
www.allitebooks.com

http://www.allitebooks.org

IBM Worklight Mobile
Application Development
Essentials

Develop efficient mobile applications using
IBM Worklight

Muhammad Saif Uddin

Talha Haroon

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

IBM Worklight Mobile Application Development
Essentials

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2014

Production Reference: 1140214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-760-9

www.packtpub.com

Cover Image by Ronak Dhruv (ronakd@packtpub.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Authors
Muhammad Saif Uddin

Talha Haroon

Reviewers
ABDUL AHAD

Houcem BERRAYANA

Touchapon Kraisingkorn

Mohammad Omer Raza

Saurabh Srivastava

Acquisition Editors
Anthony Alburqueque

Nikhil Karkal

Mary Nadar

Content Development Editor
Priyanka Shah

Technical Editors
Tanvi Bhatt

Monica John

Neha Mankare

Copy Editors
Brandt D'Mello

Gladson Monteiro

Stuti Srivastava

Project Coordinator
Jomin Varghese

Proofreader
Simran Bhogal

Indexer
Tejal R. Soni

Production Coordinator
Alwin Roy

Cover Work
Alwin Roy

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Muhammad Saif Uddin has diverse experience in mobile, software, and
web development. For the past few years, he has been exploring new mobile
development environments to make mobile app development easy in the future.
He has exposure to most of the development technologies that exist but is mainly
focused on Android and iOS mobile development. He has successfully designed over
30 mobile apps, which are distributed on iTunes and App Store—AMEX Mobile and
Bayt Mobile are two of these apps. He is also IBM Worklight Certified, and besides
his remarkable knowledge of the mobile world, he has introduced many enterprise
and web applications with Responsive Web Design. He blogs at http://saifo.
blogspot.com and writes articles and tutorials on different technologies that include
Android, Worklight, and Java. He lives in Karachi, Pakistan, with his wife and
family.

First, I would like to thank Almighty Allah (Subahana wa tala).
The people I'd like to thank most for their direct or indirect help in
writing this book are my wife and my parents; the rest of my family
for their love and support; and my fellow staff and friends who gave
me encouragement and support, including Adeel Ansari, Aneel
Ansari, Kashif Haseeb, Babar Qadri, and Mobin Khan.
Finally, I'd like to thank my co-author, Talha Haroon, without whom
this project wouldn't have been possible.

www.allitebooks.com

http://saifo.blogspot.com
http://saifo.blogspot.com
http://www.allitebooks.org

Talha Haroon initially started working in the HRM and CRM fields as his
main areas of focus, but later on in his career path, he dedicatedly moved to
MobileFirst. If we glance at his specialities, then it would become apparent that he
has proficient expertise in ERP's development and customization as well as mobile
hybrid development. He is also IBM Worklight Certified and has deployed and
developed many enterprise and mobile applications in which AMEX Mobile app
and AppleVacationsOnline.com are the most highlighted and his biggest products.
Moreover, he has introduced some futuristic business processes that will assist retail
businesses to grow by themselves.

After thanking Allah (subahana wa tala), I am pleased to thank my
mother, Fauzia Haroon, who always prays for me and has made me
capable enough to raise myself in an upright way. Of course, my
special thanks to my co-author, Muhammad Saif Uddin, who played
a very crucial role within this project.

www.allitebooks.com

http://www.allitebooks.org

Acknowledgement

The staff at Packt Publishing worked inexhaustibly with us to make sure that this
book attained the level of quality that we hoped for, and we thank them for their
efforts. Without them, this book would not have been possible. It includes not only our
publisher, but also the following contributors: Priyanka Shah, Jomin Varghese, Ashish
Bhanushali, and fellow reviewers include ABDUL AHAD, Houcem BERRAYANA,
Touchapon Kraisingkorn, Mohammad Omer Raza, and Saurabh Srivastava.

Special thanks to Mustafa Qutbuddin, CEO, Royal Cyber. It was because of you that
we were able to get this book completed.

Also, special thanks to Syed Basheer, Senior Manager, Royal Cyber, for playing your
part and providing perfect guidance to us.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

ABDUL AHAD is a senior consultant with 10 years' IT experience. He has worked
on different platforms, technologies, and tools. He has excellent skill sets and
knowledge on IBM and mobility solutions. He works in a premier business partner
company of IBM.

Houcem BERRAYANA is a senior Java software developer. Because he works
in the IT services domain, he has had the chance to work on many technologies and
domains such as JEE, Android, Worklight, PHP, and Rails. And he has experience
in dealing with different kinds of clients such as banks, telecom operators, startups,
and big companies. He loves web development and always prefers designing the
backend of an application. He started using the hybrid mobile application in 2010.

He has already delivered three Worklight projects, and one of them is considered as
one of the biggest Worklight deployments until now. He was designing the details of
both JavaScript and server-side implementations.

He works at Proxym-IT, a very cool Tunisian IT company, providing IT services and
works for cool projects and technologies.

I would like to thank my wife for being patient during all the
difficult moments we've encountered so far. I can never forget the
support I've received from my mother and father all this while.

www.allitebooks.com

http://www.allitebooks.org

Touchapon Kraisingkorn is an IBMer who's worked with IBM Worklight since
its acquisition. He's experienced in HTML5 and cross-platform development. Six
years of HTML5 experience and five years of Java programming experience allows
him to deeply understand how Worklight works under the hood.

Worklight is wildly popular in IBM, Thailand, and IBM has made it clear that mobile
platform is one of its main focuses.

Mohammad Omer Raza is a graduate with a Bachelor of Computer Science and
Information Technology from NED University. He started his career as a software
engineer of mobile solutions. With his experience, he was able to complete the
IBM Worklight certification, which was one of his greatest achievements at an
early stage. Working on the highly rated AMEX Mobile app was a great test and
milestone. Besides working on IBM Worklight, he has been working on different
technologies such as PhoneGap, Titanium, and so on. He opted for a career in mobile
development when he was in his final year of graduation after selecting an Android
app as his final year project. For this project, he received the second highest score
in his class. He was among the top 20 individuals, out of 100 who participated in
Incubator 2012. He was selected for his project, which gave him a strong indication
that mobile development was the career path he was looking for. He has started
blogging on http://omerhw.blogspot.in/.

I would like to thank Almighty Allah for all his blessings on me
and then would like to thank my dad, late Mohammad Raza Siraj;
without his efforts, I wouldn't have been where I am today.
My thanks to the authors who wrote this book, Muhammad
Saif Uddin and Talha Haroon; the staff of Packt Publishing; and
contributors Priyanka Shah and Jomin Varghese who worked
dedicatedly in completing this book with the best lines in it and gave
me the opportunity to review the code of the material.
Special thanks to Mustafa Qutbuddin, CEO, Royal Cyber; Syed
Basheer, Senior Manager, Royal Cyber; and ABDUL AHAD, Project
Manager, Royal Cyber.

www.allitebooks.com

http://www.allitebooks.org

Saurabh Srivastava leads User Experience and HCI initiatives in IBM India
Research Lab. His area of research includes the development of bottom-of-pyramid
communities, speech interfaces, gestural interactions, information visualization,
intelligent user interfaces, audio integration methods, and tangible media. As far as
IBM research goes, he is part of the Telecom Research Group and focuses to deliver
mobile-enabled solutions for emerging markets.

He has authored many publications in scientific conferences and journals. He is an
active onboard member of the reviewing committee of reputed conferences and has
chaired multiple ACM/IEEE workshops. He has been invited for talks and lectures
in reputed institutes across the world.

He graduated from the Indian Institute of Technology, Bombay.

I would like to thank the entire Packt Publishing team for a smooth
and insightful review process. A huge thanks to Jomin Varghese
for his support and patience throughout. Also, sincere thanks to
Nishanth for giving me the opportunity to examine this thoughtful
piece of work.
A special thanks to Ketki, my wife, for understanding me during
those weekends when I was busy with the book instead of sharing
house chores and my time with her.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read, and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content

• On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

Table of Contents
Preface 1
Chapter 1: Getting Started with IBM Worklight 7

The IBM Worklight solution 9
Worklight capabilities and supported platforms 10
Components of Worklight 11

Worklight Studio 12
Features of the Worklight Studio platform 12

Worklight Device Runtime 14
Worklight Server 15
Worklight Console 16
Worklight Application Center 16

Summary 16
Chapter 2: Installing Worklight 17

Installing IBM Worklight Consumer Edition 17
Installing IBM Installation Manager 18

Installing IBM Worklight Server 19
Configuring WebSphere Application Server (Liberty profile) 22
Installing IBM Worklight Studio 25
Installing IBM Worklight Developer Edition 26

Installing Android SDK 27
Summary 31

Chapter 3: Creating a Basic Worklight Application 33
Creating a simple IBM Worklight application 33
Worklight project and application structure 36

Application resources 37
Rich Page Editor 40

Adding an environment 42
Verifying the server configuration 43
Building the application 44

Table of Contents

[ii]

Application skins 44
Previewing an application in the mobile simulator 46
Summary 48

Chapter 4: Customizing the Worklight Application 49
A quick overview of HTML5 49
The IBM Worklight client-side API 50

The WLClient JavaScript client library 50
Exploring Dojo Mobile 52
Designing your first Dojo application 52
Adding an environment in IBM Worklight 57

Application resources 61
Application-descriptor 61
The main HTML file 63
Client scripts and stylesheets 63
The application icon 63
The splash screen 63
The Worklight client property file 64

Exploring the Android application environment 66
Summary 68

Chapter 5: Adding an Adapter 69
IBM Worklight Adapter concept 69

Exploring adapter files 70
Types of adapters 71

HTTP adapters 72
SQL adapters 78

Invoking the adapter procedure 84
Calling Java code using an adapter 85
Invoking Java code from the adapter 88

Summary 89
Chapter 6: Authentication and Security 91

Worklight security principles, concepts, and terminologies 91
Challenge handler 92
Authenticator 93
The login module 94
Authentication realms 94
Security test 95

Examining generated realms, security test, and login modules 96
Generating realms 97
Generating login modules 97
Generating security tests 97

Creating adapter-based authentication 98

Table of Contents

[iii]

Client side – adapter authentication components 102
Challenge handler in Worklight 103

Form-based authentication 105
Security realm 106
The login module 106
Security test 106
Challenge handler 106

Custom authentication 108
Summary 109

Chapter 7: Advanced Features of IBM Worklight 111
Push notification 111

Device and platforms support 112
Worklight push notification concepts and terminology 112

WL client API 115
WL.BusyIndicator 115
WL.Logger 115
WL.SimpleDialog 116

Cordova plugins 116
Encrypted Offline Cache 118
Storage JSONStore 120
Summary 121

Index 123

Preface
IBM Worklight provides an open, comprehensive, and advanced mobile enterprise
application platform that anticipates what developers need to develop, run, and
manage HTML 5, hybrid, and native for smartphones and tablets in an easier and
more efficient manner. IBM Worklight Mobile Application Development Essentials
introduces you to Worklight right from setting up the environment using Eclipse to
guiding you through the major features and techniques.

What this book covers
Chapter 1, Getting Started with IBM Worklight, is an introduction to Worklight and
where it fits in with the IBM Mobile Application Platform. At the end of this chapter,
you will understand the basic components of the IBM Worklight product and how it
contributes to building a mobile application.

Chapter 2, Installing Worklight, is about getting Worklight up and running for
development on your computer. At the end of this chapter, you will have a
Worklight environment on your machine. This will enable you to work through the
remaining chapters and build Worklight applications even on Android.

Chapter 3, Creating a Basic Worklight Application, is about creating a Worklight
application from scratch. At the end of this chapter, you will have created a default
empty Worklight application and will understand how to view in the simulator
supplied with Worklight.

Chapter 4, Customizing the Worklight Application, is about adding basic content
to a Worklight application to customize the Dojo component to achieve native
functionality and using local test data. Moreover, this chapter covers adding
Worklight environments to a Worklight application, which allows different mobile
platforms to be supported. At the end of this chapter, you will know how to add
Dojo mobile-based web content to your Worklight application using the graphical
tools and different mobile platforms supported by Worklight and how to add the
Android environment to an application.

Preface

[2]

Chapter 5, Adding an Adapter, is about Worklight Adapters and how they can be used
to integrate client applications with backend data services.

Chapter 6, Authentication and Security, will give you extensive information about the
authentication frameworks and security module of IBM Worklight. This chapter
covers basic, form-based, adapter-based, and custom authentication. After going
through this chapter, you will be armed with the knowledge and confidence to
develop your own authentication and set up efficient security measures in your
developed application.

Chapter 7, Advanced Features of IBM Worklight, covers native development for the
Android platform including some advanced subjects for web-optimized and hybrid
pages. Push notification with complete understanding and process cycles are derived
to understand its mechanism. Worklight API implementation with process handling
is the most critical part to define. But, proper functional behavior is revealed to make
it's understanding much easier.

What you need for this book
You will need the following software for this book:

• Eclipse Juno 4.2.2 (Java Platform, Enterprise Edition, or Classic).
• IBM Worklight Studio Plugin Developer Edition (it's free and it runs

completely within eclipse; there's no standalone Worklight server). (If you've
installed a separate Worklight server—on Liberty, WAS, or Tomcat—you're
running the Worklight Consumer or Worklight Enterprise Edition and
should use the studio plugin for that edition/version. Business partners can
get the corresponding studio plugin from PartnerWorld.)

• The Android ADT Plugin for eclipse and Android SDK.

Who this book is for
If you are a mobile developer, from a novice to a more advanced level, who wants to
create a cross-platform app using IBM Worklight, this book is ideal for you.

All novice and expert web developers who wish to learn mobile application
development with a minimum experience in technologies such as HTML, CSS, and
JavaScript will benefit from this book.

Preface

[3]

IBM Worklight leverages you to create highly interactive and usable mobile
applications with the help of the concepts and code exercises defined from chapter to
chapter. With the exercises, you immediately put your learning to work. Moreover,
this book covers the popular UI frameworks demonstrated using Worklight such as
jQuery mobile and Dojo framework.

Both the novice and experienced users will benefit greatly from this book and add
this knowledge to their toolbox quickly.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code is set as follows:

<div id="AppBody">
 <div id="header">
 <div id="wrapper"> Welcome </div>
 </div>
 Hello World
</div>

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
Install New Software in the Help menu."

Preface

[4]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with
IBM Worklight

The mobile industry is evolving rapidly with an increasing number of mobile
devices, such as smartphones and tablets. More people are accessing services
via mobile devices than ever before. The mobile solution is directly impacting
businesses, organizations, and their growing number of customers and partners.
Even employees now expect to access services on a mobile device.

This chapter is an introduction to Worklight and where it fits into IBM Mobile
Application Platform. At the end of this chapter, the reader will understand the
basic components of IBM Worklight and how it contributes to building mobile
applications. Currently, there are several approaches for mobile application
development, such as the following:

• Web development: This approach uses open web client programming
modules, such as HTML5 and JavaScript.

• Hybrid development: This approach uses the app source code that consists
of the web code, executed within a native container that is provided by
Worklight and native libraries.

• Hybrid mixed: The developer adds arguments to the web code using the
native language to create unique features and access native APIs that are
available via JavaScript, such as APIs for a camera, an accelerometer, and
other functionalities.

• Native development: In this approach, the application is developed using
native languages or transcoded into a native language via MAP tool's native
appearance device capabilities, and performance.

Getting Started with IBM Worklight

[8]

To develop a similar application on a different platform requires a different level of
expertise, which is expensive in terms of cost, time, and complexity. The following
table outlines the major aspects of the different approaches to development.
Reviewing this list can help you choose the approach that is ideal for your particular
mobile application.

Native Hybrid Mobile Web
Skills/tools • Objective C

• Java
• HTML5
• CSS3
• JavaScript
• Client-side

frameworks

• HTML
• CSS
• JavaScript

Distribution App store App store Internet/online

Development
speed

Slow Moderate Fast

Device
accessibility

Full native device
access

Full native device
access

Partial device access

Application
maintenance

Difficult Moderate Easy

The hybrid development approach is about taking advantage of both native
and mobile web development approaches. It benefits from the versatility of web
technologies combined with powerful device features and SDK. It is well suited for a
range of applications and can still provide good user experience.

The following table highlights the advantages and disadvantages of the
hybrid approach:

Advantages of the hybrid approach Disadvantages of the hybrid approach
Lower learning curve Performance of the application is slightly

slower than native approach because of the
data access across multiple layers

Fast to develop and release
Easy to port, making it cost effective
Access to and support for native
device functionality

Chapter 1

[9]

When escalating the business perspective to the mobile platform, we need to build
an application for web-based responsive mobile apps with rich development
environment for better performance and vast access control. IBM Worklight seems to
be the most efficient and optimized to handle any kind of interactive and enterprise
mobile application. Generally, the hybrid solutions are dependent on less secure
or custom security identifiers, but Worklight's built-in security modules provides
perfectly improvised frameworks to implement. Besides all of its classified and
highly efficient features, it provides a complete studio to implement rich application
development. For server-side security and implementation, it provides complete
console management and accessibility for every component. It can also be utilized for
creating a report and generating a complete view to study application statistics and
performance. If you merge all cross-platforms into one, then IBM Worklight will be
much trusted and efficient to use for business modernization and management.

IBM Worklight is an extensible mobile application platform that brings together
many mobile capabilities into a single product and allows organizations to develop
and deliver HTML5, hybrid and native applications, and deliver these applications
with mobile middleware, security features, integrated data management, and
analytics capabilities.

The IBM Worklight solution
In 2012, IBM acquired its very first set of mobile development and integration tools
called IBM Worklight, which allows organizations to transform their business and
deliver mobile solutions to their customers. IBM Worklight provides a truly open
approach for developers to build an application and run it across multiple mobile
platforms without having to port it for each environment, that is, Apple iOS, Google
Android, Blackberry, and Microsoft Windows Phone. IBM Worklight also makes the
developer's life easier by using standard technologies such as HTML5 and JavaScript
with extensions for popular libraries such as jQuery Mobile, Dojo Toolkit, and
Sencha Touch.

