel;	therefore,	it	is	potentially
called	hundreds	or	thousands	of	times	as	the	mouse	hovers	over	the	element.	As	a	result,
you	want	to	make	sure	that	the	function	called	by	this	event	does	as	little	as	possible.

By	default,	elements	are	not	targets	for	drop	events;	therefore,	all	the	function	needs	to	do
is	prevent	this	default	behavior.	This	can	be	achieved	by	calling	a	special	function	on	the

event	itself,	as	shown	here:

function	allowDrop(evt)	{

			evt.preventDefault();

}

Next,	you	need	to	add	the	ondrop	event	listener.	This	is	the	event	that	occurs	when	the
user	releases	the	mouse	button	while	hovering	above	the	element.	The	implementation	of
the	drop	function	is	as	follows:

function	drop(evt)	{

				var	color	=	evt.dataTransfer.getData("Color");

				evt.currentTarget.style.background	=	color;

				setBorderSize(evt,	'2px');

}

On	the	first	line	of	this	function,	you	access	the	value	of	the	Color	property	you	set
previously	and	store	it	in	a	local	variable	called	color.

Next,	you	set	the	background	color	of	the	target	element	to	this	color.	Notice	that	the
target	of	the	event	is	now	the	element	that	is	the	target	rather	than	the	source	of	the
operation.

Finally,	because	the	ondragleave	event	will	not	be	fired	in	this	case,	you	need	to	manually
set	the	border	of	the	target	back	to	the	normal	size	by	invoking	setBorderSize.	Notice
that	you	can	pass	the	event	object	to	other	functions	if	required.

You	still	have	one	more	feature	to	implement:	You	need	to	change	the	opacity	of	the
source	element	back	to	1.0.	This	can	be	achieved	by	adding	another	event	listener	to	the
boxes	on	the	top	row:

<div	ondragend="dragEnded(event)"	ondragstart="startDragging(event)"

				draggable="true"	class="box"	style="background:red"></div>

The	event	listener	should	then	be	implemented	as	follows:

function	dragEnded(evt)	{

				evt.target.style.opacity	=	1.0;

}

The	target	of	the	event	is	the	source	of	the	drag-and-drop	operation	rather	than	the	target;
thus,	you	can	simply	change	its	opacity	style.

A	finished	version	of	this	web	page	is	also	available	on	the	book’s	web	site	called
boxes.html.

Although	this	is	a	simple	example,	it	has	introduced	you	to	the	six	key	events	that	are
commonly	used	with	the	API.	In	some	cases,	it	is	not	necessary	to	listen	for	all	six	events
because,	for	instance,	you	may	not	need	to	perform	any	action	when	the	mouse	leaves	an
element.

You	should	now	be	able	to	open	the	web	page	and	try	out	the	functionality.	Figure	9.2
shows	a	drag	operation	in	progress.

Figure	9.2

Try	It
In	this	Try	It,	you	will	use	the	techniques	outlined	in	this	chapter	to	create	a	very	simple
web	page.

You	will	create	a	web	page	with	a	single	drop	zone.	When	any	element	is	dropped	onto
this,	it	will	display	the	text	from	this	element.

There	is	a	finished	version	of	this	Try	It	on	the	book’s	website	under	the	name
simpledraganddrop_finished.html.

Lesson	Requirements
You	can	use	the	file	simpledraganddrop.html	from	the	Lesson	9	resources	on	the	website
as	the	basis	for	this	Try	It.	You	will	also	need	a	text	editor	and	a	web	browser.

If	you	like,	you	can	create	the	web	page	yourself	as	follows:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

				<style>

								.box	{

												height:200px;

												width:400px;

												display:inline-block;

												text-align:center;

												border:	2px	dashed	black;

												line-height:	200px;

												margin:	50px;

								}

				</style>

				</head>

				<body>

								<div	class="box">Drag	something	onto	me</div>

								<h1>I	am	a	header	1	tag</h1>

								<h3>I	am	a	header	3	tag</h3>

								<p>I	am	a	p	tag</p>

				</body>

</html>

Step-by-Step
1.	 Open	the	simpledraganddrop.html	file	in	your	text	editor,	or	create	it	from	the

markup	in	the	previous	section.

2.	 Start	by	adding	the	draggable=”true”	attribute	to	the	h1,	h3,	and	p	elements.

3.	 Add	an	ondragstart	attribute	to	these	events.	This	should	invoke	a	function	called
startDragging	and	pass	the	event	to	this	function.

4.	 Add	a	script	block	to	the	head	section	of	the	web	page.	This	is	where	all	the

JavaScript	functions	will	be	located.

5.	 Create	a	JavaScript	function	in	the	script	block	called	startDragging.	This	should
accept	a	parameter	called	evt.

6.	 The	body	of	the	function	should	set	a	property	called	Text	on	evt.dataTransfer
using	the	technique	outlined	earlier	in	this	lesson.	In	order	to	extract	the	text	from	the
element	being	dragged,	use	the	call	evt.target.textContent.

7.	 The	text	of	an	element	is	actually	contained	in	a	child	node	of	the	element	in	the
DOM,	and	therefore	it	can	be	accessed	with	firstChild.	The	text	can	then	be
extracted	with	textContent.

8.	 Ensure	that	the	div	element	allows	other	elements	to	be	dropped	on	it	by	using	the
ondragover	event.	This	should	invoke	a	JavaScript	function	that	prevents	the	default
behavior	of	the	event,	as	outlined	earlier	in	this	lesson.

9.	 Provide	functionality	to	support	the	drop	operation.	Start	by	adding	an	ondrop
attribute	to	the	div	and	have	this	invoke	a	function	called	drop.

10.	 The	drop	JavaScript	function	that	is	fired	during	the	ondrop	event	first	needs	to
extract	the	value	of	the	Text	property	from	the	dataTransfer	object	on	the	event.

11.	 The	function	also	needs	to	set	this	text	on	the	div.	This	can	be	achieved	by	providing
a	value	for	evt.target.textContent.

12.	 You	should	now	be	able	to	open	the	web	page	and	start	dragging	elements	onto	the
div.	Every	time	you	drop	an	element	onto	the	div,	its	text	will	be	updated	to	reflect
the	element	that	was	dropped	on	it.

Reference
Please	select	the	video	for	Lesson	9	online	at	www.wrox.com/go/html5jsjquery24hr.
You	will	also	be	able	to	download	the	code	and	resources	for	this	lesson	from	the
website.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	10

Dynamic	Elements
This	lesson	is	based	around	four	additional	features	added	in	HTML5	that	provide
dynamic	components:	a	native	progress	bar,	a	meter	element,	a	range	control,	and	a	set	of
tags	that	allow	the	user	to	expand	a	summary	to	view	its	details.

These	differ	from	many	other	tags	you	have	examined	because	browser	support	is	not
consistent.	Therefore,	you	will	also	look	at	a	concept	called	polyfills	that	enables	you	to
upgrade	the	functionality	of	a	browser	when	a	feature	is	missing.

Summary	and	Details	Tags
One	of	the	most	frequent	pieces	of	JavaScript	I	find	myself	writing	is	code	to	show	extra
information	to	a	user	when	he	or	she	chooses	based	on	a	summary.

Because	this	is	such	common	functionality,	the	HTML5	specification	defines	two	tags	that
combine	to	provide	native	support	for	this	functionality.	In	order	to	see	this	in	action,
create	the	following	web	page:

<!DOCTYPE	html>

<html	lang="en">

				<head>

									<meta	charset="utf-8">

				</head>

				<body>

								<header>This	page	provides	an	example	of	the	summary	and	details	

tags</header>

								<details>

												<summary>Table	of	contents</summary>

												Lesson	1

												Lesson	2

												Lesson	3

												Lesson	4

												Lesson	5

								</details>

				</body>

</html>

This	page	includes	a	tag	called	details,	which	then	has	a	child	element	called	summary.	In
addition,	the	details	tag	itself	contains	additional	information:	an	unordered	list	in	this
case.	If	you	open	this	in	Chrome,	it	will	display	as	you	see	in	Figure	10.1.

Figure	10.1

By	default,	this	shows	only	the	contents	of	the	summary	tag.	If	you	then	click	on	the	arrow
to	the	left	of	the	summary,	it	displays	the	full	details	(see	Figure	10.2).

Figure	10.2

Notice	that	the	arrow	automatically	points	down	to	indicate	that	the	details	are	being
displayed.	Naturally,	it	is	possible	to	style	these	elements	with	CSS;	you	have	a	lot	of

flexibility	regarding	how	this	arrow	will	look	to	users.

Although	these	tags	are	a	great	addition	to	HTML,	unfortunately	browser	support	is
currently	minimal.	The	functionality	works	fine	in	Chrome,	but	if	you	open	this	same	page
in	IE	or	Firefox,	you	will	be	disappointed.

If	you	want	to	know	whether	features	are	supported	in	various	browsers,	the	best	website
available	is	www.caniuse.com.	This	details	support	levels	for	all	HTML5	and	CSS3
features	across	a	wide	variety	of	browsers.	If	you	view	the	web	page,
www.caniuse.com/details,	you	can	see	the	support	level	for	this	specific	tag.

http://www.caniuse.com
http://www.caniuse.com/details

Progress	Bar	and	Meter
HTML5	also	provides	a	native	progress	bar	and	a	related	element	called	a	meter.

You	will	begin	by	looking	at	the	meter	element	because	this	is	slightly	simpler.	This
element	can	be	used	to	show	a	value	within	a	range.	For	instance,	if	you	wanted	to	show	a
value	that	was	60	percent	of	a	target,	you	could	add	the	following	element	to	a	web	page:

<meter	value="6"	min="0"	max="10">6	our	of	10</meter>

If	you	add	this	to	a	simple	template	web	page,	it	should	display	as	you	see	in	Figure	10.3:

Figure	10.3

Notice	that,	in	this	case,	you	have	specified	a	minimum	and	a	maximum	value	of	0	and	10
respectively,	and	then	set	the	value	of	the	element	to	6.	Because	min	and	max	default	to	0
and	1	respectively,	this	could	also	have	been	expressed	as	follows:

<meter	value="0.6"	>60%</meter>

The	value	between	the	tags	is	not	needed;	I	have	just	added	that	for	clarity.

The	color	used	for	the	meter	can	take	on	meaning	when	you	use	additional	attributes
supported	by	the	element.	For	instance,	the	following	meter	contains	an	expected	range
along	with	a	possible	range:

<meter	value="1"	high="8"	low="3"	min="0"	max="10">6	our	of	10</meter>

In	this	case,	you	have	stated	that	the	value	is	expected	to	be	between	3	and	8.	Because	the
value	is	lower	than	the	expected	range,	the	color	of	the	bar	changes	from	green	to	orange.

Alternatively,	the	following	example,	which	is	above	the	maximum	range,	displays	in	red:

<meter	low="60"	high="80"	max="100"	value="95"></meter>

Naturally	it	is	possible	to	change	these	colors	using	CSS.

A	progress	bar	is	similar	to	a	meter,	except	it	is	expected	to	change	its	value	as	an	event
occurs.	Typically,	you	will	use	JavaScript	to	update	the	progress	bar	as	you	perform	other
processing.

It	is	possible	to	add	a	progress	bar	to	a	web	page	as	follows:

<progress	value="20"	max="100"	min="0"	></progress>

Figure	10.4	shows	a	static	progress	bar,	one-fifth	complete.

Figure	10.4

Naturally	a	static	progress	bar	is	not	much	use;	therefore,	the	following	is	an	example	of	a

progress	bar	that	updates	1	percent	every	200	milliseconds	seconds.	Don’t	worry	about	the
JavaScript	for	now;	this	will	be	explained	over	the	next	few	lessons:

<!DOCTYPE	html>

<html	lang="en">

				<head>

									<meta	charset="utf-8">

									<script>

									setInterval(updateProgessBar,	200);

									function	updateProgessBar()	{

									var	progressBar	=	document.getElementById("progressBar");

progressBar.value	+=	1;

									}

									</script>

				</head>

				<body>

								<progress	id="progressBar"	value="0"	max="100"></progress>

				</body>

</html>

One	of	the	hardest	things	about	progress	bars	is	that	it	is	often	not	possible	to	determine
how	far	through	an	operation	you	are.	If	you	would	like	to	indicate	to	the	user	that	you	do
not	know	how	much	time	is	remaining,	you	can	simply	remove	the	value	and	the	progress
bar	will	look	like	Figure	10.5.

Figure	10.5

This	is	referred	to	as	a	progress	bar	with	an	indeterminate	value.

Range	Element
The	progress	and	meter	elements	you	have	looked	at	are	a	mechanism	for	displaying	a
value	to	the	user.	The	range	element	is	similar,	except	it	is	designed	to	allow	the	user	to
choose	a	value	within	a	range.

The	range	element	is	therefore	a	form	input	type,	except	the	possible	values	that	the	user
can	select	are	controlled	by	the	minimum	and	maximum	values	for	the	range.

As	an	example,	consider	a	case	where	you	want	the	user	to	indicate	how	complete	a	task	is
as	a	percentage.	You	might	add	the	following	to	a	form:

0%<input	type="range"	name="percentComplete"	min="0"	max="100"

				step="5"	value="50">100%

Notice	that	this	is	a	simple	input	element,	but	the	type	is	set	to	range.

This	example	specifies	a	minimum	possible	value	of	0,	a	maximum	possible	value	of	100,
and	a	default	value	of	50.	It	also	states	that	any	movement	of	the	range	will	step	by	5.
Thus,	it	is	not	possible	to	choose	a	value	of	23—the	user	would	need	to	choose	20	or	25.
Figure	10.6	shows	an	example	of	a	range	element.

Figure	10.6

Notice	that	the	labels	for	the	minimum	and	maximum	value	have	been	added	manually:
These	are	not	part	of	the	element.

My	biggest	criticism	of	the	range	element	is	that	browser	implementations	typically	do
not	provide	an	easy	mechanism	to	show	the	user	the	value	that	they	have	chosen;	it	is
therefore	necessary	to	do	this	manually	with	JavaScript.	For	instance,	in	the	preceding
example,	it	would	be	difficult	for	the	user	to	know	whether	they	had	chosen	a	value	of	20
or	25.

Polyfills
The	features	outlined	in	this	lesson	pose	a	quandary	to	programmers.	Although	these
elements	provide	interesting	functionality,	all	browsers	do	not	support	them.	For	instance,
IE,	prior	to	IE	10,	does	not	support	the	meter	and	progress	elements.

Thus,	if	you	elect	to	use	these	features,	some	users	may	receive	a	lower-quality
experience.	For	instance,	when	the	range	element	is	not	supported,	it	simply	displays	as	an
input	field.	This	is	becoming	less	of	an	issue	as	browsers	move	to	use	auto-updating
release	models	because	most	users	have	up-to-date	browsers;	many	users	in	corporate
environments,	however,	are	still	restricted	to	older	versions	of	browsers.

This	section	will	look	at	an	approach	that	provides	a	workaround	to	browser	support
issues.	It	allows	you	to	use	native	HTML5	functionality	where	it	is	available	but	provide
custom	implementations	where	it	is	not:	This	is	a	technique	referred	to	as	“polyfills.”

In	order	to	support	polyfills,	your	web	page	needs	to	perform	two	distinct	tasks:

Determine	whether	the	browser	supports	the	features	you	wish	to	use

Provide	a	JavaScript-based	implementation	if	support	is	missing

Modernizr	is	a	popular	JavaScript	library	for	performing	these	tasks.	It	is	available	from
http://modernizr.com/.

The	example	that	follows	uses	a	version	of	Moderinzr	from	the	Lesson	10	resources,	or
you	can	download	your	own	version.	The	basic	usage	of	Modernizer	typically	looks	like
this:

<!DOCTYPE	html>

<html	lang="en">

				<head>

									<meta	charset="utf-8">

									<script	src="modernizr.js"></script>

									<script>

									if	(!Modernizr.inputtypes.range)	{

									//	provide	JavaScript	implementation

									}

									</script>

				</head>

				<body>

								0%<input	type="range"	name="percentComplete"	min="0"

												max="100"	step="5"	value="50">100%

				</body>

</html>

In	the	head	section,	the	Modernizr	script	is	imported.	Once	this	has	been	imported,	it	is
possible	to	test	whether	features	are	available.	In	this	example,	you	will	notice	the	code:

if	(!Modernizr.inputtypes.range)	{

This	states	that	if	the	range	element	is	not	available,	the	JavaScript	block	following	the
statement	should	be	executed.	Modernizr	allows	you	to	test	for	a	wide	range	of	features

http://modernizr.com/

using	similar	statements	that	return	true	or	false,	depending	on	whether	the	feature	is
supported.

Within	this	block,	it	is	necessary	to	provide	a	polyfill.	The	Modernizr	website	has	links	to
many	JavaScript	polyfills,	each	with	their	own	instructions	on	how	they	should	be	used.

Try	It
This	Try	It	will	allow	you	to	experiment	with	the	elements	introduced	in	this	lesson.	It	will
not	contribute	anything	to	the	Contacts	web	application	so	you	do	not	need	to	follow	the
instructions	exactly	if	you	choose.	Instead,	it	is	an	opportunity	to	experiment.

The	website	for	this	book	contains	a	file	called	tryit.html	with	a	complete	example,	or
you	can	watch	the	screencast	online	if	you	need	extra	help.

Lesson	Requirements
You	will	also	need	a	text	editor	and	a	web	browser.

Step-by-Step
1.	 Start	by	creating	a	simple	HTML5	web	page	that	you	can	use	to	add	the	elements

outlined	in	this	lesson.

2.	 Imagine	you	wish	to	provide	information	on	a	patient’s	heart	rate	for	a	medical
website.	Start	by	creating	a	meter	tag	with	a	maximum	possible	value	of	200	and	a
minimum	possible	value	of	0.

3.	 Indicate	the	likely	range	for	a	healthy	individual:	Set	the	low	value	to	60	and	the	high
range	to	100.

4.	 Experiment	with	various	different	values	for	the	meter—for	instance,	20,	70,	or	120
—and	observe	what	happens	to	the	color	of	the	bar.

5.	 Now	imagine	that	instead	of	presenting	the	heart	rate	to	the	user,	you	want	to	allow	a
doctor	to	input	a	patient’s	heart	rate.

6.	 Add	a	range	element	to	the	web	page	and	set	the	minimum	and	maximum	possible
values	to	0	and	200	respectively.	In	addition,	set	the	step	to	be	3	because	you	do	not
need	the	input	to	be	so	precise.

7.	 Add	a	summary	and	detail	section	to	the	bottom	of	the	page.	Within	this,	the
summary	section	should	state	“List	of	patients	with	high	heart	rates.”

8.	 When	the	user	clicks	to	view	details,	show	a	table	with	patient	names	and	heart	rates.

Your	completed	version	should	look	like	the	screenshot	in	Figure	10.7.

Figure	10.7

Reference
Please	select	the	video	for	Lesson	10	online	at
www.wrox.com/go/html5jsjquery24hr.	You	will	also	be	able	to	download	the	code
and	resources	for	this	lesson	from	the	website.

http://www.wrox.com/go/html5jsjquery24hr

Part	II
Dynamic	HTML5	Web	Applications	with
JavaScript	and	jQuery

Lesson	11:	JavaScript

Lesson	12:	Debugging

Lesson	13:	Functions

Lesson	14:	Objects

Lesson	15:	JSON

Lesson	16:	Document	Object	Model

Lesson	17:	jQuery	Selection

Lesson	18:	jQuery	Traversal	and	Manipulation

Lesson	19:	jQuery	Events

Lesson	20:	Data	Attributes	and	Templates

Lesson	21:	jQuery	Plugins

Lesson	11

JavaScript
JavaScript	has	been	around	almost	as	long	as	web	browsers	themselves.	It	first	appeared	in
1995	with	Netscape	Navigator	2.0	and	is	the	only	programming	language	supported	by	all
the	most	popular	browsers.	As	a	result,	if	you	want	to	build	dynamic	websites,	you	need	to
know	JavaScript.

For	a	long	time,	JavaScript	was	dismissed	as	a	second-rate	language,	only	appropriate	for
implementing	basic	functionality	such	as	field	validation.	In	the	last	five	years,
JavaScript’s	reputation	has	improved	dramatically.	This	happened	partly	as	a	result	of	the
massive	performance	increases	that	have	occurred	with	JavaScript	engines,	beginning	in
Chrome	and	rippling	out	to	all	the	other	major	browsers.	More	important,	however,
programmers	began	to	re-evaluate	the	language	itself	and	learned	to	harness	its	power.

Although	JavaScript	contains	more	than	its	fair	share	of	idiosyncrasies,	and	although	the
designers	of	the	language	made	some	unusual	decisions,	JavaScript	turns	out	to	be	a
powerful	and	flexible	language	when	it	is	used	correctly.	The	goal	of	the	next	few	lessons
is	to	not	only	introduce	the	language,	but	also	to	offer	some	advice	on	how	you	should	use
the	language	if	you	want	to	write	large	and	complex	web	applications.

This	lesson	will	provide	a	quick	introduction	to	the	data	types	and	syntax	of	JavaScript.
These	aspects	of	the	language	are	reasonably	conventional	and	are	easy	to	pick	up	for
anyone	with	a	background	in	other	programming	languages.

JavaScript	Console
In	this	lesson,	you	will	write	JavaScript	directly	in	the	Chrome	JavaScript	console.	In
order	to	use	this,	open	the	contacts.html	web	page	from	Lesson	8,	and	open	the
development	tools	using:

Command+Option+i	on	OS	X

F12	or	Ctrl+Shift+I	on	Windows

Once	the	development	tools	are	open,	click	the	Console	tab.	This	provides	a	command
prompt	for	writing	JavaScript	and	allows	you	to	directly	manipulate	the	current	web	page.
In	order	to	see	this,	type	the	equation	1	+	1	at	the	command	prompt.	This	should	display
the	result	immediately,	as	shown	in	Figure	11.1.

Figure	11.1

Pressing	Enter	always	executes	the	statement	in	the	console;	therefore,	if	you	need	to	write
code	that	spans	more	than	one	line,	hold	down	the	Shift	key	when	you	press	Enter.

In	the	sections	that	follow	I	will	insert	a	>	to	show	I	am	writing	code	into	the	console.	You
should	omit	this	when	you	write	the	same	code.	Additionally,	I	will	show	the	response	on
the	next	line	if	appropriate.	For	instance:

>	1	+	1

2

Data	Types
You	will	start	your	look	at	JavaScript	by	examining	the	different	types	it	uses	to	represent
data.

Strings
Character	strings	in	JavaScript	can	be	surrounded	by	either	single	or	double	quotes.	To	see
an	example,	type	the	following	into	the	console:

>	"Welcome	to	JavaScript"

This	is	referred	to	as	a	string	literal	because	the	statement	evaluates	to	the	string	itself.	It	is
of	course	possible	to	assign	a	string	to	a	variable.	For	instance:

>	s1	=	"Welcome	to	JavaScript";

Note
A	semicolon	should	terminate	statements	in	JavaScript.	The	semicolon	is	technically
optional,	but	if	it	is	omitted,	JavaScript	will	insert	a	semicolon	for	you,	and	there	are
some	circumstances	where	it	is	inserted	in	unexpected	locations,	causing	hard-to-
understand	bugs.

The	variable	s1	now	refers	to	this	string,	and	if	you	type	s1	at	the	console,	the	string	will
be	printed.	Additionally,	you	can	ask	JavaScript	what	data	type	the	variable	has:

>	typeof	s1;

"string"

It	is	also	possible	to	perform	operations	on	a	string.	Technically	these	are	called	methods,
as	you	will	see	when	you	look	at	objects	in	Lesson	14.	In	order	to	see	the	available
methods,	simply	type	s1.	in	the	console;	the	autocomplete	feature	will	then	show	the
available	methods	(see	Figure	11.2).

Figure	11.2

This	book	is	not	a	reference	book	so	I	will	not	you	walk	through	the	entire	API,	but	the
following	methods	are	the	most	commonly	used	methods	on	strings:

toUpperCase:	Convert	text	to	uppercase.

toLowerCase:	Convert	text	to	lowercase.

substr:	Extract	a	portion	of	the	string	using	a	starting	and	(optional)	ending	index.
For	instance,	s1.substr(0,	7)	returns	Welcome.	Counting	always	starts	at	0.

indexOf:	Returns	the	first	index	of	a	provided	string	inside	the	string;	for	instance,
s1.indexOf('e')	returns	1.	Counting	in	JavaScript	always	starts	at	0,	so	the	second
character	is	at	position	1.

length:	This	is	a	property	of	the	string	rather	than	a	method;	therefore,	you	do	not
use	brackets	when	invoking	it.	For	instance,	s1.length	returns	21.

replace:	This	method	replaces	the	first	occurrence	of	one	string	for	the	new	one
provided.	For	instance,	s1.replace('e',	‘E')	returns	“WElcome	to	JavaScript”.

It	is	also	possible	to	append	text	to	an	existing	string	using	the	+	operator.	If	you	execute
the	following,	a	new	string	will	be	returned	that	concatenates	the	two	strings:

>	s1	+	"	-	Let's	get	started";

If,	however,	you	look	at	the	value	of	s1	after	executing	this,	you	will	see	it	has	retained	its
old	value:

>	s1;

"Welcome	to	JavaScript"

Once	a	string	has	been	assigned	a	value,	it	can	never	be	modified	(it	is	immutable).	Any
time	an	operation	appears	to	modify	a	string,	a	new	string	is	actually	created.	Therefore,	to
update	the	value	of	s1	you	need	to	assign	the	result	of	the	expression	to	it:

>	s1	=	s1	+	"	-	Let's	get	started";

Finally,	if	you	need	to	use	special	characters	inside	a	string,	you	can	prepend	a	backslash
to	it.	For	instance,	the	next	example	contains	a	‘	character	inside	a	quoted	string	so	I	use	a
backslash	before	it:

s2	=	'This	is	Dane\'s	code';

Of	course,	in	this	case	I	could	have	simply	wrapped	the	string	inside	double	quotes
because	the	quote	character	would	have	no	special	meaning	in	such	a	string:

s2	=	"This	is	Dane's	code";

Numbers
JavaScript	uses	a	single	numeric	type	for	all	numbers,	including	decimals:	All	numbers
are	technically	64-bit	floating-point	numbers.

Variables	can	be	assigned	numeric	values	as	follows:

>	n1	=	200;

>	n2	=	2.432432432;

The	typeof	operator	will	confirm	these	are	numbers:

>	typeof	n1

"number"

JavaScript	then	supports	all	the	common	mathematical	operators	for	manipulating
numbers.	For	example:

>	n1	/	2

100

>	n1	*	(200	+	n2);

40486.486486400005

For	more	advanced	operations,	JavaScript	also	provides	a	library	called	Math	that	is
modeled	on	the	same	library	in	Java.	For	instance:

>	Math.pow(3,2)

9

>	Math.round(n2)

2

JavaScript	also	supports	three	special	numeric	values.	These	are	numbers,	but	they	cannot
be	represented	as	conventional	numbers:

Number.POSITIVE_INFINITY:	This	value	is	created	when	a	positive	number	is	divided
by	0.	Although	you	may	have	been	taught	that	numbers	cannot	be	divided	by	0,
because	all	numbers	are	floating-point	in	JavaScript,	the	language	assumes	that	the
number	0	could	be	a	tiny,	but	still	non-zero,	number	that	cannot	be	represented	in	64
bits	of	memory.	If	you	divide	a	number	by	such	a	tiny	number,	the	result	will
approach	infinity.

Number.NEGATIVE_INFINITY:	This	is	returned	when	a	negative	number	is	divided	by
0.

NaN:	This	stands	for	not-a-number,	but	confusingly,	it	is	still	a	number.	This	value	is
created	when	operations	on	numbers	return	values	that	cannot	be	represented	as
numbers.	For	instance:	1	/	“hello”	or	Math.sqrt(-1).	It	is	possible	to	check	for
this	value	using	a	special	JavaScript	function:	isNaN(Math.sqrt(-1)).

Booleans
Booleans	are	used	to	capture	the	values	true	and	false.	For	instance:

>	b1	=	true;

>	b2	=	false;

Boolean	values	are	commonly	returned	by	logical	operations.	For	instance:

>	10	>	5

true

Null
Before	looking	at	what	null	is,	it	is	worth	looking	at	variables	in	slightly	more	detail.
When	you	execute	a	statement	such	as	this:

>	n1	=	200;

the	variable	n1	takes	on	the	data	type	of	number.	The	variable	n1	is	not	intrinsically	linked
to	numbers,	however;	you	can	change	its	type	by	assigning	it	a	new	value:

>	n1	=	"Testing";

Another	way	of	looking	at	this	is	that	the	variable	n1	starts	out	by	referring	to	the	number
200,	and	then	it	is	changed	to	refer	to	the	string	“Testing”.	You	can	therefore	also	change
n1	so	that	it	refers	to	nothing	at	all:

>	n1	=	null;

null	therefore	means	the	absence	of	a	value.	JavaScript	has	a	small	quirk	with	null
values:

>	typeof	n1

"object"

This	is	a	historic	bug	in	the	language	itself:	Despite	this,	null	is	a	distinct	data	type	in
JavaScript.

Undefined
The	value	of	undefined	is	returned	if	you	access	a	variable,	or	a	property	on	an	object,
that	does	not	exist.	For	instance,	if	you	type	the	following	at	the	command	line,	the	value
of	undefined	will	be	returned:

>	typeof	n3

"undefined"

Arrays
Arrays	are	not	technically	a	distinct	data	type;	they	are	a	type	of	object,	but	it	is	still	worth
introducing	them	in	this	section.

An	array	contains	zero	or	more	elements	of	any	data	type.	You	can	declare	an	array	as
follows:

a1	=	[];

The	initial	elements	in	the	array	can	also	be	provided	as	a	comma	separated	list	inside	the
square	brackets:

a1	=	[1,2,3,4];

You	do	not	need	to	declare	the	size	of	the	array;	you	can	simply	start	inserting	elements,
and	it	will	expand	to	support	them:

a1[2]	=	20;

a1[1]	=	"hello"

Because	arrays	are	objects,	they	also	support	methods;	for	instance,	this	will	add	a	new
element	at	the	end	of	the	array.

a1.push(200);

while	this	will	sort	the	array:

a1.sort()

You	can	access	elements	in	the	array	by	specifying	their	position	inside	the	square
brackets:

>	a1[1]

"hello"

The	lessons	ahead	will	make	extensive	use	of	arrays,	and	many	additional	features	will	be
introduced.

Objects

All	other	values	in	JavaScript	are	objects.	You	will	spend	a	lot	of	time	looking	at	these
over	the	next	few	lessons	so	I	will	not	discuss	them	here.

Functions
Functions	are	the	basic	building	blocks	of	many	JavaScript	applications.	A	function	in
JavaScript	accepts	zero	or	more	parameters,	executes	a	series	of	statements,	and	then
optionally	returns	a	value.

You	can	create	a	function	as	follows	(remember	to	hold	down	the	Shift	key	when	entering
a	new	line	into	the	console;	you	may	also	decide	to	copy	and	paste	the	code	from	a	text
editor):

function	doubleTheNumber(num)	{

				var	result	=	num	*	2;

				return	result;

}

In	this	example,	you	are	creating	a	function	called	doubleTheNumber	and	have	stated	that
it	accepts	a	single	parameter	called	num.

In	the	body	of	the	function	you	then	multiply	num	by	2	and	store	the	result	in	a	local
variable	called	result.	Finally,	on	the	last	line	of	the	function	you	return	this	variable.	The
curly	brackets	denote	the	code	block	relating	to	the	function.

You	can	then	execute	this	function	as	follows:

>	doubleTheNumber(9);

18

Notice	that	the	variable	result	is	declared	with	the	var	keyword.	This	means	that	the
variable	is	local	to	the	function,	and	is	automatically	destroyed	when	the	function	ends.
The	var	keyword	can	be	omitted,	and	the	function	will	still	work.	To	prove	this,	change
the	function	as	follows:

function	doubleTheNumber(num)	{

				result	=	num	*	2;

				return	result;

}

If	you	execute	this,	it	will	continue	to	work	as	expected:

>	doubleTheNumber(10);

20

The	overall	outcome	is	not	the	same,	however.	The	variable	result	has	been	created	as	a
global	variable,	and	will	exist	even	after	the	function	has	finished	executing.	You	can	see
this	by	executing	the	following:

>	result;

20

Using	global	variables	is	dangerous	and	should	be	kept	to	a	minimum	because	there	is

always	the	possibly	that	two	independent	blocks	of	code	will	accidentally	use	the	same
variable	name.

You	will	return	to	look	at	functions	in	substantially	more	detail	in	Lesson	13.

Control	Structures
JavaScript	includes	a	standard	set	of	control	structures	for	looping	and	branching.	These
will	be	familiar	to	anyone	with	a	programming	background	because	they	use	the	same
basic	syntax	as	those	in	Java,	C#,	and	Python	(among	others).

It	is	possible	to	perform	looping	with	either	a	for	loop	or	a	while	loop.	The	following
example	uses	a	for	loop	to	add	the	contents	of	an	array	together:

>	a1	=	[3,6,4,1,4,9]

>	var	result	=	0;

>	for	(var	i	=	0;	i	<	a1.length;	i++)	{

						result	=	result	+	a1[i];

			}

>		result

27

The	for	loop	consists	of	three	distinct	portions:

A	variable	called	i	is	declared	to	act	as	the	counter;	this	is	initially	set	to	the	value	0.

You	declare	that	looping	should	continue	while	the	value	of	i	is	less	than	the	length
of	the	array	(6).

You	declare	that	the	variable	i	should	have	its	value	increased	by	1	(i++)	each	time
the	loop	completes	a	cycle.

The	loop	also	uses	curly	brackets	to	denote	its	scope	so	each	time	the	loop	executes,	the
following	statement	will	be	executed:

result	=	result	+	a1[i];

Because	the	first	index	of	an	array	is	0,	the	first	iteration	will	therefore	set	the	result
variable	to	3,	and	so	on,	until	all	the	elements	in	the	array	have	been	evaluated.

If	you	would	like	to	see	more	details	as	the	loop	executes,	you	can	add	console.log
statements	to	print	logging	information	to	the	console.	For	instance:

for	(var	i	=	0;	i	<	a1.length;	i++)	{

				console.log('The	value	of	i	is	'	+	i);

				console.log('The	value	in	the	array	is	'	+	a1[i]);

				result	=	result	+	a1[i];

		}

The	second	main	loop	variant	is	the	while	loop.	While	loops	evaluate	an	expression	with
each	iteration.	While	this	is	true,	they	keep	iterating	through	the	loop;	if	it	is	ever	false	the
loop	ceases.	For	instance:

var	result	=	0;

var	counter	=	0;

while	(counter	<	a1.length)	{

				result	=	result	+	a1[counter];

				counter++;

}

result;

You	will	notice	that	this	still	initializes	a	counter	variable	to	0	and	increments	its	value
with	each	iteration,	but	these	are	done	before	the	loop	starts	and	inside	the	loop
respectively,	not	in	the	loop	declaration.

JavaScript	supports	break	and	continue	statements	to	control	loop	execution.	I	will
introduce	these	along	with	the	next	subject:	control	structures.	The	following	function
accepts	two	parameters:	an	array	of	positive	numbers,	and	a	number.	It	then	adds	together
all	the	even	numbers	in	the	array	and	returns	true	if	this	sums	to	more	than	the	number
passed	as	an	argument	to	the	second	parameter:

function	checkCountEven(a1,	n1)	{

				var	result	=	false;

				var	count	=	0;

				for	(var	i	=	0;	i	<	a1.length;	i++)	{

								var	number	=	a1[i];

								if	(number	%	2	!=	0)	{

												continue;

								}

								count	=	count	+	number;

								if	(count	>	n1)	{

												result	=	true;

												break;

								}

				}

				return	result;

}

You	can	call	this	as	follows:

>	a1	=	[3,	6,	4,	1,	4,	9]

>	checkCountEven(a1,	20)

false

This	function	starts	by	declaring	two	local	variables	and	then	starts	looping	through	the
array	using	a	for	loop.

Inside	the	for	loop,	you	start	by	extracting	the	number	from	the	array	for	the	position	you
are	at.	You	then	check	whether	this	is	an	odd	number	using	the	expression	number	%	2	!=
0.	This	expression	literally	states	“return	true	if	the	remainder	of	dividing	the	number	by	2
is	not	0”.	If	this	is	true,	the	if	block	executes.

If	the	statement	returns	true,	you	do	not	want	to	count	the	number	so	you	use	the
continue	keyword	to	skip	immediately	to	the	next	loop	iteration.

If	the	number	is	even,	you	add	it	to	the	result	and	then	check	to	see	whether	the	running
total	is	greater	than	the	number	passed	in	using	another	if	statement.	If	this	evaluates	to
true,	you	know	that	the	overall	result	must	be	true,	and	therefore	you	do	not	need	to
check	any	more	numbers	in	the	loop.	You	therefore	use	the	break	keyword	to	jump	out	of
the	loop	immediately,	and	the	function	simply	returns	its	result.

Conditional	expressions	can	also	support	if	else	and	else	statements.	For	instance:

function	describeNumber(num)	{

				if	(num	>=	0	&&	num	%	2	==	0)	{

								console.log(num	+	'	is	a	positive	even	number');

				}	else	if	(num	>=	0	&&	num	%	2	==	1)	{

								console.log(num	+	'	is	a	positive	odd	number');

				}	else	if	(num	<	0	&&	num	%	2	==	0)	{

								console.log(num	+	'	is	a	negative	even	number');

				}	else	{

								console.log(num	+	'	is	a	negative	odd	number');

				}

}

Notice	in	this	example	that	you	combine	multiple	Boolean	expressions	with	the	and	(&&)
operator.	When	this	is	used,	the	entire	expression	returns	true	only	if	both	sub-
expressions	are	true.

Note
This	example	has	used	==	to	determine	if	two	values	are	equal.	You	should	generally
avoid	this	because	it	still	returns	true	if	the	data	types	are	different.	For	instance,	the
string	“1”	is	equal	to	the	number	1.	In	general,	you	should	use	the	===	operator	to
determine	if	values	are	equal	and	the	!==	operator	to	determine	if	values	are	not
equal,	since	this	also	checks	the	data-types	are	the	same.

JavaScript	also	supports	a	switch	statement	and	a	ternary	operator	for	performing
conditional	logic.	Although	these	will	not	be	introduced,	they	work	in	a	manner	familiar	to
anyone	who	has	used	them	in	other	languages.

Truthy	and	Falsy	Values
One	unique	aspect	of	JavaScript	is	that	every	value	and	every	expression	evaluates	to
either	true	or	false.	To	see	this	in	action,	create	the	following	function:

function	whatAmI(v1)	{

				if	(v1)	{

								console.log('I	am	true');

				}	else	{

								console.log('I	am	false');

				}

}

Notice	that	because	values	evaluate	to	true	or	false,	you	can	simply	state	if	(v1)	to
determine	if	the	argument	passed	in	is	true.	You	can	now	call	this	with	a	variety	of	values:

>	whatAmI("hello")

I	am	true

>	whatAmI("")

I	am	false

>	whatAmI(22)

I	am	true

>	whatAmI(null)

I	am	false

>	whatAmI(8	+	9)

I	am	true

There	are	some	surprising	results	here.	The	following	are	not	true:

false

0	(zero)

””	(empty	string)

null

undefined

NaN	(this	value	is	neither	true	or	false,	which	is	why	the	isNaN	function	is	needed	to
detect	it)

All	other	values	evaluate	to	true.

You	can	actually	simplify	this	function	down	to	a	single	line	as	follows:

function	whatAmI(v1)	{

				console.log('I	am	'+	!!v1);

}

!	is	the	not	operator	so	if	it	is	applied	to	any	variable,	it	returns	the	opposite	of	its	Boolean
value.	You	can	then	negate	this	with	an	additional	!	operator	to	return	its	actual	truthy
value.

JavaScript	code	makes	extensive	use	of	the	fact	that	values	are	either	true	or	false	in	if

statements.	For	instance,	if	you	only	want	to	print	the	string	held	in	s1	if	it	has	a	value,
you	can	use	the	following:

if	(s1)	{

					console.log(s1);

}

Dynamic	Typing
JavaScript	is	a	dynamically	typed	language.	This	means	that	the	types	of	variables	are
only	determined	at	runtime.	Although	dynamically	typed	languages	are	very	flexible	in
many	ways,	they	are	also	prone	to	bugs	when	types	are	not	as	expected.	Consider	a
function	such	as	this:

function	add(n1,	n2)	{

				return	n1+n2;

}

This	function	operates	as	expected	when	called	with	two	numbers,	but	what	happens	if
you	invoke	this	as	follows?

>	add(1,	'0')

In	this	case,	the	result	is	the	string	value	10.	This	may	or	may	not	be	what	you	were
expecting.

In	a	statically	typed	language,	you	would	declare	that	n1	and	n2	were	numbers	and	refuse
to	allow	it	to	be	invoked	with	strings.	This	is	not	possible	in	JavaScript.

This	is	made	slightly	worse	due	to	the	fact	that	JavaScript	is	very	forgiving.	Consider	the
following	examples:

>	add(1,	[])

"1"

>	add(1,	true)

2

JavaScript	does	have	its	own	internal	logic	to	explain	these	results,	but	they	are	seldom
intuitive	or	expected.	In	order	to	circumvent	issues	such	as	this,	it	is	common	to	write
functions	so	that	they	generate	errors	if	they	are	passed	unexpected	data	types.	For
instance:

function	add(v1,	v2)	{

		if	(typeof	v1	===	"number"

&&	typeof	v2	===	"number")	{

						return	v1+v2;

		}	else	{

				throw	"both	arguments	must	be	numbers";

		}

}

Notice	the	throw	statement	in	this	example:	This	will	generate	an	error	to	the	caller,	as
shown	in	Figure	11.3.

Figure	11.3

This	is	still	not	as	explicit	as	a	compile	time	error,	but	at	least	it	ensures	that,	if	the
program	fails,	it	is	obvious	why	it	has	failed.

Try	It
In	this	Try	It,	you	will	use	the	techniques	you	have	learned	in	this	lesson	to	write	two
utility	functions.	If	you	get	stuck	on	either	of	these	examples,	you	may	want	to	watch	the
screencast,	which	will	walk	through	both	examples.	Completed	versions	of	both	functions
are	available	on	the	book’s	website.

Lesson	Requirements
You	will	use	the	Chrome	console	for	these	examples.	It	is,	however,	recommended	that
you	write	the	code	in	a	text	editor	and	copy	the	completed	versions	into	the	Chrome
console.

Step-by-Step
The	first	utility	function	you	will	create	will	accept	a	single	parameter,	which	should	be	a
string,	and	will	return	the	reverse	of	the	string:	If	it	is	passed	“Hello,”	it	will	return
“olleH.”

1.	 Start	by	creating	a	function	called	reverse	and	declare	that	it	accepts	a	single
parameter.

2.	 Check	that	the	argument	passed	in	is	a	string:	If	it	is	not,	then	throw	an	error	for	the
caller.

3.	 You	will	construct	an	empty	string	variable	to	hold	the	result	of	the	operation.

4.	 You	can	now	iterate	through	the	string	one	character	at	a	time	using	a	for	loop.	You
will	need	to	initialize	a	counter	variable	with	an	initial	value	of	0,	and	loop	while	this
is	less	than	the	length	of	the	string.

5.	 With	each	iteration,	you	want	to	extract	the	character	at	the	position	“length	of	the
string	–	current	count	-	1”.	This	will	ensure	that	you	extract	the	last	character	of	the
string	on	the	first	iteration,	the	second	to	last	on	the	second	iteration,	and	so	on.	For
instance,	if	the	string	has	seven	characters,	you	will	extract	the	character	at	position	6
on	the	first	iteration	(remember	that	the	count	starts	at	0	so	the	last	position	in	a	string
with	seven	characters	is	6).	You	can	use	the	charAt	method	to	extract	a	character	at	a
given	position.

6.	 Once	the	character	has	been	extracted,	you	need	to	append	it	to	the	result	variable
using	the	+	operator.

7.	 Once	the	loop	completes,	you	need	to	return	the	result.

Once	the	function	is	complete,	you	should	be	able	to	call	it	as	follows:

>	reverse("Hello");

"olleH"

The	second	utility	function	will	accept	an	array	of	numbers,	and	return	true	if	the	sum	of
all	the	positive	numbers	is	greater	than	the	sum	of	the	absolute	value	of	all	the	negative

numbers.

1.	 Start	by	creating	a	function	called	calculateSums,	and	declare	that	it	accepts	a	single
parameter,	which	in	this	case	will	be	an	array.

2.	 Create	two	variables	to	hold	the	result	of	the	positive	and	negative	numbers
respectively.	These	should	be	initialized	to	0.

3.	 You	will	use	a	while	loop	in	this	example	so	you	also	need	to	create	a	counter
variable	and	initialize	it	to	0.

4.	 Create	a	while	loop,	and	add	curly	brackets	for	its	code	block.	The	while	loop
should	test	that	the	counter	is	less	than	the	length	of	the	array.

5.	 Inside	the	code	block,	you	need	to	add	an	if-else	block	to	determine	if	the	number	is
greater	than	0.

6.	 If	the	number	is	greater	than	or	equal	to	0,	simply	add	it	to	the	sum	of	positive
numbers.	If	it	is	less	than	0,	you	need	to	calculate	its	absolute	value	using
Math.abs()	and	add	the	result	to	the	sum	of	negative	numbers.

7.	 You	also	need	to	remember	to	increase	the	counter	variable	by	1	inside	the	loop.	If
you	omit	this,	the	while	loop	will	run	forever:	This	is	called	an	infinite	loop.

8.	 After	the	loop	finishes,	you	can	simply	return	whether	the	sum	of	positive	numbers	is
greater	than	or	equal	to	the	sum	of	negative	numbers.

It	should	be	possible	to	call	the	function	as	follows:

>	calculateSums([-1,2])

true

>	calculateSums([-1,2,-3])

false

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	11,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	12

Debugging
Now	that	you	have	some	working	code,	it	is	worth	taking	a	step	back	to	look	at	the
development	tools	provided	by	Chrome	to	help	analyze	JavaScript-based	web
applications.

Probably	the	most	important	tool	for	development	purposes	is	a	debugger.	Debuggers
allow	you	to	examine	an	application	while	it	is	running	and	therefore	diagnose	the	cause
of	any	problems	or	bugs.

All	major	browser	vendors	have	introduced	development	tools	such	as	debuggers	into
their	browsers.	For	instance,	Firefox	supports	similar	tools	to	the	ones	you	will	look	at
here	with	the	Firebug	plugin.

This	lesson	is	very	much	a	practical	lesson.	It	will	consist	of	two	Try	It	sections,	and	you
are	encouraged	to	follow	along	with	the	examples.

Both	Try	It	sections	will	use	the	same	web	page	to	demonstrate	the	various	features	in	the
debugger.	This	is	available	from	the	book’s	website	in	the	Lesson	12	folder	under	the
name	tryit.html,	but	you	can	also	choose	to	write	it	yourself:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

				<script>

				function	calculateAbsoluteSumOfArray(a)	{

								var	result	=	0;

								for	(var	i	=	0;	i	<	a.length;	i++)	{

												var	num	=	a[i];

												result	=	result	+	Math.absolute(num);

								}

								return	result;

				}

				function	calculateSumOfArray(a)	{

								var	result	=	0;

								for	(var	i	=	0;	i	<	a.length;	i++)	{

												var	num	=	a[i];

												result	=	result	+	num;

								}

								return	result;

				}

				function	findHighestSum(arrays)	{

								var	result	=	Number.NEGATIVE_INFINITY;

								for	(var	i	=	0;	i	<	arrays.length;	i++)	{

												var	a	=	arrays[i];

												var	sum	=	calculateSumOfArray(a);

												if	(sum	>	result)	{

																result	=	sum;

												}

								}

								console.log('The	largest	sum	is	'+	result);

				}

				var	arrays	=	[[1,2,3,4,5],[6,4,2],[1.9]];

				</script>

</head>

<body>

				This	page	is	for	trying	out	the	debugger

				<p>

				<button	onclick="findHighestSum(arrays)">Click	me	to	sum	

arrays</button>

				<p>

				<button	onclick="calculateAbsoluteSumOfArray(arrays[0])">Click	me	cause	

an	error</button>

</body>

</html>

Try	It
In	the	first	Try	It,	you	will	debug	two	functions	that	are	responsible	for	processing	a	two-
dimensional	array	that	has	been	defined	as	follows:

var	arrays	=	[[1,2,3,4,5],[6,4,2],[1.9]];

Note
A	two-dimensional	array	is	simply	a	conventional	array	where	each	element	is	itself
an	array.

The	first	function,	called	findHighestSum,	will	iterate	through	all	the	inner	arrays	in	the
array	provided,	and	pass	each	array	in	turn	to	another	function	called
calculateSumOfArray	that	will	sum	the	numbers	in	the	array.	The	job	of	findHighestSum
is	to	determine	which	of	the	inner	arrays	sums	to	the	highest	value.

Lesson	Requirements
In	order	to	complete	this	lesson,	you	will	need	the	Chrome	web	browser	and	the
tryit.html	web	page	mentioned	previously.

Step-by-Step
1.	 In	order	to	start	the	debugger,	first	open	the	tryit.html	page	in	Chrome.	Then	use

one	of	the	following	approaches	to	open	the	development	tools:

Command+Option+i	on	OSX

F12	or	Ctrl+Shift+I	on	Windows

2.	 Once	the	development	tools	are	open,	click	the	Sources	tab.	Once	in	this	tab,	you	will
notice	that	the	tryit.html	page	appears	in	the	left-hand	panel:	Double-click	on	this
to	open	it	in	the	middle	panel	(see	Figure	12.1).

Figure	12.1

3.	 The	first	step	in	debugging	code	is	defining	a	breakpoint.	A	breakpoint	is	the	point	in
the	processing	when	you	want	the	program	to	pause	so	you	can	examine	it	line	by
line.	Find	the	first	line	of	the	findHighestSum	function	and	click	once	in	the	margin
where	its	line	number	is	shown—for	me	this	was	line	26.	A	blue	marker	should
appear	in	the	margin,	as	shown	in	Figure	12.2.

Figure	12.2

4.	 Click	the	button	Click	Me	to	Sum	Arrays.	As	soon	as	you	click	this,	the	program
should	display	a	message	stating	“Paused	in	debugger,”	and	the	various	panels	of	the
debugger	will	populate.	In	addition,	the	line	that	the	program	is	currently	paused	on
will	be	shaded	blue,	as	shown	in	Figure	12.3.

Figure	12.3

5.	 Now	that	the	program	is	paused,	you	can	begin	interacting	with	it.	One	of	the	most
common	uses	of	the	debugger	is	to	step	through	the	execution	of	the	program	line	by
line.	You	can	achieve	this	with	a	set	of	buttons	in	the	top	right	of	the	debugger,	as
shown	in	Figure	12.4.

Figure	12.4

6.	 If	you	hover	over	these	buttons,	their	tooltips	will	tell	you	their	purpose.	You	will
start	by	using	the	second	button	from	the	left,	which	should	have	the	tooltip	“Step
over	next	function	call.”	If	you	press	this	button,	the	execution	will	jump	to	the	next
line	in	the	function.	Press	this	two	more	times	so	that	the	blue	line	is	shading	line	29,
as	shown	in	Figure	12.3.

7.	 As	the	function	executes	code,	a	number	of	local	variables	have	been	assigned
values.	For	instance,	the	arrays	variable	contains	the	two-dimensional	array,	the	a
variable	contains	the	array	you	are	about	to	sum	up,	and	the	i	variable	contains	the
current	counter	value	of	the	for	loop.	You	can	see	the	values	for	these	variables	in
the	right-hand	side	of	the	console,	as	shown	in	Figure	12.5.	To	see	the	values	in	any
of	the	arrays,	simply	click	the	arrow	next	to	them.

Figure	12.5

8.	 It	is	also	possible	to	interact	with	the	program	as	it	executes.	For	instance,	if	you
swap	to	the	Console	tab,	you	can	write	code	that	uses	the	variables	currently	in	scope,
and	you	can	even	modify	their	values	(see	Figure	12.6).

Figure	12.6

This	is	a	great	way	to	try	out	code	before	adding	it	to	the	web	page	because	you
receive	immediate	feedback	from	the	Console.

There	is	also	a	mini-console	at	the	bottom	of	the	Sources	tab	that	can	be	used	for	the
same	purpose,	and	means	you	do	not	need	to	swap	back	and	forward	between	tabs.

9.	 Switch	back	to	the	Source	tab.	You	will	now	step	into	a	function	call	rather	than	step
over	it	so	click	the	button	with	the	tooltip	Step	into	next	function	call.	When	you	do
this,	execution	should	jump	into	the	calculateSumOfArray	function,	and	you	can
now	step	through	this	function.	Step	through	this	function	until	it	finishes,	and	watch
the	local	variables	update	as	it	executes.

10.	 When	calculateSumOfArray	finishes	executing,	the	debugger	will	immediately
return	to	the	findHighestSum	function	where	it	left	off.	Rather	than	stepping	through
the	rest	of	the	execution,	you	may	decide	you	want	to	jump	immediately	to	the	line
that	prints	information	to	the	console.	In	order	to	do	this,	add	a	breakpoint	to	this	line
by	clicking	in	the	margin,	and	then	press	the	Resume	Script	Execution	button.	When
you	do	this,	the	debugger	should	pause	on	the	appropriate	line,	and	the	local	variables
will	have	been	updated	to	reflect	the	processing	that	has	occurred.

11.	 In	order	to	finish	the	debugging	session,	simply	press	Resume	Script	Execution	one
more	time.

Finding	Errors
Debuggers	are	an	excellent	way	to	understand	the	behavior	of	a	program	as	it	executes,
but	they	are	most	commonly	used	to	diagnose	problems.	Programming	bugs	can	be
difficult	to	find	in	JavaScript	code	because	if	a	problem	occurs	the	JavaScript	simply
ceases	to	execute.

The	user	of	the	web	page	will	not	even	necessarily	be	aware	that	an	error	has	occurred;
she	will	simply	notice	that	a	piece	of	functionality	does	not	work	as	she	expects.

This	section	will	therefore	walk	you	through	an	example	of	a	program	with	a	bug	in	it,	and
look	at	how	you	can	identify	and	remedy	the	problem.

Try	It

In	this	Try	It,	we	will	press	a	button	that	invokes	a	faulty	JavaScript	function.	This	uses
the	same	web	page	as	the	previous	Try	It,	so	ensure	that	you	have	opened	this	in	Chrome.

Lesson	Requirements
In	order	to	complete	this	lesson,	you	will	need	the	Chrome	web	browser	and	the
tryit.html	example	mentioned	previously.

Step-by-Step
1.	 In	order	to	start	the	debugger,	first	open	the	tryit.html	page	in	Chrome.	Then	use

one	of	the	following	approaches	to	open	the	development	tools:

Command+Option+i	on	OSX

F12	or	Ctrl+Shift+I	on	Windows

2.	 Identify	the	toolbar	shown	in	Figure	12.7,	and	press	the	pause	button	(on	the	right-
hand	side	of	the	toolbar	with	the	tooltip	Pause	on	Exceptions).	When	you	click	this,	it
should	turn	blue,	and	an	additional	checkbox	should	appear.	For	this	example,	it	will
not	matter	if	you	select	this	checkbox.

Figure	12.7

3.	 In	order	to	run	the	faulty	code,	click	the	button	with	the	label	Click	Me	to	Cause	an
Error.	As	soon	as	you	click	this,	the	debugger	should	pause	on	the	line	that	has	the
error,	despite	the	fact	that	you	did	not	add	a	breakpoint	to	this	line.	This	is	shown	in
Figure	12.8.

Figure	12.8

4.	 In	order	to	determine	why	this	line	is	faulty,	copy	it	from	the	editor	using	your
keyboard	shortcut.	Then	open	the	Console	tab,	paste	it	in,	and	press	Enter.	The	cause
of	the	error	will	be	displayed,	as	shown	in	Figure	12.9:

Figure	12.9

5.	 This	shows	that	you	are	calling	a	function	that	does	not	exist.	The	function	name	has
been	specified	as	absolute	rather	than	abs;	you	can	confirm	this	by	executing	this
alternate	version	of	the	code	with	the	function	name	corrected,	as	shown	in	Figure
12.10.

Figure	12.10

6.	 Once	the	problem	has	been	identified,	you	can	fix	up	your	source	code	and	try	again.

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	12,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	13

Functions
Functions	may	seem	simple	in	JavaScript,	but	beneath	this	simplicity	lies	enormous
power.	Gaining	an	understanding	of	this	power	is	one	of	the	keys	to	mastering	the
JavaScript	language.

In	Lesson	11,	you	created	simple	functions	and	invoked	them	from	the	console.	For
instance:

function	isPositive(num)	{

				return	num	>=	0;

}

In	JavaScript,	functions	are	objects	so	it	is	possible	to	assign	them	to	variables:

f1	=	function	isPositive(num)	{

				return	num	>=	0;

}

If	you	ask	JavaScript	the	type	of	f1,	it	will	respond	as	follows:

>	typeof	f1

"function"

This	is	another	example	of	JavaScript	being	slightly	disingenuous.	Functions	are	not	a
distinct	data-type;	they	are	objects	and	therefore	support	all	the	features	you	will	learn
about	in	the	next	lesson,	such	as	the	ability	to	invoke	methods	on	them.

Once	you	have	assigned	a	function	to	a	variable,	you	can	invoke	it	via	its	variable	name
by	appending	brackets	and	parameters:

>	f1(9)

true

In	fact,	you	can	use	this	variable	wherever	you	can	use	any	other	variable	in	JavaScript;
for	instance,	you	can	pass	it	as	a	parameter	to	another	function.

Consider	an	example	where	you	want	to	write	a	function	that	counts	how	many	positive
numbers	are	in	an	array.	With	the	power	of	functions,	you	can	do	this	by	writing	a	generic
algorithm	as	follows:

function	countForArray(array,	condition)	{

				var	result	=	0;

				for	(var	i	=	0;	i	<	array.length;	i++)	{

								var	element	=	array[i];

								if	(condition(element))	{

												result++;

								}

				}

				return	result;

}

This	algorithm	accepts	an	array	and	a	function.	It	then	loops	through	every	element	in	the

array	and	passes	it	to	the	function	provided.	If	the	function	returns	true,	the	count	is
incremented	by	one.	You	can	then	call	this	as	follows:

>	a	=	[1,2,-3,2,-5]

>	countForArray(a,	f1)

3

Notice	that	you	are	passing	a	reference	to	the	function	you	defined	earlier.	It	may	not
looked	like	you	have	gained	much	in	this	example;	after	all,	the	countForArray	method
could	have	very	easily	checked	if	the	number	was	positive	without	using	the	function
passed	in.

The	beauty	of	countForArray,	however,	is	that	it	is	a	generic	function	that	can	be	made	to
behave	differently	very	easily.	For	instance,	if	you	want	to	count	the	negative	numbers	you
can	use	the	following	code:

>	countForArray(a,	function(num)	{

				return	num	<	0;

})

2

Notice	that	in	this	case	you	did	not	even	create	the	function	in	advance;	you	simply
declared	it	as	part	of	the	call	to	countForArray.	The	function	that	you	have	created	does
not	even	have	a	name;	it	is	therefore	called	an	anonymous	function.	Its	scope	is	limited	to
the	duration	of	this	function	call.

Once	you	have	a	function	such	as	countForArray,	you	can	use	it	for	a	whole	variety	of
tasks	that	you	may	not	even	have	thought	about	when	you	originally	wrote	it.

Functions	that	are	passed	to	other	functions	are	often	called	callback	functions	because
they	allow	another	function	to	“call	back”	to	them	at	the	appropriate	time.

JavaScript	arrays	natively	support	a	number	of	functions	that	can	be	used	for	performing
common	operations.	For	instance,	one	of	the	most	common	operations	performed	on
arrays	is	to	filter	out	a	set	of	elements	that	do	not	meet	a	set	of	criteria.	For	instance,	you
might	want	to	filter	all	the	negative	numbers	out	of	an	array,	leaving	only	the	positive
numbers.

JavaScript	arrays	provide	a	filter	method	for	performing	this	operation.	Just	like
countForArray,	this	passes	each	element	in	the	array	in	turn	to	a	function	provided,	and
retains	those	that	return	true:

>	a.filter(f1)

[1,	2,	2]

Likewise,	you	can	filter	out	positive	numbers	with	the	following	code:

>	a.filter(function(num)	{

				return	num	<	0;

})

[-3,	-5]

You	may	have	noticed	that	the	filter	function	is	not	actually	modifying	the	underlying
array;	instead,	it	is	returning	a	new	array	with	the	relevant	elements	filtered	out.

Another	common	operation	performed	on	arrays	is	to	transform	each	element	in	some
way.	With	this	particular	array,	you	might	want	to	transform	the	elements	so	that	all	the
numbers	are	positive;	this	can	be	achieved	with	the	map	function.

The	map	function	works	in	exactly	the	same	way:	You	pass	it	a	function,	and	the	map
function	invokes	it	with	each	element	in	the	array.	The	function	you	provide	is	responsible
for	modifying	the	element	in	some	way	and	returning	the	modified	version	as	a	result.

The	following	returns	an	array	of	elements	where	each	number	has	been	converted	to	a
positive	value:

>	a.map(function(num)	{

				return	Math.abs(num);

})

[1,	2,	3,	2,	5]

Because	functions	such	as	map	and	filter	both	operate	on	arrays	and	return	arrays,	it	is
possible	to	chain	together	a	whole	set	of	function	calls.	Imagine	that	you	want	to	return	the
absolute	value	of	all	even	numbers	in	an	array.	This	can	be	achieved	as	follows:

>	a1	=	[-2,1-3,5,6]

>	a.filter(function(num)	{

				return	num%2==0;

}).map(function(num)	{

				return	Math.abs(num);

});

[2,	2,	6]

This	example	is	a	bit	harder	to	follow,	so	start	by	breaking	out	its	component	parts.	It
starts	out	by	performing	a	filter	operation:

>	a1.filter(function(num)	{

				return	num%2==0;

})

[-2,	-2,	6]

It	then	performs	a	map	operation	on	the	result:	you	can	simulate	this	as	follows:

>	[-2,	-2,	6].map(function(num)	{

				return	Math.abs(num);

})

[2,	2,	6]

When	writing	JavaScript	code	it	is	often	a	good	idea	to	think	in	terms	of	simple	functions
that	perform	a	single	task,	and	do	not	store	or	modify	any	global	state.	These	functions	can
then	be	combined	together	to	create	more	advanced	functionality.	Building	software	in	this
way	tends	to	be	simpler	because	it	is	very	easy	to	understand,	develop,	and	test	each
function	in	isolation.

Closures
Closures	can	be	a	difficult	concept	to	explain,	so	I	will	explain	them	through	examples.

Imagine	a	case	where	you	want	to	write	a	function	that	can	produce	unique,	incrementing
numbers	that	can	be	used	by	other	code	in	your	web	application.	The	only	condition	of
this	functionality	is	that	if	the	last	call	to	the	function	returned	10,	the	next	call	must	return
11.

It	is	possible	to	write	this	functionality	with	a	global	variable:

>	count	=	0;

>	function	getNextCount()	{

				return	count++;

}

>	getNextCount()

0

>	getNextCount()

1

As	has	already	been	mentioned,	however,	global	variables	should	be	avoided	because	any
other	code	can	modify	them.	For	instance,	any	other	code	could	reset	the	count	variable:

count	=	-1;

or	set	it	to	a	nonsense	value:

count	=	'hello';

These	may	look	like	contrived	examples,	but	as	web	applications	grow	in	size,	global
variables	such	as	this	become	the	source	of	difficult	to	find	bugs.	Closures	provide	an
alternative.

Before	looking	at	the	solution,	consider	what	happens	to	local	variables	inside	a	function
when	it	finishes	executing.	The	function	that	follows	declares	a	local	variable	called
myCount.

function	counter()	{

			var	myCount	=	0;

			return	myCount++;

}

If	you	execute	this	and	then	attempt	to	access	the	myCount	variable,	you	will	find	it	does
not	exist:

>	counter()

0

>	myCount;

ReferenceError:	myCount	is	not	defined

The	variable	is	created	inside	the	function	each	time	it	is	invoked,	and	it	is	automatically
destroyed	when	the	function	completes.	This	is	why	the	counter	function	always	returns
0:

>	counter()

0

>	counter()

0

Now,	consider	this	slight	variation	on	the	preceding	function:

function	getCounter()	{

			var	myCount	=	0;

			return	function()	{

								return	myCount++;

				}

}

Rather	than	returning	a	number,	this	function	returns	another	function.	The	function	that	it
returns	has	the	following	body:

function()	{

				return	myCount++;

}

You	can	now	assign	a	variable	to	refer	to	this	function:

counter	=	getCounter();

There	is	something	strange	about	this	function	though:	It	is	referring	to	the	local	variable
myCount	that	was	defined	inside	the	getCounter	function.	Based	on	my	previous
explanation,	this	should	have	been	destroyed	when	the	call	to	getCounter	finished.
Therefore	you	might	expect	that	if	you	invoke	the	function	returned	by	getCounter,	it	will
fail.

Not	only	does	it	not	fail,	it	gives	you	exactly	the	behavior	you	want:

>	counter();

0

>	counter();

1

The	anonymous	function	created	inside	getCounter	is	referred	to	as	a	closure.	When	it	is
created,	it	“closes”	over	all	the	variables	in	scope	at	the	time,	and	obtains	a	reference	to
them.	When	the	call	to	getCounter	finished,	therefore,	JavaScript	recognized	that	the
anonymous	function	still	might	need	to	use	the	myCount	variable	and	did	not	destroy	it.

Although	the	anonymous	function	can	continue	to	use	the	myCount	variable,	it	is
completely	hidden	from	all	other	code.	This	means	that	it	is	not	possible	for	any	other
code	to	interfere	with	the	value	of	this	variable:

>	myCount	=	10;

10

>	counter()

2

The	preceding	code	created	a	global	variable	called	myCount,	but	this	does	not	have	any
impact	on	your	counter,	which	continues	to	use	the	local	variable	of	the	same	name.

In	addition,	if	you	were	to	create	a	second	counter,	it	will	have	its	own	local	myCount
variable	that	will	not	impact	your	original	counter.	Instead,	the	new	counter	will	also	start
counting	from	0.

The	beauty	of	this	solution	is	that	you	have	created	private	data.	The	function	performing
the	counting	is	using	a	variable	that	only	it	has	access	to.	This	is	an	important	technique	in
JavaScript	because	it	does	not	support	many	of	the	mechanisms	found	in	other	languages
for	creating	private	data.

Hoisting	and	Block	Scope
One	interesting	feature	in	JavaScript	is	the	scope	of	variables	inside	functions.	In	most
programming	languages	it	is	possible	to	declare	variables	within	a	sub-block	(a	loop	for
instance)	and	limit	their	scope	to	this	block.	Consider	the	following	example:

function	iterate(array)	{

				var	count	=	0;

				for	(var	i	=	0;	i	<	array.length;	i++)	{

								var	count	=	10;

				}

				return	count;

}

If	you	were	to	invoke	this	function	with	an	array,	it	would	always	return	10	because	the
count	variable	declared	inside	the	for	loop	overwrites	the	count	variable	declared	before
the	loop.

Part	of	the	reason	JavaScript	operates	in	this	manner	is	a	concept	called	hoisting.
Although	it	is	possible	to	declare	variables	anywhere	in	a	function,	when	JavaScript
executes	a	function,	it	first	searches	for	all	the	local	variables	in	it	and	moves	their
declaration	to	the	top	of	the	function.	They	are,	however,	left	undefined	until	they	are
explicitly	given	a	value	in	the	body	of	the	function.	In	order	to	demonstrate	this,	create	the
following	function:

function	testHoisting()	{

				var	num	=	num1	+	num2;

				var	num1	=	10;

				var	num2	=	10;

				return	num;

}

If	you	call	this	function,	you	will	notice	it	does	not	fail,	even	though	it	is	using	local
variables	before	they	are	defined:

>	testHoisting()

NaN

If	you	tried	the	same	thing	with	global	variables,	however,	the	code	will	fail	because
global	variables	are	not	hoisted:

>	function	testHoisting()	{

				var	num	=	num1	+	num2;

				num1	=	10;

				num2	=	10;

				return	num;

}

>	testHoisting()

ReferenceError:	num1	is	not	defined

Arguments
As	discussed	many	times,	JavaScript	functions	can	accept	parameters.	When	you	invoke	a
function,	however,	the	number	of	arguments	you	pass	does	not	need	to	be	constrained	by
the	number	of	parameters	defined.

For	instance,	you	can	pass	a	single	argument	to	a	function	accepting	two	parameters.	In
this	case	the	second	parameter	will	have	a	value	of	undefined.

Likewise,	you	can	pass	three	arguments	to	a	function	accepting	two	parameters.	This	may
not	sound	useful,	but	in	fact	JavaScript	makes	these	arguments	available	in	a	special	array
called	arguments.

Consider	a	case	where	you	want	to	write	a	function	to	add	together	an	arbitrary	set	of
numbers.	Obviously,	you	could	pass	an	array	to	the	function,	but	you	can	also	write	it	as
follows:

function	add()	{

				var	result	=	0;

				for	(var	i	=	0;	i	<	arguments.length;	i++)	{

								result	=	result	+	arguments[i];

				}

				return	result;

}

Notice	that	this	function	declares	no	parameters:	Instead,	it	uses	the	arguments	array	to
extract	the	arguments	passed	to	it.	It	is	now	possible	to	call	this	function	with	an	arbitrary
number	of	arguments:

>	add(3,7,8,10)

28

Bind
Since	JavaScript	functions	are	actually	objects,	it	is	possible	to	invoke	methods	on	them.
This	section	looks	at	a	widely	used	method	called	bind.

You	have	already	seen	how	functions	“close”	over	all	variables	in	scope	when	they	are
created.	This	set	of	variables	can	be	thought	of	as	the	environment	in	which	the	function
executes.

JavaScript	is	even	more	powerful	than	this:	It	is	possible	to	provide	the	environment	to	the
function	in	the	form	of	an	object,	therefore	allowing	the	function	to	use	an	entirely
different	set	of	variables.

