
Digital & Wireless Communications

Presenting encryption algorithms with varying characteristics, Image Encryption:
A Communication Perspective examines image encryption algorithms for the
purpose of secure wireless communication. It considers two directions for image
encryption: permutation-based approaches and substitution-based approaches.

Covering the spectrum of image encryption principles and techniques, the book
compares image encryption with permutation- and diffusion-based approaches. It
explores number theory-based encryption algorithms such as the Data Encryption
Standard, the Advanced Encryption Standard, and the RC6 algorithms. It not only
details the strength of various encryption algorithms, but also describes their
ability to work within the limitations of wireless communication systems.

Since some ciphers were not designed for image encryption, the book explains
how to modify these ciphers to work for image encryption. It also provides
instruction on how to search for other approaches suitable for this task. To
make this work comprehensive, the authors explore communication concepts
concentrating on the orthogonal frequency division multiplexing (OFDM) system
and present a simplified model for the OFDM communication system with its
different implementations.

Complete with simulation experiments and MATLAB® codes for most of the
simulation experiments, this book will help you gain the understanding required
to select the encryption method that best fulfills your application requirements.

ISBN: 978-1-4665-7698-8

9 781466 576988

90000
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

IMAGE
ENCRYPTION
A Communication Perspective

Fathi E. Abd El-Samie u Hossam Eldin H. Ahmed
Ibrahim F. Elashry u Mai H. Shahieen

Osama S. Faragallah u El-Sayed M. El-Rabaie
Saleh A. Alshebeili

IM
A
G
E EN

CRYPTIO
N

El-Sam
ie u Ahm

ed u
 Elashry

Shahieen u
 Faragallah

El-Rabaie u
 Alshebeili

w w w . c r c p r e s s . c o m

K16760

K16760 cvr mech.indd 1 11/15/13 11:48 AM

www.allitebooks.com

http://www.allitebooks.org

IMAGE
ENCRYPTION

A Communication Perspective

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

IMAGE
ENCRYPTION

A Communication Perspective

Fathi E. Abd El-Samie u Hossam Eldin H. Ahmed
Ibrahim F. Elashry u Mai H. Shahieen

Osama S. Faragallah u El-Sayed M. El-Rabaie
Saleh A. Alshebeili

www.allitebooks.com

http://www.allitebooks.org

MATLAB® is a trademark of The MathWorks, Inc. and is used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® soft-
ware or related products does not constitute endorsement or sponsorship by The MathWorks of a particular
pedagogical approach or particular use of the MATLAB® software.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131009

International Standard Book Number-13: 978-1-4665-7699-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

www.allitebooks.com

http://www.allitebooks.org

v© 2010 Taylor & Francis Group, LLC

Contents

Preface ix
about the authors xi

chaPter 1 IntroductIon 1

chaPter 2 fundamentals of Image encryPtIon 3
2.1 Introduction 3
2.2 Basic Concepts of Cryptography 4

2.2.1 Goals of Cryptography 4
2.2.2 Principles of Encryption 5

2.3 Classification of Encryption Algorithms 6
2.3.1 Classification According to Encryption Structure 6
2.3.2 Classification According to Keys 7
2.3.3 Classification According to Percentage of
Encrypted Data 8

2.4 Cryptanalysis 9
2.5 Features of Image Encryption Schemes 10
2.6 Conventional Symmetric Block Ciphers 11

2.6.1 Data Encryption Standard 11
2.6.2 Double DES 14
2.6.3 Triple DES 14
2.6.4 International Data Encryption Algorithm 15
2.6.5 Blowfish 16
2.6.6 RC5 Algorithm 16

2.6.6.1 RC5 Encryption Algorithm 17
2.6.6.2 RC5 Decryption Algorithm 17
2.6.6.3 RC5 Key Expansion 17

2.6.7 RC6 Algorithm 19

www.allitebooks.com

http://www.allitebooks.org

vi Contents

© 2010 Taylor & Francis Group, LLC

2.6.7.1 RC6 Encryption Algorithm 19
2.6.7.2 RC6 Decryption Algorithm 20

2.6.8 The Advanced Encryption Standard 21
2.7 Modes of Operation 24

2.7.1 The ECB Mode 25
2.7.2 The CBC Mode 26
2.7.3 The CFB Mode 27
2.7.4 The OFB Mode 27

2.8 Chaos and Cryptography 28
2.9 The 2D Chaotic Baker Map 31

chaPter 3 encryPtIon evaluatIon metrIcs 33
3.1 Introduction 33
3.2 Encryption Evaluation Metrics 34

3.2.1 Histogram Deviation 34
3.2.2 Correlation Coefficient 35
3.2.3 Irregular Deviation 35
3.2.4 Histogram Uniformity 36
3.2.5 Deviation from Ideality 36
3.2.6 Avalanche Effect 37
3.2.7 NPCR and UACI 37

3.3 Other Tests 38
3.3.1 Noise Immunity 38
3.3.2 The Processing Time 38

3.4 Testing the Evaluation Metrics 38
3.5 Summary 42

chaPter 4 homomorPhIc Image encryPtIon 43
4.1 Overview 43
4.2 Homomorphic Cryptosystem 43
4.3 Security Analysis and Test Results 45

4.3.1 Statistical Analysis 45
4.3.1.1 Histograms of Encrypted Images 46
4.3.1.2 Encryption Quality Measurements 47

4.3.2 Key Space Analysis 48
4.3.2.1 Exhaustive Key Search 48
4.3.2.2 Key Sensitivity Test 49

4.3.3 Differential Analysis 53
4.4 Effect of Noise 54
4.5 Summary 54

chaPter 5 chaotIc Image encryPtIon wIth dIfferent
modes of oPeratIon 57
5.1 Overview 57
5.2 Chaotic Encryption with Modes of Operation 57
5.3 Implementation Issues 58
5.4 Simulation Examples and Discussion 60
5.5 Summary 68

www.allitebooks.com

http://www.allitebooks.org

viiContents

© 2010 Taylor & Francis Group, LLC

chaPter 6 dIffusIon mechanIsm for data encryPtIon
In the ecb mode 71
6.1 Introduction 71
6.2 The Preprocessing Network 72

6.2.1 The Addition Part 72
6.2.2 The SPN 73

6.3 Implementation Issues 73
6.3.1 Effect of the Normalized Block Size on Diffusion 74
6.3.2 Effect of the Normalized Block Size on Block
Dependency 77

6.4 Simulation Examples 78
6.4.1 Encryption Quality 79
6.4.2 Diffusion 79
6.4.3 Encryption of Images with Few Details 82

6.5 Summary 88

chaPter 7 orthogonal frequency dIvIsIon
multIPlexIng 89
7.1 Introduction 89
7.2 Basic Principles of OFDM 90

7.2.1 Orthogonality 92
7.2.2 Frequency Domain Orthogonality 93

7.3 OFDM System Model 94
7.3.1 FFT-OFDM 94
7.3.2 DCT-OFDM 95
7.3.3 DWT–OFDM 95
7.3.4 Discrete Wavelet Transform 96

7.3.4.1 Implementation of the DWT 96
7.3.4.2 Haar Wavelet Transform 98

7.4 Guard Interval Insertion 99
7.5 Communication Channels 100

7.5.1 Additive White Gaussian Noise Channel 100
7.5.2 Fading Channel 100

7.6 Channel Estimation and Equalization 101

chaPter 8 ofdm lImItatIons 103
8.1 Introduction 103
8.2 Analysis of Intercarrier Interference 104
8.3 CFO in FFT-OFDM System Model 105
8.4 CFO in DCT-OFDM System Model 107
8.5 CFO in DWT-OFDM System Model 108
8.6 CFO Compensation 108
8.7 Simulation Parameters 109
8.8 Effect of PAPR 114
8.9 PAPR Reduction Methods 119

8.9.1 The Clipping Method 120
8.9.2 The Companding Method 121
8.9.3 The Hybrid Clipping-and-Companding Method 124

www.allitebooks.com

http://www.allitebooks.org

viii Contents

© 2010 Taylor & Francis Group, LLC

8.10 Simulation Experiments of PAPR Reduction Methods 124
8.11 Sampling Clock Offset 128

8.11.1 System Model 129

chaPter 9 sImulatIon examPles 133
9.1 Simulation Parameters 133
9.2 Simulation Experiments in the Presence of CFO 169
9.3 Simulation Experiments for Enhanced Algorithms 171
9.4 Simulation Experiments of PAPR Reduction Methods 187
9.5 Summary 223

references 225
aPPendIx a 237
aPPendIx b 293

www.allitebooks.com

http://www.allitebooks.org

ix© 2010 Taylor & Francis Group, LLC

Preface

We try in this book to look at image encryption with the eyes of
 communication researchers. Traditional studies of encryption
 concentrate on the strength of the encryption algorithm without
taking into consideration what is after encryption. What is after
encryption is the question we must answer to select the appropriate
encryption algorithm. For real-life applications, what is after encryp-
tion is communication of encrypted images. With the advances in
mobile and TV applications, we have to transmit encrypted images
wirelessly. So, “Do our encryption algorithms tolerate the wireless
communication impairments?” is the question we are trying to answer
in this book.

We can summarize the main contributions in this book as follows:

This book is devoted to the issue of image encryption for the
purpose of wireless communications.

Diffusion as well as permutation ciphers are considered in
this book, with a comparison between them using different
 evaluation metrics.

Modifications are presented to existing block ciphers either to
speed up or to enhance their performance.

The wireless communication environment in which the encrypted
images needs to be communicated is studied.

www.allitebooks.com

http://www.allitebooks.org

x PrefaCe

© 2010 Taylor & Francis Group, LLC

Simulation experiments are presented for the validation of the
discussed algorithms and their modifications and for investi-
gating the performance of algorithms over wireless channels.

MATLAB® codes for most of the simulation experiments in this
book are included in two appendices at the end of the book.

Finally, we hope that this book will be helpful for the image-
processing and wireless communication communities.

MATLAB® and Simulink® are registered rademarks of The Math
Works, Inc. For product information, please contact:

The Math Works, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508 647 7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: http://www.mathworks.com/

xi© 2010 Taylor & Francis Group, LLC

About the Authors

Fathi E. Abd El-Samie received the
BSc(Honors), MSc, and PhD degrees from
Menoufia University, Menouf, Egypt in
1998, 2001, and 2005, respectively. Since
2005, he has been a teaching staff mem-
ber with the Department of Electronics
and Electrical Communications, Faculty
of Electronic Engineering, Menoufia
University. He is currently a researcher
at KACST-TIC in radio frequency and
 photonics for the e-Society (RFTONICs). He is a co-author of
about 200 papers in international conference proceedings and
journals and 4 textbooks. His current research interests include
image enhancement, image restoration, image interpolation,
 superresolution reconstruction of images, data hiding, multimedia
 communications, medical image processing, optical signal
processing, and digital communications.

Dr. Abd El-Samie was a recipient of the Most Cited Paper Award
from the Digital Signal Processing journal in 2008.

Hossam Eldin H. Ahmed received a BSC(Honors) in nuclear
engineering in June 1969 (Faculty of Engineering, Alexandria

xii about the authors

© 2010 Taylor & Francis Group, LLC

University, Egypt); an MSc in
 microelectronic electron diffraction in
April 1977 (Nuclear Department, Faculty
of Engineering, Alexandria University);
and a PhD in June 1983 (High Institute
of Electronic and Optics, Paul Sabatier
University, Toulouse, France). From 1970
to 1977, he was in the Egyptian marine
forces. He was a demonstrator in 1977,
giving lectures to staff members in the Department of Electronic
and Electrical Communications, Faculty of Engineering and
Technology, Menoufia University. In 1993, he became a professor
of microelectronics, VLSI design technology, communication sys-
tems, and computer networks. From 1993 until 1999, he was vice
dean for education and student affairs at the Faculty of Electronic
Engineering. In 2001, he became a chairman of the Electronics
and Electrical Communications Department. He is a member of
the Menoufia periodic electronic faculty journal and since 1995
has been the director, designer, and constructor of the Menoufia
University wide-area network (WAN) (21 LANs). He is the devel-
oper of the Menoufia University libraries and FRCU universities
libraries. His current research interests are electron microscopy;
 transmission and backscattering of electrons and ion beams into
amorphous or polycrystalline targets; optical fibers; VLSI design;
nanotechnology; lithography; digital, optical, and multimedia com-
munications; digital images; multimedia and database communica-
tions; security applications; telemetry microcomputer applications
in satellites; and OBC and satellite communications.

Ibrahim F. Elashry graduated from the
Faculty of Engineering, Kafrelshiekh
University, Egypt in 2007. He is now a
teaching assistant and PhD student at
the University of Wollongong (UOW),
Australia. His research interests are security
over wired and wireless networks and image
processing.

xiiiabout the authors

© 2010 Taylor & Francis Group, LLC

Mai H. Shahieen graduated in May 2005
from the Faculty of Electronic Engineering,
Menoufia University. Her 2011 MSc degree
is in encrypted image transmission over wire-
less channels. She is now a PhD student at
the Faculty of Electronic Engineering. Her
research interests are broadband wireless
distribution systems, image and video com-
pression, multimedia systems, and wireless
networks.

Osama S. Faragallah received BSc, MSc,
and PhD degrees in computer science and
 engineering from Menoufia University,
Menouf, Egypt in 1997, 2002, and 2007,
respectively. He is currently associate professor
with the Department of Computer Science
and Engineering, Faculty of Electronic
Engineering, Menoufia University, where he
was a demonstrator from 1997 to 2002 and
assistant lecturer from 2002 to 2007. Since
2007, he has been a teaching staff member
with the same department. His research interests are network secu-
rity, cryptography, Internet security, multimedia security, image
encryption, watermarking, steganography, data hiding, medical
image processing, and chaos theory.

El-Sayed M. El-Rabaie (senior member,
IEEE 1992, MIEE chartered electrical
 engineer) was born in Sires Elian (Menoufia),
Egypt in 1953. He received the PhD degree
in microwave device engineering from the
Queen’s University of Belfast in 1986. He was
a postdoctoral fellow at Queen’s (Department
of Electronic Engineering) until February
1989. In his doctoral research, he constructed
a CAD (computer-aided design) pack-
age in nonlinear circuit simulations based

xiv about the authors

© 2010 Taylor & Francis Group, LLC

on harmonic balance techniques. Since then, he has been involved
in different research areas, including CAD of nonlinear microwave
circuits, nanotechnology, digital communication systems, and digital
image processing. He was invited in 1992 as a research fellow at North
Arizona University (College of Engineering and Technology) and
in 1994 as a visiting professor at Ecole Polytechnique of Montreal,
Quebec, Canada. Professor El-Rabaie has authored and co-authored
more than 130 papers and technical reports and 15 books. In 1993,
he was awarded the Egyptian Academic Scientific Research Award
(Salah Amer Award of Electronics), and, in 1995, he received the award
of the Best Researcher on CAD from Menoufia University. He acts
as a reviewer and member of the editorial board for several scientific
journals. He participated in translating the first part of the Arabic
encyclopedia. Professor El-Rabaie was the head of the Electronics
and Electrical Communications Engineering Department, Faculty
of Electronic Engineering, Menoufia University, and then the vice
dean of postgraduate studies and research in the same faculty. He
currently is the vice dean of the Scientific Committee for Professors
and Assistant Professors promotion in Egypt.

Saleh A. Alshebeili is professor and
chairman (2001–2005) of the Electrical
Engineering Department, King Saud
University, Riyadh, Saudi Arabia. He has more
than 20 years of teaching and research experi-
ence in the area of communications and signal
processing. Dr. Alshebeili is a member of the
board of directors of Prince Sultan Advanced
Technologies Research Institute (PSATRI) and has been the vice
 president of PSATRI (2008–2011), the director of Saudi-Telecom
Research Chair (2008–2012), and the director (2011–present) of the
Technology Innovation Center, RF and Photonics in the e-Society
(RFTONICS), funded by King Abdulaziz City for Science and
Technology (KACST). Dr. Alshebeili has been on the editorial board of
the Journal of Engineering Sciences of King Saud University (2009–2012).
He also has active involvement in the review process of a number of
research journals, KACST general directorate grants programs, and
national and international symposiums and conferences.

1© 2010 Taylor & Francis Group, LLC

1
IntroductIon

The presence of communication networks has prompted new problems
with security and privacy. Having a secure and reliable means for
communicating with images and video is becoming a necessity, and
its related issues must be carefully considered. Hence, network secu-
rity and data encryption have become important. Images can now be
considered one of the most usable forms of information. Image and
video encryption have applications in various fields, including wireless
communications, multimedia systems, medical imaging, telemedi-
cine, and military communications [1–5].

In this book, image encryption algorithms are studied for the
 purpose of wireless communication of images in a secure form. The
main objective is to come to a conclusion whether a certain image
encryption algorithm is suitable for wireless communication applica-
tions. In this regard, we explore in this book some of the number-
theory-based encryption algorithms such as the Data Encryption
Standard (DES), the Advanced Encryption Standard (AES), and the
RC6 algorithms [6–12]. These algorithms are known in the literature
as strong encryption algorithms. Our main concern is not only the
strength of the encryption algorithm, but also its ability to work with
the limitations of wireless communication systems. Unfortunately,
some of the ciphers used currently were not designed for image
encryption. For example, the AES implemented in the Electronic
Code-Book (ECB) mode is not recommended for encrypting images
because of the repetitive data patterns existing in images. So, we
either modify these ciphers to work for image encryption or search for
other approaches suitable for this task. This book tries to investigate
both directions.

For this purpose, we have also explored another branch of cryp-
tography that depends on chaos theory. The usage of chaotic cryptog-
raphy for image encryption is promising. The idea of using chaos for

2 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

encryption can be traced to Shannon’s classical article [13]. Chaotic
maps have been applied to cryptography in several different ways.
Chaotic sequences have several good properties, including ease of
generation, sensitive dependence on the initial conditions, and noise-
like behavior. Applying the chaos to cryptography was a great contri-
bution to improve the security of data due to the adequate properties
of chaotic sequences [14,15].

To make the study in this book comprehensive, we switch in
Chapters 7 and 8 to communication concepts concentrating on
the orthogonal frequency division multiplexing (OFDM) system.
In these chapters, we present a simplified model for the OFDM
communication system with its different implementations, with
 concentration on the limitations of this system, and how these limita-
tions affect the quality of received images after decryption. An exten-
sive comparison study is presented in Chapter 9, considering different
possible scenarios and different encryption algorithms to determine
which encryption algorithm is suitable for which scenario. Finally, we
include all MATLAB® codes utilized in the experiments in this book
to open the door for researchers who wish to complete this study using
different ideas.

3© 2010 Taylor & Francis Group, LLC

2
Fundamentals oF
Image encryptIon

2.1 Introduction

We are living in the information age; we need to keep information
about every aspect of our lives. In other words, information is an asset
that has a value like any other asset. As an asset, information needs
to be secured from attacks. Since 1990, communication networks cre-
ated a revolution in the use of information. Authorized people can
send and receive information from a distance using communication
networks. To be secure, information needs to be hidden from unau-
thorized access (confidentiality), protected from unauthorized change
(integrity), and available to an authorized entity when it is needed
(availability). Although these three requirements have not changed,
they now have some new dimensions. Not only should information
be confidential when it is stored in a computer, but also there should
be a way to maintain its confidentiality when it is transmitted over a
communication network [16].

Information transmitted over computer networks currently is not
only text but also audio, images, and other multimedia types. The
field of multimedia security has matured in the past decade to provide
a class of tool sets and design insights for the protection and enhance-
ment of digital media under a number of diverse attack scenarios.
Research in multimedia security was first motivated partly by the
increasing use of digital means to communicate, store, and represent
entertainment information such as music and video. The digital form
allowed the perfect duplication of information and almost seam-
less manipulation and tampering of the data. This created new types
of security attacks not addressed in the past by the entertainment
industry. The paradigm shift from analog to digital multimedia for

4 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

entertainment has had an enormous impact on artists, publishers,
copyright holders, and consumers [17,18].

This chapter gives the principles underlying the design of crypto-
graphic algorithms. A review of the different issues that arise when
selecting, designing, and evaluating a cryptographic algorithm is pre-
sented. Diffusion-based cipher algorithms along with their modes of
operation are covered. Chaotic encryption with a Baker map is also
discussed.

2.2 Basic Concepts of Cryptography

Image security is based on cryptography. In fact, some basic concepts
from cryptography are used as building blocks (primitives) for appli-
cations in image security. For a better understanding of issues con-
cerning image security, an overview of cryptography is presented first.

2.2.1 Goals of Cryptography

Cryptography is a study of techniques (called cryptosystems) that are
used to accomplish the following four goals [1,16–18]:

• Confidentiality
• Data integrity
• Authentication
• Nonrepudiation

The study of the techniques used to break existing cryptosystems is
called cryptanalysis. Since cryptography and cryptanalysis are greatly
dependent on each other, people refer to cryptology as a joint study
of cryptography and cryptanalysis. Let us try to understand all four
goals of cryptography.

Confidentiality refers to the protection of information from unau-
thorized access. An undesired communicating party, called an adver-
sary, must not be able to access the communication material. This
goal of cryptography is a basic one that has always been addressed and
enforced throughout the history of cryptographic practice.

Data integrity ensures that information has not been manipulated in
an unauthorized way. If the information is altered, all communicating
parties can detect this alteration.

5fundamentals of Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

Authentication methods are classified into two categories: entity
authentication and message authentication. Entity authentication is
the process by which one party is assured of the identity of a sec-
ond party involved in a protocol, and that the second has actually
 participated immediately prior to the time the evidence is acquired.
Message authentication is a term used analogously with data origin
authentication. It provides data origin authentication with respect to
the original message source and data integrity but with no uniqueness
and timeliness guarantees.

Nonrepudiation means that the receiver can prove to everyone that
the sender did indeed send the message. That is, the sender cannot
claim that he or she did not encrypt or sign certain digital information.

Fortunately, modern cryptography has developed techniques to
handle all four goals of cryptography.

2.2.2 Principles of Encryption

The basic idea of encryption is to modify the message in such a
way that only a legal recipient can reconstruct its content [16–18].
A discrete-value cryptosystem can be characterized by

a set of possible plaintexts P
a set of possible ciphertexts C
a set of possible cipher keys K
a set of possible encryption and decryption transformations

E and D

An encryption system is also called a cipher, or a cryptosystem. The
message for encryption is called plaintext, and the encrypted message
is called ciphertext. Denote the plaintext and the ciphertext by P and
C, respectively [16–19]. The encryption procedure of a cipher can be
described as

 ()=C E PKe (2.1)

where Ke is the encryption key, and E is the encryption function.
Similarly, the decryption procedure is defined as

 ()=P D CKd
 (2.2)

www.allitebooks.com

http://www.allitebooks.org

6 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

where Kd is the decryption key, and D is the decryption function.
The security of a cipher should only rely on the decryption key Kd
as an adversary can recover the plaintext from the observed cipher-
text once the adversary gets Kd. Figure 2.1 shows a block diagram for
 encryption/decryption of a cipher.

2.3 Classification of Encryption Algorithms

Encryption algorithms can be classified in different ways: according
to structures of the algorithms, according to keys, or according to the
percentage of the data encrypted [19,20].

2.3.1 Classification According to Encryption Structure

Encryption algorithms can be classified according to encryption
structure into block ciphers and stream ciphers.

A block cipher is a type of symmetric-key encryption algorithm
that transforms a fixed-length block of plaintext data into a block
of ciphertext data of the same length. The fixed length is called the
block size. For several block ciphers, the block size is 64 or 128 bits.
The larger the block size, the more secure is the cipher, but the more
complex are the encryption and decryption algorithms and devices.
Modern block ciphers have the following features [21]:
 1. Variable key size
 2. Mixed arithmetic operations, which can provide nonlinearity
 3. Data-dependent rotations and key-dependent rotations
 4. Lengthy key schedule algorithms
 5. Variable plaintext/ciphertext block sizes and variable number

of rounds
Block ciphers can be characterized by
 1. Block size: Larger block sizes mean greater security.
 2. Key size: Larger key sizes mean greater security.

Ke Kd

Ciphertext
Recovered
plaintext

Public channel
Plaintext

Encryption Decryption

Figure 2.1 Encryption/decryption of a cipher.

7fundamentals of Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

 3. Number of rounds: Multiple rounds increase security.
 4. Encryption modes: They define how messages larger than the

block size are encrypted.

Unlike block ciphers that operate on large blocks of data, stream ciphers
typically operate on smaller units of plaintext, usually bits. So, stream
ciphers can be designed to be exceptionally fast, much faster than a
typical block cipher. Generally, a stream cipher generates a sequence
of bits as a key (called key stream) using a pseudorandom number gen-
erator (PRNG) that expands a short secret key (e.g., 128 bits) into a
long string (key stream) (e.g., 106 bits), and the encryption is accom-
plished by combining the key stream with the plaintext. Usually, the
bitwise XOR operation is chosen to perform ciphering, basically for its
 simplicity [6–9]. Stream ciphers have the following properties [22, 23]:

 1. They do not have perfect security.
 2. Security depends on the properties of the PRNG.
 3. The PRNG must be unpredictable; given a consecutive

sequence of output bits, the next bit must be hard to predict.
 4. Typical stream ciphers are very fast.

2.3.2 Classification According to Keys

According to keys, there are two kinds of ciphers following the
 relationship of Ke and Kd. When Ke = Kd, the cipher is called a
 private-key cipher or a symmetric cipher. For private-key ciphers, the
encryption/decryption key must be transmitted from the sender to
the receiver via a separate secret channel. When Ke ≠ Kd, the cipher
is called a public-key cipher or an asymmetric cipher. For public-key
ciphers, the encryption key Ke is published, and the decryption key Kd
is kept private, for which no additional secret channel is needed for
key transfer. In conventional encryption as shown in Figure 2.2, the
sender encrypts the data (plaintext) using the encryption key, and the
receiver decrypts the encrypted data (ciphertext) into the original data
(plaintext) using the decryption key. In symmetric encryption, both
encryption and decryption keys are identical. Figure 2.3 shows the
public-key encryption (asymmetric encryption), in which the encryp-
tion and decryption keys are different. Public-key cryptography solves
the problem of conventional cryptosystems by distributing the key

8 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

[24–27]. Table 2.1 shows a comparison between symmetric encryp-
tion and asymmetric encryption.

In general, there are two types of cryptosystems: (1) symmetric-
(private-) key cryptosystems and (2) asymmetric- (public-) key cryp-
tosystems. Most people have chosen to call the first group simply
symmetric-key cryptosystems, and the popular name for the second
group is just public-key cryptosystems.

2.3.3 Classification According to Percentage of Encrypted Data

With respect to the amount of encrypted data, the encryption can
be divided into full encryption and partial encryption (also called
selective encryption) according to the percentage of the data
encrypted.

Cryptanalyst

DecryptEncryptMessage
source Destination

Key pair
source

YX X

�e Source A �e Destination B

X

Figure 2.3 Asymmetric-key encryption.

Decryption
Algorithm

Encryption
Algorithm

Message
Destination

Message
Source

Secure
Channel

Secret
Key

X

K

Y Y

X

K

Cryptanalyst
(Attacks)

Sender ReceiverTransmission
KdXe

Figure 2.2 Model of symmetric encryption.

9fundamentals of Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

2.4 Cryptanalysis

Cryptanalysis is the art of deciphering an encrypted message as a
whole or in part when the decryption key is not known. Depending
on the amount of known information and the amount of control over
the system by the adversary (cryptanalyst), there are several basic
types of cryptanalytic attacks [28–30]. Some of the most important
ones, for a system implementer, are described next, and they are sum-
marized in Table 2.2.

Ciphertext-only attack. The adversary only has access to one or
more encrypted messages. The most important goal of a pro-
posed cryptosystem is to withstand this type of attack.

Brute-force attack. This is a type of ciphertext-only attack. It is
based on an exhaustive key search, and for well-designed
cryptosystems, it should be computationally infeasible.

Known-plaintext attack. In this type of attack, an adversary has
some knowledge about the plaintext corresponding to the
given ciphertext. This may help the adversary determine the
key or a part of the key.

Chosen-plaintext attack. Essentially, an adversary can feed the
chosen plaintext into the black box that contains the encryp-
tion algorithm and the encryption key. The black box gives
the corresponding ciphertext, and the adversary may use the

Table 2.1 Comparison between Symmetric Encryption and Asymmetric Encryption

CONVENTIONAL ENCRYPTION (SYMMETRIC
ENCRYPTION)

PUBLIC-KEY ENCRYPTION (ASYMMETRIC
ENCRYPTION)

Requirements to work:
 1. The same algorithm with the same key can

be used for encryption and decryption.
 2. The sender and receiver must share the

algorithm and the key.

Requirements to work:
 1. One algorithm is used for encryption and

decryption with a pair of keys, one for
encryption and one for decryption.

 2. The sender and receiver must each have
one of the matched pair of keys.

Requirements for security:
 1. The key must be kept secret.
 2. It must be impossible or at least

impractical to decipher a message if no
other information is available.

 3. Knowledge of the algorithm plus samples
of the ciphertext must be insufficient to
determine the key.

Requirements for security:
 1. The decryption key must be kept secret.
 2. It must be impossible or at least

impractical to decipher a message if no
other information is available.

 3. Knowledge of the algorithm, the encryption
key, and samples of the ciphertext must be
insufficient to determine the decryption key.

10 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

accumulated knowledge about the plaintext–ciphertext pairs
to obtain the secret key or at least a part of it.

Chosen-ciphertext attack. Here, an adversary can feed the cho-
sen ciphertext into the black box that contains the decryption
algorithm and the decryption key. The black box produces the
corresponding plaintext, and the adversary tries to obtain the
secret key or a part of the key by analyzing the accumulated
ciphertext–plaintext pairs.

2.5 Features of Image Encryption Schemes

Unlike text messages, image data have their special features, such as
high redundancy and high correlation among pixels. Also, they are usu-
ally huge in size. Together, these make traditional encryption methods
difficult to apply and slow to process. Sometimes, image applications
have their own requirements, like real-time processing, fidelity reser-
vation, image format consistency, data compression for transmission,
and so on. Simultaneous fulfillment of these requirements along with
high-security and high-quality demands has presented great chal-
lenges to real-time imaging practice. For studying image encryption,

Table 2.2 Types of Attacks on Encrypted Images

TYPE OF ATTACKS PREREQUISITES FOR THE CRYPTANALYST

Ciphertext only 1. Encryption algorithm
 2. Ciphertext to be decoded

Known plaintext 1. Encryption algorithm
 2. Ciphertext to be decoded
 3. Plaintext message together with its corresponding ciphertext

generated with the secret key
Chosen ciphertext 1. Encryption algorithm

 2. Ciphertext to be decoded
 3. Reported ciphertext chosen by cryptanalyst together with its

corresponding plaintext generated with the decryption
algorithm and the decryption key

Chosen plaintext 1. Encryption algorithm

 2. Ciphertext to be decoded

 3. Reported plaintext chosen by cryptanalyst together with its
corresponding ciphertext generated with the encryption
algorithm and the encryption key

11fundamentals of Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

we must first analyze the differences between implementations for
image data and text data encryption. Basically, there are some differ-
ences between image and text data encryption [31–34]:

 1. When the ciphertext is produced, it must be decrypted to
the original plaintext in a full lossless manner. However, the
cipherimage can be decrypted to the original plainimage in
some lossy manner.

 2. Text data are sequences of words. They can be encrypted
directly by using block or stream ciphers. However, digi-
tal images are usually represented as two-dimensional (2D)
arrays. For protecting the stored 2D arrays of data with text-
processing algorithms, they must be converted to 1D arrays
before using various traditional encryption techniques.

 3. Because the storage space of a picture is very large, it is some-
times inefficient to encrypt or decrypt images directly. One
of the best methods is to encrypt/decrypt information that is
used by image compression only for reducing both its storage
space and transmission time.

2.6 Conventional Symmetric Block Ciphers

This section gives a brief overview of the construction of some popular
conventional encryption algorithms. Each of the following encryp-
tion algorithms is a symmetric block cipher algorithm. Symmetric
means that the key used for encryption and decryption is the same;
block means that the data (information) to be encrypted is divided into
blocks of equal length [35–45].

2.6.1 Data Encryption Standard

The Data Encryption Standard (DES) is the most well-known sym-
metric-key block cipher. It was selected by the National Bureau of
Standards as an official Federal Information Processing Standard
(FIPS) for the United States in 1976, and it subsequently enjoyed
widespread use internationally [46].

The DES is a block cipher, which encrypts data in 64-bit blocks.
A 64-bit block of plaintext goes at one end of the algorithm, and
a 64-bit block of ciphertext comes out at the other end. The same

12 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

algorithm and key of size 56 bits are used for both encryption and
decryption except for minor differences in the key schedule. The key
is usually expressed as a 64-bit number, but every eighth bit, one bit
is used for parity checking and is ignored. These parity bits are the
least-significant bits of the key bytes. The key can be any 56-bit num-
ber and can be changed at any time, although some selections can be
considered weak keys.

The DES is based on four basic operations: expansion, permutation,
XOR, and substitution. The data to be encrypted are first divided into
64-bit blocks and fed into an Initial Permutation (IP) stage, in which
each block is divided into two subblocks, each with a 32-bit length.
The right subblock is fed into a Feistel function (f-function), which is
depicted in Figure 2.4. It operates on half a block (32 bits) at a time
and consists of four stages as shown in Figure 2.5.

 1. Expansion. The 32-bit half block is expanded to 48 bits using
the expansion permutation, denoted as E in the diagram, by
duplicating half of the bits. The output consists of eight 6-bit
(8 × 6 = 48 bits) pieces, each containing a copy of 4 corre-
sponding input bits plus a copy of the immediately adjacent
bit from each of the input pieces to either side.

 2. Key mixing. The result is combined with a subkey using
an XOR operation. Sixteen 48-bit subkeys, one for each
round, are derived from the main key using a key-schedule
mechanism.

 3. Substitution. After mixing with the subkey, the block is
divided into eight 6-bit pieces before processing by the
Substitution boxes (S-boxes). Each of the eight S-boxes
replaces its six input bits with four output bits according to
a nonlinear transformation, provided in the form of a lookup
table. The S-boxes provide the core of security of the DES.

1 2 3 4

1 2 3 4 65

9 10 11 12

13 14 15 16 1817

5 6 7 8

7 8 9 10 1211

32

48

32

48

Figure 2.4 Expansion process.

13fundamentals of Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

Without them, the cipher would be linear and trivially
breakable.

 4. Permutation. Finally, the 32 outputs from the S-boxes are
rearranged according to a fixed permutation, the P-box,
which is designed so that, after expansion, each group of
S-box output bits is spread across six different S-boxes in the
next round.

At its simplest level, the DES algorithm is nothing more than a
combination of the two basic techniques of encryption: confusion

Ciphertext 64 bits

For 16 rounds

IP

F

F

F

F

FP

Plaintext 64 bits

P

E

Sub-key (48 bits)Half block (32 bits)

S S S S S S S S

f-function

Figure 2.5 The DES algorithm and f-function.

14 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

and diffusion. The fundamental building block of the DES is a
 single combination of these techniques: a substitution followed
by a permutation on the data based on the key. After an initial
 permutation, each block is broken into a right half and a left half,
each with 32 bits. Then, there are 16 rounds of identical opera-
tions, called f functions, in which the data are combined with the
key. After these rounds, the right and left halves are joined, and a
final permutation, the inverse of the initial permutation, finishes
the algorithm.

2.6.2 Double DES

A naive way of improving the security of a block cipher algorithm is
to encrypt each block twice with two different keys. First, encrypt a
block with the first key and then encrypt the resulting ciphertext with
the second key. Decryption is the reverse process. In the Double DES
encryption algorithm, each 64-bit block of data is encrypted twice
with the DES algorithm, first with a key K1 and then with another
key K2. The scheme involves a key of 112 bits.

The resultant doubly encrypted ciphertext block should be
much harder to decrypt using an exhaustive search. Instead of 256
attempts, it requires 2128 attempts to find the key and 2112 attempts
to break the encryption. In 1981, Merkle and Hellman declared
their “ meet-in-the-middle” attack, which proved the weakness of
the Double DES algorithm [47]. The “meet-in-the-middle” attack
is a known plaintext attack that requires that an attacker have
both a known piece of plaintext and the corresponding ciphertext.
The attack requires storing 256 intermediate results when trying to
crack a message that has been encrypted with the double DES.
Merkle and Hellman developed a time-memory trade-off that
could break this double-DES encryption scheme in 256+1 trials, not
in 2112 trials.

2.6.3 Triple DES

The dangers of the Merkle-Hellman “meet-in-the-middle” attack can
be circumvented by performing three block encryption operations.

15fundamentals of Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

This method is called Triple DES. Triple DES is performed by exe-
cuting the DES three times, producing an effective key size of 168
bits. In the Triple DES, each 64-bit block of data is encrypted three
times with the DES algorithm. In practice, the most common way to
perform the Triple DES is

 1. Encrypt with key 1.
 2. Decrypt with key 2.
 3. Encrypt with key 3.

To decrypt, reverse the steps:

 1. Decrypt with key 3.
 2. Encrypt with key 2.
 3. Decrypt with key 1.

For several applications, we can use the same key for both key 1 and
key 3 without creating a significant vulnerability. The choice between
Single, Double, and Triple DES is a trade-off between performance
and security requirements [45].

2.6.4 International Data Encryption Algorithm

The International Data Encryption Algorithm (IDEA) cipher was
first presented by Lai and Massey in 1990 under the name Proposed
Encryption Standard (PES). After Biham and Shamir presented
differential cryptanalysis, the authors strengthened their cipher
against the attack and named it the Improved Proposed Encryption
Standard (IPES). The IPES name was changed to the International
Data Encryption Algorithm (IDEA) in 1992. This algorithm was
intended as a replacement for the DES. IDEA is a block cipher that
operates on 64-bit plaintext blocks. The key is 128 bits long. There
are eight identical rounds, and the same algorithm is used for both
encryption and decryption. It uses both confusion and diffusion.
The design philosophy behind the algorithm is based on mixing
operations from different algebraic groups. Three algebraic groups
(XOR, addition modulo, and multiplication modulo) are mixed in
this algorithm [16,18], and they are all easily implemented in both
hardware and software. All of these operations operate on 16-bit
subblocks.

www.allitebooks.com

http://www.allitebooks.org

16 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

2.6.5 Blowfish

Blowfish is a 64-bit block cipher with a variable-length key. It was
designed in 1993 by Schaneier [16]. This algorithm consists of two
parts: key expansion and data encryption. Key expansion converts a
key of up to 448 bits into several subkey arrays totaling 4168 bytes.
Data encryption consists of a simple function iterated 16 times.
Each round consists of a key-dependent permutation and a key-
and data-dependent substitution. All operations are additions and
XORs on 32-bit words. The only additional operations are four
indexed array data lookups per round. The keys must be precom-
puted before any data encryption or decryption, with decryption
exactly the same as encryption except that the subkeys are used in
reverse order.

2.6.6 RC5 Algorithm

The iterated block RC5 was introduced by Rivest, Shamir, and
Adleman in 1994 [48]. The main feature of the RC5 is the heavy
use of data-dependent rotations. RC5 has a variable word size w, a
variable number of rounds r, and a variable secret key with b bytes.
It is represented as RC5 w/r/b. The nominal value of w is 32 bits, and
RC5 encrypts blocks of two words. The RC5 is composed of encryp-
tion, decryption, and key expansion. The expanded key contains
t = 2 × (r + 1) words. The primitive operations of the RC5 are illustrated
in Table 2.3. Generally, RC5 is a fast symmetric block cipher that is
suitable for hardware and software implementations with low mem-
ory requirements. It provides high security when good parameters are
chosen.

Table 2.3 Primitive Operations of RC5

a + b Integer addition modulo 2w
a – b Integer subtraction modulo 2w
a ⊕ b Bitwise XOR of w-bit words
a * b Integer multiplication modulo 2w
a <<< b Rotate the w-bit word a to the left by the amount given by the

least-significant lg w bits of b
a >>> b Rotate the w-bit word a to the right by the amount given by the

least-significant lg w bits of b

17fundamentals of Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

2.6.6.1 RC5 Encryption Algorithm We assume that the input block is
given in two w-bit registers A and B, and we also assume that key
expansion has already been performed so that S[0], S[1], …, S[t - 1]
have been computed. The steps of the encryption algorithm can be
summarized as follows:

A = A+S [0];
B = B+S [1];
For i = 1 to r do
A = ((A ⊕ B) <<< B) +S [2i];
B = ((B ⊕ A) <<< A) +S [2i+1];
End

In each round of RC5, both registers A and B are updated as shown
in Figure 2.6.

