
www.allitebooks.com

http://www.allitebooks.org

Heroku Cookbook

Over 70 step-by-step recipes to solve the challenges of
administering and scaling a real-world production web
application on Heroku

Mike Coutermarsh

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Heroku Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: November 2014

Production reference: 1181114

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-794-4

www.packtpub.com

Cover image by Pratyush Mohanta (tysoncinematics@gmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Mike Coutermarsh

Reviewers
Jon Ferry

Mads Ohm Larsen

Mwaki Harri Magotswi

Peter Robinett

Kien Nguyen Trung

Commissioning Editor
Grant Mizen

Acquisition Editor
Greg Wild

Content Development Editor
Arvind Koul

Technical Editor
Shruti Rawool

Copy Editors
Karuna Narayanan

Laxmi Subramanian

Project Coordinator
Neha Bhatnagar

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Monica Ajmera Mehta

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Author

Mike Coutermarsh has been building and deploying web applications for over 10 years.
Originally from New Hampshire, he now works and lives in Boston, MA. As an early adopter of
Heroku, he's been working with and writing about the technology for over 5 years. He works
as a software engineer for Product Hunt (http://www.producthunt.com). Previously,
he's built and scaled web applications at Gazelle (https://www.gazelle.com/) and was
a cofounder of Taskk. When Mike isn't coding or writing, you will usually find him making the
perfect cup of coffee, watching hockey, or at the gym.

This book would not exist if it were not for the incredible support of my
family, friends, and coworkers. I would like to thank my family, mom,
dad, Ben, Kayleigh, and Tucker, who were always so encouraging and
supportive. To my friends who were always so understanding when I "had
to write", thank you. Thank you Greg and Arvind at Packt Publishing for
being so helpful and patient; I've grown so much as a writer because of your
guidance. To my technical reviewers, you are the best; thank you for your
many hours of reviewing the drafts and invaluable feedback. Finally, I would
like to thank the reader for joining me; I hope you learn to love deploying
code as much as I do.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Jon Ferry has been designing and developing web-based software in a variety of
technologies for over 14 years. He has 5 years of experience developing production-level
Ruby applications on Heroku's stack. A graduate from the Rochester Institute of Technology,
he currently works as a technical lead at Dealer.com.

For more information about Jon and his projects, visit http://jonferry.com or follow him
on Twitter at @jonferry.

Mads Ohm Larsen is a full-stack Ruby on Rails developer, gradually shifting to DevOps.
He has, in his line of work, deployed and optimized multiple Rails, Sinatra, and Grape apps
on Heroku, using multiple Rubies, including JRuby for better performance. His recent switch
to DevOps has allowed him even more insight into the world of optimization.

Mwaki Harri Magotswi, raised in Nairobi, Kenya, started tinkering with computer
hardware at the age of 16. This interest led him to learn computer science, and later web
development, where he discovered Ruby on Rails, a framework he enjoys developing on.
Most recently, he was a software engineer for a recommerce firm, Gazelle, before taking
a break to continue his studies. Constantly experimenting, he is currently playing with various
Ruby-based blogging platforms and JavaScript MVC frameworks when time allows.

In his free time, he enjoys reading, watching TV, playing video games, watching sports, casual
bike rides, scenic drives, cars, craft beers, and the occasional 15 minutes of rugby. He is also
a casual traveler, food sampler, and amateur mixologist, willing to try most things at least once.

I dedicate my work on this book to my dear late friend Sophie as well as all
my family and friends who have helped me get this far.

www.allitebooks.com

http://www.allitebooks.org

Peter Robinett is a backend and mobile developer, with a focus on Scala and iOS
development. He is a frequent user of the Heroku platform and a fan of its power and
extensibility.

He is currently a developer at Lua Technologies. He also works at Bubble Foundry and blogs
occasionally at www.bubblefoundry.com.

Kien Nguyen Trung is a software developer who lives in Hanoi, Vietnam. After spending
years in high school learning Mathematics and achieving many rewards, he decided to
challenge himself in computer science. He started learning programming from 2006
and fell in love with it.

In his free time, he builds some funny things from scratch, such as Pinterest bots to interact
with Pinterest API, a Facemash clone using the Facebook avatar with face recognition, and so
on. He runs a blog at http://kiennt.com to write about what he learned and his thoughts
on software engineering. He spends a lot of time writing code that not only runs but is also
clean and clear. His favorite quote is Any fool can write code that a computer can understand.
Good programmers write code that humans can understand by Martin Fowler.

Since August 2012, he has been leading backend development at SimplePrints
(http://getsimpleprints.com), a fast-growing start-up of 500 start-up companies.
He refactors most of the backend source code in SimplePrints applications so that it is more
readable and maintainable. Since June 2014, he has been designing architecture for both
backend and iOS applications of SimplePrints. His favorite programming language is Python,
but he also works on Ruby, JavaScript, and Objective-C.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: Getting Started with Heroku	 7

Introduction	 7
Installing the Heroku Toolbelt	 8
Introducing version control with Git	 11
Deploying a Rails application to Heroku	 14
Deploying a Node.js application to Heroku	 21
Introducing dynos, workers, and scaling	 24

Chapter 2: Managing Heroku from the Command Line	 29
Introduction	 29
Viewing application logs	 30
Searching logs	 32
Installing add-ons	 34
Managing environment variables	 37
Enabling the maintenance page	 39
Managing releases and rolling back	 41
Running one-off tasks and dynos	 43
Managing SSH keys	 45
Sharing and collaboration	 47
Monitoring load average and memory usage	 48

Chapter 3: Setting Up a Staging Environment	 51
Introduction	 51
Duplicating an existing application	 52
Managing git remotes	 54
Password protection for a Rails app	 56
Deploying with Heroku labs – Pipeline	 58
Deploying from tags	 60
Continuous integration and deployment with Travis CI	 62

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 4: Production-ready with Heroku	 67
Introduction	 67
Managing domains from the command line	 68
Configuring DNS with CloudFlare	 69
Setting up SSL with CloudFlare	 71
Enabling preboot for seamless deploys	 73
Enabling custom maintenance and error pages	 74
Setting up a status page	 75
Setting up log draining with LogEntries	 78

Chapter 5: Error Monitoring and Logging Tools	 81
Introduction	 81
Checking Heroku's status	 82
Adjusting Rails's logging level	 83
Storing historical logs with PaperTrail	 84
Monitoring for 404 and 500 errors with PaperTrail	 87
Logging slow queries with PaperTrail	 89
Monitoring uptime with Pingdom	 91
Logging errors with Rollbar	 92

Chapter 6: Load Testing a Heroku Application	 95
Introduction	 95
Monitoring dyno performance with Librato	 96
Monitoring application performance with New Relic	 98
Learning to load test with Siege	 101
Configuring complex load tests with Siege	 107
Load testing from the cloud with Blitz.io	 110
Testing real-user scenarios with Load Impact	 113

Chapter 7: Optimizing Ruby Server Performance on Heroku	 119
Introduction	 119
Setting up and running Unicorn on Heroku	 120
Monitoring and tuning Unicorn's memory usage	 122
Tuning Unicorn's backlog for Heroku	 125
Timing out long requests with Unicorn	 127
Setting up and running Puma on Heroku	 128
Running Puma with Rubinius for parallelism	 131

Chapter 8: Optimizing a Rails Application on Heroku	 135
Introduction	 135
Setting up a sample blogging app	 136
Using Heroku Deflater to gzip assets	 137
Serving assets from Amazon Web Services (AWS) Cloudfront	 139

iii

Table of Contents

Adding memcached to a Rails application	 143
Adding Redis to a Rails application	 146
Implementing low-level caching in Rails	 149
Caching rendered views	 152
Aborting long requests with Rack::Timeout	 158
Using a follower for read-only DB queries	 159

Chapter 9: Using and Administrating Heroku Postgres	 167
Introduction	 167
Creating and sizing a new database	 168
Promoting a Heroku database	 170
Connecting to Heroku Postgres from Navicat	 171
Connecting to Heroku Postgres from psql	 175
Creating a database backup	 176
Restoring from a backup	 178
Creating a read-only follower	 179
Viewing and stopping database processes	 181
Analyzing Heroku Postgres's performance	 183

Chapter 10: The Heroku Platform API	 187
Introduction	 187
Making our first API request with HTTPie	 188
Getting started with the Platform API gem	 192
Scaling dynos and workers	 197
Managing configuration variables	 201
Adding and removing collaborators	 203
Creating new Heroku applications	 205

Index	 209

Preface
As developers, we want to spend our time focusing on building our applications. We're not
interested in setting up load balancers or endlessly tweaking firewalls. We just want to easily
deploy and scale our code.

Heroku has made this possible by automating and hiding the dirty details of application
deployment. This has resulted in a giant leap in developer productivity, making it easier to
deploy code than it was earlier.

Even though Heroku has dramatically simplified the entire process, there is still a lot that we
need to know before we launch a production-level application on Heroku.

The goal of this book is to teach developers how to use Heroku effectively. You'll learn exactly
what it takes to deploy and support a production-level application on Heroku. Along the way,
we will learn how Heroku works behind the scenes. The more we understand, the better we
will be equipped to take decisions on how our applications should be designed and written.

What this book covers
Chapter 1, Getting Started with Heroku, will teach you how to set up all the tools we need to
get our applications ready and deployed to Heroku.

Chapter 2, Managing Heroku from the Command Line, informs us that Heroku's CLI is the
backbone of all our interactions with our Heroku application. Here, we'll get comfortable with
administering our apps from the CLI.

Chapter 3, Setting Up a Staging Environment, specifies how to set up a staging environment
for our Heroku applications. We need a place to test our application before deploying it
to production.

Chapter 4, Production-ready with Heroku, covers the steps needed to get a Heroku application
ready to handle production-level traffic.

Preface

2

Chapter 5, Error Monitoring and Logging Tools, specifies how to set up logging and alerts
to keep us informed about any problems with our application. We can never have too much
information about our application's usage and performance.

Chapter 6, Load Testing a Heroku Application, specifies how to simulate massive spikes
of traffic and get insight into our application's performance bottlenecks. The first step to
improving our application's performance is being able to measure it.

Chapter 7, Optimizing Ruby Server Performance on Heroku, specifies how to choose and
configure our Ruby web server for maximum performance on a Heroku dyno.

Chapter 8, Optimizing a Rails Application on Heroku, tells us how to introduce caching and
reduce load times throughout our Rails applications.

Chapter 9, Using and Administrating Heroku Postgres, specifies how to pick the right plan,
administer it from the CLI, and keep it healthy with various Postgres health checks, as our
database is the most critical piece of our application.

Chapter 10, The Heroku Platform API, specifies how to create, scale, and manage our
applications, all through the API, thus preparing us to write our own programs to interact
with Heroku for us.

What you need for this book
To complete the recipes in this book, you'll need an OS X and a Linux or Windows machine.
Specific setup and installation instructions for all software and applications that are needed
are detailed step by step in each chapter.

Who this book is for
This book is intended for developers who want to learn what it takes to deploy and manage
production-level applications on Heroku. You might have already deployed applications to
Heroku or might be entirely new to the platform. This book will get you up to speed quickly
with all the information needed to run real-world web applications on Heroku. When using the
recipes in this book, it will be helpful to have some prior experience in working with Git and
command-line applications.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it, How it works, There's more, and See also). To give clear instructions on how to complete a
recipe, we use these sections as follows:

Preface

3

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the
previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Make sure
the log-runtime-metrics plugin is installed and the application was restarted."

A block of code is set as follows:

worker_processes Integer(ENV['WEB_CONCURRENCY'] || 2)
timeout Integer(ENV['WEB_TIMEOUT'] || 15)
listen ENV['PORT'], backlog: Integer(ENV['UNICORN_BACKLOG'] || 50)
preload_app true

Preface

4

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

worker_processes Integer(ENV['WEB_CONCURRENCY'] || 2)
timeout Integer(ENV['WEB_TIMEOUT'] || 15)
listen ENV['PORT'], backlog: Integer(ENV['UNICORN_BACKLOG'] || 50)
preload_app true

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "We will need to fill in our
applications URL and then click on Load test execution plan."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Preface

5

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams used in
this book. The color images will help you better understand the changes in the output. You
can download this file from http://www.packtpub.com/sites/default/files/
downloads/7944OT_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the errata submission form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded on our website, or added to any list of existing errata, under the Errata section
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started

with Heroku

In this chapter, we will cover:

ff Installing the Heroku Toolbelt

ff Introducing version control with Git

ff Deploying a Rails application to Heroku

ff Deploying a Node.js application to Heroku

ff Introducing dynos, workers, and scaling

Introduction
As developers, we work in a world of abstractions. Each piece of technology that we use is built
upon layers and layers of other systems. This allows us to build software more efficiently. Why
recreate what has already been created? Frameworks such as Ruby on Rails, Django, and Node.
js were created to abstract away the painful parts of web development. They set up standards
and best practices to build web applications. We have all of these amazing tools to build
applications, but for a long time, we still struggled to easily deploy and scale them.

Then came Heroku. Heroku is the Platform as a Service that changed how we deploy web
applications. Heroku automates the pain points of deploying code and has established best
practices to build applications that need to scale. We no longer need to deal with the pain of
setting up load balancers, patching servers, or scrambling to scale up our infrastructure in
response to high traffic.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Heroku

8

Heroku is easy to get started with and use. For developers who are new to the Heroku
way, some of the conventions might go against the ones you use to deploy code. Building
scalable and highly performant web applications requires us to think about the design of our
applications differently.

In this book, we will learn how to set up our applications for success on Heroku. We'll learn
about what is happening behind the scenes and use this knowledge to make our applications
fast and reliable from the very beginning.

In this chapter, we will cover the very basics of deploying to Heroku. We will practice deploying
three different open source projects, each using a different language and framework. Through
this practice, we'll learn the essentials for deploying any application to Heroku and become
more confident when it is time for us to deploy our own code.

Installing the Heroku Toolbelt
Heroku applications are created and administered from the command line. To get started with
Heroku, we need to install the Heroku Toolbelt. It contains everything we need to create and
deploy new applications.

The toolbelt is an installer for three command-line tools:

ff Heroku Command Line Interface (CLI): This is an interface to the Heroku
Platform API

ff Git: This is used for version control and to deploy our applications

ff Foreman: This is a tool to run Procfile-based applications

In this recipe, we will install the Heroku Toolbelt, making sure our machine is set up to use
the Heroku CLI. We'll also be briefly introduced to the Heroku CLI. We'll learn about Git and
Foreman later in the chapter.

If you already have the Heroku Toolbelt, it might be beneficial
to go through the following steps again to ensure that the latest
version is installed.

Getting ready
First, we need to create a Heroku account with the following steps:

1.	 Let's go to www.heroku.com and create an account if we do not already have one.

www.heroku.com

Chapter 1

9

Remember to use a strong and unique password for Heroku.
This account will be able to access our source code and data, so
treat it like any other sensitive set of credentials.

2.	 Next, let's install the Heroku Toolbelt. Specific download and installation instructions
are available at https://toolbelt.heroku.com/ for Mac, Windows, and Linux.

Throughout this book, we will be using a $ sign to indicate that
a command should be run in a terminal. The $ sign is not part
of the command.

3.	 Once the Heroku Toolbelt is installed, we can verify that everything is working by
opening up a terminal and running the following command:

$ heroku --version

heroku-toolbelt/3.11.1 (x86_64-darwin10.8.0) ruby/1.9.3

We should see the version of the Heroku Toolbelt we are using printed to the console.

https://toolbelt.heroku.com/

Getting Started with Heroku

10

How to do it...
Now that we have the Heroku Toolbelt installed, let's log in to our account via the CLI and
authorize our computer by uploading our public key using the following steps:

1.	 Let's log in by opening up a terminal and running the following command:
$ heroku login

Username: youremail@example.com

Password (typing will be hidden):

Could not find an existing public key.
Would you like to generate one? [Yn]
Generating new SSH public key.
Uploading ssh public key /Users/mc/.ssh/id_rsa.pub

If we do not have an existing public key, the Heroku CLI will provide us with
instructions on how to create one here. This key will be uploaded to Heroku's servers
and used for authentication whenever we push new code to our applications.

We'll need to repeat this step for any other computers we
use Heroku from.

2.	 We can ensure that we are authenticated with the auth:whoami command. If
logged in successfully, it will print our e-mail address:
$ heroku auth:whoami

youremail@example.com

3.	 Finally, we should go to the Heroku dashboard and verify our account by adding a
credit card. Having a verified account will allow us to scale our applications and install
add-ons (https://dashboard.heroku.com/account).

How it works…
The Heroku Toolbelt installs all the necessary tools to create and administer our Heroku
applications. It's essential for us to become comfortable with Heroku's command-line tools.
Even though many tasks can be completed on Heroku's website, not everything is available
through the dashboard. For full control over our applications, we have to use the CLI.

https://dashboard.heroku.com/account

Chapter 1

11

Authentication
Ever wondered how Heroku keeps us logged in to the CLI? During the login process, Heroku
stores an API key for our account in our .netrc file. The .netrc file is a dotfile that lives in
our home directory. It's a common file that applications use to store credentials to log in to
remote hosts. The API key stored in this file is used for subsequent logins and keeps us logged
in to our Heroku account. If we open our .netrc file, we'll see an entry for api.heroku.
com. If we ever run the auth:logout command, it deletes the entry from our .netrc file,
thus logging us out.

We do not need to worry about updating Heroku Toolbelt; it will
automatically check for updates for us.

See also
ff Interested in seeing the source code for the Heroku CLI? It's open source; take a look

at https://github.com/heroku/heroku.

Introducing version control with Git
Git is one of the most popular version-control systems used in software development. It allows
teams of developers to work on the same code base without overwriting each other's changes.
Git is a core piece of the Heroku platform, and having a basic understanding of how it works is
a prerequisite to deploy code to Heroku.

In this recipe, we'll learn enough about Git to deploy code to Heroku.

Unfamiliar with the command line? There is a great resource
to quickly get up to speed on the basics at http://cli.
learncodethehardway.org/book/.

How to do it…
Git allows us to track every change to our source code. This makes it simple to go back in
time and revert changes as well as view the history of our code. Let's open up a terminal
to get started by performing the following steps:

1.	 If we've never used Git before, we'll want to tell it our name and e-mail. These will be
used to identify us as the author in all our commits:
$ git config --global user.name 'First and Last name here'

$ git config --global user.email 'yourname@example.com'

api.heroku.com
api.heroku.com
https://github.com/heroku/heroku
http://cli.learncodethehardway.org/book/
http://cli.learncodethehardway.org/book/

Getting Started with Heroku

12

2.	 Now, let's create a new directory to practice with:
$ mkdir LearningGit

$ cd LearningGit

3.	 In our new directory, we'll need to initialize a new Git repository:
$ git init

Initialized empty Git repository in /home/mc/LearningGit/.git/

4.	 Now, let's create a new file in our project using touch:
$ touch new_file.txt

5.	 We can use the status command to check whether this file is currently untracked
by Git:
$ git status

On branch master

Initial commit

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 new_file.txt

nothing added to commit but untracked files present (use "git add"
to track)

The default output of the Git status can be a little verbose. Use
git status -sb for a more concise output.

6.	 We need to explicitly tell Git to track the file using the add command:
$ git add new_file.txt

Try to run git status again. See the difference?

Chapter 1

13

7.	 Our file is now created and being tracked by Git, but it is not yet committed to our
repository's history. Let's commit it now:
$ git commit -m "Adding new_file to Git"

[master (root-commit) b79ca0b] Adding new_file to Git

1 file changed, 0 insertions(+), 0 deletions(-)

create mode 100644 LearningGit/new_file.txt

To save time, we can combine git add and git commit in a single
command. The git commit -am command will stage any currently
tracked files and commit them.

8.	 To view the history of our Git repository, we can use the log command. Use the q key
to escape from viewing logs. Use the arrow keys to scroll:
$ git log

commit b79ca0b7c7671789cc8359fe43e1144af835c2d1

Author: Mike Coutermarsh <coutermarsh.mike@gmail.com>

Date: Mon Mar 3 20:31:47 2014 -0500

Adding new_file to Git

We now know the essential commands to use Git from the command line. We're able to create
a new repository, add and track the files, as well as view our repositories' status and history.
These are just a limited set of Git's commands, but they are enough for us to get started with
Heroku. We'll be using Git throughout this book to track and push our code. We'll build on the
skills we learned here in the later recipes.

How it works…
An easy way to understand Git commits is to think of each commit as a photograph of our
project files. Each time we make a commit, Git takes a photo of our files. We are then able to
view each commit to see exactly what changed in our project. If we need to go back in time,
we can just revert to the state our code was in before the commit was made.

Git is a distributed version-control system. This means that there is no need for us to be online
or connected to a server to use it. In Git, there is the concept of remotes. These are other
instances of the Git repository on other servers or machines. If we have a Git repository on
GitHub, then this is known as a remote. Having remotes is useful because they act as a central
place where all the members of a team can push their changes and retrieve the changes made
by others. Having the full Git repository on multiple machines and servers also makes it much
more fault tolerant. If anything were to happen to our remote repository, each team member
would still have a local copy that can be used to create a new remote elsewhere.

Getting Started with Heroku

14

Remotes are an important concept for us to understand because they are the basis to deploy
to Heroku. Each Heroku deploy is simply the push of a local Git repository to a remote provided
by Heroku. It's amazingly simple; we'll learn about it in detail later in this chapter.

There's more…
Using and learning about Git from the command line can be challenging. Luckily, there are a
few easy-to-use desktop apps that make using Git really simple:

ff GitHub for Mac available at http://mac.github.com/

ff GitHub for Windows available at http://windows.github.com/

ff SourceTree (Mac or Windows) available at http://www.sourcetreeapp.com/

ff Tower (Mac) available at http://www.git-tower.com/

ff SmartGit (Linux) available at http://www.syntevo.com/smartgithg/

See also
ff Grab the Git cheatsheet at http://cheat.errtheblog.com/s/git

ff For an interactive tutorial on using Git, check out TryGit at https://try.github.io

ff Packt has a great beginner's guide to using Git, Git: Version Control for Everyone,
Ravishankar Somasundaram

Deploying a Rails application to Heroku
It's time for us to deploy our first application to Heroku. If you've deployed applications
to Heroku before, this will be a good review. If this is your first time, you'll be learning the
common steps taken to deploy any application to Heroku.

The creators of Heroku have experience in deploying and scaling countless web applications.
They've seen it all. From their experiences, they have created a methodology known as the
Twelve-Factor app. The Twelve-Factor app is a set of 12 rules that will guide us to build an
application that is easy to deploy, easy to maintain, and, most importantly, easy to scale on a
cloud platform. No matter what language or framework we are using to build our application,
these twelve rules will apply.

Visit http://12factor.net/ to learn more about the
Twelve-Factor app.

http://mac.github.com/
http://windows.github.com/
http://www.sourcetreeapp.com/
http://www.git-tower.com/
http://www.syntevo.com/smartgithg/
http://cheat.errtheblog.com/s/git
https://try.github.io
http://12factor.net/

Chapter 1

15

Ruby on Rails follows most of the twelve rules out of the box. This makes it a good place to
start when learning how to deploy to Heroku, because it requires minor configuration changes.
In this recipe, we will be deploying Refinery, a popular open source Ruby on Rails Content
Management System (CMS).

Getting ready
To run this application locally, we need to have Ruby Version 2.1.3 installed by performing the
following steps:

1.	 One of the easiest ways to install Ruby is to use Ruby Version Manager (RVM).
We can find the latest installation instructions for RVM at http://rvm.io/rvm/
install.

2.	 Once RVM is installed, we can run the following command in a terminal to install
Ruby 2.1.3:
$ rvm install 2.1.3

3.	 We'll use Bundler to manage and install our applications' dependencies. Let's make
sure we have the latest version installed by running the following command:
$ gem install bundler

4.	 This application also uses a Postgres database. We'll be using Postgres frequently
throughout the book; if we do not have it installed on our machine, now is a good
time to get it set up:

�� For OS X, the easiest way to install Postgres is via the Postgres app available
at http://postgresapp.com/

�� For Windows and Linux, see the Postgres download page at http://www.
postgresql.org/download/

How to do it…
We'll set up and deploy our application from the command line. Let's open a terminal to get
started using the following steps:

1.	 First, we need to download the source code for our sample app from GitHub. We can
do this using git clone:
$ git clone https://github.com/mscoutermarsh/refinery_heroku.git

2.	 Now, let's navigate to our new directory and create a new Heroku app. Creating a new
app will also add a new heroku remote to our Git repository. This remote is where we
will be soon pushing our code for deployment:
$ cd refinery_heroku

$ heroku apps:create

http://rvm.io/rvm/install
http://rvm.io/rvm/install
http://postgresapp.com/
http://www.postgresql.org/download/
http://www.postgresql.org/download/

Getting Started with Heroku

16

 Creating cryptic-chamber-6830... done, stack is cedar

 http://cryptic-chamber-6830.herokuapp.com/ | git@heroku.
com:cryptic-chamber-6830.git

 Git remote heroku added

Heroku automatically generates an app name for us. If we want to
specify our app name, we can add our app name to the end of the
command ($ heroku apps:create my_app_name).

3.	 We will tell Heroku how to run our app with a Procfile. In the root directory of our new
app, we'll create a new Procfile to tell Heroku how to start up our web service. Let's
create the file using the touch command:
$ touch Procfile

4.	 Now, let's open our new Procfile and add the following line. This will tell Heroku how to
start our web server process:
web: bundle exec unicorn -p $PORT -c ./config/unicorn.rb

$PORT in this command is an environment variable that Heroku
will manage for us. It determines the port that our web server will
run on.

5.	 We can now commit these changes to Git:
$ git add Procfile

$ git commit -m 'Adding Procfile for Heroku'

For an example of what the Procfile should look like, one has
already been added to this example application. Take a look at
Procfile.example in the root directory of the project.

6.	 Next, let's add the Twelve-Factor app gem to our application. It will automatically
configure our application's logging and assets to work correctly with Heroku. Let's
open our application's Gemfile and add the following line:
gem 'rails_12factor', group: :production

7.	 As we've added a new gem, we'll want to run bundle install to update our
application's dependencies:
$ bundle install

Chapter 1

17

To learn more about Bundler, take a look at http://bundler.io/.

8.	 We'll need to make another commit with our latest changes:
$ git commit -am 'Adding 12 factor gem'

We are able to use the -am flag here because Git is already
tracking the files we are committing.

9.	 This application uses a Postgres database. We'll need to add Postgres to our Heroku
application. Let's do this now:
$ heroku addons:add heroku-postgresql:dev

----> Adding heroku-postgresql:dev to cryptic-chamber-6830...
done, v3 (free)

 Attached as HEROKU_POSTGRESQL_GOLD_URL

 Database has been created and is available

 ! This database is empty. If upgrading, you can transfer

 ! data from another database with pgbackups:restore.

The Heroku CLI knows which application to add the database to,
because our current Git repository has a heroku remote that points
to this Heroku application. If we wanted to run the command for a
different application, we could append --app application_
name to the end of the command. This will be very useful once we
have multiple applications deployed to Heroku.

10.	 Ruby on Rails uses an environment variable to connect to the database. We can
set this now using the promote command. This will assign our new database's
credentials to the DATABASE_URL environment variable.

We'll use the database name given to us in the previous command as the argument
in this command:

$ heroku pg:promote HEROKU_POSTGRESQL_GOLD

-----> Promoting HEROKU_POSTGRESQL_GOLD to DATABASE_URL... done

It's good practice to keep all the credentials in environment
variables. This is part of the Twelve-Factor app.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with Heroku

18

11.	 We're now ready to push our code to Heroku. We'll do this using Git's push command.
We'll need to specify the heroku remote and our master Git branch:
$ git push heroku master

Initializing repository, done.

Counting objects: 92, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (79/79), done.

Writing objects: 100% (92/92), 35.83 KiB | 0 bytes/s, done.

Total 92 (delta 11), reused 0 (delta 0)

…

-----> Discovering process types

 Procfile declares types -> web

 Default types for Ruby -> console, rake, worker

-----> Compressing... done, 37.1MB

-----> Launching... done, v9

 http://cryptic-chamber-6830.herokuapp.com/ deployed to
Heroku

To git@heroku.com:cryptic-chamber-6830.git

 46345bc..583680c master -> master

We can always see a list of our available Git remotes by running $ git
remote -v.
During the deploy process, our app will compile all of our application's
style sheets and JavaScript. This might take a few minutes; Refinery has
a lot of assets.

12.	 Now that our application's code is on Heroku, we need to completely set up our
database by running migrations and seeding it with some data:
$ heroku run rake db:migrate

$ heroku run rake db:seed

Chapter 1

19

The heroku run command is equivalent to SSHing into a server
and running a command.

13.	 Our app is now ready to use! We can quickly launch a browser and view it with the
open command:
$ heroku open

By default, all Heroku applications have an application-name.
herokuapp.com domain name. This domain directs requests to the
web server we defined in our Procfile.

14.	 Once our application is open, let's go to Refinery in the browser to register a user and
start using the Refinery CMS.

How it works…
In deploying this Rails application, we were introduced to a couple of Heroku concepts that we
will be using when deploying any application to Heroku. Let's dig into them a little deeper now.

The Procfile
Each Heroku application should have a special file in its root directory that defines each of
the processes required to run the application. This file is known as a Procfile. If we forget to
include a Procfile, Heroku will try to guess what process we want to run. It's better for us if
we're explicit about exactly what Heroku should do.

Getting Started with Heroku

20

In this recipe, we created a Procfile that told Heroku what command to run to start our web
server. The Procfile can be used for more than just web processes. In applications that also
have processes running in the background, the Procfile is where we'd define how to start
them. On Heroku, we can only have one web process. This is the only process that Heroku will
direct web traffic to. Other processes will not be able to receive web traffic. If we find a use
case where we need more than one type of web process running, this is a good indicator that
we should have multiple Heroku applications.

Environment variables
When we ran the db:promote command, we added an environment variable to our
application to store our database's credentials. This is good practice and follows the
conventions of the Twelve-Factor app. We should never store credentials for any service in
our Git repository. It makes our credentials less secure, because they are then accessible
to anyone who works on our code. It also makes them more difficult to change, because any
change will require another deploy. Credentials tend to be very environment specific; having
them as part of a Heroku application rather than our code base makes our application more
portable. With all this being said, the key is to remember that when building any application
for deployment on Heroku, we should build the ability to load credentials from an environment
variable into our code.

The build process
When we pushed our Git repository to Heroku, the slug compilation process began. Heroku
takes our Git repository, detects the language and the framework used, and begins to build a
slug in our application. A Heroku slug is a copy of our application that is ready to be deployed
on Heroku's servers at a moment's notice. For a Rails application, this means that all of the
application's Gems have been installed, and its assets have been compiled. Heroku also
removes any unnecessary files from our Git repository to make the slug as lightweight as
possible. We can think of it as a snapshot of our production-ready application. Heroku hangs
on to each slug it creates, making it easy for us to roll back to a previous slug if needed.

See also
ff Find out more about the Refinery CMS at http://refinerycms.com/

ff Find out more about Foreman and the Procfile at http://ddollar.github.io/
foreman/

ff To learn more about deploying Ruby applications on Heroku, take a look at Chapter 7,
Optimizing Ruby Server Performance on Heroku

http://refinerycms.com/
http://ddollar.github.io/foreman/
http://ddollar.github.io/foreman/

Chapter 1

21

Deploying a Node.js application to Heroku
Heroku is a polyglot platform that can host applications built in many different languages and
frameworks. In this recipe, we will learn how to deploy Ghost, a popular open source blogging
platform built on Node.js.

We'll build on what we learned in the previous recipe, Deploying a Rails application to
Heroku. Here, we'll see that there are a lot of similarities between deploying the two different
applications. The process to deploy any application to Heroku is very similar to the previous
recipe, irrespective of the language or framework in which it is written.

How to do it…
We'll be setting up and deploying Ghost from the command line. Let's open up a terminal to
begin with by performing the following steps:

1.	 First, we'll need to download the Ghost source code from GitHub. We'll clone an
existing Ghost Git repository that's been set up to run on Heroku:
$ git clone https://github.com/mscoutermarsh/ghost_heroku.git

 Cloning into 'ghost_heroku'...

 remote: Counting objects: 16411, done.

 remote: Compressing objects: 100% (7480/7480), done.

 remote: Total 16411 (delta 8481), reused 16381 (delta 8455)

 Receiving objects: 100% (16411/16411), 8.55 MiB | 1.75 MiB/s,
done.

 Resolving deltas: 100% (8481/8481), done.

 Checking connectivity... done

This specific Ghost repository was set up to be easy to deploy to Heroku.
The difference between this repository and the core Ghost source code is
that it has a Procfile added and the configuration has been set up to use
a Postgres connection defined by an environment variable.

2.	 Let's navigate to the new ghost_heroku directory and create a new Heroku
application:
$ cd ghost_heroku

$ heroku apps:create

 Creating fast-coast-3773... done, region is us

 http://fast-coast-3773.herokuapp.com/ |

Getting Started with Heroku

22

 git@heroku.com:fast-coast-3773.git

 Git remote heroku added

3.	 The configuration for our application is in the config.js file. Let's open the file now
and update the default production URL to reflect our new Heroku application's URL
(given to us from Heroku in the previous step):
production: {

 url: 'http://my-ghost-blog.com',

 mail: {},

4.	 Commit the changes to Git:
$ git commit -am 'Updating production URL config'

 [master cd0ec0e] Updating production URL config

 1 file changed, 1 insertion(+), 1 deletion(-)

5.	 We'll use Postgres as our database for Ghost. We can create a new Postgres
database now:
$ heroku addons:add heroku-postgresql:dev

 Adding heroku-postgresql:dev on fast-coast-3773... done, v3
(free)

 Attached as HEROKU_POSTGRESQL_SILVER_URL

 Database has been created and is available

 ! This database is empty. If upgrading, you can transfer

 ! data from another database with pgbackups:restore.

 Use `heroku addons:docs heroku-postgresql:dev` to view
documentation.

6.	 We'll need to set up our new database as the primary one for our application by
promoting it. In the previous command, Heroku gave us a unique database name.
It follows the format of HEROKU_POSTGRESQL_COLOR_URL. We'll use that name
as the argument for the next command:
$ heroku pg:promote HEROKU_POSTGRESQL_SILVER_URL

 Promoting HEROKU_POSTGRESQL_SILVER_URL to DATABASE_URL... done

Our Ghost installation is set up to parse Heroku's DATABASE_URL
to connect to the database. To see how this works, look at the
production database section of config.js.

Chapter 1

23

7.	 Next, we'll need to set a configuration variable to let Node know which environment
it's running on. Let's set it to production:
$ heroku config:set NODE_ENV=production

The terms environment variable and configuration variable
are interchangeable.

8.	 Our application now has everything it needs to be deployed. Let's push our repository
to Heroku to deploy our code:
$ git push heroku master

Heroku only deploys code in the master branch of our Git repository. If
we want to deploy a code from a different branch, we can use the $ git
push heroku other_branch_name:master command.

9.	 Once the build process is complete, our blog will be up and running. We can now
launch a browser from the command line to see the following screen:
$ heroku open

10.	 To access Ghost's admin panel, add /ghost at the end of the URL. We can then
create an account and start playing with our new blog.

How it works…
Heroku uses a unique term for its web servers; it calls them dynos. A dyno starts out as a
plain Ubuntu Linux web server. It's during the initial push and slug-compilation process that
Heroku auto detects the type of application we are trying to deploy and installs the software
necessary for it to run.

Getting Started with Heroku

24

The ephemeral filesystem
Heroku uses an ephemeral filesystem. This means that any files written to disk after the
creation of the slug will not be persisted beyond the life of the dyno. All Heroku dynos are
cycled every 24 hours. There is a good reason for this restriction: it allows our application to
scale. If we were to allow file storage on Heroku dynos, we'd have to replicate the file across
every dyno.

When writing blog posts with Ghost, we'll see that we are able to upload images. The
problem with this feature is that Ghost currently stores these images on the web server.
This won't work for us on Heroku; we'll have to use a file store outside Heroku, such as
Amazon S3 or Dropbox.

See also
ff See ghost.org to learn more about Ghost

ff Check out the Ghost project on GitHub at https://github.com/tryghost/Ghost

Introducing dynos, workers, and scaling
Heroku's killer feature has always been its ability to easily scale up and scale out our
applications as our user base grows. This frees us from the pains of setting up and managing
load balancers and additional servers on our own. In this recipe, we will be introduced to
Heroku's dynos and workers as well as learn how to scale them both up and out as our
applications grow.

Scaling up and scaling out are two common terms used when
growing web applications:

ff Scaling up (vertical scaling) means that we are making our
servers more powerful by adding more CPU/RAM

ff Scaling out (horizontal scaling) means that we are adding
more servers to our application

What's a dyno?
Dyno is the term Heroku uses for its web servers. A dyno is simply a virtual private server that
runs our application and responds to web requests.

Heroku provides us with one free 1X dyno per month. This is useful for
testing and development.

ghost.org
https://github.com/tryghost/Ghost

Chapter 1

25

What's a worker?
Heroku has an additional class of servers known as workers. These are identical to dynos,
with the exception that they do not serve web requests.

Process sizes
Both dynos and workers are available in three different sizes: 1X, 2X, and PX. The default size
is 1X; this is a small virtual server with 512 MB of RAM. These are large enough to run most
web applications. However, if we find that our application is constrained by the limited memory
or CPU size, we can scale up our dynos up to 2X, which provides 1024 MB of RAM and twice
as much computing power.

If our application has only a single 1X dyno running, it will shut down
after an hour of inactivity. To avoid this, we need to have at least two
dynos running or use a single 2X dyno.