Imagine	that	you	want	to	create	a	counter	that	is	capable	of	starting	from	any	number,	not
just	0.	One	way	to	achieve	this	is	to	create	the	function	as	follows:

function	getCount()	{

				return	this.myCount++;

}

Notice	in	this	case	that	you	have	not	provided	a	starting	value	for	myCount,	and	you	are
accessing	the	variable	with	this	invoke	getCount().myCount	rather	than	just	myCount.
You	will	look	at	the	meaning	of	this	in	the	next	lesson.

If	you	were	to	create	a	counter	function,	it	would	not	work	because	it	does	not	have	a
value	for	myCount.

You	can	instead	bind	this	function	to	a	new	environment	by	providing	a	set	of	name/value
pairs	for	the	variables	in	the	environment:

>	var	counter2	=	getCount.bind({myCount:100});

undefined

>	counter2()

100

>	counter2()

101

Note
The	set	of	name/value	pairs	inside	curly	brackets	is	actually	an	object:You	will	look	at
how	objects	can	be	constructed	in	a	lot	more	detail	in	the	next	lesson.

As	you	can	see,	the	bind	function	returns	a	new	version	of	the	function,	permanently
bound	to	the	new	environment.	You	can	then	invoke	this	function	and	obtain	the
appropriate	results	for	the	environment	it	is	bound	to.

Try	It
In	this	Try	It,	you	will	start	by	writing	a	function	that	takes	advantage	of	the	techniques
you	have	learned	in	this	lesson.	This	function	will	implement	a	stand-alone	version	of	the
map	method.

Next,	you	will	look	at	another	of	the	methods	provided	by	arrays	called	reduce.	This	can
be	used	to	aggregate	the	values	in	an	array—for	instance,	to	sum	them.

Lesson	Requirements
In	order	to	complete	this	lesson,	you	will	need	the	Chrome	web	browser.	You	may,
however,	want	to	complete	these	exercises	in	a	text	editor	and	copy	the	results	to	the
console.

Step-by-Step
1.	 Open	the	Chrome	development	tools	and	selecting	the	Console	tab.

2.	 Define	a	function	called	map	that	accepts	two	parameters:	an	array	and	a	function	for
performing	the	map	operation.

3.	 In	the	body	of	the	function,	you	first	need	to	construct	an	empty	array	to	hold	the
result	of	the	function.

4.	 Use	a	for	loop	to	iterate	through	all	the	elements	in	the	array.	Remember	to	use	a
counter	variable	and	declare	that	the	loop	should	continue	while	this	counter	is	less
than	the	length	of	the	array.

5.	 Within	the	body	of	the	for	loop,	extract	the	element	that	is	at	the	position	of	the
counter.	Store	this	in	a	local	variable.

6.	 Pass	the	element	to	the	function	provided	in	the	second	parameter,	and	store	the
result	in	another	variable.

7.	 Add	the	mapped	variable	to	the	result	array	using	the	push	method—for	example,
result.push(value).

8.	 In	order	to	execute	this	function,	start	by	creating	an	array	that	contains	a	mixture	of
odd	and	even	numbers.

9.	 Create	a	function	that	accepts	a	single	parameter.	If	this	parameter	is	even	(remember,
you	can	use	the	modulus	operator:	%),	it	should	simply	be	returned;	if	it	is	odd,	add	1
to	the	number	and	return	it.	This	function	therefore	converts	all	numbers	into	even
numbers.

10.	 Assign	the	function	to	a	variable.

11.	 Call	the	map	function	you	created	earlier	with	the	array,	and	the	variable	referring	to
the	function	to	convert	numbers	to	even.	The	result	should	be	an	array	of	even
numbers.

In	the	second	section	of	this	Try	It,	you	will	look	at	the	reduce	function.	This	is	similar	to
map	and	filter,	but	slightly	more	complex.	This	function	is	used	to	aggregate	the	data	in
an	array	to	a	single	value	such	as	a	sum	or	an	average	(the	single	value	can	also	be	an
object	or	an	array	if	required).	This	function	is	more	complex	because	it	needs	to	keep
track	of	a	running	total	as	it	executes.

1.	 Create	an	array	of	numbers	that	can	be	summed	together.

2.	 Create	a	function	that	can	be	used	for	summing	the	numbers	together.	This	should	be
called	addToTotal	and	will	accept	two	parameters,	a	current	total	and	a	new	value	to
add	to	this	total.

3.	 In	the	body	of	the	function,	return	the	sum	of	the	two	numbers.

4.	 Add	logging	to	the	addToTotal	so	you	can	see	what	is	happening:	print	both
parameters	to	the	console.

5.	 You	now	want	to	call	the	reduce	method	on	the	array.	This	accepts	two	arguments,	a
function	and	an	initial	value	for	the	aggregation:	therefore	pass	in	addToTotal	and	0.

6.	 Remember	that	you	are	passing	the	function	itself	rather	than	calling	it.	Thus,	when
you	pass	addToTotal,	you	should	only	include	its	name;	you	should	not	call	it	with	a
set	of	parameters.

7.	 When	I	run	this,	it	produces	the	following	output:

	[6,	2,	3].reduce(addToTotal,	0);

Current	total:

Value:	6

Current	total:

Value:	2

Current	total:

Value:	3

11

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	13,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	14

Objects
Most	of	the	JavaScript	data	types	you	have	looked	at	so	far	have	held	simple	atomic
values	such	as	strings	or	numbers.	This	lesson	looks	at	objects:	Objects	encapsulate
multiple	data	properties,	along	with	a	set	of	methods	capable	of	operating	on	these
properties.

Objects	are	potentially	the	most	difficult	aspect	of	JavaScript	for	programmers	migrating
from	other	languages	because	objects	in	JavaScript	work	in	a	fundamentally	different	way
than	most	other	languages.	As	you	will	see,	this	is	not	a	bad	thing,	but	if	you	don’t
understand	these	fundamental	differences,	you	will	struggle	to	write	complex	web
applications.

Object	Literals
Objects	can	be	created	in	JavaScript	by	enclosing	a	set	of	properties	and	methods	within	a
pair	of	curly	brackets.	The	following	is	an	example	of	an	object	with	two	properties	and
one	method:

>	o	=	{

				firstName:'Dane',

				lastName:'Cameron',

				getFullName:	function()	{

								return	this.firstName	+	'	'	+	this.lastName;

				}

}

In	this	case,	the	two	properties	are	firstName	and	lastName.	These	properties	are	both
strings,	but	they	could	be	any	data	type:	numbers,	Booleans,	arrays,	or	other	objects.

Notice	that	the	property	names	are	separated	from	their	values	with	colons,	and	the
properties	are	separated	from	one	another	with	commas.

It	is	possible	to	access	these	properties	in	two	different	ways:

>	o.firstName

"Dane"

>	o['firstName']

"Dane"

These	two	mechanisms	are	not	exactly	equivalent.	The	second	mechanism	(with	the
square	brackets)	will	always	work,	whereas	the	first	mechanism	will	only	work	if	property
names	follow	specific	rules:

They	start	with	a	letter,	the	underscore	character,	or	the	dollar	sign.

They	only	contain	these	characters	or	numbers.

For	instance,	it	is	possible	to	create	an	object	as	follows:

>	o	=	{

				'first	name':'Dane',

				'last	name':'Cameron'

}

Because	the	property	names	contain	spaces,	however,	they	must	be	declared	between
quotes,	and	the	only	way	to	access	these	properties	is	with	the	square	bracket	notation:

o['first	name']

"Dane"

The	method	on	this	object	is	getFullName.	You	will	notice	that	this	accesses	the	properties
on	the	object	with	the	keyword	this.	Inside	a	method,	this	refers	to	the	object	itself	so
this.firstName	means	that	you	want	to	access	the	firstName	property	of	the	object,	not
the	variable	called	firstName	(which	would	be	undefined).	It	is	possible	to	invoke	the
method	as	follows:

>	o.getFullName()

"Dane	Cameron"

Methods	can	therefore	be	thought	of	as	functions	that	use	the	special	value	this
differently.

After	an	object	has	been	constructed,	it	is	still	possible	to	add	additional	properties	or
methods	to	it,	or	redefine	any	existing	properties	or	methods.	For	instance:

>	o.profession	=	"Software	Developer";

>	o.getFullName	=	function()	{

				return	this.firstName	+	"	"	+	this.lastName	+	"	("	+	this.profession	+	

")";

}

>	o.getFullName();

"Dane	Cameron	(Software	Developer)"

Notice	that	the	call	to	getFullName	picks	up	the	redefined	implementation,	even	though
the	object	was	created	when	the	redefinition	occurred.

It	is	possible	for	two	variables	to	refer	to	the	same	object,	but	in	this	case,	any	changes	to
the	objects	are	reflected	to	both	variables.	For	instance,	I	can	create	a	new	variable	called
o2	and	set	it	to	o;	calling	getFullName	will	return	the	same	value	as	calling	the	method	on
o:

>	o2	=	o;

>	o2.getFullName();

"Dane	Cameron	(Software	Developer)"

because	o	and	o2	are	referring	to	exactly	the	same	object.

Prototypes
One	of	the	main	reasons	programming	languages	use	the	concept	of	objects	is	to	allow
code	reuse.	It	is	common	to	have	many	objects	that	share	the	same	properties	and	methods
but	with	different	property	values.

For	instance,	the	example	in	the	previous	section	may	represent	a	staff	member	in	an
employee	management	system;	you	may	therefore	create	many	similar	objects,	all	with	the
same	property	names	and	methods,	but	each	with	distinct	data	in	their	properties.	As	a
result,	all	these	objects	can	share	the	same	methods.	Obviously,	you	could	just	add	the
relevant	methods	to	each	object	you	create,	but	this	would	become	tedious.

If	you	have	used	languages	such	as	Java	or	C#,	you	probably	think	of	classes	as	the
mechanism	for	acquiring	this	reuse.	Classes	are	templates	for	objects,	and	many	languages
insist	that	you	construct	classes	first,	and	then	create	objects	from	those	classes.	The
classes	therefore	contain	the	methods	and	property	names	that	will	appear	in	the	objects,
but	each	object	has	its	own	values	for	the	properties.

As	you	will	see	shortly,	JavaScript	does	support	syntax	for	creating	objects	in	this	manner,
but	it	is	not	the	core	mechanism	for	code	reuse	in	JavaScript.	Instead,	JavaScript	is
designed	around	the	concept	of	prototypes.

As	it	turns	out,	every	object	in	JavaScript	has	a	prototype	on	which	it	is	based,	and	it
derives	properties	and	methods	from	this	prototype.	In	order	to	convince	yourself	of	this,
enter	the	following	into	the	console:

>	o	=	{};

>	o.toString()

"[object	Object]"

In	this	example,	you	create	an	empty	object,	with	no	properties	or	methods,	and	then
invoke	a	method	on	it	called	toString.	The	toString	method	comes	from	the	new
object’s	prototype,	which	happens	to	be	called	Object.

A	prototype	is	just	a	regular	object	in	its	own	right.	When	a	property	or	method	is
accessed	on	an	object,	JavaScript	first	tries	to	access	it	on	the	object	itself.	If	it	is	not
available	there,	it	attempts	to	access	it	on	the	object’s	prototype.	In	fact,	as	you	will	see
shortly,	the	object’s	prototype	may	have	a	prototype	of	its	own;	therefore,	there	can	be	a
whole	chain	of	prototypes.	If	the	property	or	method	still	cannot	be	found	after	searching
the	prototypes,	the	value	of	undefined	is	returned.

Because	many	objects	share	the	same	prototype,	adding	functionality	to	prototypes
provides	a	mechanism	for	code	reuse.

Consider	the	case	of	an	array	in	JavaScript.	Every	array	that	is	constructed	in	JavaScript
has	a	prototype	object	called	Array:	This	is	where	the	methods	such	as	pop,	map,	and
reduce	are	defined.	Array	itself	has	a	prototype	of	Object,	and	this	provides	additional
methods.

Because	a	prototype	is	just	a	regular	object,	you	can	add	additional	methods	to	it.	These

methods	will	then	automatically	be	available	to	all	arrays,	even	arrays	created	before	you
added	the	method.

For	instance,	you	might	decide	you	would	like	arrays	to	support	a	method	called
contains.	This	would	accept	an	argument	and	return	true	if	this	existed	as	an	element	in
the	array.	You	can	define	this	as	follows:

>	Array.prototype.contains	=	function	(val)	{

				for	(var	i	=	0;	i	<	this.length;	i++)	{

								if	(this[i]	===	val)	{

												return	true;

								}

				}

				return	false;

}

Array,	in	this	case,	is	a	constructor	function	(you	will	look	at	these	shortly),	whereas
Array.prototype	allows	you	to	access	the	object	that	acts	as	the	prototype	to	all	arrays.
Notice	that	within	the	method	you	add,	you	can	use	this	to	refer	to	an	array	itself.

You	can	then	write	code	as	follows:

>	a1	=	[1,5,3,8,10]

[1,	5,	3,	8,	10]

>	a1.contains(8)

true

>	a1.contains(9)

false

Prototypes	can	also	solve	the	code	reuse	problem	discussed	earlier	with	the	staff	member
objects.	You	can	construct	a	single	object	that	will	act	as	the	prototype	of	all	staff	member
objects,	and	then	set	this	as	the	prototype	of	any	staff	member	object	you	construct.

You	will	start	by	defining	an	object	with	methods	on	it	to	act	as	the	prototype:

staffPrototype	=	{

				increasePay	:	function(percentage)	{

								this.salary	=	this.salary	+	((this.salary	*	percentage)	/	100);

				},

				getFullName	:	function()	{

								return	this.firstName	+	"	"	+	this.lastName	+	"	("	+	

this.profession	+	")";

				}

}

Notice	that	this	accesses	four	properties:	firstName,	lastName,	salary,	and	profession.
None	of	these	properties	has	been	defined	on	the	object	itself;	therefore	it	is	not	possible
to	call	these	functions	and	have	meaningful	results	returned.	Despite	this,	the	object
definition	is	still	considered	valid	by	JavaScript.

You	now	need	a	mechanism	to	set	this	object	as	the	prototype	for	other	objects.	The	best
way	to	do	this	is	with	the	following	function:

>	function	extend(obj)	{

				function	T(){};

				T.prototype	=	obj;

				return	new	T();

}

You	will	use	this	function	first	and	then	come	and	look	at	how	it	works.	Start	by	creating	a
new	object	with	the	following	call:

>	s1	=	extend(staffPrototype);

Now	add	the	relevant	properties	to	s1:

>	s1.firstName	=	'Morgan';

>	s1.lastName	=	'Thomas';

>	s1.salary	=	50000;

>	s1.profession	=	'Graphic	Designer';

Now,	you	should	be	able	to	use	the	methods	added	to	the	prototype	and	have	these
methods	use	the	properties	in	your	newly	constructed	object:

>	s1.getFullName()

"Morgan	Thomas	(Graphic	Designer)"

>	s1.increasePay(10)

>	s1.salary

55000

You	can	construct	as	many	objects	as	you	like	from	this	same	prototype:

>	s2	=	extend(staffPrototype);

>	s2.firstName	=	'Sam';

>	s2.lastName	=	'Donaldson';

>	s2.salary	=	60000;

>	s2.profession	=	'HR	Manager';

All	of	these	objects	will	use	the	methods	you	defined	on	the	prototype	but	will	have	their
own	distinct	values	in	each	of	the	properties.

Although	this	clearly	works,	the	extend	function	is	rather	mysterious.	The	first	line	of	this
function	defines	another	function	called	T.	Although	this	is	a	normal	function,	as	you	will
see,	it	will	be	used	as	a	constructor	function,	just	as	Array	was.

Constructor	functions	are	normal	functions,	but	they	are	intended	to	be	invoked	with	the
new	keyword.	You	will	look	at	these	in-depth	in	the	next	section.	When	they	are	invoked
with	the	new	keyword	(as	you	can	see	on	the	third	line),	they	implicitly	return	a	new
object.

The	second	line	of	the	function	is	where	all	the	magic	happens	however:	On	this	line,	the
object	passed	into	the	function	(staffPrototype	in	this	case)	is	set	as	the	prototype	of	the
constructor	function.	This	means	that	any	objects	constructed	from	this	function	will	have
this	object	set	as	their	prototype.

Finally,	it’s	important	to	understand	that	prototypes	are	read-only.	For	instance,	the
following	code	might	be	executed	on	one	of	the	objects	to	redefine	the	getFullName
method:

>	s1.getFullName	=	function()	{

				return	this.lastName	+	",	"+	this.firstName	+	"	("	+	this.profession	+	

")";

}

This	code	does	succeed,	but	it	only	has	the	effect	of	providing	a	new	definition	of	the
method	for	the	s1	instance	of	the	object.	The	underlying	prototype	is	not	affected,	and	any
other	objects	based	on	this	prototype	will	also	be	unaffected.

Constructor	Functions
The	previous	section	briefly	touched	on	the	subject	of	constructor	functions.	These	are	the
closest	JavaScript	has	to	classes	because	they	provide	a	mechanism	to	construct	new
objects,	and	initialize	their	properties,	all	in	a	single	step.

For	instance,	the	following	is	a	constructor	function	for	initializing	objects	with	the	four
properties	used	in	the	previous	section:

function	Staff(firstName,	lastName,	salary,	profession)	{

				this.firstName	=	firstName;

				this.lastName	=	lastName;

				this.salary	=	salary;

				this.profession	=	profession;

}

There	is	really	nothing	special	about	this	function	other	than	the	following:

It	starts	with	a	capital	letter,	when	all	the	other	functions	and	methods	you	have
written	start	with	lowercase	letters.	This	is	a	convention	to	remind	you	that	this
function	is	a	constructor	function:	You	will	see	why	this	convention	is	important
shortly.

The	body	of	the	constructor	function	uses	this	to	refer	to	a	number	of	properties.	As
you	will	see,	constructor	functions	implicitly	return	a	new	object,	and	properties	can
be	set	on	the	new	object	using	this.

It	is	now	possible	to	construct	an	object	using	this	constructor	function	as	follows:

s3	=	new	Staff('Brian',	'Downing',	40000,	'Software	Tester');

This	will	create	a	new	object	and	set	its	properties	according	to	the	arguments	passed	to
the	function.

This	only	constructs	and	initializes	an	object	because	it	is	invoked	with	the	new	keyword.
If	this	were	omitted,	the	function	would	still	succeed,	except	it	would	not	construct	a	new
object:

>	s4	=	Staff('Brian',	'Downing',	40000,	'Software	Tester');

undefined

As	you	can	see,	the	function	now	returns	the	value	of	undefined.	You	may	be	wondering
what	happened	to	the	calls	inside	the	function	such	as	this.salary.	If	a	function	is
invoked	without	the	new	keyword,	this	refers	to	the	JavaScript	global	namespace,	which
is	the	window	object.	The	values	passed	to	the	function	have	therefore	been	created	as
global	variables,	overwriting	any	other	global	variables	with	the	same	name	in	the
process:

>	firstName

"Brian"

>	salary

40000

Note
It	is	possible	to	use	a	stricter	mode	of	JavaScript	with	the	following	declaration:	“use
strict”;	When	using	strict	mode	this	is	undefined	inside	a	function,	and	forgetting
the	new	keyword	would	result	in	an	error.	Strict	mode	also	addresses	many	of	the
other	quirks	we	have	seen	with	JavaScript.

This	is	why	it	is	important	to	name	constructor	functions	with	leading	capital	letters:	to
remind	yourself	that	they	are	constructor	functions,	and	ensure	that	you	precede	them	with
the	new	keyword.

Note
If	you	are	keeping	count,	you	may	have	noticed	that	this	has	four	different	meanings,
depending	on	the	context	in	which	it	is	used.

Inside	a	regular	function,	this	refers	to	the	global	namespace,	which	in
browsers	is	the	window	object.

Inside	methods,	this	refers	to	the	object	the	method	is	defined	on.

Inside	constructor	functions,	this	refers	to	the	implicitly	constructed	object,	but
only	when	the	function	is	invoked	with	the	new	keyword.

When	bind	is	used,	this	refers	to	the	object	passed	as	an	argument.

Misunderstanding	the	meaning	of	this	in	each	of	these	contexts	is	a	common	source
of	bugs	in	JavaScript	code.

Modules
Most	programming	languages	that	support	objects	support	a	mechanism	for	controlling
how	data	is	accessed.	For	instance,	consider	the	salary	property	from	the	objects	in	the
previous	section.	Any	code	that	has	access	to	an	object	can	set	it	to	any	value	it	wants,	as
you	can	see	here:

s1.salary	=	100000000;

In	a	real-world	application,	you	may	want	to	control	the	values	that	salary	can	be	set	to.
For	example:

>	s1.updateSalary	=	function(newSalary)	{

				if	(newSalary	>	0	&&	newSalary	<	200000)	{

								this.salary	=	newSalary;

				}	else	{

								throw	'The	salary	must	be	between	0	and	200000';

				}

}

Although	it	is	possible	to	expose	methods	such	as	this,	this	does	not	stop	code	from
accessing	the	object’s	properties	directly.

This	may	not	sound	like	an	important	issue	because	you	have	full	control	over	the	code
base,	and	you	can	therefore	check	that	no	one	updates	the	salary	property	directly.	This
becomes	increasingly	difficult	as	the	code	base	grows,	however,	and	you	introduce	more
and	more	rules	about	how	properties	should	be	accessed	and	updated.

Fortunately,	there	is	a	solution	to	this	problem,	and	it	relies	on	closures.	The	following	is
an	example:

function	createStaffMember(initialSalary,	firstName,	lastName)	{

			var		salary	=	null;

				o	=	{

								setSalary	:	function()	{

												if	(initialSalary	>	0	&&	initialSalary	<	200000)	{

																salary	=	initialSalary;

												}	else	{

																throw	'The	salary	must	be	between	0	and	200000';

												}

								},

								getSalary	:	function()	{

													return	salary;

								},

								firstName	:	firstName,

								lastName	:	lastName

				};

				o.setSalary(initialSalary);

				return	o;

}

Notice	that	this	function	declares	a	local	variable	called	salary	and	then	constructs	an

object	that	uses	this	local	variable.	When	the	object	is	returned	at	the	end	of	the	function,
it	retains	a	reference	to	the	salary	variable	so	it	is	not	destroyed.	Despite	this,	there	is	no
way	any	other	code	can	set	this	variable	without	using	the	method	setSalary,	and	this
ensures	the	value	is	always	within	the	acceptable	range.

An	object	can	be	constructed	from	this	function	as	follows:

>	s5	=	createStaffMember(50000,	'Tom',	'Braithwaite');

It	may	appear	the	salary	property	can	be	set	as	follows:

>	s5.salary	=	1000000000;

However,	if	you	invoke	the	getSalary	method,	you	will	discover	that	the	actual	salary	has
not	been	modified:

>	s5.getSalary();

50000

You	will	also	notice	that	the	object’s	methods	do	not	access	the	salary	variable	with	the
this	keyword.	This	is	because	salary	is	not	a	property	of	the	object;	it	is	a	local	variable
the	object	has	a	reference	to.	Also	notice	that	you	need	to	provide	a	method	(getSalary)
for	returning	the	current	value	of	salary	because	there	is	no	other	way	code	outside	the
object	could	access	this	value.

The	approach	outlined	in	this	section	is	a	design	pattern,	which	is	a	reusable	solution	to	a
well-known	problem.	This	design	pattern	is	referred	to	as	the	module	design	pattern	and	is
used	extensively	in	JavaScript	programming.

Try	It
In	this	Try	It,	you	will	use	the	module	design	pattern	within	the	CRM	web	application.
Although	it	will	not	do	much	at	this	point,	it	will	provide	a	well-structured	base	on	which
to	add	additional	functionality	over	the	next	few	lessons.

Lesson	Requirements
In	order	to	complete	this	lesson,	you	will	need	the	CRM	web	application	as	it	stood	at	the
end	of	Lesson	8.	This	can	be	downloaded	from	the	book’s	website	if	you	have	not
completed	Lesson	8.	You	will	also	need	a	text	editor	and	the	Chrome	browser.

Step-by-Step
1.	 Start	by	creating	a	standalone	JavaScript	file	called	contacts.js.	This	should	be

placed	in	the	same	folder	as	the	contacts.html	file.

2.	 Within	this,	start	by	creating	a	function	called	contactsScreen.	This	should	accept	a
single	parameter	called	mainID,	and	should	return	an	empty	object.

3.	 Define	a	local	variable	within	the	function	(not	within	the	object	returned),	called
appScreen,	and	set	this	to	the	parameter	passed	into	the	function.	You	are	going	to
pass	the	main	element	of	the	contacts.html	page	to	this	function	when	you
eventually	invoke	it,

4.	 Create	another	local	variable	called	initialized	and	set	this	to	false.

5.	 Create	a	method	inside	the	object	returned	called	init.	Add	this	method,	and	declare
an	empty	code	block	for	it.	This	is	where	you	will	place	any	logic	that	needs	to
execute	when	the	web	page	first	loads.

6.	 You	want	to	make	sure	you	only	initialize	the	screen	once.	Therefore,	at	the	top	of	the
init	method,	check	if	initialized	is	true:	If	so,	simply	invoke	return.

7.	 Copy	the	JavaScript	code	from	contacts.js	(minus	the	script	tags:	leave	these	in
place),	and	add	them	to	the	body	of	the	init	method.	In	addition,	set	initialized	to
true	at	the	end	of	the	init	method.

8.	 My	completed	version	of	the	JavaScript	file	is	available	on	the	book’s	website.

9.	 You	now	need	to	link	the	JavaScript	file	to	the	HTML	page	to	ensure	it	loads	when
the	web	page	loads.	In	order	to	do	this,	add	the	following	to	the	body	of	the	head
element:

<script	src="contacts.js"></script>

9.	 Note
If	you	have	used	earlier	versions	of	HTML,	you	may	be	expecting	to	add	a	type
attribute	to	the	script	tag	to	specify	the	script	is	JavaScript.	This	is	no	longer
required	because	JavaScript	is	the	assumed	default.

10.	 Now,	pass	the	main	element	to	the	contactsScreen	function	and	store	the	resulting
object	in	a	local	variable	called	appScreen.	This	needs	to	occur	inside	the	script
block	at	the	bottom	of	contacts.html.

11.	 Invoke	the	init	method	on	the	appScreen	object.	Your	code	block	now	looks	as
follows:

<script>

				var	mainElement	=	document.getElementById('contactScreen');

				var	appScreen	=	contactsScreen(mainElement);

				appScreen.init();

	</script>

12.	 If	you	now	load	the	screen,	you	can	add	a	breakpoint	to	the	first	line	of	the	init
method	by	selecting	the	contacts.js	file	from	the	Sources	tab.

13.	 You	can	now	reload	the	page	and	step	through	the	init	function	to	ensure	it	loads
correctly.

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	14,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	15

JSON
JSON	(commonly	pronounced	Jason)	stands	for	JavaScript	Object	Notation.	It	is	a	data
format	for	representing	the	properties	of	a	JavaScript	object	as	a	string.

In	computing,	there	are	often	instances	where	you	need	to	convert	data	from	one	format	to
another.	For	instance,	if	you	consider	a	JavaScript	object,	you	may	want	to	convert	it	into
a	String	so	that:

You	can	send	it	across	a	network	to	another	computer.

You	can	store	it	in	a	file.

You	can	use	it	with	other	JavaScript	APIs	that	only	support	strings.

Conversely,	you	may	eventually	want	to	convert	this	string	back	into	an	object	so	that	you
can	use	it	in	your	JavaScript	application.

The	process	of	converting	an	object	into	a	string	is	referred	to	as	serialization,	while	the
process	of	converting	it	back	is	referred	to	as	de-serialization.

In	order	to	convert	an	object	into	a	string,	you	need	a	data-format	that	specifies	how	the
object	should	be	mapped	to	a	character	string—for	instance,	how	do	you	denote	the
properties	and	values	of	an	object,	and	how	do	you	encode	the	various	data	types	such	as
numbers	and	arrays?

Historically	most	data	formats	have	been	binary:	This	meant	that	it	was	not	possible	for	a
human	to	read	the	formatted	data	and	gain	an	understanding	of	its	underlying	structure	or
meaning.	Typically,	data	was	converted	to	and	from	the	binary	format	using	a	proprietary
algorithm.

In	recent	years,	there	has	been	a	move	toward	plain-text	data	formats.	The	most	notable
example	is	XML,	which	uses	a	similar	structure	and	syntax	to	HTML	in	order	to
differentiate	properties	from	their	values.

There	is	nothing	inherently	wrong	with	using	XML	to	serialize	JavaScript	objects,	and
many	web	applications	do	use	XML.	For	instance,	this	is	a	possible	representation	of	a
contact	in	XML:

<?xml	version="1.0"	encoding="UTF-8"?>

<contact>

				<contactName>William	Jones</contactName>

				<phoneNumber>555-2941</phoneNumber>

				<emailAddress>william@testing.com</emailAddress>

				<company>

								<code>123</code>

								<name>ABC	Incorporated</name>

				</company>

				<notes></notes>

				<lastContacted>2014-09-25</lastContacted>

</contact>

There	are	three	main	drawbacks	with	XML:

The	ratio	of	tags	to	content	in	XML	is	reasonably	high:	In	the	previous	example,	far
more	than	half	the	message	consists	of	tags.

A	JavaScript	library	is	required	to	convert	between	the	JavaScript	object	and	XML
because	JavaScript	does	not	natively	support	XML.

Although	XML	is	simple	in	principle,	numerous	technologies	have	grown	up	around
it,	such	as	namespaces	and	schemas,	and	they	can	complicate	XML	considerably.

JSON	alleviates	all	of	these	issues.	The	main	beauty	of	JSON	is	that	it	maps	directly	to
JavaScript.	If	you	were	to	write	out	the	structure	of	a	JavaScript	object	on	paper	using	the
same	syntax	JavaScript	uses	for	declaring	objects,	it	would	probably	look	identical	to
JSON.

JSON	is	also	natively	supported	in	the	latest	versions	of	JavaScript;	therefore	you	do	not
need	any	libraries	to	work	with	JSON.

Finally,	JSON	is	incredibly	simple.	It	is	described	in	a	few	hundred	words	on	the
following	website:	http://http://www.json.org.

The	JSON	representation	of	a	contact	may	look	like	this:

{

				"contactName":"William	Jones",

				"phoneNumber":"555-2941",

				"emailAddress":"william@testing.com",

				"company":{

								"code":123,

								"name":"ABC	Incorporated"

				},

				"notes":null,

				"lastContacted":"2014-06-30T05:50:46.659Z"

}

Notice	how	similar	this	looks	to	the	literal	notation	for	declaring	a	JavaScript	object?

It	is	possible	to	convert	a	JavaScript	object	into	a	string	using	the	utility	function
JSON.stringify.	In	order	to	demonstrate	this,	start	by	creating	a	contact	object	using	the
object	literal	notation:

>	c1	=	{

				contactName:	"William	Jones",

				phoneNumber:"555-2941",

				emailAddress:"william@testing.com",

				company:{

								code:123,

								name:"ABC	Incorporated"

				},

				notes:null

				lastContacted:	new	Date()

}

Next,	execute	the	following	to	store	this	as	a	string	in	the	variable	contactString:

>	contactString	=	JSON.stringify(c1)

"{"contactName":"William	Jones","phoneNumber":"555-

http://www.json.org

2941","emailAddress":"william@testing.com","company":

{"code":123,"name":"ABC	Incorporated"},"notes":null,"lastContacted":"2014-

06-30T06:06:56.306Z"}"

Notice	that	the	properties	and	values	are	all	retained,	but	property	names	are	all
automatically	embedded	in	double	quotes.

JSON	allows	all	the	JavaScript	data	types	to	be	represented	in	the	serialized	version.	This
ensures	that	when	the	string	is	eventually	converted	back	into	an	object,	the	various
properties	retain	their	original	data	types.

Strings	always	appear	inside	double	quotes.	Multiple	examples	can	be	seen	in	this
example—for	instance	“William	Jones”.

Numbers	appear	literally,	and	do	not	need	to	be	quoted;	for	instance,	the	code
property	has	a	value	of	123.

Although	not	shown	in	this	example,	Boolean	values	are	represented	with	the
unquoted	keywords	true	and	false.

The	unquoted	keyword	null	is	used	to	represent	a	null	value,	as	you	can	see	with	the
notes	property.

Objects	can	encapsulate	child	objects,	as	the	company	property	demonstrates.	This
nesting	can	go	to	as	many	levels	as	you	require.

Arrays	can	be	used	as	the	value	for	any	property.	These	use	the	familiar	square
brackets	to	indicate	the	start	and	end	of	the	array,	while	elements	are	separated	with
commas.

You	can	convert	the	string	back	into	an	object	using	the	JSON.parse	function.	The
example	in	Figure	15.1	shows	this	and	demonstrates	that	you	can	access	the	properties	of
the	de-serialized	object:

Figure	15.1

Although	the	JSON	format	is	great	for	serializing	properties,	it	cannot	be	used	for
serializing	methods:	Any	methods	present	on	the	object	are	simply	ignored	when
JSON.stringify	is	invoked.

Replacing	and	Reviving
Although	JavaScript	is	great	for	working	with	most	JavaScript	data	types,	it	does	come
with	certain	limitations.	One	of	the	most	difficult	data	types	to	handle	is	the	Date	object.

There	are	many	different	ways	to	serialize	dates.	For	instance,	you	could	use	their	time	in
milliseconds:

new	Date().getTime()

1404088573560

The	time	in	milliseconds	is	a	number	that	represents	the	number	of	milliseconds	that	have
passed	since	midnight	on	January	1,	1970.	This	is	not	an	ideal	way	to	represent	a	date;
among	other	reasons,	it	does	not	contain	time-zone	information.

You	could	also	use	the	toString	method	on	the	Date	object:

new	Date().toString()

"Mon	Jun	30	2014	12:36:01	GMT+1200	(New	Zealand	Standard	Time)"

This	is	better	because	it	does	contain	time-zone	information.	However,	it	also	contains
unnecessary	information:	The	day	of	the	week	is	implied	by	the	date.

Ultimately,	it	does	not	really	matter	what	format	you	choose,	as	long	as	it	stores	all	the
information	you	require.	The	most	important	thing	is	that	everyone	agrees	on	the	same
format,	thereby	allowing	any	serialized	objects	to	be	de-serialized	by	your	web
application.

For	this	reason,	the	JavaScript	Date	object	now	supports	a	method	called	toJSON,	as	you
can	see	in	the	following	example:

new	Date().toJSON();

"2014-06-30T00:37:09.348Z"

This	produces	a	date	in	the	UTC	time	zone	(essentially	the	same	as	Greenwich	Mean
Time),	regardless	of	the	time	zone	of	the	computer	itself.	The	timezone	is	denoted	by	the
trailing	Z	on	the	date	format.	The	entire	date/time	string	is	formatted	according	to	an	ISO
standard,	which	is	widely	used	in	computing.

If	you	look	at	the	JSON	example	earlier	in	this	lesson,	you	will	see	that	the	date	was
converted	into	a	string	conforming	to	this	standard.

You	may	have	noticed	a	problem	in	our	example,	however.	When	JSON.parse	was	used	to
transform	the	string	back	into	an	object,	the	lastContacted	property	was	left	as	a	string,
rather	than	converted	back	into	a	Date	object.

This	is	not	the	desired	behavior:	You	always	want	the	serialization	process	to	be
completely	reversible	by	the	de-serialization	process.	Fortunately,	there	is	a	way	around
this	problem.

The	JSON.parse	function	supports	an	optional	second	parameter	referred	to	as	a	“reviver.”
This	can	be	used	to	convert	values	as	they	are	transformed	back	onto	the	object.	This

parameter	expects	to	be	passed	a	function,	which	in	turn	will	be	passed	every	property	as
it	is	parsed.	Where	appropriate,	the	reviver	can	decide	to	modify	the	value	of	the	property
before	it	is	set	on	the	object.

In	order	to	parse	dates	with	a	reviver	function,	you	need	to	perform	two	tasks:

Identify	that	a	value	is	a	date.	The	most	common	way	to	do	this	is	with	regular
expressions.

Convert	it	from	a	string	to	a	Date	object.	The	Date	object	has	a	constructor	that
supports	the	ISO	format;	therefore,	this	is	a	simple	process.

You	saw	regular	expressions	earlier	in	the	book	when	you	validated	form	fields.
JavaScript	supports	a	literal	notation	for	defining	regular	expressions:	Any	unquoted
character	string	that	starts	with	a	forward	slash	is	assumed	to	be	a	regular	expression.

The	regular	expression	that	follows	is	reasonably	complex,	so	it	is	not	important	that	you
understand	it,	but	you	should	understand	the	approach:

dateReviver	=	function(name,	value)	{

				var	regExp	=	/ˆ(\d{4})-(\d{2})-(\d{2})T(\d{2}):(\d{2}):(\d{2}

(?:\.\d*)?)Z$/

				if	(value	&&	typeof	value	===	'string'	&&	value.match(regExp))	{

								return	new	Date(value);

				}	else	{

								return	value;

				}

}

This	code	starts	by	defining	a	regular	expression	that	describes	the	pattern	of	characters
you	expect	to	find	in	a	date	field.

Next,	the	if	statement	checks	that	you	have	been	passed	a	value	and	that	the	value	has	a
data	type	of	string.	Finally,	the	if	statement	checks	whether	the	value	matches	the
regular	expression:	If	it	does,	then	the	match	method	will	return	a	non-null	value.

If	the	value	is	determined	to	be	a	serialized	version	of	a	date,	it	is	simply	passed	to	the
constructor	of	Date,	and	the	resulting	object	is	returned.	If	it	is	not	a	date,	you	simply
return	the	value	untouched.

You	can	now	use	this	function	to	de-serialize	the	contact	into	a	new	variable:

contact2	=	JSON.parse(contactString,	dateReviver);

If	you	now	examine	the	lastContacted	property,	you	can	confirm	it	is	a	Date:

>	typeof	contact2.lastContacted

"object"

>	contact2.lastContacted.toString()

"Mon	Jun	30	2014	18:06:56	GMT+1200	(NZST)"

Notice	that	even	though	the	serialized	version	used	the	UTC	time	zone,	the	de-serialized
version	has	been	converted	back	into	my	local	time	zone.

Just	as	the	JSON.parse	function	supports	a	reviver,	the	JSON.stringify	function	supports

an	optional	replacer	function.	This	is	identical	to	the	reviver,	except	it	allows	you	to
convert	values	as	they	are	serialized.

Try	It
In	this	Try	It,	we	will	experiment	with	the	JSON	data	format.	As	you	have	already	seen,
JSON	is	an	extremely	simple	data	format	so	you	will	use	it	for	a	slightly	different	purpose:
cloning	objects.	To	clone	an	object	is	to	make	a	copy	of	it:	We	will	look	at	how	this	can	be
achieved	with	JSON.

Lesson	Requirements
In	order	to	complete	this	lesson,	you	will	need	the	Chrome	web	browser.	You	may,
however,	want	to	complete	these	exercises	in	a	text	editor	and	copy	the	results	to	the
console.

Step-by-Step
1.	 Start	by	creating	a	sample	object	that	you	can	clone.	Make	sure	that	this	contains

child	objects	and	arrays.	My	object	looked	like	this:

o	=	{

				studentName:	'William	Jones',

				school:	'Middletown	High	School',

				grades:	[

								{subject:	'English',

									grade:	'A'},

								{subject:	'Algebra',

									grade:	'B+'},

								{subject:	'Geometry',

									grade:	'C'},

]

}

2.	 Create	a	clone	function;	this	should	declare	a	single	parameter,	which	is	the	object	to
clone.

3.	 Within	the	function,	call	JSON.stringify	on	the	object	passed	in,	and	store	the	result
in	a	new	variable.

4.	 Parse	the	string	stored	in	Step	3	using	JSON.parse,	and	store	the	result	in	a	new
variable.

5.	 Return	the	newly	created	object	from	the	function.

6.	 Confirm	that	you	can	change	the	value	of	properties	in	the	newly	created	object	and
that	these	are	not	reflected	in	the	original	object.

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	15,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	16

Document	Object	Model
The	Document	Object	Model	(DOM)	and	the	DOM	API	have	been	mentioned	several
times	already	in	this	book,	but	now	it’s	time	to	step	back	and	look	at	them	in	depth.

As	you	will	see	over	the	next	few	lessons,	you	can	largely	avoid	an	in-depth
understanding	of	the	DOM	API	if	you	use	jQuery.	jQuery	is	essentially	a	wrapper	around
the	DOM;	it	provides	all	the	same	basic	functionality	but	with	a	more	intuitive	API.

It	is,	however,	wise	to	have	at	least	a	basic	understanding	of	how	the	underlying	DOM
technology	works	before	starting	with	jQuery	because	this	places	it	in	a	wider	context,	and
helps	you	understand	what	jQuery	is	trying	to	achieve.

Nodes	and	Objects
The	Document	Object	Model	is	the	in-memory	browser	representation	of	a	web	page.
When	the	browser	loads	a	web	page,	it	parses	all	the	HTML	tags	and	their	content,	and
generates	a	model	for	display	in	the	browser.

As	you	have	already	seen,	the	DOM	model	may	differ	from	the	literal	HTML	in	several
ways.	For	example:

It	will	close	any	unclosed	tags,	such	as	self-closing	tags.

It	will	convert	attribute	names	to	lowercase.

It	will	rearrange	tags	closed	in	the	wrong	order,	per	the	rules	in	the	HTML5
specification.

It	will	add	certain	tags	that	may	be	missing	such	as	the	body	tag.

You	have	also	seen	how	the	DOM	is	represented	as	a	tree-like	structure	via	the	Elements
tab	in	the	Chrome	developer	tools.

The	DOM	is	actually	more	complex	than	the	Elements	tab	implies.	In	order	to	understand
the	DOM,	you	need	to	think	in	terms	of	nodes	rather	than	elements:	The	DOM	is	a
hierarchy	of	nodes.

In	this	section	you	will	gain	an	understanding	of	the	DOM	constructed	for	the	following
web	page:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

</head>

<body>

				<h1>This	is	the	header</h1>

</body>

</html>

The	DOM	for	this	HTML	will	be	modeled	as	you	see	in	Figure	16.1.	Each	square	box	in
this	diagram	is	called	a	node	in	the	DOM	tree.	As	you	can	see,	there	are	many	nodes	that
are	not	simple	elements	in	the	document.

Figure	16.1

Figure	16.1	also	lists	the	interface	or	object	type	of	each	node.	The	DOM	represents	each
node	as	an	object	(a	JavaScript	object	in	this	case),	and	this	object	exposes	an	interface
consisting	of	a	set	of	properties	and	methods.

You	can	see	that	the	top-level	node	is	called	the	document,	and	the	html	element	is	its
child.	Along	with	the	element	nodes,	you	can	also	see	examples	of	text	and	attr	nodes
in	the	tree	because	the	DOM	models	these	as	independent	objects.

The	following	are	the	most	common	types	of	object:

document:	A	document	object	represents	the	entire	document.	This	can	be	accessed
within	the	browser	using	the	global	variable	document.	When	you	start	using	the
DOM	API	shortly,	you	will	always	do	so	from	the	context	of	the	document.

element:	This	object	is	used	to	represent	the	elements,	or	tags,	in	the	document.
Every	tag—such	as	td,	head,	or	h1—is	represented	by	an	instance	of	this	object,	but
their	content	and	attributes	are	modeled	as	independent	objects.

attr:	The	attr	object	type	represents	attributes.	Each	element	can	have	zero	to	many
attr	objects	as	its	children.

text:	When	the	body	of	an	element	contains	text,	this	is	represented	by	a	separate
object	called	the	text	object.	In	some	cases	an	element	can	have	multiple	text	nodes.
For	instance,	with	the	following	HTML	fragment	<p>Left
sideinnerright	side</p>,	the	p	tag	has	two	text	nodes,	one	for	the	text
on	either	side	of	the	em	tag,	while	the	em	tag	also	has	a	text	node.

You	may	be	wondering	why	you	need	all	these	different	object	types.	The	primary	reason
is	that	you	want	to	do	different	things	to	different	nodes	in	the	document.	For	instance,	the
API	exposed	by	the	document	may	contain	functionality	to	determine	the	doctype,
whereas	the	API	exposed	by	the	attr	object	may	contain	functionality	to	change	the
attribute	value.	Alternatively,	the	element	object	allows	you	to	navigate,	add,	remove,	and
change	its	child	nodes,	whereas	this	is	not	possible	with	text	nodes.

The	API	used	for	interacting	with,	and	manipulating	all	these	types	of	node	is	called	the
DOM	API.	Browsers	implement	the	DOM	API	in	JavaScript,	but	the	DOM	API	can	be
written	in	any	language	and	can	exist	outside	a	web	browser.

The	purpose	of	the	DOM	API	is	mainly	to	allow	the	DOM	to	be	manipulated	after	the	web
page	has	loaded.	This	allows	you	to	implement	dynamic	functionality	within	web	pages
without	resorting	to	page	refreshes.	There	are	four	essential	aspects	to	the	DOM	API	that
allow	this	manipulation:

Selecting	nodes	from	the	DOM—for	example,	finding	all	the	nodes	with	a	particular
class

Traversing	from	a	selected	node	to	another	set	of	nodes—for	example,	finding	the
children	for	a	particular	node

Manipulating	the	nodes	in	the	DOM—for	example,	adding,	replacing	or	deleting
nodes

Responding	to	events	generated	by	nodes—for	example,	responding	to	the	user
clicking	an	element

Each	of	these	will	be	briefly	discussed	in	the	text	that	follows.	Before	starting,	it	is	worth
mentioning	that	the	DOM	API	is	very	large,	and	I	will	only	scratch	the	surface	of	what	is
possible.	The	idea	is	to	be	introduced	to	broad	themes	rather	than	understand	every	aspect
of	the	API.

The	examples	that	follow	will	use	the	following	web	page:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

</head>

<body>

				<h1	class="mainHeader">This	is	the	title</h1>

				<ol	id="daysOfWeek">

								Monday

								Tuesday

								Wednesday

								Thursday

								Friday

				

</body>

</html>

You	can	either	download	this	from	the	book’s	website	(it	is	called	domexample.html),	or
you	can	write	it	yourself.

This	web	page	contains	a	heading	and	a	list	of	days	in	an	ordered	list.	You	will	interact
with	this	web	page	from	the	Chrome	console,	but	the	code	could	also	be	added	to	a	script
block	in	the	page	itself.

Selecting	Elements
You	select	elements	from	the	DOM	using	the	same	basic	criteria	as	CSS:	Specifically,	you
select	elements	by	their	type,	their	classes,	or	their	IDs.

To	select	an	element	by	ID,	you	can	use	the	following	method	on	the	document	object:

>	document.getElementById('daysOfWeek');

This	returns	a	single	object,	which	is	why	it	is	very	important	you	never	duplicate	IDs	on	a
web	page.

Whenever	you	select	an	object	from	the	DOM,	you	can	determine	its	type	by	using	the
nodeType	property.	For	example:

>	document.getElementById('daysOfWeek').nodeType;

1

The	DOM	API	uses	numbers	to	represent	the	various	types	of	node:	1	represents	an
element	node,	2	represents	an	attribute	node,	3	represents	a	text	node,	and	so	on.

Alternatively,	you	can	determine	the	name	of	the	element:

>	document.getElementById('daysOfWeek').nodeName;

"OL"

It	is	also	possible	to	select	nodes	by	class	name:

>	document.getElementsByClassName('mainHeader');

or	tag	name:

>	document.getElementsByTagName('li')

Both	of	these	methods	return	an	array	of	objects	rather	than	a	single	object.	Therefore,	if
you	know	only	a	single	object	will	be	returned,	you	still	need	to	access	it	from	the	first
index	in	the	array	before	using	it:

>	document.getElementsByTagName('ol')[0].nodeName

"OL"

Traversing	the	DOM
Once	nodes	have	been	selected,	it	is	common	to	navigate	from	these	nodes	to	other	nodes.
The	examples	that	follow	demonstrate	how	it	is	possible	to	navigate	from	nodes	to	their
children,	and	from	child	nodes	to	parents:

//	obtain	a	reference	to	the	daysOfWeek	node

o	=	document.getElementById('daysOfWeek');

//	find	all	the	children	for	this	node	(i.e.,	the	li	elements)

o.childNodes

//	find	the	parent	of	this	node,	i.e.,	the	body	element

o.parentNode

//	find	the	first	child	of	this	node

o.firstElementChild

The	DOM	API	also	supports	a	number	of	shortcuts	for	traversing	from	one	node	to
another.	For	instance,	you	can	traverse	from	the	document	node	to	the	body	node	as
follows:

>	document.body

Manipulating	the	DOM
Selection	and	traversal	operations	are	used	to	select	a	set	of	nodes;	these	can	then	be
manipulated	to	dynamically	change	the	appearance	of	the	web	page	after	it	has	loaded	in
the	browser.

For	example,	you	may	want	to	add	a	new	li	element	with	the	value	Saturday.	This	is	a
two-part	process:	First,	you	need	to	construct	the	nodes	that	represent	the	new	li	element,
and	then	you	need	to	insert	it	into	the	DOM	at	the	appropriate	location.

To	start,	you	will	create	the	li	node,	and	assign	this	to	the	variable	newLi.	The	node
created	will	not	be	part	of	the	DOM	at	this	stage;	it	will	be	a	standalone	DOM	object,
commonly	referred	to	as	a	document	fragment.

>	newLi	=	document.createElement('li');

Next,	you	will	create	a	new	text	node,	also	using	a	method	on	the	document	itself.	Like
the	li	node,	this	will	not	be	part	of	the	DOM:

>	saturday	=	document.createTextNode("Saturday");

Next,	you	will	set	the	text	node	to	be	the	first	child	of	the	new	li	node:

>	newLi.appendChild(saturday);

Finally,	you	can	add	the	li	node	into	the	DOM	at	the	appropriate	location.	Many	methods
are	available	for	controlling	where	nodes	are	inserted	in	relation	to	other	nodes,	but	you
will	use	the	appendChild	method;	this	simply	adds	the	node	as	the	last	child	of	an	existing
node:

>	document.getElementById('daysOfWeek').appendChild(newLi);

As	soon	as	you	invoke	this	final	line,	a	new	li	element	will	appear	in	the	web	page.	In
addition,	if	you	look	at	the	Elements	tab	in	the	developer	tool,	you	can	see	that	the	DOM
has	been	updated	(see	Figure	16.2).

Figure	16.2

As	you	can	see,	working	with	the	DOM	API	is	somewhat	convoluted:	This	code	will	be
significantly	simplified	once	you	introduce	jQuery.

Responding	to	Events
The	final	aspect	of	the	DOM	API	you	need	to	understand	is	events.	In	fact,	you	have
already	seen	these	when	you	wrote	the	drag-and-drop–based	web	page	in	Lesson	9.

Each	type	of	DOM	object	supports	a	wide	variety	of	events.	These	are	primarily
categorized	as:

Keyboard	events,	such	as	keyup	and	keydown

Mouse	events,	such	as	onclick	and	onmousedown

Document	events,	such	as	onload	and	onresize

Form	events,	such	as	onchange	and	onselect

In	this	section,	you	will	take	advantage	of	two	mouse	events.	You	will	add	functionality	so
that	if	the	user	hovers	over	the	header	(a	mouseenter	event),	the	list	will	be	displayed	(its
display	property	will	be	set	to	block).	When	the	mouse	moves	away	from	the	header	(a
mouseleave	event),	the	list	will	be	hidden	again.

You	will	change	the	web	page	so	that	the	list	of	days	is	initially	hidden	by	adding	the
following	to	the	head	element:

				<style>

				ol	{

								display:none;

				}

				</style>

Next	you	will	add	the	appropriate	event	listeners	in	the	script	block	before	the	closing
body	tag.

<script>

document.getElementsByClassName('mainHeader')[0]

				.addEventListener("mouseenter",	function(event)	{

								document.getElementById('daysOfWeek').style.display	=	'block';

});

document.getElementsByClassName('mainHeader')[0]

				.addEventListener("mouseleave",	function(event)	{

								document.getElementById('daysOfWeek').style.display	=	'none';

});

</script>

In	this	example,	you	add	two	event	listeners	to	the	h1	element.	One	is	fired	when	the
mouse	enters	the	box	of	the	header	element;	the	other	fires	when	the	mouse	leaves	the
box.

Within	each	event	listener	you	simply	locate	the	ol	node,	and	either	hide	it	or	show	it	as
appropriate.	This	is	achieved	by	updating	its	display	style	to	either	block	or	none.

Try	It
In	this	Try	It,	you	will	take	the	CRM	web	application	from	Lesson	14	and	add	two
dynamic	features	to	it:

You	will	change	the	contact	details	form	so	that	it	is	initially	hidden	and	only
displayed	if	the	user	clicks	a	link	to	add	a	new	contact.

You	will	create	a	hover	effect	for	displaying	notes:	If	the	user	hovers	over	the	last
contacted	time,	you	will	display	the	notes	to	the	user	in	a	popup	box.

Lesson	Requirements
In	order	to	complete	this	lesson,	you	will	need	the	Chrome	web	browser	and	the	CRM
project	files	from	Lesson	14.

Step-by-Step
This	step-by-step	will	be	broken	into	two	distinct	sections.	Work	through	each	in	turn,
ensuring	that	the	functionality	works	as	expected	before	moving	on.

Displaying	Form	Dynamically
1.	 To	start,	you	need	to	hide	the	section	with	the	id	contactDetails	in	the	HTML.

This	can	be	accomplished	via	an	inline	style	on	the	element	itself,	which	will	set	its
display	property	to	none.

2.	 Add	a	hyperlink	to	the	bottom	of	the	contactList	section	(after	the	closing	table
tag)	that	the	user	can	click	to	add	a	new	contact.	The	href	for	this	should	simply	be	#
because	you	will	not	use	browser-based	navigation	(you	will	respond	to	the	user	click
in	JavaScript).	You	need	to	also	ensure	the	hyperlink	has	an	id	so	you	can	select	it
from	the	DOM.	You	can	choose	how	this	looks,	but	I	added	the	following:

<div	class="controls">

				Add	a	new	contact

</div>

I	also	added	the	following	to	contacts.css	to	improve	its	appearance:

.controls	{

				padding:15px;

}

3.	 Within	the	init	method	of	contacts.js,	select	the	hyperlink	by	id	using
document.getElementById,	and	add	an	event	listener	to	the	object	returned	using
addEventListsner.	The	first	parameter	to	addEventListener	is	the	type	of	event
you	are	listening	for,	which	in	this	case	is	click.	The	second	parameter	is	a	function
that	accepts	a	single	parameter	called	event.	Create	this	as	an	anonymous	function.

4.	 Within	the	function,	you	first	need	to	disable	the	default	behavior	of	clicking	a

hyperlink	to	request	a	new	page	from	the	server.	This	can	be	achieved	by	calling	the
method	preventDefault()	on	the	event	itself.

5.	 Select	the	element	contactDetails	by	id,	and	set	its	style.display	property	to
block.

6.	 If	you	reload	the	page	and	click	the	hyperlink,	the	contact	details	section	should
immediately	appear.

Showing	Notes
You	will	now	change	the	time	field	so	that	when	the	user	hovers	above	it,	the	notes
are	displayed,	as	shown	in	Figure	16.3.

Figure	16.3

1.	 In	order	to	display	notes,	you	first	need	to	ensure	that	they	are	present,	but	hidden,	in
the	DOM	when	the	page	loads.	Identify	any	table	cells	that	contain	time	elements,
and	modify	them	so	that	they	contain	an	additional	element	with	notes	information.
For	example:

<td>

				<time	datetime="2014-09-12">2014-09-12</time>

				<div	class="overlay">These	are	my	notes	for	William</div>

</td>

Notice	that	I	have	also	added	a	class	called	overlay	to	the	div.

2.	 You	now	need	to	add	a	CSS	rule	for	the	overlay	class.	Try	to	add	this	yourself	based
on	the	following	specification:

Set	the	height	of	the	div	to	100px.

Set	the	width	of	the	div	to	300px.

Add	a	1px	solid	border	to	the	div	with	a	color	of	#333333.

Set	the	background	color	to	#eeeeee.

Add	10px	of	padding	between	the	content	and	the	border.

Set	the	initial	display	to	none.

Use	the	position	element	to	remove	the	element	from	the	flow	of	the	page,	and
ensure	that,	when	it	is	displayed,	it	does	not	impact	the	position	of	any	other
elements	in	the	DOM.	Think	about	which	position	value	most	closely	meets
these	needs.

Set	the	z-index	so	that	when	the	div	is	displayed,	it	appears	over	the	top	of	the
table.

My	CSS	looked	like	this:

.overlay	{

				position:	fixed;

				height:	100px;

				width:	300px;

				border:	1px	solid	#333333;

				background:	#eeeeee;

				display:	none;

				z-index:1;

				padding:10px;

}

3.	 You	need	to	add	event	listeners	to	each	of	the	time	elements.	Select	all	the	time
elements	using	document.getElementsByTagName.	Once	these	have	been	found	and
stored	in	a	local	variable,	iterate	through	them	in	a	for	loop.

4.	 Within	the	for	loop,	you	need	to	add	two	different	event	listeners,	one	for
mouseenter	and	one	for	mouseleave.	Create	skeleton	implementations	for	each	of
these	and	make	sure	the	anonymous	function	passed	as	their	second	parameter
accepts	the	parameter	event.

5.	 Within	the	function	passed	to	each	event	listener,	you	need	to	find	the	notes	div	that
is	closest	to	the	time	element	that	the	mouse	is	hovering	over.	You	can	first	find	the
time	element	they	are	hovering	over	using	event.target.	You	can	then	find	the	next
sibling	of	this	element	using	nextElementSibling	and	set	the	display	property	to
either	block	or	none,	depending	on	whether	you	are	hiding	or	showing	the	div.

The	next	sibling	element	allows	you	to	find	the	next	element	in	the	DOM	with	the
same	parent	as	the	specified	element.	In	the	case	of	the	time	element,	that	will	be	the
div	element	containing	the	notes.

6.	 If	you	reload	the	page	and	hover	the	mouse	over	the	time	elements,	the	notes	should
display	and	then	immediately	disappear	if	you	hover	away.

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	16,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	17

jQuery	Selection
In	this	lesson,	you	will	start	gaining	an	understanding	of	jQuery	and	the	way	in	which	it
can	simplify	interaction	with	the	DOM.

jQuery	is	an	open-source	library	written	entirely	in	JavaScript.	Although	it	is	intended	to
simplify	interaction	with	the	DOM,	it	does	not	do	anything	that	could	not	be	achieved
with	the	DOM	API.	In	fact,	it	uses	the	DOM	API	to	perform	its	operations.

The	following	are	the	main	reasons	why	jQuery	is	used	in	so	many	web	applications:

It	provides	an	intuitive	and	easy-to-learn	API	for	performing	the	most	common	tasks
in	website	development.	For	instance,	the	selection	API	you	will	use	in	this	lesson	is
based	on	CSS	selectors.

It	provides	genuine	cross-browser	support	and	hides	some	of	the	quirks	that	exist	in
the	DOM	API	implementations	of	certain	browsers	(most	notably,	older	versions	of
IE).

It	is	very	easy	to	write	plugins	to	enhance	the	capabilities	of	jQuery,	and	there	are
extensive	libraries	of	freely	available	plugins	on	the	Internet.

The	jQuery	website	contains	extremely	good	documentation,	and	there	is	a	wide
variety	of	help	available	on	the	Internet	if	you	encounter	problems.

jQuery	is	not	the	only	library	designed	to	assist	with	DOM	interaction,	but	it	has	become
the	de	facto	standard,	and	has	a	higher	market	share	than	all	its	competitors	combined.
Therefore,	if	you	are	going	to	learn	one	JavaScript	library,	it	makes	sense	for	it	to	be
jQuery.

Loading	jQuery
Before	using	jQuery,	you	need	to	import	it	into	your	web	pages.	There	are	two	ways	you
can	do	this:

You	can	download	the	relevant	version	of	jQuery,	store	it	on	your	server,	and	link	to
it	via	a	relative	URL	in	a	source	tag.	This	is	generally	the	best	approach	while
developing	a	web	application.

Link	to	a	version	hosted	by	an	external	party.	Many	Content	Distribution	Networks
(CDNs),	such	as	Google,	provide	hosted	versions	of	popular	JavaScript	libraries,
including	jQuery.	This	is	generally	the	best	option	for	production	websites	because
CDN	delivery	tends	to	be	faster.

In	this	section,	you	look	at	how	you	can	use	both	approaches.

The	jQuery	library	used	in	this	book	is	available	from	the	book’s	website,	but	these
instructions	show	you	how	to	download	your	own	version	of	the	library.	In	order	to
download	a	version	of	jQuery,	first	navigate	to	www.jquery.com.	Find	the	Download	link
on	the	homepage	and	click	it.

In	this	book,	you	will	use	the	2.x	release	of	jQuery.	This	does	not	support	some	older
browsers,	such	as	IE8.	Therefore,	if	you	are	developing	a	website	that	must	support	older
browsers,	you	can	use	the	1.x	release	of	jQuery,	which	provides	most	of	the	same
functionality.

Click	to	download	the	development	version	of	the	latest	2.x	release	of	jQuery.	The	version
used	in	this	book	is	2.1.1,	but	the	latest	2.x	release	can	be	used.	jQuery	offers	both	a
production	and	a	development	version.	The	only	difference	between	these	is	that	the
production	version	is	“minimized,”	which	essentially	means	the	code	has	been
compressed.	The	code	in	both	versions	is,	however,	functionally	equivalent;	it	is	just	very
hard	to	debug	the	minimized	version.

Once	it	is	downloaded,	store	it	in	the	CRM	directory	along	with	contacts.html.

Now,	simply	import	it	into	the	web	page	using	a	source	tag	in	the	head	of	the	document:

<script	src="jquery-2.1.1.js"></script>

If	you	now	load	the	page,	you	can	test	if	jQuery	is	installed.	In	order	to	confirm	this,	type
jQuery	in	the	console.	It	should	produce	the	output	shown	in	Figure	17.1.

Figure	17.1

If	you	choose	to	load	jQuery	via	a	CDN,	you	do	not	need	to	download	jQuery;	you	can

http://www.jquery.com

simply	add	the	following	source	tag	to	the	head	section	of	the	web	page:

<script	src=http://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js	

></script>

If	you	now	load	the	page,	you	can	test	if	jQuery	is	installed.	In	order	to	confirm	this,	type
jQuery	in	the	console.	It	should	produce	the	output	shown	in	Figure	17.2	(notice	that	this
is	a	minimized	version	of	the	library	so	the	output	is	different):

Figure	17.2

Selecting	Elements
You	are	now	ready	to	start	selecting	elements	with	jQuery.	Selecting	elements	has	no
inherent	value;	it	is	simply	the	first	step	in	a	sequence	of	operations.	Typically,	once	you
have	selected	a	set	of	elements,	you	will	manipulate	them	in	some	way,	but	that	is	the
subject	of	future	lessons.

In	this	lesson,	you	will	select	elements	from	the	contacts.html	web	page	using	the
Chrome	console.

If	you	remember	back	to	the	lesson	on	the	DOM	API,	elements	were	selected	using
methods	on	the	document	object.	With	jQuery,	you	select	elements	by	placing	a	selection
string	inside	the	following	structure:

$('selection	string')

The	dollar	sign	is	an	alias	to	the	jQuery	function	and	is	intended	to	save	on	typing.	It	is
also	possible	to	use	the	following	construct:

jQuery('selection	string')

The	great	thing	about	selection	strings	in	jQuery	is	that	they	mostly	use	the	same	syntax	as
CSS.	Therefore,	to	select	all	the	td	elements	from	the	document,	simply	type	the
following:

>	$('td');

This	is	an	element	selector,	and	like	all	jQuery	selections,	will	return	a	jQuery	object	that
provides	access	to	the	underlying	elements	selected.

It	is	also	possible	to	select	elements	using	their	ID,	as	you	can	see	in	this	example:

>	$('#contactList');

and	by	class	name,	as	you	can	see	in	the	following	example:

>	$('.controls');

Notice	that	in	all	these	cases,	the	selection	syntax	is	identical	to	the	syntax	used	with	CSS.

My	discussion	of	CSS	selectors	skipped	over	one	additional	type	of	selection:	selecting
elements	based	on	their	attributes.	In	order	to	select	all	elements	with	a	particular	attribute,
simply	add	the	attribute	name	between	square	brackets:

>	$('[datetime]');

It	is	also	possible	to	state	the	element	that	the	attribute	is	relevant	to	by	prepending	it	to
the	selection;	this	is	useful	when	several	different	element	types	share	the	same	attribute:

>	$('time[datetime]');

And	it	is	possible	to	specify	that	the	attribute	should	have	a	specific	value:

$('time[datetime="2014-10-21"]');

or	not	equal	a	certain	value:

$('time[datetime!="2014-10-21"]');

Notice	that	in	both	of	these	cases,	the	value	is	provided	in	double	quotes.	Because	you	are
providing	a	string	inside	a	string,	you	mix	and	match	double	and	single	quoted	strings.
You	could	have	also	used	the	following	syntax:

$("time[datetime!='2014-10-21']");

Pseudo-selectors
You	can	also	use	pseudo-selectors	to	select	elements,	just	as	with	CSS	pseudo-classes.
This	particular	example	will	select	all	the	even	numbered	tr	elements	in	the	tbody
element:

>	$('tbody	tr:even');

Pseudo-selectors	are	always	prepended	with	a	colon.

Notice	also	that	the	space	between	tbody	and	tr	implies	that	the	tr	elements	must	be
children	of	a	tbody	element,	just	as	it	did	in	CSS.

The	following	are	some	of	the	most	useful	pseudo-selectors:

:even	finds	all	even	numbered	elements	in	a	selection.

:odd	finds	all	odd	numbered	elements	in	a	selection.

:not(selection)	finds	all	elements	that	do	not	match	the	selection.

:gt(selection)	finds	all	elements	with	an	index	greater	than	the	supplied	number.

:checked	finds	radio	buttons	or	check	boxes	that	are	checked.

:selected	finds	options	in	select	boxes	that	are	selected.

:contains(text)	finds	elements	that	contain	a	given	piece	of	text.

:empty	finds	all	elements	that	have	no	children.

:focus	finds	the	element	that	currently	has	focus.

:first	finds	the	first	element	in	a	set.

:last	finds	the	last	element	in	a	set.

For	instance,	the	following	finds	the	first	section	in	the	web	page:

>	$('section:first');

while	this	finds	all	the	tr	elements,	except	the	first	one,	in	the	page:

>	$('tr:gt(0)');

The	pseudo-selectors	are	not	identical	to	the	pseudo-classes	in	CSS,	and	in	many	cases
they	are	used	to	provide	shorthand	for	a	selection	that	could	still	be	performed	with
conventional	selectors.	For	instance,	this	selection	returns	all	the	form	input	fields,
including	fields	that	do	not	use	the	input	element	such	as	select	and	textarea:

>	$(':input');

This	same	selection	could	have	been	performed	as	follows:

>	$('input,select,textarea');

The	other	great	thing	about	jQuery	pseudo-selectors	is	that	it	is	possible	to	write	your

own.	For	instance,	you	may	find	that	you	are	constantly	writing	the	following	selector	to
find	input	fields:

>	$('input[type="email"]');

You	can	therefore	add	the	following	code	to	your	web	page	(making	sure	jQuery	has	been
loaded	before	this	is	executed)	to	add	your	own	special	pseudo-selector	called	email.

>	$.expr[':'].email	=	function(elem)	{

			return	$(elem).is("input")	&&	$(elem).attr("type")	===	"email";

}

Don’t	worry	too	much	about	the	first	line	of	this	example;	it	is	simply	the	mechanism	used
for	adding	a	new	pseudo-selector	to	jQuery.	Once	this	has	been	loaded,	it	can	be	used	as
follows:

>	$(':email');

and	it	can	be	combined	with	other	selectors:

>	$('form	:email');

jQuery	will	automatically	pass	the	pseudo-selector	every	element	in	the	web	page	(unless
filtered	out	by	one	of	the	other	selectors	in	the	selection	string),	and	the	pseudo-selector
will	check:

Is	the	element	a	type	of	input	field?	$(elem).is(”input”)

Does	it	have	an	attribute	with	the	name	email?	$(elem).attr(”type”)	===
“email”;

If	it	meets	these	criteria,	the	selector	returns	true.

Selection	Within	a	Context
You	have	already	seen	how	it	is	possible	to	select	elements	that	are	children	of	other
elements.	For	instance,	the	following	finds	all	the	tr	elements	that	are	children	of	tbody
elements:

>	$('tbody	tr:even');

Selecting	elements	within	the	context	of	a	specific	sub-tree	of	the	DOM	is	very	common.
For	instance,	in	your	CRM	web	application	you	may	want	to	always	select	elements	in	the
context	of	the	main	tag	for	the	page.	This	will	ensure	that	even	if	your	contacts	web	page
is	embedded	in	a	larger	web	application,	it	will	only	select	elements	that	are	relevant	to	it.

Note
It	is	very	common	to	write	single	page	web	applications.	In	a	single	web	page
application,	the	entire	web	application	is	loaded	as	a	single	page,	even	though	it
contains	many	logical	pages.	When	the	user	navigates	around	the	application,	they
appear	to	be	loading	new	pages	from	the	server,	but	instead	the	DOM	is	being
manipulated	in	real	time	to	hide	and	show	the	relevant	portions	of	the	DOM.	Single
page	web	applications	tend	to	provide	a	much	faster	experience	to	the	user	because
traditional	navigation	requires	a	whole	set	of	resources	to	be	retrieved	from	the	server
whenever	a	navigation	event	occurs.

Because	selecting	elements	in	the	context	of	other	elements	is	so	common,	jQuery
provides	two	additional	mechanisms	for	achieving	it.	The	first	mechanism	uses	the	find
method:

>	$('#contactScreen').find('tr');

This	will	first	find	the	element	with	the	ID	contactsScreen	and	then	will	look	inside	the
result	for	any	tr	elements.

The	other	way	of	achieving	exactly	the	same	result	is	to	use	the	optional	second	parameter
to	jQuery	after	the	selection	string:

>	$('tr',	'#contactScreen')

The	second	parameter	provides	the	context	within	which	the	selection	should	occur.

Wrapped	Objects
If	you	consider	the	following	line	of	jQuery	again:

>	$('#contactScreen').find('tr');

you	will	see	that	jQuery	is	not	simply	returning	a	DOM	object	because	DOM	objects	do
not	support	a	find	method.

In	this	particular	case,	jQuery	has	returned	its	own	type	of	object	wrapped	over	the	DOM
objects,	and	it	is	the	jQuery	object	that	find	is	executed	against.