IBM Worklight offers an open platform to assist businesses to deliver existing and
new mobile applications to multiple devices. According to IBM, "it is an important
piece of IBM's strategy" that simplifies end-to-end security and service integration
between mobile applications and backend systems. Additionally, it helps clients
dramatically reduce mobile application time to market, cost, and complexity.
Moreover, IBM Worklight came up with variety of components to efficiently
develop, test, connect, run, and manage mobile applications.

Getting Started with IBM Worklight

[10]

The following screenshot summarizes the capabilities, extensive frameworks, and
tools within Worklight:

Worklight capabilities and supported
platforms
A relative newcomer to this world of cross-platform development, Worklight has
dramatically taken its place within the community. IBM Worklight aims to change
the way in which mobile developers think about creating rich functionality in their
mobile applications. It does this in a very efficient manner, providing a complete
platform for development unlike other cross-platform developers who only offer
libraries to do the job.

Development in IBM Worklight is similar to web development, where developers
and designers can leverage their existing knowledge of Cascading Style Sheet
(CSS), Hypertext Markup Language (HTML), and straightforward JavaScript to
manipulate pages and their elements directly, making development more rapid. The
IDE works in conjunction with the native SDKs while building an app for Android.

Chapter 1

[11]

The IDE builds and compiles the Android project and exports it within the same IDE.
For iPhone, it generates files for an Xcode project.

In this book, we're going to take an in-depth look at what Worklight has to offer for
building rich mobile applications. Let's start by finding out what exactly Worklight
brings to the mobile development environment.

Components of Worklight
IBM Worklight is a mobile application platform containing all of the tools needed
to develop a mobile application. If we combine IBM Worklight components into
a stream, it would be clean to say that hybrid mobile application development is
tightly coupled with a baseline.

Each component in Worklight is integrated with the other, for the creation of a rich
interface and cost-effective mobile app in fragments, and to control the growing
portfolio of an application. IBM Worklight provides high user experience index and
full device access with native controls. It is a mobile application development tool that
contains all modules, including the mobile application development framework and
modules for testing and distribution. There are mainly two development editions:

• IBM Worklight Enterprise Edition
• IBM Worklight Consumer Edition

IBM Worklight Enterprise and Consumer Editions are identical except for the
licensed models. The Consumer Edition is completely licensed per mobile
application, whereas the Enterprise Edition contains license per device.

Every specified component provides a bundle of functionalities and support. The
following is the lifecycle for mobile application development:

• Worklight Studio: IBM Worklight provides a robust, Eclipse-based
development environment called Worklight Studio, which allows
developers to quickly construct mobile applications for multiple platforms.

• Worklight Server: This component is a runtime server that activates or
enables secure data transmission through centralized backend connectivity
with adapters. It is used for offline encrypted storage, unified push
notification, and many other applications.

• Worklight Device Runtime: The device runtime provides a rich set of APIs
that are accessible across platforms and offer easy access to the services
provided by the IBM Worklight Server.

Getting Started with IBM Worklight

[12]

• Worklight Console: This is a web-dependent interface for real-time analytics,
managing push notification authority, and mobile version management.
Worklight Console is a web-based interface and is dedicated to ongoing
administration of Worklight Server and its deployed apps, adapters, and
push notification services.

• Worklight Application Center: This is a cross-platform mobile application
store that fulfils specific needs for mobile application development teams.

Each component is discussed in detail in the following sections.

Worklight Studio
IBM Worklight Studio provides a complete extensible environment with maximum
code reusability and device optimization. It contains client-side implementation
and web technologies that rely on the Worklight optimization framework. In this
component, a user can find third-party library integration with device SDKs. The
main purpose of this module is to create a hybrid application that can be used on
and is deployable to any mobile platform such as Android, iPhone, Blackberry, and
Windows Phone.

Features of the Worklight Studio platform
The preceding screenshots illustrates the Worklight Studio. It's an Eclipse-
based IDE to facilitate the developer with operating and controlling projects in
a normal hierarchical structure and to organize the source code for easy access.
It is responsible for code maintenance, framework implementation, and rich
multiplatform development. It also contains a variety of procedures to achieve
device portability.

Chapter 1

[13]

We will explore the key functionality advantages of Worklight Studio in the
following sections.

Pure native and web development
IBM Worklight Studio provides complete extensibility and compatibility in pure
native and web application development. With a very simple wizard, a developer
can easily add JavaScript frameworks such as Dojo, jQuery Mobile, and Sencha
Touch and IDE provide a WYSIWYG editor for quickly building UIs in a drag-and-
drop fashion with the support of UI components.

Shell development and concept
IBM Worklight provides a hybrid shell for mobile applications that offers all
capabilities to web and native technologies. By creating a custom shell, you can
add third-party native libraries that include Cordova/PhoneGap plugins and can
implement custom security modules and extend features specific to enterprise
modernization. The shell could be used as enforcement of corporate guideline
specifications for designing and security rules. For example, a shell can be utilized to
improve and amend default mobile applications or to control native features.

Optimized framework
Worklight Studio provides a common environment to be used as the simple
development point that shares all code basis into one stream. An optimization
framework consists of the skin concept (runtime skinning) that actually enables an
interface for mobile applications depending on the device. This feature enables the
runtime interface and enables different sets of customizations. All these settings are
device dependent and can easily be transformed to hold any set of code.

Integrated development and mobile simulator
Worklight Studio can be used to develop a component called IBM Worklight
Adapters for your application within the same integrated development environment.
It allows you to test these adapters thoroughly. It also provides a browser-based
mobile simulator for testing web and hybrid applications within IBM Worklight
Studio. Mobile simulator is a cross-platform testing module for mobile devices
with the support of various Apache Cordova APIs. It allows you to test hybrid
applications that use device features without having to run them on the physical
device. This reduces redundant development time and effort required for repeated
deployment on devices.

Getting Started with IBM Worklight

[14]

Besides this, IBM Worklight Studio allows you to set Ant tasks that can be used to
run any mobile application on multiple platforms. IBM Worklight Studio is available
in three editions. The Developer edition provides all of the tools needed to build a
mobile application. The Consumer edition and Enterprise edition add enterprise-
level security and integration with the IBM Application Center.

Worklight Device Runtime
The IBM Worklight Device Runtime component delivers a smooth and uniform
bridge between web technologies (HTML5, CSS3, and JavaScript) and the additional
native functionalities added to the various platforms. IBM Worklight Device
Runtime supports a variety of mobile OS and release levels.

The following screenshot shows the different features in Device Runtime that reduce
the complexity and implementation time frame for a developer:

The following section provides details about the various features of Device Runtime:

• Cross-platform Compatibility Layer: By using this layer, hybrid mobile
applications can access common control elements such as tab bars,
clipboards, and native device interface features.

Chapter 1

[15]

• Server Integration Framework: This allows applications to utilize a Server
Secure Layer Connection to connect to the server all the time.

• Encrypted Storage: This layer helps to access application restoration data in
an encryption that helps a user to access data using this API.

• Reporting for Statistics and Diagnostics: In this layer, the Mobile
application transforms the data and sends it to IBM Worklight Server by
executing an event that stores the data in a separate database.

Worklight Server
This component is utilized to bind a client-side/server-side integration with built-in
security prevention and helps the application to have a strong communication with
the backend system. This complete framework based on the cryptographic module
to protect user-specific information as well as server specifications. The following
screenshot is of the structure of IBM Worklight Server:

The following is a brief description of the structure of IBM Worklight Server:

• Server-side Application Code: This module defends the security and
performance of a mobile device. By using this code, you can have direct
access to the backend system or cloud-based services.

• JSON translation: JSON is a lightweight data structure format, such as XML,
that automatically converts hierarchical data responses with optimized
consumption.

www.allitebooks.com

http://www.allitebooks.org

Getting Started with IBM Worklight

[16]

• Authentication Framework: If your mobile application is based on Worklight
Server, you can benefit from enterprise-class security, which enables single
sign-on using Lightweight Third Party Authentication (LTPA).

Worklight Console
IBM Worklight Console is an administration component based on the web interface.
This web-based console is used to enable/disable applications, adapters, and push
notification rules.

You can manage a mobile application by activating/deactivating its outdated
versions. It can also be used to publish messages or notifications to users regarding
new updates and new features released. Worklight Console contains an identifier
to ensure security and application provisioning for users. This console also assists
administrators with viewing statistics and user information from all running
applications on IBM Worklight Server. This helps to make decisions regarding
specific platforms, user interaction, and performance overview.

Worklight Application Center
Worklight Application Center is a web-based internal enterprise store to centralize
mobile applications, including distribution, installation, and feedback. An
application catalog helps to find available mobile applications that provides feedback
on application versions.

During the development lifecycle, Application Center can be used to inline the
movements of new application versions from the development point of view. It
allows multiple versions of applications and can also be utilized to limit versions for
any group of users as well as applications.

Summary
In this chapter, we have covered the history and background of IBM Worklight,
approaches used in mobile development and why Worklight is the right choice
between other mobile application development solutions with its inline efficient tools
and components.

In the next chapter, you're going to install Worklight (Worklight Studio and
Worklight Server) to set up the development environment on your computer to
manage your application's lifecycle from development to deployment. Moreover,
you'll be guided in setting up the Android SDK within the same environment to test
the application on an Android simulator. This will help you to run and follow along
with the examples discussed throughout this book.

Installing Worklight
This chapter lists the specific installation and configuration steps to set up the
development environment that you need to create in mobile applications with IBM
Worklight. It guides you through the steps of installing the software prerequisites
and the Eclipse-based IBM Worklight Studio.

In this chapter, we will cover the installation steps for both the IBM Worklight
Consumer and Developer Editions with the intention of giving you a complete step-
through guide to prepare your development environment for both editions as per
your target requirement.

Installing IBM Worklight Consumer
Edition
Before starting with the consumer edition installation, we need to have the required
software installed in your operating system:

• Java Runtime Environment (JRE)
• IBM Installation Manager

To install JRE, please download the setup files from http://www.oracle.
com/technetwork/java/javase/downloads/java-archive-downloads-
javase7-521261.html.

To review the list of supported operating systems and system requirements for IBM
Worklight for various versions, please visit http://www-01.ibm.com/support/
docview.wss?uid=swg27024838.

Installing Worklight

[18]

Installing IBM Installation Manager
IBM Installation Manager is an enterprise deployment tool used to install, modify,
and uninstall IBM products. You might already have the Installation Manager
installed; if not, you can download this from IBM's website by visiting http://pic.
dhe.ibm.com/infocenter/install/v1r5/index.jsp.

At this step, assume that you have the IBM Installation Manager installed in
your system. Perform the following steps in the Installation Manager after
the installation:

1. Now start the IBM Installation Manager to install the IBM product.
2. Navigate to File | Preferences... to open the Preference window, and use the

Add Repository... button to add the repository location; you can use physical
media or download the product to install it using search services.

3. Click on OK to add the repository and return to the main Installation
Manager window to start the setup.

If you're using Windows OS, it is recommended to install the
software on root directory like C:\IBM\Worklight instead of
performing the installation in the Program Files folder.

As already covered in Chapter 1, Getting Started with IBM Worklight, IBM Worklight
Studio is used to implement runtime skins for building apps that automatically
suppress the environment, which will be seamlessly deployable using the IBM
Worklight Server. IBM Worklight Server provides leverage to its defined resources
and infrastructure. Now, we are moving on to the installation of IBM Worklight
components with details of their setup files.

To install IBM Worklight Consumer 5.0.5, you must have following IBM Worklight
Studio, Server, and Eclipse plugin files to step forward:

• IM_Rep_Worklight_Server_wce_5.0.5.zip

• IM_Rep_Worklight_Studio_wce_5.0.5.zip

• worklight_studio_wce_5.0.5.zip

Chapter 2

[19]

To download Worklight Consumer Edition files, you must have an IBM ID to access
and download these files for the desired operating system. Please use the following
URL to find the details:

http://www-01.ibm.com/support/docview.wss?uid=swg24033643

The listed files are installation sources to set up IBM Worklight Server and Worklight
Studio, and the last file is used to set up IBM Worklight Studio plugin which can be
installed separately with any Eclipse version.

Installing via an archive file provides several options depending on the operating
system and package being installed. The use of the IBM Installation Manager applies
to Worklight Studio and Worklight Server packages but is not supported on Mac
platforms. The use of the Eclipse update site applies to Worklight Studio that is
supported on all platforms. The following sections show you how to install each of
the available packages.

Installing IBM Worklight Server
Use the following steps to install the packages:

1. Unzip the listed server archive file into a temporary directory.
2. Start the IBM Installation Manager.
3. Click on Preferences in the File menu.
4. Click on Add Repository.
5. Enter the fully qualified path to the following directory:

unzip-directory/IWS/disk1/

6. Click on OK in the Add Repository window.
7. Click on OK in the Preferences window.
8. Once you return to the main IBM Installation Manager window, click on

Install.

Installing Worklight

[20]

9. Tick the IBM Worklight Consumer Edition checkbox as shown in the
following screenshot:

IBM Installation Manager and installation package selection

10. In the following screenshot, you need to define the installation directory for
IBM Worklight and Windows operating system and then click on Next.

IBM Installation Manager and package path

Chapter 2

[21]

Configuring a database for the Worklight Server
The installation wizard will now request for a database connection to prepare the
different schema for Worklight Server as shown in the following screenshot. In this
book, we have used MySQL database, Version 5, for backend. After you have made
your selection, click on Next.

Database selection for IBM Worklight

Now define the parameters for the database connection, including host, port, and
credentials followed by the respective database library (the .jar file). The following
screenshot illustrates the required parameters such as database running host, port,
and .jar file path to build connection between Worklight Server and Database
Server. After you fill it, click on Next to move on to the next step:

Database connection parameters

Installing Worklight

[22]

When the connection is successful, as the following screenshot shows, we start with
the preparation of three different schemas for Worklight Server.

Clicking on the Next button will create these schemes in the connected database and
show you the status of these SQL queries with their status in the next section.

Configuring WebSphere Application Server
(Liberty profile)
We will now configure the WebSphere Application Server. On the server panel,
specify the application server on which IBM Worklight will be used. We have chosen
the WebSphere Application Server Liberty profile as shown in following screenshot.
This means no additional parameters are required, and the application server is
created and configured automatically. If this sounds good to you, then click on Next
to follow the next step.

Chapter 2

[23]

On the next screen, as seen in the following screenshot, review the directory and
server to be selected and finally click on Install:

After you are done with the IBM Worklight Server installation, you will see the
screen that indicates the installation of WAS (Liberty profile) is complete. Now click
on Finish to close this window.

It's time to verify the installation of IBM Worklight Server once the installation is
complete. We must confirm it by starting the IBM Worklight Server.

For Windows OS, open the command prompt by pressing Ctrl + R, type cmd in the
Run window, and click on OK.

Installing Worklight

[24]

Now navigate to the installation directory of IBM Worklight,
<WorklightInstallDirectory>/server/wlp/bin, and run the following
command, according to the operating system, under the black screen:

• Linux: sudo ./server start worklightServer
• Windows: server.bat start worklightServer

The following screenshot shows the confirmation message you receive when the
Worklight Server starts successfully:

You can also verify whether the IBM Worklight Server started successfully by using
the Worklight console as shown in the following screenshot. The Worklight console
installed with the IBM Worklight Server can be accessed by opening a browser and
navigating to the URL shown in the following screenshot, where <server_host_
name> is replaced with the hostname on which IBM Worklight Server is installed:

IBM Worklight console

Chapter 2

[25]

Installing IBM Worklight Studio
To install IBM Worklight Studio, use the IBM installation Manager to add the
repository like we did for IBM Worklight Server—just follow the wizard and keep
clicking on the next button. Another way to install Eclipse IDE, which is the latest
version of Java EE Developer, is to download from eclipse.org and install the IBM
Worklight Studio plugin in two simple steps:

• Under the heading of archive files, overview of IBM Worklight Studio's
repository file is used to install with IBM Installation Manager

• The third file is also the IBM Worklight Studio, but this is a plugin file that
can load in the Eclipse IDE

Follow the ensuing steps to install the Worklight Studio plugin in Eclipse IDE:

1. Start the already installed Eclipse (JEE or Classic) Version 4.2.2.
2. Click on Install New Software in the Help menu.
3. Click on Add to open the Add Repository window.
4. Click on Archive and enter the fully qualified path to the archive file as

shown in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Installing Worklight

[26]

5. Select the items to install as shown in the following screenshot:

6. Click on Next and review the selected tools for installation and accept the
license agreement. Click on Finish to begin.

7. When the installation is complete, IDE prompts to restart the Eclipse IDE.
Click on Restart.

IBM Worklight Studio is now installed and ready for use.

Installing IBM Worklight Developer Edition
If you are using Eclipse in IDE and need to use the IBM Worklight Developer
Edition, use the following steps:

1. Install Eclipse Juno 4.2.2 or Eclipse IDE for Java EE Developers.
2. Download the .zip file from the given URL and make sure that file name

is iws_update_site_wde.5.0.6.2.zip as we are targeting IBM Worklight
v5: http://public.dhe.ibm.com/ibmdl/export/pub/software/mobile-
solutions/worklight/

Chapter 2

[27]

3. Start Eclipse and then navigate to Help | Install New Software...
4. Click on Add to open the Add Repository window.
5. Click on Archive and enter the fully qualified path to the archive file you just

downloaded using the preceding URL.
6. Select IBM Worklight Studio Development Tools and click on Next.
7. On the Install Details page, select the features of Worklight Studio that you

want to install and then click on Next.
8. You should always select IBM Worklight Studio. The IBM Dojo Mobile

Tools and IBM jQuery Mobile Tools are optional; select them based on your
anticipated use.