The largest process size is the PX or performance dyno. These are dedicated virtual servers
that do not share resources with any other Heroku customers. They have 6 GB of RAM and
40 times the compute resources of the standard 1X-sized dyno. Performance dynos should
only be considered for applications that have high memory and CPU requirements.

Heads up! Performance dynos are expensive, so don't
accidently leave one running.

How to do it...
We'll use the Heroku CLI for this recipe. Let's open up a terminal and navigate to a directory
with one of our existing Heroku applications and perform the following steps:

1.	 To view our currently running processes, we can use the ps command. It will show
the type, the size, and exactly what's running:
$ heroku ps

=== web (1X): `bundle exec unicorn -p $PORT -c ./config/unicorn.
rb`

web.1: up 2014/03/15 19:41:27 (~ 8s ago)

2.	 We currently have only one dyno running for this application. Let's scale it up to two;
this will effectively double our application's capacity. Scaling processes are done with
the ps:scale command:
$ heroku ps:scale web=2

Scaling dynos... done, now running web at 2:1X.

Getting Started with Heroku

26

3.	 The scale command is very flexible. If we want, we can scale both dynos and
workers at the same time:
$ heroku ps:scale web=2 worker=1

Scaling dynos... done, now running worker at 1:1X, web at 2:1X.

We can run these commands on any of our applications by including
--app app_name at the end of the command.

4.	 We can change the size of our dynos using ps:resize. Let's scale up our web
dynos to 2X:
$ heroku ps:resize web=2x

Resizing and restarting the specified dynos... done

web dynos now 2X ($0.10/dyno-hour)

5.	 We can also scale and change the size in the same command. Let's dial our dynos
back down to one and adjust the size to 1X:
$ heroku ps:scale web=1:1x

Scaling dynos... done, now running web at 1:1X.

The name of the process we are scaling depends on what is in our
application's Procfile. In these examples, our processes are named web
and worker. Web processes are the only ones that Heroku will send web
traffic to. We can name our other processes anything we like.

6.	 To finish up, we can scale our workers back down to zero:
$ heroku ps:scale worker=0

Scaling dynos... done, now running worker at 0:1X.

How it works…
Now that we have learned how to scale our applications, let's go a little more in depth to learn
about the different types of Heroku dynos.

Chapter 1

27

Dynos
A dyno is simply a web server. When we create our application's Procfile, the web process that
we define is what runs on our dynos. When a user visits our web application, their requests
get sent to our dynos via Heroku's routing layer. The routing layer acts like a load balancer. It
distributes our users' requests and monitors the health of our dynos. To handle more users,
we can scale out our application by increasing the number of running dynos. This allows us to
serve requests from more concurrent users. If we are currently running one dyno and adding
another, we have theoretically doubled the amount of web requests that our application
can respond do.

Workers
In our Procfile, any process other than web will run on a worker. Workers are used to
process background tasks such as sending out e-mails or generating PDFs. Any task that
a user should not have to wait for is a good candidate that will run on a worker. For a Rails
application, any background job (such as Resque or Sidekiq) will need to be run on a worker
dyno. Workers can be scaled in exactly the same way as dynos. If our application has a large
backlog of tasks that need to be completed, we can add additional workers to increase the
number of tasks we can complete simultaneously.

One-time dynos
When we use heroku run to execute a command on our application, Heroku spins up a
new dyno specifically to run the command. It's called a one-time dyno. Once the command
is complete, it will shut itself down.

See also
ff To learn more about scaling, take a look at Chapter 6, Load Testing a

Heroku Application

www.allitebooks.com

http://www.allitebooks.org

2
Managing Heroku from

the Command Line

In this chapter, we will cover:

ff Viewing application logs

ff Searching logs

ff Installing add-ons

ff Managing environment variables

ff Enabling the maintenance page

ff Managing releases and rolling back

ff Running one-off tasks and dynos

ff Managing SSH keys

ff Sharing and collaboration

ff Monitoring load average and memory usage

Introduction
Heroku was built to be managed from its command-line interface. The better we learn it, the
faster and more effective we will be in administering our application. The goal of this chapter
is to get comfortable with using the CLI. We'll see that each Heroku command follows a
common pattern. Once we learn a few of these commands, the rest will be relatively simple
to master.

Managing Heroku from the Command Line

30

In this chapter, we won't cover every command available in the CLI, but we will focus on the ones
that we'll be using the most. As we learn each command, we will also learn a little more about
what is happening behind the scenes so that we get a better understanding of how Heroku
works. The more we understand, the more we'll be able to take advantage of the platform.

Before we start, let's note that if we ever need to get a list of the available commands, we can
run the following command:

$ heroku help

We can also quickly display the documentation for a single command:

$ heroku help command_name

Viewing application logs
Logging gets a little more complex for any application that is running multiple servers and
several different types of processes. Having visibility into everything that is happening within
our application is critical to maintaining it. Heroku handles this by combining and sending all
of our logs to one place, the Logplex.

The Logplex provides us with a single location to view a stream of our logs across our entire
application. In this recipe, we'll learn how to view logs via the CLI. We'll learn how to quickly
get visibility into what's happening within our application.

We'll learn more about the Logplex and how to set up log storage in
Chapter 5, Error Monitoring and Logging Tools.

How to do it…
To start, let's open up a terminal, navigate to an existing Heroku application, and perform the
following steps:

1.	 First, to view our applications logs, we can use the logs command:
$ heroku logs

2014-03-31T23:35:51.195150+00:00 app[web.1]: Rendered pages/
about.html.slim within layouts/application (25.0ms)

2014-03-31T23:35:51.215591+00:00 app[web.1]: Rendered layouts/_
navigation_links.html.erb (2.6ms)

2014-03-31T23:35:51.230010+00:00 app[web.1]: Rendered layouts/_
messages.html.slim (13.0ms)

Chapter 2

31

2014-03-31T23:35:51.215967+00:00 app[web.1]: Rendered layouts/_
navigation.html.slim (10.3ms)

2014-03-31T23:35:51.231104+00:00 app[web.1]: Completed 200 OK in
109ms (Views: 65.4ms | ActiveRecord: 0.0ms)

2014-03-31T23:35:51.242960+00:00 heroku[router]: at=info
method=GET path=

Heroku logs anything that our application sends to STDOUT or
STDERR. If we're not seeing logs, it's very likely our application is
not configured correctly.

2.	 We can also watch our logs in real time. This is known as tailing:
$ heroku logs --tail

Instead of --tail, we can also use -t.

We'll need to press Ctrl + C to end the command and stop tailing the logs.

3.	 If we want to see the 100 most recent lines, we can use -n:
$ heroku logs -n 100

The Logplex stores a maximum of 1500 lines. To view more
lines, we'll have to set up a log storage. We'll learn how to
do this in Chapter 5, Error Monitoring and Logging Tools.

4.	 We can filter the logs to only show a specific process type. Here, we will only see logs
from our web dynos:
$ heroku logs -p web

5.	 If we want, we can be as granular as showing the logs from an individual dyno.
This will show only the logs from the second web dyno:
$ heroku logs -p web.2

6.	 We can use this for any process type; we can try it for our workers if we'd like:
$ heroku logs -p worker

7.	 The Logplex contains more than just logs from our application. We can also view logs
generated by Heroku or the API. Let's try changing the source to Heroku to only see
the logs generated by Heroku. This will only show us logs related to the router and
resource usage:
$ heroku logs --source heroku

Managing Heroku from the Command Line

32

8.	 To view logs for only our application, we can set the source to app:
$ heroku logs --source app

9.	 We can also view logs from the API. These logs will show any administrative actions
we've taken, such as scaling dynos or changing configuration variables. This can be
useful when multiple developers are working on an application:
$ heroku logs --source api

10.	 We can even combine the different flags. Let's try tailing the logs for only our
web dynos:
$ heroku logs -p web --tail

11.	 That's it! Remember that if we ever need more information on how to view logs via
the CLI, we can always use the help command:
$ heroku help logs

How it works
Under the covers, the Heroku CLI simply passes our request to Heroku's API and then uses
Ruby to parse and display our logs. If you're interested in exactly how it works, the code is
open source on GitHub at https://github.com/heroku/heroku/blob/master/lib/
heroku/command/logs.rb.

Viewing logs via the CLI is most useful in situations where we need to see exactly what
our application is doing right now. We'll find that we use it a lot around deploys and when
debugging issues. Since the Logplex has a limit of 1500 lines, it's not meant to view any
historical data. For this, we'll need to set up log drains and enable a logging add-on.
We'll be learning how to do this in Chapter 5, Error Monitoring and Logging Tools.

See also
ff To learn how to keep and search historical logs, take a look at Chapter 5, Error

Monitoring and Logging Tools

Searching logs
Heroku does not have the built-in capability to search our logs from the command line. We can
get around this limitation easily by making use of some other command-line tools.

In this recipe, we will learn how to combine Heroku's logs with Grep, a command-line tool to
search text. This will allow us to search our recent logs for keywords, helping us track down
errors more quickly.

https://github.com/heroku/heroku/blob/master/lib/heroku/command/logs.rb
https://github.com/heroku/heroku/blob/master/lib/heroku/command/logs.rb

Chapter 2

33

Getting ready
For this recipe, we'll need to have Grep installed. For OS X and Linux machines, it should
already be installed. We can install Grep using the following steps:

1.	 To check if we have Grep installed, let's open up a terminal and type the following:
$ grep

usage: grep [-abcDEFGHhIiJLlmnOoPqRSsUVvwxZ] [-A num] [-B num]
[-C[num]]

 [-e pattern] [-f file] [--binary-files=value]
[--color=when]

 [--context[=num]] [--directories=action] [--label]
[--line-buffered]

 [--null] [pattern] [file ...]

2.	 If we do not see usage instructions, we can visit http://www.gnu.org/
software/grep/ for the download and installation instructions.

How to do it…
Let's start searching our logs by opening a terminal and navigating to one of our Heroku
applications using the following steps:

1.	 To search for a keyword in our logs, we need to pipe our logs into Grep. This simply
means that we will be passing our logs into Grep and having Grep search them for us.
Let's try this now. The following command will search the output of heroku logs for
the word error:
$ heroku logs | grep error

2.	 Sometimes, we might want to search for a longer string that includes special
characters. We can do this by surrounding it with quotes:
$ heroku logs | grep "path=/pages/about host"

3.	 It can be useful to also see the lines surrounding the line that matched our search.
We can do this as well. The next command will show us the line that contains an error
as well as the three lines above and below it:
$ heroku logs | grep error -C 3

4.	 We can even search with regular expressions. The next command will show us every
line that matches a number that ends with MB. So, for example, lines with 100 MB,
25 MB, or 3 MB will all appear:
$ heroku logs | grep '\d*MB'

http://www.gnu.org/software/grep/
http://www.gnu.org/software/grep/

Managing Heroku from the Command Line

34

To learn more about regular expressions, visit http://regex.
learncodethehardway.org/.

How it works…
Like most Unix-based tools, Grep was built to accomplish a single task and to do it well.
Global regular expression print (Grep) is built to search a set of files for a pattern and then
print all of the matches.

Grep can also search anything it receives through standard input; this is exactly how we used
it in this recipe. By piping the output of our Heroku logs into Grep, we are passing our logs to
Grep as standard input.

See also
ff To learn more about Grep, visit http://www.tutorialspoint.com/unix_

commands/grep.htm

Installing add-ons
Our application needs some additional functionality provided by an outside service. What
should we do? In the past, this would have involved creating accounts, managing credentials,
and maybe even bringing up servers and installing software. This whole process has been
simplified by the Heroku add-on marketplace.

For any additional functionality that our application needs, our first stop should always be
Heroku add-ons. Heroku has made attaching additional resources to our application a plug-
and-play process. If we need an additional database, caching, or error logging, they can be set
up with a single command.

In this recipe, we will learn the ins and outs of using the Heroku CLI to install and manage our
application's add-ons.

How to do it...
To begin, let's open a terminal and navigate to one of our Heroku applications using the
following steps:

1.	 Let's start by taking a look at all of the available Heroku add-ons. We can do this with
the addons:list command:
$ heroku addons:list

http://regex.learncodethehardway.org/
http://regex.learncodethehardway.org/
http://www.tutorialspoint.com/unix_commands/grep.htm
http://www.tutorialspoint.com/unix_commands/grep.htm

Chapter 2

35

There are so many add-ons that viewing them through the CLI is pretty difficult.
For easier navigation and search, we should take a look at https://addons.
heroku.com/.

2.	 If we want to see the currently installed add-ons for our application, we can simply
type the following:
$ heroku addons

 === load-tester-rails Configured Add-ons

 heroku-postgresql:dev HEROKU_POSTGRESQL_MAROON

 heroku-postgresql:hobby-dev HEROKU_POSTGRESQL_ONYX

 librato:development

 newrelic:stark

Remember that for any command, we can always add --app
app_name to specify the application.

3.	 Alternatively, our application's add-ons are also listed through the Heroku Dashboard
available at https://dashboard.heroku.com.

4.	 The installation of a new add-on is done with addons:add. Here, we are going to
install the error logging service, Rollbar:
$ heroku addons:add rollbar

 heroku addons:add rollbar

 Adding rollbar on load-tester-rails... done, v22 (free)

 Use `heroku addons:docs rollbar` to view documentation.

https://addons.heroku.com/
https://addons.heroku.com/
https://dashboard.heroku.com

Managing Heroku from the Command Line

36

5.	 We can quickly open up the documentation for an add-on with addons:docs:
$ heroku addons:docs rollbar

6.	 Removing an add-on is just as simple. We'll need to type our application name to
confirm. For this example, our application is called load-tester-rails:
$ heroku addons:remove rollbar

 ! WARNING: Destructive Action

 ! This command will affect the app: load-tester-rails

 ! To proceed, type "load-tester-rails" or re-run this command
with --confirm load-tester-rails

> load-tester-rails

Removing rollbar on load-tester-rails... done, v23 (free)

7.	 Each add-on comes with different tiers of service. Let's try upgrading our rollbar
add-on to the starter tier:
$ heroku addons:upgrade rollbar:starter

Upgrading to rollbar:starter on load-tester-rails... done, v26
($12/mo)

Plan changed to starter

Use `heroku addons:docs rollbar` to view documentation.

8.	 Now, if we want, we can downgrade back to its original level with
addons:downgrade:
$ heroku addons:downgrade rollbar

Downgrading to rollbar on load-tester-rails... done, v27 (free)

Plan changed to free

Use `heroku addons:docs rollbar` to view documentation.

9.	 If we ever forget any of the commands, we can always use help to quickly see
the documentation:
$ heroku help addons

Some add-ons might charge you money. Before continuing, let's
double check that we only have the correct ones enabled, using the $
heroku addons command.

Chapter 2

37

How it works…
Heroku has created a standardized process for all add-on providers to follow. This ensures a
consistent experience when provisioning any add-ons for our application.

It starts when we request the creation of an add-on. Heroku sends an HTTP request to the
provider, asking them to provision an instance of their service. The provider must then
respond to Heroku with the connection details for their service in the form of environment
variables. For example, if we were to provision Redis To Go, we will get back our connection
details in a REDISTOGO_URL variable:

REDISTOGO_URL: redis://user:pass@server.redistogo.com:9652

Heroku adds these variables to our application and restarts it. On restart, the variables are
available for our application, and we can connect to the service using them. The specifics
on how to connect using the variables will be in the add-ons documentation. Installation will
depend on the specific language or framework we're using.

See also
ff For details on creating our own add-ons, the process is well documented on Heroku's

website at https://addons.heroku.com/provider

ff Check out Kensa, the CLI to create Heroku add-ons, at https://github.com/
heroku/kensa

Managing environment variables
Our applications will often need access to various credentials in the form of API tokens,
usernames, and passwords for integrations with third-party services. We can store this
information in our Git repository, but then, anyone with access to our code will also have a
copy of our production credentials. We should instead use environment variables to store any
configuration information for our application. Configuration information should be separate
from our application's code and instead be tied to the specific deployment of the application.

Changing our application to use environment variables is simple. Let's look at an example
in Ruby; let's assume that we currently have secret_api_token defined in our
application's code:

secret_api_token = '123abc'

We can remove the token and replace it with an environment variable:

secret_api_token = ENV['SECRET_TOKEN']

www.allitebooks.com

https://addons.heroku.com/provider
https://github.com/heroku/kensa
https://github.com/heroku/kensa
http://www.allitebooks.org

Managing Heroku from the Command Line

38

In addition to protecting our credentials, using environment variables makes our application
more configurable. We'll be able to quickly make configuration changes without having to
change code and redeploy.

The terms "configuration variable" and "environment variable" are
interchangeable. Heroku usually uses "configuration" due to how
tightly the variables are coupled with the state of the application.

How to do it...
Heroku makes it easy to set our application's environment variables through the config
command. Let's launch a terminal and navigate to an existing Heroku project to try it out,
using the following steps:

1.	 We can use the config command to see a list of all our existing
environment variables:
$ heroku config

2.	 To view only the value of a specific variable, we can use get:
$ heroku config:get DATABASE_URL

3.	 To set a new variable, we can use set:
$ heroku config:set VAR_NAME=var_value

Setting config vars and restarting load-tester-rails... done, v28

VAR_NAME: var_value

4.	 Each time we set a config variable, Heroku will restart our application. We can set
multiple values at once to avoid multiple restarts:
$ heroku config:set SECRET=value SECRET2=value

Setting config vars and restarting load-tester-rails... done, v29

SECRET: value

SECRET2: value

5.	 To delete a variable, we use unset:
$ heroku config:unset SECRET

Unsetting SECRET and restarting load-tester-rails... done, v30

6.	 If we want, we can delete multiple variables with a single command:
$ heroku config:unset VAR_NAME SECRET2

Unsetting VAR_NAME and restarting load-tester-rails... done, v31

Unsetting SECRET2 and restarting load-tester-rails... done, v32

Chapter 2

39

Heroku tracks each configuration change as a release. This makes it
easy for us to roll back changes if we make a mistake.

How it works…
Environment variables are used on Unix-based operating systems to manage and share
configuration information between applications. As they are so common, changing our
application to use them does not lock us into deploying only to Heroku.

Heroku stores all of our configuration variables in one central location. Each change to these
variables is tracked, and we can view the history by looking through our past releases. When
Heroku spins up a new dyno, part of the process is taking all of our configuration settings
and setting them as environment variables on the dyno. This is why whenever we make a
configuration change, Heroku restarts our dynos.

As configuration variables are such a key part of our
Heroku application, any change to them will also be
included in our Heroku logs.

See also
ff Read about the Twelve-Factor app's rule on configuration at http://12factor.

net/config

Enabling the maintenance page
Occasionally, we will need to make changes to our application that requires downtime. The
proper way to do this is to put up a maintenance page that displays a friendly message and
respond to all the incoming HTTP requests with a 503 Service Unavailable status.

Doing this will keep our users informed and also avoid any negative SEO effects. Search
engines understand that when they receive a 503 response, they should come back later to
recrawl the site. If we didn't use a maintenance page and our application returned a 404 or
500 error instead, it's possible that a search engine crawler might remove the page from
their index.

http://12factor.net/config
http://12factor.net/config

Managing Heroku from the Command Line

40

How to do it...
Let's open up a terminal and navigate to one of our Heroku projects to begin with, using the
following steps:

1.	 We can view if our application's maintenance page is currently enabled with the
maintenance command:
$ heroku maintenance

 off

2.	 Let's try turning it on. This will stop traffic from being routed to our dynos and show
the maintenance page as follows:
$ heroku maintenance:on

Enabling maintenance mode for load-tester-rails... done

3.	 Now, if we visit our application, we'll see the default Heroku maintenance page:

4.	 To disable the maintenance page and resume sending users to our application,
we can use the maintenance:off command:
$ heroku maintenance:off

Disabling maintenance mode for load-tester-rails... done

See also
ff To learn how to customize the maintenance page, take a look at Chapter 4,

Production-ready with Heroku

Chapter 2

41

Managing releases and rolling back
What do we do if disaster strikes and our newly released code breaks our application?
Luckily for us, Heroku keeps a copy of every deploy and configuration change to our
application. This enables us to roll back to a previous version while we work to correct the
errors in our latest release.

Heads up! Rolling back only affects application code and
configuration variables. Add-ons and our database will not be
affected by a rollback.

In this recipe, we will learn how to manage our releases and roll back code from the CLI.

How to do it...
In this recipe, we'll view and manage our releases from the Heroku CLI, using the releases
command. Let's open up a terminal now and navigate to one of our Heroku projects by
performing the following steps:

1.	 Heroku tracks every deploy and configuration change as a release. We can
view all of our releases from both the CLI and the web dashboard with the
releases command:
$ heroku releases

=== load-tester-rails Releases

v33 Add WEB_CON config vars coutermarsh.mike@gmail.com
2014/03/30 11:18:49 (~ 5h ago)

v32 Remove SEC config vars coutermarsh.mike@gmail.com
2014/03/29 19:38:06 (~ 21h ago)

v31 Remove VAR config vars coutermarsh.mike@gmail.com
2014/03/29 19:38:05 (~ 21h ago)

v30 Remove config vars coutermarsh.mike@gmail.com
2014/03/29 19:27:05 (~ 21h ago)

v29 Deploy 9218c1c vars coutermarsh.mike@gmail.com 2014/03/29
19:24:29 (~ 21h ago)

Managing Heroku from the Command Line

42

2.	 Alternatively, we can view our releases through the Heroku dashboard. Visit
https://dashboard.heroku.com, select one of our applications, and click
on Activity:

3.	 We can view detailed information about each release using the info command. This
shows us everything about the change and state of the application during
this release:
$ heroku releases:info v33

=== Release v33

Addons: librato:development

 newrelic:stark

 rollbar:free

 sendgrid:starter

By: coutermarsh.mike@gmail.com

Change: Add WEB_CONCURRENCY config vars

When: 2014/03/30 11:18:49 (~ 6h ago)

=== v33 Config Vars

WEB_CONCURRENCY: 3

https://dashboard.heroku.com

Chapter 2

43

4.	 We can revert to the previous version of our application with the rollback
command:
$ heroku rollback

Rolling back load-tester-rails... done, v32

 ! Warning: rollback affects code and config vars; it doesn't
add or remove addons. To undo, run: heroku rollback v33

Rolling back creates a new version of our application in the
release history.

5.	 We can also specify a specific version to roll back to:
$ heroku rollback v30

Rolling back load-tester-rails... done, v30

The version we roll back to does not have to be an older version.
Although it sounds contradictory, we can also roll back to newer
versions of our application.

How it works…
Behind the scenes, each Heroku release is tied to a specific slug and set of configuration
variables. As Heroku keeps a copy of each slug that we deploy, we're able to quickly roll
back to previous versions of our code without having to rebuild our application.

For each deploy release created, it will include a reference to the git SHA that was pushed
to master. The git SHA is a reference to the last commit made to our repository before it was
deployed. This is useful if we want to know exactly what code was pushed out in that release.

On our local machine, we can run the $ git checkout git-sha-
here command to view our application's code in the exact state it was
when deployed.

Running one-off tasks and dynos
In more traditional hosting environments, developers will often log in to servers to perform
basic administrative tasks or debug an issue. With Heroku, we can do this by launching one-
off dynos. These are dynos that contain our application code but do not serve web requests.

Managing Heroku from the Command Line

44

For a Ruby on Rails application, one-off dynos are often used to run
database migrations or launch a Rails console.

How to do it...
In this recipe, we will learn how to execute commands on our Heroku applications with the
heroku run command. Let's launch a terminal now to get started with the following steps:

1.	 To have Heroku start a one-off dyno and execute any single command, we will use
heroku run. Here, we can try it out by running a simple command to print some
text to the screen:
$ heroku run echo "hello heroku"

 Running `echo "hello heroku"` attached to terminal... up,
run.7702

 "hello heroku"

One-off dynos are automatically shut down after the
command has finished running.

2.	 We can see that Heroku is running this command on a dyno with our application's
code. Let's run ls to see a listing of the files on the dyno. They should look familiar:
$ heroku run ls

 Running `ls` attached to terminal... up, run.5518

 app bin config config.ru db Gemfile Gemfile.lock lib log
Procfile public Rakefile README README.md tmp

3.	 If we want to run multiple commands, we can start up a bash session. Type exit to
close the session:
$ heroku run bash

Running `bash` attached to terminal... up, run.2331

~ $ ls

app bin config config.ru db Gemfile Gemfile.lock	 lib
log Procfile public Rakefile README README.md tmp

~ $ echo "hello"

hello

~ $ exit

exit

Chapter 2

45

4.	 We can run tasks in the background using the detached mode. The output of the
command goes to our logs rather than the screen:
$ heroku run:detached echo "hello heroku"

Running `echo hello heroku` detached... up, run.4534

Use `heroku logs -p run.4534` to view the output.

5.	 If we need more power, we can adjust the size of the one-off dynos. This command
will launch a bash session in a 2X dyno:
$ heroku run --size=2X bash

6.	 If we are running one-off dynos in the detached mode, we can view their status and
stop them in the same way we would stop any other dyno:
$ heroku ps

=== run: one-off processes

run.5927 (1X): starting 2014/03/29 16:18:59 (~ 6s ago)

$ heroku ps:stop run.5927

How it works…
When we issue the heroku run command, Heroku spins up a new dyno with our latest slug
and runs the command. Heroku does not start our application; the only command that runs is
the command that we explicitly pass to it.

One-off dynos act a little differently than standard dynos. If we create one dyno in the
detached mode, it will run until we stop it manually, or it will shut down automatically
after 24 hours. It will not restart like a normal dyno will.

If we run bash from a one-off dyno, it will run until we close the connection or we reach an
hour of inactivity.

Managing SSH keys
Heroku manages access to our application's Git repository with SSH keys. When we first set up
the Heroku Toolbelt, we had to upload either a new or existing public key to Heroku's servers.
This key allows us to access our Heroku Git repositories without entering our password
each time.

If we ever want to deploy our Heroku applications from another computer, we'll either need
to have the same key on that computer or provide Heroku with an additional one. It's easy
enough to do this via the CLI, which we'll learn in this recipe.

Managing Heroku from the Command Line

46

How to do it…
To get started, let's fire up a terminal. We'll be using the keys command in this recipe by
performing the following steps:

1.	 First, let's view all of the existing keys in our Heroku account:
$ heroku keys

=== coutermarsh.mike@gmail.com Keys

ssh-rsa AAAAB3NzaC...46hEzt1Q== coutermarsh.mike@gmail.com

ssh-rsa AAAAB3NzaC...6EU7Qr3S/v coutermarsh.mike@gmail.com

ssh-rsa AAAAB3NzaC...bqCJkM4w== coutermarsh.mike@gmail.com

2.	 To remove an existing key, we can use keys:remove. To the command, we need to
pass a string that matches one of the keys:
$ heroku keys:remove "7Qr3S/v coutermarsh.mike@gmail.com"

Removing 7Qr3S/v coutermarsh.mike@gmail.com SSH key... done

3.	 To add our current user's public key, we can use keys:add. This will look on our
machine for a public key (~/.ssh/id_rsa.pub) and upload it:
$ heroku keys:add

Found existing public key: /Users/mike/.ssh/id_rsa.pub

Uploading SSH public key /Users/mike/.ssh/id_rsa.pub… done

To create a new SSH key, we can run $ ssh-
keygen -t rsa.

4.	 If we'd like, we can also specify where the key is located if it is not in the default
/.ssh/ directory:
$ heroku keys:add /path/to/key.pub

How it works…
SSH keys are the standard method for password-less authentication. There are two parts to
each SSH key. There is a private key, which stays on our machine and should never be shared,
and there is a public key, which we can freely upload and share.

Each key has its purpose. The public key is used to encrypt messages. The private key is used
to decrypt messages.

Chapter 2

47

When we try to connect to our Git repositories, Heroku's server uses our public key to create
an encrypted message that can only be decrypted by our private key. The server then sends
the message to our machine; our machine's SSH client decrypts it and sends the response
to the server. Sending the correct response successfully authenticates us.

SSH keys are not used for authentication to the Heroku CLI. The CLI uses
an authentication token that is stored in our ~/.netrc file.

Sharing and collaboration
We can invite collaborators through both the web dashboard and the CLI. In this recipe,
we'll learn how to quickly invite collaborators through the CLI.

How to do it…
To start, let's open a terminal and navigate to the Heroku application that we would like
to share, using the following steps:

1.	 To see the current users who have access to our application, we can use the
sharing command:
$ heroku sharing

=== load-tester-rails Access List

coutermarsh.mike@gmail.com owner

mike@form26.com collaborator

2.	 To invite a collaborator, we can use sharing:add:
$ heroku sharing:add coutermarshmike@gmail.com

Adding coutermarshmike@gmail.com to load-tester-rails as
collaborator... done

Heroku will send an e-mail to the user we're inviting, even if
they do not already have a Heroku account.

3.	 If we'd like to revoke access to our application, we can do so with sharing:remove:
$ heroku sharing:remove coutermarshmike@gmail.com

Removing coutermarshmike@gmail.com from load-tester-rails
collaborators... done

www.allitebooks.com

http://www.allitebooks.org

Managing Heroku from the Command Line

48

How it works…
When we add another collaborator to our Heroku application, they are granted the same
abilities as us, except that they cannot manage paid add-ons or delete the application.
Otherwise, they have full control to administrate the application. If they have an existing
Heroku account, their SSH key will be immediately added to the application's Git repository.

See also
ff Interested in using multiple Heroku accounts on a single machine? Take a look at the

Heroku-accounts plugin at https://github.com/ddollar/heroku-accounts.

Monitoring load average and memory usage
We can monitor the resource usage of our dynos from the command line using the log-
runtime-metrics plugin. This will give us visibility into the CPU and memory usage of
our dynos. With this data, we'll be able to determine if our dynos are correctly sized, detect
problems earlier, and determine whether we need to scale our application.

How to do it…
Let's open up a terminal; we'll be completing this recipe with the CLI by performing the
following steps:

1.	 First, we'll need to install the log-runtime-metrics plugin via the CLI. We can do
this easily through heroku labs:
$ heroku labs:enable log-runtime-metrics

2.	 Now that the runtime metrics plugin is installed, we'll need to restart our dynos for it
to take effect:
$ heroku restart

3.	 Now that the plugin is installed and running, our dynos' resource usage will be printed
to our logs. Let's view them now:
$ heroku logs

heroku[web.1]: source=web.1 dyno=heroku.21 sample#load_avg_1m=0.00
sample#load_avg_5m=0.00

heroku[web.1]: source=web.1 dyno=heroku.21 sample#memory_
total=105.28MB sample#memory_rss=105.28MB sample#memory_
cache=0.00MB sample#memory_swap=0.00MB sample#memory_
pgpgin=31927pages sample#memory_pgpgout=4975pages

https://github.com/ddollar/heroku-accounts

Chapter 2

49

4.	 From the logs, we can see that for this application, our load average is 0, and this
dyno is using a total of 105 MB of RAM.

How it works…
Now that we have some insight into how our dynos are using resources, we need to learn how
to interpret these numbers. Understanding the utilization of our dynos will be key for us if we
ever need to diagnose a performance-related issue.

In our logs, we will now see load_avg_1m and load_avg_5m. This is our dynos' load
average over a 1-minute and 5-minute period. The timeframes are helpful in determining
whether we're experiencing a brief spike in activity or it is more sustained. Load average is the
amount of total computational work that the CPU has to complete. The 1X and 2X dynos have
access to four virtual cores. A load average of four means that the dynos' CPU is fully utilized.
Any value above four is a warning sign that the dyno might be overloaded, and response times
could begin to suffer. Web applications are typically not CPU-intensive applications, so seeing
low load averages for web dynos should be expected. If we start seeing high load averages, we
should consider either adding more dynos or using larger dynos to handle the load.

Our memory usage is also shown in the logs. The key value that we want to keep track of is
memory_rrs, which is the total amount of RAM being utilized by our application. It's best to
keep this value no higher than 50 to 70 percent of the total RAM available on the dyno. For
a 1X dyno with 512 MB of memory, this would mean keeping our memory usage no greater
than 250 to 350 MB. This allows our application room to grow under load and helps us avoid
any memory swapping. Seeing values above 70 percent is an indication that we need to either
adjust our application's memory usage or scale up.

Memory swap occurs when our dyno runs out of RAM. To compensate, our dyno will begin
using its hard drive to store data that will normally be stored in RAM. For any web application,
any swap should be considered evil. This value should always be zero. If our dyno starts
swapping, we can expect that it will significantly slow down our application's response times.
Seeing any swap is an immediate indication that we must either reduce our application's
memory consumption or start scaling.

See also
ff Load average and memory usage are particularly useful when performing application

load tests. Take a look at Chapter 6, Load Testing a Heroku Application to learn more.

3
Setting Up a Staging

Environment

In this chapter, we will cover:

ff Duplicating an existing application

ff Managing git remotes

ff Password protection for a Rails app

ff Deploying with Heroku labs—Pipeline

ff Deploying from tags

ff Continuous integration and deployment with Travis CI

Introduction
Before releasing our latest code into the world, it's critical to have a staging environment that
mimics our production application. This allows us to deploy code and catch issues internally
before our users are affected. We want this staging environment to be exactly the same or
very close to what is in production. Problems that come up with our application at this stage
are often related to incorrect configuration or issues with Heroku itself. If our production and
staging environments are the same in configuration, any issue that would occur in production
will also be seen in staging. In this chapter, we will cover everything we need to know to set up
a staging environment for our application.

Setting Up a Staging Environment

52

Duplicating an existing application
We can make an exact copy of our current application using the heroku fork command. This
copies our application code, add-ons, databases, and configuration variables over to another
application. If all of our application's third-party services are Heroku add-ons, creating a fork
would cover everything we need to do to get another environment up and running quickly.

How to do it...
Let's get started by opening up a terminal and navigating to the Heroku application that we'd
like to fork. We'll create our forked application using the CLI by performing the following steps:

1.	 To fork the current directories' application, we will use the fork command along with
our new application's name:
$ heroku fork new-applications-name

Creating fork new-applications-name... done

Copying slug... done

Adding librato:development... done

Adding newrelic:stark... done

Adding rollbar:free... done

Adding sendgrid:starter... done

Adding heroku-postgresql:dev... done

Adding pgbackups:plus to load-tester-rails... done

Adding pgbackups:plus to staging-load-testing... done

Transferring database (this can take some time)... done

Adding heroku-postgresql:hobby-dev... done

Transferring database (this can take some time)... done

Copying config vars... done

Fork complete.

This process will copy over our existing database if we
have one. If our database has a lot of data, the process
can be lengthy.

2.	 We can also specify the name of the application we want to fork. This is useful if we're
not currently in the application's directory:
$ heroku fork –a original-application-name new-applications-name

Chapter 3

53

3.	 The final option available to us is forking into another Heroku region. If our
current application is in the US region, we can create a version in Europe
using the following command:
$ heroku fork new-applications-name—region eu

The region can be either us or eu. Note that they
are lowercase.

How it works...
Forking an application involves copying over the parent application's slug, add-ons,
configuration variables, and database.

Add-ons
Each add-on that was on the parent application will be recreated on the forked application
using the same plan. If our forked application doesn't necessarily need the same level of
add-ons as the parent, we must ensure that we downgrade them after forking to avoid any
unnecessary charges.

Config variables
Heroku copies over all of our existing configuration variables with the exception of
add-on-specific variables (such as our database credentials). If we use any third-party
services that are outside Heroku's add-ons, we'll need to adjust their configuration
settings manually.

Database
As long as we are using Heroku Postgres, a new database will be created during the fork
process. All of the data in our parent database will also be copied over. The amount of time
this takes will depend on the size of our database. If we are using a third-party database,
we'll have to do this manually on our own.

See also
ff To learn more about the Heroku fork, take a look at the documentation available

at https://devcenter.heroku.com/articles/fork-app

https://devcenter.heroku.com/articles/fork-app

Setting Up a Staging Environment

54

Managing git remotes
Once we have multiple environments on Heroku for our application, we will need to learn
how to push the same application code up to each different environment. This can be easily
accomplished by adding additional git remotes on our machine. A Git remote is the location
where Git pushes code to from our local machine. We can set up as many remotes as we like.
It's common to have remotes for production, staging, and origin (most likely, GitHub
or BitBucket).

When we push code to Heroku, the command typically looks like this:

$ git push heroku master

The name of the git remote that we're pushing to is heroku. We can change the name and
destination of our remotes to anything we want. By default, Heroku sets up a remote named
"heroku" for our application. In this recipe, you will learn how to add additional remotes so
that you can push the same code to multiple Heroku applications.

How to do it...
First, we'll want to see what our current git remotes are. So, let's open a terminal and navigate
to one of our Heroku projects by performing the following steps:

1.	 Let's look at our existing remotes by running the git remote command with the
-v flag. This gives us the verbose listing of our remotes, showing us exactly where
our code can be pushed:
$ git remote -v

heroku git@heroku.com:load-tester-rails.git (fetch)

heroku git@heroku.com:load-tester-rails.git (push)

origin
 https://github.com/mscoutermarsh/rails_load_test_heroku.git
(fetch)

origin
 https://github.com/mscoutermarsh/rails_load_test_heroku.git
(push)

Here, we can see that we currently have two remotes: heroku and origin. In this
case, origin is pointing to a repository on GitHub, and heroku is pointing to our
application running on Heroku.

Chapter 3

55

There is a listing for both fetch and push. In this example, they are
the same. Git gives us the flexibility to pull (fetch) code from a different
repository than the one we push it to. This is not something that we will be
using here, but it is good to be aware of it.