As	it	happens,	every	jQuery	selection	returns	a	jQuery-specific	object,	not	the	underlying
DOM	objects.	The	object	returned	is	capable	of	masquerading	as	an	array,	however,	and
accessing	specific	indexes	returns	the	native	DOM	objects.

The	following	code	assigns	a	native	DOM	object	to	the	domObject	variable:

>	var	domObject	=	$('td')[0];

It	is	always	possible	to	convert	a	native	DOM	object	into	a	jQuery	object	by	embedding	it
in	the	selection	structure:

>	$(domObject);

This	then	gives	you	access	to	all	the	additional	features	provided	by	jQuery.	For	instance,
the	following	returns	the	text	of	the	element:

>	$(domObject).text()

while	this	call	queries	whether	the	text	of	the	element	contains	the	word	“contacts”:

>	$(domObject).is(':contains("contacts")');

You	will	typically	work	with	jQuery	objects	rather	than	native	DOM	objects	in	the
remainder	of	this	book,	but	you	can	always	use	this	technique	if	you	need	to	convert
native	DOM	objects	to	jQuery	objects.

Try	It
In	this	Try	It,	you	will	try	out	a	number	of	the	selection	techniques	discussed	in	the	lesson.
If	you	want,	you	can	follow	along	with	these	examples	in	the	screencast.

Lesson	Requirements
You	will	need	the	CRM	web	application,	and	you	will	need	to	have	loaded	the	jQuery
library	using	one	of	the	techniques	outlined	earlier	in	this	lesson.	Once	the	web	page	is
loaded,	you	can	perform	jQuery	selections	against	the	web	page	using	the	Chrome
Console.

Step-by-Step
1.	 Select	all	the	elements	from	the	web	page	that	have	the	class	overlay.

2.	 Select	all	the	input	elements	that	have	a	name	attribute	on	them.	This	will	involve
first	selecting	the	input	elements	using	an	element	selector,	and	limiting	this	with	an
attribute	selector.

3.	 Find	the	element	in	the	form	that	has	a	name	attribute	with	the	value	companyName.
Assign	the	result	to	a	variable	called	companySelector.

4.	 Invoke	the	find	method	on	companySelector	and	have	it	return	all	the	option
elements	within	it,	except	for	the	first	one.	You	can	achieve	this	with	the	gt	pseudo-
selector	discussed	earlier	in	this	lesson.

5.	 Find	the	label	for	the	phoneNumber	field	(using	an	attribute	selector	with	a	value),
and	print	out	its	text.

6.	 Find	the	odd	numbered	tr	elements	in	either	the	tbody	or	the	tfoot	elements	(but
not	the	thead).

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	17,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	18

jQuery	Traversal	and	Manipulation
In	the	previous	lesson,	you	learned	how	to	select	elements	from	the	DOM	with	jQuery.
This	lesson	will	build	on	that	knowledge	and	teach	you	how	to:

Traverse	from	those	elements	to	another	set	of	related	elements.

Manipulate	the	nodes	in	the	DOM—this	includes	adding	new	nodes,	modifying
existing	nodes,	and	removing	nodes	from	the	DOM.

Traversal
When	you	execute	a	jQuery	selection,	the	result	is	a	jQuery	object	encapsulating	a	set	of
elements.	The	traversal	operations	allow	you	to	traverse	from	the	initially	selected
elements	to	a	new	set	of	elements.	The	result	of	a	traversal	is	therefore	also	a	jQuery
object	encapsulating	a	set	of	elements.

You	have	already	seen	one	instance	of	a	traversal	operation:	the	find	method	in	the
previous	lesson	was	a	traversal	operation	because	it	began	by	finding	an	element	(or	set	of
elements),	and	then	finding	other	elements	that	are	children	of	these	elements.

It	is	also	possible	to	traverse	from	elements	to	their	parents.	For	instance,	the	following
starts	by	finding	all	the	time	elements,	and	then	finds	their	parents,	which	are	td	elements:

>	$('time').parent();

This	will	return	two	td	elements.

The	parent	function	returns	immediate	parents;	if	you	want	to	find	elements	that	are
indirect	parents,	you	can	use	the	parents	function.	This	returns	any	element	that	is	an
ancestor	of	the	selected	elements,	but	it	is	possible	to	provide	a	selection	to	this	function
as	a	parameter.	For	instance,	you	might	want	to	return	the	form	that	is	the	parent	of	all	the
input	fields.	This	can	be	achieved	as	follows:

>	$(':input').parents('form');

This	only	returns	unique	results;	therefore	a	single	form	element	is	returned	from	this
selection.

It	is	also	possible	to	create	a	result	set	that	contains	the	original	elements	along	with	the
newly	selected	elements.	For	example,	the	following	selects	all	the	input	fields	and	the
form	element	in	a	single	selection	list	using	the	andSelf	function:

>	$(':input').parents('form').andSelf();

Another	common	traversal	is	to	select	elements	that	are	siblings	of	other	elements
(elements	are	siblings	if	they	have	the	same	parent).	For	instance,	you	may	want	to	select
all	the	labels	that	are	siblings	of	input	fields,	but	only	if	they	contain	the	required
attribute.	In	the	“Manipulation”	section	later	in	this	lesson,	you	will	modify	the	way	these
labels	are	displayed:

>	$(':input[required]').siblings('label');

With	most	traversal	functions,	you	can	choose	to	add	a	selection	filter	('label'	in	this
case),	or	omit	the	parameter	to	receive	all	siblings.

There	are	a	number	of	other	traversal	functions	that	find	specific	siblings:

last:	Find	the	last	sibling	that	(optionally)	meets	specific	criteria.

first:	Find	the	first	sibling	that	(optionally)	meets	specific	criteria.

next:	Find	the	next	sibling	that	(optionally)	meets	specific	criteria.

prev:	Find	the	previous	sibling	that	(optionally)	meets	specific	criteria.

There	are	a	couple	more	important	traversal	functions	you	need	to	know	before	moving
on:

add:	This	provides	a	mechanism	to	join	together	two	different	selections.	For
instance,	the	following	can	be	used	to	create	a	selection	list	of	all	the	input	fields	and
all	the	labels.

>	$(':input').add('label')

closest:	The	closest	function	finds	the	closest	ancestor	of	an	element,	meeting
specific	criteria,	but,	unlike	the	parents	selector,	considers	the	original	element.
Imagine	if	you	want	to	select	the	closest	td	element	to	any	element	that	contains	the
text	“Bob”.	You	can	use	the	following:

>	$(':contains("Bob")').closest('td')

If	the	element	containing	the	text	is	a	td	element,	it	is	added	to	the	result	set.
Otherwise,	jQuery	ascends	up	through	the	parents	of	the	element,	searching	for	the
first	td	element.

eq:	The	equals	operator	can	be	used	to	return	the	element	at	a	specific	index—for
example,	the	following	returns	the	second	section	in	the	document:

>	$('section').eq(1)

Chaining
Traversal	functions	also	highlight	another	great	strength	of	jQuery:

The	traversal	functions	are	executed	on	a	selection	of	jQuery	elements.

The	traversal	functions	return	a	selection	of	jQuery	elements.

To	put	it	another	way,	the	input	for	traversal	functions	is	the	same	data	type	as	their
output.	This	means	that	it	is	possible	to	chain	together	a	whole	set	of	traversal	functions	in
a	single	statement.	Consider	the	following	call:

>	$('time').siblings('.overlay').parents('tr').last();

This	code	performs	the	following:

Selects	all	time	elements

Selects	any	sibling	of	these	elements	that	has	the	overlay	class

Selects	the	tr	element	that	is	a	parent	of	these	elements

Selects	the	last	element	returned	from	the	list

Effectively,	this	code	selects	the	last	row	that	has	a	time	element	with	an	overlay.	This
chaining	can	continue	almost	indefinitely.

Manipulation
Now	that	you	have	written	code	to	find	elements,	you	can	get	to	the	interesting	part	of
jQuery:	manipulating	the	DOM	to	provide	dynamic	behavior	to	the	user.

Consider	the	selection	earlier	that	found	all	the	labels	of	input	fields	that	had	the	required
attribute:

>	$(':input[required]').siblings('label');

You	may	decide	that	you	want	to	change	the	text	of	labels	such	as	this	to	display	in	red.
This	can	be	achieved	as	follows:

>	$(':input[required]').siblings('label').css('color',	'red');

Running	this	single	line	of	code	is	sufficient	to	color	all	the	labels	red.

Red	labels	are	potentially	overpowering	so	you	will	instead	add	a	red	asterisk	next	to	each
label.	Your	goal	is	to	create	the	following	structure:

<label	for="contactName"	style="color:	red;">

				Contact	name*

</label>

You	will	start	by	adding	a	class	to	contacts.css	to	match	the	requiredMarker	class:

.requiredMarker	{

				color:	red;

				padding-left:7px;

}

The	first	task	is	to	create	a	new	element	to	add	to	each	of	the	labels:

$('').text('*').addClass('requiredMarker');

This	performs	the	following:

Creates	a	new	span	node	that	can	be	added	to	the	DOM

Adds	an	*	as	its	text

Adds	the	class	redMarker	to	the	span

Returns	the	new	span	element	as	a	result

Next,	you	select	all	the	labels	that	you	want	to	add	the	span	to,	and	you	use	the	append
function	to	insert	this	single	span	into	all	the	labels:

$(':input[required]').siblings('label').append($('').text('*').addClass('requiredMarker'));

Notice	how	this	complex	operation	can	be	expressed	in	a	single	statement.	If	you	run	this
and	select	to	create	a	contact,	the	relevant	labels	will	appear	as	you	see	in	Figure	18.1.

Figure	18.1

Once	this	line	of	code	has	been	tested	in	the	Console,	you	can	add	it	to	the	init	method	in
contacts.js	to	ensure	it	always	runs	when	the	page	loads.

Naturally,	you	could	have	added	the	asterisks	to	the	labels	manually,	but	the	advantage	of
this	approach	is	that	you	are	deriving	this	content	directly	from	the	data:	If	you	mark	a
new	field	as	required,	you	do	not	need	to	remember	to	add	an	asterisk	to	the	label.	It	is
functionality	such	as	this	that	helps	maintain	consistency	as	the	web	application	grows	in
size.

When	adding	new	elements	in	relation	to	an	existing	element,	there	are	four	positions	for
which	you	may	want	to	insert	new	nodes.	For	instance,	consider	the	h2	element	selected	in
Figure	18.2:

You	may	want	to	insert	a	new	element	as	a	sibling	of	the	h2	element,	but	before	it	in
the	DOM.	This	can	be	achieved	with	the	before	function.	For	example:

Figure	18.2

$('h2').before('before')

As	a	sibling	of	the	h2	element,	but	after	it	in	the	DOM.	This	can	be	achieved	with	the
after	function.

As	the	first	child	of	the	h2	element.	This	can	be	achieved	with	the	prepend	function.

As	the	last	child	of	the	h2	element.	As	already	shown,	this	can	be	achieved	with	the
append	function.

Any	of	these	functions	can	either	be	passed	a	string	of	HTML	markup	or	a	DOM	object.

Figure	18.3	shows	where	a	span	element	would	be	inserted	using	each	of	these	functions.

Figure	18.3

Along	with	adding	new	nodes	to	the	DOM,	it	is	simple	to	remove	nodes	from	the	DOM
with	the	remove	function.	This	can	be	seen	in	the	following	example:

>	$('.requiredMarker').remove();

This	function	returns	all	the	elements	that	have	been	removed.

Changing	Elements
The	manipulation	techniques	you	have	looked	at	so	far	are	designed	to	add	or	remove
nodes	from	the	DOM.	jQuery	also	provides	the	capability	to	modify	existing	elements.

For	instance,	you	can	directly	manipulate	the	text	of	an	element	as	follows:

>	$('#contactDetails	h2').text('CONTACT	DETAILS');

or	you	can	modify	its	HTML	as	follows:

>	$('#contactDetails	h2').html('Contact	Details');

This	line	of	code	positions	the	text	inside	a	span	element.	jQuery	is	a	very	flexible	library,
so	there	are	typically	many	different	ways	to	accomplish	the	same	task.	For	example,	the
following	code	also	adds	a	span	element	around	the	text	of	the	h2	element:

>	$('#contactDetails	h2').wrapInner('');

It	is	also	possible	to	set	the	value	of	form	inputs	using	the	val	function.	For	example:

>	$('[name="contactName"]').val('testing	123');

Any	of	these	functions	can	be	used	without	an	argument	to	access	the	current	value.	The
following	displays	the	current	value	of	the	contactName	field:

>	$('[name="contactName"]').val();

When	used	in	this	mode,	only	a	single	value	will	be	returned	so	if	you	invoke	these
functions	on	a	set	of	elements,	only	the	value	of	the	first	element	will	be	returned.
Additionally,	because	these	functions	do	not	return	jQuery	objects,	it	is	not	possible	to
chain	other	jQuery	functions	onto	their	results.

Earlier	in	this	lesson,	you	saw	how	individual	CSS	properties	can	be	set	using	the	css
function,	and	how	classes	can	be	added	to	an	element	with	addClass.	It	is	also	possible	to
remove	classes	with	removeClass.	For	example,	this	will	remove	the	class	you	added	to
all	the	span	elements	containing	asterisks:

>	$('label	span').removeClass('requiredMarker');

One	additional	useful	function	is	toggleClass.	This	adds	a	class	to	an	element	if	it	does
not	already	have	it,	and	removes	it	if	it	does.	You	will	come	back	to	this	function	when
you	look	at	jQuery	events.

Finally,	it	is	possible	to	access	and	modify	the	attributes	of	an	element.	For	instance,	the
following	returns	the	maxlength	of	the	textarea	in	the	form:

>	$('textarea').attr('maxlength');

while	the	following	modifies	the	value	of	the	attribute	(or	adds	the	attribute	if	it	does	not
already	exist):

>	$('textarea').attr('maxlength',	200);

Alternatively,	an	attribute	can	be	removed	as	follows:

>	$('textarea').removeAttr('maxlength');

Iteration
A	common	requirement	once	a	set	of	elements	has	been	selected	is	to	iterate	through	each
element	and	perform	an	operation	on	it.	Because	the	result	of	a	jQuery	selection	mimics
an	array,	it	is	possible	to	use	a	for	loop	to	iterate	through	it.

An	easier	approach	to	iteration	is	to	use	a	jQuery	helper	function	called	each.	jQuery
contains	a	number	of	helper	functions	that	can	be	invoked	directly	rather	than	on	a	jQuery
selection.

In	this	section	you	will	write	a	function	that	iterates	through	all	the	input	fields	in	the
form,	extracts	their	name	and	value,	and	constructs	an	object	of	these	name/value	pairs.
Essentially	this	function	is	serializing	the	form	to	an	object:	You	will	then	be	able	to	use
this	object	in	your	web	application.

Start	by	creating	a	new	method	on	the	object	returned	from	the	contactsScreen	function.
This	should	come	immediately	after	the	init	function	and	be	separated	from	it	by	a
comma:

function	contactsScreen(mainID)	{

				var	screen	=	mainID;

				var	initialized	=	false;

				return	{

								init:	function()	{

												//	body	omitted

								},

								serializeForm:	function()	{

								}

				};

}

The	first	thing	the	function	should	do	is	obtain	a	reference	to	the	input	fields	on	the	form.
You	also	want	to	create	an	empty	object	that	can	be	returned	as	a	result	of	the	function:

var	inputFields	=	$(screen).find('form	:input');

var	result	=	{};

Remember	that	you	always	want	to	select	elements	in	the	context	of	the	screen	element
(which	was	set	to	the	main	element).

Next,	you	want	to	iterate	through	all	the	input	fields	using	each.	The	each	function	accepts
two	arguments:	a	jQuery	selection,	and	a	function	that	should	be	passed	the	index	and
value	of	each	element	in	the	selection:

$.each(inputFields,	function(index,	value)	{

});

Notice	that	the	call	to	each	is	prepended	with	$.	rather	than	just	$:	This	indicates	that	each
is	a	helper	function	rather	than	a	jQuery	selection.

You	now	need	to	write	the	implementation	of	the	function	itself.	This	should	first	check
whether	the	input	field	has	a	name	attribute.	(This	lets	you	omit	input	fields	such	as	the

submit	button.)	If	it	does,	it	should	write	a	property	to	the	object	using	the	name	attribute
as	the	property	name	and	the	value	of	the	input	field	as	the	value.	The	final	version	will
look	like	this:

serializeForm:	function()	{

												var	inputFields	=	$(screen).find('form	:input');

												var	result	=	{};

												$.each(inputFields,	function(index,	value)	{

																if	($(value).attr('name'))	{

																				result[$(value).attr('name')]	=	$(value).val();

																}

												});

												return	result;

								}

Notice	that	each	time	the	value	is	accessed,	it	is	converted	into	a	jQuery	object	using	the
following	syntax:	$(value).	This	allows	you	to	invoke	methods,	such	as	val	and	attr.

You	can	now	invoke	this	from	the	console:

>	appScreen.serializeForm();

Figure	18.4	shows	the	results	of	invoking	this	method	with	a	given	set	of	values	in	the
input	fields.

Figure	18.4

You	will	make	more	use	of	this	method	in	the	lessons	ahead.

Try	It
In	this	Try	It,	you	will	try	out	a	number	of	the	traversal	and	manipulation	techniques
discussed	in	the	lesson.	If	you	want,	you	can	follow	along	with	these	examples	in	the
screencast.

Lesson	Requirements
You	will	need	the	CRM	web	application,	and	you	will	need	to	have	loaded	the	jQuery
library	using	one	of	the	techniques	outlined	earlier	in	this	lesson.	Once	the	web	page	is
loaded,	you	can	perform	jQuery	selections	against	the	web	page	using	the	Chrome
Console.

Step-by-Step
1.	 Write	a	jQuery	selection	that	starts	by	finding	any	time	elements	in	the

contacts.html	web	page	and	then	traverses	from	these	to	find	each	element’s	parent
tr	element.	Essentially,	you	are	finding	all	the	rows	in	the	table	that	contain	a	time
element.

2.	 Find	the	input	field	in	the	document	with	the	attribute	autofocus.	Traverse	from	this
to	its	parent	element,	ensuring	that	this	is	a	div	with	the	class	formRow.	Now,	find	the
next	sibling	of	this	node	(which	should	also	be	a	div	with	the	class	formRow),	and
find	an	input	field	within	this	div.	You	should	be	able	to	achieve	this	entire	operation
in	a	single	line	of	jQuery.

3.	 Imagine	that	you	want	to	add	placeholder	text	to	every	input	field	that	has	the
required	attribute	specifying,	“This	field	is	required.”	Write	a	selection	that	finds	all
input	fields	that	match	this	selection	and	add	a	placeholder	attribute	with	the
appropriate	text.

4.	 Write	a	line	of	jQuery	to	set	the	value	of	the	companyName	select	box	to	2.

5.	 Use	the	each	function	to	iterate	through	all	the	input	fields	that	have	pattern
attributes.	Inside	the	loop,	append	a	sibling	to	each	input	field	to	display	this	pattern.
The	result	should	display	as	you	see	in	Figure	18.5.

Figure	18.5

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	18,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	19

jQuery	Events
Although	you	have	come	a	long	way	in	your	understanding	of	jQuery,	it	is	not	possible	to
unlock	the	full	power	of	jQuery	until	you	are	introduced	to	jQuery	events.

jQuery	is	typically	used	to	manipulate	the	DOM	after	the	page	has	loaded,	but	an	event
needs	to	trigger	this.	This	event	might	be:

A	mouse	event,	such	as	the	user	clicking	on	an	element

A	keyboard	event,	such	as	the	user	typing	into	an	input	field

A	form	event,	such	as	the	value	of	a	select	element	changing

A	screen	event,	such	as	the	window	being	resized

Just	as	it	is	possible	to	listen	for	events	such	as	these	using	the	native	DOM	API,	it	is
possible	to	listen	for	these	events	with	jQuery.	In	fact,	jQuery	is	actually	providing	a
wrapper	around	DOM	events	so	all	the	events	discussed	in	this	lesson	are	ultimately	based
on	the	underlying	DOM	events.

Although	this	lesson	is	technically	an	introduction	to	jQuery	events,	I	will	use	it	as	an
opportunity	to	bring	together	everything	you	have	learned	about	jQuery	so	far.

Registering	Event	Listeners
Registering	event	listeners	begins	with	selecting	the	element	that	will	generate	the	event.
Once	selected,	the	appropriate	method	is	invoked	to	register	an	event	listener,	and	it	is
passed	a	callback	function	that	should	be	invoked	when	the	event	occurs.	For	instance,
this	code	can	be	added	to	the	init	function	in	contacts.js	to	add	a	mouse	click	listener
to	the	submit	button:

$(screen).find('form	input[type="submit"]').click(

				function(evt)	{

								evt.preventDefault();

				}

);

This	code	first	finds	the	submit	button	inside	the	form,	and	then	calls	the	click	method	on
it.	As	you	can	see,	the	callback	function	accepts	an	event	object	that	contains	important
contextual	information	about	the	event	that	has	occurred.	In	this	example,	you	are
invoking	a	method	on	the	event	object	to	prevent	the	default	behavior	of	the	submit
button,	which	would	be	to	post	the	form	data	to	the	server.

You	can	now	enhance	the	event	listener	to	perform	a	number	of	other	tasks:

Check	whether	the	form	is	valid	according	to	the	rules	you	added	in	Lesson	8.

If	the	form	is	valid,	extract	a	serialized	version	of	the	form	using	the	function	you
wrote	in	the	previous	lesson.

Create	a	new	tr	element	based	on	the	data	in	the	serialized	object.

Add	the	new	tr	element	to	the	table	body.

The	event	listener	for	this	will	be	one	of	the	most	complex	blocks	of	code	you	have	seen
so	far,	so	take	a	look	at	it	first:	I	will	then	walk	you	through	it	line	by	line:

$(screen).find('form	input[type="submit"]').click(

				function(evt)	{

								evt.preventDefault();

								if	($(evt.target).parents('form')[0].checkValidity())	{

												var	contact	=	this.serializeForm();

												var	html	=	'<tr><td>'+contact.contactName+'</td>'+

																'<td>'+contact.phoneNumber+'</td>'+

																'<td>'+contact.emailAddress+'</td>'+

																'<td>'+contact.companyName+'</td>'+

																'<td><time	datetime="'+contact.lastContacted+'">'+

																contact.lastContacted+'</time>'+

																'<div	class="overlay">'+contact.notes+'</div></td></tr>';

												$(screen).find('table	tbody').append(html);

								}

				}.bind(this)

);

You	have	already	looked	at	the	purpose	of	the	first	line	of	the	function.	The	second	line	of
the	function	tests	whether	or	not	the	form	is	valid.	First,	this	line	finds	the	jQuery	element

that	has	generated	the	event	$(evt.target);	from	this	you	can	use	the	parents	function
to	find	the	form	that	the	event	occurred	within.

Once	the	form	has	been	found,	you	can	use	the	native	DOM	method	checkValidity	to
determine	if	the	form	is	valid.	Because	this	is	a	native	DOM	method,	you	convert	the
jQuery	selection	to	a	native	DOM	object	by	accessing	the	first	(and	only)	element	in	the
selection	using	[0].	It	is	also	possible	to	use	.get(0)	to	achieve	the	same	result.

You	only	want	to	execute	the	rest	of	the	functionality	in	this	event	listener	if	the	form	is
valid	so	the	remainder	of	the	function	is	inside	an	if	statement.

Once	you	have	confirmed	that	the	form	is	valid,	you	next	use	the	serializeForm	method
to	create	an	object	from	the	data	in	the	form.	Because	this	method	resides	on	the	same
object,	you	would	expect	to	invoke	this	method	by	prefixing	it	with	this:

var	contact	=	this.serializeForm();

There	is,	however,	more	to	this	line	of	code	than	meets	the	eye.	The	event	listener	itself	is
a	function	inside	a	method.	When	a	function	is	placed	inside	a	method,	the	object	it	uses
as	its	environment	is	not	the	object	itself,	as	you	can	see	in	the	following	simple	example:

var	obj	=	{

				methodA	:	function()	{

								console.log('Outer	this	is	'+this);

								function	inner()	{

													console.log('Inner	this	is	'+this);

								}

								inner();

				}

}

obj.methodA();

This	block	of	code	creates	an	object	with	a	single	method	called	methodA.	Inside	this
method,	a	function	is	created	called	inner,	which	is	then	invoked.	At	the	end,	methodA	is
invoked:	This	will	cause	both	the	method	and	the	inner	function	to	write	to	the	console
the	identity	of	their	this	reference.	Somewhat	surprisingly,	it	prints	the	following:

Outer	this	is	[object	Object]

Inner	this	is	[object	Window]

Because	the	inner	function	uses	the	window	as	its	this	object,	it	cannot	invoke	methods
or	properties	on	the	object	it	is	actually	executing	within.

There	are	two	common	solutions	to	this	problem.	The	first	is	to	declare	a	local	variable
with	a	reference	to	this,	and	use	that	inside	the	function.	Traditionally,	the	local	variable
is	named	that.

var	obj	=	{

				methodA	:	function()	{

								console.log('Outer	this	is	'+this);

								var	that	=	this;

								function	inner()	{

													console.log('Inner	this	is	'+that);

								}

								inner();

				}

}

obj.methodA();

Executing	this	now	produces	the	expected	results:

Outer	this	is	[object	Object]

Inner	this	is	[object	Object]

The	other	way	to	solve	this	problem	is	to	use	the	bind	method	I	introduced	earlier	in	the
book.	As	you	remember	from	Lesson	12,	the	bind	method	allows	you	to	provide	an	object
that	will	act	as	the	this	reference	for	a	function,	and	it	returns	a	new	function	permanently
bound	to	it.	You	can	therefore	rewrite	this	functionality	as	follows:

var	obj	=	{

				methodA	:	function()	{

								console.log('Outer	this	is	'+this);

								inner		=	function()	{

												console.log('Inner	this	is	'+this);

								}.bind(this);

								inner();

				}

}

obj.methodA();

Notice	that	you	are	now	saying	that	inner	is	a	function	bound	to	the	methodA‘s	this
reference	(which	is	the	object);	thus,	both	the	method	and	the	function	have	the	same
reference	to	this,	and	the	function	produces	the	expected	results:

Outer	this	is	[object	Object]

Inner	this	is	[object	Object]

This	can	be	a	difficult	concept	to	grasp,	so	you	may	want	to	work	through	the	preceding
examples	to	assure	yourself	exactly	how	it	works.

As	you	can	see,	this	is	exactly	the	approach	you	have	used	with	the	click	event	listener,
and	therefore	this.serializeForm()	works	inside	the	event	listener,	just	as	it	would
outside	the	event	listener.

If	you	need	further	evidence	of	the	problem	being	solved	here,	remove	.bind(this)	once
you	have	the	code	working:	Without	this	code,	this.serializeForm()	will	attempt	to
access	a	function	called	serializeForm	on	the	window	object,	which	will	be	undefined.

Once	the	object	has	been	extracted	from	the	form,	you	use	simple	string	concatenation	to
create	a	tr	element	populated	with	data.	String	concatenation	such	as	this	is	somewhat
error	prone,	so	you	will	find	a	better	solution	to	this	functionality	in	the	next	lesson.

Once	the	HTML	has	been	constructed,	it	is	simply	added	as	the	last	child	of	tbody	using
the	append	function.

Once	you	have	a	working	example,	you	will	add	two	additional	lines	to	the	end	of	the
event	listener	to:

Clear	the	form	of	all	values	(thereby	leaving	it	ready	to	add	a	new	contact).

Hide	the	input	section	of	the	page.

This	can	be	achieved	with	the	following	two	lines:

$(screen).find('form	:input[name]').val('');

$(screen).find('#contactDetails').hide();

Notice	that	the	second	line	simply	uses	the	helper	method	hide,	rather	than	setting	the
display	property	to	none:	This	achieves	the	same	result,	but	is	more	concise.

Delegated	Event	Listeners
You	may	have	noticed	a	couple	of	problems	with	the	save	functionality.	For	a	start,	the
company	name	does	not	display	properly	(I	will	address	this	later	in	the	book).	Second,	if
you	add	notes	and	hover	over	the	last	contacted	field,	the	popup	does	not	display	because
the	event	listeners	you	added	for	the	time	elements	were	added	when	the	DOM	loaded,
and	this	new	time	element	did	not	exist	at	that	point.

One	solution	to	this	is	to	add	relevant	event	listeners	after	you	add	new	elements	to	the
DOM.	This	is	an	error-prone	approach,	however.	A	better	solution	is	to	use	delegated
events.

With	a	delegated	event,	you	select	an	element	you	know	is	in	the	DOM	when	the	page
loads	(such	as	the	tbody	element),	and	bind	an	event	listener	to	any	of	its	descendants
(such	as	time	elements).	The	great	thing	about	delegated	events	is	that	the	descendants	do
not	need	to	exist	when	the	event	listener	is	registered;	any	newly	added	descendants	will
automatically	be	bound	to	the	relevant	event	listener.

You	can	therefore	rewrite	this	block	of	code	from	earlier	in	the	book	using	jQuery
delegated	events:

var	timeElements	=	document.getElementsByTagName('time');

for	(var	i	=	0;	i	<	timeElements.length;	i++)	{

				timeElements[i].addEventListener("mouseenter",	function(event)	{

								event.target.nextElementSibling.style.display	=	'block';

					});

					timeElements[i].addEventListener("mouseleave",	function(event)	{

									event.target.nextElementSibling.style.display	=	'none';

					});

}

You	can	use	the	jQuery	on	method	to	add	a	delegated	event	listener	to	a	particular	sub-tree
of	the	DOM.	The	on	method	accepts	the	following	parameters:

A	space-separated	list	of	events	to	listen	for

A	selector	to	find	the	descendants	that	will	generate	the	events

The	function	to	execute	when	the	event	occurs

Replace	the	preceding	code	with	the	following:

$(screen).find('tbody').on("mouseenter	mouseleave",	"td	>	time",

			function(evt)	{

							if	(evt.type	===	"mouseenter")	{

											$(evt.target).siblings('.overlay').show();

								}	else	{

													$(evt.target).siblings('.overlay').hide();

								}

				}

);

Notice	in	this	case	that	you	register	a	single	event	listener	and	then	determine	from	the

event	object	which	type	of	event	has	occurred.	You	then	use	the	show	and	hide	methods	to
dictate	whether	the	popup	is	displayed	or	hidden.

If	you	now	reload	the	page,	first	ensure	that	the	popup	functionality	works	for	existing
rows.	If	you	now	add	a	new	contact,	and	save	it	along	with	a	date	and	notes,	the	popup
will	display	when	the	user	hovers	over	it,	just	like	it	did	for	rows	in	the	table	when	the
page	loaded.

The	events	you	have	looked	at	in	the	last	two	sections	have	dealt	with	mouse-based
events.	The	other	most	common	mouse-based	events	that	can	be	listened	for	are:

dblclick:	Similar	to	click,	but	fires	only	if	the	same	element	is	clicked	twice	in
quick	succession

mousedown:	Fires	when	the	user	presses	the	mouse	button	down

mouseup:	Fires	when	the	user	releases	the	mouse	button

mousemove:	Fires	any	time	the	mouse	moves.	Naturally,	this	event	is	fired	often	so	it
is	important	not	to	perform	intensive	processing	every	time	this	event	fires.

Form	Events
The	previous	sections	have	focused	on	mouse	events.	The	other	main	categories	of	event
are	form	events	and	keyboard	events.	These	two	categories	are	inherently	linked	because
the	focus	for	keyboard	events	will	be	form	elements.	Thus,	you	will	group	these	two
categories	of	event	together.

In	this	section,	you	will	create	an	event	listener	that	displays	how	many	characters	the	user
has	typed	into	a	textarea.	To	begin,	you	will	add	a	new	span	element	next	to	the
textarea	in	the	form:

<div	class="formRow">

				<label	for="notes">Notes</label>

				<textarea	cols="40"	rows="6"	name="notes"	class="validated"	

maxlength="1000"></textarea>

				

</div>

The	span	will	be	updated	to	include	a	character	count	every	time	the	user	types	a	character
into	the	textarea.

Once	this	is	in	place,	the	following	can	be	added	to	the	init	method	in	contacts.js:

$(screen).find('textarea').keyup(function(evt)	{

				if	($(evt.target).siblings('.textCount'))	{

							var	characters	=	$(evt.target).val().length;

							$(evt.target).siblings('.textCount').text(characters	+	'	

characters');

				}

	});

This	code	starts	by	finding	any	textareas	in	the	form,	and	then	uses	the	keyup	method	to
add	an	event	listener	whenever	the	user	releases	a	keyboard	key	while	typing	in	the
textarea.	When	this	occurs,	you	will	determine	if	the	textarea	has	a	sibling	span
element	for	recording	text	counts.	If	it	does,	you	will	determine	the	number	of	characters
currently	typed	into	the	field	and	update	the	text	on	the	span	accordingly.

If	you	now	reload	the	web	page	and	start	typing	into	the	textarea,	you	should	see	a	text
count	updating	in	real	time,	as	shown	in	Figure	19.1.

Figure	19.1

The	great	thing	about	this	solution	is	that	it	is	generic.	You	can	enable	this	functionality
for	any	future	textareas	by	adding	the	relevant	span	as	its	sibling.

The	other	most	useful	form	and	keyboard	events	are	as	follows:

change:	This	event	is	called	whenever	the	value	in	a	form	field	changes.	This	can	be
applied	to	any	form	input	field,	but	in	the	case	of	text-based	input	fields,	the	event
only	fires	once	the	user	leaves	the	field.	This	is	the	reason	you	could	not	use	change
in	the	example	earlier	in	this	section.

focus:	This	event	is	invoked	when	an	input	field	receives	focus.

keydown:	This	is	essentially	the	same	as	keyup,	but	is	fired	as	soon	as	the	key	is
pressed.

keypress:	This	event	is	not	covered	by	official	documentation	so	it	can	vary	from
browser	to	browser.	As	a	general	rule,	this	is	equivalent	to	keydown,	but	only	fires	if
the	key	pressed	would	produce	a	visual	character;	for	example,	it	would	not	be	fired
if	the	Shift	key	were	pressed.

Screen	Events
The	final	major	category	of	event	is	screen	events.	The	most	useful	screen	event	is	ready.
The	JavaScript	examples	so	far	have	placed	JavaScript	at	the	end	of	the	web	page	to	make
sure	the	DOM	has	loaded	before	element	selection	begins.

The	ready	event	provides	a	safer	way	to	ensure	that	the	DOM	has	fully	loaded	before	you
attempt	to	manipulate	it.	It	is	possible	to	register	a	ready	event	listener	by	enclosing	the
browser’s	document	object	in	a	jQuery	selector	and	invoking	the	ready	method	on	it.	For
instance,	you	could	change	the	code	in	contacts.html	as	follows:

$(document).ready(function(evt)	{

				var	mainElement	=	document.getElementById('contactScreen');

				var	screen	=	contactsScreen(mainElement);

				screen.init();

});

A	companion	function	for	ready	is	load.	This	is	similar,	but	only	executes	when	all	the
resources	(such	as	JavaScript	source	files,	images,	and	CSS	files)	have	finished	loading.

Note
Notice	that	I	have	also	renamed	the	variable	screen	rather	than	appScreen.	You
cannot	name	a	global	variable	screen	because	JavaScript	already	contains	a	global
variable	with	this	name,	but	it	is	possible	in	this	case	because	the	scope	of	the
variable	is	the	function	passed	to	ready.

The	other	main	browser-based	event	is	the	resize	event.	This	fires	whenever	the	user
resizes	the	window.	This	event	should	be	bound	to	the	browser’s	window	object:

$(window).resize(function(evt)	{

Animation
Earlier	in	this	lesson,	you	looked	at	how	the	hide	and	show	functions	could	be	used
instead	of	changing	the	display	type	of	an	element.	As	it	happens,	jQuery	supports	many
other	helpers	for	displaying	and	hiding	elements,	complete	with	animated	effects.	These
are	a	great	way	to	make	the	web	page	feel	more	alive	to	users.

In	order	to	see	how	simple	this	can	be,	change	the	event	listener	for	hiding	and	showing
the	notes	popup	as	follows:

if	(evt.type	===	"mouseenter")	{

				$(evt.target).siblings('.overlay').slideDown();

}	else	{

				$(evt.target).siblings('.overlay').slideUp();

}

If	you	reload	the	web	page	and	hover	over	a	time	element,	you	will	notice	that	the	popup
is	displayed	as	though	it	is	being	dragged	down	like	a	projector	screen.	Likewise,	when	it
is	hidden,	it	is	as	though	the	projector	screen	has	been	released	again.

It	is	possible	to	control	how	long	the	entire	effect	takes	by	providing	a	time	in
milliseconds	as	the	first	parameter	to	these	functions:	The	default	is	400	milliseconds	(0.4
of	a	second).	It	is	also	possible	to	control	many	other	aspects	of	the	animation	process.
These	features	will	not	be	discussed	in	this	book,	but	you	can	easily	learn	more	from	the
jQuery	website.

jQuery	also	supports	other	effects.	For	instance	the	fadeIn	and	fadeOut	functions	can	be
used	to	animate	the	opacity	of	an	element	as	it	is	displayed	or	hidden.	This	has	a	similar
effect	to	approaching	an	object	through	a	thick	fog:	It	starts	out	pale	and	blurry	and
eventually	becomes	fully	opaque.

Try	It
In	this	Try	It,	you	will	use	event	listeners	to	add	new	functionality	to	the	table.	When	the
user	hovers	over	any	row,	you	will	change	it	so	that	the	background	color	becomes	blue
and	the	foreground	color	becomes	white.	This	will	help	users	read	across	the	row	if	they
are	phoning	or	emailing	the	contact.	The	finished	result	will	look	like	Figure	19.2	when
the	user	hovers	over	a	row	in	the	table.

Figure	19.2

Lesson	Requirements
You	will	need	the	CRM	web	application,	and	you	will	need	to	have	loaded	the	jQuery
library	using	one	of	the	techniques	outlined	earlier	in	this	section	of	the	book.

In	order	to	work	through	this	example,	you	might	want	to	start	with	a	simple	event	listener
and	place	a	breakpoint	to	allow	you	to	debug	code	when	the	event	is	fired.	This	will	allow
you	to	try	out	code	in	the	context	of	an	event.	Once	you	have	working	code,	you	can	copy
it	into	the	JavaScript	file.

Step-by-Step
1.	 As	with	all	the	event	listeners,	you	will	add	code	to	the	init	method	in	contacts.js.

2.	 Because	new	rows	can	be	added	to	the	table	after	the	DOM	has	loaded,	the	event
listener	will	need	to	be	a	delegated	event	listener.	Therefore,	start	by	selecting	the
tbody	element,	and	use	the	on	method	to	register	an	event	listener.

3.	 The	two	events	that	you	should	listen	for	are	mouseenter	and	mouseleave.	Add	these
as	the	first	parameter	to	on.

4.	 The	second	parameter	to	on	is	the	element	that	will	generate	the	event.	Because	you
want	to	be	able	to	hover	over	any	element	in	the	row,	add	tr	as	the	selector.

5.	 Add	a	function	as	the	third	parameter	to	on,	and	have	this	accept	a	single	parameter
called	evt.

6.	 Within	the	event	listener	function,	use	the	event	object	passed	as	the	parameter	to
determine	the	event	that	has	occurred.	This	can	be	extracted	from	the	type	property
of	the	event.

7.	 If	the	event	is	a	mouseenter	event,	you	need	to	change	two	styles	on	the	target	of	the
event.	This	can	be	achieved	using	the	css	method	on	the	target	of	the	event,	as	you
saw	earlier	in	this	lesson:

Change	the	color	property	to	white.

Change	the	background	property	to	#3056A0.

8.	 If	the	event	is	a	mouseleave	event,	you	want	to	clear	the	inline	styles	added.	This	can
be	achieved	by	using	the	removeAttr	method	to	remove	the	style	attribute.

9.	 If	you	reload	the	web	page	now	and	try	this	out,	you	will	notice	a	problem.	Only	a
single	cell	will	be	shaded	when	the	user	hovers	over	it,	not	the	entire	row.

10.	 In	order	to	determine	the	cause	of	this	problem,	set	a	breakpoint	on	the	first	line	of
the	event	listener.

With	the	breakpoint	in	place,	hover	over	a	cell.	Once	the	breakpoint	is	hit,	move	to
the	Console	tab	and	type	evt.target.	This	will	confirm	that	the	target	of	the	event	is
actually	a	td	element	rather	than	the	tr	element	that	the	event	listener	was	registered
with.	This	is	because	the	td	element	is	the	specific	element	the	user	was	hovering
over	when	the	event	occurred.

11.	 In	order	to	circumvent	this	problem,	you	can	use	the	closest	traversal	operation	to
find	the	closest	tr	element	to	the	element	that	fired	the	event,	and	modify	the	style	of
this	element.

There	is	one	remaining	problem	with	this	solution.	Because	of	CSS	inheritance,	the
color	of	the	text	in	the	overlay	is	also	white	now,	meaning	it	cannot	clearly	be	read.
This	is	a	perfect	opportunity	to	use	the	!important	attribute	in	CSS	so	add	the
following	to	the	.overlay	rule	in	contacts.css:

color:	#333333	!important;

Your	finished	version	of	the	code	should	look	like	this:

$(screen).find('tbody').on("mouseenter	mouseleave",	"tr",	function(evt)	

{

				if	(evt.type	===	"mouseenter")	{

								$(evt.target).closest('tr').css('color',	'white');

								$(evt.target).closest('tr').css('background',	'#3056A0');

				}	else	{

								$(evt.target).closest('tr').removeAttr('style');

				}

});

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	19,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	20

Data	Attributes	and	Templates
In	this	lesson,	you	will	look	at	two	additional	HTML5	features:

Data	attributes:	These	allow	you	to	define	your	own	attributes	on	any	element	and
thus	bind	data	directly	to	the	element.	This	has	a	number	of	useful	purposes,	as	you
will	see	shortly.

Templates:	Templates	are	a	relatively	new	HTML5	feature.	They	allow	a	document
fragment	to	be	created	independently	of	the	DOM	itself.	The	document	fragment	can
then	be	programmatically	filled	with	data	and	added	to	the	DOM.	This	will	provide
an	alternative	approach	to	the	complex	string	concatenation	used	in	the	previous
lesson.

Although	this	lesson	introduces	these	two	technologies	together,	there	is	no	fundamental
connection	between	them.

Template	Tag
In	the	previous	lesson,	you	used	string	concatenation	to	create	a	new	row	in	the	contacts
table.	As	mentioned	at	the	time,	this	is	a	problematic	approach	because	it	is	very	easy	to
make	a	mistake	with	the	String	concatenation.

A	preferable	approach	to	string	concatenation	is	to	define	the	structure	of	the	HTML	using
regular	tags	but	leave	placeholders	for	the	actual	data.	When	you	need	to	create	a	row,	you
could	simply	add	data	to	this	structure,	and	add	it	to	the	DOM.	The	template	tag	has	been
added	to	HTML5	to	support	this	exact	approach.

Note
The	template	tag	is	not	currently	supported	in	Internet	Explorer;	thus,	it	is	best	to
confirm	support	across	relevant	browsers	before	using	it.	There	are,	however,	many
other	templating	libraries	available	for	JavaScript,	and	many	have	more	advanced
features	than	the	template	tag	introduced	in	this	lesson.

In	order	to	start	using	the	template	tag,	you	simply	add	it	anywhere	in	the	HTML	and
include	the	relevant	HTML	structure	inside	it.	You	also	typically	provide	an	id	for	the
template	so	you	can	locate	it.	Therefore,	start	by	adding	the	following	immediately	before
the	closing	main	tag:

<template	id="contactRow">

					<td></td>

					<td></td>

					<td></td>

					<td></td>

					<td><time></time>

					<div	class="overlay"></div></td>

	</template>

If	you	reload	the	web	page,	you	will	notice	that	this	HTML	does	not	display	within	the
browser.	In	addition,	although	it	is	possible	to	select	the	template	element	using	DOM	and
jQuery	selectors,	it	is	not	possible	to	select	its	children.	For	instance:

$('#contactRow	td')

[]

When	you	use	the	template,	you	need	to	populate	it	with	the	appropriate	data.	Clearly,	you
could	simply	set	the	contact	name	in	the	first	child,	the	phone	number	in	the	second	child,
and	so	on.

Where	possible,	it	is	best	to	find	generic	solutions	to	common	problems.	Therefore,	you
will	write	an	algorithm	that	can	take	any	template	and	any	object,	and	will	populate	the
template	with	the	data	in	the	object	based	on	a	set	of	conventions.

In	order	to	achieve	this,	you	will	use	another	technology	called	data	attributes.

Data	Attributes
In	order	to	create	the	generic	algorithm	mentioned	in	the	previous	section,	you	need	some
way	of	marking	tags	in	the	template	with	the	property	names	from	the	object	that	should
be	used	to	populate	them.

There	are	several	ways	you	could	do	this.	For	instance,	if	a	td	element	should	be
populated	with	the	data	in	the	contactName	property,	you	could	specify	the	td	as	follows:

<td	id="contactName"></td>

The	obvious	problem	with	this	approach	is	that	IDs	must	be	unique	within	the	document,
and	therefore	you	would	need	to	make	sure	that	the	property	names	in	your	objects	never
conflicted	with	the	IDs	of	elements	in	the	document.

An	alternative	approach	is	to	specify	the	property	name	as	a	class:

<td	class="contactName"></td>

There	is	nothing	inherently	wrong	with	using	class	names	for	non-CSS	purposes;	an
obvious	problem	with	this	solution,	however,	is	that	your	CSS	may	contain	a	class	that
matches	one	of	the	properties.

Another	approach	that	has	been	used	historically	is	to	use	attributes	that	are	supported	by
the	specification	but	are	not	used	by	the	browser.	The	most	common	attribute	used	for	this
purpose	is	rel:

<td	rel="contactName"></td>

The	problem	with	this	approach	is	that,	although	browsers	do	not	use	this	attribute,	the	rel
attribute	does	have	meaning,	and	is	used	by	search	engines	when	used	on	a	tags.

As	you	can	see,	historically,	there	has	not	been	a	good	way	of	linking	program-specific
data	to	an	element.	HTML5	offers	a	much	better	way	to	solve	this	problem.	It	is	possible
to	specify	your	own	attributes	on	any	element,	provided	they	are	prefixed	with	data-.	You
can	see	this	in	the	following	example:

<template	id="contactRow">

					<td	data-property-name="contactName"></td>

					<td	data-property-name="phoneNumber"></td>

					<td	data-property-name="emailAddress"></td>

					<td	data-property-name="companyName"></td>

					<td><time	data-property-name="lastContacted"></time>

					<div	data-property-name="notes"	class="overlay"></div></td>

	</template>

Data	attributes	should	follow	the	naming	conventions	shown	here,	specifically:

They	must	start	with	data-.

They	should	contain	only	lowercase	characters.

They	should	use	hyphens	to	separate	logical	words.

You	will	look	at	why	these	conventions	are	important	shortly.

Just	like	any	attribute,	data	attributes	can	be	assigned	values.	In	this	case,	the	value	has
been	defined	as	the	property	name	from	the	object	that	should	be	used	to	populate	the	text
of	the	element.

Once	elements	have	been	logically	associated	with	property	names,	you	can	write	a
function	that	binds	the	property	values	in	the	object	to	a	document	fragment.	Add	the
following	as	a	global	function	within	contacts.js:

function	bind(template,	obj)	{

				$.each(template.find('[data-property-name]'),	function(indx,	val)	{

								var	field	=	$(val).data().propertyName;

								if	(obj[field])	{

												$(val).text(obj[field]);

								}

				});

				return	template;

}

This	may	look	complex,	but	if	you	walk	through	it	line-by-line	it	is	reasonably
straightforward.	You	start	by	iterating	through	every	element	that	has	a	data-property-
name	attribute	using	the	jQuery	each	helper.

As	shown	in	earlier	lessons,	you	provide	a	callback	function	to	each.	Because	this	passes
the	index	and	value	of	each	element	to	the	function	provided,	the	parameter	val	will
represent	an	element	with	the	data-property-name	attribute.

On	the	next	line,	you	extract	the	value	of	the	data-property-name	attribute.	You	may
expect	that	this	line	would	read:

var	field	=	$(val).attr('data-property-name');

This	would	be	valid,	but	as	you	can	see,	calling	the	data	method	on	an	element	provides
access	to	all	the	data	attributes	as	properties	on	an	object.	This	also	automatically	converts
the	names	from	the	conventions	used	on	attributes	to	the	convention	used	for	property
names,	so:

data-property-name

becomes:

propertyName

On	the	next	line,	you	check	to	see	whether	the	object	you	were	passed	has	a	property	with
this	name:

if	(obj[field])	{

Notice	that	you	use	the	square	bracket	notation	here	for	accessing	the	property.	If	the
property	does	exist,	you	simply	set	its	value	as	the	text	of	the	element;	if	not,	you	do
nothing.

The	advantage	of	this	code	is	that	it	does	not	need	to	know	anything	about	the	document

fragment	or	the	object	it	has	been	passed;	it	only	needs	to	know	the	convention	you	are
using.	Property	names	in	the	object	match	data	attributes	on	elements.	This	is	known	as
“programming	by	convention,”	and	is	a	very	efficient	mechanism	for	writing	generic,
reusable	code.

Using	the	Template
Now	that	you	have	a	template,	and	a	function	for	binding	data	to	a	template,	you	need	to
put	it	all	together.	Start	by	adding	a	new	method	called	save	to	the	object	returned	in
contacts.js.	Place	it	between	the	init	and	serializeForm	methods:

save:	function(evt)	{

			if	($(evt.target).parents('form')[0].checkValidity())	{

						var	fragment	=	$(screen).find('#contactRow')

[0].content.cloneNode(true);

						var	row	=	$('<tr>').append(fragment);

						var	contact	=	this.serializeForm();

						row	=	bind(row,	contact);

						$(screen).find('table	tbody').append(row);

						$(screen).find('form	:input').val('')

						$(screen).find('#contactDetails').hide();

			}

},

This	method	will	replace	the	functionality	in	the	submit	button	click	listener;	therefore,
you	start	by	checking	the	validity	of	the	form.	Next,	you	find	the	template	element	with
the	ID	contactRow.	Once	you	find	this,	you	convert	it	to	a	native	DOM	object	by
accessing	it	as	the	first	element	in	the	array	returned.

If	you	access	the	content	of	a	template	directly	in	the	DOM,	you	will	notice	that	the	value
returned	is	a	document-fragment,	as	you	can	see	in	Figure	20.1.

Figure	20.1

Unlike	other	nodes	in	the	DOM,	a	document	fragment	does	not	have	a	parent,	and
therefore	it	is	not	part	of	the	DOM.

Your	goal	is	to	create	a	DOM	node	that	contains	the	elements	represented	by	the	template;
therefore,	you	access	the	content	of	the	template	using	its	content	property	and	clone
(create	a	copy	of	it)	using	the	cloneNode	method.	The	true	value	passed	to	the	cloneNode
method	indicates	you	also	want	to	clone	any	children	elements.

Once	you	have	a	copy	of	the	document	fragment,	you	append	it	to	a	tr	element.	Ideally,
you	would	have	worked	directly	with	the	document-fragment,	but	unless	you	add	it	to
another	node,	the	content	of	the	document	fragment	cannot	be	queried	by	jQuery.

Note
When	you	write	code	such	as	$('<tr>'),	you	are	creating	jQuery-specific	document
fragments	(it	does	not	have	a	parent,	and	is	not	part	of	the	DOM).	Therefore,	think	of
the	preceding	approach	as	adding	an	HTML5	document	fragment	to	a	jQuery
document	fragment.

Once	the	object	and	the	template	are	obtained,	you	simply	call	the	bind	function	to
populate	the	template:

row	=	bind(row,	contact);

You	can	now	change	the	submit	button	click	event	listener	as	follows:

$(screen).find('form	input[type="submit"]').click(

				function(evt)	{

								evt.preventDefault();

								this.save(evt);

				}.bind(this)

);

Notice	how	you	have	broken	the	functionality	in	the	save	operation	down	to	a	number	of
distinct	components,	each	with	its	own	generic,	and	reusable,	implementation:

Serializing	the	object	from	the	data	in	the	form

Providing	a	template	for	a	new	row	in	the	table

Binding	an	object	to	a	template

One	of	the	keys	to	writing	a	large,	maintainable	web	application	is	to	write	self-contained
functions	or	methods	that	each	perform	a	specific	task,	but	do	so	in	a	generic	manner.

Once	you	have	self-contained	functions,	you	can	enhance	them	over	time.	For	instance,
the	current	implementation	of	bind	does	not	add	the	datatime	attribute	to	time	elements;
you	can	easily	rectify	this	as	follows:

function	bind(template,	obj)	{

				$.each(template.find('[data-property-name]'),	function(indx,	val)	{

								var	field	=	$(val).data().propertyName;

								if	(obj[field])	{

												$(val).text(obj[field]);

												if	($(val).is('time'))	{

																$(val).attr('datetime',	obj[field]);

												}

								}

				});

				return	template;

}

Try	It
In	this	Try	It,	you	will	look	at	how	you	can	modify	the	template	created	in	this	lesson	to
allow	you	to	delete	rows	from	the	table.	Each	row	in	the	table	will	have	a	delete	button,
and	clicking	this	will	remove	the	row	from	the	table.

Lesson	Requirements
You	will	need	the	CRM	web	application	from	Lesson	19.	This	lesson	can	then	be
completed	in	a	text	editor	and	tested	in	Chrome.

Step-by-Step
1.	 Start	by	removing	the	tr	elements	from	the	tbody	in	contacts.html.	From	now	on,

you	will	not	have	any	rows	when	the	screen	initially	loads.	Later	in	the	book,	you
will	save	contacts,	but	for	now	you	will	need	to	create	contacts	each	time	the	screen
loads.

2.	 Add	an	additional	th	column	to	the	thead	element	with	the	text	“Actions,”	and	set
the	td	element	in	tfoot	to	span	six	columns.	The	table	should	now	look	like	this:

<table>

				<thead>

								<th>Contact	name</th>

								<th>Phone	number</th>

								<th>Email	address</th>

								<th>Company	name</th>

								<th>Last	contacted</th>

								<th>Actions</th>

				</thead>

				<tfoot>

								<tr>

												<td	colspan="6">2	contacts	displayed</td>

								</tr>

				</tfoot>

				<tbody>

				</tbody>

				<caption>Sales	leads</caption>

</table>

3.	 Change	the	template	to	include	a	new	td	element	at	the	end.	The	td	element	will
contain	a	hyperlink	for	deleting	rows	from	the	table.	This	hyperlink	will	in	turn
contain	a	data	attribute	describing	its	role:

<td>Delete</td>

4.	 Add	an	event	listener	within	the	init	method	that	fires	when	the	user	clicks	an
element	with	the	attribute	data-delete-button.	Because	these	elements	will	not	be
in	the	DOM	when	the	screen	loads,	you	will	need	to	use	the	on	method,	as	described
in	the	previous	lesson.	My	version	can	be	found	at	the	end	of	this	section.

5.	 Within	the	event	listener,	start	by	preventing	the	default	behavior	of	a	hyperlink	(to
load	a	new	page).	The	event	listener	should	call	a	method	called	delete	(which	you
will	write	in	the	next	step)	on	the	object,	and	pass	it	the	event.

6.	 Add	a	new	method	to	the	main	object	in	contacts.js	called	delete.	This	should
accept	a	parameter	called	evt,	which	will	be	the	event	object.

7.	 Use	the	target	of	the	event,	and	find	its	closest	parent	that	is	a	tr	element.	Once	this
is	located,	use	the	remove	method	to	remove	it	from	the	DOM.

8.	 Add	a	new	method	to	the	object	called	updateTableCount.	This	method	should
check	how	many	rows	are	in	the	table	and	then	update	the	tfoot	cell	to	display	a
count,	for	instance	“3	contacts	displayed.”	Once	this	is	written,	it	should	be	called
after	the	save	or	remove	method	completes.

My	event	listener	looked	like	this:

$(screen).on("click",	"[data-delete-button]",

				function(evt)	{

								evt.preventDefault();

								this.delete(evt);

				}.bind(this)

);

And	my	delete	method	looked	like	this:

delete:	function(evt)	{

				$(evt.target).parents('tr').remove();

},

My	version	of	updateTableCount	looked	like	this:

updateTableCount:	function(evt)	{

				var	rows	=	$(screen).find('table	tbody	tr');

				$(screen).find('table	tfoot	td').text(rows.length	+	'	contacts	

displayed');

},

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	20,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	21

jQuery	Plugins
In	the	lessons	covered	so	far	in	this	section,	you	have	learned	most	of	what	you	need	to
know	to	start	writing	dynamic	web	applications.	This	lesson	will	cover	one	final	subject
that	can	enhance	dynamic	web	applications:	jQuery	plugins.

One	of	the	reasons	jQuery	is	so	popular	is	that	it	is	very	easy	to	extend	with	plugins.	As	a
result,	a	huge	number	of	jQuery	plugins	are	freely	available,	and	these	can	often	be	used
as	an	alternative	to	writing	your	own	code.

In	this	lesson,	you	will	briefly	look	at	one	of	the	most	popular	jQuery	plugins,	called
jQuery	UI.	This	plugin	provides	a	set	of	user	interface	components,	such	as	date	pickers
and	dialog	boxes,	and	is	used	extensively,	including	on	some	of	the	Internet’s	most
popular	websites.

It	is	also	possible	to	write	your	own	jQuery	plugins.	A	typical	jQuery	plugin	uses	a	jQuery
selector	to	identify	a	set	of	elements,	and	then	performs	an	operation	on	these	elements,
returning	the	modified	elements	as	a	result.

Although	it	is	obviously	possible	to	modify	elements	without	encapsulating	the	code	in	a
jQuery	plugin,	writing	plugins	provides	a	convenient	mechanism	for	packaging	code.

jQuery	UI
jQuery	UI	is	probably	the	most	widely	used	jQuery	plugin.	This	plugin	provides	a	variety
of	user	interface	components,	all	of	which	work	seamlessly	across	all	the	most	common
browsers.	jQuery	UI	can	therefore	be	used	to	provide	polyfills	for	native	HTML5
components,	such	as	date	pickers	and	progress	bars.

jQuery	UI	can	be	downloaded	from	http://jqueryui.com.	This	website	also	contains	a
set	of	live	demos	for	all	the	components	included	in	the	plugin,	along	with	comprehensive
documentation	on	all	components.

Many	of	the	UI	components	provided	by	jQueryUI	mirror	equivalents	in	HTML5,
including	the	following:

A	date-picker	component

A	progress	bar:	Implements	the	same	basic	functionality	as	the	HTML5	progress
bar,	but	works	in	all	modern	browsers.

A	slider:	Implements	the	same	basic	functionality	as	the	HTML5	range	input	field,
although	again,	in	a	cross-browser	manner,	and	with	additional	configuration	options.

A	spinner	component:	Implements	the	same	functionality	seen	on	number	input
fields	in	Chrome.

Drag	and	drop	components:	These	include	more	advanced	features	not	supported	by
HTML5,	such	as	the	ability	to	resize	components,	and	the	ability	to	reposition
elements	onscreen	without	specifically	dropping	them	on	other	elements.

jQuery	UI	also	contains	more	advanced	widgets	not	currently	found	in	HTML5,	including
the	following:

A	tab	component:	Allows	an	interface	to	provide	a	set	of	tabs	to	the	user.

A	dialog	widget:	Provides	an	implementation	of	all	common	varieties	of	dialog	box,
such	as	confirmation,	warning,	and	error	dialogs.

An	accordion	component:	Allows	panels	to	be	expanded	and	collapsed.	This	has
some	similarity	to	the	summary/detail	tags	seen	earlier	in	the	book,	but	allows	for
many	summary/detail	blocks	to	work	together,	and	assumes	one	detail	block	will
always	be	expanded.	This	component	is	named	after	its	passing	resemblance	to	an
accordion	musical	instrument.

A	version	of	jQuery	UI	is	included	with	the	Lesson	21	resources	on	the	book’s	website.
Because	jQuery	UI	is	a	large	library,	it	is	possible	to	tailor	the	download	to	the	specific
components	needed,	and	it	is	also	possible	to	customize	the	themes	of	the	components
(such	as	colors	and	fonts)	when	downloading	the	library.	The	version	provided	contains	all
components,	and	the	default	theme.

The	jQuery	UI	resources	comprise	the	following:

jquery-ui.js:	Contains	all	the	JavaScript	code	implementing	the	various
components.

http://jqueryui.com

jquery-ui.css:	Contains	the	CSS	used	for	styling	the	components.

An	images	folder:	Contains	all	the	images	needed	by	the	components.	For	instance,
the	date-picker	uses	arrows	for	moving	between	months:	These	are	represented	by
images.

Copy	all	these	resources	to	the	folder	containing	contacts.html.

In	this	section,	you	will	change	the	date	input	field	in	contacts.html	to	use	the	jQuery
UI	implementation,	rather	than	the	native	HTML5	implementation.

To	begin,	the	jQuery	UI	JavaScript	file	and	CSS	file	must	be	imported	into	the	head	of	the
web	page.	It	is	essential	that	the	JavaScript	file	is	imported	after	the	main	jQuery	file
because	jQuery	UI	extends	the	capabilities	of	jQuery:

<link	rel="stylesheet"	type="text/css"	href="jquery-ui.css">

<script	src="jquery-ui.js"></script>

Next,	change	the	lastContacted	input	field	from	a	date-based	field	to	a	text-based	field:

<input	name="lastContacted"	type="text"	class="validated"/>

Once	this	is	done,	all	that	is	required	to	enable	the	jQuery	UI	date-picker	on	the	field	is	to
execute	the	following	code:

$('[name="lastContacted"]').datepicker();

Notice	that	this	begins	by	selecting	an	element	with	a	regular	jQuery	selector,	and	then
calls	a	datepicker	method	on	the	result.	The	datepicker	method	was	provided	by	the
jQuery	UI	library,	but	notice	that	it	is	available	on	a	regular	jQuery	selection.

Add	this	code	to	the	script	block	at	the	bottom	of	contacts.html.

If	you	now	open	the	web	page	and	click	in	the	lastContacted	field,	a	date-picker	will	be
displayed,	as	you	can	see	in	Figure	21.1.

Figure	21.1

All	jQuery	UI	components	follow	this	same	model:	An	element	(or	set	of	elements)	is
selected	from	the	DOM	and	converted	into	a	dynamic	component	using	a	method
provided	by	jQuery	UI.

jQuery	UI	components	accept	a	variety	of	configuration	parameters,	and	in	many	ways	are
more	flexible	than	their	HTML5	counterparts.	Because	of	the	large	number	of	potential

parameters	(the	date-picker	itself	supports	more	than	50	different	configuration
parameters),	and	the	fact	that	all	of	these	parameters	are	optional,	any	parameters	required
are	provided	within	an	object	with	properties	representing	the	required	options.

For	instance,	the	following	sets	the	maximum	date	the	date-picker	will	accept	to	today	(0
means	zero	days	from	today),	and	the	minimum	date	to	6	months	ago	(–6m):

$('[name="lastContacted"]').datepicker({

				minDate:	"-6m",

				maxDate:	0

});

With	these	parameters	set,	any	dates	outside	this	range	will	be	disabled.

The	jQuery	UI	website	contains	excellent	documentation	on	all	the	options	available	for
this	component,	and	all	the	other	components	supported	by	jQuery	UI.

Writing	a	Plugin
You	will	now	switch	from	using	plugins	developed	by	other	programmers,	to	writing	your
own	plugins.	The	basic	premise	of	a	jQuery	plugin	is	that	it	is	passed	a	selection	of
elements;	it	then	performs	an	operation	on	these	elements	and	(usually)	returns	the
modified	elements.

In	this	section,	you	will	write	a	plugin	that	accepts	time	elements	with	a	datetime
attribute,	and	changes	the	content	of	the	element	to	contain	a	more	readable	representation
of	the	date.	Once	this	is	implemented,	you	will	be	able	to	select	time	elements	and
transform	them	to	display	the	date	as	you	see	in	Figure	21.2.

Figure	21.2

Because	plugins	should	be	reusable	across	websites,	I	recommend	that	you	add	them	to	a
new	JavaScript	file.	Start	by	creating	an	empty	JavaScript	file	called	jquery-time.js.
Place	this	in	the	same	directory	as	the	other	project	resources,	and	import	it	into
contacts.js	(make	sure	the	import	occurs	after	the	main	jQuery	library).

<script	src="jquery-time.js"></script>

In	order	to	add	a	plugin	to	jQuery,	you	need	to	extend	the	capabilities	of	jQuery.
Specifically,	you	need	to	extend	an	object	that	can	be	accessed	via	jQuery.fn,	and	add	a
new	method	to	it.	The	boilerplate	code	for	adding	a	plugin	to	jQuery	therefore	looks	like
this:

	(function($)	{

				$.fn.extend({

								setTime:	function()	{

												return	this;

								},

				});

})(jQuery);

This	code	uses	a	technique	you	have	not	seen	previously:	It	declares	an	anonymous
function	that	accepts	a	single	parameter	(represented	by	$).	The	code	then	immediately
calls	this	function	(on	the	last	line)	and	passes	it	the	jQuery	function	(which	is	the	same
function	you	have	been	accessing	through	its	$	alias).

This	is	a	great	technique	when	you	only	want	a	function	to	be	executed	a	single	time	when
the	web	page	loads:	Because	this	is	an	anonymous	function,	and	is	not	referred	to	by	any
variables,	it	can	never	be	executed	again.

Once	you	have	a	reference	to	fn,	you	call	a	method	on	it	called	extend,	and	pass	this	an
object.	This	object	will	contain	definitions	of	the	methods	you	wish	to	add	to	jQuery:	In
this	case,	a	single	method	will	be	added	called	setTime.

If	you	reload	the	web	page,	you	can	use	this	plugin	immediately.	Figure	21.3	demonstrates
an	example	where	you	select	a	time	element	from	the	web	page	and	then	call	setTime	on
the	selection:

Figure	21.3

As	you	can	see,	the	setTime	method	returns	the	selection	it	is	passed.	This	is	due	to	the
fact	that	the	method	returned	this.	The	this	variable	can	be	used	inside	a	plugin	to
extract	the	elements	selected,	but	can	also	be	returned	at	the	end	to	allow	chaining.	For
example,	it	is	possible	to	write	code	such	as	the	following:

>	$('time').setTime().parent()

With	the	plugin	skeleton	in	place,	you	can	start	writing	the	functionality	of	the	plugin.
JavaScript	does	not	contain	a	library	for	formatting	dates,	although	there	are	numerous
open-source	libraries	available.	You	will	therefore	write	your	own	rudimentary	code	for
date	formatting:

	(function($)	{

				$.fn.extend({

								setTime:	function()	{

												months	=	['January','February',	'March',	'April',	'May',	

'June',

														'July','August','September','October','November',	

'December'];

												$.each(this,	function(indx,	val)	{

																if	($(val).attr('datetime'))	{

																				var	date	=	new	Date($(val).attr('datetime'));

																				var	display	=	months[date.getMonth()]	+	'	';

																				display	+=	date.getDate()	+	',	';

																				display	+=	date.getFullYear();

																				$(val).text(display);

																}

												});

												return	this;

								},

				});

})(jQuery);

JavaScript	represents	the	months	of	the	year	with	the	numbers	0–11,	so	you	begin	by
creating	an	array	that	allows	you	to	place	a	textual	representation	of	each	month	in	an
array	at	its	relevant	index.

Next,	you	use	the	jQuery	each	method	to	iterate	through	the	selected	elements.	The
method	then	checks	to	see	whether	the	element	has	a	datetime	attribute:	This	plugin	will
be	compatible	with	elements	containing	the	datetime	attribute,	and	therefore	will	not	do
anything	if	this	attribute	is	missing.

Because	the	datetime	attribute	contains	an	ISO-compliant	representation	of	a	date,	it	can
be	converted	into	a	JavaScript	Date	object	using	its	constructor.	Once	a	Date	object	is
created,	its	component	parts	(month,	day,	year)	can	be	accessed	through	its	methods.

The	rest	of	this	method	uses	simple	string	concatenation	to	create	a	textual	representation
of	a	date,	using	the	months	array	to	find	the	textual	representation	of	the	month,	and
extracting	the	other	important	date	components	with	the	relevant	methods.	Once	a	textual
representation	of	a	date	is	created,	it	is	set	on	the	element	using	the	text	method.

If	you	load	the	screen,	and	ensure	the	table	contains	a	row	with	a	date	in	it,	you	can
convert	this	into	a	more	readable	representation	with	the	following	call:

>	$('time').setTime();

It	is	also	possible	to	pass	parameters	to	the	plugin.	As	with	jQuery	UI,	it	is	customary	to
pass	an	object	with	relevant	parameters	and	provide	defaults	for	all	parameters.	For
instance,	you	may	want	the	user	to	specify	either	a	short	or	long	form	of	the	date:	A	short
form	will	only	print	the	first	three	characters	of	the	month	and	the	last	two	numbers	in	the
year.

In	the	following	example,	the	params	object	can	contain	a	style	property:	If	this	has	a
value	of	short,	the	month	and	year	will	be	truncated.

	(function($)	{

				$.fn.extend({

								setTime:	function(params)	{

												months	=	['January','February',	'March',	'April',	'May',	

'June',

														'July','August','September','October','November',	

'December'];

												$.each(this,	function(indx,	val)	{

																if	($(val).attr('datetime'))	{

																			var	date	=	new	Date($(val).attr('datetime'));

																			var	m	=	months[date.getMonth()];

																			if	(params	&&	params.style	===	'short')	{

																							m	=	m.substr(0,	3);

																							var	display	=	m	+	'	';

																							display	+=	date.getDate()	+	',	';

																							display	+=	(date.getFullYear()	%	100);

																			}	else	{

																							var	display	=	m	+	'	';

																							display	+=	date.getDate()	+	',	';

																							display	+=	date.getFullYear();

																			}

																			$(val).text(display);

																}

												});

												return	this;

								},

				});

})(jQuery);

This	can	then	be	called	as	follows	to	use	the	short	representation:

$('time').setTime({'style':'short'})

The	great	thing	about	jQuery	plugins	is	that	they	are	completely	reusable	on	other	web
pages.	Each	plugin	performs	its	own	specific	operation,	and	provided	it	is	passed	elements
it	is	compatible	with,	it	does	not	need	to	know	anything	else	about	the	web	page.