9. Click on Next, review and accept the license terms, and then click on Finish
to begin with the installation.

10. Follow the prompts to complete the installation.

Installing Android SDK
Android proposes a custom plugin for the Eclipse IDE named Android
Development Tools (ADT). It accelerates the capabilities of Eclipse and quickly
provides you with the option to start up a new Android project, including a
simulator. The ADT plugin for Eclipse is an integrated environment in which you
can build, debug, and test Android-native applications. The Android SDK provides
the tools and APIs that are required to develop an application on the Android
platform by using Java programming language.

The initial step is to download the Android SDK, which is not present with IBM
Worklight Studio and must be downloaded from http://developer.android.com/
sdk/index.html.

Decompress the downloaded Android SDK file and copy the folder to the location
where you store SDKs or other development-related files.

To install the Android Development Tools (ADT) plugin for Eclipse, use the
following steps:

1. Start Eclipse and navigate to Help | Install New Software. This opens the
Available Software window.

Installing Worklight

[28]

2. To add, download, and install the ADT plugin, click on Add to open the Add
Repository dialog. Please enter the name ADT Plugin in the Name field and
the plugin's location https://dl-ssl.google.com/android/eclipse/ in
the Location field, as shown in the following screenshot:

3. Then click on OK. The button will start loading and then it shows the ADT
plugin features available to install from the Available Software window.
Check the Developer Tools checkbox and click on Next.

Android ADK plugin installation

Chapter 2

[29]

4. Complete the installation wizard and accept the default settings.
5. You must restart Eclipse in order to make the changes work.
6. After Eclipse is restarted, if it prompts a warning for an Android SDK, click

on Open Preferences on the warning message dialog to open the preference
window. Select Android from the left panel, and now on the right panel,
click on the Browse SDK Location path and select the android SDK folder.
Click on OK to resolve this warning.

7. In the Android SDK Manager window (see the following screenshot), select
Android SDK Platform-tools and Android Support Library, and select
specific Android versions to test your application.

8. Once you've finished selecting what you require, click on Install. This will
start the installation process in a few steps. Once the installation completes,
click on the close icon to close the Android SDK Manager window.

Installing Worklight

[30]

To configure an Android virtual device, use the following steps:

1. Within Eclipse, navigate to Window | Android Virtual Device Manager
from the menu.

2. Clicking on New will open a dialog where you create a new Android Virtual
Device (AVD). Give the AVD a name, such as GNexusAVD, as shown in
following screenshot:

The new Android Virtual Device is now ready for use to test and run the application.
If additional devices are needed, repeat the preceding steps.

Chapter 2

[31]

Summary
In this chapter, we have covered the installation of IBM Worklight Server and
IBM Worklight Studio with the help of the IBM Installation Manager to set up the
development environment. We also covered the installation of the IBM Worklight
Studio along with a plugin for Eclipse in case you want to use Eclipse for Worklight
app development in your machine. We also covered the installation of the IBM
Worklight Development Edition to start Worklight development with no cost. In
the next chapter, we are going to create our first Worklight application using the
same setup environment and cover other IBM Worklight components that we had
discussed in the first chapter.

Creating a Basic
Worklight Application

In this chapter, we will learn how to build a simple "Hello World" application for
different environments, gain an understanding of the project directory structure,
and learn how to create skins for specific devices. Using Worklight to create user
interfaces offers a big development advantage on the client and server sides. In
general, developers face problems during development. Support for the creation
of hybrid apps using other products is typically not easy to define use cases and
conduct debugging and preview testing for enterprise applications. However, with
Worklight, developers can create simple architecture and amend enhanced structures
to generate mobile application.

Creating a simple IBM Worklight
application
Let's start by creating a simple HelloWorld Worklight project.

The steps described for creating an app are similar for IBM
Worklight Studio and Eclipse IDE.

Creating a Basic Worklight Application

[34]

The following is what you'll need to do:

1. Start IBM Worklight Studio.
2. Navigate to File | New and select Worklight Project, as shown in the

following screenshot:

Creating a new Worklight project

3. In the dialog that is displayed in the following screenshot, select Hybrid
Application as the type of application defined in project templates, enter
HelloWorld as the name of the first mobile project, and click on Next.

Chapter 3

[35]

4. You will see another dialog for Hybrid Application. In Application name,
provide HelloWorld as the name of the application. Leave the checkboxes
unchecked for now; these are used to extend supported JavaScript libraries
into the app. Click on Finish.

www.allitebooks.com

http://www.allitebooks.org

Creating a Basic Worklight Application

[36]

5. After clicking on Finish, you will see your project has been created from
design perspective in Project Explorer, as shown in the following screenshot:

Worklight project and application
structure
The project name used within Worklight Studio is HelloWorld, and the display
name of the app will be HelloWorld, as defined earlier in step 4 of the Creating a
simple IBM Worklight application section. To change the name, follow the steps defined
as follows:

1. If the project is not opened, double-click on the application-descriptor.
xml file in Project Explorer to open in Application Descriptor Editor.

2. On the design tab, change the Display name attribute from HelloWorld to
any other name of your choice.
You can also change the description by editing the Description attribute.

3. Save and close the application-descriptor.xml file.

Chapter 3

[37]

Now, let's move on to the structure of the application. The default environment is
called the common environment. It is responsible for holding every component and
file related to the app, which shares its resources with the environment.

Application resources
In order to run the Worklight app on multiple devices, you must have the following
resource files in your project. IBM Worklight automatically generates any missing
resources that are not supplied. These resources are inter-related with each other.

• HelloWorld.html: This is the main HTML file that acts as the interface of
the mobile application. This file loads all the web resources (script and style
sheets) necessary to define the general components of the application and
to hook required document events. By default, this file is placed under the
common folder.

• css: This folder extends or overrides both common files to keep the structure
in the framework. It consists of the following files:

 ° HelloWorld.css: This is the main CSS file
 ° Reset.css: This file brings all rendering-oriented engines to a

common ground

• images: This folder contains images for separate image locations to be called
in HTML, directly or using CSS.

• js: This folder extends the application instance object and common app class.
It contains some predefined files:

 ° HelloWorld.js: This is the main application JavaScript file.
 ° Message.js: This JavaScript file holds JSON objects that contain app

messages. It can be used as a source for localization translation.

• application-descriptor.xml: This file holds application metadata. Its
attributes will be discussed during deployment of this application later in
this chapter.

Creating a Basic Worklight Application

[38]

In the following screenshot, we highlight the project application structure and
resources:

The common directory structure of a Worklight app

If you proceed with the hybrid application wizard you will have server-side
configuration under the following folders structure:

• bin: This folder contains generated .wlapp and .wladapter files that can be
used to deploy to a remote Worklight server.

• server: This folder is used for server-side customization of a project.
 ° Conf: This folder contains a file called worklight.properties, used

to set up properties for the server
 ° authenticationConfig.xml: This file is used to set

authentication realms
 ° login.html: This file is used to present a login form for web

environments and Worklight Console

• java: This folder holds Java classes that will be compiled and deployed to
IBM Worklight Server for handling customized Java code-based application.

• lib: This folder contains some additional JAR files that can be used to extend
Java class functionalities and can be deployed on the server. You can see the
folder structure of the bin and server folders in the following screenshot:

Chapter 3

[39]

Now put in some additional code to provide a better display to your
mobile application:

1. Open HelloWorld/common/css/HelloWorld.css and add the following
lines to define style:
/* HelloWorld CSS */
#AppBody {
 height: 460px;
 margin: 0 auto;
 width: 320px;
 background-color: #ccc;
 overflow: hidden;
 overflow-y: auto;
}
#header {
 text-align: center;
 background-color: #1D4D90;
 color: #F9FAFB;
 font-size: 16px;
 height: 38px;
 line-height: 38px;
 border-bottom: 1px solid #BBBBBB;
}

#wrapper {
 padding: 10px;
}

Creating a Basic Worklight Application

[40]

Downloading the example code
You can download the example code files for all Packt books you have
purchased through your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

2. Now move to the main HTML file named HelloWorld.html in the app/
common folder. When you open this file, you'll find generated code with
referenced script and CSS files within the same with <body> tag.
Note that the <body> tag must have the ID attribute value set to the content.
If you change the value, the application environment does not initialize
correctly.

3. Now place the following lines of the code under the <body> tag:
<div id="AppBody">
 <div id="header">
 <div id="wrapper"> Welcome </div>
 </div>
 Hello World
</div>

Now our HelloWorld application is done. You can preview our first designed page
in Rich Page Editor (RPE) provided by IDE.

Rich Page Editor
The Rich Page Editor provides an interface for the development of mobile
applications. This interface comprises easily editable HTML files and can be added
to the Dojo and jQuery widgets. It is commonly used for multitabbed editors, which
show multiple page views of different representations of an HTML page. There are
three components—Source, Design, and Split views—in Rich Page Editor with which
you can view and work with your files or page.

Every view in Rich Page Editor works in conjunction with several other tools that
can be used to show in the web page previews. The source view component helps
you to view its interface with the source code directly. Besides this, the view contains
Mobile, Palette, Outline, and Properties views as a source for user interface.

Chapter 3

[41]

Split view shows both the interface and the source code on the same page to help
you visualize your changes as you make them. You can split the view horizontally or
vertically. The following screenshot shows our first designed page in Split view:

Design view provides the functionality of a WYSIWYG environment. It helps to
create and edit files while you're viewing your source code and the actual interface
reflects every single change. It provides complete visual interaction to the developer
with its feature that allows dragging-and-dropping items and components from
palettes and enterprise explorer views. These tabular enhancements have features
for device selection as well, which provides a holistic view for device specification
and skins you created for every environment. This preview holds compatibilities
as browser, so if anyone needs to testify any mobile web application then it can be
highly recommended for it. Whereas, device selects the size of any specified mobile
to view and to have the effects related to size. Skin selection allows you to use
your defined view for Android, iPhone, or Blackberry. By selecting the particular
skin, you can switch to another device-specific style view to modify the layout and
appearance of the page.

Once we are done with verifying the page layout and text in RPE, it is ready to test
on different mobile platforms by using the Adding Environment feature of IBM
Worklight Studio.

Creating a Basic Worklight Application

[42]

Adding an environment
We have covered IBM Worklight Studio features and what they offer developers.
It's time to see how this tool and plugin will make your life even easier. The cross-
platform development feature is a great deal to implement. It provides you with the
means to achieve cross-development environment without any hurdles and with
just a few clicks within its efficient interface. In Chapter 5, Adding an Adapter, we will
cover this topic in detail for other environments as well.

To add an environment for Android, iPhone, or any other platform, right-click on
the Apps folder next to the adapters and navigate to New | Worklight Environment.
You will see that a dialog box appears with checkboxes for currently supported
environments, which you need to create an application for. The following screenshot
illustrates this feature—we're adding an Android environment for this application:

After clicking on the Finish button, Studio automatically transforms and generates
an Android project for you. In the following screenshot, you can see the android
icon, which contains native directories for its source code:

Chapter 3

[43]

The following tasks should be completed to build the mobile application for any
specific environment:

• Verifying the server configuration
• Building the application

Verifying the server configuration
You will use the local development server provided by IBM Worklight Studio.
Before we start the bringing together of application components, you should verify
the ports and server URL defined in application-descriptor.xml under the
<WorklightServerRootURL> tag. Please use the following steps to configure your
application for server communication:

1. Open the file named application-descriptor.xml within the app/
HelloWorld folder.

2. Locate the tag <worklightServerRootURL>.
3. Adjust your Worklight server name and port to match the target

environment using the following format:
<worklightServerRootURL>
 http://[wl_server_name][:port][/path]
 </worklightServerRootURL>

4. Save and close the application-descriptor.xml file.

Creating a Basic Worklight Application

[44]

Please look at the following screenshot for the preceding changes in application-
descriptor.xml:

Building the application
The specified project web application archive and Worklight application files must
be deployed to IBM Worklight Server for every specified environment. The following
are the files that must be built and generated to deploy and run the HelloWorld
application on Worklight Server:

• HelloWorld.war

• HelloWorld.wlapp

• HelloWorld-android.wlapp (for Android)

These .wlapp files contain the actual web content of the application, which includes
the HTML, CSS, and JavaScript files that were created in the previous section.

Application skins
If you need to create a piece of code that determines a specific device, you have to
create a separate skin.

Chapter 3

[45]

To set up the application skin, right-click on Worklight Application in New
Worklight Application Skin. In the dialog box that appears, select the environment
for which you need to create a skin for the mobile application.

This folder describes the Android skin, which contains HTML, CSS, and JS. The
skin for every defined environment is situated within the apps folder shown in the
following screenshot. This folder will be responsible for selecting the screen to be
loaded in the specified environment.

Skins are a sub variant that tells the related family of style classes to choose the
identified skin as the interface of that specified environment. At runtime, only the
skin that corresponds to the target device is applied.

Application skins are supported only for these environments:
Android, iPhone, iPad, and BlackBerry 6, 7, and 10.

www.allitebooks.com

http://www.allitebooks.org

Creating a Basic Worklight Application

[46]

Previewing an application in the mobile
simulator
The last step to executing the application is to deploy it on Worklight Server. Use the
following steps to achieve that:

1. Select the HelloWorld project, right-click on app/HelloWorld/common, and
navigate to Run As | Build All and Deploy.

2. Open the browser and provide the URL http://<wl_server_
name>:[port]/console.

3. You will see Worklight Console, where you can see the deployed
applications and adapters. The following screenshot shows the console
web interface:

To preview your developed application in Android, perform the following steps:

1. Right-click on Project App and navigate to Run As | Build All and Deploy.
2. You will see an Android project created with the name

HelloWorldHelloWorldAndroid. This is the Android project that is
generated on behalf of your Worklight app.

Chapter 3

[47]

3. Right-click on Android Project and then navigate to Run As | Android
Application. You will see the simulator is running and loading your
application as shown in the following screenshot:

Creating a Basic Worklight Application

[48]

4. After loading is complete, you will see your Worklight hybrid mobile
application is running on Android.

Summary
In this chapter, we covered steps to create a simple IBM Worklight application in
the Android environment and an overview of resources. Skin environments are also
highlighted with respect to different mobile interfaces. We talked about Rich Page
Editor, environment settings, and server configuration, which will allow you to
proceed with mobile development using IBM Worklight in an efficient way.

We will be looking at some frameworks and features in the next chapter that will
provide more core development expertise to the reader.

Customizing the
Worklight Application

Hybrid mobile applications are certainly reliable and have consistently proven to be
efficient for the implementation of scenarios. These applications can access native
mobile features such as the camera, compass, directories, and settings. This reduces
costs and the duration of the development life cycle, which is the biggest advantage.
In this chapter, we will have an introduction to and learn how to develop mobile
applications with IBM Worklight.

If your perspective is primarily relevant to marketing or public interaction, a hybrid
application is almost always going to make sense as a practical first step in your
mobile outreach strategy. This is because a hybrid application has a number of
advantages over native applications, including broader accessibility, compatibility,
and cost-effectiveness. We will now discuss web technologies in detail.

A quick overview of HTML5
HTML5 is the most versatile and easy-to-use web technology in the modern world.
Most of it has been constructed in Web Hypertext Application Technology Working
Group (WHATWG). The World Wide Web's markup language has always been
HTML. HTML was mainly created to make web development an easy task. Besides,
the general design and adaptations have made it possible to utilize HTML to define
a number of documents. The area of concern that's been occasionally addressed
by HTML is ambiguous and is referred to as Web Application Development. This
HTML specification attempts to improve web application development structure. In
this specification, the ability to update HTML references in order to address issues
regarding web compatibility has also been enhanced.

Customizing the Worklight Application

[50]

The IBM Worklight client-side API
In this chapter, you will learn how the IBM Worklight client-side API can improve
mobile application development. You will also see the IBM Worklight server-
side API improve client/server integration and communication between mobile
applications and back end systems.

The IBM Worklight client-side API allows mobile applications to access most of the
features that are available in IBM Worklight during runtime, in order to get access
to some defined libraries that appear to be bundled into the mobile application.
Integration of the libraries for your mobile application using Worklight Server is
used to access predefined communication interfaces. These libraries also offer unified
access to native device features, which streamlines application development.

The IBM Worklight client-side API contains hybrid, native, mixed hybrid, and
web-based APIs. Besides, it extends those of these APIs that are responsible for
supporting every mobile development framework. The development framework
for a mobile application is used to improve security including custom and built-in
authentication mechanisms for IBM Worklight provided by client-side API modules.
It provides a semantic connection between web technologies such as HTML5, CSS3,
and JavaScript with native functions that are available for different mobile platforms.

The WLClient JavaScript client library
This collection of topics lists the public methods of the IBM Worklight runtime client
API for mobile apps, desktop, and the Web.

WLClient is a JavaScript client library that provides access to IBM Worklight
capabilities. This library initializes the re-rendering of applications. It manages the
authenticated sessions, all general information handling, data corporate information
systems for the purpose of manipulation, storing and retrieving user preferences
throughout the sessions, internationalized application texts, and environment-
specific UI behavior. It stores the custom log lines, which deal with special tables
that exist in the database, in order to prepare audits and reports. It is used to write
debug lines on the logger window and device-specific functions for iPhone, Android,
Windows Mobile, and BlackBerry.

It contains asynchronous JavaScript calls, which takes an options parameter.
In reply to the JavaScript call, success and failure handlers receive a response
parameter. The API consists of many non-linear calls, which we will be
demonstrating here.

Chapter 4

[51]

The function onSuccess is used to initialize the application. If an onFailure
function is not passed, a default onFailure function is called. If onFailure is
passed, it overrides any specific failure-handling function. The WL.Client library
contains the following methods:

• WL.Client.init: This method sets the WL.Client object. The options for
methods are present in the initOptions.js file. The syntax for WL.Client.
init is WL.Client.init({options}).

