
Doug Sillars

 High Performance

Android 
Apps
IMPROVE RATINGS WITH SPEED,  
OPTIMIZATIONS, AND TESTING

www.allitebooks.com

http://www.allitebooks.org


MOBILE

High Performance Android Apps

ISBN: 978-1-491-91251-5

US $44.99  CAN $51.99

“	This	book	will	empower	
any	Android	developer	
to	produce	highly	
efficient,	well-functioning	
applications.”

—Brad Zeschuk 
VP Engineering, M2Catalyst

Twitter: @oreillymedia
facebook.com/oreilly

Unique and clever ideas are important when building a hot-selling Android 
app, but the real drivers for success are speed, efficiency, and power 
management. With this practical guide, you’ll learn the major performance 
issues confronting Android app developers, and the tools you need to 
diagnose problems early.

Customers are finally realizing that apps have a major role in the 
performance of their Android devices. Author Doug Sillars not only shows 
you how to use Android-specific testing tools from companies including 
Google, Qualcomm, and AT&T, but also helps you explore potential 
remedies. You’ll discover ways to build apps that run well on all 19,000 
Android device types in use.

 ■ Understand how performance issues affect app sales and 
retention

 ■ Build an Android device lab to maximize UI, functional, and 
performance testing 

 ■ Improve the way your app interacts with device hardware 

 ■ Optimize your UI for fast rendering, scrolling, and animations

 ■ Track down memory leaks and CPU issues that affect 
performance 

 ■ Upgrade communications with the server, and learn how your 
app performs on slower networks

 ■ Apply Real User Monitoring (RUM) to ensure that every device 
is delivering the optimal user experience

Doug Sillars, the performance outreach lead at the AT&T Developer Program, 
has helped thousands of mobile developers apply performance best practices. 
The tools and best practices developed at AT&T help developers make mobile 
apps run faster, while using less data and battery power.

www.allitebooks.com

http://www.allitebooks.org


Doug Sillars

High Performance Android Apps
Improve Ratings with Speed,

Optimizations, and Testing

www.allitebooks.com

http://www.allitebooks.org


978-1-491-91251-5

[LSI]

High Performance Android Apps
by Doug Sillars

Copyright © 2015 AT&T Services, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian Anderson and Courtney Allen
Production Editor: Shiny Kalapurakkel
Copyeditor: Jasmine Kwityn
Proofreader: Elise Morrison

Indexer: Judy McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

September 2015:  First Edition

Revision History for the First Edition
2015-09-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491912515 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. High Performance Android Apps, the
cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491912515
http://www.allitebooks.org


Table of Contents

Foreword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix

Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi

1. Introduction to Android Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
Performance Matters to Your Users                                                                                2

Ecommerce and Performance                                                                                      2
Beyond Ecommerce Sales                                                                                              4
Performance Infrastructure Savings                                                                            4

The Ultimate Performance Fail: Outages                                                                       4
Performance as a Rolling Outage                                                                                 6
Consumer Reaction to Performance Bugs                                                                  7
Smartphone Battery Life: The Canary in the Coal Mine                                          8

Testing Your App for Performance Issues                                                                      9
Synthetic Testing                                                                                                          10
Real User Monitoring (RUM)                                                                                     10

Conclusion                                                                                                                        10

2. Building an Android Device Lab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11
What Devices Are Your Customers Using?                                                                  12
Device Spec Breakdown                                                                                                  12

Screen                                                                                                                             12
SDK Version                                                                                                                  13
CPU/Memory and Storage                                                                                         13

What Networks Are Your Customers Using?                                                              13
Your Devices Are Not Your Customers’ Devices                                                         14
Testing                                                                                                                               15
Building Your Device Lab                                                                                               16

iii

www.allitebooks.com

http://www.allitebooks.org


You Want $X,000 for Devices?                                                                                   16
So What Devices Should I Pick?                                                                                18
Beyond Phones                                                                                                             20
Android Open Source Project Devices                                                                     20
Other Options                                                                                                               22
Additional Considerations                                                                                          23
My Device Lab                                                                                                              24

Conclusion                                                                                                                        25

3. Hardware Performance and Battery Life. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27
Android Hardware Features                                                                                           27
Less Is More                                                                                                                      28
What Causes Battery Drain                                                                                            29

Android Power Profile                                                                                                 30
Screen                                                                                                                             32
Radios                                                                                                                             33
CPU                                                                                                                                33
Additional Sensors                                                                                                       34
Get to Sleep!                                                                                                                  35
Wakelocks and Alarms                                                                                                35
Doze Framework                                                                                                          37

Basic Battery Drain Analysis                                                                                          38
App-Specific Battery Drain                                                                                         41
Coupling Battery Data with Data Usage                                                                   44
App Standby                                                                                                                  47

Advanced Battery Monitoring                                                                                       47
batterystats                                                                                                                    47
Battery Historian                                                                                                          52
Battery Historian 2.0                                                                                                    62

JobScheduler                                                                                                                     66
Conclusion                                                                                                                        71

4. Screen and UI Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73
UI Performance Benchmarks                                                                                         73

Jank                                                                                                                                 74
UI and Rendering Performance Updates in Android                                                74
Building Views                                                                                                                 75

Hierarchy Viewer                                                                                                         77
Asset Reduction                                                                                                               90

Overdrawing the Screen                                                                                              90
Testing Overdraw                                                                                                         91
Overdraw in Hierarchy Viewer                                                                                  94

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org


Overdraw and KitKat (Overdraw Avoidance)                                                         96
Analyzing For Jank (Profiling GPU Render)                                                               97

GPU Rendering in Android Marshmallow                                                            100
Beyond Jank (Skipped Frames)                                                                                   102

Systrace                                                                                                                        103
Systrace Screen Painting                                                                                            106
Systrace and CPU Usage Blocking Render                                                             113
Systrace Update—I/O 2015                                                                                       115
Vendor-Specific Tools                                                                                                117

Perceived Performance                                                                                                 117
Spinners: The Good and the Bad                                                                             117
Animations to Mask Load Times                                                                             118
The White Lie of Instant Updates                                                                            118
Tips to Improve Perceived Performance                                                                119

Conclusion                                                                                                                      119

5. Memory Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  121
Android Memory: How It Works                                                                                121

Shared Versus Private Memory                                                                                122
Dirty Versus Clean Memory                                                                                     122
Memory Cleanup (Garbage Collection)                                                                 123
Figuring Out How Much Memory Your App Uses                                               126
Procstats                                                                                                                       131
Android Memory Warnings                                                                                     136

Memory Management/Leaks in Java                                                                          137
Tools for Tracking Memory Leaks                                                                               138

Heap Dump                                                                                                                 138
Allocation Tracker                                                                                                      140
Adding a Memory Leak                                                                                             142
Deeper Heap Analysis: MAT and LeakCanary                                                      145
MAT Eclipse Memory Analyzer Tool                                                                      145
LeakCanary                                                                                                                 153

Conclusion                                                                                                                      156

6. CPU and CPU Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  157
Measuring CPU Usage                                                                                                  158
Systrace for CPU Analysis                                                                                            160
Traceview (Legacy Monitor DDMS tool)                                                                   163
Traceview (Android Studio)                                                                                         166
Other Profiling Tools                                                                                                     170

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org


Conclusion                                                                                                                      172

7. Network Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173
Wi-Fi versus Cellular Radios                                                                                        174

Wi-Fi                                                                                                                            174
Cellular                                                                                                                        174
RRC State Machine                                                                                                    176

Testing Tools                                                                                                                   179
Wireshark                                                                                                                    180
Fiddler                                                                                                                          181
MITMProxy                                                                                                                183
AT&T Application Resource Optimizer                                                                 183
Hybrid Apps and WebPageTest.org                                                                         187

Network Optimizations for Android                                                                          187
File Optimizations                                                                                                      188
Text File Minification (Souders: Minify JavaScript)                                              190
Images                                                                                                                          191
File Caching                                                                                                                193
Beyond Files                                                                                                                196
Grouping Connections                                                                                              196
Detecting Radio Usage in Your App                                                                        199
All Good Things Must Come to An End: Closing Connections                         200
Regular Repeated Pings                                                                                             202
Security in Networking (HTTP versus HTTPS)                                                   203

Worldwide Cellular Coverage                                                                                      203
CDNs                                                                                                                            204
Testing Your App on Slow Networks                                                                       205
Emulating Slow Networks Without Breaking the Bank                                       206
Building Network-Aware Apps                                                                                207
Accounting for Latency                                                                                             210
Last-Mile Latency                                                                                                       211

“Other” Radios                                                                                                               211
GPS                                                                                                                               211
Bluetooth                                                                                                                     212

Conclusion                                                                                                                      213

8. Real User Monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  215
Enabling RUM Tools                                                                                                     216
RUM Analytics: Sample App                                                                                        217
Crashing                                                                                                                          218

Examining a Crashlytics Crash Report                                                                   220
Usage                                                                                                                            225

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org


Real-Time Information                                                                                             230
Big Data to the Rescue?                                                                                                 231

RUM SDK Performance                                                                                            231
Conclusion                                                                                                                      233

A. Organizational Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  235

Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org


www.allitebooks.com

http://www.allitebooks.org


Foreword

For the majority of Android Developers out there, the concept of performance is the last
thing on their minds. Most app development is a mad sprint towards getting features in,
making the UI look perfect, and figuring out a viable monetization strategy. But, applica‐
tion performance is a lot like the plumbing in your house; When it’s working great, no
one notices, or thinks about it... but when something’s wrong, suddenly everyone is in
trouble.

You see, users notice bad performance before any of the other features in your app. Before
your social widgets, awesome image filters, or how one of your supported languages is
Klingon. And guess what, users unhappy with performance, give bad reviews at a higher
percentage than any other problems in your app.

This is why we say that #PERFMATTERS. It’s easy to lose sight of performance as you’re
developing your app, but frankly, it’s involved with everything you do; when users feel bad
performance, they complain about bad performance, they uninstall your app, and then
vengefully give you a bad review! When you think of it this way, performance sounds
more like a feature that you should focus on, rather than a burden you have to put up
with.

But in all honesty, improving performance is a really tough thing to do. It’s not enough to
understand your algorithm, you need to understand how Android is responding to it, and
then how the hardware is responding to Android. The truth is, that one line of code can
trash the performance of your entire app, simply because it’s abusing some hardware limi‐
tation. But you can’t stop there, because in order to even understand what’s going on
under the hood, you have to learn a whole separate set of tools that are built just for per‐
formance profiling. Basically, it’s an entirely new way of looking at application develop‐
ment, and it’s not for the faint of heart.

But that’s what’s so great about the book that Doug has put together here. It’s the ‘in the
trenches’ guide to everything performance on Android. Not only does it cover the basic
algorithm topics, but also goes into how the hardware and platform are working so you

ix



can understand what the crazy tools are telling you. This is the type of book that helps to
transform an engineer’s perspective of the platform. It stops being about views and event
listeners, and slowly grows to an understanding of memory boundaries and threading
problems.

When it’s 4am, your app is running poorly, the coffee machine is out, and your startup
incubator room smells like cabbage; this is the book you’ll crack open to make sure
that 10:00 AM meeting with the Venture Capitalists runs smoothly.
Good luck!
 
—Colt McAnlis, Senior Staff Developer Advocate, Google Inc.Team Lead, Android Per‐
formance Patterns - https://goo.gl/4ZJkY1

x | Foreword

https://goo.gl/4ZJkY1


Preface

You are building an Android application (or you already have). Despite this, you are
not totally happy with your app’s performance (why else did you pick up this book?).
Uncovering mobile performance issues is a job that is never complete. In my
research, I found that 98% of apps tested had room for potential performance
improvements. This book will cover the pitfalls of mobile performance and introduce
you to some of the tools to test for issues. My goal is to help you acquire the skills
necessary for catching any major performance issues in your mobile app before they
impact your customers.

Studies have shown that customers expect mobile apps to load quickly, rapidly
respond to user interactions, and be smooth and pleasing to the eye. As apps get
faster, user engagement and revenue increase. Mobile apps built without an eye on
performance are uninstalled at the same rate as those that crash. Apps that ineffi‐
ciently use resources cause unnecessary battery drain. The number one complaint
carriers and device manufacturers hear from customers concerns battery life.

I have spoken to thousands of developers about Android app performance over the
last few years, and few developers were aware of the tools available for solving the
issues they experience.

The consensus is clear: mobile apps that are fast and run smoothly are used more
often and make more money for developers. With that information, it is surprising
that more developers are not using the tools that are available to diagnose and pin‐
point performance issues in their apps. By focusing on how performance improve‐
ments affect the user experience, you can quickly identify the return on investment
that your performance work has made on your mobile app.

xi



Who Should Read This Book
This book covers a wide range of topics centering around Android performance.
Anyone associated with mobile development will appreciate the research around app
performance. Developers of non-Android mobile apps will find the arguments and
issues around app performance useful, but the tools used to isolate the issues are
Android specific.

Testers will find the tutorials of tools used to test Android performance useful as well.

Why I Wrote This Book
There is a large and burgeoning field of web performance in which developers share
tips on how to make the Web fast. Steve Souders wrote High Performance Web Sites in
2007 (O’Reilly), and the topic is covered in books, blogs, and conferences. 

Until recently, there has been very little focus on mobile app performance. Slow apps
were blamed on the OS or the cellular network. Poor battery life was blamed on
device hardware. As phones have gotten faster and the OSs have matured, customers
are realizing that mobile apps have a role in the performance of their phones.

There are many great tools for measuring Android app performance, but until now,
there hasn’t been a guide listing them all in one place. By bringing in tools from Goo‐
gle, Qualcomm, AT&T, and others, I hope this book will take some of the mystery out
of Android performance testing, and help your app get faster while not killing your
customers’ batteries.

Navigating This Book
When it comes to studying application performance, I have chosen to look at how
your app’s code affects different aspects of the Android device. We’ll start at a high
level: performance and the Android ecosystem, and then look at how your app’s
behavior affects the screen, CPU, network stack, etc.

Chapter 1, Introduction to Android Performance
This chapter introduces the topic of mobile app performance. We’ll run the num‐
bers to show how crucial performance is to your app. I’ll highlight many of the
challenges, but also the effects of poor performance in the marketplace. These are
the stats you can use to convince your management that putting effort into
speeding up your apps is time well spent. The data presented here generally holds
for all mobile platforms and devices.

xii | Preface

http://shop.oreilly.com/product/9780596529307.do


Chapter 2, Building an Android Device Lab
Here we’ll cover testing. Android is a huge ecosystem with tens of thousands of
devices, each with different UIs, screens, processors, and OS versions (to name
just a few considerations). I’ll walk through some of the ideas to help your testing
cover as many device types as possible without breaking the bank (too much).

Chapter 3, Hardware Performance and Battery Life
Next, we’ll discuss the battery, including what causes drain and how much drain.
In addition, this chapter covers how your customers may discover battery issues
in your app, and developer tools to isolate battery issues. We’ll also look at the
new JobScheduler API (released in Lollipop), which abstracts application wake‐
ups to the OS.

Chapter 4, Screen and UI Performance
Screen performance accounts for the largest power drain on users’ phones, and
the screen serves as the primary interface to your app—this is where slow apps
show jank (skipped frames) and slow rendering. This chapter walks through the
steps to optimize the UI by making the hierarchy flatter, and how to test for jank
and jitter in your app using tools like Systrace.

Chapter 5 and Chapter 6, Memory Performance and CPU and CPU Performance
These chapters look at memory and CPU issues such as garbage collection, mem‐
ory leaks, and how they affect the performance of your app. You’ll learn how to
dig into your app to discover potential issues by using testing tools such as Proc‐
stats, Memory Analysis Tool (MAT), and Traceview.

Chapter 7, Network Performance
Here we’ll look at the network performance of your app. This is where I got
started in mobile performance optimization, and we’ll look into the black box of
how your app is communicating with your servers and how we might enhance
these communications. We’ll also look at how to test the performance of your app
on slower networks (as much of the developing world will be on 2G and 3G for
decades to come).

Chapter 8, Real User Measurements
Finally, we’ll discuss how to use real user-monitoring and analytics data to ensure
that every device is getting the optimal user experience. As shown in Chapter 2,
there is no way to test every Android device out there, but it is up to you to moni‐
tor the performance of your app on your customers’ devices.

Appendix A, Organizational Performance
Here we’ll cover organizational performance, including how to get buy-in to
build performant apps. By sharing the research, success stories, and proofs of
concept, you can show your company that placing performance as a goal for the
whole organization will improve the bottom line.

Preface | xiii



Using Code Examples
There are several sample apps in the book. The sample code can be found at https://
github.com/dougsillars/HighPerformanceAndroidApps.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “High Performance Android Apps by
Doug Sillars (O’Reilly). Copyright 2015 AT&T Services, Inc., 978-1-491-91251-5.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

xiv | Preface

https://github.com/dougsillars/HighPerformanceAndroidApps
https://github.com/dougsillars/HighPerformanceAndroidApps
mailto:permissions@oreilly.com


This element signifies a general note.

This element indicates a warning or caution.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form
from the world’s leading authors in technology and busi‐
ness.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐
mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Preface | xv

http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com


We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://www.oreilly.com/catalog/
0636920035053.do.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
To everyone at AT&T—my boss, Ed (and his boss, Nadine), and everyone in the
AT&T Developer Program (Ed S., Jeana, and Carolyn). I would like to especially
shout out to the ARO team members—Jen, Bill, Lucinda, Tiffany Pete, Savitha, John,
and Rod (and of course all the devs!)—who work every day to share performance
tools with the developer community. My colleagues past and present in AT&T Labs:
Feng, Shubho, Oliver—thank you for coming up with the idea of ARO, and getting us
involved in app performance.

A big thank you to everyone who read the early iterations of the book—your com‐
ments, tips, and suggestions were invaluable. To my technical reviewers and editors—
thank you for all the great feedback and suggestions. You have helped make the book
stronger!

Last, but most importantly, I would like to thank my wife and three children for their
patience through the late nights (and the subsequent grumpy mornings) as this book
grew from an idea to final form. I couldn’t have done it without you guys, and I love
you so very much. 1437313.

It’s funny—I have a PhD studying chemical reaction mechanics and kinetics (how
reactions work, and how to make them faster). Who knew that it would translate into
a career studying mobile app mechanisms, optimizations, and kinetics?

xvi | Preface

http://www.oreilly.com/catalog/0636920035053.do
http://www.oreilly.com/catalog/0636920035053.do
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


CHAPTER 1

Introduction to Android Performance

Performance can mean a lot of different things to different people. When it comes to
mobile apps, performance can describe how an app works, how efficiently it works,
or if it was enjoyable to use. In the context of this book, we are looking at perfor‐
mance in terms of efficiency and speed.

From an Android perspective, performance is complicated by thousands of different
devices, all with different levels of computing power. Sometimes just getting your app
to run across your top targeted devices feels like an accomplishment on its own. In
this book, I hope to help you take your app a step further, and make it run well on
19,000 different Android devices, giving every user the ultimate experience for your
Android app.

In this book, we will look at app performance specifically in terms of power manage‐
ment, efficiency, and speed. We will cover the major issues mobile app developers
face, and explore tools that will help us identify and pinpoint performance issues typ‐
ically found in all mobile apps. Once the tools help us isolate the issues, we’ll discuss
potential remedies.

This book should be useful to anyone whose team is developing
Android apps. Performance leads, single developers, and teams of
developers and testers will all find benefits from the various perfor‐
mance tools and techniques discussed in the following chapters.

As with all suggestions to make your code optimized, your mileage may vary. Some
fixes will be quick and easy wins. Other ideas may require more work, code refactor‐
ing, and potentially major architectural changes to your mobile app. This may not
always be feasible, but knowing where your app’s weaknesses are can help you as you
iterate and improve your mobile app over time.

1



1 Jakob Nielsen, “Response Times: The 3 Important Limits,” excerpt from Usability Engineering (1993), http://
www.nngroup.com/articles/response-times-3-important-limits/.

2 Mobile Joomla!, “Responsive Design vs Server-Side Solutions,” December 3, 2012, http://www.mobile
joomla.com/blog/172-responsive-design-vs-server-side-solutions-infographic.html.

3 Roger Dooley, “Don’t Let a Slow Website Kill Your Bottom Line,” Forbes, December 4, 2012, http://
www.forbes.com/sites/rogerdooley/2012/12/04/fast-sites/.

By learning the techniques to benchmark the performance of your app, you will be
ready to profile when you feel like there is an issue. Knowing the tricks to improve
the efficiency, performance, and speed of your app can help you avoid slowdowns
and customer complaints.

Performance Matters to Your Users
How fast does your app have to be? Human engagement studies (going back to the
1960s) have shown that actions that take under 100 ms are perceived as instant,
where actions that take a second or more allow the human mind to become distrac‐
ted.1 Delays and slowness in your app (even if just the perception of slowness) is prob‐
ably one of the biggest killers of app engagement out there. It can also potentially
damage your customers’ phones (a study in 2012 found that slow apps caused 4% of
users to throw their phone!2).

Ecommerce and Performance
Imagine an ecommerce app that has collected analytics showing the average shopping
session is 5 minutes long, and each screen load takes an average of 10 seconds to
complete. Your screen view budget per session is 30 views to complete a sale. If you
are able to lower the load time of each view by 1 second, you have added 3 more
screen views to the average session. This could allow your customers to add more
items to their cart, or perhaps just complete the entire transaction 30 seconds faster!

This completely made up scenario is actually backed by real-world data. A study in
2008 on desktop websites show that slower websites have fewer page views/sales and
lower customer satisfaction than faster sites.3

In fact, my fictional ecommerce site improvements match the Figure 1-1 data exactly.
By adding 3.3 page views to a session, we added 11% more page views!

2 | Chapter 1: Introduction to Android Performance

www.allitebooks.com

http://www.nngroup.com/articles/response-times-3-important-limits/
http://www.nngroup.com/articles/response-times-3-important-limits/
http://www.mobilejoomla.com/blog/172-responsive-design-vs-server-side-solutions-infographic.html
http://www.mobilejoomla.com/blog/172-responsive-design-vs-server-side-solutions-infographic.html
http://www.forbes.com/sites/rogerdooley/2012/12/04/fast-sites/
http://www.forbes.com/sites/rogerdooley/2012/12/04/fast-sites/
http://www.allitebooks.org


4 Todd Hoff, “Latency Is Everywhere And It Costs You Sales - How To Crush It,” High Scalability, July 25, 2009,
http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it.

5 Joshua Bixby, “4 Awesome Slides Showing How Page Speed Correlates to Business Metrics at Walmart.com,”
Radware, February 28, 2012, http://www.webperformancetoday.com/2012/02/28/4-awesome-slides-showing-
how-page-speed-correlates-to-business-metrics-at-walmart-com/.

6 Todd Hoff, “Latency Is Everywhere.”

Figure 1-1. Effects of slow websites (based on a 1-second web page delay)

Performance studies on web performance provide a lot of context to mobile app per‐
formance. There are many studies showing that speeding up website performance
increases engagement and sales. I would argue that all desktop performance results
hold for mobile (and due to the instant gratification of mobile, they may even be low
estimates).

Amazon4 and Walmart5 have independently reported similar statistics. Both major
retailers found that just 100 ms of delay on their desktop web pages caused their reve‐
nue to drop by 1%. Shopzilla rearchitected its website for performance, and saw page
views increase by 25% and conversions increase by 7%–12%,—all while using half the
nodes previously required!6

Performance Matters to Your Users | 3

http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it
http://www.webperformancetoday.com/2012/02/28/4-awesome-slides-showing-how-page-speed-correlates-to-business-metrics-at-walmart-com/
http://www.webperformancetoday.com/2012/02/28/4-awesome-slides-showing-how-page-speed-correlates-to-business-metrics-at-walmart-com/


7 Yevgeniy Sverdlik, “One Minute of Data Center Downtime Costs US$7,900 on Average,” DatacenterDynam‐
ics, December 4, 2013, http://www.datacenterdynamics.com/critical-environment/one-minute-of-data-center-
downtime-costs-us7900-on-average/83956.fullarticle; 
Martin Perlin, “Downtime, Outages and Failures - Understanding Their True Costs,” Evolven, September 18,
2012, http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html; 
AppDynamics, “DevOps and the Cost of Downtime: Fortune 1000 Best Practice Metrics Quantified,” http://
info.appdynamics.com/DC-Report-DevOps-and-the-Cost-of-Downtime.html.

Beyond Ecommerce Sales
In addition to decreased sales and revenue, mobile apps with poor performance
receive lower rankings in Google Play. Even worse are the stories of badly behaved
apps being pulled from consumer devices. In 2011, T-Mobile asked Google to remove
YouMail, a third-party voicemail app, from what was then called the Android Market.
The way YouMail checked for new voicemails on the server was to wake up the device
and poll at 1-second intervals (yes, that’s 3,600 pings/hour)! This frequent connection
caused an install base of ~8,000 customers to generate more connections on the net‐
work than Facebook! Arguably, this all occurred prior to widespread usage of Google
Cloud push messaging. But apps with similar behavior are still in Google Play today,
and as we will see, they have detrimental performance effects on servers, networks,
and most importantly—our customers’ Android devices.

Sometimes your architecture is good enough for launch, but what happens when you
get bigger? What if your app gets an ad placed during the next Super Bowl? Is your
app/server architecture ready for fast exponential growth?

Performance Infrastructure Savings
Most Android apps are highly interactive and download a lot of content from remote
servers. Lowering the number of requests (or reducing the size of each request) can
yield huge speed improvements inside your app, but it will also yield huge reductions
in traffic on your backend—allowing you to grow your infrastructure at a less rapid
(expensive) pace. I have worked with companies that have reduced the number of
requests by 35%–50% and the data traffic by 15%–25%. By reducing the work being
done remotely, millions of dollars per year were saved.

The Ultimate Performance Fail: Outages
A study of Fortune 500 companies has shown that in 2015, website outages cost com‐
panies between $500,000–$1,000,000 per hour. In addition to loss of revenue, there
are costs to bring data centers, cloud services, databases, etc. back up. Looking back
over the last decade, there have been multiple studies7 estimating the costs of an out‐
age (and they are rising). Two of these studies attribute 35%–38% of outage costs to
lost revenue. If we apply that model to all of the studies, we find that a one hour out‐

4 | Chapter 1: Introduction to Android Performance

http://www.datacenterdynamics.com/critical-environment/one-minute-of-data-center-downtime-costs-us7900-on-average/83956.fullarticle;
http://www.datacenterdynamics.com/critical-environment/one-minute-of-data-center-downtime-costs-us7900-on-average/83956.fullarticle;
http://www.evolven.com/blog/downtime-outages-and-failures-understanding-their-true-costs.html;
http://info.appdynamics.com/DC-Report-DevOps-and-the-Cost-of-Downtime.html
http://info.appdynamics.com/DC-Report-DevOps-and-the-Cost-of-Downtime.html


age causes a $175K loss in revenue per hour in 2015, and the costs are just getting
higher (Figure 1-2).

Figure 1-2. Cost of an outage per hour

An outage is certainly the worst type of performance issue. Nothing works! For this
reason, companies spend millions of dollars a year to prevent complete outages of
their content. In addition to loss in revenue and customer satisfaction, when there is
an outage, our customers also have no idea how to react (see Figure 1-3).

Figure 1-3. Sgt. Brink of the Los Angeles County Sheriff’s Department tweeted an advi‐
sory in response to a high volume of inquiries regarding a Facebook outage

But in all seriousness, uptime performance is crucial to the survival of your company.
The mobile analogy to an outage is when your app crashes. Obviously, the first per‐
formance issue you must resolve are crashes, because if the app doesn’t work, it

The Ultimate Performance Fail: Outages | 5



8 Some customers will come back and buy later, so this is a low estimate of revenue per hour.

doesn’t matter how fast it is. However, when your app is running slower or even
appears to be slower, your customers will have a similar reaction to when there is an
outage.

Performance as a Rolling Outage
When there is a brownout, your electric company is providing a lower voltage, and
your lights appear dim (and your fridge might stop working altogether). A slow
Android app operates in the same way. Your customers can still use your app, but
scrolling may be laggy, images may be slow to load, and the whole experience feels
slow. Just as a brownout adversely affects an electric company’s customers, a slow
Android app is equivalent to a rolling ongoing outage. In March 2015, HP published
“Failing to Meet Mobile App User Expectations”, a study that shows customers react
to slow apps the same way they do to apps that crash (Figure 1-4).

Figure 1-4. Poor performance versus crashes: same consumer result

If we cross reference the data from the “Performance Matters to Your Users” on page
2 section with the data from the “The Ultimate Performance Fail: Outages” on page 4
section, we can come up with estimates of the cost of slow performance (Figure 1-5).
When there is an outage, your app loses revenue.8 If we know that after 4.4 s of load
time, conversions drop 3.5%–7%, we can estimate that a slow “rolling outage” costs
your bottom line as much as $6K–$12K per hour.

6 | Chapter 1: Introduction to Android Performance

http://bit.ly/1OOw5TB


9 Perfecto Mobile, “Why Mobile Apps Fail: Failure to Launch,” Fall 2014, http://info.perfectomobile.com/rs/perfec
tomobile/images/why-mobile-apps-fail-report.pdf.

10 Dave Hoch, “App Retention Improves - Apps Used Only Once Declines to 20%,” Localytics, June 11, 2014,
http://info.localytics.com/blog/app-retention-improves.

Figure 1-5. Cost of a slow app per hour (based on a 1-second web page delay)

As Figure 1-5 shows, the cost of a slow app is increasing year over year. As your app
loses revenue and customers, eventually your revenue will drop to zero—which is
something I hope never happens to your app.

Consumer Reaction to Performance Bugs
With such a complicated development platform, it is inevitable that some bugs will
slip through your testing processes and affect customers. A recent study showed that
44% of Android app issues and bugs were discovered by users, and 20% of those were
actually reported to developers by users who submitted feedback in Google Play
reviews.9 Negative reviews are not the way you want to discover issues. Not only is
one customer frustrated, but all of your future potential customers will have the abil‐
ity to see your dirty laundry when they look at the reviews. When customers see
reviews discussing bugs and problems with your app, they may decide to not con‐
tinue the download. Anything that prevents your app from being downloaded is cost‐
ing you money!

Once the app has been downloaded, you are not out of the woods. In 2014, 16% of
downloaded Android apps were launched only once.10 Customers are easily distrac‐

The Ultimate Performance Fail: Outages | 7

http://info.perfectomobile.com/rs/perfectomobile/images/why-mobile-apps-fail-report.pdf
http://info.perfectomobile.com/rs/perfectomobile/images/why-mobile-apps-fail-report.pdf
http://info.localytics.com/blog/app-retention-improves


11 See the “Why Are Your Mobile Apps Failing?” infographic.
12 See “Scaling Android Development at Twitter”, a presentation by Twitter’s Jan Chong at Droidcon Paris 2014.

ted, and with so many choices in the app markets, if your app doesn’t satisfy, they will
quickly try a similar app. Although there are many reasons why users abandon apps,
it can be argued that being frustrated with an app is a top reason to abandon or unin‐
stall. According to a study by Perfecto Mobile,11 the top user frustrations are as fol‐
lows:

• User interface issues (58%)
• Performance (52%)
• Functionality (50%)
• Device compatibility (45%)

While performance is directly called out as the number two reason for customer frus‐
tration, it is clear that the other responses also have aspects of performance to them.
It becomes pretty clear that the major reasons customers stop using apps are due to
issues related to performance.

Adopting a minimum viable product (MVP) approach to your Android app—where
the initial launch contains bugs and performance sinks—assumes that when the fixes
are made, you:

• Still have an audience
• They update your app
• They launch the updated app to see the improvements

Twitter has reported that it takes 3 days for 50% of users to upgrade its Android app,
and 14 days for 75% of users to update to the latest version.12 The company found this
to be extremely repeatable. So if your app is not uninstalled, you still have to hope
that your updates (with all your fixes and improvements) are:

• Actually downloaded by users
• Opened up so that the fixes are seen

Smartphone Battery Life: The Canary in the Coal Mine
The studies discussed in the previous section show that consumers prefer fast apps,
and apps that do things quickly. One of the top concerns of smartphone owners is
battery life. While it is not (yet) common knowledge to customers, apps (and espe‐
cially non-optimized ones) can be a major factor in battery drain. I use my end-of-

8 | Chapter 1: Introduction to Android Performance

http://info.perfectomobile.com/rs/perfectomobile/images/why-apps-fail-infographic.pdf
https://youtu.be/T5qEnillTHc?t=6m43s


13 Hewlett-Packard, “Failing to Meet Mobile App User Expectations: A Mobile User Survey - Dimensional
Research,” http://bit.ly/1LXYPec.

day battery percentage as an indicator of how apps are performing on my phone. If I
notice a sudden dip in battery life, I begin to investigate recently downloaded apps for
potential issues.

One common refrain in new Android device reviews is that “battery life is not
improved from <previous model>.” My contention is that if these reviewers set up
their new devices with the same apps that were on their previous devices, battery life
would be similar. One of his or her cherished apps that was moved to the new phone
is killing the battery. In Chapter 3, we’ll show how battery drain of the mobile device
can be used as a proxy for application performance, and how improving the perfor‐
mance of your app will extend battery life for your customers.

The top drainers of mobile battery are the screen, the cellular and Wi-Fi radios, and
other transmitters (think Bluetooth or GPS). We all know that the screen has to be on
to use apps, but the way your mobile app utilizes the other power-draining features of
a mobile device can have huge effects on battery life.

Consumers have typically blamed their devices, the device manufacturers, or the car‐
riers for device battery issues. This is no longer the case. In fact, 35% of consumers
have uninstalled an app due to excessive battery drain.13 Consumer tools that display
how apps drain the battery are only just now coming to market, but the quality of
these tools is radically improving. Thankfully, the tools for developers to minimize
power drain are also beginning to surface, and we’ll explore these tools in Chapter 3.
It is best to be as conscientious as possible regarding battery and power concerns
while architecting and building your mobile apps.

Testing Your App for Performance Issues
The best way (prelaunch) to discover performance issues is to test, test, and test some
more. In Chapter 2, I’ll cover the devices you should use for testing in order to cover
as much of the Android ecosystem as possible. In subsequent chapters, I’ll walk
through many of the tools available to help you diagnose performance issues, and tips
to resolve them. Once you are in market, ensure that your app reports back to you on
usage patterns and issues that your customers are facing. Read these reports, and dis‐
sect the information so that you can resolve issues discovered in the field.

There are two common areas of performance testing: synthetic and real user moni‐
toring (RUM).

Testing Your App for Performance Issues | 9

http://bit.ly/1LXYPec


14 Alec Heller, “UA Strings Are Terrible: Adventures in Server-side Device Characterization for Site Perfor‐
mance,” Velocity 2014: Building a Fast and Resilient Business, June 25, 2014, http://velocityconf.com/veloc
ity2014/public/schedule/detail/35211.

Synthetic Testing
Synthetic tests are created in the lab, to test specific use cases, or perhaps to mimic
user behaviors in your mobile app. Many of the tools we’ll discuss in future chapters
run with synthetic tests, where you as a developer run your app through its paces and
look for anomalies. This is a great way to discover and resolve many bugs and perfor‐
mance issues. However, given that Akamai reports 19,000 unique Android user
agents per day,14 there is no way you can possibly run a synthetic test for every possi‐
ble scenario.

Real User Monitoring (RUM)
Testing every device scenario is impossible in the lab, so it is essential to collect real
performance data from your customers. By inserting analytics libraries into your app,
you can collect real-time data from all of your users—allowing you to quickly under‐
stand the types of issues they might be facing. This gives you the chance to respond to
customer issues and bugs that are discovered in the field. Of course, once resolved, it
is smart to find ways to replicate such issues in the lab—to avoid future releases with
issues. Chapter 8 will walk through some typical results you obtain from RUM tools.

Conclusion
The evidence presented in this chapter conclusively shows that the performance of
your app—load speeds, scrolling actions, and other user events—must be fast and
smooth. A slowly performing app results in loss of customers at a rate similar to apps
that crash. For that reason, having a poorly performing app is like operating with roll‐
ing outages. You’ll lose engagement, sales, and ultimately your customers (both cur‐
rent and future). So, now that you are convinced (and once you’ve used this data to
convince your managers and senior leadership, too!), let’s go solve all your perfor‐
mance issues and get your app running fast!

10 | Chapter 1: Introduction to Android Performance

http://velocityconf.com/velocity2014/public/schedule/detail/35211
http://velocityconf.com/velocity2014/public/schedule/detail/35211


1 Alec Heller, “UA Strings Are Terrible: Adventures in Server-side Device Characterization for Site Perfor‐
mance,” Velocity 2014: Building a Fast and Resilient Business, June 25, 2014, http://velocityconf.com/veloc
ity2014/public/schedule/detail/35211.

CHAPTER 2

Building an Android Device Lab

The Android ecosystem is the largest mobile platform (by market share) in the world.
Google has reported that there are over 1 billion (yes, with a B!) active Android devi‐
ces worldwide. It holds ~80% of all smartphone penetration. With these stats, it’s no
wonder that Android app development is hot. However, the rapid growth of the
Android ecosystem has also introduced some pretty interesting challenges.

There have been 12 major releases, thousands of phone models (and tablets, watches,
TVs, etc.), with dozens of screen sizes, all with manufacturer tweaks added to the
standard Android Open Source Project software. With all of this variation, it is
impossible to test your app on every device/OS combination. Akamai has reported
that they track 19,000 unique Android user agents per day.1 How can you make sure
that your app is running well on a representative sample of Android devices? And
probably just as importantly, how do you figure out what a representative sample of
Android devices actually means?

A study by TestDroid found that to test the top 20% of devices globally, you need 12
devices. To cross 50% of devices, you need >60. For just the U.S. market, 25 devices
covers ~66% market penetrations, but to hit 90% coverage, you need to actively test
on 128 devices. As testing time is always at a premium, it is unlikely (without auto‐
mation) that you will be regularly testing on this many devices. In this chapter, we’ll
walk through a few different options for building an Android device lab that will help
you maximize, via functional and performance testing, your UI on a minimum of
devices.

11

http://velocityconf.com/velocity2014/public/schedule/detail/35211
http://velocityconf.com/velocity2014/public/schedule/detail/35211


2 MarketingProfs, “Mobile Trends: Most Popular Phones, Screen Sizes, and Resolutions,” http://www.marketing
profs.com/charts/2014/25740/mobile-trends-most-popular-phones-screen-sizes-and-resolutions#ixzz3hPrTffs4.

What Devices Are Your Customers Using?
The easiest way to break down Android usage is by OS version, as your performance
tuning will vary by the OS in use. As of June 2015, only 12.4% of Android users are
running a version of Lollipop, while 39.2% are on KitKat (KK) and 37.4% are on Jelly
Bean (JB) (meanwhile, 5.1% of Android users are still running Ice Cream Sandwich
(ICS) and Gingerbread and Froyo combined still account for 5.9%). While new cus‐
tomers are flocking to the latest devices and latest OS versions, there is still a large
audience on devices/OS versions launched over three years ago. The device break‐
down will also vary depending on the region of the world, as high-end device sales
will predominate in wealthy countries, whereas used devices (and low-end new devi‐
ces) will predominate in developing countries.

Device Spec Breakdown
Android Gingerbread requires a device with a minimum of 128 MB RAM, and 2 GB
of storage. We’ll place that as the bottom tier of devices, and there are still many devi‐
ces out there with this profile. Some devices have no camera, some have only a rear-
facing camera, and some have both front- and rear-facing cameras. Start throwing in
sensors like NFC, thermometer, accelerometer, and barometer, and you can see that
there is a huge dichotomy in device specifications. Let’s look at some of the most chal‐
lenging specs that affect your development.

Screen
Screen size has always been a concern for Android developers, because if your app
does not look good or render properly, your customers desert you. As I have men‐
tioned, the huge disparity in screen sizes does not simplify this situation. Making sure
that your app displays correctly on all devices is a crucial step in the dev process. In
recent years, device screens in the United States seem to be getting larger and larger,
with no regard for hand (or pocket) size. The Samsung Galaxy S (2010) was 122 mm
in height and featured a pixel density of 480 x 800, whereas the S5 is 145 mm in
height and has a pixel density of 1080 x 1920 (nearly an inch longer, and 5.4x the
pixel density in just four years!). The latest Nexus 6 from Motorola maxes out the
phablet category of devices with a massive 151 mm (that’s 5.92 inches) screen height
and 2560 x 1440 Quad HD resolution.

Despite this trend to larger and larger screens, there is still a sizable chunk of users
with screens of 480 x 320 or smaller (according to a MarketingProfs study,2 >5% in

12 | Chapter 2: Building an Android Device Lab

www.allitebooks.com

http://www.marketingprofs.com/charts/2014/25740/mobile-trends-most-popular-phones-screen-sizes-and-resolutions#ixzz3hPrTffs4
http://www.marketingprofs.com/charts/2014/25740/mobile-trends-most-popular-phones-screen-sizes-and-resolutions#ixzz3hPrTffs4
http://www.allitebooks.org


Q2 2014), and 17% of users in South Africa are using phones 240 x 320, so while it
might be tempting to only use big flashy screens in your test lab, keeping one or two
small screen devices is a prudent choice. If budget does not allow, small screens might
also be tested with emulators for UI work, but emulators are not great for measuring
performance on real devices.

SDK Version
Devices on different SDK versions can have great variation in components and per‐
formance. Post-Jelly Bean devices benefit from “Project Butter,” which helped make
UI scrolling and rendering buttery smooth and avoid jank. The KitKat release
included “Project Svelte,” which reduced the memory requirements of the OS to allow
devices with just 512 MB of RAM (and devices running KitKat with even just 256 MB
have even entered the market). Lollipop introduced “Project Volta,” with SDK
improvements that save battery drain. While these updates are great, it also compli‐
cates your development for devices that fall before these releases.

While many devices are used for a short period (6–18 months) and then discarded,
there are many other Android phones that see strong usage for over two years. The
Samsung S3 (released in 2012) is still being sold as a new device in 2015 (alongside its
successors, the S4, S5, and S6) and is one of the top 5 Android device in usage charts.
There is also a very strong used Android market both domestically and abroad.

CPU/Memory and Storage
As recently as October 2014, the top two phones in India run Jelly Bean on a single
core CPU with 512 MB of RAM and 4 GB of storage. In China, high-end devices sim‐
ilar to the ones popular in the United States and Europe are common, as are single-
core devices running Gingerbread. Your app may run smoothly on common devices
in the United States, but how does it react to a lower-powered device with less RAM
or storage? As your app reaches the memory limits of the device, does it work to shed
memory allocations, or does it just continue plugging ahead (slowing performance
and likely leading to a crash)?

What Networks Are Your Customers Using?
We’ll cover this in greater detail in Chapter 7, but in North America (especially in cit‐
ies), we have ready access to high-speed LTE (the latest studies show 97% of the pop‐
ulation has access to LTE or other 4G technologies). This drops to about 83% in
Western Europe, and continues to drop even further in other parts of the world.
Many areas have not even seen 3G, and are still served by older 2G networks. If you
are planning a major international release of your mobile app, you should be ready to
test your Android app on different network conditions. Techniques for emulating

What Networks Are Your Customers Using? | 13



slower networks will be covered in Chapter 7 so that you can ensure your app is run‐
ning quickly no matter the location or network of your customers.

Your Devices Are Not Your Customers’ Devices
The days of “only testing it on the phone in my pocket” are over. When I attend
developer conferences, every attendee has a high-end phone—usually a flagship
device from the last year or two. For 2015, that means developers are carrying devices
equivalent to the Nexus 6, Samsung S6, or HTC One (M9), all of which run Lollipop
and have 4 or 8 CPUs, multi-megapixel cameras, 16–32 GB of memory, 2–3 GB of
RAM, and HD video recording capabilities. Many developers are also tinkerers, and
have rooted their devices. These devices are awesome, and a lot of fun to use, but it is
important to realize that these devices are not the norm for the general Android pop‐
ulation. Further, Android developers tend to live in high-tech hubs, ensuring fast Wi-
Fi and cellular networking capabilities.

With a billion active Android devices in use in extremely different network condi‐
tions, it is clear that developers live in a bubble of high-end devices on amazing high-
end networks. Growth of mobile data continues to grow in the developed world, but
it is beginning to reach saturation. The largest new user growth will be in the devel‐
oping world, as the next billion users begin to gain access to the Internet. These users
will be looking at low-cost devices, and there is a thriving market of Android devices
that meet this need. These devices are markedly different from what is in your pocket
(they likely resemble your retired device from a few years ago that you loaned to a
family member and forgot about). These devices lack the horsepower we take for
granted, but that’s not the only consideration to keep in mind when catering to these
users. We also have to realize the other limitations they may face—access to electricity
to charge their phones, and the quality of the mobile network that supplies the data,
for example.

14 | Chapter 2: Building an Android Device Lab



Rooted Devices/Engineering/Developer Builds
Rooted devices are devices with root access to the Android kernel. Many developers
are tinkerers and enjoy the access to the root Android kernel that rooting provides.
As a developer, you should expect that your app will be run on rooted devices, and
you should be prepared for any security issues that might arise from running on roo‐
ted devices (things like users accessing any file—even in your protected sandbox,
meaning that anything sensitive cannot be stored on the device).

Rooted ROMs typically have a superuser Android application package (APK)
installed as an interface between apps and the kernel (if you don’t have one, there are
several good options in Google Play).

Developer/engineering builds are a subset of root. The rooting community also calls
these “insecure” builds. That is because debugging is turned on, and the security of
the device is turned off. On an engineering build, you can access and debug any app
on the device. This is a very powerful option, and a useful one for Android develop‐
ers. On the downside, many Android apps have large security holes that are further
exacerbated by root access. For testing, the ability to test with root access gives you
more access to core levels of the Android OS. For the same reason, you should use a
rooted device for personal use with discretion.

For some of the test tools we discuss later in the book, root access provides additional
insights that can be useful. It may also be helpful for your security testing (which is
out of the scope of his book), so I would recommend having one device with root
access on hand for your testing.