2.6.6.2 RC5 Decryption Algorithm The decryption step can be sum-
marized as follows:

For i = r downto 1 do
B = ((B - S [2i+1]) >>> A) ⊕ A;
A = ((A - S [2]) >>> B) ⊕ B;
End
B = B-S [1];
A = A-S [0];

2.6.6.3 RC5 Key Expansion Key expansion expands the user’s secret
key K to fill the expanded key array S, which makes S similar to an

Ai–1 Bi–1

Ai Bi

S2i

S2i+1

+ +

+
+

<<<<<<

Figure 2.6 RC5w/r/b symmetric block cipher diagram.

18 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

array of t = 2(r + 1) random binary words. Two magic constants, Pw
and Qw, are used in this process. These constants are defined as

 ()()= − 2 2P Odd ew
w (2.3)

 ()()= φ − 1 2Q Oddw
w (2.4)

where
e = 2.718281828459....(base of natural logarithms)
ϕ = 1.618033988749....(golden ratio)

and Odd(x) is the odd integer nearest to x. For w = 16 and 32, these
constants are given in hexadecimal:

 P16 = b7e1; Q16 = 9e37

 P32 = b7e15163; Q32 = 9e3779b9,

The expansion begins by copying the secret key K[0....b-1] into an
array L[0....c-1] that has []=c b u/ words, where u = w/8 is the number
of bytes per word. u consecutive key bytes of K are used to fill each
successive word in L in a low-order to high-order byte manner. All
unfilled byte positions of L are zeroed.

To initialize the array S, we use the following steps:

 S [0] = PW;
 For i = 1 to t-1 do
 S [i] = S [i-1] + QW;
 End

The last step is to mix the user secret key in three passes over the
arrays S and L as follows:

 i = j = 0;
 A = B = 0;
 Do 3*max (t, c) times:
 A = S [i] = (S [i] +A+B) <<<3;
 B = L[j] = (L[j] + A+ B) <<< (A+B);
 i = (i+1) mod (t);
 j = (j+1) mod (c);

19fundamentals of Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

2.6.7 RC6 Algorithm

The RC6 block cipher is a modified version of RC5 that uses four
working registers instead of two and integer multiplication as an addi-
tional primitive operation. The integer multiplication process greatly
enhances the diffusion achieved per round, which leads to greater
security, fewer rounds, and increased throughput. The key schedule
of RC6-w/r/b is similar to the key schedule of RC5-w/r/b. The only
difference is that for RC6-w/r/b, more words are derived from the
user-supplied key for use during encryption and decryption. The user
supplies a key of b bytes, where 0 ≤ b ≤ 255. From this key, 2r + 4
words (w bits each) are derived and stored in the array S[0, … , 2r + 3].
This array is used in both encryption and decryption [12]. Generally,
RC6 consists of two Feistel networks whose data are mixed via data-
dependent rotations. The operations in a single round of RC6 con-
tain two applications of the squaring function f(x) = x(2x + 1) mod
232, two fixed 32-bit rotations, two data-dependent 32-bit rotations,
two XORs, and two additions modulo 232. The steps of RC6 encryp-
tion and decryption are summarized next, and the block diagrams of
RC6 encryption and decryption are shown in Figures 2.7 and 2.8,
respectively.

2.6.7.1 RC6 Encryption Algorithm

Input: Four w-bit plaintext values stored in registers
A, B, C, and D
 Number r of rounds
 w-bit round keys S[0, …, 2r+3]
Output: Four w-bit ciphertext values stored in
registers A, B, C, and D.
Procedure: B = B + S [0];
 D = D + S [1];
 For i = 1 to r do
 {t = (B × (2B + 1)) <<< lg w;
 u = (D × (2D + 1)) <<< lg w;
 A = ((A ⊕ t) <<< u) + S [2i];
 C = ((C ⊕ u) <<< t) + S [2i + 1];
 (A, B, C, D) = (B, C, D, A);}
 End
 A = A + S [2r + 2];
 C = C + S [2r + 3];

20 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

2.6.7.2 RC6 Decryption Algorithm

Input: Four w-bit ciphertext values stored in registers
A, B, C, and D
 Number of rounds r
 w-bit round keys S[0, …, 2r+3]
Output: Four w-bit plaintext values stored in
registers A, B, C, and D.
Procedure: C = C − S [2r + 3];
 A = A − S [2r + 2];
 for i = r downto 1 do
 {(A, B, C, D) = (D, A, B, C);
 u = (D × (2D + 1)) <<< log(w);
 t = (B × (2B + 1)) <<< log(w);
 C = ((C − S[2i + 1]) >>> t) ⊕ u;

A

+

<<<

C

+

+ +

<<<

+

D

f<<<

B

f<<<

A B C D

S[0] S[1]

S[2i] S[2i+1]

S[2r+3]S[2i+2]

lg w lg w

Re
pe

at
 fo

r r
 ro

un
ds

+

+ +

Figure 2.7 Encryption with RC6-w/r/b algorithm.

21fundamentals of Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

 A = ((A − S[2i]) >>> u) ⊕ t;}
 End
 D = D − S [1];
 B = B − S [0];

2.6.8 The Advanced Encryption Standard

The Advanced Encryption Standard (AES) is based on the Rijndael
algorithm, which is an iterated block cipher algorithm with a variable
block size and a variable key size. The block size and the key size can
be independently 128, 192, or 256 bits. The intermediate resulting
ciphertext is called a state, and it is in the form of a rectangular array
of four rows and a number of columns equal to the block size divided

>>>

–

B

–

S[2i] S[2i+1]

f<<<

log(w)log(w)

DB

–

A

S[2r+2] S[2r+3]–

C

f<<<

–

>>>

A D

–

C

++

S[1]S[0]
Re

pe
at

 fo
r r

 ro
un

ds

Figure 2.8 Decryption with RC6-w/r/b algorithm.

22 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

by 32. The cipher key is similarly a rectangular array with four rows
and a number of columns equal to the key size divided by 32. The
number of rounds performed on the intermediate state is related to the
key size. For key sizes of 128, 192, and 256 bits, the number of rounds
is 10, 12, and 14, respectively. Each round consists of a fixed sequence
of transformations, except the first and the last round [16–18].

The AES consists of rounds. Any round, except the final one,
consists of SubBytes, ShiftRows, MixColumns, and AddRoundKey
operations. In the final round, no MixColumns operation is per-
formed. In the SubBytes step, a linear substitution for each byte is
performed according to Figure 2.9. Each byte in the array is updated
using an 8-bit S-box, which provides the nonlinearity in the cipher
system [16–18].

The S-box is derived from the multiplicative inverse over the finite
Galois field GF(28), known to have good nonlinearity properties. To
avoid attacks based on simple algebraic properties, the S-box is cho-
sen to avoid any fixed points and any opposite fixed points [16–18].

The ShiftRows step operates on the rows of the state. It cycli-
cally shifts the bytes in each row. For the AES, the first row is left
unchanged. Each byte of the second row is shifted a single byte to the
left. Similarly, the third and fourth rows are shifted by offsets of 2 and
3 bytes, respectively. For the block of size 128 bits and 192 bits, the
shifting pattern is the same [16–18].

In this way, each column of the output state of the ShiftRows step
is composed of bytes from each column of the input state. In the case
of the 256-bit blocks, the first row is unchanged, and the shifting for

b1 b2

b5

b9

b13

b6

b10

b14

b3

b7

b11

b15

b4

b16

b8

b12

d1 d2

d5

d9

d13

d6

d10

d14

d3

d7

d11

d15

d4

d16

d8

d12

SubBytes

S

Figure 2.9 SubBytes step.

23fundamentals of Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

second, third, and fourth rows is 1 byte, 3 bytes, and 4 bytes, respec-
tively, as shown in Figure 2.10.

In the MixColumns step, the 4 bytes of each column of
the state are combined using an invertible linear transforma-
tion. The MixColumns function takes 4 bytes as input and out-
puts 4 bytes, where each input byte affects all 4 output bytes. With
ShiftRows, MixColumns provides diffusion in the cipher system.
Each column is treated as a polynomial over GF(28) and is then
multiplied with a fixed polynomial C(x) = 3x3 + x2 + x + 2. The
MixColumns step can also be viewed as multiplication by a particu-
lar matrix as shown in Figure 2.11 [16–18].

In the AddRoundKey step, the subkey is combined with the state.
For each round, a subkey is derived from the main key using the
algorithm key schedule. Each subkey has the same size as the state.

b1 b2

b5

b9

b13

b6

b10

b14

b3

b7

b11

b15

b4

b16

b8

b12

b1 b2

b6

b10

b14

b7

b11

b15

b3

b8

b12

b16

b4

b13

b5

b9

ShiftRows

Figure 2.10 ShiftRows step.

b1 b2

b5

b9

b13

b6

b10

b14

b3

b7

b11

b15

b4

b16

b8

b12

d1 d2

d5

d9

d13

d6

d10

d14

d3

d7

d11

d15

d4

d16

d8

d12

MixColumns

C(x)

Figure 2.11 MixColumns step.

24 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

The subkey is added by combining each byte of the state with the
corresponding byte of the subkey using a bitwise XOR [16–18]. The
AddRoundKey step is shown in Figure 2.12. We apply the AES with
a fixed block size of 128 bits and a key size of 128 bits.

2.7 Modes of Operation

Block ciphers can be run in different modes of operation, allowing users
to choose appropriate modes to meet the requirements of their appli-
cations. Using a certain mode in the encryption process restricts the
decryption process to use the same mode. In this section, we discuss dif-
ferent possible ways in which block codes can be utilized to implement a
cryptosystem. The possible block cipher modes of operation that we treat
are identified by the acronyms electronic codebook (ECB), cipher-block
chaining (CBC), cipher feedback (CFB), and output feedback (OFB). In
each case, we assume that we have a block cipher of block length n with
enciphering map EK and deciphering map DK for each key K.

C(x)

d1 d2

d5

d9

d13

d6

d10

d14

d3

d7

d11

d15

d4

d16

d8

d12

AddRoundKey

b1 b2

b5

b9

b13

b6

b10

b14

b3

b7

b11

b15

b4

b16

b8

b12

k1 k2

k5

k9

k13

k6

k10

k14

k3

k7

k11

k15

k4

k16

k8

k12

Figure 2.12 AddRoundKey step.

25fundamentals of Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

2.7.1 The ECB Mode

ECB is the simplest mode of operation for encryption algorithms;
the data sequence is divided into blocks of equal size, and each block
is encrypted, separately, with the same encryption key. As illustrated
in Figure 2.13, the plaintext is divided into blocks (P1, P2, P3,) of
size n bits that are encrypted to ciphertext blocks (C1, C2, C3,). The
encryption algorithm is

 Cj = EK (Pj) (2.5)

and the decryption algorithm is

 Pj = DK (Cj) (2.6)

where j = 1, 2, 3, ... ; EK is the encryption map with the key K; and DK
is the decryption map with the same key K.

The ECB mode has several advantages. There is no need to encrypt
a file progressively; the middle blocks can be encrypted first, then
the blocks at the end, and finally the blocks at the beginning. This is
important for encrypted files that are accessed randomly, like a data-
base. If a database is encrypted in the ECB mode, then any record can
be added, deleted, encrypted, or decrypted independently, assuming
that a record consists of independent encryption blocks.

The disadvantage of this mode is that identical plaintext blocks
are encrypted to identical ciphertext blocks; it does not hide data
patterns. The advantage is that error propagation is limited to a
single block. The disadvantage of the ECB mode appears in image
encryption if there is an image with large areas of the same color or
repeated patterns so that there are many blocks of the same plaintext.

Key Encryption
AlgorithmKey Encryption

Algorithm

Plaintext
P1

Ciphertext
C1

Ciphertext
C2

Ciphertext
C3

Key Encryption
Algorithm

Plaintext
P2

Plaintext
P3

Figure 2.13 Using a block cipher in the ECB mode.

www.allitebooks.com

http://www.allitebooks.org

26 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

This may reveal much information about the original image from the
encrypted image. This disadvantage is treated in CBC, CFB, and
OFB modes.

2.7.2 The CBC Mode

The CBC mode uses an initialization vector (IV) of size equal to the
size of each block of pixels. In this mode, each block of plaintext is
XORed with the previous ciphertext block before being encrypted.
By this way, each ciphertext block is dependent on all plaintext
blocks up to that point. In decryption, the same XOR operation is
repeated so that its effect is cancelled. This mechanism is shown in
Figure 2.14.

The main disadvantage of the CBC mode is that an error in (or
attack on) one ciphertext block impacts two plaintext blocks on
decryption. On the other hand, if there is an image that has blocks
of the same input data, these blocks are encrypted to totally different
ciphertext data. So, the CBC mode is a better approach in encrypting
images in the spatial domain, especially when these images contain
large areas of the same activity. In the CBC mode, the encryption
algorithm is

 Cj = EK(Cj−1 ⊕ Pj) (2.7)

and the decryption algorithm is

 Pj = DK (Cj) ⊕ Cj−1, j = 1, 2, 3, ... (2.8)

 C0 = IV (2.9)

Key

C1 C2 C3

EK EK EK

P2 P3P1

+ + +

Key Key

C0 = IV

Figure 2.14 Using a block cipher in the CBC mode.

27fundamentals of Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

2.7.3 The CFB Mode

In contrast to the CBC mode, the CFB mode begins by encrypt-
ing the IV, and then an XOR operation is performed between the
bits of the encrypted IV and the corresponding bits of the first block
of the image. The result is the encrypted version of the first block.
For the encryption of each of the next plaintext blocks, the previous
ciphertext block is encrypted, and the output is XORed with the cur-
rent plaintext block to create the current ciphertext block. The XOR
operation conceals plaintext patterns.

Common to the CBC mode, changing the IV to the same plain-
text block results in different outputs. Although the IV need not be
secret, some applications would see this as desirable [16–18,49,50].
Figure 2.15 shows the CFB mode. The encryption algorithm is

 Cj = Pj ⊕ Ij (2.10)

and the decryption algorithm is

 Pj = Cj ⊕ Ij (2.11)

 Ij = EK (Cj-1), j = 1, 2, 3, ... (2.12)

 C0 = IV (2.13)
2.7.4 The OFB Mode

The OFB mode is similar to the CFB mode. It begins by encrypting
the IV. The bits of the encrypted IV are XORed with the correspond-
ing bits of the first plaintext block to obtain the corresponding cipher-
text block. Also, the output of the encryption algorithm is used as
an input to the next encryption step instead of the IV. This process

EK I1C0 = IV

P1

C1

P2

C2

EK I2

P3

C3

EK I3

+ + +

Figure 2.15 Using a block cipher in the CFB mode.

28 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

continues until the last block. Changing the IV for the same plaintext
block results in different ciphertext blocks. Figure 2.16 shows the
OFB mode [16–18,49,50]. The encryption algorithm is

 Cj = Pj ⊕ Ij (2.14)

and the decryption algorithm is

 Pj = Cj ⊕ Ij (2.15)

 Ij = EK(Ij-1), j = 1,2,3,..... (2.16)

 I0 = IV (2.17)

2.8 Chaos and Cryptography

Chaos theory has been established since the 1970s in many different
research areas, such as physics, mathematics, engineering, biology,
and others. The most well-known characteristics of chaos are the so-
called butterfly effect (sensitivity to initial conditions) and the pseudo-
randomness generated by deterministic equations. Many fundamental
properties of chaotic systems have their corresponding counterparts
in traditional cryptosystems. Chaotic systems have several significant
features favorable to secure communications, such as ergodicity, sen-
sitivity to initial conditions and control parameters, and random-like
behavior [38–40]. With all these advantages, scientists expected to
introduce new and powerful tools of chaotic cryptography. So, chaos
has become a new rich source of new ciphers [31–35].

Chaotic dynamic systems are dimensional nonlinear dynamic sys-
tems that are capable of complex and unpredictable behavior. Chaos
describes a system that is sensitive to initial conditions to generate an
apparently random behavior but at the same time it is completely deter-
ministic. These properties of chaos have much potential for applications

P1 P2 P3

C1 C2 C3

EK I1 EK I2 EK I1I0 = IV

+ ++

Figure 2.16 Using a block cipher in the OFB mode.

29fundamentals of Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

in cryptography as it is hard to make long-term predictions on chaotic
systems. First, being completely deterministic means that we can
always obtain the same set of values provided we have exactly the same
mapping function and initial conditions. Because chaotic functions
are sensitive to initial conditions, any slight difference in the initial
values used means that the ciphertext produced using chaos will be
completely different. This means that the system will be strong against
brute-force attacks as the number of possible keys is large.

The basic properties of chaotic systems are the deterministicity, the
sensitivity to initial conditions and parameters, the topological transi-
tivity, and the ergodicity [51–55].

Deterministicity means that chaotic systems have some determin-
ing mathematical equations ruling their behavior.

Sensitivity to initial conditions means that when a chaotic map is
iteratively applied to two initially close points, the iterations quickly
diverge and become uncorrelated in the long term. Sensitivity to
parameters causes the properties of the map to change quickly when
slightly perturbing the parameters on which the map depends. Hence,
a chaotic system can be used as a pseudorandom number generator.

Topological transitivity is the tendency of the system to quickly
scramble up small portions of the state space into an intricate network
of filaments. Local, correlated information becomes scattered over the
state space.

The ergodicity of a chaotic map means that if the state space is
partitioned into a finite number of regions, no matter how many, any
orbit of the map will pass through all these regions. The ergodicity of
a chaotic map is ensured by the topological transitivity property.

Many properties of chaotic systems, such as mixing and sensi-
tivity to initial conditions, have their corresponding counterparts
in traditional cryptosystems. Table 2.4 contains a partial list of

Table 2.4 Similarities and Differences between Chaotic Systems and Cryptographic Algorithms

CHAOTIC SYSTEMS CRYPTOGRAPHIC ALGORITHMS

Set of real numbers Finite set of integers
Iterations Rounds
Parameters Key
Sensitivity to a change in initial conditions Diffusion
— Security

30 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

these properties. The main difference between chaos theory and
 cryptography is that cryptosystems work on a finite field, while chaos
works on a continuum.

Several chaos-based image encryption schemes been developed in
recent years. In 1992, Bourbakis and Alexopoulos proposed an image
encryption scheme that utilizes the SCAN language to encrypt and
compress an image simultaneously [56]. Fridrich demonstrated the
construction of a symmetric block cipher algorithm based on a 2D
standard Baker map [52]. There are three basic steps in Fridrich’s
method [52]: Choosing a chaotic map and generalizing it by introduc-
ing some parameters, discretizing the chaotic map to a finite square
lattice of points that represent pixels, and extending the discredited
map to three dimensions and further composing it with a simple dif-
fusion mechanism.

Scharinger designed a chaotic Kolmogorov-flow-based image
encryption technique in which the whole image is taken as a single
block and permuted through a key-controlled chaotic system [57]. In
addition, a shift register pseudorandom generator is adopted to intro-
duce the confusion in the data. Yen and Guo proposed an encryption
method called bit recirculation image encryption (BRIE) based on a
chaotic logistic map [58]. The basic principle of this BRIE method is
bit recirculation of pixels, which is controlled by a chaotic pseudoran-
dom binary sequence. The secret key of the BRIE method consists of
two integers and an initial condition of the logistic map. Yen and Guo
[59] also proposed an encryption method called CKBA (chaotic key-
based algorithm), in which the key binary sequence is generated using
a chaotic system. The image pixels are rearranged according to the
generated binary sequence and then XORed and XNORed with the
selected key. In 2002, Li and Zheng [29] pointed out some defects in
the encryption schemes presented in the references [58] and discussed
some possible improvements for them. Chen et al. [60] proposed a
symmetric algorithm in which a 2D chaotic map is generalized to
three dimensions for designing a real-time secure image encryption
scheme. This approach employs the 3D cat map to shuffle the posi-
tions of the image pixels and uses another chaotic map to confuse the
relationship between the encrypted image and its original image.

In chaotic encryption with 1D maps, the encryption key is gener-
ated with a chaotic map based on selected initial conditions. Each

31fundamentals of Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

map produces various random keys from various orbits of the map,
which guarantees the security. Based on the key, a binary sequence
is generated to control the encryption algorithm. The input image
of two dimensions is transformed into a 1D array and then divided
into various subblocks. Then, the position permutation and value per-
mutation are applied to each binary matrix representing a subblock.
Finally, the receiver uses the same subkeys to decrypt the encrypted
images. On the other hand, chaotic encryption with 2D maps like the
Baker map is different, as shown in the next section.

2.9 The 2D Chaotic Baker Map

The Baker map stretches the image horizontally and then folds it
vertically. Repeating this process, the positions of all pixels of the
plainimage are changed [51,52,61]. Let B(n1, … , nk) denote the dis-
cretized map, where the vector [n1, … , nk] represents the secret key
Skey. Defining N as the number of data items in one row, the secret key
is chosen such that each integer ni divides N, and n1 + … + nk = N.

Let Ni = n1 + … + ni. The data item at the indices (q, z) is moved to
the indices:

() ()= − +

−

+

() , mod ,

mod

,...,1B q z N
n

q N z N
n

n
N

z z N
n

N

n n
i

i
i

i

i
i

k

 (2.18)

where Ni ≤ q < Ni + ni, and 0 ≤ z < N.
In steps, the chaotic permutation is performed as follows:

 1. An N × N square image is divided into k rectangles of width
ni and number of elements N.

 2. The elements in each rectangle are rearranged to a row in the
permuted rectangle. Rectangles are taken from left to right
beginning with upper rectangles, then lower ones.

 3. Inside each rectangle, the scan begins from the bottom left
corner toward upper elements.

32 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

Figure 2.17 shows an example for the chaotic map of an (8 × 8)
square image (i.e., N = 8). The secret key, Skey = [n1, n2, n3] = [2, 4, 2].

The cipher resulting from the chaotic Baker map encryption is
a permutation cipher, which does not change the histogram of the
original image. Although this cryptosystem is simple and fast to be
used for video encryption, it lacks the high degree of security, and its
computation time grows as the image size increases [51,52,61].

(a) (b)

p1 p2 p3 p4 p5 p6 p7 p8

p9 p10 p11 p12 p13 p14 p15 p16

p25 p26 p27 p28 p29 p30 p31 p32 p27 p19 p28 p20 p29 p21 p30 p22

p57 p49 p41 p33 p58 p50 p42 p34

p43 p35 p44 p36 p45 p37 p46 p38

p59 p51 p60 p52 p61 p53 p62 p54

p25 p17 p9 p1 p26 p18 p10 p2

p11 p3 p12 p4 p13 p5 p14 p6

p63 p55 p47 p39 p64 p56 p48 p40

p31 p23 p15 p7 p32 p24 p16 p8

p41 p42 p43 p44 p45 p46 p47 p48

p57 p58 p59 p60 p61 p62 p63 p64

p49 p50 p51 p52 p53 p54 p55 p56

p33 p34 p35 p36 p37 p38 p39 p40

p17 p18 p19 p20 p21 p22 p23 p24

Figure 2.17 (a) The 8 × 8 matrix divided into rectangles. (b) The matrix after applying the 2D
Baker map.

33© 2010 Taylor & Francis Group, LLC

3
encryptIon evaluatIon

metrIcs

3.1 Introduction

With the application of an encryption algorithm to an image, its
pixel values change when compared with the original image. A good
encryption algorithm must make these changes in an irregular man-
ner and maximize the difference in pixel values between the original
and the encrypted images. Also, to obtain a good encrypted image, it
must be composed of totally random patterns that do not reveal any
of the features of the original image. The encrypted image has to be
independent of the original image. It should have a low correlation
with the original image [62–66].

One of the important metrics in examining an encrypted image is
the visual inspection: The more hidden the features of the image are,
the better the encryption algorithm is. Unfortunately, visual inspec-
tion only is not enough to judge the complete hiding of the contents
of the image, so other metrics are considered to evaluate the degree of
encryption quantitatively [67,68].

Diffusion is an important parameter that must be measured to judge
the encryption algorithm randomization. If an algorithm has a good
diffusion characteristic, the relation between the encrypted image and
the original image is too complex, and it cannot be predicted easily.
To measure the diffusion of any algorithm, a bit is changed in the
plainimage, and the difference between the encrypted image obtained
from the original plainimage and the encrypted image obtained from
the modified one is obtained [69].

Other tests can be used to determine some specific characteristics
of the encryption algorithms, such as the noise immunity and the
processing time.

34 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

3.2 Encryption Evaluation Metrics

This section discusses, in detail, two families of encryption metrics;
the first family evaluates the ability of the encryption algorithm to
 substitute the original image with an uncorrelated encrypted image.
In this family, five metrics are studied: the histogram deviation DH,
the correlation coefficient rxy, the irregular deviation DI, the histogram
uniformity, and the deviation from ideality. The second family evalu-
ates the diffusion characteristics of the encryption algorithm. In this
family, three metrics are studied: the Avalanche effect, number of
pixel change rate (NPCR), and unified average changing intensity
(UACI).

3.2.1 Histogram Deviation

The histogram deviation measures the quality of encryption in terms
of how it maximizes the deviation between the original and the
encrypted images [70]. The steps for calculating this metric are as
follows:

 1. Estimate the histogram of both the original and the encrypted
images.

 2. Estimate the absolute difference between both histograms.
 3. Estimate the area under the absolute difference curve divided

by the total area of the image as follows:

∑

=

+ +

×
=2

0 255

1

254

D

d d d

M NH

i
i (3.1)

 where di is the amplitude of the absolute difference at the
gray level i. M and N are the dimensions of the image to be
encrypted. The higher the value of DH is, the better the qual-
ity of the encrypted image will be [70].

Although this metric gives good results about how the encrypted
image deviates from the original image, it cannot be used alone to
measure the quality of encryption as it has some limitations, explained
further in this chapter.

35enCryPtIon evaluatIon metrICs

© 2010 Taylor & Francis Group, LLC

3.2.2 Correlation Coefficient

A useful metric to assess the encryption quality of any image
 cryptosystem is the correlation coefficient between pixels at the same
indices in the plain- and the cipherimages [70]. This metric can be
calculated as follows:

 =
cov(,)
() ()

r
x y

D x D yxy (3.2)

where x and y are the plain- and cipherimages. In numerical computa-
tions, the following discrete formulas can be used:

 ∑=
=

() 1

1

E x xL l

l

L

 (3.3)

 ∑= −
=

() (())1 2

1

D x x E xL l

l

L

 (3.4)

 ∑= − −
=

cov(,) (())(())1

1

x y x E x y E yL l l

l

L

 (3.5)

where L is the number of pixels involved in the calculations. The
closer the value of rxy to zero, the better the quality of the encryption
algorithm will be.

3.2.3 Irregular Deviation

The irregular deviation measures the quality of encryption in terms
of how much the deviation caused by encryption (on the encrypted
image) is irregular [71]. The steps for calculating this metric are as
follows:

 1. Calculate the absolute difference between the encrypted
image and the original image.

 2. Estimate the histogram H of this absolute difference matrix.
 3. Estimate the mean value MH of this histogram.

www.allitebooks.com

http://www.allitebooks.org

36 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

 4. Estimate the absolute of the histogram deviations from this
mean value as follows:

 HD (i) = |H(i) − MH| (3.6)

The irregular deviation DI is calculated as follows:

 ∑
=

×
=

()
0

255

D
H i

M NI
D

i (3.7)

The lower the value of DI, the better the encryption quality will be.

3.2.4 Histogram Uniformity

A histogram uses a bar graph to profile the occurrence of each gray
level of the image. The horizontal axis represents the gray-level value.
It begins at zero and goes to the number of gray levels. Each vertical
bar represents the number of occurrences of the corresponding gray
level in the image [72].

For image encryption algorithms, the histogram of the encrypted
image should have two properties:

 1. It must be totally different from the histogram of the original
image.

 2. It must have a uniform distribution, which means that the
probability of occurrence of any grayscale value is the same.

3.2.5 Deviation from Ideality

The deviation from ideality measures the quality of encryption in
terms of how the encryption algorithm minimizes the deviation of
the encrypted image from an assumed ideal encryption case. An ide-
ally encrypted image CI must have a completely uniform histogram
distribution, which means that the probability of existence of any gray
level is constant. From this definition of the ideal encrypted image
histogram, it can be formulated as

 H C

M N
C

elsewhere

I
I=

× ≤ ≤

() 256
0 255

0
 (3.8)

37enCryPtIon evaluatIon metrICs

© 2010 Taylor & Francis Group, LLC

The deviation from ideality can be represented as follows:

∑

=

−

×
=

() ()
0

255

D
H C H C

M N

I

CI (3.9)

where H(C) is the histogram of encrypted image. Of course, the lower
the value of D, the better the encryption quality will be.

3.2.6 Avalanche Effect

We can use the Avalanche effect metric [73,74] to test the efficiency
of the diffusion mechanism. A single bit change can be made in the
image P to give a modified image P’. Both P and P ’ are encrypted to
give C and C’. The Avalanche effect metric is the percentage of differ-
ent bits between C and C’. If C and C’ differ from each other in half
of their bits, we can say that the encryption algorithm possesses good
diffusion characteristics.

3.2.7 NPCR and UACI

To test the influence of a one-pixel change on the whole image
encrypted by any encryption algorithm, two common metrics may
be used: NPCR and UACI [75]. Let the two ciphered images, whose
corresponding plainimages have only one pixel difference, be denoted
by C1 and C2. Label the grayscale values of the pixels at grid (i,j) in
C1 and C2 by C1(i,j) and C2(i,j), respectively. Define a binary matrix
D with the same size as the images C1 and C2. Then, D(i,j) is deter-
mined from C1(i,j) and C2(i,j). If C1(i,j) = C2(i,j), then D(i,j) = 0;
otherwise, D(i,j) = 1.

The NPCR is defined as

D i j

M N
i j∑

=
×

×NPCR
(,)

100%, (3.10)

The NPCR measures the percentage of different pixels in the two
images.

38 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

The UACI is defined as

M N

C i j C i j
i j∑=

×
−

×UACI 1 (,) (,)
255

100%1 2

,
 (3.11)

It measures the average intensity of differences between the two
images. The higher the values of NPCR and UACI are, the better the
encryption will be.

3.3 Other Tests

3.3.1 Noise Immunity

The noise immunity reflects the ability of the image cryptosystem to
tolerate noise. To test the noise immunity, noise with different signal-
to-noise ratios (SNRs) is added to the encrypted image, and then the
decryption algorithm is performed. If the decrypted image is close to the
original image, we can say that the cryptosystem at hand is immune to
noise. This closeness can be verified visually or numerically with the value
of rxyd, which represents the correlation coefficient between the origi-
nal image and the decrypted image, and the peak signal-to-noise ratio
(PSNR) of the decrypted image, which is defined as follows [60,66]:

∑∑ ()() ()
= × × ×

−

==

10 log 255

, ,
10

2

2

11

PSNR M N

f m n f m nd

n

N

m

M (3.12)

where f (m, n) is the original image, and fd (m, n) is the decrypted image.

3.3.2 The Processing Time

The processing time is the time required to encrypt and decrypt
an image. The smaller value the processing time has, the better the
encryption efficiency will be.

3.4 Testing the Evaluation Metrics

We have tested these metrics by evaluating three encrypted images with
well-known encryption quality. The first one is obtained by flipping the
Cameraman image using the Caesar cipher, which is a straightforward

39enCryPtIon evaluatIon metrICs

© 2010 Taylor & Francis Group, LLC

ciphering technique. The image size is 256 × 256 pixels. If we apply this
cipher on an image I to obtain the image J, then we will add a constant
offset to the pixel values such that the values exceeding 255 are rotated
back starting from the 0 level again. This is shown by the equation

 J(m, n) = {I(m, n)+K(m, n)}mod 256, K(m, n) = 254 × I(m, n) + 255
 (3.13)

where K is the cipher offset, and it is considered the key as well. We
choose the offset K of the Caesar cipher such that the location con-
taining a peak in the histogram of the original image contains a very
low value in the encrypted image, and the location containing a low
value in the original image contains a peak in the encrypted image as
shown in Figure 3.1.

Note here that the Caesar cipher is useless in image encryption,
because only a change in the image gray scale occurs keeping the
entire image features visible to the attacker, who does not know the
decryption key. It is noticed that the image was not actually encrypted.
Besides, this cipher does not possess any diffusion at all.

O
cc

ur
re

nc
e

Gray Level

(b)(a)

0 50 100 150 200 250

(c)
Gray Level

0 50 100 150 200 250

(d)

0
100
200
300
400
500
600
700
800
900

1000

O
cc

ur
re

nc
e

0
100
200
300
400
500
600
700
800
900

1000

Figure 3.1 The Cameraman image: (a) original version; (b) flipped version; (c) original image
histogram; (d) flipped image histogram.

40 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

The second image is obtained by encrypting the Coin image, which
is a black-and-white image using the RC6 algorithm in the ECB
mode. The image size is 340 × 400 pixels. Algorithms implemented
in the ECB mode cannot encrypt a black-and-white image because of
its localized histogram. This is shown in Figure 3.2. The third image
is obtained by encrypting the Cameraman image using the RC6
 algorithm in the CBC mode as shown in Figure 3.3.

(a) (b)

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

0 50 100 150 200 250

(c)

O
cc

ur
re

nc
e

O
cc

ur
re

nc
e

Gray Level
0 50 100 150 200 250

(d)
Gray Level

Figure 3.2 The Coin image: (a) original version; (b) encrypted version; (c) original image
 histogram; (d) encrypted image histogram.

(a)

0

100

200

300

400

500

600

0 50 100 150 200 250

(b)

O
cc

ur
re

nc
e

Gray Level

Figure 3.3 (a) The encrypted image with the RC6 algorithm; (b) the histogram.

41enCryPtIon evaluatIon metrICs

© 2010 Taylor & Francis Group, LLC

It is obvious that the first two images were encrypted badly without
any diffusion characteristics, while the last image was encrypted well,
with good diffusion characteristics. The results of each evaluation
metric for every case are tabulated in Table 3.1, and the diffusion test
results are tabulated in Table 3.2.

From these results, we can see the following for the first case:

 1. The histogram deviation gives a high result of 1.29, indicating
the good performance of the Caesar cipher, which is com-
pletely a wrong decision as the entire image features are still
visible. The histogram deviation depends on the difference
between the histograms of the plainimage and the cipherim-
age, which does not necessarily mean a good encryption.

 2. The correlation coefficient of −1 means that the cipherimage
is the reverse of the plainimage, which is totally true.

 3. The rest of the results, including the histogram uniformity,
have judged the bad performance of the Caesar cipher correctly.

 4. For the diffusion tests, the results are almost zero because the
Caesar cipher does not possess any diffusion characteristics.

For the second case,

 1. The histogram deviation, again, could not judge the encryption
performance correctly because the plainimage has a localized
histogram.

 2. For the correlation coefficient, the result indicates that the
plainimage is uncorrelated with the cipherimage, which is

Table 3.1 Encryption Quality Results:
Substitution

DH C.C DI D

Case 1 1.29 −1 1.26 0.98
Case 2 1.45 0.0554 1.7 1.7
Case 3 0.98 −0.0076 0.6 0.05

Table 3.2 Encryption Quality Results: Diffusion

AVALANCHE NPCR UACI

Case 1 ≅0% ≅0% ≅0%
Case 2 0.0059% 0.0118% 0.0013%
Case 3 50.07% 99.62% 16.7%

42 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

true, but this does not mean that the plainimage is encrypted
correctly.

 3. The rest of the tests have judged the encryption quality
correctly.

 4. For the ECB mode, the diffusion characteristics are bad, and
this is indicated correctly with the diffusion tests.

For the third case, all test results correctly judged the good encryp-
tion and diffusion characteristics of the CBC mode.

3.5 Summary

After all these tests, we can see that

 1. Visual inspection is the first test to be used. If the specifica-
tions of the plainimage were not completely hidden, we can
say that this encryption algorithm is not confident and cannot
be used to encrypt images regardless of all other tests.

 2. The irregular deviation, the deviation from ideality, and the
histogram uniformity perform well for judging encryption
quality.

 3. The three tests of diffusion can be used effectively to judge the
diffusion characteristics of the encryption algorithm.

43© 2010 Taylor & Francis Group, LLC

4
HomomorpHIc Image

encryptIon

4.1 Overview

This chapter presents a new image cryptosystem. This system is based
on homomorphic image processing, which has evolved primarily as a
tool of image enhancement for images captured in bad lighting condi-
tions. The main idea of homomorphic image processing is based on
modeling the image as a product of constant illumination and vary-
ing reflectance. The product is dealt with as a summation using the
logarithmic operation. The reflectance component can be separated
using a high-pass filter, while the illumination component is sepa-
rated using a low-pass filter. Most of the image details lie in the reflec-
tance component, while the illumination component is approximately
constant [76,77].

We can carry out the encryption process in the homomorphic
domain on the reflectance component, which is the most significant
component of the image. Rather than encrypting the illumination
component, which causes redundancy in image information, it is
appended as a least-significant bit (LSB) watermark in the encrypted
reflectance component. Two algorithms are used for the encryption
of the reflectance component: the RC6 block cipher algorithm and
the chaotic Baker map scrambling algorithm. A comparison is made
between them.

4.2 Homomorphic Cryptosystem

The idea of the homomorphic cryptosystem is based on homomorphic
image processing. It is known that the image intensity can be repre-
sented as follows [78–80]:

 I(m,n) = i(m,n)r(m,n) (4.1)

44 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

where i(m,n) is the light illumination, and r(m1,n2) is the reflectance
of the object to be imaged. Taking the natural logarithm of both sides
leads to

 ln[I(m,n)] = ln[i(m,n)] + ln[r(m,n)] (4.2)

The illumination is approximately constant, while the reflec-
tance is variable from object to object. Thus, the term ln[i(m,n)] is
approximately constant. We can perform the encryption process on
the ln[r(m,n)] term. To avoid the redundancy resulting from the exis-
tence of two components of the image in the homomorphic domain,
we can embed the illumination component as an LSB watermark to
the encrypted reflectance component. The homomorphic cryptosys-
tem is illustrated in Figure 4.1. The 3 × 3 averaging filter shown in
Figure 4.2 is used as the low-pass filter, and the reflectance compo-
nent is obtained by subtracting the log illumination component from
the log image intensity.

Encrypted
Image

Decrypted
Image

Watermark

Ln

LPF

HPF Encryption
Algorithm

LSB
Watermarking

I(m, n)

Ln(i(m, n))

Ln(r(m, n))

Encrypted
Image

Ln(i(m, n))

Ln(r(m, n))

LSB
Watermark
Extraction Decryption

Algorithm

+ exp

(b)

(a)

Figure 4.1 Homomorphic image cryptosystem: (a) encryption subsystem and (b) decryption
subsystem.

×

1
9

1 1 1
1 1 1
1 1 1

Figure 4.2 The 3 × 3 averaging filter.

45homomorPhIC Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

The RC6 block cipher algorithm and the chaotic Baker map scram-
bling algorithm have been chosen as they are representatives of differ-
ent encryption families. The first one belongs to the family of diffusion
algorithms, and the second one belongs to the family of permutation
algorithms. The objective is to decide which family is more appropri-
ate for the homomorphic cryptosystem.

4.3 Security Analysis and Test Results

A good encryption scheme should resist all kinds of known attacks,
such as the known-plaintext attack, the ciphertext-only attack, the
statistical attack, the differential attack, and the various brute-force
attacks. The security of the homomorphic image cryptosystem was
investigated for digital images under the brute-force attack, the
 statistical attacks, and the differential attacks [81–85].

Some security analysis results, including the key space analysis, the
statistical analysis, and the differential analysis have been presented
[60,86,87]. Tests are made on the image of Lena shown in Figure 4.3.

4.3.1 Statistical Analysis

In [13], Shannon mentioned that, “It is possible to solve many kinds of
ciphers by statistical analysis.” Statistical analysis has been performed
on the homomorphic image cryptosystem, demonstrating its superior
confusion and diffusion properties, which strongly resist statistical
attacks.

(a) (b)

O
cc

ur
re

nc
e

3000

2500

2000

1500

1000

500

0

0 50 100 150
Gray Scale

200 250

Figure 4.3 Lena: (a) image and (b) histogram.

www.allitebooks.com

http://www.allitebooks.org

46 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

4.3.1.1 Histograms of Encrypted Images A typical example of the histo-
gram test is shown in Figures 4.4 to 4.7. From these figures, one can see
that the histogram of the encrypted image (cipherimage) by the homo-
morphic cryptosystem using the RC6 algorithm is fairly uniform and
is significantly different from that of the original image (plainimage)
as shown in Figure 4.4. This result implies to the RC6 block cipher as
shown in Figure 4.5. For the homomorphic cryptosystem using chaotic
Baker map scrambling, the result is shown in Figure 4.6. It is clear that
the histogram is different from that of the individual chaotic Baker map
encryption shown in Figure 4.7. It is known that chaotic Baker map
encryption does not change the histogram of the encrypted image from
that of the original image. On the other hand, the homomorphic cryp-
tosystem using the chaotic Baker map scrambling significantly changes
the histogram of the encrypted image.