• WL.Client.invokeProcedure: This is a method that invokes a procedure
that is exposed by an IBM Worklight Adapter. The syntax for WL.Client.
invokeProcedure is WL.Client invokeProcedure (invocationData,
options).

• WL.Client.isConnected: This is a method that has been deprecated since
IBM Worklight v4.1.3. Use the WL.Device.getNetworkInfo method instead.
It returns true if the application is connected to IBM Worklight Server. The
syntax for WL.Client.isConnected is: WL.Client.isConnected().

• WL.Client.isUserAuthenticated: This is a method that checks whether
the user is authenticated in a specified resource realm or in the resource
realm that was assigned to the application when it was deployed. This
method returns true if the user is authenticated in the realm and false
otherwise. The syntax for WL.Client.isUserAuthenticated is WL.Client.
isUserAuthenticated(realm).

• WL.Client.login: This method is used to log in to a specific realm and it is
an asynchronous function. The syntax for WL.Client.login is WL.Client.
login(realm, options).

• WL.Client.logout: This method logs out to a specific realm and it is an
asynchronous function. The syntax for WL.Client.logout is WL.Client.
logout(realm, options).

Besides these, there are some other WL.Client implementations that are stated
according to the behavior of a particular application.

Customizing the Worklight Application

[52]

Exploring Dojo Mobile
Regarding the Dojo UI framework, you'll learn about Dojo Mobile in detail. Dojo
Mobile, an extension for Dojo Toolkit, provides a series of widgets, or components,
optimized for use on a mobile device, such as a smartphone or tablet. The Dojo
framework is an extension of JavaScript and provides a built-in library which
contains custom components such as text fields, validation menus, and image
galleries. The components are modelled on their native counterparts and will look
and feel native to those familiar with smartphone applications. The components are
completely customizable using themes that let you make various customizations,
such as pushing different sets of styles to iOS and Android users.

Designing your first Dojo application
In this section, you will learn how to build a very simple mobile application that
contains some basic Dojo components in only a few steps using Worklight Studio.
You will also learn how to use the Dojo Mobile Application architecture with page
views, listItems, and Dojo Toolkit implementation. It is a JavaScript framework
that enables cross-platform development of mobile applications.

The following steps show you how to create a mobile application, using the browser
visualization, Worklight Studio virtualization.

1. To start with, create a Worklight hybrid application.

Chapter 4

[53]

2. Select the checkbox to add Dojo Toolkit. It will automatically add Dojo
Toolkit to the environment of the particular application.

3. Click on Finish.

4. The following screenshot shows the folder structure of the project
DojoFirstApp, which includes complete Dojo Toolkit.

Customizing the Worklight Application

[54]

5. After the completion of the New Worklight Project wizard, look at the right-
hand side of Worklight Studio. A palette view appears, in which you will
find Dojo widgets and components. You can choose any of the widgets for
your application. The following screenshot shows the Dojo palette:

6. Open apps/HelloWorld/common/HelloWorld.html. Select its Design view
instead of Source or Split.

7. Select View, under Dojo Mobile Widgets and drag it to the Design screen of
your HTML page named HelloWorld.html. Define the parameters as shown
in the following screenshot and then hit Finish:

Chapter 4

[55]

8. You will see the Design view as shown in the following screenshot:

9. If you click on the Source or Split options, you'll have the following code to
generate a mobile screen with a header:
<div data-dojo-type="dojox.mobile.View" id="HelloWorld"
 data-dojo-props="selected:true">
<h1 data-dojo-type="dojox.mobile.Heading"
 data-dojo-props="label:'Worklight Dojo
Mobile',moveTo:'HelloWorld'"></h1>
</div>

10. Click on ListItem and drag it to the page view.

www.allitebooks.com

http://www.allitebooks.org

Customizing the Worklight Application

[56]

11. These are actually list items so provide the data in sequence. The following
screenshot shows a basic view of list items, you can add as many as you need.

The following is the complete code after adding the header and ListItem into our
mobile application:

<body onload="WL.Client.init({})" id="content" style="display: none">
 <div data-dojo-type="dojox.mobile.View" id="HelloWorld"
 data-dojo-props="selected:true">
 <h1 data-dojo-type="dojox.mobile.Heading"
 data-dojo-props="label:'Worklight Dojo
Mobile',moveTo:'HelloWorld'"></h1>
 <div data-dojo-type="dojox.mobile.ListItem"
 data-dojo-props="label:'ListItem3'"></div>
 <div data-dojo-type="dojox.mobile.ListItem"
 data-dojo-props="label:'ListItem2'"></div>
 <div data-dojo-type="dojox.mobile.ListItem"
 data-dojo-props="label:'ListItem3'"></div>
 </div>
 <!-- application UI goes here -->
 <script src="js/HelloWorld.js"></script>
 <script src="js/messages.js"></script>
 <script src="js/auth.js"></script>
</body>

Chapter 4

[57]

Adding an environment in IBM Worklight
Using Worklight Studio, developers can simply add environments to their
Worklight application and start writing code that is specific to multiple mobile
or web environments. If you need to maintain a version of your IBM Worklight
application for any specific mobile platform, then you should add the environment
that originated from a particular platform to your application. For instance, if you
want to create an Android version of your Worklight app, you must add an Android
environment. When you start adding an environment in your application, it actually
creates a new folder, called the common folder, for that specified environment. It
contains all the resources for that new environment.

While creating a project in Worklight, it creates a common folder within the app to use
web technologies such as HTML5 and JS to implement UI and logic with frameworks
such as jQuery and Dojo. This common folder stores its files in the following structure:

The Worklight Common Folder structure

If we move on this folder hierarchy, the images folder holds images; these images
override existing images with the same names in the common environment. The css
folder holds styling files that override or extend the CSS and stylesheet files in the
common environment, while the js folder holds JavaScript files that override the
common JavaScript objects within the application. The class that is defined in the
desired environment folder overrides the common app class. Finally, the new HTML
file extends the prebuilt HTML file in common Worklight environment that has a
similar name.

Customizing the Worklight Application

[58]

The common folder in the Worklight application is responsible for holding the code
you write to design or develop pages. Other resources are transferred from this
folder to several environments.

Let's start with adding the Android environment to our Dojo sample app, which we
created in the previous chapter. Please perform the following steps:

1. Open your application in Worklight Studio or Eclipse. To learn how to create
a Worklight project, please have a look at the previous chapter. The following
screenshot shows the structure of a Worklight application in Project
Explorer:

The Worklight project structure diagram

Chapter 4

[59]

2. To add the Android environment into your Worklight application, right-click
on the project and follow the menu as shown in following screenshot, and
navigate to New | Worklight Environment.

Customizing the Worklight Application

[60]

3. It will open the Worklight Environment window, where you need to
fill up the required values for adding an environment in your project.
Include the Project name combobox for the selection of a Worklight
project and the Application/Component combobox to select a Worklight
application. Finally, select the Android environment checkbox between other
environment checkboxes as shown in the following screenshot:

Adding a mobile/desktop Worklight environment

4. Click on the Finish button.

Chapter 4

[61]

After completion of all the preceding steps, you can see the android folder structure
as shown in the following screenshot:

The Android environment

Now, we can move on with a brief description regarding specific environment
resources.

Application resources
The Worklight platform allows developers to write applications by means of web
or native technologies. Both technologies can also be used in a single app. Both web
and native client-side app resources must be placed under the common folder with
a predefined structure. Depending on the environment selection, IBM Worklight
Studio uses the application folder to generate and build these resources into the
app folder. However, to maintain production quality, you should provide all
defined resources that are mandatory for those environments in which the
application is executed.

Application-descriptor
The descriptor file contains metadata that is used to declare and define various facets
of the native API for the Android application.

Customizing the Worklight Application

[62]

This application-descriptor is written and can be modified in XML and a mandatory
file that allows you to store metadata in the root directory of the application. This
application descriptor file is automatically generated by Worklight Studio when you
initiate or create a Worklight application. In addition, this file can be improvised to
add some custom properties.

This metadata file handles property identifications, which will be used to
declare various attributes of the application. Worklight provides this file, named
application-descriptor.xml, located in the application's root directory.

The following code example shows the format of the the application-descriptor.
xml file for native API applications for Android:

<?xml version="1.0" encoding="UTF-8"?>
<nativeAndroidApp
 id="android"
 platformVersion="5.0.5"
 securityTest="security test name"
 version="1.0"
 xmlns="http://www.worklight.com/native-android-descriptor">
 <displayName>HelloWorld</displayName>
 <description>HelloWorld</description>
 <publicSigningKey>application public signing key</
publicSigningKey>
</nativeAndroidApp>

Let's understand line by line what it means to the application. To start with, the
<nativeAndroidApp> tag is actually used to define the Android environment or
added automatically when the developer adds the Android environment to the
application. This is the key element as you can see it contains multiple attributes to
configure the Android environment within the Worklight application. It has three
mandatory attributes, while one is optional as follows:

• id: This attribute defines the unique identification of the application. The ID
should be unique to the name of the application folder. It must be a string
that holds an alphanumeric character that must start with a letter. It may
have an underscore '_' character.

• platformVersion: This contains the platform version of IBM Worklight that
is used to build or develop the application.

• version: This element is used to assign the version of the application. This
value of the version attribute is a string that contains the major and minor
version numbers of the application. It is highlighted and visible on the
Marketplace or App Store, wherever the application is deployed for users to
download.

Chapter 4

[63]

• securityTest: This attribute is optional but it is subjected to specify a
security configuration. In case you give the client access to a protected
resource, this security implementation checks the client authentication. In
case of failure, Worklight initiates the process to authenticate based on the
credentials passed on.

The main HTML file
At the time of creating a Worklight application, one HTML file is constructed by IBM
Studio. We name the HTML file with the name of your app and use it to control and
design the UI of the application. This file is responsible for loading all the resources
that contain JavaScript and CSS. We need these to define the common elements of the
application, in which a script file is used to obtain the document events.

This main HTML file is located in the app/common directory and must contain a body
tag, and to set as content you must have the Id attribute defined in the body tag. If
the value is changed, the environment of the application is not initialized correctly.

Client scripts and stylesheets
JavaScript files are used to implement business logic and query integration between
the backend and predefined structures such as challenge handlers and message
dictionaries. These structures automatically translate the defined string according to
the declared values in a designated file. All the scripts files are placed under the app/
common/js folder. CSS files are used to style application views and are placed under
the common/css folder.

The application icon
The application icon is used to specify the graphical identification of the created app.
The Worklight application comes with the default thumbnail image on creating the
app. Replacing the icon image would override the default image. This image must be
square and preferably of pixel 128 x 128 in size and placed under the common/images
folder of the app.

The splash screen
IBM Worklight creates the default splash image for each application environment
when adding the environment to the app. The splash screen loads with the image
while the application is being initialized. As it applies only to mobile environments,
the developer can change the default image by overriding it; the image dimension
must be the same as that of the app. This splash image can be found under the
[Environment]/native/www folder.

Customizing the Worklight Application

[64]

The Worklight client property file
When adding an environment in the IBM Worklight application, Studio will
create the required native API and the client property file for the corresponding
environment in the Worklight project. The name and the content format are
dependent on the selected environment.

Please follow this table for details in sequence:

Environment Worklight native and client properties

iOS

The WorklightAPI folder defines the IBM Worklight native
library.
The worklight.plist file is the client property file.

Android

The worklight-android.jar file defines the IBM Worklight
native library.
The wlclient.properties file is the client property file.

Java ME

The worklight-javame.jar file and the json4javame.jar
file together define the IBM Worklight native library.
The wlclient.properties file is the client property file.

These are brief descriptions to determine the property files with respect to
the environment.

The following screenshot shows you the Android resource hierarchy generated by
deploying the app to the Android environment.

Chapter 4

[65]

You must define the properties of this client property file before using it in your
native app for Android.

The following table lists the properties of the wlclient.properties file, their
descriptions, and possible examples for their values:

Property Description Values
wlServerProtocol This is the communication protocol for the

Worklight Server.
Http or https

wlServerHost This is the host name of the Worklight
Server.

localhost or
HostIP

wlServerPort This is the port for the IBM Worklight
Server. If this value is left blank, the
default port is used. If the value of the
wlServerProtocol property is https, you
must leave this value blank.

8080 or defined

wlServerContext This is the server context, which is
automatically generated.

/

wlAppId This is the application ID, as defined in the
application-descriptor.xml file.

HelloWorld or
AppName

wlAppVersion This is the application version, as defined
in the application-descriptor.xml
file.

1.0

wlEnvironment This property defines the IBM Worklight
environment. You must not modify the
value of this property.

androidnative

Customizing the Worklight Application

[66]

Exploring the Android application
environment
The Android environment for Worklight apps provides complete implementation
and structured resource handling for handling the environment. Here, we have to
generate the Android native project by deploying the Android environment added
to the Worklight project/app. Follow the given steps to initialize the Android project
for a particular environment:

1. Right-click on apps and navigate to HelloWorld | android.
2. On the menu that appears, select Run As | 2 Build Environment and

Deploy. After clicking on this option, the deployment process will start and
the status can be seen in the Console window under Worklight Studio |
Eclipse.

3. After deployment of the environment, you can see the Android project
generated in the same workspace with a combination of project name, app
name, and selected mobile/desktop environment.

An Android project generated after build

The the Android application is finally generated and ready to execute with the
resources. Now, we will brief you about the Android native project resource
structure. You will see a basic Android application. The following table describes the
structure and information of each folder that every Android project contains:

Chapter 4

[67]

Folder Description
src This folder holds the Java files.

gen

Once the project is compiled with no error, this folder holds the
generated Java files by Android Development Toolkit. It also
includes R.java and interfaces created from the Android Interface
Definition Language (AIDL) files.

res
This folder is used to store application resource files, including
drawable files such as images, application activities layout files, and
string values.

res/drawable
The drawable folder is used to store the several bitmap files such
as PNG, JPEG, GIF, and 9-patch image files and a list of drawable
resources supported by the Android OS.

res/values

The values folder holds XML files that are used to store various
strings specifying name and variable relationships. These strings
are generated by reference in the R class for them to be accessed
anywhere in the project.

res/layout

The layout folder holds the layout files. They are written in XML
and are used to define and organize Android objects (for example,
textboxes, buttons, and so on) on the screen with different layouts
supported in the Android OS.

Android also has some major files in the project. Let start exploring them one by one:

• AndroidManifest.xml: This XML file is one of the core files of the Android
project. It holds overall information about application services and activities
and is used to define permissions for applications such as allowing an
application to access the Internet or allowing an application to write.

• MainLayout.xml: This file describes the layout of the page. This means it is
responsible for the placement of every component (such as textboxes, labels,
radio buttons, user defined components, and so on) on the app screen.

• Activity: Every application that occupies the entire device screen needs at
least one class that inherits from the Activity class. One major method is
called OnCreate. This method initiates the app and loads the layout page.

There are a variety of devices powered by Android, and not all of them provide
the same features and capabilities. In order to prevent your application from being
installed on devices that lack features needed by your application, it's important that
you clearly define a profile for the types of devices your application supports by
declaring device and software requirements in your manifest file.

Customizing the Worklight Application

[68]

Summary
In this chapter regarding IBM Worklight application environments, we have covered
all the necessary development and deployment setups for an Android environment.
Furthermore, the structure of the Android environment with all the resources
has been covered in this chapter. After reading this chapter, you will be confident
enough to handle the Android mobile environment and will be able to generate
native mobile apps.

In the next chapter, we will look at some data handling using adapters that will be
utilized for data manipulation and mapping to your application.

Adding an Adapter
In the previous chapter, we discussed IBM Worklight's client-side tools and their
capabilities. We also discussed the range of components required to build a mobile
application interface and managed to run them on real devices. In this chapter,
we'll examine the Worklight's server-side adapter component in detail to understand
how the adapters are utilized to build a connection between mobile applications
and the company's backend business service for data manipulation and handling.
The main purpose and reason of this chapter is to introduce you to the mechanism
of data communication and handling throughout the mobile application in a
heightened manner.

IBM Worklight Adapter concept
IBM Worklight Server provides us with the adapter as a way to communicate with
the organization's business processes. A developer can manage to create a request to
web services, REST services, and databases in a very structured way to compound
information from various sources where the developer can perform necessary server-
side logic on this response data to mobile devices.

Worklight Adapter works as an interpreter between mobile applications and
backend enterprise systems with a flexible authentication facility to open a secure
bridge between them. Moreover, adapter is developed in JavaScript and XSL, where
the developer needs to write powerful server-side JavaScript code to integrate it with
backend applications, and use XSL to transform hierarchical response data to JSON.

Adding an Adapter

[70]

An IBM Worklight Adapter contains server-side code in its developer-defined
procedures to retrieve data from the remote database and enterprise application
services. Worklight Adapters are deployed on the IBM Worklight Server and can
be accessed by IBM Worklight apps via a simple invocation API. Please refer to the
following diagram to understand the concept of adapter calling activities in the IBM
Worklight platform:

The diagram also shows a high-level view of the communication components in the
Worklight platform; every adapter has the same steps for all the components:

• The mobile client creates a request to the adapter, which runs in Worklight
Server

• The adapter sends this web request to destination sources such as web
services and databases

• The services return the response to the adapter in an XML/JSON format
• Finally, the adapter returns the response to the mobile client in the JSON/

XML format

Exploring adapter files
A developer can use JavaScript, XML, and XSL to develop IBM Worklight Adapter,
and each adapter must have following elements to run on Worklight Server:

• The XML file: This describes the connectivity for the backend system, to
which the adapter connects and lists the procedure that is exposed by it to
other adapters and applications.

Chapter 5

[71]

• The JavaScript file: This contains the implementation of the procedure
declared in the XML file.

• The XSL file: This contains zero or more XSL files, each containing a
transformation from the raw XML data retrieved by the adapter. This is
returned to JSON through adapter procedures.