Legal disclaimer: in some jurisdictions, rooting a device has legal/copyright implica‐
tions. In the United States, it is currently legal to root Android phones (but not tab‐
lets), as long as there are no copyright infringements. If you are unclear on the legality
in your jurisdiction, consult with legal counsel.

Testing
So, considering the challenges just described, how can we rationally break down the
immense 1 billion user, ~20,000 device Android ecosystem to a manageable test bed
of devices? How can we make sure we are equally supporting users in the developed
world, while also ensuring the potential customers around the world are also being
supported adequately? Hopefully by now, I’ve made it pretty clear that “testing with
what’s in my pocket” is not going to cut it.

In the next section, we’ll discuss a few approaches toward building a device lab that
covers your bases today and will keep you covered moving forward. Of course, every‐

Testing | 15



one’s budget varies greatly, so feel free to add (but not subtract too much) from the
device suggestions.

Building Your Device Lab
The only way to ensure that your Android app is doing what you want it to do is to
test, and to test on as many screens and configurations as you can. For this, you need
an Android device lab for testing.

Your device lab might just be a desk drawer of devices in various states of charging,
tangled up in a mass of cables. I suppose the pro to this arrangement might be that
devices are nearby, and easily secured when not at your desk. However, the cons
probably outweigh the pros here: only you can access your “lab,” the device you need
is probably not charged, and perhaps most importantly, the “out of sight, out of
mind” complex. If you are not constantly looking at your devices, you might forget
about testing with them.

The alternative to a locked drawer of devices is an open access device lab. In this
arrangement, devices are kept in a secure area, but are left out for people to easily
access, sign out, and test with.

When acquiring devices for testing, it is crucial to ensure your device selection will
complement the widest spectrum of your users, while sticking to your budget. If you
already have an app in market, your analytics data can be very helpful to break down
the devices that your customers are using (for more information on app analytics,
jump to Chapter 8). Perhaps your users’ device choices deviate from the top reported
devices. To keep existing customers happy, you should ensure you always test on cus‐
tomers’ top devices. If you don’t have analytics specific to your app, you’ll have to
stick to reported data on top Android devices (however, these reports generally agree
with one another, so the devices you choose from this data are a pretty safe bet).

You Want $X,000 for Devices?
Cost is always the elephant in the room. In this subsection, I’ll walk through what an
ideal Android device list will look like, but at the end, finances will come into play.
You may be asked “why don’t you just use the emulator for testing different devices?”
The emulator can help you in a number of ways (having many different size emulator
screens might help you with UI issues). But, as developers, we all know there are
issues with the emulator (speed and inability to use sensors like location and acceler‐
ometer to name a couple). You’ll have to convince your management that devices are
essential for performance testing. Perhaps a meeting where you walk through the
testing process with an emulator or three would be helpful (this actually worked
according to a presentation made by the Twitter Android team).

16 | Chapter 2: Building an Android Device Lab



Beyond budget, let’s take a look at a variety of parameters or tests you may want to
iterate over with different devices:

• Screen size
— Small (4.4%)
— Normal (82.9%)
— “Phablet” (8.6%)
— Tablet (4.1%)
— Special cases (wearables, TVs, automobiles, etc.)

• Screen density
— Low (4.8%)
— Medium (16.1%)
— High (40.2%)
— Extra-High (36.6%)

• Processor
— Dual core
— Quad core
— Octo core

• Memory
— RAM
— Storage (e.g., devices with nearly full memory versus devices with lots of

space)
• Network speed

— 3G
— LTE
— Wi-Fi

• SDK version
— Gingerbread (2.3 versus 2.3.3 versus 2.3.7)
— Ice Cream Sandwich
— Jelly Bean (4.1 versus 4.3)
— KitKat
— Lollipop
— Marshmallow (and beyond)

Building Your Device Lab | 17



3 Facebook, Year class: A classification system for Android

• Other considerations
— Rooted
— Security testing
— Original equipment manufacturer (OEM) differences

The great thing about this list is that there is opportunity to mix and match these dif‐
ferent characteristics to a (relatively) small number of phones. There are a number of
ways to break down these many characteristics into discrete phone groupings.

So What Devices Should I Pick?
Assuming you don’t have the fiscal (or time) budget to test 100 phones, let’s figure out
a methodology to pack as much device testing into as few devices as possible. There
are a number of ways to source your devices, and none are better than the other. Con‐
sider the following examples:

• Facebook has gone an interesting route for its device testing.3 Rather than source
a selection of older handsets from Craigslist or eBay, they have chosen a group of
current Android devices that have similar specifications to the top devices from
each year back to 2008. This allows the Facebook team to emulate the user expe‐
rience across the top phones of today, as well as popular phones from years past
(that will also proxy for lower-end phones still being sold around the world
today). In 2014, Facebook reported that the most common bucket of phone
matched its “2011” phone class, a dual-core, 1 GB RAM device (Facebook uses
the Samsung S2 to test this class of devices). They have released an open source
library that identifies a device’s “year class” so that (based on your profile of those
devices) you can serve the appropriate content to customers using that specific
device.

• Etsy uses its device analytics to discover which devices are popular, and did its
initial sourcing from that list. Etsy sources used devices that do not have mint
batteries so it’s possible to test devices that have more realistic power drain for
older handsets. As new devices are released, the Etsy team observes which devi‐
ces are growing quickly among the site’s users and adjusts its test devices accord‐
ingly.

A few other tips: if your app does a lot of heavy calculations, test on different CPU
types. If you have a lot of heavy rendering, look for devices with large screens and
smaller GPUs—as this might be a location of a performance bottleneck. In subse‐
quent chapters, I also discuss how changes in the SDK have improved performance in

18 | Chapter 2: Building an Android Device Lab

https://code.facebook.com/posts/307478339448736/year-class-a-classification-system-for-android/
https://github.com/facebook/device-year-class


different areas, so looking at older devices on earlier SDKs without those perfor‐
mance tweaks is also a good idea.

Popular yesterday
Devices that were top devices 24, 36, or 48 months ago make good references for
“older devices.” This might be a great device to pick up used on eBay or Craigslist,
which will save money and accomplish getting an older SDK device with a smaller
screen.

The Nexus S can be run on Gingerbread through Jelly Bean (but it has a relatively
larger screen at 480 x 800), so in order to maximize your device portfolio, it might be
better to choose an older device with a smaller screen—for example, a device like the
Samsung Galaxy Y (with a 240 x 320 screen) to source your low-pixel density, small-
screened Gingerbread device. This method will create some variation in your testing,
as you can only source what is available to you at the time you are purchasing.

Popular today
Your analytics may paint a different picture, but as of 2014, several online sources
show that the Samsung S3 (initially launched with ICS in 2012) is still the top used
Android device. Additionally, the Samsung S2 (released in Q1 2011) remains in the
top 10. These are great examples pointing to the staying power of popular devices.
There are variants of ICS, JB, and KK for the S3 (the S2 was only upgradable to JB).
While the S3 device share has plateaued (and, in fact, may be decreasing slightly), this
device will certainly remain high in the established install base for a relatively long
period. Adding current popular flagship devices is also a good idea, as they will serve
your testing for years to come.

Popular tomorrow
Nexus devices (those sold by Google with a pure Google experience with no OEM
modifications) are not typically subsidized by carriers, and so are not the highest sell‐
ing or used devices in any user ranking studies. While that might cause you to not
add these to your inventory, these are also the first devices to get OS updates. This
will allow you to test your app on the latest OS releases before the mainstream devices
are upgraded or launched with the new OS. With Android Marshmallow, Google
began prereleasing the latest OS to all developers on the Nexus 5, 6, and 9, so keeping
a recent Google Nexus device on hand is a good idea for future-proofing your app.

Building Your Device Lab | 19



Beyond Phones
In addition to phones and tablets, Android is quickly morphing and migrating to
additional ecosystems like wearables, TVs, and automobiles. These platforms are dif‐
ferent from traditional Android devices, but depending on your development plans,
you may want to integrate some of them into your regular testing.

Android wear
Announced at Google I/O 2014, Android Wear is a new breed of Android. Devices
running Android Wear are typically Android smartwatches that communicate back
to an Android device over Bluetooth (there is no unique phone number or SIM on
the device). Google suggests different UI interactions with your watch that you would
have with your phone. Information is delivered in a series of cards that users can
interact with. Google breaks down interactions to:

Suggestions
A timely list of information for the user (e.g., messages, location relevant data,
etc.)

Demands
Allowing voice commands to control your Wear to ask for data

This development model is significantly different from traditional Android apps, so if
you plan on building apps for Android Wear, you should have one or two representa‐
tive devices in your lab.

Android Open Source Project Devices
Something that is often missed in the United States when discussing Android is that
it’s open source, and the Google version we are accustomed to use is simply one fork
of the Android Open Source Project (AOSP). In the preceding description of
Android devices, I have purposely focused completely on the various Google incarna‐
tions of Android, as they are the predominant devices in the United States. However,
in an effort to be complete in my coverage of Android, let’s take a look at other com‐
mon forks of the AOSP.

As recently as summer 2014, studies have estimated that AOSP devices are 20% of the
smartphone market (where Google’s fork accounts for 65%). These devices differ as
they do not have:

• Google Play Store for app distribution
• Google Cloud messenger push notification
• Google Play Services

20 | Chapter 2: Building an Android Device Lab



• Google products and apps, among other tools that have been customized by
Google

However, as this ecosystem is not insignificant, you should consider these devices as a
part of your app distribution strategy.

Amazon
The most common device in the United States running a fork of Android is Amazon’s
popular e-reader, the Kindle. Amazon has also launched into phones (the Amazon
Fire Phone), and TV set-top boxes (Fire TV). Amazon calls its fork of Android “Fire
OS,” and its variants correspond to the Android SDK versions:

Fire OS 1 Gingerbread 2011

Fire OS 2 Ice Cream Sandwich 2012

Fire OS 3 Jelly Bean (4.2.2) 2013

Fire OS 4 KitKat (4.4.2) 2014

Fire OS 5 Lollipop 2015

It might be useful to have a few Amazon devices in your lab, as Amazon does have its
own unique App Store to deliver content to all of the Fire tablets—this is another
market for your Android apps. As long as you do not use Google’s specific services,
adding your app to Amazon’s ecosystem (including the Amazon website) is a smart
idea. Android apps available in the Amazon App Store are also available on Black‐
Berry devices, which have a runtime that allows for Android apps to run on them.

Other Android phones/tablets
While the most popular non-Google Android devices are the Amazon devices, other
devices fitting this category found in the Unites States include Barnes & Noble’s Nook
tablet. Nokia had a short-lived Nokia X AOSP project before being acquired by
Microsoft.

Outside of the United States, there are a number of manufacturers successfully mar‐
keting AOSP devices. These are primarily OEMs in India and China, where deliver‐
ing inexpensive phones is tantamount. For example, the Chinese OEM Xiaomi holds
5.1% global marketshare, and had one billion app store downloads in just over a year
with their MIUI fork of Android. If your target market includes the next billion con‐
nected users (hint: it probably should), these devices should be considered for testing.

Building Your Device Lab | 21



Other Options
If sourcing and maintaining a lab of devices is not possible, there are other options
available for testing devices.

Remote Device Testing
There are services online that provide you access to real devices connected via vari‐
ous web interfaces. Testdroid, Appurify, Perfecto Mobile, and Keynote are among the
leading vendors that have mobile devices online available for testing. These services
take care of the device overhead, allowing you the ability to just test your apps. These
services typically have many top phones, and allow you to run scripts, or other con‐
tinuous integration processes to test your apps. The results can then be viewed in
your browser. These services are unlikely to save you money on testing costs (in fact,
it will likely cost you more), but they do remove the headache of maintaining devices
locally. Another disadvantage is that without actually handling the physical devices,
you are unlikely to see slowness or performance issues—you’ll instead focus mostly
on the test results, and not actually see your mobile app in action on these devices.

Google’s Cloud Test Lab
At Google I/O 2015, Google announced a new service of online physical devices
“nearly every brand, model and version of physical devices your users might be using,
to an unlimited supply of virtual devices in every language, orientation and network
condition around the world.” Submitted APKs will automatically be tested across the
top 20 Android devices for free—reporting results and crash data. As of summer
2015, this tool is still coming soon.

Open Device Labs
If your budget for devices is truly zero, or perhaps you are afflicted with a bug on a
device you just cannot manage to get your hands on, you might try an Open Device
Lab (ODL). These are grassroots device labs (some have permanent homes, some do
not) of devices that are available for testing (see Figure 2-1). The number of devices
for these labs vary, but perhaps you can find some old devices to donate to your area’s
ODL. If your community does not have an ODL, perhaps you can start one. All you
really need is a few old devices, and a willingness to share good testing karma with
your fellow developers.

22 | Chapter 2: Building an Android Device Lab

www.allitebooks.com

http://opendevicelab.com
http://opendevicelab.com
http://www.allitebooks.org


4 Lara Hogan, “Etsy’s Device Lab,” Etsy - Code as Craft, August 9, 2013, https://codeascraft.com/2013/08/09/
mobile-device-lab/.

Figure 2-1. Open Device Lab locations around the world

Additional Considerations
When building a device lab, there is additional infrastructure you must acquire and
maintain. Lara Hogan at Etsy has done a great job of discussing device lab issues
beyond just device acquisition.4 Other things to consider include:

• Obtaining USB hubs to ensure you have enough electricity to power all of your
devices

• Setting up a private Wi-Fi network just for your mobile devices (to ensure ade‐
quate Wi-Fi throughput)

• Ensuring all the devices are wiped after each use, and that they’re not accidentally
upgraded

• Having the appropriate cables and chargers for each device.

These additional details are crucial to getting your device lab up and ready for your
developers to begin testing. Software that controls your mobile devices can also be
used to run basic synthetic tests on your device lab.

Building Your Device Lab | 23

https://codeascraft.com/2013/08/09/mobile-device-lab/
https://codeascraft.com/2013/08/09/mobile-device-lab/


My Device Lab
In 2015, my family and I are taking an extended trip to Europe. I will be working on
this trip, so I’ve put together a portable device lab that I will carry for the entire trip.
For my work, I am not typically worried about screen sizes, but I am interested in
how apps work on popular older versions of the Android OS. I also often test with
rooted devices. With that in mind, I will be carrying the devices shown in Table 2-1.

Table 2-1. Portable device lab

Device Operating System Year

Samsung Galaxy Note II Jelly Bean (rooted) 2012

Samsung Galaxy S4 KitKat (rooted) 2013

Motorola’s Moto G Lollipop (rooted) 2013

Nexus 7 Lollipop 2013

Moto X(2014) Lollipop 2014

Nexus 6 Marshmallow 2014

HTC One M9 Lollipop 2015

Samsung Galaxy Note 5 Lollipop 2015

This list is heavily weighed on the Lollipop side, but I expect to upgrade most of these
devices to Marshmallow when the update becomes available. This list gives me a good
selection of OSes, a three year range on device releases, and OS versions that cover
over 85% of the population—and is additionally future-proofed for the near term.

24 | Chapter 2: Building an Android Device Lab



Conclusion
There are a multitude of Android devices, and there is growth into new sectors of
entertainment and travel. There is no reason to believe that this is the end of
Android’s growth; think of all the things that might run Android in your home—for
example, controlling your Android coffeemaker from bed.

Making sure that your app runs well on phones, tablets, cars, TVs, watches, sun‐
glasses, and more requires a dedicated effort, and (to the chagrin of some) lots of test‐
ing. By obtaining a reference library of devices (and setting them up so that you can
test with them easily), you will be on your way to optimizing the performance of your
app, and thus making your customers happier, which will help you grow your audi‐
ence. In the subsequent chapters, we’ll look at how to test your app on these devices
to ensure that the performance is optimal for every user on every phone.

Conclusion | 25





1 Paul Sawers, “Android Users Have an Average of 95 Apps Installed on Their Phones, According to Yahoo Avi‐
ate Data,” The Next Web, August 26, 2014, http://bit.ly/1JvbPGk.

CHAPTER 3

Hardware Performance and Battery Life

In addition to fancy cameras, bigger and brighter screens, and faster, more compact
processors, one of the biggest technical features touted with new devices is the size of
the battery. Reviews of new devices chart how long the device’s battery will last com‐
pared to previous generation models. As users of smartphones, we have taken to car‐
rying battery chargers with us—we have chargers at home, work, and in our cars—to
make sure that our devices remain powered.

It is my contention that the devices are fine. The problem is that after you walk out of
the store with your new phone, you begin to install apps. Yahoo! reported in 2014
that the average Android device has 95 apps installed, but only 35 are used daily.1 As
these apps begin running, they utilize the various hardware functions of the device,
and battery drain begins. As customers become more cognizant of this fact, we’ll see
more tools to help consumers find apps that are causing high amounts of battery
drain.

In this chapter, we’ll look at how apps can utilize the device hardware, and how
important it is to optimize these interactions—to speed up the performance of your
app. Additionally, by improving the way your app interacts with the device, you will
reduce your app’s impact on battery life.

Android Hardware Features
With the number of sensors on today’s Android devices, it seems that there is nothing
you cannot do with them. However, as Uncle Ben told young Peter Parker (the fledg‐
ling Spider-Man) “With great power, comes great responsibility.” Android devices

27

http://bit.ly/1JvbPGk


provide developers with a lot of cool tools, but like any carpenter will tell you, you
have to be careful with your tools or you might hurt yourself. In this case, you won’t
physically get hurt, but if your app does not work in concert with the device, you can
cause major battery drain, device warming, and other negative side effects that might
alarm your customers.

The power we hold in our hands is pretty amazing—for example, consider the sen‐
sors included in the Samsung S5:

• Fingerprint scanner
• Heart rate monitor
• Light monitor
• Relative humidity and temperature sensor
• Barometer
• NFC
• Gyroscope
• Accelerometer
• Bluetooth
• Wi-Fi
• FM radio
• Cellular radio
• Front- and back-facing camera
• GPS
• Magnetic field detector
• Light flux
• Battery temperature sensor
• Microphone
• Touch capabilities

How do we quickly understand the performance aspects of all of these sensors? The
easiest way is to look at power drain. The parts of the device that consume the most
power are also those you need to be most careful with.

Less Is More
By utilizing these awesome features of our customers’ Android devices, we want to
gain as much information as possible, and provide it to our customers. The challenge
is that if we collect too much data, we impact the battery life of the device, and so we

28 | Chapter 3: Hardware Performance and Battery Life



2 Jiaping Gui , Stuart Mcilroy , Meiyappan Nagappan, and William G. J. Halfond, “Truth in Advertising: The
Hidden Cost of Mobile Ads for Software Developers,” Proceedings of the 37th International Conference on
Software Engineering (ICSE), May 2015, http://www-bcf.usc.edu/~halfond/papers/gui15icse.pdf.

must discover the correct balancing point of acceptable data/information with power
consumption. Further, if we can ensure that all tasks run as quickly as possible, we
can be sure that the performance/battery pendulum is swinging in our favor.

Google has reported that 1 second of active device usage is equal to the power drain
of 2 minutes of standby time. This makes sense for anyone who has looked at device
specs. The Nexus 5 boasts 300 hours (12.5 days) of standby time (which means LTE
on and Wi-Fi on, but no device usage.) As soon as customers begin installing apps (or
turning on the screen to check on said apps), battery life drops a whopping 35x! (The
Nexus 5 promises 8.5 hours of battery life with regular Wi-Fi usage.) Looking at the
bigger picture, we can assume that 5 minutes of active app usage will draw 1%–1.6%
of the battery. The more stuff your app uses, the higher this number will be.

This is most evident on free, ad-supported casual Android games—sometimes, after
playing these games for 10–15 minutes, you discover that the back of your phone is
hot to the touch. These apps can aggressively download advertising while the game is
using the CPU, screen, and so on. All of these components working at once drains the
battery so quickly that it heats up. A study released in March 2015 found that apps
with ads used 56% more CPU, 22% more memory, and 15% more battery over the
same app with ads stripped out.2

It is my contention that most battery issues with mobile devices are not hardware
related, but rather, the result of poorly designed apps that misuse the capabilities of
the device. In this chapter, we’ll walk through some of the missteps of hardware
usage, and how to avoid them in your Android app (and thus stay off any “battery
drain” app list).

What Causes Battery Drain
As an Android user, you are probably interested in how the apps you use on a regular
basis affect your battery life. By studying the apps currently installed on your phone,
you may discover apps that are using excessive battery. By learning these techniques,
you’ll be able to determine if your customers will discover similar performance issues
with your app on their phone. By understanding how Android grades apps for battery
drain, you can ensure that your apps do not appear on these reports. You may also
discover some poorly behaving apps on your phone (thereby improving the battery
life on your personal device).

What Causes Battery Drain | 29

http://www-bcf.usc.edu/~halfond/papers/gui15icse.pdf


Android Power Profile
As we’ll discuss later in the chapter, the battery settings menu reports the percentage
of battery drain for each app running on the device. These power drain calculations
are created (in part) by the Android Power profile. Inside the Android OS is an XML
file that tells the system the electrical current drawn by the major hardware compo‐
nents of your device. When your app runs (and wakes up different parts of the
device), the system computes the amount of power each component uses, and assigns
that battery drain to your processes. The XML file looks like this (power drain
reported in mA):

<?xml version="1.0" encoding="utf-8"?>
<device name="Android">
    <item name="none">0</item>
    <item name="screen.on">65</item>
    <item name="screen.full">202</item>
    <item name="bluetooth.active">87</item>
    <item name="bluetooth.on">1</item>
    <item name="wifi.on">3</item>
    <item name="wifi.active">240</item>
    <item name="wifi.scan">129</item>
    <item name="dsp.audio">29</item>
    <item name="dsp.video">215</item>
    <item name="radio.active">125</item>
    <item name="radio.scanning">25</item>
    <item name="gps.on">1</item>
    <array name="radio.on">
        <value>4.5</value>
        <value>4.5</value>
    </array>
    <array name="cpu.speeds">
        <value>2457600</value>
        <value>2265600</value>
        <value>1958400</value>
        <value>1728000</value>
        <value>1574400</value>
        <value>1497600</value>
        <value>1267200</value>
        <value>1190400</value>
        <value>1036800</value>
        <value>960000</value>
        <value>883200</value>
        <value>729600</value>
        <value>652800</value>
        <value>422400</value>
        <value>300000</value>
    </array>
    <item name="cpu.idle">3.1</item>
    <array name="cpu.active">
        <value>348</value>
        <value>313</value>

30 | Chapter 3: Hardware Performance and Battery Life



        <value>265</value>
        <value>232</value>
        <value>213</value>
        <value>203</value>
        <value>176</value>
        <value>132</value>
        <value>122</value>
        <value>114</value>
        <value>97</value>
        <value>92</value>
        <value>84</value>
        <value>74</value>
        <value>56</value>
    </array>
    <item name="battery.capacity">2800</item>
    <array name="wifi.batchedscan">
        <value>.0002</value>
        <value>.002</value>
        <value>.02</value>
        <value>.2</value>
        <value>2</value>
    </array>
</device>

The hardware with the highest power drains on today’s mobile devices are (not sur‐
prisingly) the screen, radios (cellular, Wi-Fi, Bluetooth, and GPS), and the CPU (at
high processing rates). As we look to optimize app performance, the same compo‐
nents that affect performance also affect device battery drain. So, by optimizing the
performance of your app, you’ll also be improving the battery life of your users’ devi‐
ces.

Power Profile
The Power Profile XML is found inside an APK that is part of the
Android system. From the File Explorer in Android Monitor,
browse to /System/Frameworks, and copy the frameworks-res.apk
file to your local machine. You’ll need to decompile the APK to
extract the res/xml/power_profile.xml file.
All of the values in the Power Profile are reported in milliamps
(mA). As you might recall from your high school physics class, mA
is a measure of current—or flow of charge. The higher the value,
the faster the feature will drain the battery. The battery capacity is
reported in milliamp-hours (mAh), or the amount of current that
flows in one hour.

What Causes Battery Drain | 31



Screen
As seen in the Power Profile, the screen is one of the top causes of battery drain
(when the brightness is set to a high value, the current drain approaches screen.full
202 mA in the power profile). As the screen is the essential UI element of your
Android app, and it typically needs to remain lit while your app is running, you may
feel that you have little control over this aspect of power consumption. However,
there are certain UI aspects you can utilize to limit the battery drain from screen
usage.

In general, there are two major screen types in Android devices: light-emitting diode
(LED) and liquid crystal display (LCD). Manufacturers have proprietary versions of
these screens—for example, Active Matrix Organic LED (AMOLED) or Super LCD3
—and these will have different view and power aspects. However, at the high-level
analysis we are looking at here, we can stick to just two screen types.

LCD
In simple terms, LCD screens consist of thousands of liquid crystals that generate the
color for each pixel, and a backlight that illuminates all of them at the same time. Cre‐
ating the color for each pixel takes minimal energy. The major energy cost for this
type of display is the light that shines through the liquid crystals. This means that in
general terms, each pixel costs the same amount of energy, no matter the color
shown.

LED
For LED screens, each pixel emits both the color and the light. Each pixel is created
by an arrangement of red, blue, and green LEDs (and these arrangements are highly
sophisticated and display enthusiasts have contentious debates on which are the best).
By modifying the brightness and color of each LED, the pixel can take on the desired
color. Because each pixel is represented by three light sources, with intensity slightly
different depending on color, the amount of power used for different colors is vari‐
able, depending on the color displayed. Black, being the absence of all colors, uses
zero power, whereas white, being all three colors mixed at high brightness, will use
higher power. In general terms, this means that darker colors will use less power than
lighter colors. This is one major reason why some news and and social media apps
(apps that contain lots of blank screen) use a black background.

There is minimal win for black backgrounds in LCD screens, but the potential power
gains from LED screens are big enough to consider dark backgrounds for screens that
are kept open for long periods of time.

32 | Chapter 3: Hardware Performance and Battery Life

www.allitebooks.com

http://www.allitebooks.org


In Chapter 4 we will cover screen performance and UI performance in greater depth
—beyond simple battery and power analyses.

Radios
As Power Profile shows, cellular and Wi-Fi radios use similar amounts of power. In
Chapter 7, we’ll look at the differences in connectivity between Wi-Fi and cellular. In
general, cellular connections are kept on for a longer time than W-Fi, making the cel‐
lular radio sessions longer and ultimately using more battery than connections made
on Wi-Fi. At a high level, the best way to improve your app’s use of the radio is to
download as much as possible all at once and turn the radio off when you are done.
This has a twofold improvement to performance. By reducing the number of
requests, the screen can load faster, and you reduce the battery drain (but we’ll cover
this in greater detail in Chapter 7).

Another (sometimes forgotten) radio receiver is the GPS. When using location,
knowing the accuracy of the positioning you need can save a lot of time (and power).
If you only need a course location, the cellular network can often provide enough
data that the GPS radio might never turn on. Because the tower location is stored on
the device, if your customer is not moving, this might not even require a cellular
radio connection. By avoiding the use of GPS, your app will be faster (the location is
available on the device), and will use less power.

GPS Failover
Don’t forget to account for the fact that your user might be inside a
concrete bunker, and GPS satellites may not be visible to the
device. If you don’t get a GPS fix in a reasonable amount of time,
make sure you turn the GPS off.
It is not uncommon to see Android apps that fail to do this, and
keep the GPS on for 40 minutes without getting a location. This
behavior was not good for the device battery, nor did it provide an
improved experience to the customer.

In Chapter 7, we’ll detail network performance in greater detail.

CPU
If your app is a game or has a lot of heavy calculations, you know you will be ham‐
mering the CPU hard. Additionally, if your app requires background calculations to
occur, the CPU might be woken up to do additional computations. As the XML
power profile shows, the higher the CPU is running, the higher the battery drain.

What Causes Battery Drain | 33



CPU usage is influenced by the screen, network, and all of the calculations that occur
in your device. We will cover opportunities to optimize CPU usage throughout the
book.

Additional Sensors
The Power Profile lists the major components of an Android device. Additionally, as
we discussed in Chapter 1, our phones have many additional sensors that allow us as
developers to really make our apps shine.

When you register a sensor, you can use the getPower() method to obtain the power
drain of the sensor. As you might expect, there are a number of free apps in Google
Play that list all of the sensors on a device and their associated current usage (in milli‐
amps). For the Nexus 6, I find:

Accelerometer 0.3mA

Magnetometer 10mA

Gyroscope 1.5 mA

Proximity 12.675 mA

Light 0.175mA

Barometer 0.004 mA

Rotation Vector 11.8 mA

Geomagnetic Rotation Vector 10.3 mA

Orientation 11.8 mA

Linear Acceleration 1.8 mA

Gravity 1.8 mA

Tilt 0.3 mA

Device Position Classifier 5.6 e-45 mA

Step Detector 0.3 mA

34 | Chapter 3: Hardware Performance and Battery Life



Each sensor can report events up to a certain maximum frequency. As a developer, it
is important to use sample rates that make sense for your app. In addition to the sen‐
sor, the CPU and memory of the device are used to handle the data and oversampling
wastes these resources. There are a number of sample rates built into Android (SEN
SOR_DELAY_NORMAL, SENSOR_DELAY_GAME, etc.) that allow you to use industry standard
sample rates.

Finally, when you are done using the sensor, make sure you unregister it. If you keep
your listener active, the sensors will continue to report data, and this will lead to
unneeded processor load, memory usage, and battery drain.

Heisenberg’s Uncertainty Principle
Quantum mechanics in a Android book? Werner Heisenberg’s
research told him that by observing the world, we inevitably dis‐
turb it. When you run tests on a device to monitor battery usage,
your test is also using battery—and slightly perturbing your results.
There are many external tools that you can use to connect to a
device that will not affect the battery drain during measurements. I
have used the Monsoon Power meter (and several of the tools in
this book allow you to integrate reports from Monsoon into them).

Get to Sleep!
Letting your app go to sleep when it is not doing anything is important. Releasing the
sensors and radios and allowing the screen to turn off will go a long way to saving
battery power. While letting your app go to sleep is crucial, it is also important to
carefully evaluate how your app wakes up. By being mindful of how often your app
wakes up the device, you will go a long way to saving your customers’ battery life.

Wakelocks and Alarms
Historically, developers have used wakelocks and alarms to wake up a device to pro‐
cess information. Because it is likely that you might want your app to wake up and
process some data without customer interaction, you are probably utilizing an alarm
or wakelock today in your app. Wakelocks can also be used to prevent the device from
going back to sleep. Now that we have looked at how much power each piece of
Android’s hardware uses, you will begin to see how waking up the device in the back‐
ground can be detrimental to battery performance of your app and the device. Addi‐
tionally, when your app wakes up a device, it opens the door for other apps to process
events, perhaps turn on the radio. In Lollipop, Android added the JobScheduler API,
which allows for smarter and synced device wakeups (we’ll cover this API in more
depth in “JobScheduler” on page 66).

What Causes Battery Drain | 35



Wakelocks
Wakelocks give you the ability to wake up (or keep awake) parts of the mobile device.
When used properly, this is a useful feature for apps. I remember a car racing app that
did not use a screen wakelock, and the screen would turn off mid-race and I would
crash. Needless to say, I uninstalled that game! A screen wakelock is how movie
streaming apps keep the screen from timing out during a movie, or a streaming
music app keeps the audio channel playing while the rest of the device is asleep. In
certain types of apps, these wakelocks are paramount to the user experience. How‐
ever, if not handled properly, wakelocks can also cause extreme battery drain.

If only to emphasize this case, the wakelock is a part of the PowerManager API. The
first paragraph of this class description reads:

This class gives you control of the power state of the device. Device battery life will be
significantly affected by the use of this API. Do not acquire PowerManager.WakeLocks
unless you really need them, use the minimum levels possible, and be sure to release
them as soon as possible [emphasis added by Android].

You’ll notice that this advice is similar the advice given by Android for sensors, as
your wakelock is keeping the device awake. As soon as you can let the device sleep,
make sure you release the wakelock.

Wakelock Detection
If you are testing on a pre-KitKat device, there are a number of free
wakelock detection apps in Google Play that are useful for diagnos‐
ing wakelock issues. These apps all generally do the same analysis,
so pick one to test your app’s wakelock usage. In KitKat and later,
the wakelock detection APIs became system stats (a part of adb
shell dumpsys batterystats), and are only available to these
apps if your phone is rooted. We will look at the tools build into
batterystats and how you can analyze your app using these tools.

Alarms
Alarms allow you to set the time that specific operations will be run. These are typi‐
cally run when your app is not in the foreground, and often when the device is asleep.
For example, “wake up the device every 60 minutes and check in with the server for
updates.” While this is one way to update your app, it can have side effects. As the
Android SDK warns: “A poorly designed alarm can cause battery drain and put a sig‐
nificant load on servers.”

I have encountered popular apps that use alarms to sync data. For example, one par‐
ticular app turns on its customers’ phone and establishes a cellular radio connection
every 3 minutes to poll for news updates. These 480 extra connections per day

36 | Chapter 3: Hardware Performance and Battery Life



(assuming the phone battery lasted 24 hours), caused 10%–20% battery drain—just in
the background.

When using alarms, you should only call an exact alarm if you need to alert at a pre‐
cise time (like if you are building an alarm clock app). Otherwise, you can use an
inexact alarm where the OS will coordinate all of the alarms to minimize battery
drain. The following example will wake up the device once a day, at approximately
alarmTime (meaning that the OS will coordinate the wakeup, but they won’t be pre‐
cisely 24 hours apart):

alarmManager.ssetInexactRepeating(AlarmManager.RTC_WAKEUP,alarmTime,
        AlarmManager.INTERVAL_DAY, alarmIntent);

Doze Framework
As we have seen in this chapter, the more the device is woken up, the faster the bat‐
tery will be drained out. When the device is idle, the wakelocks and alarms that each
app uses will accelerate the drain. Studies have shown that 70% of battery drain when
the device is idle is caused by apps turning on a radio connection to update. We’ll
look at optimization strategies for network connectivity in Chapter 7, but it is safe to
say that limiting the number of times your app wakes up will go a long way to saving
battery.

In the 2015 Marshmallow release of Android, Google has added a Doze framework to
limit how often a device can wake up. This comes at a price of “data freshness” in the
apps, but having fresh data in your apps means nothing if the battery dies. The device
allows certain windows to update (and of course when the device screen is powered
on, all apps can update).

So how does the Doze framework work? The framework has several states:

ACTIVE

Screen is on

INACTIVE

Screen is off, but device is awake

IDLE_PENDING

“Nodding off ” into Doze

IDLE

Device is asleep

IDLE_MAINTENANCE

A short window for all queued alarms and updates to occur

To force a device running Marshmallow into these different states:

What Causes Battery Drain | 37



adb shell dumpsys battery unplug //tricks the device to stop charging
adb shell dumpsys deviceidle step
   //reusing this step walks you through the various states

In real life, your device must have the screen off, and not move for 30 minutes to go
from INACTIVE to IDLE_PENDING, and another 30 minutes to go into IDLE mode.
Once in IDLE, the device will postpone all alarms until the next maintenance window
(in 60 minutes.) The delay between each IDLE_MAINTENANCE increases (1 hr, 2 hr, 4 hr,
and 6 hrs) with a maximum of 6 hours between windows. All alarms and wakelocks
will be suspended until the window occurs. This will undoubtedly save significant
battery for devices that sit idle for long periods (like tablets).

As a developer, you should test your app with the Doze framework to ensure that if
multiple notifications occur while the device is Dozing that only one alert message/
tone is made.

Basic Battery Drain Analysis
We’ve covered how the hardware uses the battery, how Android calculates app battery
drain from these values, and how inefficiently waking up your app can cause large
battery drain. If apps are the cause of battery drain, how can you determine what the
top battery drainers are on your device? The battery settings menu has a wealth of
information to diagnose battery drain issues stemming from mobile apps, and more
importantly, is accessible to all Android users. It is imperative that your app not
appear as a battery hog in these menus, as it is a great tip-off to your customers to un-
install your app.

As shown in Figure 3-1, when you initially open the Battery menu (Settings → Bat‐
tery), you can see a general graph of battery drain over time (typically since the last
100% charge). Below the graph is a list of all of the apps that have contributed to bat‐
tery drain over the selected period. Let’s walk through what these graphs tell you (and
your customers).

38 | Chapter 3: Hardware Performance and Battery Life



Figure 3-1. The KitKat (left) and Lollipop (right) battery menus

You’ll see that the menu been updated between KitKat and Lollipop. The KitKat
menu shows current battery usage, while Lollipop shows both usage and additionally
predicts the battery life remaining until you must recharge (based on your usage). By
touching the graph at the top, it will expand to show more device-specific details
about what the device has been doing (Figure 3-2).

Basic Battery Drain Analysis | 39



Figure 3-2. KitKat (left) and Lollipop (right) battery details

This extended menu tells you how much time your device has spent in various cellu‐
lar states (green/yellow/red indicating the signal quality), time on active Wi-Fi, device
awake time, screen awake, and how much time your device was charging. As a user, I
prefer the Lollipop view, as it shows both the battery actual data (green), but predicts
the time remaining (gray). As a developer looking at device and app performance, I
prefer the KitKat view, because the actual device usage fills the screen, making it eas‐
ier to read.

In the KitKat image, you can see the rapid discharge of battery (at the left of the
screen) occurred during a period of poor signal, while the screen was on and the
phone was awake. There is a similar dip on the Lollipop device just before the screen‐
shot was taken (where the graph goes from green to gray.)

As a developer (and as a user), an important indicator of app-induced battery drain
to note is when the device is awake but the screen is off. This is an indicator of an app
using a wakelock or alarm to use the device while the customer is not using it. If you

40 | Chapter 3: Hardware Performance and Battery Life



see this occurring frequently, you can look at the apps causing battery drain, and
determine which app(s) are causing the issue.

App-Specific Battery Drain
If you return to the main battery menu screen and scroll below the battery chart data,
there is a breakdown of every app associated with battery drain. In my experience, the
percentages are never very large, but this might be because every app is responsible
for a very small percentage of battery drain. By selecting a specific app from the
menu, you’ll see the CPU usage of your app in the foreground and total CPU usage (a
sum of foreground and background). Additionally, this menu provides data usage
(foreground/background cellular/Wi-Fi), and the time the app kept your device
awake. Foreground app usage and data are great (yay! people are using your app), but
a large amount of background usage implies that your app might be waking up the
device from its asleep state.

For example, Figure 3-3 shows the battery stats for Facebook and Spotify (in KitKat).

Basic Battery Drain Analysis | 41



Figure 3-3. Facebook and Spotify battery details (shown in KitKat)

In this view, Facebook is being credited with (blamed for?) 4% of the battery drain
(calculated in “Android Power Profile” on page 30) on the device. Facebook’s CPU
usage is primarily in the foreground (11 minutes out of 11.5 minutes). The additional
30 seconds of CPU usage was in the background, and probably associated with down‐
loading updates from the server. The app kept the phone awake for 1 minute with a
screen wakelock. This is because I watched a 1-minute video on my newsfeed, and the
wakelock kept the screen from turning off. Facebook did not use a large amount of
cellular data, but the Wi-Fi data totals are pretty impressive (but not unexpected: in
addition to the movie, there were a large number of images downloaded).

Spotify usage is markedly different from Facebook. When streaming music, my
screen was mostly off (and my phone was stashed in a pocket). The battery chart cor‐
roborates this; most of the CPU processing occurs in the background (~12 minutes)
and the device is kept awake (likely with an audio wakelock) for almost 2 hours. The

42 | Chapter 3: Hardware Performance and Battery Life

www.allitebooks.com

http://www.allitebooks.org


data traffic is high, but not excessively so for 2 hours of streaming music (but without
experience looking at these apps, it would be hard to know this).

The data usage information in the battery menu is the amount of data sent and
received since the last charge (when the battery stats reset automatically). Reporting
the data tonnage since the last charge does not tell you much about the efficiency of
that data transmission (which, in my opinion, is what you really want to see in a bat‐
tery menu). Tellingly, Google changed the reporting in Lollipop on the battery menu
with respect to data usage, as shown in Figure 3-4.

Figure 3-4. Battery details for Spotify, shown in KitKat (left) and Lollipop (right)

Basic Battery Drain Analysis | 43



Note that the data usage report in the Lollipop battery menu is now based on packets
instead of KB, and is further broken down into Wi-Fi and cellular categories. Further,
the amount of time the mobile radio was in use by the app is also reported. These are
powerful new reports, as we can now estimate how dense the radio traffic is (and as
Spotify is sending 40,000 packets in 39 minutes, or 1 packet received every 60 ms, it is
pretty dense traffic). Dense radio traffic implies that the data is being sent as quickly
as possible, allowing the user to consume the data, while also minimizing the amount
of time the radio is on.

Coupling Battery Data with Data Usage
To get a better handle on data usage of mobile apps, you can use the Data Usage
menu (note this is cellular only—no Wi-Fi traffic is recorded here, as Wi-Fi is typi‐
cally unmetered). When you select an app, you are provided with the amount of data
used in the foreground and background. In the screenshot shown in Figure 3-5, I
have moved the sliders to show only the data for 2 days, allowing me to pinpoint fore‐
ground and background data usage for Facebook for just 24 hours.

44 | Chapter 3: Hardware Performance and Battery Life



Figure 3-5. Facebook data details, shown in KitKat

In Lollipop, this menu is again changed, with the loss of the sliders that allow you to
change the measurement dates. In order to do the analysis I am about to show in
Figure 3-6, you’ll need to remember to reset the data usage graphs before each test in
order to only show the data used during the time the test was run.

Basic Battery Drain Analysis | 45



Figure 3-6. Spotify data details, shown in Lollipop

Prior to generating Figure 3-6, I had to reset the phone cellular data totals, so that I
could compare the KB of traffic with the number of packets. Comparing the data
usage here to the packet data in Figure 3-4, we now know that the 40,024 packets
received (from the battery menu) delivered 53.57 MB of data, giving us useful values
like 1,403 bytes/packet, and 23.6 kb/s. This is a pretty dense data traffic pattern
(which is expected for an app streaming music). If you find your phone has apps that
are using lots of packets with low byte count or low throughput rates, you may want
to consider disabling data (or perhaps disabling background data) for these apps.
These apps may be using the radio inefficiently, potentially causing extra power drain.

46 | Chapter 3: Hardware Performance and Battery Life



Careful monitoring of the battery can help you find mobile apps that are using more
data than you’d expect, and based on the data you collect, you can decide to keep or
delete the app. By combining the information from the various menus, you can dis‐
cern a great deal about the battery drain and the data consumption of your mobile
app. Today, this takes a real concerted effort by the end user to determine battery
hogging apps, but it is only a matter of time until these comparison tools become eas‐
ier and more mainstream.

App Standby
In Marshmallow, Google has announced a new feature called App Standby. App
Standby will prevent infrequently used apps (i.e., ones that have not been used for
several days) from connecting to the network or running any processes until the
device is plugged in. As a user, this means that these rarely used apps will not drain
the battery, lengthening your daily time between charges.

To see a list of app usage in the last day/week/month/year, adb shell dumpsys usage
stats will tell you the processes, and when they were last active. To see a list of apps
and if they are currently active or inactive (have been placed on App Standby), there
is a new “inactive apps” setting in Developer Options.

Advanced Battery Monitoring
The initial tests I have described to monitor app battery usage just use various
Android Settings menus. They are great for a high-level measurement of battery
drain, and can be useful to discover poorly behaving apps on your device. However,
from a developer’s perspective, they do leave a lot to be desired. In KitKat, Android
added the batterystats system dump (this is the reason wakelock reporting stopped
working in all the Google Play wakelock monitoring apps). This has been expanded
in Lollipop to provide more information and some visualization tools have been
added as well.

batterystats
batterystats is a huge data dump of information about how the device (and all of
the running processes) utilize the battery. Introduced in KitKat, it was updated with a
large dataset in Lollipop (including data on every wakelock action taken on the
device). Before collecting the trace, it is always good to reset the data, and to obtain
the most data you can, turn on full wakelock reporting (Lollipop and newer only):

adb shell dumpsys batterystats --reset

adb shell dumpsys batterystats --enable full-wake-history

Advanced Battery Monitoring | 47



Note that resetting batterystats also resets all of the data in the
Battery Settings menu.

To get an idea of what a batterystats system dump looks like, initiate a battery
stats dump into your command-line interface (in this case, downloading all the data
since the phone was last fully charged):

adb shell dumpsys batterystats --charged

As the reams of data scroll past your terminal, you can tell that there is a lot of infor‐
mation here, but what does it all mean? Let’s walk through a few useful sections from
the output stream. We’ll be able to see some basic stats of the device—how long the
device was in different radio states, how much data was sent, and how long the device
was kept in full or partial wakelocks.