2.	 Next, let's set up another git remote for our staging application. This will allow us to
easily deploy our code to the staging application. Heroku makes this easy with the
git:remote command. Let's try it now:
$ heroku git:remote—app staging-load-testing—remote staging

Git remote staging added

3.	 If we take a look at our git remotes again, we will see our new staging remote:
$ git remote –v

heroku git@heroku.com:load-tester-rails.git (fetch)

heroku git@heroku.com:load-tester-rails.git (push)

origin
 https://github.com/mscoutermarsh/rails_load_test_heroku.git
(fetch)

origin
 https://github.com/mscoutermarsh/rails_load_test_heroku.git
(push)

staging git@heroku.com:staging-load-testing.git (fetch)

staging git@heroku.com:staging-load-testing.git (push)

4.	 We can now easily deploy code to our staging environment. We simply need to use
our new remote's name in the git push command:
$ git push staging master

To remove a remote, we can use $ git remote
remove name_of_remote.

How it works...
Being able to push to and pull from remotes is the core piece of Git that allows us to
collaborate with others by sharing our changes. Remote repositories are alternate versions
of our repository hosted somewhere on the Internet. We are probably most used to seeing
remotes hosted on services such as GitHub or BitBucket.

Setting Up a Staging Environment

56

Password protection for a Rails app
Once we deploy our staging application and it's accessible on the Internet, we'll want to
restrict access to it. This will protect us from any users accidently coming across it or search
engines crawling and indexing it.

In this recipe, we will learn how to add basic HTTP authentication to a Rails application.

Getting ready
For this recipe, we'll need an existing Rails application to modify. If we don't have one, we can
use the application that we set up in Chapter 1, Getting Started with Heroku.

How to do it…
Every Rails application has a configuration file specific to each environment that it runs in.
Each of these config files can be found in the config/environments folder. Let's perform
the following steps:

1.	 To start, we'll want to create a new environment file for staging. Let's do this now by
creating a staging.rb file in the config/environments folder.

2.	 In this file, we'll add the following code:
Based on production defaults
require Rails.root.join('config/environments/production')
ApplicationNameHere::Application.configure do
config.middleware.use '::Rack::Auth::Basic' do |user, password|
[user, password] == ['staging', ENV['STAGING_PASS']]
 end
end

Replace ApplicationNameHere in line 3 with your
application's name.

3.	 That's it for code changes. Let's commit our new staging configuration to Git and push
it up to Heroku:
$ git add .

$ git commit -m 'Setting up staging environment file'

$ git push staging master

Chapter 3

57

4.	 Our authentication method retrieves our staging password from an environment
variable. Let's set this now for our staging application:
$ heroku config:set STAGING_PASS=top_secret RAILS_ENV=staging—app
staging-application-name

5.	 For Rails to know that we want to use the staging configuration, we have to set our
RAILS_ENV variable to staging. We can do this with a configuration variable as well:
$ heroku config:set RAILS_ENV=staging—app staging-application-name

6.	 We're now ready to test out our new password protection. Let's launch our app and
take a look at it:
$ heroku open

The following screenshot appears when the preceding command is run:

How it works…
In this recipe, we used the Rack middleware to add basic HTTP authentication to our Rails
application. Rack is a lightweight piece of software that handles the sending and receiving of
web requests. It sits directly between our web server and the Rails framework, facilitating the
messages between Rails and whichever web server we are using. Rack has add-ons known as
middleware. It's easiest to think of middleware as a filter placed inside Rack. All web requests
pass through the middleware on both their way in and out of our application. In this recipe,
we used the Rack::Auth::Basic middleware to secure our staging environment. It checks
each request and verifies that the user has provided the correct credentials before it allows
the request through.

www.allitebooks.com

http://www.allitebooks.org

Setting Up a Staging Environment

58

Basic authentication works with all browsers. After logging in once, our
browser will store the credentials and continue to send them with each
request to the application.

See also
ff The source code for Rack::Auth::Basic is available on GitHub at https://

github.com/rack/rack/blob/master/lib/rack/auth/basic.rb

Deploying with Heroku labs – Pipeline
Each time we deploy our code to Heroku, a new slug is created; this slug contains all of our
application code and assets. Using Heroku's Pipeline, we can promote this slug to another
environment without having to go through the slug-compilation process again. This ensures
that the slug that we tested and verified in our staging environment is identical to what we
push to our production environment. With the Pipeline, we can compare the commits between
our applications so that we know exactly what changes we are deploying. It's amazingly useful;
here, we will learn how to set it up and use it.

How to do it…
To get started, let's open up a terminal and navigate to our Heroku project by performing the
following steps:

1.	 First, we need to install the Heroku Pipeline CLI plugin:
$ heroku plugins:install git@github.com:heroku/heroku-pipeline.git

Installing heroku-pipeline... done

Heroku Pipeline's GitHub repository at https://github.com/
heroku/heroku-pipeline is a great resource for more information.

2.	 Now that it's installed, we'll need to enable it for our Heroku application:
$ heroku labs:enable pipelines

Enabling pipelines for coutermarsh.mike@gmail.com... done

WARNING: This feature is experimental and may change or be removed
without notice.

For more information see: https://devcenter.heroku.com/articles/
using-pipelines-to-deploy-between-applications

https://github.com/rack/rack/blob/master/lib/rack/auth/basic.rb
https://github.com/rack/rack/blob/master/lib/rack/auth/basic.rb
https://github.com/heroku/heroku-pipeline
https://github.com/heroku/heroku-pipeline

Chapter 3

59

3.	 Let's check the status of our staging pipeline. To do this, we'll use the
pipeline command:
$ heroku pipeline—app staging-application-name

! Downstream app not specified. Use `heroku pipeline:add
DOWNSTREAM_APP` to add one.

4.	 Next, we need to tell Heroku which application is our downstream app. This is the
application that we want our slug to go to next. Let's set our staging application's
downstream to our production application:
$ heroku pipeline:add production-application-name—app staging-
application-name

Added downstream app: production-application-name

5.	 Let's run the pipeline command again, just to verify that it worked and everything
is set up correctly:
$ heroku pipeline—app staging-application-name

'Pipeline: staging-application-name ---> production-application-
name'

6.	 We can compare the code between our staging (upstream) and production
(downstream) applications. This will show each commit that is different between the
two environments. This is very useful to know exactly what we are about to deploy:
$ heroku pipeline:diff—app staging-application-name

Comparing staging-application-name to production-application-
name...done, staging-application-name ahead by 1 commit:

bf82537 2014-04-18 a test commit (Mike Coutermarsh)

7.	 Now that we've compared the commits between the two applications, let's try to
promote our staging slug to production:
$ heroku pipeline:promote—app staging-application-name

Promoting staging-application-name to production-application-
name.....done, v41

8.	 That's it! Our staging slug has been promoted and is now in production. We can verify
that this worked by checking the releases for our production application:

$ heroku releases—app production-application-name

=== production-application-name Releases

v41 Promote staging-application-name v15 bf82537 coutermarsh.
mike@gmail.com 2014/04/19 13:02:33 (~ 2m ago)

Setting Up a Staging Environment

60

How it works…
Behind the scenes, the pipeline plugin is a small Ruby application that uses the Cisaurus API,
also known as CI-as-a-service Heroku API. It keeps track of our application's downstream for
us, and once we run the promote command, it sends a request to the Cisaurus API, telling it
to copy the slug from our current application to the downstream application.

The pipeline plugin is useful for more than just moving slugs from staging to production.
We can get much more complex by having multiple environments that our code progresses
through. Developers can even have their own independent testing environment that uses the
staging environment as a downstream.

The pipeline will not automatically run any data migrations
for us. We have to do this manually in the same way as a
normal deploy.

See also
ff To learn more, Pipeline's source code is available on GitHub at https://github.

com/heroku/heroku-pipeline

Deploying from tags
Git tags are an easy way to track the versions of our application. In this recipe, we'll learn how
to tag our Git repositories and then deploy specific versions to Heroku.

How to do it…
To start, let's open up a terminal and navigate to one of our Heroku apps by performing the
following steps:

1.	 We can add our first tag with the git tag command. We'll need to specify the tag as
well as a message that describes it:
$ git tag -a v1.0 -m "Version 1 release. Example of a release tag"

The tag does not have to be a version number.
We can use anything we want.

https://github.com/heroku/heroku-pipeline
https://github.com/heroku/heroku-pipeline

Chapter 3

61

2.	 Next, we'll want to push our new tag up to our origin repository:
$ git push—tags origin

Counting objects: 1, done.

Writing objects: 100% (1/1), 187 bytes | 0 bytes/s, done.

Total 1 (delta 0), reused 0 (delta 0)

To https://github.com/mscoutermarsh/refinery_heroku.git

* [new tag] v1.0 -> v1.0

3.	 If we're using GitHub to host our repository, we will now see a new tag under the
Releases section.

4.	 The last step is to push the tag to Heroku. We can do this with the
following command:
$ git push -f heroku v1.0^{}:master

How it works…
The push command we used in this recipe looks a little different than the one we are used
to. Let's break down exactly what happened in the preceding example. In the command,
v1.0 is the name of the tag that we previously created. The ^{} symbol after the tag is a Git
shorthand that tells Git we want to push the git commit that corresponds to the v1.0 tag. The
final part of the command, :master, tells Git to push to the tag as the master branch. We do
this because Heroku only deploys from the master branch.

We can run git tag list to see all the tags of our repositories.

Setting Up a Staging Environment

62

See also
ff There is a great gem called Paratrooper that can be used to customize the tagging

and push processes to Heroku. It's great for more advanced use cases. Check it out
at https://github.com/mattpolito/paratrooper.

Continuous integration and deployment
with Travis CI

Travis CI is a service that will automatically run our application's test suite for us after we
push each commit to GitHub. This gives us a reliable and repeatable process to test our
code continuously.

We can take Travis CI a step further and have it deploy our code after each successful build.
This allows us to focus our time on writing code rather than deploying it. The entire test and
the deploy process is automated for us, as shown in the following diagram:

The process begins with the Continuous Integration (CI) server and ends with the latest code
being deployed to either a staging or production environment. The CI server is where the latest
version of our code is built and its automated test suite is run. If the build on the CI server
passes (goes green), we will move on to the next step of automatically deploying the code. If
the build fails, the developer is alerted, fixes the code, and starts the process again.

This process works well with the general Heroku philosophy. We automate as much as
possible, making life easy for the developer.

For this recipe, you'll need to be using GitHub as your Git repository host.
If you do not have an existing project set up on GitHub, feel free to use the
Refinery Rails application that we set up in Chapter 1, Getting Started with
Heroku. You can fork the source code to your own GitHub account from
https://github.com/mscoutermarsh/refinery_heroku/fork.

https://github.com/mattpolito/paratrooper
https://github.com/mscoutermarsh/refinery_heroku/fork

Chapter 3

63

Getting ready
Travis CI is one of the most popular Continuous Integration services. It's completely free for
open source projects; they also have paid plans for private repositories.

Before we start using Travis, we'll need to sign up for it and enable it for our GitHub repository.
If our repository is public, we'll use https://travis-ci.org/. If it is private, we'll need to
use https://travis-ci.com/. The directions for each are the same and are explained
as follows:

1.	 Let's head over to https://travis-ci.org/ (or .com for private repositories) and
sign up using our GitHub account. This will allow Travis to access our repositories. It
will need access to pull our code and run our tests after each commit.

2.	 Once signed up, we'll need to visit our profile page at https://travis-ci.org/
profile. We'll see a list of our repositories. Let's click on the toggle next to the
repository we want to build; this will enable it and set up the webhooks to trigger
builds in the future.

Want to learn more? Details on how to get started with Travis are
available at http://docs.travis-ci.com/user/getting-
started/ for each supported language.

How to do it…
We're now ready to start continuously testing and deploying our code. To begin with, let's open
up a terminal by performing the following steps:

1.	 We'll use the Travis gem in this recipe. Let's install it now:
$ gem install travis

2.	 To deploy our application to Heroku, we need to provide Travis with a Heroku API key.
We can do this by creating a Travis config file in the root directory of our application.
Let's do this now with the touch command:
$ touch .travis.yml

The touch command simply creates a blank file for us.

https://travis-ci.org/
https://travis-ci.com/
https://travis-ci.org/
https://travis-ci.org/profile
https://travis-ci.org/profile
http://docs.travis-ci.com/user/getting-started/
http://docs.travis-ci.com/user/getting-started/

Setting Up a Staging Environment

64

3.	 Now that we have a blank Travis file ready, let's use the Travis CLI to configure it for us
to deploy to Heroku:
$ travis setup heroku

Detected repository as mscoutermarsh/example-app, is this correct?
|yes| yes

Heroku application name: |staging-app| staging-app

Deploy only from mscoutermarsh/example-app? |yes| yes

Encrypt API key? |yes| yes

Only the Travis CI will be able to decrypt our Heroku API credentials,
making them safe to store in a public GitHub repository.

4.	 Now, let's take a look at our .travis.yml file that has been set up for Heroku. We'll
see our encrypted token, application name, and GitHub repository, all listed:
$ cat .travis.yml

deploy:

 provider: heroku

 api_key:

 secure: J8ubqQEwN0eGrN1FdXonp+79fn0OWtvC0cft123

 app: refinery-staging

 on:

 repo: github-name/repository-name

5.	 The final step in configuring Travis is telling it how to run our application's test
suite. If our application uses rspec for testing, we will add the following line
to our .travis.yml file:
deploy:
 provider: heroku
 api_key:
 secure: J8ubqQEwN0eGrN1FdXonp+79fn0OWtvC0cft123
 app: refinery-staging
 on:
 repo: github-name/repository-name
script: bundle exec rspec

For a completed example, take a look at https://github.com/
mscoutermarsh/refinery_heroku/blob/travis/.travis.yml.

https://github.com/mscoutermarsh/refinery_heroku/blob/travis/.travis.yml
https://github.com/mscoutermarsh/refinery_heroku/blob/travis/.travis.yml

Chapter 3

65

6.	 We're now ready for Travis to build and deploy our code. Let's commit our new
.travis.yml file and push it to GitHub:
$ git add .travis.yml

$ git commit -m 'Adding Travis configuration file'

$ git push origin master

7.	 GitHub will send Travis CI a webhook that notifies it that we've pushed new code to
our repository; this will trigger Travis to pull our code and start a build. It will run our
tests, and if they pass, it will deploy to our application on Heroku.

How it works…
Travis CI does most of the heavy lifting for us here. We simply need to correctly define the
.travis.yml file with our Heroku account information. We can see exactly what Travis does
for us behind the scenes by going to our Travis account and viewing the logs for our build.
At the end of the logs, we'll have a step-by-step look at how to deploy our code. We can see
that Travis uses the Heroku API and our API key to access our Heroku account and deploy it.

In this example, we set up Travis to deploy to our Heroku application (staging-
application-name) whenever a build completes on our master branch. This is highly
configurable, and we can have different branches deploy to different Heroku applications.
The script line in the .travis.yml file tells Travis how to run our test suite. In this example,
we used the Refinery-Heroku repository from Chapter 1, Getting Started with Heroku, as it
uses rspec. For more specifications on how to customize the Travis configuration, you can
take a look at their online documentation available at http://docs.travis-ci.com/
user/getting-started/.

Debugging
Setting up Travis for the first time can be a little tricky for some projects. Travis keeps detailed
logs in the build history that will show exactly what went wrong. These logs should always be
our first stop when debugging Travis issues.

See also
ff For an alternative to Travis CI, take a look at Codeship at https://codeship.io/

ff Take a look at the Travis CLI on GitHub at https://github.com/travis-ci/
travis.rb

http://docs.travis-ci.com/user/getting-started/
http://docs.travis-ci.com/user/getting-started/
https://codeship.io/
https://github.com/travis-ci/travis.rb
https://github.com/travis-ci/travis.rb

4
Production-ready

with Heroku

In this chapter, we will cover:

ff Managing domains from the command line

ff Configuring DNS with CloudFlare

ff Setting up SSL with CloudFlare

ff Enabling preboot for seamless deploys

ff Enabling custom maintenance and error pages

ff Setting up a status page

ff Setting up log draining with LogEntries

Introduction
Once it's time to transition our application from development to production, there are a few
steps we'll want to take to ensure that it's prepared to serve real users.

Heroku recommends the following to run any production-level application:

ff Use the latest Heroku stack (Celedron Cedar)

ff Have more than one dyno running for increased reliability

ff If using Heroku Postgres:

�� Use a production-tier database

�� Have database backups enabled

Production-ready with Heroku

68

ff Correct DNS settings (use a CNAME record)

ff SSL (HTTPS) to protect user information

ff Performance monitoring

ff Log draining

We can quickly check whether our application meets Heroku's recommendations by going to
the Heroku dashboard and performing the following steps:

1.	 Let's open up the dashboard from https://dashboard.heroku.com/apps.

2.	 Next, we'll need to select our application.

3.	 Now, we can click on Production Check in the top-right corner to see whether the
current application meets Heroku's guidelines. If our application fails in any of the
steps, we'll be directed to step-by-step instructions on how to fix them:

In this chapter, we'll cover how to get this checklist to go all green. In addition to this, we will
also cover some extras to ensure that our applications are prepared for real users.

Managing domains from the command line
Heroku makes it simple for us to manage our domains and subdomains from the CLI. In this
recipe, we'll learn the steps to add and remove domains from the command line.

How to do it…
To start, let's open up a new terminal and navigate to one of our Heroku applications. We can
add --app application-name to the end of any of the following commands to run them
for a specific application:

1.	 First, let's list our application's existing domains:
$ heroku domains

=== demo-app Domain Names

demo2.example.org

example.com

https://dashboard.heroku.com/apps

Chapter 4

69

2.	 Next, let's try to add a custom domain to our application. We can do this with the
domains:add command:
$ heroku domains:add example-domain.com

3.	 We can add subdomains using the same command. Refer to the following example:
$ heroku domains:add testing.example-domain.com

4.	 If we want to avoid adding subdomains one by one, we can use a wildcard:
$ heroku domains:add *.example-domain.com

5.	 Removing an existing domain is simple. Let's try this now:
$ heroku domains:remove example-domain.com

6.	 Finally, if we want to remove all the domains from an application, we can use clear:
$ heroku domains:clear

How it works…
When Heroku receives a request at its routing layer, it knows which application to send the
request to, based on the domain. By adding our domains and subdomains via the CLI, we let
Heroku know how to route all the requests to our specific Heroku application.

See also
ff To learn more about custom domains on Heroku, take a look at the documentation

available at https://devcenter.heroku.com/articles/custom-domains

Configuring DNS with CloudFlare
There are many ways to point a domain name to our Heroku application. Here, we will learn
how to do this using CloudFlare, a popular CDN service. CloudFlare handles our Domain
Name System (DNS) for us, but it also gives us some additional benefits over a typical DNS
service. As CloudFlare is a CDN, it will distribute our static assets (CSS, JS, and images)
across its global network, in addition to managing our DNS records. This makes loading
static assets faster for users throughout the world and reduces the requests that have to be
served by Heroku. This will save us money on our Heroku bill and also help when scaling our
applications. This functionality is available for free with CloudFlare; more advanced options
are available to paid accounts.

https://devcenter.heroku.com/articles/custom-domains

Production-ready with Heroku

70

Getting ready
First, we'll need to sign up for a CloudFlare account. So, let's go to www.cloudflare.com
and sign up.

During the sign-up process, CloudFlare will guide us through the process of transferring our
domain name's servers to CloudFlare. This will allow them to manage our DNS for us.

How to do it...
Now that we have a CloudFlare account, we need to adjust our DNS settings to point our
domain to our Heroku application by performing the following steps:

1.	 To start, we'll need to go to the Websites section of CloudFlare to configure our
DNS settings available at https://www.cloudflare.com/my-websites.

2.	 In the Websites section, let's click on the gear icon next to our domain name and
then click on DNS Settings:

3.	 Here is where we will set up CloudFlare to direct visitors to our Heroku application.
We will need to set up a Canonical Name (CNAME) record that points to our Heroku
application's URL. Let's do this now by clicking on Add and then on Save:

www.cloudflare.com
https://www.cloudflare.com/my-websites

Chapter 4

71

4.	 Now that the record has been added, we can see that there is a cloud icon to the
right of the record. If it's orange, it means that CloudFlare's CDN and security services
are also running for this DNS record. By clicking on it, we can toggle them on and off
depending on whether we want to use them or not:

5.	 Now, all we need to do is wait for our new DNS settings to propagate. The waiting time
will depend on how long our time to live (TTL) is set to, and it can vary depending on
where we are located. Once our settings take effect, we'll be able to use our domain
name with our Heroku application.

How it works...
In this recipe, we used a CNAME record to point our domain to our Heroku applications. This
might be a little different than what we're used to with other hosting providers. It's important
for us to use a CNAME record with Heroku, because it allows us to take advantage of Heroku's
DNS services as well. Our Heroku application is not served from a static IP address. At any
time, it can change as Heroku moves resources around or makes changes to their network.
Using a CNAME record rather than the more typical A record allows Heroku to manage these
changes for us automatically.

Setting up SSL with CloudFlare
SSL (or HTTPS) is the technology that keeps all that data sent between our users and our
web server safe from prying eyes. All Heroku apps already support SSL by piggybacking
on Heroku's SSL certificate (https://your-app-name.herokuapp.com). However,
unfortunately, this does not extend to any custom domains that we use for our application.

Heroku has a standard SSL add-on that we can use, but there is a simpler and more cost-
effective solution—CloudFlare.

In this recipe, we'll learn how to protect our applications by enabling SSL in CloudFlare.

Getting ready
For this recipe, we'll need an existing Heroku application with a custom domain setup through
CloudFlare. For step-by-step instructions on how to do this, refer to the previous recipe.

Production-ready with Heroku

72

How to do it…
SSL is available on both CloudFlare's free and paid plans. If we use the free plan, we need to
be aware that issuing our SSL certificate could take up to 24 hours. For a shorter turnaround
time, we should upgrade to a paid plan.

The plan information is available at https://www.
cloudflare.com/plans.

Let's perform the following steps:

1.	 To start, we'll need to go to the Websites section of CloudFlare to configure our SSL
settings: https://www.cloudflare.com/my-websites

2.	 Next to our website's name, there is a gear icon; let's click on it and go to
CloudFlare Settings.

3.	 Now, we'll need to scroll down until we get to the SSL section of the settings page. We
need to select Full SSL (Strict).

4.	 That's it! Now, CloudFlare will start working on issuing a new SSL certificate for us.
If we're using the free plan, this might take up to 24 hours. On paid plans, it will be
issued in approximately 20 minutes.

https://www.cloudflare.com/plans
https://www.cloudflare.com/plans
https://www.cloudflare.com/my-websites

Chapter 4

73

How it works…
When we turned on SSL with CloudFlare, we secured the connection between CloudFlare and
our users. Conveniently, every Heroku application already has the capability to use SSL on
its Heroku-provided URL (example.herokuapp.com). This works because Heroku allows
our applications to piggyback on their SSL certificates. As our CNAME record was set to our
Heroku domain, the connection between CloudFlare and Heroku was secured by the SSL that
already exists for our Heroku application. The entire connection between our users and our
Heroku application was secure, and we didn't have to configure a single SSL certificate!

Enabling preboot for seamless deploys
When we deploy new code to Heroku, all of our dynos are shut down and replaced with new
ones simultaneously. If we have long boot times for our application, this can result in our
user's requests timing out because our dynos are unable to respond to requests while booting
up. We can avoid this using Heroku's preboot, a feature that gives our new dynos an additional
3 minutes to get started before shutting down our old dynos. This gives our application plenty
of time to get warmed up and ready to serve requests.

How to do it...
For this recipe, we'll enable Heroku preboot from the CLI. Let's open up a terminal and
navigate to a Heroku application to get started by performing the following steps:

1.	 First, we'll need to enable preboot for our application:
$ heroku features:enable preboot

Enabling preboot for example-app... done

For more information see: https://devcenter.heroku.com/articles/
preboot

There must be more than one dyno running for preboot to
be used. Preboot does not affect worker dynos; they will
restart normally.

2.	 Now that preboot is enabled, we can deploy code normally, and our new dynos will be
given 3 minutes to start up before traffic is directed to them, saving our users from
any timeouts during the boot process:

$ git push heroku master

example.herokuapp.com

Production-ready with Heroku

74

How it works...
Instead of shutting down our current dynos and replacing them with new ones, Heroku boots
up the new dynos first, waits for 3 minutes, and then swaps traffic over from the old dynos to
the new ones. This helps us avoid any risk of requests timing out due to applications having
delayed boot times. This is a more advanced feature of Heroku and does not come without
risks. We should test Heroku preboot on a staging instance before using it in production.
Databases and outside services will often have a maximum connection limit. During
the reboot's warm-up period, we will run twice as many application instances compared
to the normal period. We must be sure that our database will allow these connections
simultaneously; otherwise, preboot can potentially cause more issues than it can solve.

To disable Heroku preboot, we can run the $ heroku
features:disable preboot command.

Enabling custom maintenance and
error pages

Heroku has two different error pages that it will display to our users when things go wrong.
The first is a general error page for when our application is unable to respond to a request.
The second is the maintenance page that informs our users that our application is temporarily
down and under maintenance. By default, both of these pages are very plain, and the
messages they display are very general. It's easy for us to customize each of these pages and
display something that we have more control over. Here, we will learn how to customize them.

Here are Heroku's default error pages:

ff Error page: This is available at http://s3.amazonaws.com/
heroku_pages/error.html

ff Maintenance page: This is available at http://s3.amazonaws.
com/heroku_pages/maintenance.html

Getting ready
We need to have our error and maintenance pages hosted somewhere that's web accessible
and is outside Heroku. The recommended approach is uploading them to Amazon S3; for
step-by-step instructions, visit http://docs.aws.amazon.com/AmazonS3/latest/dev/
WebsiteHosting.html.

http://s3.amazonaws.com/heroku_pages/error.html
http://s3.amazonaws.com/heroku_pages/error.html
http://s3.amazonaws.com/heroku_pages/maintenance.html
http://s3.amazonaws.com/heroku_pages/maintenance.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html

Chapter 4

75

How to do it…
In this recipe, we will use the Heroku CLI to tell Heroku where our error and maintenance
pages are located. To get started, let's open up a terminal and navigate to our Heroku
application by performing the following steps:

1.	 To set up the error page, we need to set the ERROR_PAGE_URL configuration variable
in Heroku. Let's do this now:
$ heroku config:set ERROR_PAGE_URL=http://example.com/my_error_
page.html

2.	 Next, we'll want to set MAINTENANCE_PAGE_URL to the location of our
maintenance page:
$ heroku config:set MAINTENANCE_PAGE_URL=http://example.com/my_
maintenance_page.html

3.	 To finish up, let's test it out by putting our application in maintenance mode and then
opening our application:
$ heroku maintenance:on

$ heroku open

4.	 We should now see our new custom maintenance page displayed instead of
the default Heroku one. Before we finish up, let's make sure we have re-enabled
our application:
$ heroku maintenance:off

How it works…
We can use any hosting service to serve our error page. S3 is recommended because it's
very inexpensive, scalable, and highly reliable. Application-specific errors, such as 500 and
404 errors, will still be served by our application, and customizing these will depend on the
framework we are using.

Setting up a status page
What will happen if our application goes down? How do we communicate with our users? The
best way is to have a status page that is hosted outside Heroku. Then, if our application goes
down, we can focus on fixing it rather than figuring out how to communicate with our users.
Here, we will quickly learn how to set up a status page that can e-mail, SMS, or even tweet
about the status of our application.

There are multiple options that can be used to build a status page with Heroku. Here, we will
cover one of the most popular ones, StatusPage.io.

StatusPage.io

Production-ready with Heroku

76

StatusPage starts at $29 per month. At the time of writing this
book, there are no free options.

How to do it…
We will use the CLI to get started. Let's open up a terminal and navigate to one of our Heroku
apps by performing the following steps:

1.	 First, let's install the add-on with addons:add:
$ heroku addons:add statuspage

2.	 Now that it's installed, we can open up the StatusPage dashboard to configure it. It
will walk us through a step-by-step process of getting our dashboard up and running.
We'll be able to customize the layout, services, and record any past service outages:
$ heroku addons:open statuspage

3.	 Once we complete the setup wizard, we'll have a status page that looks like what is
shown in the following screenshot:

As StatusPage integrates with Heroku, if there are any Heroku service
interruptions, our page will update automatically.

Chapter 4

77

4.	 Now that our status page is up and running, we need to learn how to report incidents.
We have two options; we can either create an incident manually through the
Incidents tab on the StatusPage dashboard, or we can use the StatusPage API.

We can have StatusPage manage our Heroku error pages for us by
clicking on Heroku Integration in the StatusPage dashboard.

5.	 Let's try creating our first incident through the API now. First, we'll need to get our
StatusPage API key. We can do this by clicking on our user in the top-right corner of the
dashboard, going to Manage Account, and then clicking on the API tab. On this page,
we'll see both our API key and our status page ID. We'll need both to use the API.

6.	 Now that we have our API credentials, let's create a new incident by sending an
API call with cURL. We'll need to replace the page ID and API token in the following
command and then paste it into our terminal:
$ curl https://api.statuspage.io/v1/pages/<page ID goes here>/
incidents.json \

 -H "Authorization: OAuth <API token goes here>" \

 -X POST \

 -d "incident[name]=Database outage" \

 -d "incident[status]=identified" \

 -d "incident[wants_twitter_update]=f" \

 -d "incident[message]=We've had a hardware failure. Currently
investigating."

This example is also available on GitHub at https://gist.
github.com/mscoutermarsh/1bdd27b11b3a037dce5a.

7.	 Now, if we take a look at our status page, we'll see that we successfully created an
incident at the top of the page:

We can also have the update sent to Twitter by setting the wants_twitter_update
parameter to t.

https://gist.github.com/mscoutermarsh/1bdd27b11b3a037dce5a
https://gist.github.com/mscoutermarsh/1bdd27b11b3a037dce5a

Production-ready with Heroku

78

How it works…
StatusPage ties together all the information about our application's availability and displays
it in one place. We can update it via the dashboard, API, or have it updated automatically by
tying in third-party data sources, such as Pingdom or Librato.

See also
ff To learn more about the StatusPage API, visit the documentation page at http://

doers.statuspage.io/api/v1/

ff For an alternative to StatusPage, there is StatusHub available at https://addons.
heroku.com/statushub

Setting up log draining with LogEntries
The amount of log information that Heroku keeps for our application is limited to 1,500 lines.
For a production application, this will only cover a very small span of time. We need to set up a
log-draining service to keep a historical record of our logs and make it easy to search and view
them. Here, we will learn how to set up Logentries on Heroku.

How to do it…
We can quickly get going with Logentries by installing it as an add-on through the CLI. Let's
open up a terminal and navigate to our Heroku application to get started; then, we can
perform the following steps:

1.	 First, let's install the Logentries add-on for our application:
$ heroku addons:add logentries

2.	 This command will set up a log drain that will automatically stream our logs to
Logentries. Let's open it up and take a look:
$ heroku addons:open logentries

http://doers.statuspage.io/api/v1/
http://doers.statuspage.io/api/v1/
https://addons.heroku.com/statushub
https://addons.heroku.com/statushub

Chapter 4

79

3.	 Logentries will automatically send us alerts when there are errors in our application.
We can configure these by clicking on Tags & Alerts on the top navigation bar. The
add-on has prepopulated most of the alerts for us.

How it works…
Heroku aggregates all of our logs in one place, known as the Logplex. It only keeps a brief
history of our logs. It's our responsibility to record them in another service such as Logentries.
Having a logging service enabled might not seem important initially. However, it's critical to
have one enabled when running any production-level application. When there are issues
(which there will always be), we will be thankful to have a history of exactly what happened
across our application. We can also configure Logentries to alert us when there are errors in
our application. Early warnings like this can help us in detecting and solving problems before
they escalate into critical issues.

See also
ff For more information on logging and the Logplex, take a look at Chapter 2, Managing

Heroku from the Command Line

5
Error Monitoring and

Logging Tools

In this chapter, we will cover:

ff Checking Heroku's status

ff Adjusting Rails' logging level

ff Storing historical logs with PaperTrail

ff Monitoring for 404 and 500 errors with PaperTrail

ff Logging slow queries with PaperTrail

ff Monitoring uptime with Pingdom

ff Logging errors with Rollbar

Introduction
We can never have too much information about our application. We can prepare our
application to handle as many different edge cases as possible, but our users will do the
unexpected; the more monitoring we have in place, the more likely we are to find the source
of problems and resolve them quickly.

In this chapter, we will learn how to set up some basic logging and monitoring services
that should be enabled for any production-level application. Having high visibility into our
application is essential to keep our applications performant and reliable for our users.

Error Monitoring and Logging Tools

82

Checking Heroku's status
Occasionally, there will be issues with Heroku itself. The first place to look when experiencing
strange issues is Heroku's status page. It keeps track of all the ongoing issues and frequently
updates us with information on when we can expect them to be resolved. If we're having
trouble deploying our application, seeing downtime, or just general performance issues,
Heroku's status is a good place to check.

How to do it…
We can quickly check Heroku's status from the command line. Let's open up a terminal to try
it out by performing the following steps:

1.	 We can run the following command at any time to get a quick look at Heroku's status:
$ heroku status

=== Heroku Status

Development: No known issues at this time.

Production: No known issues at this time.

2.	 For more detailed information, we can take a look at Heroku's status page
(https://status.heroku.com/). It shows all the current and past
service interruptions:

Any issues with Heroku will most likely affect our application. We can get e-mail updates
for any status changes by clicking on the link in the top-right corner of the status page and
subscribing to it.

https://status.heroku.com/

Chapter 5

83

How it works…
Heroku's status page splits its updates into two categories: Production and Development. Any
production update can affect dynos, workers, and any production level add-ons (such as the
production-tier Postgres add-ons). Development updates are specifically used for any issues
with deployment, Heroku Toolbelt, or development-level database tiers.

For updates via Twitter, follow @herokustatus.

Adjusting Rails's logging level
Heroku's Logplex will record all of our application logs that are directed to Standard Output
(STDOUT). By default, Rails applications write to a logfile instead of STDOUT. Heroku solves
this by automatically injecting a gem into all Rails applications to ensure that the logs are
correctly recorded. This gem also gives us the ability to change our logging level on the fly
using a configuration variable. In this recipe, we will learn how to adjust a Ruby on Rails
application's logging level without having to redeploy any code.

Getting ready
If we do not already have a Rails application, we can use a sample application from GitHub.
Open up a terminal and run the following commands to get a Rails application up and running
on Heroku:

$ git clone https://github.com/mscoutermarsh/unicorn-rails-heroku.git

$ cd unicorn-rails-heroku

$ heroku create

$ git push heroku master

$ heroku open

To commit your changes back to GitHub, you'll need to make a fork of the
sample project. Learn how to fork a project at https://help.github.
com/articles/fork-a-repo.

https://help.github.com/articles/fork-a-repo
https://help.github.com/articles/fork-a-repo

Error Monitoring and Logging Tools

84

How to do it…
To start, let's open up a terminal and navigate to our Rails project. Then, we can perform the
following steps:

1.	 We can adjust our Rails logging level by adjusting a configuration variable in Heroku.
Let's run the following command to set our logging level to debug:
$ heroku config:set LOG_LEVEL=debug

2.	 Now, Heroku will restart our app, and we can watch our logs to see the more verbose
debugging output:
$ heroku logs --tail

3.	 Press Ctrl + C to exit log viewing. Now, let's try changing our logging level again.
This time, we'll set it to only display errors:
$ heroku config:set LOG_LEVEL=error

$ heroku logs --tail

How it works…
When deploying a Rails application to Heroku, we should always add the rails_12factor
gem to our Gemfile. It directs our logs to STDOUT so that Heroku can record them in the
Logplex. If we do not add it, Heroku will add it for us.

We can adjust our Rails logging level on the fly because the 12-factor gem injects the
rails_stdout_logging gem into our application. This gem looks for the LOG_LEVEL
environment variable. If it's set, it will use it for the Rails logging level.

We can set our log level to debug, info, warn, error, fatal, or unknown.

See also
ff For more information on Rails log levels, take a look at the Rails documentation at

http://guides.rubyonrails.org/debugging_rails_applications.
html#log-levels

Storing historical logs with PaperTrail
Heroku only keeps the most recent 1,500 lines of logs from our application. As we scale
up and add more dynos, this will only cover a very brief time period. Heroku allows us to
set up log drains, which allow us to stream our logs to another service for storage. Setting
up log draining is a must-have for any production application. Having our log history easily
searchable will be critical when debugging our application. In this recipe, we'll learn how to set
up PaperTrail to store our Heroku logs.

http://guides.rubyonrails.org/debugging_rails_applications.html#log-levels
http://guides.rubyonrails.org/debugging_rails_applications.html#log-levels

Chapter 5

85

How to do it…
To get started, let's fire up a terminal and navigate to one of our Heroku projects. Then, we can
perform the following steps:

1.	 First, let's add PaperTrail to our application using Heroku add-ons. The default plan is
free; as our application grows, we can add more storage if necessary:
$ heroku addons:add papertrail

We can also install PaperTrail without going through the Heroku
add-on, but then, we'd miss out on some of the enhancements that
PaperTrail has made specifically for Heroku apps.

2.	 PaperTrail is now installed and is collecting our logs. We can open it from the
command line to take a look at the dashboard:
$ heroku addons:open papertrail

PaperTrail will ask us if we'd like a summary of errors e-mailed
to us daily. It's a good idea to subscribe to stay on top of any
new problems.

3.	 PaperTrail sets up a few default searches that are helpful for Heroku applications.
At the bottom of the screen, let's click on the icon next to the Search button to see
what's already set up. It will filter our logs for us, showing only specific events. This
becomes very useful when reading through high volumes of logs.

Error Monitoring and Logging Tools

86

4.	 Let's click on the Platform errors filter. It will look for any Heroku error codes in
our logs. This will most likely return zero results since we just set up log draining.
However, now that we have run a search, we can create an alert for the search by
clicking on Create Alert next to the search box.

