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Human–Computer Interface Technologies for the Motor Impaired 
examines both the technical and social aspects of human–computer interface 
(HCI). Written by world-class academic experts committed to improving HCI 
technologies for people with disabilities, this all-inclusive book explores the latest 
research and offers insight into the current limitations of this field. It introduces 
the concept of HCI, identifies and describes the fundamentals associated with 
a specific technology of HCI, and provides examples for each. It also lists and 
highlights the different modalities (video, speech, mechanical, myoelectric, 
electro-oculogram, and brain-waves) that are available and discusses their 
relevant applications. 

Easily and readily understood by researchers, engineers, clinicians, and the 
common layperson, the book describes a number of HCI technologies ranging 
from simple modification of the computer mouse and joystick to a brain–
computer interface (BCI) that uses the electrical recording of the brain activity of 
the user. The text includes photographs or illustrations for each device, as well as 
references at the end of each chapter for further study.

In addition, this book

      •    Describes the mechanical sensors that are used as an interface to control 
a computer or screen for the aged and disabled

      •    Discusses the BCI using brain waves recorded by noninvasive electrodes 
to recognize the command from the user

      •    Presents the myoelectric interface for controlling devices such as the 
prosthetic/robotic hand

      •    Explains the technology of tracking the eye gaze using video
      •    Provides the fundamentals of voice recognition technologies for computer 

and machine control applications
      •    Examines a secure and voiceless method for the recognition of speech-

based commands using video of lip movement

Human–Computer Interface Technologies for the Motor Impaired 
considers possible applications, discusses limitations, and presents the current 
research taking place in the field of HCI. Dedicated to enhancing the lives 
of people living with disabilities, this book aids professionals in biomedical, 
electronics, and computer engineering, and serves as a resource for anyone 
interested in the developing applications of HCI.
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Preface

It all began when I received a call from one lady one sunny 
afternoon in Melbourne. She introduced herself as a “Granny 
from the bush” and asked me to help her identify technolo-
gies that her grandson could use for controlling his computer 
games. The boy suffered muscle wasting of the upper limb and 
was unable to perform the actions, and she was keen for him 
to play these games so that he will make friends and socialize. 
I do not know how she got my name or telephone number, or 
why she thought that I would and could help her, but this phone 
call made me think. I ended up spending many of my hours 
searching for the relevant information. It was quite evident that 
she had attempted to search things by herself but was unable 
to obtain suitable information. The information was either too 
technical or too much of sales pitch, and there was no place 
where she could compare the different technologies.

Different from the aforementioned telecon, I had a meet-
ing with nurses working with people requiring continuing 
assistance and realized that the problem was not confined to 
an elderly grandmother but was also felt by qualified nurses. 
Thanks to the all-present Internet, and various search engines, 
they were aware that there were numbers of sources of informa-
tion. However, they felt that these are either “hard sell” or too 
technical, and took a lot of their time. I realized that although 
there were large numbers of very good journals reporting the 
research and development work in the field, and there were 
many universities that now have a separate department for con-
ducting research in developing computer interfaces, there was 



xxii PrefaCe

no book that suitably covered the topic. There was no book or 
platform that could be useful for scientists, engineers, clini-
cians, and laypeople alike. There was no platform that encour-
ages the interaction between these groups of people. This 
established my purpose of writing this book.

When I began writing this book, I was expecting that I will 
be able to obtain the required information from various papers 
and technical reports and consolidate it. However, I soon real-
ized that I had a bigger project on my hands than simply col-
lecting the works of others. I realized that all research papers, 
while working in this multidisciplinary field, were very nar-
rowly focused and that was the reason why the grandmother 
required to call me for help or the nurses would simply direct 
their patients to a shop. At this stage, I invited Dr. Sridhar 
Arjunan to join the team and we began writing this book.

As researchers, we have published extensively and similar 
to most research papers, our papers target a specialized audi-
ence who knows the specific field extensively. While human– 
computer interfaces (HCIs) for people with disabilities require 
a multidisciplinary approach, most scientific papers tend to 
focus on very specific topics. This is essential for research 
in the field, but these papers become exclusive. Thus, papers 
discussing the hardware, the software, clinical relevance, and 
rehabilitation aspects appear to be highly focused, and often 
may not find the audience in the other disciplines. This gave 
me the biggest challenge: to write the outcomes of the research 
work of our team and of many others reported in literature, but 
suitable for researchers, engineers, clinicians, and laypeople. I 
decided to focus the book on ensuring that it is inclusive and 
suitable for being understood by all the stakeholders, thereby 
encouraging greater dialogue.

For the research audience, we have provided sufficient 
details to encourage cross-discipline dialogue between differ-
ent fields of research. We also expect that this will encourage 
a dialogue between the researchers and other stakeholders and 
help the outcome of their research to enhance customer and 
patient focus.

For our engineering readers, we anticipate that this book will 
provide them with better understanding of the science behind 
the works, and user requirements of the clinicians and end users. 
This would lead to improved HCI devices that are more suited 
for the users and reduce the negative impact of disabilities in 
our society. We anticipate that this would also lead to greater 
participation by technology entrepreneurs and thus leading to 
enhanced competition and more options for the customers.
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For our clinical-focused readers, this book will lead to 
their better understanding of the technology. They will be in 
a stronger position to guide their patients and help the patients 
understand the range of possibilities and limitations. We also 
hope that this will encourage them to participate in the dia-
logue with researchers and scientists to identify the strengths 
and limitations of the various technologies, and thus give the 
very important feedback to the researchers, developers, and 
engineers.

And finally we anticipate that this book will greatly benefit 
the end users and their carers. It will provide the information 
of many of the devices and technologies such that the users can 
assess these from the view point of their personal requirements. 
Each of us is different, and such information will enable the 
end users to select what is best for them, without the bias that 
is presented by sales pitches of commercial organizations. Such 
knowledge will also enable them to identify the improvements 
that they require, and thus participate in a dialogue with gov-
ernment bodies, companies, and scientists. This book should 
provide them the strength to participate in the future dialogues 
and in recommending further research and improvements.

We also anticipate that this book would be useful for people 
developing devices such as computer games or machine con-
soles. The computer games market is in excess of $100 bil-
lion and with an estimated 500 million regular users, there 
are many opportunities for the industry to absorb advanced 
human–computer interface devices. This can be very useful for 
the HCI researchers and industry because it will lead to greater 
funding opportunity and thus innovation.

We are hopeful that this book is the start of a dialogue and 
leads to an improved interaction between different stakeholders 
of computer interfaces.

Professor Dinesh K. Kumar
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1

CHaptEr ONE

Introduction

abstract

Technology has resulted in our ability to control machines for 
improving our lives. However, large number of people around 
the world are unable to use the conventional machine interface 
devices due to injury, disease, or simply weakness due to aging. 
This chapter introduces the reader to the requirement and the 
fundamental concept of human–computer interface (HCI) and 
lists the different modalities that are available. The different 
applications of each modality have been discussed and it intro-
duces the reader to the next nine chapters.

1.1  Introduction: Human–computer 
interface for people with disabilities

It is commonly said that our ability to build machines is what 
differentiates us from other animals, because machines provide 
us with the ability to perform actions that would have been oth-
erwise impossible. We are able to move mountains, dig tunnels, 
and move places using the machines that we have developed 
over the past centuries. The famous statement that is attributed 
to Archimedes: “Give me a lever long enough and a fulcrum on 
which to place it, and I shall move the world.” Thus, machines 
are devices that allow us to outdo the abilities of our bodies.

Machines have broken the barriers that were based on physi-
cal abilities and people of all sizes, age, and irrespective of gen-
der are able to perform tasks that they would earlier not have 
been able to do. Irrespective of the size of the person, we are 
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able to drive large trucks and even mining equipment, and con-
trol computers without requiring us to be experts in computers. 
All these have been possible because of interfaces that enable 
humans to control machines.

The ability to control machines is an essential part of being 
the modern human and controlling machines is a necessary part 
of our lives. The machines and machine control systems have 
often been designed for the majority of the users. Thus, our 
current systems are based on the use of devices such as levers, 
wheels, keyboards, and mouse that we are able to control nearly 
all the equipment that is required for modern living and industry. 
These devices have, in general, broken the barriers for women to 
enter professions that were until recently reserved for men. With 
the availability of powered tools, industries such as building and 
construction, which were until recently the bastion for young 
men, are now open to people of both genders and all sizes.

The availability of powered technologies has also enabled 
the ability of people of both genders and of range of age to 
participate actively in activities such as defense and shipping. 
However, although the development has broken many barriers, 
these technologies have largely been developed for the majority 
of people, and there is an assumption that the users have dex-
terity of their hands, and are able to receive sensory feedback 
such as visual, pressure, and movement. Overcoming this short-
coming is the focus of large number of companies and research 
teams around the world, and comes under the generic umbrella 
of HCI for people with disabilities.

1.2 Background

Medical advances have enhanced our longevity and we are liv-
ing longer than ever before in history. Modern medicine has 
also improved the likelihood for the survival of many people 
who have suffered neuromuscular or skeletal injuries. Our soci-
ety has a significant number of people who are weak due to 
aging, or have lost their ability to perform number of actions 
due to disease or injury. Thus, we have a large number of people 
who require assistive technologies to perform functions that the 
majority of the population would do routinely.

Assistive technologies range from mobility devices such 
as wheelchairs, artificial hands, communication devices, and 
control interfaces to manage the surroundings. These devices 
range in complexity based on the level of support required by 
the patients. Loss of mobility is the single largest cause of major 
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disability and may be caused due to number of reasons such 
as trauma or disease. The global estimate of people who suf-
fer and survive spinal cord injury (SCI) every year is 22 people 
per  million inhabitants or more than 130,000 people each year 
worldwide [1]. In Australia, it has been estimated that there are 
241 SCI injuries per annum, which correspond to 13.2 people/
million inhabitants. A majority of these patients become depen-
dent on a wheelchair for their entire lives. However, the number 
of users of wheelchairs is significantly higher than the people 
who have suffered an SCI.

With scientific advancement, there is increased awareness 
and this has resulted in the changes of the aspirations and 
requirements by patients who have suffered disabilities, by the 
elderly, and the society in general. People like to live indepen-
dently and neither be bound to their beds or hospitals, nor be 
dependent on their carer to take them out or to communicate 
with the rest of the world.

There is also the cost basis, because the healthcare system is 
unable to support the need for caring for the burgeoning num-
ber of people who require assistance in performing their regu-
lar tasks. Healthcare is unable to support such a large number 
of people in assistive living conditions due to the cost of caring 
and nursing. Technology that can facilitate independent living 
for the disabled or the elderly is thus a win-win situation. This 
has resulted in greater demands for technologies that can assist 
people in leading independent lives.

Powered devices and the Internet are now in all facets of our 
lives, and have provided the means for removing the barriers 
between genders in access to activities and tasks that were ear-
lier required a specific body size and type. This has also facili-
tated the disabled to lead independent lives and one significant 
example is the use of powered wheelchairs and scooters that 
allow the disabled and the elderly travel without a carer having 
to wheel them around. The Internet allows people to experience 
the world or to communicate with the rest of the world without 
having to move out of their rooms. However, the success of these 
requires the user to appropriately interface with these devices, 
and thus the need for a suitable computer interface. Such inter-
face devices are referred to as HCI for the disabled people.

1.3 History

Machines provide users with the ability to perform tasks that 
they would otherwise be unable to comfortably perform. One 
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of the earliest machines incorporated the mechanical concepts 
of the levers and wheels. To control these devices required the 
users to have strength and precision, and the early mechanisms 
to control machines required mechanical levers and springs, 
which typically required the strength and precision of the user. 
With technical advancements in areas such as fluidics, these got 
transformed to the use of hydraulics, and with advancements 
in the electrical engineering, the users were able to control 
machines with the help of electrical switches.

Electronics opened a new era that allowed the person to con-
trol devices using very small devices that did not require big 
wires and high voltages, and thus were suitable even for chil-
dren to use. Developments in the area of sensors furthered the 
ability of people to remotely sense and monitor machines, and 
control the equipment from a safe and comfortable location. 
However, it is the recent developments in the areas of wireless 
electronics, computers, and biomedical engineering that have 
taken the machine control to new heights.

Recent developments in the field of computers have facili-
tated the use of computerized control systems, and we are able 
to control nearly all machines to the required precision. Thus, 
there is no longer the necessity of the person to understand the 
method for controlling a machine or a device, because the com-
puters have been programmed to do this. The users are provided 
with suitable interfaces such as a screen and devices such as 
keyboard or mouse by which they can command the machine. 
Thus, to control a large machine does not require the user to be 
a muscular person and a small-build person can do this as easily.

The revolution in the field of wireless technologies has facil-
itated the use sensing of the conditions and actuating a machine 
from anywhere. The control of the robotic devices sent to Mars 
has shown that this can be achieved from even another planet. 
With the availability of mobile phones, the Internet, and wire-
less technologies, we can control any device from literally any-
where in the world. This has also provided the ability of remote 
monitoring of devices and situations. This provides the person 
to control the machines from their offices rather than having to 
be in places that are uncomfortable and remote.

Another significant contributor to our ability to control and 
communicate with remote machines is the advancement in sig-
nal processing and classification. There has been large progress 
in the area of signal processing and classification. Advanced 
signal processing has resulted in the development of speech 
analysis techniques that recognize the speech and the speaker. 
Thus, the voice recording can be used to obtain what the user 
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said, and the speech of the user can be converted to text. This 
is now incorporated in most computers, tablets, and mobile 
phones. Thus, computer-based systems can be controlled by 
spoken commands, and speech-based typing systems are now 
available. This is a major step in machine control and com-
munication systems because it allows people to control devices 
without using their hands, or “hands-free” mode.

Biomedical engineering is human centric and has advanced 
very significantly over the past 50 years. Biomedical engineer-
ing and science has discovered the details of the functioning 
of the brain, the neural system, and muscle control. These 
advancements have provided a mechanism for users to give 
commands directly from their brain or nerves, without having 
to make any movement. This has taken the concept of machine 
control to a new level, where the user is able to command or 
communicate with only their thoughts, and without having to 
make any movement of their limbs, or even without needing to 
verbalize their commands.

Many SCI patients require lifelong care, and this is a signifi-
cant cost to the healthcare system. In less affluent nations, the 
number is higher, and because of the lack of resources, the suf-
fering of these people is greater. With the growth of technology 
and social awareness, society is not comfortable in accepting that 
disabled people are unable to control machines, communicate, 
or be entertained. Although people with disabilities were earlier 
expected to accept the fate of their inabilities, disabled people 
now are demanding greater independence. Thus, over the years, 
there has been growth in the number of devices and technologies 
that they can use to control machines and computers even if they 
lack dexterity of their hands, or strength in their limbs or even if 
they lack the ability to perform functions such as speaking and 
moving their eyes. For people who have lost all motor control or 
sensory capabilities, there are interfaces that are directly com-
manded by their brain activity and based on their thoughts.

1.4 Future of HCI

HCI is a field that is developing at a very rapid pace. It is identi-
fied as an independent field of research, and there are number 
of journals and conferences that are dedicated to this field of 
research. Whereas earlier work was to facilitate the disabled 
people, help them regain some of their freedom, and give them 
independence in performing their daily activities, HCI is now 
significantly superior and better. It provides the elderly and the 
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weak with the ability to lead their lives independently, for people 
with lost hearing to hear, and helps the blind to see again. HCI 
also facilitates the disabled to be entertained and they can use 
it to browse the Web, listen to music, communicate, and watch 
movies. HCI is not limited to the people with reduced abilities 
but is also being adapted by able-bodied people to play computer 
games or participate in immersive virtual reality. The technol-
ogy has also been adapted for number of defense applications 
and is now being used for controlling vehicles and weapons.

HCI is now not limited to engineering laboratories but is 
also an integral part of modern medicine. The field provides 
the ability for helping hearing-impaired individuals, and more 
recently progress is being made for helping blind people to see 
again. HCI is now used by disabled people for a number of 
applications such as to type without a keyboard on their com-
puter, communicate with others, and control their wheelchairs. 
However, current systems have limitations and often suffer 
from poor reliability and limited degrees of freedom. The focus 
of research in number of teams is to improve the reliability, 
give greater freedom to the user, and make the interface more 
natural for the user. With advancement in surgical procedures, 
better understanding of the human brain, wireless technologies, 
and smaller and smarter electronic devices, implanted systems 
are now being considered as one of the major options of the 
future. There is also greater focus on the use of systems that 
learn and configure to the user using techniques such as intel-
ligent agents and other methods.

The progress in this field is very rapid, and there is no crystal 
ball that can predict the future. However, it is very evident that 
technologies that provide the near-natural and seamless com-
manding and sensing abilities to disabled users are desired. 
A reasonable statement is that the future will include both inva-
sive and noninvasive techniques and will not be limited to a sin-
gle modality. With the advancement in computational strengths 
and widespread networking capabilities, it is conceivable that 
the future technologies would be user focused and dedicated to 
each user, based on their personal conditions and requirements.

1.5 Layout of the book

This book describes a range of HCI technologies. These range 
from simple modification of the current devices such as the mod-
ified computer mouse and joystick, to a brain–computer interface 
(BCI) that uses the electrical recording of the brain activity of the 
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user. Although no single book can describe each device that has 
been developed and reported in literature, this book describes the 
fundamentals that would be the basis for most devices.

Each chapter in this book describes a specific technology 
and lists some of the major strengths and shortcomings. The 
fundamentals associated with the generic technology have been 
described and a specific example of the technology has been 
detailed. Ongoing research in the field has been discussed and 
suitable literature has been reviewed. The intent is to provide 
the user with comprehensive knowledge of the technology and 
its applications. Readers who are specifically looking for details 
have been provided with a list of some of the major publications 
in the field. In most cases, the details of the mathematical rigor 
associated with the technique are not given in this book, but 
suitable references have been provided.

Chapter 2 examines interface devices based on mechanical 
sensors. This chapter provides the details of mechanical sen-
sors that are used as interface to control a computer or a screen 
for aged and disabled people. Incorporating these technologies 
for working systems, different options, applications, and the 
limitations are also discussed.

Chapter 3 describes the BCI using brain waves recorded 
by noninvasive electrodes to recognize the command from the 
user. This chapter introduces the fundamentals of brain waves, 
the method for recording the electroencephalogram, and some 
methods for the analysis. The current technologies and imple-
mentation are described, with the possible applications, user 
requirements, and limitations.

Chapter 4 discusses evoked potential-based techniques for 
recognizing the commands from the user. After discussing the 
concept of evoked potential-based BCI, the method for record-
ing and analyzing the signals are explained. The applications 
and limitations of the technique are identified. One example 
of the implementation of steady-state visual-evoked potential, 
along with the applications, user requirements, and limitations 
are described.

Chapter 5 describes the myoelectric interface for controlling 
devices such as the prosthetic/robotic hand. This chapter intro-
duces the technology of recording myoelectric signals, some of 
the methods used to analyze the signals, and the parameters for 
the system. The implementation of one myoelectric-based HCI 
is described in detail. This chapter also provides information 
regarding the limitations and challenges that exist due to the 
gross nature of the signal, presence of cross talk, noise, and 
other factors that are required to be overcome in the future.
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Chapter 6 discusses the technologies for recognizing hand 
gestures and movements from videos and the challenges associ-
ated with the real-time implementations. Recognition of com-
mands from the video of the user has the advantage because 
these are nonintrusive. HCI based on the video has been exten-
sively improved in recent years in gaming applications. This 
chapter describes some of the applications of these video-based 
systems for disabled people.

Chapter 7 describes an HCI system based on the electroocu-
logram signal, which is the electrical potential corresponding 
to the eye gaze and recorded from around the eyes. This chapter 
describes the techniques to record and analyze the electroocu-
logram for controlling a computer mouse or a machine, and one 
implementation is described in detail. Applications and limita-
tions of these techniques are also discussed.

Chapter 8 follows from Chapters 6 and 7, and describes the 
technology of tracking the eye gaze using video technology. 
In this chapter, a comparison is provided between video and 
bioelectric signal-based eye gaze recognition. An implementa-
tion of the technology has been described. The applications and 
shortcomings of these technologies, and future directions are 
discussed.

Chapter 9 provides the fundamentals of voice recognition 
technologies for computer and machine control applications. 
This chapter describes the signal analysis and classification 
algorithms, and provides a comparison between the different 
methods. The applications and limitations are discussed and 
future directions identified.

Chapter 10 examines a secure and voiceless method for 
the recognition of speech-based commands using video of lip 
movement. The major drawback with the use of sound for com-
puter control such as for Internet access is that the commands 
are audible to other people in the vicinity and the user does not 
enjoy the privacy. This chapter discusses the possible applica-
tions and limitations of the technology, and the current research 
activity that is taking place in this field.
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abstract

The computer mouse, smart screen, and joystick are some of the 
mechanical devices that are used by most people to control a 
computer or other similar devices. However, a significant num-
ber of people with disabilities or due to weaknesses, or who are 
in special circumstances are unable to use such devices. A num-
ber of mechanical-based interfaces are now available that facili-
tate such users to control machines and computers. One example 
is the smart glove, which is a technology that has embedded 
mechanical sensors that can identify the intended command 
of the user. This chapter describes these technologies, and dis-
cusses the different options, applications, and the limitations.

2.1 Introduction

The joystick, computer mouse, or tablet screen are routinely 
used to control computerized equipment and are now an essen-
tial part of our modern lives. However, people in special condi-
tions may be unable to perform such actions and they need to 
control the machine such as a computer or a robotic device with 
other options and not these commonly available devices. This 
may be because these people are in special situations such as 
defense personnel or for those who lack fine control of the hand 



10 HCi teCHnoLogies for tHe Motor iMPaired

that provides the required dexterity or for applications such as 
computer games [1]. Over the years, numerous different modal-
ities have been developed to address these needs. This chapter 
describes some of these options.

A number of devices that sense the user commands mechan-
ically have been developed and are suited for people who are 
unable to use commonly available devices such as the computer 
mouse [2]. While some of these are modifications of the exist-
ing devices, there are other devices that have been specifically 
developed for people with special needs. All devices that use 
mechanical sensing require movement by the user and are suit-
able for people who have the appropriate level of motor activity, 
though they may not have the dexterity that is demonstrated by 
able-bodied counterparts. These sensors are described in the 
following sections.

2.2 Modified devices

For many applications, appropriate modification of the com-
puter interface provides suitable outcomes. Some of the exam-
ples are the modification of the computer mouse and joystick, 
trackball, and computer tablet. These are described in the fol-
lowing sections.

For a number of applications, the simple modification of the 
mouse or joystick may be sufficient to facilitate the user with 
special needs to use a computer or similar device, and many of 
these products are commonly available [3,4]. There are many 
choices for the modified mouse, and customized joysticks also 
provide an alternate control (Figure 2.1). Some of the other 
devices that have been used are steering wheels, thumb mouse, 
trackball, foot-ball trackball, extra-large joysticks, and mouse 
with controllable friction. Although these products are very 
useful in helping people who are unable to use the computer 
mouse or keyboard, often these are not sufficient for providing 
the users with easy and robust control. There are a number of 
devices and software solutions that have been developed espe-
cially for helping people with special needs.

Trackball (or tracking ball) is a device that is used to point, and 
can be used for moving the computer cursor or similar applica-
tions [3]. It consists of a ball located in a socket that has sensors 
that detect the rotation of the ball about two axes. It can be con-
sidered as an upside-down ball-based mouse, with a protruding 

2.2.1 Mouse 
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ball that is exposed for the user. The size of this ball can be 
selected based on the applications and user capability. Whereas 
balls of the size of 50 mm may be used for being controlled 
by the thumb, fingers, or the palm of the hand, larger balls are 
required for foot control.

The advantage of using the trackball is that there is no limit 
to the movement. Whereas the mouse requires a flat surface or 
a mouse pad, and it is effective only within the region of the 
surface, the trackball does not have such limitations. Further, 
whereas a mouse has to be gripped and positioned, the user 
for the trackball has to move the ball in the desired direction. 
Trackballs can be made with different materials, though most 
are made from rubber or glass. Some of these have switches 
located separately, although most of them will have switches 
placed on the plate next located with it.

Trackballs are used in many fields and by fully able-bodied 
people besides the people with physical disabilities. Some com-
puter-aided design (CAD) workstations use large trackballs for 
improved precision, and small trackballs are sometimes used 
for portable computers to save keypad space.

A digital tablet is touch sensitive and allows the user to slide the 
finger on a flat tablet. It is similar to the computer mouse pad, 
and the user is able to give the commands for controlling the 
wheelchair using this. It has the advantage that it is inexpensive 
and can easily replace the joystick with minimal alterations to 
the wheelchair controller. Wheelesley, a robotic wheelchair sys-
tem developed by MIT [5], used switches on a panel onboard to 
choose among different high-level movement commands such 

2.2.3 Modified 
computer display 
or digital tablet

FIGUrE 2.1 Example of a modified joystick. (From Unique 
Perspectives Ltd., Ireland. With permission.)
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as forward, left, right, stop, or drive backward, and can also be 
maneuvered with an eye-tracking interface.

Tablets are commonly used for users to control computers 
and associated machines. These are touch, or pressure sensi-
tive, and detect the location of the contact with the user, either 
using the finger or a stylus. These have often been integrated 
with the display screens; displays such as active screens are 
now commonly used for interacting with computers and man-
aging machines [6]. However, some people lack the precision or 
speed to sufficiently control their hands and fingers to interact 
with such devices. This may be caused by disease or due to 
aging. This can cause them to miscommunicate or make erro-
neous commands, leading to frustration or even injury. To over-
come these problems, a number of such devices are offering 
the software that allows the user to change some settings such 
that the interaction is suited for their needs. There are, however, 
specially developed software and tablets for people with special 
needs.

There are number of software-based options that can be 
used to customize the tablet or screen to the user. One software 
solution is the modified computer screen where the regular keys 
are replaced by a specific set of icons that are useful for the 
user. Although this reduces the flexibility of the keyboard, the 
customizing provides the user with reliability that allows them 
to function safely. This provides the safety to the user, who may 
otherwise miscommunicate due to the inability to have fine 
control of the interface which has large number of keys and 
other options.

Modifications of existing devices are only effective for people 
who have significant movement of the hand or the foot. However, 
number of people may not have sufficient control of their hands 
or feet and are unable to use these devices, even after modifica-
tion. For such cases, specialized devices have been developed. 
Some of these are head movements, blow and suck (also named 
“sip and puff switch”), and smart glove. These are described in 
the next sections.

2.2.4.1 Head movement People who are unable to use their 
hands or feet, but have the movement of their neck can inter-
face with computerized devices or give commands using the 
movement of the head [7]. Suitable sensors that can measure 
the movement of the head can be employed. The choice of the 
sensor is dependent on a number of factors such as the sensi-
tivity and specificity for the user. It is important that the user 

2.2.4 Special 
 purpose inter-
face devices
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does not have to make large and awkward head movements, 
and it is essential that unintended movement of the head are not 
identified by the system as commands [8]. Other factors that 
need to be considered are the reliability, convenience, and the 
aesthetics.

Although there are number of options, the purpose of the 
sensors is to identify the intended head movement. This can be 
achieved using the inertial measurement unit (IMU), angle sen-
sors, or stretch sensors. These are described in later sections.

2.2.4.2 Blow and suck One of the simplest yet effective 
means for control or communication is based on the ability of 
the user to control their breathing. This could be an alternate for 
people who do not have sufficient control of their neck, or it could 
be combined with other modalities to develop a hybrid system.

Blow or suck (also called sip and puff switch) can be used to 
command the wheelchair for users with ability of blowing and 
sucking a straw [9]. In this modality, a pressure sensor, installed 
into a straw, allows users either choosing icons for communica-
tion or movement commands of the wheelchair.

The fundamental design of these devices includes a tubing 
or air-straws fitted with sensors that identify the push and pull 
of the air. Typically, the device has two sensors: one sensor to 
monitor the push or air movement associated with the blow-
ing action; and the other sensor is for detecting the pull, or the 
movement of air associated with the suck action. Devices that 
monitor the speed of airflow have also been considered because 
such a system will offer greater degrees of freedom, however, 
these are not commonly used due to the inability of the target 
users to effectively control the rate of air flow.

2.2.4.3 Smart glove People with reduced motor ability or peo-
ple working in high-risk conditions can benefit from gloves that 
can sense the detailed movement of the hand and convey this to 
the computer or the robotic device. Such a glove can be useful 
for obtaining the command of the user to control robotic devices 
or computer cursor [10]. These gloves can also be used for other 
applications such as computer games and defense technology.

The smart glove is an integration of multiple sensors that 
are embedded in a glove that is worn by the user. These  sensors 
detect the hand movement such as individual finger flexion, 
wrist flexion, and rotation. Such a glove has the advantage that 
it fits directly on the hand of the user and allows the user the 
natural connectivity with the devices to be controlled. Some 
of these gloves may also contain feedback modality where the 
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factors such as force or pressure may be sensed on the robotic 
device end and feedback provided to the user. The feedback 
may typically be in the form of vibration and often located in 
the palm region of the glove.

2.3 Sensors

Mechanical HCI devices require the translation of movement or 
force to electrical signals that are the input to the computerized 
device. There are a number of options for such sensing, includ-
ing measure of position, acceleration, stretch, or rotation. One 
common factor in the sensing is the need for these sensors to 
be lightweight and nonintrusive. It is also important that these 
sensors are low powered and do not require number of wires.

An example of a position sensor is the inertial measurement 
units, and angles can be sensed using goniometers. Stretchable 
inductive coils or stretchable resistances are suitable for mea-
suring the change in length, and load cells are examples of force 
sensors. Each of these sensors is described in the next sections.

An inertial measurement unit, or IMU, is an electronic device 
that measures and reports velocity, orientation, and gravita-
tional forces, using a combination of accelerometers and gyro-
scopes, sometimes also magnetometers. IMUs are used for a 
number of applications including aviation and defense. These 
are generally lightweight, can be integrated with a global posi-
tioning system (GPS), and can measure the movement in terms 
of acceleration. Integration with wireless technologies such as 
Bluetooth allows the device to be used without cumbersome 
wires. Recent advancements in microdevices has resulted in 
making these devices lightweight and inexpensive, and thus 
suitable for assistive technology applications [11].

IMUs allow the integration of different techniques that can 
be combined to identify the motion and actions of the user. 
Although advanced applications can be used to identify the 
position and movement, and relative movement when mul-
tiple units are used, these in general are more complex and 
require sophisticated algorithms and software. However, recent 
advancements have made these more affordable, and it is but a 
matter of time when it may be suitable for monitoring the move-
ment of the limbs of the user, or other body movement such as 
the head.

For applications such as controlling the movement of a cur-
sor on the computer screen or the movement of the wheelchair, 

2.3.1 Inertial 
 measurement unit
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a relatively simpler approach is suitable. In such applications, a 
sensor may be embedded on the cap of the user, and the aver-
age inclination of the head is used to identify the direction of 
the head inclination: forward, backward, left, or right. These 
four directions are used to provide command of the wheelchair 
or a computer cursor on the screen. There may be a number of 
options for the sensor, such as the use of a three-dimensional 
(3D) accelerometer, tilt sensors, and IMU.

The head inclination angles are computed based on the asso-
ciated gravitational accelerations [12]. Two independent angles 
are determined to obtain the head movement: α and γ angles, 
where α is the forward head inclination and is related to linear 
velocity of the robotic wheelchair; and γ is the side inclination 
and is related to angular velocity. Figure 2.2 shows the two 
angles, and the α angle and the γ angle are computed using the 
following equations:

 
α = cos−1 GyG  

(2.1)

 
γ = cos−1 GzG  

(2.2)

There are number of applications such as HCI and posture  control 
devices that require measuring the angle of one or more joints. 
Goniometers are sensors that measure the angle of a joint and are 
based on the variable resistance potentiometer. A typical potenti-
ometer has two ends, with one end connected to the base resistance 
and the other end is connected to the wiper that presses on the 
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FIGUrE 2.2 Computing head inclination angles.
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base resistance, and the two ends determine the resistance between 
the two ends. The goniometer has two arms, with each of these 
connected with the two ends of the potentiometer, and the angle 
between these alters the resistance of the sensor. Generally, the 
relationship between the resistance and the angle is maintained to 
be nearly linear so that collaboration is relatively simple [13].

Goniometers have been in use for over five decades, and 
goniometers have been made smaller, lighter, and more robust. 
They have found number of applications such as for the control 
of braces and posture support devices. However, goniometers 
are being replaced by flexible angle sensors.

Sensors such as flex sensors are suitable for measuring 
angles of flexion (Figure 2.3) and angles of the neck. Flex sen-
sors are inexpensive, easy to be used, and do not require any 
special setup. However, there does not appear to be a ready to 
be used system, and thus there is the need for building a small 
circuit and suitable software that will allow the use of such sen-
sors for controlling a device such as the computer cursor or a 
wheelchair.

The flex sensor marketed by Spectra Symbol USA [13] changes 
the resistance when it is bent. When straight and not flexed, its 
nominal impedance is 10 kΩ, and increases to about 40 kΩ when 
bent in the middle at 90°, or right angle. The sensor is very flex-
ible, and can be twisted and flexed greater than 360° as well.

Commonly available flex sensors are made of metal-coated 
polymer, with a length of 10.1 cm, width of 0.635 cm, and 
thickness of 0.05 cm. It has a single connector on one end, 
and its impedance is proportional to its angle. It is a very cost-
effective, long-lasting, and easy to use device. In most such sen-
sors, the change in the impedance is very significant and can 
be measured using the voltage divider network. Although the 
frequency of operation of these devices is relatively low in most 
applications, this is not important because rate of human move-
ment is generally not greater than 1.5 Hz, which is achieved by 
elite cyclists.