(a) (b)

D
ist

rib
ut

io
n

2500

2000

1500

1000

500

0

0 50 100 150
Gray Scale

200 250

Figure 4.4 Encrypted image using the homomorphic cryptosystem with the RC6 algorithm: (a)
encrypted image and (b) histogram.

(a) (b)

D
ist

rib
ut

io
n

2500

2000

1500

1000

500

0

0 50 100 150
Gray Scale

200 250

Figure 4.5 Encrypted image using the RC6 algorithm: (a) encrypted image and (b) histogram.

47homomorPhIC Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

4.3.1.2 Encryption Quality Measurements The correlation coefficient
between the plain- and cipherimages, the irregular deviation, and the
deviation from ideality metrics have been used to test the quality of
each cipher algorithm. The results of these tests are shown in Table 4.1.

From the correlation test, we can see that, in all cases, the plain-
image was uncorrelated with the cipherimage, but as discussed in
Chapter 3, we cannot completely depend on this test to judge the
encryption quality correctly, as we can see that the chaotic Baker map
scrambling algorithm achieved a good result of 0.0032 although it is
only a permutation cipher.

For the irregular deviation and the deviation from ideality, we can
see that the quality of the homomorphic encryption depends mainly

(a) (b)
D

ist
rib

ut
io

n 3000
3500
4000
4500

2500
2000
1500
1000

500
0

0 50 100 150
Gray Scale

200 250

Figure 4.6 Encrypted image using the homomorphic cryptosystem with the chaotic Baker map
scrambling algorithm: (a) encrypted image and (b) histogram.

(a) (b)

D
ist

rib
ut

io
n

3000

2500

2000

1500

1000

500

0

0 50 100 150
Gray Scale

200 250

Figure 4.7 Encrypted image using the chaotic Baker map algorithm: (a) encrypted image and
(b) histogram.

48 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

on the core algorithm used. If the core encryption algorithm is pow-
erful, like the RC6, the homomorphic version will be powerful, and
vice versa.

4.3.2 Key Space Analysis

A good image cryptosystem algorithm should be sensitive to the
cipher keys. For the homomorphic image cryptosystem, the key space
analysis and test are summarized in the following sections.

4.3.2.1 Exhaustive Key Search For a secure image cryptosystem, the key
space should be large enough to make the brute-force attack infeasible
[88]. The RC6 algorithm is a 128-bit encryption scheme. An exhaus-
tive key search will take 2k operations to succeed, where k is the key
size in bits. An attacker simply tries all keys, one by one, and checks
whether the given plainimage encrypts to the given cipherimage.

For a practical use of the homomorphic cryptosystem, assume that
the secret key length is 128 bits. Therefore, an opponent may try to
bypass guessing the key and directly guess all the possible combina-
tions. The opponent will need about 2128 operations to successfully
determine the key. If an opponent employs a 1000-MIPS (million
instructions per second) computer to guess the key by the brute-force
attack, the computational load is then

× × × × ×

> ×2
1000 10 60 60 24 365

10.7902831 10 years
128

6
21 (4.3)

This is practically infeasible.
For chaotic Baker map encryption, the key is dependent on the

width (or height) of an image. This is due to the scrambling phe-
nomena of the chaotic Baker map. For the 512 × 512 Lena image,

Table 4.1 Encryption Quality Test Results for Each Cipher Algorithm

ENCRYPTION ALGORITHM Rxye DI D

Homomorphic cryptosystem with the RC6 algorithm 0.0033 0.707 0.0254
RC6 algorithm 0.0013 0.705 0.0233
Homomorphic cryptosystem with the chaotic Baker

map scrambling algorithm
0.0043 0.846 1.2618

Chaotic Baker map scrambling algorithm 0.0032 0.979 0.7155

49homomorPhIC Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

the number of possible keys is 10126 [52]. So, in this case, the compu-
tational load is then

× × × × ×

> ×10
1000 10 60 60 24 365

3.1710 10 years
126

6
109 (4.4)

4.3.2.2 Key Sensitivity Test High key sensitivity is required for
secure image cryptosystems. This means that the cipherimage can-
not be decrypted correctly if there is only a slight difference between
encryption or decryption keys [89]. This guarantees the security of
the proposed cryptosystem against brute-force attacks. Assume that
a 16-character ciphering key is used. This means that the key consists
of 128 bits.

For testing the key sensitivity of the homomorphic cryptosystem
using the RC6 algorithm, we have performed the following steps:

 (a) An image is encrypted using the secret key of 32 zeroes
(in hexadecimal), and the resultant image is referred to as
encrypted image A as shown in Figure 4.8a.

 (b) The same image is encrypted by making a slight modification
in the secret key (i.e., 8 and 31 zeroes [in hexadecimal]). The
change is made in the most significant digit in the secret key.
The resultant image is referred to as encrypted image B as
shown in Figure 4.8b.

 (c) Again, the same image is encrypted by making another slight
modification in the secret key (i.e., 31 zeroes and 1 [in hexa-
decimal]). The change is made in the least-significant digit in

(a) (b) (c)

Figure 4.8 Key sensitivity test of the homomorphic cryptosystem with the RC6 algorithm:
(a) encrypted image A with a key of 32 zeroes hexadecimal; (b) encrypted image B with a key of 8
and 31 zeroes hexadecimal; and (c) encrypted image C with a key of 31 zeroes and 1 hexadecimal.

50 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

the secret key. The resultant image is referred to as encrypted
image C as shown in Figure 4.8c.

 (d) Finally, the three encrypted images A, B, and C are compared.

It is not easy to compare the encrypted images by simply observ-
ing them. So, for comparison, we calculate the correlation coefficients
between each two of the three encrypted images. Table 4.2 gives the
correlation coefficient results. It is clear from the table that no correla-
tion exists among the encrypted images even though they have been
produced using slightly different secret keys. The same results are
obtained using the RC6 algorithm, as shown in Figures 4.9a–4.9c.
The results of the correlation coefficients are tabulated in Table 4.3.

For the homomorphic cryptosystem using the chaotic Baker map
scrambling algorithm:

 (a) The original image is encrypted using the secret key:

 n = [10,5,12,5,10,8,14,10,5,12,5,10,8,14,10,5,12,
5,10,8,14,10,5,12,5,10,8,14,10,5,12,5,10,8,14,10,5,
12,5,10,8,14,10,5,12,5,10,8,14,10,5,12,5,10,8,14]

 and the resultant image is referred to as encrypted image A
as shown in Figure 4.10a.

(a) (b) (c)

Figure 4.9 Key sensitivity test of RC6 algorithm: (a) encrypted image A with a key of 32 zeroes
hexadecimal: (b) encrypted image B with a key of 8 and 31 zeroes hexadecimal; and (c) encrypted
image C with a key of 31 zeroes and 1 hexadecimal.

Table 4.2 Results of the Key Sensitivity Test for the
Homomorphic Cryptosystem with the RC6 Algorithm

IMAGE 1 IMAGE 2 Rxy

Encrypted image A Encrypted image B 0.0034
Encrypted image B Encrypted image C 0.00007
Encrypted image C Encrypted image A 0.0008

51homomorPhIC Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

 (b) The same image is encrypted by making a slight modification
in the secret key:

 n1 = [5,5,5,12,5,10,8,14,10,5,12,5,10,8,14,10,5,12,
5,10,8,14,10,5,12,5,10,8,14,10,5,12,5,10,8,14,10,5,1
2,5,10,8,14,10,5,12,5,10,8,14,10,5,12,5,10,8,14].

 The change is made in (10) to (5, 5) at the beginning of
the secret key. The resultant image is referred to as encrypted
image B as shown in Figure 4.10b.

 (c) Again, the same image is encrypted by making another slight
modification in the secret key:

 n2 = [10,5,12,5,10,8,14,10,5,12,5,10,8,14,10,5,1
2,5,10,8,14,10,5,12,5,10,8,14,10,5,12,5,10,8,14,
10,5,12,5,10,8,14,10,5,12,5,10,8,14,10,5,12,5,1
0,8,7,7]

 The change is made in (14) to (7, 7) at the end of the secret
key. The resultant image is referred to as encrypted image C
as shown in Figure 4.10c.

 (d) Finally, the three encrypted images A, B, and C are compared.

The correlation coefficients between each two of the three encrypted
images A, B, and C are tabulated in Table 4.4, from which it can be

(a) (b) (c)

Figure 4.10 Key sensitivity test of the homomorphic cryptosystem with the chaotic Baker map
scrambling algorithm: (a) encrypted image A with key n; (b) encrypted image B with key n1; and
(c) encrypted image C with key n2.

Table 4.3 Results of the Key Sensitivity Test for
the RC6 Algorithm

IMAGE 1 IMAGE 2 Rxy

Encrypted image A Encrypted image B 0.0013
Encrypted image B Encrypted image C 0.0028
Encrypted image C Encrypted image A 0.0004

52 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

said that the correlation coefficients are worse than those obtained
using the homomorphic cryptosystem with the RC6 algorithm.
Similar results are obtained using the chaotic Baker map scrambling
encryption algorithm only, as shown in Figures 4.11a–4.11c and
Table 4.5.

Another test for the key sensitivity of the homomorphic image
cryptosystem using the RC6 encryption algorithm is performed
through the following steps:

 1. A 512 × 512 image is encrypted using the secret test key of 32
zeroes.

 2. The encryption key is changed by changing its LSB to be 31
zeroes and 1.

 3. The two ciphered images are compared.

The result is that the image encrypted with the key of 31 zeroes and
1 is totally different from the image encrypted with the all-zeros key,
although there is only 1 bit difference in the two keys. Figure 4.12a
shows the difference image between the two ciphered images. A simi-
lar test was also applied to the RC6 encryption algorithm, and the
result is shown in Figure 4.12b.

(a) (b) (c)

Figure 4.11 Key sensitivity test of the chaotic Baker map algorithm: (a) encrypted image A with
key n; (b) encrypted image B with key n1; and (c) encrypted image C with key n2.

Table 4.4 Results of the Key Sensitivity Test for
the Homomorphic Cryptosystem with the Chaotic
Baker Map Encryption Algorithm

IMAGE 1 IMAGE 2 Rxy

Encrypted image A Encrypted image B 0.9533
Encrypted image B Encrypted image C 0.8761
Encrypted image C Encrypted image A 0.9212

53homomorPhIC Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

For the homomorphic image cryptosystem using the chaotic Baker
map scrambling algorithm, the test is done using the following steps:

 1. A 512 × 512 image is encrypted using the secret test key n.
 2. The encryption key is changed to n1.
 3. The two ciphered images are compared.

The result of this test is shown in Figure 4.12c. This test was also
applied for the chaotic Baker map scrambling only, and the result is
shown in Figure 4.12d.

4.3.3 Differential Analysis

A desirable property for the homomorphic cryptosystem is the high
sensitivity to small changes in the plainimage (single-bit change in
the plainimage) (i.e., the diffusion).

A test was performed on the 1-pixel change influence on the 256
gray-level Lena image of size 512 × 512, and the results are shown in
Table 4.6.

With respect to the NPCR and UACI estimation results in
Table 4.6, the RC6 and chaotic Baker map scrambling encryption
schemes had no sensitivity to small changes in the plainimage, but the
homomorphic cryptosystem using both schemes was highly sensitive

(a) (b) (c) (d)

Figure 4.12 Difference image between the two ciphered images using (a) the homomorphic
cryptosystem with the RC6 algorithm, (b) the RC6 algorithm, (c) the homomorphic cryptosystem with
the chaotic Baker map algorithm, and (d) the chaotic Baker map scrambling algorithm.

Table 4.5 Results of the Key Sensitivity Test for
the Chaotic Baker Map Encryption Algorithm

IMAGE 1 IMAGE 2 Rxy

Encrypted image A Encrypted image B 0.3247
Encrypted image B Encrypted image C 0.8762
Encrypted image C Encrypted image A 0.2877

54 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

to small changes in the plainimage. Generally, these obtained results
showed that the homomorphic cryptosystem had a very powerful
 diffusion mechanism.

4.4 Effect of Noise

The test for effect of noise has been performed by adding additive white
Gaussian noise (AWGN) to the encrypted image prior to decryption.
Test results showed that the RC6 and the homomorphic algorithm
with RC6 were significantly affected by the noise in the decryption
process. In other words, these algorithms can only be used in error-
free scenarios. The experiment results are shown in Figures 4.13a
and 4.13b.

For the chaotic Baker map encryption and the homomorphic
encryption with the chaotic Baker map, the results showed that
these algorithms were more robust to noise and could work in noisy
environments. The experimental results are shown in Figures 4.13c
and 4.13d. It is clear that the chaotic Baker map decryption pro-
cess was more robust to noise than the RC6 decryption process,
and this appears in Figure 4.14, which shows the variation of the
peak signal-to-noise ratio (PSNR) of the decrypted image with the
 signal-to-noise ratio (SNR) of the encrypted image for all algorithms.
This is attributed to the fact that the RC6 algorithm has a diffusion
mechanism in its equation f(x) = x(2x + 1)(mod 2w), which leads to
less noise immunity.

4.5 Summary

From these results, we can see that

 1. In general, the encryption in the homomorphic domain can
be considered a very powerful diffusion mechanism, but this

Table 4.6 NPCR and UACI Results

ALGORITHMS NPCR UACI

Homomorphic with RC6 99.605% 16.775%
RC6 0.0061% 0.0005%
Homomorphic with chaotic Baker map scrambling 100% 7.2314%
Chaotic Baker map scrambling ≅0% ≅0%

55homomorPhIC Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

comes at the expense of losses in the decrypted image due to
the LSB watermark.

 2. All other parameters, like encryption quality, noise immu-
nity, and key sensitivity, depend mainly on the encryption
algorithm. For the diffusion ciphers, like RC6, the encryp-
tion quality and the key sensitivity are better than those of
the permutation ciphers, like chaotic Baker map. But, if the
transmission medium is noisy, the permutation ciphers are
preferred.

(a) (b) (c) (d)

Figure 4.13 Decrypted images for all encryption algorithms in the presence of noise with an SNR
of 50 dB: (a) the RC6 algorithm; (b) the homomorphic cryptosystem with the RC6 algorithm; (c) the
chaotic Baker map algorithm; and (d) the homomorphic cryptosystem with the chaotic Baker map
scrambling algorithm.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

SNR

PS
N

R

Homomorphic encryption using RC6
Homomorphic encryption using chaotic Baker map
RC6
Chaotic Baker map

Figure 4.14 The variation of the PSNR of the decrypted image with the SNR of the encrypted
image for all encryption algorithms.

www.allitebooks.com

http://www.allitebooks.org

57© 2010 Taylor & Francis Group, LLC

5
cHaotIc Image encryptIon

wItH dIFFerent modes
oF operatIon

5.1 Overview

Chaos theory consistently plays an active role in modern cryptography.
The attractiveness of using chaos as the basis for developing a cryp-
tosystem is mainly its random behavior and sensitivity to initial
conditions and parameter settings that fulfill the classic Shannon
requirements of confusion and diffusion [89]. Chaos-based algo-
rithms have shown some exceptionally good properties in many con-
cerned aspects regarding security, complexity, speed, computational
overhead, and so on. Some chaotic cryptosystems based on ergodicity
have been proposed [90,91]. A number of chaos-based image [91,92]
and random number generation algorithms [67,93–95] based on dis-
crete chaos have been proposed, but security is generally not high
enough [96,97].

This chapter discusses implementing chaotic Baker map scrambling
of image pixels using three different modes of operation: CBC, CFB,
and OFB. This implementation depends on the block size S, where
S = N × N pixels, and an IV that works as the main key. The bits of the IV
must be random and uncorrelated as much as possible to yield a powerful
encryption mechanism. In the chapter experiments, the image encrypted
is Lena, which is a 512 × 512 grayscale image, and parts of an encrypted
version of the Cameraman image are used in the IV (Figure 5.1).

5.2 Chaotic Encryption with Modes of Operation

The main objective of chaotic encryption with different modes of oper-
ation is to increase the security of chaotic encryption with moderate
computation time and adjust it to encrypt images with arbitrary

58 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

dimensions. We investigated chaotic encryption with three modes
of operation: CBC, CFB, and OFB [16–18]. The three modes were
tested to decide which one would increase the data-hiding ability of
the cryptosystem. Chaotic encryption with modes of operation can be
simply summarized in the following three steps:

 1. Scan the image row by row.
 2. Convert the scanned rows to w blocks, each with N × N pixels.
 3. Encrypt these blocks using the 2D chaotic Baker map in

the CBC, CFB, or OFB mode as explained in the following
sections.

The block diagram of chaotic encryption with modes of operation
is shown in Figure 5.2.

5.3 Implementation Issues

As stated in the previous section, chaotic encryption can be imple-
mented in three different modes of operation. It is based on the 2D
chaotic Baker map as the main encryption algorithm. It is known that
the permutations induced by the Baker map behave as typical random
permutations. An IV is used as the main key. This IV must be ran-
dom to resist the brute-force attack. The XOR operations between the
bits of the IV and the bits of the data blocks change the values of the
pixels, which makes the encryption algorithm behave like a 3D Baker
map. The algorithm also uses a secondary key, which is the key used
by the Baker map to scramble the pixels.

Chaotic encryption with modes of operation is based on the seg-
mentation of the image to be encrypted into blocks. The block size is

Figure 5.1 Encrypted version of Cameraman image.

59ChaotIC Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

an important factor that affects the performance of the cryptosystem.
The effect of the block size on the encryption quality is studied in
detail in the simulation examples section. Because the IV has similar
size to the plaintext blocks, the increase in the block size increases the
security. In addition, the chaotic encryption algorithm with modes

f(1,1)

f(M,1)

f(1,N)

f(M,N)

P1 P2

P (1,1) P(1,n)

P(n,1) P(n,n)

P(1,1) P(1,n)

P(n,1) P(n,n)

Pw–1 Pw

P(1,1) P(1,n)

P(n,1) P(n,n)

P(1,1) P(1,n)

P(n,1) P(n,n)

E

P1 P2 PwP3

C0 = IV

C0 = IV

C0 = IV

Pw–1

P1

P1

P2

P2

Pw

Pw

P3

P3

Pw–1

Pw–1

EE E E

(a)

(c)

(b)

EK EK EK EK

C1 C2 C3 Cw–1 Cw

CwC3C2C1

EK

Cw–1

CwC3C2C1 Cw–

EKEK EK

Figure 5.2 Chaotic encryption implemented in (a) CBC mode, (b) CFB mode, (c) OFB mode.

60 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

of operation will be able to encrypt images with arbitrary dimensions
after segmentation into small blocks.

5.4 Simulation Examples and Discussion

Simulation experiments have been carried out to encrypt the Lena
image with the chaotic encryption system using the different modes
of operation and comparing the obtained results with the results of
the 2D chaotic Baker map encryption algorithm and the RC6 algo-
rithm. The IV has been taken as part of the encrypted Cameraman
image shown in Figure 5.1, equal in size to the selected block size.
Several block sizes have been tested:

 1. S1 = 128 × 128 pixels. The IV is a 128 × 128 pixel section of
the encrypted Cameraman image.

 2. S2 = 64 × 64 pixels.
 3. S3 = 32 × 32 pixels.
 4. S4 = 16 × 16 pixels.
 5. S5 = 8 × 8 pixels.

The encrypted versions of the Lena image are shown using the cha-
otic Baker map cryptosystem and the RC6 cryptosystem (Figure 5.3)
and the chaotic encryption with different modes of operation and
 different block sizes (Figure 5.4). It is clear from Figure 5.4 that the
performance of the chaotic encryption with different modes of opera-
tion is good except for its implementation in the OFB mode with
large block sizes.

To check the noise immunity of each of the cryptosystems men-
tioned in this chapter, additive white Gaussian noise (AWGN) with

Figure 5.3 Encrypted images using traditional cryptosystems: (a) encrypted image using the
chaotic Baker map cryptosystem; (b) encrypted image using the RC6 cryptosystem.

61ChaotIC Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

a signal-to-noise ratio (SNR) of 5 dB was added to the encrypted
images, and then the decryption was performed. The decryption
results of the chaotic Baker map cryptosystem and the RC6 crypto-
system (Figure 5.5) and the chaotic encryption with different modes
of operation (Figure 5.6) are shown. From visual inspection, it is clear
that the chaotic Baker map cryptosystem has the highest noise immu-
nity. It is also clear that the chaotic encryption with different modes
of operation is more immune to noise than the RC6 cryptosystem.

Table 5.1 shows the values of the evaluation metrics for all cryp-
tosystems mentioned in this chapter; rxye represents the correlation

CBC CFB OFB

S1

S2

S3

S4

S5

Figure 5.4 Encrypted images using chaotic encryption with different modes of operation and
different block sizes.

62 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

Figure 5.5 Decrypted images using the traditional cryptosystems at SNR = 5 dB: (a) decrypted
image using the chaotic Baker map cryptosystem; (b) decrypted image using the RC6 cryptosystem.

CBC

S1

S2

S3

S4

S5

CFB OFB

Figure 5.6 Decrypted images using the chaotic algorithm with different modes of operation and
different block sizes at SNR = 5 dB.

63ChaotIC Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

Ta
bl

e
5.

1
Nu

m
er

ic
al

 E
va

lu
at

io
n

M
et

ric
s

fo
r A

ll
Cr

yp
to

sy
st

em
s

TE
ST

CH
AO

TI
C

EN
CR

YP
TI

ON
 W

IT
H

M
OD

ES
 O

F
OP

ER
AT

IO
N

EN
CR

YP
TI

ON
RC

6

CB
C

CF
B

OF
B

S 1
S 2

S 3
S 4

S 5
S 1

S 2
S 3

S 4
S 5

S 1
S 2

S 3
S 4

S 5
D

0.
71

0.
72

0.
71

0.
71

0.
72

0.
71

0.
71

0.
71

0.
72

0.
71

0.
71

0.
71

0.
7

0.
67

0.
66

0
0.

71
r xy

e
1.

4
×

10

−
3

4.
7

×

10
−

6

1.
3

×

10
−

3

1.
7

×

10
−

3

−
2

×

10
−

3

3.
7

×

10
−

3

1.
5

×

10
−

3

2
×

10

−
3

−
6.

5
×

10

−
3

7.
4

×

10
−

4

−
7.

1
×

10

−
3

2.
5

×

10
−

4

2.
3

×

10
−

3

13
.5

 ×

10
−

3

41
.8

 ×

10
−

3

10
−

4
1.

3
×

10

−
3

D I
0.

71
0.

7
0.

71
0.

71
0.

7
0.

71
0.

71
0.

71
0.

7
0.

71
0.

7
0.

71
0.

73
0.

74
0.

95
0.

98
0.

71
r xy

d
0.

57
0.

57
0.

57
0.

57
0.

57
0.

57
0.

57
0.

57
0.

57
0.

56
0.

7
0.

7
0.

7
0.

7
0.

69
0.

87
2.

5
×

10

−
3

No
te

: D
ec

ry
pt

io
n

wa
s

pe
rfo

rm
ed

 in
 th

e
pr

es
en

ce
 o

f a
n

AW
GN

 w
ith

 S
NR

 =
 5

 d
B.

64 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

coefficient between the original and encrypted image, and rxyd
represents the correlation coefficient between the original and
decrypted image affected by 5-dB AWGN. From the results obtained
and shown in this table, it is clear that the chaotic Baker map cryp-
tosystem is the most immune to noise, but it is less secure than the
RC6 cryptosystem and the chaotic encryption with modes of opera-
tion. It is also clear that the RC6 cryptosystem is very sensitive to the
presence of noise. We can conclude that the chaotic encryption with
different modes of operation achieves the trade-off between the level
of security and the noise immunity.

The effect of noise on the chaotic encryption with different modes of
operation and block sizes was also studied, and the results are given in
Figure 5.7. This figure shows the variation of the peak signal-to-noise
ratio (PSNR) of the decrypted image with the SNR of the encrypted
image. It is clear from this figure that all modes of operation have
approximately the same performance in the presence of noise, and the
performance is improved at high SNR values. It is also clear that the
block size has no effect on the noise immunity of the algorithm in all
implementation modes.

The histograms of the original Lena image and the encrypted
images with all cryptosystems mentioned in this chapter are shown in
Figures 5.8 and 5.9, respectively. It is clear that the histogram unifor-
mity is not achieved with the chaotic Baker map cryptosystem, which
is a weakness of this cryptosystem. The RC6 cryptosystem achieves
histogram uniformity. The chaotic encryption with different modes
of operation also achieves histogram uniformity for all implementa-
tions except the implementations in the OFB mode with large block
sizes.

It is known that the RC6 cryptosystem has long processing time
as compared to the chaotic Baker map cryptosystem. As a result,
our study for the processing time was restricted to the comparison
between the processing time of the chaotic encryption with differ-
ent modes of operation and the chaotic Baker map cryptosystem.
Figure 5.10 shows the variation of the normalized processing time of
the chaotic encryption algorithm implemented in the different modes
of operation with the block length. Normalization was performed by
dividing the processing time of the chaotic encryption algorithm with
different modes of operation by the processing time of the chaotic

65ChaotIC Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

Baker map cryptosystem. The processing time includes the encryption
and decryption times. It is clear from Figure 5.10 that the process-
ing times of all implementations are approximately the same for each
block length. It is also clear that large block sizes lead to shorter pro-
cessing times because the encryption and decryption are performed
for fewer blocks.

(a)

0 5 10 15 20 25 30 35 40
14
16
18
20
22
24
26
28
30
32
34

SNR

(b)

0 5 10 15 20 25 30 35 40
SNR

(c)

0 5 10 15 20 25 30 35 40
SNR

PS
N

R

14
16
18
20
22
24
26
28
30
32
34

PS
N

R

15

20

25

30

35

40

PS
N

R

S1
S2
S3
S4
S5

S1
S2
S3
S4
S5

S1
S2
S3
S4
S5

Figure 5.7 Variation of the PSNR of the decrypted image with the SNR of the encrypted image
in the chaotic encryption with different modes of operation for (a) the CBC mode, (b) the CFB mode,
(c) the OFB mode.

66 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

(c) Histogram of the encrypted image using the
RC6 cryptosystem.

0

500

1000

1500

2000

2500

O
cc

ur
re

nc
e

(b) Histogram of the encrypted image using the
chaotic Baker map cryptosystem.

0

500

1000

1500

2000

2500

3000

Gray Level

O
cc

ur
re

nc
e

0

500

1000

1500

2000

2500

3000
O

cc
ur

re
nc

e

0 50 100 150 200 250

Gray Level
0 50 100 150 200 250

(a) Histogram of the original image.
Gray Level

0 50 100 150 200 250

Figure 5.8 Histograms of the original image and the encrypted images with the traditional
cryptosystems.

67ChaotIC Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

CBC CFB OFB

S1

S2

S3

S4

S5

0

500

1000

1500

2000

2500

Gray Level

O
cc

ur
re

nc
e

0 50 100 150 200 250

0

500

1000

1500

2000

2500

Gray Level

O
cc

ur
re

nc
e

0 50 100 150 200 250

0

500

1000

1500

2000

2500

Gray Level

O
cc

ur
re

nc
e

0 50 100 150 200 250

0

500

1000

1500

2000

2500

Gray Level

O
cc

ur
re

nc
e

0 50 100 150 200 250

0

500

1000

1500

2000

2500

Gray Level

O
cc

ur
re

nc
e

0 50 100 150 200 250

0

500

1000

1500

2000

2500

Gray Level

O
cc

ur
re

nc
e

0 50 100 150 200 250

0

500

1000

1500

2000

2500

Gray Level

O
cc

ur
re

nc
e

0 50 100 150 200 250

0

500

1000

1500

2000

2500

Gray Level

O
cc

ur
re

nc
e

0 50 100 150 200 250

0

500

1000

1500

2000

2500

Gray Level

O
cc

ur
re

nc
e

0 50 100 150 200 250

0

500

1000

1500

2000

2500

Gray Level

O
cc

ur
re

nc
e

0 50 100 150 200 250

0

500

1000

1500

2000

2500

Gray Level

O
cc

ur
re

nc
e

0 50 100 150 200 250

0

500

1000

1500

2000

2500

Gray Level

O
cc

ur
re

nc
e

0 50 100 150 200 250

0

500

1000

1500

2000

2500

Gray Level

O
cc

ur
re

nc
e

0 50 100 150 200 250

0

500

1000

1500

2000

2500

Gray Level

O
cc

ur
re

nc
e

0 50 100 150 200 250

0

500

1000

1500

2000

2500

Gray Level

O
cc

ur
re

nc
e

0 50 100 150 200 250

Figure 5.9 Histograms of the encrypted images using chaotic encryption with different modes
of operation and different block sizes.

68 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

5.5 Summary

 1. Chaotic image encryption with different modes of operation
can be used to adjust the 2D Baker map to encrypt images
with arbitrary dimensions.

 2. Chaotic encryption with the CBC mode is the best of all
implementations tested in this chapter.

8 16 32 64 128
0

1

2

3

4

5

6

Block Size

N
or

m
al

iz
ed

 P
ro

ce
ss

in
g

Ti
m

e
S5

S4

S2 S1S3

8 16 32 64 1280

1

2

3

4

5

6

Block Size

N
or

m
al

iz
ed

 P
ro

ce
ss

in
g

Ti
m

e

S5

S4
S2 S1S3

8 16 32 64 1280

1

2

3

4

5

6

Block Size

N
or

m
al

iz
ed

 P
ro

ce
ss

in
g

Ti
m

e

S5

S4

S2 S1S3

(a)

(b)

(c)

Figure 5.10 The normalized processing time for the chaotic image encryption with different
modes and block sizes: (a) CBC mode; (b) CFB mode; (c) OFB mode.

69ChaotIC Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

 3. Generally, the encryption quality of all modes increases with
the decrease of the block size, except for the OFB mode,
especially with S = S3, S4, and S5.

 4. The chaotic Baker map has the worst results in all tests except
for the noise immunity, and the RC6 algorithm has interme-
diate results.

 5. The processing time increases with the decrease in the block
size.

71© 2010 Taylor & Francis Group, LLC

6
dIFFusIon mecHanIsm
For data encryptIon

In tHe ecB mode

6.1 Introduction

The implementation of any block cipher algorithm depends on the
mode of operation, which governs the relation between blocks during
the encryption process. The ECB mode is one of the possible modes
of operation. In this mode, each block is encrypted independently.
Unlike different modes of operation, this mode allows parallel pro-
cessing, which is a great advantage. Unfortunately, because the
encryption of each block does not depend on other blocks, an adver-
sary can replace any block with a previously intercepted block without
detection; hence, the message is hacked without the need to know
the key. This major security problem is called the block independency
problem. In addition, identical plaintext blocks are encrypted to iden-
tical ciphertext blocks, so symmetrical large data patterns, like those
in images, cannot be hidden using any encryption algorithm imple-
mented in the ECB mode [98–102].

Two actions are discussed in this chapter to solve the block inde-
pendency problem in the ECB mode [103]. The first action is to make
the values of the data bytes functions of their positions in the data
stream. The second action is to perform a diffusion process between
these bytes. These two actions are preprocessing actions that are per-
formed prior to the application of any block cipher algorithm imple-
mented in the ECB mode. First, an addition step, which is used to
remove any identical plaintext blocks, is performed. Then, an sub-
stitution permutation network (SPN) is used to make the diffusion
between the bytes. A schematic diagram of this mechanism is shown
in Figure 6.1.

72 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

6.2 The Preprocessing Network

The disadvantages of the ECB mode limit its applicability in modern
cryptography despite its advantage of parallel processing [104]. If we
can preprocess the data to diffuse bytes together before encryption,
these disadvantages will be avoided. The preprocessing network con-
sists of two parts: an addition part and an SPN.

6.2.1 The Addition Part

The objective of the addition process is to make the byte values func-
tions of their positions in the data stream. This process helps in elimi-
nating identical plaintext blocks. A function of the byte position is
added to the byte value as follows:

 B(i) = (B(i) + f(i)) mod 256 (6.1)

where i is the position of the byte in the data stream, and B is the byte
value.

The function f(i) is used because it satisfies the following conditions:

Randomness. The resulting values from this function for every
i are random with equal probability.

Irregularity. The differences between each byte and its neigh-
bors in the data stream after the addition of this function to
the byte values are unpredictable and unrepeatable.

Nonperiodicity. This function is nonperiodic because it satisfies
the following condition:

 f(i) ≠ f(i + n) ≠ f(i + 2n) ≠ f(i + 3n) ≠ … (6.2)

(b)

(a)

Reverse of pre-
processing network

Plaintext Decryption in the ECB
mode Ciphertext

Preprocessing
network

Plaintext Encryption in the ECB
mode Ciphertext

Figure 6.1 The suggested mechanism for encryption and decryption in the ECB mode:
(a) encryption; (b) decryption.

73dIffusIon meChanIsm for data enCryPtIon

© 2010 Taylor & Francis Group, LLC

Here, we test three functions to find the one that satisfies the
given conditions:

 f1 (i) = 7 × (i + 13) mod 256 (6.3)

 f2 (i) = (7 × (i + 3))5 mod 256 (6.4)

)(× +f i i() = fix 7 (13) mod 2563
5 (6.5)

where the fix function is used to round the value of its argument
toward the lower nearest integer.

The functions have been tested for values from 1 to 1024, and the
results are given in Figure 6.2. The probability density functions
(PDFs) of the outputs of these functions are shown in Figure 6.3.

From these figures, we can see that f3(i) gives a random, irregular,
and nonperiodic output with a uniform PDF.

6.2.2 The SPN

The SPN is used to diffuse the bytes of the data together after the
addition step. First, the data are divided into blocks of n bits. This
network block size n is different from the encryption algorithm block
size w. After that, a chain of XOR operations is performed as shown
in Figure 6.4. The subkey K1 works as an initial key for the first XOR,
and then the result is XORed with the next block up to the end of the
plaintext. Each block resulting from this chain of XORs is permuted
bit-by-bit as shown in Figure 6.5. A block-based permutation is per-
formed after that. Finally, another chain of XORs is implemented
beginning with a subkey K2.

6.3 Implementation Issues

The preprocessing network performance depends mainly on
the correct determination of the SPN block size n and its rela-
tion to the encryption algorithm block size w. The effect of the
 normalized block size (n/w) on the diffusion and block dependency
is studied.

74 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

6.3.1 Effect of the Normalized Block Size on Diffusion

Diffusion is simply hiding the relation between the plaintext and the
ciphertext. If a small change in the plaintext (one bit) makes a large
change in the ciphertext (half of its bits), then the Avalanche effect
is evident, and the algorithm has a powerful diffusion mechanism
[105–110]. This is guaranteed if we can ensure that a bit change in

0

50

100

150

200

250

300

f(i
)

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

i

0 200 400 600 800 1000 1200
0

50

100

150

200

250

300

i
(b)

0 200 400 600 800 1000 1200
i

(c)

f(i
)

(a)

f(i
)

Figure 6.2 Variation of (a) f1(i), (b) f2(i), (c) f3(i) with i.

75dIffusIon meChanIsm for data enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 50 100 150 200 250 300
0

6

5

4

3

2

0

1

0.01

0.02

0.03

0.04

0.05

f(i)

Pr
ob

ab
ili

ty

0 50 100 150 200 250 300
0

1

2

3

4 × 10–3

× 10–3

f(i)

Pr
ob

ab
ili

ty

(a)

(b)

0 50 100 150 200 250 300
f(i)
(c)

Pr
ob

ab
ili

ty

Figure 6.3 PDFs of the outputs of (a) f1(i), (b) f2(i), (c) f3(i).

76 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

the plaintext will affect at least one bit in each block of the input to the
encryption algorithm, and the diffusion mechanism in the encryption
algorithm will propagate this change through each block.

From Figure 6.6, we can see that if a change takes place in an SPN
block (Si), all the network blocks from Q'L-i+1 to Q'L will be affected,
where L is the number of network blocks. The output odd-number

K2

S´L
S´L–1 S´L–i+1 S´1

Bit permutation Bit permutation Bit permutation Bit permutation

K1

S1 S2 Si SL

Q´1 Q´2 Q´i Q´L

Q1 Q2 Qi QL

Figure 6.4 Operation of the SPN.

bhb1 b2 bh–1

b1bh bh–1 b2

Qi

S´i

Figure 6.5 The bit permutation in the SPN.

77dIffusIon meChanIsm for data enCryPtIon

© 2010 Taylor & Francis Group, LLC

blocks from Q'1 to Q'i will also be affected. The even-number blocks
up to Q'i will not be affected due to performing XORs between the
same patterns.

To ensure the propagation of changes in each block of the encryp-
tion algorithm, a proper choice of the SPN block size n is half the
encryption algorithm block size w, (n/w = 0.5). Because w in the cases
of the Advanced Encryption Standard (AES) and the RC6 algorithms
is 128 bits, the network block size used should be 64 bits.

This network has the ability to propagate the changes made in the
addition part and diffuse the bytes of the data together.

6.3.2 Effect of the Normalized Block Size on Block Dependency

The block independency problem gives the opportunity for a hacker to
exchange any cipher block without detection. The preprocessing net-
work solves this problem by making this exchange affect other blocks
besides the replaced block in the decryption process.

On the other hand, with the SPN, if a block is received in error,
this error will propagate through other blocks during the decryption
process, and these blocks will be decrypted incorrectly even if they

K2

Change free
block
Block with
change

S1 S2 Si SL–1 SL

K1

Q´1 Q´2 Q´L–i+1 Q´L–1 Q´L

To the encryption algorithm

Figure 6.6 Diffusion effect of the SPN on the data blocks before encryption.

78 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

were received correctly. So, there is a need for a trade-off between the
block dependency and the error propagation.

If an encrypted block was received in error, the application of the
decryption algorithm on this block will propagate the error in two
neighboring network blocks in different manners. This is attributed
to the randomization of the diffusion mechanism in the decryption
algorithm. If an error occurs in an intermediate encrypted block, the
error spreads over three decrypted blocks. If this error occurs in the
first or the last encrypted block, the error spreads over two decrypted
blocks only. This is shown in Figure 6.7, where the shaded blocks
refer to network blocks with different errors, and white blocks refer to
the absence of errors. Every decrypted block of size w is represented
by two network blocks. From this figure, we can see that the block
dependency is ensured, but the error propagation slightly increases
compared to the CBC mode.

6.4 Simulation Examples

Several experiments have been performed to test the effect of the sug-
gested mechanism on image encryption in the ECB mode. Both the
AES and RC6 algorithms have been used as the encryption algo-
rithms. The Cameraman image shown in Figure 6.8 has been used in
these experiments.

From the decryption algorithm

P´1 P´i–1 P´i P´i+1 P´m

P1 Pi–1 Pi Pi+1 Pm

K2

K1

Figure 6.7 The error propagation due to the inversion of the SPN effect in the decryption process.

79dIffusIon meChanIsm for data enCryPtIon

© 2010 Taylor & Francis Group, LLC

6.4.1 Encryption Quality

One of the important factors in examining the encrypted image is
visual inspection. The Cameraman image has been encrypted with
the AES and the RC6 algorithms in the ECB, CBC, CFB, and OFB
modes and the ECB mode with preprocessing by the proposed net-
work for comparison purposes. The results of these experiments are
shown in Figures 6.9 and 6.10, respectively. From these obtained
results, it is clear that the encryption in the ECB mode failed to hide
the details at the upper slice of the Cameraman image because this
slice is flat in intensity. The encryption in the ECB mode with the
proposed network solves the problem.

The histograms of all images in Figures 6.9 and 6.10 are shown in
Figures 6.11 and 6.12, respectively. The histogram uniformity in all
figures ensures the success of all encryption algorithms to achieve the
required randomness. The values of the encryption quality metrics DI
and D for the encrypted images in Figures 6.9 and 6.10 are tabulated
in Table 6.1. These results show that all modes achieve the random-
ness of the data.

6.4.2 Diffusion

The diffusion metrics NPCR, UACI, and the Avalanche effect metric
have been evaluated for three cases: changing a single bit in the first
pixel, changing a single bit in the midpixel, and changing a single

(a)

0

100

200

300

400

500

600

700

800

900

1000

Gray Scale
0 50 100 150 200 250

(b)
O

cc
ur

re
nc

e

Figure 6.8 (a) The Cameraman image; (b) the histogram.