The XML file has a main root element, <adapter>, and other subelements, such as
<connectivity> and <procedure>, which must be declared to configure adapter in
Worklight application. To get more detail on each element, please use the following
IBM information center's URL:

http://pic.dhe.ibm.com/infocenter/wrklight/v5r0m5/index.
jsp?topic=%2Fcom.ibm.worklight.help.doc%2Fdevref%2Fr_the_adapter_xml_
file.html

An adapter is a collection of JavaScript functions that are remotely invoked by an
application. These functions include the implementation for each procedure that is
defined in the adapter.

The following list defines the procedure's rules in adapter JavaScript:

• A procedure must be declared in the adapter XML file
• The adapter JavaScript file must be used to implement the procedure's logic
• The name declared in the XML file must be used for the procedure's

JavaScript function

Types of adapters
IBM Worklight provides three types of adapters to help the Worklight developer
choose an appropriate adapter that depends on the developer's need and make
his/her life easier with an XML configuration that has simple elements, as discussed
earlier:

• HTTP adapters
• SQL adapters
• Cast Iron adapters

JavaScript is used to write the adapter code and it runs on a server on IBM
Worklight's mobile application platform. IBM Worklight uses the Rhino JavaScript
engine internally to run the JavaScript source code. Besides, a JMS adapter has
been introduced in newer versions, which is used for messaging services and
response handling.

Adding an Adapter

[72]

HTTP adapters
IBM Worklight's HTTP adapter provides access to HTTP- and HTTPS-based
enterprise services and is used to invoke RESTful services and SOAP-based services
using the GET, POST, PUT, and DELETE methods into the request. For the response,
data can be received in the XML, JSON, and HTML formats, with the content type
defined in the request.

To cover the HTTP adapter example, we will use a real-time scenario by utilizing a
Flickr feed RESTful service and loading data from the live server. Later on, we will
manipulate this response data to utilize and create a sample demo app for Flickr in
http://www.flickr.com/services/feeds/.

To create a HTTP adapter in the Worklight project, please perform the
following steps:

1. Create a Worklight Project and name it FlickrDemo.
2. In the next screen, define the app name FlickrApp.

We already covered the steps for this project's creation in Chapter 3, Creating
a Basic Worklight Application, in case you have trouble creating the Worklight
Project.

3. In the Project Explorer, right-click on the adapter folder and navigate to
New | Worklight Adapter, as shown in the following screenshot:

Chapter 5

[73]

4. Select Project name as FlickrDemo from the combo, Adapter type as HTTP
Adapter, and finally, enter Adapter name as shown in following screenshot:

5. After clicking on Finish, this will generate a subfolder—the adapter folder.
This adapter folder will come up with three important autogenerated files
that include XML, JavaScript, and XSL, with default input text for these files.
They will have the same name that we gave to the main adapter file.

6. Now we need to create a procedure declaration and configure this adapter
to load the Flickr feed. Open the XML file and locate the <connectivity>
element that holds three important elements—protocol, domain, and port.
As we follow the Flickr feed's domain, we need to replace the domain value
with api.flickr.com, where port and protocol remain same. The following
code listing exposes the <connectivity> tag with these elements:
<connectivity>
<connectionPolicy xsi:type="http:HTTPConnectionPolicyType">
 <protocol>http</protocol>
 <domain>api.flickr.com</domain>
 <port>80</port>
</connectionPolicy>
<loadConstraints maxConcurrentConnectionsPerNode="2"/>
</connectivity>

Adding an Adapter

[74]

7. Another way to configure adapter is to use Adapter Editor. By double-
clicking on the adapter.xml file, the following editor will open in the IDE
where you can write the adapter description as well:

8. If you follow the wizard that was used to create the adapter, you will see
two default procedures/functions with these names: getStories and
getStoriesFiltered. These have already been defined in the recently
developed adapter. We recommend you to remove both the procedures
and add the new adapter procedure's name by using the Add button after
selecting the adapter's root element in the left window. When you click on
the Add button, it will open a pop-up window and select the Procedure item
in order to add it into the adapter. The following screenshot shows you how
you can add a procedure by defining a name, display, and description. You
can choose any adapter name, or you can use getFlickrFeed to define your
procedure's name.

Chapter 5

[75]

9. Once the procedure is added into the FlickrFeedAdapter.xml file, we are
done with the declaration part. Now you must write this adapter's behavior
in the JavaScript file. Open the .js file in the same generated adapter folder,
remove all existing content from it, and define the function with the same
procedure name that we used for the procedure. Use the following code
listing and paste it into the FlickrFeedAdapter-impl.js file, which will
later be used for the Flickr feed's request:

function getFlickrFeed() {
 var flickrFeedUrl =
 "/services/feeds/photos_public.gne?id=
 47906772@N05&lang=en-us&format=json";
 var input = {
 method : 'get',
 returnedContentType : 'plain',
 path : flickrFeedUrl,
 };
 var response = WL.Server.invokeHttp(input);

Adding an Adapter

[76]

 var responseText = response.text;
 varres = responseText.replace("jsonFlickrFeed(", "");
 res = res.substring(0, (res.length - 1));
 res = JSON.parse(res);
 returnres;
}

In the preceding code listing, var filckrFeedUrl holds the URL to call the
Flickr feed from the live site and bind it with the domain that we defined in the
FlickrFeedAdapter.xml file. The complete URL look like this:

http://api.flickr.com/services/feeds/photos_public.gne?id=47906772@
N05&lang=en-us&format=json

Please use following link to understand the feed's URL with all the parameter
definitions in detail:

http://www.flickr.com/services/feeds/docs/photos_public/

The WL.Server.invokeHttp(input) function provided in Worklight Server API
is responsible for the request/response in calling services. Now that we have done
our first procedure declaration and definition, it's time to test and verify the adapter's
result.

Before moving on to test the adapter's result, we need to deploy our adapter to the
Worklight Sever. To do that, we also need to build our adapter to make sure that
the error-free code will deploy itself into Worklight Server. In order to do that,
Worklight Studio provides the Deploy Worklight Adapter the option to complete
this procedure with a single click. Right-click on the FlickrFeedAdapter folder
under the adapter folder and navigate to Run As | Deploy Worklight Adapter, as
shown in the following screenshot:

Chapter 5

[77]

This will deploy the adapter on Worklight Server or check the console window for
the deployment status in the Worklight Console section. Now our adapter is ready
to invoke. Right-click on the FlickrFeedAdapter folder and navigate to Run As |
Invoke Worklight Procedure. Clicking on it will open the pop-up Edit Configuration
and Launch window and to invoke this, you have to select Project name, Adapter
name, Procedure name, and Parameters and then click on the Run button.

Adding an Adapter

[78]

After clicking on the Run button, the Invoke Procedure Result explorer window will
open in the IDE to display the results. If all the steps have been followed correctly so
far, then the response that the JSON data fetched from Flickr will be displayed in the
explorer window, as shown in the following screenshot:

If you have followed the steps correctly, you will have an output that is similar to the
preceding screenshot, which shows successful results from the Flickr feeds with your
own created adapter.

SQL adapters
IBM Worklight SQL adapter is designed to interact with any SQL data source and is
used to execute plain parameterized SQL queries and stored procedures to retrieve
and update data in the databases. Currently, Worklight SQL adapter supports the
following databases:

• MySQL
• Oracle 11g
• DB2

The JDBC connector driver for a specific database type can be downloaded from the
MySQL, DB2, and Oracle websites. The developer will have to add a specific driver
jar into the server | lib folder under Worklight project directory structure to make
it available to the app.

To get a clearer idea about the SQL adapter, we will include an exercise for you to
authenticate a user by matching the user credentials from the database. Through
this exercise, you will learn two basic things that include database connection and
performing a SQL using the SQL adapter. Creating a SQL adapter's steps is very much
similar to an HTTP adapter.

Chapter 5

[79]

Before diving into the creation of a SQL adapter, we would like you to have an
in-depth understanding of the SQL adapter, regarding its files and configuration
elements. A SQL adapter mainly has two important files—one is the .xml file that
is used to configure the data source and declare the procedures, and another is
the JavaScript for the definition of the declared procedures. The .xml file has the
<connectionPolicy> element under <connectivity>, which is used to configure
the connection type for an adapter. For a SQL adapter, a mandatory attribute
xsi:type must be set to a sql:SQLConnectionPolicy value.

The <connnectionPolicy> element provides you with two choices to connect with
the database. One is the <datasourceDefinition> subelement that is used to define
the data source and the other is the <dataSourceJNDIName> subelement that is used
for the JNDI Name of the data source provided by the application server.

To use the <dataSourceDefinition> subelement, the following elements must
be defined:

• driverClass: This is used to load the driver class; for example, com.mysql.
jdbc.Drive.

• url: This is used to specify the data source such as "jdbc.mysql:
//localhost:3306/dbName.

• user: This is used to specify the username that is used to access the database.
• password: This is used to specify the database's user password.

The following code listing shows us the structure of the preceding elements with
their configuration:

<connectivity>
<connectionPolicyxsi:type="sql:SQLConnectionPolicy">
<dataSourceDefinition>
 <driverClass>com.mysql.jdbc.Driver</driverClass>
 <url>jdbc:mysql://localhost:3306/dbName</url>
 <user>myPassword</user>
<password>myPassword</password>
 </dataSourceDefinition>
</connectionPolicy>
<loadConstraints maxConcurrentConnectionsPerNode="5"/>
</connectivity>

Declaring the procedure in a SQL adapter is same as an HTTP adapter, where
a .js file is used to define the SQL statement that executes under a procedure/
function. To create a SQL statement, Worklight Server API has a WL.Server.
createSQLStatement method and to invoke this SQL statement, the same Server
API has the WL.Server.invokeSQLStatement function.

Adding an Adapter

[80]

Later in this chapter, we will discuss both the functions in detail and implement the
creation of the SQL adapter's steps.

We will assume that you already have a database setup in your machine and
to use Worklight SQL adapter, we need to have a schema ready to test and run it.
The following code is a SQL script for the database and table that we have used in
our example:

CREATE SCHEMA `FlickrDemo`;

CREATE TABLE `FlickrDemo`. `Authentication` (
 `username` VARCHAR (50) NOT NULL,
 `password` VARCHAR (50) NOT NULL ,
`first_name` VARCHAR (45) NULL,
 `last_name` VARCHAR (45) NULL,
 UNIQUE INDEX `username_UNIQUE` (`username` ASC));

For the table data, use the following queries to prepare the record for the table that
will be created:

INSERT INTO `FlickrDemo`. `authentication` (`username`,
 `password`,`first_name`,`last_name`)VALUES('talhaH',
 '123456','Talha', 'Haroon');

INSERT INTO `FlickrDemo`. `authentication` (`username`,`password`,
 `first_name`,`last_name`)VALUES ('saifo', '123456',
 'Muhammad', 'Saifuddin');

Let's use the following steps to create a SQL adapter:

1. In Project Explorer, right-click on the adapter folder, navigate to New |
Worklight Adapter, and use following screenshot to fill up the values for
each required field:

Chapter 5

[81]

2. Use Adapter type SQL Adapter and define Adapter name, and click on the
Finish button. This will generate AuthSQLAdapter under the adapter folder
with two files—one is .xml and other is a .js file.

3. Now open the .xml file; you'll find that the default code is written for
you to configure the database source and procedure definition; we will
follow the same code with slight changes. You can use the following code to
make changes if you follow the same values into the new generated adapter
.xml file:
<connectivity>
<connectionPolicyxsi:type="sql:SQLConnectionPolicy">
<dataSourceDefinition>
 <driverClass>com.mysql.jdbc.Driver</driverClass>
 <url>jdbc:mysql://localhost:3306/flickrDemo</url>
 <user>root</user>
<password>root</password>
 </dataSourceDefinition>
</connectionPolicy>
<loadConstraints maxConcurrentConnectionsPerNode="5"/>
</connectivity>

Adding an Adapter

[82]

4. Defining the procedure in adapter.xml is the same as the procedure in an
HTTP adapter. As we use this database connection to authenticate the user,
we declare the procedure with the authenticateUser name, as shown in the
following code:
<procedure name="authenticateUser"/>

5. Now, open the adapter.js file to define the function with the same name
that we used to declare in the adapter.xml file to implement the procedure
logic. Don't forget the rules that we have mentioned earlier to define a
procedure in the adapter JavaScript file. You can copy the following code and
paste it the adapter.js file to follow up this example:
var procedure1Statement = WL.Server.createSQLStatement
 ("select * from authentication where username =?
 AND password =?");

Function authenticateUser(username, password) {
 return WL.Server.invokeSQLStatement ({
 preparedStatement : procedure1Statement,
 Parameters: [username, password]
 });
}

As shown in the preceding code, WL.Server.createSQLStatmenet is
used to create the SQL query; in this query, we will authenticate the user
by matching the username and password. A SQL statement's object must
always be defined outside the function. The second most important function
used in the authnticateUser function is WL.Server.invokeSQLStatement.
This is used to invoke SQL statement/queries and returns the result to the
application or procedure caller.

6. It's time to test what we have done so far before we deploy the adapter on
the server. In order to do this, we can use the same adapter deployment
and invoke the steps that we used in the HTTP adapter. When the Invoke
Adapter option is selected, the pop-up window will appear as shown in the
following screenshot:

Chapter 5

[83]

7. I hope that you're already familiar with the screen of the procedure's
call and selection at this stage. As this makes sense to you, we will also
provide a parameter as our procedure accepts two arguments to invoke
this procedure. So move on and click on Run; this will open the Invoke
Procedure Result explorer window in the IDE with the result as shown
in the following screenshot:

Adding an Adapter

[84]

Congratulations! You have successfully created the SQL adapter. The result is
retrieved as a JSON object where it is a property named isSuccessful, as shown
in the preceding screenshot, pointing out that the invocation was successful and
resultSet is an array of returned database records.

Invoking the adapter procedure
In general, we do face the problem of cross domain/origin security issues when
making a call to a server from JavaScript. Here, IBM Worklight's application
architecture is designed in a way to avoid these constraints so that the developer
can easily manage these procedure calls with the adapters that are deployed on IBM
Worklight Server.

The WL.Client.invokeProcedure function invokes the adapter's procedure that
has been exposed by an IBM Worklight Client API. This function accepts two
parameters, the first one is mandatory and second one is optional, as shown in the
following code:

WL.Client.invokeProcedure(invocationData, options)

The parameter's details are listed as follows:

• invocationData: This contains three configuration parameters—the adapter
name, procedure name, and parameters to be passed as JSON objects.

• options: This is an optional parameter that is passed as a standard option
object and defines different properties, which are listed as follows:

 ° timeout: This accepts an integer number of milliseconds, which will
be used to wait for the server's response before it fails with a request
timeout.

 ° onSuccess: This is a success handler used for a callback function to
receive the data in a standard response object. The isSuccessful
attribute of the invocationResult property is true.

 ° onFailure: This is a failure handler used for a callback function
to receive a standard response object with technical failure. This
resulted in the same invocationResult property, with the
isSuccessful attribute set to true.

Chapter 5

[85]

The InvocationData parameter syntax must be the same as the following
JSON block:

var invocationData = {
 adapter : 'AdapterOne', // adapter name
 procedure : 'procedureOne', // procedure name
 parameters : [] // parameters if any
};

To invoke a procedure from the client application, the WL.Client.invokeProcedure
function is used to hit the request, which takes the invocationData and both success
and failure callback methods. The syntax that is used to call the adapter procedure
using the invokeProcedure method will be like the following code:

WL.Client.invokeProcedure(invocationData, {
 onSuccess: handleSuccess,
 onFailure: handleFailure,
});

function handleSuccess(result){
 WL.Logger.debug(JSON.stringify(result));
}

function handleFailure(result){
 WL.Logger.debug(JSON.stringify(result));
}

When the adapter's procedure is invoked by the invocationResult property that
is included in the response, which is received on both success and failure handler
functions. Furthermore, this invocationResult property has one more attribute
defined with the name isSuccesful, which represents the Boolean data type. This
isSuccessful attribute contains the true value when the procedure invocation is
successful or is false when the procedure invocation fails.

Calling Java code using an adapter
Worklight Adapter is a server-side entity and the adapter is implemented in
JavaScript, where the developer is limited to performing complex functions such as
data encryption, accessing and maintaining disturbed directory information such
as the Lightweight Directory Access Protocol (LDAP), custom or utility API's such
as iText to generate a PDF document, and so on. As most of the available utility
libraries are commonly written in Java and PHP languages, JavaScript is not enough
to handle these kind of features. To overcome this issue, IBM Worklight provides
us with a way to write Java code within the application and calls it from the adapter
using the JavaScript code.

Adding an Adapter

[86]

To write the Java code, Worklight provides us with the java folder within the
server directory. Moreover, IBM Worklight Studio automatically builds the Java
files and deploys them to the IBM Worklight Server.

Note that the developer will have to declare the package to add a Java class into the
project, and the package name must start with com, org, or net to be defined under
the Worklight project.

To demonstrate this concept, we will create a Java class and define a method that
accepts a string and converts it into a hashcode using MD5 algorithm. Using the
adapter function, we will this hits java method, which returns the hashcode of the
given input.

1. In the first step, we need to create the java class in the server/java folder
under the Worklight Project, as shown in the following screenshot.

2. Selecting Class from menu will open the class' definition window.
Please note a few things in the following screenshot—you must define any
Package name that starts with com, net, or org and declare the class name
with any name you like, or you can use the same values that we used in the
following screenshot:

Chapter 5

[87]

3. When you click on Finish, the blank class is created in the server/java
folder. Open this file and paste the following code snippet into it:
package com.demo.util;

import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;

public class DemoUtil {

 public String convertHash (String password) {
 StringBuffer sb = null;
 try {
 MessageDigest md = MessageDigest.getInstance("MD5");
 md.update(password.getBytes());

Adding an Adapter

[88]

 byte byteData[] = md.digest();
 sb = new StringBuffer();
 for (int i = 0; i < byteData.length; i++) {
 sb.append(Integer.toString((byteData[i] & 0xff)
 + 0x100, 16).substring(1));
 }
 } catch (NoSuchAlgorithmException e) {
 e.printStackTrace();
 }
 return sb.toString();
 }
}

This DemoUtil class has only one method name, convertHash, which is used to
accept the string type's value and convert this hashcode using the MD5 algorithm
and finally return the converted string to the caller.