Flexible angle sensors can be built into the garment of the 
user, such as a glove, socks, or knee bandage, and be used to 
determine the joint angles such as that of the elbow or identify 
finger flexion. Flexible angle sensors may also be integrated 
with other modalities such as the electromyogram. Information 
from both of these are fed into the computer or logic circuit to 
determine the direction and angle of the joint movement.

Development of conductive polymers has resulted in the 
development of stretch sensors, the resistance of which is 

2.3.3 Stretch 
sensor
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proportional to its length. Typically, these sensors are polymers 
that have carbon infusion, and when these are stretched, the 
length increases while the diameter reduces. This results in an 
increase in the resistance, and measuring this change is an indi-
cator of the length of the sensor [14–16].

One simple application of these sensors for people who lack 
hand control is to appropriately embed these sensors into a 
garment of the person such that the intended movement of the 
user causes stretch of the sensor. When suitably embedded in 
the headgear of the user, stretch sensors can identify the head 
movement toward the right, left or backward, and be used for 
controlling a computerized device.

The advantage of such sensors is that they are simple to use 
and are inexpensive. They also allow the user to personalize the 
device such that it can be used for people of different sizes, age 
groups, and allow them their own style of operation. However, 
there are no complete systems that are available, and the user or 
their caregiver has to custom build the system. This also makes 
such a system difficult for wireless operations.

There are a large number of force sensors, and these range 
from simple to very accurate. The cost and complexity of 
force sensors can vary significantly as well. One of the com-
mon issues with people having reduced motor control is that 
there force is not stable and well-controlled, and hence for 
most such applications, the high accuracy force sensors are 
not required [17,18].

One example of a force sensor is the Flexiforce [17]. It is a 
single-element force sensor and its electrical resistance changes 
with the applied force. When there is no force, and the force 
sensor is unloaded, its resistance is very high. When force is 
applied to the sensor, this resistance decreases. The sensor is 
provided with two electrical pins and the resistance between 
these pins can be measured using a simple electronic circuit. 
The relationship between the force and resistance is linear 
though this linearity is not accurate.

This sensor does not have the stability or accuracy for fine 
subtle gradation-based control and cannot distinguish between 
pressing forward on the stick a little bit and pushing it as far 
as it will go. However, it is suitable for identifying if the force 
is there or not, and thus its output is suitable for being binary. 
This is often very useful for people with limited control and 
thus can be incorporated in devices such as wheelchair control 
using head pressure. Such sensors are useful because they are 
flexible, lightweight, and inexpensive.

2.3.4 Force 
 sensor



18 HCi teCHnoLogies for tHe Motor iMPaired

2.3.4.1 Example of smart glove The biomedical laboratory 
of RMIT University, Melbourne, Australia developed a smart 
glove (Figure 2.3) that can be used by people with weak mus-
cles, or for performing tasks that may have the risk of injury. In 
the basic design, the smart glove has a network of sensors that 
identify hand and finger movement, which is used to control the 
robotic prosthetic hand.

The basic design consists of a glove that has sensors to iden-
tify the movement of each finger, the palm, and the wrist. For 
this purpose, 10 flex sensors (described earlier) were incorpo-
rated. These sensors measure the bending at the joint and were 
used for the following:

• Five sensors to identify finger flexion

• One sensor to identify thumb abduction/adduction

• One sensor to identify palm flexion

• One sensor for wrist flexion

• One sensor for wrist extension

• One sensor for radial and ulnar deviation

The required electronic circuit was built into the glove. The 
output of each sensor was multiplexed and digitized using low-
resolution 4 bits and transmitted to the computer using a USB 
connection.

2.3.4.2 Computer connectivity specifics Sensors have to 
be connected to the computer and this is either done using a 
wired or wireless connection. The wireless connections have 

FIGUrE 2.3 Smart glove for controlling the virtual hand devel-
oped at Biosignals Lab, RMIT University, Melbourne, Australia.
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the obvious advantage that there are no wires, and this allows 
freedom to the user. Wireless also avoids the clutter of wires 
and this makes it easier to make changes to the configuration, 
which can be achieved by software. The wireless options may 
use Bluetooth or a wireless network approach. In each of these 
cases, each sensor can be individually addressed so that the sys-
tem can read the sensors separately. However, wireless trans-
mission consumes significant power, and when there are no 
wires, this requires the sensors to carry batteries, which makes 
them bulky.

Wired connections eliminate the need for battery power 
and the devices can draw on the power from the computer. 
As most mechanical sensor-based HCIs are low-frequency 
devices, a USB port is an efficient solution. This connection 
can be achieved using an electronic chip such as the Microchip 
PIC18F4550 to control the interface to the computer. This has 
a possible 32 inputs or 16 bidirectional inputs, and can be used 
for a significantly complex smart glove or similar device.

2.4  applications of HCI based on 
mechanical sensors

HCI devices that are based on mechanical sensors have a num-
ber of advantages including simplicity and acceptability by 
the user. Such devices have been in common usage ever since 
graphics-based computing began and have been extensively 
developed, with most people very confident with their usage. 
Thus, the typical user does not require any extensive training 
and they can use these without delay.

Another significant advantage of these interfaces is that they 
are relatively inexpensive and available in all parts of the world. 
Further, most of these are compatible with existing drivers or 
computer software, and are often referred to as plug-and-play 
type. Thus, the user can plug the device to their computer or 
other such equipment and use it with no extra effort.

Mechanical sensor-based HCI have the advantage that many 
technical people are comfortable in customizing and servicing 
such equipment. Thus, if the specific device is not directly suit-
able for the user, technical support personnel can customize 
it. They also have the advantage of being robust and reliable, 
and are generally immune to factors such as electromagnetic 
interference. Thus, such devices are the most commonly used 
computer interface devices.
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Mechanical sensing is based on movement or force and thus 
necessitates the user to make some movement or exert force. 
This limits the use of these devices for those users who have 
some level of muscle control and contraction. Hence, mechani-
cal sensor-based HCI are unsuitable for people who do not have 
hand or leg movement or control, such as spinal cord injured 
patients who may have lack of motor control. Thus, this is not 
useful for people who may be quadriplegic.

2.5 Current research and future improvements

There has been significant advancement in material  engineering 
over the recent past. Current techniques can develop materials 
with specific thermal, electrical, and mechanical properties. 
Thus, devices such as joysticks or tracking balls can be built 
with specific weights, friction, and electrical properties, and 
conductive polymers with elastic or bend properties have led to 
the ability to sense position, stretch, and angle [19].

Another recent advancement in the field of mechanical 
development is the 3D printer. With easy availability of these 
printers, it is relatively simple to produce customized objects 
and parts that can be used to customize computer interface 
devices such as a joystick. Although this would have required 
significant engineering effort earlier, the printer can produce 
most objects based on the computer-based design [20].

Efforts have also been made for the mechanical sensors to 
be fabricated using biocompatible materials. This, coupled with 
wireless technology that allows power and data transmission, 
has found applications in implanted sensors required to monitor 
orthopedic implants such as for bones and joints. Such sensors 
will reduce the need for unnecessary surgical procedures and 
enhance the life of the implants, thereby greatly improving the 
quality of life of the users.
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CHaptEr tHrEE

Brain–computer interface 
based on thought waves

abstract

Our actions are thought in the brain, and the movement is 
implemented by the combination of neural transmission and 
muscle activation. Similarly, our sensing is perceived by us by 
our brain receiving the neural signals from our sensory organs. 
However, many people do not have functioning neural path-
ways or muscles that produce sufficient force. For such people, 
technology that connects the muscles or sensory organs directly 
with the brain is referred to as brain–computer interface (BCI). 
Such connectivity may be achieved using invasive or noninva-
sive methods.

This chapter describes the use of brain waves recorded by non-
invasive and invasive techniques to produce an action com-
mand. In this chapter, the fundamentals of brain waves, the 
electroencephalogram or electroencephalography (EEG), and 
BCI are introduced. Subsequently, EEG recording and analysis 
technology is described and the methods for automatic identifi-
cation of commands from EEG are discussed. This chapter also 
briefly explains sensory BCI devices.

Current technologies and implementation are then descri bed 
along with the possible applications, user requirements, and 
limitations. In the end of this chapter, some of the major cur-
rent and proposed research activities are discussed.
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3.1 Introduction

Our actions are controlled by the brain, and the process of 
people controlling devices can be described in terms of our 
thoughts being converted to neural activity in the brain, and 
these cause activation of the muscles, which leads to movement. 
This is translated by the interface such as the joystick or com-
puter mouse to the command of the machine. The feedback of 
the movement is obtained by the user and this is used to control 
the action and make corrections. Thus, controlling a machine or 
a computer requires a healthy spinal and peripheral neural sys-
tem and muscles, as well as a healthy sensory system. However, 
people who may have suffered injuries to their spine or suffer 
muscular atrophy are unable to perform such actions. Similar 
communication is difficult, and people with such ailments may 
be unable to speak or write, and thus are locked in their bodies 
unable to communicate with the rest of the world. BCI systems 
have been developed to provide the direct interface between the 
brain of an individual with a computer or a peripheral device. 
The other aim is to provide the users with the ability to sense 
when they have lost some of their sensory capabilities.

A BCI is a communication system that does not depend 
on peripheral nerves and muscles [1]. BCI describes a set of 
devices or technologies that allow the user to control and com-
mand a computer with only brain waves. It is also a term that 
is used for technologies that allow the user to obtain sensory 
information directly to their brain without the sensory nerves 
or senses. These are the outcomes of decades of intensive 
research that has improved the understanding of the function-
ing of the brain, along with advances in signal processing, 
electronics, and computers. BCI provides the user the capac-
ity to interface with the computer for commanding or receiv-
ing information. Thus, BCI provides users the ability to hear, 
touch, and see when they have lost their natural abilities to 
perform these functions, and to give commands to machines 
directly from the brain, and thus give the user the capacity to 
convert their thought to actions.

BCI devices may be broadly divided into two categories: 
feedback or sensory, and feedforward or motor. Motor BCI 
enables a direct communications pathway between the brain 
and the object to be controlled. The signal is directly transmit-
ted from the brain to the mechanism directing the cursor, rather 
than taking the normal route through the body’s neuromuscular 
system from the brain to the finger on a mouse.
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There are number of motor BCI techniques and can be 
divided into two categories: thought-based passive and simu-
lated systems. Thought-based systems are often referred to as 
thought translation devices (TTDs), and is the focus of this 
chapter.

The BCI may be achieved using invasive or noninvasive tech-
niques. The invasive systems have the advantage that the elec-
trodes are placed directly on the brain, and the signal recording 
is more precise. However, these systems require extensive sur-
gery and more complex equipment due to issues such as bio-
compatibility, reliability, and power. There is also invasive BCI 
where the electrodes are implanted without major brain sur-
gery and these are now regularly being used for giving sensory 
information to the user. The cochlear implant is an example of 
a success story. Devices for commanding a computer or other 
devices are still in the very early stages, and being trialed on 
primates or extreme cases. Noninvasive systems, however, are 
relatively inexpensive and are easy to install on the user but 
lack precision.

By reading signals from an array of neurons and using com-
puter chips and programs to translate the signals into action, 
BCI can enable a person suffering from paralysis to write a book 
or control a motorized wheelchair or prosthetic limb through 
thought alone. Current brain–interface devices require deliber-
ate conscious thought; some future applications, such as pros-
thetic control, are likely to work effortlessly. One of the biggest 
challenges in developing BCI technology has been the develop-
ment of electrode devices and surgical methods that are mini-
mally invasive. In the traditional BCI model, the brain accepts 
an implanted mechanical device and controls the device as a 
natural part of its representation of the body. Much of the cur-
rent research is focused on the potential on noninvasive BCI.

3.2 History of brain–computer interface

An EEG is the recording of the electrical activity of the brain. 
This was first observed by Hans Berger in 1924 and has since 
found numerous applications, including the development of 
BCI. The early applications of EEG were largely clinical, such 
as for epilepsy, but soon were followed by other applications 
such as modeling the brain and for discovering the relationship 
between human motor and sensory perception with the elec-
trical activity of the brain. In the 1960s, it was observed that 
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EEG recorded from the scalp could be associated with thought, 
stress, and concentration patterns, and in 1970 came the first 
attempt for the development of thought-driven BCI. Since then, 
researchers have reported the motor mapping, where the loca-
tion of the brain was mapped to various motor and sensory 
functions. Algorithms were developed that could identify the 
motor thoughts directly from EEG recordings.

In the 1970s, several scientists developed simple communi-
cation systems that were driven by electrical activity recorded 
from the head. Early in 1970s, the U.S. Department of Defense, 
through its research arm Advanced Research Projects Agency 
(ARPA), supported research in these technologies with the 
intent to develop technologies that provided an immersive and 
intimate interaction between human and machines or comput-
ers, referred to as “bionic” applications.

One of the pioneers in this bionic research was the work 
by Dr. George Lawrence [2], which focused on cognitive bio-
feedback and self-regulation. This project worked toward bio-
feedback techniques to enhance the human performance and 
capability, especially for military personnel. The specific proj-
ect aim was to support tasks that caused mental fatigue and had 
high mental loads. The research resulted in improved under-
standing of human motor control system, specifically in sen-
sory feedback and biofeedback. Although this was pioneering 
work, the outcomes were only preliminary.

Another important pioneering project in this area was 
“Biocybernetics.” This was established to evaluate the use of 
bioelectrical signals such as EEG to control devices for defense 
and other applications, especially to assist in the control of 
vehicles and weapons, or other similar systems. The Brain–
Computer Interface Laboratory at the University of California 
in Los Angles (UCLA) demonstrated the use of visual evoked 
potentials (VEPs) [3,4] to identify the direction of the gaze of 
the user, and thus provide the human with the ability to control 
the movement of a cursor. An important outcome of these stud-
ies was that they were able to distinguish between EEG and 
muscle activity of the scalp, and highlighted the difference and 
similarity between EEG activity and those using electromyo-
gram (EMG) recorded from the scalp.

Implanting electrodes in the brain was first attempted in 
1960s when the electrical activity of the brain was recorded 
directly from the brain surface. These works identified the loca-
tion of the motor cortex and auditory centers, and correlated the 
actions and sensory stimulation with the help of animal experi-
ments. Experiments were conducted to stimulate the sensory 
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regions of the brain for perception of sensory functions, such as 
sound. The auditory center was extensively studied and led to 
the development of cochlear implants.

Extensive research with the help of animal experiments 
was performed in 1970s, and building on earlier work, brain 
stimulation for sensory perception and motor mapping was 
demonstrated [5,6]. These works demonstrated the advantages 
of embedded systems compared with the surface recordings of 
EEG, and showed that these recordings were more precise and 
repeatable, while the precision was lacking in EEG recorded 
from the scalp of the person. However, there were significant 
limitations such as the size of the electronics, wires, and surgi-
cal procedures that limited progress in the development of BCI 
devices that could be directly placed on the cortex.

After the 1960s, several mysteries of the brain was uncov-
ered such as the functioning of the motor cortex, which resulted 
in developing procedures for placements of electrodes and 
association of the limb with electrode location. These were 
the basis for the first series of significant intracortical BCI that 
were developed in the 1990s. In early 2000, the first experi-
ments were conducted where the lab monkeys’ movements 
were reproduced by the robotic arm with only the connectivity 
to the cortex [7,8].

There have also been significant research and development 
focused on neuroprosthetic applications that aim at restoring 
damaged hearing, sight, and movement. Due to the remark-
able cortical plasticity of the brain, signals from implanted 
prostheses, after adaptation, can be handled by the brain like 
natural sensor or effector channels. Following years of animal 
experimentation, the first neuroprosthetic devices implanted in 
humans appeared in the mid-1990s.

The first human experiment was conducted at Emory 
University in Atlanta, which was the first to report the record-
ing of signals from electrodes implanted in the brain and to 
simulate movement in 1998. The patient, however, did not live 
long, but just long enough to start working with the implant, 
eventually learning to control a computer cursor [9].

There has been significant progress in noninvasive, scalp 
EEG-based BCI. Until around 2000, these devices were largely 
limited to the laboratory due to the prohibitive cost of EEG 
recording devices, wires, and size of the electronics, but there 
has been significant improvement since then. Devices such as 
the EPOC headset by Emotiv Company were introduced, and 
are inexpensive as well as easy to wear, and became popular 
with computer gamers, and found applications for people with 
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disabilities. Faster and smaller computer devices have also 
contributed to making these devices available outside the labo-
ratory. The availability of tablets and laptops that are easy to 
mount on wheelchairs and with sufficient computation power 
have made it possible for these devices to be deployed.

3.3 Significance of BCI devices

There are two major types of BCI machines: sensory and 
motor. Thanks to the success of the cochlear implant, the sen-
sory BCI does not require much introduction. The technology 
has come a long way from the start and now over millions 
of people have a cochlear implant. However, it is worth not-
ing that the implant was the brainchild of an Australian sci-
entist Graeme Clark, who in Melbourne developed the first 
implant device that was fitted for Rod Saunders in 1978. This 
was truly sensational and has been responsible for changing 
the perception of bionic devices in the minds of laymen and 
scientists. However, it should be noted that this was the out-
come of global efforts and many changes to the direction of 
the technology.

Motor BCI machines have had smaller success, and while 
success has been reported and papers published during the past 
50 years, demonstrated success has only been more recent. 
Some of the recent high-profile users of BCI have brought pub-
lic and political attention to these devices. One such example 
was in 2006 when at the European Research and Innovation 
Exhibition in Paris, Dr. Brunner (from the United States) com-
posed a message on the screen by thinking his thoughts alone. 
He wore a noninvasive cap with electrodes placed on his scalp 
and EEG activity was recorded and analyzed. The software 
with a range of algorithms identified the specific characters to 
type the message [10].

BCI systems like that demonstrated by Brunner use a set of 
algorithms and pattern-matching techniques to identify the user 
commands. The systems have to be adaptive to ensure the 
 signal quality, has to be customized to the individual, and the 
user is able to become more efficient with practice. The effec-
tiveness of the technology is evidenced by the ability of the user 
to communicate effectively and thus be an integral member of 
the society. Although the user is unable to make any movement, 
including eye movement, this provides the user with the ability 
to communicate effectively and thus not suffer locked-in syn-
drome. The following example highlights this point.
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An American neurobiologist despite having suffered from 
amyotrophic lateral sclerosis (Lou Gehrig’s disease) and not 
able to move his eyes, was able to e-mail: “I am a neuroscientist 
who (sic) couldn’t work without BCI. I am writing this with 
my EEG courtesy of the Wadsworth Center Brain-Computer 
Interface Research Program.” [10].

Another successful application of TTD-based BCI devices 
is their use for applications for controlling devices such as 
wheelchairs. There are several research teams, including at the 
University Espirito Santo, Vitoria, and Brazil, that have suc-
cessfully integrated the TTD to control wheelchairs and have 
tested these for quadriplegic patients. Restoring the ability of 
an individual to maneuver a wheelchair and gain independence 
highlights the outcome of this technology.

3.4 BCI technology

BCI is an output channel for the brain, which is new to the 
user, who has to be trained for using the system. It requires 
the user to engage the brain’s adaptive capacities and adjust 
output to optimize performance. Its operation depends on the 
interaction of two adaptive and seemingly independent control-
lers: the user’s brain, which produces the brain waves, and the 
system itself, which translates the activity into specific com-
mands. Successful BCI operation requires the user to develop a 
new skill to control the EEG without the feedback of associated 
muscle activity.

BCI can be broadly considered into two categories: inva-
sive and noninvasive. Invasive BCI have electrodes that are 
implanted in the brain of the user, and noninvasive BCI have 
electrodes that are on the surface. These are described next.

Invasive BCIs are implanted directly into the brain during neu-
rosurgery, and are able to obtain the signal directly from the 
neurons or directly stimulate the neurons. The biggest advan-
tage of implanted devices is high specificity as these devices 
are in direct contact with the neurons. These devices can be 
classified into motor and sensory.

For BCI that are for the purpose of obtaining the motor com-
mands from the user, the motor cortex is the obvious choice for 
placing the electrodes. This is because its relevance to the motor 
tasks, and also relative accessibility being located on the brain 
surface, compared to deeper located motor areas in the brain. It is 

3.4.1 Invasive BCI

3.4.2 Motor-
invasive BCI
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also more convenient due to the large pyramidal cells. Alternate 
sites such as the supplementary motor cortex, subcortical motor 
areas, and the thalamus have also been considered.

Numerous modalities have been considered for stimulat-
ing the brain including functional magnetic resonance imag-
ing (fMRI) and magnetoencephalography (MEG), besides the 
electrical stimulation. There are also the use of electrocorti-
cography (ECoG), which is less invasive, and in this modality, 
the electrical activity of the brain is recorded from beneath the 
skull but in a manner similar to noninvasive electroencephalog-
raphy. The electrodes are embedded in a thin (biocompatible 
flexible polymer) pad that is placed above the cortex and under 
the dura mater.

The suitable locations of the electrodes are obtained using 
imaging techniques such as fMRI and high-density EEG elec-
trodes [11,12]. However, there are numerous unknowns in these 
systems, such as how many neurons are required to obtain the 
recordings, the possible role of stimulation of the region to 
modify the region response, and the ability of the user to retrain 
the brain based on the known plasticity in the neural connec-
tions. There are conflicting views regarding each of these, and 
significant research is required to reach the best answer.

There are also ethical issues associated with invasive BCI. 
This involves highly invasive procedures that would signifi-
cantly alter natural brain functioning, and thus to be justifiable, 
an implanted system must offer the individual a substantial 
functional advantage over conventional augmentative tech-
nologies and over noninvasive BCI methods. If, for example, 
improved noninvasive techniques can provide a simple hand 
grasp compared with precise grips with an invasive procedure, 
are such options justified? Often, there are no simple answers. 
However, amyotrophic lateral sclerosis (ALS) patients who are 
locked in, and selected patients suffering from stroke or spinal 
cord injury, may benefit from invasive BCI technology if it is 
both safe and effective.

For effective motor BCI operation, the system must also pro-
vide sensory information to the user when the body’s natural 
ability to obtain this information is defective. The nervous sys-
tem’s ability to adapt to the new feedback provided by a BCI 
helps the user to effectively command the devices. There are 
also many other applications of the sensory BCI, such as the 
auditory, and more recently the visual prostheses.

Noninvasive BCI is largely for motor command function detec-
tion, and there are no significant works in its application for 

3.4.3 Nonin-
vasive BCI
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sensory applications. Such BCI is also referred to as TTD. 
The noninvasive nature and user convenience are its strengths, 
though the lack of specificity is the biggest weakness. The fun-
damental principle of these devices is based on the electrical 
or magnetic recording corresponding to the brain activity of 
the user.

EEG is the recording of the electrical activity of the brain, 
recorded from the scalp of the person. In conventional scalp 
EEG, the recording is obtained by placing electrodes on the 
scalp with a conductive gel. Many systems typically use elec-
trodes, each of which is attached to an individual wire, though 
more recently, wireless electrodes are becoming common. EEG 
was discovered in 1924 and has extensively been used for a 
number of clinical applications such as epilepsy [13]. It has 
also been a very important tool in our understanding of brain 
functioning.

EEG is a low voltage, low frequency signal, with signal 
amplitude being around 1 microvolt, and the frequency being in 
the range of 0–100 Hz, though the effective frequency is in the 
range of 0.5–50 Hz. While traditional EEG uses 19 electrodes 
with 1 reference electrode, there are many other options that 
have been recently developed. One of the options is the use of 
high-density electrodes, where as many as 256 electrodes are 
placed on the scalp to obtain greater detail and specificity of 
the signal [12].

Traditionally, EEG analysis was done based on the spectral 
content, with the signal being divided into five frequency bands: 
alpha, beta1, beta2, gamma, and theta. However, with advance-
ment in electronics and signal processing techniques, there are 
many other options that are now available. The other method 
of obtaining the information regarding the brain activity is the 
use of MEG. MEG detects the tiny magnetic fields created as 
neurons within the brain. It has been found to identify the loca-
tion of the active region and can be used for determining the 
command of the user. However, this appears to be confined to 
laboratory research.

3.5 System design

BCI systems have evolved over the years, largely due to the min-
iaturization of the electronics, improved computation devices, 
advancements in algorithms, and improved surgical procedures. 
The system design for the invasive and noninvasive devices 
is significantly different, and so is the difference between the 
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sensory and motor devices. The basic system requirements are 
discussed in the next sections.

Such a device requires the implanted electrodes that record the 
activity from the appropriate locations. These devices have to 
be connected with the external recording system, and due to 
the obvious issue of infections, wired connections are difficult. 
Thus, the desired option is for these electrodes to be connected 
wirelessly. However, the thickness of the skull, and presence 
of blood with hemoglobin makes the wireless connectivity 
challenging.

The other key component of invasive TTD is the signal anal-
ysis and classification system, and the ability to train the system 
for the individual user. With the easy availability of miniatur-
ized computers, this is no longer a significant challenge.

Sensory BCI requires a combination of the sensory device, such 
as the microphone, the signal analysis and classification sys-
tem, and the electrodes that are implanted appropriately in the 
brain. In some text, devices such as cochlear are not referred 
to as BCI because the electrode placement may not be consid-
ered as part of the brain. With this industry having matured, 
this procedure is now well rehearsed and no longer considered 
highly invasive. In this system, there are around 24 electrodes, 
located on a single wire that is introduced in the cochlear and 
stimulated externally based on the microphone.

Noninvasive TTDs are typically based on the recording of EEG 
from the scalp. While earlier devices required the use of EEG 
cap, some of the new devices uses head-sets that are easy to 
place, and do not have the appearance of a clinical product.

Advancements in signal processing and motor mapping 
have resulted in reducing the number of channels that are 
required for obtaining the necessary information. Some of the 
current devices are based only on eight electrodes, though the 
earlier devices used significantly more number of channels. 
Current devices have also evolved to have the electrodes that 
are wireless and that are able to self-monitor the connectivity 
between the electrode and the skin surface.

One key component for the devices is the computer and the 
software that can be trained for the specific user. The current 
technologies often require significant manual supervision by an 
expert to train the system such that the system can correctly 
interpret the user command. Often, techniques such as neural 
networks or statistical classifiers are used for this purpose.

3.5.1 Invasive 
thought transla-
tion device BCI

3.5.2 Invasive 
 sensory BCI

3.5.3 Nonin-
vasive thought 
 translation 
device BCI
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One key component of all TTD BCI devices is the robotic 
or communication device that will be controlled by the user. 
With limitations such as the degrees of freedom for the user, 
it is essential that the devices such as the keyboard (screen) 
have to be simplified. There is also the limitation regarding the 
language skills. Some of the systems to overcome the short-
comings include the use of icon-based keyboards that allow the 
keyboard to be tailored to the user requirements, are not lan-
guage based, and require fewer degrees of freedom compared 
with a normal keyboard.

3.6 Signal analysis

Interpreting the brain waves to determine the user’s thought is 
the aim of the signal analysis and classification. One of the first 
challenges is to reduce the noise and obtain the signal that is 
suitable for analysis. Thus, the first goal of signal analysis is 
to maximize the signal-to-noise ratio (SNR) of the EEG. This 
requires an understanding of the major sources of noise. After 
the signal quality has been improved, the next task is to identify 
and obtain the most suitable set of signal features that can be 
interpreted to determine the user thought command.

There are number of sources of noise such as due to eye move-
ments, EMG, and line noise (50 Hz). There are also other 
sources of EEG that are not relevant to the application and may 
be inherent or due to distractions. Discriminating to identify 
the relevant signal and the noise is always the biggest challenge 
when the characteristics of the noise are similar in frequency, 
time, or amplitude to those of the desired signal. For example, 
eye movements are of greater concern than EMG when a slow 
cortical potential is the BCI input feature because eye move-
ments and slow potentials have overlapping frequency ranges. 
For the same reason, EMG is of greater concern than eye move-
ments when a rhythm is the input feature. In the laboratory, 
particularly, it is important to record enough information (e.g., 
topographical and spectral distributions) to permit discrimina-
tion between signal and noise.

Nonneural noise such as EMG is of particular concern 
because a user’s control over it can readily masquerade as actual 
EEG control. Nonneural noise produced by reflex activity may 
occur even in users who lack all voluntary muscle control. In 
this case, the nonneural noise will not support communication 
but can degrade BCI performance by reducing the SNR. It is 

3.6.1  Improving 
 signal quality
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also important to distinguish between different neural features. 
The visual rhythm is a source of noise when the rhythm is the 
feature being used for communication.

Temporal and spectral filtering are two important meth-
ods used for signal analysis. However, spectral and temporal 
overlap of multiple signals and signal with noise is inherent in 
EEG recordings and this limits the outcome. More recently, 
approaches such as independent component analysis and other 
entropy and information-based techniques have been employed 
to separate the signal from background noise and noise due to 
other sources.

There are many options for features of BCI signal processing, 
and the efficacy of each is application based. These have to 
be evaluated based on speed, accuracy, and ease for the user 
training. There are online tools that have been built such as 
BCI-Matlab [14] and Graz BCI system [15]. One method that 
has been successfully employed is autoregressive (AR) model 
parameter estimation, useful for describing EEG activity and 
BCI applications. It typically assumes a Gaussian process [16], 
and it is important to assess the signal for this technique to be 
successful. An alternate is the maximum likelihood estimate or 
Kalman filter approach [17].

Signal processing and classification methods are very criti-
cal in BCI design. After enhancing the SNR, the suitable fea-
tures of the signal have to be obtained. However, the human 
brain is complex, and undergoes other changes such as moti-
vation, intention, frustration, fatigue, and learning, and these 
significantly affect the signal.

3.7 BCI translation algorithms

A translation algorithm transforms the EEG features into 
device control commands. These classify the signal feature set 
based on prior knowledge of the relationship between the user 
commands and the signal features. There are several options 
for classifying signals such as EEG, and these are based on fac-
tors such as the speed of training, speed of classification, sensi-
tivity, specificity, accuracy, number of samples, and statistical 
distribution of the data. Because some of the factors are coun-
terinteractions, a compromise between them is required, and 
for this purpose, a thorough understanding of the application 
is essential. For example, if the device is required for a single 
user, the speed of training may not be a critical factor because 

3.6.2 EEG fea-
ture selection
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retraining of the system is not required. Moreover, if the system 
does not provide the user with feedback, it is essential for the 
system specificity to be very high.

Translation algorithms that have been used including linear 
discriminate analysis (LDA), neural networks, Bayesian classi-
fiers, support vector machine (SVM), and twin support vector 
machine (T-SVM). These have their individual strengths and 
weakness and need to be carefully evaluated for best perfor-
mance for an application.

3.8 User consideration

BCI devices are not suitable for all people. TTDs can be limited 
to who can use the device and the external conditions. Hair 
can lead to reduced conductivity and the recording may be cor-
rupted due to the presence of line noise and motion artifacts. 
There is also the concern about the language, emotions, and 
inability of some users to get trained to repeatedly generate the 
appropriate EEG. There are also concerns regarding the ability 
of the user to understand the request from the clinician when 
they are training the system, while others may have difficulty 
due to added impairments such as hearing or visual loss.

Matching the user with his or her optimal BCI input features 
is essential if BCIs are ever to be broadly applied to the com-
munication needs of users with different disabilities. There are 
inherent weakness of the BCI systems, and in some cases, a 
hybrid approach may be more suitable.

3.9 applications of BCI

BCI provides the user the ability to interact with a computerized 
machine without requiring any movement or even activation of 
the muscles or motor nerves. Such a system will be useful for 
disabled people, people in special situations such as defense, 
computer games, and entertainment. The highest impact will 
be for facilitating communication for people with disabilities 
such as quadriplegics. These people often find themselves 
totally locked in with no means to communicate with the out-
side world, and this can be extremely frustrating.

Although BCI is a generic name for a set of devices that 
allow the user to control computers or communicate directly 
from the brain and without muscle control, this chapter spe-
cifically refers to devices that are controlled by the thoughts of 
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the user and are referred to as TTD. TTDs can be invasive and 
noninvasive. Each of these is described in the next sections.

The invasive sensory devices have progressed significantly 
more than TTDs. One of the biggest successes is the cochlear 
device, which is now routinely used for people who have 
impaired hearing. Its success has resulted in optimism and 
research groups around the world are working toward the 
bionic eye, where it is envisaged that the retina will be replaced 
by a silicon device.

Invasive TTDs are still in the very early stages, and thus most 
experiments have been conducted only on animals. However, 
more recently, they have been implanted in people who are 
referred to as totally locked-in, such as ALS patients, who pro-
gressively lose all motor control functions. Totally locked-in 
patients are those who do not have any voluntary muscle func-
tions, and are unable to perform tasks such as speech, eye or eye-
lid movement, or control air-suck and push functions. Certain 
acquired brain injury and spinal cord injury patients may also be 
in a similar category. Because of the extreme nature of their sit-
uation, such invasive procedures have been attempted for their 
benefits. From the results, it is evident that it is important for the 
implants to be provided prior to these patients losing all or most 
of their voluntary functions, because subsequently it is difficult 
training these patients to learn to use the device.

Future applications of invasive TTDs are expected to be 
for a range of disorders including autism, aphasia, and other 
severe communication disorders. This is because TTD allows 
the bypass of the region of the brain that may have been 
compromised.

Noninvasive TTDs are based on the use of EEG. The applica-
tions of these are more widespread. The advantage of such a 
system is that it is relatively easy to install and does not require 
any surgical procedure. There are devices such as EPOC 
(Emotiv) that are easy to wear, look attractive, are simple to 
calibrate, and cost under $1000. These properties make these 
easy to afford and user friendly. Although these devices provide 
the user with very few degrees of freedom, the aforementioned 
advantages make them highly accessible and are being widely 
used. The early stage applications of these have largely been for 
entertainment and computer games, and have paved the way for 
communication devices for people who have highly impaired 
motor control, such as road trauma patients who may have suf-
fered spinal cord injuries.