You	want	to	ensure	that	this	plugin	is	called	automatically	whenever	a	new	row	is	added	to
the	table	so	change	the	save	method	to	invoke	it	as	follows	(the	remainder	of	this	function
has	been	excluded	for	brevity):

row	=	bind(row,	contact);

$(row).find('time').setTime();

$(screen).find('table	tbody').append(row);

Try	It
In	this	Try	It,	you	will	use	one	more	feature	in	the	jQuery	UI	library	and	write	a	new
plugin	of	our	own.

Lesson	Requirements
You	will	need	the	CRM	web	application	from	Lesson	20,	but	it	is	also	assumed	you	have
been	following	this	lesson,	and	have	imported	the	jQuery	UI	resources.	If	not,	you	need	to
do	this	before	continuing	with	the	Try	It.	This	lesson	can	then	be	completed	in	a	text	editor
and	tested	in	Chrome.

Step-by-Step
In	addition	to	providing	a	set	of	components,	jQuery	UI	contains	a	set	of	more	advanced
animation	effects	than	are	found	in	jQuery	itself.	You	will	therefore	use	one	of	these
effects	when	displaying	the	contacts	form.

1.	 The	init	method	in	contacts.js	adds	an	event	listener	for	displaying	the	form	that
uses	the	following	code:

document.getElementById('contactDetails').style.display	=	'block';

This	uses	the	native	DOM	API:	In	order	to	use	a	jQuery	UI	effect,	change	this	as
follows:

$(screen).find('#contactDetails').toggle("blind");

2.	 Load	the	web	page,	and	click	to	add	a	contact.	The	form	should	slide	down	slowly
from	the	top.

3.	 In	order	to	use	jQuery	UI	effectively,	you	need	to	be	able	to	access	its	documentation.
Therefore,	open	http://api.jqueryui.com/	in	your	web	browser	and	click	the
Effects	category	on	the	left-hand	side.	You	should	be	able	to	find	documentation	on
the	blind	effect	and	learn	about	its	various	options.

4.	 The	form	section	is	hidden	with	the	following	code	in	the	save	method:

$(screen).find('#contactDetails').hide();

This	can	be	replaced	with	the	exact	same	code	used	in	step	1:	Because	the	toggle
method	is	being	used,	a	visible	element	will	be	automatically	hidden.

You	will	now	change	the	code	that	populates	the	contact	count	in	the	table	footer	to
operate	as	a	jQuery	plugin.

1.	 Start	by	creating	a	new	plugin	called	jquery-tables.js	and	add	the	same	boilerplate
code	from	jquery-time.js	to	this.

2.	 Import	the	new	plugin	into	contacts.html.

http://api.jqueryui.com/

3.	 Add	a	method	to	the	plugin	called	updateFooter.	This	should	accept	a	single
parameter	called	params.

4.	 This	plugin	will	operate	on	tables	that	contain	tfoot	and	tbody	children.	Therefore,
use	the	each	method	to	iterate	through	the	selection	provided	to	the	plugin,	and	check
that	each	element	has	these	child	elements	before	processing	the	element	further.

5.	 Within	the	if	statement,	start	by	counting	how	many	tr	elements	are	in	the	tbody.
Remember	that	the	length	property	can	be	used	for	ascertaining	this.	Store	the
number	in	a	local	variable.

6.	 Update	the	td	element	in	the	tfoot	to	contain	the	text	“X	rows	in	table,”	where	X	is
the	count	retrieved	in	Step	5.

You	should	now	be	able	to	update	the	footer	by	invoking	the	plugin	on	the	table,	as
shown	in	Figure	21.4.

Figure	21.4

7.	 The	message	displayed	in	the	table	should	be	configurable.	Therefore,	if	the	params
object	contains	a	property	called	message,	use	its	value	instead	of	“rows	in	the	table.”
When	writing	the	code	to	use	this,	remember	that	both	the	params	object	and	the
message	property	may	be	undefined.

8.	 You	can	now	change	the	updateTableCount	method	to	use	this	plugin.	I	have	used
the	following	code:

$(screen).find('table').updateFooter({'message':'	contacts	

displayed'});

The	full	version	of	my	plugin	looks	like	this:

	(function($)	{

				$.fn.extend({

								updateFooter	:	function(params)	{

												$.each(this,	function(indx,	val)	{

																if	($(val).find('tbody')	&&	$(val).find('tfoot'))	{

																				var	count	=	$(val).find('tbody	tr').length;

																				if	(params	&&	params.message)	{

																								$(val).find('tfoot	td').text(count	+	'	'	+	

params.message);

																				}	else	{

																								$(val).find('tfoot	td').text(count	+	'	rows	in	

the	table');

																				}

																}

												});

												return	this;

								},

				});

})(jQuery)

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	21,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Part	III
HTML5	Multimedia

Lesson	22:	HTML5	Audio

Lesson	23:	HTML5	Video

Lesson	24:	Canvas:	Part	I

Lesson	25:	Canvas:	Part	II

Lesson	26:	CSS3:	Part	I

Lesson	27:	CSS3:	Part	II

Lesson	28:	CSS3	Media	Queries

Lesson	22

HTML5	Audio
The	third	section	of	the	book	will	cover	many	of	the	multimedia	enhancements	added	in
HTML5,	beginning	with	HTML5’s	audio	capabilities.

Audio	has	been	part	of	the	web	almost	since	browsers	first	appeared	but,	unlike	images
that	are	natively	supported	by	the	browser,	audio	support	has	always	been	provided	by
third-party	plugins	such	as	QuickTime.	Browser	plugins	are	supported	by	the	HTML
object	tag,	and	are	used	to	support	a	wide	selection	of	media	types	such	as	audio,	video,
PDF	files,	and	animations.

There	are	a	number	of	problems	with	plugins,	however:

They	often	rely	on	the	user	installing	a	plugin	manually,	and	this	can	be	an
inconvenience	for	users.	Additionally,	users	are	typically	required	to	update	plugins
independently	of	the	browser’s	update	cycle,	which	can	lead	to	further	frustration.

Plugins	can	effectively	do	anything	they	want	on	the	computer	running	the	browser
(or	at	least,	anything	that	the	browser	could	do).	This	presents	a	security	loophole,
and	has	been	exploited	on	many	occasions.

Plugins	can	cause	stability	issues	in	browsers	because	a	bug	in	a	plugin	can	cause	the
browser	to	crash.

Plugins	are	not	standards-based	for	the	most	part,	and	therefore	they	encourage	lock-
in	to	proprietary	formats.

In	order	to	counteract	these	issues,	HTML5	supports	an	audio	tag	(along	with	a	video	tag,
as	you	will	see	in	the	next	lesson).	The	audio	tag	is	intended	to	remove	the	need	for
plugins,	and	has	begun	to	find	widespread	adoption.

File	Formats
Although	HTML5	specifies	an	audio	tag,	it	does	not	specify	an	audio	format.	In	fact,	it
does	not	even	specify	a	single	default	format	that	all	browsers	are	required	to	support.

As	you	will	see,	this	is	not	such	a	problem	for	audio	because	the	two	most	popular	formats
are	well	supported,	but	it	is	a	bigger	issue	for	video.

There	are	good	reasons	why	there	are	multiple	audio	formats.	Different	formats	compress
audio	in	different	ways,	and	these	in	turn	present	trade-offs	in	terms	of	quality	on	the	one
hand,	and	file	size	on	the	other.

Because	raw	audio	files	are	extremely	large,	it	is	almost	always	necessary	to	compress
them	in	some	manner.	This	compression	fits	into	two	main	categories:

Lossless	compression:	This	means	the	size	of	the	audio	file	is	reduced,	but	no	audio
quality	is	lost.	This	is	similar	to	zipping	a	text	file:	The	file	size	is	reduced,	but	the
text	can	be	fully	recovered	at	a	later	date.

Lossy	compression:	This	means	that	some	information	is	lost	during	the
compression	process,	but	the	algorithm	tries	to	lose	information	that	will	not	be
noticed	by	the	listener.	Most	audio	formats	use	lossy	compression.

The	other	main	difference	between	audio	formats	relates	to	patents	and	licensing:

Some	audio	formats	require	a	license	or	the	payment	of	royalties	to	create	or	stream
files	using	the	audio	format.

Some	audio	formats	are	protected	by	patents	but	are	available	royalty	free.

Some	audio	formats	are	unencumbered	by	patents	and	royalties	completely.

This	can	present	problems	to	browser	vendors,	particularly	in	the	open	source	world,	and
is	the	reason	Firefox	historically	has	not	supported	some	of	the	most	popular	file	formats.

Note
Even	in	cases	where	an	audio	format	is	unencumbered	by	patents,	it	is	possible	patent
holders	will	assert	their	rights	in	the	future.	The	main	reason	HTML5	could	not
specify	a	single	default	audio	or	video	format	was	for	fear	that	once	the	format
achieved	critical	mass,	a	patent	holder	would	assert	their	rights	over	the	technology.

Before	looking	at	the	various	formats,	it	is	important	to	distinguish	two	different	types	of
format.	This	will	become	even	more	important	when	you	start	looking	at	video:

Container	formats:	A	container	format	is	used	for	storing	the	data,	and	dictates	the
file	extension.	A	container	format	is	like	an	envelope:	It	contains	the	audio	data	along
with	any	other	relevant	information	about	the	file.

Codec	format:	The	codec	format	specifies	the	way	in	which	the	audio	should	be
encoded	and	decoded.

In	many	cases	a	single	container	format	supports	many	different	codecs.	One	of	the
responsibilities	of	the	container	format,	therefore,	is	to	describe	the	codec	format.

The	most	common	audio	codecs	are	as	follows:

MP3:	This	format	is	in	many	ways	the	de-facto	standard	for	music	files	and	uses
lossy	compression.	The	degree	of	loss	can	be	specified	when	an	MP3	file	is	created
by	specifying	the	bit	rate	per	second.	Many	organizations	have	claimed	patent	rights
over	various	aspects	of	the	MP3	format,	and	a	license	is	required	to	stream	MP3
content	on	a	commercial	site.

MP3	is	technically	a	codec,	but	it	does	perform	many	of	the	functions	of	a	container,
and	therefore	does	not	need	to	be	placed	inside	a	container	format.

AAC	(Advanced	Audio	Coding):	This	format	is	in	many	ways	the	successor	to
MP3,	and	generally	achieves	superior	sound	quality	at	equivalent	bit	rates.	It	is	not
necessary	to	pay	royalties	to	stream	AAC	content,	which	makes	it	an	attractive	option
over	MP3.

AAC	files	can	exist	as	a	raw	bit	stream	(typically	with	the	.aac	extension)	but	are
usually	packaged	in	the	MPEG-4	container	and	given	a	variety	of	extensions	such	as
.mp4,	.m4p,	and	.m4a.

Vorbis:	This	is	a	free	audio	format	that	performs	lossy	compression.	This	format	can
technically	be	stored	in	any	container	format	but	is	most	commonly	stored	inside	the
OGG	container	format.	It	is	also	often	used	in	conjunction	with	the	WebM	container
format.

Opus:	This	is	another	free,	lossy	format	that	has	been	standardized	by	IETF.	Like
Vorbis,	Opus	is	supported	by	both	the	OGG	and	WebM	container	formats.	As	you
will	see	in	the	next	lesson,	this	is	becoming	increasingly	popular	for	encoding	the
audio	stream	of	a	video.

Table	22.1	outlines	the	support	of	the	various	formats	in	the	most	common	browsers.

Table	22.1:	Audio	Support	in	Browsers

MP3 ACC
(MP4)

Vorbis	(OGG,	WebM) Opus	(OGG,
WebM)

Chrome Yes Yes Yes Yes
Firefox Partial Partial Yes Yes
Internet
Explorer

Yes Yes No No

Opera Yes Yes Yes Yes
Safari Yes Yes Supported	with	the	OGG

container	format
No

The	main	outlier	here	is	Firefox.	Older	versions	of	Firefox	did	not	support	the	royalty
encumbered	audio	formats,	but	newer	versions	of	Firefox	do	support	these	formats,	as
long	as	the	underlying	operating	system	provides	support	(both	OS	X	and	Windows	do).

Audio	Tag
The	following	is	a	simple	example	of	the	audio	tag	in	use:

<audio	controls>

				<source	src="test.ogg"	type="audio/ogg">

Your	browser	does	not	support	the	audio	element.

</audio>

The	test.ogg	audio	file	referred	to	can	be	downloaded	from	the	book’s	website:	This
contains	an	audio	version	of	one	of	the	book’s	screencasts,	so	feel	free	to	use	your	own
audio	file	if	you	would	prefer.	This	file	uses	the	Vorbis	codec	and	the	OGG	container
format.

If	you	embed	this	in	an	HTML	page,	and	open	the	page	in	Chrome,	it	will	display	as	you
see	in	Figure	22.1.

Figure	22.1

If,	on	the	other	hand,	you	open	this	in	Internet	Explorer,	it	will	display	as	you	see	in
Figure	22.2

Figure	22.2

This	should	not	come	as	a	surprise	because	the	OGG	format	is	not	supported	in	Internet
Explorer.

In	order	to	circumvent	this,	it	is	possible	to	specify	more	than	one	audio	file	in	a	single
audio	tag.	For	example:

<audio	controls>

				<source	src="test.ogg"	type="audio/ogg">

				<source	src="test.mp4"	type="audio/mp4">

Your	browser	does	not	support	the	audio	element.

</audio>

The	test.mp4	file	can	also	be	downloaded	from	the	book’s	website	and	contains	an	AAC
encoded	audio	stream	inside	an	MP4	container.

Where	multiple	formats	are	provided,	the	browser	will	use	the	first	version	that	it
supports.

You	will	notice	that	this	example	specifies	the	MIME	type	of	each	audio	file.	Specifically,
it	contains	information	on	the	type	of	the	container	because	the	container	itself	contains
information	on	the	codec.	Although	it	is	optional,	it	is	recommended	that	you	add	the	type
attribute.	If	it	is	omitted,	the	browser	will	sample	each	file	until	it	finds	one	that	is	in	a

compatible	format,	and	this	will	likely	cause	a	delay.

You	will	notice	that	when	the	file	is	displayed	in	Chrome,	it	contains	a	set	of	components
for	controlling	playback.	This	has	been	provided	because	the	controls	attribute	has	been
added	to	the	tag.	If	this	was	omitted,	the	controls	would	not	be	shown.

It	is	common	to	omit	the	controls	if	you	want	the	audio	to	play	in	the	background	when
the	page	loads.	Although	this	is	a	major	annoyance	to	many	users,	setting	the	autoplay
attribute	supports	it:

<audio	autoplay>

In	order	to	annoy	users	even	further,	the	loop	attribute	can	be	added	to	make	the	audio
track	play	in	a	loop	indefinitely:

<audio	autoplay	loop>

The	final	attribute	supported	by	the	audio	tag	is	preload.	This	can	be	set	to	the	following:

auto:	A	hint	to	the	browser	that	it	should	load	the	audio	when	the	page	loads.	This
should	be	used	if	you	are	reasonably	confident	the	user	will	play	the	file.

none:	A	hint	to	the	browser	that	it	should	not	begin	downloading	the	file	until	the	user
selects	to	play	it.

metadata:	A	hint	to	the	browser	that	only	metadata	should	be	downloaded	when	the
page	loads.

Controlling	Playback
Rather	than	relying	on	the	default	browser	controls,	it	is	possible	to	add	your	own	set	of
controls	and	interact	with	the	audio	track	via	JavaScript.	The	audio	element	is	represented
in	the	DOM	by	an	object	that	supports	an	assortment	of	methods,	properties,	and	events.

In	this	section,	you	will	write	your	own	set	of	controls	to	create	the	interface	shown	in
Figure	22.3.

Figure	22.3

This	contains	the	following	controls:

A	progress	bar	that	shows	how	far	through	the	track	is	as	it	plays

Three	hyperlinks	for	controlling	playback

Start	by	creating	the	following	page	and	save	it	as	audio.html:

<!DOCTYPE	html>

<html	lang="en">

				<head>

								<meta	charset="utf-8">

								<script	src="jquery-2.1.1.js"></script>

				</head>

				<body>

								<audio	id="audioTrack">

												<source	src="test.ogg"	type="audio/ogg">

												<source	src="test.mp3"	type="audio/mpeg">

																	Your	browser	does	not	support	the	audio	element.

								</audio>

								<div	id="controls">

												<progress></progress>

												<div	id="buttons"	style="padding:5px;">

																Play

																Pause

																Stop

											</div>

								</div>

				</body>

</html>

In	order	to	simplify	your	interaction	with	the	DOM,	you	will	use	jQuery	so	ensure	that	the
jQuery	file	is	in	the	same	directory	as	audio.html.

Once	you	confirm	that	the	page	looks	as	expected,	you	can	start	adding	JavaScript	to	the
page,	so	create	a	script	block	immediately	before	the	closing	body	tag.

You	will	begin	by	writing	the	code	for	updating	the	progress	bar.	This	will	be	triggered	via
a	timeupdate	event	generated	by	the	audio	element.	As	the	track	plays,	the	audio	element
will	generate	one	of	these	events	approximately	every	second.

In	order	to	register	an	event	listener	for	this	event,	you	can	use	the	following	code:

$("audio").on('timeupdate',	function(evt){

});

Note
Notice	that	you	are	omitting	the	selector	as	the	second	element.	This	is	optional,	and
therefore	jQuery	will	bind	the	‘timeupdate'	event	to	the	audio	tag.

By	default,	a	progress	bar	starts	at	0	and	ends	at	1	so	you	need	to	find:

How	long	the	audio	file	is:	This	is	supported	by	the	duration	property	on	the	DOM
object	and	returns	the	time	in	seconds.

How	much	of	the	audio	has	been	played	so	far:	This	is	supported	by	the
currentTime	property	on	the	DOM	object	and	also	returns	the	time	in	seconds.

The	target	of	the	event	will	be	the	DOM	object	representing	the	audio	tag;	therefore,	the
properties	can	be	accessed	directly	from	this.	Once	you	know	the	value	of	these	two
properties,	you	can	simply	divide	the	current	position	by	the	total	duration	(which	will	be
a	value	between	0	and	1)	and	update	the	value	of	the	progress	bar.

$("audio").on('timeupdate',	function(evt){

				var	duration	=	evt.target.duration;

				var	current	=	evt.target.currentTime;

				$('progress').val(current/duration);

});

You	can	now	add	jQuery	click	listeners	to	the	three	hyperlinks	as	follows:

$('#play').click(function(evt)	{

				evt.preventDefault();

				$("audio")[0].play();

});

$('#pause').click(function(evt)	{

				evt.preventDefault();

				$("audio")[0].pause();

});

$('#stop').click(function(evt)	{

				evt.preventDefault();

				$("audio")[0].currentTime	=	0;

				$("audio")[0].pause();

});

The	play	functionality	simply	invokes	the	play	method	on	the	underlying	DOM	object,
and	the	pause	functionality	uses	the	pause	method.	The	stop	functionality	is	slightly	more
complex;	in	this	case,	you	want	to:

Pause	the	audio	if	it	is	playing.

Set	the	current	position	back	to	the	start	of	the	audio	file.	As	you	can	see,	the
currentTime	property	is	writable.

The	functionality	of	these	controls	will	be	enhanced	in	the	Try	It	section,	and	additional
API	methods	will	be	introduced	in	the	next	lesson,	but	this	example	gives	you	an	idea	of

how	simple	it	is	to	interact	with	an	audio	file.

Try	It
In	this	Try	It,	you	will	enhance	the	controls	by	adding	a	range	input	field.	The	user	will	be
able	to	use	this	component	to	select	the	position	in	the	audio	file	that	they	want	to	jump	to.
Figure	22.4	shows	the	finished	version	of	the	audio	controls.

Figure	22.4

Lesson	Requirements
You	need	to	have	created	the	audio.html	file	outlined	in	this	lesson.	Alternatively,	you
can	download	audio_pre.html	from	the	book’s	website,	along	with	the	audio	files.

Step-by-Step
1.	 Start	by	adding	an	input	element	with	a	type	attribute	set	to	range.	This	should	have

a	min	attribute	set	to	0,	and	a	max	attribute	set	to	100.

2.	 You	need	to	add	an	event	listener	for	detecting	changes	to	the	input	field.	This	can	be
achieved	by	selecting	the	range	input	field	with	jQuery	and	using	the	change	method
to	specify	an	event	listener.

3.	 Start	by	finding	the	value	of	the	range	input	field	using	the	jQuery	val	method.	Store
the	value	in	a	local	variable.

4.	 Find	the	duration	of	the	audio	file	using	the	duration	property	on	the	native	DOM
object.	Remember	that	you	need	to	access	this	property	on	the	native	DOM	object,
not	the	jQuery	wrapper.

5.	 Given	that	the	value	of	the	range	field	is	a	number	between	0	and	100,	you	can
consider	this	as	a	percentage.	Therefore,	work	out	what	position	you	should	set	the
audio	file	to	in	order	to	represent	this	percentage.	For	instance,	if	the	audio	file	was
90	seconds	long,	and	the	user	chose	a	value	of	50	with	the	range	control,	you	would
want	to	set	the	position	to	45	seconds.

6.	 Once	you	determine	the	position	the	audio	file	should	be	set	to,	set	the	currentTime
property	to	this	value.	Additionally,	call	the	play	method	on	the	audio	just	in	case	it
was	not	playing	when	the	user	interacted	with	the	range	input	field.

My	input	field	looked	like	this:

<input	type="range"	min="0"	max="100"	value="0"	id="setLocation"/>

And	my	event	listener	looked	like	this:

$('#setLocation').change(function(evt)	{

				var	val	=	$(evt.target).val();

				var	duration	=	$("audio")[0].duration;

				var	location	=	duration*(parseInt(val)/100);

				$("audio")[0].currentTime	=	location;

				$("audio")[0].play();

});

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	22,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	23

HTML5	Video
Like	audio,	video	has	been	widely	supported	in	browsers	for	many	years,	but	has	gained
increased	prominence	in	recent	years	with	the	advent	of	sites	such	as	YouTube	and
Netflix.	Although	the	technical	capabilities	to	deliver	video	over	the	Internet	have	been
around	for	a	long	time,	the	increased	prominence	of	video	is	largely	a	result	of	faster
Internet	connections	because	video	tends	to	be	bandwidth	intensive.

As	with	audio,	video	has	been	supported	in	browsers	via	plugins.	Adobe	Flash	currently
dominates	the	video	plugin	market,	largely	due	to	the	overwhelming	success	of	YouTube,
but	many	other	plugins	also	support	video,	such	as	QuickTime	and	Silverlight.

HTML5	provides	native	support	for	video	inside	a	browser.	The	HTML5	video
capabilities	are	essentially	the	same	as	the	audio	capabilities,	but	obviously	the	format
types	for	video	are	quite	different	from	the	format	types	for	audio.	As	with	audio,	the
HTML5	standard	does	not	specify	a	default	video	format	that	all	browsers	must	support.

HTML5	video	has	received	more	attention	than	HTML5	audio,	and	received	an	extra
boost	when	Apple	declined	to	support	Adobe	Flash	on	phones	and	tablets,	suggesting
instead	that	HTML5	should	be	used	in	its	place.	As	you	will	see	later	in	this	lesson,	there
are	still	some	impediments	to	the	commercialization	of	HTML5	video,	but	it	continues	to
gain	traction.	Even	YouTube	now	supports	HTML5	video	for	much	of	its	content.

File	Formats
Video	formats	are	slightly	more	complex	than	audio	formats	because	the	container	format
is	required	to	encapsulate	an	audio	and	a	video	stream.	In	fact,	the	same	video	container
may	support	multiple	audio	streams	to	provide	audio	in	multiple	languages.	Thus,	a	video
file	typically	consists	of	the	following	formats:

A	container	format	such	as	OGG,	WebM,	or	MP4

A	video	codec	such	as	H.264	or	VP8

An	audio	codec	such	as	AAC	or	Vorbis

The	following	are	the	main	video	codecs	and	their	accompanying	container	and	audio
formats:

Theora:	Theora	is	an	open,	royalty-free	video	format	using	lossy	compression.	There
was	a	concerted	push	from	some	quarters	to	make	Theora	the	standard	HTML5	video
format,	but	because	of	resistance	from	some	browser	vendors,	those	efforts	have
largely	failed.	Theora	is	typically	used	with	the	Vorbis	audio	format	and	packaged	in
the	OGG	container	format.

H.264:	H.264	is	an	extremely	common	video	codec,	used	for	everything	from	Blu-
Ray	discs,	to	YouTube,	to	iTunes.	H.264	supports	both	lossy	and	lossless
compression,	but	most	commonly	is	used	in	a	lossy	mode.

H.264	is	a	patent-encumbered	format,	and	there	has	been	a	certain	amount	of
controversy	surrounding	the	use	of	H.264	in	browsers.	Google	has	suggested	support
may	be	removed	from	Chrome	in	the	future,	and	Firefox	only	supports	H.264	where
it	is	natively	supported	by	the	operating	system.

H.264	is	typically	used	with	the	MP4	container	format	and	the	AAC	audio	format.

VP8:	VP8	is	a	competitor	of	H.264	and	produces	very	similar	quality	to	H.264	for
similar	sized	files.	Google	acquired	the	intellectual	property	behind	VP8,	but	it	has
released	all	patents	pertaining	to	the	VP8	codec.

VP8	is	typically	used	with	the	WebM	container	format	and	the	Vorbis	audio	format.

VP9:	VP9	is	the	successor	to	VP8.	It	is	also	developed	by	Google,	and	is	also	royalty
free.	Unlike	VP8,	VP9	is	based	on	open	standards.	VP9	is	likely	to	grow	in
prominence	due	to	the	resources	Google	has	spent	on	the	project.

VP9	is	typically	used	with	the	WebM	container	format	and	the	Opus	audio	format.

Table	23.1	demonstrates	support	for	these	formats	across	the	most	popular	browsers.

Table	23.1:	Video	support	in	browsers

Theora H.264 VP8 VP9
Chrome Yes Yes Yes Yes
Firefox Yes Partial Yes Yes
Internet	Explorer No Yes No No
Opera Yes Yes Yes Yes
Safari No Yes No No

A	video	tag	can	be	added	to	a	web	page	as	follows:

<video	width="800"	controls>

				<source	src="test.m4v"	type="video/mp4">

Your	browser	does	not	support	the	video	element.

</video>

The	video	file	referenced	is	available	on	the	book’s	website,	and	is	a	90-second	section
from	one	of	the	screencasts.	Naturally,	you	can	use	your	own	video	file	if	you	wish.

You	will	notice	that	this	example	contains	a	width	attribute	for	controlling	the	size	of	the
video	element.	As	with	the	image	tag,	it	is	considered	acceptable	to	provide	height	and
width	directly	on	the	tag,	rather	than	through	CSS,	even	though	these	attributes	do	affect
presentation.

As	with	images,	it	is	generally	advisable	to	only	provide	a	height	or	a	width,	and	if	the
size	is	omitted,	the	size	will	be	based	on	the	size	of	the	encoded	video.

As	with	audio,	multiple	formats	can	be	specified.	In	addition,	the	type	attribute	specifies
the	container	format,	just	as	with	the	audio	tag,	but	it	is	also	possible	to	specify	the	codecs
supported	by	each	container.	For	example:

<video	width="800"	controls>

				<source	src="test.ogg"	type='video/ogg;	codecs="theora,	vorbis"'>

				<source	src="test.m4v"	type="video/mp4">

Your	browser	does	not	support	the	video	element.

</video>

Specifying	the	codecs	can	helping	the	browser	make	a	quicker	decision	about	whether	it
supports	a	particular	file.

Another	interesting	attribute	supported	by	the	video	tag	is	the	poster.	This	allows	a	static
image	to	be	used	in	place	of	the	video	before	it	begins	playing:

<video	width="800"	controls	poster="poster.png">

				<source	src="test.ogg"	type='video/ogg;	codecs="theora,	vorbis"'>

				<source	src="test.m4v"	type="video/mp4">

Your	browser	does	not	support	the	video	element.

</video>

The	poster.png	file	is	available	from	the	book’s	website.

Finally,	the	video	tag	also	supports	an	attribute	called	muted.	This	allows	the	video	to	be

played	with	mute	initially	enabled,	and	is	useful	when	video	is	set	to	play	automatically.
The	user	can	then	decide	to	increase	the	audio	as	required.

<video	width="800"	controls	muted	autoplay	poster="poster.png">

Controlling	Volume
Just	as	it	is	possible	to	interact	with	audio	files	with	JavaScript,	it	is	also	possible	to
interact	with	video	files.	All	of	the	methods	and	properties	you	looked	at	in	the	previous
lesson	are	also	supported	by	video.	In	this	lesson,	you	will	look	at	a	number	of	additional
methods	supported	by	both	audio	and	video.

In	this	lesson,	you	will	also	look	at	an	alternative	approach	for	interacting	with	native
DOM	objects	with	jQuery.	Up	until	this	point,	when	you	have	needed	to	set	properties	on
native	DOM	objects,	you	have	accessed	them	through	the	array	of	elements	returned	by
jQuery.	For	instance:

$('table')[0].nodeType

This	allowed	you	to	access	the	underlying	DOM	object.	jQuery	also	supports	alternative
mechanisms	for	achieving	this	without	accessing	the	native	DOM	object:

$('table').prop('nodeType');

The	second	parameter	to	prop	can	be	used	to	set	the	value	of	the	property	if	required.

Likewise,	if	you	want	to	invoke	a	method	(or	trigger	an	event)	on	a	jQuery	selection,	you
have	used	the	following	approach:

$("audio")[0].play();

This	can	also	be	written	with	jQuery	using	the	trigger	method:

$('audio').trigger('play');

Again,	this	allows	you	to	work	directly	with	a	jQuery	selection	rather	than	obtaining	a
reference	to	the	native	DOM	object.	The	trigger	method	name	can	also	accept	any	other
parameters	needed	by	the	method	that	will	be	invoked.

The	following	web	page	declares	a	video	element	without	adding	any	controls,	although	it
is	set	to	autoplay.	It	then	provides	two	buttons	to	increase	or	decrease	volume.	The	volume
property	on	a	video	can	be	set	to	any	value	between	0	and	1,	and	defaults	to	the	value	of
1.	A	value	of	0	is	equivalent	to	mute.

<!DOCTYPE	html>

<html	lang="en">

				<head>

								<meta	charset="utf-8">

								<script	src="jquery-2.1.1.js"></script>

				</head>

				<body>

								<video	width="800"	autoplay	poster="poster.png">

												<source	src="test.ogg"	type='video/ogg;	codecs="theora,	

vorbis"'>

												<source	src="test.m4v"	type="video/mp4">

Your	browser	does	not	support	the	video	element.

								</video>

								<div	id="buttons"	style="padding:5px;">

												Lower	volume

												Increase	volume

								</div>

								<script>

								$('#decreaseVolume').click(function(evt)	{

												evt.preventDefault();

												var	currentVolume	=	parseFloat($('video').prop('volume'));

												$('video').prop('volume',	Math.max(0,	currentVolume-0.1));

												});

												$('#increaseVolume').click(function(evt)	{

												evt.preventDefault();

												var	currentVolume	=	parseFloat($('video').prop('volume'));

												$('video').prop('volume',	Math.min(1,	currentVolume+0.1));

								});

								</script>

				</body>

</html>

Notice	that	this	example	is	careful	to	keep	the	volume	in	the	range	0	to	1	by	using	the
built-in	functions	Math.min	and	Math.max.	For	instance,	if	the	volume	was	already	1,	and
the	user	asked	to	increase	the	volume,	the	new	volume	would	be	set	to	the	minimum	of	1
and	1	+	0.1,	which	would	be	1.	If	the	volume	was	0.8	and	they	requested	to	increase	the
volume,	you	would	set	it	to	the	minimum	of	1	and	0.8	+	0.1,	which	is	0.9.	If	you	attempt
to	set	the	volume	outside	the	0	to	1	range,	an	error	will	be	generated.

Also	notice	in	this	case	that	I	was	careful	to	convert	the	volume	property	to	a	number
before	using	it	with	the	+	operator.	Because	attribute	values	are	strings	by	default,	using
the	+	operator	with	a	raw	attribute	value	would	perform	string	concatenation.

Controlling	Playback	Speed
Another	common	feature	with	video,	which	is	less	common	with	audio,	is	the	ability	to
play	the	track	at	a	faster	or	slower	rate.	Slower	rates	are	used	for	slow	motion	effects,
whereas	faster	rates	are	used	to	allow	the	user	to	visually	fast-forward	to	a	particular	point
in	the	track.

The	JavaScript	API	provides	the	ability	to	control	the	playback	via	the	playbackRate
property.	This	has	a	default	value	of	1,	and	therefore	setting	this	to	a	value	of	4	makes	the
video	play	at	four	times	its	normal	rate,	whereas	setting	it	to	0.5	makes	it	play	at	half	its
normal	rate,	and	setting	it	to	0	is	the	equivalent	of	pausing	playback.

In	order	to	demonstrate	this,	add	two	more	controls	to	the	screen:

Slow	down

Speed	up

And	add	the	following	JavaScript	to	modify	the	playbackRate	property:

$('#slowDown').click(function(evt)	{

				evt.preventDefault();

				var	currentRate	=	parseFloat($('video').prop('playbackRate'));

				$('video').prop('playbackRate',	Math.max(0,	currentRate-0.1));

});

$('#speedUp').click(function(evt)	{

				evt.preventDefault();

				var	currentRate	=	parseFloat($('video').prop('playbackRate'));

				$('video').prop('playbackRate',	Math.min(5,	currentRate+0.1));

});

There	is	no	maximum	playback	rate,	but	in	this	example	the	user	is	prevented	from	setting
playbackRate	to	greater	than	5.

Controlling	Video	Size
The	HTML5	specification	has	been	extended	to	allow	for	full	screen	video.	The	video	can
be	made	full	screen	by	invoking	the	requestFullScreen	method	on	the	video	element.

Because	the	Fullscreen	API	is	so	new,	most	browsers	do	not	support	this	method.	Instead,
browsers	support	their	own	variants	of	the	method.

It	is	common	for	browsers	to	provide	their	own	implementations	of	JavaScript	APIs	or
CSS	properties	for	new	specifications.	In	such	cases,	the	browser	family	will	prefix	the
method	or	property	name,	typically:

webkit	for	Chrome	or	Safari

moz	for	Firefox

ms	for	Internet	Explorer

opera	for	Opera

In	order	to	see	this	in	Chrome,	add	the	following	control:

Fullscreen

and	then	add	the	following	JavaScript:

$('#fullscreen').click(function(evt)	{

				evt.preventDefault();

				$('video').trigger('webkitRequestFullScreen');

});

Notice	that	the	method	invoked	is	webkitRequestFullScreen.	If	you	open	this	example	in
Chrome	or	Safari,	you	will	be	able	to	enter	full-screen	mode.

If	you	want	to	write	an	example	that	works	in	any	browser,	you	need	to	determine	which
browser	the	page	has	been	loaded	into	and	invoke	the	correct	method.	The	typical	way	of
achieving	this	is	as	follows:

$('#fullscreen').click(function(evt)	{

				evt.preventDefault();

				var	video	=	$('video')[0];

				if	(video.requestFullscreen)	{

								video.requestFullscreen();

				}	else	if	(video.mozRequestFullScreen)	{

								video.mozRequestFullScreen();

				}	else	if	(video.webkitRequestFullScreen)	{

								video.webkitRequestFullScreen();

				}	else	if	(video.msRequestFullScreen)	{

								video.msRequestFullScreen();

				}

});

Browsers	will	eventually	support	the	requestFullscreen	method;	therefore,	the	code	first
attempts	to	use	this.	If	this	is	not	provided,	it	tests	whether	the	method	is	available	under	a

browser-specific	name.	This	code	relies	on	the	fact	that	an	undefined	function	returns
undefined	(which	is	false),	whereas	a	defined	function	will	return	the	function	definition
(which	evaluates	to	true).

Different	browsers	may	also	choose	to	add	additional	security	around	this	functionality.
For	instance,	Firefox	displays	the	warning	shown	in	Figure	23.1.

Figure	23.1

Browsers	typically	provide	users	with	the	ability	to	exit	full-screen	mode;	it	is,	however,
possible	to	listen	for	a	keypress	and	invoke	the	exitFullscreen	method	(or	its	browser-
specific	implementations).

Media	Source	Extensions
Although	the	video	tag	is	sufficient	for	displaying	video	on	most	websites,	it	is	not
sufficient	for	some	of	the	larger	video	providers.	Websites	such	as	Netflix	and	YouTube
have	requirements	that	are	not	covered	by	the	functionality	discussed	so	far.

The	next	three	sections	will	briefly	cover	some	of	the	more	advanced	standards	that	are
emerging	in	the	HTML5	video	space.

One	of	the	key	requirements	for	many	streaming	websites	is	the	capability	to	downgrade
the	video	quality	if	the	user’s	Internet	connection	slows	down.	This	removes	the	need	to
freeze	the	video	entirely	while	it	buffers.

Additionally,	a	user	may	choose	to	jump	to	the	60-minute	point	of	a	90-minute	video.	It	is
extremely	wasteful	on	bandwidth	if	the	user	is	still	required	to	download	the	entire	video
file.

The	Media	Source	API	is	an	extension	to	the	HTML5	audio	and	video	tags	that	enables
more	fine-grained	control	over	the	source	of	media.	Rather	than	linking	to	a	static	video
file	on	the	server,	it	allows	JavaScript	to	build	streams	for	playback	from	“chunks”	of
video.	This	enables	techniques	such	as	adaptive	streaming	and	time	shifting.

In	order	to	facilitate	this,	the	Media	Source	API	allows	a	media	stream	to	be	defined	in
JavaScript	as	follows:

var	stream	=	new	MediaSource();

and	its	type	to	be	defines	as	follows:

stream.addSourceBuffer('video/webm;	codecs="vorbis,vp9"	');

It	is	then	possible	to	dynamically	add	chunks	of	video	to	the	stream:

stream.appendBuffer(chunkOfVideo);

The	chunk	of	video	will	typically	be	requested	from	the	server	on	an	“as-needed”	basis,
and	may	only	cover	a	few	seconds	of	the	overall	video	track.	This	means	that	when	each
chunk	is	requested,	the	appropriate	portion	of	the	video	can	be	retrieved,	using	the
appropriate	bitrate	for	the	user’s	connection.

Encrypted	Media	Extensions
The	other	main	feature	required	by	many	commercial	websites	is	the	ability	to	stop	the
video	from	being	pirated	using	Digital	Rights	Management	(DRM).	This	has	been	a
highly	controversial	area	of	the	HTML5	specification.

The	main	specification	for	protecting	video	is	Encrypted	Media	Extensions	(EME).	This
provides	an	API	for	encrypting	media	streams	using	the	video	and	audio	tags.	EME
defines	a	standard	for	determining	how	HTML5	browsers	should	detect	that	encrypted
streams	are	being	used,	and	then	find	an	appropriate	Content	Decryption	Module	(CDM)
that	will	verify	the	license	associated	with	the	video.	It	will	also	perform	the	task	of
decrypting	the	video	data.

Encrypted	Media	Extensions	therefore	provides	an	API	that	enables	web	applications	to
interact	with	content	protection	systems,	to	allow	playback	of	encrypted	audio	and	video.

EME	is	an	optional	extension	to	the	HTML5	specification	so	browsers	can	choose	not	to
support	it.	If	it	is	not	supported,	websites	may	decide	not	to	play	video	inside	the	browser.

Web	Cryptography
The	final	specification	being	developed	to	support	video	inside	the	browser	is	the	Web
Cryptography	API	(WebCrypto).	This	is	a	JavaScript	API	for	performing	common
cryptographic	functions,	such	as	encoding	and	decoding	data	using	common	cryptographic
algorithms.

Although	this	API	is	not	directly	related	to	the	other	video	APIs,	it	is	one	of	the
ingredients	needed	to	support	the	EME	specification.

The	Web	Cryptography	API	is	large	and	complex	and	not	fully	supported	by	most
browsers,	but	it	is	an	important	standard	to	watch	over	the	coming	years.

Try	It
In	this	Try	It,	you	will	add	a	simple	enhancement	to	the	web	page	that	has	been	developed
during	this	lesson	so	far.	If	you	have	not	been	developing	this	throughout	the	lesson,	it	can
be	downloaded	from	the	book’s	website	(it	is	called	video_pre.html).

This	enhancement	will	allow	the	user	to	skip	10	seconds	forward	or	backwards	in	the
video	by	clicking	a	button.

Lesson	Requirements
You	need	to	have	created	the	video_pre.html	file,	along	with	its	dependent	resources
such	as	jQuery,	poster.png,	and	the	video	files.	These	are	all	available	from	the	book’s
website.

Step-by-Step
Start	by	adding	two	new	controls	to	the	web	page	called	“Jump	forward”	and	“Jump
back.”	Assign	appropriate	IDs	to	both	elements.

Add	an	event	listener	to	the	jump	back	button.	This	should	start	by	obtaining	the
currentTime	property	from	the	video	and	converting	it	into	a	number.

Subtract	10	from	the	currentTime	property,	and	set	this	as	the	new	currentTime.
Ensure	that	this	does	not	result	in	a	negative	number	by	using	Math.max.

Add	an	event	listener	for	the	jump	forward	button.	This	is	essentially	the	same,	but	it
needs	to	also	access	the	duration	property,	and	ensure	that	the	currentTime	is	not
set	to	a	value	greater	than	this.

My	controls	looked	like	this:

Jump	forward

Jump	back

And	my	event	listeners	looked	like	this:

$('#jumpBack').click(function(evt)	{

				evt.preventDefault();

				var	currentTime	=	parseFloat($('video').prop('currentTime'));

				var	newTime	=	currentTime-10;

				$('video').prop('currentTime',	Math.max(0,	newTime));

});

$('#jumpForward').click(function(evt)	{

				evt.preventDefault();

				var	currentTime	=	parseFloat($('video').prop('currentTime'));

				var	duration	=	parseFloat($('video').prop('duration'));

				var	newTime	=	currentTime+10;

				$('video').prop('currentTime',	Math.min(duration,	newTime));

});

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	23,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	24

Canvas:	Part	I
The	HTML5	canvas	element	provides	a	canvas	for	capturing	bitmap	images.	The	Canvas
API,	on	the	other	hand,	allows	you	to	interact	with	the	canvas	element	using	JavaScript.
The	canvas	can	be	used	for	simple	drawing,	such	as	shapes	and	lines,	and	for	more
advanced	features,	such	as	animation.	The	canvas	element	and	API	provide	an	alternative
to	plugins	such	as	Adobe	Flash.

This	lesson	covers	the	basics	of	the	Canvas	API;	the	next	lesson	covers	some	of	the
advanced	features.	Although	the	features	covered	in	this	lesson	appear	quite	basic,	they
can	still	be	combined	to	construct	complex	images.

The	Canvas	API	is,	however,	a	reasonably	low-level	API.	This	has	the	benefit	of	making
almost	anything	possible,	but	it	also	means	that	it	is	sometimes	tedious	to	perform
relatively	simple	operations.

The	canvas	element	creates	a	bitmap	(or	raster)	image.	Essentially,	this	means	that	each
pixel	on	the	screen	is	represented	by	a	position	in	memory	that	describes	the	color	of	the
pixel.

Note
Originally,	bitmap	images	were	referred	to	as	bitmaps	because	each	pixel	could	have
a	0	or	1	value	to	denote	black	or	white.	Because	the	canvas	supports	multiple	colors,
it	is	technically	a	pixmap.

The	other	major	category	of	image	is	vector	graphics.	Vector	graphics	describe	shapes	as
mathematical	formulas,	and	therefore	do	not	need	to	store	information	about	every	pixel.
The	shapes	can	then	be	assigned	properties	such	as	their	fill	color.	Vector	graphics	work
extremely	well	when	the	user	may	zoom	into	the	image	because	the	quality	of	the	image
remains	the	same	regardless	of	how	far	the	user	zooms	in.

Note
Browsers	do	also	support	vector	graphics	natively,	in	the	form	of	SVG,	but	that	is
beyond	the	scope	of	this	book.

In	order	to	get	started	with	the	HTML5	canvas,	you	need	to	add	a	canvas	element	to	the
web	page.	In	addition,	it	is	customary	to	provide	it	with	an	ID	to	allow	it	to	be	selected:

<canvas	width="800"	height="500"	id="myCanvas"></canvas>

Notice	also	that	the	height	and	width	have	both	been	specified	to	control	the	size	the
canvas	onscreen.	Because	the	height	and	width	default	to	0,	these	are	mandatory,	unless
you	use	CSS	to	control	the	size	of	the	canvas.

If	you	open	this	web	page,	you	will	see	a	white	screen.	Although	the	canvas	is	present,
every	pixel	is	colored	white	by	default,	and	therefore	you	will	not	see	anything.

With	the	canvas	in	place,	you	can	start	using	the	Canvas	API	to	begin	drawing	shapes	on
the	canvas.	In	order	to	draw	a	shape,	you	need	to	describe:

Where	on	the	canvas	the	shape	should	appear

The	type	of	shape	you	wish	to	draw,	along	with	its	size

Any	other	properties	associated	with	the	shape,	such	as	its	color

I	will	address	these	needs	one	at	a	time	in	the	sections	that	follow.

Simple	Drawing
The	Canvas	API	uses	pixels	for	specifying	sizes.	If	you	wish	to	draw	a	new	shape	onto	the
canvas,	you	need	to	specify	the	coordinates	of	the	shape	relative	to	the	top-left	corner	of
the	canvas.	The	top-left	corner	can	be	thought	of	as	having	a	position	of	0,	0.	You	can
therefore	specify	the	position	of	the	shape,	relative	to	this	position,	using	x	and	y
coordinates.

For	instance,	if	you	wanted	the	shape	to	be	drawn	200	pixels	from	the	top	of	the	screen
and	300	pixels	from	the	left	of	the	screen,	you	would	use	a	position	of	300,	200	as	the	top-
left	corner	of	the	shape.	The	x-axis	is	always	specified	first,	and	represents	the	horizontal
axis,	while	the	y-axis	represents	the	vertical	axis.

Suppose	you	are	drawing	a	rectangle:	You	would	also	need	to	specify	the	height	and	width
of	the	rectangle.

Once	you	determine	these	properties,	you	can	obtain	a	reference	to	the	canvas’s	graphical
context,	and	use	the	JavaScript	API	to	draw	the	shape,	a	rectangle	in	this	case:

<canvas	width="800"	height="500"	id="myCanvas"></canvas>

<script>

				var	context	=	$('#myCanvas')[0].getContext("2d");

				context.fillRect(300,	200,	100,	200);

</script>

Note
If	following	along	the	examples	in	this	lesson,	ensure	the	code	is	placed	inside	an
HTML5	page	structure,	and	that	the	jQuery	library	is	included	in	the	head	section.

When	the	canvas	context	is	requested,	it	must	include	the	parameter	2d	because	the	canvas
element	can	also	support	3D	APIs,	most	notably	WebGL.	This	API	is	outside	the	scope	of
this	book	and	is	not	currently	well	supported.

Notice	that	the	fillRect	method	accepts	four	parameters:

The	x-position	of	the	rectangle

The	y-position	of	the	rectangle

The	width	of	the	rectangle

The	height	of	the	rectangle

This	code	produces	the	shape	shown	in	Figure	24.1.

Figure	24.1

By	default,	the	rectangle	will	be	filled	with	a	black	color,	but	this	can	easily	be	overridden
by	specifying	the	fillStyle	for	the	canvas	context:

<script>

				var	context	=	$('#myCanvas')[0].getContext("2d");

				context.fillStyle	=	'red';

				context.fillRect(300,	200,	100,	200);

</script>

Shapes	can	overlap	on	the	canvas,	but	in	this	case	the	last	shape	drawn	simply	overwrites
the	pixels	of	the	shape	below	it.	For	instance,	the	following	code:

<script>

				var	context	=	$('#myCanvas')[0].getContext("2d");

				context.fillStyle	=	'lightgrey';

				context.fillRect(300,	200,	100,	200);

				context.fillStyle	=	'grey';

				context.fillRect(50,	300,	400,	100);

</script>

produces	the	result	shown	in	Figure	24.2.	Notice	that	the	light-grey	shape	appears	behind
the	grey	shape.

Figure	24.2

It	is	also	possible	to	specify	the	border	of	a	rectangle	without	coloring	the	fill	area.	This
can	be	achieved	by	using	strokeRect,	as	you	can	see	in	the	following	example:

<script>

				var	context	=	$('#myCanvas')[0].getContext("2d");

				context.fillStyle	=	'lightgrey';

				context.fillRect(300,	200,	100,	200);

				context.strokeStyle	=	'grey';

				context.lineWidth	=	3;

				context.strokeRect(50,	300,	400,	100);

</script>

This	produces	the	drawing	shown	in	Figure	24.3.

Figure	24.3

Drawing	Lines
Rectangles	can	only	take	you	so	far;	to	draw	more	complex	shapes	you	need	to	use	lines.
For	instance,	the	API	does	not	provide	a	method	for	drawing	triangles,	but	it	is	easy	to
draw	one	as	follows:

<script>

				var	context	=	$('#myCanvas')[0].getContext("2d");

				context.beginPath();

				context.moveTo(100,20);

				context.lineTo(30,100);

				context.lineTo(170,100);

				context.fill();

</script>

You	begin	by	specifying	that	you	are	beginning	a	path,	and	then	use	moveTo	to	move	to	the
position	you	want	to	start	drawing	from.	You	then	specify	that	you	want	to	draw	from	here
to	another	point	using	lineTo.	You	can	then	call	lineTo	as	many	times	as	necessary,	each
time	specifying	the	coordinates	you	want	the	line	to	end	up	at.

In	this	example,	you	have	only	specified	two	of	the	three	sides	for	the	triangle,	but	when
you	call	fill,	the	third	line	is	implied	because	it	is	only	possible	to	fill	a	closed	shape.
This	code	therefore	produces	the	drawing	shown	in	Figure	24.4.

Figure	24.4

It	is	also	possible	to	draw	the	outline	of	the	shape	by	using	the	stroke	method.

<script>

				var	context	=	$('#myCanvas')[0].getContext("2d");

				context.beginPath();

				context.moveTo(100,20);

				context.lineTo(30,100);

				context.lineTo(170,100);

				context.lineTo(100,20);

				context.stroke();

</script>

In	this	case,	however,	it	would	be	necessary	to	specify	all	three	lines	of	the	triangle;
alternatively,	the	third	lineTo	call	could	be	replaced	with	the	following	line	of	code:

context.closePath();

Circles	and	Curves
The	Canvas	API	also	provides	methods	for	drawing	curved	lines	and	shapes	such	as
circles.	This	can	be	achieved	with	the	arc	method,	as	shown	in	the	following	example:

<script>

				var	context	=	$('#myCanvas')[0].getContext("2d");

				context.beginPath();

				context.arc(70,	70,	50,	0,	2	*	Math.PI,	true)

				context.fill();

</script>

The	arc	method	accepts	the	following	parameters:

The	x	and	y	coordinates	for	the	center	of	the	circle,	which	have	both	been	specified
as	70.

The	radius	of	the	circle	in	pixels.

The	starting	angle	in	radians—a	value	of	0	is	equivalent	to	the	three	o’clock	position
on	a	clock.

The	ending	position	in	radians:	2	*	Math.PI	is	equivalent	to	360	degrees,	whereas
Math.PI	would	be	equivalent	to	180	degrees.

A	fifth	parameter	is	also	accepted,	which	specifies	whether	the	arc	should	be	drawn
clockwise	or	counter	clockwise,	with	the	default	being	false,	which	indicates
clockwise.	This	is	not	relevant	if	drawing	a	full	circle.

This	example	produces	the	circle	shown	in	Figure	24.5.

Figure	24.5

It	is	also	possible	to	draw	the	outline	of	a	circle	without	filling	it	by	using	the	stroke
method.	The	following	example	draws	an	arc	beginning	at	0	radians,	and	ending	at	0.5	*
Math.PI,	which	is	equivalent	to	6	o’clock.	This	particular	example	is	drawn	counter-
clockwise,	meaning	the	line	extends	270	degrees:

<script>

				var	context	=	$('#myCanvas')[0].getContext("2d");

				context.beginPath();

				context.arc(70,	70,	50,	0,	0.5	*	Math.PI,	true);

				context.stroke();

</script>

This	code	produces	the	line	shown	in	Figure	24.6.

Figure	24.6

It	is	also	possible	to	draw	an	arc	between	two	points	using	the	arcTo	method.	This	method
lets	you	specify	the	coordinates	for	two	tangents	to	the	curve	and	then	define	the	radius	of
a	circle	that	would	touch	those	two	tangents.	This	method	is	slightly	more	difficult	to
explain,	but	assume	that	you	started	from	the	coordinates	of	50,50:

context.moveTo(50,50);

Next,	you	specify	that	the	coordinates	of	the	first	tangent	are	150,	20.	You	would	therefore
draw	an	imaginary	line	between	50,	50	and	150,	20.	Next,	you	draw	an	imaginary	line
from	this	point	to	a	second	point	specified—for	example,	150,	150.	You	therefore	have
specified	the	imaginary	lines	shown	in	Figure	24.7.

Figure	24.7

Now	you	specify	that	the	radius	of	the	circle	that	touches	these	tangents	is	80	pixels:

				var	context	=	$('#myCanvas')[0].getContext("2d");

				context.beginPath();

				context.moveTo(50,50);

				context.arcTo(150,20,150,150,80);

				context.stroke();

This	effectively	creates	the	imaginary	circle	shown	in	Figure	24.9,	and	therefore	creates
the	arc	shown	in	Figure	24.8.

Figure	24.8

Figure	24.9

Drawing	Text
The	final	feature	this	lesson	will	cover	is	text.	It	is	possible	to	draw	text	onto	the	canvas
using	the	fillText	method,	as	shown	in	the	following	example:

<script>

				var	context	=	$('#myCanvas')[0].getContext("2d");

				context.font="20px	Courier";

				context.fillText("Hello	World!",20,50);

</script>

Notice	that	the	font	of	the	context	is	set,	and	then	the	fillText	is	called	with	the	relevant
text	and	the	coordinates	for	the	text	to	start	at.	The	coordinates	represent	the	bottom-left
corner	of	the	text;	therefore,	it	is	not	possible	to	specify	0	for	the	y-axis	because	the	text
would	be	positioned	above	the	canvas.

The	preceding	example	produces	the	result	shown	in	Figure	24.10.

Figure	24.10

Adding	text	to	a	canvas	is	not	like	adding	text	to	an	HTML	document.	The	text	will	not
wrap	if	it	reaches	the	right-hand	edge	of	the	canvas,	and	there	are	no	checks	to	ensure	that
the	text	displays	on	the	canvas	at	all.	It	is	possible	to	specify	a	forth	parameter	to
fillText,	which	specifies	the	maximum	width	of	the	text,	but	this	will	not	cause	text	to
wrap.

To	help	with	issues	positioning	text,	the	Canvas	API	does	support	a	measureText	method.
This	allows	you	to	determine	the	width	of	an	arbitrary	string	of	text,	given	the	current
font.	For	example:

context.measureText("Hello	World");

The	Canvas	API	also	supports	a	strokeText	method.	This	is	identical	to	fillText,	except
it	only	draws	the	outline	of	the	text.	For	example,	the	following	code:

<script>

				var	context	=	$('#myCanvas')[0].getContext("2d");

				context.font="30px	Georgia";

				context.strokeText("Hello	World!",20,50);

</script>

produces	the	text	shown	in	Figure	24.11.

Figure	24.11

Try	It
In	this	Try	It,	you	are	going	to	create	a	“random	walk.”	Random	walks	are	often	used	to
describe	price	movements	of	commodities,	stocks,	and	currencies	in	economics,	and	are
derived	by	imagining	the	path	followed	by	a	drunk	who	wakes	at	intermittent	intervals	and
staggers	in	a	random	direction.

In	this	Try	It,	you	will	perform	10,000	random	walks,	each	time	moving	3	pixels	up,
down,	left,	or	right	from	a	given	starting	position.	The	pattern	created	each	time	you	run
this	will	be	different,	but	Figure	24.12	shows	an	example	I	created.

Figure	24.12

Lesson	Requirements
You	will	need	a	text	editor	for	writing	the	code	and	the	Chrome	browser	for	running	the
code.

Step-by-Step
1.	 Start	by	creating	a	standard	HTML5	web	page,	and	include	an	import	for	jQuery.

2.	 Add	a	canvas	element	to	the	web	page,	assign	it	an	ID,	and	give	it	a	width	and
height	of	800.

3.	 Start	by	finding	the	canvas	element,	and	call	getContext(”2d”)	on	it,	assigning	the
result	to	a	variable	called	context.

4.	 Call	beginPath	on	the	context,	and	then	use	the	moveTo	method	to	move	to	the	center
of	the	canvas.

5.	 Create	two	variables	to	record	the	current	X	and	Y	coordinates.	These	should	be
initialized	to	the	values	you	passed	to	the	moveTo	method.

6.	 Create	a	for-loop	that	iterates	10,000	times.	Steps	7–10	will	occur	inside	the	for-loop.

7.	 Start	be	creating	a	random	number	using	Math.random(),	and	assign	this	to	a
variable.

8.	 Create	an	if-else	block	that	has	four	branches	depending	on	whether	the	random
number	is:

Less	than	0.25

Less	than	0.5

Less	than	0.75

Less	than	1

9.	 Within	each	of	these	four	blocks,	perform	one	of	these	four	operations	(making	sure
each	operation	is	performed	in	one,	and	only	one,	branch):

Subtract	3	from	the	current	Y	coordinate.

Add	3	to	the	current	Y	coordinate.

Subtract	3	from	the	current	X	coordinate.

Add	3	to	the	current	X	coordinate.

10.	 Use	the	lineTo	method	to	move	to	the	new	X	and	Y	coordinates.

11.	 After	the	for-loop	finishes,	call	stroke	on	the	context.

12.	 You	can	try	running	the	web	page	as	many	times	as	you	like.	Each	time	you	run	it,
you	will	be	surprised	at	how	different	the	patterns	look.

My	version	of	the	JavaScript	supporting	this	page	looked	like	this:

<script>

				var	context	=	$('#myCanvas')[0].getContext("2d");

				context.beginPath();

				context.moveTo(400,400);

				var	currentX	=	400;

				var	currentY	=	400;

				for	(var	i	=	0;	i	<	10000;	i++)	{

								var	r	=	Math.random();

								console.log(r);

								if	(r	<	0.25)	{

													currentX	=	currentX-3;

								}	else	if	(r	<	0.5)	{

												currentX	=	currentX	+	3;

								}	else	if	(r	<	0.75)	{

												currentY	=	currentY	-	3;

								}	else	{

												currentY	=	currentY	+	3;

								}

								console.log('Moving	to	'	+	currentX	+	'	'	+	currentY);

								context.lineTo(currentX,	currentY);

				}

				context.stroke();

</script>

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	24,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	25

Canvas:	Part	II
In	the	previous	lesson,	you	learned	how	to	use	the	Canvas	API	to	create	simple	two-
dimensional	bitmaps.	This	lesson	will	consolidate	your	knowledge	from	the	previous
lesson,	and	also	look	at	some	of	the	more	advanced	canvas	features,	such	as	animation.

Linear	Gradients
In	the	previous	lesson,	all	lines	and	shapes	used	block	colors.	Linear	gradients	allow	you
to	create	colors	that	start	with	a	specific	color	and	end	with	another	color,	and	gradually
transform	from	one	color	to	the	other	over	the	area	of	the	feature	being	colored.

In	order	to	create	a	linear	gradient,	you	first	need	to	use	the	createLinearGradient
method,	and	specify	the	x	and	y	coordinates	for	an	imaginary	line	through	which	the	color
should	be	transformed.	For	example:

var	gradient	=	context.createLinearGradient(50,0,350,0);

In	this	case,	the	gradient	runs	horizontally	from	the	x-coordinate	of	50	to	the	x-coordinate
of	350.	This	is	not	coloring	any	feature;	it	is	just	creating	a	line	through	which	features	can
be	colored	with	a	linear	gradient.

Next,	you	need	to	specify	the	color	at	specific	points	along	the	line	using	the
addStopColor	method.	Usually,	specifying	the	starting	and	ending	color	is	sufficient,	but
you	can	specify	the	color	for	as	many	points	along	the	line	as	you	need.	The	following
specifies	the	color	for	the	start	and	end	of	the	line:

gradient.addColorStop(0.0,	"black");

gradient.addColorStop(1.0,	"white");

The	first	parameter	to	addStopColor	represents	the	position	on	the	line:	A	value	of	0
represents	the	start	of	the	line,	while	1.0	represents	the	end	of	the	line.	The	second
parameter	represents	the	color	for	that	position	on	the	line.

Once	the	gradient	has	been	defined,	it	can	be	specified	as	the	fill	style	of	the	context,	and
you	can	use	any	of	the	methods	from	the	previous	lesson	to	add	features	to	the	canvas:

context.fillStyle=gradient;

context.fillRect(50,50,350,350);

This	will	produce	the	result	shown	in	Figure	25.1.

Figure	25.1

Notice	that	the	line	defined	above	does	not	actually	run	through	the	rectangle	(it	is	above
it),	but	it	does	run	the	entire	horizontal	length	of	the	rectangle.	The	line	defined	is	simply	a
guide	for	the	color	that	should	appear	at	specific	points	on	the	canvas,	and	only	takes	on
meaning	when	features	are	added	within	the	bounds	of	that	line.

It	is	also	possible	to	define	more	complex	gradients.	For	example,	the	following	starts	out

red,	gradually	becomes	white	and	stays	white	for	20	percent	of	the	length	of	the	line,	and
then	gradually	becomes	blue.

				gradient.addColorStop(0,	"red");

				gradient.addColorStop(0.4,	"white");

				gradient.addColorStop(0.6,	"white");

				gradient.addColorStop(1,	"blue");

It	is	naturally	also	possible	to	define	vertical	gradients,	or	gradients	that	run	on	an	angle
through	the	canvas.	For	instance,	the	following	code	creates	a	gradient	that	runs	on	an
angle	from	top	left	to	bottom	right	of	the	canvas:

				var	gradient	=	context.createLinearGradient(50,50,250,250);

				gradient.addColorStop(0,	"black");

				gradient.addColorStop(1,	"white");

				context.fillStyle=gradient;

				context.fillRect(50,50,200,200);

This	produces	the	result	shown	in	Figure	25.2.

Figure	25.2

Shadows
Another	interesting	color-based	effect	involves	the	use	of	shadows.	Just	like	linear
gradients,	shadows	can	be	applied	to	any	of	the	features	you	have	looked	at	so	far,
including	text,	rectangles,	and	arcs.

To	begin	using	shadows,	you	first	instruct	the	canvas	context	to	use	shadows	by	specifying
a	shadow	color:

context.shadowColor	=	"#ABABAB";

Next,	you	need	to	specify	the	direction	of	the	shadow.	This	is	achieved	by	specifying	how
far	the	shadow	should	extend	from	each	point	on	the	feature	in	both	the	horizontal	and
vertical	direction.	For	instance,	if	you	want	the	shadow	to	extend	10	pixels	up	and	10
pixels	to	the	right	of	a	feature,	you	specify	the	following:

context.shadowOffsetX	=	10;

context.shadowOffsetY	=	-10;

In	order	to	visualize	how	the	shadow	works,	think	of	each	pixel	as	having	a	position	of	0,
0.	Then	imagine	the	coordinates	where	the	shadow	should	end	in	relation	to	this	point.

Next,	you	add	visual	elements	just	as	you	normally	would;	for	instance,	the	following
adds	text	to	the	canvas	in	a	50-point	font:

				context.font="50px	Courier";

				context.fillText("Hello	World!",20,50);

In	this	case,	the	effect	shown	in	Figure	25.3	is	created.

Figure	25.3

You	will	notice	that	in	this	case,	the	shadow	is	very	crisp.	It	is	possible	to	make	the
shadow	blurry	by	setting	the	following	property:

context.shadowBlur	=	5;

The	default	value	is	0,	and	the	larger	the	number,	the	more	blur	is	applied.	For	instance,	a
blur	level	of	5	creates	the	image	shown	in	Figure	25.4.

Figure	25.4

Once	you	have	specified	a	shadow	color,	any	visual	elements	added	after	that	point	will
have	a	shadow.	There	are	several	ways	to	stop	shadows,	such	as	setting	shadowOffsetX

and	shadowOffsetY	to	0.

There	is	a	more	general	solution,	however:	It	is	possible	to	save	the	state	of	the	context	at
any	point	and	then	revert	back	to	this	state	in	the	future.	For	example:

				var	context	=	$('#myCanvas')[0].getContext("2d");

				context.fillStyle	=	'red';

				context.save();

				context.shadowColor	=	"#ABABAB";

				context.shadowOffsetX	=	10;

				context.shadowOffsetY	=	-10;

				context.font="50px	Courier";

				context.fillText("Hello	World!",20,50);

				context.restore();

				context.fillRect(100,100,200,200);

In	this	example,	the	fillStyle	is	set	to	red,	and	then	the	context	is	saved.	The	shadow
properties	are	then	set,	and	the	text	is	written	to	the	canvas.	You	then	revert	back	to	the
saved	version	of	the	canvas	using	restore,	and	draw	a	rectangle.	In	this	case,	the
rectangle	will	have	a	red	fill	color,	but	will	not	have	a	shadow.

The	save	and	restore	methods	are	used	extensively	when	creating	complex	bitmaps
because	they	allow	you	to	save	a	default	set	of	properties,	and	then	temporarily	augment
these	as	needed.

Images
Rather	than	drawing	on	the	canvas,	it	is	possible	to	load	an	existing	image	directly	onto
the	canvas.	Once	an	image	has	been	added,	it	is	possible	to	draw	over	top	of	the	image;
therefore,	it	is	often	useful	to	use	an	image	as	the	background	of	a	canvas.

To	start,	create	an	Image	object,	and	set	the	src	property	to	the	absolute	or	relative	URL	of
the	image:

				var	image	=	new	Image();

				image.src	=	"cat.jpg";

The	image	specified	can	be	downloaded	from	the	book’s	website,	or	you	can	use	your	own
image.

A	complication	with	adding	images	to	the	canvas	is	that	they	need	to	be	downloaded	from
the	web	server	before	they	can	be	added	to	the	canvas.	You	therefore	need	to	add	an	event
listener	to	the	image	to	listen	for	the	download	to	complete;	you	can	then	add	it	to	the
canvas:

				image.addEventListener('load',	function()	{

								context.drawImage(image,	20,	20,	360,	260);

				});

The	call	to	drawImage	contains	the	following	parameters:

The	Image	to	be	drawn.

The	x	and	y	coordinates	to	position	the	top-left	corner	of	the	image.

The	width	and	height	of	the	image:	These	can	be	omitted,	in	which	case	the	image
will	not	be	scaled.

The	preceding	code	will	add	the	image	to	the	canvas,	as	shown	in	Figure	25.5.

Figure	25.5

Transforming	Shapes
Up	until	this	point,	each	feature	has	been	added	with	its	own	location	and	its	own	size.	In
some	cases,	it	can	be	easier	to	repeatedly	draw	the	same	feature,	while	changing	the	way
the	canvas	context	scales,	positions,	or	skews	these	features.

You	can	achieve	this	by	using	the	transform	method.	As	a	very	simple	example	of	the
transform	method	in	action,	consider	the	following:

				context.fillStyle='#444444';

				context.fillRect(10,10,	180,180);

				context.transform(0.5,	0,	0,	0.5,	30,	30);

				context.fillStyle='#CCCCCC';

				context.fillRect(10,10,	180,180);

This	example	starts	by	drawing	a	rectangle	in	a	dark	grey	color.	Once	the	first	rectangle	is
drawn,	the	transform	method	is	called	on	the	canvas	context,	and	passed	six	parameters
that	control	how	any	future	features	are	moved,	skewed,	or	scaled.	These	six	parameters
are:

The	amount	of	horizontal	scaling	that	should	be	applied,	with	1.0	being	the
default:	In	the	previous	example,	the	horizontal	scaling	is	50	percent,	meaning	any
new	features	will	only	be	half	as	wide	as	they	otherwise	would	have	been.

The	amount	of	horizontal	skew:	You	will	look	at	this	parameter	shortly,	but	it	is
used	to	angle	the	horizontal	axis	up	or	down.

The	amount	of	vertical	skew:	You	will	look	at	this	parameter	shortly,	but	it	is	used
to	transform	the	vertical	axis	left	or	right.

The	amount	of	vertical	scaling,	with	1.0	being	the	default:	In	the	preceding
example,	the	vertical	scaling	is	50	percent,	meaning	any	new	features	will	only
appear	at	half	the	height	specified.

The	number	of	pixels	to	offset	drawing	by	horizontally:	In	this	case,	the	offset	is
30	pixels,	so	any	drawing	will	occur	30	pixels	to	the	right	of	where	it	would	have
otherwise.	This	can	be	a	negative	number	to	move	features	to	the	left.

The	number	of	pixels	to	offset	drawing	by	vertically:	In	this	case,	the	offset	is	30
pixels,	so	any	drawing	will	occur	30	pixels	below	where	it	would	have	otherwise.
This	can	be	a	negative	number	to	move	features	higher.

These	six	values	represent	the	transformation	matrix	of	the	canvas	context,	and	all	values
default	to	0.

Note
A	transformation	matrix	is	a	set	of	nine	numbers,	ordered	into	three	rows,	and	is	used
to	transform	a	bitmap	via	linear	algebra.	The	six	parameters	mentioned	in	the
preceding	bulleted	list	are	listed	as	parameters	a–f,	while	the	last	row	of	the	matrix
always	has	the	values	0

0	1:

a	c	e

b	d	f

0	0	1

It	is	not	necessary	to	have	an	understanding	of	how	linear	algebra	works,	but	you
should	understand	the	purpose	of	each	parameter	in	the	matrix.

Once	the	context	has	been	transformed,	you	can	draw	the	exact	same	rectangle	in	a	lighter
grey,	and	the	result	will	be	as	you	see	in	Figure	25.6.

Figure	25.6

If	you	were	to	call	transform	again	and	draw	another	shape	in	white,	the	current	context
(which	is	already	drawing	at	a	50	percent	scale)	would	be	transformed.	For	instance,	in	the
following	case,	you	will	draw	a	third	rectangle	at	25	percent	the	size	of	the	original.

context.transform(0.5,	0,	0,	0.5,	30,	30);

context.fillStyle='white';

context.fillRect(10,10,	180,180);

This	produces	the	result	shown	in	Figure	25.7.	Notice	in	this	case	that	the	30-pixel
horizontal	and	vertical	movement	is	also	scaled.