Invoking Java code from the adapter
To invoke this Java code, we add the procedure into the same HTTP adapter with the
testJavaCode name in the adapter.xml file, as shown in the following code:

<procedure name="testJavaCode"></procedure>

Now, add the function in the same adapter.js file and if you're following the same
example, you can paste the following code into your adapter.js file:

function testJavaCode() {
 var obj = new com.demo.util.DemoUtil();
 return { result : obj.convertHash("123456"),}
}

First, we create the object of our class with a fully qualified name using a package
and then we call the class method covertHash using the same object, passing a string
value. Finally, we return the JSON format result.

Now, follow the same steps to deploy and invoke the adapter's procedure using
the IDE option, select the testJavaCode procedure in the procedure combo in
the Edit Configuration and Launch window, and click on Run. This will print a
result that will be similar to the following listing in the Invoke Procedure Result
explorer window:

{
 "isSuccessful": true,
 "result": "e10adc3949ba59abbe56e057f20f883e"
}

Chapter 5

[89]

Summary
So far, we have covered and understood the power of adapters in Worklight with
its different types provided by the IBM Worklight bundle and figured out how each
adapter's type can be utilized between mobile and enterprise applications to deliver
data between them. We also saw how IBM Worklight proves itself to be the best and
easiest way to interact with backend services and databases using an adapter with
an efficient client code in JavaScript. In the next chapter, we will cover another core
topic of how to apply security while transmitting data between the enterprise and
mobile application for the authorized user.

Authentication and Security
So far, we have covered data handling using multiple features and techniques of
mobile and enterprise data applications by using SQL and HTTP adapters. In this
chapter, we will explore the security capabilities of IBM Worklight.

We can protect our applications and adapter procedures against unauthorized access
request and transfer secure data between mobile and enterprise applications. We will
also learn about the general security principles, concepts, and terminologies.

Worklight has a built-in authentication framework that allows the developer
to configure and use it with very little effort. The Worklight project has an
authentication configuration file, which is used to declare and force security
on mobile applications, adapters, data, and web resources, which consist of the
following security entities.

We will talk about the various predefined authentication realms and security tests
that are provided in Worklight out of the box.

To identify the importance of mobile security, you can see that in today's life, we
keep our personal and business data on mobile devices. The data and applications
are both important to us. Both the data and applications should be protected against
unauthorized access, particularly if they contain sensitive information, which is
transmitted over the network. There are number of ways via which a device can be
compromised, and it can leak data to malicious users.

Worklight security principles, concepts,
and terminologies
IBM Worklight provides various security roles to protect applications, adapter
procedures, and static resources from an unauthorized access.

Authentication and Security

[92]

Each role can be defined by a security test that comprises one or more authentication
realms. The authentication realm defines a process that will be used to authenticate
the users.

The authentication realm has the following parts:

• Challenge handler: This is a component on the device side
• Authenticator and login module: This is a component on the server

One authentication realm can be used to protect multiple resources. We will
look into each component in detail.

• Device Request Flow: The following screenshot shows a device that makes
a request to access a protected resource, for example, an adapter function, on
the server. In response to the request, the server sends back an authentication
challenge to the device to submit its authenticity:

An tries to acess
the protected resource.

unauthenticated request
The Worklight Server asks the client to provide
credentials (this mechanism is called a challenge).

The collects the user credentials.
The retrieves the collected
credentials from the , validates them
and builds the object if the validation
passes.

Authenticator
Login module

Authenticator
user identity

The detects the
challenge, collects the user credentials, and
sends them to the

Challenge handler

Authenticator.

The Client application automatically reissues
the original request.

An authentication success message is returned to
the client application.

Request/Response flow between Worklight application and enterprise server diagram

Challenge handler
The challenge handler component is written in JavaScript, and it is used to control
the authentication process. Whenever WL Server sends a response, challenge handler
is responsible to detect any possible authentication challenge that the server has sent
over to it. Once a challenge handler has detected an authentication challenge that has
come from the server, it will collect the required credentials on the device and will
send them back to the server for further processing.

For example, a user is trying to access a protected adapter function, let's say a
database record. WL Server will automatically detect this action and return a
challenge to the device to prove its authenticity. Now, when the response comes back
to the device, a challenge handler will further process it by collecting credentials and
sending them back to the WL Server.

Chapter 6

[93]

There can be multiple challenge handler instances for each realm application that
needs to be authenticated. When an authentication flow is completed, the challenge
handler sends a notification back to the Worklight framework indicating whether the
authentication was a success or a failure.

There are some predefined methods that you will use to create a challenge handler
and submit credentials back to the WL Server. We will learn about them later.

Authenticator
The authenticator component is written in the Java language and exists on the
server side. It is used to collect the credentials sent by a client application. The
credentials are passed on to a login module for validation. It can be used to collect
any type of information accessible from an HTTP request object—cookies, headers,
body, or any other properties. One authenticator type can be used by multiple
authentication realms.

The following diagram shows how the same authenticator type can be used for
several realms.

Security Test A

Security Test B

Security Test C

Authenticator 1

Realm 1

Login Module 1

Authenticator 1

Realm 2

Login Module 2

Authenticator 2

Realm 3

Login Module 2

These are the three predefined authenticators present in Worklight Server:

• Adapter-based authenticator: This authenticator is implemented via adapter
procedures to collect and validate credentials from the client application.

Authentication and Security

[94]

• Form-based authenticator: This authenticator sends a challenge in the form
of an HTML login form to clients. It is useful for both web environments as
well as mobile applications.

• Header-based authenticator: This authenticator does not check for
interactive credentials' collection but is used to check for specific
HTTP headers.

In addition to a predefined authenticator, a user can create his or her own
authenticator components in Java.

The login module
A login module exists on the WL Server, and it is used to verify the user credentials
and then create a user identity object, which contains the user properties throughout
the life of the session.

Validation of credentials can be done in various ways, for example:

• Through a web service
• By looking up the user in a user's table in a database
• By using the WebSphere® LTPA token

It is possible to add custom properties in the user identity object according to your
specific needs. The login module is also responsible to destroy the user identity
object once the session has been terminated. It can be configured to automatically
record login attempts for audit purposes. A login module can be used by multiple
authentication realms.

Similar to the custom authenticator, it is also possible to create your own custom
login module in Java.

Authentication realms
An authentication realm comprises a challenge handler, authenticator, login module,
and a definition of the authentication process. One authentication realm can be used
by more than one security test. Each authentication realm defines its flow as shown
in the following diagram:

Chapter 6

[95]

Security Test A

Security Test B

Security Test C

Authenticator 1

Realm 1

Login Module 1

Authenticator 1

Realm 2

Login Module 2

Authenticator 2

Realm 3

Login Module 2

Each authentication realm has one authenticator and one login module only.

The following are some questions of the flow:

• Once the authentication process has been triggered, what should
happen next?

• What type of challenge should it send back to the client application?
• If a request arrives from a device, what credentials should it collect from it?
• How and when should the credentials be collected?
• How should the credentials be validated and sent to the server?
• What will be the result of the credentials' validation?
• What will be the properties of the user identity object?

There are several predefined authentication realms available in Worklight, for
instance, remote application disable or an application authenticity.

Security test
A security test is created with an ordered set of authentication realms that are
used to protect a resource such as an adapter procedure, an application, or a static
URL. Security test defines one or more realms against which users must have to
authenticate in order to access backed adapter function or resource. If multiple
realms have been used, then the developer has to define the order in which the
authentication should be performed.

Authentication and Security

[96]

You can create custom security tests along with default security tests that you can
use for mobile and web environments' protection. The following diagram shows
multiple security tests:

Security Test A

Security Test B

Security Test C

Authenticator 1

Realm 1

Login Module 1

Authenticator 1

Realm 2

Login Module 2

Authenticator 2

Realm 3

Login Module 2

A security test can use more than one realm, and one realm can be used for multiple security tests.

Examining generated realms, security
test, and login modules
Realms, security tests, and login modules are defined in the
authenticationConfig.xml file located at the server/conf folder of a
Worklight project.

Open your Worklight project and locate the authenticationConfig.xml file and
check for the following entries that are present by default to help you quick start
with it:

Worklight application's authenticationConfig.xml file's location

Chapter 6

[97]

Let's create a new Worklight project and examine what realms, security tests, and
login modules are generated for us by default.

Generating realms
We can see that the following realms have been generated by default, which we can
use or customize further:

<realms>
 <realm name="SampleAppRealm" loginModule="StrongDummy">
 <className>com.worklight.core.auth.ext.FormBasedAuthenticator
 </className>
 </realm>
 <realm name="WorklightConsole" loginModule="requireLogin">
 <className>com.worklight.core.auth.ext.FormBasedAuthenticator
 </className>
 <onLoginUrl>/console</onLoginUrl>
 </realm>
</realms>

Generating login modules
We can see that the following login modules have been generated by default, which
we can use or customize further:

<loginModules>
 <loginModule name="StrongDummy">
 <className>com.worklight.core.auth.ext.NonValidatingLoginModule
 </className>
 </loginModule>
 <loginModule name="requireLogin">
 <className>com.worklight.core.auth.ext.SingleIdentityLoginModule
 </className>
 </loginModule>
</loginModules>

Generating security tests
We can see that the following security tests have been generated by default, which
we can use or customize further:

<securityTests>
 <customSecurityTest name="WorklightConsole">
 <test realm="WorklightConsole" isInternalUserID="true"/>
 </customSecurityTest>

Authentication and Security

[98]

 <mobileSecurityTest name="mobileTests">
 <testAppAuthenticity/>
 <testDeviceId provisioningType="none" />
 <testUser realm="myMobileLoginForm" />
 </mobileSecurityTest>
<webSecurityTest name="webTests">
 <testUser realm="myWebLoginForm"/>
 </webSecurityTest>
<customSecurityTest name="customTests">
 <test realm="wl_antiXSRFRealm" step="1"/>
 <test realm="wl_authenticityRealm" step="1"/>
 <test realm="wl_remoteDisableRealm" step="1"/>
 <test realm="wl_anonymousUserRealm" isInternalUserID="true"
step="1"/>
 <test realm="wl_deviceNoProvisioningRealm"
isInternalDeviceID="true" step="2"/>
</customSecurityTest>
</securityTests>

Creating adapter-based authentication
Adapter-based authentication is the simplest form of authentication provided in
Worklight. It uses the adapter procedure/function to validate and authenticate the
users and create their sessions. Plus, it provides all the features of the Worklight
authentication framework.

Please use the following simple steps to implement adapter-based authentication:

1. Create a new Worklight project with the name ABADemo; for the application,
use the name myAdapterBasedAuthentication.

2. Add an adapter and give it a name: myAuthAdapter. Paste the following
sample function code into the adapter.js file:

function onAuthRequired(headers, errorMessage){
 errorMessage = errorMessage ? errorMessage : null;
 return {
 authRequired: true,
 errorMessage: errorMessage
 };
}

function submitUserAuthentication(username, password){
 if (username==="adapter" && password === "adapter"){
 var userIdentity = {

Chapter 6

[99]

 userId: username,
 displayName: username,
 attributes: {
 foo: "abc"
 }
 };
 WL.Server.setActiveUser("myAuthRealm", userIdentity);
 return {
 authRequired: false
 };
 }
 return onAuthRequired(null, "Invalid login credentials,
 please try again");
}

function getSomeData(){
 return {
 secretData: "This is sample data retruned after user
 session creation"
 };
}

function onLogout(){
 WL.Server.setActiveUser("myAuthRealm", null);
 WL.Logger.debug("Logged out");
}

I hope that the preceding code with so many function names make sense to
you. If it doesn't, lets go through each function in detail:

 ° submitUserAuthentication: This function is used to authenticate
the users and create sessions (user identity objects). The username
and password are received from the application as parameters. If a
validation is successfully passed, a WL.Server.setActiveUser API
is called to create an authenticated session for myAuthRealm with a
user data stored in the userIdentity object. Note, you can add your
own custom properties to user identity attributes.

 ° onAuthRequired: This function is used to return a success or failure
response back to the client. Note the authRequired: true property.
You need this property in the challenge handler to detect that either
the server is requesting authentication or not.

Authentication and Security

[100]

 ° getSomeData: This is a function that is protected with a security
test and only authenticated users can access it. So, in this case, once
the user has successfully passed the authentication defined in the
preceding function, then this function will be called.

 ° onLogout: This function will be called when the session times out,
either explicitly by the user or once the session timeout duration
has finished.

3. Locate the authenticationconfig.xml file and add the following
entries into it.

 ° Add a new realm and login module as follows:
<realms>
 <realm loginModule="myAuthLoginModule"
name="myAdapterAuthRealm">
 <className>com.worklight.integration.auth.
AdapterAuthenticator</className>
 <parameter name="login-function" value="myAuthAdapter.
onAuthRequired"/>
 <parameter name="logout-function" value="myAuthAdapter.
onLogout"/>
 </realm>
</realms>
<loginModules>
 <loginModule name="myAuthLoginModule">
 <className>com.worklight.core.auth.ext.
NonValidatingLoginModule</className>
 </loginModule>
</loginModules>

 ° myAdapterAuthRealm: This is the realm that we have created. The
class type of this realm is AdapterAuthentication. There are two
parameters defined, one is login-function that is called at the time
of user login (authentication step) and the second function, logout-
function is called when session is going to expire.

 ° myAuthLoginModule: This is the login module that we will use. The
type of module is NonValidatingLoginModule, and it means it will
not further validates user's credentials and the developer will take
the whole responsibility of validating credentials inside the adapter.

4. Add the security test as follows:
 ° Add the following security test to the authenticationconfig.xml

file. You must use this security test to protect the adapter procedure,
so convert it into <customSecurityTest>:

Chapter 6

[101]

<securityTests>
 <customSecurityTest name="myAuthAdapter-securityTest">
 <test isInternalUserID="true" realm="myAuthRealm"/>
 </customSecurityTest>
</securityTests>

5. Now open the adapter XML file myAuthAdapter.xml and add the security
test as follows:

<procedure name="submitUserAuthentication"/>
<procedure name="getSomeData" securityTest=
 "myAuthAdapter-securityTest"/>

 ° The submitUserAuthentication procedure is used to trigger the
authentication process, and authentication is not required in order to
invoke it.

 ° The second procedure is accessible to authenticated users only
because we have protected it with a security test.

The following diagram shows the adapter-based authentication process:

The application tries to access
a protected resource

The IBM Worklight platform checks
whether the user is already authenticated.

The Authentication process is started. The
application receives the "authentication
required" payload as defined by the developer.

Protected resource access is
granted. Application receives
the requested data.

Authentication process.

Success
NOYES

YES NO

Authentication and Security

[102]

Client side – adapter authentication
components
In this section, we are going to create a client-side interface to manipulate this
authentication concept:

1. Create an app, give it the name myAdapterBasedAuthentication, and paste
the following code in the HTML file in the common folder under the body tag:
<div id="MainAppDiv">
<div class="header">
 <h1>my Adapter Based Authentication App</h1>
 </div>
</div>
<div id="AuthDiv" style="display:none">
</div>

The page contains two div elements: the MainAppDiv is used to display the
application content, and the AuthDiv is used for the authentication form
purposes.
When the app starts, it will hide MainAppDiv and will only show AuthDiv
because the user has not logged in to access the protected data from the
server. So, once the user enters the correct credentials, AuthDiv gets hidden
and MainAppDiv becomes visible.

2. Let's create two buttons. One button will access the protected adapter
function to get protected data and the second button will log out the user.
Add the following lines inside the MainAppDiv:
<input type="button" value="Get personal details"
 onclick="getSomeData()" />
<input type="button" value="Logout"
 onclick="WL.Client.logout('myAuthRealm', {onSuccess:WL.Client.
reloadApp})" />
 <div id="ResponseDiv"></div>

3. The div with the ID ResponseDiv is used to display the getSomeData
response. Add the following lines to AuthDiv:

<p id="AuthInfo"></p>
<hr />
<input type="text" placeholder="Enter username"
 id="AuthUsername"/>

<input type="password" placeholder="Enter password"
 id="AuthPassword"/>

Chapter 6

[103]

<input type="button" value="Submit" id="AuthSubmitButton"
 />
<input type="button" value="Cancel" id="AuthCancelButton"
 />

 ° The AuthInfo tag is used to display error messages
 ° The AuthUsername and AuthPassword tags are used to input

username and password respectively
 ° The AuthSubmitButton tag is used to trigger the login click event,

and the AuthCancelButton tag is used to cancel the login event

In the next section, we will be creating a challenge handler component.

Challenge handler in Worklight
A challenge handler is a client-side component, located on the device. It is
responsible for detecting an authentication challenge from a server, or when an
authentication request from the server allows a developer to create a customized
authentication process by collecting credentials and sending them back to the server
as its response. Each challenge handler identifies the authentication realm to which it
applies. To create a challenge handler, refer to the following section.