The following excerpts are from a 30-minute trace batterystats dump where I
played a game (and as we’ll see, got a Facebook message), and then let the phone idle.
The first table shows that the battery lost 1% of battery every 2 minutes (or so). The
chart is read from bottom to top (my phone started at 97% and ended at 88%). The
drain is pretty constant, but you could imagine seeing different timings if the device
was idle rather than in use:

Discharge step durations:
  #0: +2m28s313ms to 88 (screen-on, power-save-off)
  #1: +2m38s364ms to 89 (screen-on, power-save-off)
  #2: +2m27s323ms to 90 (screen-on, power-save-off)
  #3: +2m8s449ms to 91 (screen-on, power-save-off)
  #4: +2m17s115ms to 92 (screen-on, power-save-off)
  #5: +2m7s924ms to 93 (screen-on, power-save-off)
  #6: +2m17s693ms to 94 (screen-on, power-save-off)
  #7: +2m6s425ms to 95 (screen-on, power-save-off)
  #8: +1m50s298ms to 96 (screen-on, power-save-off)
  #9: +3m0s436ms to 97 (screen-on, power-save-off)

The next table contains device statistics. We can see that the phone was on battery for
just over 30 minutes, the screen was off for 3.5 of those minutes, but the device was
awake for 52 seconds while the screen was still off. The screen was on for 27 minutes,
and the brightness was set to dark (the background was dark, and brightness set at
~40%). The cellular signal bounced around from none to good, but mostly in the
poor to moderate range. There was Level 4 power WiFi available, but the WiFi was
off:

Statistics since last charge:
  System starts: 0, currently on battery: false
  Time on battery: 30m 36s 621ms (99.3%) realtime, 27m 58s 456ms (90.8%) uptime
  Time on battery screen off: 3m 31s 100ms (11.4%) realtime, 52s 935ms (2.9%) up

48 | Chapter 3: Hardware Performance and Battery Life



  Total run time: 30m 48s 839ms realtime, 28m 10s 674ms uptime
  Start clock time: 2014-10-17-22-54-33
  Screen on: 27m 5s 521ms (88.5%) 1x, Interactive: 27m 5s 837ms (88.5%)
  Screen brightnesses:
    dark 27m 5s 521ms (100.0%)
  Total full wakelock time: 29m 16s 938ms
  Total partial wakelock time: 17s 153ms
  Mobile total received:187.99KB, sent:201.15KB (packets received 750, sent 742)
  Phone signal levels:
    none 35s 29ms (1.9%) 10x
    poor 11m 7s 494ms (36.3%) 96x
    moderate 18m 29s 647ms (60.4%) 94x
    good 24s 451ms (1.3%) 7x
  Signal scanning time: 0ms
  Radio types:
    hspa 15m 12s 768ms (49.7%) 49x
    hspap 15m 23s 853ms (50.3%) 49x
  Mobile radio active time: 14m 32s 106ms (47.5%) 41x
  Mobile radio active unknown time: 1m 23s 222ms (4.5%) 21x
  Mobile radio active adjusted time: 0ms (0.0%)
  Wi-Fi total received: 0B, sent: 0B (packets received 0, sent 0)
  Wifi on: 0ms (0.0%), Wifi running: 0ms (0.0%)
  Wifi states: (no activity)
  Wifi supplicant states:
    disconn 30m 36s 621ms (100.0%) 0x
  Wifi signal levels:
    level(4) 30m 36s 621ms (100.0%) 0x
  Bluetooth on: 0ms (0.0%)
  Bluetooth states: (no activity)

The following section titled “Device battery use since last full charge” shows the esti‐
mates of battery usage % over the time period. This report is fairly boring, because
the battery drain was steady on constant through the trace. I have seen this table dis‐
play results with several percentage point differences. The last row, telling you how
much power is drained when the screen is off, can be a red flag for apps running in
the background:

  Device battery use since last full charge
    Amount discharged (lower bound): 10
    Amount discharged (upper bound): 11
    Amount discharged while screen on: 11
    Amount discharged while screen off: 0

The last table shown is only partially replicated here due to length. It shows all of the
processes that drew power, and the breakdown from the total power drain:

Advanced Battery Monitoring | 49



  Estimated power use (mAh):
    Capacity: 3220, Computed drain: 359, actual drain: 322-354
    Uid u0a117: 106
    Screen: 96.6
    Uid 1000: 26.1
    Uid 0: 24.9
    Cell standby: 22.9
...

As we move past device-specific data, we begin to get more app-specific data, starting
with a list of each process’s radio usage. For each process, we can see ms per packet
(mspp—how frequently the packets arrive—which is a representation of efficiency).
For efficient data consumption, mspp should be as low as possible. We are also pro‐
vided with the packet count and time of radio usage, and the number of times the
process turned on the radio. Elsewhere in the report, there are tables that decode the
Uid to a human-readable app name (we’ll leave these processes anonymous here).

  Per-app mobile ms per packet:
    Uid u0a111: 1569 (116 packets over 3m 1s 969ms) 26x
    Uid u0a77: 851 (119 packets over 1m 41s 309ms) 6x
    Uid u0a117: 592 (30 packets over 17s 772ms) 2x
    Uid u0a96: 541 (178 packets over 1m 36s 266ms) 9x
    Uid u0a116: 531 (106 packets over 56s 234ms) 5x
    Uid u0a102: 420 (248 packets over 1m 44s 152ms) 8x
    Uid u0a73: 361 (33 packets over 11s 906ms) 2x
    Uid 0: 339 (113 packets over 38s 347ms) 14x
    Uid u0a10: 335 (389 packets over 2m 10s 380ms) 14x
    Uid u0a28: 239 (160 packets over 38s 221ms) 5x
    TOTAL TIME: 12m 56s 556ms (0.0%)

Finally, for each process, the batterystats dump lists of all of the wakelocks, and
then a breakdown of all data, wakelocks, and power usage for every app, broken
down by process. I am only displaying one app (u0a116, which in this case is Face‐
book Messenger):

  u0a116:
    Mobile network: 6.49KB received, 5.94KB sent (packets 63 received, 43 sent)
    Mobile radio active: 56s 234ms (6.4%) 5x @ 531 mspp
    Wake lock *vibrator* realtime
    Wake lock AudioMix realtime
    Wake lock *alarm*: 26ms partial (3 times) realtime
    Wake lock wake:com.facebook.orca/com.facebook.push.mqtt.receiver.MqttReceiver
    TOTAL wake: 26ms partial realtime
    Vibrator: 100ms realtime (1 times)
    Foreground for: 1m 10s 792ms
    Active for: 30m 36s 621ms
    Proc com.facebook.orca:
      CPU: 1s 160ms usr + 470ms krn ; 0ms fg
    Apk com.facebook.orca:
      6 wakeup alarms
      Service com.facebook.push.mqtt.receiver.MqttReceiver:

50 | Chapter 3: Hardware Performance and Battery Life



        Created for: 148ms uptime
        Starts: 7, launches: 7
      Service com.facebook.conditionalworker.ConditionalWorkerService:
        Created for: 61ms uptime
        Starts: 1, launches: 1
      Service com.facebook.analytics.service.AnalyticsService:
        Created for: 1m 16s 407ms uptime
        Starts: 2, launches: 2
      Service com.facebook.orca.chatheads.service.ChatHeadService:
        Created for: 1m 11s 176ms uptime
        Starts: 1, launches: 1
      Service com.facebook.push.fbpushdata.FbPushDataHandlerService:
        Created for: 52ms uptime
        Starts: 2, launches: 2
      Service com.facebook.orca.notify.MessagesNotificationService:
        Created for: 540ms uptime
        Starts: 4, launches: 4

While I was recording this trace, I got a Facebook message from my spouse. This
table gives us a wealth of information as to what Facebook Messenger did for this one
simple process of receiving a message:

• The cellular radio was on for ~56 seconds to receive 6.49 KB and to send 6 KB.
• The phone used a wakelock to vibrate an alert to me.
• The phone used the audio wakelock to beep at me.
• These alarm partial wakelocks took 26 ms.
• The vibration was 100 ms of shaking, but is independent of the wakelock.

Facebook Messenger runs in the background all of the time. Battery Historian shows
that while active for the full 30 minute 36 second trace, it was only in the foreground
for 1 minute 10 seconds, and the CPU time was only 160 + 470 = 630 ms. Basically,
the app was sitting in wait for a message to arrive, and when a message arrived, it
woke up for a minute to alert me and do work.

The one minute of usage was primarily used by the ChatHeadService and Analytics
Service. The ChatHead opens a bubble in the foreground of my device, indicating
that I received a message. It was active for 1 minute in case I wanted to message back.
The AnalyticService was open for a few extra seconds after the ChatHeadService
ended in order to report that indeed, I did not respond back.

Advanced Battery Monitoring | 51



Battery Historian
The details in the batterystats output are extremely helpful in determining how
mobile apps behave with the different battery-consuming aspects of the device. When
drilling into details for one app, there is an extensive amount of detail that is very use‐
ful to understand how the app is behaving and to uncover potential issues. However,
digging through long text outputs is time consuming and feels somewhat like looking
for a needle in a haystack. To simplify the analysis, Google has created Battery Histor‐
ian, a script that takes the raw batterystats output file, and charts the data into an
HTML document. At its simplest, you can run the following commands to create a
web page that visualizes the information from batterystats:

adb bugreport > bugreport.txt  //download the output to your computer
./historian.py  bugreport.txt > out.html //create the html file

However, at Google I/O 2015, Battery Historian 2.0 was launched. This new report
was completely rewritten in GO, and provides more information to help you drill into
the battery data for your specific app (note that your device must be on Lollipop or
newer OS). To begin, let’s look at the report that is identical in both versions of Bat‐
tery Historian (labeled Historian-Legacy in version 2.0).

We’ll continue evaluating the same trace, but now in the browser. As shown in
Figure 3-7, the Battery Historian chart includes a lot of data recorded by your device.

52 | Chapter 3: Hardware Performance and Battery Life

www.allitebooks.com

https://github.com/google/battery-historian
https://github.com/google/battery-historian
http://www.allitebooks.org


Figure 3-7. Battery Historian-Legacy (main view)

As we have shown, the raw data file was complicated and had a lot of data. This table,
while simplified, is still complicated and deserves a walkthrough. Zooming into the
top of the report, we see the information presented in Figure 3-8.

Advanced Battery Monitoring | 53



Figure 3-8. Battery Historian-Legacy (top view)

In Figure 3-8, the white vertical bars indicate 1-minute intervals. For any item in the
chart, mousing over provides more details:

battery_level
Mousing over a battery level change provides the level of the battery, and how
long it has been since the last change of battery level (as seen in Figure 3-9).

54 | Chapter 3: Hardware Performance and Battery Life



Figure 3-9. Battery level change

top

Lists the process that was actually on the screen (in this example, the game Pla‐
gue Inc.)

Battery info

status

Battery is discharging (as opposed to being plugged in).

health

Battery health from the Battery Manager API.

plug

Is device plugged in?

phone_signal_strength (radio information)
Shows changes in cellular signal (in this case, from poor, moderate, and good).

Mousing over a change in cellular signal strength tells you information about the
strength of the signal (as seen in Figure 3-10).

Advanced Battery Monitoring | 55



Figure 3-10. Cellular signal strength

wifi_suppl

In Figure 3-8, it is disconnected.

wifi_signal_strength

In Figure 3-8, the Wi-Fi signal is detected—even with Wi-Fi off, due to the
Advanced Wi-Fi setting to always scan.

phone_scanning

If there is no signal, the phone will scan (using more battery power).

screen

On/off and duration on.

plugged

Power source (similar to the Battery data above).

data_conn

Mousing over the blue connections shows the cellular data switching from HSPA
to HSPAP.

Mousing over data_conn provides details about the type of data connection the cellu‐
lar radio has in place (as seen in Figure 3-11).

56 | Chapter 3: Hardware Performance and Battery Life



Figure 3-11. Data connection type

phone_state

Shows changes in cellular coverage, or if you get a phone call.

fg

This refers to foreground apps. Apps running in the foreground are less likely to
be killed to relieve memory pressures. Just off the screen, we can see that Face‐
book was coming into the foreground to process the message I received.

sync

Processes syncing with the server.

Mousing over a sync event provides information about what caused the sync to occur
(as seen in Figure 3-12).

Advanced Battery Monitoring | 57



Figure 3-12. Sync causes

Most of these are pretty self-explanatory processes on the device. They set up the
analysis of battery drain by giving you the knowledge of the state of the phone (and
what apps/calls are being made).

One thing to look at in this view for battery life is how often syncs and wakelocks are
occurring. If your mobile app is waking up the device often (and you will likely see
your process name in the mouseover information), you should examine the fre‐
quency of the syncs and device wakeups. It is important to find the correct balance
between up-to-date information and battery life. If you use inexact alarms or the Job‐
Scheduler API to wake up the device, you may see multiple syncs or wakelocks hap‐
pening at once. This is a signal that you are doing things correctly: your alarms are
being triggered when other apps wake up the device—thereby minimizing the num‐
ber of wakeups.

As we progress down the screen, we see more information about the wakelocks and
issues that lead to battery drain (Figure 3-13).

58 | Chapter 3: Hardware Performance and Battery Life



Figure 3-13. Battery Historian-Legacy (bottom view)

wake_lock

There is one prolonged wakelock keeping the screen on during the game.

gps

When the GPS radio turns on.

running

The phone was clearly running, as I was playing a game.

wake_reason

This is when the device wakes from sleep. There are no reasons on this screen‐
shot, because the device was awake for the entire trace. This row lists all of the
deep processor-level processes that are running on your device. Some common
wake reasons include the following:

qcom,smd-modem

Qualcomm Shared Memory Driver interacting with the modem memory.

qcom, smd-rpm

Qualcomm Shared Memory Driver - Resource Power Manager.

qcom, mpm

Qualcomm MSM Sleep Power Manager; shuts down clock and puts the
device to sleep.

Advanced Battery Monitoring | 59



qcom, spmi

Qualcomm System Power Management Interface; also working to put the
device back to sleep.

wake_lock_in

Here we can see what processes are running and causing the wakelock or alarm
to occur. In the screenshots, there are many wakelocks from the audiomix pro‐
cess in the game (nearly 2,000 audio wakelocks occurred as various samples were
played). We also see the screen wakelock (fifth row has a line of solid pink).

Mousing over a wakelock event will tell you what process caused the wakelock to
occur (as seen in Figure 3-14).

Figure 3-14. Wakelock occurrence

mobile_radio

Time that the cellular radio is connected (not necessarily transmitting, but con‐
nected to a network). There are gaps as the phone jumps from different flavors of
HSPA.

user

For cases where multiple user accounts might be used.

userfg

Tells you which user is in the foreground during testing.

In Figure 3-13, we are getting to what is waking up the mobile device. As mentioned
earlier in “Wakelocks” on page 36, when your app wakes up the device, it leads to bat‐
tery drain. This screenshot is relatively boring, because a game was underway. We can
look at some other traces to identify interesting wakelock phenomena.

60 | Chapter 3: Hardware Performance and Battery Life



Finding bad wakelocks with Battery Historian
If you suspect that your app is causing excess wakelocks, you can use Battery Histor‐
ian to verify. While running a long Battery Historian trace (the vertical bars indicate
30-minute intervals in Figure 3-15), I force stopped an app that was using too many
wakelocks.

Figure 3-15. Finding excess wakelocks with Battery Historian

Qualitatively, Battery Historian makes it very easy to spot a change in the wakelock
behavior of the device. It is very clear that prior to killing the app in question, there is
a frequent repeat pattern to a number of wakelocks, as seen in the blue box. The app
was firing at least three wakelocks per minute: the app, location, and accelerometer.
These wakelocks are always 1 minute apart. In between the blue and green box, I
stopped the app, and immediately, the quantity and frequency drop (growing to as
much as 5 minutes between wakelocks), as seen in the green box.

Below the Battery Historian chart is a list of all of the events seen during the trace. In
the case of this rogue app, by running a trace with the app running—and one without

Advanced Battery Monitoring | 61



—I can calculate a drop from 594 events/hour to 478 events/hour after stopping pro‐
cess. This implies that ~120 wakelocks per hour were caused by this one app. I don’t
expect that your apps have this many wakelocks, but it is a good study to ensure that
you are not waking up the device too often. As the wakelock and alarm APIs state, it
is crucial to be mindful of wakelock behavior, as it has a large effect on battery utiliza‐
tion of Android devices.

Battery Historian 2.0
With the release of Battery Historian 2.0 (BH2), the Android team completely
rewrote the tool (from Python into Go). The new version has all of the views shown
in the previous section, but adds even more functionality that allow you to go deeper
than the device level and interrogate the battery usage of each process. Rather than
creating a web page through a script, you create a service running on port 9999 that
will parse and display the report for you. Let’s take a quick look at the new features in
BH2. When you open a bugreport file, there is a new UI, as shown in Figure 3-16.

Figure 3-16. Battery Historian 2.0 header

The header shows the name of the file, the device (Moto X 2014 running Lollipop
5.1), and has four tabs: System Stats, Historian 2.0, Historian (legacy), and App Stats.
We’ve already covered the legacy Battery Historian, so let’s look at the three new tabs
of information.

62 | Chapter 3: Hardware Performance and Battery Life



The System Stats tab consists of a half dozen tables detailing how the battery was
drained during the study. The first table lists the aggregate stats (Figure 3-17): in
nearly 4 hours, the screen was on for 40 minutes, the device was awake with the
screen off for 24 minutes. The battery drain with the screen on was 19%/hour, and
almost 4%/hour with the screen off. The cellular radio was on for over 2 hours, and
averaged 2.6 MB/hour.

Figure 3-17. Battery Historian 2.0 aggregate stats

Looking closely, there are five underlined Metrics in Figure 3-17. Each of these Met‐
rics has a corresponding table where these stats are further broken down by process.
For example, let’s look at mobile radio uptime and data usage (Figure 3-18).

Advanced Battery Monitoring | 63



Figure 3-18. Battery Historian 2.0 radio usage statistics

Looking at the process details in Figure 3-18 for mobile radio time/app and kb/app,
we can see what apps are using the cellular radio the most during the study. In this
case, we see that com.levelup.touiteur (a Twitter client) uses the most radio time, but
com.att.connect uses the most data (for the Moto X, the time/app and KB/app are not
populated, but this does populate for other devices; the ranking of apps is still accu‐
rate).

That the process com.att.connect used a lot of data is not surprising. During this
study, I used this app to stream a 30-minute teleconference from a colleague’s desk‐
top. I was surprised, however, to see that my Twitter app was online for longer than
my teleconference. Compiling the data from the App stats tab, see in the following
table that the Twitter app connected more times, sent less data, but used more radio
and battery time than my teleconference app.

App # connections KB Mobile time %Battery

com.levelup.touiteur 18 1014 23 min 5.91%

com.att.connect 6 3056 18 min 5.78%

64 | Chapter 3: Hardware Performance and Battery Life



The app stats page also lists the wakelocks (and their duration), services, and pro‐
cesses each app used during the trace. My Twitter client had 18 partial wakelocks (at
least they all overlapped), had 35 services wakeup, and used 2 processes. These are
very powerful ways to dig into the way your app behaves, but also a very nice report
format to share with your teams.

Stepping back to the entire trace for a moment, the Historian 2.0 tab has a new UI
showing how the wakelocks and device usage affect battery life (Figure 3-19).

Figure 3-19. Battery Historian 2.0 graph

This new chart has familiar bars for wakelocks, CPU, GPS, radio, and so on, but also
adds a new axis on the right side, and a blue bar overlaid on top of the data visually
indicating the battery drain. Each 1% segment of the battery drain is selectable, and
stats on the drain over this period are presented. In the close-up shown in
Figure 3-20, the vertical line indicates the battery drain section. This very rapid drain
(1% of battery in 2 minutes or about 25%/hour) was when I was streaming the tele‐
conference, and listening on the phone.

Advanced Battery Monitoring | 65



Figure 3-20. Battery Historian 2.0 battery drain detail

The original Battery Historian tool gave a lot of device-level stats that helped deter‐
mine how individual apps behave. The additions in Battery Historian 2.0 make dig‐
ging into data for one single process a much simpler task. Now you can very easily
isolate the battery drain functions of your app and from that work to resolve the
issue.

JobScheduler
In Lollipop, Android added a new API called JobScheduler. It is a new framework
that can be used instead of wakelocks and alarms to run jobs for your app. Think of it
as “a wakelock/alarms that plays well with others” API. While wakelocks and alarms
are app specific, the JobScheduler abstracts the device wakeups to the OS. Because
alarms and wakelocks are sandboxed to your app, there is no way to coordinate these
with the other apps installed on the device. If five apps wake up every 30 minutes,
their alarms are unlikely to by synced, resulting in 10 wakeups per hour. Because Job‐
Scheduler abstracts the wakeup to the system, the system can piggy-back all of the
scheduled jobs in an efficient way, so that there might only be a few wakeups per
hour.

In addition to scheduling future wakeups, the JobScheduler allows you to supply a
time range where after 8 minutes it is OK to get the data, but it must be collected by
10 minutes. Providing a range allows the OS to better coordinate to save battery. It
also means that your app may get required data earlier than required, but in a way
that saves battery (which is a win-win for your app)! Imagine your weather app that
connects every 10 minutes (6x per hour). However, if the radio is on, does it really
matter if one update happens early if it saves battery? In many cases, this just means
that that data is updated faster than the requirement of the app, but uses less battery
as a result. In the following code snippet (derived from my modified JobScheduler
app), I set the minimum time between connections at 7 minutes, but force a connec‐
tion at 10 minutes (when the deadline is reached):

66 | Chapter 3: Hardware Performance and Battery Life

https://github.com/dougsillars/HighPerformanceAndroidApps
https://github.com/dougsillars/HighPerformanceAndroidApps


  JobInfo.Builder builder = new JobInfo.Builder(kJobId++, mServiceComponent);
     //kJobId allows me to run multiple JobScheduler runs at the same time
        <snip>
              String delay = mDelayEditText.getText().toString();
  //read delay time(s) from UI
                if (delay != null && !TextUtils.isEmpty(delay)) {
                    builder.setMinimumLatency(Long.valueOf(delay) * 1000);
                }
                String deadline = mDeadlineEditText.getText().toString();
    //Read deadline time from UI
                if (deadline != null && !TextUtils.isEmpty(deadline)) {
                    builder.setOverrideDeadline(Long.valueOf(deadline) * 1000);
             }

     boolean requiresUnmetered = mWiFiConnectivityRadioButton.isChecked();
     boolean requiresAnyConnectivity = mAnyConnectivityRadioButton.isChecked();
     if (requiresUnmetered) {
         builder.setRequiredNetworkType(JobInfo.NETWORK_TYPE_UNMETERED);
     } else if (requiresAnyConnectivity) {
         builder.setRequiredNetworkType(JobInfo.NETWORK_TYPE_ANY);
     }

     builder.setRequiresDeviceIdle(mRequiresIdleCheckbox.isChecked());
   //checkbox to force JS only when idle
     builder.setRequiresCharging(mRequiresChargingCheckBox.isChecked());
   //checkbox to force JS only when charging
     mTestService.scheduleJob(builder.build());

Other helpful features of the JobScheduler API can be seen in the code (they are pow‐
ered by checkboxes):

• Run a periodic service, with a guarantee of a connection sometime in the periodic
window

• Only run the job on unmetered networks (generally Wi-Fi)
• Only run when the device is idle (the API is pretty non-specific on what idle

means, only saying the device has not been in use for “some time”)
• Run when the device is plugged in
• Fallback of connections; increase the time between subsequent connections

Imagine that your app wakes up your customers’ device every 15 minutes to check for
updates on the server. That would be four wakeups an hour (96/day). What if your
customers also have a weather app that updates every six minutes (10x/hour, 240x/
day)? The odds of your app and the weather app connecting at the same time are
extremely low—because your timers are not synchronized, and there is no interaction
between the apps. If both apps had used the JobScheduler API, the OS would coordi‐
nate to save power. In their Project Volta presentation at Google I/O 2014, Google
estimated 15%–20% battery savings if every app used this API.

JobScheduler | 67



I have extended the Android SDK JobScheduler sample app to allow interaction with
some of its additional features. The job is to download an image from a server. In
Figure 3-21, I have set the app to download an image every 60 seconds (the API will
make a connection inside a timing of 60 s, but not necessarily at exactly 60 s). This
means that in ~14 minutes the app will ping 14 times.

Figure 3-21. Periodic connection in JobScheduler (set to 60 seconds)

Figure 3-22 shows a similar test, but where the periodicity is set to download every
150 s (same scale), resulting in six connections over 14 minutes.

Figure 3-22. Periodic connection in JobScheduler (set to 150 seconds)

With traditional wakelocks, we’d assume that if these were sandboxed apps running
simultaneously, there would be 20 connections made by the device, as it is unlikely
that the connections would overlap. However, when we run these two jobs simultane‐
ously with JobScheduler, the system has synced up the periodic connections to reduce
the amount of battery drain. Instead of 20 connections, the same data is transferred
in just nine connections.

68 | Chapter 3: Hardware Performance and Battery Life



Figure 3-23. Synced 60 s and 150 s connections

Another cool feature of JobScheduler is the ability to repeat the job, but with a linear
or exponential backoff. If your app is not in the foreground, the need to continue get‐
ting frequent updates is diminished, so you can allow them to become less frequent.
When the app is reopened, that data will still be fresh for your customers, but with
less background data usage. The JobScheduler fallback has two options for delays
between jobs: linear (for slowly backing off) or exponential (faster backing off). The
linear fallback takes the current deadline, and adds fallbacktime*(number of failures
-1). In the example shown in Figure 3-24, the deadline was 20 s , and the fallback
delay was another 20, so each subsequent ping adds 20 s (sched2start differences of
20, 40, 60, etc.). The exponential backoff adds fallbacktime*2^(number of failures -1),
so the delay time grows by a power of 2 between each ping (sched2start difference of
(20, 60, 120, 180, 325, 645). Now your app data is being updated for your customer,
but in a way that uses the network less—saving battery.

JobScheduler | 69



Figure 3-24. Screenshot of the JobScheduler app with linear (left) and exponential (right)
fallback

It is clear that allowing the OS to schedule non-critical jobs is a great way to conserve
battery life in your app. At the time of this writing (April 2015), Lollipop is just 5.5%
of all Android devices, but as this population grows, more of your customers will
benefit from your adoption of the JobScheduler API.

70 | Chapter 3: Hardware Performance and Battery Life



Conclusion
Battery life is an excellent indicator of app performance. Apps with poor battery life
often exhibit symptoms like waking up the device, or not letting the device go back to
sleep. We’ve walked through how Android calculates the power drain for apps (based
on hardware measurements), and how customers can discover apps that are causing
issues (and help you prevent your app from appearing in this list to your end users).
We also looked at the new Battery Historian tools in Android Lollipop that provide
more in-depth developer perspective into battery drain in Android apps, and discov‐
ered an app that was waking up the device in an excessive manner. Additionally, we
explored how the JobScheduler API will reduce the number of background calls by
letting the OS run the scheduling of many apps at once.

Conclusion | 71





CHAPTER 4

Screen and UI Performance

The user interface of your app is likely influenced by designers, developers, usability
studies, and testing—just about anyone is happy to add input/feedback to how your
app looks. As the UI of your app is your connection to your customers, it defines
your brand and it requires careful planning. However simple (or complicated) the UI
of your app is, it’s important that your UI design is built to be performant.

As a developer, your task is to work with the UI/UX team and build an app that fol‐
lows its design parameters on every Android device. We’ve already (briefly) discussed
the pitfalls of the many screen sizes in the Android ecosystem and the challenges that
exist there. But how about UI performance? How does the UI that your designers
designed (and you built) run? Do the pages load quickly? Do they respond in a fast
and smooth way? In this chapter, we’ll discuss how to optimize your UI for fast ren‐
dering and scrolling/animations, and the tools you can use to profile your screen and
UI performance.

UI Performance Benchmarks
Like all performance goals, it is important to understand the performance goals asso‐
ciated with UI. Saying “my app needs to load faster” is great, but what are the expecta‐
tions of the end user, and are there concrete numbers you can apply to those
expectations? In general, we can fall back on studies of the psychology of human
interactions. These studies have shown that users perceive delays of 0 – 100 ms as
instantaneous and delays of 100 – 300 ms as sluggish; delays between 300 – 1,000 ms
indicate to users that “the machine is working,” whereas delays of 1,000+ ms lead
users to feel a context switch.

As this is basic human psychology, it seems to be a good metric to start with for page/
view/app loading times. Ilya Grigorik has a great presentation about building mobile

73

https://www.youtube.com/watch?v=Il4swGfTOSM


websites to take just “1,000 ms to Glass.” If your web page can load in 1 second, you
win the human perception battle, and now you must wow your customers with great
content. Additional research has shown that >50% of users begin abandoning web‐
sites if no content has loaded in 3–4 s. Applying the same argument to apps tells us
that the faster you can get your app to start, the better. In this chapter, we’ll focus just
on the UI loading. There may be tasks that must run in the background, files to be
downloaded from the Internet, and so on, we’ll cover optimizing these tasks (or ways
to keep these tasks from blocking the rendering) in future chapters.

Jank
In addition to getting content on the screen as quickly as possible, it has to render in
a smooth way. The Android team refers to jerky, unsmooth motion as jank, and this
is caused by missing a screen frame refresh. Most Android devices refresh the screen
60 times a second (there are undoubtedly exceptions—earlier Android devices were
sometimes in the 50 or less fps range). Because the screen is refreshed every 16 ms (1
s/60 fps = 16 ms per frame), it is crucial to ensure that all of your rendering can occur
in less than 16 ms. If a frame is skipped, users experience a jump or skip in the ani‐
mation, which can be jarring. In order to keep your animations smooth, we’ll look at
ways to ensure the entire screen renders in 16 ms. In this chapter, we’ll diagnose com‐
mon issues and illustrate how to remove jank from your UI.

UI and Rendering Performance Updates in Android
One of the major complaints of early Android releases was that the UI—especially
touch interactions and animations—were laggy. As a result, as Android has matured,
the developers have invested a great deal of time and effort to make the user interac‐
tion as fast and seamless as possible. Let’s walk through a few of the improvements
that have been added in various releases of Android to improve the user interaction:

• On devices running Gingerbread or earlier, the screen was drawn completely in
software (there was no GPU requirement). However, device screens were getting
larger and pixel density was increasing, placing strain on the ability of the soft‐
ware to render the screen in a timely manner.

• Honeycomb added tablets, further increasing screen sizes. To account for this,
GPU chips were added, and apps had the option to run the rendering using full
GPU hardware acceleration.

• For apps targeting Ice Cream Sandwich and higher, GPU hardware acceleration
is on by default; pushing most rendering out of the software and onto dedicated
hardware sped up rendering significantly.

• Jelly Bean 4.1 (and 4.2) “Project Butter” made further improvements to avoid
jank and jitter, in order to make your apps “buttery smooth.” By improving tim‐

74 | Chapter 4: Screen and UI Performance



ing with VSYNC (better scheduling frame creation) and adding additional frame
buffering, Jelly Bean devices skip frames less often. When building these
improvements, the Android team built a number of great tools to measure screen
drawing, the new VSYNC buffering and jank, and released these tools to develop‐
ers.

We’ll review all of these changes, the tools introduced, and what they mean to the
average Android developer. As you might imagine, the goals from these updates were
as follows:

• Lower the latency of screen draws
• Create fast, consistent frame rates to avoid jank

When the Android team was working on all of the improvements to screen rendering
and UI performance, they needed tools to quantify the improvements that they made
to the OS. To their credit, they have included these tools in the Android SDK so that
developers can test their apps for rendering performance issues. As we walk through
the different ways to improve app performance, we’ll use these tools with example
apps to explain how they work.

With that said, let’s get started!

Building Views
I assume that you are familiar with the XML layout builder in Android Studio, and
how to build views with the different tools in Android Studio (Eclipse) to look at
those views. In Figure 4-1, you can see a simple app with a series of nested views.
When building your views, it is important to look at the Component Tree in the
upper-right of the screen. The more nested your views become, the more complicated
the View Tree becomes, and the longer it will take to render.

Building Views | 75



Figure 4-1. Design view of an app layout

For each view in your app, Android goes through three steps to render on the screen:
measure, layout, and draw. If you imagine your XML layout hierarchy in your app,
the measure starts at the top node and walks the render tree of the layout: measuring
the dimensions of each view to be displayed on the screen (in Figure 4-1: LinearLay‐
out; RelativeLayout; LinearLayout; then branching for textView0 and the LinearLay‐
out Row1—which has three further children). Each view will provide dimensions to
the parent for positioning. If a parent view discovers an issue in the measurements of
its dimensions (or that of its children), it can force every child (grandchild, great-
grandchild, etc.) to remeasure in order to resolve the issue (potentially doubling or
tripling the measurement time). This is the reason a flat (less nested) view tree is val‐
uable. The deeper the nodes for the tree, the more nested the measurement, and the
calculation times are lengthened (especially on remeasurements). We’ll examine some
examples of how remeasurement can really hurt rendering as we look through the
views.

Remeasuring Views
There does not have to be an error for a remeasure to occur. Rela‐
tiveLayouts often have to measure their children twice to ensure
that all child views are laid out properly. LinearLayouts that have
children with layout weights also have to measure twice to get the
exact dimensions for the children. If there are nested LinearLay‐
outs or RelativeLayouts, the measure time can grow in an exponen‐
tial fashion (four remeasures with two nested views, eight
remeasures with three nested views, etc.). We’ll see a dramatic
example of remeasurement in Figure 4-9.

76 | Chapter 4: Screen and UI Performance



Once the views are measured, each view will layout its children, and pass the view up
to its parent—all the way back up to the root view. Once the layout is completed, each
view will be drawn on the screen. Note that all views are drawn, not just the ones that
are seen by your customers. We’ll talk about that issue in “Overdrawing the Screen”
on page 90. The more views your app has, the more time it will take to measure, lay‐
out, and draw. To minimize the time this takes, it is important to keep the render tree
as flat as possible, and remove all views that not essential to rendering. Removing lay‐
ers of the layout tree will go a long way in speeding up the painting of your screen.
Ideally the total measure, layout, and draw should be well below the 16 ms threshold
—ensuring smooth scrolling of your UI on the screen.

While it is possible to look at the node view of your layout as XML (like in
Figure 4-1), it can be difficult to find redundant views. In order to find these redun‐
dant views (and views that add delay to screen rendering), the Hierarchy Viewer tool
in Android Studio Monitor can greatly help you visualize the views in your Android
app to resolve these issues (Monitor is a standalone app that is downloaded as a part
of Android Studio).

Hierarchy Viewer
The Hierarchy Viewer is a handy way to visualize the nesting behavior of your vari‐
ous views on a screen. The Hierarchy Viewer is a great tool to investigate the con‐
struction of your view XML. It is available in Android Studio Monitor, and requires a
device with a developer build of Android on it. See “Rooted Devices/Engineering/
Developer Builds” on page 15 for details on what this entails. There is also a class
from Googler Romain Guy that allows you to test a debug version of your app. All of
the views and screenshots using the Hierarchy View in the subsequent sections are
taken from a Samsung Note II running 4.1.2 Jelly Bean. By testing screen rendering
on an older device (with a slower processor), you can be sure that if you meet render‐
ing thresholds on this device, you app will likely render well on all Android devices.

As shown in Figure 4-2, when you open Hierarchy View, there are a number of win‐
dows: on the left, there is a Windows tab that lists the Android devices connected to
your computer, with a list of all running processes. The active process is displayed in
bold. The second tab gives details about a selected build (more on this later). The cen‐
ter section shows a zoomed view of your app’s Tree View. Clicking on a view (in this
case, the leftmost view) shows you the view as it appears on the device and additional
data. To the right are two views: Tree Overview and Layout View. The Tree Overview
shows the entire view hierarchy, with a box showing where the zoomed center section
is in relation to the entire tree. The Layout View highlights in dark red the area that is
painted by the selected view (and light red displays the parent view).

Building Views | 77

https://github.com/romainguy/ViewServer
https://github.com/romainguy/ViewServer


Figure 4-2. Overview of the Hierarchy View tool, using the view tree of a news app

Inside the central close-up view, you can click on an individual view to get a repre‐
sentation of the view on an Android screen. By clicking the green, red, and purple
“Venn diagram” icon under the Tree View, this pop-up view will also provide the
child view count, and the timing for view measure, layout, and draw. This will calcu‐
late the measure, layout, and draw times for every view down the tree from the selec‐
tion (in Figure 4-3, I chose the top view to obtain the timing to create the entire
view).

78 | Chapter 4: Screen and UI Performance



Figure 4-3. Render times of a view

The topmost view for the article list uses 181 views, measures in 3.6 ms, layout in 7
ms and draws in 14.5 ms (~25 ms total). In order to reduce the time to render these
views, it makes sense to look at the Tree Overview of the app, to see how the views fit
together as a whole. The tree overview shows that while there are a lot of views in this

Building Views | 79



screen, the render tree is relatively flat. A flat render tree is good, as the “depth” of
your view XML can have detrimental effects to rendering time. Even with the flat
XML, there is still a 26 ms draw time, there may be times where this view is janky,
and that optimizations should be considered.

Figure 4-4. Tree Overview

80 | Chapter 4: Screen and UI Performance



Examining the Tree Overview of a news app’s list of articles (Figure 4-4), there are
three major regions: the header (in the blue box at the bottom of the views), story lists
(there are two orange boxes with views for two different tabs of articles). The views
for a single story are highlighted in red. There are nine repeats of this internal head‐
line structure, five in the top orange box, and four in the second). Finally, the views
for the side pull-out navigation bar can be found at the bottom (in the green box).
The header uses 22 views, the two story lists use 67 and 44, respectively (each head‐
line uses 13 views), and the navigation drawer uses 20. For those of you keeping
score, this leaves 18 views unaccounted for. There is a swipe animation, and some
interim views that complete the total. As you can see, the number of views can really
add up. Being as efficient as possible is crucial to ensuring a jank free experience for
your users (see Figure 4-5).

Figure 4-5. Examining a View Tree

Looking closer at a headline, we can look at the 13 views that make up one headline
in the list. Each headline has five levels of hierarchy (seen as vertical columns), and it
takes .456 ms to measure, 0.077s to layout, and 2.737 to draw. The fifth layer of hier‐
archy is fed by two RelativeLayouts in the fourth level (highlighted in blue). These are
drawn by a third RelativeLayout in the third column (highlighted in green). If the lay‐

Building Views | 81



out described in these two could be described in their parents (in the third level), an
entire layer of rendering could be removed. Further, as I explained in Remeasuring
Views, each RelativeLayout is measured twice, so having nested RelativeLayouts can
quickly lead to increases in measure time.

By now, you may have noticed the red, yellow, and green circles in each view. These
denote the relative speed of measure, layout, and draw (from left to right) for that
view in that vertical layer of views. Green means fastest 50%, yellow means slowest
50% and red denotes the slowest view in that level of the tree. Obviously, the red
views are good places to look for optimizations.

In the tree for the article headline, the slowest view is the ImageView in the upper-
right corner. Walking the view back the article parent, it is fed through two Relative‐
Layouts (increasing the measure time), and then three views with no children (across
the bottom). These three views could also be aggregated into a single view—removing
two layers of hierarchy.

Let’s look at how another news app worked to reduce the number of views per head‐
line. The Figure 4-6 view shows a similar hierarchy to what we saw in Figure 4-5.

Figure 4-6. Original view tree for a news article

82 | Chapter 4: Screen and UI Performance



In fact, the headline view (shown in Figure 4-6) has the same issue with RelativeLay‐
outs (in blue), and this results in a measure of 1.275 ms, layout of 0.066 ms and draw
of 3.24 ms (a total of 4.6 ms per headline). Upon seeing these times, the developers
went back to the drawing board, and built a prettier UI, with a larger image and share
buttons—but a flatter hierarchy (Figure 4-7).

Figure 4-7. Updated View Tree

Now the headline (with just three columns of hierarchy) takes a total of just 4.2 ms to
render—a savings of 400 ms even with the larger UI!

To better explore aspects of performance, I will use examples from a sample app, “Is it
a goat?” This simple app is a list of several images with checkmarks next to pictures of
goats. This sample app has several different layouts built into it, from unoptimized
and slow to an optimized fast XML layout. By examining the views, and how they
evolve, we can quantify how the optimizations improve the rendering of the app.
We’ll walk through several steps of optimization in this app, and each change in view
layout can be viewed in Hierarchy View by changing the view in the settings. Upon

Building Views | 83



choosing a layout type, the view is refreshed with a more (or less) optimized XML
view structure. We’ll start with the “Slow XML” as the unoptimized starting point. A
quick look at the Hierarchy View at the unoptimized version of this app reveals a few
things, as shown in Figure 4-8.

Figure 4-8. Hierarchy view of the unoptimized “Is it a Goat?” app

There are 59 views in this simple app. However, unlike the news app in Figure 4-4, the
view tree has more horizontal depth. The more views that are fed on top of one
another, the longer the app will take to draw. By removing layers of depth, this app
will render each frame on the screen faster.

The blue box frames out the views for the Android Action Bar. The orange box is the
text box at the top of the screen, and the purple box marks one row of goat informa‐
tion (there are six identical views above the purple view indicated). The red box
shows seven views in a row that only add depth to the app, and do not build any addi‐
tional display. Taking a closer look at just three of these sequential views (in the green
box) shows an interesting remeasurement issue (Figure 4-9).

84 | Chapter 4: Screen and UI Performance



Figure 4-9. Remeasurement in Hierarchy View

As the device measures views, it starts from the right (child view) and moves to the
left (to the parent views). The ListView on the right takes the measurements from the
six rows of goat data (37 total views), and takes 0.012 ms to measure. This feeds into
the center LinearLayout (38 views). Interestingly, the measure timing balloons out
due to a remeasurement loop. The measure time jumps three orders of magnitude to
18.109 ms. The RelativeLayout to the left of the LinearLayout redoubles the measure‐
ment time to 33.739 ms. By the time the measurement cascades through the addi‐
tional parent views (those additional views in the red box in Figure 4-8), the total
measurement time is over 68 ms. By simply removing this one LinearLayout, the
entire view tree measurement drops to under 1 ms! (You can verify this by comparing
the “Remove Overdraw” layout in the app to the “Remove LL+OD” layout. The only
difference is removing that one view.) We can remove several more layers of depth by
applying the “Optimized Layout” setting. From the seven excess views shown in
Figure 4-10, the app now has just three layers (Figure 4-11).

Building Views | 85



Figure 4-10. Removing hierarchy depth

A further optimization to remove view depth can be done by looking at the rows of
goat data. Each line of goat information has six views, and there are six rows of data
visible on the screen (one such row is highlighted in a purple box at the bottom right
of Figure 4-8.) Using the Hierarchy View tool to look at how the views are built for
one row of the Goat app (Figure 4-11), we see that the two left-most views (a Linear‐
Layout and RelativeLayout) add only depth to the views (“Slow XMl” view). The ini‐
tial LinearLayout feeds directly into a RelativeLayout, but adds nothing to the display.

Figure 4-11. Unoptimized hierarchy view of goat row

Because RelativeLayouts remeasure twice (and we are trying to reduce measurement
time), I first attempted to remove the RelativeLayout (“Optimized Layout” setting in
the app; see Figure 4-12). When I did this, the depth was reduced from 4 to 3, and the
display rendering is faster.

86 | Chapter 4: Screen and UI Performance



Figure 4-12. Views optimized by removing RelativeLayout

However, this is not the fastest optimization. By removing the LinearLayout and reor‐
ganizing the RelativeLayout to handle the entire row of information (as shown in
Figure 4-13), the view depth is reduced to 2. The layout is 0.1 ms faster to render. It
just goes to show that there is more than one way to optimize your layouts, and it
does not hurt to test different options (see Table 4-1).

Building Views | 87



Figure 4-13. Views optimized by consolidating into RelativeLayout

Table 4-1. View Tree optimization improvements

Version View Count View Depth Measure Layout Draw Total

Unoptimized 6 4 0.570 0.068 1.477 2.115 ms

Remove RelativeLayout 5 3 0.321 0.064 0.851 1.236 ms

Remove LinearLayouts 4 2 0.241 0.029 0.848 1.118 ms

By removing ~1 ms of rendering from each row of information, we can pull about 6
ms from the entire render time (assuming six rows of data on the screen). If your app
has jank, or your tests show that you are close to the 16 ms border of jank, saving 6
ms will definitely pull you further from the edge.

88 | Chapter 4: Screen and UI Performance



Reusing Views
Like a good object-oriented programmer, you likely have views that
you call and reuse (rather than recode over and over). In my “Is it a
goat?” app, the goatrow layout is reused for every row of data. If the
view wrapping your sublayout is only used to create the XML file, it
may be creating an extra layer of depth in your app. If this is the
case, you can remove that outer view wrapper and enclose the ele‐
ments in <merge> tags. This will remove the extra layer of hierarchy
from your app.

As an exercise, download the “Is it a goat?” app on GitHub and observe the view
times in the Hierarchy View tool. You can modify the view XML files used by chang‐
ing the radio buttons in the settings menu, and use the Hierarchy View tool to view
the changes in depth of the app, and how these changes affect the rendering speed of
your app.

Hierarchy Viewer (Beyond the Tree)
The Hierarchy Viewer has a couple of additional neat functions that can be helpful to
better understand overdraw. Following the options in the tree view from left to right,
you have the ability to do a number of useful things like:

• Save any view from the tree as a PNG (icon is a stylized diskette).
• Photoshop export (described in “Overdrawing the Screen” on page 90).
• Reload the view (second purple tree icon).
• Open large view in another window (the globe icon); this has an option to

change the background color so that it’s easier to determine whether there is
overdraw.

• Invalidate the view (red line with bar through it).
• Request view to layout.
• Request view to output the draw commands to the LogCat (yes, the third use of

the purple tree icon); this is a great way to read the actual OpenGL commands
for each action being taken. For Open GL experts: this will be helpful for in-
depth optimizations.

It is clear that the Hierarchy Viewer is a must-have analysis tool to optimize the View
tree of your app—potentially shaving tens of ms from the render time of your
Android app.

Building Views | 89



Asset Reduction
Once your app is flattened and the number of views are reduced, you can also reduce
the number of objects used in each view. In 2014, Instagram reduced the number of
assets in its title bar from 29 to 8 objects. They quantified the performance increase to
be 10%–20% of the startup time (depending on device). They managed this reduction
through asset tinting, where they load just one object, and modify its color using a
ColorFilter at runtime. For example, by sending your drawable and desired color
through the following method:

public Drawable colorDrawable(Resources res,
  @DrawableRes int drawableResId, @ColorRes int colorResId) {
    Drawable drawable = res.getDrawable(drawableResId);
    int color = res.getColor(colorResId);
    drawable.setColorFilter(color, PorterDuff.Mode.SRC_IN);
    return drawable;
}

One file can be used to represent several different object states (starred versus unstar‐
red, online versus offline, etc.).