3.9.1 applications 
of invasive ttD

3.9.2 applica-
tions of nonin-
vasive ttD
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Noninvasive TTD

• Allows those with disabilities to communicate, control 
devices such as a light switch and wheelchair, and the 
ability to play computer games.

• Provides enhanced channels for healthy users when con-
trolling computer games or similar devices.

• Controls robotic devices for health or entertainment 
applications.

• Provides feedback to users with sensory loss.

Future applications of these devices include the use of BCI for 
defense applications such as guiding weapons or controlling a 
vehicle.

3.10 Limitations

Invasive TTDs have several limitations, the biggest being the 
highly noninvasive nature of the procedure. Although research-
ers have been working on simplifying the procedure and reduc-
ing the uncertainty, there are significant unknowns prior to the 
procedure, making it difficult to predict the outcomes. Another 
unknown is the long-term effect of the devices in the brain, due 
to growth of tissues around the electrodes.

Another limitation is the inability of some of the users to use 
the device. Results demonstrate that it is important for the patients 
to begin using these devices before they lose their voluntary func-
tions. This is a serious limitation, because prior to the complete 
loss, implanting such devices is ethically challenging. The other 
limitation is that such patients lose their ability to sense, and thus 
appropriate feedback has to be given to such patients. The users 
have to be trained to provide feedback to the user using a different 
set of modalities than would be natural, and the user may not be 
able to recognize this after the disease has progressed.

The noninvasive TTDs have limitations that are associated 
with very few degrees of freedom, poor reliability, and rapid 
changes to the signal quality over time. Although surface EEG-
based TTDs have been shown to be suitable for controlling 
devices such as the wheelchair or the computer cursor on the 
screen, experimental results show that for most people, even 
four commands are difficult and anything more than that is not 
possible.

Although success of BCI systems is very evident, one of 
the biggest limitations is that they are relatively low bandwidth 
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devices, offering maximum information transfer rates of 5–25 
bits/min at best. Thus, the ability of the user to communicate is 
highly limited. To overcome this limitation, attempts have been 
made to change the keyboard that is displayed and provide the 
user with suitable icons. This has the limitation that it has to be 
customized for the individual user; however, it has the strength 
that the communication rate is greatly enhanced. It also over-
comes the need for overcoming language boundaries.

One challenge to surface EEG systems is that the presence of 
hair causes significant changes to the electrode-skin impedance, 
resulting in altering the signal quality. Further, the presence of 
sweat or drying of the gel can lead to significant deterioration in 
the signal quality, and thus erroneous outcomes. The presence 
of hanging wires is another major shortcoming, though many 
research groups have partially solved this problem, and now 
wireless electrodes are expected to be soon available.

One common shortcoming in all TTDs is that the user has 
to make conscious thoughts to control the device while per-
forming other activities. Thus, they have to manage their EEG, 
must simultaneously plan the message to be communicated, 
and select specific letters or cursor movements. They also have 
to observe the outcomes and initiate appropriate corrections 
where relevant. This requires the user to perform multitasking, 
and diversion of attention. These can limit the applications of 
such technologies.

3.11 Future research

The brain is considered the last challenge and the most complex 
part of the universe. Research groups have been working to bet-
ter understand brain functioning and to develop techniques to 
interface directly with the brain. The list of projects is too long, 
but some of the interesting ones are as follows:

• Bionic eye—The bionic eye is a project that is supported 
by research organizations around the globe, and early 
stage progress has been reported. There are already 
experiments where the device has been implanted and 
results appear to be promising. However, there appears 
to be a number of challenges that would have to be over-
come before we can hope that a blind person will have 
functional vision restored.

• Thought capture—To determine what the person is think-
ing. This may have many applications for defense, as well 
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as for people with disabilities who would be able to com-
municate with the outside world. However, the progress 
of such projects appears to be highly limited.

• Dream capture—The aim of this project is to identify 
what the person is dreaming. This may be considered as 
an extension of thought capture, and the progress does 
not suggest that it will be available in the near future.

• There are also projects where organizations such as 
Google are attempting to perform large-scale data analy-
sis of the brain map. However, details of this appear to be 
shrouded in secrecy.

3.12 Ethical consideration

There are a number of ethical issues that must be considered 
in implanting and recording electrodes in human volunteers. 
Patients must be informed of the risks and potential benefits 
of any intervention, especially an invasive procedure with 
uncertain benefit to the individual and possibly serious risks. 
Volunteers with severe disabilities may tend to greatly overesti-
mate the potential benefits, so that risks and uncertainties must 
be clearly and forcefully explained. However, many people may 
want to volunteer for research that provides no direct benefit 
to them beyond the knowledge that they are participating in a 
research project that might help others with similar conditions 
in the future. They should not be denied this opportunity. The 
Belmont Report [18] enunciates three basic ethical standards 
for the conduct of human research.

• The first standard, respect for persons, incorporates the 
idea that individuals are autonomous agents and should 
be free to make their own choice regarding participation 
after being given a full understanding of the risks and 
benefits.

• The second standard, beneficence, obligates the investi-
gator to act in a way that will maximize benefit to the 
individual volunteer and/or the greater society while 
simultaneously minimizing the risk of harm.

• The third standard, justice, obligates the investigator to 
design studies so that the benefits and burdens of research 
are shared in a just way. An ethicist should be involved in 
the earliest phases of any human research developing or 
testing invasive BCI methods.
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CHaptEr FOUr

Evoked potentials-based 
brain–computer interface

abstract

Brain–computer interface (BCI) has a number of limitations, 
such as user fatigue and poor reliability, as discussed at the end 
of Chapter 2. Evoked potential-based techniques have been 
shown to overcome some of these limitations. This chapter 
introduces visual evoked potential (VEP) in electroencephalog-
raphy (EEG) and describes methods to apply VEP for overcom-
ing some of the limitations of BCI described in Chapter 2. The 
concept and implementation of steady-state VEP, along with the 
applications, user requirements, and limitations are described. 
At the end of this chapter, the current research activities in this 
area are discussed.

4.1 Introduction

BCI has been a trend in the communication between humans 
and machines. It probably uses the most direct way of access to 
the intentions of a person. A BCI system provides an entirely 
different output pathway and is the only way a person can 
communicate if the person suffers from disorders such as 
stroke, amyotrophic lateral sclerosis (ALS), brain or spinal 
cord injury, or any other diseases that can impair the function 
of the common output pathways. The disorders can impair the 
functions that are responsible for the control of muscles [1,2]. 
To overcome this disability, the electrical brainwaves of the 
person can be used to  identify the action commands and to 
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control machines and computers. These brainwaves are called 
EEG, and although these have been primarily used for clinical 
purposes, EEG is being considered for a number of control 
and interface applications. EEG signals can be noninvasively 
recorded by placing electrodes on the scalp of the person and 
amplifying the electrical potential. This recording is filtered 
and analyzed with suitable algorithms and classified to provide 
the user with the ability to communicate and directly control 
using their thoughts.

Currently BCI has been categorized based on the EEG brain 
activity patterns as follows:

• Thought-based BCI (explained in Chapter 3)

• Event-related desynchronization/synchronization (ERD/
ERS) [3]

• Steady-state visual evoke potentials (SSVEP) [4–6]

• P300 component of event-related potentials (ERPs) [7]

• Slow cortical potentials (SCPs) [4]

Steady-state visual evoked potentials (SSEVPs) is the neuro-
logical phenomenon where VEP is used to identify the target of 
the vision of the person and is one of the event-related synchro-
nized techniques. A VEP is an electrical potential that can be 
obtained from the scalp in response to a visual stimulus, such 
as a flash of light. There are different types of VEPs based on 
the stimulation frequency

• If the frequency is less than 3.5 Hz, the recorded VEPs 
are termed transient VEPs.

• If the frequency is greater than 3.5 Hz, the recorded 
VEPs are termed steady-state VEPs.

The concept of steady-state evoked potential is based on the 
brain responding to visual stimuli in terms of the phase and 
frequency of the stimulation. When a person stares at a stimuli, 
the parameters of the stimulation, phase, and frequency appear 
in the EEG recording. If there are multiple targets, each with 
a specific frequency or phase, the target that is the focus of 
the individual can be identified based on the analysis of EEG. 
However, the difference in the frequencies is small, and the 
EEG recordings consist of background brain wave activity, 
evoked potential, muscle activity, and noise.

In steady-state VEPs, the individual responses would over-
lap due to the presence of other signals and effect of multiple 
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stimulation, resulting in a quasi-sinusoid oscillation with the 
same frequency as the stimulus [8,9]. The important step is 
to reliably detect this frequency with high accuracy and more 
important to detect when the frequency is not present, that is, 
the status when the person does not look at the stimulus. The 
later part becomes a very challenging task in BCI systems.

SSVEP has been used to control wheelchairs for those 
with disabilities. The user has to gaze at the icon or direction 
arrow, which gives visual flickering stimulation and the target 
is identified based on the frequency of the stimulus which can 
be extracted from the recorded EEG signal. The advantage of 
SSVEP-based BCI compared with other BCIs is that it does 
not require user training or calibration and achieves a high 
information transfer rate (ITR) [1]. It is easy to operate and 
configure, and is less susceptible to artifacts produced by eye 
blinks and eye movements because the EEG signal, recorded 
in the occipital area, is far from the source of such artifacts 
[10–12].

4.2  Brain–computer interface (BCI) systems 
based on steady-state visual evoke potential

SSVEP-based assistive devices have been developed to help 
people with severe disabilities [13–15]. They use naturally 
generated responses from localized brain sources as a result 
of visual stimulation, and translate the detected stimulus fre-
quency into action. Although extensive research has been done 
in this area, but further work is still required to improve the 
practicality for real-world applications (outside the laboratory) 
and effectively interacting with the environment. This research 
has developed an SSVEP-based Speller BCI system and inves-
tigated some limitations of the available technologies as well as 
reporting the challenges and potential solutions to improve the 
system for real-world practical application.

The prototype speller system was built for investigation of 
optimum parameters affecting SSVEP response. The complete 
system consists of the four main parts:

 1. EEG headset

 2. Display/LED panel

 3. Main controller/interface board

 4. Processing unit
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EEG was recorded wirelessly using the Emotiv EPOC neuro-
headset (Research Edition) [12]. It features 14 EEG channels 
(10–20 international location system AF3, F7, F3, FC5, T7, 
P7, O1, O2, P8, T8, FC6, F4, F8, AF4) of 14 bit resolution 
(16 bit ADC with 2 bits discarded for instrumental noise floor) 
plus 2 CMS/DRL reference channels (P3 and P4). The head-
set is wirelessly communicating with a computer at 2.4 GHz 
band through a USB receiver. It also features wet electrodes 
and comes with special solution provided by the manufacturer. 
The device output is sequentially sampled at 128 SPS (2048 Hz 
internal) and the band limited between 0.2 and 45 Hz with two 
digital notch filters at 50 and 60 Hz. The headset is shown in 
Figure 4.1.

The visual stimulator panel contained 40 arrays of 2 × 3 (2 rows, 
3 column, 1 × 1 cm2) white SMD LEDs (SMT 0603 super 
bright) each corresponding to a specific character, number, and/
or a command (i.e., A–Z, 0, 1, …, 9, space, back space, Enter 
and Shift key) (Figure 4.2). All the characters were arranged in 
8 (columns) × 5 (rows) cells with 4 cm intervals between LED 
arrays measured form their margin. The hardware configura-
tion allows for independent triggering of each LED array at a 
specific frequency, which requires allocation of 40 different 
frequencies inside a narrow bandwidth. However, due to some 
other constraints, which will be discussed in Section 4.3, the 
maximum number of required frequencies was brought down 
to 8 and character detection was performed based on the inter-
action between SSVEP responses of columns and rows each 
trigged at specific frequency between 5 and 13 Hz. Each fre-
quency was independently generated using a digital counter 
configured in an FPGA (Altera Cyclone II, EP2C5T144).

4.2.1 EEG 
headset

4.2.2 Display/
LED panel

FIGUrE 4.1 Emotiv EPOC EEG headset.
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Eight different counters corresponding to eight predefined 
frequencies were implemented. Each pulse was generated 
using an independent synchronous counter with 12 bits of 
resolution and zero phase angle. The hardware was equipped 
with a 50 MHz crystal oscillator as the reference clock and all 
the train pulses were produced using multiple divisions of the 
high frequency 50 MHz oscillator to obtain good frequency 
precision.

A multiplex-based subcircuit was also considered to switch 
between the columns and rows of the display panel when a 
command is received from the interface board. The block dia-
gram of the implemented digital circuit is shown in Figure 4.3. 
According to this figure, the clk_in pin is the main clock input 
connected to the 50 MHz oscillator. The Pulse_in is the multi-
plexer’s select pin, which is connected to the interface/control-
ler board. The Pulse_out pin arrays are in the 40 bit vector each 
connected to an LED array.

An interface circuit was built as the main controller for sending 
commands to the FPGA, initiating recordings, and switching 
on and off the stimuli. It was equipped with an 8 bit micro-
controller (ATMega 8 AVR) and RS232 interface. The con-
troller mainly is used as a communication interface between 
the LED panel and processing unit. The selection of columns 
and rows was possible through setting the Pulse_in pin to “1” 
and “0,” respectively, based on the command received from 

4.2.3 Main 
 controller/inter-
face board

5 A F K P U Z 6

4 B G L Q V – 7
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FIGUrE 4.2 Speller LED panel (display).
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the processing unit. The communication between the control-
ler board and processing unit, which was a software package, 
was provided through a USB port and USB to RS232 converter 
module. The controller board and its different sections are 
shown in Figure 4.4.

A software package was written in Visual C++ 2010 express 
edition to (1) handle the recordings from Emotiv wireless USB 
receiver, (2) perform online signal processing, and (3) pro-
duce outputs by typing the characters on the screen. It was 
also equipped with a voice module to speak out each character 
that gets typed on the screen for user comfort and accuracy 
evaluation.

Mathematical operations and plotting were performed 
through integration of the MATLAB engine with the Visual 

4.2.4  processing 
unit

Clk_in

Signal generators
(f1 to f8)

Pulse_in
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FIGUrE 4.3 Block diagram of the implemented digital circuit: 
(a) the entire schematic, (b) the circuit inside the signal generator 
block.

Frequency generator
(FPGA) board

Signals to the LED
panel (pulse_out pins)

Microcontroller
(ATmega 8 AVR)

FIGUrE 4.4 Main controller/interface board.
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C++ platform and calling it from inside the platform. The 
software was also designed to send some instructions to the 
controller board via a separate USB port connected to a USB 
to RS232 convertor. The instructions included switching 
between vertical (columns) and horizontal (rows) lines of the 
display panel by sending “V” and “H” characters to the inter-
face board.

Two different online signal processing algorithms were 
implemented and tested. The first algorithm was based on 
multivariable statistical canonical correlation analysis (CCA) 
in frequency domain in which two types of reference signals 
were used: (1) synthetically made sine and cosine expressions 
with different levels of additive Gaussian noise as reference; 
and (2) natural prerecorded EEG signals of the same patient 
as the training sets. The second tested method was based on 
implementation of a series of matched Gaussian filtering in the 
frequency domain and taking the maximum output SSVEP 
response for frequency detection. The detailed description of 
the latter, which had better performance, is as follows:

Among 14 available channels, 2 channels of O1 and O2 cor-
responding to Bain’s visual cortex were used. A buffer of length 
5 × 128 bits was implemented for each channel separately to 
keep the data for 5 s. The buffers were updated with 1 s inter-
vals by shifting the old data 128 bits toward the most significant 
bit (MSB) and replacing the new samples in place of least sig-
nificant bits (LSB). Signal processing was applied to the entire 
buffers within 1 s interval between the two updates. Each chan-
nel was treated separately until the very last stage, which will 
be explained later. At first, the data was normalized by dividing 
the entire buffers by its maximum value followed by autocor-
relation operation.

The fast Fourier transform (FFT) was obtained and filtered 
with a band pass filter with 3 dB cutoff frequencies of 4 and 
15 Hz. The reason for considering the filter bandwidth about 
1 Hz wider than the used frequency range was to allow room 
for slight variations that may happen in the SSVEP response. A 
set of eight narrow band Gaussian filters were used to filter out 
each stimulating frequencies. The magnitude of each filter was 
set to 1 in order not to apply any gain factor. The mean values 
were set to center each filter at a specific frequency correspond-
ing to the used stimuli (i.e., 6, 7, 8, 9, 10, 11, 12, and 13 Hz). The 
spreading factor σ of the filters was set to 0.5 to avoid overlap-
ping with adjacent frequencies. Maximum output of each filter 
with known center frequency was buffered for later comparison 
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providing 16 unique values (2 channels × 8  filters produced) 
every second.

The values of this buffer were sorted from maximum to 
minimum every 3 s (iterations) and center frequencies of the 
first three maxima were monitored. If the three frequencies 
were similar, the corresponding value was selected as the 
detected frequency. The process was repeated for each hori-
zontal and vertical scanning, and the resulting two frequencies 
were obtained. As each character was encoded with two fre-
quencies (one horizontal and one vertical), the detected value 
could be easily mapped to a corresponding character. A block 
diagram of the process is shown in Figure 4.5.

4.3 Design challenges and limitations

The design challenges and difficulties faced were mainly due to 
the limitation of Emotiv EEG headset and choice of this device 
for SSVEP-based BCI applications for the following reasons:

• Emotiv works only with wet electrodes soaked in saline 
solution. However, it is effective only for the first 20 min 
of the experiment and the pads will quickly become dry 
causing increase in the impedance and therefore affects 
signal quality.

• Emotiv comes with a test bench software to assist with 
correct electrode positioning and to ensure receiving 
the highest signal quality. However, this test only shows 
approximate locations inside a region of 1–2 cm. Slight 
displacement of O1 and O2 electrodes within that region 
resulted in different detection accuracies from no correct 
detection to accuracy of 90%.

• As a result of reaction between saline solution and metal 
bit of the electrodes, the pads and metal parts get easily 
molded, which affects the conduction path. The signal 
quality gets affected due to the grease and dirt in the pads 
when it is used for longer periods. Cleaning is required 
after it is used two to three times. The metal portion 
needs to be scraped with fine sand paper and the pads 
soaked in hot detergent water before it is used.

• The headset does not filter out high-frequency compo-
nents due to any mechanical movement and tapping. 
Although it is equipped with a 50 and 60 Hz notch filter, 
the 50 Hz frequency appears in the spectrum of the raw 
signal with very high magnitude.
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4.4 results

Figure 4.6 shows the spectrum of a sample EEG signal stim-
ulated at 7 Hz after being passed through the Gaussian filter 
series. According to this figure, the response from output of 
the 7 Hz Gaussian filter has the highest peak value compared 
to the ones from other filters showing that the stimulation had 
a frequency of 7 Hz.

Data acquisition

Channel O1 (buffer 1)

Channel O1
128 SPS

Channel O1
128 SPS

Channel O1
128 SPS

Normalization of
O1

FFT O1

Gaussian filters

f1 f2

Peak detection at each f

Sort from
max to min

3 consecutive
maximums @ fi

Select fi

End

Yes

No

fi

FFT O2

Normalization of
O2

Channel O2
128 SPS

Channel O2
128 SPS

Channel O2
128 SPS

1 s

1 s
5 s

1 s

1 s

1 s
5 s

1 s

Channel O2 (buffer 2)

FIGUrE 4.5 Diagram of the online processing algorithm.
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Four subjects, three males and one female aged between 27 
and 55, participated in the final test. The test was performed in 
a room with normal lighting condition (not in dimmed light). 
At first all the subjects were trained to use the speller system. 
The classification accuracy, Acc, was estimated based on the 
percentage of correct character detection among 10 trials.

The estimated time to output one symbol was 4.5 s/fre-
quency (horizontal/vertical lines) and 8.5 s/symbol calculated 
as the average time for each correct output symbol plus the time 
required for switching between two characters (shifting gaze). 
The required 2 s rest was excluded from this calculation.

The experimental observations were

• In some subjects, like subject 1, one occipital channel was 
more dominant than the other in the sense that SSVEP 
response did not peak at some specific frequencies.

• The use of parietal channels (P1 and P2) for the purpose 
of Laplacian montage, which is defined as the difference 
between each occipital electrode and a weighted aver-
age of the surrounding electrodes (P7 and P8), did not 
contribute to any better classification accuracy; therefore 
channel P1 and P2 were removed from the processing to 
save computation time.

• The test on one subject was unsuccessful due to limita-
tion of the headset. On this subject the headset signal 
quality check failed and did not detect a good-quality 
signal. This happened due to the subject’s thick hair 
and a round head shape slightly larger than the average 
person.
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FIGUrE 4.6 Output of the Gaussian filter series for channel O1 
in the presence of 7 Hz stimulation.
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• The classification accuracy of the system was 40% when 
tested on a subject (subject 3) with neuromuscular disor-
der and very thick hair resulting in poor signal quality for 
the O1 and O2 channels.

4.5 User benefits and improvements

There is a need for improvement in different areas for an 
SSVEP-based BCI to gain better classification results, which 
are as follows:

• Application of different scanning methods for more 
effective switching of columns and rows of the display 
LED arrays. Instead of triggering all the rows or col-
umns at the same time, which will cause interference 
between SSVEP responses of the target frequency and 
the ones observed in the background due to impact of 
other adjacent stimuli, an approach similar to the scan-
ning method used in matrix keypad boards can be taken. 
In this method only one  column or row at a time will be 
switched on and flickered.

• This experiment showed that applying a 2–3 s delay 
between detection of each frequency can improve classi-
fication accuracy. This delay was applied for training the 
user to close his/her eye for 2 s before moving on to look-
ing at another character; however, this could be imple-
mented by turning off all the LEDs for 2–3 s after the 
detection of each frequency, then switching them back on.

• Emotiv has been very useful in demonstrating the func-
tionality but needs further technical improvements to 
make it suitable for this application. This performed 
a radical paradigm shift of the earlier clinical EEG 
recording devices, which were very cumbersome and 
not suitable for being used outside a clinical setting. It 
has a number of advantages including aesthetics, cost, 
wireless capability, and ease of use. However, the signal 
quality is not stable and deteriorates over time and mul-
tiple usages. With Emotiv having demonstrated the pos-
sibility of such devices, we expect improved  versions of 
such devices to be readily available soon.

• There needs to be an arrangement of frequencies, and 
different allocation order to columns and rows can 
impact on the output accuracy. At first allocation of fre-
quencies to columns and rows was not in order to make 
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sure that two consecutive frequencies do not appear next 
to each other. The reason was to keep the frequency dis-
tance between two adjacent columns and rows as large as 
possible to avoid any interference in the output SSVEP 
response and filtering problem. Therefore, for the eight 
columns the frequencies were ordered as 13, 9, 12, 8, 10, 
7, 11, 6 Hz, respectively. However this resulted in lower 
SSVEP amplitudes for higher frequencies. When the 
patient stared at a frequency like 12 Hz, which is bounded 
between two lower frequencies (e.g., 9 and 8 Hz), SSVEP 
responses due to those lower ones were observed in the 
background and became comparable with the target stim-
ulus frequency. Therefore, to overcome this issue the fre-
quencies were arranged in the orderly manner as 13, 12, 
11, 10, 9, 8, 7, 6 Hz.

• As one occipital channel may be dominant in some peo-
ple, frequency allocation should be adaptive and modi-
fied for each subject, followed by the system training for 
the selected frequency range.
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CHaptEr FIVE

Myoelectric-based hand 
gesture recognition 
for human–computer 
interface applications

abstract

Controlling a machine based on the myoelectric signal is very 
natural and is described as controlling the phantom hand for 
transradial amputee people using a powered prosthetic hand. 
This chapter introduces the technology associated with the 
recording and analysis of myoelectric signals, and describes 
the implementation of myoelectric-based human–computer 
interface (HCI). It then describes the limitations and challenges 
that exist due to the gross nature of the signal and presence of 
multiple muscle activities in the recordings. Finally, the current 
research activities that are identifying specific hand and finger 
movements and future directions in this field are described.

5.1 Introduction

Powered prosthetic hands are now commonly being controlled 
by surface electromyogram (sEMG) of the residual muscles 
of the stump. sEMG is the electrical recording of the muscle 
activity from the surface. It is closely related to the strength of 
 muscle contraction, and an obvious choice for control of pros-
theses and other similar applications [1,2]. Several efforts have 
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been made to identify commands from the stump of the hand, 
and for this purpose, two strategies have been considered: iden-
tifying individual finger movement, and identifying functional 
hand functions such as different grips. Each of these has their 
strengths and shortcomings.

Comparing the two strategies, identifying individual finger 
and grasp actions automatically by the machine facilitate the 
user of the prosthetic hand to control it naturally and allow for 
the maximum dexterity that the mechanical device can offer. 
But it suffers from shortcomings such as it does not provide the 
user with the ability to control the resting positioning of the fin-
ger and is sensitive to factors such as the initial location of the 
mechanical finger because it lacks the natural feedback to the 
user. For the device to be fully functional, it requires feedback 
to the user. Identifying functional grips have the advantage that 
they provide the user with the important hand actions, but suf-
fer from the disadvantage that they do not allow the use of hand 
gestures for expressions and communication purposes.

5.2 Background

Human hand actions result from the simultaneous contrac-
tion of multiple muscles. To accurately identify these actions 
requires determining the relative strengths of each of the asso-
ciated muscles, and one method used for this purpose is to use 
an array of electrodes [2,3]. However, this requires significant 
equipment and is often unsuitable for being operated by an 
untrained lay user, and thus the actions are often estimated by 
using fewer channels of sEMG.

sEMG has the advantage of being easy to record noninva-
sively, and recent technical developments allow it to be recorded 
wirelessly, making it relatively nonintrusive. However, it lacks 
muscle selectivity and integrates the electrical activity from 
all adjoining muscles. A low level of muscle activity makes the 
signal susceptible to noise and artifacts. Different choices of 
global features of the signal using advanced signal processing 
and pattern recognition techniques do not address the funda-
mental issue and can at best result in marginal improvement. 
Although the systems reported in the literature are in general 
suitable for gross movements such as elbow flexion and exten-
sion, they are not suitable for complex movements where there 
are a number of muscles involved, and they have not been 
found accurate for wrist movements such as pronation and 
supination [1,2,4,5].

5.2.1 Identifica-
tion of individ-
ual  finger actions
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Some of the earlier attempts to identify individual finger 
actions were based on an estimate of the amplitude and the 
rate of change of the sEMG. More recently, the use of non-
linear features, pattern recognition methods, autoregression 
(AR), and fuzzy clustering have been considered. Studies [6,7] 
have reported the improvements in algorithms in identifying 
the movements for myoelectric control systems. Tenore et  al. 
[4,5] investigated the effectiveness of different configurations 
of array of electrodes (19 or 32) on the performance of the pros-
thetic control, both on able-bodied and transradial amputees.

Researchers have reported success in the use of multiple 
channels sEMG recording for controlling the prosthetic hand 
[4,8]. However, such systems are complex and the variation in 
electrode placement during sEMG recording can significantly 
vary the signal [9] making the technology unsuitable for being 
self-administered by the user or their caregiver. There is also 
significant intrasubject variation of sEMG magnitude between 
different experiments due to a number of factors [9]. A single 
channel system that can reliably identify the finger actions and 
in which the location of electrodes is not critical is highly desir-
able. However, overlapping muscles and the presence of noise 
and artifacts make this a challenging task.

Works by Smith et al. [10] and Xiang et al. [11] have attempted 
to minimize the number (six to eight) of electrodes to decode 
four different finger flexions. However, the number of electrodes 
is still very large. In an attempt to reduce the number of elec-
trodes, Hope and Rassoulian used single-channel sEMG for 
determining the limb movement [7] using a predictive approach 
based on modular neural networks and reported 99% accuracy 
when tested on simple elbow flexion movement. Their system 
is cumulative and even a low error rate of 1% can result in very 
large error. The action of the finger is a result of the combined 
contraction of multiple muscles, and identifying the finger flex-
ion requires determining the relative activity of the different 
associated muscles [12]. However, these appear to use black-box 
approaches, which attempt to identify small changes in the over-
all muscle activity in response to finger action, and this greatly 
limits the resolution, accuracy, and reliability.

To overcome the aforementioned shortcomings for low levels 
of muscle activity, the alternate method proposed by Plevin and 
Zazula [13] and Englehart et al. [14] is based on the decomposi-
tion of the signal into the fundamental components, the indi-
vidual motor unit action potentials (MUAP). This is based on 
the knowledge that at very low levels of contraction, the MUAP 
are approximately orthogonal due very little overlap. One of 
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the most progressive techniques for identifying MUAP at very 
low levels of contraction is the use of higher-order statistics and 
wavelets [14–16]. However, these techniques are based on the 
shape and estimate of the total density of MUAP, making them 
unsuitable when there are multiple muscles because the shape 
of MUAP from different muscles can be very different due to 
the difference in the transmission pathways [16].

Research studies are being conducted to improve the accu-
racy of the identification for better reliability and for control-
ling the assistive devices. Finger and hand grips are important 
functions for the disabled to interface with assistive devices 
such as prosthetic and robotic hands.

There are number of useful functional grip patterns that are 
achievable by the modern powered prosthetic hand. Grip pat-
terns and maintained gestures are a result of complex combina-
tions of contractions of multiple muscles in the forearm. It is 
important for the system to identify the desired grip pattern 
from the range of other grips and requires information associ-
ated with the strength of muscle contraction and the identifica-
tion of the active muscles [7].

Various sets of features of the sEMG have been considered to 
identify the hand actions, such as the different types of grips. Since 
most hand grip patterns have only small differences in the muscle 
activity between them, the classification to identify the specific 
grip is challenging. This is even more challenging when the person 
has the forearm amputated because of the low signal level. Thus, 
the feature vectors of sEMG corresponding to these grip patterns 
are not sparse and have large variations in the distributions.

Grip patterns are more important for the disabled who are 
frail and have weak muscles to interact with the devices and 
control them independently. Due to computational complexity, 
currently there are limited devices/techniques which provide 
better reliability and accuracy in identifying the complex grip 
patterns such as pinch grip.

5.3 Current technologies and implementation

The techniques currently used are focused on identification of 
the following two groups of patterns: individual finger move-
ments and finger/hand grip movements.

Experiments were conducted with healthy and amputee par-
ticipants to test and validate the technique to identify the  finger 

5.2.2 Identifica-
tion of hand grips

5.3.1 Individual 
 finger movements
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movements [16]. Healthy participants performed the natural 
individual finger flexions. Prior to the recording, the participants 
were encouraged to familiarize themselves with the experimen-
tal protocol and with the equipment. For the experiment with 
the amputees, bilateral action training modality was performed, 
where the amputee participants performed the finger flexions 
with the healthy hand while performing the same flexion with 
the phantom limb [17].

The following specific finger flexions (as shown in Figure 5.1) 
were used for this study:

• Class 1: Flexion of little (pinkie) finger

• Class 2: Flexion of ring finger

• Class 3: Flexion of middle finger

• Class 4: Flexion of index finger

These generic actions were selected because they would allow 
the user to control individual fingers of the robotic/prosthetic 
hand. The participants performed the flexion without any 
resistance and were performed as was convenient and easily 
reproducible by the participant. sEMG was recorded when 
the participant maintained specific finger flexions. On-screen 
and oral command was given to the participant to perform the 
action and the order of the flexions was random. Each flexion 
was maintained for about 7–8 s during the isometric phase of 
the contraction when sEMG was recorded. The subjects were 

FIGUrE 5.1 Different finger flexions: (a) Class 1, (b) Class 2, 
(c) Class 3, (d) Class 4.
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given a rest period of 5 s between each action. Each flexion was 
repeated 12 times and the duration of each run of the experi-
ment was about 120 s. The experiments were repeated on two 
different days to test the reliability and robustness.

5.3.1.1 Techniques to analyze the data
5.3.1.1.1 Preprocessing of the sEMG signal and removal of 
background activity The first step of the method is to deter-
mine the temporal location of the MUAPs. For this purpose, 
the sEMG signal was decomposed using biorthogonal wavelet 
“bior3.3” and the wavelet maximas were identified [16]. This 
wavelet was chosen because it maintains the shape information 
and it has been experimentally found to exhibit the least Gibbs 
effect for this data [18].

The next step is the adaptive filtering of the background 
activity from sEMG. Wavelet maxima are obtained to locate the 
MUAP, and the magnitudes of the peaks (of wavelet maxima) 
are used to estimate the distance between the source muscle 
and the electrodes. The peaks are grouped into four groups in 
accordance with their magnitude and the relative densities of 
these groups determine the relative level of contraction of the 
associated muscles.

The recorded sEMG signal with the background activity is 
shown in Figure 5.2. Preliminary experiments indicated large 
variations in the background activity between different partici-
pants and between experiments. Spectral filtering, and thresh-
olding, both, hard and soft, is unsuitable for such application 
because the noise characteristics are not known a priori [19]. For 
this purpose, an adaptive spectral subtraction technique was used 
to remove the background activity from the recorded signal.
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Muscle activity

7 8 9
Time (sample number)

10 11 12
× 104

0.04

0.02
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V
)
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FIGUrE 5.2 Sample raw EMG signal with background activity.
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An adaptive filter was trained based on the background 
activity that was identified as the activity at the start of the 
experiments when all the fingers were relaxed and there was 
no action. The signal was filtered using wavelet bandpass fil-
ters using a 300 ms time window. The output was thresholded 
to generate a template and was subtracted from the recorded 
sEMG of the related experiment to remove the background 
activity.

5.3.1.1.2 Relative strength of contraction of the muscles After 
the signal was filtered using adaptive filtering, it was analyzed 
to obtain the location of the MUAP. The transients in the sig-
nal were located based on the location of the wavelet maxima 
[18] as in Equation 5.1. Only those wavelet maxima that were 
present in each of the scales and traveled from finest scale to 
coarsest scale were considered as corresponding to the pulse 
and the location of the MUAP [16,20]. Other wavelet maxima 
were rejected as random transients and is shown in Figure 5.4.