Create a JavaScript file that contains the following piece of code. This is the challenge
handler component, and it is responsible to bring data from the server and handle
the authentication challenge response whenever it arrives from the server:

var myAuthRealmChallengeHandler = WL.Client.createChallengeHandler("my
AuthRealm"); //line# 01

myAuthRealmChallengeHandler.isCustomResponse = function(response) { //
line# 03
 if (!response || !response.responseJSON || response.responseText
=== null) {
 return false;
 }
 if (typeof(response.responseJSON.authRequired) !==
 'undefined'){
 return true;
 } else {
 return false;
 }
};

myAuthRealmChallengeHandler.handleChallenge = function(response){ //
line# 15

Authentication and Security

[104]

 var authRequired = response.responseJSON.authRequired;

 if (authRequired == true){ //line# 18
 $("#MainAppDiv").hide();
 $("#AuthDiv").show();
 $("#AuthPassword").empty();
 $("#AuthInfo").empty();

 if (response.responseJSON.errorMessage)
 $("#AuthInfo").html(new Date() + " :: " + response.
responseJSON.errorMessage);

 } else if (authRequired == false){
 $("#MainAppDiv").show();
 $("#AuthDiv").hide();
 myAuthRealmChallengeHandler.submitSuccess();//line# 30
 }
};

$("#AuthSubmitButton").bind('click', function () {
 var username = $("#AuthUsername").val();
 var password = $("#AuthPassword").val();

 var invocationData = {
 adapter : "myAuthAdapter",
 procedure : "submitUserAuthentication",
 parameters : [username, password]
 };
 myAuthRealmChallengeHandler.submitAdapterAuthentication(invocationDa
ta, {}); //line# 42
});

$("#AuthCancelButton").bind('click', function () {
 $("#MainAppDiv").show();
 $("#AuthDiv").hide();
 myAuthRealmChallengeHandler.submitFailure();//line# 48
});

Now let's examine the preceding code:

• The first line # 01 is about creating a challenge handler object, and it is
achieved via the WL.Client.createChallengeHandler() API call. A realm
name must be supplied as a parameter. In our case, we have created the
realm myAuthRealm.

Chapter 6

[105]

• The defined isCustomResponse function on line # 03 of the challenge
handler is called each time a response is received from the server. It is used
to detect whether the response contains data that is related to this challenge
handler. It returns either true or false.

• If the isCustomResponse function returns true, the framework calls the
handleChallenge() function defined on the line # 15. This function is used
to perform the required actions, such as hiding the application screen and
showing the login screen. The challenge handler provides the following
functionalities that you may need to use:

 ° The myChallengeHandler.submitAdapterAuthentication()
function coded on line # 42 is used to send the collected credentials
to a specific adapter procedure. It has the same signature as the
WL.Client.invokeProcedure() API.

 ° The myChallengeHandler.submitSuccess() function call on
line # 30 is used to notify the Worklight framework that the
authentication has finished successfully. The Worklight framework
then automatically issues the original request that triggers the
authentication.

 ° The myChallengeHandler.submitFailure() function call on line #
48 is used to notify the Worklight framework that the authentication
has failed. The Worklight framework then disposes the original
request that triggers the authentication.

• On line # 18, if authRequires is true, it shows a login screen, cleans up the
password field, and shows an errorMessage (if present).

• If authRequired is false, it shows MainAppDiv, hides AuthDiv, and it
notifies the Worklight framework that the authentication is successfully
completed.

When the user clicks on the login button, it triggers the function that collects the
username and the password from the HTML input fields and submits them to the
adapter. Notice that we have used the submitAdapterAuthentication method of
the challenge handler.

Form-based authentication
Form-based authentication is similar to a web application in which the users have
to fill out a login form in order to access a secured or protected resource. Worklight
provides a similar authentication mechanism in which the server returns the HTML
of a login form whenever an application tries to access a protected resource.

Authentication and Security

[106]

The Worklight application that uses form-based authentication must use a login
module to validate the received credentials.

Security realm
Declare the security realm with the name myFormBasedAppRealm as follows:

<realm name="myFormBasedAppRealm" loginModule="myFormBasedAppLoginMod
ule">
 <className>com.worklight.core.auth.ext.FormBasedAuthenticator</
className>
</realm>

The login module
Now define the login module with the name myFormBasedAppLoginModule as we
used the same for the loginModule attribute value to define the realm:

<loginModule name="myFormBasedAppLoginModule">
 <className>com.worklight.core.auth.ext.NonValidatingLoginModule</
className>
</loginModule>

Security test
Declare the security test name with the name myFormBasedAppSecurityTest, and
define the declared realm under the test tag:

<customSecurityTest name="myFormBasedAppSecurityTest">
 <test realm="myFormBasedAppRealm" isInternalUserID="true"/>
</customSecurityTest>

Challenge handler
Now creating a challenge handler for form-based authentication is similar to
the previous example with few changes to handle the challenge for form-based
authentication. Following is the code to create form-based authentication:

var sampleAppRealmChallengeHandler =
 WL.Client.createChallengeHandler("myFormBasedAppRealm"); //line
 # 01

sampleAppRealmChallengeHandler.isCustomResponse =
 function(response) {
 if (!response || response.responseText === null) {

Chapter 6

[107]

 return false;
 }
 var indicatorIdx = response.responseText.search('j_security_
check');

 if (indicatorIdx >= 0){
 return true;
 }
 return false;
};

sampleAppRealmChallengeHandler.handleChallenge =
 function(response) {
 $('#MainAppBody').hide();
 $('#AuthBody').show();
 $('#passwordInputField').val('');
};

sampleAppRealmChallengeHandler.submitLoginFormCallback =
 function(response) {
 var isLoginFormResponse =
 sampleAppRealmChallengeHandler.isCustomResponse(response);
 if (isLoginFormResponse){
 sampleAppRealmChallengeHandler.handleChallenge(response);
 } else {
 $('#MainAppBody').show();
 $('#AuthBody').hide();
 sampleAppRealmChallengeHandler.submitSuccess();
 }
};

$('#loginButton').bind('click', function () {
 var reqURL = '/j_security_check';
 var options = {};
 options.parameters = {
 j_username : $('#usernameInputField').val(),
 j_password : $('#passwordInputField').val()
 };
 options.headers = {};
 sampleAppRealmChallengeHandler.submitLoginForm(reqURL,
 options,
 sampleAppRealmChallengeHandler.submitLoginFormCallback);
});

$('#cancelButton').bind('click', function () {

Authentication and Security

[108]

 sampleAppRealmChallengeHandler.submitFailure();
 $('#MainAppBody').show();
 $('#AuthBody').hide();
});

If you see, we have first created an instance of a challenge handler as we did in
adapter-based authentication. After that, in the isCustomResponse function, we
search for the j_security_check string. If it exists, it means a login form has been
sent by the server and the challenge handler will return true.

• The following line shows:
var isLoginFormResponse =
 sampleAppRealmChallengeHandler.isCustomResponse(response);

• The callback function will check the response for the containing server
challenge again. If the challenge is found, the handleChallenge() function
is invoked again.

• The handleChallenge() function will again show a login form to the user to
re-enter the correct credentials.

• Otherwise, sampleAppRealmChallengeHandler.submitSuccess(); will
be called to let the Worklight framework know that the challenge has been
handled successfully, and it can proceed with the original request of the user.

If the user wants to terminate the authentication validation process and also wants to
reject the original request that had triggered the authentication, he or she has to call
sampleAppRealmChallengeHandler.submitFailure();.

Custom authentication
It is possible that these Worklight-provided authentications do not fulfill your
requirements. In such scenarios, Worklight provides you with an ability to create
custom realms, login modules, and security tests based on your specific needs.

In this case, you will create your custom Java class that implements the
WorkLightAuthenticator interface in order to create an authenticator. Similar
to creating a custom login module, you need to extend the WorkLightLoginModule
interface.

The login module will create a request object that contains the user ID and password,
and based on the user-specified validation, it will create a user identity object, that is,
a session object.

Chapter 6

[109]

For more information on custom authentication, please refer to IBM Worklight
Info Centre (http://pic.dhe.ibm.com/infocenter/wrklight/v5r0m6/index.
jsp?topic=%2Fcom.ibm.help.doc%2Fwl_home.html).

Summary
In this chapter, we learned about Worklight security concepts, Worklight
authentication processes, and various options to protect mobile applications,
adapters, and resources. We briefly talked about various authentication mechanisms
such as the ones that are adapter based, form based, and custom authentications.

We learnt how to implement adapter-based authentication in a Worklight
application. We worked on an example by creating adapter-based authentication
and examined the steps that an authentication process goes through. Moreover, we
slightly touched form-based authentication and custom authentications as well. In
the next chapter, we will be coming across some of the most advanced features and
extensions, including push notifications, WL APIs, Cordova plugins, and offline
cache mechanism, which allows you to extend your mobile application.

Advanced Features of
IBM Worklight

In this chapter, we will cover some advanced topics and provide you with complete
knowledge of the implementation of features detailed here. If we summarize what
we have covered so far, then we'd realize that we have worked on the basics of
IBM Worklight. This includes components, frameworks, client- or server-side
development, UI implementation, configuration, and development of IBM Worklight
application and authentication concepts. Now, we will move on to some advanced
development concepts using IBM Worklight Studio, which contains the WL Client
API, a push notification mechanism, Cordova plugins, some UI common controls,
encrypted cache, offline access, and JSONStore.

As you know, Worklight doesn't provide a proprietary development language or any
model that the user has to learn specifically. It simply uses web technologies such as
HTML, JavaScript, and CSS to implement IBM Worklight, a development concept
of the hybrid mobile application. A completely deployable native app would be
generated if you use mobile hybrid applications, and the application can use native
components within an HTML page. It allows the SDK that includes mobile platform
libraries through which you can access the native code.

After the development of the application, some advanced topics need to be covered
to enhance the mobile application's functionalities to its maximum capabilities.

Push notification
Mobile OS vendors such as Apple, Google, Microsoft, and others provide a free of
cost feature through which a message can be delivered to any device running on the
respective OS. The OS vendors send a message commonly known as a push message
to a device for a particular app. It is not required for an app to be running in order to
receive a push message.

Advanced Features of IBM Worklight

[112]

A push message can contain the following:

• Alerts: These would appear in the form of text messages
• Badges: These are small, circular marks on the app icon
• Sounds: These are audio alerts

Messages will appear in the notification center (for iOS) and notification bar (for
Android). IBM Worklight provides a unified push notification architecture that
simplifies sending push messages across multiple devices running on different
platforms. It provides a central management console to manage mobile vendor
services, for example, APNS and GCM, in the background.

Worklight provides the following push notification benefits:

• Easy to use: Users can easily subscribe and unsubscribe to a push service
• Quick message delivery: The push message gets delivered to a user's device

even if the app is currently not running on the device
• Message feedback: It is possible to send feedback whenever a user receives

and reads a push message

Device and platforms support
Currently, IBM Worklight supports push notifications on the following platforms:

• Android
• iOS
• Blackberry
• Microsoft

These OS vendors are named as push mediators in the push notification context.

Worklight push notification concepts and
terminology
The following are some terms and concepts you should be familiar with:

• Event source: An event source is declared inside Worklight Adapter, which
works as a channel to register mobile applications for push notifications. The
following code snippet can be used to declare notification event source in
adapter JavaScript code and must be declared as global level:
WL.Server.createEventSource({
 name: 'PushEventSource',

Chapter 7

[113]

 onDeviceSubscribe: 'deviceSubscribeFunc',
 onDeviceUnsubscribe: 'deviceUnsubscribeFunc',
 securityTest:'PushApplication-strong-mobile-securityTest'
});

• Device token: Push mediators such as Apple or Google assign a unique ID
to a specific device in order to deliver messages. The Worklight server uses
these IDs in order to send push messages.

• User ID: Worklight collects a unique ID for a specific user through
authentication or other unique identifiers such as a persistent cookie.

• Application ID: A Worklight application ID identifies a specific Worklight
application.

• To send a notification: The following adapter function will be used to
send a push notification message. Here, the adapter function is accepting
two parameters, userId and notificationText, and finding the user
subscription for a particular user ID and then notifying the device by
responding to the notificationText message:
functionsubmitNotification(userId, notificationText){
 varuserSubscription =
 WL.Server.getUserNotificationSubscription('PushAdapter.
PushEventSource', userId);

 if (userSubscription==null){
 return { result: "No subscription found for user :: " + userId
};
 }

 WL.Logger.debug("submitNotification>>userId :: " + userId + ",
text :: " + notificationText);

 WL.Server.notifyAllDevices(userSubscription, {
 badge: 1,
 sound: "sound.mp3",
 activateButtonLabel: "ClickMe",
 alert: notificationText,
 payload: {
 foo : 'bar'
 }
 });

 return { result: "Notification sent to user :: " + userId };
}

Advanced Features of IBM Worklight

[114]

• Subscribing/unsubscribing: A mobile app needs to subscribe for an event
source in order to receive push messages. Worklight provides the WL.Client.
Push.subscribe() API function to register the device against a push services
mediator, and in return, it collects a device token. The following code shows
how to use the API function to subscribe for an event source:

WL.Client.Push.subscribe("myPush", {
 onSuccess: pushSubscribe_Callback,
 onFailure: pushSubscribe_Callback
});

In order to subscribe to a device for push service, the user must approve it first.
Upon the user's approval, the device registers itself with an Apple or Google push
server to obtain a token value; it also sends a subscription request to Worklight
Server. All of this is automatically done by the Worklight framework.

Worklight Server stores users' subscription information in a database. It stores device
IDs, token, and event source details. Unsubscribing to a device can happen in either
of the two ways: either by calling the WL.Client.Push.unsubscribe() API function
or the push mediator, which informs Worklight Server that the device is permanently
not accessible. An example code to unsubscribe to a device is as follows:

WL.Client.Push.unsubscribe("myPush", {
 onSuccess: pushUnsubscribe_Callback,
 onFailure: pushUnsubscribe_Callback
});

The following figure describes how the push notification works within Worklight:

Push Notification flow diagram

When a request to unsubscribe to a device is received by Worklight
Server, it automatically clears the corresponding device token and
related attributes from the push tables.

Chapter 7

[115]

WL client API
For the native app developed using web technologies or hybrid technologies,
we refer to some classes and functions that extend components such as
WL.BusyIndicator, WL.Logger, and WL.SimpleDialog with the native look and
feel, which is specified with respect to mobile platforms.

To enable these native components, Worklight provides some extensive libraries to
implement. We will cover some WL client-side APIs to provide you with a holistic
view of implementation at the development side.

WL.BusyIndicator
The WL.BusyIndicator WL extension provides a busy indicator for a mobile
application. It's a modal representation of an object named WL.BusyIndicator. It
provides a dynamic graphical interface for an application that is temporarily on
hold for any process or seems busy. It appears natively on Android, iOS, Blackberry,
and Windows phones. For every mobile environment, its implementation occurs by
using JavaScript in the Busy.js file. There are some optional parameters as well.

To change the graphical appearance of the busy indicator, you can also override
the defined CSS selectors: #WLbusy, #WLbusyOverlay, and #WLbusyTitle. Use the
following code to do this:

varbusyIndicator = new WL.BusyIndicator('context', {text :
'Loading...'});

WL.Logger
The WL.Logger object displays log messages to the console log for every particular
environment. In mobile applications, the messages are printed to a logfile provided
in the mobile SDK. In web environments, the messages seem to be printed to the
browser log. In desktop environments, they are printed to the applicable debug
console of each environment. Refer to the details in the following section.

WL.Logger is an object that actually holds two methods. Both these methods contain
one required parameter and one optional parameter.

The method for successful cases is as follows:

WL.Logger.debug("content",ex);

The method for errors is as follows:

WL.Logger.error("content",ex);

Advanced Features of IBM Worklight

[116]

In the preceding methods, the optional parameter ex is a JavaScript exception. If the
JavaScript exception is specified, the filename and line number are appended to
the message.

WL.SimpleDialog
WL.SimpleDialog is a dialog object. It holds a common API for generating a
dialog for the application. This dialog object shows a dialog box with buttons. Its
appearance and specification is dependent on the environment. On Android, iPhone,
BlackBerry, and Windows phones, it opens as a native dialog box. This dialog
appears without any conflicts with the JavaScript thread.

The WL.SimpleDialog object's method for displaying the dialog contains four
parameters in which three are mandatory and one is optional. The following is the
code for the show method:

WL.SimpleDialog.show(title, text, buttons, options)

In the preceding code line, the buttons parameter is a JSON array on behalf of every
corresponding button. Following is an example of a JSON array:

WL.SimpleDialog.show(
"Title", "Text",
[{text: "Button1", handler: function()
 {WL.Logger.debug("Button 1 pressed"); }
}]
)

Cordova plugins
A Cordova plugin is an open source, cross-platform mobile development
architecture that allows the creation of multiplatform-deployable mobile apps. These
apps can access native component features of devices using an API having web
technologies such as HTML 5, JavaScript, and CSS 3. Apache Cordova Plugins are
integrated into IBM Worklight Android and iOS projects. In this chapter, we will
describe how Apache Cordova leverages the ability to merge the JavaScript interface
as a wrapper on the web side in a native container with the device native interface on
the mobile device platform.

The most critical aspect of Cordova plugins is to deal with the native functionalities
such as camera, bar code scanning, contacts list, and many other native features,
currently running on multiple platforms. JavaScript doesn't provide such
extensibility to enhance the scripting with respect to the native devices.

Chapter 7

[117]

In order to have a native feature's accessibility, we provide a library corresponding to
the device's native feature so that JavaScript can communicate through it. When the
need arises for a web page to execute the native feature functionality, the following
points of access are available:

• The scenario has to be implemented in platform-specific manner, for
example, in Android, iOS, or any other device

• In order to handle requests and responses between web pages and native
pages, we need to communicate to/from web and native pages that
are encrypted

By selecting the first option from the preceding list, we would find ourselves
implementing and developing platform-dependent mobile applications. As we are in
need of implementing mobile applications for a cross-platform mobile, and because
it leads to provide cost-ineffective solutions, it is not a wise choice for Enterprise
Mobile Development Solutions. It seems to be a really poor extensible for future
enhancements and needs.