Figure	25.7

It	is	also	possible	to	use	setTransform	rather	than	transform.	This	method	accepts
identical	parameters	but	will	set	the	transformation	matrix	back	to	its	default	values	before
setting	the	requested	values.	This	ensures	that	you	are	not	transforming	a	transformation
matrix	that	has	already	been	augmented.

This	example	can	also	be	changed	to	include	skewing.	The	following	code	skews	the
squares	by	0.3	horizontally,	and	–0.3	vertically:

				context.fillStyle='#444444';

				context.fillRect(10,10,	180,180);

				context.transform(0.5,	0.3,	-0.3,	0.5,	80,	30);

				context.fillStyle='#CCCCCC';

				context.fillRect(10,10,	180,180);

				context.transform(0.5,	0.3,	-0.3,	0.5,	80,	30);

				context.fillStyle='white';

				context.fillRect(10,10,	180,180);

This	produces	the	result	shown	in	Figure	25.8.

Figure	25.8

The	values	used	for	the	skew	parameters	are	tangents;	therefore,	if	you	know	the	angle
you	would	like	to	skew	shapes	by,	you	can	use	the	utility	method	Math.tan,	and	pass	the
angle	as	a	parameter.

The	horizontal	skew	of	0.3	lifts	the	bottom-left	corner,	creating	an	angle	of	approximately
60	degrees.	The	vertical	skew	of	–0.3	pulls	the	bottom-left	corner	to	the	left,	creating	an
angle	of	approximately	60	degrees.

If	you	want	to	maintain	the	shape	of	a	feature,	the	horizontal	and	vertical	values	need	to	be
the	inverse	of	one	another.	For	instance,	if	both	values	are	set	to	0.3,	the	effect	in	Figure
25.9	is	produced.

Figure	25.9

The	Canvas	API	provides	three	additional	utility	methods	for	modifying	the
transformation	matrix.	If	you	only	need	to	modify	the	vertical	and	horizontal	scale,	you
can	use	the	scale	method	and	pass	it	two	parameters.

If,	on	the	other	hand,	you	only	need	to	modify	the	horizontal	and	vertical	offset,	you	can
use	the	translate	method,	and	pass	it	two	parameters.	You	can	think	of	the	translate
method	as	a	mechanism	for	modifying	where	the	0,	0	coordinate	appears	on	the	canvas.

Finally,	it	is	possible	to	use	the	rotate	method	to	rotate	the	context	of	the	canvas	by	a
given	number	of	radians.	This	does	not	rotate	the	canvas	itself,	but	means	that	any	features
drawn	onto	the	canvas	will	appear	at	an	offset	angle.	You	will	look	at	this	method	in	the
Try	It	section.

Basic	Animation
The	final	subject	that	will	be	introduced	in	this	chapter	is	basic	animation.	Up	until	this
point,	all	shapes,	lines,	and	text	have	been	static:	Once	they	are	added,	they	don’t	change.
It	is	also	possible	to	animate	these	features.

Basic	animation	works	by	redrawing	the	canvas,	or	portions	of	the	canvas,	at	a	specified
interval.	In	order	to	perform	a	task	at	a	given	interval,	it	is	common	to	use	the	built-in
setInterval	JavaScript	function.	This	accepts	two	parameters:	a	function	to	execute,	and
the	time	in	milliseconds	between	each	execution.	The	function	will	then	be	invoked
indefinitely	at	the	specific	interval.

Note
There	is	no	guarantee	setInterval	will	execute	at	exactly	the	specified	interval.
Instead,	setInterval	places	an	event	on	a	queue	at	the	appropriate	time,	and
JavaScript	executes	this	when	all	other	tasks	at	hand	have	completed.

JavaScript	is	inherently	single	threaded,	meaning	it	can	perform	only	a	single	task	at
a	time.	The	event	queue	is	therefore	a	mechanism	of	controlling	the	order	in	which
processing	will	occur.

In	this	example,	you	will	write	an	animation	that	shows	a	blue	box	running	from	the	top
left	of	the	canvas	to	the	bottom	right.	The	canvas	is	assumed	to	be	400	by	400	pixels.
Once	it	reaches	the	bottom,	it	will	change	direction	and	head	for	the	top	right	again.	The
animation	will	update	every	30	milliseconds	in	this	example,	creating	a	reasonably	smooth
animation.

The	only	new	method	that	will	be	introduced	in	this	example	is	clearRect.	This	is	the
opposite	of	fillRect,	and	this	example	therefore	works	by	clearing	the	previously	drawn
rectangle	and	creating	a	new	one.

				var	context	=	$('#myCanvas')[0].getContext("2d");

				context.fillStyle='blue';

				var	startX	=	0;

				var	startY	=	0;

				var	forward	=	true;

				setInterval(drawRectangle,	30);

				function	drawRectangle()	{

									context.clearRect(startX,startY,	40,	40);

									if	(forward	&&	startX	===	400)	{

													forward	=	false;

									}		else	if	(!forward	&&	startX	===	0)	{

													forward	=	true;

									}

									if	(forward)	{

													startX	=	startX	+	1;

													startY	=	startY	+	1;

									}	else	{

													startX	=	startX	-	1;

													startY	=	startY	-	1;

									}

									context.fillRect(startX,startY,	40,	40);

				}

As	you	can	see,	the	rest	of	the	code	in	this	example	is	straightforward.	You	use	global
variables	to	keep	track	of	the	x-coordinate	and	y-coordinate,	and	either	increase	or
decrease	these	by	1	before	re-drawing	the	rectangle.

Try	It
In	this	Try	It,	you	are	going	to	create	an	animated	clock	that	counts	the	seconds	as	they
pass.	This	will	use	a	combination	of	the	techniques	covered	in	this	lesson,	and	those
covered	in	the	previous	lesson.

Lesson	Requirements
You	will	need	a	text	editor	for	writing	the	code	and	the	Chrome	browser	for	running	the
code.

Step-by-Step
1.	 Start	by	creating	a	standard	HTML5	web	page,	and	include	an	import	for	jQuery.

2.	 Create	a	canvas	with	height	and	width	set	to	400.

3.	 Create	a	script	block	and	obtain	a	reference	to	the	canvas	context	using	the	approach
outlined	in	Lesson	24.

4.	 Begin	by	setting	the	fillStyle	to	blue.

5.	 Create	a	circle	using	an	arc	with	a	center	at	200,	200.	The	radius	should	be	set	to	130.

6.	 Use	the	fill	method	to	fill	the	arc.

7.	 Set	the	lineWidth	property	to	2.	You	will	use	this	when	you	start	drawing	the	second
hand.

8.	 Use	the	translate	method	to	set	the	offset	to	the	center	of	the	circle	(position	200,
200).

9.	 Create	a	new	function	for	drawing	the	second	hand	called	drawSeconds.

10.	 This	method	should	start	by	overwriting	the	second	hand	that	was	drawn	previously,
so	set	the	strokeStyle	to	blue.

11.	 Invoke	the	beginPath	method,	and	then	use	the	moveTo	method	to	move	to	position
0,	0.	(This	is	the	center	of	the	circle	as	a	result	of	the	translation	that	occurred	in	Step
8.)

12.	 Invoke	the	lineTo	method	with	an	x-coordinate	of	0,	and	a	y-coordinate	of	–120.
This	will	draw	a	line	up	from	the	center	of	the	circle.

13.	 Invoke	the	stroke	method.

14.	 You	now	want	to	rotate	the	canvas	context	by	an	amount	corresponding	to	1	second.
The	easiest	way	to	do	this	is	to	invoke	the	rotate	method	(which	accepts	the	number
of	radians	to	rotate	the	canvas	context),	and	pass	the	parameter:	(2	*	Math.PI)	/
60.	Remember	that	2	*	Math.PI	is	360	degrees;	thus,	dividing	this	by	60	produces
the	number	of	degrees	in	one	second.

15.	 Set	the	strokeStyle	to	white,	and	draw	a	new	line	using	the	exact	same	actions

outlined	in	Steps	11–13.

16.	 Invoke	the	setInterval	method,	passing	a	reference	to	the	drawSeconds	function,
and	use	an	interval	of	1000	milliseconds.

17.	 Load	the	page,	and	leave	it	open.	The	result	should	be	an	animated	white	second
hand	on	a	blue	clock.

18.	 Your	code	should	now	look	like	this:

<script>

				var	context	=	$('#myCanvas')[0].getContext("2d");

				context.fillStyle='blue';

				context.arc(200,	200,	130,	0,	2	*	Math.PI,	true);

				context.fill();

				context.lineWidth	=	2;

				context.translate(200,200);

				setInterval(drawSeconds,	1000);

				function	drawSeconds()	{

									context.strokeStyle	=	'blue';

									context.beginPath();

									context.moveTo(0,0);

									context.lineTo(0,-120);

									context.stroke();

									context.rotate((2	*	Math.PI)	/	60);

									context.beginPath();

									context.strokeStyle	=	'white';

									context.moveTo(0,0);

									context.lineTo(0,-120);

									context.stroke();

				}

</script>

You	may	notice	a	problem	with	my	implementation:	Faint	white	outlines	are	left	when	the
white	line	is	overwritten.	Try	to	find	one	of	the	many	solutions	for	resolving	this	issue.

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	25,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	26

CSS3:	Part	I
Just	like	HTML,	CSS	is	evolving	over	time.	The	latest	version	of	CSS	is	called	CSS3	and
adds	several	important	modules	to	CSS	that	will	be	explored	over	the	next	two	lessons.

Nothing	fundamental	has	changed	with	CSS	in	version	3:	The	language	still	uses	selectors
to	identify	elements	and	still	allows	a	set	of	stylistic	properties	to	be	defined	for	these
elements.	CSS3	is	important,	however,	because	it	specifies	a	number	of	new	selectors
style	properties.	Together,	these	selectors	and	properties	greatly	improve	the
expressiveness	of	CSS.

Unlike	with	HTML,	you	may	have	noticed	that	it	is	not	necessary	to	specify	which	version
of	CSS	you	are	using.	CSS3	is	entirely	backwards	compatible;	therefore,	if	you	want	to
use	CSS3	features,	you	simply	include	them	in	your	existing	style	sheets,	and	the	browser
will	simply	ignore	them	if	it	does	not	support	them.

The	next	two	lessons	will	not	provide	an	exhaustive	introduction	to	CSS3,	but	they	will
introduce	the	most	interesting	features,	and	will	further	help	consolidate	your	knowledge
of	CSS.

Selectors
CSS3	provides	a	number	of	new	selectors	for	selecting	elements	based	on	a	wider	set	of
criteria.

CSS3	includes	one	new	operator	called	the	tilde	operator.	This	is	used	to	select	elements
that	are	siblings	of	a	specified	element,	and	are	declared	anywhere	after	that	element.	For
instance,	in	contacts.css,	you	might	want	to	style	tfoot	elements	differently	if	they
have	a	sibling	element	of	type	thead;	this	could	be	achieved	as	follows:

thead	∼	tfoot	{
				font-size:	0.75em;

				text-align:right;

}

This	will	only	match	tfoot	elements	if	a	sibling	that	is	a	thead	precedes	them.

This	operator	is	similar	to	the	+	operator	introduced	in	CSS2,	but	the	+	operator	only	finds
elements	that	are	immediately	preceded	by	the	specified	element,	which	it	is	not	in	this
case.

The	+	operator	could	be	used	to	match	tbody	elements	that	are	preceded	by	thead
elements	because	tbody	is	directly	preceded	by	thead.	Therefore,	the	following	rule	could
be	used	in	contacts.css:

thead	+	tbody	{

CSS3	also	greatly	enhances	the	way	selectors	can	interact	with	attribute	values.	Before
looking	at	these,	I	will	briefly	examine	three	additional	CSS2	selectors	that	allow	CSS
selections	based	on	attributes.

To	match	an	attribute	name,	the	following	selector	can	be	used:

[required]	{

Notice	that	this	uses	the	same	square	bracket	notation	seen	with	jQuery.	Additionally,	in
order	to	match	both	the	attribute	name	and	value,	the	following	syntax	can	be	used:

[name=	"emailAddress"]	{

Often,	you	match	attribute	values	based	on	more	complex	rules.	For	instance,	you	may
want	to	match	any	name	attribute	that	has	a	value	beginning	with	email.	This	can	be
achieved	with	the	following	selector:

	[nameˆ=	"email"]	{

Alternatively,	you	may	want	to	match	attributes	with	values	ending	in	a	specific	value.	For
example,	the	following	CSS3	rule	will	color	two	labels	red	(the	contactName	and
companyName	labels):

label[for$=	"Name"]	{

				background:red;

}

Finally,	you	may	want	to	match	any	element	that	has	an	attribute	value	containing
specified	text.	For	instance,	the	following	will	select	any	elements	that	have	an	inline
style	attribute	that	contains	a	display	property	override:

	[style*=	"display"]	{

Most	of	the	other	new	selectors	are	pseudo-class	and	pseudo-element	selectors.	As	you
will	remember	from	earlier	in	the	book,	pseudo-class	and	pseudo-element	selectors
directly	tie	CSS	rules	to	the	state	of	the	DOM:	If	the	DOM	changes,	elements	will
dynamically	be	selected	or	deselected	based	on	their	state.

Some	of	these	have	already	been	introduced	earlier	in	the	book.	The	remainder	of	the	most
widely	used	selectors	are	introduced	in	the	selection	listed	in	Table	26.1,	but	this	is	not	an
exhaustive	list.

Table	26.1:	CSS3	Selectors

Selector Purpose
:checked Finds	radio	buttons	or	checkboxes	that	are	checked.
:disabled Finds	input	fields	that	are	disabled,	and	that	therefore	restrict	user	entry.	Input

fields	can	be	disabled	via	the	disabled	attribute.
:empty Finds	elements	that	do	not	have	any	children.
:enabled This	is	the	opposite	of	:disabled.
:invalid As	you	have	seen	in	earlier	lessons,	this	selects	elements	that	have	failed

validation.
:not Selects	elements	that	do	not	meet	specific	criteria.	For	instance,	the	following

rule	selects	any	elements	that	are	not	divs:	:not(div).
:nth-

child

Selects	elements	that	have	a	specific	index	among	their	siblings.	For	instance,
the	following	finds	the	third	element	within	the	tbody	element,	provided	it	is
a	tr	element:	tbody	>	tr:nth-child(3).

:nth-of-

type

This	is	essentially	the	same	as	:nth-child,	except	it	only	looks	for	elements
of	the	specified	type.	For	example,	this	selector	finds	the	third	tr	element	that
is	a	child	of	the	tbody	element:	tbody	>	tr:nth-of-type(3).

:optional Selects	any	input	fields	that	are	not	marked	as	required.
:read-

only

Selects	any	input	fields	that	have	been	marked	with	the	readonly	attribute.

:read-

write

Selects	any	input	fields	that	are	not	marked	as	readonly	or	disabled.

:valid Selects	all	the	input	fields	that	have	passed	validation,	or	that	do	not	need
validation.

CSS	Borders
You	have	already	seen	numerous	examples	of	CSS	borders	using	the	border	property.
Although	these	borders	allow	you	to	express	the	style	of	the	border,	the	thickness	of	the
border,	and	the	color	of	the	border,	they	are	somewhat	limited.

CSS3	adds	three	important	capabilities,	each	of	which	will	be	explored	in	this	section.	All
the	examples	in	this	section	will	be	added	to	the	div	element	shown	in	the	following
example:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

				<style>

								div	{

												margin:50px;

												width:300px;

												height:300px;

												background:#cdcdcd;

								}

				</style>

</head>

<body>

				<div></div>

</body>

</html>

CSS3	allows	for	curved	corners	on	borders.	Curved	corners	are	commonly	used	as	a
stylistic	device	to	soften	the	impact	of	the	border.	In	order	to	demonstrate	this,	you	need	to
ensure	the	element	already	has	a	border,	so	add	the	following	to	the	div	rule:

border:	1px	solid	#555555;

Then	simply	add	one	additional	property:

border-radius:	20px;

The	value	specifies	how	much	the	corners	should	be	curved.	If	you	open	the	web	page,	it
will	look	like	what	you	see	in	Figure	26.1.

Figure	26.1

The	second	addition	to	borders	is	the	ability	to	use	images	for	borders.	This	allows	you	to
create	more	interesting	borders	because	you	are	not	limited	to	simple	lines.	Imagine	that
you	have	the	photographic	pattern	shown	in	Figure	26.2,	and	you	want	to	use	it	for	a
border.

Figure	26.2

This	picture	is	available	on	the	book’s	website,	named	border.png.	You	can	begin	by
specifying	a	transparent	border	with	the	required	thickness:

border:	30px	solid	transparent;

The	width	of	the	border	should	be	the	thickness	you	want	the	photographic	image	to
appear,	in	this	case	30	pixels.	With	that	in	place,	you	can	use	the	border-image	property
to	specify	the	image	that	should	be	used	for	the	border:

border-image:url("border.png")	30	30	30	30	stretch;

This	property	accepts	the	following	parameters:

The	file	that	should	be	used.

Four	different	values	specifying	how	to	slice	the	image—these	will	be	discussed
shortly.	These	can	either	be	percentages	or	pixels.	Oddly,	if	they	are	percentages,	the
%	sign	must	be	used,	but	if	the	values	are	pixels,	the	px	suffix	cannot	be	used.

How	to	deal	with	the	fact	that	the	image	may	not	be	the	same	size	as	the	border.	In
this	case,	I	have	specified	that	the	image	should	be	stretched.	Other	possible	values
are:

repeat:	The	border	image	will	be	repeated	as	many	times	as	necessary.

round:	The	image	will	be	repeated	to	fill	the	area,	and	it	will	ensure	that	there
are	a	round	number	of	repetitions,	scaling	the	image	if	necessary.

This	produces	the	effect	shown	in	Figure	26.3.

Figure	26.3

The	four	values	used	(all	of	which	were	set	to	30	pixels)	effectively	state	how	much	of	the
image	should	be	used	for	the	top,	right,	bottom,	and	left	of	the	border.	I	have	specified
these	as	the	same	size	as	the	border,	meaning	the	image	does	not	need	to	be	stretched	in
order	to	fit	into	each	position.

Note
If	you	are	referring	to	images	from	an	external	CSS	style	sheet,	it	is	important	to
realize	that	the	file	locations	will	be	relative	to	the	style	sheet	location,	not	the	web
page	itself.

The	third	main	enhancement	to	borders	is	the	ability	to	add	shadows	to	elements,	just	as
you	saw	with	the	Canvas	API.	This	feature	is	not	explicitly	linked	to	borders	because	it	is
possible	to	add	shadows	to	any	element,	regardless	of	whether	it	has	a	border	or	not.

In	order	to	demonstrate	the	use	of	shadows,	add	the	following	property	to	the	div	element:

box-shadow:	10px	-10px	10px	#888888;

The	parameters	used	are	as	follows:

The	horizontal	position	of	the	shadow:	Because	this	is	a	positive	number,	the
shadow	will	appear	on	the	right	side	of	the	div.

The	vertical	position	of	the	shadow:	Because	this	is	a	negative	number,	the	shadow
will	appear	above	the	div.

The	amount	of	blur	to	use:	If	a	value	of	0	is	used,	there	is	no	blur	at	all	to	the
shadow,	whereas	in	this	case,	the	blur	extends	for	10	pixels.

The	color	of	the	shadow.	In	the	example	above	this	has	been	specified	as	a	shade	of
grey.

This	example	produces	the	effect	in	Figure	26.4.

Figure	26.4

It	is	possible	to	place	a	border	around	the	entire	element	using	an	optional	parameter
immediately	before	the	color.	This	specifies	the	size	of	the	border:

box-shadow:	0	0	10px	10px	#888888;

In	this	case,	a	10-pixel	border,	with	10	pixels	of	blur,	extends	around	all	four	sides	of	the
element.	Notice	that	I	have	set	the	first	two	parameters	to	0	to	indicate	that	the	border	is
not	offset	to	the	left,	right,	top,	or	bottom.

It	is	also	possible	to	produce	a	shadow	inside	the	element.	This	is	produced	by	specifying
inset	as	the	final	parameter.	For	example:

box-shadow:	0	0	10px	10px	#888888	inset;

This	produces	the	effect	in	Figure	26.5.

Figure	26.5

Custom	Fonts
One	problem	with	specifying	fonts	is	that	there	is	no	guarantee	which	fonts	will	be
available	inside	each	browser.	This	is	the	reason	that	fonts	have	been	specified	as	follows:

font-family:	Arial,	Helvetica,	sans-serif;

This	allows	the	browser	to	select	the	best	available	font	that	matches	your	requirements.	If
Arial	or	Helvetica	are	available,	they	will	be	used;	otherwise,	the	default	browser	sans-
serif	font	will	be	used.

Note
A	serif	is	a	small	line	attached	to	the	end	of	a	line	on	a	character.	Serif	fonts	are
typically	used	in	print	books	because	it	is	argued	that	they	are	more	readable.	Web
pages,	on	the	other	hand,	tend	to	use	sans-serif	fonts.

This	approach	can	be	problematic.	As	a	result	of	the	difference	in	size	of	different
characters	in	different	fonts,	a	web	page	may	look	quite	different	if	an	alternative	font	is
used.	In	order	to	circumvent	this	problem,	it	is	possible	for	a	website	to	provide	its	own
fonts,	have	the	browser	download	them,	and	use	them	in	the	CSS.

One	of	the	reasons	that	different	browsers	support	different	fonts	is	that	many	fonts	need
to	be	licensed	from	their	creators.	In	this	section,	you	will	use	the	Open	Sans	font,	which
was	commissioned	by	Google	and	is	available	for	use	with	an	open	license.

Note
The	main	disadvantage	of	using	your	own	fonts	is	that	the	user	needs	to	download
them,	and	they	can	be	several	megabytes	in	size.

Open	Sans	is	an	ideal	font	for	web	pages	because	it	strives	to	present	a	neutral	impression
that	is	pleasing	to	the	eye	and	easy	to	read.

In	order	to	get	started	with	Open	Sans,	you	need	to	obtain	a	copy	of	the	font	files.	These
are	made	available	in	a	collection	of	files	with	.ttf	extensions	(for	true-type	font).	Different
files	are	available	for	regular	font,	bold	font,	italic	font,	and	bold-italic	font.	These	can	be
found	on	the	book’s	website.

Note
Open	Sans	actually	provides	10	variants,	including	light,	semi-bold,	and	extra	bold.	If
you	download	these	and	wish	to	use	them,	it	is	possible	to	indicate	the	variant	that
should	be	used	via	the	font-weight	property:	Along	with	values	such	as	bold,	this
can	be	assigned	a	number	between	100	and	1000.	400	is	the	same	as	normal,	and	700
is	the	same	as	bold;	therefore,	600	will	use	a	semi-bold	font,	provided	that	variant	is
supported	by	your	chosen	font.

Once	they	are	downloaded,	you	need	to	refer	to	them	in	your	style	sheet	or	the	style
section	of	the	web	page.	For	example:

@font-face	{

				font-family:	"Open	Sans";

				src:	url(OpenSans-Regular.ttf);

				font-weight:	normal;

}

@font-face	{

				font-family:	"Open	Sans";

				src:	url(OpenSans-Bold.ttf);

				font-weight:	bold;

}

@font-face	{

				font-family:	"Open	Sans";

				src:	url(OpenSans-BoldItalic.ttf);

				font-weight:	bold;

				font-style:	italic;

}

@font-face	{

				font-family:	"Open	Sans";

				src:	url(OpenSans-Italic.ttf);

				font-weight:	normal;

				font-style:	italic;

}

Notice	that	these	are	not	regular	CSS	selectors	because	they	do	not	select	elements	from
the	DOM.	Instead,	these	rules	define	the	name	of	the	font	and	the	location	of	the	font	file.

You	can	now	add	a	font-family	style,	confident	that	you	do	not	need	to	provide	any
fallback	options:

body	{

				font-family:	"Open	Sans";

}

Finally,	you	can	add	the	following	markup	to	the	page	to	use	this	font:

<p>This	is	open	sans</p>

<p>This	is	open	sans	bold</p>

<p>This	is	open	sans	bold</p>

Note
Remember	that	the	b	and	i	tags	for	bold	and	italics	have	been	deprecated,	but	it	is
considered	acceptable	to	use	strong	and	em	(short	for	emphasis).	These	tags	are
considered	acceptable	because	they	describe	the	effect	that	should	be	used,	rather
than	exactly	how	this	effect	should	be	achieved.

This	will	produce	the	web	page	shown	in	Figure	26.6.

Figure	26.6

Try	It
In	this	Try	It,	you	will	create	a	layout	that	appears	as	tabs,	using	a	number	of	the
techniques	learned	in	this	lesson.

The	goal	is	to	create	a	set	of	tabs,	as	shown	in	Figure	26.7.

Figure	26.7

This	Try	It	will	only	contain	very	general	hints	rather	than	specific	steps.	This	lesson,
together	with	the	lessons	on	CSS,	provides	all	the	necessary	information	to	implement	this
panel.

Lesson	Requirements
You	will	need	a	text	editor	for	writing	the	code	and	the	Chrome	browser	for	running	the
code.

Step-by-Step
1.	 Start	by	creating	a	standard	HTML5	web	page.

2.	 Create	a	layout	for	the	various	elements	on	the	page.	I	used	div	and	a	elements:	Each
of	the	tabs	is	an	a	element,	and	the	three	tabs	are	surrounded	by	a	div.	I	also	used	a
div	for	the	tab	content	and	surrounded	the	entire	structure	with	a	div.

3.	 The	font	I	have	used	is	Open	Sans,	so	import	this	into	the	style	sheet,	and	declare	that
the	tabs	use	Open	Sans.

4.	 I	have	two	distinct	types	of	tabs.	Active	tabs	use	a	white	font	and	a	dark	background,
while	inactive	tabs	use	the	inverse	of	this.

5.	 The	inactive	tabs	have	a	shadow	around	the	top	and	right	sides.

6.	 The	tabs	should	have	rounded	corners	on	the	top	edges.	The	border-radius	property

can	accept	four	sizes	representing	the	radius	of	all	four	corners,	starting	in	the	top
left.	This	can	be	used	to	prevent	rounded	corners	appearing	on	the	bottom	border	of
the	tabs.

7.	 The	example	that	follows	does	not	implement	functionality	for	changing	tabs,	but
you	can	try	implementing	behavior	if	you	like:	Every	time	the	user	clicks	a	tab,	you
could	set	it	to	the	active	tab	and	change	the	contents	of	the	panel.

My	version	can	be	found	on	the	book’s	website,	and	is	named	tryit.html.

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	26,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	27

CSS3:	Part	II
This	lesson	will	continue	where	the	previous	lesson	left	off,	and	continue	looking	at	CSS3
features.	The	features	introduced	in	this	lesson	may	seem	somewhat	familiar	because
many	of	these	features	were	introduced	with	the	Canvas	API,	such	as	linear	gradients,
transformations,	and	transitions.

These	features	have	been	introduced	to	allow	browsers	to	natively	implement	complex
visual	effects	that	previously	could	only	be	achieved	with	images,	or	DOM	manipulation.

Note
Before	beginning	this	lesson,	it	is	worth	reiterating	that	CSS3	is	a	major	specification
in	its	own	right;	thus,	this	lesson	will	only	touch	the	surface	of	what	can	be	achieved
with	these	features.

Linear	Gradients
CSS3	linear	gradients	have	a	lot	in	common	with	those	introduced	with	the	Canvas	API.	A
line	is	imagined	for	the	gradient	to	run	through,	and	colors	are	defined	for	points	along	the
line.	The	browser	is	then	responsible	for	creating	a	smooth	transition	from	one	color	to	the
next.

In	order	to	define	a	linear	gradient,	it	is	necessary	to	use	a	CSS	function	called	linear-
gradient.	Although	I	have	not	discussed	CSS	functions	so	far,	you	have	seen	them	in
action.	For	instance,	in	the	previous	lesson	a	URL	was	defined	as	follows:

url("border.png")

A	CSS	function	is	just	like	a	JavaScript	function:	It	accepts	parameters	and	returns	a
value.	Throughout	this	lesson,	you	will	use	a	number	of	useful	CSS	functions,	beginning
with	linear-gradient.	The	main	difference	between	CSS	and	JavaScript	functions	is	that
you	cannot	create	your	own	CSS	functions.

The	simplest	form	of	the	linear-gradient	function	accepts	the	following	parameters:

The	angle	of	the	line	that	the	gradient	runs	through

The	start	color

The	end	color

For	instance,	after	creating	an	HTML	page	with	a	single	div	element,	add	the	following
style	to	create	a	linear	gradient	that	runs	at	a	45-degree	angle	through	a	div.

<style>

				div	{

								margin:20px;

								width:250px;

								height:250px;

								background:linear-gradient(45deg,	white,	black);

				}

</style>

This	produces	the	effect	seen	in	Figure	27.1.

Figure	27.1

Rather	than	specifying	an	angle	in	degrees,	it	is	possible	to	use	one	of	the	following
shortcuts:

to	top:	The	gradient	runs	from	the	bottom	to	the	top	of	the	element.	This	is
equivalent	to	0	degrees.

to	bottom:	The	gradient	runs	from	the	top	to	the	bottom	of	the	element.	This	is
equivalent	to	180	degrees.

to	left:	The	gradient	runs	from	the	right	to	the	left	of	the	element.	This	is
equivalent	to	270	degrees.

to	right:	The	gradient	runs	from	the	left	to	the	right	of	the	element.	This	is
equivalent	to	90	degrees.

For	instance,	the	following	creates	a	linear	gradient	that	changes	from	white	to	black	as	it
progresses	from	left	to	right:

background:	linear-gradient(to	right,	white,	black);

The	linear-gradient	function	accepts	as	many	colors	as	required	and	automatically
creates	a	linear	gradient	from	one	color	to	the	next.	For	example:

background:linear-gradient(45deg,	red,	white,	blue);

These	are	equivalent	to	color	stops	seen	with	the	Canvas	API,	and,	as	with	the	Canvas
API,	it	is	possible	to	specify	where	each	color	stops	based	on	pixels	or	percentages.	For
example:

background:	linear-gradient(45deg,	red	0%,	white	20%,	blue	100%);

Calc	Function
Another	useful	CSS	function	introduced	in	CSS3	is	the	calc	function.	This	allows	you	to
specify	sizes	as	calculations,	which	can	be	extremely	useful	when	you	need	to	size
elements	using	a	combination	of	two	or	more	units	of	measure.

When	laying	out	web	pages,	there	are	generally	two	ways	to	size	elements:

As	absolute	sizes,	for	instance	specifying	width	and	height	in	pixels:	This
approach	is	great	for	providing	a	consistent	user	experience	but	means	content	must
be	sized	for	the	smallest	supported	browser	resolution.

As	percentages,	specifying	how	much	of	the	available	space	each	element	should	use:
This	is	great	for	taking	advantage	of	the	user’s	entire	browser	but	can	cause	issues	if
the	browser	is	sized	too	small	because	there	may	not	be	enough	space	available	for	a
specific	element.

The	calc	function	essentially	provides	the	best	of	both	worlds	because	it	lets	you	mix	and
match	units.	For	instance,	imagine	a	case	where	you	want	a	div	to	use	30	percent	of	the
space	available,	minus	20	pixels.	This	can	be	specified	as	follows:

width:calc(30%	-	20px);

The	calc	function	allows	you	to	perform	calculations	using	any	combination	of	addition,
subtraction,	division,	and	multiplication,	and	also	lets	you	specify	operator	precedence.
For	instance:

width:calc((30%	/	2)	-	20px);

CSS3	also	specifies	two	companion	functions	that	have	the	potential	to	be	even	more
useful.	Consider	a	case	where	you	want	the	width	of	an	element	to	use	30	percent	of	its
available	space,	but	never	be	less	than	200	pixels.	This	can	be	achieved	with	the	min
function:

width:min(30%,	200px);

Likewise,	it	is	possible	to	use	the	max	function	to	specify	that	the	width	should	be	the
greater	of	two	values.

Unfortunately	min	and	max	have	not	appeared	in	most	browsers	as	yet,	but	expect	them	to
be	added	in	the	near	future.

Text	Effects
Although	a	wealth	of	textual	information	is	contained	in	web	pages,	it	has	never	been
possible	to	control	the	presentation	of	text	in	web	pages	to	the	degree	that	is	possible	with
other	formats,	such	as	PDF.

CSS3	has	countered	this	problem	from	two	angles.	The	first	is	pseudo	elements,	which
allow	you	to	add	classes	to	specific	portions	of	an	element,	such	as	the	first	line	of	a
paragraph;	the	other	is	via	text	effects.

This	section	will	look	at	the	text	effects	that	have	been	implemented	in	most	browsers.
CSS3	also	specifies	a	number	of	other	text	effects	that	have	not	been	adopted	by	any
browsers	but	are	likely	to	appear	in	the	future.

To	begin,	let’s	look	at	text	shadows.	Just	as	it	is	possible	to	provide	shadows	for	elements,
it	is	possible	to	provide	shadows	for	text.	For	instance,	the	following	example	adds	a	text
shadow	to	any	h1	elements	on	a	web	page:

h1	{

				font-family:	Arial,	sanf-serif;

				text-shadow:	3px	3px	5px	#888888;

}

In	this	case,	the	shadow	extends	3	pixels	below	and	3	pixels	to	the	right	of	the	text,	and
has	5	pixels	of	blur.	This	produces	the	effect	shown	in	Figure	27.2.

Figure	27.2

A	number	of	the	other	text	effects	introduced	deal	with	how	to	handle	overflowing	text.
Very	long	words	can	cause	a	particular	problem	to	browsers	because	the	web	browser	does
not	know	how	to	break	them,	and	therefore,	by	default,	never	does	break	them.	In	the
example	in	Figure	27.3,	the	text	is	placed	inside	the	div	but	overflows	its	boundary:

Figure	27.3

It	is	now	possible	to	specify	that	the	web	browser	can	break	the	word	by	using	the
following	property:

word-wrap:break-word;

This	will	produce	the	result	shown	in	Figure	27.4.

Figure	27.4

Another	common	overflow	problem	occurs	when	text	is	too	long	for	its	containing
element.	This	can	be	a	particularly	difficult	problem	when	using	relative	sizing	because
the	size	available	will	depend	on	the	resolution	of	the	user’s	web	browser.	This	can	lead	to
the	effect	shown	in	Figure	27.5.

Figure	27.5

You	will	notice	in	this	case	that	the	text	overflows	to	the	right	rather	than	the	bottom.	The
following	property	created	this	effect:

white-space:	nowrap;

The	nowrap	value	means	that	text	does	not	wrap	when	it	reaches	the	right-hand	boundary
of	an	element.	In	order	to	prevent	the	text	spilling	outside	its	boundary	it	is	possible	to	use
the	following	property:

overflow:	hidden;

This	presents	a	problem	however	because	it	simply	truncates	any	text	that	overflows	the
element,	and	it	not	obvious	that	the	text	has	been	truncated.	CSS3	therefore	supports	a
more	graceful	alternative	by	adding	a	text-overflow	property:

text-overflow:ellipsis;

This	produces	the	result	shown	in	Figure	27.6.

Figure	27.6

Unfortunately	the	technique	outlined	here	only	works	when	the	text	overflows	to	the	right
of	the	element,	not	when	it	overflows	below	an	element.

2D	Transformations
The	concept	of	a	transformation	matrix	was	introduced	in	Lesson	25	in	relation	to	the
Canvas	API.	This	allowed	canvas	features	to	be	scaled,	skewed,	or	offset	based	on	a
matrix	of	values	provided	to	the	API.	As	discussed,	a	transformation	matrix	is	a	generic
mechanism	for	transforming	shapes.

CSS3	also	introduces	the	concept	of	a	transformation	matrix	and	allows	elements	to	be
manipulated	in	a	manner	almost	identical	to	the	Canvas	API.	CSS3	introduces	a	function
called	matrix	that	allows	the	six	non-constant	values	to	be	provided	for	the	transformation
matrix,	but	before	looking	at	this,	you	will	look	at	the	functions	that	allow	you	to	control
the	individual	aspects	of	the	transformation.

Note
Many	of	the	2D	Transformation	functions	are	only	supported	via	browser-specific
prefixes.	Where	appropriate,	the	examples	that	follow	will	use	-webkit-	prefixes	(for
Chrome	and	Safari),	but	remember	to	also	include	prefixes	for	other	browsers	where
appropriate:	moz	for	Firefox	and	ms	for	Internet	Explorer.

When	adding	CSS	properties	that	require	prefixes,	it	is	also	best	practice	to	also
provide	a	non-prefixed	version	of	the	property.	This	will	ensure	that	when	the	property
is	eventually	supported,	the	CSS	does	not	need	to	be	changed.	A	typical	example	will
look	as	follows:

-webkit-property=value

-moz-property=value

-ms-property=value

property=value

All	the	examples	in	this	section	will	operate	on	the	two	div	elements	defined	in	the
following	web	page:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

				<style>

								div	{

												height:200px;

												width:200px;

												border:1px	solid	black;

												margin:50px;

												background:#888888;

												float:left;

								}

								#div2	{

												background:#bcbcbc;

								}

				</style>

</head>

<body>

				<div	id="div1"></div>

				<div	id="div2"></div>

</body>

</html>

To	begin,	you	will	scale	the	div	with	the	ID	div2	so	that	it	is	50	percent	the	size	of	the
other	div.	This	can	be	achieved	by	adding	the	following	rule	to	#div2:

transform:	scale(0.5,0.5);

In	these	examples,	the	property	name	will	always	be	transform,	while	the	function	names

utilized	will	vary.	The	two	parameters	passed	to	the	function	in	this	case	refer	to	the	width
and	the	height,	although	it	is	possible	to	use	scaleX	or	scaleY	if	you	only	need	to	scale	a
single	axis.	This	produces	the	result	shown	in	Figure	27.7.

Figure	27.7

It	is	also	possible	to	skew	elements	by	using	the	rotate	function.	For	example:

-webkit-transform:	rotate(45deg);

You	can	also	skew	an	element	by	defining	an	angle	for	the	X	and	Y-axis	respectively.	For
example:

		-webkit-transform:	skew(10deg,-45deg);

This	produces	the	result	shown	in	Figure	27.8.

Figure	27.8

Finally,	it	is	possible	to	move	elements	from	where	they	otherwise	would	be	placed	by
using	the	translate	function.	As	with	the	Canvas	API,	the	best	way	to	think	about	this	is
that	it	is	a	mechanism	for	offsetting	where	the	0,0	coordinate	would	be	for	each	element.
For	instance,	the	following	code	will	position	an	element	40	pixels	to	the	right	and	40
pixels	above	where	it	otherwise	would	be	positioned:

transform:	translate(40px,-40px);

If	you	only	want	to	offset	the	X-	or	Y-axis,	you	can	use	the	translateX	and	translateY
functions	respectively.

If	you	wish	to	invoke	more	than	one	of	the	translate	functions,	you	can	simply	list	them
in	a	space-separated	manner.	For	example:

transform:	translate(40px,-40px)	scale(0.5,0.5);

Alternatively,	if	you	are	transforming	more	than	one	aspect	of	an	element,	you	can	use	the
matrix	function.	This	accepts	the	following	parameters:

The	scaling	for	the	X	parameter,	with	1	being	the	default.

The	amount	to	skew	the	X-axis	by.	A	value	of	0.45	is	equivalent	to	45	degrees.

The	amount	to	skew	the	Y-axis	by.

The	scaling	for	the	Y	parameter,	with	1	being	the	default.

The	X-axis	offset.	Offsets	are	expressed	in	pixels,	but	the	px	suffix	must	be	omitted.

The	Y-axis	offset.

I	hope	you	noticed	that	this	list	is	exactly	the	same	as	with	the	Canvas	API.

The	following	is	an	example	use	of	the	matrix	function:

transform:	matrix(0.5,	0.45,	-0.45,	0.5,	-300,	0);

This	produces	the	result	shown	in	Figure	27.9.

Note
The	transitions	demonstrated	in	this	section	have	been	2D	transitions	because	they
adjust	the	element	in	two	dimensions.	CSS3	also	supports	three-dimensional
transitions.	Although	these	are	beyond	the	scope	of	this	book,	you	may	want	to
explore	them	in	your	own	time.	The	CSS	functions	supporting	this	are	translate3d,
scale3d,	rotate3d,	and	matrix3d.	These	are	essentially	the	same	as	the	functions
demonstrated	in	this	section,	except	they	accept	parameters	representing	the	third
dimension.

Figure	27.9

Transitions
Earlier	in	the	book,	I	introduced	simple	animation	effects	with	jQuery.	These	effects
essentially	controlled	the	behavior	as	an	element	transitioned	from	one	state	to	another,
usually	from	hidden	to	visible,	or	vice	versa.

CSS3	has	also	introduced	a	form	of	animation	called	CSS	Transitions.	These	achieve
many	of	the	same	effects	as	the	jQuery	animation	libraries,	but	because	they	are
implemented	directly	by	the	browser,	tend	to	produce	smoother	effects.

CSS	Transitions	allow	you	to	define	when	a	transition	effect	will	begin,	how	long	the
transition	will	last,	and	the	behavior	the	transition	will	take	(for	instance,	run	at	a	constant
speed,	speed	up	as	it	nears	completion,	or	slow	down	as	it	nears	completion).

In	order	to	see	transitions	in	action,	consider	the	following	web	page:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

				<style>

								div	{

												height:20px;

												width:200px;

												margin:50px;

														background:black;

														color:white;

														transition:height	3s,	color	2s,	background	2s,	border	2s;

								}

								div:hover	{

													background:	white;

													color:black;

													border:	1px	solid	black;

													height:200px;

										}

				</style>

</head>

<body>

				<div	id="div1">Hover	to	expand</div>

</body>

</html>

This	defines	a	single	div	element.	The	aspect	of	the	code	that	allows	for	transition	effects
is	the	following	CSS	property:

transition:height	3s,	color	2s,	background	2s,	border	2s;

This	property	defines	how	long	the	browser	will	take	to	transition	from	one	state	to
another	when	various	stylistic	properties	on	the	element	are	changed.	The	times	are
expressed	in	seconds,	but	can	also	be	expressed	in	milliseconds	by	using	the	ms	suffix.

By	itself	this	property	does	not	do	anything.	CSS	Transitions	rely	on	the	stylistic
properties	being	manipulated	in	some	manner.	In	this	case	the	styles	are	changed	when	the

user	hovers	over	the	element	(since	the	hover	pseudo-class	modifies	the	value	of	various
properties),	but	they	could	be	changed	in	other	ways,	such	as	through	JavaScript
manipulation	of	the	DOM.

When	a	CSS	property	is	changed,	the	browser	checks	to	see	whether	there	is	a	transition
rule	associated	with	that	property.	If	there	is,	it	applies	those	rules	as	the	property	is
changed.

If	you	open	this	web	page	and	hover	over	the	element,	you	will	notice	that	it	takes	3
seconds	for	the	height	to	change	from	20	pixels	to	200	pixels.	Likewise,	you	will	notice
that	it	takes	2	seconds	for	the	background	to	change	from	black	to	white,	and	that	it
changes	in	a	linear	manner,	starting	as	a	dark	grey	and	gradually	becoming	lighter,	until
finally	it	is	white.

In	this	example,	the	only	aspect	of	the	transition	that	is	controlled	is	the	time	taken	to
complete	the	transition.	It	is	also	possible	to	control	the	effect	that	will	be	used	and	the
delay	that	will	occur	before	the	effect	begins.

As	an	example,	you	may	want	to	specify	that	the	effect	does	not	begin	for	1	second,	and
that	the	effect	eases	in	and	eases	out:

transition-delay:	1s;

transition-timing-function:	ease-in-out;

These	effects	can	also	be	specified	directly	on	the	transition	property,	and	therefore	can	be
different	for	different	properties.	For	example:

transition:height	3s	ease-in-out,	color	2s	linear	1s,	background	2s	ease-in	

2s,	border	1s	ease-out	3s;

Combining	different	delays,	durations,	and	effects	is	a	useful	way	of	creating	a	more
interesting	transition	effect.

Naturally,	not	all	CSS	properties	can	be	animated	when	their	values	change.	For	instance,
it	is	not	possible	to	animate	changing	from	one	font	to	another.	The	vast	majority	of
properties	that	change	the	size	or	color	of	an	element	in	any	way	can	be	animated,
however.

Try	It
In	this	Try	It,	you	will	use	some	of	the	transformation	and	transition	techniques	learned	in
this	lesson.	Begin	by	writing	the	following	web	page	that	defines	a	single	div	element:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

				<script	src="jquery-2.1.1.js"></script>

				<style>

											div	{

														height:200px;

														width:200px;

														margin:50px;

														background:green;

												}

				</style>

</head>

<body>

				<div	id="div1"></div>

</body>

</html>

You	will	then	add	a	click	listener	so	that	when	the	div	is	clicked,	it	transitions	through
four	sets	of	colors,	and	rotates	by	90	degrees	as	it	changes	color.

Lesson	Requirements
You	will	need	a	text	editor	for	writing	the	code	and	the	Chrome	browser	for	running	the
code.

Step-by-Step
1.	 Start	by	creating	the	web	page	with	the	div	element.	Be	sure	to	import	the	jQuery

library	because	this	will	be	used	to	add	a	click	listener.

2.	 The	div	CSS	rule	needs	to	be	given	a	transition	property,	which	needs	to	contain
values	for	changes	to	the	background	color	and	transformation	(this	will	be	-webkit-
transform	because	you	will	use	the	rotate	function,	and	this	uses	browser	prefixes),
so	add	two	sets	of	transition	rules	specifying	the	number	of	seconds	the	transition
should	take,	and	the	effect	for	the	transition.

3.	 Create	a	script	block	in	the	web	page	and	add	an	array	of	four	colors.	For	example:

var	colors	=	['green',	'teal',	'indigo',	'purple'];

4.	 Add	a	click	listener	to	the	div	element.	When	this	is	clicked,	perform	Steps	5–7.

5.	 Increment	a	counter	variable	by	1,	and	then	use	the	modulus	operator	to	determine
whether	this	is	state	0,	1,	2,	or	3.

6.	 Change	the	background	color	to	the	next	value	in	the	array,	cycling	back	to	the	start
when	the	end	is	reached.

7.	 Use	the	rotate	function	to	rotate	the	div	by	an	additional	90	degrees.	The	easiest
way	to	do	this	is	to	multiply	90	by	0,	1,	2,	or	3.

My	version	of	the	web	page	can	be	found	on	the	book’s	website,	and	is	named
tryit.html:

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	27,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	28

CSS3	Media	Queries
You	will	end	this	section	by	taking	a	first	look	at	CSS3	media	queries.	This	is	a	subject
you	will	return	to	when	you	look	at	developing	web	applications	for	mobile	phones,	but
this	lesson	will	introduce	the	fundamentals	for	developing	web	applications	that	render
differently	on	different	devices,	and	in	different	contexts.

It	is	now	very	common	for	a	web	application	to	be	used	on	many	different	devices.	For
example:

In	a	web	browser,	on	a	desktop	or	laptop

Output	to	a	printer

On	a	small	screen	device,	such	as	a	smart	phone

On	an	alternative	device,	such	as	a	TV

Although	the	basic	functionality	of	the	web	application	may	be	the	same	in	each	case,	it
may	be	necessary	to	reposition,	hide,	or	augment	the	display	of	specific	elements	for	each
device.

There	are	several	ways	to	solve	this	problem.	Historically,	the	most	common	approach	has
been	for	the	web	server	to	detect	the	browser	(or	user	agent)	accessing	the	web	page,	and
directing	the	user	to	a	page	created	specifically	for	this	device.

Any	time	a	browser	requests	a	web	page,	it	provides	a	variety	of	information	in	HTTP
headers.	These	can	be	can	be	used	by	the	web	server	to	reliably	detect	the	browser	and
operating	system.	For	example,	Figure	28.1	shows	the	headers	that	were	passed	to	the	web
server	when	performing	a	simple	HTTP	GET	request,	including	the	User	Agent	header.

Figure	28.1

There	are	two	main	problems	with	this	approach.	The	first	is	that	it	does	not	necessarily
provide	the	entire	context	of	the	user’s	web	browser.	For	instance,	if	the	user	is	using	a
tablet,	it	will	not	contain	information	on	whether	he	or	she	is	using	landscape	or	portrait
mode.	Likewise,	it	cannot	be	used	to	augment	the	web	page	for	printing	because	printing	a
page	does	not	trigger	a	request	for	a	new	web	page	from	the	server.

The	second	problem	is	that	it	can	become	difficult	to	maintain	content	in	this	manner.
There	will	often	be	large	amounts	of	duplication	across	the	different	versions	of	the	web
pages.	When	a	change	is	required	to	the	web	application,	it	may	therefore	be	necessary	to

make	the	same	change	in	many	different	files.

CSS3	now	offers	an	alternative	mechanism	for	solving	this	problem	in	the	form	of	media
queries.	These	queries	allow	a	stylesheet	to	tell	the	browser	how	to	behave	in	various
contexts,	and	therefore	allow	the	same	page	to	render	differently	without	changing	any
markup.

With	media	queries,	it	is	up	to	the	browser	itself	to	determine	whether	specific	stylesheets,
or	portions	of	stylesheets,	are	relevant	for	them	based	on	a	set	of	rules,	and	to	render	the
web	page	appropriately.

Media	queries	allow	a	stylesheet	to	provide	custom	rules	based	on:

The	device	type—for	instance,	screen,	printer,	or	TV

The	width	or	height	of	the	browser	or	screen

Whether	the	orientation	is	landscape	or	portrait

Whether	the	device	is	color	or	monochrome

This	lesson	will	focus	on	the	first	of	these	bullet	points	and	return	to	examine	the	other
bullet	points	when	you	develop	mobile	web	applications	in	future	lessons.

Adding	Media	Queries
Imagine	that	you	wish	to	add	print	capabilities	to	the	CRM	web	application.	When
clicked,	this	will	only	print	the	contacts	in	the	table;	it	will	never	print	the	editable	section
of	the	screen,	even	if	it	is	present,	and	it	will	not	print	the	header	or	the	footer.

One	way	to	achieve	this	may	be	to	add	a	new	class	called	noprint	to	every	element	you
do	not	wish	to	print.	For	example:

<header	class="noprint">Contacts</header>

Then,	add	the	following	rule	to	contacts.css:

@media	print	{

	.noprint	{

					display:	none;

	}

}

Notice	that	the	rule	begins	with	the	@media	tag.	This	indicates	that	the	rule	will	only
apply	in	specific	contexts.	The	@media	tag	is	followed	by	a	query	that	allows	the	browser
to	determine	whether	the	rule	is	applicable	in	specific	contexts.	In	this	case,	the	query	is
print,	which	indicates	that	the	rule	only	applies	if	the	web	page	is	being	printed.

The	other	common	values	for	media	queries	are:

all:	Matches	all	device	types.

screen:	Matches	any	screen-based	device,	which	therefore	excludes	printers.

tv:	Matches	when	the	page	is	viewed	on	a	television.

handheld:	This	is	intended	to	match	browsers	on	small	screen	devices	such	as	smart
phones.	I	don’t	recommend	that	you	use	this	option,	however,	because	it	is	not
reliably	supported.	You	will	look	at	a	more	reliable	alternative	to	this	later	in	the
book.

Next,	add	a	print	button	to	the	screen,	and	also	ensure	that	the	“Add	a	new	contact”	button
does	not	print:

<div	class="controls	noprint">

	Add	a	new	contact

	Print

</div>

I	also	updated	the	table	so	that	the	Actions	column	has	the	noprint	class	(both	the	th	and
td	elements).	If	you	now	elect	to	print	the	web	application,	it	should	generate	a	preview,
as	shown	in	Figure	28.2.

Figure	28.2

You	will	notice	that	only	the	appropriate	elements	are	included	in	the	print	preview.	You
may	notice,	however,	that	the	table	header	does	not	print	as	expected.	In	the	web
application,	the	header	has	a	blue	background	and	a	white	font.	When	browsers	print	web
pages,	they	typically	suppress	background	colors	to	save	ink.	As	a	result,	they	compensate
by	changing	white	fonts	to	have	color.

In	this	case,	the	overall	effect	is	not	what	you	may	want	because	the	font	is	quite	difficult
to	read.	You	also	may	choose	to	remove	the	border	and	white	space	from	around	the	table.
You	can	therefore	add	the	following	rules	to	your	media	query:

@media	print	{

		.noprint	{

				display:	none	!important;

		}

		th	{

						color:black;

						background:white;

		}

		#contactList	{

						border:	none;

						margin:	none;

						padding:none;

		}

}

This	will	then	generate	the	preview	shown	in	Figure	28.3.

Figure	28.3

External	Stylesheets
The	approach	outlined	in	the	previous	text	involves	adding	device-specific	rules	to
stylesheets.	Often	it	is	more	convenient	to	create	a	base	stylesheet	that	matches	all	device
types,	and	then	create	device-specific	stylesheets	that	override	relevant	styles.

This	can	be	achieved	by	using	the	media	attribute	on	the	link	element.	For	example:

<link	rel="stylesheet"	media="all"	type="text/css"	href="contacts.css">

After	the	base	stylesheet	is	imported,	the	device-specific	stylesheets	can	be	imported.	It	is
important	that	these	are	listed	after	the	base	stylesheet	because	they	are	likely	to	have	rules
that	supersede	those	in	the	base	stylesheet.	For	example:

<link	rel="stylesheet"	media="print"	type="text/css"	

href="contacts_print.css">

Naturally,	when	stylesheets	are	imported	in	this	manner,	the	stylesheets	themselves	do	not
need	to	contain	media	queries,	although	they	still	can	if	necessary.

It	is	important	to	realize	that	matches	based	on	media	queries	do	not	have	higher
specificity	than	they	would	otherwise	so	it	can	also	be	necessary	to	use	the	!important
modifier	to	ensure	that	media-specific	styles	are	used.

Try	It
In	this	Try	It,	you	will	introduce	a	print-specific	stylesheet	for	printing.	If	you	have	not
followed	the	example	so	far	in	this	lesson,	you	may	want	to	go	back	and	implement	the
print	functionality	outlined	before	starting	this	Try	It.

Lesson	Requirements
You	will	need	a	text	editor	to	write	the	code	and	the	Chrome	browser	to	run	the	code.

Step-by-Step
1.	 Start	by	creating	a	new	stylesheet	called	contacts_print.css	in	the	same	folder	as

contacts.css.

2.	 Add	the	print-specific	functionality	to	this	stylesheet	and	remove	any	media	queries.

3.	 Import	the	print	stylesheet	after	the	contacts.css	stylesheet,	and	indicate	that	it	is
applicable	for	printing.

4.	 Add	a	media	type	to	the	contacts.css	import,	and	indicate	that	it	is	applicable	to	all
device	types.

5.	 Add	a	new	header	specifically	for	printing;	this	should	state	“Printed	from	CRM.”

6.	 Add	a	class	called	print_only	to	this	element,	and	then	add	rules	to	both	the	base
and	print	stylesheets.	The	base	stylesheet	should	set	the	display	to	none.	The	print
stylesheet	should	set	the	display	to	initial,	which	means	to	restore	it	to	its	default
value.

7.	 Change	the	header	style	in	the	print	stylesheet	to	use	a	black,	16-pixel	font.

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	28,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Part	IV
HTML5	APIs

Lesson	29:	Web	Servers

Lesson	30:	Web	Storage

Lesson	31:	IndexedDB

Lesson	32:	Application	Cache

Lesson	33:	Web	Workers

Lesson	34:	Files

Lesson	35:	AJAX

Lesson	36:	Promises

Lesson	29

Web	Servers
Up	until	this	point	in	the	book,	you	have	been	opening	web	pages	in	the	browser	directly
from	the	file	system.	Obviously,	if	you	intend	your	web	pages	to	be	viewed	by	others,	you
need	to	make	them	available	over	a	network.	The	software	used	for	exposing	web	pages
over	a	network	is	a	web	server.

The	term	“web	server”	can	either	denote	the	hardware	of	the	underlying	server	or	the
software	running	on	that	server.	For	the	purposes	of	this	lesson,	the	term	“web	server”	will
be	used	to	denote	the	software,	whereas	“server”	will	be	used	to	denote	the	hardware	this
software	runs	on.

The	primary	purpose	of	a	web	server	is	to	expose	a	set	of	resources	from	the	file	system	of
a	network	enabled	server	via	protocols	such	as	HTTP	and	HTTPS.	Resources	are	typically
files	such	as	HTML	pages,	images,	and	CSS	files,	to	video	and	audio	files.

Note
This	view	is	slightly	simplistic	because	many	resources	in	real-world	web	applications
are	dynamically	generated	and	therefore	do	not	exist	on	a	physical	file	system,	but
you	will	ignore	this	complication	for	the	most	part.

In	this	lesson,	you	will	migrate	the	web	application	developed	so	far	to	a	web	server.	You
are	doing	this	for	two	main	reasons:

To	give	you	an	understanding	of	how	a	web	server	works:	Any	web	page	or	web
application	you	develop	will	be	uploaded	eventually	to	a	web	server,	so	it	is	useful	to
gain	some	understanding	of	how	they	work,	and	how	to	configure	one.

Many	of	the	APIs	introduced	in	this	section	need	to	run	inside	web	servers:	The
APIs	included	in	this	section	will	cover	more	advanced	JavaScript	APIs	such	as
storing	data	inside	the	browser.	These	APIs	therefore	need	a	mechanism	for
segregating	the	data	from	different	websites:	Without	this	segregation,	any	website
would	be	able	to	access	data	stored	by	any	other	website,	which	would	obviously
create	a	security	loophole.

URLs
Before	looking	at	web	servers,	this	chapter	will	quickly	cover	the	related	topic	of	URLs
(Uniform	Resource	Locators).	A	URL	provides	a	unique	network	address	for	a	resource
(image,	web	page,	CSS	file).	The	“network”	will	often	be	the	public	Internet,	but	URLs
can	also	be	used	to	locate	resources	on	private	networks,	such	as	your	personal	WiFi
network	at	home.

The	web	server	is	responsible	for	parsing	the	URL	and	determining	the	resource	that
should	be	returned.	The	URL	is	also	used	by	lower-level	protocols,	however,	to	determine
how	to	route	the	request	to	the	appropriate	server	on	the	network.

URLs	are	surprisingly	complex,	but	the	most	familiar	pattern	is	as	follows:

http://testing.com:80/test1/test.html

This	URL	consists	of	the	following	components:

http:	The	protocol	that	is	being	used	to	access	the	resource;	other	common	protocols
are	https	and	ftp.

testing.com:	The	domain	name	resolved	by	the	browser	to	an	IP	address	using	a
Domain	Name	Server	(DNS).	The	IP	address	(for	instance	192.168.199.133)	in	turn
maps	to	a	server	running	on	a	network.

80:	The	port	number	of	the	web	server.	Because	a	single	server	may	expose	multiple
services	(for	example,	an	FTP	server	and	an	HTTP	server),	port	numbers	provide	a
mechanism	to	logically	differentiate	them.	You	will	not	usually	see	the	port	number
in	URLs	because	80	is	the	default	for	the	HTTP	protocol,	and	443	is	the	default	for
the	HTTPS	protocol,	and	the	port	number	can	therefore	usually	be	omitted.

test1:	The	directory	on	the	web	server.	Typically,	the	web	server	will	map	its	root
directory	to	a	directory	on	the	file	system.	In	this	case,	there	would	be	an	assumption
that	this	directory	contains	a	subdirectory	called	test1.

test.html:	The	name	of	the	resource	being	accessed.

The	two	most	important	components	used	by	the	APIs	in	this	section	are	the	domain	name
and	the	port.	These	are	referred	to	as	the	“origin”	of	a	resource.	Typically,	a	resource	will
only	be	able	to	interact	with	resources	or	information	from	the	same	origin:	This	is
referred	to	as	the	same	origin	policy.

Choosing	a	Web	Server
There	are	many	web	servers	available,	both	commercial	and	open	source.	Many	factors
come	into	play	when	choosing	a	web	server,	but	these	discussions	are	beyond	the	scope	of
this	book.	It	is,	however,	worth	mentioning	that	by	far	the	most	popular	web	server,	almost
since	the	advent	of	the	World	Wide	Web,	is	the	Apache	web	server.

Apache	is	an	open	source	web	server,	and	provides	an	excellent	combination	of	stability,
features,	and	performance.	If	you	use	a	hosting	service,	they	will	almost	certainly	make
the	Apache	web	server	available	to	you.

You	will	not	use	Apache	in	this	book,	mainly	because	it	takes	slightly	more	effort	to	install
and	configure	than	the	web	server	you	will	use,	but	you	may	opt	to	use	it	if	you	choose.	It
can	be	accessed	from	http://httpd.apache.org/,	and	tutorials	are	available	for	guiding
you	through	the	installation	and	configuration	process.

In	this	book,	you	will	use	the	Mongoose	web	server	(free	edition).	The	main	reason	for
choosing	this	is	its	simplicity:	It	requires	either	very	little	or	no	configuration	and	is
therefore	ideal	during	the	development	phase	of	your	web	application.

http://httpd.apache.org/

Try	It
In	this	Try	It,	you	install	and	configure	the	Mongoose	web	server.	This	Try	It	contains	two
sets	of	steps,	one	for	Windows	and	one	for	OS	X.

Note
Linux	source	code	is	also	available	at:
http://code.google.com/p/mongoose/downloads/list.	To	run	this,	the	simplest
option	is	to	cd	to	the	directory	containing	contacts.html	and	run	mongoose.	This
runs	in	the	foreground	so	use	actrl-C	to	stop.

Lesson	Requirements
As	part	of	the	steps	outlined	next,	you	will	need	to	download	the	Mongoose	web	server
from	the	site	listed.	This	will	involve	agreeing	to	the	non–commercial	license	agreement.
You	will	also	need	the	Chrome	web	browser	to	test	that	the	web	server	is	working.

Step-by-Step	(OS	X)
1.	 Download	the	Free	Edition	OS	X	installer	from:

http://cesanta.com/downloads.html.	This	requires	you	to	accept	the	license
agreement.

2.	 Once	this	has	downloaded,	double-click	on	the	DMG	file	and	drag	it	to	Applications,
just	as	you	would	when	installing	any	other	application.

3.	 Open	the	Finder	and	navigate	to	the	Applications	folder.	Find	the	Mongoose
application,	and	double-click	on	the	icon	to	start	the	Mongoose	server.

4.	 The	Mongoose	application	can	now	be	configured	via	the	icon	in	the	taskbar	at	the
top	of	the	screen,	as	shown	in	Figure	29.1.

Figure	29.1

5.	 Select	the	Edit	configuration	option.	This	will	open	a	browser	window	with	the
configuration	settings.	Locate	the	document_root	text	field,	and	change	the	directory
to	the	directory	that	contains	the	contacts.html	file.	For	example
/Users/dane/html5/CRM.	Once	entered,	click	“Save	settings	to	the	config	file”.

6.	 The	Mongoose	server	operates	by	default	on	port	8080	rather	than	port	80.	Because	it
is	running	on	your	local	machine,	you	can	also	use	the	hostname	localhost.

http://code.google.com/p/mongoose/downloads/list
http://cesanta.com/downloads.html

Therefore,	to	open	the	contacts	page,	open	Chrome,	and	enter
http://localhost:8080/contacts.html.	This	should	show	the	main	contacts	web	page.

Step-by-Step	(Windows)
1.	 Download	the	Free	Edition	OS	X	installer	from

http://cesanta.com/downloads.html.	This	requires	you	to	accept	the	license
agreement.

2.	 Once	the	download	is	complete,	copy	the	.exe	file	to	the	same	directory	that	contains
contacts.html.

3.	 Double-click	on	the	executable	to	start	Mongoose.

4.	 The	Mongoose	application	can	now	be	configured	via	the	icon	in	the	taskbar	at	the
bottom	of	the	screen,	as	shown	in	Figure	29.2	(although	no	configuration	is	required
in	this	case).

Figure	29.2

5.	 The	Mongoose	server	operates	by	default	on	port	8080	rather	than	port	80.	Because	it
is	running	on	your	local	machine,	you	can	also	use	the	hostname	localhost.
Therefore,	to	open	the	contacts	page,	open	Chrome,	and	enter
http://localhost:8080/contacts.html.

This	should	show	the	main	contacts	web	page.

http://cesanta.com/downloads.html

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	29,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	30

Web	Storage
When	the	World	Wide	Web	was	first	envisioned,	it	was	intended	as	a	repository	for	static
documents,	primarily	academic	papers.	The	key	distinguishing	feature	of	the	World	Wide
Web	was	hyperlinks,	which	allowed	one	document	to	provide	a	link	to	another	document,
and	therefore	allowed	convenient	navigation	from	one	piece	of	information	to	another.

It	wasn’t	long	before	web	pages	started	providing	more	advanced	features,	such	as	online
shopping.	This	required	web	pages	to	dynamically	respond	to	user	interaction.	As	you
have	seen,	this	was	facilitated	by	technologies	such	as	the	DOM	API,	which	allows	a	web
page	to	be	modified	after	it	was	loaded.

HTML	and	JavaScript	could	only	take	you	so	far,	however.	It	still	was	not	possible	to
create	web	pages	or	web	applications	that	exhibited	the	features	typically	found	in	native
desktop	applications.	For	instance,	web	pages	lacked	the	following	capabilities:

The	ability	to	interact	with	the	file	system	beyond	the	simple	file	input	type.

The	ability	to	store	large	amounts	of	data	or	configuration	information	inside	the
browser	(on	the	client).

The	ability	to	function	without	a	network	connection.	Even	if	a	page	is	cached	inside
a	browser,	it	typically	is	not	usable	without	a	network	connection.

The	ability	to	perform	intensive	processing	on	a	background	thread	without
impacting	the	user	experience.	Because	all	JavaScript	processing	occurs	on	a	single
thread,	any	intensive	processing	will	cause	the	web	page	to	“lock	up.”

The	ability	to	request	additional	data	from	a	server	after	a	page	had	loaded	without
performing	a	refresh	of	the	entire	web	page.

You	can	think	of	these	features	as	the	services	accessible	to	a	software	application.	For	a
traditional	desktop	application,	the	operating	system	provides	these	services.	Web	pages
cannot	interact	directly	with	the	operating	system;	they	can	only	interact	with	the	browser.
Therefore,	unless	the	browser	provided	these	services,	web	pages	would	always	be
constrained	from	achieving	a	higher	level	of	sophistication.

Despite	the	historic	limitations	of	HTML	and	JavaScript,	there	has	been	a	strong	push
toward	browser-based	web	applications	as	opposed	to	native	applications.	Browser-based
web	applications	are	enormously	convenient	because	the	same	web	application	can	be
accessed	on	any	device,	from	any	location,	at	any	time.	This	push	has	only	intensified
with	the	move	toward	cloud	computing,	as	more	and	more	data	is	pushed	into	globally
available	cloud	computers.

Browser-based	web	applications	also	have	the	advantage	that	they	do	not	need	to	be
installed,	and	they	can	be	automatically	updated	without	any	action	from	the	user.

In	order	to	allow	web	applications	to	achieve	the	same	level	of	sophistication	as	native
applications,	the	HTML5	specification	provides	a	set	of	JavaScript	APIs	for	implementing
all	the	features	just	listed,	along	with	several	others.	This	section	will	cover	these	APIs	in
detail,	starting	with	client-side	storage.

Client-Side	Storage
The	HTTP	protocol	used	to	retrieve	resources	from	a	web	server	was	designed	as	a
stateless	protocol.	It	begins	with	the	browser	establishing	a	network	connection	to	the	web
server	and	requesting	a	resource.	The	web	server	finds	the	resource	and	returns	it	as	a
response	to	the	browser.	Once	the	response	is	received,	the	connection	between	the	two	is
closed,	and	no	link	is	retained	that	the	two	ever	communicated.

Note
This	is	a	slightly	simplified	view	of	HTTP.	Because	establishing	connections	can	be
time	consuming,	the	HTTP	protocol	was	extended	early	on	to	support	a	keep-alive
option.	This	meant	that	multiple	requests	could	be	made	on	the	same	connection.	This
feature	cannot	be	relied	on	in	order	to	continue	a	conversation	with	the	web	server,
however,	because	it	is	up	to	the	web	server	to	decide	how	long	to	leave	the	connection
open	for.

This	model	clearly	does	not	work	well	for	a	number	of	scenarios.	If	you	consider	a
shopping	website,	the	server	will	need	to	retain	a	shopping	cart	for	the	user	as	he
progresses	from	page	to	page:	Clearly	this	relies	on	the	web	server	remembering	each
particular	browser,	and	the	history	of	their	actions—for	instance,	the	products	they	have
purchased.	I	will	refer	to	all	the	actions	performed	by	the	same	browser	as	a	session.

In	order	to	support	this,	a	technology	was	introduced	called	cookies.	A	cookie	is	simply	a
key/value	pair	that	can	be	sent	by	the	web	server	to	the	browser	on	an	HTTP	response.
The	browser	will	then	store	the	information	in	this	cookie	for	a	configurable	period	of
time	(usually	as	small	files	on	the	file	system).	Every	time	the	browser	sends	a	request	to
the	same	web	server	in	the	future,	it	will	include	all	the	cookies	that	have	been	sent	to	it.

Although	cookies	can	be	used	to	store	any	textual	information,	typically	they	are	used	to
store	a	unique	session	ID	for	each	browser.	The	web	server	generates	this	session	ID
whenever	it	receives	a	request	from	a	browser	it	has	not	seen	before	(where	there	is	no
cookie	in	the	HTTP	request),	which	the	browser	then	stores,	and	provides	automatically
on	future	requests.	The	web	server	can	then	store	information	against	this	session	ID,	and
provide	that	information	back	to	the	browser	when	required,	such	as	when	the	user	decides
to	check	out.

Although	cookies	are	great	for	storing	small	amounts	of	data,	they	do	come	with	a	number
of	limitations.	The	principle	limitation	is	that	browsers	are	only	required	to	allow	20
cookies	per	domain	name,	and	each	cookie	is	limited	to	4096	bytes	of	data.	If	you	work
through	the	sums,	a	domain	may	only	be	able	to	store	80	kilobytes	inside	the	browser,
which,	by	modern	standards,	is	not	a	lot	of	data.

There	are,	however,	very	good	reasons	why	a	web	application	may	want	to	store	larger
amounts	of	data	on	the	client,	the	two	main	ones	being:

Performance:	If	the	data	is	stored	on	the	client,	it	is	much	faster	to	process	and
display	in	the	browser	than	if	it	needs	to	be	retrieved	from	the	web	server.	Despite	the
increase	in	network	speeds,	accessing	data	locally	is	still	many	orders	of	magnitude
faster.