Overdrawing the Screen
Every few years, there is a story about how a museum has X-rayed a priceless painting
and discovered that the artist had reused the canvas, and that there was an undiscov‐
ered new painting underneath the original masterwork. In some cases, they are even
able to use advanced imaging techniques to discover what the original work on the
canvas looked like. Android views are drawn in a similar manner. When Android
draws the screen, it draws the parent first, and then the children/grandchildren/etc.
views on top of the parent views. This can result in entire views being drawn on the
screen, and then—much like the artist and his canvas—these views are entirely cov‐
ered up by subsequent views.

During the Renaissance, our master artist had to wait for the paint to dry before he
could reuse his canvas. On our high-tech touch screens, the speed of redrawing the
screen is several orders of magnitude faster, but the act of painting the screen multi‐
ple times does add latency, and potentially can add jank to your layout. The act of
repainting the screen is called overdraw, and we’ll look at how to diagnose overdraw
in the next section.

An additional problem with overdraw is that anytime a view is invalidated (which
happens whenever there is an update to the view), the pixels for that view need to be
redrawn. Because Android does not know which view is visible, it must redraw every
view that is associated with those pixels. In the painting analogy, our artist would
have to scratch out all the paint back to the canvas, repaint the “hidden masterwork”
and then repaint his current work. If your app has multiple layers or views being

90 | Chapter 4: Screen and UI Performance

http://instagram-engineering.tumblr.com/post/97740520316/betterandroid


drawn for that pixel, each must be redrawn. If we are not careful, all of this heavy lift‐
ing to draw (and redraw) the screen can cause performance issues.

Testing Overdraw
There are a number of great tools offered from Android to test overdraw. In Jelly
Bean 4.2, the Debug GPU Overdraw tool was added in the Developer Options menu.
If you are using a Jelly Bean 4.3 or KitKat device, there is a version of the Overdraw
counter that gives you a weighted average of total screen overdraw in the bottom left
of the view. I find that this tool is a very useful way to quickly look at apps for over‐
draw issues. However, it does appear to overestimate apps that have more than 6–7x
overdraw (yes, it happens more than we’d like to admit).

The screenshots shown in Figure 4-14 are again from the “Is it a goat?” app. The
overdraw counters can be seen in the lower left. There are three overdraw counters
on the screen, but the one we can control as a developer appears in the main window.
The overdraw counter appears in the bottom left. The unoptimized app on the left
has an overdraw of 8.43, and our optimization steps will reduce this to 1.38. We can
also see that the nav bars have overdraws of 1.2 (and the menu buttons 2.4), meaning
that the text and icons overdraw this section by an extra 20% (140%). While the over‐
draw counter is a quick way to compare overdraw between apps without impacting
the user experience too much, it does not help you understand where the overdraw
issues lie.

Asset Reduction | 91



Figure 4-14. Overdraw counter for unoptimized (left) and optimized (right) views of the
same app

Another way to visualize the overdraw is to use the “Show Overdraw areas” selection
in the Debug GPU overdraw menu. This tool makes places an overlay of color over
your app, showing you the total amount of overdraw in each region of the app (for
those developers who are colorblind, the KitKat release offers a colorblind-friendly
setting). By comparing the colors on the screen, you can quickly determine the issues
at hand:

White
No overdraw

Blue
1x overdraw (screen is painted twice)

Green
2x overdraw (screen is painted twice)

92 | Chapter 4: Screen and UI Performance



Light red
3x overdraw

Dark red
4x or more overdraw

In Figure 4-15, you can see the overdraw areas rendering of the “Is it a goat?” app
before and after optimization. The menu bar of the app is not colored (no overdraw)
in either screenshot, but the Android icon and the settings menu icon are green (2x
overdraw). The list of goat images is dark red before optimization (indicating at least
4x overdraw). After the app views were optimized, there is now only blue (1x) over‐
draw over the checkbox and the images—indicating that at least three layers of draw‐
ing were removed! There is now no overdraw around the text and in the blank space.

Figure 4-15. Overdraw colors before optimization (left) and after (right)

Asset Reduction | 93



By reducing the number of views (or at least the way these views over paint one
another) the app will render faster. Comparing the parent view in the Hierarchy
Viewer for the view with excess overdraw and the optimized version (“Slow XML”
versus “Remove Overdraw”) shows a 50% drop in the draw time from 13.5 ms to 6.8
ms.

Overdraw in Hierarchy Viewer
Another way to visualize the overdraw in an app is to save the view hierarchy as a
Photoshop document (the second option on the Tree View) in Hierarchy Viewer. If
you do not have Photoshop, there are a number of free tools available that will allow
you to open this document (the subsequent screenshots are from GIMP for Mac).
When opening these views, you can really see the overdraw present in different lay‐
ers. In most production apps, it is typically drawing a white background on top of
another white background. This does not sound terrible, but it is two steps of paint‐
ing, and should be avoided. To better visualize this in the “Is it a goat?” app, all over‐
drawn regions utilize an image of a donkey instead of a white background. If you
look at the images in previous pages, there are no images of a donkey visible, because
they were overdrawn with a white view on top of them. By removing the visible view
layers, we’ll be able to see the layers of donkey below, and quickly determine where
overdraw occurs, and then remove it. In GIMP, views that are visible in your app have
a small eye icon next to the layer. In Figure 4-16, you can see that I have begun to peel
back the views at the top of the “Is it a goat?” app (revealing a large donkey). In the
layout view list to the right, you can see there are a number of full screen layouts that
are visible (and they all are showing the same donkey image).

94 | Chapter 4: Screen and UI Performance



Figure 4-16. Visually peeling back views

Another way to visualize the “peeling back of the views” is shown in Figure 4-17. We
start at the top left with the full screen view of the app, as seen on the device. Moving
to the center top screenshot, we have removed two rows of goat pictures and layout,
revealing that under each row of goat data there is a stretched picture of a donkey.
Below the six or seven stretched small donkey images, there is a white backdrop (seen
in the rightmost image on the top row with two of the small donkey pictures).
Removing that white layer reveals a large donkey, as seen at the bottom left. Below the
donkey pictures, there is a final full screen of white until we reach the bottom of the
view tree (seen at the bottom right).

Asset Reduction | 95



Figure 4-17. Looking at the layers visually

Overdraw and KitKat (Overdraw Avoidance)
In KitKat and newer devices, the effects of overdraw have been dramatically reduced.
Called Overdraw Avoidance, the system can remove simple cases of overdraw (such
as views that are completely covered by other views) automatically (this likely means
that the effects of the full screen donkeys in my “Is it a goat?” app will not be felt by
KitKat and newer users). This will improve the draw rate for apps with overdraw, but
it still makes sense to clean up as many examples of overdraw as possible (for better
code, and for your customers on Jelly Bean and lower).

Overdraw Avoidance and Developer Tools
When you use the Overdraw tools described earlier, KitKat’s Over‐
draw Avoidance is disabled, so you can see what your layout really
looks like, but not how the device actually sees it.

96 | Chapter 4: Screen and UI Performance



Analyzing For Jank (Profiling GPU Render)
After the view hierarchy and overdraw have been optimized, you may still be suffer‐
ing from lost frames or choppy scrolling: your app still suffers from a case of jank.
You may not experience jank on your high-end Android device, but it might be there
on the devices with less computing power. To get an overall view of the jank in your
app, Android has added Profile GPU Rendering as a Developer Option in Jelly Bean
and newer devices. This measures how long it takes each frame to draw onto the
screen. You can either save the data into a logfile (adb shell dumpsys gfxinfo), or
you can display the GPU rendering as a screen overlay in real time on the device
(available on Android 4.2+).

For a quick analysis of what is going on, I really like displaying the GPU rendering on
the screen to get a holistic view of what is happening, (but the raw data from the log is
great for offline graphing or reporting). Again, this is good to attempt on multiple
devices. In Figure 4-18, you can see the GPU rendering profile on a Nexus 6 running
Lollipop (left) and the Moto G on KitKat (right) for the “Is it a goat?” app. The bars
appear at the bottom of the screen. The most important feature in this GPU profile
graph is the horizontal green bar. This frame denotes the 16 ms time the device uses
to render a frame. Each frame that is rendered is a horizontal bar. If you have a lot of
frames that go over the 16 ms line, you have a jank problem. In the figures below,
there are a few instances of Jank on the Nexus 6. This occurred when the scrolling hit
the end of the page, and the device did a bounce animation. The end-user experience
was not terribly affected. Each screen draw (vertical line) is broken down into four
additional measurements collected (on Lollipop) by color: draw (blue), prepare (pur‐
ple), process (red), and execute (yellow). In KitKat and earlier, the prepare data is not
broken out, and is included in the other metrics (hence only three colors appear in
the KitKat GPU profile screenshots).

Analyzing For Jank (Profiling GPU Render) | 97



Figure 4-18. GPU Profiling Lollipop (left) and KitKat (right) of the unoptimized “Is it a
goat?” app (top), optimized (bottom)

Comparing the GPU data from the Nexus 6 to the Moto G brings us back to the topic
of device testing. The unoptimized “Is it a goat?” app (top row) in Figure 4-18 quali‐
tatively shows that the Moto G takes twice as long as the Nexus 6 (by comparing ver‐
tical heights of the GPU profile to the green line, scales are the same). This can be
quantified by collecting the data (adb shell dumpsys gfxinfo) and graphing. In the
next example, the optimized view takes almost twice as long on the Moto G. For both
devices, the draw, prepare, and process steps all take about the same amount of time
(less than 4 ms total). The difference occurs in the execute phase (purple) of the
frame draw, where the Moto G often takes ~4 ms longer than the Nexus 6. This goes
to show that testing GPU rendering is best done on your lower-powered devices, as
they are more likely to have issues rendering your views without jank.

98 | Chapter 4: Screen and UI Performance



Figure 4-19. GPU Profiling Lollipop (top) and KitKat (bottom) of the optimized views

At a high level, the GPU profiler lets you know you might have a problem. In the “Is
it a goat?” app, if I turn on the Fibonacci delay (where a heavy recursive calculation is
done during view creation), the GPU profiler does not show any jank because the cal‐
culation takes place on the UI thread and completely blocks rendering (on slower
devices this setting results in an app not responding message).

Analyzing For Jank (Profiling GPU Render) | 99



Fibonacci Calculation Algorithms
The Fibonacci sequence is a series of numbers where each value is
the sum of the two preceding values: 0, 1, 1, 2, 3, 5, 8, and so on. It
is commonly used to describe recursion in programming, and in
this case, I am using the most inefficient code to generate the Fibo‐
nacci value:

public class fibonacci  {
        //recursive Fibonacci
        public static int fib(int n){
            if (n<=0)
                return 0;
            if (n==1)
                return 1;
            return fib(n-1) + fib(n-2);
        }

The number of calculations required to generate each value grows
exponentially. The goal here is to put so much work on the CPU
during rendering that the views are delayed and cannot render
quickly. Calculating n=40 really slows down the app (and causes it
to crash on lower-end devices). While perhaps a slightly contrived
example of what might block your views from rendering, the tech‐
niques we used to identify the Fibonacci code in our traces will
help you find code that is slowing down your app.

GPU Rendering in Android Marshmallow
In Android Marshmallow, adb shell dumpsys gfxinfo <packagename> adds several
new features to aid in your quest for jank free rendering. First off, the report now
leads off with a summary of every frame rendered by your app:

** Graphics info for pid 2612 [appname] **

Stats since: 1914100487809ns
Total frames rendered: 26400
Janky frames: 5125 (19.41%)
90th percentile: 20ms
95th percentile: 32ms
99th percentile: 36ms
Number Missed Vsync: 142
Number High input latency: 11
Number Slow UI thread: 2196
Number Slow bitmap uploads: 439
Number Slow draw: 3744

From the time the app was started, now you can see how many frames were rendered,
and how many are 90th percentile and the timings for the slowest frames (90th, 95th,
and 99th percentile). The last five lines list reasons that the frame did not render in 16

100 | Chapter 4: Screen and UI Performance



ms. Note that there are more issues than janky frames, indicating that some frames
were impacted by more than one issue.

Another great addition to Android Marshmallow to the gfxinfo library of test tools is
adb shell dumpsys gfxinfo <packagename> framestats. This outputs a large
comma-separated table with specific timings of events in each frame. The columns in
the export are not labeled, but are described at the Android developer site. To deter‐
mine the time each step of the rendering pathway takes on your device, you must cal‐
culate the differences between the framestats reported values. To simplify these
calculations, I have created a spreadsheet that computes the values of interest. When
you paste in the raw CSV data, columns P-X become populated with useful data
about each frame render (all results are in ms):

• VSYNC-Intended_VSYC (tells you if a frame render was missed—jank!)
• Input event time (processing time for input events—should be < 2 ms))
• Animation evaluation (should be < 2 ms)
• Layout and measure
• view.draw() time
• Sync phase time (if > 0.4 ms, indicates many new bitmaps being sent to GPU)
• GPU work time (overdraw draw time will appear here)
• Total frame time

There are two tabs in the worksheet with sample data, both from the “Is it a goat?”
app: goat-optim and goat-slowXML. Looking at the data from the goat-slowXML
sheet (shown in Figure 4-20), we can see a few frames (in purple) where the total
frame draw exceeded 16.6 ms. Fortunately, due to the presence of frames in the
VSYNC buffer, no frames were dropped (as indicated by the 0s in the first column).
For devices with a smaller buffer (or for apps where the buffer does not have time to
repopulate), this could result in a janky user experience. The chart also implies that
slow input events (orange) and evaluate animator events (red) add GPU work, and
lengthen the total frame rendering time.

Analyzing For Jank (Profiling GPU Render) | 101

http://bit.ly/1PhwmxO
http://bit.ly/1hHWLua


Figure 4-20. Data from gfxinfo framestats

Beyond Jank (Skipped Frames)
There are times that the GPU profiler does not show a jank event crossing the 16 ms
threshold, but you can tell that there was a skip or jump in the UI rendering. This can
occur during a skipped frame, where rendering is completely blocked by the CPU
doing something else. In Monitor or Android Studio, you can watch the logfiles in
the DDMS view. It is easier follow logs from your app if you filter on the process you
are testing. If you think this might be the case in your app, look in the logfiles for a
warning like the one shown in Figure 4-21.

Figure 4-21. Log error showing skipped frames

102 | Chapter 4: Screen and UI Performance



We’ll look at how skipped frames are caused by the CPU in Chapter 5.

Systrace
If you are still experiencing jank after optimizing all of your views, all is not lost. The
Systrace tool is another way to measure the performance of your app, and it can also
help you diagnose where the issue might lay. Introduced as a part of “Project Butter”
with the Jelly Bean release, it allows quick scans into how your app is behaving at core
levels of your Android device. There are many types of Systrace parameters that can
be run, and we will cover other traces later in the book. Here we will focus on how the
UI is rendered, and debug issues associated with jank using Systrace. All of the traces
shown in this chapter are available in in the High Performance Android Apps GitHub
repository.

Systrace differs from the previous tools in this chapter in that it records data for the
entire Android system; it is not app specific. For this reason, it is best run on a device
that has few additional processes running at the same time, so that the other pro‐
cesses do not interfere with your debugging. In the examples here, we Run Systrace
from Android Monitor (but it can also be run from Android Studio or the command
line). The Systrace icon is a stylized green and pink graph icon (marked by a red oval
in Figure 4-22), and when you press it, it opens a window with a number of options.

Beyond Jank (Skipped Frames) | 103

https://github.com/dougsillars/HighPerformanceAndroidApps
https://github.com/dougsillars/HighPerformanceAndroidApps


Figure 4-22. Starting with Systrace

The trace is recorded into an HTML file that can be opened in your browser. To study
the interactions on the screen, we’ll just collect the CPU, graphics and view data (as
shown in the dialog box in Figure 4-22). We’ll leave the duration field blank (default
to 5 seconds). When you press OK, the Systrace will immediately begin to record the
parameters you selected on the device (so you’d better be ready to start right away).
Because the trace is extremely detailed (and measures all features to the sub-
millisecond timeframe), it should be used to diagnose one issue at a time rather than
to get a holistic view of your app’s performance.

Much like in “Battery Historian” on page 52 in Chapter 3, the output from these
traces is overwhelming (and we only picked four of the options available!). Scrolling
can be performed with the mouse, and the WASD keys are used to zoom in/out (W,
S) and scroll left/right (A,D). At the top of the trace just run, you’ll see details about
the CPUs. Below the CPU data are collapsible sections describing each process that
was active. Each color bar indicates a different action by the OS, and the length of the
color indicates the duration (and if we zoom in, we’d see even more lines). Selecting a

104 | Chapter 4: Screen and UI Performance



bar provides details about that item in the window at the bottom of the screen. Like
Battery Historian and other tools, the high-level view (shown in Figure 4-23) is
intimidating at first glance. Let’s take our first look, and then dig into the information
provided so that you can become an expert at reading these files.

Figure 4-23. Starting with Systrace (Lollipop)

Systrace Evolution
Like the Android ecosystem itself, Systrace has a slightly different
interface, display, and set of results depending on the version of the
OS you are testing:

• On Jelly Bean devices, there is a setting in Developer Options
to enable tracing. You must enable the trace collection on both
the computer and the device.

• The output from each release of Android becomes more
detailed and has slightly different layouts.

• It is still worthwhile to look at Systraces from Jelly Bean and
compare to Lollipop, as you can glean different information
from the devices, but they will look different.

At Google I/O 2015, a new version of Systrace was launched, and
some of the new features are discussed in “Systrace Update—I/O
2015” on page 115.

As we scroll down through the Systrace results, every process that ran during the test
can be seen. For the study of jank, we are primarily looking at the way the app in

Beyond Jank (Skipped Frames) | 105



question draws, and the when the screen refreshes. As long as these two partners are
in sync, the dance of the screen rendering will be smooth. However, should either
take a misstep, there will be the opportunity for there to be a jitter or jank in the ren‐
dering of the page.

Systrace Screen Painting
Let’s walk through the steps of screen painting, using Figure 4-24 as an example. The
top row of the trace (highlighted in blue) is the VSYNC, consisting of wide, evenly
spaced teal bars. VSYNC is the signal to the OS that it is time to update the screen.
Each bar denotes 16 ms (as does the whitespace between the bars). When a VSYNC
event occurs (at either end of the teal bar), the surfaceflinger (highlighted with a red
box and consisting of several colors of bars from purple-orange and teal) to grab a
view from the view buffer (not shown) and displays the image on the screen. Ideally,
surfaceflinger events will be 16 ms apart (no jank), so gaps indicate times where the
surfaceflinger missed a VSYNC update—the screen did not update in time (and
where to look for causes of jank). You can see such a gap about 2/3 of the way
through the trace (highlighted in a green box).

106 | Chapter 4: Screen and UI Performance



Figure 4-24. Digging into Systrace Jank (Lollipop)

The bottom section of Figure 4-24 shows details about the app. The second line of
data (green and purple lines) are the app building views, and then the bottom row
(green, blue, and some purple bars) is the RenderThread, where the views are ren‐
dered and sent to the buffer (not shown in this screenshot). Note that these bars get
thicker at the same location as the potential jank in the surfaceflinger (about one-
third of the way through the trace), indicating that something in the app may have
been the cause of the jank. Each app is different, and will have a different cause, but
these are the sort of symptoms we are looking for.

This high-level view is a great way to look for jank, but to investigate we must zoom
in to get a better look. To understand what is happening in the Systrace, it is best to
figure out what Systrace measures, and how things work when everything is working
well. Once you figure out the way things should work, it makes finding the issues eas‐
ier. In Figure 4-25, I have edited together the pertinent lines from a Systrace where
things were running smoothly (taking out a lot of whitespace for space considera‐
tions). We start at the left side of the screen with droid.yahoo.com. Note that my

Beyond Jank (Skipped Frames) | 107



description will have you bouncing up and down in the trace to different lines (from
the app to the OS) as the rendering occurs:

• Red box: droid.yahoo.com is finishing up a measure of the views for the screen.
These are passed to the RenderThread.

• Orange box: RenderThread. Here the app:
— Draws the frame (light green).
— Flushes the Drawing buffer (gray).
— Dequeue the buffer (in purple).
— Sends this to a buffered list of views.

• Yellow box: com.yahoo.mobile.client.andr…

This is the list of views in a buffer. The height of the line demotes how many views are
buffered. At the start, there is one, and when the view is passed to the buffer, the
height doubles to two.

• Green box: VSYNC-sf alerts the surface flinger that it has 16 ms to render a
screen. The brown bar on this line is 16 ms long.

• Blue box: surfaceflinger grabs a view from the queue (note in the yellow box that
the buffer queue drops from 2 to 1). Upon completion, this view is sent off to the
GPU and the screen is drawn.

• Purple box: VSYNC-app now tells the app to render another view (and shows a
16 ms timer).

• As soon as the VSYNC begins, the process repeats itself with droid.yahoo.att,
measuring the views, passing to the RenderThread, and so on. And the cycle con‐
tinues.

108 | Chapter 4: Screen and UI Performance



Figure 4-25. Systrace of proper rendering (Lollipop)

On reflection, it is pretty amazing all of the steps that our devices do to just render a
screen so smoothly in such a short period of time. Now that we know what things
look like when running smoothly, let’s debug a moment of jank.

In Figure 4-26, we are looking at a close-up of the OS layer. To highlight the issue, I
have added arrows indicating 16 ms intervals, and a red box at the location of a miss‐
ing surfaceflinger.

Figure 4-26. Systrace of jank—Operating System View (Lollipop)

Why does this happen? The row above the arrows is the view buffer, and the height of
this row indicates how many screen frames are saved in the buffer. At the start of this
trace, the buffer is alternating between one and two views. As the surfaceflinger grabs
one view (the buffer count drops), but the buffer is quickly repopulated from the app.

Beyond Jank (Skipped Frames) | 109



However, after the third SurfaceFlinger action, the buffer queue empties and is not
repopulated by the app in time. So, let’s see what was happening at the app level.

In Figure 4-27, we initially see the RenderThread passing a view to the buffer (red
box). The orange box shows the app creating a second view, rendering it, and passing
it to the buffer (droid.yahoo.att measures and lays out the views, and RenderThread
draws). Unfortunately, the app gets hung up before building another view (inside the
yellow boxes). During the building of the next screen, the droid.yahoo.att app must
first run (light green) “obtainView” for 7 ms, (teal) “setupListItem” for 8.7 ms, before
the dark green “performTraversals” (3 ms). The app then passes the data to the Ren‐
derThread, which is also significantly slower (12 ms). Creating this frame took the
app nearly 31 ms (versus ~6 ms for the previous view). When the process to build this
frame began, there was one view stored in the buffer, but the device required two
views during this time period. As the process had not fed the buffer, a jank occurred
in the screen render.

Figure 4-27. Systrace of jank—App View (Lollipop)

It is interesting to note that the app catches up quickly. After the delayed yellow box
view is created and passed to the buffer, two additional frames are created in quick
succession (green and blue boxes). By quickly refilling the buffer queue, the app sur‐
vives with just one skipped frame. This trace was taken on a Nexus 6 (with a fast pro‐
cessor that allowed it to catch up quickly). Repeating this same study on a Samsung
S4 Mini running Jelly Bean 4.2.2 resulted in the trace shown in Figure 4-28.

110 | Chapter 4: Screen and UI Performance



Figure 4-28. Systrace of jank (Jelly Bean)

It is immediately clear from the high-level view that many more frames are skipped
(see the many gaps in the surfaceflinger at the start of the trace). Also good to notice
is that the top row (the view buffer) often has zero views in its buffer (which we just
saw leads to jank), and rarely has two views in the buffer. On a device with a slower
GPU processor, the app does not have as many opportunities to “catch up” and refill
the buffer like the Nexus 6 did.

You can exceed the 16.6 ms time to render a frame occasionally, as
there are often one or two buffered frames ready to go. However, if
you have two or three slow frame renders in a row, your customers
will experience jank.

Because this trace was taken on a handset running Jelly Bean, the RenderThread data
is included with the droid.yahoo.att row (the measure, draw, and layout are reported
together until Lollipop). Combining these rows makes each step appear thicker. The
small amount of whitespace between each call shows that this device has very little
extra time between frame draws. The app on this device is only able to run slightly
ahead of the surfaceflinger to keep the buffer queue full. If this app were able to
reduce the complexity of each view—thus speeding up the rendering of the views—
there would be more empty space between draws, the buffers would have more
opportunity to fill, and likely would add a little “breathing room” in its view drawing
on lower-end devices.

Beyond Jank (Skipped Frames) | 111



By highlighting a region, Systrace will count up all of the slices seen, and give basic
statistical analyses by mousing over any of the values. In Figure 4-29, we see the per‐
formTraversals (the parent draw command) averages 13.8 ms, with a standard devia‐
tion of 5 ms. Because the 16 ms jank threshold lies within one standard deviation of
the mean, we can guess that there is a jank problem on this device.

Figure 4-29. Systrace data summary

Zooming into this section shows this in detail (Figure 4-30). Each vertical red line
indicates 16 ms. There are five or six instances here where the SurfaceFlinger misses
the 16 ms mark. The length of the green “performtraversals” lines are all nearly 16 ms
long (and because they must occur between each frame build, jank). There are also
two blue-green deliverInputEvents (that take well over 16 ms each) block the app
from drawing the screen.

Figure 4-30. Systrace detail on a slower device (running Jelly Bean); note how the frame
creation takes longer than 16 ms (red vertical lines), causing jank

112 | Chapter 4: Screen and UI Performance



So, what is causing those deliverInputEvents that are causing so much trouble? This is
the user touching the screen, and forcing the ListView to build all of the views. This is
blocking at the CPU level. Let’s briefly cover what CPU blocking looks like (and cover
it in more detail in Chapter 5).

Systrace and CPU Usage Blocking Render
If you see excessive jank, and are unable to see any significant differences in the ren‐
dering or surfaceflinger, you can investigate what processes are running on the CPU
at the top of the Systrace. If you can isolate a certain feature or process that could be
preventing your app from drawing, then you can look to remove that code from
blocking the draw process (usually by removing it from the main thread). In the “Is it
a goat?” app there is an option to enable a Fibonacci delay. When you turn this option
on, the app calculates a very large Fibonacci number (recursively) for each row of
goat data. As you might imagine, this is very slow and CPU intensive. Because the
calculation is being done in a way that blocks the rendering of the views, it causes
dropped frames when creating the view, and the scrolling is very janky. This is the
example used in Figure 4-21 to show how the log reports skipped frames. Let’s now
dig deeper into Systrace to find the process calculating the Fibonacci numbers.

Let’s start again with looking at a trace that runs properly. Figure 4-31 shows the “Is it
a goat?” app on an N6 using the unoptimized layout.

Figure 4-31. Systrace with CPU information

This view is modified, cutting out many lines between the CPU and surfaceflinger. In
this trace, there is no jank, we see regular surfaceflingers every 16 ms (no jank). The
RenderThread and Goat Process rows are creating all of the views and feeding them
to the view buffer appropriately. Comparing these two rows to the CPU reveals a neat

Beyond Jank (Skipped Frames) | 113



pattern. When the RenderThread is drawing the layouts, CPU1 is running a blue
activity (note that we are looking at the narrower CPU1, not CPU1:C-State). When
the views are being measured by the Goat Process row, CPU0 has a corresponding
purple process. They layouts are being built and drawn across two CPUs. Note that
the major clicks on the X-axis are 10 ms each, and none of these processes take longer
than 2–4 ms.

When we add the computationally intensive Fibonacci calculation into the draw, the
Systrace takes a very different view (Figure 4-32).

Figure 4-32. Systrace with CPU information and delay in rendering

This Systrace shows a lot of jank. In the same 100ms timeframe, only three surfacef‐
linger views are drawn (versus seven in non-delayed app). We can see the RenderTh‐
read is still drawing the views quickly (and you can see that in this trace, the blue
RenderThread is running on CPU0). However, when measuring the views, the large
recursive Fibonacci calculation is causing issues. The Goat Process row is spending
most of its time in the obtainView state, rather than measuring. You can also see on
CPU1 that the purple bands corresponding to Goat app processes are no longer 2–4
ms, but now range 2–17 ms long. The large Fibonacci calculations are taking 13–17
ms each, and this is really slowing down the app’s ability to draw smoothly. We’ll look
at how to diagnose CPU performance (and its effect on rendering) in Chapter 5.

114 | Chapter 4: Screen and UI Performance



Systrace Update—I/O 2015
At Google I/O 2015, a new version of systrace was released that makes a lot of the
analysis covered above a lot easier. In Figure 4-27, I highlighted each frame as it was
updated. In the new version of systrace (shown in Figure 4-33), each frame is indica‐
ted by a dot with an “F” in it. Frames that render as expected have green dots, while
slower (and very slow) frames are yellow or red. Selecting a dot and pressing m high‐
lights the one frame for easier analysis.

Figure 4-33. Systrace update with frame highlighted

The new Systrace also has a lot better descriptions as to what is happening. In
Figure 4-33 the frame render time is 18.181 ms, and is colored yellow—as many
frames in a row over 16 ms could lead to jank. In the description panel below the
trace (shown in Figure 4-34), it warns that my app is recycling a ListView item, rather
than creating a new one, and this is slowing down the view inflation.

Beyond Jank (Skipped Frames) | 115



Figure 4-34. Systrace update with frame delay information

Alerts like these are shown as similar bubbles or dots inside Systrace, and also are lis‐
ted in the alerts panel on the right side of the screen (shown in Figure 4-35).

Figure 4-35. Systrace Update Alert panel

These new additions to Systrace make discovering issues slowing your UI even easier
to diagnose.

116 | Chapter 4: Screen and UI Performance



Vendor-Specific Tools
Each of the major chip manufacturers have GPU profiling tools that can help you dis‐
cover even more information about potential bottlenecks in rendering. These tools
promise more detail into how your app runs on a specific chipset, allowing better
tuning for these different GPU chips. This does go deeper than the scope of this book,
but should the need arise, utilize these tools for even more powerful GPU debugging.
Qualcomm, NVIDIA and Intel all offer special development tools to test your apps
GPU performance on their processors.

Perceived Performance
In the previous sections, we discussed how to make your UI fast through testing, dis‐
covering issues, and optimizing layouts. But there is another possible way to make
your Android UI faster: make it appear faster. Of course, it is crucial that you work to
optimize all of the code, views, overdraw, and other issues that might affect your UI
first to really make your app as fast as possible. However, once you have done that,
there are still a few ways to make your app appear faster to your customers.

The human mind behaves in interesting ways, and by changing the perception of
waiting, you can make the delay seem shorter to your users. This is exactly why gro‐
cery stores put trashy magazines in the checkout aisle, as having something to look at
makes the delay seem shorter. If you can deliver content in a way to make the delivery
appear seamless, more power to you. It may seem like a sleight of hand trick to make
users feel like things are happening faster, but at the end it is the perception of how
fast your app loads that matters. This is tricky to implement well, as some perceived
performance optimizations have backfired, so always A/B test to ensure that these
help your customers feel the speed of your app.

Spinners: The Good and the Bad
Spinners, progress bars, hourglass icons, and other tools to indicate a pause have been
around for years. They have also been used to make apps and transitions feel faster.
When loading an app with a progress bar, consider using a progress bar with an ani‐
mation that moves in the opposite direction of loading complete. Research has shown
that users are 12% more accommodating of the time with an animated scrollbar.
Spinners that pulse faster generally make the wait time appear to be faster than a
slowly moving spinner.

However, if you have a delay, adding a spinner is not always a good idea. The develop‐
ers of the iOS app Polar noticed that there was a bit of delay in their app while ren‐
dering views on a page. Following conventional wisdom, they added a spinner to the
page to show its users that something was happening while the page was rendering,
but the responses were unexpected. Feedback and reviews began to arrive about how

Perceived Performance | 117

http://bit.ly/1SgIPYw
http://uxmovement.com/buttons/how-to-make-progress-bars-feel-faster-to-users/


the app was slower, and there was a lot of waiting for pages to load (note that the only
change made was to add the spinner, the app was not actually any slower). The addi‐
tion of a waiting indication allowed the customers to cue in that they were waiting.
Removing that visual queue, the perception was that the app had sped up (again no
code other than the spinner was changed). By changing the perception of the wait,
the app became faster. Facebook found similar data: using a custom spinner in their
iOS app made their load time appear longer than when they used a standard spinner.

Addition of a spinner should be accompanied by user testing to ensure that the
results are expected. In general, spinners are acceptable when a delay is expected:
opening a new page or downloading an image over the network. But if the delay will
be short (say less than one second), you should consider omitting the spinner. In
these cases, the addition of the spinner implies a delay that is not really there.

Animations to Mask Load Times
Clicking and seeing a blank screen gives your customers the perception of waiting. It
is exactly for this reason that browsers keep the old page visible when you click a link.
In mobile apps, you may not want to keep the old page visible, but a quick sweep ani‐
mation might provide enough delay to get the next view ready for display. Observe
this while using your favorite Android apps, and how many sweep in updated views
from the bottom or from the side.

The White Lie of Instant Updates
If your customers make an update on the page, immediately change the data on the
page, even if the data has not yet hit the server (of course, you need to ensure that
these updates 100% do eventually get updated on the server). For example, when you
“like” a photo on Instagram, the mobile view immediately updates the like status,
even before a connection is established to the server and the backend is updated.
They call this an “optimistic action,” in that the update will appear on the website and
be visible to friends within a few seconds (or minutes if in a tunnel, or area with low
coverage), but the update will occur, and there is no need to wait for the server to
update to update the UI. The mobile user does not feel obligated to wait to “make
sure it worked.”

An added advantage to instantly updating the UI without requiring the update to
post on the server is that your app appears to function when coverage is intermittent
(like when your train enters a tunnel on the commute home). Flipboard, in Offline
Network Queue has presented its queueing architecture, which is used to upload
changes made while offline, and this could easily be used to immediately change the
UI, and update the backend a moment or two later.

Another performance trick (that is essentially the opposite of upload later) is to
upload ahead of time. For apps like Instagram where large uploads of photos can add

118 | Chapter 4: Screen and UI Performance

http://t.co/lgziQm1qZ5
http://t.co/lgziQm1qZ5


delay updates to the main UI, you can begin uploading these large files early. Insta‐
gram realized that the slowest step in post creation was data entry. While the user
adds text around the image post, Instagram uploads the photo to the server before the
post is made public. Once the customer hits the post button, only the text and the
post command needs to be uploaded, and the perception is that the upload happened
in no time. To think of it another way, Instagram was able to answer the question
“should we add a spinner?” by architecting its app to never need a spinner.

Tips to Improve Perceived Performance
When the speed of your app is improved by optimizing the code or views, you can
measure the difference with a stopwatch. Some of the perceived performance gains
(like Instagram’s) can be measured with s stopwatch, but others (like the spinner
examples) cannot. Because typical analytics or measurement tools cannot be used,
these improvements will need to be put in front of users in order to identify if cus‐
tomers perceive the difference. Usability testing of some sort, whether with a wider
team, A/B testing, or usability testing, will let you know if your changes please or fur‐
ther frustrate your users.

Conclusion
The user experience of your Android app is directly tied to the way it appears on the
screen. If your app is slow to load or if the scrolling is not fast and smooth, your cus‐
tomers will be left with a negative perception of your app. In this chapter, we’ve cov‐
ered examples of view hierarchy, and profiled how flattening and simplifying views
speed rendering. We’ve considered overdrawing the screen, and the tools used to
identify overdraw issues. For issues that require deeper digging (into CPU issues),
Systrace is great at debugging and determining the issues causing jank. Finally, there
are tricks that make your appear faster and more responsive through tricks in render‐
ing, and moving CPU/network tasks out of the critical path of rendering. In the next
chapter, we’ll look at how optimizing and reducing the CPU usage of your app will
improve the performance.

Conclusion | 119





CHAPTER 5

Memory Performance

At the end of Chapter 4, we examined an issue where processes in the app blocked the
UI thread, preventing the screen to update. In this chapter, we’ll look at how to meas‐
ure and better understand how your app uses memory. Memory leaks are a major
cause of crashes on Android, and using the tools discussed in this chapter to diagnose
issues will help you prevent such leaks. Let’s kick off the discussion with memory
management and tips to optimize, and then in the second half of the chapter, we’ll
cover how to minimize the CPU usage of your app.

Android Memory: How It Works
Before we can discuss how to improve the memory efficiency of your Android app,
we need to start with the basics on how Android handles memory management.
Once we get a solid background on that, we can understand some of the pitfalls and
how to resolve them. To introduce some of the basic terms, let’s get some simple
information from your Android device.

As you may be aware, the Java runtime on your Android device (whether Dalvik or
ART) is a memory-managed environment. The runtime typically handles all memory
allocations and cleanup (garbage collection). This does simplify the development of
your app by abstracting those details from your code, but there are important consid‐
erations to take while building your app to ensure that the memory management
works correctly.

Let’s start with a quick set of definitions on the types of memory that are utilized by
Android apps.

121



Shared Versus Private Memory
There are common framework classes, assets, and native libraries that are utilized by
all apps. If every app had to individually keep these in memory, fewer apps could run
concurrently. To save memory, Android uses shared memory for those assets. When
attributing memory usage to an app, shared memory is averaged among all running
processes.

Private memory is memory that is used just by your app and not used by other apps.
Because this data is used by just your process, 100% of private memory is allocated to
the process.

Zygote as Shared Memory
As you might recall from biology class, a zygote is the first cell cre‐
ated after fertilization—it splits into cells to become an embryo.
Similarly, in Android, Zygote is a process that has all the frame‐
work classes, common assets, and native libraries preloaded inside
of it. When your app starts, it is launched with a fork of the Zygote
process (giving your app a head start with everything it needs from
the system to survive) before loading any of your custom code.
This allows your app to initialize faster than if it had to start from
zero.

Dirty Versus Clean Memory
Dirty memory is memory that is only stored in the RAM, so if it were purged from
the RAM, the app would need to be rerun to get the data back. Clean memory con‐
sists of items in RAM that are also saved on the disk, so if it were purged it could be
easily reloaded from the device.

ART and Clean Memory
One of the main features of the ART runtime is that apps are com‐
piled on install versus the Just in Time (JIT) of Dalvik. On devices
running ART, now the app code is compiled at install and ready on
disk. Recall that memory objects that can be accessed from disk are
considered clean, and easy to remove when memory is low because
it is easy to recover. Because now the app code in memory is now
by definition clean, memory management is ART is further
improved.

Currently, most devices are still using the Dalvik runtime, so the most common type
of memory is private dirty memory (memory only used by one app, and only stored
in memory).

122 | Chapter 5: Memory Performance



Memory Cleanup (Garbage Collection)
Garbage collection (GC) is the act of cleaning up data objects that are no longer used
so that the memory chunk can be reallocated to new objects. In general, once an
object no longer has an active reference in the app, it can be garbage collected. The
garbage collector begins with root objects (objects it knows are alive and in use by a
process) and follows every reference looking for connections. If an object is not con‐
nected to the list of valid references, it must no longer be in use, and can be collected.
Now the memory allocated to that object can be reused. In Figure 5-1, objects
without active references (arrows) are colored in red, and will be removed when a
garbage collection event occurs.

Figure 5-1. The Garbage Collector follows all references (arrows) marking active objects
(blue), and collects all objects not currently referenced (red)

GC changes by OS
The GC in Android has evolved a great deal as Android has matured. Prior to Gin‐
gerbread, devices were low memory, so apps tended to have smaller heaps. The
garbage collector was a “stop the world” collector meaning that GC caused all other
processes and threads on the CPU to stop while the garbage was collected. This was a
full heap collection, meaning that the collector traversed the entire heap looking for
garbage. For low-memory apps, GCs were quick: maybe 2–5 ms, and may not have
been noticeable. However, as devices grew more powerful (read more memory), and
apps larger, garbage collection started to take longer. These pauses began interrupting
the UI, meaning that the garbage collector needed to evolve.

Android Memory: How It Works | 123



In Gingerbread, a concurrent GC that does just partial collections was instituted.
Although a partial GC does not clean up all objects that are unreferenced, it is faster
(because it does not travel the entire heap on each collection). Instead of stopping
your app from running, the concurrent GC runs alongside your app. This means that
now there are two short pause times at the start and end of each GC, but they are
generally under 5 ms total. With shorter system stops, and no longer “stopping the
world,” your app is able to run alongside the GC—working to prevent GC from being
a cause of jank in your app.

For devices running KitKat and earlier, garbage collection is simply “mark and
sweep.” The old objects are found and removed, but all other objects are left in place.
This is shown in the first and second rows of Figure 5-2. When a GC is run, the allo‐
cated memory (shown in blue) removes the unreferenced objects, leaving small
chunks of free RAM (the same size of the objects removed) in the allocated space. If
the device has a small heap, or there are a lot of small collections, the device memory
can get fragmented with small chunks of utilized and free RAM. Your device might
tell you that you have 20 MB of free memory, but it does not tell you that the largest
chunk of free RAM is actually only 1 MB. This will be a problem if you are trying to
create a 4 MB bitmap—because you will get an out-of-memory error—there is not a 4
MB slice of RAM available for your object!

When the Android runtime changed from Dalvik to ART in Lollipop, the garbage
collection was again improved. One point of the ART manifesto is: “Garbage collec‐
tion should help, not hinder.” GCs pause only once per collection (down from two, as
instituted in Gingerbread), occur less often, and when they do run, they are signifi‐
cantly faster (online reports show that typical GCs have dropped from 10 ms to 3
ms). Further, in ART, large objects (like bitmaps) have their own special heap that is
dedicated for large objects to simplify their memory management (and speeding GC
of these big objects).

There are a number of new GC algorithms in ART, but one interesting method that is
carried out when an app is no longer in the foreground is the Semi-Space GC.
Because the app is not in the foreground, rewriting the objects in memory is safe—
and as seen in the third line of Figure 5-2—after the unreferenced objects are
removed, the used memory is copied to a free area of memory (without the small
gaps). This allows for larger free chunks of memory to be opened up for other apps.
When objects are moved in memory, the app has to be suspended to avoid errors.
This can add to jank in an app, so the Semi-Space GC is only run with your app not
in the foreground. This is not a fully compacting GC, but it is a very useful way to
open up large areas of unused memory.

124 | Chapter 5: Memory Performance



Figure 5-2. Garbage Collection: blue indicates memory in use, white indicates free space

The Future: Compacting GC
In 2015, there is a project in the AOSP to being a compacting
garbage collector for a future release of Android. This will further
reduce the number of memory problems as the memory locations
can be moved around to defragment and free up large chunks of
memory. A compacting GC takes the Semi-Space GC a step fur‐
ther: instead of simply forgoing a new memory space, it rewrites
the objects in the same memory locations, but again without the
small fragments. While this is an exciting future, you should make
sure to future proof your C/C++ and NDK code by not referencing
memory locations, as they may begin to slide around in the future.

The easiest way to find out if a GC has taken place is to look in your logs:

I/art     (10821): Explicit concurrent mark sweep GC freed
5124(199KB) AllocSpace objects, 1(16KB) LOS objects, 31% free,
34MB/50MB, paused 1.238ms total 23.656ms

This log report is showing a garbage collection run on process 10821 (which you’ll
see in subsequent pages is the “Is it a goat?” app). The GC was run concurrently with
the process, pausing the UI once for 1.238 ms (so unlikely to cause any jank). The GC
ran concurrently with the app for 23.6 ms. The app’s heap is 50 MB, and is using 34
MB leaving 31% free. The GC freed 5,124 AllocSpace objects—relinquishing 199 KB
—and cleaned up one Large Object from the Large Outpost Space of 16 KB (recall
that large objects have their own dedicated memory in ART).

When does garbage collection occur?
Garbage collection occurs when the system feels it needs to reclaim memory. Perhaps
your app has allocated new objects (increasing the memory requirements of your
app), or perhaps new views are being created, and the old ones invalidated (releasing
the references in memory). Perhaps your app has a memory leak, and keeps unused
references in memory (preventing GCs, but causing other memory problems).

Android Memory: How It Works | 125



In the next section, we’ll look at tools that will help you diagnose where your applica‐
tion is using memory, and locate memory leaks or code that generates excess garbage
collection to ensure healthy memory usage on all Android devices.

Figuring Out How Much Memory Your App Uses
So we now have an idea of how memory is divided up inside an app, and how the
system decides to clean up memory with garbage collection. While our apps are get‐
ting bigger and more complex, the guiding principle to memory management is to
use as little as possible. The biggest consumers of memory (in general) are bitmaps.
No matter how well you have compressed the file for network transmission, PNG and
JPEG files use 32 bits per pixel, meaning that your 100 x 100 pixel thumbnail can use
320,000 bits of memory. Loading a number of these images at once, and you see how
apps are using 50–100 MB of your memory heap.

How much memory can you use on a device? ActivityManager.getMemoryClass will
return the maximum size for your app’s heap. If this is smaller than what you have
found to be ideal, you can reduce the content displayed, or perhaps scale the images
to a smaller format. You can request the getLargeMemoryClass() if you will be build‐
ing a memory-intensive app, but it should be used with care as a large memory heap
will actually slow down your app during garbage collection events (as the framework
will have to hunt through more data for unused objects). How do we find out how
our app is using memory?

Running adb shell dumpsys meminfo on my Nexus 6 (with the “Is it a goat?” app in
the foreground) gives the following information:

Applications Memory Usage (kB):
Uptime: 7009870 Realtime: 7218457

Total PSS by process:
   522515 kB: com.amazon.mShop.android (pid 5610 / activities)
   520153 kB: com.coffeestainstudios.goatsimulator (pid 19139 / activities)
   207397 kB: com.facebook.katana (pid 9430 / activities)
   183514 kB: com.android.systemui (pid 2111 / activities)
   141205 kB: com.example.isitagoat (pid 10821 / activities)
   113143 kB: com.google.android.googlequicksearchbox (pid 2471 / activities)
    99168 kB: system (pid 1957)
    61157 kB: com.rovio.gold_ama (pid 18842 / activities)
    58917 kB: com.amazon.kindle (pid 19331)
    49859 kB: surfaceflinger (pid 248)
    48874 kB: com.elvison.batterywidget (pid 2983)
    48270 kB: com.urbandroid.lux (pid 5656 / activities)
    35940 kB: com.facebook.orca (pid 4441)
    32541 kB: com.google.android.apps.plus (pid 20233)
    26461 kB: com.google.process.gapps (pid 2545)
    25989 kB: com.google.android.googlequicksearchbox:search (pid 2586)
    23893 kB: com.google.android.gms (pid 2610)

126 | Chapter 5: Memory Performance



Proportional Set Size (PSS) memory is the total memory used by your app. Recall that
the total memory is all of the private memory (shown in some reports as “USS -
Unique Set Size”) plus a percentage of the shared memory. In this case, there are sev‐
eral apps in the background that still use more memory than the 141,205 KB of the
“Is it a goat?” app. Note that the PID for the “Is it a goat?” app is 10,821, as this identi‐
fier is used by Android to identify this app.