5.	 We should set up an e-mail alert for whenever there is a Heroku error. This can notify
us the minute there is an issue with our application. Let's do this now by selecting
Emails and filling out the form. It's a good practice to have these sent out to all the
developers on our team or have an e-mail list with anyone who is responsible for
the application.

How it works…
When we provisioned the PaperTrail add-on, we added a new log drain to our application. This
is an endpoint to which Heroku's Logplex will stream our logs as they are written. If we want to
take a look at all the log drains of our application, we can run $ heroku drains.

The source code for Heroku's Logplex is open source; check it out at
https://github.com/heroku/logplex.

https://github.com/heroku/Logplex

Chapter 5

87

See also
ff For more information on how Logplex works and logging in general, take a look at

Chapter 2, Managing Heroku from the Command Line, and the recipes on viewing
and searching logs in that chapter.

Monitoring for 404 and 500 errors with
PaperTrail

We can set up various searches in PaperTrail and have it automatically e-mail a summary of
all the events that match our search for the day. In this recipe, we will learn how to set up a
search for specific HTTP status codes and have PaperTrail e-mail us when they are set up.

We'll need PaperTrail set up for this recipe; refer to the previous
recipe if you do not have it set up yet.

How to do it…
To start, we'll need to open up a terminal and navigate to our Heroku project with PaperTrail
installed. Then, we can perform the following steps:

1.	 First, let's open up the PaperTrail dashboard. We can quickly do this from the
command line:
$ heroku addons:open papertrail

2.	 Now, we want to create a search for all the events that resulted in a 404 (Not
Found) or 500 (Internal Server Error) HTTP response code. We can do this by typing
status=404 OR status=500 into the search box at the bottom of the page.

Error Monitoring and Logging Tools

88

3.	 Next, let's click on Search, and we'll see the results of our query. At this point, it's fine
if we do not see any errors. We want to automate this search and get the results sent
to us daily. To do this, let's click on Save Search to the right of the search box.

4.	 Click on Save & Setup an Alert to set up automatic e-mails for this search.

5.	 Finally, we can set up the alert by entering our e-mail address and clicking on 1 day.
This will send us a summary of all 404s and 500s for our application daily.

How it works…
We can never have too much information about how our application is running. The more
data we have, the more likely we are to catch issues before our users do. Whenever Heroku
responds to a request, it includes the status code that it responds with. This makes it easy for
us to filter events by status code.

Setting up daily error e-mails is a way to keep track of any increase in activity. For this search,
if we see a sudden spike in 404s, we know that we probably have a dead link somewhere in
our application. Taking a quick look at e-mails like this will give us an idea of the pulse of our
Heroku application.

See also
ff For more information on how to get the most out of the search, take a look

at PaperTrail's documentation on searching available at http://help.
papertrailapp.com/kb/how-it-works/search-syntax

http://help.papertrailapp.com/kb/how-it-works/search-syntax
http://help.papertrailapp.com/kb/how-it-works/search-syntax

Chapter 5

89

Logging slow queries with PaperTrail
The first place where we'll usually experience application performance issues is in the
database. A poorly written query or missing index can have a snowballing effect on our
application's speed. As our application's traffic increases, detecting and fixing slow queries
early on will help us avoid slow response times or even downtime.

Production-tier Heroku Postgres databases all come with logging capabilities. They are set
up to send a log entry to Logplex whenever a query takes longer than 2 seconds to execute.
We can use this to our advantage by setting up alerts to watch for these slow queries. In this
recipe, we'll learn how to set up a search and an alert for slow queries using PaperTrail.

This recipe will only work with production-tier Heroku Postgres databases.
The hobby-tier databases do not have logging enabled.

How to do it…
To start, let's open a terminal and navigate to our Heroku project that has the PaperTrail
add-on. Then, perform the following steps:

1.	 First, let's open up the PaperTrail dashboard. We can do this quickly via the
command line:
$ heroku addons:open papertrail

2.	 Now that the dashboard is open, we'll want to create a new search for slow queries.
Let's do this by typing the following into the search box:
"app/postgres" duration

Now, click on Search, and any slow queries will appear. If there aren't any, it might
just mean that we haven't had any slow queries yet.

Error Monitoring and Logging Tools

90

3.	 Next, we'll want to save this search and create an alert for it. We'll do this by clicking
on Save Search, typing in a name for the search, and then clicking on Save & Setup
an Alert.

4.	 Finally, we can set up PaperTrail to send us an e-mail when there are results that
match this search. We should set the frequency of the e-mail to be daily. If our
application has multiple developers, we should send it to all of them to increase
the visibility of any slow queries.

How it works…
In this recipe, we took advantage of Heroku Postgres's slow query logging. Any queries that
take longer than 2 seconds to complete are automatically logged for us and sent to PaperTrail
via our log drain. By setting up alerts for these logs in PaperTrail, we keep ourselves informed
of any database performance issues before they start to cause any serious issues.

See also
ff Slow query alerts are just one way we can use Postgres logs. Take a look at Heroku's

documentation on Postgres logging available at https://devcenter.heroku.
com/articles/postgres-logs-errors for more ideas.

https://devcenter.heroku.com/articles/postgres-logs-errors
https://devcenter.heroku.com/articles/postgres-logs-errors

Chapter 5

91

Monitoring uptime with Pingdom
To monitor our application's general speed and uptime, we need to look no further than
Pingdom. Pingdom is a third-party service that sends intermittent requests to our application
and measures how quickly it responds. If our application stops responding, it will send
us an alert. When picking an uptime monitoring service, it's critical to choose one that is
independent of the platform you're monitoring. In this case, Pingdom is not run on Heroku;
this makes it a good choice to monitor Heroku applications. If Heroku is having issues, the
first place we'll get an alert from is usually Pingdom.

How to do it…
It's easy to get started with Pingdom, so let's open up a browser to begin:

1.	 First, we'll need to sign up for an account. Let's navigate to https://www.pingdom.
com/free/ to sign up for a free account. The free account is enough for us to try out
monitoring one application; we'll need to upgrade it if we want to monitor more or have
additional methods of notifications.

2.	 Once signed up, we'll be brought to the Pingdom dashboard. In the top-right corner,
let's click on Add New and create a monitor for our app. From here, we can adjust
how often we'd like Pingdom to check our application and what to do if it does not
receive a response.

https://www.pingdom.com/free/
https://www.pingdom.com/free/

Error Monitoring and Logging Tools

92

3.	 That's it! Pingdom will start monitoring our application and alert us of any downtime
with our application.

How it works…
A ping is the smallest possible request to which we can get a response from a web server.
We can try sending a ping from our own machine using the ping command. This will send
a small request to Heroku.com, and we'll get the following response back:

$ ping heroku.com

PING heroku.com (50.19.85.156): 56 data bytes

64 bytes from 50.19.85.156: icmp_seq=0 ttl=40 time=30.461 ms

64 bytes from 50.19.85.156: icmp_seq=1 ttl=40 time=26.229 ms

64 bytes from 50.19.85.156: icmp_seq=2 ttl=40 time=34.493 ms

64 bytes from 50.19.85.156: icmp_seq=3 ttl=40 time=37.902 ms

64 bytes from 50.19.85.156: icmp_seq=4 ttl=40 time=35.463 ms

Press Ctrl + C to stop pinging the server.

Pingdom monitors our web application by sending these requests from different servers
throughout the world. A failed response to a ping indicates that there are issues in connecting
to our application, and we should investigate the failure.

See also
ff For an alternative to Pingdom, take a look at Copper Egg available at

http://copperegg.com/

Logging errors with Rollbar
All production applications should have some form of error logging. Whenever our application
fails to serve a user's request, we'll want to know as much information as possible about the
failure. Using an exception service, we can log detailed information about each error and track
how frequently it occurs. Having all of this at our fingertips makes it easy to prioritize which
errors to fix. In this recipe, we will learn how to install Rollbar on a Rails application.

Rollbar supports almost every language and framework. For specific
instructions on other languages, take a look at their documentation at
https://rollbar.com/docs/.

Heroku.com
http://copperegg.com/
https://rollbar.com/docs/

Chapter 5

93

Getting ready
You'll need a Ruby on Rails application running on Heroku to complete this recipe. If you don't
have one, take a look at Chapter 1, Getting Started with Heroku, for instructions on how to
set one up.

How to do it…
To start, let's launch a terminal and navigate to a directory with an existing Rails application.
Then, perform the following steps:

1.	 Let's enable the Rollbar add-on via the Heroku CLI:
$ heroku addons:add rollbar

----> Adding rollbar to application_name... done, v31 (free)

2.	 Now that Rollbar is enabled, we'll need to install it in our application. We'll need to
open up our Gemfile and add the following line:
gem 'rollbar'

3.	 Next, we'll run bundler to install the gem:
$ bundle install

4.	 Now, let's run the Rollbar generator to set up our Rails app to report errors to Rollbar:
$ rails generate rollbar

5.	 To complete installation, we'll need to commit our changes to Git and redeploy
our application:
$ git add Gemfile

$ git add Gemfile.lock

$ git add config/initializers/rollbar.rb

$ git commit -m 'Adding Rollbar error logging'

$ git push heroku master

6.	 Rollbar has added a testing rake task to our project to simulate an error. Let's use it
now to verify that Rollbar is working:
$ heroku run rake rollbar:test

Reporting exception: Testing rollbar with "rake rollbar:test". If
you can see this, it works.

[Rollbar] Scheduling payload

[Rollbar] Sending payload

[Rollbar] Success

Error Monitoring and Logging Tools

94

7.	 We can now open up the Rollbar dashboard. If everything is working correctly, we will
see our simulated error:
$ heroku addons:open rollbar

How it works…
When we install Rollbar via the Heroku add-on, it sets up an account for us and adds
configuration variables to our project that store our Rollbar credentials. We can see
these settings by running the following command:

$ heroku config

Rollbar is set up to intercept all of our unhandled exceptions and record the full stack trace
along with any other information about the context of the error. This makes it easy for us to
quickly identify and fix bugs.

Rollbar's generate command creates an initializer in our Rails project at config/
initializers/rollbar.rb. This file loads Rollbar when our application starts up. Most
of the file contains documentation on how to customize our installation of Rollbar. It will work
without any changes, but if we want to adjust functionality, this is the place to do it.

See also
ff To learn more about Rollbar, take a look at https://rollbar.com

ff For an alternative to Rollbar, check out Bugsnag at https://bugsnag.com/

https://rollbar.com
https://bugsnag.com/

6
Load Testing a

Heroku Application

In this chapter, we will cover:

ff Monitoring dyno performance with Librato

ff Monitoring application performance with New Relic

ff Learning to load test with Siege

ff Configuring complex load tests with Siege

ff Load testing from the cloud with Blitz.io

ff Testing real user scenarios with Load Impact

Introduction
We need to know how far we can push our application before it breaks, how many users it can
support, how well it scales, and where the bottlenecks are.

In this chapter, we will learn how to install the monitoring tools needed to understand how our
application is performing. We will then learn how to push our application to its limit by setting
up and running load tests.

We will go step by step through three different methods of load testing. We'll start with the
most basic test, flooding our application with HTTP requests. We'll then advance to running
more complex load tests that will mimic real-life user scenarios more closely. These methods
will give us the information we need to know exactly how our application will perform and what
we need to improve on to handle massive amounts of traffic.

Load Testing a Heroku Application

96

It's best to run load tests in a staging environment to avoid
affecting any real users.

Monitoring dyno performance with Librato
We will need to monitor CPU and memory usage closely during load testing. Being aware of
how traffic affects both will help us in determining how many dynos we need and what size
dynos work best for our application. Librato provides a fantastic dashboard that allows us to
monitor all of our key performance metrics. We'll see our dyno and Postgres resource usage,
as well as router performance metrics. During our load tests, we'll be able to watch how many
requests our application is serving and how it affects resource usage on one screen.

Librato works with any Heroku application. It does not require anything to be installed into the
application itself. It gathers data by monitoring our Heroku logs and recording and graphing
the data.

How to do it…
To get started, let's open up a terminal, navigate to one of our Heroku projects, and perform
the following steps:

1.	 As Librato gathers information from our logs, we'll need to enable log runtime
metrics. This plugin will print load-usage and memory-usage information straight
to our Heroku logs:
$ heroku labs:enable log-runtime-metrics

2.	 We'll need to restart our dynos for the change to take effect:
$ heroku restart

3.	 Now, we can enable Librato and make it start collecting data for us:
$ heroku addons:add librato

4.	 Let's launch the Librato dashboard and take a look at our metrics:
$ heroku addons:open librato

Chapter 6

97

After a few minutes, we will start seeing our graphs populate with data.

Are you not seeing any data? Make sure that the log-runtime-metrics
plugin is installed and the application is restarted.

How it works…
Librato monitors our Heroku logs and records key pieces of data about our application. Having
each metric on the same screen makes it easy for us to find a correlation between different
metrics and identify the problem areas as we scale.

Some of the key terms are as follows:

ff Request time: This indicates the total time to respond to an
application request

ff Request throughput: This indicates the number of requests
served by our application per minute

ff Router queue time: This indicates the amount of time a request
spent in the Heroku routing layer before being sent to one of our
web dynos

ff Dyno memory: This indicates the average RAM and swap used by
our dynos

Load Testing a Heroku Application

98

During a load test, we will be able to see a request throughput rise and simultaneously watch
the effect on our dynos' load and memory averages. Ideally, we'll see that the response times
remain consistent as traffic increases. However, at a certain point, our dynos will reach their
limit, and the response time will begin to suffer. During a load test, we want to be pushing our
application to its limit. Under high load, the smallest problems in an application tend to reveal
themselves. We do load tests so that we can uncover these issues on our own rather than
having our users find them later. Tools such as Librato give us the data we need to find scaling
issues in our application.

See also
ff Librato can measure custom metrics as well. Take a look at the Heroku

documentation at https://devcenter.heroku.com/articles/librato
for more information on how to take full advantage of Librato.

Monitoring application performance with
New Relic

New Relic is a must-have for any production-level web application. It has more features
than can possibly be listed here. We will focus on how we can use New Relic to identify
performance problems in our application. New Relic provides detailed analytics for each
request our application serves. We will be able to see exactly where our application is slow
and drill down into why. In this recipe, we will cover the process of installing New Relic in a
Rails application. We'll then get a quick tour of the New Relic interface so that we know exactly
where to look when diagnosing performance issues.

How to do it…
Before using New Relic, we'll need to install it. This will require us to add the New Relic gem to
our application, as well as enable the New Relic add-on in our Heroku application.

To start, let's open a terminal and navigate to our Ruby on Rails application. If we do not have
a Rails application to try this out on, we can use the example Rails application from Chapter 1,
Getting Started with Heroku:

1.	 We'll need to install the New Relic add-on. Let's start out with New Relic on the free
plan (stark):
$ heroku addons:add newrelic:stark

To see the other available New Relic plans, visit https://addons.
heroku.com/newrelic.

Chapter 6

99

2.	 Now, we need to add the New Relic gem to our application's Gemfile. Let's add the
following command:
gem 'newrelic_rpm'

3.	 Next, let's run bundle install:
$ bundle install

4.	 Now, we can commit the changes to Git and push them to Heroku:
$ git add Gemfile

$ git add Gemfile.lock

$ git commit -m 'adding new relic'

$ git push heroku master

5.	 We can configure some New Relic settings through environment variables.
For starters, let's set our application's name and enable parameter capture:
$ heroku config:set NEW_RELIC_APP_NAME='Application Name'

$ heroku config:set NEW_RELIC_CAPTURE_PARAMS=TRUE

Setting NEW_RELIC_CAPTURE_PARAMS to true will tell New Relic
to record the parameters used in each request. Rails will filter out any
sensitive parameters, such as passwords.

6.	 Let's open up our application and use it; this will get some data into New Relic by
giving it a few requests to record:
$ heroku open

If you are using the Refinery Rails application, remember to
navigate to /refinery.

7.	 Now that we've sent some requests to our application, we can launch the New Relic
dashboard and take a look at our application's data:
$ heroku addons:open newrelic

Load Testing a Heroku Application

100

8.	 The first thing we'll see is a screen that shows our application's name. Let's click on
it to view our data. We'll start out by seeing a high-level view of our web transactions
and their response times.

9.	 For the purposes of load testing, we will be most interested in digging into our
application's transactions. Let's do so by clicking on Transactions at the top of
the screen.

Chapter 6

101

10.	 From this screen, we can learn which of our transactions take the most time. This is
where we can determine the problem areas in our application that might need to be
optimized. Let's click on one of our transactions to view more details about it.

11.	 Now, we will see the details about the transaction and what parts of it are taking
the most processing time. This is great as it informs us whether it's our application,
database, or even a third-party API call that's slow. We might not see any potential
problems initially, but the issues should be more obvious when our application
is under load.

How it works…
New Relic will be crucial when understanding the results of our load tests. Here, we learned
the specific steps for the installation of New Relic in a Rails application, but it is available
for almost any web stack. We should be using it for any production-level application that we
deploy to Heroku.

The New Relic gem records detailed information about each request and sends it to New
Relic's API for storage. By default, this data is only sent when our RAILS_ENV environment
variable is set to production. We can fully configure New Relic by adding a config/new_
relic.yml file to our application. For more information on how to do this, visit https://
docs.newrelic.com/docs/ruby/ruby-agent-installation.

See also
ff For more general information on getting started with New Relic, visit https://

docs.newrelic.com/docs/help

Learning to load test with Siege
Siege is an open source application that simulates a massive burst in traffic by sending a
configurable number of concurrent connections to our application. It's a perfect way to get
introduced to executing a basic load test. There are many load-testing services available, but
it's useful to be able to execute one on our own with just a laptop. It's also a nice bonus as it's
completely free.

In this recipe, we will learn how to install Siege and then run a load test against our
application. Siege has an abundance of different configuration options; we'll learn how to use
them. In this recipe, we will be pushing our app to a limit and can have some fun with load
testing. We shouldn't run this against a production application; it's fairly easy to overload an
application with Siege. We wouldn't want to interrupt any real users because of a test.

Load Testing a Heroku Application

102

Getting ready
First, we'll need to download Siege and get it installed on our machine using the
following steps:

1.	 Let's start by downloading Siege from the project's main website. Fire up a terminal
and enter the following command to grab the file:
$ curl -O http://download.joedog.org/siege/siege-3.0.7.tar.gz

Version 3.0.7 was the latest one at the time of writing this book. There
might be a newer version available; each release is documented at
http://www.joedog.org/siege-home/.

2.	 Now that it's downloaded, we'll need to unpack the tar file:
$ tar xzvf siege-3.0.7.tar.gz

$ cd siege-3.0.7

3.	 We're now ready to install Siege. Let's run the following commands to complete
the installation:
$./configure

$ make

$ make install

Are the commands not working? Make sure you're in the
siege-3.0.7 directory before running them.

4.	 We should now have Siege installed. We can verify our installation by trying to
run Siege:

$ siege

If this is successful, we will see help information printed on our screen. We're now
ready to start running load tests with Siege.

Having trouble with installation? Take a look at the INSTALL file in the root
directory of the Siege download. It has more detailed instructions on the
installation and some basic information on troubleshooting.

Chapter 6

103

How to do it…
We can now start load testing our application from the command line using Siege by
performing the following steps:

1.	 For our first test, let's pass the URL of our application to Siege, and it will start a test
using its default settings. Siege will begin flooding our app with requests immediately.
We can stop the requests at any time by pressing Ctrl + C:

To not affect performance for real users, it's best to run
load tests in a staging environment.

$ siege http://your-app-name.herokuapp.com

** SIEGE 3.0.7

** Preparing 15 concurrent users for battle.

The server is now under siege...

HTTP/1.1 200 0.10 secs: 16802 bytes ==> GET /

HTTP/1.1 200 0.09 secs: 16817 bytes ==> GET /

HTTP/1.1 200 0.10 secs: 16823 bytes ==> GET /

HTTP/1.1 200 0.16 secs: 16835 bytes ==> GET /

HTTP/1.1 200 0.11 secs: 16842 bytes ==> GET /

HTTP/1.1 200 0.11 secs: 16838 bytes ==> GET /

HTTP/1.1 200 0.11 secs: 16837 bytes ==> GET /

HTTP/1.1 200 0.11 secs: 16818 bytes ==> GET /

HTTP/1.1 200 0.11 secs: 16831 bytes ==> GET /

HTTP/1.1 200 0.10 secs: 16818 bytes ==> GET /

HTTP/1.1 200 0.10 secs: 16827 bytes ==> GET /

HTTP/1.1 200 0.10 secs: 16808 bytes ==> GET /

HTTP/1.1 200 0.11 secs: 16815 bytes ==> GET /

^C

Lifting the server siege... done.

Transactions: 34 hits

Availability: 100.00 %

Elapsed time: 1.90 secs

Data transferred: 0.28 MB

Response time: 0.11 secs

Load Testing a Heroku Application

104

Transaction rate: 17.89 trans/sec

Throughput: 0.15 MB/sec

Concurrency: 2.05

Successful transactions: 44

Failed transactions: 0

Longest transaction: 0.16

Shortest transaction: 0.05

After stopping Siege, we'll see a summary of our test. The key metrics for us to look at
will be Transaction Rate and Response Time. By comparing these two metrics
across tests, we will be able to easily see how the increased traffic is affecting our
application's performance.

2.	 Siege has a resource file that stores its configuration settings. We can find out where
the resource file is stored with the -C flag:
$ siege -C

CURRENT SIEGE CONFIGURATION

Mozilla/5.0 (apple-x86_64-darwin14.0.0) Siege/3.0.7

Edit the resource file to change the settings.

--

version: 3.0.7

verbose: true

quiet: false

debug: false

protocol: HTTP/1.1

get method: HEAD

connection: close

concurrent users: 15

time to run: n/a

repetitions: n/a

socket timeout: 30

accept-encoding: gzip

delay: 1 sec

internet simulation: false

benchmark mode: false

failures until abort: 1024

named URL: none

Chapter 6

105

URLs file: /usr/local/etc/urls.txt

logging: true

log file: /usr/local/var/siege.log

resource file: /usr/local/etc/siegerc
timestamped output: false

comma separated output: false

allow redirects: true

allow zero byte data: true

allow chunked encoding: true

upload unique files: true

In this example, our Siege resource file is located at /usr/local/etc/siegerc.
Going forward, we will be editing this file to make configuration changes to Siege.

3.	 Let's set the runtime of our next test to 1 minute. We can do this by opening /usr/
local/etc/siegerc and adding the following code:
time = 1m

4.	 Now, let's run the same command as we did earlier. This time it will run for 1 minute:
$ siege http://your-app-name.herokuapp.com

Instead of modifying the resource file, we can also set the runtime directly
in the command, using the t flag:
$ siege http://your-app-name.herokuapp.com -t 1m

5.	 Our current test is simulating 15 concurrent users. Let's put more stress on our
application by increasing the number of users to 25. We can use either the -c flag
in the Siege command or add concurrent=25 to the resource file. Let's try it here
using the flag:
$ siege http://your-app-name.herokuapp.com -c 25

This can be fairly taxing for some applications. It's possible that
we'll see failures at this point.

Load Testing a Heroku Application

106

6.	 We can experiment by adjusting both the concurrent users and the time of the load
test. With high enough values, we will be able to overwhelm our Heroku application.
If our application fails, we'll start seeing H11 (backlog too deep) or H12 (request
time out) errors.

The next command should easily overwhelm an application that runs on only
one dyno:
$ siege http://your-app-name.herokuapp.com -c 600 -t 1m

We should quickly start seeing connection errors from Siege that look like the
following code:
[error] socket: read error Connection reset by peer sock.c:479:
Connection reset by peer

This is great because it gives us an idea of the upper limit our application can handle.
We now have a baseline that we can work on beating by optimizing our application.

How it works…
Siege floods our application with concurrent HTTP requests. This simulates what it is like to
have a surge of traffic visit our application. It isn't necessarily the most realistic load test but
does provide us with a quick way to load test from our own machine. One of the key metrics
that Siege reports is concurrency. Concurrency is calculated by taking the total number of
requests sent and dividing it by the number of seconds that the test ran. This gives us the
average number of requests our application was serving in parallel.

We can use Siege to quickly compare the performance of different dyno formations. By
experimenting with the number and size of our dynos, we can get an idea of the costs
associated with different levels of performance.

See also
We've just begun with Siege; move on to the next recipe to learn about more advanced
configurations. You can also refer to the following:

ff The Siege home page at http://www.joedog.org/siege-home/

ff Siege FAQ at http://www.joedog.org/siege-faq/

Chapter 6

107

Configuring complex load tests with Siege
In the previous recipe, we learned how to install Siege, configure it, and run our first tests.
Siege has many more configuration options that we can use to create more realistic load
tests. In this recipe, we will learn how to have Siege attack multiple URLs in our application,
as well as send POST requests. We'll see how to randomize the requests that get sent to
make it mimic real-life scenarios more closely.

How to do it…
Let's fire up a terminal to get started by performing the following steps:

1.	 We can configure Siege to attack more than a single URL by editing Siege's URL file.
To find out where this file is stored, we'll need to check our configuration:
$ siege -C

CURRENT SIEGE CONFIGURATION

Mozilla/5.0 (apple-x86_64-darwin14.0.0) Siege/3.0.7

Edit the resource file to change the settings.

--

version: 3.0.7

verbose: true

quiet: false

debug: false

protocol: HTTP/1.1

get method: HEAD

connection: close

concurrent users: 15

time to run: n/a

repetitions: n/a

socket timeout: 30

accept-encoding: gzip

delay: 1 sec

internet simulation: false

benchmark mode: false

failures until abort: 1024

named URL: none

Load Testing a Heroku Application

108

URLs file: /usr/local/etc/urls.txt

logging: true

log file: /usr/local/var/siege.log

resource file: /usr/local/etc/siegerc

timestamped output: false

comma separated output: false

allow redirects: true

allow zero byte data: true

allow chunked encoding: true

upload unique files: true

2.	 Now that we know where our URL's file is, we can add a couple of different URLs to it
to test different parts of our application.

Siege will send a GET request to each of these URLs. Each URL needs to be
separated by a new line:
http://your-app-name.herokuapp.com/

http://your-app-name.herokuapp.com/posts

http://your-app-name.herokuapp.com/pages/about

Once the URLs are added, we can run Siege, and we'll see that it sends requests to
the different pages we listed.

Remember that the -c flag defines the concurrent users, and the -t
flag is the length of the test.

Run the following command:
$ siege -c 100 -t 30s

HTTP/1.1 200 0.17 secs: 15633 bytes ==> GET /posts

HTTP/1.1 200 0.14 secs: 15633 bytes ==> GET /posts

HTTP/1.1 200 0.13 secs: 2638 bytes ==> GET /

HTTP/1.1 200 0.12 secs: 2780 bytes ==> GET /pages/about

HTTP/1.1 200 0.07 secs: 2779 bytes ==> GET /pages/about

HTTP/1.1 200 0.08 secs: 2779 bytes ==> GET /pages/about

HTTP/1.1 200 0.15 secs: 15633 bytes ==> GET /posts

HTTP/1.1 200 0.09 secs: 2636 bytes ==> GET /

HTTP/1.1 200 0.09 secs: 2779 bytes ==> GET /pages/about

Chapter 6

109

HTTP/1.1 200 0.11 secs: 2780 bytes ==> GET /pages/about

HTTP/1.1 200 0.16 secs: 15633 bytes ==> GET /posts

HTTP/1.1 200 0.08 secs: 2779 bytes ==> GET /pages/about

From the output of the test, we can see that Siege sent requests to each of the
URLs in our URL's file. With this, we can create load tests that are little closer to
the real-world usage of our application.

3.	 We can have Siege randomize the order in which it hits each URL using the
Internet flag.

Let's try the same test again, but with the -i flag:

$ siege -i -c 100 -t 30s

4.	 Now that we are flooding our application with random GET requests, let's add a POST
request that will stress it even further.

We'll need a URL in our application that responds to a POST request. A good example
will be somewhere in the application where the user submits some data. We can set
up Siege to send this data.

Let's open up our URL's file and add another line to it in the following format:
http://your-app-name.herokuapp.com/posts/new POST firstname=Aaron
content=Test

The end of the line contains any query parameters that our application needs
to complete the request. In this example, the application needs two variables
to complete the request: firstname and content.

The parameters for the POST request will depend on the specific
application. It might take a few attempts to get it right. Siege will display
the response code, and the -v flag can be used to see a more verbose
output to debug.

5.	 Let's run this test again with our new POST request added to the file:
$ siege -i -c 100 -t 30s
HTTP/1.1 200 0.18 secs: 16430 bytes ==> GET /posts

HTTP/1.1 201 0.08 secs: 1334 bytes ==> POST http://your-app-name.
herokuapp.com/posts/new POST firstname=Aaron content=Test

HTTP/1.1 200 0.22 secs: 16430 bytes ==> GET /posts

HTTP/1.1 200 0.08 secs: 2625 bytes ==> GET /

In our test output, we will now see that Siege is making POST as well as GET requests.

Load Testing a Heroku Application

110

While a load test is running, it can be useful to watch our application's
logs. To do so, open up another terminal window and run $ heroku
logs --tail --app application_name.

How it works…
We're now able to configure Siege to complete more complex tests for us. Siege is highly
configurable through both its configuration file and URL file. We've learned enough here;
we will now be able to cover most use cases of Siege to load test.

We can get the most out of this by running our tests for long time periods and observing how
our monitoring services react to the stress of the load test. We should be viewing CPU and
memory usage in Librato and examining slow transactions in New Relic to take full advantage
of our load-testing efforts.

Load testing from the cloud with Blitz.io
To load test on a larger scale, we'll need to use a cloud-based service that is capable of
sending a massive volume of concurrent requests to our application. Blitz.io is one of the
leading cloud load-testing tools. It is highly configurable and allows us to send requests from
multiple locations throughout the world. With Blitz, we can more closely imitate real-user
traffic by ramping up the number of visitors over a period of time. This allows us to see the
upper limit of our current infrastructure. Having this knowledge allows us to prepare for any
events where we will be expecting a large volume of visitors.

Getting ready
Before we start load testing with Blitz, we'll need to install the add-on using the
following steps:

1.	 Let's open up a terminal and navigate to the Heroku application that we want to load
test. Then, we can add Blitz by running the following command:
$ heroku addons:add blitz

2.	 After installing the add-on, we can use the open command to launch the Blitz
dashboard. We'll see that our Heroku application has already been set up to
load test:
$ heroku addons:open blitz

Chapter 6

111

How to do it…
Blitz.io is very developer-focused. In its user interface, we'll see that it has two different
versions: a simple interface and a more advanced one that closely mimics cURL commands.
We'll be using the simple interface here. It has all of the same capabilities of the cURL
interface and is easier to learn.

There are three types of tests we can perform. A sprint sends a single request to our
application and reports back the response time. A rush is a load test that simulates a large
volume of concurrent users who visit our application. A performance test is a single request
that loads our application in a browser and shows a breakdown of all the HTTP requests made
to load the page. This is done as follows:

1.	 To start, let's open the Blitz dashboard it if it isn't already open:
$ heroku addons:open blitz

2.	 Now that we're at the dashboard, let's click on the silver play button to start creating
our first test.

3.	 For our first test, let's run a simple sprint to make sure everything is working. We can
do this by clicking in the URL text area and selecting our authorized domain. It should
be prepopulated for us. Then, let's select SPRINT and click on the large arrow button
to start the test.

Notice :80 at the end of the URL. This is the port number for the application.
Standard HTTP requests use port 80. HTTPS requests use port 443.

Load Testing a Heroku Application

112

4.	 Once we have successfully completed a sprint, we can try out our first load test by
running a rush. With a rush, we are able to specify the starting and ending numbers
of concurrent users who visit our app. This is meant to simulate a sudden increase
in traffic. If our application is running on a single dyno, the default setting of 250 is
very likely to overwhelm our application. Fifty users is a more reasonable setting for
our first test.

As the load test runs, we'll see a graph of how our application responds to the
increased load. These results will be saved to our account so that we can access
them again at any time. It might be helpful to fill in the MY NOTES section with details
of the number and size of dynos that were present while testing. It makes it easier to
go back later on and remember exactly what was tested.

5.	 We should keep running rushes until we find our application's upper limit. This will
give us a baseline for performance; we can compare this baseline as we work on
optimizing our application.

Chapter 6

113

How it works…
Blitz is similar to Siege in that it floods our application with web requests. The advantage of
using Blitz over Siege is in the capacity, location, and ease of use. Blitz can run larger load
tests than Siege and can test from multiple locations throughout the world. This makes it easy
to see how our application's response time differs from different regions.

In this recipe, we just did a basic sprint and rushed to get started. Blitz can do more advanced
tests that can easily be set up from the same screen. We can run multistep tests that send a
variety of HTTP requests to our application in an effort to model real user activity more closely.

See also
ff The Blitz documentation is very useful when getting started or trying to implement more

complex scenarios. Take a look at https://www.blitz.io/docs/overview.

Testing real-user scenarios with Load
Impact

So far, we have explored how to push our application to the brink of failure by attacking it
with massive floods of concurrent requests. The load tests created with Siege and Blitz are
helpful in finding performance bottlenecks in our application, but they do not exactly replicate
real-world situations. Normal site usage will usually follow a few different patterns. For
example, let's imagine a typical e-commerce web application. There are probably three main
usages of the application. Ninety percent of the application's users are most likely browsing
the home page or the product catalog. Another 5 percent of the users are going through the
checkout process, and the final 5 percent might be viewing order or account information. By
recreating these scenarios, we can get an accurate view of how our application will behave
for real users.

In this recipe, we will be introduced to Load Impact, a load-testing tool that will allow us to
mimic real-world traffic by creating and testing different user scenarios.

Getting ready
To begin, we'll need to set up a Load Impact account using the following steps:

1.	 Let's head over to http://www.loadimpact.com and sign up.

2.	 We'll use Google Chrome to set up our Load Impact scenarios. Load Impact
has a great Chrome extension that makes it easy to record user scenarios in
our browser. We can install it through the Chrome store at https://chrome.
google.com/webstore/detail/load-impact-user-scenario/
comniomddgkfgfaebhidfgcjgoecbbda.

Load Testing a Heroku Application

114

3.	 We'll need to activate the Chrome extension by entering our Load Impact API token.
We can get the key by going to our account page (https://loadimpact.com/
account) and clicking on Generate a new token.

4.	 Now that the Chrome extension is activated, we're ready to start
generating scenarios.

How to do it…
We'll start by using the Load Impact Chrome extension to create our first load test scenario by
performing the following steps:

1.	 Let's open up Chrome and navigate to the web application we want to load test. Once
we're on the page, we can start generating a scenario by opening the Load Impact
extension and clicking on Start Recording.

2.	 Now, we can start using our application, and the Chrome extension will record
everything we do in the browser. Load Impact will repeat these steps later during our
load test. Once we're done with the recording, we'll need to open the extension again
and click on Stop.

3.	 Once the recording is finished, we'll be brought to a page that shows our actions
translated into code. Let's give a descriptive name to our scenario and save it:

We can repeat these steps to create multiple scenarios for use in our
load tests. We're not limited to using one scenario.

Chapter 6

115

Scenarios are written in Lua; to learn more about how to write scenarios,
take a look at Load Impact's documentation on Lua (http://support.
loadimpact.com/knowledgebase/articles/174637-lua-
quick-start-guide).

4.	 Now that we have at least one scenario set up, we can start testing our application.
Let's navigate to the Load Impact dashboard (https://loadimpact.com/test/
list); go to Test configurations and click on Create test configuration.

5.	 We will need to fill in our application's URL and then click on Load test execution
plan. Here, we will select the length of our test and the maximum number of virtual
users (VUs) that Load Impact will use to run through our scenarios.

Load Testing a Heroku Application

116

6.	 Next, we'll need to select the scenarios we want our test to use. We will be able to
pick from any of the scenarios we generated earlier with the Chrome extension.
We can also specify the percentage of users for each scenario as well as the
geographical origin of the traffic.

7.	 Finally, we can start our test by scrolling to the bottom of the page and clicking
on Create test configuration and start test. Our test will start running, and we'll
immediately see results populating the screen.

Chapter 6

117

While running load tests, remember to keep an eye on your monitoring
tools. They will provide insight into how the application is responding
and help point out areas for improvement.

How it works…
Load Impact is as close as we can get to simulating real users on our Heroku application.
Most load-testing tools send simple HTTP GET requests to our application. This is similar to
using cURL on the command line to send a request. Load Impact tests our application by
simulating a user's browser session and then automating the user's interactions with
our application.

We used the Chrome extension to generate basic scenarios to test. If we view the scenarios
we created, we'll see that they are written in Lua. We can use these scenarios as a starting
point to learn to write more advanced tests. Load Impact is not used exclusively to load test;
it can also be used to verify the functionality of our web application and be included in our
testing and deployment process.

See also
ff Check out Load Impact's support site at http://support.loadimpact.com/ for

details on how to create more advanced testing scenarios

ff For help with troubleshooting common issues, take a look at Load Impact's
documentation at http://support.loadimpact.com/knowledgebase/
articles/173855-problems-when-running-load-tests

7
Optimizing Ruby Server
Performance on Heroku

In this chapter, we will cover:

ff Setting up and running Unicorn on Heroku
ff Monitoring and tuning Unicorn's memory usage
ff Tuning Unicorn's backlog for Heroku
ff Timing out long requests with Unicorn
ff Setting up and running Puma on Heroku
ff Running Puma with Rubinius for parallelism

Introduction
We have several great options to choose from when picking a web server to run our Ruby
applications. Newer developers will typically start out using WEBrick, which is the default
web server for Rails and Rack applications. WEBrick is great when developing or testing an
application, but it falls short quickly when we need to serve real production traffic. The main
problem with using WEBrick is its lack of concurrency. It's only able to process a single request
at a time. This is very limiting and forces us to spin up multiple dynos to handle even a modest
amount of traffic.