Availability:	If	the	data	is	stored	on	the	client,	it	can	be	accessed	even	when	the
browser	is	not	connected	to	a	network.

HTML5	adds	not	one,	but	three	distinct	APIs	for	storing	data	inside	the	browser:

Web	storage:	This	is	the	subject	of	this	lesson.	This	is	the	oldest	storage	API	and	has
excellent	support	across	all	browsers.

Web	SQL:	This	standard	proposes	a	relational	database–based	API,	but	is	not	widely
supported,	and	is	unlikely	to	see	support	across	all	browsers	in	the	future.	Although
this	API	has	a	lot	to	recommend	it,	it	will	be	ignored	in	this	book,	because	without
universal	browser	support,	the	API	is	unlikely	to	find	widespread	adoption.

IndexedDB:	This	is	the	subject	of	the	next	lesson.	This	API	is	considerably	more
complicated	than	the	web	storage	API,	but	does	offer	a	number	of	important
additional	features.

Web	Storage	API
The	web	storage	API	is	by	far	the	simplest	of	the	three	data	storage	APIs	specified	in
HTML5,	and,	as	mentioned,	it	also	has	the	best	support	across	all	major	browser	vendors.

The	web	storage	API	does	come	with	certain	limitations,	however:

It	can	only	be	used	for	storing	textual	data	(JavaScript	Strings).	It	is	not	possible	to
store	other	types	of	data	such	as	JavaScript	objects.

Browsers	may	restrict	a	domain	to	5MB	of	storage.	Although	this	is	a	huge	amount
of	data	in	comparison	to	cookies,	it	may	not	be	feasible	for	all	scenarios.

Note
The	5MB	limit	is	an	even	bigger	constraint	than	it	may	sound.	This	is	due	to	the	fact
that	each	character	in	a	JavaScript	string	uses	2	bytes	of	storage.	JavaScript	uses	a
character	encoding	called	UTF-16,	which	allows	any	Unicode	character	to	be
represented	in	2	or	more	bytes.	Other	encodings	such	as	UTF-8	are	now	far	more
common,	and	only	use	1	byte	for	the	most	common	Unicode	characters	(provided	you
are	using	a	Western	alphabet).

The	web	storage	API	is	remarkably	simple	to	use;	it	relies	on	simple	key/value	pairs.	In
order	to	see	it	in	action,	open	the	contacts.html	web	page	using	the	relevant	address	for
your	web	server	(for	example,	localhost:8080/contacts.html),	and	enter	the	following
code	in	the	JavaScript	console:

>	localStorage.setItem("test",	"this	is	a	test");

In	this	case,	test	is	the	key,	and	this	is	a	test	is	the	value.	As	you	can	see,	the
localStorage	object	provided	by	the	browser	exposes	the	web	storage	API.

Note
The	browser	also	exposes	the	web	storage	API	via	a	companion	object	called
sessionStorage.	Any	data	stored	via	localStorage	is	retained	indefinitely	(or	until
the	user	deletes	it),	whereas	data	stored	via	sessionStorage	is	automatically	cleared
when	the	browser	is	closed.	You	should	always	be	conscious	of	the	fact	that	data
stored	via	the	web	storage	API	is	not	encrypted;	therefore,	it	is	not	appropriate	for
sensitive	data.

If	you	now	open	the	Resources	tab	of	the	developer	tools,	and	expand	the	Local	Storage
option,	you	will	see	that	the	key/value	pair	has	been	captured	(see	Figure	30.1).

Figure	30.1

Notice	that	this	data	is	associated	with	the	origin	localhost:8080.	Only	pages	served
from	this	origin	will	have	access	to	this	data.

The	companion	method	for	setItem	is	getItem.	This	allows	an	item	to	be	retrieved	based
on	a	key.	For	example:

>	localStorage.getItem("test");

"this	is	a	test"

This	method	will	always	return	a	JavaScript	string,	or	undefined	if	there	is	no	value
stored	against	the	key	specified.	Two	other	useful	methods	are	included	in	the	API.	The
removeItem	method	can	be	used	to	remove	a	value	based	on	a	key.	For	example:

>	localStorage.removeItem("test");

Finally,	the	clear	method	can	be	used	to	remove	all	data	stored	by	the	origin:

>	localStorage.clear();

These	simple	methods	are	all	that	is	required	to	use	web	storage.

Storing	Structured	Data
As	mentioned	earlier,	the	web	storage	API	can	only	be	used	for	storing	textual	data;	it
cannot	be	used	for	storing	structured	data	such	as	JavaScript	objects.	This	presents	a
problem	for	your	CRM	web	application	because	you	would	ideally	like	to	store	the
JavaScript	contact	objects	in	web	storage	so	that	they	are	retained	when	the	page	is
refreshed	or	the	browser	is	closed.

Note
The	web	storage	API	will	not	actually	complain	if	you	specify	a	JavaScript	object	as
the	value	for	a	key;	it	will	simply	convert	the	object	into	a	string	by	invoking	its
toString	method.	This	will	usually	mean	that	the	value	persisted	is	[object	Object]
because	this	is	the	default	value	of	toString.

Fortunately,	there	is	a	simple	solution	to	this:	You	can	use	the	JSON.stringify	function	to
convert	JavaScript	objects	to	JSON	encoded	strings,	and	then	store	these	strings	in	web
storage.	When	you	need	to	retrieve	data	from	web	storage,	you	can	convert	it	back	into
JavaScript	objects	with	JSON.parse.

For	instance,	if	you	want	to	save	a	contact	object,	you	can	create	the	following	function	in
contacts.js:

				function	store(contact)	{

								var	c	=	JSON.stringify(contact);

								localStorage.setItem('contacts',	c);

				}

This	function	adds	a	single	contact	to	web	storage.

Because	you	need	to	store	multiple	contacts,	you	may	decide	to	create	an	array	for	holding
the	objects.	Additionally,	you	need	to	retrieve	the	existing	array	from	web	storage	before
adding	a	new	contact.	The	following	function	therefore	provides	the	necessary
functionality	for	storing	multiple	contacts:

				function	store(contact)	{

									var	contactsStored	=	localStorage.getItem('contacts');

									var	contacts	=	[];

									if	(contactsStored)	{

													contacts	=	JSON.parse(contactsStored);

									}

									contacts.push(contact);

									localStorage.setItem('contacts',	JSON.stringify(contacts));

				}

The	first	line	of	this	function	extracts	the	existing	array	from	web	storage.	If	it	exists,	it
converts	it	from	a	string	into	a	JavaScript	array.	If	no	contacts	have	been	saved,	you
simply	create	an	empty	array	to	hold	contacts.	You	then	push	the	new	contact	onto	the
array,	and	persist	the	array	to	web	storage.

Note
It	is	also	possible	to	extract	items	from	localStorage	using	traditional	dot	notation—
for	instance,	localStorage.contacts.	In	order	to	use	this	approach,	item	keys	must
conform	to	the	JavaScript	property	name	standards.

The	setItem	method	will	overwrite	any	existing	entry	for	the	same	key;	thus,	every	time	a
new	contact	is	saved,	the	array	stored	in	web	storage	will	be	entirely	replaced.

The	store	function	should	be	added	to	the	contactsScreen	function,	immediately	after
the	following	line:

var	initialized	=	false;

The	save	method	should	then	be	changed	to	invoke	this	function:

save:	function(evt)	{

				if	($(evt.target).parents('form')[0].checkValidity())	{

								var	fragment	=		$(screen).find('#contactRow')

[0].content.cloneNode(true);

								var	row	=	$('<tr>').append(fragment);

								var	contact	=	this.serializeForm();

								store(contact);

								row	=	bind(row,	contact);

								$(row).find('time').setTime();

								$(screen).find('table	tbody').append(row);

								$(screen).find('form	:input[name]').val('');

								$(screen).find('#contactDetails').toggle("blind");

								this.updateTableCount();

				}

}

You	now	need	to	add	functionality	to	load	existing	contacts	when	the	contacts.html	web
page	loads.	This	can	be	achieved	by	adding	the	following	method	to	contacts.js
(immediately	after	the	save	method):

loadContacts:	function()	{

				var	contactsStored	=	localStorage.getItem('contacts');

				if	(contactsStored)	{

								contacts	=	JSON.parse(contactsStored);

								$.each(contacts,	function(i,	v)	{

												var	fragment	=	$(screen).find('#contactRow')

[0].content.cloneNode(true);

												var	row	=	$('<tr>').append(fragment);

												row	=	bind(row,	v);

												$(row).find('time').setTime();

												$(screen).find('table	tbody').append(row);

								});

				}

},

This	function	is	relatively	straightforward;	it	simply	extracts	the	contacts	array	from	web
storage,	iterates	through	the	items,	and	adds	each	one	to	the	table	onscreen	using	code
from	earlier	in	the	book.

This	function	should	then	be	invoked	at	the	end	of	the	init	method	with	the	following
line	of	code:

this.loadContacts();

If	you	now	save	a	contact	and	re-open	the	contacts.html	web	page,	you	should	see	any
contacts	that	are	retained.

Try	It
In	this	Try	It,	you	will	enhance	the	functionality	added	in	this	lesson	by	providing	delete
functionality.	Currently,	the	delete	button	removes	the	relevant	row	from	the	table,	but	it
does	not	remove	the	record	from	web	storage:	This	means	that	once	the	page	is	refreshed,
the	contact	will	immediately	come	back.

Lesson	Requirements
To	complete	this	lesson,	you	will	need	a	text	editor	for	writing	code,	and	Chrome	for
running	the	completed	web	page.	It	is	also	expected	that	you	have	completed	the	steps	in
the	body	of	the	lesson	before	starting	this	Try	It.

Step-by-Step
1.	 Open	the	contacts.js	file	in	your	text	editor.	You	will	make	a	change	to	the	saving

process:	When	you	save	a	new	contact,	you	will	assign	it	a	unique	ID.	This	will	allow
you	to	uniquely	identify	the	contact	that	is	being	deleted.	The	ID	you	will	create	will
be	based	on	the	current	time	in	milliseconds.	In	order	to	achieve	this,	add	a	new	line
after	this	line:

var	contact	=	this.serializeForm();

This	line	should	set	an	ID	property	on	the	contact	to	have	a	value	derived	from	the
$.now()	function	call.	This	is	another	jQuery	helper,	and	returns	the	current	time	in
milliseconds	(as	a	JavaScript	number).

2.	 Because	any	existing	contacts	will	not	have	id	properties,	it	is	important	that	you
delete	them.	Use	the	localStorage.clear()	method	call	from	the	command	line	to
delete	all	data	from	web	storage.

3.	 When	contact	rows	are	added	to	the	table	in	loadContacts,	you	will	add	a	data
attribute	to	the	tr	element	specifying	the	ID	of	the	contact	in	the	row.	The	delete
event	listener	will	use	this	to	determine	the	ID	of	the	contact	that	should	be	deleted.
Identify	the	following	line	of	code:

var	row	=	$('<tr>').append(fragment);

Now,	change	this	so	that	the	tr	element	created	has	an	attribute	called	data-id	with
the	value	from	v.id.	Hint:	I	split	this	into	three	separate	lines	of	code.

4.	 The	contacts.js	file	already	has	a	delete	method	that	removes	a	contact	from	the
table.	You	need	to	add	code	before	the	following	line	to	identify	the	data-id
associated	with	the	tr:

$(evt.target).parents('tr').remove();

Assign	the	ID	to	a	variable	called	contactId.

5.	 Look	up	the	contacts	from	web	storage	and	convert	it	back	into	a	JavaScript	array

using	JSON.parse.

6.	 Use	the	filter	method	on	the	array	to	retain	any	items	that	do	not	match	this	ID.
Assign	the	newly	created	array	to	a	variable	called	newContacts.

7.	 Update	the	contacts	in	web	storage	so	that	the	array	stored	is	the	newly	created	array.
Remember	to	use	JSON.stringify	on	the	array	before	adding	it	to	web	storage.

Note
You	may	be	wondering	why	you	needed	an	id	to	uniquely	identify	contacts.	Typically,
adding	a	key	such	as	this	is	the	easiest	way	to	uniquely	identify	an	object	because
none	of	the	other	properties	on	the	object	is	guaranteed	to	be	unique.	In	this	case,	it
may	have	been	possible	to	make	the	email	address	the	unique	key,	but	even	this	can	be
shared	by	multiple	people	in	the	real	world.

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	30,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	31

IndexedDB
As	mentioned	in	the	previous	lesson,	HTML5	includes	specifications	for	three	distinct
APIs	that	allow	data	to	be	stored	inside	the	browser.	This	lesson	introduces	the	IndexedDB
API.

The	IndexedDB	API	is	considerably	more	advanced	than	the	web	storage	API.	Therefore,
if	the	web	storage	API	meets	all	your	needs,	you	may	opt	to	skip	this	lesson.

The	IndexedDB	API	does,	however,	offer	the	following	benefits	over	the	web	storage
API:

It	allows	various	data	types	to	be	stored	rather	than	simple	strings.	For	example,	it	is
possible	to	store	JavaScript	objects	directly	in	IndexedDB.

It	allows	more	sophisticated	retrieval	mechanisms.	For	example,	it	is	possible	to
query	IndexedDB	for	a	specific	record,	such	as	a	single	contact,	based	on	its	unique
ID.

It	allows	create,	update,	and	delete	operations	to	be	included	in	transactions.	This
means	you	can	perform	a	set	of	operations	and	guarantee	that	they	will	either	all
succeed	or	all	fail.	If	you	are	familiar	with	relational	databases,	this	will	be	a	familiar
concept.

It	is	capable	of	automatically	generating	unique	keys	for	records.	This	will	mean	you
do	not	need	to	rely	on	mechanisms	such	as	the	current	time	in	milliseconds,	as	you
saw	in	the	previous	lesson.

Browsers	typically	allow	far	more	data	to	be	stored	in	IndexedDB	as	opposed	to	web
storage.

Note
Unlike	the	web	storage	API,	the	IndexedDB	specification	does	not	state	how	much
storage	space	must	be	allocated	to	each	domain.	Browsers	typically	either	place	no
limitations	on	IndexedDB	(beyond	what	the	hard	drive	will	support)	or	place	an
upper	limit	in	the	gigabytes.

Although	these	features	can	be	enormously	useful	in	some	web	applications,	they	do
complicate	the	API.	The	IndexedDB	API	is	further	complicated	by	the	fact	that	it	relies
heavily	on	callbacks	for	virtually	all	operations:	Rather	than	simply	invoking	a	method
and	receiving	a	response,	the	IndexedDB	API	relies	on	you	to	register	callbacks	for
various	scenarios.	These	callbacks	will	then	be	invoked	when	the	specified	event	occurs.

The	main	reason	the	API	relies	on	callbacks	is	to	allow	operations	to	be	performed	on
background	threads	if	necessary.	This	means	that	if	you	are	performing	an	intensive
operation,	the	browser	may	be	able	to	perform	this	without	impacting	the	user	experience.

As	you	will	see,	the	use	of	callbacks	will	significantly	complicate	the	code	you	need	to
write	because	it	will	often	be	necessary	to	ensure	one	operation	has	completed	before
performing	the	next	operation.

This	lesson	will	provide	an	alternative	implementation	for	the	functionality	added	in
Lesson	30.	Therefore,	if	you	want	to	complete	the	exercises	in	this	lesson,	you	should	start
with	a	version	of	the	CRM	web	application	as	it	stood	at	the	start	of	Lesson	30.

Creating	a	Database
In	order	to	start	using	the	IndexedDB	API	for	the	first	time,	you	need	to	explicitly	create	a
database,	and	tell	the	API	the	types	of	data	you	wish	to	store	in	this	database.	Requesting
to	open	a	non-existent	database	automatically	creates	a	database.

You	will	add	two	distinct	sets	of	data	to	the	database.	In	addition	to	contacts,	you	will	add
a	list	of	companies	to	the	database,	allowing	the	companies	associated	with	contacts	to	be
displayed	correctly	in	the	table	(currently	a	number	is	displayed).

Note
As	you	will	see,	IndexedDB	is	accessed	via	a	browser-supplied	object	called
indexedDB.	In	Firefox,	this	must	currently	be	referenced	as	mozIndexedDB,	and	in	IE
it	must	be	accessed	via	msIndexedDB.	It	is	easy	enough	to	create	your	own	alias	to
this	object	that	will	work	in	all	browsers	as	follows:

myIndexedDB	=	indexedDB	||	msIndexedDB	||	mozIndexedDB;

The	code	you	will	use	for	creating	the	database	is	as	follows.	This	should	be	placed	at	the
end	of	the	init	method	in	contacts.js	to	ensure	it	executes	every	time	the	page	is
loaded:

var	request	=	indexedDB.open('contactsDB');

request.onsuccess	=	function(event)	{

}

request.onupgradeneeded	=	function(event)	{

}

Note
Do	not	run	this	code	yet.	You	need	to	provide	implementations	for	these	functions,	or
an	empty	database	will	be	created.

As	you	can	see,	you	specify	that	you	wish	to	open	a	database	with	a	specific	name,
contactsDB	in	this	case.	If	the	database	has	already	been	created	inside	the	browser	(this
is	not	the	first	time	the	user	has	accessed	the	web	application),	the	callback	function
registered	for	the	onsuccess	event	will	be	invoked.

If	the	database	has	not	previously	been	created,	or	if	you	provide	an	optional	version
number	as	the	second	parameter	to	open,	the	function	registered	against	onupgradeneeded
will	be	invoked.	It	is	within	this	function	that	you	can	define	the	structure	of	your
database.

Before	providing	implementations	for	these	callbacks,	in	order	to	interact	with	the	opened
database	you	will	need	a	reference	to	it.	Therefore,	create	a	private	variable	called
database	as	follows:

var	initialized	=	false;

var	database	=	null;

Now,	provide	the	following	implementations	for	the	callback	functions:

var	request	=	indexedDB.open('contactsDB');

request.onsuccess	=	function(event)	{

				database	=	request.result;

}

request.onupgradeneeded	=	function(event)	{

				database	=	event.target.result;

				var	objectStoreContacts	=	database.createObjectStore("contacts",

								{keyPath:	"id",	autoIncrement:	true	});

				var	objectStoreCompanies	=	database.createObjectStore("companies",

								{keyPath:	"id",	autoIncrement:	true	});

}

The	onsuccess	callback	is	reasonably	straightforward.	This	function	simply	records	a
reference	to	the	database,	which	you	will	start	using	shortly.

The	onupgradeneeded	callback	is	more	complicated.	In	this	callback,	you	begin	by
obtaining	a	reference	to	the	database	and	then	create	two	object	stores	in	the	database.
Each	object	store	must	be	given	a	unique	name,	and	in	each	case	you	have	also	specified
that	you	would	like	IndexedDB	to	generate	unique	IDs	for	records	via	the	autoIncrement
property.

You	have	also	specified	that	the	unique	ID	for	each	record	can	be	obtained	from	the	id
property,	so	this	is	the	property	that	will	be	automatically	generated	and	assigned	a	unique
ID	when	records	are	stored.

Note
If	you	are	familiar	with	relational	databases,	you	can	think	of	each	object	store	as	a
table.	The	main	difference	is	that	you	do	not	need	to	specify	the	structure	of	the	data
that	you	will	store;	you	simply	need	to	state	how	each	record	can	be	uniquely
identified.

If	you	now	open	the	Resources	tab	of	the	Chrome	developer	tools,	you	will	see	that	a
database	has	been	created,	and	that	it	contains	two	object	stores	(see	Figure	31.1).

Figure	31.1

You	can	also	see	that	the	database	has	a	version	number.	If	you	ever	need	to	change	the
structure	of	the	database,	you	need	to	open	it	and	provide	a	different	version	number.	This
will	ensure	that	the	onupgradeneeded	callback	is	invoked.

Storing	Data
You	will	begin	by	adding	functionality	to	store	data.	Start	by	adding	the	following	method
to	contacts.js	just	after	the	save	method:

store:	function(contact)	{

				var	tx	=	database.transaction(["contacts"],	"readwrite");

				var	objectStore	=	tx.objectStore("contacts");

				var	request	=	objectStore.put(contact);

				request.onsuccess	=	function(event)	{

								console.log("Added	a	new	contact	"	+	event.target.result);

					}

},

This	method	begins	by	instructing	the	database	that	you	wish	to	create	a	transaction.	You
provide	parameters	specifying	the	object	stores	that	will	be	involved	in	the	transaction	and
you	identify	that	you	wish	to	read	and	write	data	in	the	transaction.

All	data	access	with	IndexedDB	needs	to	be	performed	in	the	context	of	a	transaction.	A
transaction	can	then	consist	of	one	or	more	requests.	In	this	case,	a	single	request	is	added
to	the	transaction,	and	this	simply	adds	the	contact	to	the	relevant	object	store.

Note
IndexedDB	transactions	exhibit	the	four	important	properties,	usually	abbreviated	to
the	acronym	ACID:

Atomic:	Either	all	the	operations	in	the	transaction	succeed	(commits),	or	all	the
operations	fail	(roll	back).

Consistent:	The	database	will	remain	in	a	valid	state	at	the	end	of	the	transaction
as	defined	by	the	rules	of	the	database.

Isolation:	The	changes	made	by	the	transaction	are	isolated	from	other
transactions	until	all	the	changes	have	been	successfully	committed.

Durable:	Once	the	changes	are	committed,	they	remain	committed,	even	if	the
database	crashes	immediately	afterwards.

As	you	can	see,	you	can	register	an	onsuccess	callback	with	the	request.	This	callback
simply	outputs	the	ID	that	has	been	assigned	to	the	newly	stored	contact.

Although	it	is	not	shown	here,	you	can	also	add	an	onsuccess	callback	to	the	transaction
itself,	and	this	will	be	invoked	after	all	requests	in	the	transaction	have	completed.	It	is
important	to	note	that	the	records	added	will	not	be	available	to	other	transactions	until	the
transaction	(rather	than	the	individual	request)	has	succeeded.

Additionally,	it	is	always	possible	to	register	an	onerror	callback	along	with	an
onsuccess	callback.	This	provides	you	with	an	opportunity	to	handle	any	unexpected
events.

Once	the	store	method	has	been	defined,	you	need	to	invoke	it	during	the	save	operation,
just	as	you	saw	in	the	previous	lesson.	For	example:

row	=	bind(row,	contact);

this.store(contact);

If	you	now	save	a	contact,	the	following	message	should	be	displayed	in	the	console:

Added	a	new	contact	with	the	ID	=	1

Additionally,	you	should	be	able	to	see	the	saved	data	in	the	Resources	tab,	as	shown	in
Figure	31.2.

Figure	31.2

Each	time	you	add	a	new	contact,	the	ID	automatically	assigned	will	increase	by	1.

Reading	Data
Now	that	you	have	stored	data,	you	can	add	functionality	to	read	it	every	time	the	web
application	is	opened.	This	functionality	will	perform	the	exact	same	operations	as	the
loadContacts	method	in	the	previous	lesson,	except	it	will	read	the	data	from	IndexedDB.

Reading	data	from	IndexedDB	introduces	a	new	concept	called	a	cursor.	A	cursor	is	a
mechanism	for	holding	a	set	of	records.	It	is	then	possible	to	traverse	through	the	cursor
one	record	at	a	time	and	process	its	contents.

Start	by	adding	the	following	method	to	contacts.js	immediately	after	the	store
method:

loadContacts:	function()	{

				var	tx	=	database.transaction("contacts");

				var	objectStore	=	tx.objectStore("contacts");

				objectStore.openCursor().onsuccess	=	function(event)	{

								var	cursor	=	event.target.result;

								if	(cursor)	{

												var	contact	=	cursor.value;

												var	fragment	=	$(screen).find('#contactRow')

[0].content.cloneNode(true);

												var	row	=	$('<tr>');

												row.data().id	=	contact.id;

												row.append(fragment);

												row	=	bind(row,	contact);

												$(row).find('time').setTime();

												$(screen).find('table	tbody').append(row);

												cursor.continue();

								}

				}

},

As	you	can	see,	this	method	begins	by	specifying	that	you	wish	to	create	a	transaction,	but
this	time	you	do	not	specify	that	you	need	to	write	data.	By	default,	transactions	are
always	capable	of	reading	data.

Once	the	transaction	is	created,	you	can	simply	open	the	relevant	object	store	and	open	a
cursor	on	the	object	store.	By	default,	this	cursor	will	provide	a	result	set	containing	all	the
records	in	the	object	store.

You	then	add	an	onsuccess	callback	to	the	cursor.	This	will	automatically	be	passed	the
first	record	in	the	cursor,	which	can	be	accessed	from	cursor.value	and	processed.

When	you	have	finished	processing	the	record,	you	invoke	cursor.continue().	This
automatically	causes	the	onsuccess	callback	to	be	invoked	again	with	the	next	record	in
the	result	set.	When	the	value	of	cursor	is	null,	you	know	that	all	the	records	have	been
processed.

You	need	to	be	careful	to	only	invoke	loadContacts	after	the	database	has	been	opened.
In	order	to	achieve	this,	add	the	following	code	to	the	logic	that	opens	the	database.

var	request	=	indexedDB.open('contactsDB');

request.onsuccess	=	function(event)	{

				database	=	request.result;

				this.loadContacts();

}.bind(this);

Notice	that	you	only	attempt	to	read	data	from	the	database	after	IndexedDB	has
confirmed	it	has	been	successfully	opened.

If	you	wish	to	access	a	specific	record	from	the	object	store,	you	can	achieve	this	without
processing	all	the	records	in	a	cursor.	For	instance,	the	following	code	will	find	the	contact
with	the	ID	of	2:

var	request	=	objectStore.get(2);

request.onsuccess	=	function(event)	{

				var	contact	=	event.target.result;

}

This	will	provide	a	significant	performance	boost	as	the	object	store	increases	in	size
because	IndexedDB	optimizes	this	operation	by	creating	an	index	on	the	ID.

Note
It	is	also	possible	to	index	any	of	the	other	properties	on	an	object	(such	as
emailAddress),	allowing	them	to	be	searched	directly	and	efficiently.	This	subject	will
not	be	discussed	in	this	lesson,	but	information	is	available	on	the	Internet	if	you	wish
to	use	this	approach.

Deleting	Data
The	final	subject	I	will	cover	is	deleting	data.	You	will	delete	data	records	via	their	id,
which,	as	you	will	remember,	is	made	available	via	a	data	attribute	on	the	tr	element.

In	order	to	delete	contacts,	the	delete	method	can	be	augmented	as	follows:

delete:	function(evt)	{

				var	contactId	=	$(evt.target).parents('tr').data().id;

				$(evt.target).parents('tr').remove();

				this.updateTableCount();

				var	tx	=	database.transaction("contacts",	"readwrite");

				var	objectStore	=	tx.objectStore("contacts");

				var	request	=	objectStore.delete(contactId);

},

This	code	snippet	begins	by	obtaining	a	reference	to	the	id	of	the	contact	that	is	being
deleted.	It	then	performs	the	familiar	operations	of	creating	a	transaction	(which	needs	to
be	readwrite)	and	accessing	the	relevant	object	store.

Once	a	reference	to	the	object	store	is	obtained,	the	delete	method	can	be	invoked	and
passed	the	relevant	id.

Try	It
In	this	Try	It,	you	will	enhance	the	functionality	added	in	this	lesson	by	providing
functionality	to	store	a	static	list	of	companies.	When	a	contact	is	stored,	you	will	obtain	a
reference	to	the	relevant	company	and	store	this	against	the	contact.	Finally,	when	the
contact	is	displayed	in	the	table,	you	will	display	the	appropriate	company	name.

Lesson	Requirements
To	complete	this	lesson,	you	will	need	a	text	editor	for	writing	code	and	Chrome	for
running	the	completed	web	page.	It	is	also	assumed	that	you	have	completed	the	steps	in
the	body	of	the	lesson	before	starting	this	Try	It.

Step-by-Step
1.	 To	begin,	you	will	store	a	static	list	of	company	names	in	IndexedDB.	You	will

perform	this	in	a	new	method	called	configureData,	so	start	by	adding	this	method
immediately	after	the	init	method	in	contacts.js.

2.	 You	only	need	to	add	companies	once	(the	first	time	the	web	application	is	used),	so
start	by	determining	if	there	are	any	records	in	the	companies	object	store.	You	can
determine	this	by	opening	a	cursor	on	the	companies	object	store	and	determining
whether	event.target.result	evaluates	to	false	in	the	onsuccess	callback.	If	the
first	record	in	the	cursor	evaluates	to	false,	the	object	store	is	empty.

3.	 If	there	are	no	companies,	you	need	to	add	three	companies.	These	should	be	stored
as	objects	with	a	single	property	called	name.	The	name	should	be	set	to	the	following
value	in	each	record:

ABC	Incorporated

XZY	Ltd

ACME	International

Remember	that	you	can	use	a	single	transaction	and	add	three	requests	to	it	in
order	to	store	these	three	companies.	IndexedDB	will	automatically	add	id
properties	to	these	objects.

4.	 You	need	to	ensure	that	the	configureData	function	is	only	invoked	after	the
database	has	initialized	so	invoke	this	immediately	before	the	call	to	loadContacts.

5.	 Refresh	the	web	page	and	ensure	three	contacts	are	created	in	the	companies	object
store.	Once	verified,	refresh	the	page	again	to	ensure	it	does	not	create	duplicate
entries.

6.	 You	now	need	to	change	the	save	operation	so	that	it	finds	the	company	object	that
matches	the	companyName	property	on	the	saved	contact.

The	code	for	finding	the	relevant	company	should	be	placed	immediately	after	the
following	line:

var	contact	=	this.serializeForm();

Use	the	IndexedDB	get	method	to	find	the	company	object	with	the	appropriate	id,
and	set	this	as	the	companyName.

Remember	also	to	use	parseInt	to	convert	the	original	companyName	string	into	a
number	because	the	get	method	expects	a	number.

7.	 There	is	now	a	complication:	The	remainder	of	the	code	in	the	save	method	needs	to
occur	in	the	onsuccess	callback	of	get.	This	ensures	that	the	company	is	actually	set
on	the	contact	before	it	is	saved	and	displayed.

8.	 If	you	create	a	new	contact	now,	it	will	display	in	the	table	as	you	see	in	Figure	31.3.
This	is	because	the	bind	method	simply	converts	the	company	object	to	a	string.

Figure	31.3

This	can	be	circumvented	by	adding	additional	logic	to	the	bind	method.	One
possible	approach	is	to	use	“programming	by	convention”	and	assume	that	if	a	field
is	of	type	“object,”	it	will	have	a	name	property	that	can	act	as	the	display	value:

if	(typeof	obj[field]	==	"object")	{

				$(val).text(obj[field].name);

}	else	{

				$(val).text(obj[field]);

}

An	alternative	approach	would	be	to	override	the	toString	method	on	company
objects	and	have	this	return	the	name	field.

9.	 After	the	loadContacts	adds	contacts	to	the	table	you	need	to	invoke
updateTableCount	to	ensure	the	correct	count	of	contacts	is	listed	below	the	table.
This	will	involve	using	the	bind	function.

Note
Although	not	shown	in	this	Try	It,	you	may	also	choose	to	populate	the	options	in	the
companyName	select	box	from	the	companies	stored	in	IndexedDB.	This	will	ensure
that	if	you	add	new	companies	to	IndexedDB,	they	will	automatically	be	available	in
the	select	box.

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	31,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	32

Application	Cache
In	the	previous	two	lessons,	you	learned	how	data	can	be	stored	inside	the	web	browser.
Although	this	approach	meant	the	web	application	was	no	longer	reliant	on	Internet
connectivity	to	access	data,	the	web	application	was	still	very	much	dependent	on	an
Internet	connection	to	in	order	to	load	resources	such	as	HTML	pages,	JavaScript	files,
images,	and	CSS	files.

For	instance,	if	you	shut	down	the	web	server	and	attempt	to	run	the	web	application,	you
will	receive	an	error	message	that	the	web	page	is	unavailable.

There	are,	however,	many	scenarios	where	you	might	wish	to	use	a	web	application
without	Internet	connectivity.	This	is	increasingly	true	now	that	web	applications	are
regularly	accessed	from	portable	devices,	which	may	not	have	access	to	networks	for
periods	of	time.

Offline-able	web	applications	was	clearly	a	feature	that	needed	to	be	addressed	in	order
for	browser-based	web	applications	to	become	a	viable	alternative	to	desktop	applications;
therefore	HTML5	introduced	a	technology	called	the	application	cache.

The	application	cache	is	a	mechanism	for	specifying	a	set	of	resources	that	should	be
stored	inside	the	browser	after	they	are	accessed	the	first	time.	From	this	point	forward
they	will	be	accessed	directly	from	the	browser,	removing	all	reliance	on	Internet
connectivity.

In	this	lesson,	you	will	learn	how	to	configure	a	web	application	to	work	with	the
application	cache,	along	with	approaches	for	interacting	with	the	application	cache	via	the
JavaScript	API.

Manifest	Files
The	key	to	understanding	the	application	cache	is	the	manifest	file.	This	file	specifies	the
files	that	should	be	stored	inside	the	browser,	together	with	any	other	configuration
information	required.

In	order	to	get	started	with	the	application	cache,	create	a	file	called	contacts.appcache
in	the	same	directory	as	the	contacts.html	web	page.	Within	this,	add	the	following
contents:

CACHE	MANIFEST

contacts.html

contacts_print.css

contacts.css

contacts.js

jquery-2.1.1.js

jquery-tables.js

jquery-time.js

jquery-ui.css

jquery-ui.js

images/ui-bg_highlight-soft_100_eeeeee_1x100.png

FALLBACK:

NETWORK:

*

The	application	cache	consists	of	three	sections:	An	empty	line	separates	these	sections
from	one	another.

The	first	section	is	introduced	with	the	heading	CACHE	MANIFEST.	This	section	lists	all	the
resources	in	the	web	application	that	need	to	be	cached	offline.	As	you	can	see,	each
resource	is	listed	on	a	new	line	and	can	consist	of	a	relative	URL,	an	absolute	URL,	or
even	a	URL	to	a	resource	on	a	different	web	server.

Note
It	is	important	to	remember	to	include	all	the	resources	that	are	needed	by	the	web
page,	not	just	those	directly	referenced	by	the	web	page.	For	instance,	the	last
resource	listed	is	not	directly	referenced	by	contacts.html,	but	is	used	by	jQuery	UI
and	referenced	in	jquery-ui.css.

The	(optional)	second	section	is	introduced	with	the	heading	FALLBACK.	This	section
allows	you	to	specify	that	alternative	resources	should	be	used	when	a	resource	is
unavailable	and	has	not	been	cached	offline.	For	instance,	the	web	application	may	display
the	status	of	the	web	application	using	an	image;	the	fallback	section	may	therefore	appear
as	follows:

FALLBACK:

online.png	offline.png

This	configuration	states	that	the	browser	should	attempt	to	use	online.png,	but	if	that	is
not	available	due	to	network	connectivity,	it	should	resort	to	using	offline.png.	In	this
case,	there	is	an	assumption	that	offline.png	is	included	in	the	application	cache,	thereby
ensuring	that	it	is	available	without	network	connectivity.

The	final	(optional)	section	is	the	NETWORK	section.	This	section	specifies	the	files	that
can	be	loaded	from	the	network	if	they	are	not	listed	in	the	application	cache.	This	is
almost	always	set	to	*,	which	means	any	files	not	listed	in	the	application	cache	can	be
loaded	from	the	network.

Once	the	manifest	file	has	been	defined,	the	next	step	is	to	link	it	to	an	HTML	page.	This
will	ensure	that	when	the	HTML	page	is	requested	from	the	server	the	first	time,	the
manifest	file	will	be	automatically	processed,	and	the	appropriate	resources	stored	in	the
application	cache.

The	application	cache	can	be	linked	to	an	HTML	page	via	the	manifest	attribute	on	the
html	element.	For	example:

<html	lang="en"	manifest="contacts.appcache">

Once	you	have	added	this,	open	Chrome	with	the	console	open	and	request	the
contacts.html	web	page	from	the	web	server	with	the	URL
http://localhost:8080/contacts.html.	When	you	do	this,	you	should	see	the	output
shown	in	Figure	32.1.

Note
Even	if	contacts.html	had	not	been	included	in	the	manifest,	it	still	would	have	been
cached	because	it	is	the	web	page	that	the	manifest	is	referenced	from.

Figure	32.1

Chrome	performs	the	following	operations	when	it	detects	a	manifest	file:

It	first	checks	the	manifest	to	see	whether	it	has	previously	downloaded	these
resources.	At	this	point,	the	browser	generates	a	“checking”	event.

Once	it	determines	that	it	needs	to	download	resources,	the	browser	generates	a
“downloading”	event	and	begins	downloading	resources	one	by	one	into	the	cache,
generating	a	“progress”	event	after	each	resource	is	cached.

Once	all	the	resources	are	downloaded,	the	browser	generates	a	“cached”	event.

This	process	is	referred	to	as	the	application	cache	lifecycle.

As	you	will	see	shortly,	it	is	possible	to	register	callbacks	to	listen	for	these	events.	You
can	also	use	a	special	URL	within	Chrome	to	view	any	applications	that	have	been	cached.
To	see	this,	browse	to	chrome://appcache-internals.	You	should	see	contents	similar	to
that	in	Figure	32.2:

Figure	32.2

This	page	can	also	be	used	to	see	exactly	which	resources	have	been	cached	and	to
remove	the	application	cache	entirely.

You	should	now	be	able	to	shut	down	your	web	server	and	attempt	to	access	the	web
application.	The	web	application	should	load	exactly	the	same	as	it	would	with	the	web
server	running,	and	the	user	should	not	notice	anything	different	when	using	the	web
application.

There	are	two	important	points	to	note	about	the	download	process:

If	the	browser	cannot	access	one	of	the	resources	listed,	it	will	abort	the	entire
caching	process.	This	means	it	is	vitally	important	that	if	you	delete	a	resource,	you
also	remove	it	from	the	manifest	file.	It	is	also	a	good	idea	to	check	the	console	to
ensure	that	the	caching	process	is	working	as	expected.

When	the	web	page	is	accessed,	the	resources	are	actually	downloaded	twice.	They
are	initially	downloaded	for	display	to	the	user,	and	then,	when	the	manifest	is
detected,	they	are	downloaded	again.	You	will	look	at	this	feature	in	more	detail
when	you	look	at	how	resources	are	refreshed	when	they	are	modified.

Updating	Resources
With	any	web	application,	resources	are	likely	to	change	over	time.	This	presents	a
problem	for	the	application	cache,	however,	because	unlike	with	traditional	browser
caching,	the	browser	will	not	ever	check	to	see	whether	any	of	the	resources	have	been
modified.

After	resources	are	cached,	they	are	always	served	from	the	application	cache,	even	if	the
web	server	is	accessible.	The	only	way	to	cause	the	browser	to	update	resources	is	to
change	something	in	the	manifest	file	itself.	This	is	simple	enough	if	you	are	adding	or
removing	resources,	but	presents	an	issue	if	the	resources	are	the	same	but	have	been
updated,	because	nothing	in	the	manifest	would	change.

The	typical	way	around	this	is	to	add	a	comment	to	the	manifest	and	change	this	comment
when	you	need	a	new	version	of	the	web	application	to	be	downloaded.	For	instance,	you
could	add	the	following	to	the	end	of	the	manifest:

#	version	1.1

The	#	symbol	at	the	start	of	the	line	indicates	that	this	is	a	comment	and	should	not	be
processed	by	the	browser.	Despite	this,	a	change	to	a	comment	counts	as	a	change	to	the
manifest.

The	web	browser	does	not	behave	entirely	as	expected	when	resources	have	changed.	The
behavior	is	as	follows:

The	browser	loads	the	web	application	using	the	cached	resources.

The	manifest	file	is	downloaded	from	the	web	server	and	checked	to	see	if	it	has	been
updated.

If	it	has	been	updated,	all	resources	are	downloaded	whether	they	have	changed	or
not.

This	means	that	the	browser	will	still	be	displaying	the	old	version	of	the	web	application
until	the	web	page	is	refreshed	in	the	browser.	With	a	single	page	web	application,	it	may
be	quite	some	time	until	the	web	page	is	refreshed	so	you	will	look	at	a	workaround	to	this
issue	shortly.

Note
It	can	be	very	frustrating	to	develop	a	web	application	with	the	application	cache
enabled.	For	this	reason,	I	recommend	that	you	remove	the	reference	to	the	manifest
when	working	through	future	lessons	in	this	book.

Cache	Events
As	mentioned	earlier,	it	is	possible	to	register	callbacks	to	listen	for	the	various	events	that
occur	during	the	application	cache	lifecycle.	This	can	be	useful	for	detecting	the	fact	that	a
new	version	of	the	web	application	is	available,	and	potentially	informing	the	user,	or
automatically	refreshing	the	web	application	as	a	result.

The	basic	mechanism	for	registering	event	listeners	is	as	follows:

applicationCache.addEventListener('updateready',	function()	{

				console.log('An	update	is	ready');

});

The	applicationCache	object	is	provided	by	the	browser,	and	event	listeners	can	be
added	for	a	variety	of	events	via	the	addEventListener	method.	The	most	common	of
these	events	are:

downloading:	This	event	fires	when	the	browser	determines	it	needs	to	download
resources	from	the	web	server.

progress:	This	event	fires	every	time	an	individual	resource	is	downloaded.

error:	This	event	fires	if	the	manifest	file	cannot	be	downloaded,	or	if	one	of	the
resources	cannot	be	downloaded.

updateready:	This	event	fires	when	a	new	set	of	resources	has	completed
downloading.

It	is	possible	to	use	these	events	to	ensure	the	updated	version	of	the	web	application	is
displayed	immediately	after	it	is	downloaded.

There	is	a	general	purpose	JavaScript	function	for	reloading	a	web	page:

location.reload();

Note
The	location	object	is	provided	by	the	browser	and	also	provides	information	about
the	origin	of	the	web	page.

This	means	it	is	possible	to	request	that	the	browser	reload	the	web	application	as	soon	as
a	new	set	of	resources	has	been	downloaded	and	stored	in	the	application	cache:

applicationCache.addEventListener('updateready',	function()	{

				location.reload();

});

Try	It
This	Try	It	walks	you	through	an	example	of	updating	resources	in	the	application	cache
and	detecting	that	they	have	updated	correctly.	The	primary	purpose	of	this	Try	It	is	to
ensure	that	you	fully	understand	the	application	cache	lifecycle.

Lesson	Requirements
To	complete	this	lesson,	you	will	need	a	text	editor	for	writing	code	and	Chrome	for
running	the	completed	web	page.	It	is	also	expected	that	you	have	completed	the	steps	in
the	body	of	the	lesson	before	starting	this	Try	It.

Step-by-Step
1.	 Remove	the	line	of	code	that	will	cause	the	application	cache	to	reload	the	web	page

on	an	updateready	event.

2.	 Open	the	contacts	web	application	and	verify	that	the	application	cache	is	functioning
as	expected	by	browsing	to	chrome://appcache-internals.	Make	a	note	of	both	the
Last	Update	Time	and	the	Last	Access	Time.

3.	 Click	the	View	entries	link,	and	verify	that	all	the	resources	have	downloaded.

4.	 Refresh	the	contacts.html	page	in	the	browser	and	then	verify	that	the	Last	Access
Time	is	updated	in	the	chrome://appcache-internals	web	page.	You	should	also
notice	that	the	Last	Update	Time	does	not	change.

5.	 Make	an	obvious	change	to	the	contacts.html	page	such	as	displaying	the	text	in
the	heading.

6.	 Reload	the	web	application	and	verify	that	the	change	is	not	visible	inside	the
browser.	This	demonstrates	that	the	resource	is	always	accessed	directly	from	the
cache.

7.	 Change	the	comment	in	the	contacts.appcache	file	to	indicate	that	the	version	has
changed.

8.	 Open	the	console	and	refresh	the	web	page.	The	console	should	show	that	new
resources	are	being	downloaded,	but	these	should	not	be	visible.

9.	 Refresh	the	web	page	one	more	time.	This	time,	the	application	cache	should
determine	that	no	updates	are	required,	but	the	changes	downloaded	in	Step	8	should
finally	display.

10.	 Browse	to	chrome://appcache-internals	and	verify	that	the	Last	Update	Time	has
been	updated	as	expected.

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	32,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	33

Web	Workers
JavaScript	has	always	been	a	single	threaded	programming	language.	Essentially	this
means	that	the	language	is	only	capable	of	performing	a	single	operation	at	a	time,	and
therefore	only	capable	of	utilizing	a	single	CPU	on	the	underlying	hardware.

This	was	not	a	problem	when	JavaScript	was	first	created	because	the	vast	majority	of
devices	that	ran	browsers	supported	only	a	single	CPU.	Over	the	last	10	years	there	has
been	a	major	change	in	hardware,	however,	and	the	vast	majority	of	devices	now	support
multiple	CPUs.	Even	smart	phones	typically	support	up	to	four	CPUs.

Note
The	terms	“processor”	and	“CPU”	are	essentially	interchangeable	and	refer	to	the
hardware	responsible	for	executing	the	instructions	provided	by	software.	Many
CPUs	support	multiple	cores:	A	multi-core	processor	essentially	contains	multiple
independent	units	capable	of	executing	instructions	on	the	same	CPU.	The	terms
“core”	and	“CPU”	will	therefore	be	used	interchangeably	in	this	lesson.

A	programming	language	is	considered	multi-threaded	if	it	is	capable	of	specifying
multiple	sets	of	instructions	that	can	be	run	in	parallel.	Each	set	of	instructions	is
encapsulated	inside	a	thread.

The	key	reason	that	multi-threaded	programming	languages	are	important	is	performance.
If	you	envisage	a	device	with	four	CPUs,	it	is	capable	of	executing	four	sets	of
instructions	in	parallel.	If	a	programming	language	is	not	multi-threaded,	however,	it	is
only	capable	of	using	25	percent	of	the	overall	processing	power	at	any	point	in	time.	The
same	software	written	in	a	multi-threaded	programming	language	may	therefore	execute
up	to	four	times	faster.

Note
Multi-threaded	software	can	still	execute	on	a	device	with	a	single	CPU.	In	this	case
the	operating	system	is	responsible	for	providing	each	thread	a	share	of	the	processor.

There	are	good	reasons	why	JavaScript	does	not	support	multiple	threads.	Programming
with	multiple	threads	can	cause	issues	because	two	different	threads	may	perform
operations	simultaneously	that	impact	the	same	underlying	data.	This	is	particularly	true
with	the	DOM:	If	two	threads	were	to	simultaneously	update	the	DOM	it	may	be	very
difficult	for	the	browser	to	determine	what	the	outcome	should	be.

JavaScript	Event	Model
In	order	to	adapt	to	the	changing	face	of	hardware,	HTML5	has	introduced	an	important
API	called	web	workers	that	can	be	used	to	create	multi-threaded	JavaScript	programs.

Before	looking	at	web	workers,	it	is	worth	investigating	how	best	to	write	responsive	web
pages	within	the	single-threaded	model.	These	techniques	are	useful	because,	as	you	will
see,	there	are	some	limitations	on	web	workers;	therefore,	they	will	not	always	be	a	viable
option.

Imagine	that	the	user	presses	a	button	onscreen,	and	this	causes	the	browser	to	execute	a
set	of	instructions	that	will	take	10	seconds	to	complete.	For	instance,	the	button	may	call
the	following	function,	which	attempts	to	find	the	highest	random	number	from	one
billion	possibilities:

function	findLargest()	{

				var	max	=	0;

				for	(var	i	=	0;	i	<=	1000000000;	i++)	{

								max	=	Math.max(max,	Math.random());

				}

				console.log(max);

}

While	this	processing	is	occurring	(which	takes	approximately	10	seconds	on	my
computer)	the	web	browser	will	be	completely	unresponsive.	If	the	user	clicks	buttons,
nothing	appears	to	happen:	The	button	will	not	even	change	appearance.	This	typically
causes	the	user	to	click	and	click	and	click.	If	that	was	not	bad	enough,	once	the
processing	finishes,	all	those	clicks	will	suddenly	fire,	which	can	cause	havoc.

The	code	that	is	executed	when	the	user	clicks	a	button	is	wrapped	in	an	event	and	placed
on	a	queue.	The	JavaScript	engine	is	then	responsible	for	processing	the	code	in	each
event	in	the	order	the	events	were	created,	not	processing	the	next	event	until	the	previous
one	has	completed.

In	order	to	observe	this,	create	the	following	web	page	or	download	it	from	the	book’s
website	(it	is	called	longandshort.html):

<!DOCTYPE	html>

<html	lang="en">

<body>

				Long	operation

				Short	operation

</body>

<script>

			function	findLargest()	{

							var	max	=	0;

							for	(var	i	=	0;	i	<=	1000000000;	i++)	{

											max	=	Math.max(max,	Math.random());

							}

							console.log(max);

			}

			function	getDate()	{

						console.log("The	time	is	"+new	Date());

			}

</script>

</html>

This	page	contains	two	buttons—one	generates	an	event	that	runs	for	approximately	10
seconds,	while	the	other	generates	an	event	that	takes	milliseconds.	Open	this	page	with
the	console	open	and	perform	the	following:

1.	 Click	the	Long	operation	link.

2.	 Immediately	click	the	Short	operation	link	12	times.

You	should	see	the	output	shown	in	Figure	33.1.

Figure	33.1

Even	if	you	finish	clicking	the	Short	operation	link	before	the	Long	operation	finishes,
none	of	the	clicks	are	processed	until	the	Long	operation	completes.

This	can	create	a	terrible	user	experience.	Any	delay	above	approximately	200
milliseconds	will	be	noticeable	to	users	and	will	affect	their	impression	of	the	web	page.

What	should	you	do	if	you	need	to	perform	processing	that	will	take	more	than	200
milliseconds,	and	you	cannot	use	web	workers?

The	ideal	approach	in	this	case	is	to	take	advantage	of	the	setTimeout	function.	This
function	can	be	used	to	create	an	event	that	will	execute	at	a	defined	time	in	the	future.	For
instance,	execute	the	following	in	the	console:

setTimeout(function()	{

				console.log('Testing');

},	2000);

The	will	print	“Testing”	in	the	console	2	seconds	after	the	code	is	executed.	The	first
parameter	is	the	code	to	execute,	while	the	second	parameter	is	the	delay	in	milliseconds.

If	you	think	about	this	in	the	context	of	the	JavaScript	event	model,	the	function	passed	to
setTimeout	becomes	an	event	and	is	added	to	the	queue	of	events	when	the	specified	time
is	reached.	Just	like	any	other	event,	it	will	not	actually	execute	until	it	reaches	the	front	of
the	event	queue.

You	can	therefore	split	the	algorithm	up	into	separate	portions	and	pass	each	to
setTimeout	in	turn:

function	findLargest()	{

				var	max	=	0;

				var	iterations	=	0;

				function	findLargestSub()	{

								while(true)	{

												iterations++;

												if	(iterations	===	1000000000)	{

																console.log(max);

																break;

												}	else	if	(iterations	%	10000000	==	0)	{

																setTimeout(findLargestSub,	10);

																break;

												}	else	{

																max	=	Math.max(max,	Math.random());

												}

								}

				}

				findLargestSub();

}

The	findLargest	function	now	contains	a	sub-function	called	findLargestSub.	The	sub-
function	is	essentially	the	same	as	the	original	function,	except	it	processes	a	maximum	of
10	million	numbers.

If	the	processing	has	not	completed	after	these	10	million	numbers	are	processed,	the	sub-
function	halts	and	requests	that	it	be	invoked	again	with	a	10-millisecond	delay.	Not	only
is	there	a	delay,	however,	but	the	next	portion	of	the	algorithm	will	be	placed	at	the	end	of
the	event	queue,	allowing	any	other	events	that	have	occurred	a	chance	to	complete.

If	you	make	these	changes	and	run	the	same	operations	again,	you	should	notice	that
pressing	the	Short	operation	button	produces	an	almost	immediate	response,	even	while
the	Long	operation	is	processing	in	the	background.

It	can	be	difficult	to	write	algorithms	in	this	manner,	however,	which	is	one	reason	web
workers	are	an	attractive	option.

Web	Workers
The	web	worker	specification	is	part	of	HTML5	and	is	widely	supported	by	the	major
browsers.	The	web	worker	API	allows	you	to	create	a	JavaScript	file	that	will	execute	on
an	entirely	separate	thread	from	the	JavaScript	event	thread.	This	code	can,	however,	be
passed	messages	from	the	JavaScript	event	thread	and	provide	results	back	when	it
completes.	Figure	33.2	shows	the	basic	pattern	used	by	web	workers.

Figure	33.2

The	two	outer	boxes	represent	two	operating	system	threads.	The	browser	thread	is
responsible	for	executing	all	the	JavaScript	included	in	the	page	or	imported	scripts,	while
the	web	worker	thread	is	responsible	for	executing	code	in	a	web	worker	file.	The	two
threads	can	only	communicate	via	messages	routed	by	the	web	worker	API.

Note
You	might	be	wondering	how	web	workers	handle	the	potential	issues	mentioned
earlier	in	this	lesson	if	a	web	worker	updates	the	DOM	at	the	same	time	as	the	code
in	the	main	JavaScript	thread.	The	web	worker	API	has	a	convenient	answer	for	that
problem;	it	is	not	possible	to	access	the	document	object	from	a	web	worker.	If	you
need	to	update	the	DOM	as	a	result	of	web	worker	processing,	the	web	worker	needs
to	pass	the	result	back	to	the	main	JavaScript	thread,	which	can	then	update	the
DOM.

Web	workers	actually	have	a	number	of	limitations.	In	addition	to	the	document	object,
they	are	unable	to	access	localStorage	or	sessionStorage.

In	order	to	see	the	benefit	of	web	workers,	you	need	a	piece	of	code	that	runs	for	an
extended	period	of	time.	In	order	to	simulate	this,	you	will	create	an	array	of	100,000
random	numbers,	sort	them,	and	display	the	lowest	number:

var	result	=	[];

for	(var	i	=	0;	i	<	1000000;	i++)	{

				result.push(Math.random());

}

result.sort();

console.log(result[0]);

Depending	on	the	speed	of	your	computer,	you	may	want	to	increase	or	decrease	the
quantity	of	numbers.

You	will	now	create	a	web	worker	that	accepts	a	parameter	representing	the	number	of
random	numbers	to	create	and	returns	the	smallest	number.	The	code	of	a	web	worker
needs	to	be	created	in	a	separate	file	so	create	a	file	called	random.js	(in	the	same	folder
as	contacts.js	so	that	it	is	available	from	the	web	server),	and	add	the	following
contents:

self.addEventListener('message',	function(msg)	{

				var	data	=	msg.data;

				var	result	=	[];

				for	(var	i	=	0;	i	<	data;	i++)	{

								result.push(Math.random());

				}

				result.sort();

				self.postMessage(result[0]);

},	false);

When	this	web	worker	is	loaded,	it	starts	by	adding	an	event	listener	that	allows	it	to	be
notified	when	a	message	is	available	for	it.	As	you	will	see,	it	does	this	by	invoking
addEventListener	on	an	object	called	self.

The	self	object	represents	the	global	namespace,	and	is	therefore	the	equivalent	of	the
window	object	for	conventional	JavaScript	code.	In	fact,	if	you	type	self	at	the	console,	it

will	return	the	window	object.	As	mentioned,	a	web	worker	cannot	access	the	window
object	so	when	it	invokes	self	it	returns	its	own	global	namespace	object,	which	happens
to	be	called	WorkerGlobalScope.

As	you	can	see,	when	the	web	worker	receives	a	message,	it	can	extract	the	information
from	the	data	variable	on	the	message	object—for	the	purposes	of	this	example	data	will
be	a	number.

The	web	worker	then	performs	any	processing	necessary.	It	can	use	any	features	of	the
JavaScript	language	it	needs,	including	built-in	libraries	such	as	Math.

Once	the	web	worker	has	a	result,	it	can	return	it	to	the	main	browser	thread	using	the
postMessage	function.

You	will	now	create	a	simple	web	page	that	allows	a	number	to	be	entered	into	a	form.
When	the	form	is	submitted,	the	number	will	be	passed	to	the	web	worker,	and	the	result
added	to	a	table.

Create	a	web	page	called	findnumbers.html	in	the	same	folder	as	contacts.html,	with
the	following	content	(this	is	available	on	the	book’s	website):

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

				<title>Lowest	number</title>

				<link	rel="stylesheet"	media="all"	type="text/css"	href="contacts.css">

				<script	src="jquery-2.1.1.js"></script>

</head>

<body>

				<header>Find	the	lowest	number</header>

				<form	method="post"	style="margin:30px">

								<div	class="formRow">

												<label	for="contactName">Enter	a	number</label>

												<input	required	name="theNumber"	type="number"

															class="validated"	id="theNumber"/>

								</div>

								<div	class="formRow">

												<input	style="width:70px"	type="submit"

																title="Find"	value="Find"/>

								</div>

				</form>

				<section	id="numberList"	style="margin:30px">

								<table>

												<thead>

															<th>Number	entered</th><th>Result</th>

											</thead>

											<tbody></tbody>

								</table>

				</section>

</body>

<script>

$('form	input[type="submit"]').click(

				function(evt)	{

								evt.preventDefault();

								var	number	=	$('#theNumber').val();

								var	row	=	$('<tr>').append('<td>'+number+'</td>'	

).append('<td>'+0+'</td>');

								$('#numberList	table	tbody').append(row);

				});

</script>

</html>

This	has	not	been	integrated	with	the	web	worker	yet,	but	if	you	open	it	(from	the	web
server)	and	submit	some	numbers,	it	should	display	as	you	see	in	Figure	33.3.

Figure	33.3

You	will	now	add	the	code	to	construct	a	web	worker,	pass	it	your	numbers,	and	listen	for
the	result.	Start	by	changing	the	JavaScript	code	as	follows;	I	will	then	step	through	each
new	line:

$('form	input[type="submit"]').click(

				function(evt)	{

				evt.preventDefault();

				var	number	=	$('#theNumber').val();

				var	worker	=	new	Worker('random.js');

				worker.addEventListener('message',	function(evt)	{

								var	result	=	evt.data;

								var	row	=	$('<tr>').append('<td>'+number+'</td>').append('<td>'	

+result+'</td>');

								$('#numberList	table	tbody').append(row);

				},	false);

				worker.postMessage(parseInt(number));

});

The	code	starts	by	constructing	a	web	worker	using	the	following	line	of	code:

var	worker	=	new	Worker('random.js');

Notice	that	this	passes	a	reference	to	the	script	you	created	earlier	using	a	relative	URL.
Notice	also	that	you	did	not	import	the	random.js	script	at	the	top	of	the	web	page:	It	is
the	reference	to	it	here	that	causes	the	script	to	be	downloaded	from	the	server.

Note
If	you	need	the	web	worker	to	function	while	offline,	you	can	also	add	web	worker
scripts	to	application	cache	manifest	files.

Once	the	web	worker	has	been	constructed,	you	register	an	event	listener	with	it	so	that
you	can	hear	when	it	posts	a	message	back	to	the	main	browser	thread.	In	this	example,
this	will	occur	when	the	lowest	random	number	is	identified;	therefore,	you	also	have	code
to	process	this	result.

The	final	line	of	code	is	where	you	actually	post	a	message	to	the	web	worker,	causing	it
to	begin	processing.	In	this	case,	you	pass	the	number	that	was	extracted	from	the	form.

You	should	now	be	able	to	submit	numbers	in	the	form	and	see	them	being	passed	to	the
web	worker.	As	you	post	progressively	larger	numbers,	you	will	notice	that	there	is	a
delay	before	the	table	is	updated,	but	despite	this,	it	is	still	possible	to	submit	another
number	in	the	form.

You	can	try	submitting	several	numbers	at	a	time	and	then	opening	Task	Manager	on
Windows	or	Activity	Monitor	on	OS	X.	For	instance,	I	submitted	four	numbers	on	a
machine	with	four	cores,	and	saw	the	results	shown	in	Figure	33.4.

Figure	33.4

The	four	boxes	on	the	right	side	show	the	utilization	of	the	four	CPUs	over	time.	As	you
can	see,	as	soon	as	I	submitted	four	numbers,	all	four	CPUs	used	100	percent	of	their
available	resources.	This	ultimately	meant	that	the	task	was	completed	four	times	quicker
than	it	would	have	been	without	web	workers.

You	should	also	notice	that	if	you	submit	the	numbers	in	quick	succession,	they	all
complete	in	quick	succession	of	one	another,	proving	they	processed	in	parallel.

It	is	also	important	to	realize	that	even	though	my	machine	has	only	four	cores,	I	could
still	submit	10	or	20	numbers	simultaneously.	In	this	case,	each	number	would	be
processed	on	a	separate	thread,	and	it	would	be	up	to	the	operating	system	to	provide	a
share	of	the	CPUs	to	each	thread.

Try	It
In	this	Try	It,	you	will	convert	the	longandshort.html	web	page	from	earlier	in	this
lesson	to	use	web	workers.	This	will	ensure	that	it	is	always	possible	to	push	“Short
operation”	and	receive	immediate	feedback	in	the	console.

Lesson	Requirements
To	complete	this	lesson,	you	will	need	a	text	editor	for	writing	code	and	Chrome	for
running	the	completed	web	page.	You	should	also	download	longandshort.html	from	the
book’s	website.

This	example	needs	to	execute	inside	a	web	server	so	the	resources	mentioned	need	to	be
added	to	the	same	folder	as	contacts.html,	and	the	Mongoose	web	server	needs	to	be
running.

Step-by-Step
1.	 Create	a	web	worker	in	a	separate	file	and	add	code	for	it	to	listen	for	messages	being

posted	to	it.	I	have	called	mine	find_number.js.	The	web	worker	will	not	read	any
data	from	the	message,	but	the	message	will	be	used	to	signal	to	the	web	worker	that
it	should	begin	processing.

2.	 Move	the	code	from	findLargest	to	the	web	worker,	and	when	it	finishes
processing,	post	the	result	(the	maximum	number)	back	to	the	main	browser	thread
using	postMessage.

3.	 Change	the	logic	of	findLargest	so	that	it	constructs	a	web	worker	and	posts	a
message	to	it.	When	the	processing	completes,	it	should	receive	the	response	from
the	web	worker	and	print	this	to	the	console.

4.	 Ensure	that	the	processing	of	the	Long	operation	does	not	block	the	Short	operation
from	executing	immediately.

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	33,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	34

Files
Files	and	file	systems	have	always	been	one	of	the	most	important	concepts	in	computing
because	they	provide	a	convenient	mechanism	for	providing	input	to,	and	storing	output
from,	computer	software.

Despite	this,	browsers	have	been	extremely	limited	in	the	manner	they	can	interact	with
files	or	the	file	system.	This	interaction	has	been	limited	to	the	file	input	type,	which	can
be	declared	as	follows:

<input	type="file"	name="selectedFile"/>

This	creates	an	input	type	that	allows	a	file	to	be	selected	from	the	file	system.	For
instance,	in	Chrome,	the	input	field	appears	as	you	see	in	Figure	34.2,	while	in	Firefox,	the
input	type	appears	as	you	see	in	Figure	34.1.

Figure	34.1

Figure	34.2

Once	a	file	is	selected,	its	content	will	be	submitted	to	the	web	server	when	the	form	is
submitted:	The	file	contents	can	then	be	accessed	by	the	web	server	and	processed.

Note
Some	modern	devices	do	not	support	the	file	input	type	because	they	do	not	expose	a
file	system	that	allows	files	to	be	selected.	For	instance,	this	input	type	is	not
supported	on	either	the	iPad	or	iPhone.

Despite	its	simplicity,	the	file	input	type	is	extremely	important	to	HTML,	and	many	of
the	most	popular	sites	on	the	Internet	could	not	exist	without	it.	Any	time	you	select	a	file
from	your	computer	and	post	it	to	a	website,	you	are	using	this	input	type.

Despite	this,	the	file	input	type	is	also	very	constrained.	These	constraints	stem	primarily
from	security	concerns.	For	instance,	imagine	if	the	browser	supported	the	following
functionality:

Add	a	hidden	file	input	field	to	a	form,	programmatically	select	a	file	using
JavaScript,	and	programmatically	submit	the	form	to	the	server.

Change	the	appearance	of	the	button	on	the	file	input	field	so	it	looks	like	a	submit
button,	but	when	it	is	pressed,	select	a	file	from	the	file	system,	and	submit	the	form.

Clearly	these	represent	huge	security	holes	because	they	allow	a	web	page	to	access	files
on	your	device	without	your	knowledge	or	permission.	It	is	vitally	important	that	web
pages	are	not	able	to	access	files	from	your	file	system	in	this	manner.

In	order	to	ensure	that	the	file	input	field	is	not	misused,	the	following	restrictions	apply:

The	browser	dictates	the	appearance	of	the	file	input	type,	and	it	is	not	possible	to
change	this	appearance	with	CSS	or	JavaScript.	In	addition,	most	browsers	now
prevent	the	user	from	typing	a	filename	into	a	text	box,	and	insist	that	the	file	is
chosen	from	the	operating	system’s	file	chooser.

Browsers	do	not	allow	an	initial	filename	to	be	specified,	even	though	the	value
attribute	technically	supports	this.	This	is	to	prevent	the	web	page	from	suggesting	a
sensitive	filename.

It	is	not	possible	to	interact	with	the	file	input	field	using	JavaScript.	For	instance,	it
is	not	possible	to	read	the	file	contents	without	sending	the	file	to	the	web	server.

Note
There	are	some	well-known	“hacks”	that	allow	the	appearance	of	the	file	input	field
to	be	modified.	These	usually	involve	placing	the	file	input	field	off	the	side	of	the
screen	or	below	another	control.

This	lesson	will	examine	an	important	API	that	overcomes	some	of	these	restrictions,	in
particular,	allowing	a	file	to	be	processed	with	JavaScript.

FileReader	API
There	are	many	reasons	why	it	may	be	useful	to	process	a	file	with	JavaScript	rather	than
simply	submitting	it	to	the	server:

It	allows	the	file	to	be	validated	before	it	is	submitted	to	ensure	it	is	appropriate	in
terms	of	type,	size,	or	contents.

It	allows	the	file	to	be	pre-processed,	and	potentially	reduces	the	amount	of	data	sent
to	the	server.

It	allows	files	to	be	processed	without	an	Internet	connection,	assuming	the
application	is	loaded	via	the	application	cache.

In	order	to	provide	this	functionality,	the	FileReader	API	has	been	introduced	in	HTML5.
This	API	works	with	the	conventional	file	input	field,	but	allows	you	to	listen	for	files
being	selected.	Once	the	user	has	selected	a	file	it	is	possible	to	read	its	contents	via
JavaScript.

It	is	important	to	realize	that	the	FileReader	API	does	not	allow	you	to	programmatically
open	files	from	the	user’s	file	system	because	this	would	represent	a	major	security
loophole.	It	is	only	possible	to	read	the	contents	of	a	file	once	the	user	has	explicitly
selected	it	in	some	manner.

In	order	to	demonstrate	the	FileReader	API,	you	will	add	functionality	to	the	CRM	web
application	so	that	a	file	can	be	selected.	You	will	assume	that	this	file	contains	an	array	of
contacts	stored	in	JSON	format,	which	you	can	then	save.

In	order	to	begin,	you	need	to	add	a	new	section	to	contacts.html	for	selecting	files.	This
can	be	added	after	the	contactList	section:

<section	id="fileImport">

				<div	class="formRow">

								<label	for="importJSONFile">Import	contacts</label>

								<input	type="file"	id="importJSONFile"	name="importJSONFile">

				</div>

</section>

You	can	style	this	any	way	you	like,	but	I	added	the	following	to	contacts.css,	which
resulted	in	the	design	you	see	in	Figure	34.3:

#fileImport	{

				margin:	20px;

				border:	1px	solid	#999999;

				border-radius:	10px;

				width:	400px;

				padding:	10px	10px	0px	10px;

				background:	#DAECFF;

}

Figure	34.3

There	is	nothing	special	about	this	file	input	field	at	this	stage:	It	is	identical	to	the	file
input	fields	that	have	been	available	since	HTML4.

The	next	step	is	to	add	a	change	event	listener	to	the	file	input	field,	just	as	you	would
with	any	other	input	field.	The	following	code	can	be	added	to	contacts.js:

$(screen).find('#importJSONFile').change(function(evt)	{

				var	reader	=	new	FileReader();

				reader.onload	=	function(evt)	{

								console.log('New	file	selected');

								console.log(evt.target.result);

				};

				reader.readAsText(event.target.files[0]);

});

The	event	listener	starts	by	constructing	an	instance	of	the	FileReader	object.	This	object
contains	a	set	of	methods	supporting	the	reading	of	files	that	have	been	selected.

Next,	you	register	an	onload	event	listener	with	the	FileReader	that	will	fire	when	the	file
has	been	read.	At	this	stage,	you	have	only	received	a	notification	that	a	file	has	been
selected.	The	file	will	be	read	asynchronously	by	the	API	when	requested,	and	the
contents	passed	to	this	event	listener.

Note
It	is	also	possible	to	add	an	onerror	callback	with	the	FileReader	to	listen	for	any
problems	reading	the	file.

Within	the	onload	callback,	the	file	content	is	available	as	a	JavaScript	string	from
evt.target.result.	You	will	look	at	how	the	file	contents	are	converted	to	a	string
shortly.	In	this	example,	you	will	simply	write	the	contents	to	the	console.

Finally,	once	the	callback	has	been	registered,	you	request	the	API	to	read	the	file	with	the
following	line	of	code:

reader.readAsText(event.target.files[0]);

This	will	cause	the	file	contents	to	be	read	into	a	JavaScript	string,	and	will	then	invoke
the	onload	callback	function.

As	you	can	see,	the	selected	file	is	available	from	the	files	property	of	the	input	field.
Because	the	file	input	field	supports	the	selection	of	multiple	files,	the	files	property
contains	an	array	of	files.	In	this	case,	I	have	assumed	that	the	user	has	only	selected	a
single	file,	but	obviously	it	would	be	trivial	to	loop	through	the	array	and	read	each	file
selected.

In	this	case,	I	have	also	assumed	that	the	file	contains	textual	contents,	and	that	it	makes
sense	to	read	the	contents	into	a	JavaScript	string.	The	FileReader	object	also	supports
methods	such	as	readAsArrayBuffer	and	readAsBinaryString	when	dealing	with	binary
files.