The next section of the report breaks down the memory usage even further. First, we
see how much memory is being used by the system for rendering views (remember
surfaceflinger from “Systrace” on page 103?). The media server also uses a lot of
memory, but there are hundreds of small processes in the native memory (the list was
truncated for space concerns). After Native and System are apps that appear as “per‐
sistent” processes that are always running on the device—the system UI, NFC, and
phone.

The next sections are where we can see the apps actually running on the device. In
the foreground you can see the “Is it a goat?” app. Visible and perceptible apps are
apps that have some presence on the screen (either as a notification in the case of the
battery widget), or as an overlay (in the case of the lux app).

A Services, B Services, and Cached apps are all apps that are in the background, but
have memory allocated to their processes. Either they have run in the past, and will
be cleaned up during a time of memory pressure, or they do occasionally run in the
background:

Total PSS by OOM adjustment:
   105030 kB: Native
               49859 kB: surfaceflinger (pid 248)
               17010 kB: mediaserver (pid 1539)
                4785 kB: rild (pid 1537)
                3555 kB: logd (pid 243)
                3494 kB: mm-qcamera-daemon (pid 1553)
                3466 kB: zygote (pid 1546)
                2405 kB: gsiff_daemon (pid 1549)
                1669 kB: sensors.qcom (pid 250)
                1610 kB: drmserver (pid 1538)
                1407 kB: thermal-engine (pid 1545)
                1260 kB: ks (pid 768)
                1188 kB: netd (pid 1535)
                1128 kB: sdcard (pid 1550)
                1072 kB: wpa_supplicant (pid 2188)
    //plus a lot more

    99168 kB: System
               99168 kB: system (pid 1957)
   221364 kB: Persistent
              183514 kB: com.android.systemui (pid 2111 / activities)
               16764 kB: com.android.nfc (pid 2418)
               16231 kB: com.android.phone (pid 2442)

Android Memory: How It Works | 127



                4855 kB: com.android.server.telecom (pid 2392)
   141205 kB: Foreground
              141205 kB: com.example.isitagoat  (pid 10821 / activities)
    60554 kB: Visible
               26461 kB: com.google.process.gapps (pid 2545)
               19900 kB: com.google.process.location (pid 2917)
                9669 kB: com.google.android.inputmethod.latin (pid 2304)
                4524 kB: com...googlequicksearchbox:interactor (pid 2270)
    97144 kB: Perceptible
               48874 kB: com.elvison.batterywidget (pid 2983)
               48270 kB: com.urbandroid.lux (pid 5656 / activities)
    16113 kB: A Services
                8538 kB: com.google.android.gms.wearable (pid 3056)
                7575 kB: android.process.media (pid 29108)
   113143 kB: Home
              113143 kB: com...googlequicksearchbox (pid 2471 / activities)
   859266 kB: B Services
              522515 kB: com.amazon.mShop.android (pid 5610 / activities)
              207397 kB: com.facebook.katana (pid 9430 / activities)
               58917 kB: com.amazon.kindle (pid 19331)
               35940 kB: com.facebook.orca (pid 4441)
               25989 kB: com...googlequicksearchbox:search (pid 2586)
                4317 kB: org.simalliance.openmobileapi.service:remote (pid 4903)
                4191 kB: com.android.sdm.plugins.sprintdm (pid 14923)
   809634 kB: Cached
              520153 kB: com...goatsimulator (pid 19139 / activities)
               61157 kB: com.rovio.gold_ama (pid 18842 / activities)
               32541 kB: com.google.android.apps.plus (pid 20233)
               23893 kB: com.google.android.gms (pid 2610)
               22116 kB: com.levelup.touiteur (pid 19038)
               18309 kB: com.mobileiron (pid 26851)
               17872 kB: com.linkedin.android (pid 27259)
               15763 kB: com.amazon.mShop.android.shopping (pid 24968)
               15177 kB: com.google.android.apps.magazines (pid 26772)
               14078 kB: android.process.acore (pid 26874)
               13740 kB: com.google.android.music:main (pid 24911)
               13280 kB: com.android.mi.email (pid 26748)
               12072 kB: com.yahoo.mobile.client.android.mail.att:
  com.yahoo.snp.service (pid 26904)
               10377 kB: com.alphonso.pulse (pid 26441)
                5504 kB: com.android.chrome (pid 24943)
                4823 kB: com.google.android.deskclock (pid 28469)
                4717 kB: com.android.cellbroadcastreceiver (pid 20193)
                4062 kB: com.android.defcontainer (pid 28116)

Finally, the report breaks down the total memory usage by type of memory, and the
breakdown of free versus used RAM. In the case of my Nexus 6, it is clear that the
apps cached in memory will likely stay in memory, as nearly 50% of the RAM is still
free:

128 | Chapter 5: Memory Performance



Total PSS by category:
   789741 kB: Unknown
   501966 kB: Dalvik
   463460 kB: GL
   225937 kB: Other dev
   204576 kB: Graphics
    74916 kB: Ashmem
    63123 kB: .so mmap
    56944 kB: .dex mmap
    41319 kB: image mmap
    36328 kB: Dalvik Other
    22039 kB: code mmap
    20906 kB: .apk mmap
    12460 kB: Stack
     4998 kB: Other mmap
     3716 kB: .jar mmap
      112 kB: Cursor
       56 kB: .ttf mmap
       24 kB: Native
        0 kB: Memtrack

Total RAM: 3041412 kB (status normal)
 Free RAM: 1465830 kB (809634 cached pss + 450524 cached + 205672 free)
 Used RAM: 1967459 kB (1712987 used pss + 71340 buffers +
                       101780 shmem + 81352 slab)
 Lost RAM: -391877 kB
   Tuning: 256 (large 512), oom 325000 kB, restore limit 108333 kB (high-end-gfx)

This is a great overview to the memory usage on your device, but you are probably
more interested in the details for just your app. To learn more about the amount of
RAM your app is currently using, you can add the PID number to the meminfo com‐
mand:

adb shell dumpsys meminfo 10821
Applications Memory Usage (kB):
Uptime: 10475753 Realtime: 10684340

** MEMINFO in pid 10821 [com.example.isitagoat] **
                   Pss  Private  Private  Swapped     Heap     Heap     Heap
                 Total    Dirty    Clean    Dirty     Size    Alloc     Free
                ------   ------   ------   ------   ------   ------   ------
  Native Heap        0        0        0        0    13752    13752    29255
  Dalvik Heap    13639    13080        0        0    42782    34636     8146
 Dalvik Other      556      556        0        0
        Stack      132      132        0        0
    Other dev     6622     6592        4        0
     .so mmap     1082      164       60        0
    .apk mmap       52        0        0        0
    .ttf mmap        0        0        0        0
    .dex mmap        8        0        8        0
    code mmap      471        0       16        0
   image mmap      832      532        0        0

Android Memory: How It Works | 129



   Other mmap       17        4        0        0
     Graphics    66784    66784        0        0
           GL    26356    26356        0        0
      Unknown    11799    11736        0        0
        TOTAL   128350   125936       88        0    56534    48388    37401

 Objects
               Views:      121         ViewRootImpl:        1
         AppContexts:        3           Activities:        1
              Assets:        2        AssetManagers:        2
       Local Binders:        8        Proxy Binders:       16
    Death Recipients:        0
     OpenSSL Sockets:        0

 SQL
         MEMORY_USED:        0
  PAGECACHE_OVERFLOW:        0          MALLOC_SIZE:        0

This is the memory usage of the “Is it a goat?” app while it is in the foreground on a
Nexus 6. Let’s break down what the previous table is telling us. We’ll only worry about
the data in the first two columns: the total memory in use by the app (recall PSS =
shared + private memory) and the private dirty memory (memory only in use by the
app, and not stored on disk). Note that most all of the memory allocated is private
dirty data:

• 13 MB from Dalvik (which I assume should read ART, but was not changed)
• 66.7 MB is allocated to graphics
• 26 MB are dedicated to GL commands of rendering
• 11.8 MB is unknown
• 66 MB are dedicated to “other dev”
• Smaller allocations (most of which are smaller shared resources)

Total memory usage is 128 MB. In ART, graphics are stored in a new “large object
space” in the main heap. This larger space allows for better garbage collection, and
less fragmentation for bitmaps, which are generally the largest objects in your apps
memory, allowing your heap to be smaller.

In the second table, there is information about things that are using memory: the
view count, asset count, and the number of activities. If for some reason, these num‐
bers are much higher than you expect, wait for a second and run meminfo again. A
garbage collection may clean up views that were recently invalidated. If they remain
(or if the count grows as you use the app), you likely have a memory issue to investi‐
gate. You’ll also be able to see memory allocated for databases, and other files used by
your app here.

130 | Chapter 5: Memory Performance



Procstats
The meminfo command gives a lot of amazing information for one instant in time.
Memory leaks generally occur over time, and correlating multiple meminfo reports
would be cumbersome. In KitKat, procstats was introduced to help you understand
how much memory your app uses in the background over a set period of time. In
Settings → Developer Options → Process Stats, you can see a visual readout of your
device’s memory usage (the default timeframe is for the last 3 hours, but you can
change it to 6, 12, or 24 hours). In Figure 5-3, the top of the screen tells you the cur‐
rent state of the device’s memory, and the bar is an indicator of memory usage over
time (green, yellow, and red bars indicating severity of the memory issues). Clicking
this bar provides more details: the time spent in each memory state, and how the
memory is being allocated. If you’d like to see memory usage for foreground or
cached apps, you can change the stats type from the settings menu.

Android Memory: How It Works | 131



Figure 5-3. Procstats overview of app memory usage while cached (top left), in the back‐
ground (top right), and in the foreground (bottom)

Each running app is listed with the percentage of time it has been active, and the bar
is a comparison of the average memory used by each app (again, you can see this for
foreground, background, or cached). Clicking on an app gives you detailed informa‐
tion about how your app uses memory, and the RAM and runtime in the state of the
parent menu. To see how your app performed in another state (e.g., foreground to
cached, like in Figure 5-4), you must go back to the main menu to change the state,
and then reselect your app. Due to the difficulty to navigate these menus for one app,

132 | Chapter 5: Memory Performance



I typically use the command line version adb dumpsys procstats to get the table of
data.

Figure 5-4. Procstats for app: foreground (left) and cached (right), shown in Lollipop

Compare Figure 5-4 to the wealth of information generated at the command line. The
dump contains the stats for the last 24 hours, 3 hours, and current stats in all of the
states. For space considerations, I’m only showing the data for the last 3 hours (the
longer periods look similar). The first set of data is a breakdown of system usage with
the screen off (SOff) or on (SOn) (Example 5-1).

Example 5-1. Procstats System Info

$ adb shell dumpsys procstats com.coffeestainstudios.goatsimulator

AGGREGATED OVER LAST 3 HOURS:
System memory usage:
  SOff/Norm: 1 samples:
   //similar to SOn
       Mod : 1 samples:
   //similar to SOn
       Crit: 1 samples:
   //similar to SOn
  SOn /Norm: 3 samples:
      Cached: 304MB min, 317MB avg, 336MB max
      Free: 32MB min, 44MB avg, 57MB max
      ZRam: 0.00 min, 0.00 avg, 0.00 max
      Kernel: 41MB min, 46MB avg, 50MB max
      Native: 45MB min, 49MB avg, 50MB max
       Mod : 1 samples:
      Cached: 182MB min, 182MB avg, 182MB max
      Free: 24MB min, 24MB avg, 24MB max
      ZRam: 0.00 min, 0.00 avg, 0.00 max
      Kernel: 41MB min, 41MB avg, 41MB max
      Native: 46MB min, 46MB avg, 46MB max

Android Memory: How It Works | 133



       Low : 3 samples:
      Cached: 186MB min, 226MB avg, 287MB max
      Free: 19MB min, 104MB avg, 269MB max
      ZRam: 0.00 min, 0.00 avg, 0.00 max
      Kernel: 38MB min, 38MB avg, 39MB max
      Native: 46MB min, 47MB avg, 47MB max
       Crit: 5 samples:
      Cached: 146MB min, 179MB avg, 247MB max
      Free: 16MB min, 57MB avg, 130MB max
      ZRam: 0.00 min, 0.00 avg, 0.00 max
      Kernel: 38MB min, 40MB avg, 45MB max
      Native: 43MB min, 46MB avg, 49MB max
 <big snip>

 Summary:
 <snip>
 Run time Stats:
   SOff/Norm: +1h12m4s41ms
        Mod : +3m0s428ms
        Low : +1s954ms
        Crit: +1m7s324ms
   SOn /Norm: +27m26s70ms
        Mod : +6m9s749ms
        Low : +7m58s126ms
        Crit: +23m52s476ms
       TOTAL: +2h21m40s168ms

As the memory of the device moved from normal to moderate low and critical, the
cached memory was purged to allow the active process to continue running (the aver‐
age cached memory drops from 304 MB to 146 MB from normal to critical with the
screen on). At the bottom of the dump is a Summary, which breaks down the 3 hour
bucket of time in to the various memory states. It shows that the device was running
for 2 hours 21 minutes of the 3 hour sample. While the screen was off, the device was
primarily in a normal memory state, and when the screen was on, the device was in a
low or critical memory state over 50% of the time.

What caused the device to enter these low memory states? By looking at the Goat
Simulator specific report (below), we can start to piece together where the memory
issues occur. The first table shows the process, and then a series of MB data. It shows
that the app was the foreground (TOP) app for 15% of the time and (2.5% as the last
active process). The memory numbers are reported in MB, and have the format
(total memory Low-Average High/Private memory Low/Average/High):

Per-Package Stats:
  * com.coffeestainstudios.goatsimulator / u0a82 / v915134:
      * com.coffeestainstudios.goatsimulator / u0a82 / v915134:
               TOTAL: 15% (119MB-261MB-327MB/113MB-255MB-321MB over 23)
                 Top: 15% (119MB-261MB-327MB/113MB-255MB-321MB over 23)
          (Last Act): 2.5% (260MB-273MB-292MB/256MB-268MB-287MB over 3)
            (Cached): 2.7% (268MB-271MB-288MB/263MB-267MB-284MB over 7)

134 | Chapter 5: Memory Performance



The next section looks similar to the total system memory charts, but broken down
to just the Goat Simulator process, first showing the time the process spent in differ‐
ent memory states with the screen off and on. The “Run time Stats” summary in
Example 5-1 tells us that with the screen off, the device was in a critical memory state
for 1 minute 7 seconds. Looking at the Goat Simulator, it was active, or the last active
app for 46 s + 21 s = 67 s. The same holds for screen on: device critical for nearly 24
min, and Goat Simulator top or last accessed in a critical state for 23 minutes. This
indicates that the memory state of the device might be related to the memory usage of
this app.

In Example 5-2, below the timing, we get an additional memory usage breakdown of
the app in the various states:

Example 5-2. Procstats App Info

Multi-Package Common Processes:
  * com.coffeestainstudios.goatsimulator / u0a82 (16 entries):
        SOff/Norm/LastAct: +1m32s937ms
             Mod /LastAct: +76ms
             Low /LastAct: +1s870ms
             Crit/Top    : +45s940ms
                  LastAct: +21s384ms
        SOn /Norm/Top    : +20s540ms
                  LastAct: +9s755ms
             Mod /Top    : +8s70ms
                  LastAct: +11s263ms
                  CchAct : +1s571ms
             Low /Top    : +21s335ms
                  LastAct: +10s802ms
                  CchAct : +3m31s584ms
             Crit/Top    : +20m0s324ms
                  LastAct: +2m55s742ms
                  CchAct : +18s8ms
                  TOTAL  : +30m51s201ms
        PSS/USS (10 entries):
          SOff/Crit/Top    : 1 samples 275MB 275MB 275MB / 270MB 270MB 270MB
                    LastAct: 1 samples 266MB 266MB 266MB / 261MB 261MB 261MB
          SOn /Norm/Top    : 1 samples 136MB 136MB 136MB / 127MB 127MB 127MB
               Mod /Top    : 1 samples 174MB 174MB 174MB / 167MB 167MB 167MB
                    LastAct: 1 samples 251MB 251MB 251MB / 248MB 248MB 248MB
               Low /Top    : 2 samples 155MB 201MB 247MB / 150MB 196MB 242MB
                    LastAct: 1 samples 260MB 260MB 260MB / 256MB 256MB 256MB
                    CchAct : 7 samples 268MB 271MB 288MB / 263MB 267MB 284MB
               Crit/Top    : 18 samples 119MB 279MB 327MB / 113MB 273MB 321MB
                    LastAct: 1 samples 292MB 292MB 292MB / 287MB 287MB 287MB

Android Memory: How It Works | 135



Summary:
  * com.coffeestainstudios.goatsimulator / u0a82 / v915134:
           TOTAL: 15% (119MB-261MB-327MB/113MB-255MB-321MB over 23)
             Top: 15% (119MB-261MB-327MB/113MB-255MB-321MB over 23)
      (Last Act): 3.8% (251MB-267MB-292MB/248MB-263MB-287MB over 4)
        (Cached): 2.7% (268MB-271MB-288MB/263MB-267MB-284MB over 7)

<snip>

          Start time: 2015-01-23 15:38:18
  Total elapsed time: +21h33m58s23ms (partial) libart.so

          Start time: 2015-01-24 11:48:20
  Total elapsed time: +1h23m56s121ms (partial) libart.so

When you inject an object into memory, the Android system will allocate memory
for your object, and when the object is no longer in use, will reclaim the memory
with garbage collection event. We discussed how memory cleanup works in “Memory
Cleanup (Garbage Collection)” on page 123, and how to determine if your app is
using excessive amounts to memory. The procstats command provides information
about the state of the device’s memory state. In the next section, we’ll look at how you
can use these warnings in your app to ensure your app continues to run when free
memory is at a premium.

Android Memory Warnings
The Android system allocates the memory heaps available to each app, and also is
tasked with keeping the memory garbage collection (removing old content from
memory). In the previous section, we saw procstats reports showing the memory was
reaching critical levels. When your app is running (or in the cache), it can listen to
these reports, and free memory to prevent the process from being cleaned up for
memory usage. onTrimMemory will tell you where your app is in the cache, and how
you can help remove memory to prevent your entire app from being removed. If your
app is running, and there are memory problems, onTrimMemory will issue the follow‐
ing warnings:

TRIM_MEMORY_RUNNING_MODERATE

This is your first warning.

TRIM_MEMORY_RUNNING_LOW

This is like the yellow light. It is your second warning to begin to trim resources
to improve performance.

TRIM_MEMORY_RUNNING_CRITICAL

This is the red light. If you keep on executing without clearing up memory
resource, the system is going to begin killing background processes to get more
memory for you. Unfortunately, that will lower your app’s performance.

136 | Chapter 5: Memory Performance



TRIM_MEMORY_UI_HIDDEN

Your app was just moved off the screen, so this is a good time to release large UI
resources. Now your app is on the list of cached apps. If there are memory prob‐
lems, your process may be killed. Being a background app, release as much as you
can so that your app can resume faster than a pure restart. There are three levels:

TRIM_MEMORY_BACKGROUND

Your app is on the list, but near the end.

TRIM_MEMORY_MODERATE

Your app is in the middle of the kill list.

TRIM_MEMORY_COMPLETE

This is the “your app is next to be killed” warning.

In Example 5-2 (the two lines above the “Summary”) for Goat Simulator, you can see
that when memory is critical, and the app goes from “Screen on” top, foreground to
the background, and “last active,” the max memory usage drops from 327 MB to 292
MB.

Memory Management/Leaks in Java
When it comes to memory management, the first rule is to always minimize the
amount of information you store in memory. By reducing your memory footprint,
you are less likely to experience any memory-related error, and with fewer objects in
memory, fewer objects are recycled, leading to faster garbage collection. We’ll see
some examples later in the chapter on how additional objects affect memory usage
and app performance.

Even though memory in the Android runtime is managed, developers must still
worry about how memory is being used. Memory leaks are possible in Android apps
when objects are unnecessarily left in memory. This can happen due to accidental ref‐
erences or other links between activities that keep the GC from collecting the object.
These accidental references can lead to out-of-memory issues on lower-memory
devices, so it is critical that they are tracked down and resolved. If you see memory
issues in your app (or you see unexpected results in the tools we have already dis‐
cussed), you may have a leak, and you may need to dig further to discover and elimi‐
nate the leak.

Memory Management/Leaks in Java | 137



Tools for Tracking Memory Leaks
The aforementioned meminfo tool can be useful in ascertaining if you have a memory
leak. If the results from meminfo or Process Stats are surprising (more memory use in
the background than you’d expect, or memory usage is increasing unexpectedly),
there are additional tools to help you discover where your memory is leaking. Each
leak will be unique, and the path to discover them will be different for each codebase,
but these examples should help you start in the right direction.

Heap Dump
So how much data does your app actually use in memory? What sort of files are allo‐
cated into memory when your app runs? A great tool to better understand this infor‐
mation is the Heap Dump in Monitor DDMS. To activate the Heap Dump, select your
app, and enable the Update Heap button—it’s a cylinder half filled with green liquid
(Android blood?). This will populate the menus and buttons on the right side of the
screen. To discover how much memory your app is using, click the Cause GC button.
This forces your app to run a garbage collection, cleaning up some files. The files that
remain are counted by type and size, and reported into the Heap tool (run on a Nexus
7 on Android 5.0.2); see Figure 5-5.

Figure 5-5. Heap dump results for unoptimized app

The Heap tool lists the device(s) on the left, and to the right, includes a table breaking
down how memory is allocated. Below the table is a bar chart showing the number of
objects by size. We can learn about how memory is allocated in the app by looking
more closely at the table (Figure 5-6).

138 | Chapter 5: Memory Performance



Figure 5-6. Heap dump table: unoptimized app

These are the results for the “Is it a goat?” app with the bloated layout, adding extra
objects, and not invalidating the main view (all options available in the settings
menu). Just looking at this screen causes a 22.5 MB heap to be created. 13.7 MB of
memory is actively allocated to 66,165 objects. We can see how much of that memory
is in objects, classes, and arrays in the larger table. Note that images are stored as byte
arrays, and this byte[] has the most memory allocated to it.

Another interesting feature of this is that the app keeps 40% of the heap size as free,
but also keeps a large portion (nearly 3.5 MB) of the allocated memory as free space.
If you look at the “free” line that is highlighted, these free allocated spaces are pretty
highly fragmented. Of 2,281 free spaces, the smallest free space is 16 B and the largest
is 639 KB. However, the median is 48 B, meaning that half (or 1,140) of these alloca‐
ted free spaces are under 48 B. When new objects are created, only the smallest new
objects will fit into these spaces. So it is also important to know what objects you allo‐
cate during the runtime of your app.

As you might recall from Chapter 4, the “Is it a goat?” app has various view files that
go from unoptimized to optimized. Rerunning the heap dump with the optimized
“More Optimized Layout:RL” view while also choosing the options “invalidating the
main view” and not “creating extra objects” removes a lot of objects and memory.
How much? We can compare Figures 5-6 and 5-7 to find the answer.

Tools for Tracking Memory Leaks | 139



Figure 5-7. Heap dump table: optimized app

The changes in the app were: view hierarchy is much reduced and overdraw mini‐
mized. Objects are created at runtime, and not in the code. Also, the views are invali‐
dated, allowing for faster GC on their data.

Let’s first look at the total heap size. It drops 1,254 KB (or 5.5%), which will certainly
aid performance on lower-end devices. The number of objects is roughly 11,000
lower, mostly in data objects, but also a sizable number of 4 B and 8 B arrays. The 1 B
arrays are unchanged at 5.152 MB. Images are stored in 1 B arrays, so each of the 12
thumbnails are stored in this section of the heap. The image memory usage does not
change across the two views, as each image is allocated in memory just once (even if
they are used multiple times in the view hierarchy).

The heap dump tool categories memory usage by type, but if you want to find mem‐
ory issues, sometimes you need to go all the way to discrete objects to find memory
issues. The Allocation Tracker tool can help with this.

Allocation Tracker
To discover what objects your app allocates during the runtime of your app, the Allo‐
cation Tracker in DDMS is a great place to start. Allocation Tracker tracks every
object allocated into memory during a stretch of time. This is a great way to see if you
are unnecessarily creating objects that might be filling up your memory or blocking
rendering.

To collect the list of allocations, press the Start Tracking button. Perform your test,
and then click Get Allocations. The list of objects created and allocated into memory
during that period will appear in the chart. The allocation tracker tests are cumula‐
tive, so if you click Get Allocations a second time without first selecting Stop Track‐
ing, the initial results will be added to the second test. For that reason, I recommend

140 | Chapter 5: Memory Performance



that you restart the tool for each test. Figure 5-8 is an example of a list of allocations
collection.

Figure 5-8. Allocation Tracker showing redundantly created arrays

In the test shown in Figure 5-8, I ran the “Is it a goat?” app, and collected all of the
allocations from rotating the screen from portrait to landscape and back to portrait.
The table allows you to sort by any of the columns, and there is a filtering mecha‐
nism. Because the main activity is called com.bigasslayout (recall that there are sev‐
eral large donkey images hidden in the view hierarchy), I performed a filter on the
activity name. Digging through the results (through lots of sorting of the columns to
find a pattern), I discovered that I was creating three arrays each time I rotated the
device (string[], int[], and byte[]). These arrays build the views, and don’t
change, so should have been saved as static or stored in the saved configuration file to
prevent their duplication. The larger 44k-byte arrays (in the red boxes) are due to the
portrait view displaying more data than the landscape rows (green and ~24,000 B per
array). Selecting an allocated item (in this case, the top String array) provides details
in the bottom part of the screen. In this case, it shows that this array was generated in
line 97 of the of the BALayout code (orange box).

Tools for Tracking Memory Leaks | 141



While these three arrays are not a large amount of data, it is a simple example of how
creating unnecessary objects adds additional memory requirements (and additional
garbage collection), and how removing them will reduce the memory usage of your
app. In the “Is it a Goat?” app, you can replicate this report by selecting the Create
Objects During Render box in the settings menu. This removes the arrays from the
saved configuration, forcing the app to re-create these menus on every rotation of the
device. De-selecting this will allow the saved state to be used, and you will not see
these three files re-created on every screen rotation.

Adding a Memory Leak
I have added an option in the “Is it a goat?” app that adds a memory leak. Here is
what it is doing:

//snip

class Iceberg{
    static ArrayList<byte[]> iceSheet = new ArrayList<byte[]>();
    void sink(){
        byte[] mostlyUnderwater;
        mostlyUnderwater = new byte[2048 * 1024];
        iceSheet.add(mostlyUnderwater);//icesheet should grow by 2MB every rotation
        Log.i("iceberg", "Captain, I think we might have hit something.");
    }
}
class CancelTheWatch{
    static Iceberg iceberg;
}
//snip
@Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
  //snip
        if (memoryLeakTF) {
            //calling the memory leak class
   // When the Titanic canceled the watch, they hit
   // an iceberg...
            CancelTheWatch NoNeed = new CancelTheWatch();
            Iceberg theBigOne = new Iceberg();
            NoNeed.iceberg = theBigOne;
   //this leaks memory.
   <snip>
   //next line to quickly run out of memory
            NoNeed.iceberg.sink();
        }

There are two things happening here. By calling theBigOne from the Iceberg class,
and then assigning theBigOne into the static Iceberg inside CancelTheWatch, the
static class lives longer than the view, so when I rotate the screen, the view cannot be
destroyed as the new view is generated and a leak is created.

142 | Chapter 5: Memory Performance



The Iceberg leak shown here is not a huge one. In order to radically inflate the mem‐
ory heap of the app and see an out-of-memory error, the Iceberg.sink object creates
a 2 MB byte array (mostlyUnderwater) and adds it to the ArrayList iceSheet. On
devices with lower available memory (in this case, a Samsung Galaxy Note II on Jelly
Bean), this can quickly lead to a crash:

02-03 02:10:27.650    9399-9399/<app name> D/AbsListView﹕
                               Get MotionRecognitionManager
02-03 02:10:31.680    9399-9399/<app name> D/dalvikvm﹕ GC_FOR_ALLOC freed 782K,
 7% free 17078K/18311K, paused 36ms, total 38ms
02-03 02:10:31.680    9399-9399/<app name> I/dalvikvm-heap﹕ Grow heap (frag case)
 to 19.108MB for 2097168-byte allocation
02-03 02:10:31.695    9399-9399/<app name> I/iceberg﹕
 Captain, I think we might have hit something.
02-03 02:10:31.710    9399-9402/<app name> D/dalvikvm﹕ GC_CONCURRENT freed 611K,
 10% free 18514K/20423K, paused 11ms+2ms, total 27ms
02-03 02:10:31.710    9399-9399/<app name> D/dalvikvm﹕
                               WAIT_FOR_CONCURRENT_GC blocked 11ms
02-03 02:10:31.725    9399-9399/<app name> D/AbsListView﹕
                                Get MotionRecognitionManager
02-03 02:10:35.440    9399-9399/<app name> D/dalvikvm﹕
                                GC_FOR_ALLOC freed 39K, 7% free
 19151K/20423K, paused 18ms, total 18ms
02-03 02:10:35.445    9399-9399/<app name> I/dalvikvm-heap﹕
 Grow heap (frag case) to 21.132MB for 2097168-byte allocation
02-03 02:10:35.470    9399-9399/<app name> I/iceberg﹕
 Captain, I think we might have hit something.
02-03 02:10:35.470    9399-9410/<app name> D/dalvikvm﹕ GC_FOR_ALLOC freed 7K,
 6% free 21191K/22535K, paused 24ms, total 24ms<

The preceding logs show the memory changes to the app when I rotated the screen
twice. The heap grows by 2 MB (02:10:31.680 and 2:10:35.445) after each rotation by
2 MB (to 19 MB and then to 21 MB). There are four garbage collections shown
occurring before and after each heap increase. GC_FOR_ALLOC occurs to free up mem‐
ory to make room to fulfill the allocation request. These will cause jank in the app, as
they pause the system for 36, 18, and 24 ms each. The GC_CONCURRENT is the general
GC that runs periodically to clean up objects, and its 11 ms pause might be long
enough to cause a jank issue.

I continued rotating the screen, and the memory continued to balloon (as you can see
here we are now at 58.5 MB), and the garbage collector is doing everything it can to
prevent an out-of-memory error:

02-03 02:11:23.125    9399-9399/<app name> D/dalvikvm﹕ GC_FOR_ALLOC freed 659K,
 7% free 57413K/61639K, paused 28ms, total 29ms
02-03 02:11:23.130    9399-9399/<app name> I/dalvikvm-heap﹕
 Grow heap (frag case) to 58.498MB for 2097168-byte allocation
02-03 02:11:23.145    9399-9399/<app name> I/iceberg﹕
 Captain, I think we might have hit something.
02-03 02:11:23.160    9399-9402/<app name> D/dalvikvm﹕ GC_CONCURRENT freed 259K,

Tools for Tracking Memory Leaks | 143



 8% free 59202K/63751K, paused 12ms+2ms, total 27ms
02-03 02:11:23.160    9399-9399/<app name> D/dalvikvm﹕
                                WAIT_FOR_CONCURRENT_GC blocked 14ms
02-03 02:11:23.175    9399-9399/<app name> D/AbsListView﹕
                                Get MotionRecognitionManager

02-03 02:11:28.480    9399-9399/<app name> D/dalvikvm﹕ GC_FOR_ALLOC freed 36K,
 7% free 59705K/63751K, paused 16ms, total 16ms
02-03 02:11:28.480    9399-9399/<app name> I/dalvikvm-heap﹕ Forcing collection of
 SoftReferences for 2097168-byte allocation
02-03 02:11:28.505    9399-9399/<app name> D/dalvikvm﹕ GC_BEFORE_OOM freed 80K,
 % free 59624K/63751K, paused 26ms, total 26ms
02-03 02:11:28.505    9399-9399/<app name> E/dalvikvm-heap﹕
 Out of memory on a 2097168-byte allocation.
02-03 02:11:28.505    9399-9399/<app name> I/dalvikvm﹕
                                "main" prio=5 tid=1 RUNNABLE
02-03 02:11:28.505    9399-9399/<app name> I/dalvikvm﹕
 | group="main" sCount=0 dsCount=0 obj=0x418b9508 self=0x418a03f0
02-03 02:11:28.505    9399-9399/<app name> I/dalvikvm﹕
 | sysTid=9399 nice=0 sched=0/0 cgrp=apps handle=1074749232
02-03 02:11:28.505    9399-9399/<app name> I/dalvikvm﹕
 | schedstat=( 6822358884 1174852496 11100 ) utm=615 stm=67 core=3

02-03 02:11:28.505    9399-9399/<app name> D/AndroidRuntime﹕ Shutting down VM
02-03 02:11:28.505    9399-9399/<app name> W/dalvikvm﹕ threadid=1:
 thread exiting with uncaught exception (group=0x418b82a0)
02-03 02:11:28.510    9399-9399/<app name> E/AndroidRuntime﹕ FATAL EXCEPTION: main
    java.lang.OutOfMemoryError
            at <app name>.BALayout$Iceberg.sink(BALayout.java:77)
            at <app name>.BALayout.onCreate(BALayout.java:234)
            at android.app.Activity.performCreate(Activity.java:5206)

In the log excerpt above, the app memory usage has ballooned to over 58 MB and the
device is running out of memory. Let’s see what Android does to prevent an out-of-
memory crash to your app. The app is attempting to allocate another 2,097,168 B
array into memory, and there is no longer any room. First, Dalvik forces the collec‐
tion to SoftReferences, and then we have the GC_BEFORE_OOM (the last chance
garbage collection before an out-of-memory error), and because these GCs could not
find an available 2 MB segment of memory for my byte array, the app crashes.

Now, generally leaks are not easy to find by just looking at the logs, but there are
some specialty tools to help you diagnose memory leaks, so you can find their source
and resolve them. Let’s see how we can identify this leak in the jHat and MAT tool‐
sets.

144 | Chapter 5: Memory Performance



Deeper Heap Analysis: MAT and LeakCanary
In order to diagnose where your app is leaking memory, you will need to analyze all
of the files that your app is holding in memory. If you are able to identify files that
should have been released, or identical duplicate files in memory, you can resolve the
issue in your code. This might mean ensuring that objects are released properly, or
perhaps ensuring that files in memory are reused (rather than having multiple instan‐
ces stored in memory.)

In order to analyze the files in your app’s memory, you’ll need to save a memory heap
dump to the computer. Next to the Heap Dump icon in Monitor (the cylinder half
full of green Android goo) is a similar icon, but with a red arrow pointing down. This
allows you to save the heap dump to your computer for further analysis.

The saved heap dump is in an Android-specific format. In order to
open the file with other tools, you must convert the file. The con‐
version tool is hprof-conv, and is included in the Android SDK
platform-tools directory:

hprof-conv _<existing_filename> <converted_filename>_

If you collect your heap dump from Android Studio’s DDMS, you
do not need to run the conversion because it is run automatically.

When creating your heap dump, try to replicate the steps that cause large memory
issues. If you can get your app to balloon in size, or mimic whatever behavior is being
reported, the memory data will be in the memory dump hprof file. Leaks can be
tricky to find, and might just require a lot of staring at the tool, so the larger the leak
is, the easier it will be to find.

To analyze this heap dump, we’ll look at Eclipse Memory Analysis Tool (MAT). In
early 2015, Square released LeakCanary, an open source library that automates much
of the MAT analysis for you, and will report memory leaks in your app while you are
debugging. Let’s first understand how to find memory leaks using MAT, and then see
how LeakCanary simplifies the process for us.

MAT Eclipse Memory Analyzer Tool
Eclipse’s Memory Analyzer Tool (MAT) is exactly what the name says: a tool to per‐
form detailed memory heap analyses. MAT is part of the Eclipse IDE, but if you have
migrated your Android development to Android Studio, it can be downloaded as a
standalone app from Eclipse.org.

When you open your hprof file in MAT, it does some processing of the file, and asks
if you’d like a custom report. Because we are looking for memory leaks, I typically

Tools for Tracking Memory Leaks | 145

https://eclipse.org/mat/


choose the Leak Suspects report. This will show you the objects that are using the
most memory. Once these have run, you’ll see a number of tabs open in the tool.

The MAT tool provides a wealth of data in a number of different windows. In
Figure 5-9, we are focusing on the Overview tab of the main view. It displays a pie
chart of the major consumers of memory. Each area of the pie chart represents a
chunk of allocated memory, and mousing over each area gives you details about that
memory object. The largest chunk of memory is gray, and represents free memory.
The second largest class is the Iceberg class (as a result of the large ArrayList hold‐
ing two byte arrays), weighing in at 4 MB.

Figure 5-9. MAT Overview

146 | Chapter 5: Memory Performance



When the Iceberg class is highlighted in the pie chart, the Inspector window
(Figure 5-10) provides more information about the objects currently referenced by
the Iceberg class object. As we can see in the code, the iceSheet ArrayList is
shown.

Figure 5-10. MAT Inspector window

Switching the main view tab from Overview to the Leak Suspect report, there is
another pie chart listing the suspects (based on memory used). Figure 5-11 shows
two pie charts from two separate heap dumps. In the graph on the left, which was run
after only two screen rotations, there are two suspects indicated, the larger dark blue
section using 27 MB (byte arrays) and the teal green at 6.1 MB (Java classes). The
chart on the right was run after many screen rotations, and the memory utilized by
byte arrays (now teal green) remains at 27 MB, but the Java class memory allocation
(now dark blue) has ballooned to 36 MB. If we had not known already, this looks like
a good place to find a memory leak.

Tools for Tracking Memory Leaks | 147



Figure 5-11. MAT leak suspects from two memory heap dumps

Below the pie chart are yellow boxes describing all of the suspects (see Figure 5-12).
In this case, we’ll continue our analysis with the second trace (run after many screen
rotations).

Figure 5-12. MAT leak suspect 1

Suspect 1 is the Iceberg class, using 37 MB (47% of total memory) in one Java object.
We can learn more about this suspect by clicking the Details link.

148 | Chapter 5: Memory Performance



Figure 5-13. MAT Leak View

In this case, the leak suspect report has nailed it. The Shortest Path to Accumulation
Point (the path of references to the object keeping this in memory) view pushes us
straight to the ArrayList iceSheet. Granted, in this sample, the path is not compli‐
cated, but it did work.

There is some neat memory information here too: iceSheet has a shallow heap of 8
B, but a retained heap of 37 MB. Shallow heap is the memory being taken by just the
object, while retained heap is the memory of the object plus all of the objects that this
object has references to (in this case, 18 2.09 MB byte arrays). Just like a root holds a
tree in place, objects that are still in memory hold all other objects they refer to in
memory. This is obviously our leak.

It is rarely this simple. If the leak were not so Titanic in size, more digging might be
required. Let’s look at some of the other options in MAT that you can used to isolate
memory leaks.

A memory Histogram is created by pressing the icon that looks like a bar chart
(marked by an orange rectangle in Figure 5-14).

Tools for Tracking Memory Leaks | 149



Figure 5-14. MAT Histogram

This report breaks down the memory usage by class (again by shallow and retained
heap). In Figure 5-14, there are a couple of clues that point to the issue:

• byte[] (yellow box) includes all images (and the items in the iceSheet Array
List). 66 MB is more than I would expect here, especially because Figure 5-11
shows just 27 MB of byte arrays as images.

• java.lang.Object[] (green box) has a low shallow heap, but > 38 MB retained
• java.lang.Class (blue box) has a similar low shallow heap, but large retained

heap.

These are indicative of small files with large references to other objects. So we should
dig further into these classes.

150 | Chapter 5: Memory Performance



If you cannout find your activity (or a class you are interested in)
in the Histogram view, clicking <Regex> in the top row allows you
to do a regular expression search on class names.

To examine the byte[] list of objects more closely, right-click the row, and choose List
Objects→“With Incoming references.” This will give you a new table, which is sorted
by retained heap (Figure 5-15).

Figure 5-15. MAT Byte[] Objects

At the top of the list, we can see the 18 2 MB arrays created from rotating the screen.
To find the root object blocking these from garbage collection, right-click an object,
and select “Path to GC Roots”→ “excluding weak references” (as weak references do
not block objects from GC). This will open a new window, as seen in Figure 5-16.

Tools for Tracking Memory Leaks | 151



Figure 5-16. GC roots of 2 Byte[] Objects

The path to GC roots again identifies iceSheet as the culprit for our memory leak. I
picked the first byte array, and the second line of the report shows that it occupies
location [0] in an ArrayList that has 18 items in it. The last line names this Array
List as iceSheet. We again found our leak! The hprof file is saved in the link to High
Performance Android Apps GitHub repository. I’ll leave tracing the
java.lang.Object and java.lang.classes to the iceSheet memory leak as an exer‐
cise, but following the same steps will get you the same answer.

If you think the leak is related to an image in a byte[] (as all
images are stored in memory as byte arrays), but you are not sure
what image is causing the problem, there is a way to convert the
byte array into an image. The byte[] will have a nested object
“mbuffer” of class android.graphics.bitmap. Clicking this will
show the width and height of the object in the Inspector view. Now,
right-click the byte array and choose Copy → “Save value to file”
(save with extension .data+). In a graphics tool like GIMP, you can
open this file, apply the height and width values, and GIMP will
show you the image hidden in the byte array.

Using the Eclipse MAT to trace how your app allocates memory is a fascinating way
to learn about how Android handles memory allocations, and find ways to optimize
how your app handles memory. But in the high-speed rush to launch, you might not
have time to learn a new tool to investigate difficult to diagnose memory leaks. Luck‐
ily for you, the team at Square open sourced LeakCanary, a test tool that automates a
lot of what MAT does.

152 | Chapter 5: Memory Performance

https://github.com/dougsillars/HighPerformanceAndroidApps
https://github.com/dougsillars/HighPerformanceAndroidApps


LeakCanary
LeakCanary was developed at Square to reduce the number of out-of-memory errors
that they were encountering with their app. They found that replicating crashes
involved finding the devices that were crashing, replicating the crashes, and then
essentially using trial and error in MAT to find what was causing the leak. Because
this approach was slow, they wanted to find the memory leak in their code before
launching to their end users. LeakCanary was born. It is the “canary in the coal mine”
for memory leaks: it sniffs out memory leaks before any out-of-memory crashes.
Since using LeakCanary, Square reports a 94% drop in OOM crashes! Let’s see how
this tool works!

Square’s instructions make it super easy to get LeakCanary up and running. I’ve
implemented it in the “Is this a goat?” app on GitHub.

In the build.gradle file, add two dependencies:

   debugCompile 'com.squareup.leakcanary:leakcanary-android:1.3.1'
   releaseCompile 'com.squareup.leakcanary:leakcanary-android-no-op:1.3.1'

in the application class of the “Is it a goat?” app, I added:

    //LeakCanary reference watcher
    public static RefWatcher getRefWatcher(Context context) {
        AmiAGoat application = (AmiAGoat) context.getApplicationContext();
        return application.refWatcher;
    }
    private RefWatcher refWatcher;

    @Override public void onCreate() {
        super.onCreate();
        //on app creation - turn on leakcanary

        refWatcher = LeakCanary.install(this);
    }

and then I added specific reference watchers for the CancelTheWatch and Iceberg
classes:

       //LeakCanary watching the variables
       RefWatcher wishTheyHadAWatch = AmiAGoat.getRefWatcher(this);
       wishTheyHadAWatch.watch(NoNeed);

       RefWatcher icebergWatch = AmiAGoat.getRefWatcher(this);
       icebergWatch.watch(theBigOne);

Now, when I fire up the “Is it a goat?” app, turn on the memory leak, and rotate the
screen, a few things happen. After a momentary delay, LeakCanary takes a heap
dump and performs an analysis. The report is written to the logs:

Tools for Tracking Memory Leaks | 153

https://corner.squareup.com/2015/05/leak-canary.html
https://github.com/square/leakcanary


05-25 15:43:28.283  17998-17998/<app>I/iceberg﹕
                   Captain, I think we might have hit something.
05-25 15:43:51.356  17998-18750/<app> D/LeakCanary﹕ In <app>:1.0:1.
    * <app>.Iceberg has leaked:
    * GC ROOT static <app>.CancelTheWatch.iceberg
    * leaks <app>.Iceberg instance
    * Reference Key: 52614375-1531-47b1-96d7-4ec986861794
    * Device: motorola google Nexus 6 shamu
    * Android Version: 5.1 API: 22 LeakCanary: 1.3.1
    * Durations: watch=5443ms, gc=154ms, heap dump=2864ms, analysis=14302ms
    * Details:
    * Class <app>.CancelTheWatch
    |   static $staticOverhead = byte[] [id=0x12c9f9a1;length=8;size=24]
    |   static iceberg = <app>.Iceberg [id=0x1317e860]
    * Instance of <app>.Iceberg
    |   static $staticOverhead = byte[] [id=0x12c88e21;length=8;size=24]
    |   static iceSheet = java.util.ArrayList [id=0x12c267a0]

The trace is telling me that the Iceberg class has leaked, all about the device, how
long the processing took (154 ms for the GC, 2 s to collect the heap dump, and 14 s to
analyze), and what object in the class caused the leak. The GitHub documentation
walks through the steps to report the leak and the heap dump to your servers for
aggregation. (Note that this should only be done on debug versions of your app for
obvious delay reasons, but is great for internal testing!) Finally, the reports are also
shown on your device in the notification bar, and in a new app in your app list called
“Leaks” (see Figure 5-17).