In this chapter, we will be introduced to Unicorn and Puma, two web servers that are great
options to run production-level Ruby applications on Heroku. Each provides us with the
concurrency we need to run a high-traffic web application. Depending on our application's
memory footprint, both Unicorn and Puma will provide us with a performance boost over
WEBrick; this boost will range from 2 to 4X. This results in us being able to serve more
requests per dyno, reducing the total number of dynos that we need to run our applications.

Optimizing Ruby Server Performance on Heroku

120

Setting up and running Unicorn on Heroku
For Ruby applications on Heroku, Unicorn should be our default choice when picking a web
server. When Unicorn starts up, it forks our application's process. Each fork is known as a
worker process. Each one of these processes are able to respond to web requests. The
more processes we run, the more concurrency will be available on a single dyno.

As each worker is its own process, it has its own memory space, so we do not need to
worry about our application's code being thread safe. This makes Unicorn a good choice
for developers who are unsure whether their application can handle threading.

How to do it…
To begin, we will need to set up our existing Rails application to run Unicorn.

If you'd like to skip this setup, you can use an example application
available on GitHub at https://github.com/mscoutermarsh/
unicorn-rails-heroku. This application is already set up to use
Unicorn on Heroku.

Perform the following steps:

1.	 First, we'll need to add Unicorn to our gemfile. Let's open up our project's gemfile and
add the following line:
gem 'unicorn'

2.	 Next, we'll need to run bundle install:
$ bundle install

3.	 We'll need to set up a configuration file specific to Unicorn. Let's create a new file in
config/unicorn.rb and paste it in the following code:
config/unicorn.rb

worker_processes Integer(ENV['WEB_CONCURRENCY'] || 3)

timeout Integer(ENV['WEB_TIMEOUT'] || 15)

preload_app true

before_fork do |server, worker|

 Signal.trap 'TERM' do

https://github.com/mscoutermarsh/unicorn-rails-heroku
https://github.com/mscoutermarsh/unicorn-rails-heroku

Chapter 7

121

 puts 'Unicorn master intercepting TERM and sending myself QUIT
instead'

 Process.kill 'QUIT', Process.pid

 end

 defined?(ActiveRecord::Base) and

 ActiveRecord::Base.connection.disconnect!

end

after_fork do |server, worker|

 Signal.trap 'TERM' do

 puts 'Unicorn worker intercepting TERM and doing nothing. Wait
for master to send QUIT'

 end

 defined?(ActiveRecord::Base) and

 ActiveRecord::Base.establish_connection

end

This config file is also available on GitHub at https://github.com/
mscoutermarsh/unicorn-rails-heroku/blob/master/
config/unicorn.rb.

4.	 We will need to tell Heroku how to start our application that runs Unicorn. We will
do this using a Procfile. In the root directory of our project, create a file named
Procfile with the help of the following line:
web: bundle exec unicorn -p $PORT -c ./config/unicorn.rb

5.	 Next, let's commit our changes to Git:
$ git add .

$ git commit -m 'setting up unicorn'

6.	 The last step is pushing this application to Heroku. If this is an existing production
application, we should first try it out on a staging or testing environment. Changing
web servers is a major step and issues may pop up:
$ git push heroku master

https://github.com/mscoutermarsh/unicorn-rails-heroku/blob/master/config/unicorn.rb
https://github.com/mscoutermarsh/unicorn-rails-heroku/blob/master/config/unicorn.rb
https://github.com/mscoutermarsh/unicorn-rails-heroku/blob/master/config/unicorn.rb

Optimizing Ruby Server Performance on Heroku

122

7.	 Now that it is deployed, let's take a look at our running processes. We should see that
our web dynos are running Unicorn:
$ heroku ps

Process State Command

------- --------- ------------------------------------

web.1 up for 6s bundle exec unicorn -p $PORT -c ./..

How it works
The configuration file we defined in this recipe is what Unicorn's master process uses to handle
forking and manage our Unicorn workers. There are two blocks of code that we should pay
particular attention to: before_fork and after_fork. These blocks run before and after
the forking process. In our configuration, we use these blocks to manage our application's
database connections. This ensures that we are not leaving extra connections open or starting
a new process without establishing a new connection. In this example, we are only dropping
and creating connections for ActiveRecord. If our application establishes connections to other
services, we might need to add logic here to handle these connections as well.

Each Unicorn process will use its own database connection, which is
important for us to remember if our database has small number of
available connections.

See also
ff To learn more about Unicorn, visit the project's home page at http://unicorn.

bogomips.org/

Monitoring and tuning Unicorn's memory
usage

Our main constraint when running multiple Unicorn workers is the memory available on
the dyno. A typical application will use somewhere between 50 and 200 MB of memory
per process. We want to configure our application to use between 50 to 70 percent of the
available memory on a dyno. This gives our processes room to grow while still using most of
the resources we are paying for.

In this recipe, we will be learning how to determine how much memory our application uses
per Unicorn process. We will then be tweaking our configuration to maximize concurrency
within a single dyno.

http://unicorn.bogomips.org/
http://unicorn.bogomips.org/

Chapter 7

123

We want to avoid running too close to 100 percent memory usage.
If we run out of memory, our dyno will start using swap. This should
be avoided at all costs. Using any swap will greatly decrease the
performance of the dyno and response times will skyrocket.

How to do it…
To get started, let's open up a terminal and navigate to the directory with our Unicorn
application using the following steps:

1.	 First, we need to determine how much memory each Unicorn process is using.
We can do this by enabling log-runtime-metrics:
$ heroku labs:enable log-runtime-metrics

$ heroku restart

2.	 We can now take a look at our logs, and we'll see our memory usage printed for
each dyno:
$ heroku logs --tail

sample#memory_rss=230.39MB

In the logs, we'll see different measurements for memory. We might
want to look at memory_rss, which is the amount of RAM being
used. Other values, such as memory_total, also include any swap.
Memory_swap should always be zero; if it's not, we need to reduce
the number of workers we're using.

3.	 Next, we need to know how many Unicorn processes we currently have running.
We can do this by looking at the WEB_CONCURRENCY configuration variable:
$ heroku config:get WEB_CONCURRENCY

=> 3

If WEB_CONCURRENCY is not set, Unicorn will run three processes by
default. The default is set in our unicorn.rb initializer.

4.	 Now that we know our dyno's memory usage and how many processes we're running,
we can do a little math to determine how much RAM is used by a single process.
In this example, we're running three unicorn workers, and the application is using
230 MB of RAM. So, each process uses around 77 MB of RAM.

Optimizing Ruby Server Performance on Heroku

124

Memory usage will vary between a cold and warm application. We
should check memory usage after a dyno has been running and
processing requests for a while.

5.	 We're now ready to adjust our application's concurrency. For a 1X dyno, we want to
target using no more than 375 MB of the total memory. For a 2X dyno, we can go up
to 725 MB.

As this example application is using 77 MB per process and we're using 1X dynos,
4 Unicorn processes should get us to around 308 MB of RAM; this is as close as we
can get to 375 MB for this application.

6.	 Let's adjust the application's concurrency now by changing the configuration variable:
$ heroku config:set WEB_CONCURRENCY=4

7.	 Now that we've adjusted the concurrency, we should continue to monitor our dyno's
memory usage. In this example, we've left it with plenty of room to grow, but it's a
good practice to keep an eye on it. Tools such as New Relic and Librato make it easy
to monitor memory usage over longer periods of time.

How it works…
In our config/unicorn.rb file, we set the unicorn concurrency to either the value of the
WEB_CONCURRENCY environment variable or to a default value of 3. By adding this to our
Unicorn configuration, it makes it easy to adjust the concurrency without having to change any
code. After any configuration change, Heroku will restart all of our dynos, and they will boot up
using the new settings. These settings are also tied to release management; this allows us to
roll back and have a record of any and all configuration changes to our application.

It will take a couple attempts to get the correct Unicorn concurrency set for an application. After
changing it, we should watch closely to see how it reacts in production use. Some applications
may have memory leaks that slowly expand the processes' size over time. When running near
the maximum memory threshold for a dyno, memory leaks become more dangerous and put
us as risk for swap. Heroku dynos are replaced by new dynos every 24 hours, giving us some
protection from slow memory leaks. It can be useful to set up memory monitoring with Librato,
to monitor memory usage over a 24-hour period to ensure that we do not get close to that limit.

See also
ff For more information on monitoring memory usage, take a look at the

Monitoring Dyno Performance with Librato recipe in Chapter 6, Load Testing a
Heroku Application

Chapter 7

125

Tuning Unicorn's backlog for Heroku
A single dyno that runs Unicorn can serve as many concurrent requests as it has Unicorn
workers available. A dyno that runs four Unicorn workers can serve a maximum of four
requests at a time. If our dyno receives more than four concurrent requests, it will add the
extra requests to a queue and process them once a worker is available.

This can be problematic on Heroku due to how Heroku routes requests to dynos. Heroku's
router sends requests randomly to any dyno that does not have a full backlog. Ideally, we'd
like Heroku to route requests to the dyno that is most capable of serving the request quickly.
The default setting for Unicorn's backlog is 1024 requests. This means that a Unicorn dyno
can have a queue of 1,024 requests before Heroku will stop sending requests to it.

In this recipe, we will learn how to reduce our Unicorn backlog to keep requests from piling up
on a single dyno and have Heroku reroute our requests to a dyno with available capacity.

How to do it…
To start, let's open up a terminal and navigate to our Rails project running Heroku. We will be
editing our config/unicorn.rb file to change Unicorn's backlog using the following steps:

1.	 In our unicorn.rb file, let's find the line that defines our request timeout:
timeout Integer(ENV['WEB_TIMEOUT'] || 15)

Then, after this, let's add the following code. This is what will set our Unicorn backlog:
listen ENV['PORT'], backlog: Integer(ENV['UNICORN_BACKLOG'] || 50)

To see an example on GitHub, take a look at https://github.com/
mscoutermarsh/unicorn-rails-heroku/blob/backlog_
tuning/config/unicorn.rb#L5.

2.	 Next, we can update our Procfile as we are now specifying the port in our Unicorn
config file. Let's replace what we have for our web process with the following code:
web: bundle exec unicorn -c ./config/unicorn.rb

3.	 That's it for code changes. Now, let's commit the changes and push them up to
Heroku:
$ git add Procfile

$ git add config/unicorn.rb

$ git commit -m 'Adding backlog configuration to Unicorn'

$ git push heroku master

https://github.com/mscoutermarsh/unicorn-rails-heroku/blob/backlog_tuning/config/unicorn.rb#L5
https://github.com/mscoutermarsh/unicorn-rails-heroku/blob/backlog_tuning/config/unicorn.rb#L5
https://github.com/mscoutermarsh/unicorn-rails-heroku/blob/backlog_tuning/config/unicorn.rb#L5

Optimizing Ruby Server Performance on Heroku

126

Be careful! Any change to the web server can be risky. Make sure that you
test it in a staging environment before pushing it to production.

4.	 In the preceding code, we set our default backlog to 50. We also conveniently added
a method to control the backlog via an environment variable so that we can tweak
our configuration without making any more code changes. Now, we can adjust our
backlog setting with the following command:
$ heroku config:set UNICORN_BACKLOG=16

How it works…
When Unicorn's backlog reaches its maximum length, it refuses requests from the Heroku
router until it is able to accept them again. This will make Heroku reroute the request to
another one of our dynos.

Under very high traffic, it is possible for all of our dynos to be overwhelmed with requests. If all
of our dynos have a full backlog, Heroku will continue trying to route the request. However, it
will eventually stop trying and return an H11 "Backlog too deep" error.

If we have log monitoring enabled through a service such as LogEntries, we'd be alerted
immediately that a user received this error, and we could scale up our dynos to respond to the
increase in traffic. This situation will most likely be very rare, and if we have proper monitoring
in place, an increase in traffic should not catch us by surprise.

Setting our Unicorn backlog to a low number helps us ensure that our users are receiving
a consistent response time from our application. Their requests will never be stuck waiting
behind a large queue of other users, and Heroku will know which dynos cannot handle any
more requests.

Finding the correct backlog setting can be tricky. It's best to be very aggressive and start with
a low number (such as 16). The New Relic add-on allows us to see the amount of time our
requests are spend in queue. This gives us visibility into how quickly Heroku is able to route
requests to our dynos. By running load tests against multiple dynos, we can monitor the
queue time to learn what backlog setting works best for our application.

See also
ff To learn more about tuning Unicorn, refer to Unicorn's documentation at

http://unicorn.bogomips.org/TUNING.html.

ff In this recipe, we used the listen method to configure our backlog setting. To read
more about listen, take a look at http://unicorn.bogomips.org/Unicorn/
Configurator.html#method-i-listen.

http://unicorn.bogomips.org/TUNING.html
http://unicorn.bogomips.org/Unicorn/Configurator.html#method-i-listen
http://unicorn.bogomips.org/Unicorn/Configurator.html#method-i-listen

Chapter 7

127

Timing out long requests with Unicorn
A web application's throughput is dependent on the number of concurrent requests it can
serve as well as how quickly it can serve each of these requests. An application will be able to
handle most web requests very quickly and move on to serving the next request. However, what
happens if a single request takes 10, 20, or even 30 seconds to complete? The Unicorn worker
processing that request will be unable to take on another one until its current long-running
request is complete. Under normal traffic, this would probably be fine. Another Unicorn worker
will pick up the incoming requests, but it becomes a problem when an application needs to be
processing a high number of requests very quickly.

In this recipe, we will learn how to timeout long-running requests to keep them from tying up
resources and hurting our application's throughput.

How to do it…
To get started, let's open up a terminal and navigate to our Rails application that runs Unicorn
by performing the following steps:

1.	 For this, we will be taking advantage of the environment variables we previously
added to our config/unicorn.rb file. Let's open the file and take a look at it.
Take a look at the following line:
timeout Integer(ENV['WEB_TIMEOUT'] || 15)

This line sets the maximum running time for a request. Here, we are setting it to the
value of the WEB_TIMEOUT environment variable, or if this is not set, it defaults to
15 seconds.

2.	 To change our timeout, all we need to do is update the environment variable.
Heroku's own timeout is set to 30 seconds, so let's make Unicorn stop requests
a little sooner than this:
$ heroku config:set WEB_TIMEOUT=25

How it works…
Heroku will show the user an error message for any request that takes longer than 30 seconds
to respond. Even though the user has already received a response, the request could still be
processing on the dyno. This takes up resources and is useless since the user will never see the
result. A timeout period of 30 seconds is generously long to begin with. Our applications should
never have requests processing for that long; it ties up resources, and having more than one of
these requests running concurrently can bring our application to a halt.

Unicorn's timeout will stop the actual processing of the request. This allows us to stop the
process and return an error message simultaneously.

Optimizing Ruby Server Performance on Heroku

128

Stopping requests in this method should be thought of as a safety switch for our application.
It should be very rare that we ever have long-running requests, but just in case it does
happen, we can have Unicorn stopping them from causing too much damage.

See also
ff For more information on how Heroku handles timeouts, take a look at the

documentation on the H12 error at https://devcenter.heroku.com/
articles/error-codes#h12-request-timeout

Setting up and running Puma on Heroku
Puma is a lightweight Ruby web server that was built for concurrency. It is a great alternative
to Unicorn and works well on Heroku. Like Unicorn, Puma allows us to get more performance
out of our dynos by responding to multiple requests simultaneously. It does this while
maintaining a smaller memory footprint than Unicorn and has shown very impressive
benchmarks when load tested.

The primary difference between Puma and Unicorn is that Puma will run multiple threads within
a single process. This is an important distinction, because while processes have their own
unique memory space, threads do not. This means our application's code must be thread safe.

The danger of code that is not thread safe is that separate web requests could be reading
and writing from the same memory. This can cause errors or, worse, display data that was
intended for another user.

How to do it…
To start, we'll need an existing Rails application running on Heroku. We'll modify it here to
run Puma.

If you need an application to try this out on, try taking our example Unicorn
application from https://github.com/mscoutermarsh/unicorn-
rails-heroku and converting it to run on Puma.

1.	 First, we'll need to add the Puma gem to our application's Gemfile. If we currently
have any other web server in our Gemfile (such as Unicorn), we'll have to delete it
since we're replacing it with Puma:
gem 'puma'

https://devcenter.heroku.com/articles/error-codes#h12-request-timeout
https://devcenter.heroku.com/articles/error-codes#h12-request-timeout
https://github.com/mscoutermarsh/unicorn-rails-heroku
https://github.com/mscoutermarsh/unicorn-rails-heroku

Chapter 7

129

2.	 Next, we'll run bundle install to download Puma and update Gemfile.lock:
$ bundle install

3.	 Now, we'll need to update our Procfile so that Heroku knows how to use
Puma when starting our application. Replace the existing web command with
the following code:
web: bundle exec puma -C config/puma.rb

If you were previously using Unicorn in this application, remember to
remove your Unicorn configuration file, config/unicorn.rb.

4.	 We'll need to create a new configuration file for Puma. Let's do this by creating a new
file in config/puma.rb. Paste it in the following code:
workers Integer(ENV['PUMA_WORKERS'] || 3)
threads Integer(ENV['MIN_THREADS'] || 1), Integer(ENV['MAX_
THREADS'] || 16)

preload_app!

rackup DefaultRackup

port = Integer(ENV['PORT'] || 3000)
backlog = Integer(ENV['PUMA_BACKLOG'] || 20)

bind "tcp://0.0.0.0:#{port}?backlog=#{backlog}"

environment ENV['RACK_ENV'] || 'development'

on_worker_boot do
 # worker specific setup
 ActiveSupport.on_load(:active_record) do
 config = ActiveRecord::Base.configurations[Rails.env] ||
Rails.application.config.database_configuration[Rails.env]
 config['pool'] = ENV['MAX_THREADS'] || 16
 ActiveRecord::Base.establish_connection(config)
 end
end

Optimizing Ruby Server Performance on Heroku

130

This file is also available on GitHub at https://github.com/
mscoutermarsh/puma_heroku_example/blob/master/
config/puma.rb.

5.	 Now that our configuration is all set, we can commit the changes and push them
up to Heroku. This is a major change, so we should test it out on a staging
application first:
$ git add config/puma.rb

$ git commit -am "Setting up application to run on Puma"

$ git push heroku master

To see a complete example application with the Puma setup for Heroku,
take a look at this project on GitHub at https://github.com/
mscoutermarsh/puma_heroku_example.

6.	 In the configuration file, there were references to environment variables that we can
use to tweak our Puma config:

�� PUMA_WORKERS: This refers to the number of processes that Puma
will spawn. A 1X dyno will usually be able to run around 2 to 4 of these,
depending on the memory usage of the application.

�� MIN_THREADS: This is the minimum number of threads that Puma will run
within a process. This allows Puma to give up resources when they are not all
being utilized. As our Heroku dynos are not shared by other applications, we
can set this to be the same as our maximum thread's value.

�� MAX_THREADS: This is the maximum number of threads that Puma will run
within a single process. Each additional thread has a small memory footprint,
but this can affect the total CPU usage. It's also important to note that the
application must be thread safe to run multiple threads.

�� PUMA_BACKLOG: This is the maximum number of requests that Puma can
have in a queue before it refuses more requests from Heroku's router. This
number should be low for applications that are running many dynos, as it
helps Heroku distribute requests more evenly.

We should set some initial values and then monitor our application's performance. We can
then easily tweak the values as needed by updating the environment variables:

$ heroku config:set MIN_THREADS=4 MAX_THREADS=4 PUMA_WORKERS=3 PUMA_
BACKLOG=25

https://github.com/mscoutermarsh/puma_heroku_example/blob/master/config/puma.rb
https://github.com/mscoutermarsh/puma_heroku_example/blob/master/config/puma.rb
https://github.com/mscoutermarsh/puma_heroku_example/blob/master/config/puma.rb
https://github.com/mscoutermarsh/puma_heroku_example
https://github.com/mscoutermarsh/puma_heroku_example

Chapter 7

131

Ruby's ability to handle threading is dependent on the specific Ruby
implementation we are using. To learn more about how the standard
MRI handles threading and what the alternatives are, take a look at the
Running Puma with Rubinius for parallelism recipe.

How it works…
Ruby web server performance is highly dependent on the application. Both Unicorn and
Puma are excellent choices to run on Heroku, and we should explore which works best for
our application. The key difference is that Puma has concurrency within each process. A
single Unicorn process can only respond to one request at a time. A single Puma process can
respond to multiple requests. This gives us higher concurrency within a single dyno. Memory
usage is primarily driven by the number of individual processes we are running rather than the
number of threads within the process. This gives Puma an advantage, as it's able to provide
concurrency within a single process.

For us to take advantage of Puma's threading, we need to ensure that our application is
thread safe. Rails 4 has thread safety enabled by default, but we also must check whether
our own code and the gems that we load are thread safe. For more information on thread
safety in Rails applications, visit this blog post from Remarkable Labs at http://blog.
remarkablelabs.com/2012/12/rails-4-is-thread-safe-by-default-rails-4-
countdown-to-2013.

See also
ff Performance benchmarks can be found on Puma's official website at

http://puma.io

ff For a third-party benchmark, refer to Ylan Segal's comparison of Unicorn and Puma
at http://ylan.segal-family.com/blog/2013/05/20/unicorn-vs-puma-
redux/

Running Puma with Rubinius for parallelism
The Puma web server was built for parallelism, but unfortunately, the standard MRI
implementation of Ruby is not. Rubinius is an implementation of Ruby that was built with the
purpose of solving MRI's concurrency problem. With Rubinius, we will be able to achieve true
parallelism in our application. Puma's threaded processes in combination with Rubinius can
give our application a huge performance boost. In this recipe, we will learn how to set up our
application to run on Rubinius.

http://blog.remarkablelabs.com/2012/12/rails-4-is-thread-safe-by-default-rails-4-countdown-to-2013
http://blog.remarkablelabs.com/2012/12/rails-4-is-thread-safe-by-default-rails-4-countdown-to-2013
http://blog.remarkablelabs.com/2012/12/rails-4-is-thread-safe-by-default-rails-4-countdown-to-2013
http://puma.io
http://ylan.segal-family.com/blog/2013/05/20/unicorn-vs-puma-redux/
http://ylan.segal-family.com/blog/2013/05/20/unicorn-vs-puma-redux/

Optimizing Ruby Server Performance on Heroku

132

How to do it…
To start, we'll need an existing Heroku application that is running on Puma. Specific directions
are available in the previous recipe, Setting up and running Puma on Heroku:

1.	 We'll need to install the latest version of Rubinius on our machine. Although there are
several Rubinius installation methods, the easiest one is through RVM:
$ rvm install rbx-2.2.6

At the time of writing this book, rbx-2.2.6 was the latest version. To ensure
that we're running the latest version, we can omit the version number from
the command and run $ rvm install rbx.

These Rubinius installation directions are specific to RVM; if we do not have
the RVM setup, we can visit https://rvm.io for more information.

For help with installation through RVM, visit https://rvm.io/
interpreters/rbx.

2.	 After the installation of Rubinius, we can verify that is installed correctly by checking
the version:
$ rvm use rbx

$ ruby -v

rubinius 2.2.6 (2.1.0 68d916a5 2014-03-10 JI) [x86_64-
darwin13.1.0]

3.	 Now that Rubinius is set up, we will need to edit our Gemfile to tell our application to
use it. We'll add the following line at the top of our Gemfile:
ruby '2.1.0', engine: 'rbx', engine_version: '2.2.6'

4.	 We'll need to run bundle install:
$ bundle install

5.	 We're now ready to deploy our application to Heroku. Let's commit it to Git and push
our changes:
$ git commit -am 'Setting up Rubinius'

$ git push heroku master

Fetching repository, done.

Counting objects: 7, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (4/4), done.

https://rvm.io
https://rvm.io/interpreters/rbx
https://rvm.io/interpreters/rbx

Chapter 7

133

Writing objects: 100% (4/4), 479 bytes | 0 bytes/s, done.

Total 4 (delta 3), reused 0 (delta 0)

-----> Ruby app detected

-----> Compiling Ruby/Rails

-----> Using Ruby version: ruby-2.1.0-rbx-2.2.6

-----> Installing dependencies using 1.6.3

 Ruby version change detected. Clearing bundler cache.

 Old: ruby 2.0.0p481 (2014-05-08 revision 45883)

 New: rubinius 2.2.6 (2.1.0 68d916a5 2014-03-10 JI)

During the deploy, we will see that Heroku will detect the change in Ruby versions and
will deploy using Rubinius instead.

6.	 As we now have parallelism within processes, we can reduce our Puma workers to
one. This will drastically lower our total memory usage:
$ heroku config:set PUMA_WORKERS=1

7.	 Now, we can try out our application that runs on Rubinius:
$ heroku open

For a complete working example of Rubinius on Puma, there is a Rubinius
branch on our Puma example project at https://github.com/
mscoutermarsh/puma_heroku_example/tree/rubinius.

How it works…
Ruby MRI (Matz's Ruby Interpreter) is the de facto implementation of the Ruby language.
It is almost certainly what we are currently using in all of our Ruby applications on Heroku.
Unfortunately, MRI is unable to execute Ruby code in separate threads in parallel. Only one
thread can execute Ruby at a time, and once this thread has completed its operation, another
thread will be able to use the CPU. This is why we commonly use web servers such as Unicorn
to deploy our applications in multiple processes so that we can achieve parallelism.

We can run processes in parallel because they use their own independent
memory space. Threads share memory space, and Ruby blocks parallelism
to avoid errors caused by separate threads that attempt to manipulate the
same data in memory.

https://github.com/mscoutermarsh/puma_heroku_example/tree/rubinius
https://github.com/mscoutermarsh/puma_heroku_example/tree/rubinius

Optimizing Ruby Server Performance on Heroku

134

Even though MRI cannot execute Ruby code in parallel threads, threading isn't completely
useless to us. MRI can still complete I/O tasks (such as HTTP and database requests) in
parallel. Since most web applications are I/O heavy, we can still see a performance boost
from running multiple threads. While one thread is waiting for an I/O task to complete,
another thread will be able to make use of the CPU.

The mechanism that stops parallelism in Ruby threads is known as the,
Global Interpreter Lock (GIL). After Version 1.9, it became known as the
Global VM Lock (GVL). They are essentially the same thing.

Rubinius is a Ruby implementation without a GIL. It was built to be thread safe and allow
parallel execution of Ruby code. It is a great companion for Puma and has a large and active
community behind it.

See also
ff The official Rubinius site at https://rubini.us

ff Rubinius on GitHub at https://github.com/rubinius/rubinius

ff Ruby, Concurrency, and You by Evan Phoenix at https://blog.engineyard.
com/2011/ruby-concurrency-and-you

ff Rails 4 and the Future of Web by Aaron Patterson at https://www.youtube.
com/watch?v=kufXhNkm5WU

https://rubini.us
https://github.com/rubinius/rubinius
https://blog.engineyard.com/2011/ruby-concurrency-and-you
https://blog.engineyard.com/2011/ruby-concurrency-and-you
 https://www.youtube.com/watch?v=kufXhNkm5WU
 https://www.youtube.com/watch?v=kufXhNkm5WU

8
Optimizing a Rails

Application on Heroku

In this chapter, we will cover:

ff Setting up a sample blogging app

ff Using Heroku Deflater to gzip assets

ff Serving assets from Amazon Web Services (AWS) Cloudfront

ff Adding memcached to a Rails application

ff Adding Redis to a Rails application

ff Implementing low-level caching in Rails

ff Caching rendered views

ff Aborting long requests with Rack::Timeout

ff Using a follower for read-only DB queries

Introduction
Fast applications drive more user engagement and a better experience. Every developer
wants their application to be highly responsive. Also, with the proliferation of mobile devices
on slower connections, we need to be more focused than ever on web performance.

But how do we do it? There is no single trick to have a fast application. It takes time and
a combination of different techniques to reduce our page load time. We must attack the
problem from different angles and optimize each layer within our applications stack. In this
chapter, you will learn how to optimize a Ruby on Rails application. You'll learn about asset
optimization, caching, and a few tricks that are specific to Heroku.

Optimizing a Rails Application on Heroku

136

Setting up a sample blogging app
In this recipe, we will set up a simple blogging application that we'll use throughout the rest of
the chapter. It's a simple Rails application that has had no performance enhancements. With
each recipe in this chapter, you'll learn different ways to make it faster.

Completed code samples for each recipe are available in the separate
branches of the project's GitHub repository at https://github.com/
mscoutermarsh/blogger-app.

How to do it…
Here, we will get the example application up and running on your local machine. We'll then
deploy it to Heroku. Let's begin by opening up a terminal using the following steps:

1.	 First, we'll need to get a copy of the source code by cloning the Git repository:
$ git clone https://github.com/mscoutermarsh/blogger-app.git

2.	 Next, let's navigate to the new directory and install the application's gems:
$ cd blogger-app

$ bundle install

This application uses a Postgres database; if you do not already
have Postgres installed on your machine, you'll need to make
sure that it's set up before continuing.

3.	 Next, we'll need to set up the application's database and run migrations. We can do
this with the following rake commands:
$ bundle exec rake db:create

$ bundle exec rake db:migrate

4.	 This application has some seed data to prepopulate your database; let's run it now:
$ bundle exec rake db:seed

5.	 Now, let's start up the application:
$ bundle exec rails s

6.	 If we open a browser and navigate to http://localhost:3000, we'll be able to
see the Blogger app running.

https://github.com/mscoutermarsh/blogger-app
https://github.com/mscoutermarsh/blogger-app

Chapter 8

137

7.	 Now that we have our application running locally, let's deploy it to Heroku. First, we'll
need to create a new application:
$ heroku create

We can optionally include an app name after create. If not,
Heroku will autogenerate one for us with the $ heroku create
app-name command.

8.	 To deploy, push the master branch to Heroku:
$ git push heroku master

9.	 Now that we've pushed our code, we'll need to run migrations and seed
the database:
$ heroku run rake db:migrate

$ heroku run rake db:seed

Heroku will autodetect that our application uses Postgres and
will set up a hobby-level database for us.

10.	 All that's left now is to open up our application to see it running:
$ heroku open

See also
ff Take a look at the GitHub repository for the Blogger app at https://github.com/

mscoutermarsh/blogger-app

Using Heroku Deflater to gzip assets
One of the quickest ways to increase web performance is to enable GNU Zip (gzip) for
our assets. It's a file compression format that can reduce the size of our HTML, CSS, and
JavaScript assets by up to 70 percent. It only takes a couple of minutes to be enabled. In this
recipe, you'll learn how this can be done.

Getting ready
Before adding gzip to our application, it can be interesting to run a benchmark so that we can
compare our application before and after the change.

We can do this in our browser with YSlow. For installation instructions, visit https://
developer.yahoo.com/yslow/.

https://github.com/mscoutermarsh/blogger-app
https://github.com/mscoutermarsh/blogger-app
https://developer.yahoo.com/yslow/
https://developer.yahoo.com/yslow/

Optimizing a Rails Application on Heroku

138

Once installed, we can run a test and then click on Statistics to see a pie chart that shows
our page weight.

Running this before and after will show what a huge impact gzip has on web performance.

How to do it…
All we need is one additional gem to start serving the gzipped assets on Heroku. Open a
terminal and navigate to our example application, the Blogger app, by performing the
following steps:

1.	 Open our Gemfile and add the following line:
gem 'heroku-deflater', group: :production

2.	 Now, run bundle install, commit our changes, and push them to Heroku:
$ bundle install

$ git commit -am 'Installing Heroku deflater to GZip assets'

$ git push heroku master

3.	 That's it! To finish up, let's open up our app and rerun the YSlow test. We will see a
drastic difference:
$ heroku open

How it works…
For the example Blogger application, here are the before and after results from YSlow.
Enabling gzip resulted in a 73 percent improvement!

Before:

Chapter 8

139

After:

The Heroku Deflater gem adds additional Rack middleware to our Rails application. When the
request for an asset comes into our application, the middleware will look for a gzipped version
of the asset. If it's available, it will serve it to the user.

If our application is using the asset pipeline, we are pretty much guaranteed to have the
gzipped assets available. During the precompile process, the asset pipeline automatically
creates gzipped versions for us.

See also
ff The example source code for this recipe is available at https://github.com/

mscoutermarsh/blogger-app/tree/gzip_assets

ff To learn more about how gzip works, visit https://developers.google.com/
speed/articles/gzip

ff The Heroku Deflater gem at https://github.com/romanbsd/heroku-
deflater

Serving assets from Amazon Web Services
(AWS) Cloudfront

We can drastically reduce the number of requests to our dynos by having all the static assets
of our application served by a Content Delivery Network (CDN). Static assets are the images,
CSS, and JavaScript used by our application. Using a CDN is a huge performance win for any
application. It helps us by freeing up our dynos from serving static assets, and it also gets our
assets to our users' machines faster.

https://github.com/mscoutermarsh/blogger-app/tree/gzip_assets
https://github.com/mscoutermarsh/blogger-app/tree/gzip_assets
https://developers.google.com/speed/articles/gzip
https://developers.google.com/speed/articles/gzip
https://github.com/romanbsd/heroku-deflater
https://github.com/romanbsd/heroku-deflater

Optimizing a Rails Application on Heroku

140

In this recipe, you will learn how to take an existing Rails application and have its assets
served by AWS Cloudfront for speedy delivery to users.

Getting ready
For this recipe, we will need an AWS CloudFront account.

Visit http://aws.amazon.com/cloudfront/ to sign up now. Alternatively, if you have an
existing AWS account, you can sign in.

How to do it…
We'll need to set up a CloudFront distribution and make a few minor changes to our Rails
application. Let's get started by opening a browser and configuring CloudFront first, using the
following steps:

1.	 We'll need to open up the CloudFront dashboard and create a new distribution to use
with our Heroku application. We can do this by visiting https://console.aws.
amazon.com/cloudfront/home and clicking on Create Distribution.

2.	 On the next screen, we'll select Web for our delivery method.

3.	 Now, we will configure our CloudFront distribution by entering the URL of our Heroku
application and giving it a name (Origin ID). If our application supports SSL (HTTPS),
we should select Match Viewer for Origin Protocol Policy; otherwise, we can leave it
set to HTTP Only. This is shown in the following screenshot:

http://aws.amazon.com/cloudfront/
https://console.aws.amazon.com/cloudfront/home
https://console.aws.amazon.com/cloudfront/home

Chapter 8

141

If our application has a custom domain name, we should use this
here for Origin Domain Name.

4.	 Let's ensure that we take note of the Price Class setting. This determines where
our content is served. The closer it is to our users, the faster it will be for them to
download it.

It's best to have Price Class set to Use All Edge Locations. However, if our
application is only used in a specific area, we can save some money by having
our content hosted only on a more limited number of servers. For pricing
information, visit http://aws.amazon.com/cloudfront/pricing/.

5.	 We can leave the rest of the settings to CloudFront's defaults. We're now ready to
click on Create Distribution, and our CDN will be ready to be set up. It might take a
few minutes until it is ready to use. Take note of the distribution's Domain Name; we
will be using this in the next step.

6.	 Now that CloudFront is set up for us, we need to configure our Rails application to use
it. We can do this by adjusting a few settings.

7.	 Let's open up config/environments/production.rb in our Rails project. We
need to set our asset host to our new CloudFront distribution's domain. We can do
this by adding the following line to our production config. We'll use an environment
variable here to make it easily configurable through Heroku:
 config.action_controller.asset_host =
 ENV['CLOUDFRONT_URL']

By adding this to production.rb, our application will only use
CloudFront when deployed to Heroku and when our RAILS_ENV
configuration variable is set to production.

8.	 Now, we can add our CloudFront domain name to our Heroku application's
configuration settings. We will get this value from the CloudFront dashboard:
$ heroku config:set CLOUDFRONT_URL=//example-url.cloudfront.net

http://aws.amazon.com/cloudfront/pricing/

Optimizing a Rails Application on Heroku

142

Notice that the domain starts with //. This allows our assets to load over
either HTTP or HTTPS. If our application only uses one or the other, we can
specify it in the configuration variable.

9.	 To finish up, all that's left is to commit our changes and push them up to Heroku:
$ git commit -am 'Adding Cloudfront to production config'

$ git push heroku master

$ heroku open

We do not have to upload our assets to CloudFront. It works by pulling
our assets directly from our servers when the users request them.

10.	 If we watch our logs, we'll see that our application will stop receiving requests to
serve static assets. They are now being served from CloudFront instead of our dynos:
$ heroku logs --tail

How it works…
When a user makes a request to our web application, it must travel from wherever the user is
located to our server. This works great for users who are located near our application's data
center. However, for users who are further away, the additional travel time for each request
can make our application less responsive. CloudFront has a network of servers throughout
the world that cache our application's static assets. Then, when a user loads our application,
CloudFront responds to the request from the nearest location. This makes our application
considerably faster by reducing network latency and the load on our dynos.

Worried about serving stale assets? Rails' asset pipeline protects us from
serving the wrong version by adding a unique fingerprint to each CSS and JS
file. Whenever there is a change, the new file will be distributed to CloudFront,
ensuring that our users always get the correct version.