 
Wf (s, xn−1) < Wf (s, xn ) > Wf (s, xn+1)

 
(5.1)

The relative strength of contraction was determined based 
on grouping the pulses based on the magnitude and determin-
ing the density of pulses in each group for the associated action. 
Cluster analysis of the preliminary studies demonstrated that 
there were four distinct magnitude ranges of the peaks for the 
four classes of finger actions. Thus, the peaks were divided into 
four groups based on the magnitude and density of each of these 
was obtained for each action. These four densities were the fea-
tures of sEMG. These corresponded to the relative strength of 
contraction of the muscles. Thus, the analysis of single chan-
nel of sEMG gave a feature set consisting of four density of 
peak (DP) values, corresponding to the pulses belonging to four 
magnitude sets.

5.3.1.1.3 Classification The features of the single-channel 
sEMG were the input to the classifier, and the associated fin-
ger actions were the target. Twin support vector machine (twin 
SVM) linear kernel classifier [21] was used to classify the fea-
tures. The advantage of using twin SVM is that it generates two 
separate hyperplanes and does not assume that patterns in each 
class arise from similar distributions. The system accuracy 
was validated using a tenfold cross-validation and tested using 
type I error (specificity) and type II error (sensitivity) [16].
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5.3.1.2 Results The average classification accuracy and the 
specificity and sensitivity for able-bodied subjects are reported 
in Table 5.1. The results have also been shown in the scatter plot 
(Figure 5.3). This plot shows the different clusters related to the 
different flexions. From Table 5.1, the overall accuracy of the 
detection of flexion of four classes of fingers (digits 2–5) was 
found to be 93.41% (±1.45) when sEMG was recorded from the 
distal end (experiment 1) of the flexor digitorum superficialis 
(FDS) muscle. It is also observed that there is a very small vari-
ation (1% decrease) in overall accuracy (92.4 ± 3.23%) when 
sEMG was recorded from the proximal end (experiment 2) of 
the FDS muscle.

5.3.1.2.1 Classification of data from amputee The accuracy 
for identification of movements from the amputee has been 
listed in Table 5.2. The results show that the average accuracy 
of the detection of flexion of four classes of fingers (digits 2–5), 
which they performed based on the bilateral learning, was 
81.87% (±13.54) from sEMG electrode location 2. The accu-
racy was found to be 74.59% (±12.52) from the sEMG electrode 
location 4.

5.3.1.2.2 Sensitivity and specificity analysis The results indi-
cate that the system specificity was high (~0.98) (range 0.96–0.99) 
leading to low type 1 error. The sensitivity of four classes was 0.94 
(range 0.92–0.95) for experiment 1 and 0.93 (range 0.90–0.95) for 
experiment 2, demonstrating low type II error [16].

5.3.1.3 Discussion The underlying principle of the tech-
nique is based on decomposing the signal to obtain the wavelet 
maxima that correspond to the action potential generated in the 
muscle. The magnitude of these peaks is inversely proportional 
to the distance between the muscle and the electrode site. The 
density of these peaks indicates the strength of contraction of 
the corresponding muscle. The combination of the range of 
magnitude and density of the peaks is indicative of the relative 
strength of contraction, and an indicator of the finger action.

During the training phase, analysis is performed and 
grouped into four magnitude-based groups. The method 
extracts the time-scale features, and identifies the wavelet max-
ima and the range of these maxima to characterize the signals 
based on the prior knowledge of the anatomy of the forearm. 
Recent studies did not demonstrate the level of contraction of 
muscle while the sEMG is recorded for classification. Dexterous 
finger movement control would essentially involve low-level 



65MYOELECTRIC-BASED HAND GESTURE RECOGNITION

ta
bl

e 
5.

1 
M

ea
n 

cl
as

si
fic

at
io

n 
ac

cu
ra

cy
, s

en
si

tiv
ity

, a
nd

 s
pe

ci
fic

ity
 o

f d
iff

er
en

t c
la

ss
es

 r
ec

or
de

d 
fr

om
 d

is
ta

l e
nd

 (C
h 

1)
 

an
d 

pr
ox

im
al

 e
nd

 (C
h 

2)
 fr

om
 a

ll 
su

bj
ec

ts
 u

si
ng

 th
e 

no
ve

l w
av

el
et

 fe
at

ur
e 

se
t

C
la

ss
C

la
ss

 1
C

la
ss

 2
C

la
ss

 3
C

la
ss

 4

C
ha

nn
el

C
h 

1
C

h 
2

C
h 

1
C

h 
2

C
h 

1
C

h 
2

C
h 

1
C

h 
2

M
ea

n
92

.8
4

94
.2

3
95

.4
7

95
.9

6
92

.1
0

90
.3

7
93

.2
1

89
.0

6

a
m

pu
te

e
M

ea
n

96
.6

7
71

.6
7

75
.0

0
62

.4
2

66
.6

7
72

.1
5

89
.1

5
92

.1
4

Se
ns

iti
vi

ty
0.

92
0.

98
0.

95
0.

97
0.

92
0.

98
0.

93
0.

98
Sp

ec
ifi

ci
ty

0.
94

0.
98

0.
95

0.
98

0.
91

0.
96

0.
90

0.
97



66 HCi teCHnoLogies for tHe Motor iMPaired

Fr
eq

 2
56

–5
12

 H
z

0.
06

0.
05

0.
04

0.
03

Magnitude 0.
02

0.
01

0
20

40
60

C
ou

nt
80

10
0

12
0

14
0

C
la

ss
 1

C
la

ss
 2

C
la

ss
 3

C
la

ss
 4

Fr
eq

 6
4–

12
8 

H
z

0.
08

0.
06

0.
04

Magnitude 0.
02 0 10

20
30

40
50

60
70

80
90

10
0

11
0

C
ou

nt

C
la

ss
 1

C
la

ss
 2

C
la

ss
 3

C
la

ss
 4

Fr
eq

 0
–3

2 
H

z
×1

0–3
5 4 3 2 1

Magnitude

10
5

15
20

25
30

35
40

45
50

55
C

ou
nt

C
la

ss
 1

C
la

ss
 2

C
la

ss
 3

C
la

ss
 4

Fr
eq

 1
28

–2
56

 H
z

0.
1

0.
08

0.
06

0.
04

Magnitude

0.
02 0 20

40
60

C
ou

nt
80

10
0

12
0

14
0

C
la

ss
 1

C
la

ss
 2

C
la

ss
 3

C
la

ss
 4

Fr
eq

 3
2–

64
 H

z
0.

03
0.

02
5

0.
02

0.
01

5

Magnitude

0.
01

0.
00

5 10
20

30
40

50
60

70
80

C
ou

nt

C
la

ss
 1

C
la

ss
 2

C
la

ss
 3

C
la

ss
 4

FI
G

U
r

E 
5.

3 
Sc

at
te

r 
pl

ot
 o

f f
ea

tu
re

s 
ex

tr
ac

te
d 

fr
om

 d
iff

er
en

t fl
ex

io
ns

.



67MYOELECTRIC-BASED HAND GESTURE RECOGNITION

sEMG activity in active hand prosthesis. However, at low lev-
els of contraction, signal-to-noise ratio is also low. This is due 
to background activity in the signal that adversely influences 
the quality of classification. This issue has not been addressed 
in any of the developed classification models. The technique 
developed in this study addressed this issue with empirically 
denoising the background activity. The clean signal obtained 
with this technique of noise cancellation provides better repre-
sentation of the classes, even in low levels of contraction. This 
has also contributed to the high classification accuracy.

The results demonstrate that the technique was suitable for 
able-bodied people and was also tested for transradial amputee 
with good results. The results also show that the accuracy was not 
significantly affected by small change to the electrode location. 
It has also been demonstrated that the experiments were repeat-
able, with similar results obtained for experiments conducted on 
different days, even when the system was trained for only 1 day. 
This method has also been tested with the sEMG recorded from 
a transradial amputee. It would be desirable to reduce the num-
ber of electrodes to classify different classes because of limited 
available space on the forearm, especially in the case of ampu-
tees (Figure 5.4). For example, Touch Bionics’ i-Limb (Touch 
Bionics Ltd., Scotland) uses only up to two electrodes for fine 
finger control, and systems employing a high number of elec-
trodes may not be suitable for this kind of active hand prosthesis.

Recent studies have also investigated the fractal properties of 
sEMG [22,23]. Fractal dimension (FD) represents the scale 
invariant nonlinear property of the signal and is an index for 
describing the irregularity of a statistically stationary signal. 
It is a global and fundamental property of a system and should 
not be influenced by the regular changes within that system. 
Considering this criteria in the case of sEMG, FD should be 

5.3.2 Hand/finger 
grip movements

table 5.2 Mean (±SD) recognition accuracy for the four grip 
patterns using twin SVM, LibSVM, and ANN

Subject
Twin SVM 

(RBF kernel) LibSVM ANN

Average 
(healthy)

89.11 ± 1.56 80.80 ± 1.22 78.11 ± 1.85

Amputee 78.25 ± 2.4 69.25 ± 2.5 65.25 ± 3.4
Sensitivity 0.94 0.90 0.92
Specificity 0.92 0.89 0.82
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the measure of the underlying system, which is based on the 
unchanging muscle properties [22]. Maximum fractal length 
(MFL), another fractal feature, is a measure of strength of mus-
cle contraction [22], and previous studies have used a combina-
tion of FD and MFL to identify hand flexion [22,24].

Recent studies have used SVMs to improve the accuracy 
of classification. Multiclass classification problems are usually 
solved by solving many one-versus-rest binary classification 
tasks. These subtasks naturally involve unbalanced data sets. 
In the presence of unbalanced data sets, conventional error-
minimization-based learning, as commonly employed in neu-
ral networks and SVMs, tends to favor the larger set, since we 
minimize the sum of errors across patterns. Although smaller 
class tests yield poor performance, the accuracy is good enough 
for practical use. The results demonstrate a striking improve-
ment in classification results. Twin SVM also does not assume 
that patterns in each class arise from similar distributions. It 
allows the use of a different kernel for each class, which can be 
separately optimized based on the data. The facility for data-
dependent kernel optimization for each class is particularly 
valuable in our application, and the results show that signifi-
cant improvements can be obtained by exploiting this feature.

Effective use of twin SVM requires a multidimensional 
input vector [21]. This study has used a combination of fractal 
properties and features associated with strength of muscle con-
traction as the input to the twin SVM to overcome the previous 
shortcomings. Features such as root mean square (RMS), mean 
absolute value (MAV), and waveform length (WL) of sEMG 
have often been used as measures of the strength of the muscle 
activity and for identifying associated movements [25–27].

FIGUrE 5.4 Placement of sensors for amputee subject.
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This study has used both the traditional features and fractal 
features to identify various grip patterns. We have used a com-
bination of features that are associated with strength of muscle 
contraction (RMS, WL, and MAV) and the fractal features, 
which are associated with the muscle properties (FD and MFL) 
[28] to extract information from the EMG signal related to the 
grips. These features have been organized using three classifi-
ers: neural networks, SVM, and twin SVM. Experiments were 
conducted on able-bodied and transradial amputee patients. 
The results demonstrate that the best results are obtained when 
features associated with the strength and the fractal properties 
of sEMG are classified using twin SVM.

5.3.2.1 Techniques to identify grip patterns

5.3.2.1.1 EMG recording procedures Four bipolar electrodes 
(Delsys Inc., United States) were placed on the forearm of the 
able-bodied participants in accordance with standard pro-
cedures to record sEMG (Figure 5.5). These are active elec-
trodes, with the preamplifier and two electrodes built into a 
single unit. The electrodes have two silver bars; each of 1 mm 
thickness, 10 mm length, and the fixed interelectrode distance 
of 10 mm. Electrolyte gel (Sigma) was used on the electrodes 
prior to affixing them on the skin [16]. The ground electrode 
was placed on the volar aspect of the wrist. For the amputee 

Ch 2
Flexor

digitorum
superficialis

muscle

Ch 3
Flexor carpi
radial and

ulnaris muscle

Ch 1
Flexor pollicis
longus muscle

Ch 4
Extensor carpi

radial and
ulnaris muscle

FIGUrE 5.5 Placement of sensors for healthy subject.
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participant, the electrodes were placed on the remaining stump 
of the  participant as shown in Figure 5.4.

A labview-based sEMG acquisition system was used to 
record the signal. The sampling rate of the system was 1000 
samples/s for each channel and the resolution were 16 bits/
sample. Prior to the placement of electrodes, the skin of the 
participant was prepared by shaving (if required) and exfolia-
tion to remove dead skin.

5.3.2.1.2 Experiments The experimental protocol was 
approved by the RMIT University Human Ethics Committee 
and performed in accordance with the Declaration of Helsinki 
1975, as revised in 2004. Prior to the recording, the participants 
were encouraged to familiarize themselves with the experimental 
protocol and with the equipment. Experiments were conducted 
where the sEMG was recorded while the participants performed 
four sets of generic finger grip movements (Figure 5.6). These 
grip patterns represent the common functional grips required 
of the robotic/prosthetic hand.

• Grip pattern 1: All fingers closed together making a fist 
grip (Figure 5.6a)

• Grip pattern 2: Pointing grip (index finger pointing with 
other fingers and thumb closed) (Figure 5.6b)

• Grip pattern 3: Pinch grip (Figure 5.6c)

• Grip pattern 4: Holding grip (holding a drink can) (Figure 
5.6d)

FIGUrE 5.6 (a–d) Four generic grip patterns.
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The able-bodied participants performed the flexion without 
any resistance and as was convenient and easily reproducible by 
them. sEMG was recorded through the experiment. The exam-
iner gave on-screen and oral commands to the participant to 
perform the action without any fixed order of the fingers. Each 
flexion was maintained for 8 s and was repeated 12 times. The 
duration of each run of the experiment was 120 s.

5.3.2.1.3 Data analysis
The following features were computed [25]:

 1. Root mean square (RMS)—RMS is the quadratic mean 
and is a statistical measure of the magnitude of a time 
varying signal and computed using Equation 5.2. 

  

RMS = 1
N xi2

i=1

N

∑
 

(5.2)

 2. Mean absolute value (MAV)—The MAV of sEMG calcu-
lates the absolute value of data points and determines the 
mean of the resultant values based on Equation 5.3.

  

MAV = 1
S  

1

s

∑ f (s)
 

(5.3)

 where S = window length; f(s) = data within the window.

 3. Fractal features—FD was calculated using the Higuchi 
algorithm [22] for nonperiodic and irregular time series. 
The first step for computing the MFL requires the com-
putation of the length of the curve, Xk

m, for a time sig-
nal sampled at a fixed sampling rate, x(n) = X(1), X(2), 
X(3), … , X(N) as follows:

Lm (k) =
1
k |X(m + ik) − X(m + (i − 1) ⋅ k)|

i=1

N−m
k
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 (5.4)

 where [ ] denotes the Gauss’ notation and both k and m 
are integers. m = initial time; k = time interval; i = 1 to 
[(N − m/k)].
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 The term (N − 1 / [(N − m) / k]) × k represents the normal-
ization factor for the curve length of subset time series. 
The length of the curve for the time interval k, 〈L(k)〉 
is defined as the average value over k sets of Lm(k). If 
〈L(k) ∝ k−D〉, then the curve is fractal with the dimen-
sion D. MFL was determined from the plot as the aver-
age length L(k) at the smallest scale and it represents 
the modified version of RMS and WL, as shown in 
Equation 5.5.

  

MFL = log10
n=1

N−1

∑(x(n + 1) − x(n))2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

(5.5)

 MFL is a recently established feature for measuring low-
level muscle activation [22,23].

5.3.2.1.4 Twin SVM formulation Twin SVM, proposed by 
Jayadeva et al. [21], generates two nonparallel hyperplanes by 
solving two smaller sized quadratic programming problems 
(QPP) such that each hyperplane is closer to one class and as 
far as possible from the other. This is in contrast with the stan-
dard SVM formulation that solves a single QPP that has all data 
points in the constraints.

The twin SVM formulation involves solving the following 
set of QPPs:

 

min
w1,b1,q

1
2 ||Aw1 + e1b1 ||

2 + c1e2T q,

s.t. − (Bw1 + e2b1) + q ≥ e2, q ≥ 0  

(5.6)

 

min
w2 ,b2 ,q

1
2 ||Bw2 + e2b2 ||

2 + c2e1T q,

s.t. − (Aw2 + e1b2 ) + q ≥ e1, q ≥ 0.  
(5.7)

where A is the matrix of feature points belonging to class 1; B is 
the matrix of feature points belonging to class 2; c1, c2 > 0 are 
parameters; e1, e2 are vectors of ones with appropriate dimen-
sions; w ∈ ℜn; b ∈ ℜn; q denotes the error variable.
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The twin SVM formulation based on generating nonparal-
lel hyperplanes enables it to provide better separability for the 
features of the trials. The strategy of solving two smaller sized 
QPPs, rather than one large QPP, makes twin SVMs work faster 
than standard SVMs. The detailed explanation of the twin SVM 
classifiers can be found in Jayadeva et al. [21].

5.3.2.1.5 Classification The four features—RMS, MAV, 
MFL, and FD—were the inputs to each classifier. The varia-
tions in the distribution of the feature vectors were removed by 
normalizing the data to zero mean to avoid the large interex-
perimental variation. Twin SVM, SVM, and ANN classifiers 
were tested. The proposed technique used twin SVM, using a 
one-versus-rest classification approach for multiclass classifi-
cation with the radial basis function (RBF) kernel optimization 
technique. These feature vectors were then fed into the classi-
fier. To compare, tenfold cross-validation was used to obtain 
the accuracy, sensitivity, and specificity for each classifier.

 
Sensitivity = Number of correctly identified true classNumber of true class

 
Specificity = Number of rejected false classNumber of false class

5.3.2.1.6 User requirements This chapter has reported an 
HCI technique to identify four functional hand grips (and rest 
condition) by classifying the fractal features, RMS, and MAV 
of sEMG using a twin SVM classifier. The results indicate that 
when compared with other machine learning techniques such 
as neural networks and SVM, the twin SVM performed sig-
nificantly better, with approximately 10% less error. Table 5.2 
shows the classification accuracy of recognizing the grip pat-
terns for various classifiers.

Twin SVM has the advantage over other classifiers that it 
uses a one-against-the-other approach, and determines multiple 
hyperplanes, each of which is optimized for each class. Such 
an approach overcomes the shortcoming of balancing between 
accuracy, sensitivity, and specificity. For the effective use of the 
prosthetic hand, sensitivity and specificity are two important 
factors. This is because poor sensitivity can lead to frustration 
for the user, while poor specificity results in erroneous func-
tionality of the prosthetic hand and can lead to injury.
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CHaptEr SIX

Video-based hand 
movement for human–
computer interface

abstract

The use of bioelectric signals has the disadvantage that users 
have to wear the electrodes on their body. This can be intrusive, 
uncomfortable, and not aesthetically pleasing. Such a device 
also suffers from being dependent on the ambient conditions 
such as temperature and humidity, and is sensitive to body sweat 
and movement artifacts, thus limiting the possible applications.

Recognition of commands from the video of the user has the 
advantage because recording the body movements do not 
require direct contact with the body and can generally be nonin-
trusive. This chapter discusses the technologies for recognizing 
hand gestures from videos and the challenges associated with 
the real-time implementations, and also describes an example 
of the implementation of the technology. The current research 
trend and future directions are also covered in this chapter.

6.1 Introduction

We perform actions with our hands to communicate with people 
and to control machines. However, disease or special situations 
can limit the ability of the user to effectively use their hands. 
In these situations, there is need for machine-based recogni-
tion of the hand actions or gestures. Such monitoring can be 
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used for human–computer interface (HCI) electronic commu-
nication. Some of the many applications where these are used 
are facilitating people with acute weakness, computer games, 
telemedicine, virtual reality, and defense.

There are several ways to monitor the hand movement, and 
the choice of these is largely dependent on the applications and 
the ability of the user. These systems may be classified into two 
broad categories: (1) those that require the user to wear or hold 
some device and (2) video data. Some of the methods that have 
been considered for identifying the hand movement are the 
sensory glove, joystick, muscle electrical activity (electromyo-
gram), and video analysis. Most of the current systems require 
the use of mechanical devices such as joysticks or gloves [1–3] 
or electrodes [4] that record the muscle activity.

Video-based techniques have the advantage that they are 
less intrusive and allow the free movement of the user. These 
are in two categories: those that require markers and those that 
do not. The markers that are used are either reflectors or cloth-
ing material that have special reflection properties. Most sys-
tems that are used for monitoring human movement require the 
use of markers. However, the use of markers is restrictive, and 
although they are less intrusive compared to the use of other 
sensors, markers do not allow the user natural freedom. The 
use of marker-less video monitoring is the most convenient 
method, but often suffers from limitations such as lighting and 
background conditions, and the computational complexity of 
video analysis that requires large computers and software.

This chapter provides a brief review of a marker-based sys-
tem, and describes an example of a hand and gesture analysis 
method based on a marker-less system. In the subsequent sec-
tions, some historical examples and the limitations of each are 
discussed.

Markers for video recordings are typically reflectors in the 
shape of disks that can be placed on different locations on the 
body. The other option is to use self-luminous disks. In both 
cases, these are easy to detect in the video or the image frames, 
and based on the prior knowledge of the anatomy, the movement 
of the body is determined. Most often the marker-based frames 
are converted using suitable software that connects between the 
different markers to depict the skeleton of the person, and the 
movement is easily viewed by the examiner. The software has 
the capability to measure different angles and rotate the image 
to view different planes. Such schemes are routinely used in 
gait laboratories or other human movement laboratories.

6.1.1 Hand-
action recognition 
using marker-
based video



79VIDEO-BASED HAND MOVEMENT

The design features and complexity of marker-based 
movement analysis can vary widely based on the application. 
Although some of these used for clinical lower limb exami-
nations may use a large number of high-speed video cameras, 
applications such as for hand-action analysis may require only 
two cameras to provide three-dimensional movement informa-
tion. For a detailed analysis of the hand actions, which includes 
the movement of the fingers and wrist, the system may require 
more than eight markers, and low-resolution, low-rate video 
cameras are sufficient. Researchers have shown that laptop-
based camcorders are suitable for such analysis.

Marker-based video analysis of hand actions has the 
advantage that it is robust, and neither significantly affected 
by lighting and background conditions, nor by factors such as 
skin color. It also has the advantage of being suited for inex-
pensive cameras and software. However, the disadvantage is 
that it requires the user to wear the markers on their hands, 
making it unsuitable for a number of applications. It also 
requires the user to be in a specific region and plane, which 
can be highly restrictive.

There are several devices that have been developed using 
video-based hand-action recognition. Fong et  al. presented  a 
virtual joystick technique based on static gestures to drive 
a remote vehicle [5], in which hand motions are tracked with a 
color and stereovision system. However, the system depends on 
the static gesture and does not recognize the action, thus limit-
ing the applications. Baudel et  al. developed a system called 
“Charade” to control remote objects using free-hand gestures 
[2]. Using Charade, a speaker giving a presentation can con-
trol remote computer display with free-hand gestures while 
still using  gestures for communicating with audience. However, 
the system requires the use of data glove, and this limits the 
applications.

Another technique reported the combined use of video and 
electrical sensing and uses an “elastic graph,” a  conductive sen-
sor, to classify hand postures against complex backgrounds in 
grayscale images [6]. But this technique requires the use of 
 connected material on the user, and thus is not truly marker-
less. Moy [7] and Bretzner et  al. [8] have proposed visual 
interpretation of two-dimensional dynamic hand gestures in 
complex environments. It is used for humans to communicate 
and interact with a pet robot [7] and control home appliances 
[8]. The system is marker-less, but is sensitive to the back-
ground lighting and gesture positioning. Methods to improve 

6.1.2 Hand-
action recognition 
using marker-less 
video approach
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this include the use of improved filtering to reduce the effect 
of the background, and hierarchical techniques to identify the 
actions in context [11]. Marker-less techniques are also sensitive 
to the difference between user skin color and texture. Number 
of methods to overcome this has been developed, and these can 
be classified into ones that require specific user training and 
the ones that are generic. One such method is based on the use 
of neural network developed for users and a mobile robot [12] 
interface.

An intuition-based system to provide naturalness suitable for 
two hands has been developed by Hummels et al. for computer-
supported product design [13]. This interface supports percep-
tual motor skills and is task specific. A system that identifies 
user-specified hand actions and gestures is described in detail. 
This is a view-based approach for the representation and clas-
sification of predefined gestures using characteristics of the fine 
motion of hand gestures from a particular view direction using 
video data. The technique is based on the work of Bobick and 
Davis [12,13] and Sharma et al. [14] and uses a method called 
temporal history template (THT). 

To identify the specific hand action from the THT obtained, 
the THT of multiple examples of the hand actions are obtained 
and these are represented by a set of features that are com-
pact for the set of actions. The values of all the examples are 
 combined and represent the specific action. Subsequently, the 
THT of the unknown action is generated and its features are 
classified to identify the closest match with the actions that 
were used to train the system.

There are several possible features that can be used for 
 representing the THT and various techniques to classify the 
features to identify the action. In this chapter, the normalized 
centralized moments of wavelet subimages resulting from the 
decomposition of THT using stationary wavelet  transform 
(SWT) has been used to represent the THT, and classification was 
performed using the K-nearest neighbor approach Mahalanobis 
distance [15–17]. This technique combines the use of geometri-
cal centralized normalized moments and  wavelet transforms, 
which is computationally inexpensive and is not sensitive to 
inter- and intrasubject variation of speed of movement. The 
results of classification accuracy of SWT with moment-based 
features are compared for the classification accuracy between 
the earlier works of authors for hand gesture classification of 
similar hand movements using Hu moments [18] and SWT with 
approximate wavelet subimages [19].
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6.2 Background

For this work, a simple temporal difference of frame technique 
(DOF) has been adopted [15]. The approach of temporal dif-
ferencing makes use of pixel difference between two or three 
consecutive frames in an image sequence to extract motion 
information [15]. The DOF technique subtracts the pixel intensi-
ties from each subsequent frame in the image sequence, thereby 
removing static elements in the images. Based on research 
reported in the literature, it can be stated that the actions and 
messages can be recognized by description of the appearance 
of motion [15–17,20–22] without reference to the underlying 
static images, or a full geometric reconstruction of the moving 
hand [23]. It can also be argued that the static images produced 
using THT based on the DOF represent features of time local-
ized motion [15–17,20]. This process of generating the THT 
can be represented mathematically as follows.

Let I(x, y, n) be the intensity of each pixel at location x, y in 
the nth frame. Then the DOF, D(x, y, n) is

 D(x, y,n) = | I(x, y,n) − I(x,  y,  n − 1)|  (6.1)

The next step is the binarization of the DOF to obtain B(x, y, 
n) over a threshold of Γ

 

 B(x, y,n) =  1 if   D(x, y,n) > Γ
0 otherwise

⎧
⎨
⎪

⎩⎪  (6.2) 

The next step is to incorporate a time function in this 
sequence. A ramp multiplier to represent time results in the 
generation of the THT where each pixel, HN(x, y) is a function 
of the time and represents the history of motion at that point. 
The result is a scalar-valued image where more recently moving 
pixels are brighter [15–17,20]. Consider the number of frames 
being considered for the action capture to be N. Then the THT 
pixels are HN(x, y)
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(6.3)

The THT grayscale images are then generated by temporal 
integration.

6.2.1 Motion 
image estimation
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The next step is the representation of the THT such that the 
representation is compact, while providing sufficient detail 
that allows the differentiation between different hand actions. 
Wavelets allow the flexibility because they offer multireso-
lution analysis, choice of a range of mother wavelet func-
tions, and are also suitable for real-time analysis and thus are 
described next.

6.2.2.1 Wavelet The name wavelet represents the “baby 
wave” and as the name suggests is limited in time (for single-
dimension signals) or space (for images). Unlike Fourier-based 
transforms that use wave functions that are of infinite length, 
wavelets are compact representations of signals. Wavelet trans-
form of images have been found to represent the texture of the 
image at different levels of resolution.

Multiresolution analysis is achieved by using the mother 
wavelet, and a family of wavelets generated by translations 
and dilations of it. Dilation is the technique by which using 
the same function provides the resolution at different scales 
or frequencies, while translation is used for the wavelet to be 
used to cover the entire signal or image. A wide function can 
examine a large region of the signal and resolve the low fre-
quency details accurately, whereas a short basis function can 
examine a small region of the signal to accurately resolve the 
time details [24,25]. For the purpose of this discussion, we will 
consider single-dimension wavelet analysis. If Ψ(x) represents 
the mother wavelet, the scaling is accomplished by multiplying 
x by the scaling factor. If the scaling factor is a power of 2, this 
yields a dyadic series, such that the function becomes Ψ(2mx), 
where m is an integer. This results in a cascaded “octave band 
pass filter” structure.

If single-dimension time domain analysis is considered, the 
wavelet function Ψ is translated along the time axis to cover an 
entire signal. This translation is accomplished by considering 
all the integral shifts of Ψ

 Ψ(2mx − n)n n Z

From this, the resultant wavelet representation of signal, f(x), is

f (x) = cmnψmn (x) = ψmn (x) = 2m /2ψ(2m /2 x − n)
n
∑

m
∑

 (6.4)

6.2.2  Wavelet 
transforms 
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where cmn and Ψmn are the transform coefficients. These coef-
ficients are computed by the wavelet transform, which is 
the inner product of the signal f(x) with the basic functions 
Ψmn(x). For classification, there is no need for computing 
inverse transform, since there is no need to reconstruct the 
original signal.

6.2.2.2 Discrete wavelet transform (DWT) The wavelet 
transform of any image can be successfully implemented by a 
pair of appropriately designed quadrature mirror filters (QMFs) 
[24,26–28]. Wavelet-based image decomposition can be viewed 
as a form of subband decomposition [24]. Each QMF pair con-
sists of a low-pass filter (H) and a high-pass filter (G), which 
splits the signal’s bandwidth into half. The impulse response of 
H and G are mirror images, and are related by

 g = (−1)1−n h1−n  (6.5)

The impulse response of the forward and inverse trans-
form QMFs, denoted by (~H, ~G) and (H, G), respectively, are 
related by gn = ~g−n and hn = ~h−n.

For the purpose of image processing, a bidimensional wave-
let is used. This can be understood as a one-dimensional, one 
along the x-axis and the other along the y-axis. In this way 
of applying convolution of low- and high-pass filters on the 
 original data, the image can be decomposed in specific sets of 
coefficients at each level of decomposition.

Figure 6.1 shows the 2D DWT of image at level 1 of 
 decomposition. The image is first filtered along the x direction, 
resulting in fl(x, y) and a high-pass image fh(x, y). As the band-
width of fl(x, y) and fh(x, y) is half along the x direction, each of 
the filtered images can be down sampled in the x direction by 2 
without loss of any information. The down-sampling is accom-
plished by dropping every other filtered value. Both fl(x, y) and 
fh(x, y) are filtered along the y-axis resulting in four subimages. 
Again the subimages are down-sampled by 2 along the y direc-
tion. According to the procedure, the image can be transformed 
into four subimages:

 1. fll subimage—Both horizontal and vertical directions 
have low frequencies.

 2. flh subimage—The horizontal direction has low frequen-
cies and the vertical one has high frequencies.
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 3. fhl subimage—The horizontal direction has high frequen-
cies and the vertical one has low frequencies.

 4. fhh subimage—Both horizontal and vertical directions 
have high frequencies.

6.2.2.3 Discrete stationary wavelet transform The classical 
DWT suffers from the drawback because it is unable to restore 
the translation invariance properties of the image. An alternate is 
SWT, which is similar to DWT and can be obtained by convolv-
ing the image with a low-pass filter (H) and a high-pass filter (G) 
but without down-sampling along the rows and columns [29]. 
Thus, the decomposed image is of the same size after decompo-
sition ensuring the translational invariance (Figure 6.2). 

Wavelet functions such as Daubechies (db), Haar, and Gabor 
are available at different lengths of the filter response. In this 
example, the “db1” wavelet was implemented [24].

Hand gestures produce grayscale THT with global features and 
with variations due to the rotation and change in scale. Thus 
it is important to extract global features of the static image 
that are scale, translation, and rotation invariant. Geometrical 
normalized centralized moments are one such option of image 

6.2.3 Features of 
temporal history 
template (tHt)

Image

2

22 2 2

2

G

G GH

fhh fhl flh fll

H

H

FIGUrE 6.1 Multiresolution decomposition of image using dis-
crete wavelet transform.
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features and these are invariant to scale, rotation, and transla-
tion. The definition of the zeroth order geometric moment, m00, 
of the image f(x, y) is

 

m0,0 = f (x, y)
y=1

M

∑
x=1

N

∑
 

(6.6)

The two first-order moments, {m10, m01}, identify the center 
of mass (light intensity) of the object. This defines a unique 
location that may be used as a reference point to describe the 
position of the object within the field of view. The coordinates 
of the center of mass can be obtained based on the ratio of the 
moments

 
X = m10m00

 
Y = m01

m00

According to uniqueness theory of moments for a digital 
image of size (N, M), the (p + q)th order moments mpq are cal-
culated for p, q = 0,1,2…

 
mpq ≡ 1

NM f (x, y)
y=1

M

∑
x=1

N

∑ x pyq
 

(6.7)

Image

G

G G

fhh fhl flh fll

H H

H

Along the
X-axis

Along the
Y-axis

FIGUrE 6.2 2D stationary wavelet transform of the template.
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The centralized moments, μpq, of the image provides the 
translation invariance and can be calculated as

 

µ pq ≡ 1
NM f (x, y)

y=1

M

∑
x=1

N

∑ (x − x )p (y − y )q

 

(6.8)

These centralized image moments are inherently translation 
independent but to achieve invariance with respect to orienta-
tion (rotation) and scale, these moments have to be normalized

 
npq =

µ pq

(µ00 )γ  
(6.9)

where γ = (p + q)/2 + 1 and p + q ≥ 2.