154 | Chapter 5: Memory Performance



Figure 5-17. LeakCanary screenshots: summary (top) and detail (bottom)

LeakCanary will store the first seven leaks on your device, and has a menu to share
the leak and heap dump with others. Using LeakCanary in your internal testing will
help you find the memory leak issues that have been eluding you in MAT, helping
you quickly squash memory leak issues out of your app, reducing the number of
crashes, and improving your app’s performance.

Tools for Tracking Memory Leaks | 155



Conclusion
Until very recently, the only way to discover memory leak issues was to study all of
your out-of-memory crashes, and carefully dig through MAT in order to connect
memory reference issues. MAT is still an excellent tool, and it is important to under‐
stand the memory linking that MAT exposes. However, the use of MAT in day-to-day
testing for memory issues has been alleviated by LeakCanary.

By carefully identifying how your Android app handles memory operations, your app
will run more efficiently on memory-constrained devices, and the number of out-of-
memory crashes will decline. By limiting your objects and ensuring that their lifespan
is appropriate, you can lower the impact of garbage collection on the UI of our app,
keeping the GC from blocking the main thread of your app. Finally, by using tools
like the Allocation Manager, LeakCanary, and MAT you can identify the objects and
classes that are leaking memory.

156 | Chapter 5: Memory Performance



CHAPTER 6

CPU and CPU Performance

In the preceding chapters, we’ve looked at battery, UI, and memory management per‐
formance, and how optimizing the way these function will reduce crashes and speed
up the performance of your app. As we continue our journey to high performance
Android apps in this chapter, we’ll cover an essential part of the Android device, the
CPU. The CPU is the brain of the device, and because the CPU processes all of your
code to create your app, it is another vital piece of the puzzle to optimize.

In fact, chipset vendors work constantly to improve the performance of their chips,
while taking into account battery drain and heat concerns. Modern Android devices
have shown great performance strides in speed while also ensuring efficiency.

In the last few years, quad, octo, and deca core CPUs are becoming more common in
the market. Unlike your computer (where every CPU is the same, and can be inter‐
changed for any computation), these ARM-based mobile chipsets feature different
CPUs for different tasks. ARM calls this chipset design big.LITTLE, and it is a good
descriptor for how they work. When a small background task is run (like checking
email), a lower-powered, more efficient CPU will be tasked with the job. When users
watch videos or play games, the high performance cores are fired up. By relegating
small tasks to the LITTLE processors, and only using the big CPUs for high-power
tasks, the device saves energy. The great thing as a developer is that this is all con‐
trolled by the kernel, and the correct processor will be chosen for you.

As we saw in Chapter 5, even in a memory-managed environment, there are opti‐
mizations that we can make to memory. For the same reason, we cannot assume that
your app’s code will correctly utilize the CPUs on the device. It is still essential to
properly administer the way your app utilizes the CPU. In this next section, we’ll look
at how to understand the CPU usage on your Android device, the CPU usage of your
app, and how to determine what threads or processes in your app are causing strain
on the CPU. We’ll look at how improper use of the CPU can block rendering, or even

157



cause a dreaded “Application Not Responding” (ANR) warning or even crash your
app.

Measuring CPU Usage
Let’s start again at a high level and look at how your app may be using CPU in con‐
junction with the kernel and other apps in the system. The common Linux top com‐
mand is a great way to look at the CPU usage of your app on a device:

demo$ adb shell top -n 1 -m 10 -d 1

User 58%, System 14%, IOW 0%, IRQ 0%
User 157 + Nice 6 + Sys 41 + Idle 75 + IOW 1 + IRQ 0 + SIRQ 0 = 280

Running the command once (-n 1) and getting the top 10 apps using CPU (-m 10)
over one second (-d 1), we can see that 58% of CPU use is user based, and 14% is
from the system. The second line tells you how long the scheduler spent in each state
(in 10s of ms). The maximum value possible is 100 x the number of CPUS. We see
that the active processes account for a total of 280, and as the test was run on a Nexus
6 (with four CPUs), the maximum value is 400.

Now, let’s look at the top 10 apps:

  PID PR CPU% S  #THR     VSS     RSS PCY UID      Name
15252  1  32% S    16 1581536K  93324K  fg u0_a109  com.example.isitagoat
 1952  0  20% S    97 1708552K 136668K  fg system   system_server
15987  2   2% R     1   4464K   1108K     shell    top
 2413  2   2% S    32 1650148K  76044K  fg u0_a11   com.google.process.gapps
 3010  1   2% S    41 1810248K 179400K  fg u0_a28
                                   com.google.android.googlequicksearchbox
 3384  1   2% S    47 1621432K  83928K  fg u0_a11   com.google.process.location
 2586  1   2% S    26 1566872K  93088K  fg u0_a91   com.elvison.batterywidget
 2125  0   1% S    32 1698300K 166068K  fg u0_a24   com.android.systemui
  267  1   1% R    15 227172K  17060K  fg system   /system/bin/surfaceflinger
 6256  1   0% S    49 1603916K  83816K  fg u0_a28
                                   com.google.android.googlequicksearchbox

As indicated by the table, 32% of the CPU is the “Is it a goat?” app, 20% is the system,
the top command takes up 2%, and then a litany of background/Google apps. Run‐
ning this test while your app is running is a quick-and-dirty way to investigate your
CPU usage. We can also see that these apps all have a policy (PCY) of fg meaning that
they are all visible in one way or other in the foreground.

158 | Chapter 6: CPU and CPU Performance



This is a good start, but we want to get a deeper understanding of the CPU usage of
our app. For more detailed information, there is a dumpsys command for the CPU:

adb shell dumpsys cpuinfo

adb shell dumpsys cpuinfo
Load: 12.28 / 11.64 / 11.56
CPU usage from 11368ms to 4528ms ago with 99% awake:
  0.3% 1531/mediaserver: 0% user + 0.3% kernel / faults: 1093 minor 1 major
  130% 15754/com.coffeestainstudios.goatsimulator: 111% user + 19% kernel /
     faults: 130 minor
  10% 306/mdss_fb0: 0% user + 10% kernel
  9.8% 267/surfaceflinger: 4.5% user + 5.2% kernel
  4.5% 1952/system_server: 1.4% user + 3% kernel / faults: 65 minor
  0.8% 19261/kworker/0:1: 0% user + 0.8% kernel
  0.7% 2982/com.android.phone: 0.2% user + 0.4% kernel / faults: 181 minor
  0.5% 158/cfinteractive: 0% user + 0.5% kernel
  0.5% 18754/kworker/u8:4: 0% user + 0.5% kernel
  0.4% 205/boost_sync/0: 0% user + 0.4% kernel
  0.4% 211/ueventd: 0.2% user + 0.1% kernel
  0.4% 2586/com.elvison.batterywidget: 0.2% user + 0.1% kernel /
  faults: 121 minor
<snip>

The first line of the response gives you the average CPU load over the last 1, 5, and 15
minutes. After this, the CPU usage for nearly 7 seconds is shown for all apps (trunca‐
ted here for space reasons.) For each app, you can see the % of CPU (and if running
on more than one core, this can exceed 100%), and the breakdown of this usage
between the user and system kernel.

Like most of the other command-line interfaces we have seen, cpuinfo is also avail‐
able as an overlay on your device through the Developer Options (see Figure 6-1).
The data is basically the same, but there is an added color bar at the top (underneath
the system weighted averages). This shows the time the CPU has spent in userspace
(green), kernel (red), and IO interrupt (blue). This can be really helpful to pinpoint
the times you might have IO blocking events, as you can see what is on the screen
exactly when such an event occurs.

Measuring CPU Usage | 159



Figure 6-1. Overlay of cpuinfo

Systrace for CPU Analysis
While top and cpuinfo provide basic understanding on memory usage of your app,
we still need to dig deeper into the CPU cores to see what they’re actually processing
while your app is running. In Chapter 3, we looked at the “Systrace and CPU Usage
Blocking Render” on page 113 tool to discover jank in our UI. We can also use
Systrace to understand how the CPU can block rendering and cause skipped frames
or jank. When we looked at UI, the CPU lines were removed to add visibility. Let’s
look at them more closely now. The traces described in this section are available in
the book’s GitHub repository (trace4 has no jank, and trace7 has jank).

At the top of each Systrace (using the same setup as in Figure 4-22), there are rows
with information pertaining to each CPU on your test device (see Figure 6-2).

160 | Chapter 6: CPU and CPU Performance

https://github.com/dougsillars/HighPerformanceAndroidApps


Figure 6-2. Systrace with no jank

When I run a Systrace with the regular views in the “Is it a goat?” app, both CPU0
and CPU1 are in use. There are lots of very small short calculations taking place, but
none block the UI. We see very regular creation of views, and the SurfaceFlinger
sends views to the GPU every 16 ms as we expect. In the two rows of CPU, every col‐
ored line is associated with an app. You can identify each process by selecting them
and reading the data in the bottom menu, or by zooming in and reading the process
name associated with the color (Figure 6-3).

Figure 6-3. CPU view of Systrace

Note that the timescale in Figure 6-3 is a total of 3.5 ms (major ticks are 0.5 ms, and
the minor ticks are 0.1 ms). In this very short period, we can see distinct operations
(by color):

• Purple is the “Is it a goat?” app
• Blue is the RenderThread
• Brick red is the SurfaceFlinger
• Many other extremely short processes (lots of which appear as just vertical lines

in the current zoom level)

If you look at Figure 6-3 carefully, you will notice that the RenderThread and the
ut.bigasslayout lines get thicker (take longer) about halfway through of the trace. At
this point in the trace, I was touching the screen to change the direction of the scroll‐
ing.

Systrace for CPU Analysis | 161



In the next systrace, I have turned on the Fibonacci calculation. This calculates a very
large number on the 5th and 10th position, causing a large frame in scrolling each
time that row is rendered. Figure 6-4 shows a longer duration than Figure 6-3, but
fewer views are rendered. For the first 100 ms, everything looks great, no jank and
everyone is happy. But about 150 ms in, the UI gets stuck behind the calculation of an
eight-digit Fibonacci number. CPU0 (and later CPU2) go solid magenta, as the “Is it a
goat?” app is busy doing some serious calculations. The app is stuck on a green
obtainView because it is trying to render the view.

Figure 6-4. Systrace with Jank

If you scroll in very closely to the long green obtainView seen at the bottom of
Figure 6-4, there is a very thin line with different colored sections right above. In
Figure 6-5, we have zoomed into a 15 ms section of the trace, and the thin lines above
the green obtainView (bottom row) are dark green and blue indicators. These indica‐
tors are telling you what state the CPU is in for your app. The small blue moments are
when the process is runnable (but not running), and the green indicates the app is
running on the CPU. Drawing vertical lines on the trace shows that the running times
coincide exactly to the time that one of several adjacent magenta processes is running
on the CPU. The Systrace is showing us that hundreds of small processes running
during the obtainView are blocking the app from updating the screen. In this case,
the thread that draws the UI is blocking, but it could be possible that a more compli‐
cated app could have another thread block the UI rendering.

Figure 6-5. App CPU State in Systrace

162 | Chapter 6: CPU and CPU Performance



With the knowledge that there is a process blocking your rendering, now we can
apply the Traceview app to further diagnose the problem. There are two incarnations
of Traceview, and both display the same information differently. It’s worthwhile to
discuss both tools, as one version might help you more than the other.

Traceview (Legacy Monitor DDMS tool)
If you have ever watched a video on Android CPU optimization, this is the tool that is
typically shown. It has been around from the beginning, and it still incredibly useful.
For users of Android Studio, it is most easily accessed from the Monitor tool in the
SDK. To start the tool, choose your app, and press the icon that has three horizontal
lines with white dots (and one red dot) (inside a red box in Figure 6-6). This will
open a box offering you two options for the trace. The first option is to sample all of
the processes the VM is running on the CPU every x ms (defaulting to 1,000 µs). This
is best for devices that are CPU constrained, or if you are planning to take a longer
trace. In the examples here, we have chosen the second option, where every method’s
start and stop is processed. This has higher overhead, and will add latency to apps on
even the most powerful devices (the traces in this section were run on a Nexus 6 run‐
ning 5.0.1).

Figure 6-6. Starting Traceview

Once you have started Traceview, run the operations in your app that you would like
to test, and stop the trace by pressing the same button you used to start the trace.
After a few seconds, a trace will open in the middle window of the DDMS view. Each
thread will have a row in the top section (in the case of the “Is it a goat?” app, there is

Traceview (Legacy Monitor DDMS tool) | 163



just the main thread). Each method is shown in a different color (and fully zoomed
out, the start and stops all appear black). See Figure 6-7.

Figure 6-7. TraceView overview

In the table below the Traceview in Figure 6-7, you see a list of all of the methods.
Each method can be opened to see its parents and children. In Figure 6-7, I have run
the “Is it a goat?” app running in a normal manner (no issues). I have highlighted
method 15 (android.os.MessageQueue.nativePollOnce) to show that it has the par‐
ent MessageQueue.next, and two children to dispatch DisplayEvents and InputE
vents. The table lists various breakdowns of how the methods have used the CPU:

Inclusive CPU Time
Time spent in this method plus time spent in child functions

Exclusive CPU Time
Time spent only in this method

Inclusive Real Time
This is real time (versus time just time utilizing the CPU)

Exclusive Real Time
This is real time (versus time just time utilizing the CPU)

Calls + Recursive Calls/Total Calls
The number of times these methods were called in the trace

CPU Time/Call
Average CPU time per call

Real Time/Call
Average real time per call

The Calls column tells us how many times each method was called (highlighted in the
green box). Method 15 was called 240 times. It calls method 138 a total of 15 times
(and is the only parent of this method). It calls method 49 a total of three times (and

164 | Chapter 6: CPU and CPU Performance



other methods call this 27 additional times). Method 15 uses the CPU exclusively for
188.924 ms, and the inclusive time is 204.151 (as method 138 uses 14.8 ms when
called). The average time per call on the CPU is 0.851ms, but 15.087 ms in real time
(as seen in the orange box).

When you highlight any row (in this case, line 15), each time the method is called, it
is highlighted in the traceview above. Alternatively, if you click a region of the graph
where method 15 was called, you’d see that region highlighted. At ~2,100 ms in
Figure 6-7, you can see one such call in the red box. Traceview denoted the method
by adding a solid dark gray bar above and a bracket below the call highlighted. As this
method is a part of rendering the view, it is good that this method generally takes < 16
ms to complete. Scrolling in to a 500 ms range, we can see that this method is called
for each frame render (Figure 6-8 highlights every instance of method 15).

Figure 6-8. Traceview zoomed in showing a highlighted method that reoccurs every 17
ms

Now that we have seen how an app should behave in traceview, let’s look at a Trace‐
view of the “Is it a goat?” app with the Fibonacci counter turned on. As shown in
Figure 6-9, the difference is immediately apparent.

Figure 6-9. Traceview of the “Is it a goat?” app with Fibonacci calculation

From 11,600–12,250 s, the recursive Fibonacci calculation has completely taken over
the main thread, and the black lines in the traceview have become extremely dense.
In this case, I have highlighted the Fibonacci process, and each call is highlighted in
Figure 6-9. Just as we saw in the systrace, this call blocks nearly every other method in
the app. From 12,250–12,450 s, we return to what we would like to see—regular 16
ms cycles on the main thread—indicating a jank free experience.

Traceview (Legacy Monitor DDMS tool) | 165



The table below the TraceView tells us that the Fibonacci method is called 19 times,
but because it is a recursive statement, we see that it calls itself another 16,280 times
during the trace (enlarged text in red box). The entire trace is over 19 s, and nearly 17
s are spent in this method alone. If we really needed to provide a Fibonacci number to
the data, a faster or less CPU intensive method should be applied.

Traceview (Android Studio)
A new Traceview was released with the 0.2.10 release of Android Studio, with the goal
of replacing the DDMS/Monitor traceview described in the previous section. The
new Traceview uses flamecharts to display the same traces in a different manner. In
the Monitor version of Traceview, you can see the direct parent-child relationships of
a method, but grandparent-grandchild (or other deeper connections) are difficult to
discern without really digging into the table. The flamechart shows you the amount
of time each method or process takes along the horizontal axis, but places the process
in it the overall parent-child hierarchy on the Y axis. This allows for a deeper visuali‐
zation into how the method’s calls interact.

Running a trace inside Android Studio is easy. Instead of the icon with the red dot
(like in DDMS), the icon is a stopwatch. To start Traceview, click the stopwatch. Run
your trace, and then hit the stopwatch again to stop (there is no option to change the
sampling in the new version.) The Traceview will open in the main view of Android
Studio. Immediately, we can see that things are very different (Figure 6-10).

Figure 6-10. Flamechart Traceview overview

166 | Chapter 6: CPU and CPU Performance



In original traceview, mapping children and parents of methods was done in the
table. Here, the parent methods are at the top, and each child method is below it. The
horizontal length of each method indicates how long each method was called. Each
thread is mapped separately (accessible from the dropdown menu at the top).
Threads are colored red, orange, yellow, and green (from slowest to fastest). By
default, this is set to the exclusive time, and there is a high-level method (in the sec‐
ond row) that is orange. This is the MessageQueue.next method. This method has a
large number of calls as it is queueing up views, and it waits for each view to be
drawn. The inset orange oval is an enlarged view of the smaller orange oval. It high‐
lights the root methods for a series of regular methods, with a large number of depen‐
dencies (green box). These regular calls are animation renders for the bounce
animation that occurs when you reach the end of a list. The zoomed area shows that
the orange-tinted MessageQueue.next runs in between each animation frame.

The GoatList method draws each row in the “Is it a goat?” app. It is easy to quickly
identify Goatlist in the flamechart by using the search function. In Figure 6-11, the
rows highlighted in blue denote where the GoatList method is called (there are eight
instances shown in the figure).

Figure 6-11. Android Studio Traceview GoatList filter

Traceview (Android Studio) | 167



Looking at Figure 6-11, it is interesting to see that GoatList appears to be called in
two different contexts (based on the Y axis position). This trace was generated in
“Slow XML” view, by flinging the view from the top to the bottom. Four of the Goat
List views are created while the touchevent (calls shown in the red box) is initiating
the “fling.” The last four GoatList rows are created during the rapid fling that occurs
after my finger is removed (in the center of the graph). Once the view reaches the
bottom, the beginning of the bounce animation can be seen in the green box.

In Chapter 4, we used Hierarchy Viewer to explain the importance of a flat view Hier‐
archy. We can do a similar analysis in Traceview. The two screenshots in Figure 6-12
are of “Slow XML” above the most optimized layout. The graphs have the same verti‐
cal time scale, and it is clear that the bottom view (the more optimized layout) inflates
the views faster (26 ms versus 40 ms). Each item takes time, and the number of verti‐
cal stalactites is higher in the Slow XML view. There are interesting similarities
though. The rendering of the top view is similar for both layouts, and the flamecharts
have similar pattern or shape (in the red box). The longest part of this view creation is
the addition of the checkbox (orange box), as it has two possible states and an anima‐
tion when the states toggle.

Figure 6-12. Android Studio Traceview GoatList Comparison top: Slow XML view bot‐
tom: most optimized view

168 | Chapter 6: CPU and CPU Performance



After the GoatList row is rendered, there is one more set of commands that must be
run (shown in the blue box). These methods are required to add a check to the check‐
box. For rows in the app that are not a goat (and therefore the checkbox is
unchecked), this 5–6 ms is not present. In the app, there are 10 checked rows (they
are goats), and three that are unchecked (not goats). When I originally wrote the app,
I had all 13 boxes default to checked, and then unchecked the three rows that are not
goats. However, I discovered in Traceview that changing every checkbox to checked
(and then unchecking programmatically) added the “checked time cost” to every
checkbox created, actually adding time to the GoatList layout. As a result of my
Traceview findings, I modified to only check the rows that had goats (and required
the check).

Now, let’s look at what happens when I turn on the recursive Fibonacci calculation, as
shown in Figure 6-13.

Figure 6-13. Android Studio Traceview GoatList Fibonacci delay

This was actually a tough trace to take, as the overhead from Traceview and the over‐
head from the recursive Fibonacci calculation caused “not responding” errors to
come up on my device. Looking at Figure 6-13, each grouping (there are 3+ shown) is
a row being drawn (the GoatList method is highlighted in blue across the top of each
grouping). The views inflate as expected at the left of each GoatList, (one example is
highlighted in a blue box), but then the required Fibonacci calculation grinds the
GoatList method to a halt as it runs its calculation (and is denoted in red as Trace‐
view recognizes that these calculations are causing a slowdown in the app).

When testing across multiple threads, the original Traceview makes it easy to com‐
pare what is happening on all threads at any given time. However, the superior flame
charting capability in the Android Studio version of Traceview adds significant visu‐
alizations as to what is controlling the CPU at any given time in your threads.

Traceview (Android Studio) | 169



Other Profiling Tools
Qualcomm has a free app called Trepn that allows you to show memory, CPU, bat‐
tery, network, and other characteristics as an overlay on your screen while you test
your app. If your phone uses a Qualcomm processor, you can also observe the GPU
usage while testing. The data from your traces can be exported into a CSV or database
for later analysis. However, each report is calculated individually, so quick compari‐
son of data in the CSV is not simple—loading into your favorite analysis tool is the
best approach.

Figure 6-14 is another great way to visually see the CPU usage of your app.

170 | Chapter 6: CPU and CPU Performance



Figure 6-14. Trepn profiling CPU in overlay

Other Profiling Tools | 171



Conclusion
The tools described in this chapter are all free to use and provide a great deal of infor‐
mation to developers working to debug memory and CPU issues in their apps.
Reducing the CPU footprint of your app allows the SurfaceFlinger and framebuff‐
ers to ensure 16 ms frame updates and a jank free experience. Reducing the CPU
footprint of your app will also save memory and battery, which will in turn speed up
the app and reduce jank.

172 | Chapter 6: CPU and CPU Performance



CHAPTER 7

Network Performance

One of the greatest aspects of the smartphone revolution is the ability to tap into a
repository of all human knowledge with a small device that fits in your pocket. It
allows us to resolve the important questions we may be asked (“Dad, what sound does
a giraffe make?”), and it lets us play chess and other games with complete strangers
from all around the world.

As demands for network throughput increase, we hear about how faster, more relia‐
ble networks will place all of this information closer to your fingertips. I am here to
burst that bubble. While newer, faster networks are coming, it will take decades for
existing 4G networks to become ubiquitous worldwide. In the meantime, we can
focus on how apps use existing networks today, and how important network usage is
in relation to your app’s performance, but also how it affects the device’s battery. As
we determined in Chapter 3, the cellular, Wi-Fi, and Bluetooth radios that facilitate
all of this amazing communication are also major factors in battery drain. By maxi‐
mizing your app’s network performance, you can make it run significantly faster and
use less battery at the same time.

In this chapter, we’ll look at the differences between the different data radios on
mobile devices, the tools to profile your app’s network usage, and some simple fixes
that will gain huge improvements. We’ll look at how to test your app for different net‐
work environments (as much of the world has only 2G and 3G coverage, you should
ensure your app performs well under these conditions), and finally will look at the
“other radios” of your device: Bluetooth communication with watches/peripherals
and GPS location scanning. Let’s start by quickly looking at how these radios work,
and then describe ways to optimize their use.

173



Wi-Fi versus Cellular Radios
Wi-Fi versus cellular? Isn’t a connection to the Internet just a connection to the Inter‐
net? In reality, the ways that these two radios connect are vastly different, and
depending on how much data your app requires, you may actually want to architect
two different models for content download: one for cellular and one for Wi-Fi.

When connecting to the Internet, there are two aspects to the connection that cause
performance constraints: bandwidth (the size of the “pipe”) and latency (the length of
the “pipe” or how crowded the “pipe” is). We’ll look at how these are affected by the
various radio connections, and how, despite similar power drain values in the
Android Power profile (covered in “Android Power Profile” on page 30) cellular
radios use more power when active than Wi-Fi.

Wi-Fi
Wi-Fi connections (in ideal conditions) are high throughput, low-latency connec‐
tions and are generally unmetered (meaning that there is no additional cost to utiliz‐
ing Wi-Fi networks). The reason I added the “ideal conditions” waiver to this
description is that you are seldom in ideal Wi-Fi conditions. Because Wi-Fi networks
utilize the same frequencies, areas with multiple Wi-Fi networks overlap on the limi‐
ted number of frequencies, resulting in shared bandwidth across all of the networks.

However, let’s assume you have a Wi-Fi connection with no bandwidth issues, and a
strong connection to your Android phone. When your app attempts to make a Wi-Fi
network connection, there is minimal latency to set up the connection. When the
connection is established, the radio is on high power. Once the data is transferred, the
radio turns off. There is a bit of latency to turn on and turn off the Wi-Fi radios
(measured at 80 ms to turn on, and 240 ms to turn off.) As we saw in “Android Power
Profile” on page 30 in Chapter 3, Wi-Fi connections on the Nexus 6 use 3 mA of cur‐
rent to stay on in standby mode, and when actively transmitting data they utilize 240
mA. With the limited power of Android devices, you can see why getting content
downloaded quickly and efficiently is paramount.

With high throughput, low latency, and no charge for data on Wi-Fi, your app can
behave in a more “data hungry” way on Wi-Fi. You can serve higher-quality images
and videos, and perhaps have a more interactive experience with your users.

Cellular
There are a variety of different cellular technologies in use around the world today.
Depending on what network your customer connects to, the experience could be
completely different. As discussed in Chapter 2, many people around the world still
utilize 2G and 3G networks. See Table 7-1.

174 | Chapter 7: Network Performance



Table 7-1. Evolution of wireless generations

Name Gen. Down Max (Kbps) Latency (ms)

GPRS 2G 237 300–1,000

EDGE 2G 384 300–1,000

UMTS 3G 2,000 100–500

HSPA 3G 3,600 100–500

HSPA+ 3.5G 42,000 100–500

LTE 4G 100,000 <100

When connected to a cellular data network, the amount of power your Android
device uses to maintain the connection will vary based on signal strength. In
“Android Power Profile” on page 30, you may have noticed that there are two values
for radio.on. If you are in a region of strong cellular signal, you’ll use the lower of
the numbers, but to maintain a cellular data connection in areas of low coverage, the
phone will crank up the power of the antenna to maintain the connection. When the
radio is connected, the current jumps from 4.5 mA to 125 mA. While it might appear
from these raw numbers that active cellular radio (at 125 mA) uses less power than
Wi-Fi (at 240 mA), the power drain for cellular connections is typically higher
because of the way cellular connections are implemented on the network. In order to
maximize the quality of service on cellular networks, all carriers have implemented a
Radio Resource Control (RCC) state machine that controls how data connections are
established and taken down.

State Machines
A state machine (sometimes a finite-state machine) describes a log‐
ical sequence of events with a finite number of states. A simple state
machine is a light switch with states off and on. In the case of
mobile cellular networks, there are a number of different states that
the network connection can have, and they are used in order to
optimize several factors, including network and device throughput,
latency, and device battery drain.

Wi-Fi versus Cellular Radios | 175



RRC State Machine
When your phone initiates a data connection, there are several initial radio signals
sent to the tower before the TCP connection is established. These signals add an
additional 500–1,000 ms latency to the time establishing a radio connection. This
latency and delay is one of the crucial aspects of mobile connectivity that the cellular
RRC state machine attempts to counteract.

Every mobile network has a RRC state machine that keeps the radio on after the last
packet of data is sent in order to offset connection setup latency and also balance
power consumption. Each carrier can specify various states, and the time a device
remains in the various states (and thus, each network is slightly different). Because
each network around the world has different specific variables, the exact timings are
not important to know, but a firm grasp of the basics of the RRC state machine is
important for understanding how cellular connections operate. Knowing this, you
can optimize your connections to work in concert with the RRC state machine, help‐
ing to make your mobile app faster and use less battery.

State Machine Caveats
It is well beyond the scope of this book to discuss (or list) the
timers across all cellular carriers (and the timers may vary by
region even inside a carrier, and will change over time). As a devel‐
oper, it is not feasible to optimize all of your app connectivity to
every carrier’s RRC state machine. What is crucial is to understand
what a state machine is, and how the existence of a state machine
can harm (or help) your mobile app.

Additionally, state machines are different for 3G (GSM, CDMA) and LTE networks.
For simplicity, I’ll describe the LTE RRC state machine.

4G (LTE) State Machine
When data is to be transmitted, your Android phone goes from an idle state (low
power drain) to the connected state (at high power). When the packets have stopped
being transmitted, the radio does not immediately shut off. Instead, it enters a high-
powered tail time for 10–15 s. If the radio had immediately shut off, data packets sent
in quick succession would have to surmount the high latency connection time again,
making the user experience incredibly slow. With the radio connection already estab‐
lished, the latency for subsequent packets drops, and the packets are delivered
quickly. If no packets arrive during the tail time, the radio closes the connection and
shuts down to save power.

176 | Chapter 7: Network Performance



Figure 7-1. The LTE RRC State Machine

If you take another look at Table 7-1, you can see that as network generations
improve, the latency decreases and the throughput of the network increases. The 4G
network spec has greatly improved the signaling required to establish a data connec‐
tion (the RRC IDLE → Connected transition), reducing the connection setup latency
by a factor of 5–10 from 3G networks (as seen in Table 7-1). What can be 300–1,000
ms on 3G is now 50–100 ms on LTE. While the improvement in bandwidth in 4G is
also impressive, it is the latency improvement that really helps LTE feel as fast as it
does. Ilya Grigorik covers the effects of latency in great deal in his book High Perfor‐
mance Browser Networking (O’Reilly). And he also covers all network performance in
much greater detail that we can here.

In general, LTE radios use more power than radios with only a 3G connection. If you
are streaming a large file, it is possible that the higher download speeds of LTE will
allow radio to complete its connection faster, and use less energy as a result. Most
mobile data consumption is not large files, but built of hundreds of smaller files,
using smaller chunks of data. These small files are not able to use the full bandwidth
capabilities of LTE (because they are so small). So, generally speaking, downloading
content over LTE will use slightly more power than on 3G.

Wi-Fi versus Cellular Radios | 177

http://shop.oreilly.com/product/0636920028048.do
http://shop.oreilly.com/product/0636920028048.do


Radio Connection Versus Data Connection
There is a nuance that exists between the radio connection and the
data connection, and it bears discussion here. The physical radio
connection between the tower and the phones is not the same as
the data connection that exists between the phone and the server.
The data connection travels on top of the radio connection, and as
such, a radio connection must be established before data can be
transmitted. Think of the radio connection as a lift bridge, and the
data connection as the road on that bridge.
If the data connection is left in a connected state for future trans‐
missions, but is not actively transmitting data, the radio connection
between the phone and the tower can temporarily be suspended
(saving the battery). In my bridge analogy, the road is still present,
but the bridge has lifted it out of the way to allow a boat to pass
underneath. If the server sends data to the device, the tower sends a
radio signal to the device, reestablishing the radio connection,
allowing the data connection to complete (the bridge lowers down,
allowing cars to traverse the road).
This sounds great—why not leave all of your connections open for
future transmissions? Due to the number of connections on a cel‐
lular network, orphaned connections are cleaned up by the net‐
work after a period of time (typically 5–30 minutes). (I suppose
that makes the network a developer who wants to pull out the dis‐
used lift bridge to put in a riverside condo.)

Is Your App Working with the RRC State Machine?
The presence of the RRC state machine tells you that your network connections exact
a power price that is larger than you may have thought in the past. By grouping con‐
nections and making sure that active radio time is minimized, you can greatly
improve the performance of your mobile apps. All data connections cost at least 10 s
of active use (equivalent to 5 minutes of standby time). It has long been considered
that downloading data as quickly as possible is important for performance, but in
mobile it is clear that downloading quickly and turning on the mobile radio as infre‐
quently as possible is even more crucial to save resources.

178 | Chapter 7: Network Performance



Using Data During a Phone Call
We are in a multitasking world. Talking on the phone while using
an app is a very common occurrence. If your app is connected via
LTE, and a phone call comes in, the phone will drop to a 3G data
connectivity for the remainder of your data session.
This is due to circuit switched fallback. Until Voice over LTE
(VoLTE) becomes the norm, all voice calls transmit on the 3G cir‐
cuit switched network. This means that any active data session will
also drop to 3G. In “Battery Historian 2.0” on page 62, we looked at
a study in which I was streaming a teleconference while listening
on the phone. Looking closely at the time of the phone call, we can
see that the radio connection starts blue (LTE), but goes black
(HSPA) for the duration of the phone call (Figure 7-2). When the
call ends, the radio is able to transition back to the LTE (blue) data
network.

Figure 7-2. Battery Historian showing circuit switched fallback

Testing Tools
So far, we have discussed the power usage of Android’s radios, and how mobile data
networks function. How do we use this knowledge to optimize our Android app traf‐
fic? And if we have optimized our traffic, how can we test it to make sure? There are a
number of tools that capture mobile data traffic and allow you to analyze the data.
For years, tools like Wireshark and Fiddler have been used by network ops professio‐
nals around the world to collect packet data and analyze it for potential issues/opti‐
mizations. Man-in-the-middle (MITM) tools help you to decrypt HTTPS traffic to
understand what data you are sending securely on the network. These tools are cer‐
tainly on the front line of mobile app performance. A similar tool called the AT&T
Application Resource Optimizer (ARO) records packet captures, and additionally

Testing Tools | 179



provides suggestions to app developers on how to optimize traffic for cellular connec‐
tions.

Wireshark
Wireshark is probably the most popular network analysis tool in the world. It is a free
tool that runs on your desktop, and it collects packet data traveling across a data con‐
nection. Data can be observed in real time, and after the data is collected, it can be
saved into a file for further analysis.

To test your Android phone with Wireshark, you must connect your phone to the PC
that has Wireshark installed. For Windows machines, I use Connectify to convert my
laptop into a Wi-Fi hotspot. When my Android device is connected to the hotspot, all
of the data traffic from my phone is going through the computer (and visible to Wire‐
shark). In the Wireshark app, you can now begin collecting on the wireless interface
(if you are not sure which one is the Wi-Fi interface, initiate network traffic on your
phone, and you’ll see one of the interfaces begin to send and receive packet traffic).

As you can see in Figure 7-3, Wireshark shows every packet that is sent back and
forth from my phone (192.168.223.104) and the computer (192.168.223.1). It was ini‐
tially challenging to make heads or tails of what was going on, so I added a filter for
HTTP. This restricts the packets to just HTTP packets, and now I can begin to see the
requests and responses that occurred during my testing. You can now tell that I was
opening cnn.com in the browser, and the requests that follow. Packet 1481 shows that
my cnn.com request caused a 301 redirect (in the red box) to www.cnn.com, and that
page spawned a number of requests to turner CDNs for files. If I wanted to discover
how many 301 redirects there were in this packet capture, the filter
“http.response.code == 301” drills down to show three such redirects.

Figure 7-3. Wireshark Packet Capture

The filtering tools in Wireshark are extremely powerful. It is possible to search and
filter for specific files, specific types of files, files with cache headers, and more (the

180 | Chapter 7: Network Performance

http://wireshark.org
http://www.connectify.me/


possibilities are endless!). In practice, these are all great searches, but you have to
have an inclination to what the issue is—otherwise, you’ll feel like you’re looking for a
needle in a haystack with this approach. However, if you think you have an idea about
what your issue is, Wireshark is a great way to drill down and pinpoint it exactly.

Fiddler
Fiddler is another free tool that analyzes network traffic. Fiddler acts as a proxy for all
of the data that comes through the device. By acting as a proxy, it can also act as a
man in the middle (MITM), allowing you to decrypt HTTPS traffic. In Wireshark,
you can see that HTTPS traffic is being transferred, but you are unable to decode it to
see what the files are, or what they contain.

Running Fiddler is similar to running Wireshark. I connect my Android device to the
Connectify Wi-Fi hotspot. Then, by modifying the Wi-Fi settings on my device to
add the Fiddler proxy, and installing the Fiddler certificates on my device and PC,
Fiddler can read all of the data coming through the connection (there are excellent
instructions at the Fiddler website to complete this setup).

Once this is all connected, you will start to see traffic move through the Fiddler win‐
dow. In the screenshot shown in Figure 7-4, I was using the YellowPages app to find
grocery stores nearby.

Figure 7-4. Fiddler proxy capture

In Figure 7-4, you can see in the left window of the Fiddler packet capture, and the
boxed field is a response from the YP app. The file is 668 bytes (on the wire), has a
cache setting of “no-cache” and is a JSON file. It contains the directions from my
house to the grocery store, and the file was encrypted using HTTPS (and this is good,
as the response has my address/location in the file). On the right side of the Fiddler
window (seen in Figure 7-5), there are a number of windows with lots of options. The

Testing Tools | 181



top window is showing the headers sent to syndication.yellowpages.com, and the bot‐
tom window shows the decrypted response. Inside the JSON file, you can see that the
total distance to the grocery store is 4.787665 miles (that’s some pretty serious accu‐
racy!). The application further predicts the drive time to this store as 661 s, or just
over 11 minutes away.

Figure 7-5. Fiddler proxy capture detail windows

182 | Chapter 7: Network Performance



MITMProxy
MITMproxy is a tool similar to Fiddler that creates a MITM and allows you to decode
HTTPS traffic going across your network.

The ability to decrypt HTTPS traffic is an incredibly useful tool, as much of your data
traffic uses HTTPS to secure your customers’ data. By decrypting the data, Fiddler
and MITMproxy also allow you to ensure that the correct files and information are
being sent to any third-party SDKs that you have added to your app.

AT&T Application Resource Optimizer
The ARO is a tool specifically designed for monitoring network performance in
Android and iOS apps. It is a free/open source tool from AT&T, and it contains much
of the same packet capture functionality as Wireshark and Fiddler. Unlike Wireshark
and Fiddler (which require Wi-Fi connections to a computer), ARO has the ability to
collect packet traces over the cellular network. Once ARO has collected the data from
your test, it processes it and provides developer-friendly tables and graphs to better
help dissect the data. The traffic is graded against 25 mobile networking best practi‐
ces, giving you immediate feedback on areas for performance improvement. The
summary of these tests is shown in Figure 7-6 (the red x indicates a failure, and the
green check indicates that the trace passed the test criteria). We’ll discuss these best
practices throughout this chapter.

Testing Tools | 183



Figure 7-6. ARO best practices: pass fail

There are two versions of ARO for Android devices. The ARO Data Collector APK
runs a TCPdump collection directly on your device, gathering all the packets (and
assigning each connection to a process). This requires a rooted Android device, and
so to simplify testing, a version that does not require rooting is also available.
Without root, we lose the ability to assign connections to specific processes, which
makes it a bit harder to pin traffic to a specific app (if there are a lot of apps running
on the device).

Once you collect a data trace in ARO, you can analyze the trace in the ARO Analyzer
tool. The test you performed in your app will be graded against the 25 best practices
shown in Figure 7-6. Each best practice is further enumerated with additional details,
so if you fail any of the best practices, you can learn why and how you failed
(Figure 7-7).

184 | Chapter 7: Network Performance



Figure 7-7. ARO duplicate content best practice; 34% (9 MB) of data sent multiple times
is a lot! (Some text enlarged for readability)

There are five tabs of data provided out of each trace, but the Diagnostics tab is where
you can really see how the data flows in and out of your app (Figure 7-8).

Figure 7-8. ARO Diagnostics Tab

The Diagnostics tab contains a lot of information, so let’s look at all of the data pre‐
sented here. There are two windows shown: on the left is the data analysis, and on the
right is a video of the screen taken during the trace. The video is synced with the
trace, so when selecting a packet or a connection, you can see what was on the screen
at that given moment.

Looking more closely at the Diagnostics tab graph in Figure 7-9, the chart graphs the
packet traffic over time. The top row shows a normalized throughput over time. This

Testing Tools | 185



allows us to see traffic that uses a relatively large amount of data, versus connections
that use smaller amounts. The next two rows show the packets being uploaded and
downloaded over the connection. The row labeled “Bursts” describes the typed of
traffic based on the color. Red bursts are initiated by the app, yellow by the server,
green occur after a user input event (recorded on the next row), and the blue bursts
show mostly empty packets that are the result of connections being closed. The bot‐
tom row shows the LTE RRC state machine, which is outlined in Figure 7-1. Solid
color indicates continuous reception, and the cross-hatched region represents the
Tail. Blank areas show when the radio is off (Idle). Note the blue arrow and dotted
blue line. This signifies the moment in the trace displayed on the video viewer. If you
were to press play on the video, you would see the line move to the right, allowing
you to see the packets being transferred while also watching what was on the device
screen.

Figure 7-9. ARO Diagnostics tab graph

The two tables below the graph provide more insights into each data connection that
occurs in the network trace (Figure 7-10). The top graph shows every TCP or UDP
connection that was initiated during the trace. Currently highlighted is a connection
started at 551 s from the SiriusXM Radio app. You can see the domain and IP infor‐
mation, as well as the byte count and packet count for the connection.

The bottom table shows the requests and responses from the highlighted TCP con‐
nection in the top table. This table shows us that there are a number of 81 KB music
files transferred in this connection.

186 | Chapter 7: Network Performance



Figure 7-10. ARO Diagnostics tab tables

There are several additional views in ARO that provide an extraordinary amount of
information, and we’ll see additional screenshots through this chapter as we discuss
potential optimizations.

One disadvantage to ARO is that it cannot parse any details from files sent via
HTTPS. If your app uses HTTPS, you’ll need to manually look at those files in a Fid‐
dler trace.

Hybrid Apps and WebPageTest.org
WebPageTest.org is a great tool for testing websites. I know, you’re thinking “This
book is on Android app development, so why am I talking about website tests?”
Thousands of Android apps are built with tools like PhoneGap, that simply wrap
components from websites with native code, allowing a more native app experience.
This native app generally just displays the content in an embedded web view to
appear as if it were native. Because the wrapper is not possible to optimize, as a
hybrid app developer, you can only work to ensure that your web components run as
quickly as possible.

WebPageTest allows you to test your website from several locations around the world,
but the Dulles, VA, location has several Motorola and Nexus devices available for test‐
ing (with Chrome and Chrome Beta). The tests in WebPageTest will show you how
fast your web page loads on mobile, and indicate areas for improvement.

Network Optimizations for Android
The web performance community has established a number of best practices for web‐
sites, and these also apply to mobile apps. We will also discuss several additional
mobile-only best practices for your Android app (and they also apply to any iOS
development you might do). The optimization best practices listed here are in no par‐

Network Optimizations for Android | 187

http://www.webpagetest.org/


ticular order of importance, as each of these will affect app performance differently
(and some will likely not apply to your app at all). The general trend for network per‐
formance (whether on desktops or mobile) is to download everything as quickly as
possible. By getting out of the way of the radio, and letting the radio turn off, you save
power. By getting the content to your customers as fast as possible, your customers
are more engaged and less likely to become frustrated.

The basic rules for mobile app performance basically derive themselves from Steve
Souders’s iconic list of 14 performance rules from his book High Performance Web
Sites (O’Reilly):

• Make fewer HTTP requests
• Use a content delivery network
• Add an Expires header
• Gzip components
• Put stylesheets at the top
• Put scripts at the bottom
• Avoid CSS expressions
• Make JavaScript and CSS external
• Reduce DNS lookups
• Minify JavaScript
• Avoid redirects
• Remove duplicate scripts
• Configure ETags
• Make AJAX cacheable

Now, several of these are website specific, but most of them still hold for Android
native optimizations, and we will cover them in the following sections.

File Optimizations
There are two basic ways to download data faster: lower the number of requests (Sou‐
ders’s rule #1), and/or reduce the size of those requests (several of Souders’s rules).
This can be a hard pill to swallow, as our apps are getting more and more complex
each day, but hopefully the pointers in this chapter will help you come up with plans
to reduce the amount and size of content in your app.

188 | Chapter 7: Network Performance

http://shop.oreilly.com/product/9780596529307.do
http://shop.oreilly.com/product/9780596529307.do


Text File Compression (Gzip Components)
This is one of the easiest fixes to make. When delivering text files (HTML, CSS, Java‐
Script, JSON, etc.) to your app, compressing them on the server can reduce the file
size by 4–8x. This large reduction in file size from your server to your app means
fewer roundtrips and faster delivery of the file. For example, in one app, we saw a 200
KB text file downloaded without Gzip compression. Placing this on a compression-
enabled server reduced the size on the wire to 51 KB. Not only do you deliver the
content to your customers faster, but you reduce the utilization and bandwidth of
your servers too!

There are a number of Gzip algorithms available for use today. In general, the stan‐
dard Gzip compression is good enough for most apps. If you are really trying to get
the most out of compression, and you have files that do not change very often, you
could try the Zopfli compression algorithm, as it squeaks out about 5% more com‐
pression than the default Gzip algorithms. On the downside, it takes about 100x
longer to perform the file compression (hence the “only use it on precompressed
files” warning).

Enabling Gzip compression is a simple server change—no code change in your app—
you simply need to add the file extensions/MIME types and so on to your .htaccess
file:

<ifModule mod_gzip.c>
mod_gzip_on Yes
mod_gzip_dechunk Yes
mod_gzip_item_include file .(html?|txt|css|js|php|pl)$
mod_gzip_item_include handler ^cgi-script$
mod_gzip_item_include mime ^text/.*
mod_gzip_item_include mime ^application/x-javascript.*
mod_gzip_item_exclude mime ^image/.*
mod_gzip_item_exclude rspheader ^Content-Encoding:.*gzip.*
</ifModule>

You’ll immediately see your text files downloading more quickly. One additional
addition to Gzip might be to exclude small files. Files under 850 bytes will fit into a
single packet uncompressed anyway, so while the Gzip compression/decompression
has very little overhead, you could still omit these steps for such small files.