See also
ff Refer to the example source code for this recipe available at https://github.

com/mscoutermarsh/blogger-app/tree/cloud_front

ff As an alternative to CDN, we can use CloudFlare available at https://www.
cloudflare.com

ff AWS CloudFront is available at http://aws.amazon.com/cloudfront/

https://github.com/mscoutermarsh/blogger-app/tree/cloud_front
https://github.com/mscoutermarsh/blogger-app/tree/cloud_front
https://www.cloudflare.com
https://www.cloudflare.com
http://aws.amazon.com/cloudfront/

Chapter 8

143

ff Rails Asset Pipeline is available at http://guides.rubyonrails.org/asset_
pipeline.html

Adding memcached to a Rails application
Memcached is a high-performance, distributed, key-value store that allows us to quickly store
and retrieve data from memory. It helps us scale our web applications by storing the result of
any expensive operations in memory. A common use case is storing the result of a database
query in memcached. Then, the query only has to be made once; the subsequent requests for
that data are loaded from memcached. This reduces the load on our database and makes our
application significantly faster. We can use memcached to cache database calls, API requests,
and even the rendered views. In this recipe, you'll learn how to get a Rails application up and
running with memcached on Heroku.

If we are new to implementing caching, memcached should be our first
choice. It's rock solid and easy to use. There are many other caching
options available, but memcached is the standard.

Getting ready…
We'll run memcached on our local development machine to test it.

On OS X, we can quickly install it using Homebrew:

$ brew install memcached

On Ubuntu, we can use apt-get:

$ apt-get install memcached

For directions specific to other operating systems, take a look at memcached's wiki at
https://code.google.com/p/memcached/wiki/NewInstallFromPackage for
up-to-date instructions.

How to do it…
To set up memcached on Rails, we'll need to add two gems to our project and make a couple
of configuration changes to our application using the following steps:

1.	 We'll start by adding the dalli and memcachier gems. Let's add the following lines
to our Gemfile and then run bundle install:
gem 'memcachier'
gem 'dalli'

$ bundle install

http://guides.rubyonrails.org/asset_pipeline.html
http://guides.rubyonrails.org/asset_pipeline.html
https://code.google.com/p/memcached/wiki/NewInstallFromPackage

Optimizing a Rails Application on Heroku

144

2.	 Now, we need to tell Rails to use memcached in production. Open up your config/
environments/production.rb file and set cache_store to use Dalli with the
following line:
config.cache_store = :dalli_store, nil, {expires_in: 1.day,
compress: true}

The second argument is typically the address of the memcached server. Here, we
are leaving it set to nil because the MemCachier gem will set up our connection
for us using environment variables. We are also able to set default options for the
connection; here we set all cache keys to expire after 24 hours, and we also enabled
compression for large objects.

By default, Rails will use an in-memory store in development,
unless we specifically tell it to use memcached.

3.	 We might also want to run memcached in development; this can be useful when
testing and debugging caching issues. To do this, we'll add the following line to
our config/environments/development.rb file:
config.cache_store :dalli_store

We can leave it without any arguments; Dalli will find and connect to our local
memcached server automatically.

For caching to work in development mode, we'll have to enable it. We can
do this by setting config.action_controller.perform_caching
to true. It's best not to check this change into the repository; it can be
confusing for other developers when the application caches unexpectedly.

4.	 We'll now need to enable a memcached add-on for our Heroku application.
MemCachier has a developer tier server that we can try for free. Let's add it
now by running the following command:
$ heroku addons:add memcachier

5.	 Now, if we take a look at our configuration variables, we'll see that the MemCachier
add-on has added three variables. These will be used by our application to connect to
memcached:
$ heroku config

MEMCACHIER_PASSWORD: 05c6bf08xx

MEMCACHIER_SERVERS: mc1.xxx.ec2.memcachier.com:11211

MEMCACHIER_USERNAME: e34dxx

Chapter 8

145

6.	 To finish up, let's commit and push our changes to Heroku:
$ git add .

$ git commit -m 'Setting up memcached'

$ git push heroku master

7.	 We can test out reading and writing values from a Rails console with the
following commands:
$ heroku run rails c

$ Rails.cache.write('test', 123)

$ Rails.cache.read('test')

=> 123

We can clear memcached at any time by running $ Rails.
cache.clear from a Rails console.

How it works…
The Dalli gem manages the connection between Ruby and our memcached server. We used
the MemCachier gem simply for convenience. It allows Dalli to connect to MemCachier on
Heroku without making any configuration changes. It simply uses the environment variables
provided by the MemCachier add-on to make the connection.

It's easiest to think of memcached as a super-powered hash. It's a key-value store that we
can use to temporarily store any data that our application needs. It's a distributed cache; this
means that it can run across multiple servers, and it will distribute our data evenly across
them. If one server fails, we will only lose access to some of our data. The other servers will be
available to pick up the slack, and our application will regenerate any missing data.

With the MemCachier add-on, our data is automatically spread across multiple memcached
servers. We simply need to choose how much memory we need, and MemCachier takes care
of the rest.

See also
ff Setting up memcached is just the beginning. For ways to take full advantage of it,

check out the Implementing low-level caching in Rails and Caching rendered views
recipes that are explained later in this chapter.

ff The full example source code for this recipe is available at https://github.com/
mscoutermarsh/blogger-app/tree/memcached.

https://github.com/mscoutermarsh/blogger-app/tree/memcached
https://github.com/mscoutermarsh/blogger-app/tree/memcached

Optimizing a Rails Application on Heroku

146

ff To know more about the Dalli gem, visit https://github.com/mperham/dalli.

ff To know more about MemCachier, visit https://www.memcachier.com/.

Adding Redis to a Rails application
Redis is a high-performance, in-memory, key-value store with persistence. It's a great
alternative to memcached for caching, with the additional functionality of a NoSQL data store.
Here, we will learn how to add Redis to our application and set it up to be used as a cache.

Getting ready…
We'll first set up a Redis server on our development machine using the following steps:

1.	 Let's start by installing Redis.

On OS X, we can use Homebrew to install Redis with the following command:
$ brew install redis

For Ubuntu, we can use apt-get:
$ sudo apt-get update

$ sudo apt-get install redis-server

For other operating systems, we can get installation instructions from the Redis
website (http://redis.io/download).

2.	 Once installed, we can verify that our installation is working by trying out a couple of
commands. Redis comes with a command-line program, redis-cli.

Let's start it up and try setting and getting a key/value pair:

$ redis-cli

$ set testing 123

OK

$ get testing

"123"

Check out the Redis website for a full listing of all the commands.
Each command is usable in redis-cli. Visit http://redis.io/
commands for more information.

https://github.com/mperham/dalli
https://www.memcachier.com/
http://redis.io/download
http://redis.io/commands
http://redis.io/commands

Chapter 8

147

How to do it…
Now that we have Redis running on our local machine, we can add it to our Rails application
using the following steps:

1.	 Let's start by opening up our Gemfile and adding the redis and redis-rails
gems:
gem 'redis'

gem 'redis-rails'

2.	 Now, install the gems:
$ bundle install

3.	 We'll need to create a new initializer for Redis at config/initializers/redis.
rb and add the following code:
if ENV['REDISTOGO_URL']
 uri = URI.parse(ENV['REDISTOGO_URL'])
 Redis.current = Redis.new(host: uri.host, port: uri.port,
password: uri.password)
else
 Redis.current = Redis.new
end

REDIS = Redis.current

4.	 Now, let's configure production to use Redis for caching. We can do this by opening
up config/environments/production.rb and adding the following line. If we
have an existing cache store setting, we'll need to replace it:
config.cache_store = :redis_store, "#{ENV["REDISTOGO_URL"]}/0/
cache", {expires_in: 24.hours}

5.	 For development, we can optionally use Redis caching as well. To do this, we can add
the following code to config/environments/development.rb:
 config.cache_store = :redis_store, "redis://localhost:6379/1/
cache", {expires_in: 24.hours}

For caching to work in development mode, we'll have to enable it. We can
do this by setting config.action_controller.perform_caching
to true. It's best to not check this change into the repository; it can be
confusing for other developers when the application caches unexpectedly.

Optimizing a Rails Application on Heroku

148

6.	 To check whether Redis is working properly, we can open up a Rails console and try
out a couple of commands:
$ bundle exec rails c

$ REDIS.set('testing', 123)

=> "OK"

$ REDIS.get('testing')

=> "123"

7.	 Now, we'll need to add the Redis To Go add-on to our Heroku application:
$ heroku addons:add redistogo

For more information on the available plans, visit https://addons.
heroku.com/redistogo.

8.	 To finish up, we'll need to commit our changes and push them up to Heroku:

$ git add .

$ git commit -m 'Setting up Redis'

$ git push heroku master

How it works…
Redis is a strong alternative to using memcached for caching in a Rails application. The
primary difference between the two is that Redis persists our data to disk and also allows us
to use more complex data structures (such as ordered sets and lists). The ability to store more
complex data objects makes Redis a popular choice in applications that require any persisted
queuing or sorting.

If caching queries and views is the extent of our need, then memcached is a great choice.
If we need a NoSQL datastore as well, Redis will cover both needs. Conveniently, in a Rails
application, both Redis and memcached are interchangeable for caching. If you start out
using memcached for caching and later switch to Redis, the change is simple to make.

See also
ff To take full advantage of Redis caching, check out the Implementing low-level Rails

caching and Caching rendered views recipes later in this chapter.

ff Refer to the example source code for this recipe available at https://github.
com/mscoutermarsh/blogger-app/tree/redis

ff Learn more about Redis by visiting http://redis.io.

https://addons.heroku.com/redistogo
https://addons.heroku.com/redistogo
https://github.com/mscoutermarsh/blogger-app/tree/redis
https://github.com/mscoutermarsh/blogger-app/tree/redis
http://redis.io

Chapter 8

149

ff Learn more about Redis To Go available by visiting http://redistogo.com.

ff Learn more about the Redis Rails gem by visiting https://github.com/redis-
store/redis-rails

Implementing low-level caching in Rails
We can significantly increase the performance of our application by caching queries to our
database. In Rails, this is known as low-level caching. In this recipe, you will learn how to
use Rails.cache.fetch to cache database queries. You'll see that this technique can be
used to cache any expensive operations. Any outside API or network calls also make great
candidates for low-level caching. We will be able to use this technique to make significant
performance improvements to our application. We'll reduce the load on our database as well
as speed up our overall response times.

Getting ready
To complete this recipe, our Rails application needs to have either Redis or memcached
set up. For us to test cache in development, we will also need to have it enabled in our
development config.

Let's open up config/environments/development.rb now and ensure that we have the
following line set to true:

 config.action_controller.perform_caching = true

How to do it…
Let's get started with caching by trying it out in a Rails console using the following steps:

1.	 Open up a console and run a normal ActiveRecord count query:
$ bundle exec rails c

$ Post.count

(0.3ms) SELECT COUNT(*) FROM "posts"

=> 2

2.	 Now, let's run this query again, but this time let's use the fetch method to cache the
result:
$ Rails.cache.fetch('post_count'){ Post.count }

 (0.4ms) SELECT COUNT(*) FROM "posts"

=> 2

http://redistogo.com
https://github.com/redis-store/redis-rails
https://github.com/redis-store/redis-rails

Optimizing a Rails Application on Heroku

150

3.	 If we run the same code again, we'll see that this time it does not run the query. It
pulls the result from the cache and returns it:
$ Rails.cache.fetch('post_count'){Post.count}

=> 2

Don't believe it? Restart the Rails console and run it again.
The value will still be cached.

4.	 We can create a new post and see that when using fetch, the count will not update
because it is cached:
$ Post.create(title: 'New post!', content: 'Heroku!', author:
Author.first)

$ Post.count

 (0.5ms) SELECT COUNT(*) FROM "posts"

=> 4

If you try the cache again, you'll notice that it remains the same:

$ Rails.cache.fetch('post_count'){Post.count}

=> 2

5.	 Now, let's cache something a little more useful. In the Blogger example app, we
have an index page that displays all our posts. However, since it isn't updated often,
we would like to cache it to reduce the number of queries to our database. In app/
controllers/posts_controller.rb, we have the following action:
def index
 @posts = Post.all
end

To cache this query for 1 hour, you can change it to the following:

def index
 @posts = Rails.cache.fetch('all posts',
 expires_in: 1.hour){Post.all}
end

6.	 Our index page will now load much faster but can potentially have stale data, as the
posts will only be loaded once an hour. This is a trade off we must consider when
implementing any caching. If we want to clear the "all posts" cache before it expires,
we can use the delete method:
Rails.cache.delete('all posts')

Chapter 8

151

How it works…
Let's dig a little deeper into how the Rails.cache.fetch method works:

fetch(cache_key, options = nil) { block }

The fetch method will check our cache using cache_key. If it finds data, it will return the
value. If there is no data for this key, it will run whatever block of code we passed to it. The
result of this code will then be returned and stored in our cache for future requests.

For multiline code blocks, we should use do/end. The last line in the
block will be the return value:

Rails.cache.fetch 'posts with categories' do
 tucker = Author.find_by_name('Tucker')
 posts = Post.includes(:categories)
 posts.where(author: tucker)
end

The fetch method can also accept a variety of options. One of the most useful options is
expires_in. This sets the number of seconds until the cache key expires. If we do not pass
an expiration value, fetch will use the default expires_in setting that we have in our
config/environments/production.rb file.

Another useful option is race_condition_ttl. It's an important setting for blocks of code
that receive a high volume of requests. It protects our application from what's commonly
known as stampeding or dog piling. This is when multiple requests all reach an expired
cache that's in the process of being regenerated. This causes the cache to be regenerated
by each request; this can be dangerous in high-traffic situations if the code is a particularly
expensive operation. We only need the cache to be regenerated once by a single request. We
can avoid stampeding by setting race_condition_ttl. When the first request sees that
the cache has expired, it will increase the expiration of the current cache key by the number of
seconds specified by race_condition_ttl. This will keep the other processes from trying
to update the cache and will give the first process time to update it.

If we ever need to invalidate a cache key, we can use Rails.cache.
delete(cache_key).

Optimizing a Rails Application on Heroku

152

See also
ff The example source code for this recipe available is at https://github.com/

mscoutermarsh/blogger-app/tree/cache_queries

ff The Rails Cache Store documentation is available at http://api.rubyonrails.
org/classes/ActiveSupport/Cache/Store.html

Caching rendered views
Rendering a page in Rails isn't a simple process. It usually consists of several database
queries that render various partials and convert HAML to HTML. Repeating this entire process
for each page load is wasteful. In this recipe, you will learn how to cache your views so that
you only have to render them once. You'll also learn how to use key-based cache expiration to
ensure that you're always serving the latest content.

How to do it…
In this recipe, we'll use the Blogger application as an example to implement view caching. This
time, we will optimize posts#show using caching to make viewing a post as fast as possible.

Make sure that caching is enabled in config/environments/
development.rb and config.action_controller.perform_
caching is set to true.

1.	 Currently, if we try to view a post, our application does the following to render the
page:
Started GET "/posts/2" for 127.0.0.1 at 2014-08-09 14:29:06 -0400

Processing by PostsController#show as HTML

 Parameters: {"id"=>"2"}

 Post Load (0.4ms) SELECT "posts".* FROM "posts" WHERE
"posts"."id" = $1 LIMIT 1 [["id", 2]]

 Author Load (0.8ms) SELECT "authors".* FROM "authors" WHERE
"authors"."id" = $1 LIMIT 1 [["id", 1]]

 Rendered authors/_author.html.erb (0.1ms)

 (0.9ms) SELECT COUNT(*) FROM "categories" INNER JOIN
"categories_posts" ON "categories"."id" = "categories_
posts"."category_id" WHERE "categories_posts"."post_id" = $1
[["post_id", 2]]

https://github.com/mscoutermarsh/blogger-app/tree/cache_queries
https://github.com/mscoutermarsh/blogger-app/tree/cache_queries
http://api.rubyonrails.org/classes/ActiveSupport/Cache/Store.html
http://api.rubyonrails.org/classes/ActiveSupport/Cache/Store.html

Chapter 8

153

 (0.2ms) SELECT "categories"."name" FROM "categories" INNER
JOIN "categories_posts" ON "categories"."id" = "categories_
posts"."category_id" WHERE "categories_posts"."post_id" = $1
[["post_id", 2]]

 Rendered posts/_categories.html.erb (7.1ms)

 Rendered posts/show.html.erb within layouts/application (19.5ms)

 Rendered layouts/_navigation_links.html.erb (0.3ms)

 Rendered layouts/_navigation.html.erb (0.9ms)

 Rendered layouts/_messages.html.erb (0.0ms)

Completed 200 OK in 32ms (Views: 23.3ms | ActiveRecord: 6.8ms)

This view has been kept simple for example purposes. We can see from the log that it
executes four queries and renders five partials. It took 32 ms to render this page; let's
see how much we can improve this using caching.

As this is a simple application, the uncached response time
is already fast. The same techniques can be applied to more
complex views.

2.	 Let's start by adding caching to the two partials used to render the post. We can do
this by wrapping them in cache blocks.

In app/views/authors/_author.html.erb, modify the code as follows:
<% cache author do %>
 <p>
 Author:
 <%= author.name %>
 </p>
<% end %>

Then, in app/views/posts/_categories.html.erb, modify the code as follows:
<% cache categories do %>

 <%= 'Category'.pluralize(categories.count) %>:

 <%= categories.pluck(:name).join(', ') %>
<% end %>

Optimizing a Rails Application on Heroku

154

Now, if we refresh the page a couple of times, we'll see in the logs where it writes to
the cache and on subsequent requests from which it reads the cache. We reduced
our page load time to 18 ms and now run only three queries instead of four:

Started GET "/posts/2" for 127.0.0.1 at 2014-08-09 14:50:48 -0400

Processing by PostsController#show as HTML

 Parameters: {"id"=>"2"}

 Post Load (0.3ms) SELECT "posts".* FROM "posts" WHERE
"posts"."id" = $1 LIMIT 1 [["id", 2]]

 Author Load (0.2ms) SELECT "authors".* FROM "authors" WHERE
"authors"."id" = $1 LIMIT 1 [["id", 1]]

 Cache digest for app/views/authors/_author.html.erb:
2d15ca308dec9cb981ee3ee47e6ae58e

Read fragment views/authors/1-20140803035250466666000/2d15ca308dec
9cb981ee3ee47e6ae58e (0.2ms)

 Rendered authors/_author.html.erb (1.0ms)

 Cache digest for app/views/posts/_categories.html.erb:
2eb832c69061fa6e6e4fb75bcab52f8f

 Category Load (0.4ms) SELECT "categories".* FROM "categories"
INNER JOIN "categories_posts" ON "categories"."id" = "categories_
posts"."category_id" WHERE "categories_posts"."post_id" = $1
[["post_id", 2]]

Read fragment views/categories/1-20140803035250393298000/
categories/2-20140803035250459525000/2eb832c69061fa6e6e4fb75bcab52
f8f (0.2ms)

 Rendered posts/_categories.html.erb (3.0ms)

 Rendered posts/show.html.erb within layouts/application (7.2ms)

 Rendered layouts/_navigation_links.html.erb (0.3ms)

 Rendered layouts/_navigation.html.erb (0.8ms)

 Rendered layouts/_messages.html.erb (0.0ms)

Completed 200 OK in 19ms (Views: 16.9ms | ActiveRecord: 0.9ms)

In our logs, we can see the cache key used by Rails. If we want, we
can see the exact HTML that was cached by opening a Rails console
and using Rails.cache.read('cache key here') to see
the value for this key.

Chapter 8

155

3.	 This is a great start; by going one step further and adding caching to the posts/show
view, we'll create this page even faster. Let's do this now:

In app/views/posts/show.html.erb, modify the code as follows:

<p id="notice"><%= notice %></p>

<% cache @post do %>

 <p>

 Title:

 <%= @post.title %>

 </p>

 <p>

 Content:

 <%= @post.content %>

 </p>

 <p>

 <%= render @post.author %>

 </p>

 <p>

 <%= render partial: 'categories', locals: {categories: @post.
categories} %>

 </p>

 <%= link_to 'Edit', edit_post_path(@post) %> |

 <%= link_to 'Back', posts_path %>

<% end %>

4.	 Now, if we watch our logs and refresh the page a couple of times, we'll see new data
being written to our cache and then read back:
Started GET "/posts/2" for 127.0.0.1 at 2014-08-09 15:10:48 -0400

Processing by PostsController#show as HTML

 Parameters: {"id"=>"2"}

 Post Load (0.2ms) SELECT "posts".* FROM "posts" WHERE
"posts"."id" = $1 LIMIT 1 [["id", 2]]

 Cache digest for app/views/authors/_author.html.erb:
2d15ca308dec9cb981ee3ee47e6ae58e

Optimizing a Rails Application on Heroku

156

 Cache digest for app/views/posts/_categories.html.erb:
2eb832c69061fa6e6e4fb75bcab52f8f

 Cache digest for app/views/posts/show.html.erb:
d7c63a8ae84971db73176d172b51391e

Read fragment views/posts/2-20140803035250546865000/
d7c63a8ae84971db73176d172b51391e (0.1ms)

 Rendered posts/show.html.erb within layouts/application (2.2ms)

 Rendered layouts/_navigation_links.html.erb (0.3ms)

 Rendered layouts/_navigation.html.erb (1.2ms)

 Rendered layouts/_messages.html.erb (0.0ms)

Completed 200 OK in 15ms (Views: 13.5ms | ActiveRecord: 0.2ms)

5.	 We now reduced the page load to 15 ms; this is more than a 50 percent improvement
over our original page. We can also see that the page is now only executing a
single query.

If we like, we can even cache the remaining query using Rails.cache.
fetch in the posts#show controller action.

How it works…
Now that we have the post, author, and categories all being cached for this page, what will
happen if one of them gets updated? We wouldn't want our users to be viewing stale content.
Rails takes care of this for us by basing the cache key on the updated_at attribute for the
object it is caching. This means each time a post is updated, a new cache key will be used for
the content:

One tricky part of using updated_at in our cache keys is that it does not account for changes
made in the associated models. If we update a child model, it will not bump its parent's
updated_at field as well by default.

There are two solutions to this problem. For belongs_to associations, we can use the
touch: true option. When this option is set on a belongs_to association, whenever
the child is updated, it will also update the parent object's updated_at field effectively,
refreshing the parent's cache key:

belongs_to :author, touch: true

Chapter 8

157

The second solution is to include the associated object in the cache key. We can do this by
passing an array with each of the objects to the cache method. For example, in the Blogger
app, you might want to include both the associated author and categories in the cache key.
So, if either is updated, the cache for the post will be regenerated:

<% cache [@post, @post.author, @post.categories] do %>
 # content here
<% end %>

Using a separate cache block for each object in our view allows us to take advantage of a
concept known as Russian Doll caching. In the posts#show example, we have a cache
block around the entire post and then others around the author and categories. If we update
only the post, the author and category caches will remain intact and will be used when
regenerating the cache for the entire post. This makes rendering more efficient, because we
only have to regenerate the caches that changed rather than everything.

The final piece of the cache key to be aware of is the template digest. This is the value at the
end of the cache key and is a fingerprint of our view template. This ensures that if any code in
our view is changed, the cache key will no longer be valid, and it won't serve the old view code.

Managing cache invalidation through cache keys can create a large
number of unused cache objects. When backed by memcached, this is
fine, because if memcached runs out of memory, it will replace the oldest
unused objects with new objects. If our caching backend is Redis, we
need to make sure that we have an expiration set for all our cache keys;
otherwise, our memory usage can expand very quickly.

See also
ff The example source code for this recipe is available at https://github.com/

mscoutermarsh/blogger-app/tree/cache_views

ff Learn more about how the cache key is generated at http://api.rubyonrails.
org/classes/ActiveSupport/Cache.html#method-i-expand_cache_key

ff Refer to David Heinemeier Hansson's post at http://signalvnoise.com/
posts/3113-how-key-based-cache-expiration-works to understand how
key-based cache expiration works

https://github.com/mscoutermarsh/blogger-app/tree/cache_views
https://github.com/mscoutermarsh/blogger-app/tree/cache_views
http://api.rubyonrails.org/classes/ActiveSupport/Cache.html#method-i-expand_cache_key
http://api.rubyonrails.org/classes/ActiveSupport/Cache.html#method-i-expand_cache_key
http://signalvnoise.com/posts/3113-how-key-based-cache-expiration-works
http://signalvnoise.com/posts/3113-how-key-based-cache-expiration-works

Optimizing a Rails Application on Heroku

158

Aborting long requests with Rack::Timeout
A pile up of long running requests is a sure way to bring our entire application to a screaming
halt. When a web request to a Heroku application takes longer than 30 seconds to respond,
Heroku will terminate the request and return an H12 error to the user. The problem with
this is that this does not actually stop the request from being processed by our dynos. Even
though the user will never receive a response, our dynos will keep working on the request until
it is complete. This is an obvious waste of resources, but we can easily avoid this by adding
Rack::Timeout to our applications.

How to do it…
To set up Rack::Timeout, we'll need to add a gem to our Gemfile and an initializer to our Rails
app. Let's fire up a terminal and navigate to our blogger-app directory by performing the
following steps:

1.	 We can start by adding rack-timeout to our Gemfile:
gem 'rack-timeout'

2.	 Then, install the gem by running bundle install:
$ bundle install

3.	 Now, we'll need to add a new initializer at config/initializers/timeout.rb
with the following code:
Rails.application.middleware.use Rack::Timeout
Rack::Timeout.timeout = 10 # seconds

This will time out any requests that take over 10 seconds. We should
tune this for our individual application; 10 seconds might be too
aggressive for some apps.

4.	 All that's left is to commit our changes to Git and push them to Heroku:
$ git add .

$ git commit -m 'Adding timeout for long running requests'

$ git push heroku master

Chapter 8

159

How it works…
When Heroku receives a request at its router, it adds an X-Request-Start header to the
request. This header contains the time that the request was received by Heroku. The
Rack::Timeout middleware that we installed in this recipe uses the header to determine
how long a request has been running. As the request is processing, it will periodically check
whether it has exceeded the timeout period. If it has gone on for too long, Rack::Timeout will
throw RequestTimeoutError and end the request.

Aborting requests is something that should happen very rarely. It's essentially a safety valve to
protect our dynos from doing unnecessary work. There is no point in continuing to process a
request if it will never get back to the user.

Rack::Timeout is useful in situations where our users have found some edge case in our
application that performs slowly. When they do not get a response back quickly, they keep
refreshing the page, sending more slow requests into our application to be processed.

Aborting requests is something that will be used very rarely. It's for cases where our
application is overwhelmed or users have found a way of using our application that is
destructive. It protects us from long-running requests that steal resources away from our
application's normal requests. If we see our application regularly serving slow requests, we
should optimize them as quickly as possible. Slow requests can lead to larger problems, as
they tie up resources that other requests are using.

See also
ff The example source code for this recipe is available at https://github.com/

mscoutermarsh/blogger-app/tree/rack_timeout

ff To learn more about Rack::Timeout, visit https://github.com/heroku/rack-
timeout

Using a follower for read-only DB queries
As an application grows, the database is typically one of the largest performance bottlenecks.
The first step in horizontally scaling a database is to enable replication to a follower database.
When we enable a Postgres follower, all writes to the master database are streamed to the
follower. This gives us a read-only replica of all our data. We can then reduce the load on
our primary database by directing read-only queries to a follower database. This frees up
resources on our master database to handle writes.

https://github.com/mscoutermarsh/blogger-app/tree/rack_timeout
https://github.com/mscoutermarsh/blogger-app/tree/rack_timeout
https://github.com/heroku/rack-timeout
https://github.com/heroku/rack-timeout

Optimizing a Rails Application on Heroku

160

Replication lag is the delay between the write to the primary database and
this data's availability on the follower. We need to be aware that there might
occasionally be a second delay before the data is on the follower.

Getting ready
First, we'll need to set up a follower database on Heroku. For instructions on how to do this,
refer to the Creating a read-only follower recipe in Chapter 9, Using and Administrating
Heroku Postgres.

Follower databases are only available on standard or higher
database tiers.

How to do it…
To take advantage of our follower database, we'll need to set up the Octopus gem in our Rails
application. It will manage the read-only connection for us by performing the following steps:

1.	 First, let's open up our Gemfile and add ar-octopus:
gem 'ar-octopus'

2.	 Next, let's install it by running bundle install.
$ bundle install

3.	 Now, we'll need to set up a configuration file that tells Octopus how to connect to
our follower database. It creates a connection called read_only that we'll be able
use in our application. Let's create a new file, config/shards.yml, and paste in
the following code. We'll need to adjust the settings so that they match what's in our
application's existing config/database.yml file.

This is only for development and testing. It sets our read_
only follower to point at our primary database. We'll use
an initializer to configure production.

Have a look at the following code:

octopus:
 replicated: true
 fully_replicated: false
 development:
 read_only:

Chapter 8

161

 adapter: postgresql
 encoding: unicode
 database: blogger-postgres_development
 pool: 5
 username: postgres
 password:
 test:
 read_only:
 adapter: postgresql
 encoding: unicode
 database: blogger-postgres_test
 pool: 5
 username: postgres
 password:

This file is also available on GitHub at https://github.com/
mscoutermarsh/blogger-app/blob/follower_db/config/
shards.yml.

4.	 At this point, we will be able to test Octopus by running a query against our read_
only database. Let's open up a Rails console and try it out:
$ bundle exec rails c

$ Octopus.using(:read_only) { Post.first }

We can use Octopus.using to specify the follower database. We can then pass a
block to the method to execute any ActiveRecord calls. In this example, we used the
read_only follower to load the first record of the posts table.

Having trouble? Double-check whether the shards.yml configuration
matches your database.yml file for testing and development. Make
sure that the follower is named read_only as shown in the preceding
example.

5.	 We're now ready to set up Octopus in production. For this, we'll create a new initializer
at config/initializers/octopus.rb. We're using an initializer so that we
can control our follower database using a Heroku configuration variable. If we use a
configuration variable in shards.yml, it will get messy quickly. Using an initializer is
a cleaner solution:
config/initializers/octopus.rb
Uses FOLLOWER_DATABASE_URL
to configure a follower DB for octopus

https://github.com/mscoutermarsh/blogger-app/blob/follower_db/config/shards.yml
https://github.com/mscoutermarsh/blogger-app/blob/follower_db/config/shards.yml
https://github.com/mscoutermarsh/blogger-app/blob/follower_db/config/shards.yml

Optimizing a Rails Application on Heroku

162

require 'uri'

if %w{production staging}.include? Rails.env
 follower_url = ENV['FOLLOWER_DATABASE_URL']

 begin
 url = URI.parse(follower_url)
 rescue URI::InvalidURIError
 raise "Invalid FOLLOWER_DATABASE_URL"
 end

 Octopus.setup do |config|
 config.environments = [:production, :staging]
 config.shards = {read_only:
 {adapter: 'postgresql',
 database: url.path.split('/').last,
 username: url.user,
 host: url.host,
 port: url.port,
 password: url.password}
 }
 end
end

This file is also available on GitHub at https://github.com/
mscoutermarsh/blogger-app/blob/follower_db/config/
initializers/octopus.rb.

6.	 Since we're using Unicorn for this application, we'll need to configure Unicorn to make
the additional database connections when starting up. Let's change our config/
unicorn.rb file to match the following code. The changes specific to Octopus are
highlighted in the following code:
worker_processes Integer(ENV['WEB_CONCURRENCY'] || 3)

kill long running requests. Default: 15 seconds
Heroku's default is 30 seconds.
timeout Integer(ENV['WEB_TIMEOUT'] || 15)
preload_app true

before_fork do |server, worker|

 Signal.trap 'TERM' do

https://github.com/mscoutermarsh/blogger-app/blob/follower_db/config/initializers/octopus.rb
https://github.com/mscoutermarsh/blogger-app/blob/follower_db/config/initializers/octopus.rb
https://github.com/mscoutermarsh/blogger-app/blob/follower_db/config/initializers/octopus.rb

Chapter 8

163

 puts 'Unicorn master intercepting TERM and sending myself QUIT
instead'
 Process.kill 'QUIT', Process.pid
 end

 if defined?(ActiveRecord::Base)
 shards = ActiveRecord::Base.connection_proxy.instance_
variable_get(:@shards)

 shards.each do |shard, connection_pool|
 connection_pool.disconnect!
 end

 ActiveRecord::Base.connection.disconnect!
 end
end

after_fork do |server, worker|

 Signal.trap 'TERM' do
 puts 'Unicorn worker intercepting TERM and doing nothing. Wait
for master to sent QUIT'
 end

 Octopus.config['production']['master'] = ActiveRecord::Base.
connection.config
 ActiveRecord::Base.connection.initialize_shards(Octopus.config)
end

This unicorn.rb file is also available on GitHub at https://
github.com/mscoutermarsh/blogger-app/blob/
follower_db/config/unicorn.rb.

7.	 The Octopus initializer uses a configuration variable, FOLLOWER_DATABASE_URL,
to set up the read_only connection. Next, we'll need to set this variable in our
application to the value of our follower's DATABASE_URL variable. Let's first take
a look at our available Postgres databases; we'll see that there is an entry for our
follower DB. We'll know which database is our follower, because it will have a line
that shows what DB it is following:
$ heroku pg

=== HEROKU_POSTGRESQL_GREEN_URL

Plan: Standard Yanari

https://github.com/mscoutermarsh/blogger-app/blob/follower_db/config/unicorn.rb
https://github.com/mscoutermarsh/blogger-app/blob/follower_db/config/unicorn.rb
https://github.com/mscoutermarsh/blogger-app/blob/follower_db/config/unicorn.rb

Optimizing a Rails Application on Heroku

164

Status: Available

Data Size: 6.6 MB

Tables: 5

PG Version: 9.3.4

Connections: 5

Fork/Follow: Unavailable on followers

Rollback: earliest from 2014-08-03 16:05 UTC

Created: 2014-08-02 17:38 UTC

Data Encryption: In Use

Following: HEROKU_POSTGRESQL_CHARCOAL

Behind By: 0 commits

Maintenance: not required

Now that we know which DB is our follower, let's grab its database_url from our
configuration settings. We'll pass the DB name we found in the previous step to the
next command:
$ heroku config:get HEROKU_POSTGRESQL_GREEN_URL

It will return a value like this:
postgres://a:b@ec2-00-235-69-000.compute-1.amazonaws.com:5792/
g3d7fe

Let's take that value and add FOLLOWER_DATABASE_URL to it:

$ heroku config:set FOLLOWER_DATABASE_URL=postgres://a:b@ec2-00-
235-69-000.compute-1.amazonaws.com:5792/g3d7fe

If we're missing the FOLLOWER_DATABASE_URL configuration
variable, our application will not start in production.

8.	 We've now finished setting up Octopus; let's commit our changes and push them
to Heroku:
$ git add .

$ git commit -m 'Setting up a read-only follower with Octopus'

$ git push heroku master

Chapter 8

165

Using the follower database
Now that our follower database is set up, let's learn how to make use of it using the
following steps:

1.	 A good place to start is with any queries for the data that isn't updated often or won't
cause problems if it's up to a second behind the primary database.

In the Blogger app, a good example of this is the index page for posts. In app/
controllers/posts_controller.rb, we can see that the index action loads all
of the posts. We can have it use the follower database for this query by wrapping the
ActiveRecord call in Octopus.using:
 def index
 @posts = Octopus.using(:read_only) { Post.all }
 end

Now, whenever a user visits our Posts#index page, the query used to grab all of
the posts will run against our follower DB.

2.	 We can also direct all the reads for specific models to the follower database. Octopus
has a replicated_model method that we can use in our models. This will force all
writes to go to the primary database and all reads to use the follower.

In the Blogger app, a good candidate for this is the Category model. It isn't written
too often but receives a lot of reads:

class Category < ActiveRecord::Base
 replicated_model
 has_and_belongs_to_many :posts
 validates_presence_of :name
end

How it works…
The first step in horizontally scaling an application's database is to set up a follower and begin
moving reads to it. This allows us to reduce the load on our primary database and free up
more resources for writes. We need to carefully consider each query that we set up to use our
follower. As queries are executed on the primary database, they are streamed to the follower
database. This keeps the follower in sync with the primary database at all times. The delay
between the primary and follower will vary based on the volume of queries being run. Under
normal circumstances, changes will be synced within a few milliseconds.

Another benefit of having a follower database is that in the event that our primary fails, we can
quickly failover to the follower. The follower will become the new primary database and will be
ready to take over the load, because it has been in sync all the time. This saves us the time of
instantiating another database and restoring a backup of our data. The failover can happen in
a matter of seconds rather than minutes or hours (depending on how quick we are).

Optimizing a Rails Application on Heroku

166

The octopus.rb initializer that we used in this recipe is a little different than the
conventional usage of shards.yml for the production Octopus configuration. As your goal
here was to configure a single follower database, using an initializer was the simpler (and
more readable) solution. It allows us to follow the Heroku convention of using a configuration
variable for our database connections. It is possible to do this with shards.yml, but we will
have to mix both Ruby and YAML in the same file to do it correctly.

See also
ff The full example source code for this recipe is available at https://github.com/

mscoutermarsh/blogger-app/tree/follower_db

ff To learn more about Octopus, visit its page on GitHub at https://github.com/
tchandy/octopus

ff Refer to Heroku's Postgres documentation on using followers at https://
devcenter.heroku.com/articles/heroku-postgres-follower-
databases

https://github.com/mscoutermarsh/blogger-app/tree/follower_db
https://github.com/mscoutermarsh/blogger-app/tree/follower_db
https://github.com/tchandy/octopus
https://github.com/tchandy/octopus
https://devcenter.heroku.com/articles/heroku-postgres-follower-databases
https://devcenter.heroku.com/articles/heroku-postgres-follower-databases
https://devcenter.heroku.com/articles/heroku-postgres-follower-databases

9
Using and

Administrating
Heroku Postgres

In this chapter, we will cover the following recipes:

ff Creating and sizing a new database

ff Promoting a Heroku database

ff Connecting to Heroku Postgres from Navicat

ff Connecting to Heroku Postgres from psql

ff Creating a database backup

ff Restoring from a backup

ff Creating a read-only follower

ff Viewing and stopping database processes

ff Analyzing Heroku Postgres's performance

Introduction
With Heroku Postgres, most of the pain of administering a database has been automated,
giving us more time to focus on building and growing our applications. Security, health checks,
scaling, backup, and recovery have all been simplified for us.