6.2.3.1 Feature classification For machine-based identifi-
cation of the hand actions, the THT features have to be classi-
fied. There is natural variation in the repetition of the actions, 
and it is important to train the system to recognize the actions 
irrespective of the variability. There are several methods for 
classifying the system, such as the use of statistical measures, 
K-nearest neighbor (KNN) methods, neural networks, and sup-
port vector machines.

KNN-based classification has the advantage of being the 
simplest to implement and suitable for real-time applications. 
The first step in such a method is to develop templates of the 
features representing each action. Once the template represent-
ing the feature for an action is generated, the distance between 
the unknown action and the actions the system has been trained 
to identify is measured. When using the KNN method, the 
number of points that have to be considered is important.

6.2.3.2 Feature distance To identify the unknown action 
requires comparing the features of the unknown action with 
the values of the actions the system is trained to identify. This 
requires the measurement of the distance between the features 
of the unknown and the various templates, and there are a num-
ber of distance measurement methods that are available such 
as Euclidean distance and Mahalanobis distance. This example 
has considered the use of Mahalanobis distance, which is a very 
useful way to determine the “similarity” of a set of values from 
an “unknown” sample to a set of values measured from a col-
lection of “known” samples. It is computed by
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 r2 ≡ (f − kx ′) C−1(f − kx )  (6.10)

where r is the Mahalanobis distance from the feature vector f to 
the mean vector kx, and C is the covariance matrix for f.

6.2.3.2.1 Experiments to test the system To test the efficacy 
of the technique, experiments were conducted where able-bod-
ied volunteers were asked to make five predefined hand ges-
tures (Figure 6.3) as follows:

 1. Clasp

 2. Move right

 3. Move left

 4. Hold

 5. Grab

Each hand action was performed and recorded for duration 
of 3 s using a video camera located between 1 and 1.2 m from 
the hand at the sampling rate of 30 frames/s and in a well-fur-
nished office environment. The video data was stored as true 
color (AVI files) and at low resolution with an array size of 
120 × 160 for each recording.

6.3 Data analysis

The experiments resulted in a total 150 examples of the five hand 
actions. This data set was randomly divided into three subsets: 
training, validation, and test subsets. Half of the data was used 
for training purposes, and the other half was divided into two 
equal parts, such that one-fourth of the data was used for the vali-
dation set, and one-fourth for testing. Level 3–5 wavelet scales 
were found to be the most suitable for the analysis and were con-
sidered. The training data was used to develop the THT feature 
template for each of the five actions. The classification was per-
formed using KNN and Mahalanobis distance. The results were 
tabulated to determine the confusion matrices for each action.

6.4 Discussion

Table 6.1 shows the movement identifier codes of different 
classes. Table 6.2 is the tabulation of the classification of the 
predefined hand movements using wavelets and geometrical 
centralized moments as feature vectors. The results of the 
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testing showed that with the use of stationary 2D, SWT of 
grayscale THT to compute geometrical features, it is possible 
to classify the hand gesture classes with 97% classification 
accuracy. It is also observed that the classification based on the 
SWT with wavelet approximate images is time expensive [19] 
due to high dimensionality.

This work reported is with low dimensionality and is less 
expensive computationally with improved accuracy than 
reported by Sturman and Zeltzer [17] and Hu [20]. The results 
show an improved accuracy of classification when using SWT 
than when using Hu moments [20]. The results also demonstrate 

Move identifier “GRAB”Move “GRAB”

Move “HOLD” Move  identifier “HOLD”

Move  identifier “RIGHT”

Move  identifier “CLASP”

Subject identifier “LEFT”Subject movement “LEFT”

Move “RIGHT”

Move “CLASP”

FIGUrE 6.3 Representation of five pre-defined hand gestures.
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improvement in classification accuracy and lesser computa-
tional expense as compared to the results by Kumar et al. [19]. 
The results also demonstrate that this technique overcomes 
intra- and intersubject variability. The use of wavelet transform 
to compute global image descriptors for image plane represen-
tation of THT makes the system less sensitive to small varia-
tions, and thus with better discriminating ability.

6.5  User requirements

The system is a stand-alone system where the machine can iden-
tify the hand actions of the user. The system uses minimum 
equipment and is computationally inexpensive, and does not 
require any other sensor or lighting condition. The major require-
ments for a system of this type are that the room has to be well lit, 
and the lighting and background conditions are stationary.

6.6 User benefits

Marker-less video analysis for hand-action recognition 
described in this chapter uses temporal history template of the 

table 6.1 Movement identifier codes

S. No Move description Move identifier

1 MOVE “CLASP” MC
2 MOVE “RIGHT” MR
3 MOVE “LEFT” ML
4 MOVE “HOLD” MH
5 MOVE “GRAB” MG

table 6.2 Confusion matrix for classification data

Class
No. of 
actions

Predicted membership of classes

MC MR ML MH MG
Accuracy 

(%)

MC 50 47 — — — 1 94
MR 50 1 50 — — — 100
ML 50 — — 49 2 — 98
MH 50 2 — — 48 1 96
MG 50 — — — — 48 96
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action, and compares the template with the unknown using a set 
of geometric moments. The technique is robust and gives a high 
level of accuracy with very few false positives. The absence of 
any markers is a very desirable aspect of this method because 
it allows the user to have freedom without the constraints of 
any mechanical sensors, gloves, or the need for special cloth-
ing or even reflectors. The system uses a single low-cost, low-
resolution camera and has been found to operate in the general 
office lighting conditions.

Such a system has a number of applications for able-bodied 
and disabled people. It can be used for controlling a computer 
such as during a lecture or presentation, or for playing interac-
tive computer games. It may also be useful for machine-based 
e-communication where the computer can identify the hand 
gestures.

6.7 Shortcomings

Marker-less video analysis for hand-action recognition de scribed 
earlier uses temporal history template of the action, and com-
pares the template with the unknown using a set of geometric 
moments. Although the system has low error rate at 3%, this 
error makes it unsuitable for applications such as the control of 
a vehicle, wheelchair, or power machinery. This is because the 
error can be integrative and lead to major disaster if allowed to 
go unchecked.

6.8 Future developments

The use of video camera to identify specific hand actions has 
some untapped applications and significant potential that requires 
more research and development. Although this is a system that 
can be used in the current form, it is highly limiting because it 
only recognizes five hand actions. Another limitation is the abil-
ity of the system to work with only one hand. It is also limited 
because of the need for steady lighting and background condi-
tions. New research is required to overcome these limitations.

One major opportunity to develop this technology further is 
to extend the ability of the system to work with both the hands, 
or when there are multiple hands in the frame such as when 
there are people sitting together. This will enhance the potential 
of the system and make it suitable for applications that identify 
the interaction between multiple people. The other development 
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is to overcome the number of hand actions that the system can 
identify and significantly enhance this number. However, the 
biggest challenge is to overcome the need for steady back-
ground and lighting conditions. Overcoming this limitation 
will significantly enhance the application of this system. It is 
possible that this extension may require a hybrid system that 
uses marker-less and marker technology combined in one.

The possible extension of this technology can be beyond 
the hand actions and find applications such as for gait analysis. 
Such a system would be extremely useful for identifying the 
risk of falls among the elderly and for training athletes.
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CHaptEr SEVEN

Human–computer 
interface based on 
electrooculography

abstract

An electrooculogram is the electrical potential recorded from 
around the eyes and corresponds to the direction of the eye gaze. 
This chapter describes the signal and its properties, and the tech-
niques to record and analyze the electrooculogram. It discusses 
the experimental results of the relationship between electroocu-
lography (EOG) and the gaze of the eye, and describes a method 
to automatically determine the angle of eye gaze for controlling 
a computer mouse or a machine, and describes an example of 
the implementation of the technology. Consideration has been 
given to issues such as the reliability and the limitations of EOG 
for such applications along with possible solutions.

7.1 Introduction

Human–computer interfaces (HCIs) have a number of applica-
tions and can have different impacts on many individuals. For 
some, it opens the world of virtual reality and the control of 
machinery without physical contact, while for others it means 
increased independence from disabilities. Researchers have 
developed many systems to facilitate man–machine interfaces, 
and one important modality is the use of eye gaze. There are a 
number of assistive applications where detecting the eye gaze 
is useful for controlling a computer or peripheral devices. Such 
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devices can play a role in helping people with disabilities who 
do have eye gaze control but have lost the effective use of their 
hands. Other applications include the use of gaze-controlled 
weapon control for defense personnel. Another application of 
eye movement identification is for sleep-related research, where 
eye movement is indicative of the type of sleep.

Eye-gaze detection techniques can use invasive and nonin-
vasive methods. Assistive technology applications generally use 
noninvasive and minimum intrusive systems. There are two 
major noninvasive techniques used to identify the gaze of an indi-
vidual and these are based on two modalities: camera and electri-
cal activity. The camera-based system identifies the location of 
the two eyes and estimates the direction of the gaze, while the 
use of electrical activity recorded around the eye, referred to as 
EOG, measures the eye gaze from the electrical potential. In this 
chapter, the EOG-based HCI is discussed. 

7.2 Background

Most humans are easily able to follow the visual path of a mov-
ing object. This may involve the combination of head and eye 
movement. Detecting the eye movement when it is following 
a path has a number of medical and nonmedical applications 
and can be achieved using the corresponding bioelectric signals 
recorded. There are various applications where detecting eye 
movement and eye-gaze direction is important. These applica-
tions can be broadly categorized as

• Virtual reality

• Computer games

• Medical diagnostics

• Assistive technology for disabled

• Advertising research

The sensing, detection, and consequent analysis of eye 
movement and the direction of eye gaze has found applications 
for assistive technologies and other fields such as virtual reality, 
computer games, and defense. Different applications require 
different features, and there are a number of techniques that 
have been developed. The methods for detection of eye move-
ment can be invasive and noninvasive [1], where the invasive 
methods require the placement of some part of the detection 
system in the eye. Some of the different methods that are cur-
rently available are listed in Table 7.1.

7.2.1 Eye 
movement
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Each of the aforementioned techniques have their own 
strengths and thus are most suitable for specific applications. 
Some of the important attributes that have been identified in the 
literature that allow a comparison and matching of most of the 
techniques with the application are

• Spatial resolution—In image processing, spatial resolu-
tion is a measure of the distance between two objects that 
can be distinguished. Similarly, in HCI, this is a measure 
of the distance between two gaze angles that can be sepa-
rately distinguished. Depending on the application, the 
minimum resolution required could be different. In some 
detection methods (video, infrared) software is used to 
determine the spatial reference point from data. In these 
methods, it is not as important that the recorded data is 
accurate as long as there is a known reference point.

• Temporal resolution—The maximum rate of change of 
the angle of the gaze that the system can recognize is 
the temporal resolution. Some applications where the 
saccadic movement has to be recognized may require 

table 7.1 Eye movement detection methods

Category Detection type Description

Invasive (contact 
type)

Optical lever Reflection from contact 
lens measured by a 
photoelectric device

Search coil Contact containing a 
magnetic coil, inserted 
onto the sclera of the 
eye, a magnetic field 
induces a voltage in a 
coil

Noninvasive 
(noncontact type)

Trained observer 
estimates movement

Video, still frames; 
software analysis or by 
hand

Infrared reflection Photo cell detects 
reflectance of the 
infrared source from 
the surface of the eye

Electrooculography Electrodes placed on 
skin, pick up corneal-
retinal potential



98 HCi teCHnoLogies for tHe Motor iMPaired

significantly higher temporal resolution, where eye move-
ments corresponding to 700 degree/s may be important.

• Vertical and horizontal movement—There is a distinct 
difference between the human eye control and movement 
in horizontal and vertical movements. There are many 
applications where the emphasis is on the horizontal 
movement, and there are others where both the vertical 
and horizontal movements are relevant. Such systems can 
also have the added complexity of eye blink movement.

• Setup time—Setup time indicates the time required for 
preliminary setup of the device for the user, required cal-
ibration, and testing. The various modalities have signifi-
cant differences in the time required to set up the system 
for the user. Depending on the application the maximum 
acceptable setup time may be different and thus would 
limit the choice of modality.

• Cost—There can be significant differences in the cost of 
the different systems, and while some applications may 
absorb higher costs, there would be other systems that are 
cost-sensitive. A system that has high cost restricts the 
use and availability of the system.

Although there are a number of methods to detect eye move-
ment, not all are suitable for a control system implementation. It 
is for this reason that there have been a greater number of prac-
tical control systems implementing EOG as a preferred method 
of detecting eye movement.

EOG is the recording of the corneal–retinal potential (dipole) of 
the eye, the potential that exists between the front and the back 
of the eye [2,3]. As the eye moves in either the transverse or 
the vertical plane, the positive and negative poles of the dipole 
move closer to the respective electrode changing the potential 
that the electrode records. The principal is illustrated in Figure 
7.2. Identification of the movement of the eye, the number of 
electrodes, and thus the complexity may vary. Depending on 
the required application, as little as one set of differential elec-
trodes (two electrodes) or as many as eight electrodes, plus a 
commons, may be used to record the electrooculogram.

To measure eye movement, pairs of electrodes in a differen-
tial mode are placed across the eye, either above and below the 
eye or to the left and right of the eye. A reference electrode is 
typically placed at a farther point, such as the ear. When the eye 
moves away from the center toward the side, it moves closer to 
one of the two electrodes and farther from the other. Thus, the 

7.2.2 Electro-
oculography 
(EOG)
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electrode that the eye moves closer to, becomes more positive 
while the opposite electrode becomes negative. Consequently, 
a potential difference occurs between the two electrodes. If the 
resting potential is constant, the recorded potential is a measure 
of the eye’s position. For example, when the person gazes left, 
the cornea approaches the electrode near the outer canthus of 
the left eye, resulting in this electrode having a positive poten-
tial, and the right gaze will lead to the opposite.

Systems that use EOG, detect the direction of an individual’s 
gaze, and from the biosignals recorded, the HCI determines a 
set of spatial angles of the eye gaze. This is combined with the 
screen information to generate control command signals that 
are then applied to enact the required action. A simplified sys-
tem is shown in Figure 7.1.

In this chapter, the relationship between different aspects of 
eye movement and EOG has been described and EOG signal-
based assistive device applications are investigated. An EOG-
based system is described and the experimentally obtained 
relationship between EOG and eye gaze is shown.

The investigation acquired EOG data from various test sub-
jects while they fixated their gaze on fixed and moving target 
points. Specific features of the recorded electrooculogram were 
extracted during preliminary analysis to assist with the selec-
tion of a method to generate spatial controls. Additional investi-
gations of the collected data have assisted with determining the 
feasibility of recognizing the angular displacements and gener-
ating an output that is representative of the required movement.

The human eye has six muscles and requires two or more of these 
muscles for eye movement or fixation. These six muscles enable 
movement in the transverse, longitudinal (torsional), and vertical 
directions; their respective attachment locations on the eye can 
be seen in Figure 7.2. An explanation of the actions performed 

7.2.3 Human 
eye anatomy: 
Movement

EOG

Electrodes Signal
conditioning

Desired
action

Man machine
interface

Visual feedback

Signal analysis/
feature
extraction

Vertical
Horizontal
Optional limit signal

FIGUrE 7.1 Basic EOG control system.
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by the six muscles can be found in many physiology texts [4,5]. It 
has also been reported that the movement of a specific pair of eye 
muscles is antagonistic when the eye moves, allowing an excel-
lent degree of motion control. The directions in which each pair 
of muscles moves the eye are detailed in Table 7.2.

It has also been reported that human eyes cannot move inde-
pendently in the vertical direction (nonconjugate movement). 
This restriction may cause limitations in some systems, which 
record the vertical eye movement of an individual, but in gen-
eral, has the advantage that it reduces the complexity of some 
noninvasive systems such as EOG.

EOG was first discovered around 1920 by placing two elec-
trodes on the skin around the eye. It was observed that one 
could record electrical activity that changed in synchrony with 
movements of the eye. At that time, this was considered to 
be because of the muscle activity, the action potentials in the 
muscles that are responsible for moving the eyes in the orbit. 
However, it was later found that this electrical potential is due 
to the permanent potential difference that exists between the 
front and the back of the eye, the cornea, and ocular fundus 
potential, which is approximately 30 mV, the front of the eye 
being positive.

table 7.2 Action of muscles of the human eye

Muscles Actions

Medial rectus, lateral rectus Horizontal (left, right)
Superior rectus, inferior rectus Vertical (up, down)
Superior oblique, inferior 
oblique

Torsional around the 
longitudinal axis

Vertical Horizontal (transverse)

Two or four electrodes

Electrodes

Eye

+

+–
–

FIGUrE 7.2 Placement of electrodes to record electrooculogram signals.
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7.3  Current technologies: Historical 
to state of the art

One of the early examples of eye-gaze-based assistive tech-
nology was “EagleEyes.” This system was first developed and 
reported in 1996 [6]. It was designed to assist individuals with 
disabilities to communicate or control devices. EagleEyes was 
designed to facilitate the users to initiate actions or commu-
nicate with their personal computer interface simply by mov-
ing their eyes to fixate on a specific location on a monitor. 
The system applied four electrodes for vertical and horizontal 
movements and custom-designed software for the determina-
tion of the coordinates of the cursor on the PC monitor. The 
system allowed the user to move the cursor around a screen 
by moving the fixation point (gaze) of their eyes. The soft-
ware also included an option that sensed the duration of the 
stare, and using this variable could identify the user command. 
Identification could also be replaced by using the eye blink, 
though that may significantly slow the system.

The EagleEyes system was tested on able-bodied individuals 
and the users could select letters on the screen to perform tasks 
such as spelling of their names on a PC monitor and for this 
they required very little training. It was also tested for individu-
als with disabilities and was found to be suitable for them, but 
required significantly more training when being used by people 
suffering disabilities. The software for PC screen display was 
a significant improvement to other displays of the mid-1990s, 
and there were options of multiple displays for text and graph-
ics that the individual could select. Thus, it enabled the user to 
interact and access Internet resources only using their eye gaze. 
Since the original system was first reported, several variants 
and improvements have been developed.

Assistive technology applications of EOG are not just lim-
ited to the controlling of a cursor on a PC monitor, but include 
the control of devices such as a wheelchair or a car. Over the 
past three decades, researchers have developed wheelchair sys-
tems that can accept direction commands from an EOG-based 
system [7]. One such system has been designed to analyze the 
electrooculogram signals using a neural network. The signals 
from the two horizontal electrodes and two vertical electrodes 
are analyzed by software installed on a laptop that is integrated 
with the chair.

EOG systems require the fixation of the head, which is 
uncomfortable when the device has to be used on a regular 
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basis. Thus, the common limitation of EOG systems is that 
these determine the angle of the gaze with respect to the head 
of the individual. To overcome this limitation, the head move-
ment has to be determined to obtain the absolute angle of the 
gaze and thus the object being gazed by the user. The other 
requirement of the system is to include a trigger mechanism 
for which the person can indicate the gaze selection. There are 
a number of options to track head movement and to obtain the 
trigger command. These are described next.

One inexpensive, portable, and reliable way to measure head 
movement is to use an electromagnetic tracking device [8]. Such 
a system can be integrated within a cap of the user that detects 
the relative angle of the head with respect to the predefined 
axis. Integrating the measure of the angle of the head along 
with EOG can determine the object being gazed by the user 
and allows the user the freedom to move their head normally.

In early systems the head was stationary and the eyes moved, 
while in the new system the spatial movement of the individ-
ual’s head is determined by analysis of a magnetic field from 
a transmitter attached to the head. Receivers that have been 
located at specific locations around the individual detect the 
magnetic field, enabling the spatial movement of the head to be 
determined. The system was found to improve the freedom of 
head movement without unduly affecting the system accuracy.

A further application has used the electrooculogram signal 
from the eyes to mimic a PC mouse [9]. Vertical and horizontal 
movements are recorded. The motion of a serial-type mouse and 
its controls were duplicated by the individual’s eye movement 
and blinking, with two and three blinks being reported to corre-
spond to single and double mouse clicks. The system moved the 
cursor when it was determined that the eyes had moved greater 
than a defined angle. The cursor remained moving along the 
detected direction until two blinks, separated by a specific time 
interval, were detected at which point it stopped. During practi-
cal testing, the system was found to function as required.

One of the shortcomings of EOG-based systems was the 
need for wires. The system required wires hanging in the face 
of the user, which limits the possible applications and is not 
aesthetically pleasing. The wires can also result in movement 
artifacts and lead to poor signal quality. To overcome this 
shortcoming, EOG-based mouse control systems with wire-
less links were developed and reported by Norris and Wilson 
[10]. This system used a novel approach for electrode placement 
using four electrodes, each attached to a pair of spectacles. The 
electrodes were connected using a combination of wired and 
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wireless connectivity such that there were no visible wires. The 
advantage of such a system is the convenience, aesthetics, non-
intrusive nature of such electrodes, and improved reliability. In 
such a system, two electrodes were located near the outer edge 
of each eye, while the other two were located on the bridge 
of the nose. The eye blink was separated from EOG based on 
the frequency filter banks, with eye blink corresponding to the 
lower frequency.

The aforementioned work reports the identification of the 
signature of vertical and horizontal eye movements from the 
signal that was achieved by training the system for the individ-
ual user. A virtual lead was generated using the recordings for 
estimating the vertical movement and this was obtained from 
the training of the data to targeted movement.

One difficulty with these systems is that these identify the 
angle of the gaze and thus identification of the object being 
gazed is obtained by superimposing the two discrete infor-
mation: angle of gaze and the screen display. This system has 
drawbacks and is not natural as we view our environment in 
three dimensions; the aforementioned systems reduce the infor-
mation to two dimensions. To overcome this, the system that 
improved the earlier techniques [11] developed an interface 
with the capability to determine the 2D and 3D fixation points. 
The system was designed to operate with a 19-inch monitor that 
displays a series of selection boxes separated by 3 degrees. The 
system also has the capability for the inclusion of additional 
options that would allow eye blinks and other facial gestures to 
be recognized as legitimate actions. The system has also been 
reported to function successfully.

An electrooculogram is a low-frequency, low-voltage electri-
cal recording and is recorded using purpose-built differen-
tial amplifiers. Filters are required to remove artifacts due to 
movement of electrodes, electromyograph, and line noise. For 
this purpose, the signal has to be recorded using two channels 
of differential amplifiers with the typical gain being around 
500–2000 differential gain. To reduce the noise, the amplifier 
should have high common-mode rejection ratio (CMRR), such 
as being greater than 90.

All systems reported that they filtered the EOG signals using 
high-pass and low-pass filters to restrict the effects of drift and 
influences of other artifacts such as changes to electrode adhe-
sion, electromyograph signals, and electroencephalograph signals. 
The filter 3 dB bandwidths were generally 0.16 Hz for high-pass 
filters and between 15 and 20 Hz for the low-pass filters. In several 

7.3.1 System 
requirements
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systems it has been indicated that the direct current (DC) restora-
tion level is established to counter the effects of DC drift.

EOG requires the use of surface electrodes. There are a 
number of different electrodes that are available. The use of 
Ag/AgCl is useful because such electrodes are more stable and 
there are less movement artifacts. The anatomy of the face per-
mits only the use of self-adhesive type of electrodes, and thus 
many of the general-purpose Ag/AgCl self-adhesive electrodes 
may be used. These electrodes are disposable and generally 
inexpensive. If the electrodes being used are dry, adding suit-
able nonflowing, highly ionic gel is desirable.

Cleaning the skin prior to applying the electrodes is essen-
tial to ensure good contact and thus lower noise. Poor contact 
between the electrodes and the skin can result in line noise such 
that 50 or 60 Hz (based on what is the power frequency) will be 
recorded alongside the electrooculogram and can result in very 
poor analysis.

7.4 Example of EOG-based system

The electrooculogram is the standing potential of the eye and 
is a product of the dipole that is formed by the cornea and the 
retina, and is mainly a function of the angular displacement of 
the eye in the eye socket. The design and test methodology of 
the current study has been formulated assuming that the elec-
trooculogram is entirely a function of the angular displacement 
of the eye in its socket. In this example, the electrooculogram 
has also been assumed to be independent of the differences 
between people such as distance of a specific target from the 
eye and possible physiological anomalies.

It is also been assumed that the distance between the object 
and the eye, or the depth, is not going to change the electroocu-
logram. This rationale has led to the test environment being 
modeled as a series of target points in 3D space. Each target 
point exists on the surface of a sphere with the human subject 
effectively positioned at the center of the sphere. The coordi-
nates of the subject’s eyes are located at a specific measurable 
height above the origin of the sphere. The spatial orientation of 
the subject’s eyes as they fixate on a specific target point can 
therefore be determined using the detected electrooculogram.

Based on the assumption that the measured electrooculogram 
is independent of the distance between the object and the user, 
a series of target points were attached to vertical and rigid posts 

7.4.1 Intro-
duction

7.4.2 System 
description
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positioned on the circumference of a circle of known radius. 
Each target was located 15° apart relative to the x-axis obtained 
(arbitrarily) from the center of the circle, with the target points 
at the extremes being located at 60° either side of a target point 
nominated as the reference target. This gave nine target points 
in the horizontal plane, as shown in Figure 7.3.

For the horizontal plane all targets were positioned to be 
at approximately eye height when test subjects were seated, 
although this was not considered critical to the accuracy of the 
recorded electrooculogram in the horizontal plane. Minor vari-
ations in the height of the target relative to the eye height of the 
test subject would tend to affect only the vertical electrooculo-
gram recorded, which in theory would remain at 0° during the 
specific horizontal testing phase.

The reference target point was positioned directly in front 
of the test subject’s eyes, at a measured eye height, allowing a 
known starting point for all electrooculogram measurements 
in the horizontal plane. The location of the reference point also 
ensured that there would be minimal inclination or declination 
of the eyes in the vertical plane and minimal angular offset 
of the eyes in the horizontal plane, when test subjects were 
instructed to fixate their eyes (gaze) on the reference point.

To determine the relationship of electrooculograms cor-
responding to the movement of the eye in the vertical plane, 
test points were attached to the reference pole. Test points were 
positioned to give five equally spaced sections between 45° 
above the eye level and the target point at the floor level, below 

Eye height

0

60

Test subject

Vertical

45

0
(Reference point)

Horizontal
Left

Right

Target points

Floor

60

FIGUrE 7.3 Configurations of targets.
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the reference pole. The positions of the vertical target points are 
shown schematically in Figure 7.5.

To reduce interexperimental and intersubject variability and 
maintain commonality of test target angles from one test sub-
ject to another, the subjects were seated such that the height of 
their eyes (from the floor) was similar. For the current investi-
gation, four test subjects had their eye height set at 1.3 m and 
one subject at 1.2 m. The changes in vertical angles during eye 
movement were determined based on the trigonometric rela-
tionship between the distances. It was assumed that eye move-
ment is not simultaneous in both horizontal and vertical planes 
and thus there would be minimal electrooculogram eye move-
ment recorded in the orthogonal plane.

Electrooculogram signals were recorded from five subjects, 
consisting of four males and one female. The eye physiology 
of each subject was not considered for this investigation and 
therefore any effects can only be surmised.

Five disposable, self-adhesive Ag/AgCl universal electrodes 
(Nessler Med–Technin, Austria, Ref 1066) were placed around the 
eyes as shown in Figure 7.4. Two electrodes were attached to the 
outer canthi of each eye and formed a differential electrode pair 
for horizontal movement. Two electrodes were placed above and 
below the right eye to form a differential electrode pair for verti-
cal movement. A fifth electrode was placed at the center of the 
forehead as a common ground. Prior to the attachment of the elec-
trodes, the skin was cleaned and wiped using a rough facial paper.

The signals were sampled at 1000 Hz with an internal anti-
aliasing filter cut-off frequency set at 500 Hz and alternating 

7.4.3 Experi-
mental protocol

Sensors

FIGUrE 7.4 Placement of electrodes on test subject.
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current (AC)-coupled amplifiers with a time constant, Tc, of 
15 s. The time constant entered effectively gave a 0.011 Hz 
high-pass filter and this dictated that prior to recording any data, 
a period of 5 × Tc (25 s) pass. This time was required to allow 
the system to reach a steady-state level after the commencement 
of data recording.

As a first step, the integrity of the acquisition system was checked. 
Prior to recording electrooculogram signals, sinusoidal signals of 
known amplitude and frequency using a signal generator were 
recorded, following which the electrodes were short circuited. 
The short circuit was used to check the presence of any offset 
levels and presence of internal noise sources. Once the integrity 
of the system was checked, the electrodes were connected to the 
AMLAB general-purpose biosignal acquisition system.

During recording sessions, the subjects were instructed not 
to make relative movement of the torso and head, and any other 
facial movements. This minimized the potential sources of 
error when determining the angular displacement of the eyes. 
The electrooculogram was recorded for a number of tests that 
were designed to assist with the determination of the relation-
ship between electrooculogram and the angular displacement 
of the eyes. The test procedure detailing each of the tests is 
described next. Figures 7.5 and 7.6 show an example of the 

7.4.4 Experi-
mental pro-
cedure
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FIGUrE 7.5 Schematic description of expected EOG cumulative movement, Type A tests.
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electrooculogram for two different conditions: cumulative 
movement (Type A tests) and relative movement (Type B tests), 
respectively.

The experimental protocol was standardized for all partici-
pants. All recordings commenced and ended with the test sub-
ject’s eyes fixated on the reference target point, an effective zero. 
All experiments were repeated three times to obtain sufficient 
data for the purpose of statistical significance tests. The electro-
oculogram was also recorded for the eyes fixated on the refer-
ence target prior to a change in the direction of the movement, 
such as during horizontal movement and change in the horizon-
tal direction from left to right. Five seconds of electrooculogram 
signal was recorded while fixating on the reference target. At 
other target points, the electrooculogram was recorded for 2 s. 
Verbal and on-screen cues were given to the subjects.

The tests conducted were designed to

• Determine the relative (peak) and cumulative electroocu-
logram of the eye during angular displacement in the ver-
tical and horizontal directions

• Determine the characteristics of the electrooculogram as 
a subject blink, with the eye stationary and moving in the 
vertical or horizontal directions
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FIGUrE 7.6 Schematic description of expected electrooculogram cumulative move-
ment, Type B tests.
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• Determine the closeness of the path traced by the eyes 
compared to the path determined by analysis of the 
recorded electrooculogram

7.5 results

Statistical analysis was conducted during this study and the 
means, medians, and 95% confidence intervals were deter-
mined. This enabled the identification of trends in the electro-
oculogram and the angular error detected. Tables 7.3 and 7.4 
tabulate the resolutions for each subject in the horizontal and 
vertical directions. The results for the 95% confidence intervals 
show significant variability.

From the results, it is observed that the horizontal direc-
tion estimation is significantly more accurate and encouraging, 

table 7.3 Tabulated statistical data, final resolutions, and horizontal 
electrooculogram movement

Subject Mean
Standard 
deviation Samples

95% Confidence 
limits

Range of mean

Upper limit Lower limit

A 0.0908 0.0132 45 0.0039 0.095 0.087
B 0.1491 0.0282 36 0.0092 0.158 0.140
C 0.1378 0.0130 42 0.0039 0.142 0.134
D 0.1121 0.0143 46 0.0041 0.116 0.108
E 0.1873 0.0394 41 0.0121 0.199 0.175

table 7.4 Tabulated statistical data, final resolutions, and vertical EOG movement

Subject Mean
Standard 
deviation Samples

95% Confidence 
limits

Range of mean

Upper 
limit Lower limit

A 0.1102 0.0146 30 0.0052 0.115 0.105
B 0.1331 0.0403 30 0.0144 0.148 0.119
C 0.1473 0.0402 30 0.0144 0.162 0.133
D 0.1019 0.0208 29 0.0076 0.110 0.094
E 0.1887 0.0284 30 0.0102 0.199 0.179
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although significant intersubject variation is prevalent; two of 
the subjects have 95% confidence intervals that are greater than 
those obtained for the other test subjects. In comparison, the 
vertical direction estimation showed wider variability for all 
subjects.

The tabulated data demonstrates the potential and limita-
tions of EOG-based eye–gaze detection. However, there are 
variations when compared with the means and system resolu-
tions (Tables 7.3 and 7.4) that are relatively small for both verti-
cal and horizontal directions.

7.6 Discussion

Analysis of the errors between the expected angular displace-
ment of the eyes, to the angular displacement calculated from 
the electrooculogram traces recorded for vertical and horizontal 
movement have revealed a similar trend between the horizon-
tal and vertical directions. The trend, observed in Figures 7.7 
and 7.8, has been highlighted by the inclusion of a third-order 
polynomial. The trend line shows that the errors are tending to 
increase as the angular displacement approaches the outer test 
targets, and this angle has been concluded as boarding on the 
peripheral vision region.
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From the results, there also appears to be the existence of 
a region, where the electrooculogram is approximately linear, 
while outside this region the relationship appears to be less 
defined. In the region corresponding to between ±45° for hori-
zontal movement and ±20° for vertical movement, there are less 
variations.

One cause of errors may be that the distance between the 
object and the eye was not maintained the same. Independence 
of distance from a target was assumed for this study, but may in 
fact need to be investigated. The results of the statistical analy-
sis of the errors are tabulated in Tables 7.5 and 7.6.