ARO tests all text file captured in the trace for Gzip compression. You can discover
whether files are Gzipped in two places in ARO:

Best Practice: Text File Compression
Any text file sent without compression is listed in Text File Compression
(Figure 7-11). Currently, there is no way to directly know the savings for adding
compression, but the table does report the uncompressed file size. Note that files
under 850 bytes are not flagged (because they fit into one packet, and will only
require one roundtrip, even without compression).

Network Optimizations for Android | 189



Figure 7-11. ARO Text Compression Best Practice

Diagnostics tab (Request Response table)
In Figure 7-8, the bottom table shows the requests and responses. The rightmost
column will identify text files with compression, or have “none” for files with no
compression.

Text File Minification (Souders: Minify JavaScript)
Another way to shrink the size of your text files is through the process of minifica‐
tion. Minification is a process that takes out all of the human-readable formatting to
your text files (like whitespace, tabs, and comments) to make the files smaller. For
example:

<html>
 <title> A Sample Page</title>

<body>
with some sample text
<--do more here-->
</body>
</html>

becomes:

<html><title> A Sample Page</title><body>with some sample text</body></html>

Depending on the size and complexity of your page, minification can save up to
20%–50% of the file size. Many build tools (like grunt) include Minification libraries
that can automatically minify your files whenever you make changes (saving you
work too!).

One might argue that using Gzip is enough to reduce the transmission costs of a text
file. For example, minification might reduce the file size by 10%–15%, but the differ‐
ence in Gzip savings for the minified versus not-minified file might only be 1%–2%
(because whitespace compresses well).

190 | Chapter 7: Network Performance



However, you should always minify before Gzipping, not to save the 1%–2% of net‐
work transmission, but because it will offer storage savings on your customers’ devi‐
ces. In addition, reading a smaller file into memory is faster (and less likely to induce
a crash on devices with limited memory).

While the Souders rule looks at only JavaScript for minification, this optimization can
be run on any text file to reduce the file size. The ARO tool looks at all CSS, Java‐
Script, JSON, and HTML files for minification opportunities (Figure 7-12). It calcu‐
lates the potential savings on each file, and provides a total savings for the files
captured in the trace.

Figure 7-12. ARO Minification Best Practice

Images
When it comes to apps, images are the most commonly downloaded file type. They
are also among the largest files in size, and because images are everywhere, easily
recycled from your web page or other digital service. Controlling image size is a fan‐
tastic way to reduce the data usage in your mobile app. There is a balance between
image quality and image size that you must discover for your app (probably with the
help of UX and editorial teams). Once you find that correct balance, you’ll have a
great-looking app with images that are optimized to download and render quickly.

Super Size It?
If you create one version of every image in your app, and serve it to every mobile
device (including the retina display tablets from that other mobile OS), you will likely
want to use an image that looks great on all of those devices (meaning that the image
downloaded will probably be pretty big). Now, imagine how long it will take to
deliver an image sized for a Retina-enabled tablet to a small Android devices on a 2G
network. This is probably not the user interaction you are looking for.

To account for all of the various screens sizes, you may want to create image buckets
for your images, and whenever an image is needed, your app can provide the screen

Network Optimizations for Android | 191



size to ensure that the correctly sized version of the image is delivered. Android has
provided screen resolution buckets for app development, and these values are a good
start for images on the network too.

If your app uses thumbnail images as well as full sized, you may want to consider
delivering thumbnail sized images for images where the full-sized image might not be
needed.

Dumbnails
One popular app I worked with was using 250 KB images for the
thumbnails next to articles. With six to eight article titles on the
page, these tiny images added 1.5–2 MB of data on every startup of
the app. The developer colorfully described these as “dumbnails”
due to their size, and by the next release had small 5–10 KB images
in place.

The actual sizes you may choose are very much app independent. You know from the
layouts how large the images must be on the screen, so work out popular pixel sizes
for the images based on small, medium phablet, and tablet screen sizes. From there,
you can work out the correct image buckets for your app.

Metadata
When you take a photo with a digital camera, it is likely that there is metadata con‐
nected to the file (this can include information about the device, the settings on the
device, and more recently, the location the photo was taken). Photo editing software
may add additional metadata to the image. Unless your app is a photography app that
discusses the way each photo was taken and how it was edited, you can strip out all of
the image metadata to save anywhere from a few bytes to tens of kilobytes with no
loss of image quality to your customers!

Compression
Just like with text files, you can compress images to make them smaller, take up less
space on the device, and also take less time to download. Image compression is too
large a subject to cover in detail here, but at a high level, when you compress images,
you tend to lose image quality (lossy compression).

The amount of lossy compression applied to your images might depend on the use.
For thumbnails, perhaps a higher compression is possible, as they tend to be small,
and the “graininess” or pixelation is harder to see. For images inside an article, per‐
haps saving the JPEG at 70% compression will suffice. For apps focused on photogra‐
phy and graphics, you may decide to not do any lossy compression. The amount of
compression is a delicate balance of optimizing the appearance of graphics versus size

192 | Chapter 7: Network Performance



compression for speed. Google’s PageSpeed server uses image compression of 85% by
default, so this might be a good starting point for image comparisons.

WebP: A Successor to JPEG?
WebP is an image format that is being developed by Google. It is
generally 20% smaller than a similar JPEG. Support for WebP is
growing across browsers and devices (and is supported in Android
4.0 and newer). WebP image format might be worth considering
for reducing your image file size.

File Caching
If there are files that are used frequently in your app, you should download these files
once and store the file locally for reuse. When it comes to performance, reading a file
locally will always be faster than establishing a connection and downloading the file.
For this performance reason alone, caching will speed up the rendering of your
Android app. By avoiding network connections, you are saving capacity on your
server, and you are reducing the battery drain of your customers.

Of course, the primary reason to invoke caching is that mobile data plans are con‐
strained by data usage, and downloading excess content could end up costing your
customers money if they exceed their monthly cap of data. There are two dimensions
to caching: first, you must turn on caching in your app on the device, but then you
must also properly set cache times on the server.

Caching in your app
Interestingly, caching is off by default in Android, and you must turn it on. For
Android 4.0 and higher, you enable the HTTP response cache by invoking in your
onCreate:

private void enableHttpResponseCache() {
  try {
    long httpCacheSize = 10 * 1024 * 1024; // 10 MiB
    File httpCacheDir = new File(getCacheDir(), "http");
    Class.forName("android.net.http.HttpResponseCache")
         .getMethod("install", File.class, long.class)
         .invoke(null, httpCacheDir, httpCacheSize);
  } catch (Exception httpResponseCacheNotAvailable) {
    Log.d(TAG, "HTTP response cache is unavailable.");
  }
}

And now your app will cache!

Network Optimizations for Android | 193



Caching on the Server
The cache time for each file saved on the device is set in the headers when delivered
from the server. When setting up your caching parameters on the server, there are
several important considerations that must be taken into account. Typically files are
set to cache for a set amount of time, and if the file is requested again during that
time period, it is served from the devices’ cache. If the time has expired, a connection
is made to the server to check if the file has changed. If the file has not changed, a
HTTP 304 “not modified” response is sent to the device, and the cache timer reset. If
the file is different, the new file is downloaded.

The length of the cache timer really depends on the content, and how often it changes
(e.g., sports team logos that rarely change can be cached for a year, weather condi‐
tions for 5 minutes, and headline feeds might never cache). By modifying the cache
time for your content, you ensure the data your customers see is always fresh, but also
limit the number of files downloaded in a duplicate manner, saving battery and data.
In general, there are three headers you can use to supply the expiration date of your
content.

Cache Control (Add an Expires Header)

The header most frequently used for caching is the Cache-Control header, which has
a few common values that you can assign:

Private/Public
This is typically used by CDN caches in the network. It tells the CDN if the files
are public (can be used by anyone), or if they are private files just for the user.

no-store
If your files use this term, the files cannot be cached, and thus must be downloa‐
ded every time.

no-cache
The no-cache header is a bit misleading in its name. A file with a no-cache
header can actually be cached, but it must be revalidated before reuse.

max age=X
The max-age denotes the amount of time (in seconds) that a file might be cached.
Common values are 0 (same as no-cache); 60, 300, 600, 3,600 (1 hour), 86,400 (1
day), 3,153,600 (1 year).

ETags

The ETag is a response header with a unique string of random characters. Every time
the file is to be used from the cache, the ETag must first be validated at the server. If
the local string matches the server, the server replies with a “304 not modified,” and

194 | Chapter 7: Network Performance



the local file is used. If the ETags differ, the new file is downloaded and stored in the
cache. Its behavior is the same as Cache-Control: no-cache, or max-age=0.

For files that regularly expire, ETags are a great way to validate that the locally cached
file is still in sync with the server. For files that rarely change, ETags are an expensive
(from a performance view) caching mechanism. While the file is not downloaded
(thus saving bandwidth), a connection is still established, adding connection time to
the file processing.

In the following example, both an ETag and a Cache-Control header are present. The
device will read from the cache for 86,400 s (1 day) and after that, will check the ETag
(or the last-modified) headers to see if the file has changed. If it has not, it will used
the cached file for another 86,400 s:

HTTP/1.1 200 OK
Accept-Ranges: bytes
Cache-Control: max-age=86400
Content-Type: image/jpeg
Date: Tue, 28 Jan 2014 00:14:55 GMT
Etag: "b17ad00-1f17-46723595372c0"
Expires: Wed, 29 Jan 2014 00:14:55 GMT
Last-Modified: Thu, 09 Apr 2009 18:23:47 GMT
Server: Apache/2.2.3 (CentOS)
X-Cache: HIT
Content-Length: 7959

Expires

Less common than Cache-Control or ETag (but just as valid) is the Expires header.
Rather than giving the time in seconds that the file expires, it gives an exact date in
the future when the file will expire and should be revalidated. This was original cache
header used in the web, and some ancient browsers may still use it. The Expires
header should match the Cache-Control: max-age. In the preceding example, this is
the case: the Expires header is exactly one day after the file is served.

Faster Than Caching?
Do you download content on the first startup of your app, and then
cache them for a long time? Remember that your initial startup is
almost your make or break point for customer satisfaction. If the
first time your app starts up, it takes a long time to configure (as
you are downloading images and files), your customers might stop
using your app after one visit. Consider placing these images and
icons into the resources file of your app. Sure, it makes the app
download a bit larger, but this one time download cost will speed
up that first startup. And, if you change the logos, icons, etc., all
you need to do is issue an update to the app.

Network Optimizations for Android | 195



To discover if your app is correctly caching, you can use ARO. There are three best
practices that help you determine any issues with caching files: duplicate content,
cache control, and content expiration. The table in Figure 7-7 shows a list of files
downloaded more than once in a trace, the number of times each file was downloa‐
ded, and the size of the duplicated files. The Cache Control and Content Expiration
Best Practices in ARO serve as warnings for potential caching issues on the server or
on the device (respectively).

The ARO Cache Control best practice is looking for the presence of a Cache-
Control/ETag or Expires header. If no such header is inserted by the server, it
throws a warning: “this is where your caching policy might be failing!” There are
valid times for this to fail. Perhaps you have a file that you don’t want to cache, so you
leave out the headers. It is important to note that the HTTP cache spec says if the file
says nothing, it can be cached for 24 hours. If you do not want the file cached, make
sure you say so explicitly to avoid any future literal reading of the spec!

ARO’s Content Expiration best practice is looking to make sure that your app’s cache
is working correctly. It counts the number of 304 not modified server checks, as well
as the number of times the cache header is ignored, and the file is requested from the
server (as the file should be in the cache). Typically this flashes a warning on apps
whose cache is not configured (or configured correctly) on the device.

If your app is downloading content in a duplicate manner, take a close look to ensure
that the headers are populated properly (server fix), and that your app is storing the
files correctly in its cache (application fix).

Beyond Files
Optimizing the files that you download is crucial. Smaller, leaner files will always lead
to a faster download, and zippier performance. However, now you also know about
how cellular latency and “RRC State Machine” on page 176 can affect download speed
and battery drain. Assuming all of your files are now optimized, let’s make sure that
the processes you use to connect your app and server to get these files are running as
efficiently as possible, working with the state machine to maximize performance and
customer satisfaction.

Grouping Connections
Imagine an ad-supported image sharing app. Intuitively, we know that connections
serving images will consume a lot of bandwidth, and connect to the network fre‐
quently. Do you know how the ad SDK will behave? Do the ads load with your
images, or do these connections occur when the radio would be otherwise silent?
How about your analytics data? Do these connections fire at the same time as your
app? Or do they wake up the radio whenever they want to?

196 | Chapter 7: Network Performance



As you might imagine, many of these tools are built to just connect. If you use more
than one analytics provider (or ad service) in addition to other libraries and connec‐
tions, your app might never let the radio go to sleep, due to all of the services con‐
necting whenever they want to. If you are looking to ensure that your app is as
efficient as possible, it makes sense to organize your connections into as few large
buckets as possible (versus many small buckets). Look into the documentation and
code for these SDKs, and see if you might be able to sync them with other connec‐
tions from your app. If you test, and see that your third-party SDKs are not behaving
as nicely as they should be, reach out to the developers. Odds are they too are
unaware of the way their libraries behave, and would be interested to improve their
libraries’ network behavior.

Regular Connections
Because every connection to your server keeps the radio on due to the RRC state
machine, it is crucial to minimize the connections that occur in your app (especially
those that occur in the background) to not only preserve the battery life, but also the
data plan of your customers. In 2013, my team worked with a popular social media
app to reduce the number of connections that the Android app made in the back‐
ground. In this early version of the app, we saw three connections running in an
uncoordinated way in the background. Every 30 minutes, these three connections
turned on the radio seven times. In Figure 7-13, 30 minutes are bordered by the pack‐
ets with red “Bursts.” In the top example, you can see two closely occurring (but not
overlapping) purple, yellow, and blue bursts. The purple connections open the second
and third connection, the yellow bursts are reusing these two connections, and then
blue is a packet from the server telling the app to close the connection.

Network Optimizations for Android | 197



Figure 7-13. Social media connections in the background: before (top) and after (bot‐
tom) optimization

When the developers saw this, they realized that by simply coordinating these con‐
nections (and making sure to close them properly), they could greatly reduce the
background battery drain of their app. The bottom trace shows the improvement.
The “updated” version of the app pushed all three connections into one transaction
time, and the developers doubled the refresh rate to every 15 minutes. Now, with two
connections every 30 minutes, the data is being updated twice as often, but the bat‐
tery drain actually decreased by >50%. Assuming that these connections occurred 24
hours a day, we estimate that this actually saved ~5% of battery usage for every cus‐
tomer with this app installed!

Not all developers have the time to build their own transaction managers, but the
Android developers have been listening. In “JobScheduler” on page 66, we looked at
the JobScheduler API, which was introduced in Lollipop, and the examples showed
how letting the OS handle periodic connections reduced what could have been 20
connections to a mere 9! By adding the flexibility of the JobScheduler API to down‐
load non-crucial elements in a more flexible manner, and by placing a fallback mech‐
anism on background connections, your radio usage will decrease dramatically,
improving the performance of your app while simultaneously using less battery (a
win-win for you and your customers)!

198 | Chapter 7: Network Performance



Detecting Radio Usage in Your App
To determine if your customer’s device is connected to Wi-Fi or cellular, you can
query the connectivity manager, as shown in Example 7-1.

Example 7-1. Identify Connection: Wi-Fi or Cellular

public static String getNetworkClass(Context context) {
    ConnectivityManager cm = (ConnectivityManager)
                             context.getSystemService(Context.CONNECTIVITY_SERVICE);
    NetworkInfo info = cm.getActiveNetworkInfo();
    if(info==null || !info.isConnected())
        return "-"; //not connected
    if(info.getType() == ConnectivityManager.TYPE_WIFI)
        return “wifi";
    if(info.getType() == ConnectivityManager.TYPE_MOBILE){
  return “cellular";
         }
    }
    return “unknown";
}

With this snippet of data, you now know what sort of connection is in use, and you
can customize the data stream for the two network types. If your users are on cellular,
you might have non-urgent communications that you can delay transmission. Prior
to the Job Scheduler in Android Lollipop, there was no way to tell if the network was
being used. To force analytics and ads to only load when the cellular radio was
already in use, I used the code shown in Example 7-2.

Example 7-2. Identifying the presence of a cellular connection

 if (Tel.getDataActivity() >0){

           if (Tel.getDataActivity() <4){

           //1, 2, 3 response means that the cellular radio is transmitting!
           //download the image here using image getter
            imagegetter(counter, numberofimages);

            //and show the ad
            AdRequest adRequest = new AdRequest();
            adRequest.addTestDevice(AdRequest.TEST_EMULATOR);
            adView.loadAd(adRequest);
            // Initiate a generic request to load it with an ad
            adView.loadAd(new AdRequest());
  }}

Network Optimizations for Android | 199



This code snippet uses the TelephonyManager (Tel) data activity APIs to determine
if the radio is on, and if it is on, piggybacks on the connection to download more
content. This will only indicate if data transmission is occurring on the cellular net‐
work (not on Wi-Fi). In Lollipop, new APIs were added to ConnectivityManager
abstracts this method from just cellular to all radio connections with Connectivity
Manager.OnNetworkActiveListener to find out when the radio is in a high-powered
state (and ready to transmit data). To see if a network is already active, you can use
ConnectivityManager.isDefaultNetworkActive(). Using a radio connection that is
already established is a great way to share the resources, and save customer battery.

GCM Network Manager
At Google I/O 2015, Google and Android made scheduling battery efficient network
connections even easier. As a part of Google Play Services, they added GCM Network
Manager APIs that mimic the JobSchedule API for connectivity. However, JobSched‐
uler only runs on devices using Lollipop and newer, while the GCM Network Man‐
ager runs on all Google Android devices back to Gingerbread (2.3)! Now, just like in
JobScheduler, you can easily set your connections to only run when on Wi-Fi, or
when the device is plugged in. You can set tasks to run periodically in the back‐
ground, or to automatically back off. By utilizing this API for your non-urgent
updates and connections, you will directly save a large amount of device battery for
your customers.

All Good Things Must Come to An End: Closing Connections
With the latency to establish radio and TCP connections on cellular, you might think
it sensible to just keep a TCP connections to your server open. That way, if more
packets need to be sent to the device, you can reduce some of the latency on connec‐
tion setup. This is the case for files sent in relatively rapid succession. But if the files
are separated by 15 s or more, the radio will likely still have to be turned on, and
you’ll save very little time on the connection setup.

If connections are left open with no data traffic for a period of time, either the device
or the server closes the connection as a cleanup process. This is also not a bad thing
(as you’ll see in the next section). However, what is negative about this is that the side
closing the connection will tell the other party “Hey, I am closing this connection
now” and this can lead to the radio turning on, and running through the 10–15 s
RRC state machine on the device, causing extra battery drain for your customers.

In the screenshot from ARO shown in Figure 7-14, a small image is downloaded at 8
s, but the connection is not closed.

200 | Chapter 7: Network Performance



Figure 7-14. ARO Diagnostics tab showing connection closing issue

At 18 s, the server (likely doing a cleanup process) closes the connection, causing the
RRC timers to reset (in the packet view table: packet ID 24 at 18 s comes from the
server to close the connection). Instead of turning off at ~18–19 s, the radio remains
on until 28 s—nearly doubling the battery drain for one image.

For connections where you know that you will not be needing the connection any
longer, you can specify that the connection should be closed when you are completed
with the download. In Example 7-3, I disable the connection keep-alive. Finally, when
the connection has finished its download, I disconnect it. This tells Android that the
resources for the connection can be reused or closed (saving memory, etc.).

Network Optimizations for Android | 201



Example 7-3. Properly Closing Connections

HttpURLConnection connectionCloseProperly = (HttpURLConnection) ulrn.openConnection();
//this disables "keep-alive"
connectionCloseProperly.setRequestProperty("connection", "close");
connectionCloseProperly.setUseCaches(true);
connectionCloseProperly.connect();
Object response = connectionCloseProperly.getContent();

InputStream isclose = connectionCloseProperly.getInputStream();

 ...download and render bitmap image

connectionCloseProperly.disconnect();

When this code is implemented, the image is downloaded, and the server and the
device immediately closes the connection.

Regular Repeated Pings
For apps that require data updates at regular intervals, tools like Google Cloud Mes‐
senger should be used to push this information down to the app. Building your own
service often results in polling in the background by setting an alarm for every x
minutes, then waking up the radio and downloading your data. This does not seem
like a big deal, but imagine an app that pings the server for updates every 3 minutes.
Extrapolate this out—your app will make 480 connections every 24 hours. Throw in a
10 second state machine timer, and now these “harmless” connections are using 80
minutes of radio time per day. If you must have a regular wakeup for data, make sure
that you have a fallback procedure, or disable the alarm after a certain amount of time
to keep your app (and the device) asleep.

There are cases (think real-time games) where the app may need to keep packets
going back and forth on a connection. Make sure you are minimizing the data being
sent, but also know that keeping the radio connection on while your app is running
can cause major battery drain.

A Perfect Storm: Repeated Connections and Closing Connections
Imagine an app that sends real-time data every five seconds between the phone and a
server to update the locations of several people as the move around an area. Now,
imagine that the connections are left open on the server for 90 s after the last packet is
received (reserving the IP address on the server). In general, if each user is using one
connection per session, this should not be an issue. But what if you changed a config‐
uration in your code so that each one of these pings opens a new TCP connection to
the server, and your testing did not catch this before release?

202 | Chapter 7: Network Performance



You have generated a Perfect Storm of data traffic. Now each Android user is pinging
every five seconds, using as many as 18 IP addresses to your server. As more users
connect, you begin to see IP collisions, and users are unable to connect! Congratula‐
tions, your app has just successfully completed a distributed denial-of-service (DDoS)
attack against your server.

Be very careful with repeated pinging of the server, and always test before release.

Security in Networking (HTTP versus HTTPS)
When transporting data over the network, it is imperative that you keep your cus‐
tomers’ private data secure. It seems that not a week goes by without a serious breach
of private information from a mobile app. Properly storing the files locally on the
device and on your servers is crucial, but so is transporting those files back and forth
across the network. Your customers may connect to any sort of network, including
compromised Wi-Fi hotspots in cafes. If the data you transmit is sent via HTTP, the
snooper can get that data with no effort at all—you sent it in cleartext! By using
HTTPS, you encrypt the data using an encrypted key. Sharing this key can result in
an additional roundtrip when the connection is initialized, but assuming that you
have correctly configured your HTTPS connection, it is considered secure.

Worldwide Cellular Coverage
Realtors have a mantra about finding the right house: “Location, location, location.” If
you totally optimize your networking for all of the best practices just described, you
have made an excellent start at mobile network performance. However, the most
important variable that we have not accounted for is the speed of your customers’
networks. We (obviously) cannot control how or where our customers connect to our
app. However, we can work to make sure that the experience is as optimized as possi‐
ble.

According to GSMA Intelligence, in 2014, smartphones account for nearly 40% of all
cellular connected devices (and this will grow to 65% by 2020).

In examining Figure 7-15’s global market penetration in Q3 2014, we see that ~5% is
4G, and 3G is just a hair above 30%. This implies that there is a sizable audience (at
least 5%, if we assume zero 3G feature phones) of smartphones running exclusively
on 2G networks.

Worldwide Cellular Coverage | 203



Figure 7-15. Global Market Penetration by “G” (Courtesy GSMA Intelligence)

In 2013, Baidu reported 270M Android users in China, and 31% of those relied on 2G
networks for connectivity. Since then, LTE has launched in China, but it seems pretty
clear that many Android users are still relying exclusively on 2G for data connectivity.

Smartphones running on slow networks is not a problem limited to areas outside the
Unites States and Europe. Even in the developed world, there are places where LTE
rollouts have not yet occurred (or high-speed coverage is sporadic). Your customers
will travel to those places and try to use your app, so it makes sense to ensure that
your mobile app runs well on slower, more congested networks.

In Chapter 2, I discussed how “Your Devices Are Not Your Customers’ Devices” on
page 14. The same can be said about your mobile network. Most developers live in
areas of high network coverage, with at least 3G (and probably 4G LTE) radio con‐
nectivity. In addition to the large screens and fast processors, we as developers live in
a bubble of highly available networks. For customers in similar areas around the
world, this is great. However, it is useful to look at network connectivity around the
world to ensure that we are indeed properly serving data to our end users.

CDNs
As latency is a major stumbling block in cellular data communication, anything you
can do to reduce latency to your end users will speed the delivery and thus the ren‐
dering of your app. While the speed of light is incredibly fast, it still takes 53 ms to
make a roundtrip from Boston to London (and Boston to Sydney is 162 ms)! In order

204 | Chapter 7: Network Performance



to reduce this latency, consider using a content delivery network (CDN) to mirror
your content in data centers around the world allowing your customers faster access
to the data they are requesting.

CDNs (at a very high level) are servers that store your data at the edge or near the last
mile. By relying on a distributed system of data stores, your main system is not over‐
whelmed with requests, and by placing these CDNs near your customers, you get the
data closer to them, thus reducing the roundtrip time to request and deliver the files.

In Indonesia, Facebook reports that 50% of mobile users utilize Facebook, yet 75% of
customers rely on 2G networks. Again faced with a large customer population with a
limited connection, Facebook worked to realize the biggest gains possible. Indonesia
is a large archipelago, covering a huge amount of distance. However, most of the
country is 2,000 miles from Singapore (a likely CDN location). A roundtrip time in a
fiber cable takes about 32 ms (assuming 200,000 km/s speed of light in fiber) from the
local CDN. Even with this large latency, Facebook discovered that it needed to be
aggressive on CDN mapping. In its analysis, Facebook found that only 16% of traffic
was coming from local CDNs, and 84% of images/videos were coming from CDNs in
South America (literally halfway around the world). For data to travel from South
America to Indonesia, it has to travel the length of the Pacific Ocean. If we are gener‐
ous, and place this CDN in Ecuador (the westernmost tip of South America), your
data must still travel ~11,000 miles, giving an RTT of 176 ms (a 5.5x increase!). This
undoubtedly shows the value of having a CDN, and additionally the importance of
carefully tuning your CDN traffic to minimize the distance/time your data is travel‐
ing to your customers!

Testing Your App on Slow Networks
Your first step to testing on slow networks should be a travel request for a world tour
of locations where your mobile app is used. (Hey, it doesn’t hurt, right?) Facebook, as
seen in the previous section, has conducted testing in Africa and Indonesia, and pub‐
lished some interesting results. In Africa, Facebook found that its app burned
through a 1-month data plan in 40 minutes. As a result of this trip, Facebook worked
aggressively to reduce data usage and network utilization, and with image optimiza‐
tions and better caching, the Facebook app uses 50% less data (a savings appreciated
by all customers, no matter what network speed they are using!).

Few companies have the resources of Facebook, so it is understandable that world
travel may be out of the question for app testing. However, with careful analysis of
your analytics data, it might be possible to dig through some of these issues by region
or country for latency and bandwidth issues that might arise.

Worldwide Cellular Coverage | 205

http://www.submarinecablemap.com/


Emulating Slow Networks Without Breaking the Bank
In Chapter 2, I suggested using a private Wi-Fi network for your data testing. If your
device lab is doing all of its testing on high speed networks, you may be missing
important test scenarios on slower networks. By not taking into account the variabil‐
ity of mobile network throughputs, you will potentially alienate customers, and will
frustrate existing customers who travel into areas of poor coverage. Carriers use spe‐
cialized antennas in an isolated environment to test these sorts of situations. But these
setups are expensive, so how can you test without breaking the bank? Let’s look
through these (sorted by cost to implement).

Wi-Fi Throttling
If you are using a Wi-Fi router for your testing, and you can install OpenWRT (an
open source router) on it, there is a wshaper plug-in that allows you to throttle the
downlink and uplink connections, which at least allows you to emulate slow network
speeds (but not the latency).

Emulator
The Android Emulator has the ability to throttle network conditions. When the emu‐
lator is open, you can login to the emulator to simulate different throughputs and
latencies:

telnet localhost 5554
network speed edge  //gprs, umts hsdpa and full are additional options
Network delay edge

Homemade Faraday Cage
A Faraday cage is a wire box that isolates the interior space from all external electro‐
magnetic radiation. By building a partial Faraday cage, you can reduce the amount of
signal reaching the phone. Some developers have reported success using an old
(unplugged!) microwave to partially shield existing radio conditions. The results
from these tests might be hard to reproduce due to variability of the experiment, but
for qualitative testing this may be sufficient.

Network Attenuator
AT&T has released a tool called the AT&T Network Attenuator, shown in
Figure 7-16. The Network Attenuator runs on a Samsung S3 ICS kernel (requires root
and flashing of a custom ROM, provided by AT&T). After it’s installed, the app works
as a dial to slow down the mobile network to lower throughputs (sorry, if you are
connected on 3G, it will not speed up your connection to 4G!). When you change the
network speed slider from UMTS to EDGE, the uplink, downlink, and RTT timer all
adjust, allowing simple testing of your Android app at a slower speed. You can also

206 | Chapter 7: Network Performance

http://wiki.openwrt.org/doc/recipes/guest-wlan
http://developer.att.com/attenuator


adjust the network congestion form left to right, increasing the roundtrip time for
each connection.

Figure 7-16. Network Attenuator APK

Building Network-Aware Apps
If you know that your customers will be connecting on less than ideal networks (and
we know that they will), doesn’t it behoove you to ensure the best possible customer
experience for them? I am not suggesting that you degrade the quality of your app on
3G or 4G, but there are tricks to enhance the experience on slower networks. I like to
call apps that utilize this architecture “flexibly network aware” (FNA), because they
are network aware, and flex the user experience based on the measured conditions.
Let’s walk through the code of my Network Activity Sample app. It is also fun to say
the acronym aloud when describing your app.

Imagine that you want to serve a different mobile experience for devices on a fast,
medium, and slow network. This could be as simple as removing inline video or
reducing the number of images (or at least varying the image size). If the code in
Example 7-1 resulted in a cellular connection, you can query the TelephonyManager.
You can use your app to vary the type of experience to display, as seen in
Example 7-4.

Example 7-4. Determining Cellular Network Speed

TelephonyManager teleMan =
   (TelephonyManager)getSystemService(Context.TELEPHONY_SERVICE);

Worldwide Cellular Coverage | 207

https://github.com/dougsillars/FNASampleApps/tree/master/NASampleApps/NetworkActivitySample


int networkType = teleMan.getNetworkType();
switch (networkType)
{case 1:    netType = "GPRS";
   networkSpeed = "slow";
    break;
case 2:     netType = "EDGE";
      networkSpeed = "slow";
   break;
case 3:     netType = "UMTS";
   networkSpeed = "medium";
      break;

// we'll leave out a few network types, but you get the idea.
//You can see the full code on GitHub

case 13:    netType = "LTE";
   networkSpeed = "fast";
   break;}

By querying the network state at regular intervals, your FNA app will gracefully
improve or degrade based on the currently available network conditions. This is a
pretty basic algorithm, and does not take into account the strength of the network.
You could further parse weak signal 3G networks as “slow” or a weak 4G network as
“medium.”

As an example, you could have a mobile app download a small image on a “slow” net‐
work, a medium-sized image on a “medium” network, and a large image on the “fast”
network. You can similarly configure Wi-Fi connections as a “fast” network, or per‐
haps even as a “faster” network, as your customers are not hindered by a cost for each
MB of data that you send over Wi-Fi.

Example 7-5. Establishing Network Speed

switch(networkSpeed){
case "fast":
 new ImageDownloader().execute(urlbig); //image is 143KB
 break;
case "medium":
 new ImageDownloader().execute(urlmed); //image is 41KB
 break;
case "slow":
 new ImageDownloader().execute(urlsmall); //image is 27KB
 break;
}

When it is time to download the images, I calculate the actual time the download is
taking, as a quality measurement. I actually record two times: the time until a 200 OK
response form the server, and the total time it takes to download the image. The
responsetime (the time it takes to get a 200 response from the server) is equal to two

208 | Chapter 7: Network Performance



RTTs (assuming a DNS lookup has already occurred), and can be used to estimate
network latency. The downloadtime is the total time it took to receive the object from
the server. By additionally querying the content length, my Android app can calculate
the actual throughput of the file in KB/s.

Example 7-6. Determining RTT and Throughput in Real Time

 private Bitmap downloadBitmap(String url) {
    Long start = System.currentTimeMillis();                //download start time
 final DefaultHttpClient client = new DefaultHttpClient();
  final HttpGet getRequest = new HttpGet(url);
        try {HttpResponse response = client.execute(getRequest);
            //check 200 OK for success
            final int statusCode = response.getStatusLine().getStatusCode();
            //time 200 response received
            Long gotresponse = System.currentTimeMillis();
             }
            final HttpEntity entity = response.getEntity();
            //get ContentLength of file
   contentlength = entity.getContentLength();
            if (entity != null) {
               InputStream inputStream = null;
               try {
   inputStream = entity.getContent();
   final Bitmap bitmap = BitmapFactory.decodeStream(inputStream);
                 Long gotimage = System.currentTimeMillis();
    //time image download completed
                 responsetime  = gotresponse - start;
    //time to the 200 ok response
                 imagetime     = gotimage-start;
       //download time
throughput    = ((double)contentlength/1024)/((double)imagetime/1000);  //KB/s
                 return bitmap;
              }

So, what does this data tell us? Using the Network Attenuator app to simulate various
network speeds, I was able to measure the download times for the three different files
on three different networks, as shown in Table 7-2.

Worldwide Cellular Coverage | 209



Table 7-2. Download Time(s) of Images

File LTE UMTS EDGE

Big (143 KB) 1.938 5.243 9.405

Med. (41 KB) 2.793

Small (27 kb) 3.401

If the large file is used for all network conditions (a non-FNA app), it is clear that the
user experience on UMTS and EDGE is significantly slower due to the large file size.
If we apply a FNA architecture, the UMTS download is nearly 100% faster, and the
EDGE download is nearly 300% faster. While using network technology to judge
download speeds is (admittedly) a very rough way to estimate the ideal network
speed, even this simple model shows the potential for improved customer interac‐
tions.

Collecting a database of latency and throughput data on top of network generation
and signal strength could allow you to build a better algorithm for allowing your app
to flex with the network in near real time, but it appears that keeping it simple still
derives benefits to your customers.

Measuring Latency
In my experience, there is a lot of variability in RTT measurements.
Distance to the cell tower, congestion, or interference from other
radio sources can cause drastic changes in RTT. As such, it is cru‐
cial that you not rely on one or two discrete measurements, but
instead use a running average to even out any potential outliers.
While it is great that you are working with the network conditions
at hand, it is important to smooth out this data.

Accounting for Latency
If your FNA mobile app discovers that your customers are in a high-latency environ‐
ment (due to a calculated high RTT), it can decide to help speed the experience by
pre-fetching more aggressively. For example, if you are scrolling through a series of
images, you may initiate a download of additional images before the user gets to the
end of the list (e.g., if there are only two images below the screen, start getting the
next batch of images):

if (ImagesBelowtheFold<2){
                <get next batch of images>
                }
}

210 | Chapter 7: Network Performance



In a high latency environment, your customer might get to the end of the list before
the next batch of images are able to load. To account for this, you can begin pre-
fetching the images earlier:

If (latency = normal){
        if (ImagesBelowtheFold<2){
                <get next batch of images>
         }
}
Else {
         //latency is high
         if (ImagesBelowtheFold<4){
                <get next batch of images>
 //consider getting more images too
 //also, smaller images?
         }

By initiating the download twice as early, you are giving the network twice as much
time to get the data downloaded before your customer notices a lag. This may use the
network slightly more, and potentially download more images (and use more data),
so it should be used with caution, but if you can make the user experience seamless, it
may be worth it.

Last-Mile Latency
Latency is typically encountered in the last mile of transit, and this is especially true in
mobile. These tricks can help you cope with latency, but they only look to alleviate the
problem, not actually solve it. Just as I described in “Testing Your App on Slow Net‐
works” on page 205, Facebook discovered that on slow connections in Indonesia,
fully 84% of traffic was being delivered from South America and European CDNs.

“Other” Radios
The cellular and Wi-Fi radios transmitting data are likely the most used, and easiest
to optimize. There are additional radios that lead to power drain on mobile devices,
and their operation should also be discussed.

GPS
Android offers “Coarse Location” information, that does not require the GPS radio to
turn on. By using information about nearby cell towers and Wi-Fi points, a loose
location can be generated. However, for many apps, a precise location is needed, and
the GPS radio will turn on to receive signals from the GPS satellites. This fix requires
a line of sight from your phone to the satellites.

In order to optimize the performance of your location usage, you may have to tweak
the window (how long you keep the GPS receiver on), and the frequency. The longer

“Other” Radios | 211



the window, and the more often the frequency, the quality of your location data will
be better.

Bluetooth
Currently, all Android Wear devices must connect to a device via Bluetooth. If you
are interested in the traffic sent over Bluetooth, you can collect a logfile that is dis‐
sectable in Wireshark. For devices on KitKat and newer, you can enable the “Blue‐
tooth HCI snoop log” under the Developer Options settings menu. When you check
this box, your Android device will collect a log of all packets sent along the Bluetooth
interface. The data is stored in /sdcard/btsnoop_hci.log.

Opening this logfile in Wireshark gives you insight into the packets being transferred.
Much of data is encrypted, but you can gain insight into the traffic patterns between
your two devices (Figure 7-17).

Figure 7-17. Bluetooth traffic in Wireshark

In this case, the response to my query came as a POST, and you can read the response
to my Google Query (from Glass) on “Australian Shepherd” (Figure 7-18).

Figure 7-18. Bluetooth POST response

212 | Chapter 7: Network Performance



Using Fun Wireshark tricks, you can quantify the packet and data transferred over
time over Bluetooth (Figure 7-19).

Figure 7-19. Bluetooth POST response - packet counts over time

Conclusion
Most Android apps use the cellular and Wi-Fi radios to communicate to outside
servers for information. Because the radios are second to the screen for battery drain,
it is important to use them judiciously. Further, as most users have a monthly cellular
data allowance, it’s doubly important to ensure that the files you are using are opti‐
mized for delivery over mobile networks for both speed and the data consumed. In
addition to the cost of smartphone data traffic, the higher latencies and slower speeds
are essential to account for. Ensuring that your data transfers are optimized for the
available network will allow your app to shine, no matter where in the world your
customer is, and no matter how good (or bad) the network conditions are. Working
to optimize your data traffic to work with the RRC state machine and your custom‐
ers’ location will save customer battery life and enhance the user experience around
the world.

Conclusion | 213





CHAPTER 8

Real User Monitoring

In the previous chapters, we have walked through a number of great tools that can be
used to diagnose issues in your Android app. We’ve looked to optimize battery, mem‐
ory, CPU, and network using free tools that you can use on your Android device.
However, as we discussed in Chapter 2 (and you are well aware), these tests require
having a physical device in hand, and only permit testing on the Internet connections
that are available.

Without a large travel budget and an infinite budget for devices (and unlimited time
to focus on performance) how can you ensure that your app is performing optimally
for all of your customers, regardless of location, network, or device? The answer is to
collect runtime data on your app, aggregate the results, build reports, and look for
issues that might arise from the data. These analytics are drawn from the app itself,
and is commonly known as real user monitoring (RUM).

While some development teams with deep pockets might build their own RUM
engines to gather data, there are a number of tools on the market that you can inte‐
grate into your app to collect data from your install base. Many of them are free or
have limited free offers, allowing you to begin collecting this information without a
huge upfront cost. If your app begins collecting a lot of data or you need detailed
reporting, you may have to begin paying for these services, but the value of the data
(as you will see) is worth it.

215



Not Just For Large Teams
Collecting RUM data is not just for the large company with a dedi‐
cated performance team. Perhaps you are the performance team
(along with all the other hats you wear). Collecting data about your
users is still very easy to set up in your app, and will provide you
with insights to help you improve the usability and performance of
your app. I encourage you to give it a shot, and I’m sure you will
reap rewards for the small amount of upfront work.

Enabling RUM Tools
There are many RUM tools available in the market. Each will have slightly different
reports and data that you might find useful. To gain all of the insights desired, you
may find that you need multiple SDKs installed in your app. Each RUM tool provides
detailed instructions on how to integrate their code or library into your app. Some
have even automated the integration into basically an installer where there is no work
involved. More fully featured SDKs allow you to establish your own metrics to moni‐
tor and collect data on. In this chapter, I have selected three RUM SDKs to add to a
sample app (ImageScroll) to see what data I can obtain.

The first SDK to be added is Crashlytics, which uses a very simple widget (shown in
Figure 8-1). All you must do is click the install button, and the code will be automati‐
cally added to support these analytics to your app.

Figure 8-1. Installing Crashlytics

After the SDK is installed, you simply build and distribute your app. As customers
begin using your app, the usage statistics are reported back to the RUM provider. Web

216 | Chapter 8: Real User Monitoring



dashboards allow you to investigate how customers are using your apps, and where
slow downs or crashes might be occurring. By identifying these remotely, you no
longer depend on bug reports from your users; you can begin fixing the bugs imme‐
diately and release the bug fixes in your next update. This ensures that your app is
running optimally on all devices.

RUM Analytics: Sample App
How do these tools collect information on your customers? By inserting either a JAR
or library (or sometimes just code), these RUM tools collect information every time
the app is run. This data is then transferred to a server that generates dashboards of
the data, and can create alerts when things go drastically wrong in your app.

Each tool is different, but many allow you to dissect the data by region, device, OS,
app versions, and other criteria. To get sample RUM data, I built an app called “Image
Scroll” that simply loads 10 images at a time as you scroll through them (Figure 8-2).
The images are hosted on a remote server, and the URLs are stored in an array. When
the app reaches the end of the array (there are 92 images), Android throws an out-of-
bounds exception, and the app crashes. This is by design, in order to track app
crashes across devices.

Figure 8-2. Image Scroll app

This app also has several incorrect URLs for the images (to generate 404 errors), and
replaces a small image of a baseball player with a large image of goats in the second
group (900 KB versus ~50 KB) as test cases for errors that affect performance.

This sample app has (in alphabetical order) Crashlytics, Crittercism, Google Analyt‐
ics, and New Relic RUM tools installed. I am using free or free trial versions of all of
these services. They all report similar information, and each report the data slightly

RUM Analytics: Sample App | 217



differently, so one service might work better for your app needs than another. To
understand the data being reported, we’ll look at screenshots from these tools to bet‐
ter understand the data you can use to optimize your mobile apps.

As we discussed in Chapter 2 when measuring battery drain, there is a bit of a Hei‐
senberg’s Uncertainty Principle effect with this RUM data. All of these SDKs will
report back to the server with as much information as you want to have reported.
This can lead to slightly high data usage and battery drain. These SDKs are fairly well
optimized for data usage and battery drain, as we’ll see in “RUM SDK Performance”
on page 231.

Crashing
As discussed in Chapter 2, performance is crucial to customer satisfaction of your
app. Being able to access performance stats on actual customer devices in the field
provides you with unprecedented ability to diagnose and resolve issues quickly. Let’s
start with the most crucial issue when it comes to performance: app stability. Fast
notifications of crashes with logfiles can help you quickly diagnose the situation, and
fix the issues in your code.

Let’s take a look at what happens when we load too many images:

 imageViews=new ImageView[100];

    public int Imagelooper
     (int numberofaddedimages, int totalImageCount, RelativeLayout rl){
        for(int i=0;i<numberofaddedimages;i++)
        {

            totalImageCount = totalImageCount++;
            //for analytics I want to track crashes.. so let's force it to crash
           // if(totalImageCount ==100){
           //     totalImageCount=0;
           // }
                   //if totalImageCount reaches 100, the app crashes
                   //because I have exceeded the array size

           imageViews[totalImageCount]=new ImageView(this);

When the indexer hits 100, we go out of bounds on the ImageView array. Logcat
shows:

03-13 14:01:32.351  13772-13837/com.sillars.imagescroll I/
  image downloaded﹕ number: 99
03-13 14:01:32.469  13772-13837/com.sillars.imagescroll I/ImageDownloader﹕
    image99responsetime (2RTT): 38

We see image 99 downloaded with a roundtrip time of 34 ms. But we are about to
increment outside of the array bounds:

218 | Chapter 8: Real User Monitoring



03-13 14:01:34.637  13772-13772/com.sillars.imagescroll E/AndroidRuntime﹕
 FATAL EXCEPTION: main
    Process: com.sillars.imagescroll, PID: 13772
    java.lang.ArrayIndexOutOfBoundsException: length=100; index=100
            at com.sillars.imagescroll.MyActivity.Imagelooper
              (MyActivity.java:327)
            at com.sillars.imagescroll.MyActivity$3.onScrollStopped
              (MyActivity.java:178)
            at com.sillars.imagescroll.MyScrollView$1.run(MyScrollView.java:37)
            at android.os.Handler.handleCallback(Handler.java:739)
            at android.os.Handler.dispatchMessage(Handler.java:95)
            at android.os.Looper.loop(Looper.java:135)
            at android.app.ActivityThread.main(ActivityThread.java:5221)
            at java.lang.reflect.Method.invoke(Native Method)
            at java.lang.reflect.Method.invoke(Method.java:372)
            at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run
   (ZygoteInit.java:899)
            at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:694)

And indeed, we get an out-of-bounds exception for the ArrayIndex (length is 100,
and index set to 100):

03-13 14:01:35.329  13772-13797/com.sillars.imagescroll I/Fabric﹕
  Crashlytics report upload complete: 35CC-27DD9B9DA026.cls
03-13 14:01:54.291  13772-15861/com.sillars.imagescroll I/
   com.newrelic.agent.android﹕ Harvester: connected
03-13 14:01:54.291  13772-15861/com.sillars.imagescroll I/
   com.newrelic.agent.android﹕ Harvester: Sending 102 HTTP transactions.
03-13 14:01:54.291  13772-15861/com.sillars.imagescroll I/
   com.newrelic.agent.android﹕ Harvester: Sending 1 HTTP errors.
03-13 14:01:54.292  13772-15861/com.sillars.imagescroll I/
   com.newrelic.agent.android﹕ Harvester: Sending 0 activity traces.
03-13 14:02:05.070  13772-13772/com.sillars.imagescroll I/Process﹕
   Sending signal. PID: 13772 SIG: 9

After the app has the exception, we note that there are a few more log entries after the
crash—these are the crash reports being pushed up to Crashlytics and New Relic. I
have noticed (using network monitoring) that Crittercism reports generally occur a
short time after the app was exited.