Using and Administrating Heroku Postgres

168

Your database is one of the most crucial pieces of your application's infrastructure. Its
performance and security are of top priority when running a production-level application. In this
chapter, you will be introduced to using Postgres the Heroku way. You'll start by learning how to
select the correct database plan for your application. Once you have your database, you'll learn
how to administer it, manage backups, and monitor performance, all via the Heroku CLI.

Creating and sizing a new database
You're ready to set up a new Postgres database on Heroku. But how do you decide which plan
is right for your situation? In this recipe, you will determine what database size and plan you
will need for a new Heroku application. Rather than guessing, you can take some simple steps
to properly size your database from the start.

How to do it…
When selecting a database, there are several choices we need to make to ensure we are on
the right plan. We'll need to determine uptime requirements, as well as data size and how
many connections our application needs. Once we have this information, it is rather easy to
determine which plan is right for our application.

Selecting a tier
The first decision we need to make in choosing a database is picking which database tier our
application needs:

1.	 Heroku has four database tiers: hobby, standard, premium, and enterprise. For any
production-level application, we have to be at least on the standard tier. Hobby tier
databases are only meant for testing the platform and basic development.

2.	 Uptime is the primary consideration we need to be making when choosing a
database tier. While downtime cannot be predicted, if something occurs that affects
our database, on the standard tier, we could see up to a maximum of 1 hour of
downtime per month. The premium tier guarantees a maximum of 15 minutes.

Premium tier databases have a stand-by database ready and waiting
for automatic failover if something ever goes wrong.

If high availability is important to our application, we should choose a premium or enterprise-
level plan.

Chapter 9

169

Determining data size
The second step in choosing a database is determining how much RAM our database needs.
We can do this by finding out how much memory it takes to store all our data. Ideally, we want
our database to have enough RAM to store all of its data in memory:

1.	 If we have an existing database with Heroku, we can determine its data size with the
pg:info command:
$ heroku pg:info

If we have an existing Postgres DB on another provider, we can find the data size by
running the following command in psql:

\l+

That's a lowercase L in the preceding command.

2.	 Once we have the data size, it's up to us to make a rough estimate of how much our
data might grow. We should choose a plan with more RAM than data. If our data size
is 350 MB, then a plan with 1 GB of RAM will be a good fit. As our application grows,
we can always upgrade to a larger database instance as needed.

Connection limits
Each plan has a limited number of available connections that our application can use. You
can calculate how many connections your application needs fairly easily:

1.	 To see how many connections your application is currently using, you can run the
following command:
$ heroku pg:info

=== HEROKU_POSTGRESQL_GRAY_URL (DATABASE_URL)

Plan: Hobby-dev

Status: Available

Connections: 4

PG Version: 9.3.3

Created: 2014-07-27 21:01 UTC

2.	 The number of database connections will depend on what language/framework
our application is developed in. We'll typically see one database connection per
application process or thread. If we're using a multiprocess server such as Unicorn,
we can count on using one connection per Unicorn worker that we're running. If we
are running three workers on each dyno and have five dynos, our application needs
a minimum of 15 available connections to run.

Using and Administrating Heroku Postgres

170

3.	 We must also account for any connections that our worker processes will be using
and should give ourselves plenty of room for growth. When we're scaling up to quickly
handle increased load on our application, the last thing we want to worry about is
running out of database connections and having to upgrade our database.

Selecting and creating the database
Now that we understand our criteria to select a database plan, we can go ahead and pick
one. We now know how much data we currently use, the level of uptime we require, and the
number of connections our application needs. Armed with this information, selecting a plan
is much simpler.

To finish up, let's head over to https://addons.heroku.com/heroku-postgresql.
From here, we can select our database and either create it through the web interface or copy
the command provided and run it in a terminal.

How it works…
In the preceding steps, you picked a plan with more RAM than the total data in your database.
The reasoning behind this is that you want a cache hit rate of as close to 100 percent as
possible. This means that when your application queries your database, whatever data it
needs should be available in RAM, making it very quick to retrieve. If you have more data than
the available RAM and your application queries for it, then Postgres will have to use the hard
drive to access the data. This is significantly slower and counts as a cache miss. If you can
afford a database plan large enough for this, you should absolutely do it. Your application's
performance and users will be glad you did.

See also
ff Read more about Postgres's performance and cache hit rate in this excellent blog

post by Craig Kerstiens at http://www.craigkerstiens.com/2012/10/01/
understanding-postgres-performance/

Promoting a Heroku database
In your applications, you should be using the DATABASE_URL configuration variable to
connect to your database. It's not an uncommon occurrence, especially when upgrading a
database to have multiple databases for a single application. Heroku makes it easy for us
to manage which database's credentials are assigned to DATABASE_URL through a process
known as promotion. At any time, you can promote any database assigned to your application
and make it primary by updating DATABASE_URL. This makes it simple to swap databases
without any risk of pasting incorrect credentials.

https://addons.heroku.com/heroku-postgresql
http://www.craigkerstiens.com/2012/10/01/understanding-postgres-performance/
http://www.craigkerstiens.com/2012/10/01/understanding-postgres-performance/

Chapter 9

171

How to do it…
To start, let's open up a terminal and take a look at our current configuration variables:

1.	 Let's run heroku config to view our existing settings:
$ heroku config

DATABASE_URL: postgres://user:password@ec2-54-221-206-165.
compute-1.amazonaws.com:5432/d8hg98vjvtisu4

HEROKU_POSTGRESQL_GRAY_URL: postgres://user:password@ec2-54-235-
69-186.compute-1.amazonaws.com:5792/d75vuqlr37fe

HEROKU_POSTGRESQL_ORANGE_URL: postgres://user:password@ec2-54-221-
206-165.compute-1.amazonaws.com:5432/d8hg98vjvtisu4

2.	 In this example, we can see that we have two different databases from our
configuration variable: HEROKU_POSTGRESQL_GRAY and HEROKU_POSTGRESQL_
ORANGE. Currently, DATABASE_URL is set to credentials for the ORANGE database.

If we want to change this and have the GRAY database be our primary, we can use
promote to quickly update DATABASE_URL.

3.	 Let's promote the GRAY database to be our primary one using the pg:promote
command:
$ heroku pg:promote HEROKU_POSTGRESQL_GRAY

Promoting HEROKU_POSTGRESQL_GRAY_URL (DATABASE_URL) to DATABASE_
URL... done

4.	 Now that the new DATABASE_URL variable is set, we'll want to restart our application
so that it starts using the new settings:
$ heroku restart

5.	 Once our dynos restart, our application will be using our recently promoted database.

How it works…
It's always good practice to keep your configuration settings separate from your application's
source code by using environment variables in Heroku. PG promote is simply a convenience
method to manage your different databases in an easier way. You'll find that you use it often
when upgrading or changing database plans.

Connecting to Heroku Postgres from Navicat
Navicat is a popular GUI for database administration. In this recipe, you will learn how to set
up a connection to your Heroku Postgres database in Navicat.

Using and Administrating Heroku Postgres

172

Getting ready
To start, you'll first need to download and install Navicat. For this recipe, you'll need a version
of Navicat that is compatible with Postgres.

You can either use Navicat for Postgres or you can use Navicat Essentials. The essentials
version is a less-expensive edition of Navicat with a limited feature set aimed at more basic
database administration tasks.

The download and installation instructions are available here:

ff Navicat for Postgres at http://www.navicat.com/products/navicat-for-
postgresql

ff Navicat Essentials at http://www.navicat.com/products/navicat-
essentials

How to do it…
Once we have Navicat installed, we'll need to set up a connection to our Heroku
Postgres database:

1.	 Let's start by getting the credentials for our Heroku database. We can do this by
looking at our DATABASE_URL configuration variable.

We can also get these credentials from the Heroku Postgres
dashboard at https://postgres.heroku.com/
databases.

Let's run the following command:

$ heroku config:get DATABASE_URL

postgres://username:password@ec2-55-221-206-165.compute-1.
amazonaws.com:5432/dXhg98vjvtisu4

2.	 The string returned to us by the previous command contains everything we need to
connect to our Postgres database. If we're not familiar with this URL format, it can
be a little confusing. Let's break it down:

http://www.navicat.com/products/navicat-for-postgresql
http://www.navicat.com/products/navicat-for-postgresql
http://www.navicat.com/products/navicat-essentials
http://www.navicat.com/products/navicat-essentials
https://postgres.heroku.com/databases
https://postgres.heroku.com/databases

Chapter 9

173

3.	 Now that we have our credentials, let's open up Navicat and click on the
Connection icon in the top-left corner:

4.	 Let's start filling in our credentials by using what we retrieved in the previous steps.
For a database URL that looks like this:
postgres://username:password@ec2-55-221-206-165.compute-1.
amazonaws.com:5432/dXhg98vjvtisu4

We'd fill in the following:

�� Connection Name: We will add our application name as Heroku Postgres

�� Host Name/IP Address: This will be ec2-55-221-206-165.compute-1.
amazonaws.com

�� Port: The port number will be 5432

�� Default Database: This will be dXhg98vjvtisu4

�� User Name: The username has to be entered in this field

�� Password: The password has to be entered in this field

Using and Administrating Heroku Postgres

174

5.	 Next, we'll need to click on the SSL button and make sure Use SSL is checked. Once
checked, we can test our connection by clicking on Test Connection:

6.	 To finish up, we can click on OK and begin using Navicat with our Postgres database.

Having trouble connecting? Make sure that each field is correct
and that Use SSL is checked.

How it works…
Navicat is a great administration tool that makes it easy for us to view and work with our data.
Heroku Postgres allows us to connect to our database from anywhere as long as we are over
a secure connection (SSL). Other database administration tools will have similar setups, and
you can use what you learned here to connect to your database with them as well.

Chapter 9

175

See also
ff Check out 0xDBE as an alternative to Navicat at http://www.jetbrains.com/

dbe/

ff For MySQL databases, take a look at SequelPro available at http://www.
sequelpro.com/

Connecting to Heroku Postgres from psql
Psql is the terminal application that ships with Postgres. It enables us to run queries and
administer our Postgres databases from the command line. With Heroku, you can either use
the Heroku CLI to start up a psql session or you can connect to your database using only psql.
In this recipe, you'll be introduced to both methods.

How to do it…
To start, let's open up a terminal:

1.	 We can quickly start up a psql session through the Heroku CLI by running the
pg:psql command:
$ heroku pg:psql

To exit the psql session, type \q and hit Enter or
press Ctrl + D.

2.	 By default, it will connect to the database in our DATABASE_URL config variable. If we
want to connect to a different database, we need to specify the name:
$ heroku pg:psql ORANGE

3.	 We don't have to use the Heroku CLI to connect to our database. If we'd like, we
can use plain psql from the command line. We can get our credentials from the
DATABASE_URL configuration variable, and then pass them to the psql command:

$ PGPASSWORD=pass psql -U user -h host.com -p 5432 -d database-
name

Remember, the DATABASE_URL variable is formatted as postgres:://
username:password@host:port/database_name.

http://www.jetbrains.com/dbe/
http://www.jetbrains.com/dbe/
http://www.sequelpro.com/
http://www.sequelpro.com/

Using and Administrating Heroku Postgres

176

How it works…
Psql does not accept a password as an argument. You can instead set an environment
variable on your machine with your password, PGPASSWORD. Without setting this variable, psql
will prompt us for the password on login. If you'd like, you can store all of your database login
information in a .pgpass file in your home directory.

You can do this by creating a file and setting its permissions to only be accessible by the user:

$ touch ~/.pgpass && chmod 0600 ~/.pgpass

You can then place your credentials in the file in each line in the following format:

hostname:port:database:username:password

Although this is rare, your Heroku Postgres credentials can change
at any time. If your database host fails and Heroku needs to move
your database, the credentials you have saved will no longer be valid.
Heroku will always keep your DATABASE_URL variable up to date with
the latest credentials.

See also
To learn more about connecting to psql, refer to the documentation on the password file
available at http://www.postgresql.org/docs/9.3/static/libpq-pgpass.html

Creating a database backup
In case disaster strikes, you should always have a recent backup of your database that is
somewhere accessible and easy to restore from so that you can get back up and running
quickly. In this recipe, you will learn how to have Heroku automatically back up data for you.
You'll also learn how to manually create backups and store them away from Heroku for extra
peace of mind.

How to do it…
To begin, we'll need to open up a terminal and navigate to our Heroku application:

1.	 We can enable database backups with the Heroku add-on PG Backups. There are
three different backup options, and they are all free. The best option does daily
backups and retains our data for up to one month. Let's install that now:
$ heroku addons:add pgbackups:auto-month

http://www.postgresql.org/docs/9.3/static/libpq-pgpass.html

Chapter 9

177

To see the other plans, take a look at the PG Backups add-on
(https://addons.heroku.com/pgbackups).

2.	 Now that the add-on is installed, we can use it to capture a backup of our database:
$ heroku pgbackups:capture

HEROKU_POSTGRESQL_GRAY_URL (DATABASE_URL) ----backup---> b001

Capturing... done

Storing... done

By default, capture will back up the database in our DATABASE_URL
configuration variable. If we'd like to back up a different database, we can
pass it as an argument by using the $ heroku pgbackups:capture
HEROKU_POSTGRESQL_ORANGE_URL command.

3.	 We can view all of our backups by running pgbackups with no arguments. We'll see
that each backup has its own ID; these will come in handy later:
$ heroku pgbackups

ID Backup Time

---- -------------------------

b001 2014/08/24 14:56.26 +0000

b002 2014/08/24 15:03.59 +0000

4.	 If we'd like to download a backup, we can create a URL to download it from with the
url command:
$ heroku pgbackups:url b002

This command will return a URL that we can use to download our backup.

If we want to do all of this from the command line in a single command, we could combine
the command with cURL. This will save the backup to dbbackup.dump:

$ curl -o dbbackup.dump `heroku pgbackups:url b002`

How it works…
The pgbackups add-on is a convenient way for us to create backups from the Heroku CLI.
It's identical to using Postgres's pg_dump utility. The Heroku add-on takes care of running
the dump and storing it for us daily.

https://addons.heroku.com/pgbackups

Using and Administrating Heroku Postgres

178

Since it uses pg_dump, the backup file created can be transferred easily to any other Postgres
database (whether on Heroku or not). This makes it fairly easy for us to switch providers if we
ever need to. We're not locked into using only Heroku Postgres for our database needs.

See also
ff To learn more about pg_dump, take a look at its documentation on Postgres's

website at http://www.postgresql.org/docs/9.3/static/app-pgdump.
html

Restoring from a backup
A backup of your database is useless unless you are able to quickly and reliably restore from
it. This process is something that you won't use often, but it's critical that you know how to
do it and have practiced using it. If you ever need to do an emergency restore, you want to
be confident that you can and know how to do it. In this recipe, you will be learning how to
recreate your database on Heroku from a Postgres dump.

Getting ready
You'll need to have the pgbackups add-on installed and a backup of your database created.
For instructions on how to do this, refer to the previous recipe, Creating a database backup.

How to do it…
To start, let's open up a terminal. We'll be using the Heroku CLI to restore our backup:

1.	 To restore our primary database from our most recent backup, we can run the
pgbackups:restore command without any arguments:
$ heroku pgbackups:restore

It will take the most recently created backup and restore it to the database set in our
DATABASE_URL.

Remember, we can always see a list of our available backups on
Heroku by running $ heroku pgbackups.

2.	 If we want, we can specify the database we want to restore to, as well as the specific
backup ID:
$ heroku pgbackups:restore HEROKU_POSTGRESQL_GRAY_URL b001

http://www.postgresql.org/docs/9.3/static/app-pgdump.html
http://www.postgresql.org/docs/9.3/static/app-pgdump.html

Chapter 9

179

3.	 We do not have to use a backup that is only on Heroku. If we have a .dump file
somewhere that is accessible on the Internet, we can give Heroku the URL and it
will download and use it to restore our database:

$ heroku pgbackups:restore HEROKU_POSTGRESQL_GRAY_URL 'https://
s3.amazonaws.com/example-url/backup.dump'

S3 works great in storing database dumps. Make sure to
remove the dump from being publically accessible after the
restore is complete.

How it works…
Postgres has a pg_restore utility to restore from backups. Heroku has wrapped its
functionality nicely in the pgbackups:restore command, making it easy for us to recover
our database from a backup. The restore command is destructive and the state your
database was in before the restore operation will not be recoverable. If you're nervous at all
about attempting to restore your database, you can always create a new database, do the
restore, and then use promote to replace your existing database.

See also
ff To learn more about how pg_restore works, take a look at its documentation on

the PostgreSQL website (http://www.postgresql.org/docs/9.3/static/
app-pgrestore.html)

Creating a read-only follower
Follower databases can be used to create redundancy, scaling, or upgrading your existing
database. Once a follower is set up, all data written to the primary database will be synced
over to the follower. In this recipe, you will learn how to quickly get a follower set up and
synced with your primary database.

Primary/follower databases are also commonly referred to as
master/slave. On Heroku and in this book, we'll be using the
terms primary and follower.

How to do it…
We'll be setting up our follower database using the Heroku dashboard.

http://www.postgresql.org/docs/9.3/static/app-pgrestore.html
http://www.postgresql.org/docs/9.3/static/app-pgrestore.html

Using and Administrating Heroku Postgres

180

Followers can only be created for Standard or Premium databases.
We'll need to upgrade if we are using a development or hobby-level
database. To see if followers are available on our database, we can
run $ heroku pg.

We will perform the following steps:

1.	 Let's open a browser and go to https://postgres.heroku.com/databases
and click on our application's primary database.

2.	 Next, we'll click on the gear icon in the top-right corner and then add
Follower Database:

3.	 We'll need to pick a database size for our follower; we should use the same size as
our existing primary database. Once we click on Create, our follower will be created
and data from the primary database will start syncing. We can check on its status
with the pg:wait command:
$ heroku pg:wait

Waiting for database HEROKU_POSTGRESQL_ORANGE_URL... \ preparing
(37% completed)

4.	 The wait time will depend on the size of our primary database. Once finished, we'll
see that Heroku has added a configuration variable to our application that we can
use to connect to our follower.

https://postgres.heroku.com/databases

Chapter 9

181

How it works…
Heroku Postgres is great at making normally complex tasks very simple. Being able to quickly
set up a follower database is a huge asset to us as your application grows.

Redundancy
The added redundancy of having a follower will allow us to quickly recover from any failure in
our primary database. Using the pg:unfollow command, we can convert any follower into a
primary database. Since it has been kept in sync with the existing primary, its data is already
up to date and ready to go. Followers are also created on different infrastructures than their
primary. This protects us by distributing our data across multiple datacenters, significantly
reducing our risk in the event that there is a failure.

Premium and enterprise Heroku Postgres plans come with a
follower for high availability failover. They will automatically
failover in the event that the primary fails.

Horizontal scaling
Adding a follower is one of the first steps in scaling a database. With some changes to your
application, you can begin distributing reads to your follower database. This reduces the
number of queries against your primary database, giving it more resources to handle writes.
Any long running queries (such as business intelligence/reporting) can be directed to the
read-only follower. This isolates your application from any decrease in performance due to any
infrequent but resource-intensive queries.

See also
ff Refer to the Postgres wiki to learn more about replication at https://wiki.

postgresql.org/wiki/Replication,_Clustering,_and_Connection_
Pooling

ff Take a look at the Using a follower for read-only DB queries recipe in Chapter 8,
Optimizing a Rails Application on Heroku, to learn how to use a follower in a
Rails application

Viewing and stopping database processes
One option to diagnose database performance issues is by looking at the database's currently
running processes. This will give us insight into exactly what is taking up resources and
potentially causing problems. In this recipe, you will be learning how to use the Heroku CLI to
view and stop processes running on your database.

https://wiki.postgresql.org/wiki/Replication,_Clustering,_and_Connection_Pooling
https://wiki.postgresql.org/wiki/Replication,_Clustering,_and_Connection_Pooling
https://wiki.postgresql.org/wiki/Replication,_Clustering,_and_Connection_Pooling

Using and Administrating Heroku Postgres

182

How to do it…
To begin, let's open up a terminal; we'll be using the Heroku CLI in this recipe:

1.	 To view the currently running processes on our database, we can use the pg:ps
command. We'll see an output of what is currently running. Each process has its own
unique ID (PID, or process ID):
$ heroku pg:ps

pid | state | source | running_for |

----+--------+----------------+--------------

343 | active | /app/bin/rails | 00:04:23.0286

This example has been condensed for readability.

2.	 In this example, we have a query that has been running for over 4 minutes. We can
stop this query with the pg:kill command. We use the pid found from the previous
command and pass it to pg:kill to stop the process from running:
$ heroku pg:kill 343

If our database is in a really bad condition, we can kill every running
process by using the $ heroku pg:killall command.

How it works…
Postgres has a table, pg_stat_activity that contains all of its currently running
processes. Heroku has created commands in its CLI to nicely wrap and present the data
available in this table. If you're curious to see the raw data Heroku is working with, you can
query pg_stat_activity directly:

SELECT * FROM pg_stat_activity where datname = 'our-heroku-db-name';

If we're ever in a situation where our database performance is suffering for unknown reasons,
checking the currently running processes is a quick way to find the cause. Also, if needed, you
can take action and end the offending process.

Chapter 9

183

See also
ff To learn more about the statistics that Postgres monitors, take a look at Postgres's

documentation available at http://www.postgresql.org/docs/9.3/static/
monitoring-stats.html

Analyzing Heroku Postgres's performance
Database performance is critical to have a highly responsive web application. Heroku gives
us a handful of tools to analyze our Postgres database for performance issues. Knowledge
is power, and having visibility into emerging issues can help us fix them before they turn into
major problems. In this recipe, you will learn about your cache hit rate, slow queries, and
unused indexes.

Getting ready
In this recipe, we will be making use of the pg-extras plugin for Heroku. It gives us access to
additional commands to administer our Postgres database.

To install it, you need to open a terminal and run the following command:

$ heroku plugins:install git://github.com/heroku/heroku-pg-extras.git

How to do it…
We'll be using the Heroku CLI to monitor the performance of our database.

1.	 To get an overview of our database's general health, we can run the pg:diagnose
command:
$ heroku pg:diagnose

GREEN: Connection Count

GREEN: Long Queries

GREEN: Idle in Transaction

GREEN: Indexes

GREEN: Bloat

GREEN: Hit Rate

GREEN: Blocking Queries

GREEN: Load

It quickly does eight different health checks on our database and reports back any
issues that it finds. If any of the checks are red, we'll receive suggestions on how to fix
them or find more information.

http://www.postgresql.org/docs/9.3/static/monitoring-stats.html
http://www.postgresql.org/docs/9.3/static/monitoring-stats.html

Using and Administrating Heroku Postgres

184

2.	 Having a cache hit rate as close to 100 percent as possible is critical for a database
that responds to queries quickly. We can see what our cache hit rate is by using the
pg-extras cache-hit command:
$ heroku pg:cache-hit

 name | ratio

----------------+------------------------

 index hit rate | 0.99922477136372828798

 table hit rate | 0.99936977126404112551

(2 rows)

Each of these ratios show how often our database retrieves data from memory
(cache) rather than having to go to the hard disk. If we ever see a number lower
than 98 percent, we should consider upgrading our database size so that more of
our dataset can live in memory. Queries that are served directly from cache are
magnitudes faster than those that require reading from disk.

To see all of the pg-extras available commands, run
$ heroku pg --help.

3.	 Indexes can take up a lot of memory, so we should make sure that they are worth
the overhead and are being used. We can see how often they are used with the
pg:index-usage command:
$ heroku pg:index-usage

 relname | percent_of_times_index_used | rows_in_table

-------------------+-----------------------------+---------------

 categories_posts | | 44063

 posts | 99 | 22012

 authors | 0 | 13137

 schema_migrations | Insufficient data | 2

 categories | 99 | 2

(5 rows)

In this example, we can see that this table never uses its index.

For further details, we can use the pg:unused-indexes command:

$ heroku pg:unused-indexes

 table | index | index_size | index_scans

----------------+-----------------------+------------+------------

 public.authors | index_authors_on_name | 784 kB | 0

(1 row)

Chapter 9

185

Now, it's clear exactly which index is never used and how much space it is taking up.
This specific index only uses 784 kilobytes of RAM, which is pretty insignificant. If we
wanted, we could remove it to free up some memory.

4.	 Finally, the last thing we should check when monitoring our database's performance
is for any slow queries. There are multiple ways we can do this.

For extremely slow queries that have been running for over 5 minutes, we can use
the pg:long-running-queries command:
$ heroku pg:long-running-queries

To see our application's top 10 slowest queries, we can run pg:outliers:
$ heroku pg:outliers

It's good practice to regularly look at our slowest queries. If
we can make it a habit of optimizing them, our database's
performance will improve.

If we'd like to view our slowest queries from the Web, we can do that as well by going to
https://postgres.heroku.com, navigating to our database, and then scrolling down.
Our expensive queries are listed on the dashboard, as shown in the following screenshot:

How it works…
All of the information gathered by pg-extras comes from the various stats tables in
Postgres. You can see the exact queries that each of these commands run against your
database by viewing the source code of the pg-extras plugin.

Here's the source: https://github.com/heroku/heroku-pg-extras/blob/master/
lib/heroku/command/pg.rb.

https://postgres.heroku.com
https://github.com/heroku/heroku-pg-extras/blob/master/lib/heroku/command/pg.rb
https://github.com/heroku/heroku-pg-extras/blob/master/lib/heroku/command/pg.rb

Using and Administrating Heroku Postgres

186

With this information, you can do regular checkups of your database and uncover issues at
an early stage. Monitoring these different metrics as your application grows will help you in
planning upgrades and optimizing your application's code for best performance.

See also
ff The pg-extras plugin at https://github.com/heroku/heroku-pg-extras

ff To learn about Postgres's statistics tables, check out the documentation at
http://www.postgresql.org/docs/9.3/static/monitoring-stats.html

https://github.com/heroku/heroku-pg-extras
http://www.postgresql.org/docs/9.3/static/monitoring-stats.html

10
The Heroku

Platform API

In this chapter, we will cover:

ff Making our first API request with HTTPie

ff Getting started with the Platform API gem

ff Scaling dynos and workers

ff Managing configuration variables

ff Adding and removing collaborators

ff Creating new Heroku applications

Introduction
As developers, we love APIs. They give us the power to build anything we want with our favorite
services. Heroku's Platform API gives us full control over our Heroku applications, allowing us
to automate and script to our heart's content.

In this chapter, we'll be introduced to the basics of making a request to the Heroku API. We'll
then move on to learn some of the more advanced features and how we can use them in
real-world situations. By the end of this chapter, we'll have the information we need to write
our own scripts to manage our Heroku applications.

The Heroku Platform API

188

Making our first API request with HTTPie
The Heroku Platform API is a set of HTTP endpoints that enables us to fully manage our
applications. Each endpoint has a set of available actions. They are RESTful; this means
that they use HTTP request types (GET, PATCH, POST, and DELETE) to determine what action
we want from the API. GET is used to retrieve data such as a list of our applications. PATCH
is used to make updates to the existing data, such as making a change to a configuration
variable. POST is used to create something new, such as a new application. Finally, DELETE is
used for exactly what it sounds like, deleting data.

In this recipe, we will learn about the conventions to make requests to the Heroku API. We will
also be introduced to HTTPie, which is a command-line tool to send HTTP requests. It's similar
to cURL, but easier to use.

Getting ready
To begin, we'll need to install HTTPie on our machine.

OS X
On OS X, we can install HTTPie via Homebrew:

$ brew install httpie

Linux
Depending on our flavor of Linux, there are HTTPie packages available via apt-get:

$ apt-get install httpie

They are also available via yum:

$ yum install httpie

Windows
For Windows, we can install HTTPie via Pip (https://pip.pypa.io):

$ pip install httpie

Having trouble with installation? Visit HTTPie on GitHub at
https://github.com/jakubroztocil/httpie for
more information.

https://pip.pypa.io
https://github.com/jakubroztocil/httpie

Chapter 10

189

How to do it…
For our first request, we will use HTTPie to get a JSON version of the Platform API schema.
This request does not require any form of authentication. It makes for a good first attempt
at using the API.

All Heroku API requests must be done over HTTPS.

Let's perform the following steps:

1.	 For each API request, we need to include an Accept header. This specifies which
version of the API we are trying to access. To start, let's try sending a request without
an Accept header to see what happens:
$ http https://api.heroku.com/schema

HTTP/1.1 404 Not Found

Cache-Control: no-transform

Connection: keep-alive

Content-Length: 168

Content-Type: text/plain

Date: Sat, 06 Sep 2014 13:04:57 GMT

Request-Id: bcfa2ec6-67d3-48a2-aae4-d0f10a1250bc

Server: nginx/1.4.7

Status: 404 Not Found

X-Cascade: pass

X-Content-Type-Options: nosniff

X-Runtime: 0.007322096

The requested API endpoint was not found. Are you using the
right HTTP verb (i.e. `GET` vs. `POST`), and did you specify your
intended version with the `Accept` header?

We received a 404 error because we did not specify an Accept header in the request.

We can add -v to any HTTPie command to see a
verbose output.

The Heroku Platform API

190

2.	 If we try the request again with the Accept header set correctly, we'll receive a
response. Let's try this now:
$ http https://api.heroku.com/schema
Accept:'application/vnd.heroku+json; version=3'

HTTP/1.1 200 OK

Cache-Control: public, max-age=3600

Connection: keep-alive

Content-Encoding: gzip

Content-Type: application/schema+json

Date: Sat, 06 Sep 2014 13:15:22 GMT

RateLimit-Remaining: 2399

Request-Id: d6ab5428-c2ae-4d5f-ae18-ed67b1e8fd03

Server: nginx/1.4.7

Status: 200 OK

This request returned a status of 200, as well as a listing of each endpoint and action
available on the Heroku Platform API.

Having trouble with the Accept header? Make sure it
is surrounded by single quotes in the HTTP command,
application/vnd.heroku+json; version=3

3.	 Now that we've successfully made our first request, let's learn how to make an
authenticated request. First, we'll need to get our API token. We can do this from
the Heroku CLI with the following command:
$ heroku auth:token

4f39171e-2e0c-432d-9282-99x59a315312

4.	 Now that we have our token, let's use it to view information about our account:
$ http https://api.heroku.com/account

 Accept:'application/vnd.heroku+json; version=3'

 -a :'4f39171e-2e0c-432d-9282-99x59a315312'

 HTTP/1.1 200 OK

Connection: keep-alive

Content-Encoding: gzip

Content-Length: 232

Content-Type: application/json;charset=utf-8

Date: Sat, 06 Sep 2014 22:39:42 GMT

ETag: "efeafb4cc0a048c2f1809ca63d9bce33"

Chapter 10

191

Last-Modified: Thu, 04 Sep 2014 00:17:37 GMT

Oauth-Scope: global

Oauth-Scope-Accepted: global identity

RateLimit-Remaining: 2392

Request-Id: 7f9d8be7-2ebb-4845-8d0f-9f6323e01ba8

Server: nginx/1.4.7

Status: 200 OK

Vary: Accept-Encoding

X-Content-Type-Options: nosniff

X-Runtime: 0.044324164

{
 "allow_tracking": true,
 "beta": false,
 "created_at": "2010-02-03T03:34:45Z",
 "email": "Coutermarsh.mike@gmail.com",
 "id": "xxx212b3-960c-4dbf-b7bf-008d7e8310e6",
 "last_login": "2014-09-04T00:17:37Z",
 "name": "Mike Coutermarsh",
 "two_factor_authentication": false,
 "updated_at": "2014-09-04T00:17:37Z",
 "verified": true
}

Having trouble? In the previous command, be sure to pass the
authentication in the -a :'token'format. This tells HTTPie to use basic
authentication, with no username, and our token as the password. The
token will be converted to the base64 format before being sent.

5.	 We now know the basics of making a request to the Heroku API. To see a full listing
of all the available endpoints, we can view the complete documentation at https://
devcenter.heroku.com/articles/platform-api-reference.

How it works…
Now, we are able to make simple authenticated requests to the Heroku API using HTTPie.
The basics that we learned here will also apply to any other method of making requests to the
Heroku API. We will always need to include an Accept header, and for authenticated requests,
we'll need to use HTTP basic authentication with our API token.

https://devcenter.heroku.com/articles/platform-api-reference
https://devcenter.heroku.com/articles/platform-api-reference

The Heroku Platform API

192

Having to add authentication to each HTTPie request can be a little tedious. Luckily, we can
easily avoid this if we authenticate the Heroku Toolbelt. When we log in with the Heroku CLI,
using $ heroku auth:login, Heroku adds an entry to our machine's ~/.netrc file that
contains our API token. This is what allows us to continue using the CLI without logging in
each time. HTTPie is already set up to be compatible with netrc. Before sending each request,
HTTPie checks our ~/.netrc file, and if it sees credentials for the requested URL (api.
heroku.com), it will automatically include them in the request.

See also
ff To learn more about REST, take a look at the introductory tutorial at http://code.

tutsplus.com/tutorials/a-beginners-guide-to-http-and-rest--
net-16340

ff HTTPie on GitHub at https://github.com/jakubroztocil/httpie

ff CLI authentication with netrc at https://devcenter.heroku.com/articles/
authentication

ff For a simple GUI HTTP client, try Postman at http://www.getpostman.com/

Getting started with the Platform API gem
Heroku has created a Ruby gem that makes it easy for us to take full advantage of the
Platform API from Ruby. In this recipe, we'll learn how to get up and running with the gem
and on our way to integrating the Heroku API with our own Ruby applications. We'll also be
introduced to Pry, a super-powerful Ruby shell to execute and explore code. It will help us get
up to speed and learn the Heroku API gem quickly.

Getting ready
To start, let's download some sample code to get familiar with the Platform API gem.

1.	 Let's open up a terminal and use Git to clone the sample code:
$ git clone https://github.com/mscoutermarsh/heroku-api-examples.
git

$ cd heroku-api-examples

2.	 We'll need Ruby 2.1.2 to run these examples. If we have RVM installed, we can
select 2.1.2:
$ rvm use 2.1.2

If it isn't installed, RVM will give us instructions on how
to install it.

api.heroku.com
api.heroku.com
http://code.tutsplus.com/tutorials/a-beginners-guide-to-http-and-rest--net-16340
http://code.tutsplus.com/tutorials/a-beginners-guide-to-http-and-rest--net-16340
http://code.tutsplus.com/tutorials/a-beginners-guide-to-http-and-rest--net-16340
https://github.com/jakubroztocil/httpie
https://devcenter.heroku.com/articles/authentication
https://devcenter.heroku.com/articles/authentication
http://www.getpostman.com/

Chapter 10

193

3.	 Now, let's install the dependencies by running bundler:
$ bundle install

How to do it…
We now have everything we need to get started with the Heroku Platform API gem.

1.	 The first thing we'll want to do is try making an authenticated request to the API.
In the heroku-api-examples repository we set up earlier, let's take a look at
authentication.rb:
require 'platform-api'

heroku_api = PlatformAPI.connect_oauth('your_token_here')

puts heroku_api.account.info

The purpose of this file is to see whether we can successfully authenticate and make
a request to the Heroku API.

Notice that we require 'platform-api' at the beginning of
this file. We need to do this because it's a plain Ruby file. This isn't
needed in a Rails application because Rails will automatically load
it for us.

2.	 Let's replace your_token_here in authentication.rb with our Heroku API
token. We can get it by running the following command:
$ heroku auth:token

faxxadf7-a340-434b-ad23-d2d51b4e7c1d

Remember that we should never check this token into Git. It allows
access to our entire Heroku account. Treat it with the same level of
security as a password. We can, instead, store it in an environment
variable and reference the variable in our code.

3.	 Now that our token is in authentication.rb, let's try running the file. If we added
our token correctly, it will output a hash of our account information:
$ ruby authentication.rb

{"allow_tracking"=>true, "beta"=>false, "email"=>"coutermarsh.
mike@gmail.com", "id"=>"dxx1d923-35e1-4655-b333-f8b33db1e943",
"last_login"=>"2014-06-06T01:12:00Z", "name"=>nil, "two_factor_
authentication"=>false, "verified"=>true, "created_at"=>"2010-02-
03T03:34:45Z", "updated_at"=>"2014-08-09T19:40:35Z"}

The Heroku Platform API

194

4.	 When learning how to use a new gem, it can be useful to play around with its different
functions in a Ruby console. This example project has a file set up for us to do this;
this file is console.rb.

Let's open console.rb and replace your_token_here with our authentication
token, just like we did with authentication.rb.

5.	 Now that console.rb has our authentication token, let's run it. This time, it will
bring up a Ruby console with an instance of the Platform API already instantiated
and ready for us to use:
$ ruby console.rb

6.	 For starters, let's try getting our account information from the console. This is exactly
what authentication.rb did for us. We can do this by typing the following
command in the console:
$ heroku_api.account.info

D, [2014-09-14T13:23:35.893920 #10391] DEBUG -- : [httplog]
Sending: GET https://api.heroku.com:443/account
D, [2014-09-14T13:23:35.894006 #10391] DEBUG -- : [httplog]
Header: User-Agent: excon/0.39.5
D, [2014-09-14T13:23:35.894046 #10391] DEBUG -- : [httplog]
Header: Accept: application/vnd.heroku+json; version=3
D, [2014-09-14T13:23:35.894087 #10391] DEBUG -- : [httplog]
Header: Authorization: Bearer faf8adf9-a340-434b-ad23-d9d51b4e7c1d
D, [2014-09-14T13:23:35.894136 #10391] DEBUG -- : [httplog]
Header: Host: api.heroku.com:443
D, [2014-09-14T13:23:36.180224 #10391] DEBUG -- : [httplog]
Status: 200
D, [2014-09-14T13:23:36.180752 #10391] DEBUG -- : [httplog]
Benchmark: 0.286894 seconds
=> {"allow_tracking"=>true,
 "beta"=>false,
 "email"=>"coutermarsh.mike@gmail.com",
 "id"=>"dxx1d923-35e1-4655-b333-f8b33db1e943",
 "last_login"=>"2014-06-06T01:12:00Z",
 "name"=>nil,
 "two_factor_authentication"=>false,
 "verified"=>true,
 "created_at"=>"2010-02-03T03:34:45Z",
 "updated_at"=>"2014-08-09T19:40:35Z"}

Chapter 10

195

7.	 In the output of the preceding command, take note of the [httplog] lines.
These are shown because console.rb has httplog enabled. This is included in
console.rb for learning purposes. It shows us the exact HTTP requests that the
Platform API gem is making to the API.