All subjects-horizontal Poly. (All subjects-horizontal) Linear (All subjects-horizontal)
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table 7.5 Tabulated statistical data, calculated angular error, and horizontal 
EOG movement

Subject
Mean 

(degree)
Standard 
deviation Samples

95% Confidence 
limits

Range of mean

Upper limit Lower limit

A 0.9020 2.8347 45.0 0.8282 1.73 0.07
B −1.2510 5.9811 36.0 1.9538 0.70 −3.20
C 0.0220 3.7196 42.0 1.1249 1.15 −1.10
D 0.4480 3.5284 46.0 1.0196 1.47 −0.57
E −0.0730 6.9251 41.0 2.1197 2.05 −2.19
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7.7 Limitations of the study

The evidence after the analysis of recorded electrooculogram 
signals indicates that with appropriate filtering and manipula-
tion, it is possible to obtain a mathematical expression, or data, 
suitable for input to an HCI. During this study, rapid eye move-
ments between target points were not studied. Rapid movement 
implies higher frequencies. It is therefore probable that the elec-
trooculogram signals recorded during this study may have con-
tained higher frequencies had the eye movement between target 
points been faster, this in no way detracts from the validity of 
conclusions drawn during this study. It is considered that the 
conclusions, for the slower eye movement, are still applicable 
for EOG signals that contain higher frequencies.

When the electrooculogram traces were examined, it was 
concluded that the electrooculogram signal was pseudodeter-
ministic in nature, and as such, the angular displacement at some 
specific point of time in the future could not be determined. 
Yet it has been concluded from the evidence obtained during 
the study that an expression can be derived that will give the 
expected angle, at the current instant of time. The relationship 
between EOG voltage and angular displacement of the subject’s 
eyes can only be determined, with confidence, after statistical 
analysis of a significant number of eye movement tests.

The design of a man–machine interface relies not only on 
the formulation of a mathematical expression, but also on com-
mands or controls to initiate specific actions. In the simplest 
case, the interface will trace every eye movement, but this has 
the disadvantage that it results in small sporadic movements 
superimposed on the genuine movement. In reality, for many 
applications, it is only at certain times that movement of an 

table 7.6 Tabulated statistical data, calculated angular error, and vertical 
EOG movement

Subjects
Mean 

(degree)
Standard 
deviation Samples

95% Confidence 
limits

Range of mean

Upper limit Lower limit

A −0.080 1.7649 30.0 0.632 0.55 −0.71
B 0.450 3.8141 30.0 1.365 1.81 −0.91
C 2.070 2.9766 30.0 1.065 3.14 1.00
D −3.548 7.8058 29.0 2.841 −0.71 −6.39
E 0.283 2.1967 30.0 0.786 1.07 −0.50
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object is required, and that this movement corresponds to the 
event when the eyes fixate on to a target location.

Analysis of the frequency content using power spectral 
density (PSD) analysis revealed that it is possible to filter the 
electrooculogram signals using a narrower band of frequen-
cies than actually used to acquire the electrooculogram signals 
during this study. The use of a narrower filter band is possible 
if the maximum velocity of eye movement is considered. The 
band of frequencies used during this study and the possible nar-
rower band are both at the lower end of the frequency band rec-
ommended for use in clinical diagnosis of eye problems. The 
specific eye movement velocities are of particularly importance 
if eye blinks are being considered for the initiation of control 
sequences, as has been proposed by some authors in the litera-
ture reviewed.

The results of the current study have shown that a reduction 
of the filter 3 dB cutoff frequency, from the initial low pass 
of 5 to 1 Hz, has the potential to reduce analysis errors. The 
reduction would appear to have its greatest potential in control 
applications that utilize the differentiated signal or when using 
neural networks. The lower filter cutoff frequency would assist 
with denoising of the signal allowing greater recognition of 
the electrooculogram levels and its features, reducing the com-
plexities of signal analysis and making it easily interpreted by 
a neural network.

7.8 Discussion: User benefits and limitations

The aforementioned example has shown that EOG has a 
good relationship with the eye gaze in the horizontal plane. 
The results also indicate that there is significant variability 
between subjects and between multiple repetitions. Although 
this demonstrates the limitations of the system, it also shows 
the strengths and number of applications. Such a system is 
easy to deploy, such that an untrained person could connect the 
user to the EOG device and use it for detecting the gaze of the 
user. This could be used to control the cursor on the computer 
screen, or to identify objects in a room, or other diverse range 
of applications.

The example shows that the system is reasonably reliable 
and the hardware description shows that it is easy to use and 
inexpensive. Such a system can be suitable and useful for peo-
ple who do not have their hands to control the computer or other 
similar devices, but have the ability to control their gaze.
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The example did not include a trigger function, which is 
essential for the system to obtain a command after identifying 
the gaze. This, however, may not be difficult, such as the use 
of eye blink. This would, however, be limited to people who 
have sufficient control on their eye blink. For those people who 
are unable to voluntarily blink their eyes, there are also other 
options such as determining the amount of time for which the 
user gazes and using a time-based approach.

The other limitation in this system was the need for the user 
not to move their head. Although this may be acceptable under 
short-time experimental condition, this would not be accept-
able for regular use. There is the need for the system to identify 
the head movement and subtract this from the eye-gaze angle. 
Researchers have performed direct subtraction to estimate the 
location on the screen where the user is gazing. However, such 
a system has a number of shortcomings because these move-
ments are in three dimensions, making the two-dimensional 
approximation inaccurate.

There are groups that have attempted to use a lightweight 
tablet that is fixed to a head-stand and thus the relative angle of 
the screen location is independent of the head angle. However, 
such a system suffers from the inflexibility and the weight of 
the device on the head of the user. 

Other methods to overcome this is by the use of a video based 
on tracking the head of the person using an electromechanical 
device and identifying relative movement of the eyes by model-
ing the eye and head of the user. Such a system requires sig-
nificant calibration and is computationally expensive. However, 
with the availability of fast computers and the need for user-
dedicated devices, this should soon be possible.

One of the shortcomings in these devices has been the 
movement artifacts. This is often when the contact between the 
electrodes and the skin is not good, and may happen due to a 
number of reasons such as (1) the skin was not cleaned prior 
to electrode applications, (2) electrode adhesiveness gets weak 
over the time of the experiment, (3) movement, and (4) sweat. 
To overcome these, it is important that the skin be well cleaned, 
and the electrodes should be firmly mounted and periodically 
checked to ensure they are still firmly attached. It is also impor-
tant that if there are wires, these are firmly secured, and if there 
is any sweat formation, this is cleaned.

One shortcoming in each of these devices is the user accept-
ability. While people who are unable to function without such 
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a device would accept it due to lack of choices, and defense 
personnel may use the device as an integral part of their work; 
people do find wires hanging from their face disconcerting. 
Thus, efforts have been made to incorporate the electrodes in 
devices such as spectacles of the user. Efforts are also being 
made to have these electrodes be wireless.
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CHaptEr EIGHt

Video-based eye tracking

abstract

It is natural for us humans to direct our gaze to objects of 
interest and this can lead to a number of technical applica-
tions. Machine-based identification of the direction of our 
gaze has a number of applications suitable for able-bodied 
and disabled people. People who are unable to effectively use 
their hands and lack speech can use their eye gaze to control 
their computers or other associated devices. Thus, the user 
can move the cursor on the screen, select icons, or even the 
characters on the keyboard to type and communicate effec-
tively by the machine automatically recognizing the gaze of 
the person. Although there are various modalities that facili-
tate machine-based eye-gaze recognition, video-based eye 
tracking is perhaps the least intrusive. The advantage is that 
the camera is not located on the face of the individual and may 
be located at a distance, such as on the computer screen. This 
technology is significantly matured and there are commercial 
products available. However, these have limitations such as 
background and lighting conditions.

8.1  Introduction

Eye detection and tracking is important for many applications 
such as face recognition, human–computer interface (HCI), 
and user behavior analysis. The art of automatic machine-based 
detection of the eye has been perfected, and is routinely done 
in various airports around the world for identifying travelers 
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based on their biometrics. Eye tracking is where a user’s eye 
movements and the sequence in which the eyes are shifted from 
one location to another are analyzed. This has clinical and con-
trol applications, and researchers are developing new methods 
to accurately track people’s eye movements. The applications 
range from clinical, social, and behavioral understanding, and 
for HCI, being very useful for people with reduced motor abili-
ties. The eye-gaze movements can be used to interact and con-
trol computerized devices for  communication [1].

To track the movement of the eye, there are a number of 
modalities that have been developed and these can be broadly 
divided into video-based and bioelectric-based recordings. 
Each of these has their advantages and limitations and the 
choice is based on the application. The movement of the eye 
can be very rapid, in the range of 500 degree/s [2], and although 
such speeds are not important in some applications, they can be 
critical in others; tracking the eye at this speed is a challenging 
task. Other challenges are related to the ambient conditions, 
location of the sensors, movement of the head, and presence of 
other people.

Researchers have been investigating techniques to track eye 
movements using video recording, and various technologies 
have been developed and implemented in many disciplines as 
fundamental instruments [3,4]. A general eye detection method 
follows two steps: (1) locating the face to extract the regions of 
eye and (2) detecting the eye from the region of interest. Face 
detection has some constraints such as frontal view, variations 
in light, and background conditions.

Eye movement is tracked and analyzed to enable an indi-
vidual to interface with a computer or associated device. 
Users can position a cursor by looking at the screen and con-
trol the movement of the cursor. The selection of the location 
or the icon can then be made using eye blink or based on the 
time of gazing. Such interfaces with this capability will be 
useful for users with feeble muscles or those who lack the 
ability to control their hands [5].

Video-based eye-gazing analysis systems for HCI are now 
done in real time and there is software commercially available 
for this purpose. However, there are a number of unresolved 
issues such as determining the user’s intention, distinguishing 
between voluntary and involuntary movement, and lighting 
conditions and background, all of which may lead to inaccu-
rate results. This chapter provides insight to the techniques for 
tracking eye movements, and an example of the video-based 
tracking method and its use in HCI applications.
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8.2  Background and history

Our eyes are our windows to the world and our major sense 
organ. They sense the presence of light and convert it into elec-
trical signal, which is then transmitted via the neurons to the 
brain where it is analyzed to give us the information and per-
ception of the three-dimensional world. The eye has adaptable 
lens that allows the eye to focus on different depths. The light-
sensitive region of the eye is the retina.

Rod and cone cells in the retina allow light perception and 
vision including various colors. Although the more detailed pro-
cessing is done by the visual cortex and other areas of the brain, 
significant analysis takes place in the region of the nerve concen-
tration and where the blood vessels feed the eye, the optic disk, 
which is often referred to as the blind spot. Our eyes obtain the 
information of the three-dimensional world on our two-dimen-
sional retina, and thus the direct information obtained by the eye 
is largely two dimensional. We have two eyes that provide us 
with stereovision and this facilitates us to get the three-dimen-
sional information. The information of the depth is also super-
imposed on our vision in our brain based on the spatial model 
of the environment that is available to us based on other sensors.

The eye converts the optical information to neural information. 
The brain is attentive to the locations that correspond to the edges, 
where there is significant change in the color or light intensity. 
There is also the aspect of movement, where the brain is attentive 
to the movement of the object in relation to the background. This is 
perhaps the survival instinct, where we are able to identify move-
ment relative to the background even when our head is in motion.

The eyes are excellent in tracking the movement of other 
objects. While the eye without any movement is able to identify 
the movement of objects, when the eye is tracking a moving 
object, there is movement of the iris cornea and sclera. This 
is controlled by the muscles of the eye, and gets the sensory 
information from both, the vision and the ear. The part of the 
ear senses the movement and position of the body, and sound 
also identifies the movement of external objects.

There are various methods that have been used to track eye 
movements since the introduction of eye-tracking technology 
in 1989 [6]. The following are some of the methods reported in 
the literature:

• Electrooculogram signal processing techniques, which is 
based on the differences in electric potential to detect eye 
movements.
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• Historical methods that measure eye movements by fluc-
tuations in an electromagnetic field when the metal coil is 
moved along with the eyes [7].

• Modern eye-tracking systems use video images of the eye 
to determine where a person is looking, termed as “point 
of regard.” Many distinguishing features of the eye can 
be used to infer point of regard, such as corneal reflec-
tions (known as Purkinje images), the iris–sclera bound-
ary, and the apparent pupil shape [7].

Eyes can make three different types of motions: (1) hori-
zontal rotation, (2) vertical rotation, and (3) rotation about the 
visual axis. Most eye movement monitoring techniques only 
measure the horizontal and vertical rotations, which provide a 
better output to control a device. These motions can be tracked 
utilizing the various eye features using image-based tracking 
methods. These image-based approaches often take advan-
tage of the spectral properties of the eye under near-infrared 
(NIR) illumination. When NIR light is shone onto the eyes, it 
is reflected off the different structures in the eye and creates 
several types of IR illuminated eye features [8,9].

The direct eye localization methods have been classified into 
three main categories [3]:

 1. Shape-based approaches, described by the shape including 
the iris, contours of pupil, and the exterior shape of the eye.

 2. Feature-based shape methods explore the characteristics 
of the eye to capture a set of distinctive features around 
the eyes such as the edges, pupil, and cornea reflections.

 3. Appearance-based methods detect and track eyes directly 
using the photometric appearance characterized by the 
color distribution or filter responses of the eye and its 
surroundings.

Detection and localization of the eye is now done routinely 
with number of applications such as biometrics such as for the 
identity of the person. Eye detection also has applications such 
as for eye-open condition required for the driver of a vehicle 
and for detecting when the user of a mobile phone looks at the 
phone, and the screen gets activated at such a time. Detecting 
the eye is now routinely done by inbuilt software in laptops, 
tablets, and mobile phones.

Research has shown that the cognitive or the thought pro-
cess is related to what a person is looking at and this is termed 
as eye–mind relationship [10]. In terms of HCI research, this 
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eye–mind process can provide information about a person’s 
attention in relation to a visual display. This can be measured 
using the different characteristics of the eye movements, such 
as fixations and decoding the information by tracing eye move-
ments. The process of understanding useful information from 
eye-movement and eye-tracking methods for HCI involves the 
following:

• Identifying the “regions of interest” in the display or 
interface under evaluation, and

• Analyzing the eye movements that fall within the regions 
of interest areas.

Research has largely focused on the general use of real-time 
eye movement data in HCI in more conventional user–computer 
dialogues. Eye movements can also be used in a different way, 
by itself, or in combination with other input modalities, such 
as a mouse, keyboard, sensors, or other devices. Eye-tracking 
research is currently seeking to improve efficiency and enhance 
the user experience including [11]

• Using eye tracking to control the mouse cursor on wall-
sized displays

• Using eye tracking to control a mouse cursor, but also 
to select items the cursor rests on by focusing on the 
object

• Controlling digital three-dimensional games by eye gaze

• Gaze interaction in virtual worlds

• Gaze visualizations in three-dimensional environments

• Combining an eye control and speech interface to speed 
typing

Currently the world’s leading vendor of eye tracking and 
eye control, Tobii has revolutionized eye-tracking technol-
ogy research in many fields and has enabled communication 
for thousands of people with special needs. It has developed 
products such as Tobii Glasses 2 eye tracker (Figure 8.1), which 
gives researchers the ability to track and record the eye move-
ments to be used for various applications.

This chapter provides an example of an eye-tracking method 
that can be used as information to control a device for disabled 
people to communicate. This chapter will also provide an 
insight into the user requirements and future research on the 
video-based eye-tracking technology for HCI.



122 HCi teCHnoLogies for tHe Motor iMPaired

8.3  an example eye-tracking method

Researchers have demonstrated various video-based eye-track-
ing techniques in the last decade. They have taken into consider-
ation the lighting conditions, size of the eye, relevant information 
to be extracted from the image, and other related factors that 
may affect the accuracy. Some of these factors have been con-
sidered in the method explained in the following sections.

The Hough transform was devised by Hough [12]. It is one of 
the basic methods of identifying the geometry from images in 
the image processing. Its purpose is to find imperfect objects 
within a certain class of shapes. The basic principle of Hough 
transform is that if the curve is given expression in the original 
image space, the parameter of the curve expression becomes a 
point in the parameter space. Hence, the detection curve in the 
original image is transformed into finding the peak value of the 
voting procedure in parameter space. The original Hough trans-
form was concerned with the identification of a straight line in 
the image, but later the Hough transform has been extended to 
identifying arbitrary shapes, circles, and ellipses. This is suit-
able for an eye-tracking technology.

The following example demonstrates the basic operations of 
Hough transform better: There is a known line in a black-and-
white image (white background and black line), and if we want 
to calculate the location of the line we can use the equation

 y = k * x + b

where k is the slope constant and b is the intercept.

8.3.1 Hough 
transform

FIGUrE 8.1 Tobii Glasses 2 eye tracker. (From Tobii Technology. 
With permission.)
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If given a point O(x0, y0) is in the straight line (Figure 8.1), 
this point will fit in the equation

 y0 = k * x0 + b

Now assume that there are many straight lines in the X–Y 
plane (which represents the original plane in the project) and 
they all have a common point O, the slope, and intercept of 
them are k0, b0; k1, b1; k2, b2; k3, b3; and k4, b4 (details shown 
in Figure 8.2). Each paired parameter represents a point in the 
parameter plane, which is called the K–B plane in this case. 
The five points in the example construct a new straight line in 
the K–B plane. It is because the five points satisfy the following 
equation:

 b = x0 * k + y0

in the K–B plane. The x0 becomes the slope and y0 becomes the 
intercept parameters of the equation in the K–B plane.

Conceptually, Hough transformation transforms a point in 
the original image to a line in parameter plane, and transforms 
a straight line in the original image to a point in parameter 
plane. In practical application, there is no way to express the 
linear equation of x = c, where the slope of the line is infinite. 
Hence, the parametric equation

 p = x * cos(θ) + y * sin(θ) replaces

 y = k * x + b form

In computer vision and image processing, Otsu′s method is 
used to automatically perform clustering-based image or the 
reduction of a gray-level image to a binary image [13]. The 

8.3.2 Otsu’s 
method

X

Y B

K

k4, b4

k4, b4

k3, b3

k3, b3

k2, b2

k2, b2
k1, b1 k1, b1

k0, b0 k0, b0
x0, y0

x0, y0

FIGUrE 8.2 Point in X–Y plane and in K–B plane.
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algorithm assumes that the image to be the threshold contains 
two classes of pixels or bimodal histogram in minimal. Then, 
it uses Equation 8.1 to calculate the threshold to determine the 
interclass variance

 
g = ω f *ωb * (µ f − µb )2  (8.1)

where g is the grayscale level that separates the foreground 
from the background in the image, ωf is the ratio of target (front 
part of the image) pixels number over the total pixel number, 
ωb indicates the ratio of background pixels over total pixels, μf 
is the average grayscale level for target, and μb is the average 
grayscale level for background.

In this algorithm design, to have higher accuracy in detect-
ing eye during the movement with different backgrounds, 
Otsu’s method provides an improved outcome and is less sensi-
tive to background variations.

In this algorithm, the first step is to detect the iris. This is based 
on the observation that the sclera is always brighter than the 
iris and thus the algorithm detects the edge by a series of points 
that are located on a circle. This modified algorithm can be 
described by the following procedure:

 1. Resize the image of each frame of video and convert the 
image into a gradient image.

 2. Apply Otsu′s method and the Gaussian blur technique to 
the modified image.

 3. Apply the circular Hough transform (CHT) to find the 
circular shape objects.

 4. Identify one maximum area of circle and note the coordi-
nate (x1, y1) of the central point of this area (Figure 8.3).

 5. Determine the matching second central coordinate (x2, 
y2) point; it must be inside the region of interest

 6. If there is no second central coordinate to identify the 
second eye, return to step 2 and repeat. If the second 
maximum number has been identified, select this area, 
then record the coordinate (x2, y2) of central point.

 7. Compare the radius and the similarity of the two regions 
using the mean absolute error (MAE) method.

 8. If the MAE value is less than the fixed threshold, then 
the two regions are considered the best match for track-
ing the eyes. Otherwise return to step 2 and repeat the 
process.

8.3.3 Design 
algorithm
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The second point (x2, y2) can be identified in the shadowed 
regions shown in Figure 8.3. The following equations present 
the relation between the first eye and second eye:

 
d1 ≤ (x1 − x2 )2 + (y1 − y2 )2 ≤ d2   

(8.2)

 

sinα =
y1 − y2

(x1 − x2 )2 + (y1 − y2 )2
, α ∈ − π

6 ,
π
6

⎡
⎣⎢

⎤
⎦⎥

 
(8.3)

There are several factors that can influence the accuracy in 
tracking the eye. Some of these are shown in Figure 8.4 and 
include

• Varying diameter of iris with different people

• Distance from the camera to the person

• Different lighting backgrounds

• Different shape and size of the eye

To remove those false positives arising due to these factors, 
measuring the distance of a camera to a person by adding 
the sensor and computing the expected radius and distance 
between the two eye sensors may solve this problem. This has 
been tested with the modified design explained in the next 
section.

8.3.4 problems 
with  eye-tracking 
technique

d2 2α 2α
d2

x1, y1

d1

d1

FIGUrE 8.3 Region of interest.
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8.4  Data analysis

Figure 8.5 shows the basic design in detecting the distance. 
Width marks the dimensions at the distance of a camera to the 
person. Assuming the angle α is constant, the distance is com-
puted using Equations 8.4 and 8.5.

 Width = 2 * tanα * D  (8.4)

The iris radius in pixels is

 
Rmin = 5*

Widthpixels
Width

⎛
⎝⎜

⎞
⎠⎟
, Rmax = 7*

Widthpixels
Width

⎛
⎝⎜

⎞
⎠⎟
 

(8.5)

8.4.1 Distance 
detection

FIGUrE 8.4 Resultant images showing the false positives in eye-
tracking algorithm.

D
Camera

α Width

FIGUrE 8.5 Plot showing the important variables in calculations.
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To test this measure, a simple example of a laser point dis-
tance measurement was performed. This technique needs one 
complementary metal-oxide semiconductor (CMOS) camera 
and one laser emitter as shown in Figure 8.6. Based on the 
model shown in Figure 8.5, with fixed height, h, the distance, 
D, was calculated using the Equation 8.6

 
D = h

tanθ , θ = pfc*rpc
 

(8.6)

where pfc is the number of pixels from the center to focal plane 
and rpc is the radians per pixel.

To remove false positives in the eye detection, it is important 
that the size of the iris and the pupillary distance is accurately 
measured. This can often be a challenge because different peo-
ple have different iris sizes. One method to manage the inter-
subject differences is the use of circular Hough transform.

Circular Hough transform is an important method to accu-
rately detect the location of the iris. It is based on the common 
feature that the iris is always darker that the sclera and has a 
perfect circular shape. Another factor that will affect the eye 
tracking is the change in the angle of eyes and this angle is due 
to head movement. The robustness of the method was tested 
by including the head movement, while tracking the eye. The 
design of the method to include the head movement is shown 
in Figure 8.7.

Camera

pfc
Focal
plane

Laser

D

Target

θ

h

FIGUrE 8.6 Distance measurement by using one laser point and 
one camera.
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To track the eye movement by including the factor of head 
movement was modified based on the geometry of eyes: both 
iris being the same size and having a similar radius; the fixed 
pupillary distance; and the angle between two eyes. Although 
there are other methods that sense the head movement using 
inertial or electromagnetic sensors, such methods require addi-
tional sensors and are intrusive. Further, inertial sensors suffer 
the shortcomings of temporal drift.

Based on the known anatomy of the head and associated 
properties, Equations 8.7 and 8.8 have been used in this study

 
d1 ≤ (x1 − x2 )2 + (y1 − y2 )2 ≤ d2  

(8.7)

 

sinα =
y1 − y2

(x1 − x2 )2 + (y1 − y2 )2
, α ∈ − π

6 ,
π
6

⎡
⎣⎢

⎤
⎦⎥

 

(8.8)

8.5  results

The results of each step in tracking the eye movement are 
shown next.

Head position 2 Head position 1

x1, y1
x2, y2

Line “gray”

α

α

Horizontal line

FIGUrE 8.7 Angle relations between head and eyes considered 
in this method. Head position 1 refers to the vertical straight. Head 
position 2 refers to the head moving left or right, and angle x and y 
are the coordinates of two eyes’ centers.
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• Step 1: Apply the circular Hough transform to find the 
circular-shaped objects. Results from this step are shown 
in Figure 8.8.

• Step 2: Remove the false positives by identifying the pos-
sible locations of the eye. The results from this step are 
shown in Figure 8.9.

• Step 3: Compare the radius of the remaining coordinates 
and applying MAE to measure similarity. The results are 
shown in Figure 8.10, where the eye was tracked accu-
rately even though the head moved right or left at an angle.

8.6 Discussion: User benefits and limitations

Eye tracking has been used to evaluate the user behavior 
and the interface usability in many HCI-based research and 

FIGUrE 8.8 Image showing results from step 1 to find the circu-
lar-shaped objects.

FIGUrE 8.9 Image showing results from step 2 by removing 
some of the false positives.
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applications. In the HCI applications, it has been predomi-
nantly used as a direct control interface for communication 
applications. Eye-tracking research is currently leading toward 
developing devices for people with disabilities where they can 
communicate through their eyes. However, there other appli-
cations where eye tracking is routinely used, such as for vir-
tual reality environments, computer games, and defense. More 
recent applications include the use of eye tracking for psycho-
logical experiments, marketing, and social experiments.

Eye tracking is now a matured technology and there are 
a number of commercial devices and systems. One driving 
force is the availability of inexpensive good digital cameras, 
which are often embedded inside laptop computers, tablets, and 
mobile phones. Although there are several companies that are 
marketing these devices, Tobii is an example of one leading 
company that has been researching and developing eye-track-
ing technology; SenoMotoric Instruments is an example of a 
new company with some novel applications. These companies 
have developed various products to analyze human behavior 
and their usability of devices, for example, the Tobii eye tracker 
(Figure 8.1). Tobii has developed and marketed products to con-
duct research in real-world environments in fields ranging from 
psychology, infant, and reading research to neuroscience and 
vision research. Eye movements are often used in HCI stud-
ies involving people with disabilities who can use only their 
eyes for input. Tobii eye control technology has already revolu-
tionized the lives of thousands of people with disabilities [11]. 
Some of their tracking technology is shown in Figure 8.11.

Researchers [14] have used eye-gaze-based interaction to 
help autistic children learn social skills when they maintain 

FIGUrE 8.10 Image showing results from step 3 by applying 
MAE to measure similarity, which includes the head movement.
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eye contact while communicating. Hornof et al. [15] designed 
a software called “EyeDraw” to enable children with severe 
motor impairments to draw with their eyes. Their study dem-
onstrated and reported that it requires detailed analysis and 
understanding of fundamental human-perceptual constraints 
and oculomotor control to create HCIs for new eye control of 
software applications.

Eye trackers are sensitive to the instrumentation and thus 
the software and hardware are often not stand-alone, which can 
limit the usage. There are also the shortcomings such as the 
effect of eyewear (e.g., hard contact lenses, bifocal and trifocal 
glasses, and glasses with supercondensed lenses) and some eye 
makeup of the participants that can interrupt the normal path of 
a reflection. There may also be problems tracking people with 
very large pupils or “lazy eye,” such that their eyelid obscures 
part of the pupil and makes it difficult to identify. Calibration is 
required to maintain the accurate point of measurement due to 
the differences in eye movements between participants on iden-
tical tasks. Visual distractions (e.g., colorful or moving objects 
around the screen or in the testing environment) should also 
be eliminated, as these will inevitably contaminate the eye-
movement data [16]. Based on the literature, future develop-
ments in eye tracking should concentrate on accurate tracking, 
making users feel more comfortable, and cost-effectiveness for 
consumers.

Another limitation of video-based eye tracking is for people 
who may suffer from nystagmus. Such people suffer rapid and 
involuntary eye movement, which may occur regularly or be 
very occasional. Although people who suffer regular nystagmus 

FIGUrE 8.11 Tobii eye track technology simulator. (From Tobii 
Technology. With permission.)



132 HCi teCHnoLogies for tHe Motor iMPaired

are unable to use the device, the difficulty is associated with 
those people who have the condition under some specific condi-
tions and in such cases there can be erroneous outcomes. There 
is the need for identifying such conditions to ensure that the 
system does not identify an incorrect command. People have 
attempted to use temporal filtering methods to ensure that such 
events are filtered.
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CHaptEr NINE

Speech for controlling 
computers

abstract

Voice recognition technologies for computer and machine con-
trol applications are growing due to the flexibility of speech-
based communication. There are a number of devices and 
software commercially available and used for commanding 
computers, lights in a building, and toys, to name a few. This 
chapter discusses some of these technologies in the context of 
aids for people with disabilities, and identifies the associated 
applications and limitations.

9.1 Introduction

Speech facilitates human beings to communicate effectively 
with others. The complexity of human speech makes it pos-
sible to communicate complex ideas and is often considered as 
the defining strength of humans over animals. Use of speech to 
interact with machines is a much desired option because this 
will facilitate the user with the ability to command it for com-
plex functions. For effective speech-based computer interac-
tion, the computer has to understand the desired commands. 
Some of the methods that are used for speech analysis are sim-
ple in design and operation, while others are state of the art and 
computationally complex.

Speech is rich and complex, and it is dependent on number of 
factors. Some of these are intrinsic to the speaker such as what 
is being spoken, who is the speaker, and how is the speaker 
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speaking. Then there is the effect of background conditions, 
room acoustics, and the hardware properties of the microphone. 
The listener is often able to simultaneously obtain all of this 
information and identify who is the speaker, what is being spo-
ken, the emotional state of the speaker, and the acoustics in the 
region. Thus, the desired speech-based computer interaction 
should be suitable for all of these functions.

The accuracy of any conversation is dependent on factors 
such as the presence of background noise, other speakers in 
the vicinity, and acoustics. People are able to understand what 
is being spoken even when these conditions are not suitable by 
observing facial and lip movement, and knowing the context of 
the conversation. However, factors such as lack of knowledge of 
the context, different accents, and altered speed of the speech 
can make it difficult for people to understand what was spoken.

Speech is complex, and with the added factors such as room 
acoustics and noise, speech-based interactions always have a 
level of uncertainty and this is also the case in computer-based 
interaction. There are inherent possibilities of error and this is 
enhanced when message is complex. Computer-based speech 
command recognition is not trivial and there are several sophis-
ticated algorithms and techniques that have been developed 
over the past decades. Some of these techniques are discussed 
in this chapter.

9.2 History of speech-based machine commands

One of the simplest speech-based machine controls is based on 
the presence of sound above a threshold. Such a system will use 
the intensity of the audio signal to perform a simple function. 
The user needs to make a sound above a certain intensity, and 
this will trigger the machine to perform an action. Although 
such systems were simple to implement, they were typically 
only suitable for extremely trivial situations, and very sensi-
tive to the presence of background and other artifact sounds. 
Enhancement of such a system is the use of filters that reduce 
the background noise, and filters in sounds that have spectral 
properties similar to the human voice. However, changing con-
ditions would alter the noise properties and the reliability of 
such systems can be poor because these may trigger machine 
command due to background noise.

To overcome the changing conditions, adaptive filters have 
been introduced. Such techniques reduce the background noise 
even when the conditions such as room acoustics or the presence 
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of different sources of noise are introduced. Such improve-
ments allow the simple threshold-based systems with a small 
vocabulary of machine commands, and can be trained and tai-
lored for the individual user. These are suitable for performing 
some machine commands. However, these were unsuitable for 
performing complex tasks such as speech-to-text conversion 
and dictating to a computer.

Speech-based machine control systems that are suitable for 
performing complex tasks require machine-based speech rec-
ognition. This is often referred to in the literature as “automatic 
speech recognition” (ASR). This has number of applications for 
people with special needs, and it is also widely used for applica-
tions such as “speech to text,” often used for transcribing.

ASR systems may be speaker independent or trained for an 
individual. The speaker-dependent ASR requires speaker voice 
samples to train the system, whereas the speaker-independent 
ASR does not require this training. Typically, the ones that 
require speaker training require the speaker to speak a small set 
of words, and the system uses this to model other speech charac-
teristics, fine-tuning the algorithms, and these features are saved 
for further use. More often, the speaker-trained systems are more 
accurate compared with the speaker-independent ASR.

Many recent ASR systems developed for transcribing are 
capable of handling complex vocabulary and can work within 
a defined context, though some are based on the individual 
characters in a language. Research has shown that most speak-
ers use only a small vocabulary and recent advancements have 
developed the system to tailor the vocabulary to the individual 
speaker, thereby reducing the error.

9.3 automatic speech recognition (aSr)

Machine-based speech command recognition requires three 
steps: noise removal, speech feature extraction, and classifica-
tion. To better understand these methods for machine-based 
speech command recognition, understanding the speech pro-
duction is important. This is described in the following sections.

The first step in computer-based speech command recognition 
requires the digitization of the sound signal that is recorded by 
the microphone. To ensure accurate identification of the speech, 
it is important that the digitization step is accurate and does not 
introduce any noise. There are number of factors that have to 
be considered such as sampling rate and sample bit resolution.

9.3.1 Digitization 
of sound signal
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The sampling rate, in most cases, can be based on Nyquist 
criterion, where the signal is sampled at more than twice the 
maximum frequency of interest. In most cases, the relevant 
speech signal is in the range of 50–5000 Hz, and thus a sam-
pling rate of around 10,000 is sufficient. However, many signal-
recording systems have their own sampling rates, in the range 
of 4000–43,100. When digitizing the signal, it is important to 
note that signal spectrum often has a long tail, far beyond half 
the sampling rate. This is referred to as aliasing and results in 
noise. As is shown later, anti-aliasing filters are required to fil-
ter this prior to sampling the signal.

The bit-resolution is based on number of factors, but the 
quality of the microphone is perhaps the most important. Most 
computers allow for the bit-sample of around 24 bits, or reso-
lution of nanoparts of the signal, 8 or 16 bits are in general 
sufficient for most applications, with resolutions in milli- or 
microparts of the signal.

9.4 Speech denoising methods

All speech-recording devices are susceptible to noise. Noise 
may be due to single source, or a number of sources, and may 
have a range of distributions and properties. It can be random 
or white noise with no coherence, or coherent noise introduced 
by the hardware or processing software. It also may be due to 
inherent properties of the acoustic properties of the recording 
environment.