It is great to be able to reproduce an error in a controlled test environment where we
have the phone and analysis equipment. Because that will not always be the case, let’s
see what these tools report to us. All of the apps report crashing in a similar way, so
let’s looks at some sample reports from Crashlytics.

Crashing | 219



Examining a Crashlytics Crash Report
When Crashlytics finds a new crash, you immediately get an email reporting that a
new issue was found (hint: build a special crash report email address or filter). Click‐
ing the link in the email takes you to the crash details web page. Figure 8-3 shows a
screenshot of the Imagelooper crash.

Figure 8-3. Crash details

The top of this dashboard shows the number of crashes and the number of users (in
this case, 21 crashes across nine users), with a graph showing the count of crashes
over the last three days (the 12 crashes from March 12, 2015, are highlighted). The pie
and bar charts in the middle of the page breaks down the devices where the crash has
occurred by OEM (left) and Android version (right). Clicking on either chart gives a
further breakdown (in this case, we are looking at the count of Samsung devices and
devices running Android 4 variants), you can break down devices further (and the
same with the OS versions); see Figure 8-4.

220 | Chapter 8: Real User Monitoring



Figure 8-4. Device breakdown of crashes: focusing on Samsung devices and Android 4
OS versions

The section underneath the pie charts gives average device details during crash: were
the devices rooted? Was there free disk space/RAM? Was the app in the foreground?
Was location on? Below this is the exception trace matching what we saw in the log‐
cat. You can interact with the latest crashes, and get exact details about the exact
device (including all active threads) through the interface. I have shared this crash
publicly, so you can examine these details further if you are interested: http://
crashes.to/s/5ba7d984fe7.

The availability of the remote trace of the crash makes debugging a bit easier. All of
the tools offer either bug tracking in their interface, or a way to export the defects
from their system into a bug tracking repository. While being reactive to crashes is
not ideal, these tools allow you to see which crashes are affecting the most customers
and prioritize their resolution.

Assuming you’ve tackled all of the pressing crashes reported in the previous section,
now you can investigate how your app is performing around the world. Tools that
report how your app performs on different devices and networks around the world
can help you isolate issues, and find bottlenecks in your app that traditional testing
might not find. Perhaps your app crashes on a popular device in the Middle East, or
you suddenly have a lot of usage on a slower network in Africa. Or perhaps these
tools will pick up unexpected usage patterns in your app that you can capitalize on for
future releases. There are a number of SDKs and tools tha report this information.
Figure 8-5 a report of app usage in the last 24 hours from Crittercism.

Crashing | 221

http://crashes.to/s/5ba7d984fe7
http://crashes.to/s/5ba7d984fe7


Figure 8-5. Crittercism report: 24-hour usage trend

This dashboard breaks down the number of requests (orange), latency in ms (green),
userbase % (blue), HTTPS errors (red) and the crash % (purple) for the top devices
(top), OS versions (middle) and carriers (bottom). From this chart, it appears that
most of the usage has been from Samsung devices with varying latencies, errors, and
crashes per device. This allows you to quickly see if your app is having trouble with a
specific device or OS version. If a group of devices, (or OS versions) are exhibiting
excess latencies, or crashes, you can investigate and push out fixes for those users.

The wireless carrier charts work as a rough proxy for the location of your users.
There is also a global map showing users by country in all of these tools, but because
this data is all generated by me—and one helpful person on Twitter from Shanghai—
the maps are pretty boring.

That one connection from Shanghai is interesting though. It appears that the connec‐
tion was very slow, and there were a number of errors that occurred during the trans‐
action. Here is the dashboard from New Relic (and the connection occurred on
March 12 just after midnight Pacific Time). In the main chart on the page, we see that
this one connection takes nearly 20 s (and all the other connections nearly do not
render on the page). The color under the graph indicates that a network issue caused

222 | Chapter 8: Real User Monitoring



the problem. By observing how your app is behaving over time, you can discover net‐
work or server delays during busy traffic times, indicating that the server is overloa‐
ded, or that the files might be overtaxing the network.

Figure 8-6. Dashboard with one slow connection

The execution time of this one connection from China is well above the rest. It could
just be a random outlier. But if I continued to see slow connections to one area, it
would justify further investigation. The middle graph on the right of this dashboard is
the HTTP response time. For the connection to China, the Crittercism response time
is nearly five seconds (again, not customer facing, so that’s OK), but the Photobucket
response time is 1,720 ms. This dashboard also includes time graphs for the crash rate
(where the color matches the bug status), traffic by app version and HTTP errors
over time.

Some tools also allow you to see latency by domain, as shown in Figure 8-7 (are your
servers doing OK?). Filters for carriers allow you to see if certain regions might not
be getting the data fast enough (recall from “Testing Your App on Slow Networks” on
page 205 that Facebook found issues specific to certain countries). If you see these
sorts of trends, you can instrument your app further in an attempt to identify the
slow points). In the chart below, the latency peaks with an average of 200 ms, but

Crashing | 223



deeper investigation shows that the slower connections are analytics, while my image
provider (Photobucket) has a response time of 23 ms. The error rate is due to the fact
that 2 of the 100 images loaded by my app have incorrect URLs, throwing a 404 error.
Seeing any error here should prompt you to dig deeper.

Figure 8-7. Latency, errors, volume and data graphs

The New Relic tools have a list of all network errors. In Figure 8-8, we can see all of
the issues from Photobucket (the host of the images) are 404 errors. Clicking into this
section provides a list of all 404 errors from the Photobucket domain—again giving
you the opportunity to resolve these issues on the backend.

224 | Chapter 8: Real User Monitoring



Figure 8-8. Network errors

Being able to correlate HTTP errors from your app with your server logs allows for
very powerful troubleshooting. You can narrow down the issue to a platform, or ver‐
sion of your app that might be causing troubles.

Usage
Beyond crashes and performance, your RUM data can also tell you a great deal about
your customers: how they are using the app (and how long), how often they use it,
and more (Figure 8-9). By better understanding who your users are, and how
engaged they are, you have more opportunities to improve your app.

Crashing | 225



Figure 8-9. Usage information

The Google Analytics data provides us with a lot of information about our users. The
top graph is showing the daily user count versus the average session length (on March
11, there were nine users with an average session time of 59 seconds). There are 13
total users with 142 total sessions (91% of sessions are from returning users according
to the pie chart). Google Analytics allows you to specify specific screens that appear
to the users. From this data you can gather information about what views in your app
lead to customers exiting, or new user flows that you can improve. For an app with
just one screen, I label every 10th unique image as a screen:

//initialize tracker at top of the screen
t = analytics.newTracker(R.xml.app_tracker);
        // Enable Advertising Features.
        t.enableAdvertisingIdCollection(true);
        t.enableExceptionReporting(true);
        t.setScreenName("top of scroll");
        t.send(new HitBuilders.ScreenViewBuilder().build());
<snip>
//10 more images were just requested, so update the screen name in Google Analytics
                    t.setScreenName(totalImageCount + " images");
                    t.send(new HitBuilders.ScreenViewBuilder()
                            .build());
//and add a crittercism Breadcrumb
                 Crittercism.leaveBreadcrumb(totalImageCount + " images");

226 | Chapter 8: Real User Monitoring



After adding these sections of code to my app, whenever a customer scrolls through
10 images in it, Google adds a screen view and Crittercism adds a breadcrumb for
issue tracking. Let’s look at the dashboard report from Google Analytics
(Figure 8-10). This table shows what you might expect, that page views at the start of
the app are most common (“Doug Scroll App” is the initialized name of the screen),
and then users exit at various times as they scroll through the app. A large percentage
of the exits occur without any scrolling, and also there are a lot that exit at 90 images
(due to the bug that causes the app crash after image 99). Another interesting feature
is that the average time in a view is highest for 90 images. I have seen the app go to an
ANR rather than crash, freezing the app into a holding pattern, and inflating the
usage time for this screen.

Figure 8-10. Screen views in app

For a real app, the time spent in a unique view can tell you a lot about how your cus‐
tomers are interacting with your app. In addition to graphing the time in each screen,
Google Analytics can break down the flow from one screen to the next. In this simple
app, it makes sense that most users will scroll from 10 images to 20 images, etc. For a
more complex app, this can help you find issues with your flow, or views that your
customers are not finding. If you observe devices or screen sizes that are missing
screens, perhaps there is an issue with the way the clinks are rendering—inhibiting
the customers from browsing your app as expected. The flow data can be broken
down in many ways: from all users to smaller subsets. In Figure 8-11, all of the data
traffic is in gray, while the darker lines indicate the data traffic just for users from Cal‐
ifornia.

Crashing | 227



Figure 8-11. Behavior flows (California users are highlighted)

You can find other pain points by setting unique events that are reported back to the
analytics server. In Chapter 7, we used Example 7-4 to identify the Network type used
by the customer and Example 7-5 to modify the content delivered based on the avail‐
able network bandwidth. I have applied this logic to the Image Scroll app, and addi‐
tionally report the network type and the RTT times I am finding to the analytics
engines:

        t.send(new HitBuilders.EventBuilder()
                      .setCategory("RTT Event")
                      .setValue(AvgRTT.longValue())
                      .setAction("ImageRTT").setLabel(networkConnection).build());
        Crittercism.beginTransaction(networkConnection);
        Crittercism.setTransactionValue(networkConnection, AvgRTT.intValue());
        Crittercism.endTransaction(networkConnection);

This data is reported as shown in Figure 8-12.

228 | Chapter 8: Real User Monitoring



Figure 8-12. Network type seen by app

The network type was checked on every screen update, and thousands of RTT times
were collected (column 3 shows that nearly 20,000 values were obtained). The aver‐
age roundtrip time is reported in the last column of Figure 8-12. The average round‐
trip time might not be extremely useful, as it varies by signal strength, location, and
the type of network. However, using a secondary dimension to the data, we can get
RTT by network type by device, metro area, continent, allowing slicing and dicing of
the information in many different ways. Figure 8-13 sorts the data by U.S. metro
region, showing that the Wi-Fi in Seattle has a faster RTT than that in San Francisco
and New York.

Crashing | 229



Figure 8-13. Network type by city

By naming your screens, adding custom events and timers, you can build a very
detailed picture of how your customers are using your app, find pages that are load‐
ing slowly, navigation points that are being missed, and other user flow issues. You
can also discover if certain regions of the world are facing higher latency, errors, or
other slowdowns. You can discover if there are performance issues on specific days,
or times during the day due to congestion on the network (or even on your server!).

Real-Time Information
As the analytics data being collected by these reporting SDKs is being sent regularly,
you can track users in near real time. All of the providers just discussed show the per‐
formance of apps in near real time. In Figure 8-14, we see four app loads (blue line),
and one crash (red line) in the last 30 minutes.

230 | Chapter 8: Real User Monitoring



Figure 8-14. Real-time analytics

Big Data to the Rescue?
As your app grows and gains a larger user base, the ability to quickly ascertain and
resolve issues becomes even more important, but also more difficult. Figuring out
which issues are affecting the most customers and the severity of the problem helps
you to prioritize bug fixes. The tools described in this chapter can help you crunch
the numbers and find the usage patterns and issues that require optimizing—stream‐
lining your app and making your customers happier.

Here is where good RUM will help you ensure that updated releases are performing
better than previous versions, reducing crashes and improving speed and load times.
While using the big data collected by your RUM tools is still a reactive way to resolve
issues, careful planning will provide you with the insights you need to continuously
improve your app, and report how performance improvements actually improve the
retention and time spent in the app.

RUM SDK Performance
Despite the fact that these SDKs are built to measure performance, it is a good idea to
measure the performance of these tools. If you notice in the previous screenshots,
each SDK reports the latencies of the other SDK connections (but not their own).
Short roundtrip times are important for user critical data, but longer roundtrips for
files to be accessed later are OK. Should you begin to see a lot of HTTP connection
errors form the SDK, then you might begin to worry.

To test the network performance of your monitoring SDKs, you can use a tool like
the Application Resource Optimizer “AT&T Application Resource Optimizer” on
page 183. ARO has tools that allow you to filter packet data based on endpoint.

Big Data to the Rescue? | 231



Figure 8-15 shows us the full app data on top, and just the analytics data view on the
bottom.

Figure 8-15. Network trace of image Scroll: full app (top) and just RUM connections
(bottom)

The RUM files from these providers are all encrypted, so to view them, I ran the same
test through a “MITMProxy” on page 183. The RUM data being sent by these analyt‐
ics providers does not endanger any customer data, and none of the data being sent is
unexpected. Here is a crash report from Crittercism:

2015-03-16 13:38:41 POST https://api.crittercism.com/android_v2/handle_crashes
                         ← 200 application/json 14B 46.33kB/s
Request
Response
x-newrelic-id:    <removed>
Accept:           text/plain
Accept:           application/json
Content-Type:     application/json
User-Agent:       5.0.6
Host:             api.crittercism.com
Connection:       Keep-Alive
Accept-Encoding:  gzip
Content-Length:   28095
JSON
{
    "app_id": "<removed>",
    "crashes": [
        {
            "app_state": {
                "activity": "com.sillars.imagescroll.MyActivity",
                "app_version": "1.1",
                "app_version_code": 2,

232 | Chapter 8: Real User Monitoring



                "arch": "armv7l",
                "battery_level": 0.16,
                "carrier": "",
                "disk_space_free": "11018395648",
                "disk_space_total": "24723058688",
                "dpi": 3.5,
                "locale": "en",
                "memory_total": 268435456,
                "memory_usage": 90950656,
                "mobile_country_code": 0,
                "mobile_network": {
                    "available": true,
                    "connected": false,
                    "connecting": false,
                    "failover": false,
                    "roaming": false
                },
                "mobile_network_code": 0,
                "model": "Nexus 6",
                "name": "",
                "orientation": 1,
                "sd_space_free": "11018395648",
                "sd_space_total": "24723058688",
                "system": "android",
                "system_version": "5.0.1",
                "wifi": {
                    "available": true,
                    "connected": true,
                    "failover": false

We can see the app, version, that my battery was pretty low (16%), that there is a lot
of free disk space and memory, that I was on Wi-Fi (but cellular was available), and a
lot more. All of this data is used on the dashboard to help diagnose the crash, and in
all of the files collected, there is no unexpected data being transmitted.

Conclusion
In this chapter, we looked at how collecting RUM analytics data from your customers
can help you ascertain issues on devices you are unable to test on. By getting log
traces of crashes on these devices, it is possible to resolve the issue without every han‐
dling the device in question.

The data you collect can also help you uncover regional pain points by noting slow
network connections in certain areas of the world. By carefully tracking user behav‐
ior, you might find that your customers are using your app in unexpected ways, and
in order to accommodate these new uses, streamline the user flow in order to make
the experience better.

Conclusion | 233



By carefully instrumenting your app with analytics, you can obtain very powerful
data on how your app is failing, where it needs improvement, and where things are
running well with real user monitoring. Getting real data form the field on real devi‐
ces with real customers is invaluable, and when analyzed carefully, can be used to
great advantage—fixing all of the problem points that you did not catch with your
tests run in the lab.

234 | Chapter 0: Real User Monitoring



APPENDIX A

Organizational Performance

In order to be successful in instituting performance in all aspects of your Android
app, it helps to have your entire organization “buy in” to the importance of perfor‐
mance. Developers, testers, and your management all need to agree that ensuring fast
performance is crucial for the app (and maybe your company’s success). Once the
team is on board, you’ll need to develop processes to ensure that performance
remains a metric that your development and apps are held to. Finally, we’ll review a
number of the tools outlined in this book as a part of your performance process
implementation.

Getting Buy-In (Management Focus on Performance)
When it comes to making app performance a part of your company’s culture, it is
crucial that you gain the buy-in of your management. There is a lot of data out there
on slow website performance, and the little data I have seen on mobile app perfor‐
mance follows the same trend. So, if you are having trouble convincing your manage‐
ment that app performance is essential to the lifeblood of your company, refer back to
“Performance Matters to Your Users” on page 2 and “Performance Infrastructure Sav‐
ings” on page 4 for the data points that might sway your leadership—and what com‐
pany is not looking to lower costs or increase revenue? Perhaps a case study from the
New York Times on how slow performance was a factor in sinking Friendster (a social
media pioneer) might help.

Tying this information up with potential issues and proposed app optimizations is
often a great way to initiate a conversation in performance. As fixes are made, and
gains are seen in usage, user engagement, and sales, the case to expand ongoing per‐
formance is an easier task. If you are the first person in your organization, you will
probably start off as the person testing and discovering issues.

235

http://nyti.ms/1Is72ER
http://nyti.ms/1Is72ER


Steve Souders’s post on “Creating a Performance Culture” has an important point on
speaking the vocabulary of your audience. If you are trying to win over marketing,
talk about increasing users, engagement, and sales. Operations wants to hear about
changes in capacity or outage reduction, while finance would love to hear about
increases in sales while reducing costs. By slightly changing your pitch to the key‐
words of the listener, we have found that buy-in comes more easily.

At AT&T, we have been extremely lucky when discussing performance with our lead‐
ership. They realize that having high-performing mobile apps leads to less data usage,
longer battery life, and ultimately, to happier customers. As a result, AT&T has insti‐
tuted performance testing requirements for all internally developed apps, all apps that
are preloaded on our devices, and we continue with outreach with developers both
inside and outside the company.

Talking About Performance
In early 2011 (think mid-Gingerbread era), we began working on AT&T’s Application
Resource Optimizer. We were beginning to look at how Android apps used data, and
were surprised at how inefficient they were. As we began speaking with developers,
we realized that no one was really thinking about mobile data performance. We found
that the 80/20 rule really held in this case. 80% of the time, if developers had aware‐
ness into app behavior, they would work to optimize it. The other 20% might be stuck
with obstacles; perhaps organizational, or requiring more help with testing.

When presenting performance issues to other teams, always use the carrot over the
stick. No one appreciates being called out, especially on something that was not on
their radar as a concern. If you can point to potential speedups or improvements of
the app, stick to the positive. You may gain additional followers on the path of perfor‐
mance.

Lara Hogan writes about becoming your team’s performance cop/janitor, and how
that can lead to burn out. She argues that a performance lead is essential, but they
should work to institute processes around the company that make performance part
of the daily routine. As a part of an outreach team that talks about performance, we
do sometimes act as the watchdog for the companies we work with. The developers
and managers in these companies know about performance, and they test for it, but
sometimes, with all of the many burdens placed on the developers, the performance
testing falls by the wayside. Simply sending them a friendly reminder every few
months about performance keeps them on track.

At Oredev in 2013, Scott Barber conveyed a story about a project that had no budget
for optimization or performance testing. He asked the front desk admin to ask the
developers once a week about the performance of the app, and he found that a simple
reminder about performance kept it on their mind during development, and helped

236 | Appendix A: Organizational Performance

http://calendar.perfplanet.com/2012/creating-a-performance-culture/
http://davidwalsh.name/performance-cops-janitors


to reduce load speeds. Read blogs about performance, and share tidbits with your col‐
leagues. When you discover a new performance technique, share it, both inside your
organization and outside. By helping others learn how to make mobile faster, you
excite and energize your team and those you work with.

By making performance a part of the regular conversation in your organization,
you’ll begin to regularly find performance gains and wins. Speak often about perfor‐
mance. Share the successes other teams (outside your company) have shared, and
also share big wins inside your organization. There will be setbacks. Apps will launch
with issues. The trick is to quickly identify the problem and resolve it as quickly as
possible. The following sections cover a few strategies that we have found to be suc‐
cessful.

Development
We all know the maxim/joke: the best code is no code at all. As soon as the first code
hits the screen, our app is slower than it was a moment before. As code is changed,
improved, or added to, the change in customer performance should be considered,
developed to be minimized, and finally tested.

If your developers are thinking about performance, they will work to ensure that each
new feature is built in a way to seamlessly add the new features. This doesn’t always
happen. Even working on a product to test app performance, the AT&T Application
Resource Optimizer team has found stories built without taking heed to perfor‐
mance.

We were adding a new best practice to the ARO tool, and the developer did not work
to integrate the story into existing code, but just tacked on addition code. The result
was that the app scanned the multimegabyte network trace multiple times rather than
once. The performance time for analysis increased dramatically.

As a result of this development snafu (on a performance tool no less!), we began a
path of looking at the performance of every change made to the app. I wish I could
say this is all automated, or that we use a stopwatch to time the differences in perfor‐
mance when changes are implemented, but that’s not the case. We do compare the
code whenever additions are made to ensure that the performance costs are accepta‐
ble. In our team, the story owners work very closely with developers, and often get to
see rough versions of tools and features, allowing us to comment on UI, layout, syn‐
tax, and (of course) performance.

Inside AT&T, the ARO outreach team acts as a support team for performance issues.
We have gotten requests for help from many different organizations inside AT&T for
both internal and external apps. By helping these developers and showing the com‐
mon pitfalls, they are often able to quickly resolve the issues that are slowing down
their Android app. Having the development team understand and be empowered to

Organizational Performance | 237



research and fix performance issues can be a challenge (with all the new features,
bugs, and technical backlogs, it is tough), but correcting the crucial performance
issues can really help the bottom line.

Testing
Yes, testing. Always one of the first things to be cut when a deadline looms and the
schedule starts getting compressed. Without performance testing, you may only dis‐
cover that a new feature slows your app through your analytics. But now all foxes are
reactive to customers, as you have exposed a slowdown in production. As I described
earlier “Performance as a Rolling Outage” on page 6.

When a new feature is added, there are undoubtedly tests that are run to make sure
that it works as expected, and does not break other parts of your app. If you only test
for crashes, you are handling the outage performance, but make sure that new code is
not adding latency or slowdowns as well. They can cost your app just as much as the
crashes. If the new feature causes a slowdown beyond an expected amount, a process
should be undertaken to determine if the change in speed is acceptable, or if the fea‐
ture should be sent back for further optimization.

Testing Tips
AT&T, in partnership with the Application Quality Alliance
(AQuA), has come up with a number of best practices for testing
network performance. The test cases are a good starting point to
beginning a performance test suite. If you have great performance
test cases, share them with me, and we will work to share them
with other developers.

Performance Metrics
When it comes to performance, it is up to your team to determine the correct metrics
for speed. There are many studies on what customers expect from the Web (and stud‐
ies focusing on apps are increasing). Do your own testing, and see what your users
expect, and if they find your app slow. If you find that your app is slow, determine
what reference devices are slower than others in your device lab (Chapter 2), and test
with these during development.

Mobile apps are so varied and unique that building a “go to” test case that holds for all
apps is next to impossible. Cases that are essential for streaming apps will not hold for
social apps, games, or news apps. The test cases I shared here are extremely generic,
and could easily be tightened for a specific app. For your apps, work with your team
to come up with common sense requirements and then codify them so that they stick.

238 | Appendix A: Organizational Performance

http://bit.ly/1PhxGRA


When a metric is surpassed, make sure that a bug is created, and that the issue is
resolved as quickly as possible (ideally before it is released).

Testing Your Performance Metrics
The most frequent complaint customers voice about their Android phones is battery
life. In the past, the blame was focused entirely on the manufacturer of the device, or
a faulty battery, but customers are becoming savvy to apps causing issues too. In
Chapter 3, we looked at ways to measure the battery drain your app causes, from
wakelocks to overuse of the device’s radios. We examined the Lollipop JobScheduler
API as a possible resolution for newer devices, and how using the Battery Historian
can pinpoint issues in your app that are causing battery drain.

Your customers interact with your app on the screen, and slow or janky scrolling is a
prime factor in app abandonment. Often, it is simply the perception of speed in your
app that affects your app usage, and in Chapter 4 we looked at how to simplify UI
hierarchies and test your UI for jank and speed issues with Systrace and other tools. If
your app is suffering from crashes due to memory leaks or “not responding” issues,
tools such as MAT or Traceview (discussed in Chapter 7) will help you figure out
what is causing the issue, so that you can go back to your code and resolve the prob‐
lems.

Another aspect of mobile development that can add significant amounts of latency is
network connectivity. While you cannot control the location of your users, or the net‐
work they are connected to, you can work to optimize the traffic that your app con‐
sumes, to ensure that the experience always runs smoothly. In Chapter 6, we covered
the basics of network connectivity, tricks to simplify your data usage, and tools like
Wireshark, MITMproxy, Fidler, and ARO to test that your connections are as opti‐
mized as possible. And finally, in Chapter 8, we looked at ways to get test results from
your customers using real user monitoring (RUM) tools. By understanding where
your customers’ pain points are, you can work backward to ensure that their hurdles
are removed, crashes resolved, and that your current (and future) users have a seam‐
less experience in your app.

With the theories and tools outlined in this book, you should now have everything
you need to poke, prod, and kick the tires of your Android app for performance
gains. By digging into these tools and techniques, you will find ways to speed up the
rendering and reduce the latency and battery drain of your app, which will ultimately
improve performance.

Organizational Performance | 239





Index

Symbols
3G networks, 177, 179, 203
4G (LTE) state machines, 176

A
ad-supported games, 29
Africa, 205
alarms, 35
Allocation Tracker, 140
Amazon

effect of slow web pages, 3
FireOS vs. Android SDK versions, 21

AMOLED (Active Matrix Organic LED), 32
Android application package (APK), 15
Android device lab

Amazon devices, 21
Android Open Source Project (AOSP) and,

20
benefits of, 16
cost of, 16
CPU/memory and storage, 13
determining representative device sample,

11
device selection, 18-20
dichotomy in device specifications, 12
goals for, 16, 25
infrastructure issues, 23
networks in use, 13
non-Google devices, 21
Open Device Lab testing, 22
OS versions in use, 12
parameters tested, 17
potential screen sizes, 12
remote device testing, 22

sample makeup of, 24
SDK versions in use, 13
variety of devices in use, 14

Android Emulator, 206
Android M

App Standby feature, 47
gfxinfo library, 101
GPU rendering in, 100

Android Open Source Project (AOSP), 11, 20
Android Power profile, 30
Android Studio, 75, 102
Android Studio Monitor, 77
Android Wear, 20, 212
App Standby, 47
Application Quality Alliance (AQuA), 238
Application Resource Optimizer (ARO),

183-187, 196
Appurify, 22
ARM-based mobile chipsets, 157
ART runtime, 122, 124
asset reduction

benefits of, 90
Overdraw Avoidance system, 96
overdraw in Hierarchy Viewer, 94
overdraw testing, 91
screen overdraw, 90

asset tinting, 90
AT&T Network Attenuator, 206
automatic sleep setting, 35

B
bandwidth

defined, 174
in 4G (LTE) connections, 177

241



Barnes & Noble, 21
Battery Historian, 52-62
Battery Historian 2.0, 62-66
battery life

ad-supported games and, 29
as primary complaint, xi
battery drain analysis, 38-47
battery drain causes, 29-38
battery monitoring, 47-66
improvement with Project Volta, 13
improving by grouping connections, 198
JobScheduler API, 66-70
sensors affecting, 28, 34
of smartphones, 8
standby vs. in use times, 29

battery settings menus, 38
batterystats, 47-51
best practices

basic performance rules, 188
closing connections, 200
detecting radio usage, 199
file caching, 193
file optimizations, 188
goals of, 187
grouping connections, 196
image handling, 191
regular repeated pings, 202
security, 203
for testing, 238
text file minification, 190

big.LITTLE chipset design, 157
bitmaps, 126
Bluetooth, 212
brownouts, 6
bugs, 7

C
caching

benefits of, 193
best practices for, 196
cache control, 194
enabling, 193
ETag response header, 194
expires header, 195
monitoring with Application Resource

Optimizer, 196
on the server, 194

cellular activity
battery drain caused by, 33, 44, 175

variety of networks in use, 174
vs. Wi-Fi, 174
worldwide coverage, 203-211

China, 13, 21, 204
circuit switched fallback, 179
compression, 192
Connectify, 180
connections

closing, 200
detecting, 199
grouping, 196
HTTP vs. HTTPS, 203
regular repeated pings, 202

connectivity manager, 199
content delivery networks (CDNs), 204
cpuinfo command, 159
CPUs

analyzing with Systrace, 160-163
battery drain caused by, 33
discovering blocking render, 113
importance of optimizing, 157
measuring usage, 158
memory and storage issues, 13
optimizing with Traceview, 163-169
profiling with Trepn, 170
task-based utilization of, 157

crashing
Crashlytics SDK for, 216
logfile notifiations of, 218
usage data, 225-230

Crashlytics SDK, 216
Crittercism, 227

D
Dalvik runtime, 122, 124
data usage

analyzing with Fiddler, 181
analyzing with MITMproxy, 183
analyzing with Wireshark, 180
battery drain caused by, 44
closing connections, 200
detecting connections, 199
downloading data faster, 188
during phone calls, 179
grouping connections for, 196
monitoring with Application Resource

Optimizer, 183-187
real user monitoring of, 225-230
vs. radio connections, 178

242 | Index



(see also networks)
website testing, 187

Debug GPU Overdraw tool, 91
devices

average number of apps installed, 27
battery drain analysis, 38-47
battery performance in, 27
determining available memory, 126
determining representative sample of, 11
dichotomy in specifications in, 12
factors affecting OS breakdown, 12
non-Google, 21
obtaining older, 19
OS versions used, 12
potential number of, 1, 11
potential screen sizes, 12
rooted, 15
selecting for testing, 18-20
testing remotely, 22
top used Android, 19
variety in use, 14
wearable, 20

displays (see screens)
distributed denial-of-service (DDoS), 203
Doze framework, 37

E
Eclipse, 75
electromagnetic radiation, reducing, 206
ETag response headers, 194
Etsy

testing devices used by, 18
testing lab issues, 23

expires header, 194, 195

F
Facebook

battery drain caused by, 42
CDN mapping of, 205
data usage reduction by, 205
testing devices used by, 18

Faraday cage, 206
Fiddler, 181
file optimizations

caching, 193-196
downloading data faster, 188
images, 191
minification, 190
text file compression, 189

finite-state machines, 175
FireOS, 21
flexibly network aware (FNA), 207
Froyo, 12

G
garbage collection (GC), 123-126
GCM Network Manager APIs, 200
gfxinfo library, 101
Gingerbread, 12
Google Analytics, 226
Google Cloud Messenger, 202
Google cloud test service, 22
Google Glass, 20
Google Play, 4
GPS

battery drain caused by, 33
failover setting, 33
performance optimization, 211

GPU chips, 74
GPU rendering, 97-101, 117
Gzip compression, 189

H
hardware

Android features, 27
battery drain analysis, 38-47
battery drain causes, 29-38
battery monitoring, 47-66
with highest power drains, 31

Heap Dump, 138
Heisenberg, Werner, 35
Hierarchy Viewer, 77-89, 94
hourglass icons, 117
HTTPS traffic

decrypting with Fiddler, 181
decrypting with MITMproxy, 183
vs. HTTP, 203

hybrid apps, 187

I
Ice Cream Sandwich (ICS), 12
images

balancing size and quality of, 191
compressing, 192
downloading, 208
for various screen sizes, 191
grouping connections and, 196

Index | 243



metadata in, 192
thumbnails, 192
WebP format, 193

India, 13, 21
Indonesia, 205
“insecure” builds, 15
Instagram, 90
instant gratification, 3
instant updates, 118
IP collisions, 202

J
jank

analyzing for, 97-101
decreasing/removing, 81-88
defined, 74
monitoring with Systrace tool, 103-116

Java runtime, 121
Jelly Bean (JB), 12
JobScheduler API, 66-70, 200
JPEG files, 126, 193

(see also images)
Just in Time (JIT), 122

K
Keynote, 22
KitKat (KK), 12

L
last-mile latency, 211
latency

accounting for, 210
defined, 174
in 3G networks, 177
in 4G (LTE) state machines, 176
in image downloads, 208
in Wi-Fi connections, 174
last-mile, 211
measuring, 210
network speeds compared, 174
reducing with CDNs, 204
state machines and, 176

LCD (liquid crystal display), 32
LeakCanary, 153
LED (light-emitting diode), 32
Lollipop, 12
lossy compression, 192
LTE networks, 13

M
man in the middle (MITM)

Fiddler proxy, 181
MITMproxy tool, 183

meminfo command, 126
memory, 13

Android memory warnings, 136
cleanup (garbage collection), 123-126
determining app usage, 126-130
dirty vs. clean, 122
shared vs. private, 122

Memory Analyzer Tool (MAT), 145-152
memory leaks

adding for testing, 142
analyzing files in memory, 145
analyzing with LeakCanary, 153
analyzing with Memory Analyzer Tool,

145-152
importance of diagnosing, 121
memory management in Java, 137
tracking with Allocation Tracker, 140
tracking with Heap Dump, 138
tracking with Procstats, 131-136

metadata, 192
minification, 190
minimum viable product (MVP) approach, 8
MITMproxy, 183
mobile app performance

battery drain analysis, 41-44
battery drain and, 8
benefits of improving, 2-4, 10
challenges of, 1
defined, 1
detecting performance issues, 9
determining speed metrics, 238
effect of CPU/memory and storage on, 13
effects of poor, 4-9
focus areas, 1
measuring with Systrace tool, 103-116
network optimization, 187-203
opportunity for improvement, xi
perceived performance, 117-119
RCC (Radio Resource Control State)

Machine optimization, 178
mobile apps

'future-proofing', 19
average number installed, 27
determining background memory usage,

131-136

244 | Index



determining memory usage, 126
loading times of, 73, 195
measuring CPU usage, 158
network-aware, 207
primary complaint, xi
scalability of, 4

Monitor, 102, 138
MVP (minimum viable product) approach, 8

N
negative reviews, 7
nesting behavior, viewing, 77
Network Activity Sample app, 207
Network Attenuator, 206
network-aware apps, 207
networks

3G, 177
Bluetooth, 212
data usage during phone calls, 179
global differences in, 13, 173
global market penetration by "G", 203
GPS, 211
grouping connections to, 196
mobile data traffic analysis, 179-187
network speeds compared, 174
optimizing for Android, 187-203
orphaned connections to, 178
radio vs. data connections, 178
RCC (Radio Resource Control State)

Machines, 176-179
testing on slow, 205
variety in use, 14
WiFi vs. cellular connections, 174
worldwide cellular coverage, 203-211

Nexus 6, 12
Nexus devices, 19
Nokia X AOSP, 21
Nook tablet, 21

O
onTrimMemory command, 136
Open Device Lab, 22
OpenWRT, 206
optimistic action, 118
organizational performance

determining speed metrics, 238
development issues, 237
getting buy-in, 235
importance of, 235

motivating teams, 236
testing tips, 238

orphaned connections, 178
OS versions

currently in use, 12
garbage collection in, 123
testing latest, 19

outages
costs of, 4
rolling, 6

overdraw
benefits and drawbacks of, 90
Overdraw Avoidance system, 96
testing, 91
visualizing in Debug GPU, 92
visualizing in Hierarchy Viewer, 94

Overdraw counter, 91

P
page loading times, 73, 118, 195
page refresh rates, 74
perceived performance, 117-119
Perfecto Mobile, 22
performance bugs, 7
performance improvement

benefits of, xi, 2-4
detecting performance issues, 9
feasibility of code optimization, 1
focus areas, 1
primary focus of, 6

performance metrics, 238
PhoneGap, 187
pixel density, 12
PNG files, 126
power management

ad-supported games, 29
Android Power profile, 30
battery drain analysis, 38-47
battery drain causes, 29-38
battery monitoring, 47-66
Doze framework for, 37
importance of, 27
improvement with Project Volta, 13
improving by grouping connections, 198
sensors affecting, 28, 34
smartphone battery drain, 8

PowerManager API, 36
Procstats, 131-136
Profile GPU Rendering, 97-101

Index | 245



progress bars, 117
Project Butter, 13, 75, 103
Project Svelte, 13
Project Volta, 13
proportional set size (PSS), 127

R
radios

battery drain caused by, 33
Bluetooth, 212
detecting usage, 199
GPS, 211
radio vs. data connections, 178

(see also networks)
rankings, 4
RCC (Radio Resource Control State) Machines

4G (LTE) state machines, 176
benefits of, 176
defined, 175
drawbacks of, 176
grouping connections for, 197
optimizing apps for, 178
radio vs. data connections, 178

real user monitoring (RUM), 10
availability of, 216
benefits of, 215, 231
crashing, 218-230
enabling tools for, 216
sample app, 217
SDK performance, 231

refresh rates, 74
retina display, 191
rolling outages, 6
root access, 15
RTTs (round trip times), 209
RUM (see real user monitoring)

S
Samsung Galaxy S, 12
Samsung S3, 13, 19
Samsung S5, 28
screens

battery drain caused by, 32
optimizing image files by size of, 191
overdrawing, 90-96
potential sizes of, 12
refresh rates, 74
Systrace screen painting, 106-113

SDK versions

Fire OS vs. Android versions, 21
grouping connections and, 196
variations in, 13

search engine rankings, 4
sensors

accessing battery drain caused by, 34
included in Samsung S5, 28

skipped frames
discovering with Systrace, 102-116
due to CPU blocking, 113

sleep settings, 35
smartphones

Android penetration, 11
battery life of, 8
battery performance in, 27
lifespan of, 13
market share of, 203
screen sizes of, 12

smartwatches, 20
Souder's performance rules, 188
South Africa, 13
spinners, 117
Spotify

battery drain caused by, 42
Square, 153
state machines, 175
storage, 13
Super LCD3 screens, 32
superusers, 15
synthetic testing, 10
Systrace

2015 update, 115
benefits of, 103
best application of, 103
CPU analysis with, 160-163
CPU usage blocking render, 113
evolution of, 105
screen painting, 106-113
starting with, 104

T
Testdroid, 22
testing

Amazon devices, 21
Android Open Source Project (AOSP) and,

20
best practices for, 238
building device labs, 15-24
CPU/memory and storage, 13

246 | Index



determining representative device sample,
11

goals for, 16, 25
infrastructure issues, 23
networks in use, 13
non-Google devices, 21
Open Device Lab, 22
OS versions in use, 12
potential screen sizes, 12
real user monitoring, 10
remote device testing, 22
sample device lab makeup, 24
SDK versions in use, 13
synthetic, 10
variety of devices in use, 14

text files
compressing, 189
minification of, 190

thumbnail images, 192
top command, 158
Traceview

Android Studio, 166-169
Legacy Monitor DDMS tool, 163-166

Trepn, 170

U
uncertainty principle, 35
user experience

effect of outages on, 5
effect of performance bugs, 7
importance of speed to, 2, 73, 195
improving worldwide use, 203-211
perceived performance and, 117-119
real user monitoring of, 225-230
recent Android improvements, 74
screen size and, 12
slow vs. crashing apps, 6
top frustrations, 8

user interface (UI)
analyzing for jank, 97-101
asset reduction, 90-96
building views, 75-89
page refresh rate, 74
perceived performance and, 117-119

performance benchmarks, 73
performance issues, 73
recent Android improvements, 74
skipped frames, 102-117

USS (Unique Set Size), 127

V
views

design view of app layout, 75
finding redundant, 77
Hierarchy Viewer tool, 77-89
remeasuring, 76
rendering steps, 76
reusing, 89

Voice over LTE (VoLTE), 179
VSYNC buffering, 75, 106

W
wakelocks, 35

finding bad, 61
Walmart

effect of slow web pages, 3
wearable devices, 20
web performance, xii

cost of slow websites, 3
cost of website outages, 4
testing tools, 187

WebP image format, 193
WebPageTest, 187
Wi-Fi

bandwidth and latency in, 174
battery drain caused by, 33, 174
emulating with Connectify, 180
security issues, 203
testing with Wi-Fi throttling, 206
vs. cellular radios, 174

Wireshark, 180, 212

Y
YouMail, 4

Z
Zygote process, 122

Index | 247



About the Author
Doug Sillars is the performance outreach lead at the AT&T Developer Program. He
has helped thousands of mobile developers apply performance best practices to apps.
The tools and best practices he has developed at AT&T help developers make mobile
apps run faster by using less data and less battery. He and his wife live on an island in
Washington State, where they homeschool their three children.

Colophon
The animal on the cover of High Performance Android Apps is a brown noddy (Anous
stolidus). It is part of the gulls and terns family and can be found near warm, tropical
waters. This bird is also known as a common noddy.

The brown noddy has a distinct look. The feathers are brown in color (hence its
name) except for on the forehead, which are whitish-gray in coloring and extend over
the tops of the eyes. The tail is wedge-shaped and of a darker brown coloring than the
majority of the body. The tips of the wings are also of this darker color. The brown
noddy’s legs, feet, and bill are also blackish-brown. Males and females look identical,
but females are smaller in size.

Like most seabirds, the brown noddy’s diet relies heavily on what the tropical waters
and oceans they live around can provide. They hunt for small fish from above the
surface, but also collect the leftovers of prey that rise up from underwater predators.
These birds will also forage for meals along the shore and in lagoons.

Breeding and nesting grounds for the brown noddy are fairly diverse, but always take
place inshore. They will build nests in trees, shrubs, cliffs, and on beaches and docks.
They only lay one egg per year, which both parents will take turns incubating. This
parental partnership continues even after the egg hatches, until the chick leaves the
nest around eight weeks of age.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from British Birds. The cover fonts are URW Typewriter and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Who Should Read This Book
	Why I Wrote This Book
	Navigating This Book
	Using Code Examples
	Conventions Used in This Book
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Android Performance
	Performance Matters to Your Users
	Ecommerce and Performance
	Beyond Ecommerce Sales
	Performance Infrastructure Savings

	The Ultimate Performance Fail: Outages
	Performance as a Rolling Outage
	Consumer Reaction to Performance Bugs
	Smartphone Battery Life: The Canary in the Coal Mine

	Testing Your App for Performance Issues
	Synthetic Testing
	Real User Monitoring (RUM)

	Conclusion

	Chapter 2. Building an Android Device Lab
	What Devices Are Your Customers Using?
	Device Spec Breakdown
	Screen
	SDK Version
	CPU/Memory and Storage

	What Networks Are Your Customers Using?
	Your Devices Are Not Your Customers’ Devices
	Testing
	Building Your Device Lab
	You Want $X,000 for Devices?
	So What Devices Should I Pick?
	Beyond Phones
	Android Open Source Project Devices
	Other Options
	Additional Considerations
	My Device Lab

	Conclusion

	Chapter 3. Hardware Performance and Battery Life
	Android Hardware Features
	Less Is More
	What Causes Battery Drain
	Android Power Profile
	Screen
	Radios
	CPU
	Additional Sensors
	Get to Sleep!
	Wakelocks and Alarms
	Doze Framework

	Basic Battery Drain Analysis
	App-Specific Battery Drain
	Coupling Battery Data with Data Usage
	App Standby

	Advanced Battery Monitoring
	batterystats
	Battery Historian
	Battery Historian 2.0

	JobScheduler
	Conclusion

	Chapter 4. Screen and UI Performance
	UI Performance Benchmarks
	Jank

	UI and Rendering Performance Updates in Android
	Building Views
	Hierarchy Viewer

	Asset Reduction
	Overdrawing the Screen
	Testing Overdraw
	Overdraw in Hierarchy Viewer
	Overdraw and KitKat (Overdraw Avoidance)

	Analyzing For Jank (Profiling GPU Render)
	GPU Rendering in Android Marshmallow

	Beyond Jank (Skipped Frames)
	Systrace
	Systrace Screen Painting
	Systrace and CPU Usage Blocking Render
	Systrace Update—I/O 2015
	Vendor-Specific Tools

	Perceived Performance
	Spinners: The Good and the Bad
	Animations to Mask Load Times
	The White Lie of Instant Updates
	Tips to Improve Perceived Performance

	Conclusion

	Chapter 5. Memory Performance
	Android Memory: How It Works
	Shared Versus Private Memory
	Dirty Versus Clean Memory
	Memory Cleanup (Garbage Collection)
	Figuring Out How Much Memory Your App Uses
	Procstats
	Android Memory Warnings

	Memory Management/Leaks in Java
	Tools for Tracking Memory Leaks
	Heap Dump
	Allocation Tracker
	Adding a Memory Leak
	Deeper Heap Analysis: MAT and LeakCanary
	MAT Eclipse Memory Analyzer Tool
	LeakCanary

	Conclusion

	Chapter 6. CPU and CPU Performance
	Measuring CPU Usage
	Systrace for CPU Analysis
	Traceview (Legacy Monitor DDMS tool)
	Traceview (Android Studio)
	Other Profiling Tools
	Conclusion

	Chapter 7. Network Performance
	Wi-Fi versus Cellular Radios
	Wi-Fi
	Cellular
	RRC State Machine

	Testing Tools
	Wireshark
	Fiddler
	MITMProxy
	AT&T Application Resource Optimizer
	Hybrid Apps and WebPageTest.org

	Network Optimizations for Android
	File Optimizations
	Text File Minification (Souders: Minify JavaScript)
	Images
	File Caching
	Beyond Files
	Grouping Connections
	Detecting Radio Usage in Your App
	All Good Things Must Come to An End: Closing Connections
	Regular Repeated Pings
	Security in Networking (HTTP versus HTTPS)

	Worldwide Cellular Coverage
	CDNs
	Testing Your App on Slow Networks
	Emulating Slow Networks Without Breaking the Bank
	Building Network-Aware Apps
	Accounting for Latency
	Last-Mile Latency

	“Other” Radios
	GPS
	Bluetooth

	Conclusion

	Chapter 8. Real User Monitoring
	Enabling RUM Tools
	RUM Analytics: Sample App
	Crashing
	Examining a Crashlytics Crash Report
	Usage
	Real-Time Information

	Big Data to the Rescue?
	RUM SDK Performance

	Conclusion

	Appendix A. Organizational Performance
	Getting Buy-In (Management Focus on Performance)
	Talking About Performance
	Development
	Testing
	Performance Metrics
	Testing Your Performance Metrics


	Index
	About the Author