If we want to hide these, we can comment out the following lines in console.rb:

require 'httplog'
HttpLog.options[:log_response] = false
HttpLog.options[:log_headers] = true
HttpLog.options[:log_connect] = false
HttpLog.options[:logger] = Logger.new($stdout)

The HTTPlog info will be omitted from the rest of the examples
for readability.

8.	 This console uses Pry, which is a very powerful Ruby shell. We can use it to explore
the Ruby code and the Platform API gem. If we want to see all of the possible
methods available for an object, we can type ls and the object name. Let's run the
following command to see the available methods on account:
$ ls -m heroku_api.account

PlatformAPI::Account#methods: change_email change_password info
update

Pry's commands are based on Unix. The ls command is used to
list, and cd is to navigate in and out of objects.

9.	 With Pry, we can quickly view the documentation for objects and methods with the
show-doc command:
$ show-doc heroku_api.account

From: /Users/mcoutermarsh/.rvm/gems/ruby-2.1.2/gems/platform-
api-0.2.0/lib/platform-api/client.rb @ line 98:

Owner: PlatformAPI::Client

Visibility: public

Signature: account()

Number of lines: 3

An account represents an individual signed up to use the Heroku
platform.

return [Account]

The Heroku Platform API

196

10.	 If we'd like, we can even view all of the methods available for the entire Platform API
gem with the following command:
$ ls -m heroku_api

11.	 We can also use show-doc to view method documentation. Let's try this now to learn
about the change_password method:
$ show-doc heroku_api.account.change_password

From: /Users/mcoutermarsh/.rvm/gems/ruby-2.1.2/gems/platform-
api-0.2.0/lib/platform-api/client.rb @ line 377:

Owner: PlatformAPI::Account

Visibility: public

Signature: change_password(body)

Number of lines: 3

Change Password for account.

param body: the object to pass as the request payload

This lets us quickly see what the arguments for the change_password method are,
without having to look up the documentation in a Web browser.

12.	 To finish up, we can close our console session by typing exit:
$ exit

How it works…
The Heroku Platform API gem takes care of the nitty-gritty details of making API requests for
us, making it quick and easy to develop Ruby applications that make use of the Platform
API. It knows exactly what endpoints to request and how to format each request. When using
console.rb, we can learn about the exact endpoints that the gem is using by watching the
httplog lines in the console. All of the parameters and headers are included in the log, thus
showing the exact requests that are sent to the API.

Heroics
If we want to understand further how the Platform API gem was built, we can take a look at
the Heroics gem. Heroics creates Ruby API wrappers based on a JSON schema of the API.
Heroku used Heroics to create the Platform API gem.

We can see the Platform API schema at https://github.com/
heroku/platform-api/blob/master/lib/platform-
api/schema.json.

https://github.com/heroku/platform-api/blob/master/lib/platform-api/schema.json
https://github.com/heroku/platform-api/blob/master/lib/platform-api/schema.json
https://github.com/heroku/platform-api/blob/master/lib/platform-api/schema.json

Chapter 10

197

Pry
In console.rb, we used Pry to set a break point in the execution of the file. This is a
powerful skill to learn when building anything in Ruby. It makes debugging and exploring code
much easier. Since the Platform API is well documented, we're able to use it to our advantage
when getting familiar with it.

See also
ff The Platform API gem at https://github.com/heroku/platform-api

ff Pry at http://pryrepl.org/

ff The Heroics Gem at https://github.com/interagent/heroics

ff httplog at https://github.com/trusche/httplog

ff Pry Byebug at https://github.com/deivid-rodriguez/pry-byebug

Scaling dynos and workers
Imagine if we could scale up our applications from our company chatroom? Or maybe even
from our own custom admin panel? This is possible by integrating with the Heroku API. In this
recipe, we'll be introduced to managing processes with the Platform API gem. This will give us
the start we need to write our own code to handle scaling our Heroku applications.

Be sure to complete the previous recipe before attempting
this one.

How to do it…
Let's get started by opening up a terminal and navigating to our heroku-api-examples
directory. Then, we can perform the following steps:

1.	 We can start by launching a console session to get familiar with the app commands:
$ ruby console.rb

2.	 Now that we have a console session running, let's get a list of our available
applications from the API using app.list. This will return an array of hashes. Each
item in the array is one of our applications.

We should set the response to a variable so that we can work with it later on.

$ apps = heroku_api.app.list

 {"archived_at"=>nil,
 "buildpack_provided_description"=>"Ruby",

https://github.com/heroku/platform-api
http://pryrepl.org/
https://github.com/interagent/heroics
https://github.com/trusche/httplog
https://github.com/deivid-rodriguez/pry-byebug

The Heroku Platform API

198

 "build_stack"=>{"id"=>"7e04461d-ec81-4bdd-8b37-b69b320a9f83",
"name"=>"cedar"},
 "created_at"=>"2014-04-20T22:32:57Z",
 "id"=>"7024121d-d91f-46a2-b008-78d637cff6fb",
 "git_url"=>"git@heroku.com:vote-a-tron.git",
 "maintenance"=>false,
 "name"=>"vote-a-tron",
 "owner"=>{"email"=>"coutermarsh.mike@gmail.com",
"id"=>"d3axx923-36e1-4655-b333-f8b33db1e943"},
 "region"=>{"id"=>"59accabd-516d-4f0e-83e6-6e3757701145",
"name"=>"us"},
 "released_at"=>"2014-06-21T21:23:13Z",
 "repo_size"=>802816,
 "slug_size"=>42519181,
 "stack"=>{"id"=>"7e04461d-ec81-4bdd-8b37-b69b320a9f83",
"name"=>"cedar"},
 "updated_at"=>"2014-06-21T21:23:13Z",
 "web_url"=>"http://vote-a-tron.herokuapp.com/"}]

3.	 The apps variable is now an array of all our applications. We can use it like we would
use any array in Ruby. Let's look at a couple of examples of things we can do with
this data.

To see how many apps we have, we can use count:
$ apps.count

=> 18

To get an array of our all our app names, we can use map:
$ apps.map{|app| app['name']}

If we want to get information for only our Ruby apps, we can use collect with a
regular expression match for Ruby:

$ ruby_apps = apps.select{|app| /Ruby/ =~ app['buildpack_provided_
description']}

We use a regular expression here because the
buildpack name might differ due to the framework
used for each Ruby application.

4.	 If we want to get information for only a single application via the API, we can do this
as well by specifying the application's name:
$ heroku_api.app.info('app-name-here')

Chapter 10

199

Remember that at any time, we can run ls -m heroku_api.app
to see a list of the available methods for the app endpoint.

5.	 The specific processes that run for an application are available via the formation
endpoint. Let's use this now to see the processes for one of our applications:
$ heroku_api.formation.list('app-name-here')

=> [{"command"=>"bundle exec rake jobs:work",
 "created_at"=>"2014-07-27T21:01:44Z",
 "id"=>"53a3f397-90a2-4e8c-a700-b5c4d1e27bb8",
 "type"=>"worker",
 "quantity"=>1,
 "size"=>"1X",
 "updated_at"=>"2014-07-27T21:01:44Z"},
 {"command"=>"bundle exec unicorn -p $PORT -c ./config/unicorn.
rb",
 "created_at"=>"2014-07-27T21:01:44Z",
 "id"=>"e1fd1c89-3876-4815-85b2-57dff996a375",
 "type"=>"web",
 "quantity"=>1,
 "size"=>"1X",
 "updated_at"=>"2014-07-27T21:01:44Z"},
 {"command"=>"bin/rails console",
 "created_at"=>"2014-07-27T21:01:44Z",
 "id"=>"f8c4b2e7-35e1-4adb-b806-f15abbcdfe12",
 "type"=>"console",
 "quantity"=>0,
 "size"=>"1X",
 "updated_at"=>"2014-07-27T21:01:44Z"},
 {"command"=>"bundle exec rake",
 "created_at"=>"2014-07-27T21:01:44Z",
 "id"=>"f291f5a8-853a-4131-ac28-3bf5423b8fac",
 "type"=>"rake",
 "quantity"=>0,
 "size"=>"1X",
 "updated_at"=>"2014-07-27T21:01:44Z"}]

6.	 If we want to limit this response to only a specific type of process, we can do that as
well. Let's look at only web processes:
$ heroku_api.formation.info('app-name-here', 'web')

=> {"command"=>"bundle exec unicorn -p $PORT -c ./config/unicorn.
rb",

The Heroku Platform API

200

 "created_at"=>"2014-07-27T21:01:44Z",
 "id"=>"e1fd1c89-3876-4815-85b2-57dff996a375",
 "type"=>"web",
 "quantity"=>1,
 "size"=>"1X",
 "updated_at"=>"2014-07-27T21:01:44Z"}

7.	 Now, for the fun part, we can use formation.update to scale both the number and
size of our processes. Let's start by scaling the number of web processes that we're
running from 1 to 2:
$ heroku_api.formation.update('app-name-here', 'web', {quantity:
2})

=> {"command"=>"bundle exec unicorn -p $PORT -c ./config/unicorn.
rb",
 "created_at"=>"2014-07-27T21:01:44Z",
 "id"=>"e1fd1c89-3876-4815-85b2-57dff996a375",
 "type"=>"web",
 "quantity"=>2,
 "size"=>"1X",
 "updated_at"=>"2014-09-14T15:52:07Z"}

8.	 We can also scale the size of our processes. Let's try that now by bumping up our web
process from a 1X dyno to a 2X dyno:
$ heroku_api.formation.update('app-name-here', 'web', {size:
'2X'})

=> {"command"=>"bundle exec unicorn -p $PORT -c ./config/unicorn.
rb",
 "created_at"=>"2014-07-27T21:01:44Z",
 "id"=>"e1fd1c89-3876-4815-85b2-57dff996a375",
 "type"=>"web",
 "quantity"=>2,
 "size"=>"2X",
 "updated_at"=>"2014-09-14T15:52:40Z"}

9.	 We can update both the size and quantity at once if we'd like:
$ heroku_api.formation.update('app-name-here', 'web', {quantity:
3, size: '2X'})

Need more information on a specific command? Remember that with Pry,
we can use the show-doc command to see documentation. Try it now with
show-doc heroku_api.formation.update.

Chapter 10

201

10.	 To finish up, let's not forget to scale our processes back to the original setting to avoid
any unnecessary charges from Heroku:
$ heroku_api.formation.update('app-name-here', 'web', {quantity:
1, size: '1X'})

11.	 We can close our console session by typing exit:
$ exit

How it works…
In this recipe, we used the apps and formation API endpoints to view information about our
application and its processes. The formation endpoint contains all the information about
our application's different processes. With it, we're able to adjust the quantity or size of any
process. We cannot create new process types from the API. This is only possible by making
changes to our application's Procfile.

When using console.rb to test out the Platform API gem, remember that we can look at the
output immediately after the command to see the HTTP requests made by the gem. If we were
to use the API without the Ruby gem, these are the same requests we'd need to make to scale
our applications.

See also
ff For details on the app and formation endpoints, take a look at the Platform API

documentation at https://devcenter.heroku.com/articles/platform-
api-reference

Managing configuration variables
When enabling a Heroku add-on, such a Redis-to-go or MemCachier, the add-on automatically
populates our configuration variables with the add-on credentials. They are able to do this
because of the Heroku API. Configuration variables are a core part of any Heroku application.
In this recipe, we'll learn how to manage them via the API.

Be sure to read the Getting started with the Platform API gem recipe
before attempting this recipe.

https://devcenter.heroku.com/articles/platform-api-reference
https://devcenter.heroku.com/articles/platform-api-reference

The Heroku Platform API

202

How to do it…
To begin, we can fire up a terminal and navigate to our heroku-api-examples directory.
Then, we can perform the following steps:

1.	 We'll be practicing in the console. Let's start it up now:
$ ruby console.rb

2.	 Let's take a look at the available commands for the config-vars endpoint by using
Pry's ls -m command:
$ ls -m heroku_api.config_var

PlatformAPI::ConfigVar#methods: info update

3.	 We can use the info command to view all of the configuration variables for an
application. This command will return the variables in a hash:
$ heroku_api.config_var.info('app-name')

=> {"RAILS_ENV"=>"production",
 "RACK_ENV"=>"production",
 "SECRET_KEY_BASE"=>"xxxy",
 "ADMIN_EMAILS"=>"coutermarsh.mike@gmail.com",
 "MEMCACHIER_SERVERS"=>"mc5.dev.ec2.memcachier.com:11211",
 "MEMCACHIER_PASSWORD"=>"xys",
 "MEMCACHIER_USERNAME"=>"abcd",

 "WEB_CONCURRENCY"=>"4"}

4.	 To update or create a configuration variable, we will use update:
$ heroku_api.config_var.update('app-name', {test: 'testing')

The command will return a hash with all of our configuration variables, including the
one we just set.

Remember that configuration variables are case sensitive.

5.	 We can update multiple values if we'd like:
$ heroku_api.config_var.update('app-name', {test: 'testing';
test2: 'another test')

6.	 To delete, we can pass nil:
$ heroku_api.config_var.update('app-name', {test: nil})

Chapter 10

203

7.	 To end our console session, we can type exit:
$ exit

How it works…
In this recipe, we used the config-var API endpoint to make changes to our application's
configuration variables.

Each change sent a request specifically to https://api.heroku.com/apps/
application-name/config-vars.

If we watch the HTTP logs in the console, we can see what is happening beneath the surface
for each request. To retrieve variables, a GET request is sent to the endpoint. To make
changes or create existing variables, a PATCH request is used.

See also
ff The config-vars documentation at https://devcenter.heroku.com/articles/

platform-api-reference#config-vars

Adding and removing collaborators
When a new employee starts at our company, wouldn't it be great if we could quickly grant
them access to all of our Heroku applications? We can write programs using the API to
do this using the collaborator endpoint. In this recipe, we'll learn how to add and remove
collaborators from our applications.

Make sure you complete reading the Getting Started with the
Platform API gem recipe before attempting this recipe.

How to do it…
To start, let's open a terminal and go to our heroku-api-examples directory. Then, we can
perform the following steps:

1.	 Let's start up a console by running console.rb:
$ ruby console.rb

 https://api.heroku.com/apps/application-name/config-vars
 https://api.heroku.com/apps/application-name/config-vars
https://devcenter.heroku.com/articles/platform-api-reference#config-vars
https://devcenter.heroku.com/articles/platform-api-reference#config-vars

The Heroku Platform API

204

2.	 With the collaborator's endpoint, we can list, create, or delete collaborators for any
of our applications. Let's use the list command to see the current collaborators on
one of our applications:
$ heroku_api.collaborator.list('app-name')

=> [{"created_at"=>"2014-04-20T22:32:57Z",
 "id"=>"059e7a76-ce3a-4e54-b655-54e3e8e2f253",
 "updated_at"=>"2014-04-20T22:32:57Z",
 "user"=>{"id"=>"d3a1d923-35e1-4655-b333-f8b33db1e943",
"email"=>"coutermarsh.mike@gmail.com"},
 "role"=>"owner"},
 {"created_at"=>"2014-06-06T02:31:25Z",
 "id"=>"7b803943-606f-4aa9-8021-bbb8aed04ba2",
 "updated_at"=>"2014-06-06T02:31:25Z",
 "user"=>{"id"=>"624252b3-960c-4dbf-b7bf-008d7e8310e6",
"email"=>"mike@mikecoutermarsh.com"}}]

3.	 To add a new collaborator to our application, we can use create and pass the user's
e-mail address:
$ heroku_api.collaborator.create('app-name', {user: 'example@
example.com'})

4.	 When a user is invited, they'll be sent an e-mail that will notify them. We can
optionally silence this e-mail invitation:
$ heroku_api.collaborator.create('app-name', {user: 'example@
example.com', silent: true})

5.	 Users can be removed with the delete command:
$ heroku_api.collaborator.delete('app-name', 'example@example.
com')

How it works…
We've now learned how to programmatically make use of the collaborator endpoint of the
Heroku API. It will come in very useful when adding and removing users from our applications.

When deleting collaborators, there is one gotcha to be aware of. If the e-mail address has
not yet signed up for a Heroku account, it will not be possible to remove them from the
collaborator's list via the API. It will have do be done from either the dashboard or the CLI.

Chapter 10

205

See also
ff Take a look at the documentation on collaborators at https://devcenter.

heroku.com/articles/platform-api-reference#collaborator for
more information

Creating new Heroku applications
When starting a new Heroku application, it's pretty common that we'll find ourselves repeating
the same steps. There is probably a set of add-ons that we find ourselves using over and over
again. For a Rails app, we might find ourselves consistently setting up a stack with Postgres,
MemCachier, LogEntries, and Rollbar. We can automate this!

In this recipe, you'll learn how to create applications and enable add-ons programmatically via
the API.

Be sure to read the Getting started with the Platform API Gem
recipe before attempting this recipe.

How to do it…
Let's start by opening up a terminal and going to our heroku-api-examples directory.
Then, we can perform the following steps:

1.	 We'll use Ruby in this recipe. Let's start it now by running console.rb:
$ ruby console.rb

2.	 To create a new application, we can use app.create. We'll need to specify the
application's name, its region (us or eu), and its Heroku stack. We should always
use the latest stack, which at the time of writing this book is cedar:
$ heroku_api.app.create({name: 'app-name', region: 'us', stack:
'cedar'})

=> {"archived_at"=>nil,
 "buildpack_provided_description"=>nil,
 "build_stack"=>{"id"=>"7e04461d-ec81-4bdd-8b37-b69b320a9f83",
"name"=>"cedar"},
 "created_at"=>"2014-09-14T23:22:57Z",
 "id"=>"e1b241eb-9f83-4a07-8881-fef877144cc8",
 "git_url"=>"git@heroku.com:app-name.git",
 "maintenance"=>false,
 "name"=>"my-test-app1234",

https://devcenter.heroku.com/articles/platform-api-reference#collaborator
https://devcenter.heroku.com/articles/platform-api-reference#collaborator

The Heroku Platform API

206

 "owner"=>{"email"=>"coutermarsh.mike@gmail.com", "id"=>"d3xxdx23-
35e1-4x55-b243-f8b33db1e943"},
 "region"=>{"id"=>"59accabd-516d-4f0e-83e6-6e3757701145",
"name"=>"us"},
 "released_at"=>"2014-09-14T23:22:57Z",
 "repo_size"=>nil,
 "slug_size"=>nil,
 "stack"=>{"id"=>"7e04461d-ec81-4bdd-8b37-b69b320a9f83",
"name"=>"cedar"},
 "updated_at"=>"2014-09-14T23:22:57Z",
 "web_url"=>"http://app-name.herokuapp.com/"}

3.	 Now that our application is created, we can start enabling add-ons for it. We can view
our Heroku application's existing add-ons using addon.list. This will return a blank
array since we just created the application:
heroku_api.addon.list('app-name')
=> []

4.	 Let's try adding the Heroku Postgres application. We can use addon.create.
We need to pass our application's name to it, as well as a hash with the plan
key set to the add-on we want enabled:
$ heroku_api.addon.create('app-name', {plan: 'heroku-
postgresql:dev'})

=> {"config_vars"=>["HEROKU_POSTGRESQL_CYAN_URL"],
 "created_at"=>"2014-09-14T23:30:55Z",
 "id"=>"0d1691e0-7c5c-4f95-b053-f22ac49bc7b2",
 "name"=>"heroku-postgresql-cyan",
 "addon_service"=>{"id"=>"6c67493d-8fc2-4cd4-9161-4f1ec11cbe69",
"name"=>"Heroku Postgres"},
 "plan"=>{"id"=>"95a1ce4c-c651-45dc-aaee-79b4603e76b7",
"name"=>"heroku-postgresql:dev"},
 "provider_id"=>"resource7869884@heroku.com",
 "updated_at"=>"2014-09-14T23:30:55Z"}

5.	 Next, let's add MemCachier:

$ heroku_api.addon.create('app-name', {plan: 'memcachier'})

=> {"config_vars"=>["MEMCACHIER_SERVERS", "MEMCACHIER_USERNAME",
"MEMCACHIER_PASSWORD"],

 "created_at"=>"2014-09-14T23:34:12Z",

 "name"=>"memcachier",

 "addon_service"=>{"id"=>"92d8bf99-50ce-4889-af22-78518d503dd3",
"name"=>"MemCachier"},

Chapter 10

207

 "plan"=>{"id"=>"ec8d756b-6995-4890-8589-bdc8afa098bc",
"name"=>"memcachier:dev"},

 "provider_id"=>"47536",

 "id"=>"c5dde380-7877-4663-9a62-c54f7d43b3f6",

 "updated_at"=>"2014-09-14T23:34:12Z"}

We can get the plan name for any add-on by going to https://addons.
heroku.com and selecting an add-on. At the bottom of the page, the CLI
command to enable the add-on is shown. The plan is the last argument, for
example, heroku addons:add memcachier.

How it works…
We just programmatically created a Heroku application from Ruby using the API. Unfortunately,
we cannot push code to an application via the API. We'll still have to do this from Git.

Heroku has a solution to deploy open source applications from outside the CLI. It's called
Heroku Button. It sets up an application in a manner similar to what we did here, with the
addition of making the initial code push from an open source repository.

See also
ff Learn about Heroku Button at https://devcenter.heroku.com/articles/

heroku-button

ff App documentation available at https://devcenter.heroku.com/articles/
platform-api-reference#app

ff Add-on documentation available at https://devcenter.heroku.com/
articles/platform-api-reference#add-on

https://addons.heroku.com
https://addons.heroku.com
https://devcenter.heroku.com/articles/heroku-button
https://devcenter.heroku.com/articles/heroku-button
https://devcenter.heroku.com/articles/platform-api-reference#app
https://devcenter.heroku.com/articles/platform-api-reference#app
https://devcenter.heroku.com/articles/platform-api-reference#add-on
https://devcenter.heroku.com/articles/platform-api-reference#add-on

Index
Symbols
404 error

monitoring, PaperTrail used 87, 88
500 error

monitoring, PaperTrail used 87, 88

A
add-ons

about 53
documentation, URL 207
installing 34-37
references 37
URL 35, 53, 207

Amazon Web Services (AWS) Cloudfront
assets, serving from 139-142
example source code, URL 142
pricing, URL 141
URL 140-142

API key 77
API request

creating, HTTPie used 188-192
App documentation

URL 207
application

add-ons 53
config variables 53
database 53
existing application, duplicating 52, 53
logs, viewing 30-32
scaling 25-27

application performance
monitoring, New Relic used 98-101

assets
serving, from Amazon Web Services (AWS)

Cloudfront 139-142
auth:logout command 11

B
backlog, Unicorn

tuning, for Heroku 125, 126
Blitz documentation

URL 113
Blitz.io

used, for load testing from cloud 110-113
blogging app

setting up 136, 137
Bugsnag

URL 94
build process 20
Bundler 15

C
cache key

URL 157
Canonical Name (CNAME) 70
Chrome store

URL 113
CI-as-a-service Heroku API (Cisaurus API) 60
CLI authentication

with netrc, URL 192
cloud

load testing from, Blitz.io used 110-113
CloudFlare

plans, URL 72
URL 70, 142
used, for configuring DNS 69-71
used, for setting up SSL 71-73

210

Codeship
URL 65

collaborators
adding 203, 204
inviting, through CLI 47, 48
removing 203, 204
URL 205

command line
domains, managing from 68, 69

configuration variables
managing 201-203
URL 203

config variables, application 53
config-vars documentation

URL 203
Content Delivery Network (CDN) 139
Content Management System (CMS) 15
Continuous Integration (CI)

with Travis CI 62-65
Copper Egg

URL 92

D
Dalli

URL 146
dashboard 68
database, application 53
database backup

creating 176-178
restoring from 178, 179

database, Heroku Postgres
connection limits 169, 170
creating 170
data size, determining 169
promoting 170, 171
selecting 170
sizing 168
tier, selecting 168

database processes
stopping 181-183
viewing 181-183

data size
determining 169

deployment
with Travis CI 62-65

dog piling 151

Domain Name System (DNS)
about 69
configuring, CloudFare used 69-71

domains
managing, from command line 68, 69
URL 69

dyno
about 23-27
memory 97
scaling 197-201
sizes 25

dyno performance
monitoring, Librato used 96, 97

E
environment variables

about 20
managing 37, 38

ephemeral filesystem 24
error pages

enabling 74, 75
URL 74

errors
logging, Rollbar used 92-94

F
follower

database, using 165, 166
example source code, URL 166
Heroku's Postgres documentation, URL 166
using, for read-only DB queries 159-164

Foreman 8

G
Ghost

on GitHub, URL 24
URL 24

Git
about 8
cheatsheet, URL 14
using, for version control 12
version control, learning 11-14

GitHub
unicorn.rb file, URL 163
URL 60, 62, 65, 77, 83, 162

211

GitHub, for Mac
URL 14

GitHub, for Windows
URL 14

GitHub repository
for Blogger app, URL 137
URL 136

git remotes
managing 54, 55

Global Interpreter Lock (GIL) 134
Global regular expression print (Grep)

about 34
URL 34

Global VM Lock (GVL) 134
Gzip assets

example source code, URL 139
Heroku Deflater used 137-139
URL 139

H
H12 error

URL 128
Heroics 196
Heroics Gem

URL 197
Heroku

about 7
application, creating 205
dyno 24
Node.js application, deploying to 21-24
Puma, running 128-131
Puma, setting up 128-131
Rails application, deploying to 14-19
status, checking 82, 83
Unicorn, running 120-122
Unicorn's backlog, tuning for 125, 126
Unicorn, setting up 120-122
URL 8

Heroku-accounts plugin
URL 48

Heroku Button
URL 207

Heroku Command Line Interface (CLI)
about 8
URL 11

Heroku Dashboard
URL 10, 35, 42

Heroku Deflater
URL 139
using, to Gzip assets 137-139

Heroku documentation
URL 98

Heroku fork
URL 53

Heroku labs
deploying with 58, 59

Heroku Platform API
about 188-191
URL 191

Heroku Postgres
about 167
connecting, from Navicat 171-174
connecting, from psql 175, 176
database, creating 168
database, sizing 168
performance, analyzing 183-185
performance and cache hit rate, URL 170

heroku run command 19
Heroku Toolbelt

authentication 11
installing 8-10
URL 9
working 10

historical logs
storing, PaperTrail used 84-87

HTTPie
installing, on Linux 188
installing, on OS X 188
installing, on Windows 188
on GitHub, URL 192
used, for creating API request 188-191

httplog
URL 197

K
Kensa

URL 37
key-based cache expiration

URL 157

212

L
Librato

used, for monitoring dyno performance 96-98
load average

monitoring 48, 49
Load Impact

Chrome extension, URL 114
dashboard, URL 115
documentation, URL 117
support site 117
used, for testing real user scenarios 113-117

load testing
configuring, Siege used 107-109
from cloud, Blitz.io used 110-113
learning, Siege used 101-106

log draining
setting up, LogEntries used 78, 79

LogEntries
used, for setting up log draining 78, 79

logging level
adjusting 83, 84
URL 84

Logplex
about 30, 31, 79
URL 86

logs
searching 32-34

long requests
aborting, with Rack::Timeout 158, 159
timing out, with Unicorn 127

low-level caching
example source code, URL 152
implementing, in Rails 149-151

M
maintenance:off command 40
maintenance page

enabling 39, 40, 74, 75
URL 74

memcached
adding, to Rails application 143-145
URL 145

MemCachier
URL 146

memory usage
monitoring 48, 49

memory usage, Unicorn
monitoring 122-124
tuning 122-124

N
Navicat

0xDBE, URL 175
Heroku Postgres, connecting to 171-174

Navicat Essentials
URL 172

Navicat for Postgres
URL 172

New Relic
plans, URL 98
ruby-agent-installation, URL 101
URL 101
used, for monitoring application

performance 98-101
Node.js application

deploying, to Heroku 21-24
ephemeral filesystem 24

O
Octopus

URL 166
one-off dynos

running 43-45
one-off tasks

running 43-45
one-time dyno 27

P
PaperTrail

URL 88
used, for logging slow queries 89, 90
used, for monitoring 404 error 87, 88
used, for monitoring 500 error 87, 88
used, for storing historical logs 84-87

Paratrooper
URL 62

password
file, URL 176
protection, for Rails app 56, 57

pg_dump
URL 178

213

pg-extras plugin
URL 186

Pingdom
URL 91
used, for monitoring uptime 91

Platform API documentation
URL 201

Platform API gem
about 192-196
URL 197

Platform API schema
URL 196

Postgres
documentation, URL 183
statistics tables, URL 186
URL 15

Postgres App 15
Postgres logging

URL 90
PostgreSQL

URL 179
Postman

URL 192
preboot

enabling, for seamless deploys 73, 74
Procfile

about 19
URL 20

promotion 170
Pry

about 197
URL 197

Pry Byebug
URL 197

psql
Heroku Postgres, connecting to 175, 176

Puma
running, on Heroku 128-131
running, with Rubinius for

parallelism 131-134
setting up, on Heroku 128-131

Puma setup, for Heroku
on GitHub, URL 130

R
Rack::Auth::Basic

URL 58
Rack::Timeout

example source code, URL 159
long requests, aborting 158, 159
URL 159

Rails
logging level, adjusting 83, 84
low-level caching, implementing 149-151

Rails application
build process 20
deploying, to Heroku 14-19
environment variables 20
memcached, adding 143-145
password protection 56, 57
Procfile 19
Redis, adding 146-148

Rails Asset Pipeline
URL 143

Rails Cache Store documentation
URL 152

read-only DB queries
follower, using 159-164

read-only follower
creating 179-181
horizontal scaling 181
redundancy 181

real user scenarios
testing, Load Impact used 113-117

Redis
adding, to Rails application 146-148
example source code, URL 148
URL 146, 148

Redis Rails gem
URL 149

Redis To Go
URL 149

references, environment variables
MAX_THREADS 130
MIN_THREADS 130
PUMA_BACKLOG 130
PUMA_WORKERS 130

214

Refinery CMS
URL 20

regular expressions
URL 34

releases
managing 41-43

remotes 13, 14
rendered views

caching 152-157
example source code, URL 157

replication lag 160
request throughput 97
request time 97
REST

URL 192
Rollbar

URL 92, 94
used, for logging errors 92-94

rolling back 41-43
router queue time 97
Rubinius

about 131-133
references 134
with Puma, running for parallelism 131-134

Ruby MRI 133
Russian Doll caching 157
Ruby Version Manager (RVM)

about 15
setup, URL 132
URL 132

S
scaling out 24
scaling up 24
seamless deploys

preboot, enabling for 73, 74
SequelPro

URL 175
sharing command 47
Siege

FAQ, URL 106
home page, URL 106
used, for configuring complex

load tests 107-110
used, for learning load testing 101-106

slow queries
logging, PaperTrail used 89, 90

SmartGit (Linux)
URL 14

SourceTree
URL 14

SSH keys
managing 45, 46
working 46

SSL
setting up, CloudFare used 71-73

stampeding 151
Standard Output (STDOUT) 83
status, Heroku

checking 82, 83
StatusHub

URL 78
status page

setting up 75-78
StatusPage API

URL 78
status page ID 77

T
tags

deploying from 60, 61
tier

selecting 168
time to live (TTL) 71
Tower (Mac)

URL 14
Travis CI

continuous integration 62-65
debugging 65
deployment 62-65
URL 63-65

TryGit
URL 14

Twelve-Factor app
rule, URL 39
URL 14

U
Unicorn

backlog, tuning for Heroku 125, 126

215

W
WEBrick 119
worker

about 25-27
process 120
scaling 197-201
sizes 25

Y
YSlow

URL 137

long requests, timing out with 127
memory usage, monitoring 122-124
memory usage, tuning 122-124
references 126
running, on Heroku 120-122
setting up, on Heroku 120-122
URL 122

uptime
monitoring, Pingdom used 91, 92

V
version control

learning, with Git 11-14

Thank you for buying
Heroku Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Heroku Cloud Application
Development
ISBN: 978-1-78355-097-5 Paperback: 336 pages

A comprehensive guide to help you build, deploy, and
troubleshoot cloud applications seamlessly using Heroku

1.	 Understand the concepts of the Heroku platform:
how it works, the application development stack,
and security features.

2.	 Learn how to build, deploy, and troubleshoot
a cloud application in the most popular
programming languages easily and quickly
using Heroku.

3.	 Leverage the book's practical examples to build
your own "real" Heroku cloud applications in
no time.

Force.com Development
Blueprints
ISBN: 978-1-78217-245-1 Paperback: 350 pages

Design and develop real-world, cutting-edge
cloud applications using the powerful Force.com
development framework

1.	 Create advanced cloud applications using the best
Force.com technologies.

2.	 Bring your cloud application ideas to market faster
using the proven Force.com infrastructure.

3.	 Step-by-step tutorials show you how to quickly
develop real-world cloud applications.

Please check www.PacktPub.com for information on our titles

Learning Play! Framework 2
ISBN: 978-1-78216-012-0 Paperback: 290 pages

Start developing awesome web applications with this
friendly, practical guide to the Play! Framework

1.	 While driving in Java, tasks are also presented
in Scala—a great way to be introduced to this
amazing language.

2.	 Create a fully-fledged, collaborative web
application—starting from ground zero; all layers
are presented in a pragmatic way.

3.	 Gain the advantages associated with developing a
fully integrated web framework.

SproutCore Web Application
Development
ISBN: 978-1-84951-770-6 Paperback: 194 pages

Creating fast, powerful, and feature-rich web
applications using the SproutCore HTML5 framework

1.	 Write next-gen HTML5 apps using the SproutCore
framework and tools.

2.	 Get started right away by creating a powerful
application in the very first chapter.

3.	 Build your understanding of SproutCore as you
follow through the most complete reference to the
framework anywhere in existence.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Heroku
	Introduction
	Installing the Heroku Toolbelt
	Introducing version control with Git
	Deploying a Rails application to Heroku
	Deploying a Node.js application to Heroku
	Introducing dynos, workers, and scaling

	Chapter 2: Managing Heroku from the Command Line
	Introduction
	Viewing application logs
	Searching logs
	Installing add-ons
	Managing environment variables
	Enabling the maintenance page
	Managing releases and rolling back
	Running one-off tasks and dynos
	Managing SSH keys
	Sharing and collaboration
	Monitoring load average and memory usage

	Chapter 3: Setting Up a Staging Environment
	Introduction
	Duplicating an existing application
	Managing git remotes
	Password protection for a Rails app
	Deploying with Heroku labs – Pipeline
	Deploying from tags
	Continuous integration and deployment
with Travis CI

	Chapter 4: Production-ready with Heroku
	Introduction
	Managing domains from the command line
	Configuring DNS with CloudFlare
	Setting up SSL with CloudFlare
	Enabling preboot for seamless deploys
	Enabling custom maintenance and
error pages
	Setting up a status page
	Setting up log draining with LogEntries

	Chapter 5: Error Monitoring and Logging Tools
	Introduction
	Checking Heroku's status
	Adjusting Rails' logging level
	Storing historical logs with PaperTrail
	Monitoring for 404 and 500 errors with PaperTrail
	Logging slow queries with PaperTrail
	Monitoring uptime with Pingdom
	Logging errors with Rollbar

	Chapter 6: Load Testing a Heroku Application
	Introduction
	Monitoring dyno performance with Librato
	Monitoring application performance with New Relic
	Learning to load test with Siege
	Configuring complex load tests with Siege
	Load testing from the cloud with Blitz.io
	Testing real user scenarios with Load Impact

	Chapter 7: Optimizing Ruby Server Performance on Heroku
	Introduction
	Setting up and running Unicorn on Heroku
	Monitoring and tuning Unicorn's memory usage
	Tuning Unicorn's backlog for Heroku
	Timing out long requests with Unicorn
	Setting up and running Puma on Heroku
	Running Puma with Rubinius for parallelism

	Chapter 8: Optimizing a Rails Application on Heroku
	Introduction
	Setting up a sample blogging app
	Using Heroku Deflater to gzip assets
	Serving assets from Amazon Web Services (AWS) Cloudfront
	Adding memcached to a Rails application
	Adding Redis to a Rails application
	Implementing low-level caching in Rails
	Caching rendered views
	Aborting long requests with Rack::Timeout
	Using a follower for read-only DB queries

	Chapter 9: Using and Administrating Heroku Postgres
	Introduction
	Creating and sizing a new database
	Promoting a Heroku database
	Connecting to Heroku Postgres from Navicat
	Connecting to Heroku Postgres from psql
	Creating a database backup
	Restoring from a backup
	Creating a read-only follower
	Viewing and stopping database processes
	Analyzing Heroku Postgres performance

	Chapter 10: The Heroku Platform API
	Introduction
	Making our first API request with HTTPie
	Getting started with the Platform API gem
	Scaling dynos and workers
	Managing configuration variables
	Adding and removing collaborators
	Creating new Heroku applications

	Index