Suppressing unwanted sounds, such as background sounds 
or other artifacts to obtain pure speech signal, is an essen-
tial step prior to obtaining speech features. There are several 
methods for filtering the signal to obtain the speech while 
reducing the background noise. One of the simplest methods 
is based on spectral filtering, where the noise is considered to 
be stationary. However, in many real conditions, the noise is 
not stationary, and more recent techniques are adaptive filter-
ing based. One difficulty with the spectral-based methods is 
the assumption that speech has different a spectrum compared 
with background noise, and this is often not correct, such as 
when the background noise is due to other human speech. 
Recent advancements have resulted in the use of entropy or 
information-based filtering methods that allow the separa-
tion of speech of different speakers. A brief description of 
these noise suppression techniques is mentioned in the next 
sections.
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Random white noise would have a spectrum ranges from low 
to high frequency, and with overlap of the speech signal. One 
technique to suppress the noise is to filter the recording that is 
outside the main spectral region of interest, which is often con-
sidered to be between 50 and 5000 Hz. Other noises that may 
corrupt the signal can be narrow band noise generated by the 
presence of monotonic sounds created by motors in the vicinity 
or nonlinear properties of the circuit components.

Spectral filters may be interpreted in the time domain or fre-
quency domain. In the frequency domain, there is multiplica-
tion of the spectrum of the signal with that of the filter, whereas 
in the time domain, this may be interpreted as the convolu-
tion of the impulse response with the signal. When selecting 
the suitable filter, there are a number of factors that have to be 
considered.

Types of filters include low pass, high pass, band pass, and 
notch. There are also differences related to the order, which 
determines the sharpness in the cutoff between the accepted 
and rejected frequencies. Other factors that influence the selec-
tion of filters are the presence of ripples in either the stopband 
or the passband of the filter, phase shift, and delays in the filters.

Spectral filters can be in hardware or software, referred to as 
the digital filters. With greatly enhanced computational proper-
ties, digital filters are routinely used, though there are many sit-
uations where the electronic circuit-based filters are essential. 
One such application where the filter has to be hardware-based 
is the anti-aliasing filters.

As a first step of denoising the audio recording, a portion of 
the recording that does not have any speech is selected and the 
spectrum of this is observed. This indicates the background 
noise spectrum. The next step is to observe the spectrum of the 
speech signal and compare the two signals; the spectrum that 
can be removed for effective noise reduction has to be identi-
fied. Often, this will require compromise where in the first step, 
we select a portion of our sound that contains all noise and no 
signal; in other words, select the part that is silent except for the 
noise. Taking the spectrum of this identifies the type of filter 
that is required to eliminate or reduce the noise.

A low-pass filter (LPF) passes that part of the signal with fre-
quency lower than a certain cutoff frequency while stopping or 
attenuating signals with higher frequencies. Thus, the output 
of the LPF contains the trends of the signals, while some of 
the sharpness is removed. They provide a smoother form of a 

9.4.1 Spectral-
based filtering

9.4.2 Noise 
profile

9.4.3  Low-
pass filter
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signal, removing the short-term fluctuations, leaving the longer-
term trend. LPFs are referred to as treble cut filters and are used 
for removing high-frequency noise. It is essential that they be 
added before any signal is sampled to prevent any anti-aliasing 
noise.

LPFs are in general considered in frequency domain, with 
the shape and parameters of the spectrum defining the filter. 
However, it can be considered in time domain. While in fre-
quency domain, the spectrum of the filter is multiplied with that 
of the signal to obtain the output; in time domain, this requires 
the convolution of the signal with the impulse response. The 
hardware implementation of these filters is generally a com-
bination of resistances and capacitances, while the software 
implementation may also be considered to be an averaging 
operation.

The shape of the spectrum of the filter defines the properties. 
One important factor is the sharpness of the shape of the spec-
trum, which indicates the change and the rate of attenuation, as 
a function of frequency depends on the filter design, often based 
on the order of the filter. In time domain, the impulse response 
of the LPF integral is zero.

Prior to digitizing the signal, it is important to ensure that the 
signal does not have any frequency content that is greater than 
half the sampling rate. The presence of any such “tail” of the 
spectrum results in noise being added to the signal. For this 
purpose, an analog LPF circuit has to be placed before the sig-
nal is sampled. This is referred to as the anti-aliasing filters.

A filter that removes the low-frequency content of the signal 
and passing the high-frequency content is termed as the high-
pass filter (HPF). These filters are also called a high-cut filter 
or treble cut filter. These filters have the spectrum that is the 
mirror image of the LPF. These filters keep the sharpness while 
removing the trends of the signal and may also be considered 
the bass-removal filters.

In the hardware setting, in the simplest form, HPFs may be 
considered as a capacitor in series of the signal, and are required 
to remove the direct current (DC) bias that may exist in some 
devices such as the microphones. In the software, these may 
be considered as the “difference” filters. The shape of the filter 
spectrum is dependent on factors such as the order of the filter.

Most real applications require the selection of the signal where 
the very low and the very high frequencies of the signal are 
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removed. The very low frequencies correspond to factors such 
as DC drift caused by capacitance or bias voltages, while high 
frequency signals correspond to noise due to the circuits or the 
environment. Thus, an appropriate combination of the LPF 
and HPF result in the band-pass filters, which is often used for 
many audio applications.

In some situations, the noise can have narrow band spectrum, 
which is located in the middle of the signal spectrum. This may 
happen for a number of reasons such as resonance in a circuit, 
leading to a noisy monotone riding on top of the recording. 
Other causes of narrow band noise may also be the presence 
of some musical instrument or a machine in the background. 
Removing this requires a narrow band notch filter that allows 
all frequencies to pass without attenuation except the narrow 
band. Often, notch filters may be in series with band-pass filters 
to remove the low- and high-frequency noise and the narrow-
band noise located in the middle of the band-pass spectrum.

Mean filters can be considered similar to LPFs. They are used 
to remove impulsive noise. However, whereas standard global 
filtering techniques like low-pass filtering do not differentiate 
between impulse corrupted samples and uncorrupted samples, 
mean and median filters operate on a localized area and smooth 
the impulsive samples. Median filters have the advantage that 
they are not affected by large impulses that may affect the mean 
filters. However, implementation of mean filters is simpler com-
pared with the median filters.

The use of filters mentioned earlier is based on the assumptions 
of signal and noise properties being stationary. It is assumed 
that the spectrum of the noise and the signals remain unchanged 
over time. However, in most real-world situations, this is not 
accurate and the spectral properties may change significantly. 
To ensure that the noise is effectively removed from the record-
ings, adaptive filters are used.

Adaptive filters have the ability to adapt to the conditions. 
These may be dynamic and continuously adapt over time to 
changing conditions, or may adapt at the start of a situation. 
These are generally digital filters and may have linear or non-
linear transfer function with the properties that are dynami-
cally controlled. The transfer function is controlled by variable 
parameters to adjust the spectrum of the filter based on a 
selected optimization algorithm. Adaptive filters are closed-
loop systems that use feedback to refine the transfer function. 
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The effectiveness of these filters is based on the choice of the 
feedback or error parameters, and is often referred to as the cost 
function of the filter. The optimization algorithm reduces the 
overall error based on the choice of the cost functions.

The Kalman filter was developed and enhanced by Kalman 
[1], Thiele [2], and Swerling [3]. It tracks the estimated state 
of the system, and manages the system model with multiple 
output parameters using linear quadratic estimation (LQE) to 
optimize the system. These readings are a series of measure-
ments observed over time, containing random noise and other 
inaccuracies, and produce estimates of unknown variables that 
tend to be more precise than those based on a single measure-
ment alone. The Kalman filter operates recursively on streams 
of noisy input data to produce a statistically optimal estimate of 
the underlying system state.

The Kalman filter algorithm is a two-step process: prediction 
and update. The prediction step estimates the current state vari-
ables, along with their uncertainties. The outcome of the next 
measurement, corrupted with noise, is used to update the system 
to minimize the error using a weighted average, biased to esti-
mates with higher certainty. The algorithm is recursive and can 
run in real time, updating the system over time. These techniques 
are suitable for biometric applications to identify the speaker.

9.5 Speech analysis fundamentals

Human process audio signal and recognize the speech, emo-
tions, and identity of the speaker. Human hearing consists of 
the ear, cochlea, and a complex set of neural pathways that 
identify the foreground activity from the background activity 
and the direction of the speaker. We understand the message in 
the speech even when there is noise or multiple speakers. We 
also have the ability to put the speech in context of the envi-
ronmental conditions, and all this is performed in real time. 
However, machine-based analysis of the speech to determine 
the command of the speaker is not trivial and requires multiple 
steps. After the first step of cleaning the signal by removing 
the noise from the speech signal, the cleaned signal is analyzed 
to obtain suitable features that best represent the signal. These 
features are specific to the applications, and hence it is impor-
tant to select the most appropriate feature set for the applica-
tion. These features have to be classified by the computer to 
identify or interpret the spoken command. Determining the 

9.4.10 Kal-
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suitable feature set and classification method is important for 
successful recognition of the speech command.

Over the past five decades, numerous features for speech 
analysis have been proposed. While the commonality of all 
features is the frequency content of the signal, there have been 
significant improvements over the past few decades. Though 
some of the earliest methods included the use of correlation in 
time domain, such techniques were largely discontinued due to 
significant time-based differences. One common factor that is 
recognized in speech analysis is that the spectrum of the signal 
changes over the duration of the speech, and its envelope, pres-
ence of harmonics, and temporal changes are the parameters 
that have to be analyzed.

Some of the earlier attempts used the time and spectrum 
envelope of the signal; the sensitivity of such systems was very 
poor, and they were effective only in a noise-free environment 
with limited vocabulary and with the speaker being expected to 
speak at a specific speed. Some of the improvements were tar-
geting normalization of the temporal and spectral envelopes to 
make the systems robust to changes to factors such as speed of 
speaking and differences among people. There have also been 
significant improvements in the use of classifiers that incorpo-
rate the contextual information.

Studies have incorporated the knowledge of how humans 
produce speech and how we hear. To obtain the suitable fea-
tures and classification techniques, it is important to understand 
how people speak and hear. For this purpose, speech produc-
tion and hearing models have been developed. One such model 
for speech production is called the source-filter model, and one 
model for hearing is the place hearing model. To obtain appro-
priate classification techniques, speech has been considered 
in terms of substructures, the phonemes. Each of these tech-
niques with the different signal features and classification are 
described in the following sections.

9.6 Subsections of speech: phonemes

A phoneme is a basic unit that describes the sound with the 
fundamental component of a language. The study of phoneme 
describes the organization of speech sound in context of a lan-
guage to form meaningful units of the language, which, in gen-
eral are the words. In general, changes in the phonemes cause a 
change in the words being described, and words where there is 
only one different phoneme are referred to as the minimal pair.
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Some languages are called phonetic where the phonemes 
closely relate to the spellings, and the example of such a lan-
guage is Sanskrit. English is not known to be a phonetically 
precise language, and in such languages, there is no specific and 
direct relationship between the written word structure and the 
spoken word. In such cases, the phoneme has to be considered 
in context such as the utterances before or after that phoneme to 
develop the word. Thus, there is need for memory and forward 
mapping for machine-based speech sounds interpretation.

Over the past few decades, a set of tools have been developed 
that provide the mapping and interaction of different phonemes 
and for the purpose of computer interaction such as machine-
based speech-to-text generator and transcribing. Although 
some of these are generic, they are often language specific. 
Phonemes have been described in number of subgroups, but 
these can be largely described in two classes: vowels and con-
sonants. These are described next.

Vowels are the sounds made by free passage of breath through 
the larynx and the oral cavity. When vowel sound is being pro-
duced, the shape of the mouth does not change, and the sig-
nal can be considered stationary, where the spectral properties 
remain the same during the duration.

Different vowels are distinguished by formants, which is the 
spectral peaks of the sound spectrum of the voice. Formant also 
indicates an acoustic resonance of the human vocal tract and 
thus it is useful for modeling the vocal track of an individual 
and for applications such as biometrics. It is often measured 
as an amplitude peak in the frequency spectrum of the sound, 
using a spectrogram. Formants are gender and age dependent, 
with females and children typically having higher formants.

During the production of the consonants, the breath is partly 
obstructed by the oral cavity and there may be movement of the 
mouth. The sound is produced by constriction and the signal 
does not have stationary properties.

9.7  How people speak: Speech production model

Human speech is produced when air is forced through the 
larynx, mouth, and nostrils by the lungs. The lungs can be 
considered as the power generator, the larynx produces the fun-
damental frequencies, and the shape of the mouth and lips can 
be considered as the filters that generate the complex frequency 

9.6.1 Vowels
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structure of the sound. Such a view of speaking is referred to as 
the source-filter model. Such a model sees speech production as 
a combination of three separate sections: sound power or lungs; 
sound source such as the vocal cords; and acoustic filter, which 
is the vocal tract. Such a model has been found to be very use-
ful in a number of applications because of its relative simplicity 
while being significantly detailed. The basic model is shown 
in Figure 9.1. The source-filter model is used in both speech 
synthesis and speech analysis.

There are two types of speech: the voiced and the unvoiced. 
The voiced speech is produced when the vocal cords tense 
together and vibrate as the air expels through the glottis due 
to  pressure. The frequency spectrum contains the fundamental 
frequency f0 (pitch) and harmonics, with spectrum decays at a 
rate of approximately –12 dB/octave. An adult male pitch is in 
the range of 50–250 Hz (average 120 Hz), and an adult female’s 
average pitch is about 225 Hz. Children’s pitch is higher and the 
average pitch is 265 Hz.

The implementation of the source-filter model of speech 
production models the sound source as a periodic impulse 
train for voiced speech, or white noise for unvoiced speech. 
The vocal tract filter is, in the simplest case, approximated 
by an all-pole filter, where the coefficients are obtained by 
performing linear prediction to minimize the mean-squared 
error in the speech signal to be reproduced. Convolution of 
the excitation signal with the filter response produces the syn-
thesized speech.

The unvoiced speech is produced by a turbulent airflow 
through the constriction of the vocal tract (unvoiced excitation). 
In the production of the unvoiced speech, the vocal folds do 
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FIGUrE 9.1 Basic model of speech production.
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not vibrate. This turbulent airflow produces acoustic noise that 
is essentially white and can therefore be considered as having 
a flat continuous spectrum. Different phonemes can be dis-
tinguished by spectral shape and properties of the formants. 
Vowels have at periodic glottal excitation, approximated by a 
set of harmonics in the frequency domain and an impulse train 
in the time domain, and a fixed filter characteristic based on 
tongue position and lip protrusion. Some consonants such as 
fricatives are produced by the unvoiced excitations.

The sound modifiers for the voiced and unvoiced speech 
are the vocal tract cavities (the oral cavity and the nasal cav-
ity), lips, jaw, tongue, and velum. Movement of those elements 
changes the shape of the vocal tract, which leads to changes of 
its acoustic properties, namely, the resonant frequencies called 
formants. The vocal tract works as a time-varying band-pass 
filter with constant amplitudes for each frequency band.

The lips radiation works effectively as a HPF with a steady 
spectrum and amplitudes increasing at about +6 dB/octave 
across frequencies. The average spectrum of the voiced speech 
shows decay of amplitude with frequency at an average –6 dB/
octave. The overall average spectrum of the unvoiced speech 
shows an increase of amplitude with frequency at an average 
ratio of +6 dB/octave.

9.8 place principle hearing model

The cochlea can be considered as the transducer in the ear, 
where the sound waves are converted into the neural signals in 
the form of electrical impulses. These are conducted through 
the auditory nerve to the auditory region of the brain. Pressure 
waves enter the cochlea at the oval window travel through the 
scala vestibuli along Reissner’s membrane and through the 
narrow gap at the apex to continue through the scala tym-
pani along the basilar membrane to the round window where 
the pressure is released. The basilar membrane has a large 
number of tiny hair cells to which auditory nerve endings are 
attached. The mechanical vibrations of the basilar membrane 
stimulate the hair cells, which transform them into trains of 
electrical impulses conducted through the auditory nerve to 
the brain.

The basilar membrane has location-specific spectral proper-
ties and performs spectral analysis of the incoming signal. The 
spectrum of the speech signal is coded on the neural signals 
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in the audio nerves. The peak of the vibration occurs at differ-
ent places along the basilar membrane for different frequencies 
(see Figure 9.2). The base of the membrane is tuned to low fre-
quencies and the apex responds to high frequencies.

The perception of hearing is not a direct function of the 
strength of the vibration, but the relationship is complex and 
dependent on the frequency of the sound. The relationship of 
the human hearing threshold is a function of frequencies, and 
the lowest threshold is in the range of 1000–3000 Hz. Thus, the 
frequencies that are important for human hearing can be iden-
tified, and this relationship between frequencies of sound with 
perception has been described by logarithmic function.

9.9 Features selection for speech analysis

Speech sound needs to be appropriately represented by suit-
able features. There are factors of sound that are relevant such 
as the spectrum, the presence of formants, and the temporal 
changes of the spectrum. There is also the need for appropriate 
segmentation of the signal to identify the start and the end of 
the speech sound. Some of the features that are currently used 
for speech analysis are linear predictive analysis (LPC), linear 
predictive cepstral coefficients (LPCC), perceptual linear pre-
dictive (PLP) coefficients, Mel-frequency cepstral coefficients 
(MFCC), power spectral analysis (FFT), mel scale cepstral 
analysis (MEL), and its variants. Some of these are discussed 
in the following sections.
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FIGUrE 9.2 Model showing peak of the vibration occurs at dif-
ferent places along the basilar membrane for different frequencies.
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The power spectrum of the speech signal is one of the common 
features used for speech signal analysis. This describes the fre-
quency content of the signal as it changes over time. The first 
step toward computing the power spectrum of the speech signal 
is to perform a discrete Fourier transform (DFT). A DFT com-
putes the frequency information of the equivalent time domain 
signal. Since a speech signal contains only real point values, we 
can use a real-point fast Fourier transform (FFT) for increased 
efficiency. The resulting output contains both the magnitude 
and phase information of the original signal. Although this is 
a useful feature of speech, it often gets distorted because of 
the presence of high frequency components obtained due to 
high sampling rates such as 44.1 kHz. To overcome this, the 
logarithm of the spectrum has been used to model loudness 
perception.

LPC is considered as a powerful speech analysis technique and 
it is also useful for encoding quality speech at a low bit rate. 
The underpinning theory is that the speech production can be 
modeled and the linear combination of the past speech samples 
can be the basis for approximating future samples.

Linear prediction is based on the model of human speech 
production and uses a conventional source-filter speech pro-
duction model where the glottal, vocal tract, and lip radia-
tion transfer functions are integrated into one all-pole filter to 
simulate the acoustics of the vocal tract. Using the approach 
of minimizing the sum of the squared differences between the 
original speech signal and the estimated speech signal over a 
finite duration, LPC is generated. This could be used to give a 
unique set of predictor coefficients. These predictor coefficients 
are estimated in every frame, which is normally 20 ms long.

The LPC analysis of each frame involves the decision-mak-
ing process of voiced or unvoiced. The pitch is detected using a 
range of algorithms to obtain the correct periodicity and pitch 
frequency. The resultant vector is the input to the classifier.

Speech is composed of an excitation source and vocal tract 
 system components. There are multiple parameters such as 
what is being spoken and the model of who is speaking it. To 
determine what is being spoken, it is essential that  excitation 
and vocal track properties be separated. Cepstral analysis 
identifies parameters to separate the speech into its source and 
system components without any a priori knowledge about the 
source and the system.

9.9.1 power spec-
tral analysis

9.9.2 Linear pre-
dictive cod-
ing (LpC)

9.9.3 Ceps-
tral analysis
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According to the source filter theory of speech production, 
there are two components of speech: voiced and unvoiced. The 
voiced sounds are produced by exciting the time varying system 
characteristics with a periodic impulse sequence and unvoiced 
sounds are produced by exciting the time varying system with 
a random noise sequence. The resulting speech can be consid-
ered as the convolution of the respective excitation sequence 
and vocal tract filter characteristics. If e(n) is the excitation 
sequence and h(n) is the impulse response of the vocal tract fil-
ter, then the speech sequence s(n) is a result of the convolution 
in the time domain or multiplication in the frequency domain.

Multiplication of the spectrum of the excitation and system 
filter characteristics expressed in the frequency domain is the 
same as the convolution of the time series and the impulse 
response in the time domain. To perform speech analysis of this 
sequence, s(n) has to be deconvolved to obtain the excitation 
and vocal tract components, which may also be performed in 
the frequency domain using multiplication and thus not requir-
ing integration. For this purpose, multiplication of the two com-
ponents in the frequency domain has to be converted to a linear 
combination of the two components.

The word cepstral is nearly the word spectral written front 
to back. Cepstral analysis is used for transforming the multi-
plied source and system components in the frequency domain 
to the linear combination of the two components in the cepstral 
domain. The spectrum of the signal is first represented on the 
log scale and the spectrum of this is obtained. This highlights 
the formants of the signal and represents the signal source 
properties.

The flow chart in Figure 9.3 shows the steps that are required 
to obtain the cepstral representation of any given short-term 
speech signal. s(n) is the voiced frame considered and x(n) is 
the windowed frame obtained by a hamming window. |x(ω)| 
is the spectrum of the windowed signal x(n). Taking the log 
of the spectrum, log|x(ω)| represents the log magnitude of 
the spectrum. The cepstrum, c(n) is obtained by taking the 
inverse discrete Fourier transform (IDFT) and this contains 
vocal tract components. The domain of c(n) is referred to as 

9.9.4 Basic 
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FIGUrE 9.3 Block diagram representing computation of cepstrum.
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quefrency and even though the variable, n, is used, this is not 
in the time domain. As the cepstrum is derived from the log 
magnitude of the linear spectrum, it is symmetrical in the 
quefrency domain.

The cepstrum is analyzed using the liftering operation, 
which is similar to the filtering operation in the frequency 
domain. Liftering selects a desired quefrency region for anal-
ysis by multiplying the cepstrum by a rectangular window at 
the desired position of the quefrency. Similar to the frequency 
domain, there are two types of liftering: low-time liftering and 
high-time liftering. The low-time liftering operation extracts the 
vocal tract characteristics, and high-time liftering is performed 
to get the excitation characteristics.

The important vocal tract parameters like formant location 
and bandwidth can be computed from the vocal-tract spectrum. 
The formant locations can be estimated by picking the peaks 
from the smooth vocal tract spectrum. The block diagram 
given in Figure 9.3 shows the process of formant estimation 
using low-time liftering. Figure 9.4 shows the computation of 
low-time liftering.

9.10 Speech feature classification

The features of the speech signal have to be classified by the 
machine to identify the spoken word or command. There are 
number of options, and the selection of these is dependent on 
the applications. The use of statistical methods may be suit-
able for simple applications such as for identifying the pres-
ence or absence of speech, and may be useful for triggering 
 applications such as switching on the lights in a room, but such 
techniques are not suitable for applications where the spoken 
words of the user have to be identified by the computer. Such 
applications require machine learning techniques.

Machine learning techniques include the genetic algorithms 
and model-based methods. Some of the commonly used ones 
are neural networks, support vector machines (SVMs), and the 
hidden Markov model (HMM). Although earlier implementa-
tion was highly dependent on the speed of speech, more recent 

cL(n)c(n) Log|.| Formants
Peak detectionDFTLow time lifter

FIGUrE 9.4 Block diagram representing low-time liftering.
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developments have overcome such shortcomings with the use 
of time warping techniques. However, the common implemen-
tation of these requires the assumption that all the relevant 
features of speech are input at one time to the system. Such 
assumptions may be suitable if the user is speaking individual 
characters. These also have applications in biometrics, where 
the identity of the speaker is being determined, or for emotive 
applications, where the emotion has to be identified. The HMM 
follows the flow of the features and the relationship of features 
as they progress over time, and is now routinely used for speech 
recognition applications.

9.11 artificial neural networks

The classification of stationary speech features can be achieved 
by supervised learning techniques. This can be achieved 
using statistics as well as neural networks. Among the statisti-
cal techniques, the regression method and the Euclidian dis-
tances are the most popular methods for finding relationships 
between variables. There has been a lot of work done by vari-
ous researchers in the use of artificial neural networks (ANNs) 
in the field of speech classification.

Neural networks have the capability to recognize, classify, 
convert, and learn patterns using examples of the data. Pattern 
recognition refers to the categorization of input data into iden-
tifiable classes by recognizing significant features or attributes 
of the data. The main advantage of choosing the neural net-
works for classification of surface electromyography (SEMG) 
data is that they can be used to solve difficult problems where 
the description of data is not computable. The major strength 
of ANNs is the fact that there is no need for any particular 
assumption of any statistical distributions and independence 
of input features. In addition, ANNs can be trained in such a 
way that a network exhibits discriminate properties. Unlike 
discriminate analysis in statistics, ANN does not require the 
linearity assumption and can be applied to nonlinearly sepa-
rable classes.

The advantage of the use of neural networks is the ability 
of the network to determine the input–output relationship even 
when the relationship is not expressible by deterministic or sta-
tistical means. An advantage of the back propagation network 
is that, with the appropriate choice of momentum and training 
parameters, it avoids the local minimum and searches for an 
error surface along the gradient in order to minimize the error 
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criteria. ANN can be trained for near real-time classification of 
speech and provide the user with necessary feedback to make 
required corrections.

Appropriate use of neural networks requires the normaliza-
tion of the input features and the selection of its parameters. 
The size of the input to the ANN is dependent on the length 
of the feature vector, and the output is based on the number 
of outputs the ANN is trained to identify. There is no definite 
technique to select the size of hidden layers and number of 
hidden layers, but it is generally accepted that the number of 
neurons in the hidden layer are proportional to the complex-
ity of the data set. The other important property of the ANN 
that has to be selected for the application includes the choice 
of training algorithm. There are also a number of parameters 
that require user selection (such as the acceptable error dur-
ing training, maximum number of epochs during training, the 
threshold function for the output) and factors such as learning 
rate and momentum that determine the size of the steps and the 
likelihood of the network getting trained to a local rather than 
a global minima point.

SVMs are a set of related supervised learning methods used 
for classification and regression. SVMs are used in a variety 
of fields like text classification, bioinformatics, handwriting 
recognition, and image analysis. SVMs are nonlinear machine 
learning algorithms, and have been used extensively for vari-
ous audio, visual, clinical, and other applications. SVMs are 
suitable for regression and prediction and they require to be 
trained based on examples without requiring the user to define 
the relationship between the various factors. It is suitable for 
situations where examples of the different categories are avail-
able. During the training phase, the system identifies suitable 
weights that describe the complex relationship of the multiple 
factors and the categories, such as disease and case.

A model that describes the possible sequence of events in con-
text of the current condition is referred to as the Markov model. 
It provides the contextual information of the current sequence 
based on the previous sequence. HMM is a statistical Markov 
model with unobserved or hidden states and in the simplest 
form, considered to be a dynamic Bayesian network. HMM is 
considered in the family of nonlinear filtering and was devel-
oped by Baum et al. [4].

When all the states are known, the Markov models are mod-
eled by state transition probabilities. In HMM, the state is not 
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directly visible, but the output that is dependent on the state is 
visible. Each state has a probability distribution over the pos-
sible output tokens. Therefore, the sequence of these tokens 
generated by an HMM is based on the sequence of these states. 
Thus, the state sequence through which the model passes is 
hidden but not to the parameters of the model. HMM is espe-
cially known for its application in temporal pattern recogni-
tion where the properties are nonstationary, and some of those 
applications are speech, handwriting, gesture recognition, part-
of-speech tagging, musical score following, partial discharges, 
and bioinformatics.

9.11.2.1 User benefits Automatic speech and speaker recog-
nition have been benefiting users from all walks of life, and 
have provided significant enhancement to the capabilities of 
people who lack the ability to use their hands. The technol-
ogy has been extensively applied for a range of applications for 
able-bodied people and people with disabilities.

Automatic speaker recognition is widely used in the banking 
sector and organizations such as law-enforcement police force 
and social security that need to identify the speaker or con-
firm the identity of an individual. With the growth in telephone 
banking and use of telephone-based access for a range of ser-
vices, machine-based identification of the speaker is extremely 
important, both for the speaker and for the organization.

Converting speech to commands is now routinely occurring. 
Although speech-based typing has been in many commercial 
applications and software, it is the need for hands-free tele-
phone and GPS control in the car due to the safety concerns 
that necessitated the biggest single use of ASR algorithms. 
While the systems are still being improved to overcome short-
comings such as background noise, the advantage of automo-
bile-based speech recognition is that modern cars are relatively 
low noise and often have only a single speaker, with stable 
acoustics between the driver and the microphone. This, along 
with the development of smarter and faster mobile phones, has 
made automobile-based speech recognition the most successful 
application.

Automatic speech analysis techniques are also employed 
for a range of other applications including converting speech 
to text. Such systems are now routinely being used by doctors 
to transcribe their patient interviews in order to generate the 
records. The technology is also regularly used by people who 
perform data-entry, a task that otherwise becomes very monot-
onous and can lead to errors during typing.
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People who have suffered spinal cord injury and others 
who are unable to use their hands to type can use their speech 
instead. In the age of the Internet, this is very useful, as it pro-
vides them the ability to control their computer for perform-
ing Web browsing. Other applications are the use of speech to 
control devices such as wheelchairs, lighting, or curtains. Thus, 
someone who is unable to walk or use their hands is able to give 
verbal commands to manage their room facilities, or to com-
mand their mobility devices.

One of the more recent applications is the machine-based 
application identifying the emotions of the speaker. This can 
be used in computer games, interaction with robotic toys, and 
to identify psychological distress of a speaker to a helpline. 
Machine-based emotions identification of the speaker is help-
ful in determining the complexity of a computer game to make 
the games more interactive and for maintaining the appropriate 
level of challenge for the user. The developments of robotic toys 
that identify the emotions of the user are now routinely used 
for children and the elderly, with Japan leading the research. 
Identifying people who are distressed is becoming very impor-
tant, especially with large number of services being telephone- 
based and having machine-based answering facilities.

9.12 Limitations in current systems

Humans are able to understand speech in complex environ-
ments even when there is high level of background noise or 
music or there are multiple speakers. Audio-based speech rec-
ognition is important but is not the only aspect of speech that 
we use to recognize speech, the speaker, or the emotions of the 
speaker. We have two ears, which are referred to as our binaural 
capabilities, and this gives us the ability to identify the spatial 
location of the source. We also use visual data, and numerous 
studies have shown that visualization of the speaker’s mouth is 
an important aspect of our ability to understand speech in very 
noisy environments, such as music venues.

Over the past 20 years, with improved computational power 
and significant development in signal processing and classifi-
cation techniques, speech-based systems are now robust and 
reliable. Speech-based systems are now routinely used for data 
entry, computer dictation, interacting with robotic devices, dial-
ing telephone numbers, commanding devices inside a house, 
for speaker identification over the telephone, controlling vehi-
cles, and for recognizing emotionally distressed people over the 
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phone. These systems are now reasonably robust and are not 
very sensitive to background noise and differences between dif-
ferent microphones. However, they are sensitive to the presence 
of other people who are speaking in the background. Current 
systems require that the speaker be the only person speaking. 
This can be highly limiting and there is a need for the system to 
separate the audio of different speakers.

Recent developments have made the ASR robust and reliable; 
there are also many shortcomings in the current systems and 
that is why there is need for significant improvements. Some of 
the shortcomings are spatial localization of the speaker, back-
ground noise reduction, and separation of sounds from different 
sources. There is also the need for obtaining the context of the 
speech and integration of audio-based speech recognition with 
visual speech systems.

Improving ASR is being investigated by research teams around 
the world. Although some of this research is specific to a lan-
guage or region, there are a number of generic topics that are 
being explored such as source separation, speaker localiza-
tion, and audio–visual fusion. These are explained in the next 
sections.

9.12.1.1 Speaker source separation In most real applica-
tions, the sources with temporal overlap, spectral or temporal 
filtering are not suitable. Consider a cocktail party, where there 
are number of speakers, and while the listeners who are embed-
ded in the party are able to understand what is being spoken, 
an outsider to the party who is listening to the party using a 
microphone is unable to understand what is being spoken. This 
problem is often referred to as the blind source problem.

Blind source separation techniques have been developed 
since around 1995 [5,6]. One powerful blind source separation 
technique is an independent component analysis (ICA) [7,8]. It 
is based on the use of multiple recordings, where the number of 
sources is the same as the number of microphones. The separa-
tion of the different speakers does not require the speakers to 
have dissimilar features. The system assumes that the sources 
are independent of each other, and signals from different 
sources often get mixed during recording. Often it is required 
to separate the original signals, and there is little information 
available about the original signals.

An example is the cocktail party problem. Even if there is 
no (limited) information available about the original signals 
or the mixing matrix, it is possible to separate the original 

9.12.1 recent 
developments
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signals using ICA under certain conditions. ICA is an iterative 
technique that estimates the statistically independent source 
signals from a given set of their linear combinations. The pro-
cess involves determining the mixing matrix. The indepen-
dent sources could be audio signals (such as speech, voice, and 
music) or bioelectric signals.

If the mixing process is assumed to be linear, it can be 
expressed as

 x = As

where x = x1(t), …, xn(t) is the recordings; s = s1(t), …, sn(t) is 
the original signals; and A is the n × n mixing matrix of real 
numbers.

This mixing matrix and each of the original signals are 
unknown. To separate the recordings to the original signals, 
the task is to estimate an unmixing matrix W so that s = Wx. 
For this purpose, ICA relies strongly on the statistical indepen-
dence of the sources. This technique iteratively estimates the 
unmixing matrix using the maximization of independence of 
the sources as the cost function.