80 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

(d) (e)

(a) (c)(b)

Figure 6.10 The Cameraman image encrypted with the RC6 algorithm in (a) ECB mode with
preprocessing, (b) ECB mode, (c) CBC mode, (d) CFB mode, (e) OFB mode.

(c)(b)(a)

(d) (e)

Figure 6.9 The Cameraman image encrypted with the AES in (a) ECB mode with preprocessing,
(b) ECB mode, (c) CBC mode, (d) CFB mode, (e) OFB mode.

81dIffusIon meChanIsm for data enCryPtIon

© 2010 Taylor & Francis Group, LLC

bit in the last pixel. The results of the diffusion tests are shown in
Table 6.2. From this table, we can see that the diffusion between the
blocks of data depends mainly on the mode of operation, not on the
encryption algorithm. The ECB and OFB modes do not possess any
diffusion characteristics. The ECB mode with the preprocessing net-
work gives the best results, unlike the CBC and CFB modes, which
has low values in the Avalanche effect metric, with the changes occur-
ring close to the end of the data.

0

100

200

300

400

500

600

0 50 100 150 200 250
Gray Scale

0

100

200

300

400

500

600

O
cc

ur
re

nc
e

0

100

200

300

400

500

600

O
cc

ur
re

nc
e

(c)

0 50 100 150 200 250
Gray Scale

(b)

0 50 100 150 200 250
Gray Scale

(d)

0 50 100 150 200 250
Gray Scale

(a)

O
cc

ur
re

nc
e

0

100

200

300

400

500

600

0 50 100 150 200 250
Gray Scale

(e)

O
cc

ur
re

nc
e

0

100

200

300

400

500

600

O
cc

ur
re

nc
e

Figure 6.11 The histograms of the encrypted images in Figure 6.9.

82 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

6.4.3 Encryption of Images with Few Details

An image with few details has a large amount of adjacent pixels with
similar values. Examples of these images are the medical image in
Figure 6.13 and the logo image in Figure 6.14.

The encrypted versions of the medical image and the logo image
with both the AES and the RC6 algorithm in the ECB mode with
and without the preprocessing network are shown in Figures 6.15

(a)

0

100

200

300

400

500

600

0 50 100 150 200 250

O
cc

ur
re

nc
e

Gray Scale

(b)

0

100

200

300

400

500

600

0 50 100 150 200 250

O
cc

ur
re

nc
e

Gray Scale

(c)

0

100

200

300

400

500

600

0 50 100 150 200 250

O
cc

ur
re

nc
e

Gray Scale

(d)

0

100

200

300

400

500

600

0 50 100 150 200 250

O
cc

ur
re

nc
e

Gray Scale

(e)

0

100

200

300

400

500

600

0 50 100 150 200 250

O
cc

ur
re

nc
e

Gray Scale

Figure 6.12 The histograms of the encrypted images in Figure 6.10.

83dIffusIon meChanIsm for data enCryPtIon

© 2010 Taylor & Francis Group, LLC

Ta
bl

e
6.

1
En

cr
yp

tio
n

Qu
al

ity
 R

es
ul

ts

M
ET

RI
C

RC
6

AE
S

CB
C

CF
B

OF
B

EC
B

EC
B

W
IT

H
PR

EP
RO

CE
SS

IN
G

CB
C

CF
B

OF
B

EC
B

EC
B

W
IT

H
PR

EP
RO

CE
SS

IN
G

D I
0.

60
2

0.
59

6
0.

59
7

0.
59

7
0.

59
8

0.
60

1
0.

60
3

0.
60

3
0.

60
6

0.
60

4
D

0.
05

13
0.

04
86

0.
05

03
0.

04
52

0.
04

6
0.

04
85

0.
04

58
0.

04
72

0.
05

2
0.

04
8

84 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

Ta
bl

e
6.

2
Di

ffu
si

on
 Te

st
 R

es
ul

ts

TE
ST

TH
E

CH
AN

GE
D

BI
T

RC
6

AE
S

CB
C

(%
)

CF
B

(%
)

OF
B

(%
)

EC
B

(%
)

EC
B

W
IT

H
PR

EP
RO

CE
SS

IN
G

(%
)

CB
C

(%
)

CF
B

(%
)

OF
B

(%
)

EC
B

(%
)

EC
B

W
IT

H
PR

EP
RO

CE
SS

IN
G

(%
)

NP
CR

Bi
t i

n
th

e
fir

st
 p

ixe
l

99
.6

1
99

.5
8

≅0
0.

02
99

.6
99

.6
5

99
.6

≅0
0.

02
99

.6
Bi

t i
n

th
e

m
id

dl
e

pi
xe

l
50

.0
3

50
≅0

0.
02

99
.6

5
50

.0
1

50
.0

3
≅0

0.
02

99
.5

6
Bi

t i
n

th
e

la
st

 p
ixe

l
0.

02
≅0

≅0
0.

02
99

.6
0.

02
4

≅0
≅0

0.
02

99
.5

8
UA

CI
Bi

t i
n

th
e

fir
st

 p
ixe

l
16

.6
1

16
.7

≅0
0.

01
16

.6
6

16
.7

6
16

.6
2

≅0
0.

00
5

16
.8

8
Bi

t i
n

th
e

m
id

dl
e

pi
xe

l
8.

4
8.

4
≅0

0.
01

16
.7

9
8.

37
8.

3
≅0

0.
00

5
16

.9
5

Bi
t i

n
th

e
la

st
 p

ixe
l

0.
00

5
≅0

≅0
0.

01
16

.8
0.

00
5

≅0
≅0

0.
00

3
16

.9
2

Av
al

an
ch

e
ef

fe
ct

 m
et

ric
Bi

t i
n

th
e

fir
st

 p
ixe

l
50

.0
7

49
.9

6
≅0

0.
01

50
.0

3
50

.0
8

49
.9

9
≅0

0.
01

1
50

.0
3

Bi
t i

n
th

e
m

id
dl

e
pi

xe
l

25
.1

1
25

.0
4

≅0
0.

01
50

.1
1

25
.0

9
25

.1
5

≅0
0.

01
2

50
.0

8
Bi

t i
n

th
e

la
st

 p
ixe

l
0.

01
≅0

≅0
0.

01
50

.0
4

0.
01

4
 ≅

0
≅0

0.
01

1
50

.0
8

85dIffusIon meChanIsm for data enCryPtIon

© 2010 Taylor & Francis Group, LLC

and 6.16, respectively. The histograms of these images are shown in
Figures 6.17 and 6.18, respectively. From the obtained results, we
notice that the encryption in the ECB mode fails with these images.
We notice also that the preprocessing network enhances dramatically
the encryption quality of these encrypted images with the ECB mode.

Figure 6.13 Medical image.

Figure 6.14 Logo image.

(a) (b)

(d)(c)

Figure 6.15 The medical image encrypted with (a) the RC6 algorithm in the ECB mode, (b) the
AES in the ECB mode, (c) the RC6 algorithm in the ECB mode with preprocessing, (d) the AES in the
ECB mode with preprocessing.

86 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

(c) (d)

(a) (b)

Figure 6.16 The logo image encrypted with (a) the RC6 algorithm in the ECB mode, (b) the AES
in the ECB mode, (c) the RC6 algorithm in the ECB mode with preprocessing, (d) the AES in the ECB
mode with preprocessing.

87dIffusIon meChanIsm for data enCryPtIon

© 2010 Taylor & Francis Group, LLC

(a)

(b)

0
0.5

1
1.5

2
2.5

3
3.5

4 ×104

Gray Scale
0 50 100 150 200 250

Gray Scale
0 50 100 150 200 250

(c)
Gray Scale

0 50 100 150 200 250

(e)
Gray Scale

0 50 100 150 200 250

(d)
Gray Scale

0 50 100 150 200 250

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Gray Scale

0

500

1000

1500

2000

2500

O
cc

ur
re

nc
e

O
cc

ur
re

nc
e

O
cc

ur
re

nc
e

O
cc

ur
re

nc
e

0

500

1000

1500

2000

2500

O
cc

ur
re

nc
e

Figure 6.17 The histograms of the medical image: (a) original, (b) encrypted with the RC6 algo-
rithm, (c) encrypted with the AES, (d) encrypted with the RC6 algorithm in the ECB mode with
preprocessing, (e) encrypted in AES in the ECB mode with preprocessing.

88 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

6.5 Summary

In this chapter, an efficient approach has been presented to solve the
problems associated with encryption in the ECB mode. A preprocess-
ing network processes the data before encryption to diffuse the data
bytes together prior to the application of the encryption algorithm in
the ECB mode. The test results have shown that any encryption algo-
rithm implemented in the ECB mode with the preprocessing network
achieves good diffusion characteristics and high encryption quality
without losing the parallel processing advantage.

0
200
400
600
800

1000
1200
1400
1600
1800

Gray Scale
0 50 100 150 200 250

0
200
400
600
800

1000
1200
1400
1600

Gray Scale
0 50 100 150 200 250

(b) (c)

Gray Scale
0 50 100 150 200 250

Gray Scale
0 50 100 150 200 250

(d) (e)

0
1000
2000
3000
4000
5000
6000
7000
8000

Gray Scale
0 50 100 150 200 250

(a)
O

cc
ur

re
nc

e

O
cc

ur
re

nc
e

O
cc

ur
re

nc
e

O
cc

ur
re

nc
e

O
cc

ur
re

nc
e

0

100

200

300

400

500

600

0

100

200

300

400

500

600

Figure 6.18 The histograms of the logo image: (a) original, (b) encrypted with the RC6 algorithm,
(c) encrypted with the AES, (d) encrypted with the RC6 algorithm in the ECB mode with preprocess-
ing, (e) encrypted in AES in the ECB mode with preprocessing.

89© 2010 Taylor & Francis Group, LLC

7
ortHogonal Frequency

dIvIsIon multIplexIng

7.1 Introduction

The main objective of this book is to study image encryption from a
communication perspective. So, we need to determine if an encryp-
tion algorithm fits the communication requirements. It is time now to
switch to wireless communication to understand the communication
process and its limitations and hence to study the performance of the
decryption algorithms after the communication process. We con-
sider multicarrier modulation (MCM), especially orthogonal fre-
quency division multiplexing (OFDM), in our study because it is the
new trend in wireless communication systems. MCM is used not
only in the physical layer of several wireless network standards such
as Institute of Electrical and Electronics Engineers (IEEE) 802.11a,
IEEE 802.16a, and HIPERLAN2 (High-Performance Radio Local
Area Network Type 2), but also in HDTV (high-definition television)
applications that include image communication [111,112]. OFDM
overcomes the effects of multipath fading by breaking the signal into
several narrow-bandwidth carriers. This results in a low symbol rate
reducing the amount of ISI (intersymbol interference). The high toler-
ance to multipath fading makes OFDM more suited to transmissions
with a high data rate in terrestrial environments compared to single-
carrier transmissions.

The transmission frequency, receiver velocity, and required mul-
tipath tolerance all determine the most suitable transmission mode to
use. Doppler spread is caused by rapid changes in the channel response
due to movement of the receiver through a multipath environment. It
results in random frequency modulation of the OFDM subcarriers,
leading to signal degradation. The amount of Doppler spread is pro-
portional to the transmission frequency and the velocity of movement.

90 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

The closer the subcarriers are spaced, the more susceptible the OFDM
signal is to Doppler spread, so the different transmission modes in dig-
ital audio broadcasting (DAB) and HDTV allow a trade-off between
the amount of multipath protection (length of the guard period) and
the Doppler spread tolerance [113].

The OFDM signal has the spectrum shown in Figure 7.1. In the
frequency domain, each OFDM subcarrier has several sinc-shaped
frequency responses. The sinc shape has a narrow main lobe with many
side lobes that decay slowly with the magnitude of the frequency shift
away from the center. Each carrier has a peak at the center frequency
and nulls evenly spaced with a frequency gap equal to the carrier spac-
ing [114,115].

7.2 Basic Principles of OFDM

All wireless communication systems use a modulation scheme to map
the information signal to a form that can be effectively transmitted
over the communication channel. A wide range of modulation schemes
has been developed, with the most suitable one depending on whether
the information signal is an analog waveform or a digital signal.

–10 –8 –6 –4 –2 0 2 4 6 8 10
–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Frequency Carrier Spacing

TX
 P

ow
er

Figure 7.1 Frequency response of the subcarriers in a seven-tone OFDM signal.

91orthogonal frequenCy dIvIsIon multIPlexIng

© 2010 Taylor & Francis Group, LLC

Common analog modulation schemes include frequency modulation
(FM), amplitude modulation (AM), and phase modulation (PM).
Common single-carrier modulation schemes for digital communica-
tions include amplitude shift keying (ASK), frequency shift keying
(FSK), phase shift keying (PSK), and quadrature amplitude modula-
tion (QAM) [115].

OFDM is different from frequency division multiplexing (FDM)
in several ways. In conventional broadcasting, each radio station
transmits on a different frequency, effectively using FDM to main-
tain a separation between the stations. There is, however, no coordi-
nation or synchronization between each of these stations. With an
OFDM transmission system such as DAB or digital video broad-
casting (DVB), the information signals from multiple stations are
combined into a single multiplexed stream of data. These data are
then transmitted using an OFDM ensemble that is made from dense
packing of several subcarriers. All the subcarriers within the OFDM
signal are time and frequency synchronized to each other, allowing
the interference between subcarriers to be carefully controlled. These
multiple subcarriers overlap in the frequency domain but cause small
effects of intercarrier interference (ICI) due to the orthogonal nature
of the modulation. Typically, with FDM the transmission signals need
to have a large frequency guard band between channels to prevent
interference. This lowers the overall spectral efficiency. However, with
OFDM, the orthogonal packing of the subcarriers greatly reduces
this guard band, improving the spectral efficiency [116–122].

Each of the carriers in an FDM transmission system can use an
analog or digital modulation scheme. There is no synchronization
between the transmissions, so one station could transmit using FM
and another in a digital form using FSK. In a single OFDM trans-
mission system, all the subcarriers are synchronized to each other,
restricting the transmission to digital modulation schemes. OFDM
is symbol based and can be thought of as a large number of low-bit-
rate carriers transmitted in parallel. All these carriers transmit using
synchronized time and frequency, forming a single block of spectrum
to ensure that the orthogonal nature of the structure is maintained.
Because these multiple carriers form a single OFDM transmission,
they are commonly referred to as subcarriers, with the term carrier
reserved for describing the radio-frequency (RF) carrier mixing the

92 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

signal from baseband. There are several ways of looking at what makes
the subcarriers in an OFDM signal orthogonal and why this prevents
interference between them [116–119].

7.2.1 Orthogonality

Signals are orthogonal if they are mutually independent of each other.
Orthogonality is a property that allows multiple information signals to
be transmitted perfectly over a common channel and detected without
interference. Loss of orthogonality results in blurring between these
information signals and degradation in communications.

Many common multiplexing schemes are inherently orthogonal.
Time division multiplexing (TDM) allows transmission of multiple
information signals over a single channel by assigning unique time slots
to each separate information signal. During each time slot, only the
signal from a single source is transmitted, preventing any interference
between the multiple information sources. Because of this, TDM is
orthogonal in nature [116–119]. In the frequency domain, most FDM
systems are orthogonal as each of the separate transmission signals
is well spaced out in frequency, preventing interference. The term
OFDM has been reserved for a special form of FDM. The subcarri-
ers in an OFDM signal are spaced as close as is theoretically possible
while maintaining orthogonality between them.

OFDM achieves orthogonality in the frequency domain by allo-
cating each of the separate information signals onto different subcar-
riers. OFDM signals are made up from a sum of sinusoids, with each
one corresponding to a subcarrier. The baseband frequency of each
subcarrier is chosen to be an integer multiple of the inverse of the
symbol time, resulting in all subcarriers having an integer number of
cycles per symbol. As a consequence, the subcarriers are orthogonal
to each other [123–130].

Sets of functions are orthogonal to each other if they match the
conditions in Equation (7.1). If any two different functions within
the set are multiplied and integrated over a symbol period, the result
is zero for orthogonal functions. If we look at a matched receiver for
one of the orthogonal functions, then the receiver will only see the
result for that function. The results from all other functions in the set
integrate to zero and thus have no effect [115].

93orthogonal frequenCy dIvIsIon multIPlexIng

© 2010 Taylor & Francis Group, LLC

 ∫ {() () = ≠
=

0

0

s t s t dti j
c

i j
i j

T

 (7.1)

Equation (7.2) shows a set of orthogonal sinusoids that represent
the subcarriers for an unmodulated real OFDM signal [115,116].

 =
π

< < =s t
kf t t T k N

otherwisek ()
sin(2)

0
0 1, 2,....0 (7.2)

where f0 is the subcarrier spacing, N is the number of subcarriers, and
T is the symbol period. Because the highest-frequency component is
Nf0, the transmission bandwidth is also Nf0.

7.2.2 Frequency Domain Orthogonality

In the frequency domain, each OFDM subcarrier has a sinc sin(x)/x
frequency response. This is a result of the symbol time corresponding
to the inverse of the carrier spacing. As far as the receiver is con-
cerned, each OFDM symbol is transmitted for a fixed time TFFT with
no tapering at the ends of the symbol. This symbol time corresponds
to the inverse of the subcarrier spacing of 1/TFFT Hz. The rectangu-
lar, boxcar waveform in the time domain results in a sinc frequency
response in the frequency domain. The sinc shape has a narrow main
lobe with many side lobes that decay slowly with the magnitude of
the frequency difference away from the center. Each carrier has a peak
at the center frequency and nulls evenly spaced with a frequency gap
equal to the carrier spacing [113].

The orthogonal nature of the transmission is a result of the peak
of each subcarrier corresponding to the nulls of all other subcarriers.
When this signal is detected using an FFT (fast Fourier transform),
the spectrum is not continuous but has discrete samples. If the FFT
is time synchronized, the frequency samples of the FFT correspond
to just the peaks of the subcarriers; thus, the overlapping frequency
region between subcarriers does not affect the receiver. The measured
peaks correspond to the nulls for all other subcarriers, resulting in
orthogonality between the subcarriers [113–115].

94 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

7.3 OFDM System Model

This section briefly reviews the key steps in an OFDM communica-
tion system that can be used for the transmission of encrypted images.
The first step is the image encryption; the general model of a typi-
cal encryption system could be described with the following equation
[131]:

 E(P, K) = C (7.3)

where P is the plainimage, E is the encryption algorithm, K is the
encryption key, and C is the cipherimage. The cipherimage is trans-
mitted through the communication channel. At the receiver side, the
decryption procedure could be represented by [131]

 D(C, K’) = P’ (7.4)

where D is the decryption algorithm, K’ is the decryption key (it may
or may not be the same as the encryption key K), and P’ is the recov-
ered plainimage.

At the transmitter side, the encrypted data are converted into par-
allel data of N subchannels. Then, the data of each parallel subchan-
nel are modulated using a modulation scheme like PSK or QPSK
(quaternary PSK). For QPSK of N subchannels (d0, d1, d2, … , dN−1),
each dn is a complex number d d jdn I Qn n= + , where dIn and dQn are
{1, −1} [131–135].

7.3.1 FFT-OFDM

In FFT-OFDM, the modulated data are fed into an inverse FFT
(IFFT) circuit, and the OFDM signal is generated. The OFDM
splits a high-data-rate sequence into a number of low-rate sequences
that are transmitted over a number of subcarriers equal to N. The N
subcarriers are chosen to be orthogonal; that is, fn = n∆f, where ∆f =
1/Ts, and Ts is the OFDM symbol duration. The resulting signal can
be expressed as follows [136]:

 x n
N

X k e t T
j kn

N

k

N

s∑))((= ≤ ≤
π

=

−1 , 0
2

0

1

 (7.5)

where X(k) represents the discrete-time samples.

95orthogonal frequenCy dIvIsIon multIPlexIng

© 2010 Taylor & Francis Group, LLC

A guard interval is added at the start of each OFDM symbol to
eliminate the ISI, which occurs in multipath channels. An OFDM
symbol is extended in a cyclic manner to avoid the ICI. As a result, a
channel that is highly frequency selective is transformed into a large
set of individual flat fading, non-frequency-selective, narrowband
channels. At the receiver, the guard interval is removed, and the time
interval [0, Ts] is evaluated.

7.3.2 DCT-OFDM

The structure of the discrete cosine transform (DCT)-OFDM system
is similar to that of FFT-OFDM but with the IFFT and the FFT
modules replaced by inverse discrete cosine transform (IDCT) and
DCT modules, respectively. The main advantage of the DCT lies in
its excellent spectral energy compaction property, which makes most
of the samples transmitted close to zero, leading to a reduction in
the ISI. In addition, it uses only real arithmetic rather than the com-
plex arithmetic used in the FFT. This reduces the signal processing
complexity and the in-phase/quadrature imbalance [136,137]. In the
DCT-OFDM system, the transmitted signal is given by [138–140]

 2 cos 2 1
2

, 0,..., 1
0

1

x n
N

X k k k n
N

p N
k

N

∑() () () ()= β
π +

= −
=

−

 (7.6)

where X(k) is the kth symbol of the input signal. β(k) can be written
as follows:

 k
k

k N
β =

=

= −

()
1
2

0

1 1, 2,......., 1

 (7.7)

7.3.3 Discrete Wavelet Transform–OFDM

The OFDM requires a cyclic prefix to remove ISI. This causes over-
head, and this overhead may sometimes be too large for the system
to be effective. The use of the wavelet transform reduces the ISI and
ICI [138, 141,142]. The structure of the discrete wavelet transform

96 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

(DWT)-OFDM system is similar to that of FFT-OFDM but with
the IFFT and the FFT modules replaced by indirect discrete wavelet
transform (IDWT) and DWT modules, respectively. The transmit-
ted signal with DWT-OFDM is given by [138]

 ∑= ϕ −
=

x n X k t kT
k

N

() () ()
0

 (7.8)

where φ(t) is the wavelet basis function.
Further advantages of the DWT-OFDM are as follows:

 1. It requires less overhead as it does not require a cyclic perfix
(CP).

 2. It does not require a pilot tone, which takes about 8% of the
subbands.

 3. DWT-OFDM is inherently robust to ISI and ICI.

The DWT is explained in the following section.

7.3.4 Discrete Wavelet Transform

Wavelets have become a popular tool in most signal-processing
and communications applications. The conventional DWT may be
regarded as equivalent to filtering the input signal with a bank of
band-pass filters whose impulse responses are all approximately given
by scaled versions of a mother wavelet. The scaling factor between
adjacent filters is usually 2:1, leading to octave bandwidths and center
frequencies that are one octave apart [138,139]. The outputs of the
filters are usually maximally decimated so that the number of DWT
output samples equals the number of input samples, and the trans-
form is invertible as shown in Figure 7.2.

7.3.4.1 Implementation of the DWT The DWT is normally imple-
mented by digital filters as shown for the one-dimensional (1D) case
in Figure 7.2. The art of finding a good wavelet lies in the design
of the set of filters H0, H1, G0, and G1 to achieve various trade-offs
between spatial and frequency domain characteristics while satisfy-
ing the perfect reconstruction (PR) condition [142]. In Figure 7.2,

97orthogonal frequenCy dIvIsIon multIPlexIng

© 2010 Taylor & Francis Group, LLC

the process of decimation and interpolation by 2:1 at the output of H0
and H1 effectively sets all odd samples of these signals to zero.

For the low-pass branch, this is equivalent to multiplying x0(n) by

)()(+ − n1
2

1 1 . Hence, X0(z) is converted to {X0(z) + X0(−z)}. Similarly,

X1(z) is converted to { }+ −X z X z1
2

() ()1 1 .

Thus, the expression for Y(z) is given by [142]

Y z X z X z G z X z X z G z

X z H z G z H z G z

X z H z G z H z G z

)

)){ }

)){ }

(

((

((

{ } { }= + − + + −

= +

+ − − + −

1
2

() () () 1
2

() () ()

1
2

() () ()

1
2

() () ()

0 0 0 1 1 1

0 0 1 1

0 0 1 1 (7.9)

The first PR condition requires aliasing cancellation and forces this
term in X(−z) to be zero. Hence, {H0(−z)G0(z) + H1(−z)G1(z)} = 0,
which can be achieved if [142]

 H1(z) = z−aG0(−z) and G1(z) = zaH0(−z) (7.10)

where a must be odd (usually a = ±1).
The second PR condition is that the transfer function from X(z) to

Y(z) should be unity [142]:

 {H0(z)G0(z) + H1(z)G1(z)} = 2 (7.11)

H0(z)

H1(z)

2

2

X(z)

G0(z)

G1(z)

2

2

+ Y(z)

X0(z) (1/2){X0(z)+ X0(–z)}

X1(z) (1/2){X1(z)+ X1(–z)}

Figure 7.2 The two-band decomposition-reconstruction wavelet filter bank.

98 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

If we define a product filter P(z) = H0(z)G0(z) and substitute from
Equation (7.10) into Equation (7.11), then the PR condition becomes
[142]

 H0(z)G0(z) + H1(z)G1(z) = P(z) + P(−z) = 2 (7.12)

This needs to be true for all z, and because the odd powers of z in
P(z)cancel with those in P(−z), it requires that p0 = 1 and pk = 0 for
all n even and nonzero. The polynomial P(z) should be a zero-phase
polynomial to minimize distortion. In general, P(z) is of the follow-
ing form [142]:

 P(z) = … + p5z5 + p3z3 + p1z + 1 + p1z−1 + p3z−3 + p5z−5 + … (7.13)

The design method for the PR filters can be summarized in the
following steps [142]:

 1. Choose p1, p3, p5, … to give a zero-phase polynomial P(z)
with good characteristics.

 2. Factorize P(z) into H0(z) and G0(z) with similar low-pass
 frequency responses.

 3. Calculate H1(z) and G1(z) from H0(z) and G0(z).

To simplify this procedure, we can use the following relation:

 P(z) = Pt(Z) = 1 + Pt,1Z + Pt,3Z3 + Pt,5Z5 + … (7.14)

where

)(= + −Z z z1
2

1 (7.15)

7.3.4.2 Haar Wavelet Transform The Haar wavelet is the simplest
type of wavelet. In discrete form, Haar wavelets are related to a
mathematical operation called the Haar transform. The Haar trans-
form serves as a prototype for all other wavelet transforms. Like
all wavelet transforms, the Haar transform decomposes a discrete
signal into two subsignals of half its length. One subsignal is a run-
ning average or trend; the other subsignal is a running difference or
fluctuation.

99orthogonal frequenCy dIvIsIon multIPlexIng

© 2010 Taylor & Francis Group, LLC

The Haar wavelet uses the simplest possible Pt(Z) with a single zero
at Z = −1. It is represented as follows [142]:

 Pt(Z) = 1 + Z and)(= + −Z z z1
2

1 (7.16)

Thus,

))(()

)

(

(

+ + = + +

=

− −z z z z z

G z H z

P() = 1
2

2 1
2

1 1

()

1 1

0 0 (7.17)

We can find H0(z) and G0(z) as follows:

)()(= + −H z z1
2

10
1 (7.18)

 G0(z) = (z + 1) (7.19)

Using Equation (7.10) with a = 1, we obtain

)())((= − = − = −−G z zH z z z z() 1
2

1 1
2

11 0
1 (7.20)

 H1(z) = z−1G0(−z) = z−1(−z + 1) = (z−1 − 1) (7.21)

7.4 Guard Interval Insertion

The guard interval insertion is an important step in all OFDM sys-
tems. The purpose of this step is to avoid the ISI. Figure 7.3 illustrates
the process of guard interval insertion [143–146]. Also, the guard
period may consist of two sections: zero-amplitude transmission
data and a cyclic extension of the transmitted symbol. We consider
all these types of guard interval and their effects on the transmitted
encrypted images.

OFDM Symbol Guard OFDM Symbol Guard OFDM Symbol

Figure 7.3 Guard interval insertion in OFDM.

100 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

7.5 Communication Channels

7.5.1 Additive White Gaussian Noise Channel

For an additive white Gaussian noise (AWGN) channel, the received
signal r(t) is expressed as [141]

 r(t) = s(t) + n(t) (7.22)

where s(t) is the transmitted signal, r(t) is the received signal, and n(t)
is the AWGN with power spectral density given by [141]

 Φ(f) = N0/2 [W/Hz] (7.23)

where N0 is a constant that is often called the noise power density.

7.5.2 Fading Channel

The path between the transmitter and receiver is characterized by vari-
ous obstacles and reflections, which lead to a fading effect at the receiver
as shown in Figure 7.4. We can take the following expression to simulate
the incoming signal at the receiver in the Raleigh fading scenario [141]:

 f(t) = x(t) + j · y(t) (7.24)

∑=
+

π

π π

+
+

π

=
N

n
N

f n
N

t

N
f t

d

n

N

d

2
1

sin cos 2 cos 2

1
1

cos(2)

1 1 11

1

1

Re�ected
Paths

Direct Paths Transmitter

Figure 7.4 A wireless channel with multipath propagation.

101orthogonal frequenCy dIvIsIon multIPlexIng

© 2010 Taylor & Francis Group, LLC

 ∑+ π

π π

=

j
N

n
N

f n
N

td

n

N2 sin cos 2 cos 2
1 1 11

1

 (7.25)

where the wave number of the incoming wave is N0, and N1 is given by

 N1 = 1/2((N0/2) – 1) (7.26)

7.6 Channel Estimation and Equalization

Channel estimation and equalization constitute a major challenge in
current and future communication systems. The equalizers utilized
to compensate for the ISI can be classified as linear and nonlinear
equalizers [147]. Linear equalizers are simple linear filter structures that
try to invert the channel in the sense that the product of the transfer
functions of the channel and the equalizer fulfills a certain criterion.
This criterion can either be achieving a completely flat transfer function
of the channel filter concatenation or minimizing the mean square error
at the filter output [148]. One of the most popular linear equalizers is
the zero-forcing (ZF) equalizer. The ZF solution can be written as [148]

 WZF = (HHH)−1HH (7.27)

where H is the matrix of the channel transfer function.
The advantage of the ZF equalizer is that the statistics of the addi-

tive noise and source data are not required.
Channel estimation can be performed with pilot symbol estima-

tion (PSE). With an OFDM system, the wideband channel is divided
into a number of narrowband channels. Thus, channel estimation can
be performed by inserting pilot symbols with a known modulation
scheme into the transmitted signal. Based on these pilot symbols, the
receiver can measure the channel transfer function for each subcarrier
using interpolation techniques [113].

The mathematical model for the PSE and equalization can be
 represented as follows [144]:

 =

i
q A

i
q

1

1

0

0
 (7.28)

102 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

where i1 is the received in-phase symbol, q1 is the quadrature received
symbol, i0 is the transmitted in-phase symbol, q0 is the quadrature
transmitted symbol, and A is the transition matrix of the fading envi-
ronment that is given by [130]

 ()=A 11 12
21 22

a a
a a

 (7.29)

The channel matrix is Toplitz with a11 = a22 and a12 = −a21. To per-
form channel equalization, we need to estimate the matrix A−1 as
follows [130]:

 ()=
+ −

−A 11

11
2

12
2

11 12
12 11a a

a a
a a (7.30)

Because the transmitted and received symbols are known, we can
estimate the channel coefficients using Equations (7.28) and (7.30) as
follows [130]:

)(= =
+

+a a
i q

i i q q1
11 22

1 1
0 1 0 1 (7.31)

 a a
i q

q i i q1
21 12

1 1
0 1 0 1)(= − =

+
+ (7.32)

Once the channel is estimated, it can be used for equalization
with unknown transmitted symbols [113]. Equalization is not the
only problem encountered in wireless communication of images with
OFDM. There are some other limitations that may affect the quality
of transmitted images, especially if they are encrypted. Some of these
problems are addressed in the next chapter.

103© 2010 Taylor & Francis Group, LLC

8
oFdm lImItatIons

8.1 Introduction

OFDM has been adopted in the European digital audio and video
broadcasting radio system and is being investigated for broad-
band indoor wireless communications. Standards such as High-
Performance Radio Local-Area Network (HIPERLAN2), Institute
of Electrical and Electronics Engineers (IEEE) 802.11a, and IEEE
802.11g have emerged to support services based on the Internet
Protocol (IP). Such systems are based on OFDM and are designed to
operate in the 5-GHz band [147].

Unfortunately, OFDM communication systems have two
 primary problems: the high sensitivity to carrier frequency offsets
(CFOs) and the high peak-to-average power ratio (PAPR). The
sensitivity to CFOs breaks the subcarriers’ orthogonality, and the
high PAPR requires system components with a wide linear range
to accommodate for the signal variations. Otherwise, nonlinear
 distortion, which results in a loss of subcarrier orthogonal-
ity and hence a degradation in the system performance, occurs
[148–152].

Researchers have proposed various methods to combat the
 intercarrier interference (ICI in OFDM systems. The existing
approaches that have been developed to reduce ICI can be catego-
rized into frequency domain equalization, time domain windowing,
and self-cancellation (SC) schemes. In addition, statistical approaches
have been explored to estimate and cancel ICI. In this chapter, the
effects of CFO and PAPR problems are studied with solutions to these
 problems and to reduce their effects on the transmitted encrypted
images.

104 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

8.2 Analysis of Intercarrier Interference

The main problem of OFDM is its susceptibility to small differences
in frequency at the transmitter and receiver, normally referred to as
frequency offset. This frequency offset can be caused by Doppler shift
due to relative motion between the transmitter and receiver or by dif-
ferences between the frequencies of the local oscillators at the trans-
mitter and receiver. The frequency offset is modeled as a multiplicative
factor introduced in the channel, as shown in Figure 8.1) [153–155].

The received signal is given by

 exp 2y n i n j n
N

w n() () ()= π ε

 + (8.1)

where ε is the normalized frequency offset and is given by ∆fNTs. ∆f is
the frequency difference between the transmitted and received carrier
frequencies, and Ts is the subcarrier symbol period. w(n) is the addi-
tive white Gaussian noise (AWGN) introduced in the channel.

The effect of this frequency offset on the received symbol stream
can be understood by considering the received symbol Y(k) on the kth
subcarrier [151–153].

 ∑= + − +
= ≠

−

() () (0) () () ()
0,

1

Y k X k S X l S l k W k
l l k

N

 (8.2)

where k = 0, 1, … , N − 1; N is the total number of subcarriers; X(k) is
the transmitted symbol for the kth subcarrier; W(k) is the fast Fourier
transform (FFT) of w(n); and S(l − k) are the complex coefficients for
the ICI components in the received signal. The ICI components are

)exp(N
j2πnε

i(n) y(n)

w(n)

Figure 8.1 Frequency offset model.

105ofdm lImItatIons

© 2010 Taylor & Francis Group, LLC

the interfering signals transmitted on subcarriers other than the kth
subcarrier. The complex coefficients are given by [151–153]

 − = π + ε −
π + ε −

π − + ε −() sin(())
sin(() /)

exp((1 1)())S l k l k
N l k N

j
N

l k (8.3)

8.3 CFO in FFT-OFDM System Model

In FFT-OFDM, the modulated symbols are grouped into blocks,
each containing N symbols, and the inverse FFT (IFFT) is per-
formed. The resulting signal after the IFFT can be expressed as fol-
lows [138,151–153]:

 ∑= ≤ ≤ −
=

− π

() 1 () , 0 1
0

1 2

x n
N

X k e n N
k

N j nk
Ts (8.4)

where N is the number of subcarriers. X(k) represents the kth modu-
lated symbol.

At the end of the transmitter, a guard interval is inserted between
symbols with hybrid guard interval or zero padding to eliminate the
intersymbol interference (ISI). The resulting signal is then transmit-
ted through the wireless channel.

At the receiver side, the padded zeros or the hybrid guard interval
are removed from the received signal. The received signal in the pres-
ence of CFO is given by

 = +
π ε

() () ()
2

r n x n e w n
j m

N (8.5)

where ε = ΔfTs is the normalized CFO, Δf is the CFO, Ts is the
OFDM symbol duration, and w(n) is AWGN. After that, the
received signal is transformed into the frequency domain via the
FFT as follows:

 ∑=
=

− − π

() ()

0

1 2

R k r n e
n

N nk
N (8.6)

106 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

Substituting Equation (8.3) into Equation (8.4), we obtain
[151–153]

∑

∑∑

= +

= +

=

− π ε

− π

π +ε −

=

−

=

−

() () ()

1 () ()

0

1 2 2

2 ()

0

1

0

1

R k x n e e W k

N
X l e W k

n

N m
N

nk
N

n l k
N

n

N

l

N (8.7)

where W(k) is the kth frequency domain sample of the noise. We

can expand ∑
π −ε −

=

−1 2 ()

0

1

N
e

j n l k
N

n

N

 using the geometric series as follows

[151–153]:

∑ = −

−

= π − + ε
π − − ε

π −ε−

π +ε−

π +ε−

=

−

π +ε− −

1 1 1

1

1 sin(())
sin(() /)

2 () (2 ())

2 ()
0

1

(()(1 1/))

N
e

N
e

e

N
e l k

l k N

j n l k
N

j l k

j l k
Nn

N

j l k N
 (8.8)

We obtain [151–153]

 ∑= − + ε +
=

−

() () () ()
0

1

R k X l S l k W k
l

N

 (8.9)

where S(l − k + ε) represents the complex coefficients for the inter-
ference components in the received signal. S(l − k + ε) is given by
[151–153]

 − + ε = π − + ε
π − − ε

π +ε− −() sin(())
sin(() /)

(()(1 1/))S l k e l k
M l k N

j l k N (8.10)

107ofdm lImItatIons

© 2010 Taylor & Francis Group, LLC

8.4 CFO in DCT-OFDM System Model

The main advantage of the discrete cosine transform (DCT) lies in
its excellent spectral energy compaction property, which makes most
of the samples transmitted close to zero, leading to a reduction in the
ISI. In addition, it uses only real arithmetic rather than the complex
arithmetic used in the FFT. This reduces the signal-processing com-
plexity, and the in-phase/quadrature imbalance [150,151]. In the DCT-
OFDM system, the transmitted signal is given by [136,137,139–143]

 ∑= β π +

 = −

=

−

() 2 () ()cos (2 1)
2

, 0,..., 1
0

1

x n
N

X k k k n
N

p N
k

N

 (8.11)

where X(k) is the kth symbol of the input signal. β(k) can be written
as follows:

 β =
=

= −

()
1
2

0

1 1, 2,......., 1
k

k

k N
 (8.12)

In the DCT-OFDM system, the complex coefficients for the inter-
ference components in the received signal can be expressed as follows
[151–153]:

[

]
[

]

ζ = β β φ + − ζ + φ − − ζ

+φ + + ζ + φ − + ζ

+ Γ + − ζ + Γ − − ζ

−Γ + + ζ − Γ − + ζ

(, ,) 1
2

() ()

() ()

() ()

() ()

S l k
N

l k l k

l k l k

j l k l k

l k l k

k l

 (8.13)

where ζ = 2T∆f is the normalized CFO for the DCT-OFDM system
[151–153].

108 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

 Γ =

π

π

()
sin

2

sin
2

2

x

x

x
N

 (8.14)

 φ =

π

π

π

()
sin

2
cos

2

sin
2

x

x x

x
N

 (8.15)

8.5 CFO in DWT-OFDM System Model

The transmitted signal with discrete wavelet transform (DWT)-
OFDM is given by [138]

 ∑= ϕ −
=

() () ()
0

x n X k t kT
k

N

 (8.16)

where φ(t) is the wavelet basis functors. Some attempts have been
made to predict the CFO effect on DWT-OFDM, but, as of yet, no
closed-form expression has been presented for this task.

8.6 CFO Compensation

There are many techniques that were developed to compensate for the
CFO in multicarrier communication systems. In this chapter, the com-
pensation process is carried out in the time domain. Mathematically,
for the OFDM system, the received sequence is multiplied by a time

domain sequence
− π ε2

e
j n

N before the FFT/DCT/DWT processing. The
compensated signal can be formulated as follows for AWGN [151–153]:

 = = +
− π ε − π ε

() () () ()
2 2

r n e r n x n e w nc

j n
N

j n
N (8.17)

In fading channels, as we know, estimation of the channel trans-
fer function is needed. The channel transfer function estimate may
be computed using any algorithm that gives reliable estimates. In our
design, the zero-forcing (ZF) channel estimator was applied to obtain

109ofdm lImItatIons

© 2010 Taylor & Francis Group, LLC

the initial channel estimate when the first OFDM symbol of the
superframe is received. This symbol represents the pilot symbol known
to the receiver. After receiving the first OFDM symbol, the estimator
switches to the tracking mode. The channel estimates are refined and
tracked according to the gradient algorithm.