In	order	to	use	this	API,	create	a	file	called	contacts.txt	that	should	contain	three
contacts	encoded	in	JSON	format.	This	file	is	available	from	the	book’s	website,	or	you
can	create	it	yourself:

[{"contactName":"James	Cook","phoneNumber":"55521882",	

"emailAddress":"james@testing.com",	"companyName":"2","notes":"This	is	a	

note","lastContacted":"09/18/2014"},

{"contactName":"William	

Pitt","phoneNumber":"555919911","emailAddress":"william@testing.com",	

"companyName":"3","notes":"Test","lastContacted":"09/01/2014"},

{"contactName":"Dane	

Cameron","phoneNumber":"555291111","emailAddress":"dane@testing.com",	

"companyName":"3","notes":"My	note","lastContacted":"09/18/2014"}]

Once	the	file	is	created,	ensure	that	you	can	read	it	with	the	file	input	field	and	that	its
contents	are	printed	to	the	console.

In	addition,	if	you	place	a	breakpoint	on	the	line	that	reads	the	file,	you	can	access
information	about	the	file,	as	you	can	see	in	Figure	34.4.

Figure	34.4

This	metadata	can	be	very	useful	when	determining	how	to	read	the	file,	or	even	if	you
should	read	the	file.

The	final	step	is	to	save	the	contacts	in	the	file	using	your	existing	store	method.	This	can
be	achieved	as	follows:

												$(screen).find('#importJSONFile').change(function(evt)	{

																var	reader	=	new	FileReader();

																reader.onload	=	function(evt)	{

																				var	contacts	=	JSON.parse(evt.target.result);

																				for	(var	i	=	0;	i	<	contacts.length;	i++)	{

																								this.store(contacts[i]);

																				}

																				location.reload();

																}.bind(this);

																reader.readAsText(event.target.files[0]);

												}.bind(this));

There	are	a	couple	of	points	to	note	about	this	code.	The	first	is	that	it	contains	a	callback
within	a	callback.	In	both	cases,	the	callback	function	is	bound	to	this,	which	means	that
the	call	to	this.store	works	as	expected.

Second,	note	that	instead	of	updating	the	table	as	each	contact	is	added,	you	simply	call
reload	on	the	web	page	once	all	the	contacts	are	saved.

Note
There	is	a	potential	problem	with	this	approach:	IndexedDB	may	not	have	finished
storing	the	contacts	when	reload	is	called.	Try	to	think	of	an	approach	for	solving	this
problem;	you	could	either	use	setTimeout	to	delay	the	reloading	or	a	callback	to	listen
for	the	storing	process	to	complete.

If	you	load	the	contacts.txt	file,	it	should	result	in	the	three	contacts	being	added	to	the
table.

Other	File-Related	APIs
The	FileReader	API	is	the	most	widely	supported	of	the	file	related	APIs	introduced	in
HTML5,	but	it	is	not	the	only	API	to	deal	with	files	and	file	systems.

The	most	ambitious	of	the	file-related	APIs	is	the	FileSystem	API.	This	API	not	only
allows	files	to	be	read,	but	it	also	allows	them	to	be	created,	and	provides	access	to	a	full
range	of	file	system	functions	such	as	creating	directories	and	deleting	files.

This	may	sound	like	a	very	dangerous	idea	because	clearly	you	do	not	want	a	web	page
deleting	files	or	creating	enormous	files	without	your	permission.	For	this	reason,	the
FileSystem	API	does	not	allow	the	web	page	to	access	the	operating	system’s	file	system;
it	provides	the	domain	access	to	a	sandboxed	file	system	that	is	kept	entirely	separate	from
other	domains	and	the	underlying	operating	system.

For	this	reason,	the	FileSystemAPI	does	not	provide	much	functionality	that	cannot	be
implemented	using	the	other	storage	APIs	demonstrated	earlier	in	the	book,	but	you	may
wish	to	investigate	it	further	if	you	are	writing	a	web	application	that	deals	extensively
with	files.

The	biggest	problem	with	the	FileSystem	API,	however,	is	that	it	is	not	widely	supported.
Support	currently	limited	to	Chrome	and	Opera.

Try	It
In	this	Try	It,	you	look	at	how	it	is	possible	to	select	files	via	drag	and	drop.	This	section
therefore	ties	together	two	topics:	the	ability	to	use	the	drag-and-drop	API	and	the	ability
to	read	the	contents	of	a	file	selected	in	this	manner.

Using	drag	and	drop	for	selecting	files	has	become	increasingly	common	and	provides	a
more	intuitive	interface	for	many	users.

Lesson	Requirements
In	this	lesson,	you	will	create	a	standalone	web	page	for	reading	files	selected	via	drag	and
drop.	The	web	page	will	be	based	on	the	dropfile.html	web	page	available	from	the
book’s	website.

You	will	need	a	text	editor	and	Chrome	to	complete	this	Try	It.

Step-by-Step
1.	 Open	the	dropfile.html	file	from	the	book’s	website	in	your	text	editor.

2.	 The	function	that	you	are	required	to	implement	is	the	drop	function.	This	will	be
invoked	whenever	a	file	is	dropped	onto	the	rectangle	with	the	dashed	border.

3.	 Recall	from	Lesson	9	the	way	in	which	the	dataTransfer	object	can	be	accessed.
This	will	contain	an	additional	property	called	files,	which	will	contain	an	array	of
the	files	selected.	Assign	the	first	element	in	this	array	to	a	variable	called	file.

4.	 Construct	a	new	FileReader	object	and	add	an	onload	callback.	Within	the	callback,
extract	the	contents	of	the	file	using	the	techniques	outlined	earlier	in	this	lesson,	and
set	them	as	the	text	for	the	element	with	the	ID	fileContents.

5.	 Use	the	readAsText	method	on	the	FileReader	to	initiate	the	loading	of	the	file
stored	in	the	file	variable.

6.	 Access	the	name	of	the	file,	and	set	this	as	the	text	for	the	element	with	the	ID
fileDetails.

Figure	34.5	shows	the	result	of	dragging	the	contacts.txt	file	onto	the	drop	zone.

Figure	34.5

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	34,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	35

AJAX
The	web	was	designed	to	operate	with	the	HTTP	protocol.	As	mentioned	previously,	the
HTTP	protocol	is	a	simple	request/response	protocol:	The	browser	requests	a	resource,
and	a	response	is	received	and	rendered.

This	model	worked	well	for	document-centric	websites	because	a	document	(an	HTML
page)	or	image	could	be	requested	and	the	response	rendered	directly	in	the	browser.	This
model	does	not	work	so	well	for	dynamic	web	applications.

A	common	requirement	for	web	applications	is	to	request	additional	information	after	a
page	has	loaded.	For	instance,	a	browser-based	chat	application	will	constantly	check	for
new	messages	and	display	them	immediately	via	DOM	manipulation.	Without	this
functionality,	the	user	is	required	to	constantly	refresh	the	entire	web	page	to	check	for
new	messages.

Although	it	is	possible	to	automatically	refresh	an	entire	web	page	at	periodic	intervals,
the	refresh	process	will	not	only	cause	a	very	noticeable	delay	but	it	will	interrupt
whatever	the	user	is	doing.	For	instance,	if	the	user	was	halfway	through	typing	a
message,	this	message	would	be	cleared	out	and	lost.

In	order	to	support	web	applications	such	as	a	chat	application,	Microsoft	introduced	a
JavaScript	feature	into	Internet	Explorer	called	the	XMLHttpRequest	object	all	the	way
back	in	1999.	This	allowed	HTTP	requests	to	be	performed	using	JavaScript	after	the	web
page	had	loaded,	and	the	response	to	be	processed	and	incorporated	directly	into	the
DOM.

XMLHttpRequest	was	eventually	reverse	engineered	into	other	browsers,	and	this	approach
has	come	to	be	called	AJAX.	Although	AJAX	predates	HTML5,	the	technology	behind	it
has	been	standardized	as	part	of	the	HTML5	standards	process.

Note
The	term	AJAX	was	only	popularized	once	the	XMLHttpRequest	object	began	to	be
widely	adopted	in	web	applications	such	as	Google’s	Gmail.

Although	it	was	slow	to	catch	on,	AJAX	was	potentially	the	most	important	technology
leading	to	the	widespread	adoption	of	HTML-based	web	applications	because	it	was
finally	possible	to	create	truly	dynamic	web	applications.	A	truly	dynamic	web	application
not	only	changes	in	response	to	user	input,	but	it	changes	in	response	to	new	information
received	from	external	sources.

AJAX	stands	for	Asynchronous	JavaScript	with	XML:

It	is	asynchronous	because	the	HTTP	request	does	not	block	the	browser	thread;
instead,	the	HTTP	response	can	be	processed	via	a	browser	callback.	This	is	an
extremely	important	feature	because	it	means	the	browser	does	not	freeze	while	an
HTTP	request	is	in-flight.

If	AJAX	were	not	asynchronous,	the	user	of	the	imaginary	chat	application	would	not
be	able	to	continue	typing	a	message	while	the	browser	was	checking	for	new
messages.

AJAX	is	based	on	a	JavaScript	object	called	XMLHttpRequest.	As	you	will	see,
however,	AJAX	is	typically	used	via	libraries	such	as	jQuery	because
XMLHttpRequest	does	not	have	the	most	intuitive	API.

AJAX	was	originally	used	primarily	with	the	XML	data	format.	AJAX	is	now	more
often	coupled	with	the	JSON	data	format.	Essentially,	you	can	use	any	data	format
you	want	with	AJAX.

Note
The	technologies	associated	with	AJAX	are	particularly	misleading.	Not	only	is	it	not
inherently	linked	to	XML,	but	AJAX	requests	do	not	need	to	be	asynchronous,
although	they	typically	are.	Likewise,	the	XMLHttpRequest	is	not	inherently	linked	to
either	XML	or	HTTP:	It	is	possible	to	use	alternative	protocols	if	required,	although
this	also	is	not	common.

This	lesson	will	introduce	AJAX	and	the	jQuery	functions	that	can	be	used	to	simplify
server	interactions.	AJAX	is	different	from	the	other	technologies	that	you	have	looked	at
so	far,	however,	because	it	also	assumes	code	will	be	deployed	to	the	web	server	to
dynamically	generate	responses	to	requests.

Server-side	technologies	are	beyond	the	scope	of	this	book;	therefore,	the	examples	that
you	will	look	at	will	be	based	on	static	JSON	responses.	If	you	would	like	to	learn	more
about	creating	server-side	services	for	responding	to	AJAX	requests,	you	may	might	want
to	look	at	technologies	such	as	PHP	or	Node.js.

Note
Node.js	is	a	server-side	technology	based	on	JavaScript.	This	means	it	allows	you	to
leverage	much	of	the	knowledge	you	have	gained	throughout	this	book.

AJAX	Requests
In	this	section,	you	will	request	data	from	the	web	server,	and	the	web	server	will	return	a
response	from	a	static	file.	In	order	to	make	this	available,	take	the	contacts.txt	file
from	the	previous	lesson	(or	from	the	book’s	website),	rename	it	contacts.json,	and
copy	it	to	the	same	directory	as	contacts.html.	Once	you	have	completed	these	steps,
verify	that	it	can	be	accessed	from	http://localhost:8080/contacts.json.

You	can	now	write	code	for	requesting	this	data	from	the	web	server	after	the	web	page
has	loaded.	In	this	case,	you	will	envisage	a	web	application	where	many	different	clients
can	save	contact	information	to	a	central	repository.	You	can	then	synchronize	with	this
central	repository	on	request	and	save	a	copy	of	any	contacts	returned.

Begin	by	adding	a	new	section	to	contacts.html,	below	the	section	added	in	the	previous
lesson:

<section	id="serverImport">

					<div	class="formRow">

								Import	from	server

					</div>

</section>

Change	the	CSS	in	contacts.css	so	that	this	section	uses	the	same	styles	as	the
fileImport	section.

You	will	now	add	an	event	listener	to	this	hyperlink	in	the	init	method	of	contacts.js,
and	add	code	to	invoke	the	server:

$(screen).find('#importFromServer').click(function(evt)	{

				$.get("contacts.json",	function(data)	{

								console.log(data)

				});

});

With	this	code	in	place,	open	the	console	and	press	Import	from	server.	Immediately	after
clicking	this,	the	console	should	print	out	the	result	shown	in	Figure	35.1.	This	shows	that
three	contact	objects	have	been	received	in	an	array	from	the	server.

Note
You	can	choose	to	implement	functionality	to	store	these	contacts	in	offline	storage
using	the	code	developed	in	the	previous	lesson	if	you	wish.

Figure	35.1

The	simplicity	of	this	code	hides	the	complexity	of	the	operations	that	are	being
performed	in	the	background:

An	HTTP	GET	request	is	sent	to	the	server	requesting	a	resource	called
contacts.json.	This	is	triggered	by	the	invocation	of	$.get,	which	accepts	the
relevant	URL	as	its	first	parameter.

A	callback	function	is	registered	to	listen	for	a	response	from	the	server.	This	is
provided	as	a	second	parameter	to	$.get.

The	jQuery	library	receives	an	HTTP	response.	It	detects	that	the	response	conforms
to	the	JSON	format	and	automatically	parses	the	response	into	an	array	of	contact
objects.

The	parsed	response	is	passed	to	the	registered	callback.

Note
It	is	only	possible	to	request	services	from	the	same	origin	as	the	underlying	HTML
page.	This	is	referred	to	as	the	single-origin	policy,	and	is	familiar	from	many	of	the
APIs	you	have	looked	at	in	this	book.	If	you	are	interested,	there	is	a	competing
approach	called	JSONP	that	uses	a	“hack”	to	circumvent	this	restriction.
Alternatively,	a	newer	technology	called	Web	Sockets	is	emerging	and	is	specifically
designed	to	remove	this	restriction.

The	beauty	of	libraries	such	as	jQuery	is	that	they	abstract	complex	functionality	behind	a
simple	façade.

jQuery	also	supports	an	alternative	function	called	$.ajax.	This	provides	you	more
control	over	the	underlying	request	and	response,	but	is	not	necessary	in	most	situations.
For	example,	the	previous	example	could	be	replaced	with	the	following:

$.ajax({

				url:	"contacts.json",

				dataType:	"json",

				cache	:	false,

				type	:	"GET",

				timeout:	5000,

				success	:	function(data)	{

								console.log(data);

				},

				error:	function(jqXHR,	textStatus,	errorThrown)	{

								console.log(errorThrown);

				}

});

As	you	can	see,	this	method	allows	you	to	specify:

The	URL	of	the	request.

The	data	format	of	the	response.	As	you	have	seen,	jQuery	can	usually	determine	this
without	it	being	specified.

Whether	the	browser	cache	should	be	bypassed.	Typically,	you	do	want	to	avoid
caching	when	requesting	data	from	the	server	because	the	same	request	may	result	in
a	different	response.

The	HTTP	method	to	use:	typically	either	GET	or	POST.

The	maximum	time	(in	milliseconds)	to	wait	for	a	response	before	the	request	times
out.

The	success	and	error	callbacks.

In	the	previous	example,	the	response	contained	JSON-encoded	data.	It	is	also	common
for	an	AJAX	response	to	contain	HTML-encoded	data,	which	can	then	be	injected	directly

into	the	DOM	at	the	appropriate	location.

In	order	to	demonstrate	this,	create	a	resource	in	the	same	directory	as	contacts.html
called	notifications.html.	Add	the	following	HTML	fragment	to	this	file:

<p	style="color:red;font-weight:bold;margin-left:20px;">

The	web	server	will	be	shutdown	for	scheduled	maintenance	in	5	minutes.

</p>

Notice	that	this	is	only	a	fragment	of	HTML,	not	intended	to	be	loaded	directly	into	a
browser.

Now,	add	the	following	section	to	contacts.html:

<section	id="notifications">

</section>

This	is	an	empty	section	that	will	be	populated	after	the	web	page	has	loaded.

You	can	now	reload	the	web	page	and	execute	the	following	into	the	console:

$('#notifications').load('notifications.html');

As	soon	as	you	execute	this,	the	notifications.html	resource	will	be	loaded	from	the
web	server	and	populated	into	the	element	with	the	ID	notifications,	resulting	in	the
effect	shown	in	Figure	35.2.

Figure	35.2

You	will	notice	in	this	case	that	you	have	not	even	registered	a	callback	for	loading	the
markup;	the	load	method	automatically	assumes	that	when	the	response	is	received	it
should	be	loaded	directly	into	the	element	selected.

On	a	side	note,	you	can	also	use	the	Network	tab	of	the	developer	tools	to	analyze	the
underlying	HTTP	request	and	response.	For	example,	Figure	35.3	shows	the	request	sent
in	the	previous	example.

Figure	35.3

In	most	web	applications,	the	HTML	code	fragment	will	be	automatically	generated	based
on	specific	criteria	rather	than	a	static	block	of	HTML.	In	order	to	facilitate	this,	the
second	parameter	to	load	can	be	an	object	or	string	that	will	be	sent	to	the	server	along
with	the	request.	For	example:

$('#notifications').load('notifications.html',	{name:'dane'});

Typically,	whenever	the	browser	needs	to	send	data	to	the	web	server,	the	underlying
HTTP	method	used	will	be	POST	rather	than	GET.	If	you	execute	this	call,	you	should	be
able	to	confirm	in	the	Network	tab	that	the	load	method	has	automatically	switched	to
POST	and	automatically	encoded	the	properties	from	the	object	into	the	form	data.

Note
As	mentioned	earlier	in	the	book,	GET	requests	can	contain	parameters	as	name	value
pairs.	These	are	embedded	directly	in	the	URL.	Typically,	the	POST	method	will	be
used	once	data	extends	beyond	a	handful	of	parameters.

jQuery	also	provides	a	general	purpose	method	called	$.post	that	can	be	used	for	sending
data	to	the	server	on	a	request	and	processing	the	response	in	any	manner	required.

Try	It
This	Try	It	looks	at	how	you	can	create	different	themes	for	the	web	application	so	that
users	can	choose	the	color	scheme	that	suits	them.	In	this	case,	themes	will	be	developed
as	JavaScript	files,	and	these	will	be	dynamically	loaded	and	executed	via	AJAX	when
selected	by	the	user.

If	a	website	supported	many	themes,	it	would	be	a	waste	of	bandwidth	to	download	all	the
themes	for	users	because	they	are	likely	to	use	only	one	or	two.	It	therefore	makes	far
more	sense	to	download	themes	“on-demand.”

The	book’s	website	contains	three	sample	theme	files:

orange_theme.js

red_theme.js

purple_theme.js

You	can	either	use	these	or	create	your	own.	Each	theme	simply	uses	the	jQuery	css
method	to	manipulate	the	background	of	elements,	but	you	can	choose	to	add	more
interesting	effects	if	you	like.

The	theme	files	provided	conform	to	the	following	format,	but	with	different	colors	in
each	case:

$('header,	footer').css('background',	'linear-gradient(to	top,	#C644FC	,	

#5856D6)');

$('thead').css('background',	'linear-gradient(to	top,	#C644FC	,	#5856D6)');

$('#fileImport,	#serverImport,	#chooseTheme').css('background',	'#DEDDF7');

Lesson	Requirements
In	this	lesson,	you	will	need	a	set	of	theme	files,	which	can	be	downloaded	from	the
book’s	website.	You	will	need	a	text	editor	and	Chrome	to	complete	this	Try	It.

Step-by-Step
1.	 Open	contacts.html,	contacts.js,	and	contacts.css	in	your	text	editor.	Attempt

to	create	the	section	shown	in	Figure	35.4	for	selecting	themes.	This	can	be	created
using	the	knowledge	techniques	learned	earlier	in	the	book.

Figure	35.4

2.	 Each	square	should	be	represented	by	a	hyperlink	element.	The	background	of	each
square	should	be	the	dominant	color	in	the	theme.	Each	square	should	also	be	given	a
data	attribute	specifying	its	related	JavaScript	theme	file.	My	version	can	be	found	at
the	end	of	this	lesson,	and	produces	the	design	seen	in	Figure	35.4:

3.	 Add	a	click	listener	to	the	squares	created	in	Step	1.	Start	by	extracting	the	relevant
script	file	from	the	element’s	data	attribute.

4.	 This	code	should	be	added	in	the	init	method	of	contacts.js.

5.	 Use	the	jQuery	$.getScript	method	to	load	and	execute	the	relevant	script	from	the
server.	The	URL	of	the	script	should	be	passed	as	the	first	parameter	to	$.getScript.

6.	 Use	the	optional	second	parameter	of	$.getScript	to	register	a	callback	method.
Inside	this,	set	a	property	in	web	storage	indicating	the	theme	file	that	the	user	has
selected.	This	will	allow	you	to	remember	the	user’s	preferred	theme	when	the	page
is	reloaded.

7.	 When	the	web	page	is	loaded,	check	to	see	whether	a	theme	has	been	saved	in	web
storage.	If	it	has,	use	$.getScript	to	load	this	theme.	This	code	can	be	placed	in	the
$(document).ready	callback	of	contacts.html.

The	following	are	the	HTML	changes	I	added	for	the	themes	section:

<section	id="chooseTheme">

				<div	class="formRow">Choose	a	theme

								<a	class="theme"	href="#"	style="background:#C644FC"	data-theme-

file="purple_theme.js">

								<a	class="theme"	href="#"	style="background:	#FF5E3A"	data-theme-

file="red_theme.js">

								<a	class="theme"	href="#"	style="background:#FF9500"	data-theme-

file="orange_theme.js">

				</div>

</section>

The	relevant	CSS	changes	were	as	follows:

#fileImport,	#serverImport,	#chooseTheme	{

				margin:	20px;

				border:	1px	solid	#999999;

				border-radius:	10px;

				width:	400px;

				padding:	10px	10px	0px	10px;

				background:	#DAECFF;

}

.theme	{

				width:	20px;

				height:	20px;

				display:	inline-block;

				border:	1px	solid	#999999;

				border-radius:	3px;

}

I	then	added	the	following	to	contacts.js	to	listen	for	the	user	selecting	a	theme:

$(screen).find('.theme').click(function(evt)	{

				var	url	=	$(evt.target).data().themeFile;

				$.getScript(url,	function()	{

								localStorage.setItem('theme',	url);

				});

});

Finally,	I	added	the	following	to	the	$(document).ready	section:

if	(localStorage.theme)	{

				$.getScript(localStorage.theme);

}

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	35,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	36

Promises
Throughout	this	book,	you	have	made	extensive	use	of	callback	functions.	You	have	used
callback	functions:

To	register	event	listeners	that	fire	when	specific	events	occur

To	listen	for	the	completion	of	IndexedDB	operations,	such	as	the	insertion	of	data	or
the	opening	of	the	database

When	using	the	JavaScript	filter,	map,	and	reduce	functions	to	process	arrays

When	listening	for	messages	from	web	workers

When	waiting	for	AJAX	responses

As	you	can	see,	callback-based	programming	is	enormously	important	to	many	JavaScript
APIs,	and	it	is	impossible	to	gain	a	solid	understanding	of	JavaScript	without
understanding	callback	functions.

Although	callback-based	APIs	are	enormously	popular,	they	do	bring	their	own	set	of
problems.	These	problems	are	often	referred	to	as	“Callback	hell”	and	stem	largely	from
the	following	issues:

It	is	often	necessary	to	nest	callbacks	inside	other	callbacks,	and	this	nesting	can
extend	to	several	levels.	As	this	happens,	code	can	become	difficult	to	read	because	it
is	not	always	obvious	where	each	level	of	nesting	ends.

It	is	difficult	to	determine	the	behavior	of	an	application	because	it	is	not	possible	to
logically	follow	code	with	your	eye.

Data	scoping	can	become	difficult	with	callbacks.	You	can	see	this	primarily	in
relation	to	the	identity	of	this	and	the	corresponding	necessity	to	use	bind	on	each
callback	to	ensure	the	correct	this	instance	was	set.

This	lesson	examines	an	alternative	mechanism	for	implementing	callback	functions
called	promises.	Promises	do	not	alleviate	all	of	the	problems	mentioned,	but	they	do	help
make	callbacks	more	manageable	and	add	other	useful	functionality	in	the	process.

This	lesson	is	optional	because	it	is	always	possible	to	write	code	without	promises,	as
you	have	seen	so	far	in	this	book.	It	is,	however,	recommended	that	you	complete	this
lesson	because	promises	are	likely	to	gain	greater	attention	as	more	and	more	APIs	are
designed	to	work	with	them.

Working	with	Promises
This	book	has	used	several	asynchronous	APIs.	You	may	have	noticed,	however,	that
asynchronous	function	calls	still	return	a	synchronous	response.	For	instance,	the
following	code	invokes	an	asynchronous	AJAX	operation:

$.get('contacts.json')

Despite	this,	it	returns	the	synchronous	response	shown	in	Figure	36.1.

Figure	36.1

Clearly,	this	response	cannot	be	the	response	from	the	web	server	because	it	was	not
received	asynchronously,	so	you	may	be	wondering	what	this	object	is.

This	object	is	referred	to	as	a	“promise.”

Note
Not	all	asynchronous	APIs	have	been	modified	to	generate	promises.	For	this	reason,
this	lesson	will	focus	on	the	jQuery	AJAX	library	that	was	retrofitted	to	operate	with
promises.

Promises	provide	a	mechanism	for	interacting	with	an	asynchronous	process	because	they
model	the	flow	of	the	underlying	operation	through	its	lifecycle.	Promises	always	start
with	a	status	of	pending.	From	this	they	will	transition	to	one	of	two	other	statuses:

resolved:	The	underlying	process	has	completed	successfully.

rejected:	The	underlying	process	has	failed.

Once	a	promise	has	moved	into	the	state	resolved	or	rejected,	it	is	considered	settled,
and	will	not	change	state	again.

Once	you	have	a	reference	to	a	promise,	you	can	request	to	be	notified	when	the	promise
enters	a	specific	state.	For	instance,	consider	the	following	code:

var	promise	=	$.get('contacts.json');

promise.done(function(data)	{

				console.log('First	callback	invoked');

});

promise.done(function(data)	{

				console.log('Second	callback	invoked');

});

This	code	requests	contacts.json	and	then	registers	two	callbacks	that	will	be	invoked
when	the	promise	is	resolved.	If	you	run	this	code,	you	will	notice	that	both	callback
functions	are	executed,	one	after	the	other.

This	code	immediately	highlights	one	advantage	of	promises:	It	is	possible	to	register
more	than	one	callback	for	each	state

It	is	also	possible	to	add	multiple	fail	callbacks:

var	promise	=	$.get('unknown.json');

promise.fail(function(data)	{

				console.log('First	callback	invoked');

});

promise.fail(function(data)	{

				console.log('Second	callback	invoked');

});

This	code	requests	a	non-existent	file;	therefore,	it	enters	the	rejected	state	and	invokes
all	the	failure	callbacks.

It	is	also	possible	to	create	an	explicit	pipeline	of	operations	that	should	be	performed	on	a
response	via	the	then	method.	This	is	useful	because	it	allows	the	response	to	be	modified
as	it	flows	through	the	pipeline.

For	instance,	in	the	following	scenario,	the	first	callback	filters	the	response	so	that	it
contains	only	contacts	with	a	companyName	value	of	3.	It	then	returns	this	modified
response,	which	is	then	passed	automatically	to	other	callbacks	in	the	pipeline:

$.get('contacts.json').then(function(data)	{

				console.log('First	callback	invoked	with	'	+	data.length	+	'	

contacts');

				data	=	data.filter(function(c)	{

									return	c.companyName	==	'3';

				});

				return	data;

}).then(function(data)	{

				console.log('Callback	invoked	with	'	+	data.length	+	'	contacts');

});

In	this	case,	the	second	callback	does	not	know	or	care	that	the	data	it	is	receiving	has
already	been	processed	by	another	callback.	This	therefore	provides	a	convenient
mechanism	for	pre-processing	data.

This	code	prints	the	following:

First	callback	invoked	with	3	contacts

Callback	invoked	with	2	contacts

One	final	benefit	of	working	with	promises	is	that	it	is	possible	to	register	callbacks	that
are	invoked	when	more	than	one	promise	reaches	a	specific	state.	In	order	to	demonstrate
this,	create	a	new	file	called	contacts2.json	and	add	a	different	set	of	contacts	to	it.

You	can	now	write	code	that	performs	two	separate	requests	for	these	two	separate
resources,	and	invokes	the	callback	only	if	both	requests	succeed	via	the	$.when	function:

var	promise1	=	$.get('contacts.json');

var	promise2	=	$.get('contacts2.json');

$.when(promise1,	promise2).done(function(data1,	data2)	{

			console.log('data1	contains	'	+	data1.length	+	'	contacts');

			console.log('data2	contains	'	+	data2.length	+	'	contacts');

});

This	can	be	extremely	useful	if	the	two	sets	of	data	contain	interdependencies.	Without
callbacks,	it	would	typically	be	necessary	to	place	the	second	request	in	the	success
callback	of	the	first	request.

Creating	Promises
Not	only	can	you	use	promises	created	by	other	libraries,	but	you	can	write	your	own	APIs
that	generate	promises.	This	allows	the	clients	of	these	APIs	to	use	all	the	techniques
outlined	in	the	previous	section,	and	it	effectively	means	that	your	API	gains	extra
capabilities	without	your	having	to	do	anything.

Promises	are	a	useful	addition	to	any	API	that	performs	operations	that	are	(or	can	be)
asynchronous.

Note
The	client	of	an	API	is	any	code	that	invokes	its	functions	or	methods;	in	many	cases,
this	will	be	your	own	code.	If	you	are	developing	libraries,	on	the	other	hand,	you
may	have	no	idea	who	will	be	the	clients	of	your	code.

In	this	section,	you	will	create	a	function	call	for	reading	contacts	from	the	web	server.
This	function	will	have	a	catch,	however.	It	will	only	invoke	the	server	the	first	time	it	is
invoked;	from	then	on	it	will	simply	return	the	response	that	it	received	on	the	first
invocation.

This	approach	is	referred	to	as	caching	and	is	often	used	to	improve	the	performance	of	a
web	application.

This	functionality	is	interesting	because	it	only	needs	to	behave	asynchronously	the	first
time	it	is	invoked.	On	subsequent	invocations	it	will	have	a	response	that	can	be	returned
immediately.	As	you	will	see,	promises	are	an	excellent	candidate	for	implementing	this
functionality.

Because	your	code	needs	to	remember	state	(the	contacts	read	from	the	server	on	the	first
invocation),	you	will	create	a	new	module	in	a	new	JavaScript	file	called
find.contacts.js	with	the	following	basic	structure:

findContacts	=	function()	{

				var	contacts	=	null;

				return	function()	{

								console.log('this	is	where	the	logic	goes');

				}

}();

The	outer	anonymous	function	is	executed	as	soon	as	this	code	is	loaded	via	the	()	on	the
final	line.	Therefore,	as	soon	as	this	code	is	loaded,	the	findContacts	variable	contains	a
reference	to	a	function,	which	in	turn	can	access	the	contacts	variable	via	a	closure.

You	can	now	add	the	following	implementation:

findContacts	=	function()	{

				var	contacts	=	null;

				return	function()	{

								var	deferred	=	$.Deferred();

								if	(contacts)	{

												console.log('Returning	data	from	the	cache');

												deferred.resolve(contacts);

												return	deferred.promise();

								}	else	{

												var	promise	=	$.get('contacts.json');

												console.log('Returning	data	from	the	server');

												promise.done(function(data)	{

															contacts	=	data;

															deferred.resolve(contacts);

												});

												return	deferred.promise();

								}

					}

}();

The	code	always	begins	by	creating	an	instance	of	a	deferred	object:

var	deferred	=	$.Deferred();

It	is	this	object	that	allows	you	to	not	only	create	promises,	but	also	control	the	lifecycle	of
these	promises	by	transitioning	them	from	one	state	to	another.

The	preceding	code	contains	two	blocks.	The	first	block	will	execute	if	you	have	already
read	the	list	of	contacts	from	the	server.	In	this	case,	any	promises	can	be	set	to	resolved
immediately;	therefore,	you	invoke	resolve	on	the	deferred	object	and	pass	it	the	cached
list	of	contacts:

deferred.resolve(contacts);

On	the	next	line	of	code,	you	generate	a	promise	from	the	deferred	object,	and	return	this
from	the	function.	Notice	that	in	this	case	the	promise	will	already	be	fulfilled:

return	deferred.promise();

The	second	block	of	code	begins	by	invoking	the	server	and	registering	a	callback	to	listen
for	the	response,	but	in	this	case	you	also	return	a	promise	from	the	function.	Unlike	the
first	block,	the	promise	is	not	resolved	until	a	response	is	received	from	the	server.

Because	the	server	will	respond	very	quickly,	it	is	useful	to	simulate	a	slower	server	to
appreciate	the	benefit	of	this	functionality.	Therefore,	change	the	AJAX	response
processing	to	include	a	5	second	delay:

promise.done(function(data)	{

				setTimeout(function()	{

												contacts	=	data;

												deferred.resolve(contacts);

				},	5000);

});

You	can	now	use	this	function.	Begin	by	importing	the	JavaScript	file	into
contacts.html,	ensuring	that	it	is	not	imported	before	the	jQuery	library.

<script	src="find.contacts.js"></script>

You	can	now	change	the	event	listener	associated	with	the	Import	from	the	server	button
in	contacts.js,	as	follows:

$(screen).find('#importFromServer').click(function(evt)	{

				var	promise	=	findContacts();

				promise.done(function(data)	{

								console.log('Data	has	been	retrieved');

								console.log(data);

				});

});

Notice	that	the	event	listener	does	not	know	how	the	findContacts	function	operates;	it
only	cares	that	it	produces	a	promise.	The	code	then	registers	a	callback	for	when	this
promise	reaches	its	resolved	state.

If	you	now	refresh	the	web	page	and	open	the	console,	you	can	try	out	the	functionality.
The	first	time	you	press	the	button,	you	should	see	the	following	immediately	printed	to
the	console:

Returning	data	from	the	server

After	a	further	5	seconds,	you	should	see	the	following:

Data	has	been	retrieved

If	you	then	press	the	button	again,	you	should	see	the	following	lines	printed	immediately:

Returning	data	from	the	cache

Data	has	been	retrieved

Notice	in	this	case	that	you	have	registered	a	callback	with	a	promise	that	has	already	been
fulfilled.	When	you	do	this,	your	callback	simply	executes	immediately.	It	is	even	possible
to	register	additional	callbacks	with	promises	that	are	fulfilled	or	rejected,	and	these
are	simply	invoked	immediately.

Try	It
In	this	Try	It,	you	will	create	a	generic	function	for	reading	files	and	implement	it	so	that	it
is	compatible	with	promises.	Although	the	FileReader	object	operates	asynchronously,	it
does	not	produce	a	promise;	therefore,	it	is	not	possible	to	use	it	with	other	utility
functions	such	as	$.when.

Lesson	Requirements
You	will	need	a	text	editor	and	Chrome	to	complete	this	Try	It.

Step-by-Step
1.	 Open	contacts.js,	and	start	by	adding	a	global	function	called

readFileWithPromise	immediately	below	the	bind	function.	This	should	accept	a
single	parameter,	which	is	the	file	to	read.

2.	 Create	an	instance	of	$.Deferred	and	assign	it	to	a	variable	called	deferred.

3.	 Create	an	instance	of	FileReader	and	register	an	onload	callback.	Inside	this
callback,	you	should	resolve	the	deferred	object	and	pass	it	the	contents	of
event.target.result.

4.	 Read	the	file	specified	as	the	parameter	using	readAsText.	Remember	that	this	will
cause	the	onload	callback	to	be	invoked	when	it	completes,	and	will	pass	the
contents	of	the	file	as	a	JavaScript	string.

5.	 Return	a	promise	from	the	function.

6.	 Change	the	event	listener	invoked	when	a	file	is	selected	so	that	it	invokes
readFileWithPromise	and	assigns	the	result	to	a	variable	called	promise.

7.	 Add	a	success	listener	to	the	promise	and	accept	a	single	parameter,	which	will	be	the
textual	content	of	the	file.

8.	 Modify	the	code	of	the	callback	so	that	the	text	is	parsed	and	processed	as	it	was
previously.

My	version	of	readFileWithPromise	looks	like	this:

function	readFileWithPromise(file)	{

				var	deferred	=	$.Deferred();

				var	reader	=	new	FileReader();

				reader.onload	=	function(evt)	{

								deferred.resolve(evt.target.result);

				}

				reader.readAsText(file);

				return	deferred.promise();

}

My	callback	listener	looks	like	this:

$(screen).find('#importJSONFile').change(function(evt)	{

				var	promise	=	readFileWithPromise(event.target.files[0]);

				promise.done(function(data)	{

								var	contacts	=	JSON.parse(data);

								for	(var	i	=	0;	i	<	contacts.length;	i++)	{

												this.store(contacts[i]);

								}

								location.reload();

					}.bind(this));

}.bind(this));

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	36,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Part	V
Mobile

Lesson	37:	Responsive	Web	Design

Lesson	38:	Location	API

Lesson	39:	jQuery	Mobile:	Part	I

Lesson	40:	jQuery	Mobile:	Part	II

Lesson	37

Responsive	Web	Design
Web	users	now	expect	every	website	they	access	to	be	available	not	only	on	a	desktop	or
laptop,	but	also	on	tablets	and	mobile	phones.	Although	the	browsers	on	mobile	phones
and	tablets	support	most	of	the	features	examined	in	this	book,	it	is	not	always	easy	to
write	HTML	and	CSS	that	provide	an	optimal	experience	on	all	devices	because	of	their
obvious	differences	in	screen	resolution.

This	lesson	will	investigate	a	series	of	techniques	and	technologies	that	can	be	leveraged
in	order	to	create	truly	cross-device	web	pages.	These	techniques	and	technologies	are
often	grouped	under	the	umbrella	term	responsive	web	design,	or	RWD	for	short.

Responsive	web	design	encourages	designers	to	create	a	single	set	of	resources	for	all
devices,	rather	than	creating	specialized	websites	for	different	devices.	This	is	becoming
increasingly	important	as	screen	sizes	diverge	even	within	the	same	class	of	devices.

Responsive	web	design	addresses	the	screen	resolution	problem	from	three	angles:

The	techniques	that	can	be	used	to	construct	HTML	that	automatically	adjusts	to
different	screen	resolutions	and	creates	the	best	possible	user	experience	regardless	of
the	screen	resolution.	These	techniques	present	all	the	same	information	regardless	of
the	screen	resolution,	but	the	manner	in	which	content	is	sized	and	placed	on	screen
will	differ	depending	on	resolution.

The	use	of	flexibly	sized	images	and	video	that	takes	into	account	the	overall	width
and	height	of	the	screen.	This	means	ensuring	that	a	resource	does	not	use	more
space	than	that	allocated	by	the	design,	ensuring	it	scales	appropriately,	and	also
ensuring	that	other	elements	adapt	to	the	space	taken	by	the	resource	as	the	screen
resolution	changes.

The	technologies	that	can	be	used	for	changing	the	content	displayed	on	a	web	page
based	on	screen	resolution.	For	instance,	it	may	be	necessary	to	hide	specific
elements	on	small	resolution	devices.	This	can	be	achieved	via	a	version	of	the	CSS3
media	queries	you	encountered	earlier	in	the	book.

Testing	Screen	Resolution
It	is	usually	possible	to	test	the	way	in	which	your	design	will	react	to	changes	in	screen
resolution	by	simply	resizing	the	browser	window.	You	can	then	determine	the	resolution
of	the	browser	window	(or	viewport)	using	the	JavaScript	commands	window.innerWidth
and	window.innerHeight.

As	you	change	the	browser	size,	the	web	page	will	automatically	adjust	the	content	to
adapt	to	the	new	screen	resolution.	This	is	the	same	basic	process	that	is	performed	by	the
browser	when	the	DOM	is	manipulated	and	involves	calculating	the	position	and	size	of
each	element.

Chrome	also	provides	a	helpful	utility	for	emulating	other	devices.	Selecting	the	mobile
phone	icon	in	the	developer	tools	will	activate	this.

Once	enabled,	you	can	choose	from	a	variety	of	devices,	or	enter	a	custom	screen
resolution,	as	shown	in	Figure	37.1.

Figure	37.1

This	allows	you	to	see	how	a	web	page	will	render	with	various	different	screen
resolutions.

Although	useful,	unfortunately	the	emulator	does	not	always	accurately	reflect	the	user
experience.	This	is	primarily	because	mobile	browsers	have	adapted	to	the	fact	that
websites	are	not	mobile	friendly	and	use	numerous	techniques	to	adjust.	The	emulator,	by
comparison,	does	not	do	this.	For	instance,	when	viewed	on	the	phone	itself	the	web	page
displays	very	differently	than	the	emulator	suggests.	Figure	37.2	shows	that	an	actual
Galaxy	S4	will	resize	elements	so	that	they	all	fit	on	screen:

Figure	37.2

Although	this	is	generally	a	useful	feature,	if	you	are	building	a	truly	responsive	website,
you	generally	want	to	disable	this	feature.	This	feature	can	be	disabled	via	the	following
meta	tag	in	the	head	section	of	the	web	page:

<meta	name="viewport"	content="width=device-width,	initial-scale=1">

This	tells	the	browser	that	it	should	not	try	to	scale	the	website;	it	should	just	assume	it	has
been	designed	for	the	default	width	of	the	browser	viewport.	With	this	set,	the	Chrome
emulator	will	accurately	reflect	the	actual	user	experience	for	each	screen	resolution.

Flexible	Grids
Responsive	web	design	encourages	the	use	of	flexible	(or	fluid)	grids	for	laying	out
components.	Before	beginning	the	exercise	of	converting	the	web	application	to	use	a
flexible	grid,	let’s	comment	out	the	table	section.	This	element	is	naturally	too	wide	for
many	devices,	so	we	will	address	it	separately	in	the	next	section	when	you	look	at	media
queries.	To	comment	out	the	table,	add	the	following	to	the	opening	table	tag:

<!--table>

and	this	to	the	closing	tag:

</table-->

This	will	leave	the	table	in	the	markup,	but	it	will	be	treated	as	an	HTML	comment	and
not	displayed.

The	current	design	of	the	CRM	website	uses	fixed	width	elements.	For	instance:

input	{

				width:200px;

}

label	{

				width:150px;

				display:	inline-block;

				vertical-align:	top;

}

Although	it	is	very	easy	to	lay	out	components	with	fixed	widths	and	sizes,	this	can	make
it	impossible	for	some	devices	to	render	them.	For	instance,	the	combined	width	of	the
label	and	input	fields	in	the	preceding	code	is	350	pixels.	Once	margins,	paddings,	and
borders	are	taken	into	account,	the	total	width	of	the	label	and	input	field	is	more	than
many	devices	support.

It	is	generally	only	advisable	to	use	pixel-based	sizing	if	you	are	targeting	a	single	screen
resolution,	and,	as	outlined	earlier,	such	a	move	would	go	against	the	principles	of
responsive	web	design.

A	flexible	grid	layout	is	capable	of	adapting	automatically	to	changes	and	differences	in
screen	resolution.	The	grids	themselves	are	created	with	flexible	units,	such	as	percentages
and	em	units,	and	avoid	fixed-width	units	such	as	pixels.

Note
The	grid	system	you	will	create	is	considerably	simpler	than	many	of	the	grid	systems
openly	available	on	the	Internet.	As	always,	you	are	encouraged	to	explore	openly
available	resources	before	crafting	your	own.

Your	design	will	be	based	on	grid	cells	that	occupy	either	half	or	one-quarter	of	the
available	width:

.grid_quarter	{

				display:inline-block;

				vertical-align:	top;

				width:23%;

				min-width:15em;

				max-width:25em;

}

.grid_half	{

				display:inline-block;

				vertical-align:	top;

				width:47%;

				min-width:15em;

				max-width:50em;

}

A	minimum	and	maximum	size	for	grid	cells	is	also	specified.	This	ensures	that	grid	cells
remain	within	sensible	bounds.

The	width	properties	have	also	be	reduced	slightly	to	allow	for	margins	and	borders.	This
means	that	four	grid_quarter	elements	should	be	able	to	be	placed	side	by	side—
assuming	the	screen	resolution	is	greater	than	60em.

Note
A	common	variation	on	this	pattern	is	to	change	the	overall	percentage	width	of	cells
as	the	screen	resolution	decreases.	This	can	be	achieved	via	the	media	queries	that
will	be	introduced	in	the	next	lesson,	and	you	will	use	a	variation	of	this	technique	in
the	Try	It	at	the	end	of	the	lesson.

You	can	now	place	your	input	fields	and	labels	inside	these	grids,	using	the	most
appropriate	grid	size	for	each	element:

<form	method="post">

				<div	class="formRow">

								<div	class="grid_quarter">

												<label	for="contactName">Contact	name</label>

												<input	required	autofocus	autocomplete="off"	name="contactName"	

type="text"	class="validated"	id="contactName"	pattern=".{5,100}"/>

								</div>

								<div	class="grid_quarter">

												<label	for="phoneNumber">Phone	number</label>

												<input	required	pattern="[0-9()]{5,15}"	placeholder="Include	

area	code"	name="phoneNumber"	type="tel"			id="phoneNumber"	

class="validated"	/>

								</div>

								<div	class="grid_quarter">

												<label	for="emailAddress">Email	address</label>

												<input	required	name="emailAddress"	id="emailAddress"	

type="email"	class="validated"/>

								</div>

								<div	class="grid_quarter">

												<label	for="companyName">Company	name</label>

												<select	required	name="companyName"	class="validated">

																<option	value="">Please	select</option>

																<option	value="1">ABC	Incorporated</option>

																<option	value="2">XZY	Ltd</option>

																<option	value="3">ACME	International</option>

												</select>

								</div>

				</div>

				<div	class="formRow">

								<div	class="grid_half">

												<label	for="notes">Notes</label>

												<textarea	cols="40"	rows="6"	name="notes"	class="validated"	

maxlength="1000"></textarea>

												<div	class="textCount"></div>

								</div>

								<div	class="grid_quarter">

												<label	for="lastContacted">Last	contacted</label>

												<input	name="lastContacted"	type="text"	class="validated"/>

								</div>

				</div>

				<div	class="formRow">

								<input	style="width:70px"	type="submit"	title="Save"	value="Save"/>

				</div>

</form>

Notice	that	this	design	places	each	pairing	of	label	and	input	field	in	its	own	grid	element.
These	grid	elements	are	then	placed	within	your	existing	formRow	elements.

This	design	will	also	rearrange	the	way	labels	and	input	fields	are	positioned	in	relation	to
one	another.	With	a	grid-based	design,	it	is	often	advisable	to	place	labels	above	input
fields	to	prevent	large	discrepancies	in	size	between	the	label	and	input	field.	To	achieve
this,	the	CSS	rules	associated	with	these	elements	have	been	changed	as	follows:

input,	select,	textarea	{

								width:90%;

}

label	{

				display:	block;

}

With	this	in	place,	you	can	examine	how	the	web	page	adjusts	to	changes	in	screen
resolution.	On	a	display	with	high	resolution,	the	form	appears	as	you	see	in	Figure	37.3.

Figure	37.3

As	the	resolution	is	decreased,	the	grid	elements	naturally	flow	onto	new	lines,	as	you	will
see	if	you	slowly	reduce	the	width	of	the	browser.	Once	the	screen	resolution	is	decreased
to	that	of	a	typical	mobile	phone,	it	appears	as	you	see	in	Figure	37.4.

Figure	37.4

This	design	is	taking	advantage	of	the	manner	in	which	inline	elements	(the	grid	elements)
flow	within	a	block	element	(the	form	rows).	You	can	imagine	them	flowing	exactly	the
same	as	text	does	within	a	paragraph:	When	the	text	reaches	the	edge	of	the	screen,	it
simply	wraps	onto	the	next	line.

It	is	also	worth	examining	the	percentages	that	have	been	used	on	input	fields.	These	have
been	set	to	90	percent,	which	may	sound	unusual.	Percentages	are	always	specified	in
relation	to	the	total	space	allocated	to	the	containing	element.	Therefore,	if	an	input	is
placed	inside	a	grid_quarter	element,	it	will	use	90	percent	of	the	23	percent	of	the
screen	allocated	to	the	grid	cell,	or	approximately	20	percent	of	the	total	width.

I	have	also	changed	header	and	footer	elements	to	use	em	units	to	control	their	height:

header	{

							background:	#3056A0;

							color:	white;

							text-align:center;

							line-height:	2em;

							font-size:	3em;

}

footer	{

							line-height:2em;

							background:	#3056A0;

							color:	white;

							text-align:center;

							font-size:	0.8em;

}

You	will	notice	that	although	both	header	and	footer	are	set	to	a	line-height	of	2em,	the
two	elements	have	very	different	heights.	This	seeming	discrepancy	exists	because	the	em
unit	type	expresses	sizes	in	relation	to	the	font	size	of	the	element	itself,	not	the	default
font	size	of	the	entire	page.	Because	the	header	font	is	3em,	the	height	of	the	header	is
over	three	times	higher	than	the	footer,	which	has	a	font	size	of	0.8em.

Note
The	fact	that	the	em	units	relate	to	the	element	they	are	defined	in	can	sometimes	be	a
problem.	For	instance,	if	a	single	font	size	is	changed,	this	may	be	picked	up	by	many
elements,	and	a	variety	of	element	sizes	will	change	as	a	result.	In	order	to	counter
this,	CSS3	introduces	a	new	unit	called	rem.	This	unit	allows	sizes	to	be	defined	in
relation	to	a	font	size	defined	on	the	html	element	itself.

Most	of	the	other	changes	made	to	the	design	involve	changing	pixels	to	em	units	and
ensuring	that	elements	always	have	appropriate	minimum	widths.	For	instance,	the
following	two	rules	eliminate	fixed	sizes	entirely:

#fileImport,	#serverImport,	#chooseTheme	{

				margin:	2em;

				border:	1px	solid	#999999;

				border-radius:	1em;

				width:	50%;

				min-width:12em;

				padding:	1em	1em	0	1em;

				background:	#DAECFF;

}

.theme	{

				width:	1.5em;

				height:	1.5em;

				display:	inline-block;

				border:	1px	solid	#999999;

				border-radius:	0.2em;

}

The	one	exception	where	pixel	sizing	is	retained	is	with	border	sizes.	This	is	usually
considered	acceptable	because	it	is	common	to	need	finer	control	over	the	size	of	borders
to	stop	them	from	becoming	overpowering.

If	you	look	through	contacts.css	on	the	book’s	website,	you	will	see	a	number	of	other
minor	changes.	The	end	result	is	that	the	web	page	can	adjust	to	screen	widths	as	low	as
275	pixels,	and	it	would	be	trivial	to	change	it	to	function	on	even	smaller	screen
resolutions.

Media	Queries
Using	a	flexible	grid	should	always	be	your	starting	point	when	creating	a	responsive
design,	but	often	it	is	not	sufficient	for	all	your	needs.	Sometimes	changes	to	screen
resolution	mean	that	you	need	to	make	fundamental	changes	to	your	design.

This	section	will	demonstrate	how	media	queries	can	be	used	to	detect	screen	resolution
and	will	provide	specific	rules	to	suit	this	resolution.

Before	beginning,	uncomment	the	table	in	contacts.html	because	you	will	investigate
how	this	can	be	modified	with	media	queries	to	ensure	it	displays	appropriately	at	all
screen	devices.

The	table	in	the	contactList	section	is	a	problem:	There	is	no	way	that	a	six-column
table	will	render	on	a	small	screen	device	such	as	a	mobile	phone.	Although	it	is	possible
to	add	horizontal	scrolling,	this	typically	annoys	users.	You	will	therefore	change	the	CSS
to	dynamically	hide	columns	as	the	screen	width	shrinks.

Begin	by	adding	three	rules	to	contacts.css:

@media	(max-width:	600px)	{

		.medium-suppressed	{

				display:	none;

		}

}

@media	(max-width:	450px)	{

		.small-suppressed	{

				display:	none;

		}

}

@media	(max-width:	300px)	{

		.tiny-suppressed	{

				display:	none;

		}

}

These	rules	specify	three	new	classes:

medium-suppressed:	Can	be	used	to	hide	elements	on	screens	smaller	than	600
pixels

small-suppressed:	Can	be	used	to	hide	elements	on	screens	smaller	than	450	pixels

tiny-suppressed:	Can	be	used	to	hide	elements	on	screens	smaller	than	300	pixels

These	classes	can	then	be	applied	to	cells	in	the	table	header:

<thead>

				<th>Contact	name</th>

				<th	class="medium-suppressed">Phone	number</th>

				<th	class="small-suppressed">Email	address</th>

				<th	class="small-suppressed">Company	name</th>

				<th	class="tiny-suppressed">Last	contacted</th>

				<th	class="noprint">Actions</th>

</thead>

and	in	the	template	that	creates	table	rows:

<template	id="contactRow">

				<td	data-property-name="contactName"></td>

				<td	class="medium-suppressed"	data-property-name="phoneNumber"></td>

				<td	class="small-suppressed"	data-property-name="emailAddress"></td>

				<td	class="small-suppressed"	data-property-name="companyName"></td>

				<td	class="tiny-suppressed">

								<time	data-property-name="lastContacted"></time>

								<div	data-property-name="notes"	class="overlay">

								</div>

				</td>

				<td	class="noprint">Delete</td>

</template>

If	you	now	reload	contacts.html,	and	progressively	shrink	the	screen	resolution,
columns	will	automatically	disappear.	For	instance,	at	a	width	of	600	pixels,	the	web	page
appears	as	you	see	in	Figure	37.5.

Figure	37.5

If	the	user	turns	his	or	her	phone	into	landscape	mode	(with	a	screen	width	of	640	pixels),
however,	the	web	page	automatically	adjusts	as	you	can	see	in	Figure	37.6.

Figure	37.6

You	now	need	an	alternative	approach	for	displaying	the	information	that	has	been
suppressed.	For	the	sake	of	the	example	here,	you	will	take	advantage	of	the	overlay	that
already	displays	notes.

Start	by	defining	three	classes	that	are	the	inverse	of	those	created	earlier:	They	hide
elements	as	the	screen	resolution	reaches	a	minimum	width.	This	is	achieved	with	the
min-width	property:

@media	(min-width:	650px)	{

		.medium-displayed	{

				display:none;

		}

}

@media	(min-width:	450px)	{

		.small-displayed	{

				display:none;

		}

}

@media	(min-width:	300px)	{

		.tiny-displayed	{

				display:none;

		}

}

You	can	now	rearrange	the	overlay	so	that	it	includes	the	various	columns	that	may	be
hidden:

<div	class="overlay">

				<div	class="medium-displayed"	data-property-name="phoneNumber"></div>

				<div	class="small-displayed"	data-property-name="emailAddress"></div>

				<div	class="small-displayed"	data-property-name="companyName"></div>

				<div	data-property-name="notes"></div>

</div>

Finally,	you	will	tidy	up	the	overlay	class	in	contacts.css	so	that	it	uses	relative	sizing:

.overlay	{

				position:	fixed;

				height:	60%;

				max-height:10em;

				width:	70%;

				max-width:15em;

				margin-left:-5em;

				border:	1px	solid	#333;

				background:	#eee;

				display:	none;

				z-index:1;

				padding:10px;

				color:	#333333	!important;

}

If	you	use	the	overlay	feature	on	a	small	screen	device,	it	will	now	display	as	you	see	in
Figure	37.7.

Figure	37.7

Along	with	min-width	and	max-width,	media	queries	can	also	utilize	the	following
properties:

min-height:	The	same	as	min-width	but	is	based	on	the	height	of	the	screen
resolution

max-height:	The	same	as	max-width	but	is	based	on	the	height	of	the	screen
resolution

orientation:	Accepts	two	values,	portrait	and	landscape,	and	matches	when	the
device	is	using	that	orientation

The	height	and	width	selectors	have	companion	selectors	based	on	the	device	width—for
instance,	min-device-width.	These	match	on	the	overall	resolution	of	the	device,	rather
than	the	resolution	of	the	browser	(or	viewport).	These	should	be	avoided	because	the
resolution	of	the	browser	should	always	form	the	basis	of	your	design	decisions,	not	the
theoretical	resolution	available	to	the	user.

Try	It
This	Try	It	addresses	the	way	resources,	such	as	images	and	videos,	should	be	sized	in	a
responsive	design.	This	will	involve	modifying	a	fixed-width	design	so	that	it	displays	on
a	variety	of	screen	resolutions.	You	will	start	with	a	web	page	that	displays	as	you	see	in
Figure	37.8.

Figure	37.8

You	will	then	modify	this	in	a	number	of	ways:

Make	the	text	wrap	around	the	image.

Make	the	image	adjust	to	the	size	of	the	screen,	ensuring	that	some	text	always	wraps
to	its	left	until	it	reaches	a	very	low	resolution:	At	this	point,	the	image	will	occupy
100	percent	of	the	width.

Ensure	that	the	text	never	displays	more	than	approximately	70	characters	on	a	line
because	it	can	become	difficult	to	read	beyond	this	width.

Note
The	text	on	this	web	page	is	based	on	a	block	of	Latin	that	has	been	used	in
typesetting	for	decades.

Lesson	Requirements
In	this	lesson,	you	will	need	the	tryit.html	page,	which	can	be	downloaded	from	the
book’s	website,	along	with	the	image	(photo1.jpg)	used	within	the	page.	You	will	need	a
text	editor	and	Chrome	to	complete	this	Try	It.

Step-by-Step
1.	 Open	tryit.html	in	your	text	editor	and	in	Chrome.

2.	 Add	a	meta	attribute	instructing	the	viewport	not	to	scale	the	website,	but	to	assume
it	is	tailored	for	the	device	width.

3.	 The	web	page	contains	three	logical	units:	a	header,	an	image,	and	a	block	of	text	set
over	four	paragraphs.	In	order	to	clearly	delineate	these	boundaries,	place	a	span
around	the	image	and	another	around	the	text,	and	assign	these	the	class	names
imageHolder	and	textHolder	respectively.

4.	 You	always	want	the	image	to	display	on	the	right	of	the	screen;	therefore,	add	a
float	property	to	imageHolder	to	specify	this.

5.	 The	img	element	has	a	width	attribute	specifying	it	should	use	600	pixels	of
horizontal	space.	Because	you	do	not	want	to	use	absolute	sizes,	remove	this
attribute.

6.	 Without	the	width	attribute,	the	image	will	expand	to	its	natural	resolution.	However,
you	want	the	image	to	use	at	most	50	percent	of	the	available	width.	Start	by
specifying	that	the	width	of	imageHolder	is	50	percent.

7.	 The	image	is	not	scaled	in	relation	to	the	width	of	its	parent.	The	easiest	way	to	scale
the	image	is	to	add	a	rule	that	matches	.imageHolder	img,	and	specify	that	it	has	a
max-width	of	100%.	Essentially	this	is	specifying	that	the	maximum	width	of	the
image	is	the	space	available	to	it,	ensuring	that	it	scales	both	the	height	and	width
accordingly.

8.	 It	can	be	difficult	to	read	text	if	the	line	width	is	too	short	or	too	long	so	add	a	rule
that	matches	.textHolder	p,	and	specify	a	maximum	width	of	45em	and	a	minimum
width	of	15em.

9.	 A	final	problem	with	the	web	page	is	that	the	image	becomes	too	small	to	see	when
the	resolution	drops	below	a	certain	resolution.	In	order	to	overcome	this,	add	a
media	query	that	matches	when	the	width	is	a	maximum	of	450	pixels.	Add	a	rule	to

this	specifying	that	imageHolder	has	a	width	of	100	percent.

When	the	web	page	is	displayed,	it	should	appear	as	you	see	in	Figure	37.9	for	resolutions
over	450	pixels	in	width.

Figure	37.9

On	a	small	screen	device,	such	as	a	smart	phone	browser,	the	web	page	will	display	as
shown	in	Figure	37.10.

Figure	37.10

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	37,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	38

Location	API
Developing	web	applications	for	mobile	phones	can	simply	mean	utilizing	the	techniques
and	technologies	associated	with	responsive	web	design	and	ensuring	that	the	user
receives	the	best	possible	experience	regardless	of	the	screen	resolution.

It	can	also	open	up	a	whole	world	of	possibilities,	however,	by	taking	advantage	of	the
features	and	services	that	are	unique	to	mobile	devices.	For	instance,	mobile	devices
typically	provide	a	variety	of	services	that	can	be	used	in	applications:

The	ability	to	detect	the	location	of	the	device

The	ability	to	detect	motion—for	instance,	the	user	moving	the	device	side	to	side

The	ability	to	know	which	direction	the	device	is	facing

The	ability	to	take	photos	and	videos

The	ability	to	connect	to	periphery	devices	using	wireless	technologies	such	as
Bluetooth

The	ability	to	receive	and	generate	notifications

Unfortunately	it	is	not	currently	possible	to	interact	with	most	of	these	services	via
JavaScript	because	they	are	only	made	available	with	native	APIs,	and	these	vary	across
platforms.

One	API	that	is	available	in	JavaScript,	however,	is	the	Geolocation	API.	This	lesson
looks	at	how	you	can	take	advantage	of	this	API	to	create	a	web	application	that	tracks	a
user’s	motion.

The	Geolocation	API	is	available	in	JavaScript	via	the	navigator.geolocation	object.
This	API	is	available	in	all	the	most	common	browsers,	regardless	of	the	device	the
browser	is	running	on.

Despite	the	fact	that	the	Geolocation	API	is	available	on	all	devices,	it	has	obvious	uses	on
mobile	devices	because	these	change	location	on	a	regular	basis,	and	the	user	is	more
likely	to	perform	actions	in	relation	to	his	or	her	current	location.	These	devices	also
typically	have	more	accurate	mechanisms	for	determining	location,	such	as	GPS.

In	order	to	see	the	Geolocation	API	in	action,	open	contacts.html	via	the	web	server,
open	the	console	and	enter	the	following:

>	navigator.geolocation.getCurrentPosition(function(location)	{

				console.log('Latitude:	'+	location.coords.latitude);

				console.log('Longitude:	'+	location.coords.longitude);

				console.log('Altitude:	'+	location.coords.altitude);

				console.log('Accuracy:	'+	location.coords.accuracy);

});

When	you	enter	this	code,	Chrome	adds	a	message	at	the	top	of	the	screen,	as	shown	in
Figure	38.1.

Figure	38.1

The	Geolocation	API	specification	states	that	the	browser	must	obtain	permission	before
providing	access	to	the	user’s	location.	This	is	similar	to	the	approach	taken	with	mobile
phone	apps	when	they	are	installed,	and	it	prevents	websites	from	accessing	a	user’s
location	against	the	user’s	will.

Browsers	employ	a	variety	of	approaches	to	ask	for	this	permission,	and	most	will	either
remember	the	decision	made	by	the	user	or	provide	you	with	an	option	for	this	decision	to
be	remembered.

One	consequence	of	this	approach	is	that	you	can	only	use	the	Geolocation	API	in	a	web
page	downloaded	from	a	web	server,	not	from	a	web	page	loaded	directly	from	the	file
system.	This	is	because	the	permission	is	associated	with	your	origin—localhost:8080	in
this	case—and	pages	loaded	from	the	file	system	do	not	have	an	origin.

Once	you	click	Allow,	your	coordinates	will	be	printed	to	the	console.	For	example:

Latitude:	-41.22799199999996

Longitude:	174.88613729999998

Altitude:	null

Accuracy:	25

The	latitude	and	longitude	are	expressed	as	numbers.	For	latitude,	a	positive	number
indicates	North,	a	negative	number	indicates	South,	and	a	value	of	0	indicates	the	equator.
The	numbers	will	always	be	in	the	range	–90	through	to	90.

For	longitude,	a	positive	value	indicates	East,	while	a	negative	value	indicates	West.	The
value	0	indicates	Greenwich,	London,	while	all	other	locations	have	a	value	in	the	range	–
180	through	to	180.

The	Geolocation	API	also	provides	altitude	information.	This	will	typically	only	be
available	if	the	location	information	is	obtained	via	GPS,	or	an	in-built	altimeter,	but	when
available	represents	the	number	of	meters	the	device	is	above	sea	level.

Finally,	the	API	provides	information	regarding	how	accurate	the	location	information	is.
As	you	can	see,	in	my	case	Chrome	was	capable	of	finding	my	location	within	25	meters.

Devices	have	a	variety	of	mechanisms	for	determining	your	location:

The	most	accurate	form	of	location	information	is	via	GPS.	Later	in	the	lesson,	you
see	how	you	can	specifically	request	the	device	to	provide	information	via	GPS,
where	supported.

Where	GPS	information	is	not	available,	the	device	will	typically	attempt	to	calculate
its	location	based	on	the	WiFi	access	points	that	are	within	range	and	their	relative
strengths.	This	is	how	my	location	was	obtained	in	the	previous	example	and	proves
reasonably	accurate.

Where	a	device	has	access	to	cellular	networks,	it	may	also	try	to	triangulate	its

location	from	the	signal	strength	of	cellular	towers	that	are	within	range.	This	will
typically	only	be	accurate	to	within	a	few	hundred	meters.

Where	no	other	information	is	available,	the	device	may	need	to	determine	its
location	based	solely	on	IP	address.	This	is	likely	to	be	an	approximation	at	best,	and
could	be	wrong	by	an	enormous	amount.

Different	devices	will	determine	location	using	different	approaches,	but	the	main	lesson
to	understand	is	that	location	information	will	not	always	be	accurate,	and	you	must	take
this	inaccuracy	into	account	when	designing	web	applications.

Monitor	Movement
In	this	section,	you	will	use	the	Geolocation	API	to	monitor	the	distance	traveled	by	a
user,	along	with	their	current	speed.	In	order	to	implement	this,	your	web	application	will
sample	the	user’s	location	intermittently,	and	record	the	user’s	location	at	each	point	in
time.	By	comparing	two	points	in	terms	of	both	location	and	time,	you	can	determine	the
speed	that	the	user	is	traveling.

In	order	to	implement	this	web	application,	you	need	a	mechanism	for	determining	the
distance	between	two	points.	Although	you	could	write	this	functionality	yourself,	it
makes	sense	to	reuse	existing	code	where	available.	You	will	use	a	library	created	by
Google,	which	is	available	on	the	book’s	website	(google.geometry.js).	You	can	also
download	it	from	the	following	URL:

http://maps.google.com/maps/api/js?sensor=true&libraries=geometry

Start	by	creating	the	following	web	page,	and	name	it	locate.html:

<!DOCTYPE	html>

<html	lang="en">

<head>

				<meta	charset="utf-8">

				<meta	name="viewport"	content="width=device-width,	initial-scale=1">

				<script	src="google.geometry.js"></script>

				<script	src="jquery-2.1.1.js"></script>

				<style>

								body	{

													font-family:	Arial,	Helvetica,	sans-serif;

													margin:	2em;

													font-size:	2em	color:	#333333;

													background:#E6DEDC;

								}

								#summary	{

												width:80%;	min-height:	4em;

												border:	1px	solid	#e2e2e2;

												margin:	1em	0	1em	0;max-width:	20em;

								}

								.button	{

												font-size:2em;font-weight:bold;

												color:white;background:#1BA61B;

												width:7em;	text-align:center;

												text-decoration:none;line-height:2em;

												display:	inline-block;

								}

								.row	{

												padding:0.5em;

								}

								.row	label	{

												width:9em;display:	inline-block;

								}

				</style>

</head>

<body>

				<h1>Track	movement</h1>

				<div	id="summary">

							<div	class="row">

											<label>Current	speed:</label>

											

							</div>

							<div	class="row">

											<label>Total	distance:</label>

											

							</div>

							<div	class="row">

											<label>Altitude:</label>

											

							</div>

							<div	class="row	message"></div>

							</div>

							Start

</body>

<script>

</script>

</html>

This	will	produce	the	output	shown	in	Figure	38.2.

Figure	38.2

The	web	page	has	been	created	according	to	the	the	principles	of	responsive	web	design,
as	outlined	in	Lesson	37,	and	therefore	will	function	on	small	or	large	screens.

The	screen	consists	of	a	button	for	starting	the	tracking	and	an	area	for	displaying	output.
Notice	that	it	also	imports	the	jQuery	library,	which	you	will	use	to	add	dynamic
functionality.

The	functionality	will	be	implemented	as	a	module	with	a	single	public	method.	Add	the
following	to	the	script	block:

locationModule	=	function	locationModule()	{

				var	lastPosition	=	null;

				var	totalDistance	=	0;

				var	id	=	null

				function	updateLocation(position)	{

				}

				return	{

								toggleState:	function(evt)	{

												if	(lastPosition)	{

																lastPosition	=	null;

																lastPositionTime	=	null;

																totalDistance	=	0;

																navigator.geolocation.clearWatch(id);

																$(evt.target).text('Start');

												}	else	{

																startTime	=	$.now();

																id	=	navigator.geolocation.watchPosition(updateLocation,

																function(error)	{console.log(error)},

																{maximumAge:	3000,	timeout:	20000,

																				enableHighAccuracy:	true	});

																$(evt.target).text('Stop');

												}

								}

				}

}();

$('#activate').click(locationModule.toggleState);

This	has	been	implemented	as	a	module	because	it	needs	to	store	state	as	the	web
application	executes.	The	state	includes	the	total	distance	covered	and	the	last	position
recorded.	Using	a	module	allows	this	state	to	be	stored	as	private	variables	that	cannot	be
manipulated	by	other	code.

The	method	exposed	by	the	module	is	called	toggleState.	This	method	either	starts	or
stops	the	tracking,	depending	on	its	current	state.	The	application	is	considered	to	be
running	if	it	has	a	lastPosition;	otherwise,	it	is	considered	stopped.	As	you	can	see,	this
method	is	invoked	when	the	button	with	the	ID	activate	is	clicked.

This	application	needs	to	sample	the	user’s	position	at	regular	intervals.	Obviously,	you
could	use	a	combination	of	setInterval	and	getCurrentPosition	for	this,	but	the
Geolocation	API	provides	a	specific	method	for	this	purpose	called	watchPosition,	which
accepts	the	following	parameters:

A	success	callback:	Identical	to	the	one	used	with	getCurrentPosition.

An	optional	error	callback:	Invoked	if	it	is	not	possible	to	obtain	the	user’s
location.

An	optional	set	of	options	that	act	as	hints	to	the	API:	In	this	case,	you	have
specified	that	you	would	like	an	accurate	location	if	possible	(using	GPS),	that	you
would	like	to	be	informed	of	the	user’s	location	every	3	seconds	(maximumAge),	and
that	you	would	like	to	be	notified	of	the	user’s	location	no	later	than	20	seconds	after
watchPosition	is	invoked	(timeout).	If	the	device	cannot	obtain	a	location	in
accordance	with	this	contract,	the	error	callback	will	be	invoked.