Signals s = s1(t), …, sn(t) are statistically independent if the 
joint probability density of those components can be expressed 
as a multiplication of their marginal probability density. It is 
important to observe the distinction between independence 
and uncorrelatedness, since decorrelation can always be per-
formed by transforming the signals with a whitening matrix 
V to get the identity covariance matrix I. Independent signals 
are always uncorrelated but uncorrelated signals are not always 
independent. But in the case of Gaussian signals, uncorrelated-
ness implies independence. Transforming of a Gaussian signal 
with any orthogonal unmixing matrix or transform results in 
another Gaussian signal, and thus the original signals cannot 
be separated. Hence, Gaussian signals are forbidden for ICA. 
Thus, the key of independent component estimation is measur-
ing the non-Gaussianity of the signals.

There are several measures of non-Gaussianity that can be 
used. The classical one is Kurtosis value or fourth-order cumu-
lant. This value is zero, negative, and positive for Gaussian, 
sub-Gaussian, and super-Gaussian data, respectively. The abso-
lute value of Kurtosis is frequently used since it will be either 
zero or positive, and will reach its maximum value when the 
signal is independent. Furthermore, Gaussianity also implies 
the degree of randomness of a signal and is related to the 
information content of a signal. The less random signal (more 
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structured signal) carries less information than the random one 
and vice versa. The Gaussian signal is the most random signal 
among other signals and therefore it has the potential for the 
largest possible information content.

Due to the central limit theorem, information content and 
mutual information of x = x1(t), …, xn(t) must be higher than that 
of s = s1(t), …, sn(t). Therefore, entropy (a measure of informa-
tion content of a signal) can also be used as another measure of 
non-Gaussianity of a signal. Examples of ICA algorithms based 
on non-Gaussianity maximization are the Infomax algorithm by 
Bell and Sejnowski [7,8] and fast ICA algorithm by Hyvarinen 
[6]. The detailed derivations of the corresponding learning rules 
of those algorithms are available in these papers. These rules or 
conditions are listed next. The successful separation of the origi-
nal signals is dependent on the fulfillment of these conditions [7].

• The sources must be statistically independent.

• The sources must have non-Gaussian distributions. 
However, the work by McKeown [9] has demonstrated 
that ICA will still work properly if not more than one of 
the independent sources is Gaussian.

• The number of available recordings must be at least the 
same as the number of the independent sources.

• The recorded signals must be a (approximately) linear 
combination of the independent sources.

• There should be no (little) noise common to the sources 
and there should be no (minimal) delay between the sig-
nals of the different sources in the recordings.

Although ICA has demonstrated success in the ability to sep-
arate signals, the output of ICA suffers from numerous ambi-
guities. Review of the publications that report the use of ICA 
for SEMG filtering and separation reveals only one research 
article [10] that has acknowledged these shortcomings. The 
shortcomings are

• The order of the independent components cannot be fixed 
and this may change for each estimate.

• The amplitude and sign of the independent components 
cannot be determined. Although the relative amplitude 
within each signal is correctly estimated, relative amplitude 
between different signals cannot be estimated using ICA.

In most applications such as the cocktail party problem, these 
are not serious problems. The supervisor is able to identify the 
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different sources and determine the quality of the separation by 
listening to the sounds. When dealing with signals such as bio-
electric signals, the order of signals may be important as would 
be the absolute value of the signal magnitude, and the super-
visor may not be able to identify the order in any other way. 
Further, it is also important to have an objective measure of the 
quality of the separation as the technique used for sound is no 
longer valid. This is often difficult as the signals are obviously 
unknown and the purpose of the study would be to identify 
the possible physiological abnormalities based on the signals. 
Thus, it is important to determine the quality of separation 
ahead of the experiments. As this is also difficult when using 
real signals, one easier alternative is to determine how well the 
signals match with the necessary conditions for ICA and to test 
the separation using synthetic signals to determine the efficacy 
of the separation. Successful separation could then be extrapo-
lated to the real signals.

As noted earlier, the signals that can be separated need to 
be non-Gaussian and independent. For the purpose of applying 
ICA to bioelectric recordings, there is a need to determine the 
conditions under which the bioelectric signals can be consid-
ered as independent and non-Gaussian, and the mixing matrix 
can be considered to be stationary and linear. This chapter ana-
lyzes the conditions under which the bioelectric signals can be 
considered independent with a linear and stationary mixing 
matrix.

Although standard ICA requires that the number of sig-
nals be less than or equal to the number of recordings, some 
researchers have attempted to overcome this limitation by 
developing techniques to separate overcomplete (sources are 
more than recordings) recordings [11–13]. In some of these 
papers, the quality of separation has not been objectively mea-
sured. The concern with the technique proposed by Zibulevsky 
is that it is based on the assumption that the signals are sparse. 
This is not always possible, and in some cases this may require 
preprocessing of the data.

The authors have not been able to identify published research 
where a suitable measure of quality of separation has been 
reported. This chapter has proposed a measure for the quality 
of separation. The measure requires determining the closeness 
of the mixing and the unmixing matrices using synthetic signals 
prior to the use of ICA for bioelectric signals can be established.

9.12.1.2 Audio and visual fusion In this chapter, visual-
based speech recognition techniques have been described. Such 
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systems are suitable for a small range of speech commands. 
However, fusing the visual with the audio has been shown to 
make speech recognition more robust and reliable. Research 
teams [14,15] are attempting to develop speech recognition sys-
tems that take the advantage of the presence of a camera and 
microphone on many consumer devices such as mobile phones.
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CHaptEr tEN

Lip movement for human–
computer interface

abstract

Speech-based computer control has found a large number of 
applications and users employing their natural speech communi-
cation and manipulation skills. However, speech-impaired people 
and people in very noisy environments are unable to avail of this 
technology. Silent speech-based technologies have been devel-
oped to overcome this shortcoming. Silent speech-based assistive 
technologies are important for users with difficulty to vocalize 
and provide the ability for such users to give commands and 
control computers without making a sound. These technologies 
are generally based on analyzing the movement of the mouth, 
or the throat, or guttural airflow analysis. This chapter describes 
the technologies and evaluates two technologies that have been 
developed for recognizing facial movements: facial muscle activ-
ity and video of the mouth. It investigates the classification power 
of mouth videos in identifying English vowels and consonants, 
and the impact of language on the outcome, by comparing the 
difference between native and foreign languages. The effect of 
feedback to the user who uses such a system is also discussed.

10.1 Introduction: History and applications

Facial expressions and movements of the lips are generally 
encoded in speech, offer rich information, and are suitable for 



162 HCi teCHnoLogies for tHe Motor iMPaired

complex commands to a computer [1]. Speech-based human–
computer interface (HCI) utilizes a natural ability of the 
human user and has the potential for computer control to be 
rich, natural, and effortless. Such systems have the potential to 
assist people who are unable to use their hands due to disease 
or special circumstances [2]. Over the past two decades, these 
systems have become relatively commonplace and offer reliable 
options for the users to substitute for a keyboard and perform 
tasks, such as typing or controlling machines. Speech recogni-
tion systems can be deployed in applications such as vehicle 
control systems [3], assistive technology (AT), security and sur-
veillance systems, and telephony [4].

Speech-based systems have grown into a fully independent 
industry, with applications such as hands-free control of devices 
in a car, computer games, assistive technologies, and emotional 
interaction with robotic devices. Users of all ages benefit from 
automatic speech recognition technologies. However, these 
technologies have significant shortcomings and require a user 
to speak clearly and audibly, require the background noise to be 
significantly lower than the speech command, and require the 
acoustics to be remain unchanged. However, there are a number 
of situations where these conditions are not possible, such as:

• The person suffers from voice disorders that may be due 
to the air passage from the lungs. This may be a result of 
muscle weakness or dysarthria resulting in lack of speech 
and suitable airflow from the lungs.

• Noise from the background, such as traffic noise.

• The need to speak softly in open offices.

• Special situations such as during defense situations.

Advantages of a voiceless speech-based system are (1) 
recognition is not affected by background noise, or changes 
in acoustic conditions, and (2) it does not require the user to 
verbalize the speech and make a sound. Our ability to speak 
utilizes a number of complex movements such as movement 
of the palate, throat, and lips; control of the rate of airflow; 
and use of our nostrils. Recognizing voiceless speech can be 
done using nonacoustic modalities, such as visual [5], record-
ing of vocal cords movements [6], mechanical sensing of facial 
movement and movement of palate, recording of facial muscle 
activity [7], facial plethysmogram, and measuring the intraoral 
pressure. When we use a single modality to recognize speech 
or oral commands, there is an inherent loss of information and 
the available vocabulary has to be significantly reduced.
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Each of the voiceless speech recognition techniques has 
inherent limitations, such as the need for placing sensors inside 
the mouth or on the skin. The limitations are also associated 
with reduced and limited vocabulary, and the need for signifi-
cant training of the user. From the literature, the most effective 
methods that have significant vocabulary and provide reli-
ability without being invasive are (1) visual recognition of the 
movement of the lips using the video of the mouth and (2) rec-
ognition of the lip and mouth movement by recording the facial 
muscle activity (surface electromyography, SEMG).

The visual recognition is effective because it does not require 
the user to have any sensor placed on the face, and the video 
camera may be placed in a convenient location. However, it suf-
fers from the disadvantage of being usable only in the presence 
of suitable lighting conditions, and unsuitable for being used 
in dark. An SEMG-based system has the advantage of being 
usable without requiring light, but suffers from the need to have 
metal electrodes in contact with the face of the user and is sus-
ceptible to the factors such as sweat on the skin. One common 
difficulty in the use of these technologies is the dependence on 
factors such as culture and language and differences between 
individuals.

This chapter discusses these two modalities based on video 
and SEMG signal in detail. It describes the technical details of 
these modalities and discusses some of the challenges and short-
comings, such as the native language and future directions based 
on the current research. It focuses on the identification of pho-
nemes, because a phoneme-based system can be extended for 
word recognition by concatenating the phonemes to form words.

10.2 Current technologies

A vision-based technique to recognize speech requires a com-
bination of hardware that will record the movement of the lips 
and software that will identify the phoneme. A microphone 
may also be required to train the system and link the video of 
the mouth with the audio. In this section, visual speech recogni-
tion (VSR) developed to recognize English vowels and conso-
nants based on the visible facial movement has been described.

The video recording is a relatively straightforward task, 
and most low-resolution cameras are suitable for this task. 
The movement of the mouth does not require high spatial or 
temporal resolution, and a portable, inexpensive commercially 
available camera is sufficient. The next stage of a typical VSR 

10.2.1 Video-
based speech 
analyzer
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technique requires the analysis of the video to identify the 
unvoiced speech, and this consists of three stages: (1) video 
processing for facial motion segmentation, (2) visual feature 
extraction, and (3) classification. There are numerous visual 
speech features that may be extracted from the videos [10–12] 
and they can be broadly categorized into shape-based, pixel-
based, and motion-based features. A block diagram of a VSR 
system is shown in Figure 10.1.

This section investigates the viability of a VSR technique 
based on motion features extracted using spatial-temporal tem-
plates (STTs) in English phoneme recognition. A visual speech 
model based on the Moving Picture Experts Group 4 (MPEG-
4) standard has been used to map the consonants to different 
facial movements.

10.2.1.1 Video processing to segment facial movement The 
first step in VSR is to determine when the user wants to 
speak. For this purpose, the system needs to undertake tem-
poral segmentation and identify when the speaker begins to 
actively open the mouth, which is the cue to start to speak. 

Camera

Face and
mouth detector

Face video

Mouth video of two utterances
Temporal

segmentation of
utterance

Visual feature
extraction Classification Identified

utterance

One segmented utterance

FIGUrE 10.1 Block diagram of the visual speech recognition 
technique reported in the literature.
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A  motion-identification-based segmentation technique is 
required to identify the start and completion of movement. One 
method that has been proposed is to represent the movement 
using a 2D grayscale image (STTs) [5]. An STT shows where 
and when facial movements occur in the image sequence [13].

One technique to generate STTs is by using the accumula-
tive image difference approach. Difference of frames (DOFs) 
is obtained. The zero intensity DOF indicates that there is no 
movement during that period. DOFs are obtained by perform-
ing the image subtraction of successive frames on the video 
of the speaker. These DOFs are binarized using an optimum 
threshold value, which may be determined by the supervisor 
or by statistical analysis and identifying the knee point of the 
images. Similarly, the delimiters for identifying the start and 
stop of the conversation may be inserted by the supervisor 
based on statistical analysis.

The temporal location of the DOF is inserted in the STT by 
multiplying the intensity of the DOF with a ramp function of 
time. The intensity of the STT at the start of the motion of the 
identified segment becomes less, while those STTs near the end 
of the segment become high. The intensity value of the STT at 
pixel location (x, y) of the tth frame is defined by
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where N is the total number of frames of the video and Bt (x,y) 
represents the binarized version of the DOF of frame t. In 
Equation10.1, Bt(x, y) is multiplied with a linear ramp of time 
to implicitly encode the temporal information of the facial 
motions into the STT. By computing the STT values for all 
the pixels, the coordinates (x, y) of the image sequence using 
Equation 10.1 will produce a grayscale image (STT) where the 
brightness of the pixels indicates the recency of motion in the 
image sequence.

10.2.1.2 Issues related to the facial movement  segmentation  
An STT is a view-sensitive motion representation technique. 
Therefore, the STT generated from the sequence of images is 
dependent on factors:

• The angle—The system works best when the position of 
the speaker’s mouth and face is normal to the camera’s 
optical axis.
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• Scale or distance—The distance of the speaker’s mouth 
from the camera; this needs to be fixed, and a change in the 
distance changes the scale/size of the mouth in the frame.

• Translation—The camera is fixed with respect to the 
mouth, and small movement of the head of the speaker 
can lead to an error.

The STT’s representative features need to be rotation, transla-
tion, and scale invariant so that the system is robust and reliable. 
Wavelet transform is a useful technique to represent an image. 
However, the discrete wavelet transform (DWT) is translation 
variant [14] where a small shift of the image in the space domain 
will yield very different wavelet coefficients. The translation sen-
sitivity of DWT is caused by the aliasing effect that occurs due to 
the downsampling of the image along the rows and columns [15]. 
One such method is the use of discrete stationary wavelet trans-
form (SWT). The SWT representation of the STT is insensitive 
to small variations of the mouth and lip movement. SWT restores 
the translation invariance of the signal by omitting the downsam-
pling process of DWT and results in redundancies.

Two-dimensional SWT at level 1 when applied on the STT 
produces a spatial-frequency representation of the STT. The 
2D SWT is implemented by applying 1D SWT along the rows 
of the image followed by 1D SWT along the columns of the 
image. SWT decomposition of the MHI generates four images: 
approximation (LL), horizontal detail coefficients (LH), ver-
tical detail coefficients (HL), and diagonal detail coefficients 
(HH) through iterative filtering using low- and high-pass filters. 
The approximate image is the smoothed version of the STT, 
contains the trend information, and has the highest energy con-
tent; while LH, HL, and HH contain the detail and represent 
the fluctuations of the pixel intensity in the horizontal, verti-
cal, and diagonal directions. The detailed coefficients carry 
the noise and generally correspond to isolated changes, and the 
trend corresponds to the movement of a complete object that 
has a connected contour. Thus, for this work, the approximate 
coefficient images are required and used for further analysis.

Zernike moments represent the image into region-based fea-
tures and these are rotation, translation, and scale invariant/
insensitive. These are rich in information, and yet compact and 
thus suitable for representing the STT.

10.2.1.3 Extraction of visual speech features Zernike 
moments are image feature descriptors that are commonly used 
for representing images [16,17]. These have been demonstrated 
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to outperform other image moments, such as geometric 
moments, Legendre moments, and complex moments in terms 
of robustness to image noise, and are suitable for reducing 
information redundancy and provide sufficient information 
for image representation [18]. The proposed technique uses 
Zernike moments as visual speech features to represent the 
SWT approximate image of the STT.

Zernike moments are computed by projecting the image 
function f(x, y) onto the orthogonal Zernike polynomial Vnl 
of order n with repetition l is defined within a unit circle (i.e., 
x2 + y2 ≤ 1) as follows:

 Vnl (ρ,θ) = Rnl (ρ)e− jlθ; Ĵ = −1  (10.2)

where Rnl is the real-valued radial polynomial.
Zernike moments provide rotational invariant features [16] 

and are computationally inexpensive, making these suitable for 
real-time operations. The absolute value of Zernike moments 
is invariant to the rotational changes of mouth in the videos 
[5]. These moments are orthogonal Vnl [18]. |l| ≤ n and (n − |l|) 
is even, and thus provide a set of independent features, making 
these suitable for classification.

Based on the aforementioned properties of Zernike moments, 
the image needs to be within a unit circle that is centered at the 
origin. Thus, the wavelet-transformed approximate 1 images of 
STT need to be scaled such that it is within a unit circle centered 
at the origin such that the unit circle is bounded by the square of 
the scaled version of the image. The center of the image is con-
sidered as the origin of the axis, and the pixel coordinates are then 
mapped to the range of the unit circle, that is, x2 + y2 ≤ 1, and this 
is shown in Figure 10.2. Zernike moments transform the square 
image function (f(x, y)) which is in terms of the x–y axes to a 
circular image function (f(ρ,θ)) which is in terms of the i–j axes.

The accuracy of identifying a specific movement of the 
mouth requires a higher number of independent features that 
will be representing the STT. For this purpose, higher-order 
Zernike moments are required. However, this inherently 
increases the size of the features, makes it sensitive to noise, 
and increases the computational complexity. There is a need 
to identify the most suitable number of Zernike moments to be 
selected. Experiments have revealed that 49 Zernike moments 
that comprise of zeroth-order moments up to 12th-order 
moments are suitable, and provide sufficient sensitivity and 
specificity to identify the consonant [19].
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Speech can be parameterized in terms of phonemes, the com-
bination of which forms the spoken characters and words. The 
required shape of the mouth and lips for the utterance of the 
phonemes is achieved by the movement and maintained shape 
of the mouth, and this is achieved by facial muscles [20,21]. 
The electrical activity of the muscles can be recorded from 
the surface and used to identify the shape and movement of 
the mouth.

The recording of the electrical activity of the muscles is 
referred to as the electromyogram or EMG. The EMG corre-
sponding to the facial muscles has the information associated 
with the muscle contraction shape and movement of the face, 
and has been found to be suitable for identifying the unvoiced 
phonemes. Unlike a video-based system, which is suitable for 
consonants, this is more suitable for identifying the maintained 
shape of the mouth, and, thus, suitable for vowels. This may 
also be suitable for identifying commands to the machine or the 
computer. The system has the advantage that it does not require 
light and is insensitive to the lighting conditions. However, it 
requires an electrical contact between the facial skin and the 
recording device.

To understand the functioning of this method, the produc-
tion of speech and the muscles that produce speech will be dis-
cussed in the following sections.

10.2.2.1 Face movement related to speech The face can 
communicate a variety of information, including subjec-
tive emotion, communicative intent, and cognitive appraisal. 
Effective speech and emotional display require specific move-
ment of the mouth and precise muscle control. One difficulty 
with speech identification using facial movement and shape is 
the temporal variation when the user is uttering sounds that 

10.2.2 Speech 
 recognition 
based on facial 
muscle activity

j

i

FIGUrE 10.2 The square-to-circular transformation of the SWT 
approximation of STT.
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have complex time and spectral envelopes. With the intra- and 
intersubject variation in the speed of speaking and the length of 
each sound, it is difficult to determine a suitable window length 
and to identify suitable signal features that are robust.

Other difficulties arise from the need for segmentation and 
the identification of the start and end of movement. Root mean 
square (RMS) is an effective technique to identify the envelope 
of the signal, and conducting the statistical analysis of this pro-
vides the suitable threshold for identifying the temporal loca-
tion of each activity.

10.2.2.2 Features of SEMG An SEMG is the noninvasive 
recording of the muscle activity. It can be recorded from the 
surface using electrodes that are in contact with the skin and 
located close to the muscle to be studied. The SEMG is a gross 
indicator of the muscle activity and is used to identify the force 
of muscle contraction, associated movement, and posture [22]. 
Using an SEMG-based system, Chan et al. [23] demonstrated 
the presence of speech information in facial myoelectric sig-
nals. Kumar et al. [24] demonstrated the use of an SEMG to 
identify unspoken sounds under controlled conditions.

It is relatively simple to identify the start and the end of the 
muscle activity related to the vowel, because the muscle activ-
ity at the start and the end is much greater than the activity in 
the middle. During the phase when the mouth cavity shape is 
maintained static, such as corresponding to the formation of the 
vowel, the muscle activity is small, and this leads to difficulties 
such as a poor signal-to-noise ratio.

While developing a system to recognize voiceless speech, 
the variation in the intersubject leads to the need for customiza-
tion of the system to each user. Variations, such as in the speed 
and style of utterance of the vowel, can lead to very significant 
variations in the STT. To overcome this, the recordings can be 
normalized and the recommended normalization factor can be 
the integration of the RMS of the SEMG from the start till the 
end of the utterance of the vowel.

10.3 User requirements

A video-based voiceless speech recognition system is suitable 
for people who produce suitable and repeatable facial and mouth 
movement corresponding to specific speech, but are unable to 
produce sufficient sound intensity. The implementation of such 
a system will require sufficient background lighting as well as 

10.3.1 Video-
based voice-
less speech 
recognition
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the ability of the user to have a headphone-mounted camera to 
record the video of the lips. Experiments to test such a system 
are described in Section 10.4.1.

An EMG-based voiceless speech recognition system is suitable 
for the people who have healthy control on their facial muscles. 
The people who would benefit from such a system would be 
able to perform the movement of the mouth but unable to pro-
duce quality sound. This may be due to conditions, such as lack 
of control of their larynx, poor airflow pressure, or the inability 
to produce sound because they are in an open office or in spe-
cial situations.

The system requires the recording of the SEMG from the 
facial muscles, and this necessitates the use of surface-mounted 
electrodes on the face. Thus, it is necessary that the user is com-
fortable with the presence of such electrodes on the face for this 
technology. Experiments to test such a system are described in 
Section 10.4.2.

10.4  Example of voiceless speech 
recognition systems

This chapter gives examples of two voiceless speech recog-
nition techniques. The first is video-based and the second is 
EMG-based. Both of these have their strengths and shortcom-
ings, and the choice would be based on the application. In the 
following sections, the implementation of the technology, the 
experiments conducted to test it, and the results are provided.

Video data was recorded using an inexpensive, low-resolution 
Web camera in a typical office setting. This was done to test the 
practicality of such a system for voiceless communication. The 
ambient lighting conditions and complex and varying back-
ground tests the robustness of the visual voiceless system. The 
audio noise helps put the application in perspective for the user.

The camera was fixed to a mouthpiece that was worn by 
the user (Figure 10.3), and was focused on the mouth region of 
the speaker. Although such a system did not stop small move-
ments, the translation, rotation, and scale changes were only 
small. The following were the factors that were considered dur-
ing the recordings:

• Camera resolution and frame rate

• Window size of the camera

10.3.2 EMG-
based  voiceless 
speech rec-
ognition

10.4.1 Video 
data  acquisition 
and processing
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• View angle of the camera

• Background

• Ambient lighting

The technology was tested by conducting experiments 
with volunteer subjects in accordance with the human ethics 
approval that was obtained prior to the experiments. The exper-
iments were to test the visual speech recognition technique. 
Consonants that form the viseme model of English consonants 
according to the MPEG-4 standard were used in the experi-
ment: m, v, T, t, g, tS, s, n, r, A, e, I, Q, U.

One hundred eighty video files with the resolution of 
240 × 240 pixels were recorded and stored as true color (.AVI) 
files. The frame rate of the AVI files was 30 frames per sec-
ond. One STT was generated from each AVI file. SWT at 
level 1 using the Haar wavelet was applied on the STTs and 
the approximate image (LL) was used for analysis. Forty-nine 
Zernike moments have been used as features.

The classification accuracies of the HMM trained using visual 
features are tabulated in Table 10.1. The average recognition 
rate of the proposed vision-based system is 88.2%. The results 
indicate that the proposed technique based on motion features is 
suitable for the recognition of English phonemes.

10.4.2 Visual 
speech recognizer

FIGUrE 10.3 A visual voiceless speech recognition system. 
(From Yau WC, Video analysis of mouth movement using motion 
templates for computer-based lip-reading, Doctoral disserta-
tion, RMIT University, Melbourne, Australia, 2008. Available at: 
https://researchbank.rmit.edu.au/view/rmit:6864/Yau.pdf. With 
permission.)

https://researchbank.rmit.edu.au
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Based on the results, it can be said that the proposed tech-
nique is highly accurate for vowels’ classification using the 
motion features. An average success rate of 97% is achieved 
in recognizing vowels. The classification accuracies of conso-
nants are slightly lower. Table 10.2 shows the differences in 
error rates for vowels and consonants. The results indicate that 
the consonants are less distinguishable than vowels using visual 
speech features.

The classification errors can be attributed to the inability of 
vision-based techniques to capture the occluded movements of 
speech articulators, such as the glottis, velum, and tongue. For 
example, the tongue movement in the mouth cavity is either 
partially or completely not visible (occluded by the teeth) in 
the video data during the pronunciation of alveolar and dental 
sounds such as /t/, /T/, and /n/.

table 10.2 Mean recognition rates for English 
vowels and consonants

Vowels/consonants Recognition rate

Vowels 97
Consonants 83.33

table 10.1 Mean recognition rates of the visual 
speech recognizer based on viseme model of 
MPEG-4 standard

Viseme
Recognition rate 

(%)

m 95
v 90
T 70
t 80
g 85
tS 95
s 95
n 40
r 100
A: 100
e 100
I 95
Q 95
U 95
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The STTs of /t/, /T/, and /n/ do not contain the information 
of the occluded tongue movements. This is a possible reason 
for the higher error rates of 20%, 30%, and 60% for these three 
consonants as compared to the average error rate of 12% for 
all visemes. Consonantal sounds with similar facial movements 
may cause ambiguities that affect the performance of a visual 
speech recognizer.

To compare the results of the proposed approach with other 
related work is inappropriate due to the different video corpus 
and recognition tasks used. In a similar visual-only speech 
recognition task (based on the 14 visemes of MPEG-4 stan-
dard) reported by Arjunan et al. [25], a similar error rate was 
obtained using shape-based features (geometric measures of 
the lip) extracted from static images. Nevertheless, the errors 
made in our proposed visual system using motion features are 
different as compared to the errors reported by Foo and Dong 
[26]. This indicates that complementary information exists in 
the static and dynamic features of visual speech.

For example, our proposed system has a much lower error 
rate in identifying visemes /m/, /t/, and /r/ by using the facial 
movement features as compared to the results of Arjunan et al. 
[25]. This shows that motion features are better in representing 
phones, which involve distinct facial movements (such as the 
bilabial movements of /m/). The static features of Arjunan et al. 
[25] yield better results in classifying visemes with ambiguous 
or occluded motion of the speech articulators such as /n/. The 
results demonstrate that a computationally inexpensive system 
can easily be developed on a digital signal processor chip for 
silent speech-based AT.

Experiments were conducted to test the performance of the 
proposed speech recognition from facial SEMG for two dif-
ferent languages, German and English. The experiments were 
approved by the Human Experiments Ethics Committee of the 
university. In controlled experiments, participants were asked 
to speak while their SEMG were recorded. The SEMG record-
ings were visually observed, and all recordings with any arti-
fact—typically due to loose electrodes or movement—were 
discarded.

During these recordings, the participants spoke three 
selected English vowels (/a/, /e/, /u/) and three selected German 
vowels (/a/, /i/, /u/). Each vowel was spoken separately such 
that there was a clear start and end of its utterance. The experi-
ment was repeated 10 times for each language. A suitable rest-
ing time was given between each experiment. The participants 

10.4.3 Experi-
ments using facial 
muscle activ-
ity signals
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were asked to vary their speaking speed and style to obtain a 
wide training set.

10.4.3.1 Facial EMG recording and preprocessing The 
participants in the experiment were native speakers of German 
with English as their second language. Four-channel facial 
SEMG was recorded using the recommended recording 
guidelines [27]. A four-channel, portable, continuous record-
ing MEGAWIN instrument (Mega Electronics, Finland) was 
used for this purpose. In this study, four facial muscles were 
selected: zygomaticus major, depressor angulioris, masseter, 
and mentalis [27]. The details of the experiment have been 
reported [19,25,28,29].

10.4.3.2 Data analysis The first step in the analysis of the 
data was to identify the temporal location of the muscle activity. 
Moving RMS (MRMS) of the recorded signal with a threshold 
of 1 sigma of the signal was applied for windowing and identi-
fying the start and the end of the active period [30]. A Window 
size of 20 samples corresponding to 10 ms has been shown to 
be suitable for computing the MRMS.

The next step was the integration of the MRMS of all the 
four channels and in the complete range of the speech, from 
the start until the end of the associated muscle activity. This 
provided a vector with four parameters, corresponding to the 
overall activity of the four channels for each vowel utterance. 
This data was normalized by computing a ratio of integrated 
MRMS of each channel with respect to channel 1. This ratio is 
indicative for the relative strength of contraction of the different 
muscles and reduces the impact of interexperimental variations.

10.4.3.3 Classification of visual and facial EMG fea-
tures For classification, the supervised neural network 
approach was used with the parameterized data, resulting in 
a vector for each utterance. The ANN consisted of two hid-
den layers with 20 nodes in both layers. Sigmoid function was 
used as the threshold decision. The ANN was trained with a 
gradient descent algorithm using a momentum with a learning 
rate of 0.05 to reduce the likelihood of local minima. Finally, 
the trained ANN was used to classify the test data. This entire 
process was repeated for each of the participants.

A random subsampling cross-validation method was used 
to determine the mean classification accuracy of the normal-
ized features of the facial SEMG. The training and testing of 
different random subsamples using the ANN were repeated for 
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different times. The final classification accuracy is the average 
of individual estimates.

10.5 Discussion: User benefits

Table 10.3 shows the ANN classification results on the test data 
using weight matrix generated during training for English vow-
els and for German vowels. These results indicate that the mean 
classification accuracy of the integral RMS values of the EMG 
signal yields a better recognition rate of vowels for three differ-
ent participants, when the ANN classifier is trained individu-
ally. The results indicate that this technique can be used for the 
classification of vowels for the native and foreign language—in 
this case, English and German. This suggests that the system 
based on facial muscle activity is able to identify the differ-
ences between the styles of speaking of different people at dif-
ferent times for different languages.

The error rate in classification accuracy for a foreign language 
(English) is marginally higher compared with the native language 
(German). This is because the muscle pattern remains the same 
during the utterance of the native language and changes during 
the utterance of the foreign language. The variation is high for 
German vowels /a/, /i/ and English vowels /a/, /e/, and there is no 
variation for the vowel /u/ in both German and English language.

The results indicate that the proposed method using activi-
ties of facial muscles for identifying silently spoken vowels is 
technically feasible from the viewpoint of error in identifica-
tion. The investigation reveals the suitability of the system for 

table 10.3 Mean classification errors for English and 
German vowels

Vowel

Mean classification errors

Subject 1 (%) Subject 2 (%) Subject 3 (%)

English
/a/ 27 17 20
/e/ 24 24 17
/u/ 0 0 0

German
/a/ 14 17 17
/i/ 4 20 24
/u/ 0 0 0
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English and German, and suggests that the system is feasible 
when used for people speaking their own native language as 
well as a foreign language.

The results also indicate that the system is not disturbed by 
the variation in the speed of utterance. The recognition accu-
racy is high when it is trained and tested for a dedicate user. 
Hence, such a system could be used by any individual user as a 
reliable HCI. This method has only been tested for limited vow-
els. The promising results obtained in the experiment indicate 
that facial muscle movement represents a suitable and reliable 
method for classifying vowels of single user without regard to 
speaking speed and style for different languages. It should be 
pointed out that the proposed technique based on facial muscle 
activity does not provide the flexibility of continuous speech, 
but for a limited dictionary of discrete phones, which is appro-
priate for simple voice-control-based AT systems. Furthermore, 
the results suggest that such a system is suitable and reliable for 
simple commands for HCI when it is trained for the user.

10.6 Summary

This chapter reported the feasibility of subauditory speech rec-
ognition approaches using two different modalities: (1) based 
on video data and (2) measurement of the facial muscle contrac-
tion using noninvasive SEMG [25,28]. The application of this 
includes the removal of any errors caused by the background 
acoustic noise or poor acoustics, and provides another option 
for human–computer-based assistive devices.

The SEMG system was tested for vowels in two languages 
and not consonants because vowels require stationary muscle 
contraction as compared to consonants making the automatic 
segmentation of the signal easier to implement. This highlights 
the limitations of the technology and suggests that for a com-
plete system, there is the need for an alternate technique to 
identify the cues for segmenting the SEMG recordings.

The recognition accuracy for the SEMG-based system is high 
when it is trained and tested for a dedicated user in both German 
and English. This study also examines a vision-based technique 
to recognize English vowels and consonants. The experimental 
results of the visual approach demonstrate that the visual speech 
information can be used to reliably classify a set of English pho-
nemes. One basic application for such a system is for a disabled 
user with speech impairment to give simple commands to a 
machine, which would be a helpful and typical application of AT.
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The EMG-based investigation also compared the system 
based on the language the user was speaking in English and 
German. The results show that there was a significant differ-
ence in the recognition accuracy when the person spoke in their 
native language compared with the foreign tongue. This may be 
because people find it easier to repeat the same action they are 
very familiar with compared with the actions they have to train 
themselves with later.

The video-based system implementation shows that such a 
system is easy to implement using a camcorder fitted in place 
of the microphone of the headphones. The results demonstrate 
the strength of such a system, and with inexpensive and easy 
to obtain cameras, this has higher user acceptability. Such a 
system was also found suitable for a range of sounds includ-
ing the consonants. The only shortcoming of such a system 
was the requirement of sufficient background lighting. With 
the availability of good quality cameras located on the smart-
phones and sufficient computing power, the implementation of 
such a system is achievable by simply having suitable software. 
However, to the knowledge of the authors, no such commercial 
system is available.
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