8.7 Simulation Parameters

In our simulations, we carried out the encryption of the Cameraman
image with the previously discussed encryption algorithms. Then, the
encrypted images were transformed into a binary format and used for
OFDM modulation. Both AWGN and Raleigh fading channels were
considered in the simulations. A normalized CFO was used in some
of the simulation experiments. PAPR reduction techniques were used
in some other experiments. In all experiments, 128 subcarriers and
quaternary phase shift keying (QPSK) were used. The simulation
parameters are summarized in Table 8.1.

To evaluate the quality of the decrypted images at the receiver,
we used the peak signal-to-noise ratio (PSNR) between the original
image and the decrypted image, which is defined as follows:

 =

10 log 255
10

2
PSNR

MSE
 (8.18)

where the mean square error (MSE) is defined as

 ∑∑= −
==

1 (,) ˆ (,)2

2

11

MSE
U

f i j f i j
j

U

i

U

 (8.19)

Table 8.1 Simulation Parameters

PARAMETER DESCRIPTION

Transmitter System bandwidth 64 MHz
Modulation type QPSK
cyclic prefix length 16 samples
N 128 subcarriers
Subcarrier spacing 500 kHz
Type of transform FFT, DCT, or DWT

Channel Channel model Raleigh fading
Receiver PSE and equalizer ZF equalization
Encryption algorithm Type of encryption Chaotic encryption, chaotic-OFB encryption

110 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

where f(i, j) is the original image of dimensions U × U and ˆ (,)f i j is
the decrypted image.

Figures 8.2 and 8.3 illustrate the PSNR performance versus the Eb/
N0 for the FFT-OFDM, the DCT-OFDM, and the DWT-OFDM
systems with chaotic and chaotic-output feedback (OFB) encryption
algorithms in a frequency-selective channel, respectively. Without
CFO compensation and with pilot symbol estimation (PSE), it was
shown that CFO disrupted the PSNR performance of all OFDM
systems; with CFO compensation, the PSNR performances of all
systems were better than those without CFO compensation. These
figures also show that the PSNR performances of all encryption algo-
rithms with the FFT-OFDM system were the best compared with
those of the DCT-OFDM and the DWT-OFDM systems.

Figure 8.4 gives the output of the FFT-OFDM system for the
transmission of the original Cameraman image over an AWGN
 channel at N = 128 and G = 32.

Figure 8.5 gives the output of the FFT-OFDM system for the
transmission of the original Cameraman image over a fading channel
at N = 128 and G = 32.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

FFT with CFO
DCT with CFO
DWT with CFO
FFT with PSE
DCT with PSE
DWT with PSE

Figure 8.2 PSNR versus Eb/N0 for chaotic-encrypted image transmission with OFDM system over
a Raleigh channel.

111ofdm lImItatIons

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

FFT with CFO
DCT with CFO
DWT with CFO
FFT with PSE
DCT with PSE
DWT with PSE

Figure 8.3 PSNR versus Eb/N0 for chaotic-OFB-encrypted image transmission with OFDM sys-
tem over a Raleigh fading channel.

(a) Eb/N0 = 0 dB
PSNR = 14.6993

(b) Eb/N0 = 5 dB
PSNR = 23.7838

(c) Eb/N0 = 10 dB
PSNR = 48.0593

(d) Eb/N0 = 15 dB
PSNR > 60

Figure 8.4 Original image with FFT-OFDM over an AWGN channel.

112 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

Figure 8.6 gives the output of the FFT-OFDM system for the
transmission of the chaotic-encrypted image over an AWGN channel
at N = 128 and G = 32.

Figure 8.7 gives the output of the FFT-OFDM system for the
transmission of the chaotic-encrypted image over a fading channel at
N = 128 and G = 32.

Figure 8.8 gives the output of the DCT-OFDM system for the
transmission of the original Cameraman image over an AWGN
 channel at N = 128 and G = 32.

Figure 8.9 gives the output of the DCT-OFDM system for the
transmission of the original Cameraman image over a fading channel
at N = 128 and G = 32.

(a) Eb/N0 = 0 dB
PSNR = 17.8214

(b) Eb/N0 = 5 dB
PSNR = 29.4547

(c) Eb/N0 = 10 dB
PSNR = 53.8719

(d) Eb/N0 = 15 dB
PSNR > 60

Figure 8.5 Original image with FFT-OFDM over a fading channel.

113ofdm lImItatIons

© 2010 Taylor & Francis Group, LLC

Figure 8.10 gives the output of the DCT-OFDM system for the
transmission of the chaotic-encrypted image over an AWGN channel
at N = 128 and G = 32.

Figure 8.11 gives the output of the DCT-OFDM system for the
transmission of the chaotic-encrypted image over a fading channel at
N = 128 and G = 32.

Figure 8.12 gives the output of the DWT-OFDM system for
the transmission of the original Cameraman image over an AWGN
channel at N = 128 and G = 32.

Figure 8.13 gives the output of the DWT-OFDM system for the
transmission of the original Cameraman image over a fading channel
at N = 128 and G = 32.

(a) Eb/N0 = 0 dB
PSNR = 15.1527

(b) Eb/N0 = 5 dB
PSNR = 25.1709

(c) Eb/N0 = 10 dB
PSNR = 50.5529

(d) Eb/N0 = 15 dB
PSNR >60

Figure 8.6 Chaotic-encrypted image with FFT-OFDM over an AWGN channel.

114 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

Figure 8.14 gives the output of the DWT-OFDM system for the
transmission of the chaotic-encrypted image over an AWGN channel
at N = 128 and G = 32.

Figure 8.15 gives the output of the DWT-OFDM system for the
transmission of the chaotic-encrypted image over a fading channel at
N = 128 and G = 32.

Table 8.2 summarizes these results.

8.8 Effect of PAPR

One of the main limitations of OFDM is the high PAPR. A signal
with large peaks can be obtained by the constructive superposition
of subcarriers. The PAPR is linearly dependent on the number of

(a) Eb/N0 = 0 dB
PSNR = 18.3597

(b) Eb/N0 = 5 dB
PSNR = 30.0828

(c) Eb/N0 = 10 dB
PSNR = 53.8881

(d) Eb/N0 = 15 dB
PSNR >60

Figure 8.7 Chaotic-encrypted image with FFT-OFDM over a fading channel.

115ofdm lImItatIons

© 2010 Taylor & Francis Group, LLC

 subcarriers. High-power peaks make certain demands on power
amplifiers and analog-to-digital (A/D) and digital-to-analog (D/A)
converters. Large peaks are distorted nonlinearly due to the power
amplifier imperfections, and intermodulation products appear. They
can be interpreted as ICI and out-of-band radiation.

This high PAPR results in significant in-band distortion and
out-of-band radiation when the signal passes through a nonlinear
device. The in-band distortion increases the bit error rate (BER), and
the out-of-band radiation results in unacceptable adjacent channel
interference (ACI) [152]. Without the use of any PAPR reduction
technique, the efficiency of power consumption at the transmitter
becomes very poor. Because OFDM signals are modulated indepen-
dently in each subcarrier, the combined OFDM signals are likely to
have large peak powers at certain instances. The peak power increases
as the number of subcarriers increases. The peak power is generally

(a) Eb/N0 = 0 dB
PSNR = 15.7172

(b) Eb/N0 = 5 dB
PSNR = 26.3188

(c) Eb/N0 = 10 dB
PSNR = 53.5993

(d) Eb/N0 = 15 dB
PSNR >60

Figure 8.8 Original image with DCT-OFDM over an AWGN channel.

116 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

evaluated in terms of the PAPR. The PAPR of the transmitted
OFDM signal is defined as

∑
()

= = = −

=

max

1 /
, 0,1,......., 1

2

2

0

PAPR
P
P

x

N x
m Npeak

avg

m

m
m

N (8.20)

In Equation (8.20), the numerator represents the maximum envelope
power, and the denominator represents the average power.

The cumulative distribution function (CDF) of the PAPR is one of
the most frequently used performance metrics for PAPR performance
before and after applying PAPR reduction techniques. In the litera-
ture, the complementary CDF (CCDF) is commonly used instead of

(a) Eb/N0 = 0 dB
PSNR = 16.7843

(b) Eb/N0 = 5 dB
PSNR = 23.2367

(c) Eb/N0 = 10 dB
PSNR = 27.9452

(d) Eb/N0 = 15 dB
PSNR = 29.3708

Figure 8.9 Original image with DCT-OFDM over a fading channel.

117ofdm lImItatIons

© 2010 Taylor & Francis Group, LLC

the CDF itself. The CCDF of the PAPR denotes the probability that
the PAPR of a data block exceeds a given threshold. In [153], a simple
approximate expression was derived for the CCDF of the PAPR of
a multicarrier signal; the real and imaginary values of x(t) follow a
Gaussian distribution. The CDF of the amplitude z of an OFDM
signal sample is given by

 F(z) = 1 − e−z (8.21)

We need to derive the CDF of the PAPR for an OFDM data
block. Assuming that the signal samples are mutually independent
and uncorrelated, the CDF of the PAPR for an OFDM data block
can be found as

 P(PAPR ≤ z) = F(z)N = (1 − e−z)N (8.22)

(a) Eb/N0 = 0 dB
PSNR = 15.0481

(b) Eb/N0 = 5 dB
PSNR = 24.4613

(c) Eb/N0 = 10 dB
PSNR = 53.4971

(d) Eb/N0= 15 dB
PSNR >60

Figure 8.10 Chaotic-encrypted image with DCT-OFDM over an AWGN channel.

118 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

The assumption made that the signal samples are mutually inde-
pendent and uncorrelated is not true when oversampling is applied.
Also, this expression is not accurate for a small number of subcar-
riers because the Gaussian assumption does not hold in this case
[156–159]. It was shown that the PAPR of an oversampled signal for
N subcarriers is approximated by the distribution for αN subcarriers
without oversampling, where α is larger than 1 [160]. In other words,
the effect of oversampling is approximated by adding a certain num-
ber of extra signal samples.

The CDF of the PAPR of an oversampled signal is thus given by

 P(PAPR ≤ z) ≈ (1 − e−z)αN (8.23)

(a) Eb/N0 = 0 dB
PSNR = 16.3858

(b) Eb/N0 = 5 dB
PSNR = 23.0375

(c) Eb/N0 = 10 dB
PSNR = 30.3995

(d) Eb/N0 = 15 dB
PSNR = 33.2591

Figure 8.11 Chaotic-encrypted image with DCT-OFDM over a fading channel.

119ofdm lImItatIons

© 2010 Taylor & Francis Group, LLC

It was found that α = 2.3 is a good approximation for four-times
oversampled OFDM signals [161]. According to Equation (8.23), the
probability that the PAPR exceeds PAPR0 is given by

 PAPR PAPR ePAPR N= > = − − αCCDF Pr[] 1 (1)0
0 (8.24)

8.9 PAPR Reduction Methods

Several methods have been presented in the literature for PAPR
reduction of OFDM signals. In this book, we concentrate on three
such methods: clipping, companding, and hybrid clipping and
 companding. These are three simple PAPR reduction methods. Our
objective of is to show the effect of PAPR reduction methods on
encrypted image transmission.

(a) Eb/N0 = 0 dB
PSNR = 14.6839

(b) Eb/N0 = 5 dB
PSNR = 23.7368

(c) Eb/N0 = 10 dB
PSNR = 45.9748

(d) Eb/N0 = 15 dB
PSNR >60

Figure 8.12 Original image with DWT-OFDM over an AWGN channel.

120 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

8.9.1 The Clipping Method

Clipping is the simplest method that can limit the amplitude of the
signal to some desired threshold value. It is a nonlinear process and
may cause in-band distortion and out-of-band radiation. This leads
to degradation in the BER performance [162,163]. In the clipping
method, when the amplitude exceeds a certain threshold, it is hard
clipped, while the phase is saved. Namely, when we assume the phase
of the baseband OFDM signal xm is ϕm and the threshold is A, the
output signal after clipping will be given as follows:

 =
>

≤

φ
x Ae

x
x A
x Am

j

m

m

m

m (8.25)

(a) Eb/N0 = 0 dB
PSNR = 17.5731

(b) Eb/N0 = 5 dB
PSNR = 24.9482

(c) Eb/N0 = 10 dB
PSNR = 32.6435

(d) Eb/N0 = 15 dB
PSNR = 37.7109

Figure 8.13 Original image with DWT-OFDM over a fading channel.

121ofdm lImItatIons

© 2010 Taylor & Francis Group, LLC

The clipping ratio (CR) is a useful means to represent the clipping
level. It is the ratio between the maximum power of the clipped signal
and the average power of the unclipped signal. If the IFFT/inverse
direct cosine transform (IDCT)/inverse direct wavelet transform
(IDWT) output signal is normalized, the unclipped signal power is
1. If we clip the IFFT/IDCT/IDWT output at level A, then the CR
is (A)2 / 1 = (A)2.

8.9.2 The Companding Method

The companding transform uses a compander to reduce the signal
amplitude. Such an approach can effectively reduce the PAPR with
less computational complexity [164]. The corresponding transmitter
and receiver need a compander and an expander, respectively, which

(a) Eb/N0 = 0 dB
PSNR = 14.7090

(b) Eb/N0 = 5 dB
PSNR = 23.5544

(c) Eb/N0= 10 dB
PSNR = 44.6552

(d) Eb/N0 = 15 dB
PSNR >60

Figure 8.14 Chaotic-encrypted image with DWT-OFDM over an AWGN channel.

122 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

of course slightly increases the hardware cost. In simulation experi-
ments, compression is performed according to the well-known µ-law.
The compression process can be expressed as follows [164,165]:

 =
+ µ

+ µ
ln[1 /]

ln[1]
sgn[]max

maxx V x V xc
m

m (8.26)

where

 = = −max() 0,1,..... 1maxV x m Nm

where μ is the companding coefficient, xc is the companded sample,
and xm is the original sample. The expansion process is simply the
inverse of Equation (8.26):

=

µ
+ µ −

∧
x V x

V
xc

cm [exp(ln(1) 1)]sgn()max

max

(a) Eb/N0 = 0 dB
PSNR = 16.3689

(b) Eb/N0 = 5 dB
PSNR = 23.8108

(c) Eb/N0 = 10 dB
PSNR = 32.7138

(d) Eb/N0 = 15 dB
PSNR = 37.5838

Figure 8.15 Chaotic-encrypted image with DWT-OFDM over a fading channel.

123ofdm lImItatIons

© 2010 Taylor & Francis Group, LLC

Table 8.2 Summarized Results

Eb/N0 Eb/N0 = 0 dB Eb/N0 = 5 dB Eb/N0 = 10 dB

ORIGINAL + AWGN CHANNEL
PSNR with FFT 14.6993 23.7838 48.0593
PSNR with DCT 15.7172 26.3188 53.5993
PSNR with DWT 14.6839 23.7368 45.9748

ORIGINAL + FADING CHANNEL
PSNR with FFT 17.8214 29.4547 53.8719
PSNR with DCT 16.7843 23.2367 27.9452
PSNR with DWT 17.5731 24.9482 32.6435

CHAOTIC + AWGN CHANNEL
PSNR with FFT 15.1527 25.1709 50.5529
PSNR with DCT 15.0481 24.4613 53.4971
PSNR with DWT 14.7090 23.5544 44.6552

CHAOTIC + FADING CHANNEL
PSNR with FFT 18.3597 30.0828 53.8881
PSNR with DCT 16.3858 23.0375 30.3995
PSNR with DWT 16.3689 23.8108 32.7138

DES + AWGN CHANNEL
PSNR with FFT 8.3766 11.1743 36.4777
PSNR with DCT 8.3762 11.1133 34.4818
PSNR with DWT 8.3954 11.2270 32.2373

DES + FADING CHANNEL
PSNR with FFT 9.6637 16.7520 41.4821
PSNR with DCT 9.0390 11.7067 16.5200
PSNR with DWT 8.4729 10.7940 17.4856

AES + AWGN CHANNEL
PSNR with FFT 8.4026 9.4551 31.5464
PSNR with DCT 8.4211 9.4006 30.5205
PSNR with DWT 8.4049 9.3407 28.8218

AES + FADING CHANNEL
PSNR with FFT 8.6932 14.1673 36.8018
PSNR with DCT 8.5829 10.2435 14.1012
PSNR with DWT 8.3737 9.2508 13.7209

RC6 + AWGN CHANNEL
PSNR with FFT 8.3916 9.4165 30.9051
PSNR with DCT 8.3961 9.3528 33.1261
PSNR with DWT 8.4344 9.3419 29.1988

RC6 + FADING CHANNEL
PSNR with FFT 8.7540 13.8893 40.0734
PSNR with DCT 8.5691 10.2276 14.1490
PSNR with DWT 8.3983 9.2497 13.9828

AES, Advanced Encryption Standard; DES, Data Encryption Standard.

124 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

where
∧
x m is the estimated sample after expansion.

8.9.3 The Hybrid Clipping-and-Companding Method

The hybrid clipping-and-companding method comprises clipping fol-
lowed by µ-law companding. By exploiting the clipping in the first
step, the hybrid scheme can reduce the PAPR of OFDM signals with
slight BER degradation. Moreover, the companding in the second
step further reduces the PAPR of the OFDM signals. Consequently,
we expect that the hybrid scheme effectively reduces the PAPR with
slight BER degradation, while the complexity of the system is slightly
increased.

A complete image transmission system with OFDM comprises a
PAPR reduction stage and an error-correction coding stage to reduce
the effect of PAPR reduction at the receiver. A convolutional code
with rate 1/2, constraint length 7, and octal generator polynomial
(133,171) is adopted in the simulation experiments.

8.10 Simulation Experiments of PAPR Reduction Methods

Several experiments were carried out to test the effect of the PAPR
reduction methods on the process of encrypted image transmission
with OFDM. The compared PAPR reduction methods are the clip-
ping, companding, and hybrid clipping-and-companding methods.

The performance of the process of chaotic image transmission with
encrypted (FFT/DCT/DWT)-OFDM systems having N = 128 and
G = 32 over an AWGN is shown in Figures 8.16 to 8.18. From these
figures, it is clear that the PSNR performance of the chaotic-encrypted
image transmission with FFT/DCT/DWT-OFDM is better with
µ = 0.1 than that with µ = 4 at Eb/N0 ≥ 10 dB. At high SNR values,
it is possible to receive the chaotic encrypted images with a very large
PSNR if error- correction codes are utilized.

The performance of the process of encrypted image transmission
using the chaotic-OFB algorithm with (FFT/DCT/DWT)-OFDM
systems over an AWGN is shown in Figures 8.19 to 8.21. From these
figures, it is clear that the PSNR performance of the chaotic-OFB-
encrypted image transmission with FFT/DCT/DWT-OFDM is
better with µ = 0.1 than with µ = 4 at Eb/N0 ≥ 10 dB. At high SNR

125ofdm lImItatIons

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 8.16 PSNR versus Eb/N0 for chaotic-encrypted image transmission with FFT-OFDM sys-
tem over an AWGN channel. Convolutional coding is applied with all cases except the first one.

0 1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 8.17 PSNR versus Eb/N0 for chaotic-encrypted image transmission with DCT-OFDM sys-
tem over an AWGN channel. Convolutional coding is applied with all cases except the first one.

126 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 8.19 PSNR versus Eb/N0 for chaotic-OFB-encrypted image transmission with FFT-OFDM
system over an AWGN channel. Convolutional coding is applied with all cases except the first one.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 8.18 PSNR versus Eb/N0 for chaotic-encrypted image transmission with DWT-OFDM sys-
tem over an AWGN channel. Convolutional coding is applied with all cases except the first one.

127ofdm lImItatIons

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at μ = 0.1
With clipping + companding at μ = 0.1
With companding at μ = 4
With clipping + companding at μ = 4

Figure 8.20 PSNR versus Eb/N0 for chaotic-OFB-encrypted image transmission with DCT-OFDM
system over an AWGN channel. Convolutional coding is applied with all cases except the first one.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at μ = 0.1
With clipping + companding at μ = 0.1
With companding at μ = 4
With clipping + companding at μ = 4

Figure 8.21 PSNR versus Eb/N0 for chaotic-OFB-encrypted image transmission with DWT-OFDM
system over an AWGN channel. Convolutional coding is applied with all cases except the first one.

128 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

values, it is possible to receive the chaotic-OFB-encrypted images
with a very large PSNR if error-correction codes are utilized. From
all obtained results, we can see that PAPR reduction technique effects
can be mitigated to a great extent with error-correcting codes such
as the convolutional code. Another conclusion is that chaotic-OFB
encryption preserves its rank as the best encryption algorithm from
the immunity to noise perspective even in the presence of PAPR
reduction. A simple clipping, companding, or hybrid clipping-and-
companding method may be feasible for PAPR reduction in the case
of encrypted image transmission.

8.11 Sampling Clock Offset

The detection of OFDM symbols cannot be done properly without
reliable clock synchronization. One synchronization step consists of
estimating the OFDM symbol timing, which is the delay between the
transmitted and the received OFDM symbols. In a certain number
of applications where these symbols are short, estimating this delay
is enough. However, as soon as the number of samples per OFDM
symbol (or, equivalently, the number of subcarriers) becomes large,
the frequency offset between the transmitter sampling clock and the
receiver sampling clock in its free oscillation mode also has to be con-
sidered. Indeed, this offset leads to a sampling delay that drifts lin-
early in time over the OFDM symbol. Without any compensation,
this drift hampers the receiver performance as soon as the product
of the relative clock frequency offset with the number of subcarriers
becomes nonnegligible in comparison with one [180]. For instance, in
very-high-speed digital subscriber line (VDSL) transmissions, these
two quantities can respectively reach 10−4 and 4096 [167], making the
clock frequency offset compensation mandatory. As another example,
power line transmissions (PLTs) in the band (1 MHz, 20 MHz) [168]
show similar behavior with respect to this phenomenon.

As it is well known, the part of the OFDM symbol that enters the
FFT device at the receiver comes after a cyclic prefix. As the prefix
has a length comparable to the channel impulse response length, it
is precisely when the channel is long that a long duration has to be
chosen for the useful part of the OFDM symbol to reduce the impact
of the cyclic prefix on the spectral efficiency. It is therefore worth

129ofdm lImItatIons

© 2010 Taylor & Francis Group, LLC

considering the problem of the joint estimation of the clock frequency
offset and of the channel impulse response, particularly when the
observation window has to be rather large [166–168].

8.11.1 System Model

Let us consider the reception of one standard OFDM block that has
passed through a nonflat fading channel. After removing the guard
interval, the observation window size is To = NT where N is the number
of subcarriers, T is the sampling period at the transmitter, and 1/To is
the spacing between two adjacent subcarriers. Consequently, the con-
tinuous-time received signal ()()y tN

a is written as follows:

 ∑= − +
∈

() () ()()
.

() ()y t d g t kT v tN
a

N k
a

k Z

a (8.27)

where (dN,k)k = 0,1,....,N − 1 represents the output of the N-fold IFFT device
of the transmitter. This OFDM symbol is devoted to training and
therefore is assumed to be known at the receiver. As usual, N is a
power of 2. The unknown impulse response g(a)(t) represents the
 complete channel that includes the transmit filter, the propagation
channel, and the receiver low-pass filter. Finally. v(a)(t) is an additive
noise independent of the data. Because of the oscillators’ imperfec-
tion, the transmitter and receiver clocks are not synchronized.

Therefore, ()()y tN
a is sampled at (1 + δ)T instead of T, where δ is

an unknown offset lying in the known interval [−δmax, δmax]. The
parameter δmax is related to the precision of the oscillators used in the
transmission chain. The asymmetric digital subscriber line (ASDL)/
VDSL norms [167], for instance, recommend that δmax be equal to
10−4. The discrete time received signal = + δ() ((1))()y n y n TN N

a is then
written

 ∑= + δ +−

∈

() () (),
()y n d g mT n T v nN N n m
a

m Z

 (8.28)

where = + δ() ((1))()v n v n Ta is assumed white Gaussian circular with
zero mean and known variance σ = [| ()|]2 2E v n . As usual, g(a)(lT) is
assumed time limited with the time support included in [0, LT] where
L is a known integer. We thus write gl = g(a)(lT) for l = 0, ..., L−1.

130 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
15

20

25

30

35

40

45

Eb/N0(dB)

PS
N

R
(d

B)

FFT + clock offset
DCT + clock offset
DWT + clock offset
FFT + clock offset + ZP
DCT + clock offset + ZP
DWT + clock offset + ZP

Figure 8.23 PSNR versus Eb/N0 for chaotic-OFB-encrypted image transmission with OFDM
system over a Raleigh fading channel.

0 1 2 3 4 5 6 7 8 9 10
15

20

25

30

35

40

45

50

55

60

65

Eb/N0(dB)

PS
N

R(
dB

)

FFT+clock offset
DCT+clock offset
DWT+clock offset
FFT+clock offset+ZP
DCT+clock offset+ZP
DWT+clock offset+ZP

Figure 8.22 PSNR versus Eb/N0 for chaotic-encrypted image transmission with OFDM system
over a Raleigh fading channel.

131ofdm lImItatIons

© 2010 Taylor & Francis Group, LLC

The performance of the process of original image transmission
with the chaotic and chaotic-OFB algorithm for (FFT/DCT/
DWT)-OFDM systems over a Raleigh fading channel is shown in
Figures 8.22 and 8.23. From these figures, it is clear that the PSNR
performance of both chaotic and chaotic-OFB-encrypted image
transmission with FFT/DCT/DWT-OFDM is better with applying
the zero padding (ZP) guard and PSE method. At high Eb/N0 values,
it is possible to receive the chaotic-OFB-encrypted images with a very
large PSNR if error- correction codes are utilized. From all obtained
results, we can see that sampling clock offset reduction technique
effects can be mitigated to a great extent. Another conclusion is that
the chaotic-OFB encryption preserves its rank as the best encryption
algorithm from the immunity to noise point of view even in the pres-
ence of sampling clock offset.

133© 2010 Taylor & Francis Group, LLC

9
sImulatIon examples

9.1 Simulation Parameters

In our simulations, we carried out the encryption of the Cameraman
image with the previously discussed encryption algorithms. Then, the
encrypted images were transformed into a binary format and used for
orthogonal frequency division multiplexing (OFDM) modulation. Both
additive white Gaussian noise (AWGN) and Rayleigh fading channels
were considered in the simulations. A normalized carrier frequency
offset (CFO) of 0.1 was used in some of the simulation experiments.
PAPR reduction techniques were used in some other experiments. In all
experiments, 128 subcarriers and quaternary phase shift keying (QPSK)
were used. The simulation parameters are summarized in Table 9.1.

To evaluate the quality of the decrypted images at the receiver,
we used the peak signal-to-noise ratio (PSNR) between the original
image and the decrypted image. Figures 9.1 to 9.3 illustrate the
 variation of the PSNR of the decrypted image with the signal-to-
noise ratio (SNR) in the channel (Eb/N0) for the fast Fourier transform
(FFT)-OFDM system with different encryption algorithms in an
AWGN channel for different numbers of subcarriers. These figures
showed that as the number of subcarriers is increased, the quality of
the decrypted images is improved.

In this section, several experiments compare between the encryp-
tion algorithms and select the most suitable system for the transmission
of encrypted images. To better illustrate the results, each encryp-
tion algorithm was studied for a different number of subchannels
as shown in Figures 9.4 to 9.6 without equalization and Figures 9.7
to 9.9 with zero-forcing (ZF) equalization. From these figures, it is
clear that equalization enhances the system performance dramati-
cally. The best-obtained results from an encryption algorithm were
for the chaotic encryption algorithm because it is a permutation-based
ciphering algorithm.

134 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

The Data Encryption Standard (DES), the Advanced Encryption
Standard (AES), and the RC6 encryption algorithms provided
lower PSNR performance for the FFT-OFDM system compared
with the chaotic algorithm because these algorithms have a diffu-
sion mechanism, which reduces the noise immunity. On the other
hand, the chaotic algorithm is more robust to noise. From these

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.1 PSNR vs. Eb/N0 in the FFT-OFDM system for an AWGN channel with N = 64.

Table 9.1 Simulation Parameters

PARAMETER DESCRIPTION

Transmitter System bandwidth 64 MHz
Modulation type QPSK
CP length 16 samples
N 128 subcarriers
Subcarrier spacing 500 kHz
Type of transform FFT, DCT, or DWT

Channel Channel model AWGN or Rayleigh fading
Receiver PSE and equalizer ZF equalization
Encryption algorithm Type of encryption Chaotic encryption, DES, AES, or RC6

Key of DES (00010203040506)16
Key of RC6 (000102030405060708090a0b0c0d0e0f)16
Key of AES (000102030405060708090a0b0c0d0e0f)16

135sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.2 PSNR versus Eb/N0 in the FFT-OFDM system for an AWGN channel with N = 512.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.3 PSNR versus Eb/N0 in the FFT-OFDM system for an AWGN channel with N = 1024.

136 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.4 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with N = 64 before
PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.5 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with N = 512
before PSE and equalization.

137sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.6 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with N = 1024
before PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.7 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with N = 64 after
PSE and equalization.

138 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.8 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with N = 512 after
PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.9 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with N = 1024
after PSE and equalization.

139sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

figures, it is clear that equalization enhances the system perfor-
mance dramatically. The best-obtained results from an encryption
algorithm were for the chaotic encryption algorithm because it is a
permutation-based ciphering algorithm.

The effect of the guard interval length on the system was studied;
Figures 9.10 to 9.12 illustrate the PSNR performance versus the Eb/N0

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.10 PSNR versus Eb/N0 in the FFT-OFDM system for an AWGN channel with G = 0.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.11 PSNR versus Eb/N0 in the FFT-OFDM system for an AWGN channel with G = 16.

140 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

for the FFT-OFDM systems with different encryption algorithms in
an AWGN channel. The guard intervals utilized ranged from 0 to 32
samples. From these figures, it is clear that the PSNR performances
of all encryption algorithms with the FFT-OFDM system at G = 0
were the best compared with those with G = 16 and 32. The chaotic-
encryption gives the best PSNR values.

Figures 9.13 to 9.15 illustrate the variation of the PSNR with
the Eb/N0 for the FFT-OFDM with G = [0, 16, 32], with differ-
ent encryption algorithms in a frequency-selective channel. Without
pilot symbol estimation (PSE), it was shown that fading disrupts
the PSNR performance of FFT-OFDM systems regardless of the
encryption algorithm. However, Figures 9.16 to 9.18 show that, with
PSE, the PSNR performances of all systems were better than those
without PSE.

The DES, AES, and RC6 provide lower PSNR performance for
the FFT-OFDM system than the chaotic algorithm because these
algorithms have a diffusion mechanism, which highly reduces the
noise immunity. On the other hand, the chaotic algorithm is more
robust to noise.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.12 PSNR versus Eb/N0 in the FFT-OFDM system for an AWGN channel with G = 32.

141sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)
Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.13 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with G = 0 with-
out PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.14 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with G = 16
without PSE and equalization.

142 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)
Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.15 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with G = 32
without PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.16 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with G = 0 with
PSE and equalization.

143sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.17 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with G = 16 with
PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.18 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with G = 32 with
PSE and equalization.

144 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

The different guard intervals were studied. A comparison study
between the hybrid guard interval (HGI), which is composed of a cyclic
prefix (CP) and zero samples, and the zero padding (ZP) guard inter-
val with the different encryption algorithms in a frequency-selective
channel is illustrated in Figures 9.19 and 9.20. CFO compensation was
performed. It is shown that the PSNR performance of the ZP-OFDM
systems is slightly better than that of the HGI-OFDM systems.

Figure 9.21 gives the output of the FFT-OFDM system for the
transmission of the original Cameraman image over an AWGN
channel at N = 128 and G = 32.

Figure 9.22 gives the output of the FFT-OFDM system for the
transmission of the original Cameraman image over a fading channel
at N = 128 and G = 32.

Figure 9.23 gives the output of the FFT-OFDM system for the
transmission of the chaotic-encrypted image over an AWGN channel
at N = 128 and G = 32.

Figure 9.24 gives the output of the FFT-OFDM system for the
transmission of the chaotic-encrypted image over a fading channel at
N = 128 and G = 32.

0 1 2 3 4 5 6 7 8 9 10
8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

Eb/N0(dB)

PS
N

R(
dB

)

Original with HGI
Chaotic with HGI
DES with HGI
AES with HGI
RC6 with HGI
Original with ZP
Chaotic with ZP
DES with ZP
AES with ZP
RC6 with ZP

Figure 9.19 PSNR versus Eb/N0 in the FFT-OFDM system with ZP and hybrid G for a Raleigh
channel with N = 128 and G = 32 without PSE and equalization.

145sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original with HGI
Chaotic with HGI
DES with HGI
AES with HGI
RC6 with HGI
Original with ZP
Chaotic with ZP
DES with ZP
AES with ZP
RC6 with ZP

Figure 9.20 PSNR versus Eb/N0 in the FFT-OFDM system with ZP and HGI for a Raleigh channel
with N = 128 and G = 32 with PSE and equalization.

(a) Eb/N0 = 0 dB
PSNR = 14.6993

(b) Eb/N0 = 5 dB
PSNR = 23.7838

(c) Eb/N0 = 10 dB
PSNR = 48.0593

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.21 Original image with FFT-OFDM over an AWGN channel.

146 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

Figure 9.25 gives the output of the FFT-OFDM system for the
transmission of the DES-encrypted image over an AWGN channel
at N = 128 and G = 32.

Figure 9.26 gives the output of the FFT-OFDM system for the
transmission of the DES-encrypted image over a fading channel at
N = 128 and G = 32.

Figure 9.27 gives the output of the FFT-OFDM system for the
transmission of the AES-encrypted image over an AWGN channel
at N = 128 and G = 32.

Figure 9.28 gives the output of the FFT-OFDM system for the
transmission of the AES-encrypted image over a fading channel at
N = 128 and G = 32.

(a) Eb/N0 = 0 dB
PSNR = 17.8214

(b) Eb/N0 = 5 dB
PSNR = 29.4547

(c) Eb/N0 = 10 dB
PSNR = 53.8719

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.22 Original image with FFT-OFDM over a fading channel.

147sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

Figure 9.29 gives the output of the FFT-OFDM system for the
transmission of the RC6-encrypted image over an AWGN channel
at N = 128 and G = 32.

Figure 9.30 gives the output of the FFT-OFDM system for the
transmission of the RC6-encrypted image over a fading channel at
N = 128 and G = 32.

Figures 9.31 to 9.33 illustrate the variation of the PSNR of a
decrypted image with the SNR in the channel (Eb/N0) for the DCT-
OFDM system with different encryption algorithms in an AWGN
channel for different numbers of subcarriers. These figures show that
as the number of subcarriers is increased, the quality of the decrypted
images improved.

(a)Eb/N0 = 0 dB
PSNR = 15.1527

(b) Eb/N0 = 5 dB
PSNR = 25.1709

(c) Eb/N0 = 10 dB
PSNR = 50.5529

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.23 Chaotic-encrypted image with FFT-OFDM over an AWGN channel.

148 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

To better illustrate the results, each encryption algorithm was
 studied for a different number of subchannels as shown in Figures 9.34
to 9.36 without equalization and Figures 9.37 to 9.39 with ZF
 equalization. From these figures, it is clear that equalization enhances
the system performance dramatically. The best-obtained results from
an encryption algorithm were for the chaotic encryption algorithm
because it is a permutation-based ciphering algorithm.

The effect of the guard interval length on the system is studied in
Figures 9.40 to 9.42, which illustrate the PSNR performance versus
the Eb/N0 for the DCT-OFDM systems with different encryption
algorithms in an AWGN channel. The guard intervals utilized range
from 0 to 32 samples. From these figures, it is clear that the PSNR
performances of all encryption algorithms with the DCT-OFDM

(a) Eb/N0 = 0 dB
PSNR = 18.3597

(b) Eb/N0 = 5 dB
PSNR = 30.0828

(c) Eb/N0 = 10 dB
PSNR = 53.8881

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.24 Chaotic-encrypted image with FFT-OFDM over a fading channel.

149sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

system at G = 0 are the best compared with those with G = 16 and 32.
The chaotic-encrypted image gives the best PSNR values.

Figures 9.43 to 9.45 illustrate the variation of the PSNR with
the Eb/N0 for the DCT-OFDM with G = [0, 16, 32], with different
 encryption algorithms in a frequency-selective channel. Without PSE,
it is shown that fading disrupts the PSNR performance of the DCT-
OFDM system, regardless of the encryption algorithm. However,
Figures 9.46 to 9.48 show that, with PSE, the PSNR performances of
all systems were better than those without PSE.

The different types of guard intervals were studied. A comparison
study between the HGI, which is composed of a CP and zero samples,
and the ZP guard interval with the different encryption algorithms in
a frequency-selective channel is illustrated in Figures 9.49 and 9.50.

(a) Eb/N0 = 0 dB
PSNR = 8.3766

(b) Eb/N0 = 5 dB
PSNR = 11.1743

(c) Eb/N0 = 10 dB
PSNR = 36.4777

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.25 DES-encrypted image with FFT-OFDM over an AWGN channel.

150 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

CFO compensation was performed. It is shown that the PSNR
 performance of the ZP-OFDM system was slightly better than that
of the HGI-OFDM system.

Figure 9.51 gives the output of the DCT-OFDM system for the
transmission of the original Cameraman image over an AWGN
channel at N = 128 and G = 32.

Figure 9.52 gives the output of the DCT-OFDM system for the
transmission of the original Cameraman image over a fading channel
at N = 128 and G = 32.

Figure 9.53 gives the output of the DCT-OFDM system for the
transmission of the chaotic-encrypted image over an AWGN channel
at N = 128 and G = 32.

(a) Eb/N0 = 0 dB
PSNR = 9.6637

(b) Eb/N0 = 5 dB
PSNR = 16.7520

(c) Eb/N0 = 10 dB
PSNR = 41.4821

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.26 DES-encrypted image with FFT-OFDM over a fading channel.

151sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

Figure 9.54 gives the output of the DCT-OFDM system for the
transmission of the chaotic-encrypted image over a fading channel at
N = 128 and G = 32.

Figure 9.55 gives the output of the DCT-OFDM system for the
transmission of the DES-encrypted image over an AWGN channel
at N = 128 and G = 32.

Figure 9.56 gives the output of the DCT-OFDM system for the
transmission of the DES-encrypted image over a fading channel at
N = 128 and G = 32.

Figure 9.57 gives the output of the DCT-OFDM system for the
transmission of the AES-encrypted image over an AWGN channel
at N = 128 and G = 32.

(a) Eb/N0 = 0 dB
PSNR = 8.4026

(b) Eb/N0 = 5 dB
PSNR = 9.4551

(c) Eb/N0 = 10 dB
PSNR = 31.5464

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.27 AES-encrypted image with FFT-OFDM over an AWGN channel.

152 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

Figure 9.58 gives the output of the DCT-OFDM system for the
transmission of the AES-encrypted image over a fading channel at
N = 128 and G = 32.

Figure 9.59 gives the output of the DCT-OFDM system for the
transmission of the RC6-encrypted image over an AWGN channel at
N = 128 and G = 32.

Figure 9.60 gives the output of the DCT-OFDM system for the
transmission of the RC6-encrypted image over a fading channel at
N = 128 and G = 32.

Figures 9.61 to 9.63 illustrate the variation of the PSNR of a
decrypted image with the SNR in the channel (Eb/N0) for the DWT-
OFDM system with different encryption algorithms in an AWGN
channel for different numbers of subcarriers. These figures show that

(a) Eb/N0 = 0 dB
PSNR = 8.6932

(b) Eb/N0 = 5 dB
PSNR = 14.1673

(c) Eb/N0 = 10 dB
PSNR = 36.8018

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.28 AES-encrypted image with FFT-OFDM over a fading channel.

153sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

as the number of subcarriers is increased, the quality of the decrypted
images is improved.

Each encryption algorithm was studied for a different number of
subchannels as shown in Figures 9.64 to 9.66 without equalization
and Figures 9.67 to 9.69 with ZF equalization. From these figures, it
is clear, as obtained in the previous results, that equalization enhanced
system performance. The best-obtained results from an encryption
algorithm were for the chaotic encryption algorithm because it is a
permutation-based ciphering algorithm. The DES, the AES, and
the RC6 encryption algorithms provides worse PSNR performance
for the DWT-OFDM system compared with the chaotic algorithm
because these algorithms have a diffusion mechanism that reduces the

(a) Eb/N0 = 0 dB
PSNR = 8.3916

(b) Eb/N0 = 5 dB
PSNR = 9.4165

(c) Eb/N0 = 10 dB
PSNR = 30.9051

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.29 RC6-encrypted image with FFT-OFDM over an AWGN channel.