These	three	parameters	are	also	accepted	by	the	getCurrentPosition	method.

The	call	to	watchPosition	returns	a	number.	This	needs	to	be	stored	by	the	application
because	it	needs	to	be	provided	if	you	wish	to	cancel	the	tracking.	You	can	see	this	in	the
following	line	of	code:

navigator.geolocation.clearWatch(id);

You	can	now	implement	the	updateLocation	callback,	which	is	currently	an	empty
function:

var	lastPosition	=	null;

var	totalDistance	=	0;

var	id	=	null

function	updateLocation(position)	{

				var	updateDate	=	new	Date(position.timestamp);

				$('.message').text('Last	updated	at	'	+updateDate.getHours()	+

							':'+	updateDate.getMinutes()+':'+updateDate.getSeconds());

				if	(lastPosition)	{

							//	time	in	milliseconds	since	last	reading

							var	timeSinceLastReading	=	position.timestamp-

lastPosition.timestamp;

							//	distance	travelled	in	meters

							var	distance	=	google.maps.geometry.spherical.computeDistanceBetween

								(new	google.maps.LatLng(position.coords.latitude,

												position.coords.longitude),

									new	google.maps.LatLng(lastPosition.coords.latitude,

													lastPosition.coords.longitude));

							totalDistance	=	totalDistance	+	distance;

							if	(timeSinceLastReading	/	1000	>	0)	{

											var	metersPerMinute	=	distance	/	(timeSinceLastReading

															/	60	/	1000);

											$('#currentSpeed').text(Math.round(metersPerMinute)	+

														'	meters	per	minute');

							}

							$('#distance').text(Math.round(totalDistance)	+	'	meters	

travelled');

							if	(position.coords.altitude)	{

											$('#altitude').text(Math.round(position.coords.altitude)	+

														'	meters	above	sea	level');

							}

				}

				lastPosition	=	position;

}

You	always	need	two	positions	in	order	to	determine	movement,	so	the	first	time	this
callback	is	invoked,	it	will	simply	update	a	message	onscreen	stating	the	last	time	a
reading	was	obtained,	and	set	the	lastPosition	variable	to	the	location	retrieved.

On	subsequent	invocations,	this	function	will	compare	the	new	location	to	the	previous
location	in	both	time	and	distance.

To	determine	the	time	between	two	invocations,	you	can	use	the	timestamp	property.	This
contains	information	on	the	exact	timestamp	(time	in	milliseconds)	the	user	was	in	this
location,	not	the	time	that	the	callback	function	was	invoked.

In	order	to	determine	the	distance	between	two	locations,	you	utilize	the
computeDistanceBetween	method	from	the	Google	API.	To	use	this,	you	need	to
transform	the	coordinates	you	receive	into	instances	of	the	google.maps.LatLng	class.

Once	you	know	the	time	and	distance	traveled,	you	can	compute	the	speed	at	which	the
user	is	traveling.	For	the	purposes	of	this	exercise,	you	will	only	make	this	computation	if
the	two	readings	have	different	timestamps;	otherwise,	you	would	be	dividing	by	zero.

You	need	to	calculate	the	meters	traveled	per	minute.	Therefore,	you	divide	the	total
distance	traveled	by	the	time	since	the	last	reading,	then	60,	then	1000.	For	instance,	if	the
user	had	traveled	20	meters,	and	there	were	10,000	milliseconds	between	the	readings,
you	would	calculate:

distance	=	20	/	(10,000	/	1000/60)

distance	=	20	/	(10	/	60)

distance	=	20	/	0.16666

distance	=	120

If	the	user	traveled	20	meters	in	10	seconds,	he	is	likely	to	travel	120	meters	in	a	minute,
so	this	is	the	expected	answer.

You	will	also	update	a	message	onscreen	for	the	total	distance	covered,	and	the	current
altitude	if	it	is	available.

Loading	the	Application
Although	you	can	use	this	web	application	from	your	desktop	or	laptop,	it	makes	far	more
sense	to	try	it	with	a	mobile	device.	To	use	this	application	on	a	mobile	device,	you	first
need	to	make	it	available	via	your	web	server.

In	order	for	your	mobile	device	to	connect	to	your	web	server,	you	will	need	to	ensure	the
port	is	“open”	and	also	find	the	appropriate	IP	address	to	connect	to.	These	instructions
will	then	explain	how	to	request	web	pages	from	within	your	local	network—for	instance,
your	home	WiFi	network	on	both	Windows	and	OS	X.

These	instructions	assume	that	your	mobile	device	and	the	computer	running	your	web
server	are	both	attached	to	the	same	WiFi	network.

Windows	Instructions
You	will	need	to	ensure	that	your	computer	firewall	is	either	turned	off	or	configured	to
allow	Mongoose	to	accept	inbound	connections.	This	can	be	configured	via	the	New
Inbound	Rule	Wizard	and	involves	opening	port	8080,	as	shown	in	Figures	38.3	and	38.4.

Figure	38.3

Figure	38.4

You	will	then	need	to	determine	the	IP	address	of	the	computer	hosting	the	web	server.
There	are	many	ways	to	do	this,	but	the	easiest	is	to	open	a	command	prompt	and	type
ipconfig.	Your	IP	address	will	be	listed	as	IPv4	Address,	as	you	can	see	in	Figure	38.5.

Figure	38.5

You	should	now	be	able	to	load	the	web	page	from	your	mobile	device	using	the	relevant
IP	address,	and	the	port	used	by	Mongoose—for	example,
http://192.168.23.11:8080/locate.html.

OS	X	Instructions

http://192.168.23.11:8080/locate.html

You	will	need	to	ensure	that	your	computer	firewall	is	either	turned	off	or	configured	to
allow	Mongoose	to	accept	incoming	connections.	This	can	be	configured	via	the	Security
&	Privacy	menu	in	System	Preferences	(see	Figure	38.6).

Figure	38.6

You	will	then	need	to	determine	the	IP	address	of	your	computer.	This	can	be	found	in	the
Network	options	of	System	Preferences,	as	Figure	38.7	illustrates.

Figure	38.7

You	should	now	be	able	to	load	the	web	page	from	your	mobile	device	using	the	relevant
IP	address	and	the	port	used	by	Mongoose—for	instance,
http://192.168.0.10:8080/locate.html.

Using	the	Application
Once	the	web	application	is	loaded	on	your	mobile	phone,	you	can	begin	using	it	by
pressing	the	Start	button.	As	you	start	walking,	you	should	see	the	screen	update	with	your
distance	traveled.

Because	the	web	page	is	being	loaded	from	your	web	server	on	your	WiFi	network,	you
will	not	be	able	to	reload	the	web	page	once	you	are	outside	the	range	of	your	WiFi
network.	You	could,	however,	choose	to	configure	an	application	cache	to	make	this	web
application	available	offline,	as	outlined	in	Lesson	32.

http://192.168.0.10:8080/locate.html

Try	It
In	this	Try	It,	you	will	enhance	the	capabilities	of	the	web	application	developed	in	this
lesson:

You	will	display	to	the	user	the	direction	they	are	heading	in.

You	will	smooth	variations	in	the	user’s	speed	per	minute	by	averaging	the	last	five
recordings	(assuming	five	are	available).

Lesson	Requirements
In	this	lesson,	you	will	need	the	locate.html	page,	which	can	be	downloaded	from	the
book’s	website	if	you	have	not	created	it.	You	will	also	need	two	libraries	used	by	this	web
page	(jQuery	and	Google	geometry),	which	are	also	available	from	the	book’s	website.

Step-by-Step
1.	 Open	locate.html	in	your	text	editor	and	in	Chrome.

2.	 Start	by	adding	a	new	div	to	the	summary	section	for	displaying	the	user’s	heading
or	direction.	This	should	follow	the	same	pattern	as	the	other	headings.

3.	 The	user’s	heading	can	be	calculated	in	the	same	manner	as	her	distance	traveled	by
using	the	computeHeading	method.	Invoke	this	with	the	current	and	previous	LatLng
objects	and	store	the	result	in	a	variable.

4.	 The	heading	represents	the	degrees	from	true	North.	Round	this	to	a	whole	number,
and	output	it	onscreen.

5.	 Create	a	private	array	in	the	module	for	storing	the	last	five	calculations	of
metersPerMinute.

6.	 After	metersPerMinute	is	calculated,	add	it	to	the	array	using	the	push	method.

7.	 If	the	array	contains	more	than	five	members,	remove	one	using	the	shift	method.
This	approach	ensures	that	the	array	uses	a	last	in,	first	out	(LIFO)	strategy.

8.	 Create	a	private	function	for	averaging	the	contents	of	an	array.	Try	to	use	the	reduce
method	to	calculate	the	sum	of	the	members	in	the	array,	and	then	divide	this	by	the
length	of	the	array.

9.	 Set	the	currentSpeed	to	the	average	of	the	last	five	readings.

Your	finished	version	will	look	something	like	Figure	38.8.

Figure	38.8

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	38,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	39

jQuery	Mobile:	Part	I
I	began	this	section	of	the	book	by	looking	at	how	a	web	application	can	be	designed	for
mobile	devices	using	the	techniques	and	technologies	associated	with	responsive	web
design.	Responsive	web	design	encourages	the	use	of	a	single	set	of	resources	while
ensuring	the	content	dynamically	adjusts	to	all	relevant	screen	resolutions.

Although	responsive	web	design	is	increasingly	popular,	there	is	an	alternative	school	of
thought	that	says	large-screen	devices	and	small-screen	devices	are	fundamentally
different,	and	their	respective	needs	can	only	be	met	by	creating	two	different	web
applications.

The	following	are	the	main	arguments	in	favor	of	mobile-specific	versions	of	web
applications:

Mobile	devices	support	a	different	set	of	events	from	traditional	desktop	devices.
This	stems	primarily	from	the	fact	that	the	user	is	holding	the	device	in	her	hands,
meaning	it	is	possible	to	respond	to	touch-	and	motion-based	events,	such	as	the	user
swiping	the	screen,	tapping	and	holding,	or	rotating	the	screen.

Mobile	applications	typically	approach	navigation	in	a	different	manner	than	desktop
applications.	Rather	than	providing	a	single	page	with	a	diverse	set	of	information,
they	provide	information	in	bite-sized	pages,	and	make	it	possible	to	quickly	navigate
from	one	page	to	another.

Users	of	web	applications	on	desktops	and	laptops,	by	comparison,	typically	become
frustrated	by	websites	that	require	excessive	navigation,	even	though	this	is	a	popular
technique	used	to	increase	advertising	revenue	on	many	sites.

Mobile	devices	are	often	connected	to	slower	connections	than	networked	devices
such	as	desktops,	and	users	typically	pay	far	more	money	for	their	mobile	data.	The
fact	that	a	typical	home	page	on	a	website	is	now	over	1MB	in	size,	and	can	be	far
larger,	can	have	a	major	impact	on	usability	for	mobile	users,	both	in	terms	of	time
and	money.

A	mobile-specific	web	application	will	therefore	ensure	that	a	minimal	set	of
resources	is	downloaded	on	page	load	and	that	subsequent	resources	are	loaded	on-
demand.

The	next	two	lessons	will	look	at	how	the	jQuery	Mobile	library	can	be	used	to	create	a
mobile-specific	web	application.	This	will	involve	creating	a	new	set	of	resources	for	the
CRM	web	application	while	retaining	the	majority	of	the	JavaScript	code.

Note
The	main	disadvantage	of	this	approach	is	that	there	will	be	two	versions	of	the	web
application	that	need	to	be	supported.	Not	only	does	this	add	extra	effort,	but	it	is
also	very	easy	to	introduce	inconsistencies	between	the	two	versions	of	the	web
application.	It	is	therefore	essential	to	weigh	the	tradeoffs	before	beginning	a	mobile-
specific	web	application.

This	lesson	will	focus	on	the	way	in	which	a	mobile	web	application	can	be	structured	into
a	set	of	pages	and	the	manner	in	which	the	user	can	navigate	between	these	pages.	The
next	lesson	will	then	focus	on	mobile-specific	UI	components	and	mobile-specific	events.

Understanding	jQuery	Mobile
Despite	the	fact	that	it	has	jQuery	in	its	name,	jQuery	mobile	encourages	a	very	different
form	of	programming	from	what	you	have	seen	up	until	this	point	in	the	book.

jQuery	Mobile	is	a	framework	for	developing	mobile	web	applications.	In	order	to	use
jQuery	Mobile,	you	are	responsible	for	describing	the	style	and	behavior	of	each	element,
but	jQuery	Mobile—for	the	most	part—is	responsible	for	implementing	this.

For	example,	consider	the	following	hyperlink,	which	will	form	part	of	your	web
application:

<a	href="#settingsPage"	data-role="button"	data-icon="gear"	class="ui-btn-

right"	data-transition="slideup">Settings

As	you	can	see,	this	hyperlink	contains	three	data	attributes	and	a	class,	all	of	which	have
special	meaning	to	jQuery	Mobile.	Some	of	these	describe	the	way	the	hyperlink	should
appear:

It	should	be	styled	as	a	button.

It	should	appear	on	the	right	side	of	its	container.

It	has	an	icon	provided	by	jQuery	Mobile	called	“gear.”

Other	data	attributes	describe	the	behaviors	of	this	hyperlink	when	clicked;	for	example,	it
transitions	using	a	“slide-up”	effect.

With	these	attributes	and	classes	in	place,	simply	importing	the	jQuery	Mobile	library	and
style	sheet	is	sufficient	to	create	the	button	shown	in	Figure	39.1	and	provide	its	“click”
functionality:

Figure	39.1

jQuery	Mobile	supports	well	over	a	hundred	data	attributes,	all	with	their	own	specific
purpose	and	set	of	values.	Although	this	lesson	focuses	on	only	a	small	number	of	these,
once	you	understand	the	basic	approach,	it	is	straightforward	to	discover	a	whole	world	of
functionality	by	browsing	the	demos	and	APIs	at	jquerymobile.com.

Note
Using	a	framework	like	jQuery	Mobile	requires	a	mind-shift.	You	need	to	be	prepared
to	hand	over	more	control	to	the	framework	and	also	to	live	within	its	constraints	to
some	extent.	In	return,	you	potentially	need	to	write	considerably	less	CSS	and
JavaScript	than	you	would	otherwise.

Importing	jQuery	Mobile
To	begin	your	mobile	web	application,	create	a	file	called	mobile_contacts.html	in	the
same	folder	as	contacts.html.

You	will	use	version	1.4.4	of	jQuery	Mobile	in	this	lesson.	As	with	most	JavaScript
libraries,	you	have	the	choice	of	using	a	CDN-hosted	version	or	downloading	and	hosting
your	own	copy	of	this	library.	In	this	lesson,	you	will	host	your	own	version	of	the	library.

jQuery	Mobile	can	be	downloaded	from	the	jQuery	Mobile	website	at	jquerymobile.com,
or	it	is	available	on	the	book’s	website.	The	download	consists	of	a	zip	file	containing	a
set	of	JavaScript	files,	CSS	files,	and	images.

http://jquerymobile.com

Note
If	you	download	the	library	yourself,	it	is	also	possible	to	construct	a	version	of
jQuery	Mobile	conforming	to	your	preferred	themes.	This	process	will	then	construct
a	set	of	CSS	files	conforming	to	your	required	color	scheme.

Once	downloaded,	extract	the	zip	file	into	the	folder	containing	mobile_contacts.html,
creating	a	sub-folder	called	jquery.mobile.	You	should	then	import	the	relevant	resources
in	the	head	section	of	mobile_contacts.html	(ensuring	that	the	jQuery	Mobile	library	is
imported	after	the	main	jQuery	library).	Your	HTML	page	should	begin	like	this:

<!DOCTYPE	html>

<html	lang="en">

				<head>

								<meta	charset="utf-8">

								<meta	name="viewport"	content="width=device-width,	initial-

scale=1">

								<title>Contacts</title>

								<script	src="jquery-2.1.1.js"></script>

								<script	src="jquery-ui.js"></script>

								<script	src="contacts.js"></script>

								<script	src="jquery-time.js"></script>

								<script	src="jquery-tables.js"></script>

								<script	src="find.contacts.js"></script>

								<link	rel="stylesheet"	type="text/css"	href="jquery-ui.css">

								<link	rel="stylesheet"	href="jquery.mobile/jquery.mobile-

1.4.4.min.css"	/>

								<script	src="jquery.mobile/jquery.mobile-1.4.4.min.js"></script>

				</head>

				<body>

								<main	id="contactScreen">

								</main>

				</body>

</html>

Notice	that	you	also	set	the	viewport	width	and	initial-scale,	and	that	you	have
imported	any	other	relevant	files	such	as	contacts.js.	You	do	not	import	contacts.css,
however,	because	jQuery	Mobile	includes	its	own	style	sheets,	and	these	will	meet	most	of
your	needs.

Mobile	Design
Your	first	task	in	designing	your	web	application	is	to	determine	the	pages	that	will	make
up	the	web	application,	and	the	flow	a	user	will	follow	as	he	navigates	from	one	page	to
another.

This	web	application	will	consist	of	four	logical	pages:

A	page	containing	a	list	of	saved	contacts.	This	will	be	the	default	page	presented	to

users	when	the	web	application	loads.

A	page	for	entering	details	for	a	new	contact.	Users	can	navigate	to	or	from	this	page
via	the	list	page.

A	page	for	viewing	details	and	any	notes	relating	to	a	contact:	This	has	been
implemented	as	an	overlay	in	the	current	web	application	but	makes	sense	to
implement	as	a	page	in	your	mobile	web	application.	This	user	will	navigate	to	this
page	from	the	list	view.

A	page	for	any	settings	or	utilities	such	as	file	upload	and	server	download	functions.
This	user	will	navigate	to	this	page	from	the	list	view.

JQUERY	Mobile	Pages
A	page	in	a	jQuery	Mobile	web	application	does	not	need	to	be	realized	by	an	HTML	file.
Instead,	it	is	possible	to	group	together	many	mobile	pages	in	the	same	HTML	page,	and
use	jQuery	Mobile	to	navigate	from	one	page	to	another.

jQuery	Mobile	achieves	this	via	DOM	manipulation:	It	simply	hides	the	logical	pages	that
are	not	visible	and	transitions	from	one	page	to	another	through	a	combination	of	DOM
manipulation	and	animated	transitions.

In	order	to	indicate	that	an	element	in	the	web	page	represents	a	logical	page,	you	tag	it
with	the	attribute	data-role=”page”,	and	provide	an	id	to	uniquely	identify	the	page.

Although	it	is	common	to	use	div	elements	as	the	container	for	pages,	it	is	possible	to	use
any	block-based	element,	such	as	a	section.	For	instance,	the	following	represents	a	page
for	displaying	a	list	of	contacts.	Read	through	the	code	first,	and	I	will	then	walk	you
through	each	relevant	element	and	attribute:

<section	id="contactListPage"	data-role="page">

				<div	data-role="header">

								<h1>Contact	list</h1>

								<a	href="#settingsPage"	data-role="button"	data-icon="gear"	

class="ui-btn-right"	data-transition="slideup">Settings

				</div>

				<div	data-role="content">

								<table	data-role="table"	data-mode="columntoggle"

												class="ui-responsive	ui-table">

												<thead>

																<tr>

																				<th	data-priority="1">Contact	name</th>

																				<th	data-priority="1">Phone	number</th>

																				<th	data-priority="1">Actions</th>

																</tr>

												</thead>

												<tfoot>

																<tr>

																				<td	colspan="3">0	contacts	displayed</td>

																</tr>

												</tfoot>

												<tbody>

												</tbody>

								</table>

				</div>

				<div	data-role="footer"	class="ui-bar"	data-position="fixed">

								<a	href="#contactDetailsPage"	id="addContact"	data-role="button"	

data-transition="slide"	data-icon="plus">Add

				</div>

</section>

The	page	itself	has	been	broken	into	three	sections,	each	of	which	consists	of	a	div	with	a
data-role	attribute:

The	top	div	defines	the	header	of	the	page;	in	mobile	web	applications,	it	is	typical

for	this	to	describe	the	content	of	the	web	page	and	to	offer	navigation	links	to	other
pages.

The	middle	div	contains	an	area	for	the	main	content	of	the	page.

The	bottom	div	contains	the	footer	of	the	page.	It	is	conventional	for	this	area	to
contain	a	toolbar	for	invoking	actions	on	the	page.

In	this	particular	example,	the	footer	has	a	property	data-position=”fixed”:	This
will	ensure	that	the	footer	always	appears	fixed	at	the	bottom	of	the	screen,	even	if
the	table	contains	a	large	number	of	contacts	and	requires	scroll	bars.

Within	this	basic	structure,	you	begin	adding	content.	For	instance,	the	content	area	of	the
screen	contains	the	table	of	contacts.	You	will	notice	that	this	table	has	been	defined	with
the	following	attributes:	data-role=”table”	data-mode=”columntoggle”.

The	first	of	these	attributes	is	used	to	tell	jQuery	Mobile	that	it	needs	to	customize	this
table	for	mobile	devices,	while	the	second	attribute	tells	it	what	strategy	to	use	for	this
customization.

jQuery	Mobile	supports	two	basic	modes	or	strategy	of	table.	These	two	modes	are	both
intended	to	allow	the	table	to	respond	to	varying	screen	resolutions,	but	each	does	so	in	its
own	unique	way.

Note
As	you	will	see	in	the	next	lesson,	adding	data	attributes	to	many	elements	not	only
alters	the	way	they	look,	but	it	causes	them	to	be	converted	into	fully	fledged	UI
components	complete	with	their	own	set	of	methods	and	properties.

The	default	table	mode	is	reflow:	In	this	mode,	the	table	is	displayed	in	a	conventional
manner	where	space	permits,	but	when	the	resolution	becomes	too	low,	the	columns	are
displayed	vertically	rather	than	horizontally,	as	Figure	39.2	shows.

Figure	39.2

For	the	example	here,	you	will	use	the	columntoggle	mode.	This	mode	will	mean	that	a
button	is	automatically	added	to	the	screen	to	allow	users	to	hide	or	show	columns	as
required.	In	addition,	this	mode	allows	th	cells	to	be	marked	with	the	data-priority
attribute:	If	the	table	contains	too	many	columns	to	fit	the	screen	resolution,	jQuery
Mobile	will	start	excluding	columns	that	have	the	lowest	priority	(the	highest	number).	In
this	particular	case,	it	will	mean	hiding	the	phone	number	column.	This	produces	the	table
shown	in	Figure	39.3.

Figure	39.3

You	will	continue	to	use	a	template	to	add	contacts	to	the	web	page	so	add	the	following
to	the	web	page	before	the	closing	main	tag.	It	is	not	necessary	to	add	the	data-priority
attribute	to	the	cells	in	the	body	of	the	table:

<template	id="contactRow">

				<td	data-property-name="contactName"></td>

				<td	data-property-name="phoneNumber"></td>

				<td>

								<div	data-role="controlgroup"	data-type="horizontal"	class="ui-

mini">

												<a	href="#"	data-role="button"	data-icon="delete"	data-

iconpos="notext"	style="height:	18px;"	data-delete-button>

												<a	href="#"	data-role="button"	data-icon="info"	data-

iconpos="notext"	style="height:	18px;"	data-notes-button>

								</div>

				</td>

</template>

This	is	essentially	the	same	as	the	template	in	contacts.html,	except	it	contains	fewer
columns	and	one	additional	button	for	displaying	the	notes	for	the	contacts.

Because	two	buttons	are	being	displayed	side-by-side	in	single	columns,	they	have	been
contained	within	a	div	defined	with	data-role=”controlgroup”:	This	control	can	be
used	wherever	buttons	need	to	be	grouped	together,	such	as	a	menu.	In	this	example,	you
have	also	specified	that	the	buttons	should	be	displayed	horizontally,	while	the	class	ui-
mini	ensures	that	small	icons	are	used.

You	will	also	notice	that	you	are	taking	advantage	of	more	jQuery	Mobile	icons	for	these
buttons:	delete	and	info.	jQuery	Mobile	provides	approximately	50	icons	that	will	meet
most	of	your	development	needs;	these	are	documented	fully	on	the	jQuery	Mobile
website.

Note
One	other	change	you	will	notice	if	you	look	at	the	JavaScript	provided	for	this	lesson
is	that	after	rows	are	dynamically	added	to	the	table,	it	is	necessary	to	refresh	the
table	and	control	groups	because	jQuery	Mobile	converts	many	elements	into	UI
components	or	widgets,	and	this	only	happens	at	page	load	by	default.	This	process	is
explored	further	in	the	next	lesson.

Once	you	have	contacts	loaded	into	the	mobile	web	application,	it	will	display	as	you	see
in	Figure	39.4.

Note
A	single	jQuery	Mobile	can	support	up	to	26	color	swatches	(labeled	a	through	z)
defining	a	specific	color	palette	for	different	elements.	The	jQuery	Mobile	Theme
Roller	feature	lets	you	specify	these,	but	even	the	default	download	contains	five	color
swatches.	You	can	try	these	out	by	adding	attributes	such	as	data-theme=”b”	to
elements	such	as	headers	and	footers.

Figure	39.4

Notice	that	you	did	not	invoke	a	single	line	of	JavaScript	or	define	a	single	CSS	rule,	yet
jQuery	Mobile	has	constructed	a	mobile	website	conforming	to	the	conventions	of	mobile
applications.

Form-Based	Pages
You	can	now	add	the	second	page	to	your	web	application:	This	will	be	used	for	capturing
information	about	a	new	contact.	To	create	this	page,	add	the	following	code,	immediately
after	the	page	created	earlier.

<section	data-role="page"	id="contactDetailsPage">

				<form	method="post">

								<div	data-role="header">

												<h1>Enter	details</h1>

													<a	href="#contactListPage"	data-role="button"	data-icon="home"	

class="ui-btn-right">Home

								</div>

								<div	data-role="content">

												<div	class="ui-field-contain">

																<label	for="contactName">Contact	name</label>

																<input	required	autofocus	autocomplete="off"

																				name="contactName"	type="text"class="validated"

																				id="contactName"	pattern=".{5,100}"	/>

												</div>

												<div	class="ui-field-contain">

																<label	for="phoneNumber">Phone	number</label>

																<input	required	pattern="[0-9()]{5,15}"

																								placeholder="Include	area	code"

																								name="phoneNumber"	type="tel"

																								id="phoneNumber"	class="validated"	/>

												</div>

												<div	class="ui-field-contain">

																<label	for="emailAddress">Email	address</label>

																<input	required	name="emailAddress"	id="emailAddress"

																								type="email"	class="validated"	/>

												</div>

												<div	class="ui-field-contain">

																<label	for="companyName">Company	name</label>

																<select	required	name="companyName"	class="validated">

																				<option	value="">Please	select</option>

																				<option	value="1">ABC	Incorporated</option>

																				<option	value="2">XZY	Ltd</option>

																				<option	value="3">ACME	iInternational</option>

																	</select>

												</div>

												<div	class="ui-field-contain">

																<label	for="notes">Notes</label>

																<textarea	cols="40"	rows="6"	name="notes"	class="validated"

																				maxlength="1000"></textarea>

																<div	class="textCount"></div>

												</div>

												<div	class="ui-field-contain">

																<label	for="lastContacted">Last	contacted</label>

																<input	name="lastContacted"	type="text"	class="validated"	

/>

												</div>

								</div>

								<div	data-role="footer"	class="ui-bar"	data-position="fixed">

												<input	data-role="button"	class="ui-btn-right"

																		data-inline="true"	data-icon="check"	type="submit"

																		title="Save"	value="Save"	/>

								</div>

				</form>

</section>

The	basic	structure	of	this	page	is	exactly	the	same	as	the	contact	list	page;	it	contains
header,	footer,	and	content	sections.	The	most	interesting	aspect	of	the	form,	however,	is

that	each	label/form	field	pair	is	placed	inside	the	following	construct:

<div	class="ui-field-contain">

The	ui-field-contain	class	is	responsible	for	determining	the	best	way	to	lay	out	a	label
alongside	a	form	field.	If	space	allows,	the	label	will	be	placed	to	the	left	of	the	form	field;
otherwise,	it	will	be	placed	above	it.	This	means	that	you	can	simply	add	fields	without
concerning	yourself	with	how	they	will	be	displayed.

When	a	jQuery	Mobile	web	application	is	loaded,	the	first	page	defined	in	the	HTML	will
be	displayed	by	default.	In	order	to	display	the	Create	contact	page,	you	therefore	need	to
define	a	transition.	This	was	already	provided	in	the	footer	of	the	Contacts	list	page:

<a	href="#contactDetailsPage"	id="addContact"	data-role="button"	data-

transition="slide"	data-icon="plus">Add

Notice	that	the	href	contains	a	hash	and	then	the	ID	of	the	page	that	is	being	transitioned
to?	When	clicked,	this	link	will	request	the	resource
mobile_contacts.html#contactDetailsPage.	The	hash	character	has	special	meaning
within	a	hyperlink:	It	is	called	a	fragment	identifier,	and	indicates	that	the	browser	should
navigate	to	a	specific	location	defined	within	the	page—in	this	case,	a	specific	location
within	mobile_contacts.html.

Note
The	fragment	identifier	is	interesting	because	it	is	the	only	portion	of	the	URL	that	is
interpreted	by	the	browser	rather	than	the	web	server.	This	means	that	if	the	only
thing	that	changes	about	a	URL	is	the	fragment	identifier,	it	is	not	necessary	to	reload
the	page	from	the	web	server.

This	is	typically	achieved	by	adding	a	link	with	a	name	attribute	within	the	web	page:

These	are	referred	to	as	named	anchors.	It	is	then	possible	to	link	directly	to	this	position
with	either	relative	or	absolute	URLs—for	instance:

Go	to	section	2

or

Go	to	section	2

With	jQuery	Mobile,	you	are	only	responsible	for	ensuring	that	the	text	after	the	hash
matches	the	id	of	a	page:	jQuery	Mobile	will	take	care	of	the	rest.

Also	notice	that	it	is	possible	to	define	transitions	using	the	data-transition	attribute:	In
this	case,	we	have	defined	a	“slide”	transition	from	one	page	to	the	other.	Other	supported
transitions	are	slideup,	slidedown,	pop,	fade,	or	flip.	It	is	also	possible	to	reverse	the
direction	of	a	transition	with	data-direction=”reverse”.

Note
jQuery	Mobile	makes	it	trivial	to	implement	single	page	web	applications.	One
complication	of	single-page	web	applications	that	I	have	not	addressed,	however,	is
how	to	handle	the	browser’s	Back	button.	Naturally,	you	would	like	this	to	return	the
user	to	the	last	“logical”	page	she	visited,	not	the	last	“physical”	page	she	visited.

Fortunately,	as	a	user	changes	pages,	the	hash-value	will	change	at	the	top	of	the
browser	window,	and	this	generates	an	HTML5	event	called	a	hashchange.	Although
you	can	listen	for	these	events	yourself	and	keep	a	history	of	page	changes,	an	object
called	window.history	is	keeping	track	of	these	changes	for	you.	This	object	provides
methods	such	as	window.history.back()	to	return	to	the	previous	page,	and
window.history.go(-2)	to	return	back	two	pages.

When	writing	single-page	web	applications,	you	can	choose	to	manage	this	state
yourself	using	two	other	methods	on	the	history	API	called	pushState	and	popState.
These	methods	allow	you	fine-grained	control	over	page	navigation,	even	if	users	are
not	physically	changing	pages.

Although	the	jQuery	Mobile	CSS	files	meet	most	of	your	needs,	you	will	also	add	a	small
number	of	styles	at	this	point	for	specific	functionality	required	by	your	web	application.
These	can	simply	be	added	in	a	style	tag	in	the	head	section:

<style>

thead	th	{

		border-bottom:	1px	solid	#dedede;

}

.validated:invalid	{

							background:#FAC3C9;

}

.validated:valid	{

							background:#BDF0A8;

}

.requiredMarker	{

							color:	red;

							padding-left:0.3em;

}

</style>

If	you	reload	the	web	page	and	click	the	Add	button	in	the	footer,	you	should	see	the	page
shown	in	Figure	39.5	displayed.

Figure	39.5

JavaScript
The	final	change	you	need	to	make	is	to	ensure	that	the	relevant	code	in	contacts.js	is
initialized.	This	presents	a	minor	problem	because	you	do	not	need	some	of	the
functionality	in	contacts.js,	but	you	want	to	reuse	90	percent	of	the	code.

In	order	to	deal	with	this,	you	will	pass	a	parameter	to	the	contact’s	controller	indicating
whether	this	is	a	mobile	web	application;	therefore,	you	should	add	the	following	to	the
end	of	the	web	page:

<script>

				$('[name="lastContacted"]').datepicker({

								minDate	:	"-6m",

								maxDate	:	0

				});

				$(document).ready(function(evt)	{

								var	mainElement	=	document.getElementById('contactScreen');

								var	screen	=	contactsScreen(mainElement,	true);

								screen.init();

				});

</script>

A	version	of	contacts.js	that	implements	the	necessary	changes	is	available	from	the
book’s	website.	This	version	of	the	code	has	also	reverted	to	the	web	storage	API	as
opposed	to	Indexed	DB.	This	is	primarily	because	mobile	browser	support	of	APIs	is

typically	behind	desktop	browsers,	and	IndexedDB	is	not	as	widely	supported.

Try	It
In	this	Try	It,	you	will	enhance	the	mobile	web	application	by	adding	the	capability	to
view	notes	for	a	contact.

Lesson	Requirements
In	this	lesson,	you	will	need	the	mobile_contacts.html	page,	which	can	be	downloaded
from	the	book’s	website	if	you	have	not	followed	along	with	this	lesson.	You	should	also
download	contacts.js	from	the	book’s	website.

Step-by-Step
1.	 Open	mobile_contacts.html	in	your	text	editor	and	in	Chrome.

2.	 Start	by	adding	a	new	page	to	the	web	application.	This	should	have	an	id	of
contactNotePage.

3.	 Add	a	header	to	the	page,	and	include	in	this	a	description	of	the	page	(for	example,
“Contact	notes”),	and	a	home	button	for	returning	to	the	List	contacts	page.

4.	 Add	a	content	section	to	the	page.

5.	 Within	the	contact	section,	add	an	h2	element	for	the	contact	name.	You	will	use	the
bind	method	to	populate	this	(and	the	other	fields	that	you	will	add)	to	add	a	data-
property-name	attribute	with	the	value	contactName.

6.	 Add	four	more	div	elements	with	data-property-name	attributes	for	phoneNumber,
emailAddress,	notes,	and	lastContacted.

7.	 The	buttons	the	user	will	press	to	view	the	notes	have	the	data	attribute	data-notes-
button.	Within	contacts.js,	add	click	listeners	for	these	buttons.

8.	 The	click	listener	first	needs	to	determine	the	contact	that	has	been	clicked	on	by
finding	the	parent	tr	element,	and	the	contactId	data	attribute	that	has	been	set	on
this	(if	you	need	a	hint,	look	at	what	you	did	with	the	delete	functionality).

9.	 Find	the	relevant	contact	in	localStorage	based	on	the	ID	found	in	Step	8.	This	will
involve	parsing	the	contacts	into	an	array	and	looping	through	until	you	find	the
contact	with	the	matching	ID.

10.	 Invoke	the	bind	function,	passing	it	a	reference	to	the	contactNotePage	and	the
contact	found	in	Step	9.	This	will	populate	the	fields	in	the	page	with	the	appropriate
values.

11.	 You	now	need	to	programmatically	change	pages.	In	order	to	do	this,	you	first	find
the	page	container	using	$(”:mobile-pagecontainer”);	in	our	case	this	will	return
the	main	element	because	that	is	the	parent	of	all	the	pages.	The	pagecontainer
method	can	then	be	invoked	on	this	element	and	passed	three	parameters:

”change”:	Indicates	that	the	page	should	be	changed.

”#contactNotePage”:	This	is	the	page	that	should	be	displayed.

{transition:	‘slide'}:	This	object	accepts	any	optional	parameters;	for	your
purposes	here,	you	only	need	to	specify	the	transition	effect.

You	should	now	be	able	to	reload	the	web	application	and	click	the	information
button	next	to	any	contact	to	display	the	notes	recorded,	as	shown	in	Figure
39.6.

Figure	39.6

Reference
Reference	Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr
to	view	the	video	for	Lesson	39,	as	well	as	download	the	code	and	resources	for	this
lesson.

http://www.wrox.com/go/html5jsjquery24hr

Lesson	40

jQuery	Mobile:	Part	II
In	this	lesson,	you	will	continue	with	the	creation	of	a	jQuery	Mobile	web	application	but
shift	your	focus	away	from	pages	and	navigation	and	toward	mobile-specific	UI
components	and	mobile-based	events.	As	mentioned	in	the	previous	lesson,	mobile
devices	naturally	lend	themselves	to	different	approaches	from	traditional	desktops	and
laptops,	and	this	can	impact	both	the	UI	components	used	and	the	event	listeners
registered.

UI	Components
Mobile	phone	platforms	such	as	iOS	and	Android	each	support	a	toolkit	of	UI	components
(commonly	referred	to	as	widgets).	Many	of	these,	such	as	text	fields,	mirror	HTML
elements	extremely	closely.	Several	others,	however,	are	intended	to	address	the	unique
needs	of	mobile	devices	and	do	not	match	corresponding	HTML	elements.

In	order	to	address	this	discrepancy,	the	jQuery	Mobile	library	provides	a	wide	variety	of
UI	components	that	match	those	commonly	found	in	native	toolkits.	You	have	already
encountered	several	of	these	in	the	previous	lesson:	This	included	buttons,	control	groups,
pages,	tables,	headers	and	footers,	and	you	will	continue	looking	at	several	others	in	this
section.

The	components	you	have	seen	so	far	have	all	been	based	on	conventional	HTML
elements	such	as	the	table	or	select	elements,	but	have	been	transformed	into
components	by	jQuery	Mobile	based	on	their	data	attributes	and	CSS	classes.

In	fact,	in	many	cases	you	are	using	jQuery	Mobile	components	even	without	realizing	it.
If	you	view	the	Add	contact	page,	you	will	notice	that	the	select	element	has	been
customized	specifically	for	mobile	devices,	as	shown	in	Figure	40.1.	This	looks	similar	to
the	components	you	will	see	in	native	mobile	applications,	and	follows	the	same	basic
design	philosophy.

Figure	40.1

You	will	also	notice	that	the	appearance	of	this	component	has	been	significantly	modified
from	the	native	Chrome	select	element,	as	shown	in	Figure	40.2,	despite	the	fact	that	no
jQuery	Mobile	specific	attributes	or	classes	were	provided.

Figure	40.2

If	you	inspect	the	HTML	for	the	web	page,	you	will	see	that	jQuery	Mobile	has	achieved
this	partly	via	CSS	classes,	but	more	importantly,	it	has	added	a	whole	new	set	of	elements
to	the	DOM,	as	you	can	see	in	Figure	40.3.

Figure	40.3

The	top	two	div	elements	shown	in	Figure	40.3	have	been	added	by	jQuery	Mobile	itself
and	provide	a	way	of	modifying	the	appearance	and	behavior	of	the	select	element
contained	within	it.

Not	only	does	this	approach	allow	jQuery	Mobile	to	create	more	mobile-friendly
components	that	are	easier	to	interact	with	using	your	finger,	it	means	that	you	can
maintain	a	consistent	look	and	feel	across	different	mobile	browsers	and	platforms.

All	jQuery	Mobile	components,	even	those	based	on	conventional	HTML	elements,
support	a	wide	array	of	properties	and	methods,	and	therefore	act	more	like	the	feature-
rich	UI	components	found	in	native	frameworks.

For	instance,	if	you	open	the	Add	contact	screen	and	type	the	following:

$('select').selectmenu('disable');

the	select	component	will	be	immediately	disabled.

Each	UI	component	is	associated	with	a	jQuery	Mobile	method.	As	you	can	see,	select
boxes	are	associated	with	the	selectmenu	method,	and	this	line	of	code	therefore	invokes
a	method	called	disable	on	a	selectmenu	component.

Conversely,	you	can	convert	a	jQuery	Mobile	component	back	into	a	conventional	HTML
component	by	invoking	destroy	on	it:

$('select').selectmenu('destroy')

You	can	also	programmatically	construct	components	by	invoking	the	relevant	method	on
them	and	passing	an	optional	object	with	any	options:

$('select').selectmenu({'icon':	'star'});

The	options	passed	can	almost	always	also	be	provided	via	the	data	attributes	investigated
in	the	previous	lesson,	but	there	are	times	when	it	makes	sense	to	programmatically
construct	components,	particularly	when	they	are	added	to	the	page	after	the	page	has
loaded.	In	fact,	because	the	contacts	are	loaded	into	the	main	table	after	jQuery	Mobile
had	initialized,	it	was	necessary	to	manually	initialize	the	components	inside	the	table
body	with	the	following	code:

$(screen).find('table').table("refresh");

$(screen).find('[data-role="controlgroup"]').controlgroup();

Note
The	full	list	of	options	and	methods	supported	by	the	various	jQuery	Mobile
components	is	beyond	the	scope	of	this	book,	but	be	sure	to	browse	the	jQuery	Mobile
documentation	at	api.jquerymobile.com	to	gain	a	greater	understanding	of	the
power	and	flexibility	of	these	UI	components.

Collapsible	Components
Let’s	begin	this	look	at	new	components	by	adding	a	final	page	to	the	web	application.
This	page	will	be	used	to	contain	any	settings	or	configuration	tools	required	by	the	web
application.	The	code	for	this	page	is	as	follows:

<div	id="settingsPage"	data-role="page">

				<div	data-role="header">

								<h1>Settings</h1>

												<a	href="#contactListPage"	data-role="button"	data-icon="home"	

data-transition="slidedown"	class="ui-btn-right">Home

				</div>

				<div	data-role="content">

								<div	data-role="collapsible-set">

												<div	data-role="collapsible"	data-collapsed="false">

																<h3>Import	contacts</h3>

																<p>

																				<label	for="importJSONFile">Import	contacts</label>

																				<input	type="file"	id="importJSONFile"	

name="importJSONFile">

																</p>

												</div>

												<div	data-role="collapsible">

																<h3>Import	from	server</h3>

																<p>

																				<a	id="importFromServer"	data-role="button"

																				href="#">Import	from	server

																</p>

												</div>

								</div>

				</div>

</div>

The	structure	and	heading	of	this	page	should	look	very	familiar,	but	the	content	contains
a	new	type	of	component	called	a	collapsible	set.	This	component	functions	like	a	set	of
vertical	tabs:	Each	entry	in	the	set	is	assigned	a	header	(indicated	by	an	h3	tag)	and	a
details	section	(indicated	by	a	p	tag),	and	when	a	header	is	selected,	its	detail	section	is
displayed,	as	shown	in	Figure	40.4.

http://api.jquerymobile.com

Figure	40.4

This	component	is	ideal	for	mobile	web	applications	because	it	allows	various	options	to
be	presented	on	the	same	page	without	the	detail	of	each	option	distracting	the	user.
Notice	also	that	jQuery	Mobile	automatically	takes	care	of	assigning	appropriate	icons	to
each	option:	The	plus	icon	indicates	that	the	details	can	be	shown,	whereas	the	minus	icon
indicates	that	the	option	is	currently	selected.

It	is	also	possible	to	use	collapsible	components	outside	the	collapsible-set
component.	In	this	case,	the	component	functions	identically	to	the	summary	and	details
elements	you	encountered	earlier	in	the	book,	but	has	the	advantage	of	working
consistently	across	all	browsers.

Popups
An	alternative	way	of	implementing	the	Settings	screen	would	be	as	a	popup.	A	popup
leaves	the	user	in	the	context	of	the	current	page,	and	means	users	do	not	need	to	navigate
back	to	where	they	came	from	once	they	complete	their	action.

In	order	to	implement	a	page	as	a	popup,	you	need	to	start	by	changing	the	data-role	of
the	div	from	page	to	popup:

<div	id="settingsPage"	data-role="popup">

It	is	also	necessary	to	move	the	markup	for	the	page	so	that	it	sits	inside	the
contactListPage	element,	preferably	just	before	the	closing	section	tag.

You	will	also	remove	the	header	from	the	Settings	page	when	it	appears	as	a	popup,	and
replace	it	with	a	Close	button	on	the	right-hand	side	of	the	popup.	This	can	be	achieved	by
replacing	the	header	with	the	following:

<a	href="#"	data-rel="back"	data-role="button"	data-icon="delete"	data-

iconpos="notext"	class="ui-btn-right">Close

The	final	change	is	to	add	data-rel=”popup”	to	the	link	that	opens	the	settings	page	so
that	the	page	opens	as	a	popup:

<a	href="#settingsPage"	data-rel="popup"	data-role="button"	data-

icon="gear"	class="ui-btn-right"	data-transition="slideup">Settings

If	you	reload	the	web	page	and	press	the	Settings	button,	the	page	will	be	displayed	as	a
popup	over	top	of	the	current	page.

Selection
jQuery	Mobile	also	supports	a	widely	used	mobile	component	called	a	list.	This	provides	a
mechanism	for	the	user	to	select	a	single	option	from	a	list	of	options,	usually	with	the
intention	of	viewing	additional	information.

This	component	could	have	provided	an	additional	mechanism	for	arranging	the	Contact
list	screen.	For	instance,	the	contacts	could	be	arranged	in	a	list	as	follows:

<div	data-role="content">

				<ul	data-role="listview">

								Dane	Cameron

								James	Cook

								William	Pitt

				

</div>

This	is	a	conventional	unordered	list,	as	encountered	earlier	in	the	book,	except	the	ul
element	has	been	tagged	with	the	data-role=”listview”	attribute,	and	each	list	item
contains	a	link	to	the	relevant	contact.	When	viewed,	this	appears	as	you	see	in	Figure
40.5.

Figure	40.5

Each	element	in	the	list	could	then	be	clicked	to	load	the	details	and	notes	of	the	contact.
Because	it	is	only	possible	to	select	a	single	action	per	row,	the	delete	functionality	would
need	to	be	managed	in	an	alternative	manner,	such	as	a	button	on	the	Contacts	Notes
screen.

Lists	are	often	used	as	an	alternative	to	tables	in	mobile	web	applications	because	they
tend	to	adjust	more	easily	to	small	resolutions.

Flip-Switch
The	final	component	we	will	address	is	a	called	a	flip-switch.	A	flip-switch	is	used	for
selecting	between	two	possible	states,	and	is	therefore	similar	to	the	checkboxes
commonly	used	in	HTML	forms.	In	order	to	demonstrate	this,	add	the	following	to	the

form	on	the	Add	contact	screen:

<div	class="ui-field-contain">

				<label	for="followUp"Follow	up	required</label>

				<input	name="followUp"	id="followUp"	type="checkbox"	data-

role="flipswitch"	/>

</div>

This	component	is	modeled	as	a	conventional	checkbox,	but	assigned	the	attribute	data-
role=”flipswitch”.	This	constructs	the	component	shown	in	Figure	40.6.

Figure	40.6

Like	many	of	these	components,	the	main	reason	flip-switches	are	preferred	over
checkboxes	is	that	they	are	more	“touch-friendly.”	It	feels	more	intuitive	for	a	finger	to
slide	a	switch	and	see	its	state	toggled	because	the	action	mirrors	real-world	switches	such
as	light	and	socket	switches.	Pressing	your	finger	inside	a	square	and	seeing	a	check
appear,	by	contrast,	does	not	mirror	a	real-world	activity.

Events
Our	mobile	web	application	now	resembles	a	native	mobile	application	in	many	ways,	but
there	is	still	one	core	feature	to	add:	mobile	events.

The	events	generated	by	mobile	devices	are	fundamentally	different	from	traditional
desktops	in	three	basic	ways:

The	user	is	holding	the	device;	therefore	they	can	convey	meaning	by	moving	the
device.	For	instance,	shaking	an	iOS-enabled	device	triggers	an	undo	operation.

The	device	(usually)	supports	touch	screen;	therefore	the	user	can	interact	with	the
device	by	touching	it	with	his	or	her	fingers,	and	using	“gestures.”

As	you	have	seen,	navigation	is	typically	implemented	differently	in	mobile	web
applications;	therefore,	mobile	devices	support	a	class	of	events	linked	to	navigation.

Unfortunately,	it	is	not	possible	to	respond	to	the	first	class	of	events	with	mobile	web
applications	because	the	API	is	only	available	to	native	web	applications,	but	the	next
lesson	looks	at	a	workaround.	This	section	addresses	the	other	two	classes	of	events.

Gestures
jQuery	Mobile	supports	event	listeners	for	four	special	types	of	events:

Swipe:	The	swipe	event	involves	the	user	moving	a	finger	horizontally	across	the
screen	for	30	pixels	or	more	within	a	time-range	of	1	second.	It	is	possible	to	listen
for	any	swipe,	swipes	to	the	left	(swipeleft),	or	swipes	to	the	right	(swiperight).

Tap:	The	tap	event	is	triggered	by	the	user	quickly	touching	the	screen	with	a	single
finger.	This	event	type	is	very	similar	to	(and	often	confused	with)	a	click	event,
and,	in	fact,	mobile	browsers	will	generate	click	events	when	the	user	taps	the	screen.

You	may	be	wondering	why	you	need	to	specifically	listen	for	tap	events	when	click
events	are	generated	automatically.	The	main	reason	is	performance:	There	is	often	a
significant	lag	between	when	the	tap	event	is	generated	and	when	the	click	event	is
generated	so	if	you	want	to	create	a	responsive	web	application,	you	need	to	ensure
you	register	tap	event	listeners.

If	you	are	supporting	mobile	and	non-mobile	devices,	you	also	need	to	ensure	you
register	click	listeners,	of	course.	In	order	to	make	this	process	easier,	jQuery	Mobile
supports	a	special	event	type	called	vclick	(virtual	click),	which	ensures	the
appropriate	event	listener	is	registered	for	the	device.

Tap	hold:	The	taphold	event	is	triggered	when	the	user	taps	an	area	of	the	screen
with	one	finger,	and	holds	his	finger	in	that	spot	for	a	sustained	period	(750
milliseconds	by	default).	This	event	type	is	commonly	used	as	an	alternative	to	right-
mouse	clicks	in	mobile	applications,	and	commonly	produces	a	popup	menu	listing
possible	options	from	the	context	of	the	click.

Although	this	event	has	its	uses,	the	main	drawback	of	it	is	that	the	user	may	not	be

aware	the	functionality	behind	this	event	exists.

Scroll:	jQuery	Mobile	supports	two	scroll-based	events:	scrollstart	and
scrollstop.	These	events	fire	as	the	user	scrolls	a	page	with	her	finger.

jQuery	Mobile	event	listeners	are	registered	in	an	identical	manner	to	conventional	jQuery
events.	For	instance,	consider	a	case	where	you	want	a	swipe	on	the	Add	contact	screen	to
take	the	user	back	to	the	Contact	list	screen.	This	can	be	achieved	with	the	following	event
listener:

$('#contactDetailsPage').on('swipe',	function(evt)	{

				$(":mobile-pagecontainer").pagecontainer("change",	"#contactListPage",	

{	transition:	'slide',	direction:	'reverse'	});

				});

The	event	listener	itself	is	registered	on	the	entire	page,	meaning	that	the	user	can	swipe
anywhere	on	the	screen,	and	the	event	will	be	captured.

Lifecycle	Events
The	other	major	class	of	event	is	related	to	jQuery	Mobile	lifecycle	and	page	navigation.
Because	the	user	changes	pages	without	loading	a	new	HTML	page,	it	is	sometimes
necessary	to	ensure	a	page	is	initialized	appropriately	when	a	user	navigates	to	it	for	the
first	time,	or	that	it	is	refreshed	when	the	user	navigates	to	it	on	subsequent	occasions.

Just	as	jQuery	supports	a	ready	event,	jQuery	Mobile	supports	a	mobileinit	event:	This
method	is	invoked	once	per	page	refresh	and	indicates	that	jQuery	Mobile	has	completed
its	initialization	of	the	page.	This	event	listener	should	be	registered	directly	on	the
document—for	instance:

$(document).on("mobileinit",	function()	{});

Just	as	the	entire	mobile	web	application	is	initialized,	each	page	is	also	initialized	once,
on	demand	when	the	user	first	navigates	to	it.	It	is	at	this	point	that	jQuery	Mobile
constructs	the	relevant	UI	components	required	by	the	page.	It	is	possible	to	register	an
event	listener	that	will	be	fired	when	this	process	completes.	For	instance,	if	you	want	to
execute	specific	code	after	the	Settings	page	is	constructed,	you	can	register	the	following
event	listener:

$(document).on('pagecreate','#settingsPage',	function(){

				console.log('Settings	page	is	being	created');

});

Most	of	the	other	events	are	navigation	related	and	therefore	relate	specifically	to	the
pagecontainer	component,	which	is	the	container	holding	all	other	pages.	These	events
follow	the	lifecycle	that	occurs	in	jQuery	Mobile	as	a	page	change	is	completed:

An	event	is	fired	on	the	page	that	will	be	hidden,	but	while	it	is	still	visible.

An	event	will	be	fired	on	the	page	that	will	be	displayed,	but	before	it	is	visible.

An	event	is	fired	on	the	page	that	has	been	hidden,	after	it	has	been	hidden.

An	event	will	be	fired	on	the	new	page	displayed,	once	it	is	visible.

Event	listeners	can	be	registered	with	this	component	as	follows:

$(document).on("pagecontainerbeforechange",	function(event,	ui)	{

					console.log('Before	change	event	fired');

});

The	event	listener	is	always	passed	two	objects:	The	first	is	the	event	object	you	are
familiar	with	from	jQuery.	In	this	particular	case,	because	the	page	change	has	not
occurred	yet,	you	are	afforded	the	opportunity	to	veto	the	page	change	by	invoking
event.preventDefault().

The	second	object	provides	context	about	the	UI	event.	For	instance,	it	contains	a	toPage
property	indicating	the	page	that	the	user	is	navigating	to,	and	a	prevPage	property
indicating	the	current	page.

The	other	events	that	occur	during	the	page	navigation	lifecycle	are	(in	order):

pagecontainerbeforeshow

pagecontainerhide

pagecontainerload

It	is	also	possible	to	register	an	event	listener	that	simply	fires	whenever	a	page	transition
completes;	this	can	be	accomplished	by	registering	a	listener	with	the
pagecontainertransition	event.

Try	It
When	developing	mobile	web	applications,	it	is	essential	to	have	a	fast	turnaround
between	making	code	changes	and	seeing	the	results	on	a	mobile	device.

In	order	to	ease	this	process,	it	is	common	to	turn	to	mobile	phone	emulators.	As	you	have
seen,	Chrome	comes	built	in	with	a	simple	emulator,	but	in	this	Try	It,	you	will	install	and
use	a	more	complex	emulator	called	Ripple.

Lesson	Requirements
In	this	lesson,	you	will	need	the	Chrome	web	browser	and	a	version	of	the	CRM	mobile
web	applications	you	have	developed	in	this	lesson.

Step-by-Step
1.	 Open	the	Chrome	browser	and	browse	to	chrome://apps.	From	here,	click	the	Web

Store	link	at	the	bottom	of	the	page.

2.	 Change	the	Types	filter	to	“Extensions,”	and	search	for	“Ripple.”	The	result	should
return	the	app	shown	in	Figure	40.7.

Figure	40.7

3.	 Select	to	install	the	Ripple	application	by	clicking	the	+	FREE	button.	The
application	will	automatically	be	installed	without	a	restart.

4.	 Open	the	mobile_contacts.html	page	through	your	web	server.	You	will	notice	a
small	green	button	to	the	right	of	the	toolbar,	as	shown	in	Figure	40.8.	Click	this,	and
then	select	Enable.

Figure	40.8

5.	 You	will	be	prompted	with	a	list	of	platforms	that	you	wish	to	emulate;	choose
Mobile	web	(default).

6.	 You	will	be	presented	with	a	full	screen	emulator.	Not	only	does	this	allow	you	to	see
how	the	mobile	web	application	will	look	in	various	devices,	but	it	allows	you	to
manually	set	features	such	as	the	current	location	and	the	angle	the	phone	is	pointing.

7.	 In	the	top-left	hand	corner,	select	Devices	and	choose	HTC	Legend.	The	emulation
should	immediately	change	to	show	how	the	web	application	would	appear	in	this
particular	phone.

8.	 Select	to	change	the	orientation	of	the	phone	to	landscape	mode.

9.	 Select	the	Platforms	option	and	choose	WebWorks.	Press	the	Change	Platform
button.	This	will	now	show	you	how	your	web	application	will	appear	on	a
BlackBerry.

Reference
Please	go	to	the	book’s	website	at	www.wrox.com/go/html5jsjquery24hr	to	view	the
video	for	Lesson	40,	as	well	as	download	the	code	and	resources	for	this	lesson.

http://www.wrox.com/go/html5jsjquery24hr

HTML5,	JavaScript®,	and	jQuery®

24-Hour	Trainer
Dane	Cameron

	

	

	

HTML5,	JavaScript®	and	jQuery®,	24-Hour	Trainer

Published	by

John	Wiley	&	Sons,	Inc.

10475	Crosspoint	Boulevard

Indianapolis,	IN	46256
www.wiley.com

Copyright	©	2015	by	John	Wiley	&	Sons,	Inc.,	Indianapolis,	Indiana

Published	simultaneously	in	Canada

ISBN:	978-1-119-00116-4

ISBN:	978-1-119-00118-8	(ebk)

ISBN:	978-1-119-00117-1	(ebk)

No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system	or	transmitted	in	any	form	or	by	any	means,
electronic,	mechanical,	photocopying,	recording,	scanning	or	otherwise,	except	as	permitted	under	Sections	107	or	108
of	the	1976	United	States	Copyright	Act,	without	either	the	prior	written	permission	of	the	Publisher,	or	authorization
through	payment	of	the	appropriate	per-copy	fee	to	the	Copyright	Clearance	Center,	222	Rosewood	Drive,	Danvers,	MA
01923,	(978)	750-8400,	fax	(978)	646-8600.	Requests	to	the	Publisher	for	permission	should	be	addressed	to	the
Permissions	Department,	John	Wiley	&	Sons,	Inc.,	111	River	Street,	Hoboken,	NJ	07030,	(201)	748-6011,	fax	(201)
748-6008,	or	online	at	http://www.wiley.com/go/permissions.

Limit	of	Liability/Disclaimer	of	Warranty:	The	publisher	and	the	author	make	no	representations	or	warranties	with
respect	to	the	accuracy	or	completeness	of	the	contents	of	this	work	and	specifi	cally	disclaim	all	warranties,	including
without	limitation	warranties	of	fi	tness	for	a	particular	purpose.	No	warranty	may	be	created	or	extended	by	sales	or
promotional	materials.	The	advice	and	strategies	contained	herein	may	not	be	suitable	for	every	situation.	This	work	is
sold	with	the	understanding	that	the	publisher	is	not	engaged	in	rendering	legal,	accounting,	or	other	professional
services.

If	professional	assistance	is	required,	the	services	of	a	competent	professional	person	should	be	sought.	Neither	the
publisher	nor	the	author	shall	be	liable	for	damages	arising	herefrom.	The	fact	that	an	organization	or	Web	site	is
referred	to	in	this	work	as	a	citation	and/or	a	potential	source	of	further	information	does	not	mean	that	the	author	or	the
publisher	endorses	the	information	the	organization	or	Web	site	may	provide	or	recommendations	it	may	make.	Further,
readers	should	be	aware	that	Internet	Web	sites	listed	in	this	work	may	have	changed	or	disappeared	between	when	this
work	was	written	and	when	it	is	read.

For	general	information	on	our	other	products	and	services	please	contact	our	Customer	Care	Department	within	the
United	States	at	(877)	762-2974,	outside	the	United	States	at	(317)	572-3993	or	fax	(317)	572-4002.

Wiley	publishes	in	a	variety	of	print	and	electronic	formats	and	by	print-on-demand.	Some	material	included	with
standard	print	versions	of	this	book	may	not	be	included	in	e-books	or	in	print-on-demand.	If	this	book	refers	to	media
such	as	a	CD	or	DVD	that	is	not	included	in	the	version	you	purchased,	you	may	download	this	material	at
http://booksupport.wiley.com.	For	more	information	about	Wiley	products,	visit	www.wiley.com.

Library	of	Congress	Control	Number:	2014958522

Trademarks:	Wiley,	the	Wiley	logo,	Wrox,	the	Wrox	logo,	Programmer	to	Programmer,	and	related	trade	dress	are
trademarks	or	registered	trademarks	of	John	Wiley	&	Sons,	Inc.	and/or	its	affi	liates,	in	the	United	States	and	other
countries,	and	may	not	be	used	without	written	permission.	JavaScript	is	a	registered	trademark	of	Oracle,	Inc.	jQuery	is
a	registered	trademark	of	JQuery	Foundation,	Inc.	All	other	trademarks	are	the	property	of	their	respective	owners.	John
Wiley	&	Sons,	Inc.,	is	not	associated	with	any	product	or	vendor	mentioned	in	this	book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

About	the	Author
Dane	Cameron	is	an	author	and	software	engineer	living	in	Wellington,	New	Zealand.	He
has	worked	professionally	as	a	software	engineer	for	many	years,	developing	large-scale
enterprise	systems,	and	for	the	last	five	years	has	specialized	in	the	development	of
HTML5	web	applications.

Dane	has	a	double	major	in	Computer	Science	and	English	Literature	from	the	University
of	Otago.	A	Venn	diagram	of	career	prospects	quickly	identified	technical	writing	as	a
likely	option,	and	he	has	built	a	career	based	around	developing	interesting	software	and
passing	on	what	he	has	learned	to	others	through	his	books.

Dane	currently	works	for	Fronde	Systems	Group	in	Wellington,	New	Zealand,	and	uses
the	technologies	outlined	in	this	book	on	a	daily	basis.

Dane	enjoys	reading,	hiking,	and	taking	road	trips	across	America	with	his	wife.

About	the	Technical	Editor
Rohan	Hart	is	a	software	engineer	living	in	Wellington,	New	Zealand.	He	has	an
extensive	background	in	a	variety	of	languages	and	technologies,	and	has	worked	on
several	large-scale	HTML5	and	Java	projects	over	the	last	few	years.

Rohan	has	a	Bachelor	of	Computing	and	Mathematical	Science,	and	a	Master’s	degree	in
Computer	Science	from	Waikato	University.	When	not	entranced	by	code	and
programming	theory,	he	plays	strategy	games,	tramps	the	wilderness,	and	tries	to	keep	up
with	two	sons.

Credits
PROJECT	EDITOR

Adaobi	Obi	Tulton

TECHNICAL	EDITORS

Rohan	Hart

Bede	Bignell

PRODUCTION	EDITOR

Dassi	Zeidel

COPY	EDITOR

Nancy	Rapoport

MANAGER	OF	CONTENT	DEVELOPMENT	&	ASSEMBLY

Mary	Beth	Wakefield

MARKETING	DIRECTOR

David	Mayhew

MARKETING	MANAGER

Carrie	Sherrill

PROFESSIONAL	TECHNOLOGY	&	STRATEGY	DIRECTOR

Barry	Pruett

BUSINESS	MANAGER

Amy	Knies

ASSOCIATE	PUBLISHER

Jim	Minatel

PROJECT	COORDINATOR,	COVER

Patrick	Redmond

PROOFREADER

Josh	Chase,	Word	One	New	York

INDEXER

John	Sleeva

COVER	DESIGNER

Wiley

COVER	IMAGE

©iStock.com/Visiofutura

http://iStock.com/Visiofutura

Acknowledgments
I	would	like	to	thank	Bob	Elliott	from	Wiley	who	first	contacted	me	about	writing	this
book,	and	who	worked	with	me	to	develop	the	original	outline.	This	early	feedback	was
invaluable,	and	made	the	writing	process	so	much	easier.

I	would	also	like	to	thank	the	entire	Wiley	editorial	team,	especially	Adaobi	Obi	Tulton
and	Nancy	Rapoport,	who	worked	tirelessly	to	pull	the	material	together	and	offered
outstanding	feedback	and	insights.	I	would	also	like	to	thank	the	other	members	of	the
Wiley	team,	including	Mary	Beth	Wakefield	and	Jim	Minatel.	The	entire	team	made	the
process	of	delivering	this	book	seem	simple.

Additionally,	I	would	like	to	thank	Rohan	Hart	for	agreeing	to	act	as	the	technical	editor
on	this	book.	I	have	worked	with	Rohan	for	around	10	years,	and	in	all	that	time	he	has
never	failed	to	spot	my	mistakes	and	clean	them	up.

I	would	also	like	to	thank	Bede	Bignell	for	providing	the	final	technical	proof	read	of	the
book,	and	catching	any	final	issues.

I	would	also	like	to	thank	all	the	developers	at	Fronde,	particularly	those	I	have	worked
with	over	the	last	five	years	as	we	worked	out	the	best	way	to	use	the	functionality
HTML5	has	offered	to	deliver	high-quality	systems	to	our	customers.

Finally,	I	would	like	to	thank	my	wife	and	family	for	being	patient	and	supportive	while	I
completed	this	book	(even	when	I	was	supposed	to	be	on	holiday)	and	for	agreeing	not	to
make	too	much	noise	while	I	worked	on	the	screencasts.

WILEY	END	USER	LICENSE	AGREEMENT
Go	to	www.wiley.com/go/eula	to	access	Wiley’s	ebook	EULA.

http://www.wiley.com/go/eula

	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	p2p.wrox.com

	Part I: HTML and CSS
	Lesson 1: Introduction to HTML5
	What Is a Markup Language?
	The Simplest HTML Page Possible
	An HTML Template
	Understanding Elements and Attributes
	Try It

	Lesson 2: Basic HTML
	Structuring Text
	Links and Images
	Try It

	Lesson 3: Lists and Tables
	Lists
	Tables
	Try It

	Lesson 4: Introduction to CSS
	CSS Selectors
	CSS Files and Inline Styles
	Specificity
	Inheritance
	Browser Defaults
	Chrome Scratch Pad
	Try It

	Lesson 5: Structuring Pages with CSS
	The Box Model
	Display Type
	Positioning Elements
	Controlling Positions
	Try It

	Lesson 6: HTML Forms
	What Is a Form?
	Adding Fields to a Form
	HTML5 Input Fields
	Try It

	Lesson 7: Semantic Tags
	Grouping and Segmenting Content
	Styling Semantic Tags with CSS
	Microformats
	Summing Up
	Try It

	Lesson 8: HTML5 Validation
	Adding Validation Rules
	Customizing Validation
	Disabling Validation
	Try It

	Lesson 9: Drag and Drop
	Understanding Events
	Drag and Drop Example
	Try It

	Lesson 10: Dynamic Elements
	Summary and Details Tags
	Progress Bar and Meter
	Range Element
	Polyfills
	Try It

	Part II: Dynamic HTML5 Web Applications with JavaScript and jQuery
	Lesson 11: JavaScript
	JavaScript Console
	Data Types
	Control Structures
	Truthy and Falsy Values
	Dynamic Typing
	Try It

	Lesson 12: Debugging
	Try It

	Lesson 13: Functions
	Closures
	Hoisting and Block Scope
	Arguments
	Bind
	Try It

	Lesson 14: Objects
	Object Literals
	Prototypes
	Constructor Functions
	Modules
	Try It

	Lesson 15: JSON
	Replacing and Reviving
	Try It

	Lesson 16: Document Object Model
	Nodes and Objects
	Try It

	Lesson 17: jQuery Selection
	Loading jQuery
	Selecting Elements
	Pseudo-selectors
	Selection Within a Context
	Wrapped Objects
	Try It

	Lesson 18: jQuery Traversal and Manipulation
	Traversal
	Chaining
	Manipulation
	Changing Elements
	Iteration
	Try It

	Lesson 19: jQuery Events
	Registering Event Listeners
	Delegated Event Listeners
	Form Events
	Screen Events
	Animation
	Try It

	Lesson 20: Data Attributes and Templates
	Template Tag
	Data Attributes
	Using the Template
	Try It

	Lesson 21: jQuery Plugins
	jQuery UI
	Writing a Plugin
	Try It

	Part III: HTML5 Multimedia
	Lesson 22: HTML5 Audio
	File Formats
	Audio Tag
	Controlling Playback
	Try It

	Lesson 23: HTML5 Video
	File Formats
	Controlling Volume
	Controlling Playback Speed
	Controlling Video Size
	Media Source Extensions
	Encrypted Media Extensions
	Web Cryptography
	Try It

	Lesson 24: Canvas: Part I
	Simple Drawing
	Drawing Lines
	Circles and Curves
	Drawing Text
	Try It

	Lesson 25: Canvas: Part II
	Linear Gradients
	Shadows
	Images
	Transforming Shapes
	Basic Animation
	Try It

	Lesson 26: CSS3: Part I
	Selectors
	CSS Borders
	Custom Fonts
	Try It

	Lesson 27: CSS3: Part II
	Linear Gradients
	Calc Function
	Text Effects
	2D Transformations
	Transitions
	Try It

	Lesson 28: CSS3 Media Queries
	Adding Media Queries
	External Stylesheets
	Try It

	Part IV: HTML5 APIs
	Lesson 29: Web Servers
	URLs
	Choosing a Web Server
	Try It

	Lesson 30: Web Storage
	Client-Side Storage
	Web Storage API
	Storing Structured Data
	Try It

	Lesson 31: IndexedDB
	Creating a Database
	Storing Data
	Reading Data
	Deleting Data
	Try It

	Lesson 32: Application Cache
	Manifest Files
	Updating Resources
	Cache Events
	Try It

	Lesson 33: Web Workers
	JavaScript Event Model
	Web Workers
	Try It

	Lesson 34: Files
	FileReader API
	Other File-Related APIs
	Try It

	Lesson 35: AJAX
	AJAX Requests
	Try It

	Lesson 36: Promises
	Working with Promises
	Creating Promises
	Try It

	Part V: Mobile
	Lesson 37: Responsive Web Design
	Testing Screen Resolution
	Flexible Grids
	Media Queries
	Try It

	Lesson 38: Location API
	Monitor Movement
	Loading the Application
	Try It

	Lesson 39: jQuery Mobile: Part I
	Understanding jQuery Mobile
	JQUERY Mobile Pages
	Try It

	Lesson 40: jQuery Mobile: Part II
	UI Components
	Events
	Try It

	Copyright
	About the Author
	Credits
	Acknowledgments
	Advertisement
	End User License Agreement