In this scenario, a developer needs to declare a custom Cordova plugin with a
functionality that is not yet available in it. After creating a wrapping layer, this
functionality will be used from the JavaScript code. As it is a standard-based
architectural framework, Apache Cordova arrives with some extensible proficient
architectures for these plugins that simplifies integration and communication with
the native device code and its features. Some key plugins provided by Cordova are
as follows:

• Accelerometer: This is a motion sensor that detects the change in movement
relative to the current device's orientation

• Camera: This plugin takes a photo using the camera or can be used to
retrieve a photo from the device's album

• Geolocation: This plugin allows you to detect the location information of the
device in the form of latitude and longitude

We can implement or reconstruct any custom plugin if there is a need for a
functionality that is not available within the prebuilt plugins. The Apache Cordova
plugin consists of two different parts for Android; they are as follows:

• Java code that executes native features within the Android OS
• A JavaScript wrapper (an interface for executing Java code)
• In Java code, we need to extend the org.apache.cordova.api.Plugin class

Advanced Features of IBM Worklight

[118]

• The plugin could be useable if we can override the execute method
provided in the org.apache.cordova.api.Plugin class

• All plugins should be registered in the res/xml/plugins.xml file

Meanwhile, having an assurance for the secure requests for other external domain,
every domain should be whitelisted in the file named res/xml/cordova.xml.

The following is the configuration code for the Cordova plugin in Java:

<cordova>

<access origin="https://developer.com" />

<!– allow secure requests to developer.com –>

</cordova>

A code wrapper for the Cordova plugin in JavaScript has the following structure:

CordovaCustomPlugin.prototype.executeNativeFunction
= function(SuccessCallback, FailCallback, param){..}

• param: This callback function is passed to the plugin from the web page
calling Web Page

• SuccessCallback: This is a callback function for a successful call
• FailCallback: This is a callback function for an unsuccessful call

After adding a code wrapper, the plugin is added to a windows.plugin object:

cordova.addConstructor(function() {
cordova.addPlugin("cordovaCustomPlugin",
 new CordovaCustomPlugin());});

Besides this, in JavaScript, you can use windows.plugin, which can be called by the
following code:

window.plugins.cordovaCustomPlugin.executeNativeFunction
(SuccessCallback, FailCallback, $("#Div").val());

Encrypted Offline Cache
Encrypted Offline Cache (EOC) is the mechanism that is used for storing the
repeated and the most sensitive data, which is used in the client's application.

Chapter 7

[119]

Encrypted Offline Cache is precisely known as EOC. It permits a flexible on-device
data storage procedure for Android, iOS, BlackBerry, and Windows. This procedure
provides a better alternative to the user for storing the manipulated data or the
fetched response using the defined adapter data when offline and synchronizing the
data for the usage of the server, which provides modifications that were completely
developed when offline or without Internet connectivity. In order to dedicatedly
create any mobile application for multiple platforms such as iOS and Android,
consider using JSONStore rather than EOC. It seems to be much more practical
to implement and is supposed to be the best practices of IBM. The JSONStore
provides a mechanism to ease cryptographic procedures for encrypting forms and
implementing security. PBKDF2 is a key derivation function that would act as the
password to access encrypted data, which would be provided by the user. HTML5
cache can be used in EOC, which is not guaranteed to be persistent and is not a
proper solution for the future updated versions of iOS.

You can also extend the utilization of JSONStore with its capable features to get
the most consistent and secure on-device data storage mechanism for the client's
application. Moving with the experience of using EOC, it would be much easier to
implement and a way with improved persistent storage procedure for on-dive. In
addition to this, the JSONStore holds an aptitude to inhabit and deploy data from
custom employment of consuming an adapter on the desired server. The cache
allows to use the HTML5 local storage for holding user data. As far as the storage
size limit is concerned, HTML5 consumes a limit of 4 to 5 MB, which is supposed to
be similar to approximately around 1.3 MB of unencrypted data. If the data appears
to surpass the distinct limit, the comportment is undefined. You might experience
interruption or delay in handling the data; it occurs when the data is in a huge
amount and at the threshold limit.

The following exceptions can be thrown by the WL.EncryptedCache methods:

• WL.EncryptedCache.ERROR_NO_EOC: This is thrown when create_if_none
is false but no encrypted cache was formerly initialized

• WL.EncryptedCache.ERROR_LOCAL_STORAGE_NOT_SUPPORTED: This is
thrown when the HTML5 local storage interface is inaccessible

• WL.EncryptedCache.ERROR_KEY_CREATION_IN_PROGRESS: This is thrown
when the encrypted storage is processing an open or changeCredentials
request

• WL.EncryptedCache.ERROR_EOC_CLOSED: This is thrown when
the encrypted cache was not appropriately initialized by using
WL.EncryptedCache

Advanced Features of IBM Worklight

[120]

Storage JSONStore
IBM Worklight delivers an API that does its work with JSONStore, consuming the
WL.JSONStore class using the JavaScript-defined method. While JSONStore features
allows persistent storage of JavaScript Object Notation (JSON) documents, as well
as developer can utilize security by enabling data encryption such as AES (Advance
Encryption Standard) with 256-bit and PBKDF2 (Password based key Derivation
Function 2).

JSONStore has more features over EOC and will be time saving and easy
to implement approach with other benefits such as file-based storage, data
encryption, integration with Worklight Adapter, indexing, JavaScript APIs for data
manipulation, and fully supported in Android and iOS platform.

By means of the JSONStore API, you can encompass the functionality of the existing
adapter connectivity model to store data locally and force modifications from the
client to a server.

JSONStore must be initialized on application startup with the help of this
WL.JSONStore.initCollection method with success and failure callback to
make sure if the device is capable of it. For CRUD operation over storage you'll
find defined method under this URL: http://pic.dhe.ibm.com/infocenter/
wrklight/v5r0m5/topic/com.ibm.worklight.help.doc/apiref/r_class_wl_
jsonstore.html.

Simply, a single occurrence of the JSON store is supported per app. However, the
instance can save countless collections. A collection is associated to an adapter by
requiring the adapter selection as a chunk of the collection. You do not have to
subordinate a collection with an adapter; however, if an adapter is not definite for
the collection, it calls push and pushSelected, which returns an error.

The following points must be kept in mind while using JSONStore for development:

• To test the JSONStore code, you must run this code on real device or
emulator as it's not supported in Worklight supplied mobile browser
simulator by IBM

• JSONStore is only accessible from a hybrid platform; you cannot access this
data from native code

• JSON collection names must not begin with a digit or symbol
• Data encryption can be enforced without making a connection to the server
• Data storage is unlimited but limited to the device memory

Chapter 7

[121]

Summary
At the end of this chapter, you have learned every advanced feature that IBM
Worklight contains. Worklight API, push notification overview and implementation
details, and concepts of offline access and encrypted cache were covered. Besides
this, JSON store has the most diverse mechanism to allow local storage, and it
enhances the mobile application functionalities in a much more optimum and
efficient way. This chapter also provides Worklight client-side API, which is
recommended by IBM as a best practice.

Index
Symbols
<connnectionPolicy> element 79
<dataSourceDefinition> subelement 79

A
accelerometer plugin 117
adapter authentication components

client-side interface 102
adapter-based authentication

about 98
challenge handler component 103-105
implementing 98
process 101

adapter-based authenticator 93
Adapter component 69
Adapter files

JavaScript file 71
XML file 70
XSL file 71

AES (Advance Encryption Standard) 120
alerts 112
Android application environment

exploring 66, 67
Android Development Tools (ADT)

about 27
installing, for Eclipse 27-29

Android Interface Definition Language
(AIDL) 67

AndroidManifest.xml file 67
Android SDK

installing 27
Android virtual device

configuring 30

Apple 111
application-descriptor

about 62
id attribute 62
platformVersion attribute 62
securityTest attribute 63
version attribute 62

application resources, Worklight platform
about 61
application-descriptor 61, 62
application icon 63
client property file 64
client scripts 63
HTML file 63
splash screen 63
style sheets 63

application skin
setting up 45

approaches, mobile application develop-
ment

hybrid development 7
hybrid mixed 7
native development 7
web development 7

authenticationConfig.xml file 96
authentication realm

about 92-95
authenticator and login module 92
challenge handler 92

authenticator and login module 92
authenticator component 93
authenticators, Worklight Server

adapter-based authenticator 93
form-based authenticator 94
Header-based authenticator 94

[124]

B
badges 112
benefits, push notification 112

C
camera plugin 117
Cascading Style Sheet (CSS) 10
challenge handler component 92
client property file 64
components, IBM Worklight

Worklight Application Center 12, 16
Worklight Console 12, 16
Worklight Device Runtime 11, 14
Worklight Server 11, 15
Worklight Studio 11, 12

concepts, push notification
application ID 113
device token 113
event source 112
subscribing/unsubscribing 114
to send a notification 113
user ID 113

Cordova plugin
accelerometer 117
camera 117
geolocation 117
overview 116-118

custom authentication
about 108
URL, for info 109

D
database

configuring, for Worklight Server 21, 22
Design view 41
Device Request Flow 92
device token 113
Dojo application

designing 52-56
Dojo Mobile

exploring 52
Dojo Toolkit 9

E
Eclipse

Android Development Tools (ADT), install-
ing for 27-29

Encrypted Offline Cache (EOC) 118
environment

adding, in IBM Worklight 57-61
event source 112, 114

F
form-based authentication

about 105
challenge handler, creating 106-108
login module, defining 106
security realm, declaring 106
security test, declaring 106

form-based authenticator 94
functionality advantages, Worklight Studio

integrated development and mobile simula-
tor 13

optimized framework 13
pure native and web development 13
Shell development and concept 13

G
geolocation plugin 117
getSomeData function 100
Google 111

H
header-based authenticator 94
HelloWorld Worklight project

about 36
creating 33-36

HTML5
overview 49

HTTP adapter
about 72
creating 73-78

hybrid development approach
advantages 8
disadvantages 8

[125]

hybrid mobile applications 49
Hypertext Markup Language (HTML) 10

I
IBM Installation Manager

about 18
installing 18

IBM Worklight
environment, adding 57-60

IBM Worklight Adapter
about 69
communication components 70
elements 70
HTTP adapter 72
HTTP adapter, creating 72-78
Java code, calling 85-88
Java code, invoking from adapter 88
procedure, invoking 85
SQL adapter 78
SQL adapter, creating 81-84
SQL adapters 79
types 71

IBM Worklight application
creating 33-36
display, providing to mobile application

39, 40
previewing, in mobile simulator 46, 47
resources 37, 38

IBM Worklight Application Center 12, 16
IBM Worklight client-side API 50
IBM Worklight Console 12, 16
IBM Worklight Consumer Edition

installing 17
IBM Worklight Developer Edition

installing 26, 27
IBM Worklight Device Runtime

about 11, 14
features 14

IBM Worklight Server
about 11, 15
database, configuring for 21, 22
packages, installing 19
structure 15

IBM Worklight solution
about 9
capabilities 10

components 11
supported platforms 10

IBM Worklight Studio
about 11, 12
installing 25, 26

J
Java Runtime Environment. See JRE
JavaScript file, IBM Worklight Adapter 71
JavaScript Object Notation (JSON) 120
jQuery Mobile 9
JRE

URL, for setup files 17
JSONStore

about 120
considerations, for development 120

L
Lightweight Directory Access Protocol

(LDAP) 85
Lightweight Third Party Authentication

(LTPA) 16
login modules

about 94
generating 97

M
MainLayout.xml file 67
methods, WLClient

WL.Client.init 51
WL.Client.invokeProcedure 51
WL.Client.isConnected 51
WL.Client.isUserAuthenticated 51
WL.Client.login 51
WL.Client.logout 51

methods, WL.EncryptedCache
WL.EncryptedCache.ERROR_KEY_CREA-

TION_IN_PROGRESS 119
WL.EncryptedCache.ERROR_LOCAL_

STORAGE_NOT_SUPPORTED 119
WL.EncryptedCache.ERROR_NO_EOC 119

Microsoft 111
mobile application

server configuration, verifying 43

[126]

mobile application development
approaches 7

myAdapterAuthRealm 100
myAuthLoginModule 100

O
onAuthRequired function 99
onLogout function 100

P
PBKDF2 (Password based key Derivation

Function 2) 119, 120
push message

about 111
alerts 112
badges 112
sounds 112

push notification
about 111
benefits 112
concepts 112-114
supported platforms 112

R
realms

generating 97
Rich Page Editor (RPE)

about 40, 41
environment, adding 42

S
security test

about 92, 95, 96
generating 97

Sencha Touch 9
sounds 112
Split view 41
SQL adapter

about 78, 79
creating 80-83

submitUserAuthentication function 99

W
Web Hypertext Application Technology

Working Group. See WHATWG
WebSphere Application Server (Liberty

profile)
configuring 22-24

WHATWG 49
wlAppId property 65
wlAppVersion property 65
WL.BusyIndicator extension 115
WLClient 50
WL client API

about 115
WL.BusyIndicator extension 115
WL.Logger object 115
WL.SimpleDialog 116

WL.Client.init method 51
WL.Client.invokeProcedure method 51
WL.Client.isConnected method 51
WL.Client.isUserAuthenticated method 51
WL.Client.login method 51
WL.Client.logout method 51
WL.Client.Push.unsubscribe() function 114
wlEnvironment property 65
WL.Logger object 115
wlServerContext property 65
wlServerHost property 65
wlServerPort property 65
wlServerProtocol property 65
WL.SimpleDialog object 116
Worklight Consumer Edition files

downloading 19
WYSIWYG environment 41

X
XML file, IBM Worklight Adapter 70
XSL file, IBM Worklight Adapter 71

Thank you for buying
IBM Worklight Mobile Application

Development Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

IBM Cognos Business Intelligence
ISBN: 978-1-84968-356-2 Paperback: 318 pages

Discover the practical approach to BI with IBM
Cognos Business Intelligence

1. Learn how to better administer your IBM
Cognos 10 environment in order to improve
productivity and efficiency.

2. Empower your business with the latest
Business Intelligence (BI) tools.

3. Discover advanced tools and knowledge that
can greatly improve daily tasks and analysis.

4. Explore the new interfaces of IBM Cognos 10.

IBM® SmartCloud® Essentials
ISBN: 978-1-78217-064-8 Paperback: 112 pages

Navigate and Use the IBM® SmartCloud® portfolio for
building cloud solutions

1. Understand the basic concepts of cloud
computing and learn about common cloud
standards.

2. Learn about the IBM SmartCloud portfolio with
its many facets.

3. Full of clearly explained concepts, step-by-step
instructions, and hands-on exercises.

Please check www.PacktPub.com for information on our titles

PhoneGap 3 Beginner's Guide
ISBN: 978-1-78216-098-4 Paperback: 308 pages

A guide to building cross-platform apps using the
W3C standards-based Cordova/PhoneGap framework

1. Understand the fundamentals of cross-platform
mobile application development from build to
distribution.

2. Learn to implement the most common features
of modern mobile applications.

3. Take advantage of native mobile device
capabilities—including the camera, geolocation,
and local storage—using HTML, CSS, and
JavaScript.

Mobile First Bootstrap
ISBN: 978-1-78328-579-2 Paperback: 92 pages

Develop advanced websites optimized for mobile
devices using the Mobile First feature of Bootstrap

1. Get to grips with the essentials of mobile first
development with Bootstrap.

2. Understand the entire process of building
a mobile-first website with Bootstrap from
scratch.

3. Packed with screenshots that help guide you
through how to build an appealing website
from a mobile-first perspective with the help of
a real-world example.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with IBM Worklight
	The IBM Worklight solution
	Worklight capabilities and supported platforms
	Components of Worklight
	Worklight Studio
	Features of the Worklight Studio platform

	Worklight Device Runtime
	Worklight Server
	Worklight Console
	Worklight Application Center

	Summary

	Chapter 2: Installing Worklight
	Installing IBM Worklight Consumer Edition
	Installing IBM Installation Manager
	Installing the IBM Worklight Server
	Configuring the WebSphere Application Server (Liberty profile)
	Installing IBM Worklight Studio
	Installing IBM Worklight Developer Edition

	Installing Android SDK
	Summary

	Chapter 3: Creating a Basic Worklight Application
	Creating a simple IBM Worklight application
	Worklight project and application structure
	Application resources

	Rich Page Editor
	Adding an environment
	Verifying the server configuration
	Building the application

	Application skins
	Previewing an application in the mobile simulator
	Summary

	Chapter 4: Customizing a Worklight Application
	A quick overview of HTML5
	The IBM Worklight client-side API
	The WLClient JavaScript client library

	Exploring Dojo Mobile
	Designing your first Dojo application
	Adding an environment in IBM Worklight
	Application resources
	Application-descriptor
	The main HTML file
	Client scripts and stylesheets
	The application icon
	The splash screen
	The Worklight client property file

	Exploring the Android application environment
	Summary

	Chapter 5: Adding an Adapter
	IBM Worklight Adapter concept
	Exploring Adapter files
	Types of Adapters
	HTTP Adapters
	SQL Adapters

	Invoking the Adapter procedure
	Calling Java code using an Adapter
	Invoking Java code from the Adapter

	Summary

	Chapter 6: Authentication and Security
	Worklight security principles, concepts, and terminologies
	Challenge handler
	Authenticator
	The login module
	Authentication realms
	Security test

	Examining generated realms, security test, and login modules
	Generating realms
	Generating login modules
	Generating security tests

	Creating adapter-based authentication
	Client side – adapter authentication components
	Challenge handler in Worklight

	Form-based authentication
	Security realm
	The login module
	Security test
	Challenge handler

	Custom authentication
	Summary

	Chapter 7: Advanced Features of IBM Worklight
	Push notification
	Device and platforms support
	Worklight push notification concepts and terminology

	WL client API
	WL.BusyIndicator
	WL.Logger
	WL.SimpleDialog

	Cordova plugins
	Encrypted Offline Cache
	Storage JSONStore
	Summary

	Index