154 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

noise immunity. On the other hand, the chaotic algorithm is more
robust to noise.

The effect of the guard interval length on the system was studied;
Figures 9.70 to 9.72 illustrate the PSNR performance versus the Eb/N0
for the DWT-OFDM systems with different encryption algorithms in
an AWGN channel. The guard intervals utilized ranged from 0 to 32
samples. From these figures, it is clear that the PSNR performances
of all encryption algorithms with the DWT-OFDM system at G = 0
were the best compared with those with G = 16 and 32. The chaotic
encryption gives the best PSNR values.

Figures 9.73 to 9.75 illustrate the variation of the PSNR with
the Eb/N0 for the DWT-OFDM with G = [0, 16, 32], with differ-
ent encryption algorithms in a frequency-selective channel. Without

(a) Eb/N0 = 0 dB
PSNR = 8.7540

(b) Eb/N0 = 5 dB
PSNR = 13.8893

(c) Eb/N0 = 10 dB
PSNR = 40.0734

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.30 RC6-encrypted image with FFT-OFDM over a fading channel.

155sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.31 PSNR versus Eb/N0 in the DCT-OFDM system for an AWGN channel with N = 64.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.32 PSNR versus Eb/N0 in the DCT-OFDM system for an AWGN channel with N = 512.

156 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.33 PSNR versus Eb/N0 in the DCT-OFDM system for an AWGN channel with N = 1024.

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.34 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with N = 64
without PSE and equalization.

157sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.35 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with N = 512
without PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.36 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with N = 1024
without PSE and equalization.

158 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.37 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with N = 64 with
PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.38 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with N = 512
with PSE and equalization.

159sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.39 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with N = 1024
with PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.40 PSNR versus Eb/N0 in the DCT-OFDM system for an AWGN channel with G = 0.

160 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.41 PSNR versus Eb/N0 in the DCT-OFDM system for an AWGN channel with G = 16.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.42 PSNR versus Eb/N0 in the DCT-OFDM system for an AWGN channel with G = 32.

161sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.43 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with G = 0
without PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.44 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with G = 16
without PSE and equalization.

162 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.45 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with G = 32
without PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.46 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with G = 0 with
PSE and equalization.

163sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.47 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with G = 16 with
PSE and equalization.

0 1 2 3 4 6 7 8 9 10
0

10

20

30

40

50

60

70

80

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

5
Eb/N0(dB)

Figure 9.48 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with G = 32 with
PSE and equalization.

164 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

Eb/N0(dB)

PS
N

R(
dB

)

Original with HGI
Chaotic with HGI
DES with HGI
AES with HGI
RC6 with HGI
Original with ZP
Chaotic with ZP
DES with ZP
AES with ZP
RC6 with ZP

Figure 9.49 PSNR versus Eb/N0 in the DCT-OFDM system with ZP and HGI for a Raleigh channel
with N = 128 and G = 32 without PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original with HGI
Chaotic with HGI
DES with HGI
AES with HGI
RC6 with HGI
Original with ZP
Chaotic with ZP
DES with ZP
AES with ZP
RC6 with ZP

Figure 9.50 PSNR versus Eb/N0 in the DCT-OFDM system with ZP and HGI for a Raleigh channel
with N = 128 and G = 32 with PSE and equalization.

165sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

PSE and equalization, it is shown that fading disrupts the PSNR per-
formance of the DWT-OFDM systems regardless of the encryption
algorithm. However, Figures 9.76 to 9.78 show that, with PSE and
equalization, the PSNR performances of all systems were better than
those without PSE and equalization.

The DES, AES, and RC6 provide lower PSNR performance for
the DWT-OFDM system than the chaotic algorithm because these
algorithms have a diffusion mechanism that highly reduces the noise
immunity. On the other hand, the chaotic algorithm was more robust
to noise.

The different types of guard intervals were studied. A comparison
study between the HGI and the ZP guard interval with the different
encryption algorithms in a frequency-selective channel is illustrated

(a) Eb/N0 = 0 dB
PSNR = 15.7172

(b) Eb/N0 = 5 dB
PSNR = 26.3188

(c) Eb/N0 = 10 dB
PSNR = 53.5993

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.51 Original image with DCT-OFDM over an AWGN channel.

166 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

in Figures 9.79 and 9.80. CFO compensation was performed. The
PSNR performance of the ZP-OFDM systems was slightly better
than that of the HGI-OFDM systems.

Figure 9.81 gives the output of the DWT-OFDM system for the
transmission of the original Cameraman image over an AWGN
channel at N = 128 and G = 32.

Figure 9.82 gives the output of the DWT-OFDM system for the
transmission of the original Cameraman image over a fading channel
at N = 128 and G = 32.

Figure 9.83 gives the output of the DWT-OFDM system for the
transmission of the chaotic-encrypted image over an AWGN channel
at N = 128 and G = 32.

(a) Eb/N0 = 0 dB
PSNR = 16.7843

(b) Eb/N0 = 5 dB
PSNR = 23.2367

(c) Eb/N0 = 10 dB
PSNR = 27.9452

(d) Eb/N0 = 15 dB
PSNR = 29.3708

Figure 9.52 Original image with DCT-OFDM over a fading channel.

167sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

Figure 9.84 gives the output of the DWT-OFDM system for the
transmission of the chaotic-encrypted image over a fading channel at
N = 128 and G = 32.

Figure 9.85 gives the output of the DWT-OFDM system for the
transmission of the DES-encrypted image over an AWGN channel
at N = 128 and G = 32.

Figure 9.86 gives the output of the DWT-OFDM system for the
transmission of the DES-encrypted image over a fading channel at
N = 128 and G = 32.

Figure 9.87 gives the output of the DWT-OFDM system for the
transmission of the AES-encrypted image over an AWGN channel
at N = 128 and G = 32.

(a) Eb/N0 = 0 dB
PSNR = 15.0481

(b) Eb/N0 = 5 dB
PSNR = 24.4613

(c) Eb/N0 = 10 dB
PSNR = 53.4971

(d) Eb/N0= 15 dB
PSNR >60

Figure 9.53 Chaotic-encrypted image with DCT-OFDM over an AWGN channel.

168 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

Figure 9.88 gives the output of the DWT-OFDM system for the
transmission of the AES-encrypted image over a fading channel at
N = 128 and G = 32.

Figure 9.89 gives the output of the DWT-OFDM system for the
transmission of the RC6-encrypted image over an AWGN channel at
N = 128 and G = 32.

Figure 9.90 gives the output of the DWT-OFDM system for the
transmission of the RC6-encrypted image over a fading channel at
N = 128 and G = 32.

Table 9.2 summarizes these results.

(b) Eb/N0 = 5 dB
PSNR = 23.0375

(d) Eb/N0= 15 dB
PSNR = 33.2591

(a) Eb/N0 = 0 dB
PSNR = 16.3858

(c) Eb/N0 = 10 dB
PSNR = 30.3995

Figure 9.54 Chaotic-encrypted image with DCT-OFDM over a fading channel.

169sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

9.2 Simulation Experiments in the Presence of CFO

Figure 9.91 illustrates the variation of the PSNR with the Eb/N0 for
the FFT-OFDM, DCT-OFDM, and DWT-OFDM systems with
different encryption algorithms. A symbol rate of 250,000 symbols
per second, ε = 0.1, N = 128, and AWGN channel are assumed. This
figure shows that the PSNR performance of all systems with different
encryption algorithms deteriorates due to the presence of the CFO
because the CFO disrupts the orthogonality between subcarriers and
gives rise to the intercarrier interference (ICI), which leads to perfor-
mance degradation. This figure also shows that the CFO compensa-
tion process can avoid the impact of the CFO and produce high-quality

(a) Eb/N0 = 0 dB
PSNR = 8.3762

(b) Eb/N0 = 5 dB
PSNR = 11.1133

(c) Eb/N0 = 10 dB
PSNR = 34.4818

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.55 DES-encrypted image with DCT-OFDM over an AWGN channel.

170 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

decrypted images. On the other hand, without CFO compensation, it
is clear that the CFO degrades the PSNR performance of the DES,
AES, and RC6 for all OFDM systems.

Figures 9.92 to 9.97 illustrate the PSNR performance versus the
Eb/N0 for the FFT-OFDM, DCT-OFDM, and DWT-OFDM sys-
tems with different encryption algorithms in a frequency-selective
channel. Without CFO compensation, it is shown that CFO dis-
rupted the PSNR performance of all OFDM systems regardless of
the encryption algorithm. However, with CFO compensation, the
PSNR performances of all systems are better than those without
CFO compensation. These figures also show that the PSNR perfor-
mances of all encryption algorithms with the FFT-OFDM system

(a) Eb/N0= 0 dB
PSNR = 9.0390

(b) Eb/N0 = 5 dB
PSNR = 11.7067

(c) Eb/N0= 10 dB
PSNR = 16.5200

(d) Eb/N0= 15 dB
PSNR = 19.9308

Figure 9.56 DES-encrypted image with DCT-OFDM over a fading channel.

171sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

were the best compared with those of the DCT-OFDM and DWT-
OFDM systems.

The DES, AES, and RC6 provide lower PSNR performance for
all OFDM systems compared with the chaotic algorithm because
these algorithms have a diffusion mechanism that reduces the noise
immunity. On the other hand, the chaotic algorithm is more robust
to noise.

9.3 Simulation Experiments for Enhanced Algorithms

The performance of the chaotic algorithm with its modes (ECB,
CFB, CBC, and OFB) for (FFT/DCT/DWT)-OFDM systems was
compared. With N = 128 and G = 32 over an AWGN, the PSNR

(a) Eb/N0 = 0 dB
PSNR = 8.4211

(b) Eb/N0 = 5 dB
PSNR = 9.4006

(c) Eb/N0 = 10 dB
PSNR = 30.5205

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.57 AES-encrypted image with DCT-OFDM over an AWGN channel.

172 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

performance of the chaotic-ECB, chaotic-CFB, chaotic-CBC, and
chaotic-OFB algorithms for all OFDM systems start to increase at
moderate-to-high Eb/N0 values. In Figure 9.98, the PSNR of the
chaotic-ECB algorithm is also the best compared to those of all
other modes of encryption algorithms with FFT-OFDM. From
Figure 9.99, the PSNR of the chaotic-(OFB and ECB) algorithms
is also the best compared to those of all other modes of encryption
algorithms with DCT-OFDM. From Figure 9.100, the PSNR of
the chaotic-OFB algorithm is the best compared to that of all other
modes of encryption algorithms with DWT-OFDM.

The performance of the chaotic algorithm with its modes (ECB,
CFB, CBC, and OFB) for (FFT/DCT/DWT)-OFDM systems
was compared. With N = 128 and G = 32 over a fading channel,

(a) Eb/N0= 0 dB
PSNR = 8.5829

(b) Eb/N0 = 5 dB
PSNR = 10.2435

(c) Eb/N0 = 10 dB
PSNR = 14.1012

(d) Eb/N0 = 15 dB
PSNR = 16.2472

Figure 9.58 AES-encrypted image with DCT-OFDM over a fading channel.

173sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

the PSNR performance of the chaotic-ECB, chaotic-CFB, chaotic-
CBC, and chaotic-OFB algorithms for all OFDM systems start
to increase at moderate-to-high Eb/N0 values. In Figures 9.101 to
9.103, the PSNR of the chaotic-CBC algorithm is the best compared
to those of all other modes of encryption with FFT/DCT/DWT-
OFDM without CFO. From Figures 9.104 to 9.106, the PSNR of
the chaotic-CBC algorithm is also the best compared to those of all
other modes of encryption algorithms with FFT-OFDM systems
with CFO.

A comparison study between the CP-OFDM systems and the
ZP-OFDM systems with the different chaotic encryption modes
in a frequency-selective channel without PSE is illustrated in

(a) Eb/N0 = 0 dB
PSNR = 8.3961

(b) Eb/N0 = 5 dB
PSNR = 9.3528

(c) Eb/N0 = 10 dB
PSNR = 33.1261

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.59 RC6-encrypted image with DCT-OFDM over an AWGN channel.

174 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

(a) Eb/N0 = 0 dB
PSNR = 8.5691

(b) Eb/N0 = 5 dB
PSNR = 10.2276

(c) Eb/N0 = 10 dB
PSNR = 14.1490

(d) Eb/N0 = 15 dB
PSNR = 16.1107

Figure 9.60 RC6-encrypted image with DCT-OFDM over a fading channel.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.61 PSNR versus Eb/N0 in the DWT-OFDM system for an AWGN channel with N = 64.

175sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.62 PSNR versus Eb/N0 in the DWT-OFDM system for an AWGN channel with N = 512.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.63 PSNR versus Eb/N0 in the DWT-OFDM system for an AWGN channel with N = 1024.

176 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)
Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.64 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with N = 64
without PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.65 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with N = 512
without PSE and equalization.

177sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.66 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with N = 1024
without PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.67 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with N = 64
with PSE and equalization.

178 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.68 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with N = 512
with PSE and equalization.

0 1 2 3 4 5 6 7 8 9 100

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.69 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with N = 1024
with PSE and equalization.

179sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.70 PSNR versus Eb/N0 in the DWT-OFDM system for an AWGN channel with G = 0.

0 1 2 3 4 5 6 7 8 9 100

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.71 PSNR versus Eb/N0 in the DWT-OFDM system for an AWGN channel with G = 16.

180 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.72 PSNR versus Eb/N0 in the DWT-OFDM system for an AWGN channel with G = 32.

0 1 2 3 4 5 6 7 8 9 108

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.73 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with G = 0
without PSE and equalization.

181sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.74 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with G = 16
without PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.75 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with G = 32
without PSE and equalization.

182 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.76 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with G = 0 with
PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.77 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with G = 16 with
PSE and equalization.

183sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.78 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with G = 32 with
PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
8

8.5

9

9.5

10

10.5

11

Eb/N0(dB)

PS
N

R(
dB

)

Original with HIG
Chaotic with HIG
DES with HIG
AES with HIG
RC6 with HIG
Original with ZP
Chaotic with ZP
DES with ZP
AES with ZP
RC6 with ZP

Figure 9.79 PSNR versus Eb/N0 in the DWT-OFDM system with ZP and HGI for a Raleigh channel
with N = 128 and G = 32 without PSE and equalization.

184 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 100

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Original with HIG
Chaotic with HIG
DES with HIG
AES with HIG
RC6 with HIG
Original with ZP
Chaotic with ZP
DES with ZP
AES with ZP
RC6 with ZP

Figure 9.80 PSNR versus Eb/N0 in the DWT-OFDM system with ZP and HGI for a Raleigh channel
with N = 128 and G = 32 with PSE and equalization.

(a) Eb/N0 = 0 dB
PSNR = 14.6839

(b) Eb/N0 = 5 dB
PSNR = 23.7368

(c) Eb/N0 = 10 dB
PSNR = 45.9748

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.81 Original image with DWT-OFDM over an AWGN channel.

185sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

Figures 9.107 to 9.109. The best value of PSNR is obtained with
chaotic-ECB. In Figures 9.110 to Figure 9.112, they are considered.
It is shown that the PSNR performance of the ZP-OFDM systems
is better than that of the CP-OFDM systems. In Figures 9.113 to
9.115, it is illustrated that over an AWGN channel the PSNR per-
formance of the OFDM systems with CFO is better than that of
OFDM systems without CFO.

Figure 9.116 compares the AES encryption algorithm with AES
with preprocessing in an AWGN channel when N = 128 and G =
32 to find that FFT-OFDM is the best, then DCT-OFDM, and
finally DWT-OFDM. Figure 9.117 illustrates a fading channel case
without PSE and equalization; Figure 9.118 illustrates a fading chan-
nel also, but with PSE and equalization. CFO is considered without

(a) Eb/N0 = 0 dB
PSNR = 17.5731

(b) Eb/N0 = 5 dB
PSNR = 24.9482

(c) Eb/N0 = 10 dB
PSNR = 32.6435

(d) Eb/N0 = 15 dB
PSNR = 37.7109

Figure 9.82 Original image with DWT-OFDM over a fading channel.

186 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

compensation in Figure 9.119; Figure 9.120 illustrates CFO compen-
sation. Figures 9.121 and 9.122 consider an AWGN channel with
CP-OFDM and ZP-OFDM, respectively.

Figure 9.123 compares the RC6 encryption algorithm with RC6
with preprocessing in an AWGN channel when N = 128 and G = 32;
FFT-OFDM is the best, then DCT-OFDM, and finally DWT-
OFDM. Figure 9.124 illustrates a fading channel case without PSE
equalization; Figure 9.125 illustrates a fading channel case also,
but with PSE and equalization. CFO is considered in Figure 9.126
without compensation; Figure 9.127 illustrates CFO compensa-
tion. Figures 9.128 and 9.129 consider an AWGN channel with
CP-OFDM and ZP-OFDM, respectively.

(a) Eb/N0 = 0 dB
PSNR = 14.7090

(b) Eb/N0 = 5 dB
PSNR = 23.5544

(c) Eb/N0 = 10 dB
PSNR = 44.6552

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.83 Chaotic-encrypted image with DWT-OFDM over an AWGN channel.

187sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

9.4 Simulation Experiments of PAPR Reduction Methods

Several experiments were carried out to test the effect of the PAPR
reduction methods on the process of encrypted image transmission
with OFDM. A convolutional code with rate 1/2, constraint length
7, and octal generator polynomial (133,171) are adopted to reduce
the effect of PAPR reduction on the quality of received images. The
compared PAPR reduction methods are clipping, companding, and
hybrid clipping-and-companding methods.

The performance of the process of original image transmission with
the chaotic algorithm and three different diffusion algorithms for
(FFT/DCT/DWT)-OFDM systems with N = 128 and G = 32 over
an AWGN is shown in Figures 9.130 to 9.132. From these figures, it

(a) Eb/N0= 0 dB
PSNR = 16.3689

(b) Eb/N0 = 5 dB
PSNR = 23.8108

(c) Eb/N0 = 10 dB
PSNR = 32.7138

(d) Eb/N0 = 15 dB
PSNR = 37.5838

Figure 9.84 Chaotic-encrypted image with DWT-OFDM over a fading channel.

188 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

is clear that the PSNR performance of the original image transmis-
sion process with FFT-OFDM is better with µ = 4 than with µ = 0.1;
for the DCT-OFDM and the DWT-OFDM, it is better with µ = 0.1
than with µ = 4.

Several experiments were repeated to study the effect of PAPR
reduction techniques with encrypted image transmission. From
Figures 9.133 to 9.135, the PSNR performance of the chaotic-
encrypted image transmission with FFT/DCT/DWT-OFDM was
better with µ = 0.1 than with µ = 4. At high SNR values, it is possible
to receive the chaotic encrypted images with a very large PSNR if
error correction codes were utilized.

(a) Eb/N0 = 0 dB
PSNR = 8.3954

(b) Eb/N0 = 5 dB
PSNR = 11.2270

(c) Eb/N0 = 10 dB
PSNR = 32.2373

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.85 DES-encrypted image with DWT-OFDM over an AWGN channel.

189sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

Similar experiments were repeated for AES-encrypted images,
and the results are shown in Figures 9.136 to 9.138. We can come to
the conclusion that error-correcting codes are feasible, but the perfor-
mance is much less than that for the chaotic encryption case due to
the diffusion mechanism of the encryption algorithm.

Similar experiments were repeated for DES-encrypted images, and
the results are shown in Figures 9.139 to 9.141. Similar experiments
were repeated for RC6-encrypted images, and the results are shown
in Figures 9.142 to 9.144.

(a) Eb/N0 = 0 dB
PSNR = 8.4729

(b) Eb/N0 = 5 dB
PSNR = 10.7940

(c) Eb/N0 = 10 dB
PSNR = 17.4856

(d) Eb/N0 = 15 dB
PSNR = 25.9770

Figure 9.86 DES-encrypted image with DWT-OFDM over a fading channel.

190 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

(a) Eb/N0 = 0 dB
PSNR = 8.4049

(b) Eb/N0 = 5 dB
PSNR = 9.3407

(c) Eb/N0 = 10 dB
PSNR = 28.8218

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.87 AES-encrypted image with DWT-OFDM over an AWGN channel.

191sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

(a) Eb/N0 = 0 dB
PSNR = 8.3737

(b) Eb/N0 = 5 dB
PSNR = 9.2508

(c) Eb/N0 = 10 dB
PSNR = 13.7209

(d) Eb/N0 = 15 dB
PSNR = 22.1366

Figure 9.88 AES-encrypted image with DWT-OFDM over a fading channel.

192 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

(a) Eb/N0 = 0 dB
PSNR = 8.4344

(b) Eb/N0 = 5 dB
PSNR = 9.3419

(c) Eb/N0 = 10 dB
PSNR = 29.1988

(d) Eb/N0 = 15 dB
PSNR >60

Figure 9.89 RC6-encrypted image with DWT-OFDM over an AWGN channel.

193sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

(a) Eb/N0 = 0 dB
PSNR = 8.3983

(b) Eb/N0 = 5 dB
PSNR = 9.2497

(c) Eb/N0 = 10 dB
PSNR = 13.9828

(d) Eb/N0 = 15 dB
PSNR = 18.7859

Figure 9.90 RC6-encrypted image with DWT-OFDM over a fading channel

194 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

Table 9.2 Summarized Results

EB/N0 EB/N0 = 0 dB EB/N0 = 5 dB EB/N0 = 10 dB

ORIGINAL + AWGN CHANNEL
FFT 14.6993 23.7838 48.0593
DCT 15.7172 26.3188 53.5993
DWT 14.6839 23.7368 45.9748
ORIGINAL + FADING CHANNEL
FFT 17.8214 29.4547 53.8719
DCT 16.7843 23.2367 27.9452
DWT 17.5731 24.9482 32.6435
CHAOTIC + AWGN CHANNEL
FFT 15.1527 25.1709 50.5529
DCT 15.0481 24.4613 53.4971
DWT 14.7090 23.5544 44.6552
CHAOTIC + FADING CHANNEL
FFT 18.3597 30.0828 53.8881
DCT 16.3858 23.0375 30.3995
DWT 16.3689 23.8108 32.7138
DES + AWGN CHANNEL
FFT 8.3766 11.1743 36.4777
DCT 8.3762 11.1133 34.4818
DWT 8.3954 11.2270 32.2373
DES + FADING CHANNEL
FFT 9.6637 16.7520 41.4821
DCT 9.0390 11.7067 16.5200
DWT 8.4729 10.7940 17.4856
AES + AWGN CHANNEL
FFT 8.4026 9.4551 31.5464
DCT 8.4211 9.4006 30.5205
DWT 8.4049 9.3407 28.8218
AES + FADING CHANNEL
FFT 8.6932 14.1673 36.8018
DCT 8.5829 10.2435 14.1012
DWT 8.3737 9.2508 13.7209
RC6 + AWGN CHANNEL
FFT 8.3916 9.4165 30.9051
DCT 8.3961 9.3528 33.1261
DWT 8.4344 9.3419 29.1988
RC6 + FADING CHANNEL
FFT 8.7540 13.8893 40.0734
DCT 8.5691 10.2276 14.1490
DWT 8.3983 9.2497 13.9828

195sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Eb/N0(dB)

PS
N

R(
dB

)

Original image with CFO compensation
Chaotic encryption with CFO compensation
DES encryption with CFO compensation
AES encryption with CFO compensation
RC6 encryption with CFO compensation
Original without CFO compensation
Chaotic encryption without CFO compensation
DES encryption without CFO compensation
AES encryption without CFO compensation
RC6 encryption without CFO compensation

(a) FFT-OFDM system.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Eb/N0(dB)

PS
N

R(
dB

)

Original image with CFO compensation
Chaotic encryption with CFO compensation
DES encryption with CFO compensation
AES encryption with CFO compensation
RC6 encryption with CFO compensation
Original without CFO compensation
Chaotic encryption without CFO compensation
DES encryption without CFO compensation
AES encryption without CFO compensation
RC6 encryption without CFO compensation

(b) DCT-OFDM system.

Figure 9.91 Variation of the PSNR of the decrypted image with the Eb/N0 in AWGN channel: (a)
FFT-OFDM system; (b) DCT-OFDM system.

196 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Eb/N0(dB)

PS
N

R(
dB

)

Original image with CFO compensation
Chaotic encryption with CFO compensation
DES encryption with CFO compensation
AES encryption with CFO compensation
RC6 encryption with CFO compensation
Original without CFO compensation
Chaotic encryption without CFO compensation
DES encryption without CFO compensation
AES encryption without CFO compensation
RC6 encryption without CFO compensation

Figure 9.91 (Continued) Variation of the PSNR of the decrypted image with the Eb/N0 in AWGN
channel: DWT-OFDM system.

0 1 2 3 4 5 6 7 8 9 10
8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.92 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with fd =300 Hz
without CFO compensation.

197sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Eb/N0(dB)

PS
N

R(
dB

)
Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.93 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with fd = 300 Hz
with CFO compensation.

0 1 2 3 4 5 6 7 8 9 10
8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.94 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with fd = 300 Hz
without CFO compensation.

198 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Eb/N0(dB)

PS
N

R(
dB

)
Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.95 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with fd = 300 Hz
with CFO compensation.

0 1 2 3 4 5 6 7 8 9 10
8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

Eb/N0(dB)

PS
N

R(
dB

)

Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.96 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with fd = 300 Hz
without CFO compensation.

199sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

Eb/N0(dB)

PS
N

R(
dB

)
Original image
Chaotic image encryption
DES image encryption
AES image encryption
RC6 image encryption

Figure 9.97 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with fd = 300 Hz
with CFO compensation.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Chaotic-ECB mode
Chaotic-CFB mode
Chaotic-CBC mode
Chaotic-OFB mode

Figure 9.98 PSNR versus Eb/N0 in the FFT-OFDM system for an AWGN channel with N = 128
and G = 32.

200 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)
Chaotic-ECB mode
Chaotic-CFB mode
Chaotic-CBC mode
Chaotic-OFB mode

Figure 9.99 PSNR versus Eb/N0 in the DCT-OFDM system for an AWGN channel with N = 128
and G = 32.

0 1 2 3 4 5 6 7 8 9 100

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Chaotic-ECB mode
Chaotic-CFB mode
Chaotic-CBC mode
Chaotic-OFB mode

Figure 9.100 PSNR versus Eb/N0 in the DWT-OFDM system for an AWGN channel with N = 128
and G = 32.

201sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 108.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

Eb/N0(dB)

PS
N

R(
dB

)

Chaotic-ECB mode
Chaotic-CFB mode
Chaotic-CBC mode
Chaotic-OFB mode

Figure 9.101 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with fd = 300 Hz
without CFO compensation.

0 1 2 3 4 5 6 7 8 9 10
8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

Eb/N0(dB)

PS
N

R(
dB

) Chaotic-ECB mode
Chaotic-CFB mode
Chaotic-CBC mode
Chaotic-OFB mode

Figure 9.102 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with fd = 300 Hz
without CFO compensation.

202 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

Eb/N0(dB)

PS
N

R(
dB

)

Chaotic-ECB mode
Chaotic-CFB mode
Chaotic-CBC mode
Chaotic-OFB mode

Figure 9.103 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with fd = 300 Hz
without CFO compensation.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Chaotic-ECB mode
Chaotic-CFB mode
Chaotic-CBC mode
Chaotic-OFB mode

Figure 9.104 PSNR versus Eb/N0 in the FFT-OFDM system for a Raleigh channel with fd = 300
Hz with CFO compensation.

203sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 100

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)
Chaotic-ECB mode
Chaotic-CFB mode
Chaotic-CBC mode
Chaotic-OFB mode

Figure 9.105 PSNR versus Eb/N0 in the DCT-OFDM system for a Raleigh channel with fd = 300
Hz with CFO compensation.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Chaotic-ECB mode
Chaotic-CFB mode
Chaotic-CBC mode
Chaotic-OFB mode

Figure 9.106 PSNR versus Eb/N0 in the DWT-OFDM system for a Raleigh channel with fd = 300 Hz
with CFO compensation.

204 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

Eb/N0(dB)

PS
N

R(
dB

)

Chaotic-HGI-ECB mode
Chaotic-HGI-CFB mode
Chaotic-HGI-CBC mode
Chaotic-HGI-OFB mode
Chaotic-ZP-ECB mode
Chaotic-ZP-CFB mode
Chaotic-ZP-CBC mode
Chaotic-ZP-OFB mode

Figure 9.107 PSNR versus Eb/N0 in the FFT-OFDM system with ZP and HGI for a Raleigh channel
without PSE and equalization at N = 128 and G = 32.

0 1 2 3 4 5 6 7 8 9 10
8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

Eb/N0(dB)

PS
N

R(
dB

)

Chaotic-HGI-ECB mode
Chaotic-HGI-CFB mode
Chaotic-HGI-CBC mode
Chaotic-HGI-OFB mode
Chaotic-ZP-ECB mode
Chaotic-ZP-CFB mode
Chaotic-ZP-CBC mode
Chaotic-ZP-OFB mode

Figure 9.108 PSNR versus Eb/N0 in the DCT-OFDM system with ZP and HGI for a Raleigh channel
without PSE and equalization at N = 128 and G = 32.

205sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

9.1

9.2

9.3

Eb/N0(dB)

PS
N

R(
dB

)

Chaotic-HGI-ECB mode
Chaotic-HGI-CFB mode
Chaotic-HGI-CBC mode
Chaotic-HGI-OFB mode
Chaotic-ZP-ECB mode
Chaotic-ZP-CFB mode
Chaotic-ZP-CBC mode
Chaotic-ZP-OFB mode

Figure 9.109 PSNR versus Eb/N0 in the DWT-OFDM system with ZP and HGI for a Raleigh chan-
nel without PSE and equalization at N = 128 and G = 32.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Chaotic-HGI-ECB mode
Chaotic-HGI-CFB mode
Chaotic-HGI-CBC mode
Chaotic-HGI-OFB mode
Chaotic-ZP-ECB mode
Chaotic-ZP-CFB mode
Chaotic-ZP-CBC mode
Chaotic-ZP-OFB mode

Figure 9.110 PSNR versus Eb/N0 in the FFT-OFDM system with ZP and HGI for a Raleigh channel
with PSE and equalization at N = 128 and G = 32.

206 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Chaotic-HGI-ECB mode
Chaotic-HGI-CFB mode
Chaotic-HGI-CBC mode
Chaotic-HGI-OFB mode
Chaotic-ZP-ECB mode
Chaotic-ZP-CFB mode
Chaotic-ZP-CBC mode
Chaotic-ZP-OFB mode

Figure 9.111 PSNR versus Eb/N0 in the DCT-OFDM system with ZP and HGI for a Raleigh channel
with PSE and equalization at N = 128 and G = 32.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Chaotic-HGI-ECB mode
Chaotic-HGI-CFB mode
Chaotic-HGI-CBC mode
Chaotic-HGI-OFB mode
Chaotic-ZP-ECB mode
Chaotic-ZP-CFB mode
Chaotic-ZP-CBC mode
Chaotic-ZP-OFB mode

Figure 9.112 PSNR versus Eb/N0 in the DWT-OFDM system with ZP and HGI for a Raleigh channel
with PSE and equalization at N = 128 and G = 32.

207sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 100

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Chaotic-ECB mode without CFO compensation
Chaotic-CFB mode without CFO compensation
Chaotic-CBC mode without CFO compensation
Chaotic-OFB mode without CFO compensation
Chaotic-ECB mode with CFO compensation
Chaotic-CFB mode with CFO compensation
Chaotic-CBC mode with CFO compensation
Chaotic-OFB mode with CFO compensation

Figure 9.113 PSNR versus Eb/N0 in the FFT-OFDM system for an AWGN channel.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Chaotic-ECB mode without CFO compensation
Chaotic-CFB mode without CFO compensation
Chaotic-CBC mode without CFO compensation
Chaotic-OFB mode without CFO compensation
Chaotic-ECB mode with CFO compensation
Chaotic-CFB mode with CFO compensation
Chaotic-CBC mode with CFO compensation
Chaotic-OFB mode with CFO compensation

Figure 9.114 PSNR versus Eb/N0 in the DCT-OFDM system for an AWGN channel.

208 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

Eb/N0(dB)

PS
N

R(
dB

)

Chaotic-ECB mode without CFO compensation
Chaotic-CFB mode without CFO compensation
Chaotic-CBC mode without CFO compensation
Chaotic-OFB mode without CFO compensation
Chaotic-ECB mode with CFO compensation
Chaotic-CFB mode with CFO compensation
Chaotic-CBC mode with CFO compensation
Chaotic-OFB mode with CFO compensation

Figure 9.115 PSNR versus Eb/N0 in the DWT-OFDM system for an AWGN channel.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Eb/N0(dB)

PS
N

R(
dB

)

AES + FFT – OFDM
AES with preprocessing + FFT – OFDM
AES + DCT – OFDM
AES with preprocessing + DCT – OFDM
AES + DWT – OFDM
AES with preprocessing + DWT – OFDM

Figure 9.116 PSNR versus Eb/N0 in the OFDM system for an AWGN channel with G = 32 and
N = 128.

209sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

Eb/N0(dB)

PS
N

R(
dB

)

AES + FFT – OFDM
AES with preprocessing + FFT – OFDM
AES + DCT – OFDM
AES with preprocessing + DCT – OFDM
AES + DWT – OFDM
AES with preprocessing + DWT – OFDM

Figure 9.117 PSNR versus Eb/N0 in the OFDM system for a Raleigh channel without PSE and
equalization at N = 128 and G = 32.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Eb/N0(dB)

PS
N

R(
dB

)

AES+FFT-OFDM
AES with preprocessing+FFT-OFDM
AES+DCT-OFDM
AES with preprocessing+DCT-OFDM
AES+DWT-OFDM
AES with preprocessing+DWT-OFDM

Figure 9.118 PSNR versus Eb/N0 in the OFDM system for a Raleigh channel with PSE and equal-
ization at N = 128 and G = 32.

210 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

Eb/N0(dB)

PS
N

R(
dB

)

AES with preprocessing + FFT – OFDM
AES with preprocessing + DCT – OFDM
AES with preprocessing + DWT – OFDM
AES + FFT – OFDM
AES + DCT – OFDM
AES + DWT – OFDM

Figure 9.119 PSNR versus Eb/N0 in the OFDM system for an AWGN channel without CFO
compensation.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Eb/N0(dB)

PS
N

R(
dB

)

AES with preprocessing + FFT – OFDM
AES with preprocessing + DCT – OFDM
AES with preprocessing + DWT – OFDM
AES + FFT – OFDM
AES + DCT – OFDM
AES + DWT – OFDM

Figure 9.120 PSNR versus Eb/N0 in the OFDM system for an AWGN channel with CFO
compensation.

211sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Eb/N0(dB)

PS
N

R(
dB

)

AES with preprocessing + FFT – OFDM
AES with preprocessing + DCT – OFDM
AES with preprocessing + DWT – OFDM
AES + FFT – OFDM
AES + DCT – OFDM
AES + DWT – OFDM

Figure 9.121 PSNR versus Eb/N0 in the OFDM system with HGI for a Raleigh channel with N =
128 and G = 32 with PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Eb/N0(dB)

PS
N

R(
dB

)

AES with preprocessing + FFT – OFDM
AES with preprocessing + DCT – OFDM
AES with preprocessing + DWT – OFDM
AES + FFT – OFDM
AES + DCT – OFDM
AES + DWT – OFDM

Figure 9.122 PSNR versus Eb/N0 in the DWT-OFDM system with ZP for a Raleigh channel with
N = 128 and G = 32 with PSE and equalization.

212 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Eb/N0(dB)

PS
N

R(
dB

)

RC6 with preprocessing + FFT – OFDM
RC6 with preprocessing + DCT – OFDM
RC6 with preprocessing + DWT – OFDM
RC6 + FFT – OFDM
RC6 + DCT – OFDM
RC6 + DWT – OFDM

Figure 9.123 PSNR versus Eb/N0 in the OFDM system for an AWGN channel with N = 128 and
G = 32.

0 1 2 3 4 5 6 7 8 9 10

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

Eb/N0(dB)

PS
N

R(
dB

)

RC6 with preprocessing + FFT – OFDM
RC6 with preprocessing + DCT – OFDM
RC6 with preprocessing + DWT – OFDM
RC6 + FFT – OFDM
RC6 + DCT – OFDM
RC6 + DWT – OFDM

Figure 9.124 PSNR versus Eb/N0 in the OFDM system for a Raleigh channel with fd = 300 Hz
without PSE and equalization.

213sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Eb/N0(dB)

PS
N

R(
dB

)

RC6 with preprocessing + FFT – OFDM
RC6 with preprocessing + DCT – OFDM
RC6 with preprocessing + DWT – OFDM
RC6 + FFT – OFDM
RC6 + DCT – OFDM
RC6 + DWT – OFDM

Figure 9.125 PSNR versus Eb/N0 in the OFDM system for a Raleigh channel with fd = 300 Hz
with PSE and equalization.

0 1 2 3 4 5 6 7 8 9 10

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

10

10.2

Eb/N0(dB)

PS
N

R(
dB

)

RC6 with preprocessing + FFT – OFDM
RC6 with preprocessing + DCT – OFDM
RC6 with preprocessing + DWT – OFDM
RC6 + FFT – OFDM
RC6 + DCT – OFDM
RC6 + DWT – OFDM

Figure 9.126 PSNR versus Eb/N0 in the OFDM system for an AWGN channel without CFO
compensation.

214 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 100

5

10

15

20

25

30

35

40

45

50

Eb/N0(dB)

PS
N

R(
dB

)

RC6 with preprocessing + FFT – OFDM
RC6 with preprocessing + DCT – OFDM
RC6 with preprocessing + DWT – OFDM
RC6 + FFT – OFDM
RC6 + DCT – OFDM
RC6 + DWT – OFDM

Figure 9.127 PSNR versus Eb/N0 in the OFDM system for an AWGN channel with CFO
compensation.

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Eb/N0(dB)

PS
N

R(
dB

)

RC6 with preprocessing + FFT – OFDM
RC6 with preprocessing + DCT – OFDM
RC6 with preprocessing + DWT – OFDM
RC6 + FFT – OFDM
RC6 + DCT – OFDM
RC6 + DWT – OFDM

Figure 9.128 PSNR versus Eb/N0 in the OFDM system for a Raleigh channel without CFO
compensation.

215sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Eb/N0(dB)

PS
N

R(
dB

)

RC6 with preprocessing + FFT – OFDM
RC6 with preprocessing + DCT – OFDM
RC6 with preprocessing + DWT – OFDM
RC6 + FFT – OFDM
RC6 + DCT – OFDM
RC6 + DWT – OFDM

Figure 9.129 PSNR versus Eb/N0 in the OFDM system for a Raleigh channel with CFO
compensation.

0 1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 9.130 PSNR versus Eb/N0 for original-image transmission with FFT-OFDM system over an
AWGN channel. Convolutional coding is applied with all cases except the first one.

216 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 9.131 PSNR versus Eb/N0 for original-image transmission with DCT-OFDM system over
an AWGN channel. Convolutional coding is applied with all cases except the first one.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 9.132 PSNR versus Eb/N0 for original-image transmission with DWT-OFDM system over
an AWGN channel. Convolutional coding is applied with all cases except the first one.

217sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 9.133 PSNR versus Eb/N0 for chaotic-encrypted image transmission with FFT-OFDM
system over an AWGN channel. Convolutional coding is applied with all cases except the first one.

0 1 2 3 4 5 6 7 8 9 10
10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 9.134 PSNR versus Eb/N0 for chaotic-encrypted image transmission with DCT-OFDM
system over an AWGN channel. Convolutional coding is applied with all cases except the first one.

218 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 100

10

20

30

40

50

60

70

80

90

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 9.135 PSNR versus Eb/N0 for chaotic-encrypted image transmission with DWT-OFDM
system over an AWGN channel. Convolutional coding is applied with all cases except the first one.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 9.136 PSNR versus Eb/N0 for AES-encrypted image transmission with FFT-OFDM system
over an AWGN channel. Convolutional coding is applied with all cases except the first one.

219sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ= 0.1
With companding at µ =4
With clipping + companding at µ = 4

Figure 9.137 PSNR versus Eb/N0 for AES-encrypted image transmission with DCT-OFDM system
over an AWGN channel. Convolutional coding is applied with all cases except the first one.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping+companding at µ = 0.1
With companding at µ = 4
With clipping+companding at µ = 4

Figure 9.138 PSNR versus Eb/N0 for AES-encrypted image transmission with DWT-OFDM system
over an AWGN channel. Convolutional coding is applied with all cases except the first one.

220 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 9.139 PSNR versus Eb/N0 for DES-encrypted image transmission with FFT-OFDM system
over an AWGN channel. Convolutional coding is applied with all cases except the first one.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 9.140 PSNR versus Eb/N0 for DES-encrypted image transmission with DCT-OFDM system
over an AWGN channel. Convolutional coding is applied with all cases except the first one.

221sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ= 4
With clipping + companding at µ = 4

Figure 9.141 PSNR versus Eb/N0 for DES-encrypted image transmission with DWT-OFDM system
over an AWGN channel. Convolutional coding is applied with all cases except the first one.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 9.142 PSNR versus Eb/N0 for RC6-encrypted image transmission with FFT-OFDM system
over an AWGN channel. Convolutional coding is applied with all cases except the first one.

222 Image enCryPtIon

© 2010 Taylor & Francis Group, LLC

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ = 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 9.143 PSNR versus Eb/N0 for RC6-encrypted image transmission with DCT-OFDM system
over an AWGN channel. Convolutional coding is applied with all cases except the first one.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Eb/N0(dB)

PS
N

R(
dB

)

Without coding
With clipping
With companding at µ = 0.1
With clipping + companding at µ= 0.1
With companding at µ = 4
With clipping + companding at µ = 4

Figure 9.144 PSNR versus Eb/N0 for RC6-encrypted image transmission with DWT-OFDM sys-
tem over an AWGN channel. Convolutional coding is applied with all cases except the first one.

223sImulatIon examPles

© 2010 Taylor & Francis Group, LLC

9.5 Summary

From all obtained results, we can see that PAPR reduction technique
effects can be mitigated to a great extent with error-correcting codes
such as the convolutional code. Another conclusion is that chaotic
encryption preserves its rank as the best encryption algorithm from
the immunity to noise perspective even in the presence of PAPR
reduction. A simple clipping, companding, or hybrid clipping-and-
companding method may be feasible for PAPR reduction in the case
of encrypted image transmission.

225© 2010 Taylor & Francis Group, LLC

References

 1. O. S. Faragallah, Utilization of Security Techniques for Multimedia
Applications, PhD thesis, Department of Computer Science and
Engineering, Faculty of Electronic Engineering, Menoufiya University,
Egypt, 2007.

 2. A. J. Menezes, P. C. V. Oorschot, and S. Vanstone, Handbook of Applied
Cryptography, CRC Press, Boca Raton, FL, 1996.

 3. L. Qiao, Multimedia Security and Copyright Protection, PhD thesis,
Department of Computer Science, University of Illinois at Urbana-
Champaign, 1998.

 4. W. Stallings, Cryptography and Network Security Principles and Practice,
Prentice-Hall, Upper Saddle River, NJ, 1999.

 5. C. E. Shannon, Communication Theory of Secrecy Systems, Bell System
Technical Journal, Vol. 28, No. 4, pp. 656–715, October 1949.

 6. S. Li, G. Chen, and X. Zheng, Chaos-Based Encryption for Digital
Images and Videos, Chapter 4 in Multimedia Security Handbook, CRC
Press, Boca Raton, FL, February 2004.

 7. Y. Mao and M. Wu, A Joint Signal Processing and Cryptographic
Approach to Multimedia Encryption, IEEE Transactions on Image
Processing, Vol. 15, No. 7, pp. 2061–2075, July 2006.

 8. Y. Mao,Research on Chaos-Based Image Encryption and Watermarking
Technology, PhD thesis, Department of Automation, Nanjing University
of Science and Technology, China, August 2003.

 9. J. Daemen and V. Rijmen, AES Proposal: Rijndael, AES Algorithm
Submission to the National Institute of Standards and Technology, 1999.

 10. R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y. L. Yin, The RC6TM Block
Cipher, MIT Laboratory for Computer Science, Cambridge, MA, 1998.

 11. R. F. Sewell, Bulk Encryption Algorithm for Use with RSA, Electronics
Letters, Vol. 29, No. 25, pp. 2183–2185, December 9, 1993.

226 referenCes

© 2010 Taylor & Francis Group, LLC

 12. H. E. H. Ahmed, H. M. Kalash, and O. S. Faragallah, Encryption
Efficiency Analysis and Security Evaluation of RC6 Block Cipher
for Digital Images, International Conference on Electrical Engineering
(ICEE ‘07), pp. 1–7, 11–12, April 2007.

 13. C. E. Shannon, A Mathematical Theory of Communication, Bell System
Technical Journal, Vol. 27, pp. 379–423, July 1948.

 14. M. Asim and V. Jeoti, On Image Encryption: Comparison between
AES and a Novel Chaotic Encryption Scheme, International Conference
on Signal Processing, Communications and Networking (ICSCN ‘07),
pp. 65–69, 22–24, February 2007.

 15. R. Matthews, On the Derivation of a Chaotic Encryption Algorithm,
Cryptologia, Vol. 8, No. 1, pp. 29–41, 1989.

 16. B. Schneier, Applied Cryptography, 2nd edition, Wiley, New York, 1996.
 17. L. Kocarev, Chaos-Based Cryptography: A Brief Overview, IEEE Circuits

and Systems Magazine, Vol. 1, No. 3, pp. 6–21, 2001.
 18. D. Stinson, Cryptography: Theory and Practice, 2nd edition, Chapman &

Hall/CRC Press, Boca Raton, FL, 2002.
 19. Y. Mao, G. Chen, and S. Lian, A Novel Fast Image Encryption Scheme

Based on 3D Chaotic Baker Maps, International Journal of Bifurcation
and Chaos, Vol. 14, No. 10, pp. 3613–3624, 2004.

 20. S. Li, Analyses and New Designs of Digital Chaotic Ciphers, PhD thesis,
School of Electronics and Information Engineering, Xi’an Jiaotong
University, Xi’an, China, June 2003.

 21. National Bureau of Standards, Data Encryption Standard Modes of
Operation, Federal Information Processing Standards Publication 81,
U.S. Government Printing Office, Washington, DC, 1980.

 22. S. Li, X. Mou, and Y. Cai, Pseudo-Random Bit Generator Based on
Couple Chaotic Systems and Its Applications in Stream Cipher
Cryptography, Lecture Notes in Computer Science, Vol. 2247, pp.
316–329, 2001.

 23. B. A. Forouzan, Cryptography and Network Security, McGraw-Hill, New
Delhi, India, 2007.

 24. R. Kusters and M. Tuengerthal, Universally Composable Symmetric
Encryption, 2nd IEEE Computer Security Foundations Symposium (CSF ‹09),
pp. 293–307, July 2009.

 25. H. Jin, Z. Liao, D. Zou, and C. Li, Asymmetrical Encryption Based
Automated Trust Negotiation Model, 2nd IEEE International Conference
on Digital Ecosystems and Technologies (DEST 2008), pp. 363–368,
February 2008.

 26. S. G. Lian, J. Sun, and Z. Wang, A Novel Image Encryption Scheme
Based on JPEG Encoding, Proceedings of 8th International Conference on
Information Visualization, pp. 217–220, July 14–16, 2004.

 27. M. V. Droogenbroeck and R. Benedett, Techniques for a Selective
Encryption of Uncompressed and Compressed Images, Proceedings of
Advanced Concepts for Intelligent Vision Systems (ACIVS), Ghent, Belgium,
pp. 90–97, September 9–11, 2002.

227referenCes

© 2010 Taylor & Francis Group, LLC

 28. F. Dachselt, K. Kelber, and W. Schwarz, Chaotic Coding and
Cryptoanalysis, Proceedings of IEEE International Symposium on Circuits
and Systems, Hong Kong, pp. 1061–1064, June 9–12, 1997.

 29. S. Li and X. Zheng, Cryptanalysis of a Chaotic Image Encryption
Method, Proceedings of IEEE International Symposium on Circuits and
Systems (ISCAS), Vol. 2, pp. 708–711, 2002.

 30. J. Wei, X. Liao, K. W. Wong, and T. Zhou, Cryptanalysis of Cryptosystem
Using Multiple One-Dimensional Chaotic Maps, Communications in
Nonlinear Science and Numerical Simulation, Vol. 12, pp. 814–822, 2007.

 31. H. Gao, Y. Zhang, S. Liang, and D. Li, A New Chaotic Algorithm for
Image Encryption, Chaos, Solitons & Fractals, Vol. 29, No. 2, pp. 393–399,
July 2006.

 32. X. Li, J. Knipe, and H. Cheng, Image Compression and Encryption
Using Tree Structures, Pattern Recognition Letters, Vol. 18, No. 8,
pp. 2439–2451,1997.

 33. J. I. Guo, J. C. Yen, and J. C. Yeh, The Design and Realization of a
New Hierarchical Chaotic Image Encryption Algorithm, Proceedings of
the International Symposium on Communications (ISCOM’99), pp. 210–
214, 1999.

 34. L. Zhang, X. Liao, and X. Wang, An Image Encryption Approach Based
on Chaotic Maps, Chaos, Solitons & Fractals, Vol. 24, No. 3, pp. 759–765,
May 2005.

 35. L. Kocarev and G. Jakimoski, Logistic Map as a Block Encryption
Algorithm, Physics Letters A, Vol. 289, No. 4–5, pp. 199–206, October 22,
2001.

 36. T. Xiang, X. Liao, G. Tang, Y. Chen, and K.W. Wong, A Novel Block
Cryptosystem Based on Iterating a Chaotic Map, Physics Letters A,
Vol. 349, No. 1–4, pp. 109–115, January 9, 2006.

 37. S. Contini, R. L. Rivest, M. J. B. Robshaw, and Y. L. Yin, The Security of
the RC6TM Block Cipher, Version 1.0, RSA Laboratories, MIT Laboratory
for Computer Science, Cambridge, MA, August 20, 1998.

 38. M. Salleh, S. Ibrahim, and I. F. Isnin, Enhanced Chaotic Image
Encryption Algorithm Based on Baker›s Map, Proceedings of the 2003
International Symposium on Circuits and Systems (ISCAS ‹03), Vol. 2,
pp. 508–511, May 2003.

 39. D. Chen, A Feasible Chaotic Encryption Scheme for Image, International
Workshop on Chaos-Fractals Theories and Applications (IWCFTA›09),
pp. 172–176, November 6–85, 2009.

 40. A. Palacios and H. Juarez, Cryptography with Cycling Chaos, Physics
Letters A, Vol. 303, No. 5–6, pp. 345–351, October 28, 2002.

 41. H. Cheng and X. Li, Partial Encryption of Compressed Images and
Videos, IEEE Transactions on Signal Processing, Vol. 48, No. 8, pp. 2439–
2451, August 2000.

 42. A. Servetti and J. C. De Martin, Perception-Based Partial Encryption of
Compressed Speech, IEEE Transactions on Speech and Audio Processing,
Vol. 10, No. 8, pp. 637–643, November 2002.

228 referenCes

© 2010 Taylor & Francis Group, LLC

 43. X. Wu, H. Hu, and B. Zhang, Analyzing and Improving a Chaotic
Encryption Method, Chaos, Solitons & Fractals, Vol. 22, No. 2, pp.
367–373, October 2004.

 44. R. C. Merkle and M. Hellman, On the Security of Multiple Encryption,
Communications of the ACM, Vol. 24, No. 7, pp. 465–467, July 1981.

 45. P. Kitsos, S. Goudevenos, and O. Koufopavlou, VLSI Implementations of
the Triple-DES Block Cipher, Proceedings of the 10th IEEE International
Conference on Electronics, Circuits and Systems (ICECS), Vol. 1, pp. 76–79,
December 14–17, 2003.

 46. National Bureau of Standards, Data Encryption Standard, Federal
Information Processing Standards Publication 46, U.S. Government
Printing Office, Washington, DC, 1977.

 47. W. Jian, L. Xu, and J. Xiaoyong, A Secure Communication System with
Multiple Encryption Algorithms, Proceedings of the International Conference
on E-Business and E-Government, pp. 3574–3577, May 7–9, 2010.

 48. R. L. Rivest, The RC5 Encryption Algorithm, Proceedings of the 2nd
Workshop on Fast Software Encryption, pages 86–96, 1995.

 49. R. Baldwin and R. Rivest, RFC 2040: The RC5, RC5-CBC, RC5-CBC-
Pad, and RC5-CTS Algorithms, October 30, 1996.

 50. R. Ratchkov, Advanced Encryption Standard (AES) Algorithm and Modes of
Operation, LSI Logic, San Jose, CA, August 2002.

 51. J. C. Yen and J. I. Guo, A New Hierarchical Chaotic Image Encryption
Algorithm and Its Hardware Architecture, Proceedings 9th VLSI Design/
CAD Symposium, Taiwan, pp. 358–362, 1998.

 52. J. Fridrich, Symmetric Ciphers Based on Two-Dimensional Chaotic
Maps, International Journal of Bifurcation and Chaos, Vol. 8, No. 6,
pp. 1259–1284, 1998.

 53. W. Xiao, J. Zhang, and W. Wu, A Watermarking Algorithm Based
on Chaotic Encryption, Proceedings of IEEE TENCON, pp. 545–548,
2002.

 54. S. Li and X. Zheng, On the Security of an Image Encryption Method,
Proceedings IEEE International Conference on Image Processing (ICIP),
Vol. 2, pp. 925–928, 2002.

 55. M. Ashtiyani, P. M. Birgani, and H. M. Hosseini, Chaos-Based Medical
Image Encryption Using Symmetric Cryptography, 3rd International
Conference on Information and Communication Technologies: From Theory to
Applications (ICTTA), pp. 1–5, 7–11 April 2008.

 56. N. Bourbakis and C. Alexopoulos, Picture Data Encryption Using SCAN
Patterns, Pattern Recognition, Vol. 25, No. 6, pp. 567–581, 1992.

 57. J. Scharinger, Fast Encryption of Image Data Using Chaotic Kolmogrov
Flow, Journal of Electronic Engeering, Vol. 7, No. 2, pp. 318–325, 1998.

 58. J. C. Yen and J. I. Guo, A New Image Encryption Algorithm and Its
VLSI Architecture, Proceedings of the IEEE Workshop Signal Processing
Systems, pp. 430– 437, 1999.

 59. J. C. Yen and J. I. Guo, A New Chaotic Key Based Design for Image
Encryption and Decryption, Proceedings of the IEEE International
Symposium Circuits and Systems, Vol. 4, pp. 49–52, 2000.

229referenCes

© 2010 Taylor & Francis Group, LLC

 60. G. Chen, Y. Mao, and C. K. Chui, A Symmetric Image Encryption
Scheme Based on 3D Chaotic Cat Maps, Chaos, Solitons and Fractals,
Vol. 21, No. 3, pp. 749–761, 2004.

 61. K. Kelber and W. Schwarz, General Design Rules for Chaos-Based
Encryption Systems, International Symposium on Nonlinear Theory and
Its Applications (NOLTA2005), pp. 465–468, Bruges, Belgium, October
18–21, 2005.

 62. M. Yang, N. Bourbakis, and S. Li, Data-Image-Video Encryption,
Potentials IEEE, Vol. 23, No. 3, pp. 28–34, 2004.

 63. Y. Feng and X. Yu, A Novel Symmetric Image Encryption Approach
Based on an Invertible Two-Dimensional Map, 35th Annual Conference
of IEEE Industrial Electronics (IECON ‘09), pp. 1973–1978, November
3–5, 2009.

 64. C. J. Kuo, Novel Image Encryption Technique and Its Application in
Progressive Transmission, Journal of Electronic Imaging, Vol. 2, No. 4,
pp. 345–351, 1993.

 65. H. K. Chang and J. L. Liou, An Image Encryption Scheme Based on
Quadtree Compression Scheme, Proceedings of the International Computer
Symposium, Taiwan, pp. 230–237, 1994.

 66. J. Scharinger, Secure and Fast Encryption Using Chaotic Kolmogorov
Flows, Proceedings of the IEEE Industrial Electronics and Applications
Conference, pp. 3662–3666, 1998.

 67. H. M. Elkamchouchi and M. A. Makar, Measuring Encryption Quality
for Bitmap Images Encrypted with Rijndael and KAMKAR Block
Ciphers, Proceedings of the National Radio Science Conference of Egypt,
pp. 277–284, 2005.

 68. S.A. Yeung, S. Zhu, and B. Zeng, Quality Assessment for a Perceptual Video
Encryption System, Proceedings of the IEEE Wireless Communications,
Networking and Information Security (WCNIS) Conference, pp. 102–106,
2010.

 69. A. Sinha and K. Singh, A Technique for Image Encryption Using Digital
Signature, Optics Commununication, Vol. 218, No. 4–6, pp. 229–234, 2003.

 70. D. E. Newton, Encyclopedia of Cryptology, ABC-CLIO, Santa Barbara,
CA, 1997.

 71. Z. Yun-Peng, L. Wei, C. Shui-Ping, Z. Zheng-Jun, N. Xuan, and D.
Wei-Di, Digital Image Encryption Algorithm Based on Chaos and
Improved DES, IEEE International Conference on Systems, Man and
Cybernetics, pp. 474–479, 2009.

 72. J. Cheng, F. Zhang, K. Yu, and J. Ma, The Dynamic and Double Encryption
System Based on Two-Dimensional Image, International Conference on
Computational Intelligence and Security (CIS ’09), pp. 458–462, 2009.

 73. A. H. M. Ragab, N. A. Ismail, and O. S. FaragAllah, Enhancements and
Implementation of RC6 Block Cipher for Data Security, Proceedings
of International Conference on Electrical and Electronic Technology, Vol. 1,
pp. 133–137, 2001.

 74. H. Feistel, Cryptography and Computer Privacy, Scientific American,
Vol. 228, No. 5, pp. 15–23, May 1973.

230 referenCes

© 2010 Taylor & Francis Group, LLC

 75. H. H. Nien, S. K. Changchien, S. Y. Wu, and C. K. Huang, A New
Pixel-Chaotic-Shuffle Method for Image Encryption, 10th International
Conference on Control, Automation, Robotics and Vision (ICARCV), pp.
883–887, December 17–20, 2008.

 76. H. M. Heys Analysis of the Statistical Cipher Feedback Mode of Block
Ciphers, IEEE Transactions on Computers, Vol. 52, No. 1, pp. 77–92,
January 2003.

 77. C. Lu and S. Tseng, Integrated Design of AES (Advanced Encryption
Standard) Encrypter and Decrypter, Proceedings of The IEEE International
Conference on Application-Specific Systems, Architectures and Processors, pp.
277–285, July 2002.

 78. M. Borsc and H. Shinde, Wireless Security & Privacy, IEEE International
Conference on Personal Wireless Communications (ICPWC), pp. 424–428,
January 2005.

 79. A. G. Chefranov and T. A. Mazurova, Pseudo-Random Number
Generator (RC4) Period Improvement, International Conference
on Automation, Quality and Testing, Robotics, Vol. 2, pp. 38–41,
May 2006.

 80. I. F. Elashry, O. S. Farag Allah, A. M. Abbas, S. El-Rabaie, and F. E. Abd
El-Samie, Homomorphic Image Encryption, Electronic Imaging, Vol. 18,
No. 3, 033002, 2009.

 81. W. K. Wong, L. P. Lee, and K. W. Wong, A Modified Chaotic
Cryptographic Method, Computer Physics Communication, Vol. 13, No. 8,
pp. 234–236, 2001.

 82. M. Ahmad, C. Gupta, and A. Varshney, Digital Image Encryption
Based on Chaotic Map for Secure Transmission, International
Multimedia, Signal Processing and Communication Technologies (IMPACT
’09), pp. 292–295, March 2009.

 83. D. Garg and S. Verma, Improvement Over Public Key Cryptographic
Algorithm, IEEE International Advance Computing Conference (IACC),
pp. 734–739, March 2009.

 84. A. Ramzi, A. N. El-Kassar, and B. M. Shebaro, A Comparative Study of
Elgamal Based Digital Signature Algorithms, World Automation Congress
(WAC ’06), pp. 1–6, July 2006.

 85. G. Kim, J. Kim, and G. Cho, An Improved RC6 Algorithm with the Same
Structure of Encryption and Decryption, 11th International Conference
on Advanced Communication Technology (ICACT), Vol. 2, pp. 1211–1215,
February 2009.

 86. Q. Zhu, L.Li, J. Liu, and N. Xu, The Analysis and Design of Accounting
Information Security System Based on AES Algorithm, International
Conference on Machine Learning and Cybernetics, Vol. 5, pp. 2713–2718,
July 2009.

 87. S.C. Koduru and V. Chandrasekaran, Integrated Confusion-Diffusion
Mechanisms for Chaos-Based Image Encryption, IEEE 8th International
Conference on Computer and Information Technology Workshops, pp. 260–
263, July 2008.

231referenCes

© 2010 Taylor & Francis Group, LLC

 88. S. A. N. Gilani and M. A. Bangash, Enhanced Block Based Color Image
Encryption Technique with Confusion, IEEE International Multitopic
Conference (INMIC), pp. 200–206, December 2008.

 89. D. Coppersmith, The Data Encryption Standard (DES) and Its Strength
Against Attacks, IBM Journal of Research and Development, Vol. 38, No. 3,
pp. 243–250, 1994.

 90. J. Daemen and V. Rijmen, Advanced Encryption Standard (AES), FIPS
197, Technical report, Catholic University, ESAT, Leuven, Belgium,
November 2001.

 91. W. Meier and L. R. Knudsen, Correlations in RC6 with a Reduced
Number of Rounds Source, Proceedings of the 7th International Workshop
on Fast Software Encryption, pp. 94–108, 2000.

 92. K. L. Chung and L. C. Chang, Large Encrypting Binary Images with
Higher Security, Pattern Recognition Letters, Vol. 19, No. 5–6, pp. 461–
468, April 1998.

 93. A. M. Fiskiran and R. B. Lee, Performance Impact of Addressing Modes
on Encryption Algorithms, Proceedings of the International Conference on
Computer Design (ICCD), pp. 542–545, September 2001.

 94. M. Fouad, D. H. Salem, and I. Ziedan, Application of Data Encryption
Standard to Bitmap and JPEG Images, Proceedings of the Twentieth
National Radio Science Conference (NRSC), pp. 1–8, March 2003.

 95. W. Ying, Z. W. Zhao, and Z. Lelin, A Fault-Tolerable Encryption
Algorithm for Two-Dimensional Digital Image, 2nd IEEE Conference
on Industrial Electronics and Applications (ICIEA), pp. 2737–2741, May
23–25, 2007.

 96. S. J. Shyu, Image Encryption by Random Grids, Pattern Recognition, Vol.
40, No. 3, pp. 1014–1031, 2007.

 97. H. El-Din, H. Ahmed, H. M. Kalash, and O. S. Faragallah, An Efficient
Chaos Based Feedback Stream Cipher (ECBFSC) for Image Encryption
and Decryption, Informatica, Vol. 31, No.1, pp. 121–129, 2007.

 98. S. Li, X. Zheng, X. Mou, and Y. Cai, Chaotic Encryption Scheme for
Real-Time Digital Video, Proceedings of SPIE, Vol. 4666, pp. 149–160,
2002.

 99. S. Li, X. Mou, and Y. Cai, Improving Security of a Chaotic Encryption
Approach, Physics Letters A, Vol. 290, No. 3–4, pp. 127–133, November
12, 2001.

 100. F. Han, X. Yu and S. Han, Improved Baker Map for Image Encryption,
1st International Symposium on Systems and Control in Aerospace and
Astronautics (ISSCAA), pp. 1273–1276, January 19–21, 2006.

 101. S. Lian, J. Sun, and Z. Wang, Security Analysis of a Chaos-Based Image
Encryption Algorithm, Physica A: Statistical and Theoretical Physics,
Vol. 351, No. 2–4, pp. 645–661, June 15, 2005.

 102. N. K. Pareek, V. Patidar, and K. K. Sud, Cryptography Using Multiple
One-Dimensional Chaotic Maps, Communications in Nonlinear
Science and Numerical Simulation, Vol. 10, No. 7, pp. 715–723, October
2005.

232 referenCes

© 2010 Taylor & Francis Group, LLC

 103. I. F. Elashry, O. S. Faragallah, A. M. Abbas, S. El-Rabaie, and F. E. Abd
El-Samie, A New Method for Encrypting Images with Few Details
Using Rijndael and RC6 Block Ciphers in the Electronic Code Book
Mode, Information Security Journal: A Global Perspective, Vol. 21, No, 4, pp.
193–205, 2012.

 104. C. A. Henk and V. Tilborg, Encyclopedia of Cryptography and Security,
Springer Science and Business Media, New York, 2005.

 105. N. El-Fishawy and O. M. Abu Zaid, Quality of Encryption Measurement
of Bitmap Images with RC6, MRC6, and Rijndael Block Cipher
Algorithms, International Journal of Network Security, Vol. 5, No. 3,
pp. 241–251, 2007.

 106. X. Wang and D. Zhao, Image Encryption Based on Anamorphic Fractional
Fourier Transform and Three-Step Phase-Shifting Interferometry, Optics
Communications, Vol. 268, No. 2, pp. 240–244, December 15, 2006.

 107. S. Behnia, A. Akhshani, H. Mahmodi, and A. Akhavan, A Novel
Algorithm for Image Encryption Based on Mixture of Chaotic Maps,
Chaos, Solitons & Fractals, Vol. 35, No. 2, pp. 408–419, January 2008.

 108. Y. B. Mao and G. Chen, Chaos-Based Image Encryption, in Handbook
of Computational Geometry for Pattern Recognition, Computer Vision,
Neuralcomputing and Robotics, Springer-Verlag, Berlin, pp. 231–265,
2005.

 109. C. C. Chang, M. S. Hwang, and T. S. Chen, A New Encryption Algorithm
for Image Cryptosystems, Journal of Systems and Software, Vol. 58, No. 2,
pp. 83–91, 2001.

 110. D. C. Key and J. R. Levine, Graphics File Format, Winderest Books/
McGraw-Hill, New York, 1992.

 111. D. Kim and G. L. Stüber, Residual ISI Cancellation for OFDM with
Applications to HDTV Broadcasting, IEEE Journal on Selected Areas in
Communications, Vol. 16, No. 8, 1590–1599, October 1998.

 112. G. H. Yang, D. Shen, and V. O. K. Li, UEP for Video Transmission in
Space-Time Coded OFDM Systems, IEEE Infocom, 2004.

 113. M. I. Rahman, S. S. Das, and Frank H.P. Fitzek, OFDM Based WLAN
Systems, Technical Report R-04-1002, Center for TeleInFrastruktur
(CTiF), Copenhagen, Denmark, Vol. 1.2, February 18, 2005.

 114. E. P. Lawrey, Adaptive Techniques for Multiuser OFDM, PhD thesis,
James Cook University, Townsville, QLD, Australia, December 2001.

 115. E. Lawrey, The Suitability of OFDM as a Modulation Technique
for Wireless Telecommunications, with a CDMA Comparison,
Bachelor thesis, James Cook University, Townsville, QLD, Australia,
October 1997.

 116. K. Abdullah and Z. M. Hussain, Performance of Fourier-Based and
Wavelet-Based OFDM for DVB-T Systems, Proceeding of the 2007
Australasian Telecommunication Networks and Applications Conference,
Christchurch, New Zealand, December 2nd–5th 2007.

 117. J. J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Borjesson,
On Channel Estimation in OFDM Systems, IEEE 45th Vehicular
Technology Conference, 1995.

233referenCes

© 2010 Taylor & Francis Group, LLC

 118. P. Tan and N. C. Beaulieu, A Comparison of DCT-Based OFDM and
DFT-Based OFDM in Frequency Offset and Fading Channels, IEEE
Transactions on Communications, Vol. 54, No. 11, 2113–2125, November
2006.

 119. J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of
WiMAX Understanding Broadband Wireless Networking, Prentice Hall
Communications Engineering and Emerging Technologies Series,
Prentice-Hall, Englewood Cliffs, NJ, pp. 113–145, February 2007.

 120. A. K. Lee, Ooi, M. Drieberg, and V. Jeoti, DWT based FFT in Practical
OFDM Systems, IEEE 2006.

 121. P. Liu, B. B. Li, Z. Y. Lu, and F. K. Gong, An OFDM Bandwidth
Estimation Scheme for Spectrum Monitoring, IEEE 2005.

 122. X. F. Wang, Y. R. Shayan, and M. Zeng, On the Code and Interleaver
Design of Broadband OFDM Systems, IEEE Communications Letters,
Vol. 8, No. 11, 653–655, November 2004.

 123. F. Gao, T. Cui, A. Nallanathan, and C. Tellambura, Maximum Likelihood
Based Estimation of Frequency and Phase Offset in DCT OFDM
Systems under Non Circular Transmissions: Algorithms, Analysis and
Comparisons, IEEE Transactions on Communications, Vol. 56, No. 9,
1425–1429, September 2008.

 124. R. Merched, On OFDM and Signal-Carrier Frequency-Domain Systems
Based on Trigonometric Transforms, IEEE Signal Processing Letters, Vol.
13, No. 8, 473–476, August 2006.

 125. E. Lawrey and C. J. Kikkert, Peak to Average Power Ratio Reduction
of OFDM Signals Using Peak Reduction Carriers, Fifth International
Symposium on Signal Processing and its Applications, ISSPA ’99, Brisbane,
Australia, August 22–25, 1999.

 126. M. Shen, G. Li, and H. Liu, Effect of Traffic Channel Configuration
on the Orthogonal Frequency Division Multiple Access Downlink
Performance, IEEE Transactions on Wireless Communications, Vol. 4,
No. 4, 1901–1913, July 2005.

 127. H. Schulze and C. Luders, Theory and Application of OFDM and CDMA
Wideband Wireless Communications, Wiley New York, pp. 145–264, 2005.

 128. N. Al-Dhahir and H. Minn, A New Multicarrier Transceiver Based
on the Discrete Cosine Transform, Proceedings of the IEEE Wireless
Communications and Networking Conference, Vol. 1, pp. 45–50, March
13–17, 2005.

 129. P. Tan and N. C. Beaulieu, An Improved DCT-Based OFDM Data
Transmission Scheme, Proceedings of the IEEE 16th PIMRC’05, 2005.

 130. H. Harada and R. Prasad, Simulation and Software Radio for Mobile
Communications, House Universal Personal Communications Library, 2002.

 131. M. S. El-Tanany, Y. Wu, and L. Házy, OFDM Uplink for Interactive
Broadband Wireless: Analysis and Simulation in the Presence of Carrier,
Clock and Timing Errors, IEEE, 2001.

 132. A. Langowski, Time and Frequency Synchronisation in 4G OFDM
Systems, EURASIP Journal on Wireless Communications and Networking,
doi:10.1155/2009/641292, 2009.

234 referenCes

© 2010 Taylor & Francis Group, LLC

 133. Mary Ann Ingram, OFDM Simulation Using Matlab, Smart Antenna
Research Laboratory, Guillermo Acosta, Georgia Tech, Atlanta,
August 2000.

 134. J. Zhang and B. Li, New Modulation Identification Scheme for OFDM
in Multipath Rayleigh Fading Channel, International Symposium on
Computer Science and Computational Technology, 2008.

 135. H. S. Chu, B. S. Park, C. K. An, J. S. Kang, and H. G. Son, Wireless Image
Transmission based on Adaptive OFDM System, IEEE, 2007.

 136. C. S. Avilaf and R. S. Reillot, The Rijndael Block Cipher (AES Proposal):
A Comparison with DES, IEEE, 2001.

 137. M. S. Liu, Y. Zhang, and J. Huali, Research on Improving Security of DES
by Chaotic Mapping, Proceedings of the Eighth International Conference on
Machine Learning and Cybernetics, Baoding, July 12–15.

 138. V. B. Vats, K. K. Garg, and A. Abad, Performance Analysis of DFT-
OFDM, DCT-OFDM, and DWT-OFDM Systems in AWGN,
Proceedings of the IEEE Fourth International Conference on Wireless and
Mobile Communications, 2008.

 139. P. Tan and N. C. Beaulieu, Precise Bit Error Probability Analysis of
DCT OFDM in the Presence of Carrier Frequency Offset on AWGN
Channels, Proceedings of the IEEE Globcom 2005, pp. 1429–1434, 2005.

 140. Giridhar D. Mandyam, On the Discrete Cosine Transform and OFDM
Systems, Nokia Research Center, Irving, TX, 2003.

 141. M. Misiti, Y. Misiti, and G. Oppenheim, Wavelets and Their Applications,
Jean-Michel Poggi, ISTE, 2007.

 142. A. Prochazka, J. Uhlir, P. J. W. Rayner, and N. J. Kingsbury, Signal Analysis
and Prediction, Birkhauser, New York, 1998.

 143. B. Muquet, Z. Wang, G. B. Giannakis, M. d. Courville, and P.
Duhamel, Cyclic Prefixing or Zero Padding for Wireless Multicarrier
Transmissions, IEEE Transactions on Communications, Vol. 50, No. 12,
December 2002.

 144. B. Li, S. Zhou, M. Stojanovic, L. Freitag, and P. Willett, Non-Uniform
Doppler Compensation for Zero-Padded OFDM over Fast-Varying
Under water Acoustic Channels, OCEANS2007-Europe, IEEE, 2007.

 145. C. R. N. Athaudage and R. R. V. Angiras, Sensitivity of FFT-Equalised
Zero-Padded OFDM Systems to Time and Frequency Synchronization
Errors, IEE Proc.-Commun., Vol. 152, No. 6, December 2005.

 146. B. Muquet, M. D. Courville, P. Duhamel, G. B. Giannakis, and
P. Magniez, Turbo Demodulation of Zero-Padded OFDM
Transmissions, IEEE Transactions on Communications, Vol. 50, No. 11,
November 2002.

 147. D. Huang and K. B. Letaief, An Interference-Cancellation Scheme
for Carrier Frequency Offsets Correction in OFDMA Systems, IEEE
Transactions on Communication, Vol. 53, No. 7, pp. 1155–1165, July 2005.

 148. J. Paul and M. G. Linnartz, Performance Analysis of Synchronous
MC-CDMA in Mobile Rayleigh Channel with Both Delay and
Doppler Spreads, IEEE Transactions on Vehicular Technology, Vol. 50,
No. 6, November 2001.

235referenCes

© 2010 Taylor & Francis Group, LLC

 149. T. Cui, F. Gao, A. Nallanathan, and C. Tellambura, ML CFO and PO
Estimation in DCT OFDM Systems under Non-Circular Transmissions,
IEEE Communications Society, 2007.

 150. P. Bansal and A. Brzezinski, Adaptive Loading in MIMO/OFDM
Systems, December 13, 2001.

 151. H. Hwang and H. Park, Doppler Frequency Offset Estimation in OFDM
Systems, Mobile Telecommunication Research Division, ETRI, IEEE,
2009.

 152. J. Lee, D. Toumpakaris, H. L. Lou, and J. M. Cioffi, Effect of Carrier
Frequency Offset on Time-Domain Differential Demodulation in
OFDM Systems, IEEE, 2004.

 153. M. Anandpara, E. Erwa, J. Golab, R. Samanta, and H. Wang, Inter-carrier
Interference Cancellation for OFDM Systems, EE 381K-11: Wireless
Communications, May 6, 2003.

 154. A. S. Baiha, M. Singh, A. J. Goldsmith, and B. R. Saltzberg, A New
Approach for Evaluating Clipping Distortion in Multicarrier Systems,
IEEE Journal on Select Areas in Communications, Vol. 20, No. 5, pp. 1037–
1046, June 2002.

 155. R. V. Nee and R. Prasad, OFDM for Wireless Multimedia Communications,
Artech House, Boston, 2000.

 156. R. V. Nee and A, D. Wild, Reducing the Peak-to-Average Power Ratio of
OFDM, Proceedings of the IEEE Vehicular Technology Conference (VTC’98),
pp. 2072–2076, May 1998.

 157. S. Wei, D. L. Goeckel, and P. E. Kelly, A Modern Extreme Value Theory
Scheme to Calculating the Distribution of the PAPR in OFDM
Systems, Proceedings of IEEE ICC 2002, New York, pp. 1686–90,
May 2002.

 158. M. Sharif, M. Gharavi-Alkhansari, and B. H. Khalaj, On the Peak-
to-Average Power of OFDM Signals Based on Oversampling, IEEE
Transactions on Communications, Vol. 51, pp. 72–78, January 2003.

 159. G. Wunder and H. Boche, Upper Bounds on the Statistical Distribution
of the Crestfactor in OFDM Transmission, IEEE Transactions on
Information Theory, Vol. 49, pp. 488–494, February 2003.

 160. R. Prasad, OFDM for Wireless Communications Systems, Artech House,
Boston, 2004.

 161. S. H. Han and J. H. Lee, Modified Selected Mapping Scheme for PAPR
Reduction of Coded OFDM Signal, IEEE Transactions on Broadcasting,
Vol. 50, pp. 335–341, September 2004.

 162. H. Dai and H. V. Poor, Advanced Signal Processing for Power Line
Communications, IEEE Communications Magazine, Vol. 41, No. 5,
pp. 100–107, May 2003.

 163. S. B. Weinstein, The History of Orthogonal Frequency Division
Multiplexing, IEEE Communications Magazine, pp. 26–35, November
2009.

 164. S. Celebi, Interblock Interference (IBI) Minimizing Time-Domain
Equalizer (TEQ) for OFDM, IEEE Signal Processing Letters, Vol. 10,
No. 8, pp. 232–234, August 2003.

236 referenCes

© 2010 Taylor & Francis Group, LLC

 165. Y. Wu and W. Y. Zou, Orthogonal Frequency Division Multiplexing:
A Multicarrier Modulation Scheme, IEEE Transactions on Consumer
Electronics, Vol. 41, No. 3, pp. 392–399, August 1995.

 166. T. Pollet, P. Spruyt, and M. Moeneclaey, The BER Performance of
OFDM Systems Using Non-Synchronized Sampling, Proceedings of
GLOBECOM, 1994, pp. 253–257.

 167. ETSI, Transmission and Multiplexing (TM); Access Transmission Systems
on Metallic Access Cables; Very High Speed Digital Subscriber Line (VDSL);
Part 2: Transceiver Specification, 2002, TS 101 270-2.

 168. F. J. Cañete, J. A. Cortées, L. Díez, and J. T. Entrambasaguas, Modeling
and Evaluation of the Indoor Power Line Transmission Medium, IEEE
Communications Magazine, Vol. 41, No. 4, pp. 41–47, April 2003.

237© 2010 Taylor & Francis Group, LLC

Appendix A

function y = multi(x,w)
%z = a*a1 mod 2^32
a = frombase256(x); a1 = frombase256(w);
z = mod(a*a1,2^32);
y = tobase256(z);

function permutation = p(substitution)
% p function permutes an input "substitution" based on x
x = [16 7 20 21 29 12 28 17 01 15 23 26 05 18 31 10 2
8 24 14 32 27 3 9 19 13 30 6 22 11 4 25];
permutation = substitution(x);

function y = padding(x)
%Padding x with zeros if x is shorter than 16
L = length(x);
if mod(L,16)==0
 y = x;
else
 pad = 16-mod(L,16);
 y = zeros(1,L+pad);
 y(1:L) = x;
end;
function RC5enctextRC5 = RC5CBC(plaintext1,m,n,CO,r,
keyi)
% Encrypt data using RC5 in CBC mode.
RC5enctextRC5 = zeros(m*n/8,8);

238 aPPendIx a

© 2010 Taylor & Francis Group, LLC

for i = 1:m*n/8
 plaintext = plaintext1(i,:);
 if i==1
 plaintexts = bitxor(plaintext,CO);
 else
 plaintexts = bitxor(plaintext,RC5enctext);
 end;
 RC5enctext = RC5enc(plaintexts,r,keyi);
 RC5enctextRC5(i,:) = RC5enctext;

end;

function plaintextRC5 = RC5CBCDec(RC5enctext1,m,n,CO,r,
keyi)
% Decrypt data using RC5 in CBC mode.
plaintextRC5 = zeros(m*n/8,8);
for i = 1:m*n/8
 RC5enctextss = RC5enctext1(i,:);
 re_plaintext = RC5decry(RC5enctextss,r,keyi);
 if i==1
 plaintext = bitxor(re_plaintext,CO);
 else
 plaintext = bitxor(re_plaintext,RC5enctext1

((i-1),:));
 end;
 plaintextRC5(i,:) = plaintext;
end;

function RC5enctextRC5 = RC5CFB(plaintext1,m,n,CO,r,
keyi)
% Encrypt data using RC5 in CFB mode.
RC5enctextRC5 = zeros(m*n/8,8);
for i = 1:m*n/8
 plaintext = plaintext1(i,:);
 if i==1
 cr1 = RC5enc(CO,r,keyi);

 RC5enctext = bitxor(plaintext,cr1);
 else
 cr1 = RC5enc(RC5enctext,r,keyi);

 RC5enctext = bitxor(plaintext,cr1);
 end;
 RC5enctextRC5(i,:) = RC5enctext;

end;

239aPPendIx a

© 2010 Taylor & Francis Group, LLC

function plaintextRC5 = RC5CFBDec(RC5enctext1,m,n,CO,r,
keyi)
% Decrypt data using RC5 in CFB mode.
plaintextRC5 = zeros(m*n/8,8);
for i = 1:m*n/8
 RC5enctextss = RC5enctext1(i,:);
 if i==1
 cr1 = RC5enc(CO,r,keyi);

 re_plaintext = bitxor(RC5enctextss,cr1);
 else
 cr1 = RC5enc(RC5enctext1(i-1,:),r,keyi);

 re_plaintext = bitxor(RC5enctextss,cr1);
 end;

 plaintextRC5(i,:) = re_plaintext;
end;

function [xa1, Fs, nbits] = RC5DecCBCAudio(x1, Fs,
nbits,key,r,CO)
% Decrypt Audio using RC5 in CBC mode.
keyi = RC5keygen(key,r);
%CBC L = length(x1); y1 = double(x1);
plaintextRC5 = zeros(L/8,8);
RC5enctext1 = reshape(y1,L/8,8);
for i = 1:L/8
 RC5enctextss = RC5enctext1(i,:);
 re_plaintext = RC5decry(RC5enctextss,r,keyi);
 if i==1

 plaintext = bitxor(re_plaintext,CO);
 else
 plaintext = bitxor(re_plaintext,RC5enctext1

((i-1),:));
 end;
 plaintextRC5(i,:) = plaintext;

end;
xa1 = uint8(plaintextRC5(:));

function xa1 = RC5DecCBCImage(x1,key,r,CO)
% Decrypt Image using RC5 in CBC mode.
keyi = RC5keygen(key,r);
%CBC

240 aPPendIx a

© 2010 Taylor & Francis Group, LLC

[m,n] = size(x1);
y1 = double(x1);
plaintextRC5 = zeros(m*n/8,8);
RC5enctext1 = reshape(y1',8,m*n/8)';
for i = 1:m*n/8
 RC5enctextss = RC5enctext1(i,:);
 re_plaintext = RC5decry(RC5enctextss,r,keyi);
 if i = =1

 plaintext = bitxor(re_plaintext,CO);
 else
 plaintext = bitxor(re_plaintext,RC5enctext1

((i-1),:));
 end;
 plaintextRC5(i,:) = plaintext;

end;
ya1 = reshape(plaintextRC5',n,m)';

xa1 = uint8(ya1);

function xa1 = RC5DecCBCimageC(x,key,r,CO)
% Decrypt Colored Image using RC5 in CBC mode.
keyi = RC5keygen(key,r);
%CBC
x1 = x(:,:,1);
x2 = x(:,:,2);
x3 = x(:,:,3);
y1 = double(x1);
y2 = double(x2);
y3 = double(x3);
[m,n] = size(x1);
plaintext(:,:,1) = reshape(y1',8,m*n/8)';
plaintext(:,:,2) = reshape(y2',8,m*n/8)';
plaintext(:,:,3) = reshape(y3',8,m*n/8)';
ciphertext = x;
for i = 1:3 plaintextRC5 = plaintext(:,:,i);
 RC5enctext = RC5CBCDec(plaintextRC5,m,n,CO,

r,keyi);
 RC5enctext = reshape(RC5enctext',n,m)';
 ciphertext(:,:,i) = RC5enctext;
end

xa1 = uint8(ciphertext);

241aPPendIx a

© 2010 Taylor & Francis Group, LLC

function [xa1, Fs, nbits] = RC5DecCFBAudio(x1, Fs,
nbits,key,r,CO)
%Decrypt Audio using RC5 in CFB mode.
keyi = RC5keygen(key,r);
L = length(x1); y1 = double(x1);
plaintextRC5 = zeros(L/8,8);
RC5enctext1 = reshape(y1,L/8,8);
for i = 1:L/8
 RC5enctextss = RC5enctext1(i,:);
 if i = =1
 cr1 = RC5enc(CO,r,keyi);

 re_plaintext = bitxor(RC5enctextss,cr1);
 else
 cr1 = RC5enc(RC5enctext1(i-1,:),r,keyi);

 re_plaintext = bitxor(RC5enctextss,cr1);
 end;

 plaintextRC5(i,:) = re_plaintext;
end;
xa1 = uint8(plaintextRC5(:));

function xa1 = RC5DecCFBImage(x1,key,r,CO)
%Decrypt Image using RC5 in CFB mode.
keyi = RC5keygen(key,r);
[m,n] = size(x1); y1 = double(x1);
plaintextRC5 = zeros(m*n/8,8);
RC5enctext1 = reshape(y1',8,m*n/8)';
for i = 1:m*n/8
 RC5enctextss = RC5enctext1(i,:);
 if i = =1
 cr1 = RC5enc(CO,r,keyi);

 re_plaintext = bitxor(RC5enctextss,cr1);
 else
 cr1 = RC5enc(RC5enctext1(i-1,:),r,keyi);
 re_plaintext = bitxor(RC5enctextss,cr1);
 end;

 plaintextRC5(i,:) = re_plaintext;
end;
ya1 = reshape(plaintextRC5',n,m)';

xa1 = uint8(ya1);

242 aPPendIx a

© 2010 Taylor & Francis Group, LLC

function xa1 = RC5DecCFBImageC(x,key,r,CO)
%Decrypt Colored Image using RC5 in CFB mode.
keyi = RC5keygen(key,r);
%CFB

x1 = x(:,:,1);
x2 = x(:,:,2);
x3 = x(:,:,3);
y1 = double(x1);
y2 = double(x2);
y3 = double(x3);
[m,n] = size(x1);
plaintext(:,:,1) = reshape(y1',8,m*n/8)';
plaintext(:,:,2) = reshape(y2',8,m*n/8)';
plaintext(:,:,3) = reshape(y3',8,m*n/8)';
ciphertext = x;
for i = 1:3 plaintextRC5 = plaintext(:,:,i);
 RC5enctext = RC5CFBDec(plaintextRC5,m,n,CO,r,

keyi);
 RC5enctext = reshape(RC5enctext',n,m)';
 ciphertext(:,:,i) = RC5enctext;
end

xa1 = uint8(ciphertext);

function [xa1, Fs, nbits] = RC5DecECBAudio(x1, Fs,
nbits,key,r)
%Decrypt Audio using RC5 in ECB mode.
keyi = RC5keygen(key,r);
%ECB L = length(x1);
y1 = double(x1);
plaintextRC5 = zeros(L/8,8);
RC5enctext1 = reshape(y1,L/8,8);
for i = 1:L/8
 RC5enctextss = RC5enctext1(i,:);
 re_plaintext = RC5decry(RC5enctextss,r,keyi);
 plaintextRC5(i,:) = re_plaintext;

end;
xa1 = uint8(plaintextRC5(:));

function xa1 = RC5DecECBImage(x1,key,r)
%Decrypt Image using RC5 in ECB mode.
keyi = RC5keygen(key,r);

243aPPendIx a

© 2010 Taylor & Francis Group, LLC

[m,n] = size(x1); y1 = double(x1);
plaintextRC5 = zeros(m*n/8,8);
RC5enctext1 = reshape(y1',8,m*n/8)';
for i = 1:m*n/8
 RC5enctextss = RC5enctext1(i,:);
 re_plaintext = RC5decry(RC5enctextss,r,keyi);
 plaintextRC5(i,:) = re_plaintext;

end;
ya1 = reshape(plaintextRC5',n,m)';

xa1 = uint8(ya1);

function xa1 = RC5DecECBImageC(x,key,r)
%Decrypt Colored Image using RC5 in ECB mode.
keyi = RC5keygen(key,r);
%ECB
x1 = x(:,:,1);
x2 = x(:,:,2);
x3 = x(:,:,3);
y1 = double(x1);
y2 = double(x2);
y3 = double(x3);
[m,n] = size(x1);
plaintext(:,:,1) = reshape(y1',8,m*n/8)';
plaintext(:,:,2) = reshape(y2',8,m*n/8)';
plaintext(:,:,3) = reshape(y3',8,m*n/8)';
ciphertext = x;
for i = 1:3 plaintextRC5 = plaintext(:,:,i);
 RC5enctext = RC5ECBDec(plaintextRC5,m,n,r,keyi);
 RC5enctext = reshape(RC5enctext',n,m)';
 ciphertext(:,:,i) = RC5enctext;
end
xa1 = uint8(ciphertext);

function [xa1, Fs, nbits] = RC5DecOFBAudio(x1, Fs,
nbits,key,r,CO)
%Decrypt Audio using RC5 in OFB mode.
keyi = RC5keygen(key,r);
%OFB

L = length(x1);
y1 = double(x1);
plaintextRC5 = zeros(L/8,8);
RC5enctext1 = reshape(y1,L/8,8);

244 aPPendIx a

© 2010 Taylor & Francis Group, LLC

for i = 1:L/8
 RC5enctextss = RC5enctext1(i,:);
 if i = =1
 cr = RC5enc (CO,r,keyi);
 re_plaintext = bitxor(RC5enctextss,cr);
 else cr = RC5enc(cr,r,keyi);
 re_plaintext = bitxor(RC5enctextss,cr);
 end;

 plaintextRC5(i,:) = re_plaintext;

end;
xa1 = uint8(plaintextRC5(:));

function xa1 = RC5DecOFBImage(x1,key,r,CO)
%Decrypt Image using RC5 in OFB mode.
keyi = RC5keygen(key,r);

[m,n] = size(x1); y1 = double(x1);
plaintextRC5 = zeros(m*n/8,8);
RC5enctext1 = reshape(y1',8,m*n/8)';
for i = 1:m*n/8
 RC5enctextss = RC5enctext1(i,:);
 if i = =1
 cr = RC5enc (CO,r,keyi);
 re_plaintext = bitxor(RC5enctextss,cr);
 else cr = RC5enc(cr,r,keyi);
 re_plaintext = bitxor(RC5enctextss,cr);
 end;

 plaintextRC5(i,:) = re_plaintext;

end;
ya1 = reshape(plaintextRC5',n,m)';

xa1 = uint8(ya1);

function xa1 = RC5DecOFBImagec(x,key,r,CO)
%Decrypt Colored Image using RC5 in OFB mode.
keyi = RC5keygen(key,r);
%OFB

x1 = x(:,:,1);
x2 = x(:,:,2);
x3 = x(:,:,3);

245aPPendIx a

© 2010 Taylor & Francis Group, LLC

y1 = double(x1);
y2 = double(x2);
y3 = double(x3);
[m,n] = size(x1);
plaintext(:,:,1) = reshape(y1',8,m*n/8)';
plaintext(:,:,2) = reshape(y2',8,m*n/8)';
plaintext(:,:,3) = reshape(y3',8,m*n/8)';
ciphertext = x;
for i = 1:3 plaintextRC5 = plaintext(:,:,i);
 RC5enctext = RC5OFBDec(plaintextRC5,m,n,CO,r,k

eyi);
 RC5enctext = reshape(RC5enctext',n,m)';
 ciphertext(:,:,i) = RC5enctext;
end

xa1 = uint8(ciphertext);

function y = RC5decry(plaintext,round,s)
 %RC5 Decryption
 a = plaintext(1:4); b = plaintext(5:8); for
 i = round:-1:1
 b = RC5sub(b,s(2*i+2,:)); b = shifting

(b,-LSB5(a)); b = bitxor(b',a);
 a = RC5sub(a,s(2*i+1,:)); a = shifting

(a,-LSB5(b)); a = bitxor(a',b);
 end b = RC5sub(b,s(2,:));
 a = RC5sub(a,s(1,:)); y(1:4) = a;
 y(5:8) = b;

function RC5enctextRC5 = RC5ECB(plaintext1,m,n,r,keyi)
%Encrypt data using RC5 in ECB mode
RC5enctextRC5 = zeros(m*n/8,8);
for i = 1:m*n/8 plaintext = plaintext1(i,:);
 RC5enctext = RC5enc(plaintext,r,keyi);
 RC5enctextRC5(i,:) = RC5enctext;

end;

function plaintextRC5 = RC5ECBDec(RC5enctext1,m,n,r,
keyi)
%Decrypt data using RC5 in ECB mode
plaintextRC5 = zeros(m*n/8,8);
for i = 1:m*n/8
 RC5enctextss = RC5enctext1(i,:);
 re_plaintext = RC5decry(RC5enctextss,r,keyi);

246 aPPendIx a

© 2010 Taylor & Francis Group, LLC

 plaintextRC5(i,:) = re_plaintext;

end;

function y = RC5enc(plaintext,round,s)
%RC5 Encryption
a = plaintext(1:4); b = plaintext(5:8);
a = add(a,s(1,:)); b = add(b,s(2,:)); for
i = 1:round
 a = bitxor(a,b); a = shifting(a,LSB5(b));
 a = add(a,s(2*i+1,:)); b = bitxor(b,a);
 b = shifting(b,LSB5(a)); b = add(b,s(2*i+2,:));
end y(1:4) = a; y(5:8) = b;

function [xa, Fs, nbits] = RC5EncCBCAudio(x, Fs,
nbits,key,r,CO)
%Encrypt Audio using RC5 in CBC mode
L = length(x);
y = double(x); keyi = RC5keygen(key,r);
plaintext1 = reshape(y,L/8,8);
RC5enctextRC5 = zeros(L/8,8);
 %CBC
for i = 1:L/8 plaintext = plaintext1(i,:); if i = =1
 plaintexts = bitxor(plaintext,CO);
 else plaintexts = bitxor(plaintext,RC5enctext);
 end;
 RC5enctext = RC5enc(plaintexts,r,keyi);
 RC5enctextRC5(i,:) = RC5enctext;

end;
xa = uint8(RC5enctextRC5(:));

function xa = RC5EncCBCImage(x,key,r,CO)
%Encrypt Image using RC5 in CBC mode
[m,n] = size(x);
y = double(x); keyi = RC5keygen(key,r);
plaintext1 = reshape(y',8,m*n/8)';

RC5enctextRC5 = zeros(m*n/8,8);
%CBC
for i = 1:m*n/8 plaintext = plaintext1(i,:); if i = =1
 plaintexts = bitxor(plaintext,CO);
 else plaintexts = bitxor(plaintext,RC5enctext);
 end;
 RC5enctext = RC5enc(plaintexts,r,keyi);

247aPPendIx a

© 2010 Taylor & Francis Group, LLC

 RC5enctextRC5(i,:) = RC5enctext;

 end; ya = reshape(RC5enctextRC5',n,m)';
xa = uint8(ya);

function xa = RC5EncCBCImageC(x,key,r,CO)
%Encrypt Colored Image using RC5 in CBC mode

x1 = x(:,:,1); x2 = x(:,:,2); x3 = x(:,:,3);
y1 = double(x1); y2 = double(x2);
y3 = double(x3); [m,n] = size(x1);

keyi = RC5keygen(key,r);
plaintext(:,:,1) = reshape(y1',8,m*n/8)';
plaintext(:,:,2) = reshape(y2',8,m*n/8)';
plaintext(:,:,3) = reshape(y3',8,m*n/8)';

RC5enctext = x;
%CBC

for i = 1:3 plaintext1 = plaintext(:,:,i);
 RC5enctextRC5 = RC5CBC(plaintext1,m,n,CO,r,keyi);
 RC5enctextRC5 = reshape(RC5enctextRC5',n,m)';
 RC5enctext(:,:,i) = RC5enctextRC5;
end;
xa = uint8(RC5enctext);

function [xa, Fs, nbits] = RC5EncCFBAudio(x, Fs,
nbits,key,r,CO)
%Encrypt Audio using RC5 in CBC mode
L = length(x);
y = double(x); keyi = RC5keygen(key,r);
plaintext1 = reshape(y,L/8,8);
RC5enctextRC5 = zeros(L/8,8);
 % CFB
for i = 1:L/8 plaintext = plaintext1(i,:); if i = =1
 cr1 = RC5enc(CO,r,keyi);

 RC5enctext = bitxor(plaintext,cr1);
 else cr1 = RC5enc(RC5enctext,r,keyi);

 RC5enctext = bitxor(plaintext,cr1);

 end;

248 aPPendIx a

© 2010 Taylor & Francis Group, LLC

 RC5enctextRC5(i,:) = RC5enctext;

end;
xa = uint8(RC5enctextRC5(:));

function xa = RC5EncCFBImage(x,key,r,CO)
%Encrypt Image using RC5 in CFB mode
[m,n] = size(x);
y = double(x); keyi = RC5keygen(key,r);
plaintext1 = reshape(y',8,m*n/8)';

RC5enctextRC5 = zeros(m*n/8,8);
for i = 1:m*n/8 plaintext = plaintext1(i,:); if i = =1
 cr1 = RC5enc(CO,r,keyi);

 RC5enctext = bitxor(plaintext,cr1);
 else cr1 = RC5enc(RC5enctext,r,keyi);

 RC5enctext = bitxor(plaintext,cr1);
 end;

 RC5enctextRC5(i,:) = RC5enctext;

end; ya = reshape(RC5enctextRC5',n,m)';
xa = uint8(ya);

function xa = RC5EncCFBImageC(x,key,r,CO)
%Encrypt Colored Image using RC5 in CFB mode
x1 = x(:,:,1); x2 = x(:,:,2); x3 = x(:,:,3);
y1 = double(x1); y2 = double(x2);
y3 = double(x3); [m,n] = size(x1);

keyi = RC5keygen(key,r);
plaintext(:,:,1) = reshape(y1',8,m*n/8)';
plaintext(:,:,2) = reshape(y2',8,m*n/8)';
plaintext(:,:,3) = reshape(y3',8,m*n/8)';

RC5enctext = x;
% CFB
for i = 1:3 plaintext1 = plaintext(:,:,i);
 RC5enctextRC5 = RC5CFB(plaintext1,m,n,CO,r,keyi);
 RC5enctextRC5 = reshape(RC5enctextRC5',n,m)';
 RC5enctext(:,:,i) = RC5enctextRC5;
end; xa = uint8(RC5enctext);

249aPPendIx a

© 2010 Taylor & Francis Group, LLC

imwrite(xa,'onion1RC5encCFB.tif','tif')
imshow('onion1RC5encCFB.tif')

function [xa, Fs, nbits] = RC5EncECBAudio(x, Fs,
nbits,key,r)
%Encrypt Audio using RC5 in ECB mode
L = length(x);
y = double(x); keyi = RC5keygen(key,r);
plaintext1 = reshape(y,L/8,8);
RC5enctextRC5 = zeros(L/8,8);
% ECB
for i = 1:L/8 plaintext = plaintext1(i,:);
 RC5enctext = RC5enc(plaintext,r,keyi);
 RC5enctextRC5(i,:) = RC5enctext;

end;
xa = uint8(RC5enctextRC5(:));

function xa = RC5EncECBImage(x,key,r)
%Encrypt Image using RC5 in ECB mode
[m,n] = size(x);
y = double(x); keyi = RC5keygen(key,r);
plaintext1 = reshape(y',8,m*n/8)';

RC5enctextRC5 = zeros(m*n/8,8);
 % ECB
for i = 1:m*n/8
plaintext = plaintext1(i,:);
 RC5enctext = RC5enc(plaintext,r,keyi);
 RC5enctextRC5(i,:) = RC5enctext;

 end; ya = reshape(RC5enctextRC5',n,m)';
xa = uint8(ya);

function xa = RC5EncECBImageC(x,key,r)
%Encrypt Colored Image using RC5 in ECB mode
x1 = x(:,:,1); x2 = x(:,:,2); x3 = x(:,:,3);
y1 = double(x1); y2 = double(x2);
y3 = double(x3); [m,n] = size(x1);

keyi = RC5keygen(key,r);

plaintext(:,:,1) = reshape(y1',8,m*n/8)';
plaintext(:,:,2) = reshape(y2',8,m*n/8)';
plaintext(:,:,3) = reshape(y3',8,m*n/8)';

250 aPPendIx a

© 2010 Taylor & Francis Group, LLC

RC5enctext = x;% ECB
for i = 1:3 plaintext1 = plaintext(:,:,i);
 RC5enctextRC5 = RC5ECB(plaintext1,m,n,r,keyi);
 RC5enctextRC5 = reshape(RC5enctextRC5',n,m)';
 RC5enctext(:,:,i) = RC5enctextRC5;
end;
xa = uint8(RC5enctext);

function [xa, Fs, nbits] = RC5EncOFBAudio(x, Fs,
nbits,key,r,CO)
%Encrypt Audio using RC5 in OFB mode
L = length(x);
y = double(x); keyi = RC5keygen(key,r);
plaintext1 = reshape(y,L/8,8);
RC5enctextRC5 = zeros(L/8,8);
% OFB
for i = 1:L/8 plaintext = plaintext1(i,:);

 if i = =1 cr = RC5enc(CO,r,keyi);

 else cr = RC5enc(cr,r,keyi);

 end; RC5enctext = bitxor(plaintext,cr);
 RC5enctextRC5(i,:) = RC5enctext;

end;
xa = uint8(RC5enctextRC5(:));

function xa = RC5EncOFBImage(x,key,r,CO)
%Encrypt Image using RC5 in OFB mode
[m,n] = size(x);
y = double(x); keyi = RC5keygen(key,r);
plaintext1 = reshape(y',8,m*n/8)';

RC5enctextRC5 = zeros(m*n/8,8);
 % OFB
for i = 1:m*n/8 plaintext = plaintext1(i,:);

 if i = =1 cr = RC5enc(CO,r,keyi);

 else cr = RC5enc(cr,r,keyi);

 end; RC5enctext = bitxor(plaintext,cr);
 RC5enctextRC5(i,:) = RC5enctext;

251aPPendIx a

© 2010 Taylor & Francis Group, LLC

end; ya = reshape(RC5enctextRC5',n,m)';
xa = uint8(ya);

function xa = RC5EncOFBImageC(x,key,r,CO)
%Encrypt Colored Image using RC5 in OFB mode

x1 = x(:,:,1); x2 = x(:,:,2); x3 = x(:,:,3);
y1 = double(x1); y2 = double(x2);
y3 = double(x3); [m,n] = size(x1);
keyi = RC5keygen(key,r);
plaintext(:,:,1) = reshape(y1',8,m*n/8)';
plaintext(:,:,2) = reshape(y2',8,m*n/8)';
plaintext(:,:,3) = reshape(y3',8,m*n/8)';
RC5enctext = x;
% OFB
for i = 1:3 plaintext1 = plaintext(:,:,i);
 RC5enctextRC5 = RC5OFB(plaintext1,m,n,CO,r,keyi);
 RC5enctextRC5 = reshape(RC5enctextRC5',n,m)';
 RC5enctext(:,:,i) = RC5enctextRC5;
end;
xa = uint8(RC5enctext);

function s = keygen(key,r)
% RC5/RC6 Key Generation
p = [99 81 225 183];
q = [185 121 55 158];
s(1,:) = p;
for i = 2:2*r+4 s(i,:) = add(s(i-1,:),q);
end; i = 1; a = zeros(1,4);
b = zeros(1,4); v = 3*(2*r+4); for
h = 1:v
 s(i,:) = add(s(i,:),a); s(i,:) = add(s(i,:),b);

s(i,:) = shifting(s(i,:),3); a = s(i,:); key =
add(key,a); key = add(key,b);

 key = shifting(key,LSB5(add(a,b)));
 b = key;
 if i = =2*r+4 i = 1;
 end end

function RC5enctextRC5 = RC5OFB(plaintext1,m,n,CO,r,k
eyi)
%Encrypt Data using RC5 in OFB mode
RC5enctextRC5 = zeros(m*n/8,8);
for i = 1:m*n/8 plaintext = plaintext1(i,:);

252 aPPendIx a

© 2010 Taylor & Francis Group, LLC

 if i = =1 cr = RC5enc(CO,r,keyi);

 else cr = RC5enc(cr,r,keyi);

 end; RC5enctext = bitxor(plaintext,cr);
 RC5enctextRC5(i,:) = RC5enctext;

end;

function plaintextRC5 = RC5OFBDec(RC5enctext1,m,n,CO,r,
keyi)
%Decrypt data using RC5 in OFB mode

plaintextRC5 = zeros(m*n/8,8);
for i = 1:m*n/8
 RC5enctextss = RC5enctext1(i,:);
 if i = =1
 cr = RC5enc (CO,r,keyi);
 re_plaintext = bitxor(RC5enctextss,cr);
 else cr = RC5enc(cr,r,keyi);
 re_plaintext = bitxor(RC5enctextss,cr);
 end;

 plaintextRC5(i,:) = re_plaintext;

end;

function y = RC5sub(x,w)
%z = a-a1 mod 2^32
a = frombase256(x); a1 = frombase256(w);
z = mod(a-a1,2^32); y = tobase256(z);

function RC6enctextRC6 = CBC(plaintext1,m,n,CO,r,keyi)
%Encrypt Data using RC6 in CBC mode
RC6enctextRC6 = zeros(m*n/16,16);
for i = 1:m*n/16 plaintext = plaintext1(i,:); if i = =1
 plaintexts = bitxor(plaintext,CO);
 else plaintexts = bitxor(plaintext,RC6enctext);
 end;
 RC6enctext = RC6enc(plaintexts,r,keyi);
 RC6enctextRC6(i,:) = RC6enctext;

end;

253aPPendIx a

© 2010 Taylor & Francis Group, LLC

function plaintextRC6 = CBCDec(RC6enctext1,m,n,CO,
r,keyi)
%Decrypt data using RC6 in CBC mode

plaintextRC6 = zeros(m*n/16,16);
for i = 1:m*n/16
 RC6enctextss = RC6enctext1(i,:);
 re_plaintext = RC6dec(RC6enctextss,r,keyi);
 if i = =1 plaintext = bitxor(re_plaintext,CO);
 else
 plaintext = bitxor(re_plaintext,R

C6enctext1((i-1),:));
 end;
 plaintextRC6(i,:) = plaintext;
end;

function RC6enctextRC6 = CFB(plaintext1,m,n,CO,r,keyi)
%Encrypt data using RC6 in CFB mode

RC6enctextRC6 = zeros(m*n/16,16);
for i = 1:m*n/16 plaintext = plaintext1(i,:); if i = =1
 cr1 = RC6enc(CO,r,keyi);

 RC6enctext = bitxor(plaintext,cr1);
 else cr1 = RC6enc(RC6enctext,r,keyi);

 RC6enctext = bitxor(plaintext,cr1); end;
 RC6enctextRC6(i,:) = RC6enctext;

end;

function plaintextRC6 = CFBDec(RC6enctext1,m,n,CO,r,
keyi)
%Decrypt data using RC6 in CFB mode
plaintextRC6 = zeros(m*n/16,16);
for i = 1:m*n/16
 RC6enctextss = RC6enctext1(i,:);
 if i = =1 cr1 = RC6enc(CO,r,keyi);

 re_plaintext = bitxor(RC6enctextss,cr1);
 else
 cr1 = RC6enc(RC6enctext1(i-1,:),r,keyi);

 re_plaintext = bitxor(RC6enctextss,cr1);
 end;

254 aPPendIx a

© 2010 Taylor & Francis Group, LLC

 plaintextRC6(i,:) = re_plaintext;

end;

function y = RC6dec(plaintext,round,s)
% RC6 Decryption
a = plaintext(1:4); b = plaintext(5:8);
c = plaintext(9:12); d = plaintext(13:16);
c = RC6sub(c,s(2*round+4,:));
a = RC6sub(a,s(2*round+3,:)); for i = round:-1:1
 temp = d; d = c; c = b; b = a;
 a = temp;
 u = multi(d,(2*d+1)); u = shifting(u,5);
 t = multi(b,(2*b+1)); t = shifting(t,5);
 c = RC6sub(c,s(2*i+2,:)); c = shifting
 (c,-LSB5(t)); c = bitxor(c,u);
 a = RC6sub(a,s(2*i+1,:)); a = shifting
 (a,-LSB5(u)); a = bitxor(a,t);
end d = RC6sub(d,s(2,:));
b = RC6sub(b,s(1,:)); y(1:4) = a;
y(5:8) = b; y(9:12) = c; y(13:16) = d;

function [xa1,Fs,nbits] = RC6DecCBCAudio(x1, Fs,
nbits,key,r,CO)

%Decrypt Audio using RC6 in CBC mode
%CBC keyi = RC6keygen(key,r); L = length(x1);
y1 = double(x1); y1 = reshape(y1,L/16,16);
plaintextRC6 = zeros(L/16,16);
for i = 1:L/16
 RC6enctextss = y1(i,:);
 re_plaintext = RC6dec(RC6enctextss,r,keyi);
 if i = =1

 plaintext = bitxor(re_plaintext,CO);
 else
 plaintext = bitxor(re_plaintext,y1((i-1),:));
 end;
 plaintextRC6(i,:) = plaintext; end;
xa1 = uint8(plaintextRC6(:));

function xa1 = RC6DecCBCImage(x1,key,r,CO)
%Decrypt Image using RC6 in CBC mode

keyi = RC6keygen(key,r);

255aPPendIx a

© 2010 Taylor & Francis Group, LLC

%CBC [m,n] = size(x1);
y1 = double(x1);
plaintextRC6 = zeros(m*n/16,16);
RC6enctext1 = reshape(y1',16,m*n/16)'; for i = 1:m*n/16

 RC6enctextss = RC6enctext1(i,:);
 re_plaintext = RC6dec(RC6enctextss,r,keyi);
 if i = =1

 plaintext = bitxor(re_plaintext,CO);
 else
 plaintext = bitxor(re_plaintext,RC6enctext1

((i-1),:));
 end;
 plaintextRC6(i,:) = plaintext;

end;
ya1 = reshape(plaintextRC6',n,m)';

xa1 = uint8(ya1);

function xa1 = RC6DecCBCImageC(x,key,r,CO)
%Decrypt Colored Image using RC6 in CBC mode

x1 = x(:,:,1); x2 = x(:,:,2); x3 = x(:,:,3);
y1 = double(x1); y2 = double(x2);
y3 = double(x3); [m,n] = size(x1);
plaintext(:,:,1) = reshape(y1',16,m*n/16)';
plaintext(:,:,2) = reshape(y2',16,m*n/16)';
 plaintext(:,:,3) = reshape(y3',16,m*n/16)';
ciphertext = x;
keyi = RC6keygen(key,r);
%CBC
for i = 1:3 plaintextRC6 = plaintext(:,:,i);
 RC6enctext = RC6CBCDec(plaintextRC6,m,n,CO,r,keyi);
 RC6enctext = reshape(RC6enctext',n,m)';

ciphertext(:,:,i) = RC6enctext;
end

xa1 = uint8(ciphertext);

function [xa1, Fs, nbits] = RC6DecCFBAudio(x1, Fs,
nbits,key,r,CO)

%Decrypt Audio using RC6 in CFB mode

256 aPPendIx a

© 2010 Taylor & Francis Group, LLC

%CFB keyi = RC6keygen(key,r); L = length(x1);
y1 = double(x1); y1 = reshape(y1,L/16,16);
plaintextRC6 = zeros(L/16,16);
for i = 1:L/16
 RC6enctextss = y1(i,:);
 if i = =1 cr1 = RC6enc(CO,r,keyi);
 re_plaintext = bitxor(RC6enctextss,cr1);
 else
 cr1 = RC6enc(y1(i-1,:),r,keyi);
 re_plaintext = bitxor(RC6enctextss,cr1);
 end;
 plaintextRC6(i,:) = re_plaintext;

end;
xa1 = uint8(plaintextRC6(:));

function xa1 = RC6DecCFBImage(x1,key,r,CO)
%Decrypt Image using RC6 in CFB mode

keyi = RC6keygen(key,r);
%CFB [m,n] = size(x1);
y1 = double(x1);
plaintextRC6 = zeros(m*n/16,16);
RC6enctext1 = reshape(y1',16,m*n/16)'; for i = 1:m*n/16
 RC6enctextss = RC6enctext1(i,:);
 if i = =1 cr1 = RC6enc(CO,r,keyi);

 re_plaintext =
bitxor(RC6enctextss,cr1);

 else
 cr1 = RC6enc(RC6enctext1(i-1,:),r,keyi);

 re_plaintext =
bitxor(RC6enctextss,cr1);

 end;

 plaintextRC6(i,:) = re_plaintext;

end;
ya1 = reshape(plaintextRC6',n,m)';

xa1 = uint8(ya1);

function xa1 = RC6DecCFBImageC(x,key,r,CO)
%Decrypt Colored Image using RC6 in CFB mode

257aPPendIx a

© 2010 Taylor & Francis Group, LLC

x1 = x(:,:,1); x2 = x(:,:,2); x3 = x(:,:,3);
y1 = double(x1); y2 = double(x2);
y3 = double(x3); [m,n] = size(x1);
plaintext(:,:,1) = reshape(y1',16,m*n/16)';
plaintext(:,:,2) = reshape(y2',16,m*n/16)';
plaintext(:,:,3) = reshape(y3',16,m*n/16)';
ciphertext = x;
keyi = RC6keygen(key,r);
%CFB
for i = 1:3 plaintextRC6 = plaintext(:,:,i);
 RC6enctext = RC6CFBDec(plaintextRC6,m,n,CO,r,keyi);
 RC6enctext = reshape(RC6enctext',n,m)';

ciphertext(:,:,i) = RC6enctext;
end

xa1 = uint8(ciphertext);

function [xa1, Fs, nbits] = RC6DecECBAudio(x1, Fs,
nbits,key,r)
%Decrypt Audio using RC6 in ECB mode

%ECB keyi = RC6keygen(key,r); L = length(x1);
y1 = double(x1); y1 = reshape(y1,L/16,16);
plaintextRC6 = zeros(L/16,16);
for i = 1:L/16
 RC6enctextss = y1(i,:);
 re_plaintext = RC6dec(RC6enctextss,r,keyi);
 plaintextRC6(i,:) = re_plaintext;

end;

xa1 = uint8(plaintextRC6(:));

function xa1 = RC6DecECBImage(x1,key,r)
%Decrypt Image using RC6 in ECB mode
keyi = RC6keygen(key,r);
%ECB [m,n] = size(x1);
y1 = double(x1);
plaintextRC6 = zeros(m*n/16,16);
RC6enctext1 = reshape(y1',16,m*n/16)'; for i = 1:m*n/16
 RC6enctextss = RC6enctext1(i,:);
 re_plaintext = RC6dec(RC6enctextss,r,keyi);
 plaintextRC6(i,:) = re_plaintext;

end;

258 aPPendIx a

© 2010 Taylor & Francis Group, LLC

ya1 = reshape(plaintextRC6',n,m)';

xa1 = uint8(ya1);

function xa1 = RC6DecECBImageC(x,key,r)
%Decrypt Colored Image using RC6 in ECB mode

x1 = x(:,:,1); x2 = x(:,:,2); x3 = x(:,:,3);
y1 = double(x1); y2 = double(x2);
y3 = double(x3); [m,n] = size(x1);
plaintext(:,:,1) = reshape(y1',16,m*n/16)';
plaintext(:,:,2) = reshape(y2',16,m*n/16)';
plaintext(:,:,3) = reshape(y3',16,m*n/16)';
ciphertext = x;
keyi = RC6keygen(key,r);
%ECB
for i = 1:3 plaintextRC6 = plaintext(:,:,i);
 RC6enctext = RC6ECBDec(plaintextRC6,m,n,r,keyi);
 RC6enctext = reshape(RC6enctext',n,m)';

ciphertext(:,:,i) = RC6enctext;
end xa1 = uint8(ciphertext);

function [xa1, Fs, nbits] = RC6DecOFBAudio(x1, Fs,
nbits,key,r,CO)
%Decrypt Audio using RC6 in OFB mode

%OFB keyi = RC6keygen(key,r); L = length(x1);
y1 = double(x1); y1 = reshape(y1,L/16,16);
plaintextRC6 = zeros(L/16,16);
for i = 1:L/16
 RC6enctextss = y1(i,:);
 if i = =1
 cr = RC6enc (CO,r,keyi);
 re_plaintext = bitxor(RC6enctextss,cr);
 else cr = RC6enc(cr,r,keyi);
 re_plaintext = bitxor(RC6enctextss,cr);
 end;
 plaintextRC6(i,:) = re_plaintext;
end;
xa1 = uint8(plaintextRC6(:));

function xa1 = RC6DecOFBImage(x1,key,r,CO)
%Decrypt Image using RC6 in OFB mode

keyi = RC6keygen(key,r);

259aPPendIx a

© 2010 Taylor & Francis Group, LLC

%OFB [m,n] = size(x1);
y1 = double(x1);
plaintextRC6 = zeros(m*n/16,16);
RC6enctext1 = reshape(y1',16,m*n/16)'; for i = 1:m*n/16
 RC6enctextss = RC6enctext1(i,:);
 if i = =1
 cr = RC6enc (CO,r,keyi);
 re_plaintext = bitxor(RC6enctextss,cr);
 else cr = RC6enc(cr,r,keyi);
 re_plaintext = bitxor(RC6enctextss,cr);
 end;

 plaintextRC6(i,:) = re_plaintext;

end;
ya1 = reshape(plaintextRC6',n,m)';

xa1 = uint8(ya1);

function xa1 = RC6DecOFBImageC(x,key,r,CO)
%Decrypt Colored Image using RC6 in OFB mode

x1 = x(:,:,1); x2 = x(:,:,2); x3 = x(:,:,3);
y1 = double(x1); y2 = double(x2);
y3 = double(x3); [m,n] = size(x1);
plaintext(:,:,1) = reshape(y1',16,m*n/16)';
plaintext(:,:,2) = reshape(y2',16,m*n/16)';
plaintext(:,:,3) = reshape(y3',16,m*n/16)';
ciphertext = x;
keyi = RC6keygen(key,r);
%OFB
for i = 1:3 plaintextRC6 = plaintext(:,:,i);
 RC6enctext = RC6OFBDec(plaintextRC6,m,n,CO,r,keyi);
 RC6enctext = reshape(RC6enctext',n,m)';

ciphertext(:,:,i) = RC6enctext;
end

xa1 = uint8(ciphertext);

function RC6enctextRC6 = RC6ECB(plaintext1,m,n,r,keyi)
%Encrypt data using RC6 in ECB mode

RC6enctextRC6 = zeros(m*n/16,16);
for i = 1:m*n/16 plaintext = plaintext1(i,:);
 RC6enctext = RC6enc(plaintext,r,keyi);

260 aPPendIx a

© 2010 Taylor & Francis Group, LLC

 RC6enctextRC6(i,:) = RC6enctext;

end;

function plaintextRC6 =
RC6ECBDec(RC6enctext1,m,n,r,keyi)
%Decrypt Data using RC6 in ECB mode

plaintextRC6 = zeros(m*n/16,16);
for i = 1:m*n/16
 RC6enctextss = RC6enctext1(i,:);
 re_plaintext = RC6dec(RC6enctextss,r,keyi);
 plaintextRC6(i,:) = re_plaintext;

end;

function y = RC6enc(plaintext,round,s)
%RC6 Encryption
a = plaintext(1:4); b = plaintext(5:8);
c = plaintext(9:12); d = plaintext(13:16);
b = add(b,s(1,:)); d = add(d,s(2,:));
for i = 1:round t = multi(b,(2*b+1)); t = shifting(t,5);
 u = multi(d,(2*d+1)); u = shifting(u,5);
 a = bitxor(a,t'); a = shifting(a,LSB5(u));
 a = add(a,s(2*i+1,:)); c = bitxor(c,u');
 c = shifting(c,LSB5(t)); c = add(c,s(2*i+2,:));
 temp = a;
 a = b; b = c; c = d; d = temp;
end a = add(a,s(2*round+3,:)); c =
add(c,s(2*round+4,:)); y(1:4) = a;
y(5:8) = b; y(9:12) = c; y(13:16) = d;

function [xa, Fs, nbits] = RC6EncCBCAudio(x, Fs,
nbits,key,r,CO)
%Encrypt Audio using RC6 in CBC mode
L = length(x);
y = double(x); keyi = RC6keygen(key,r);
plaintext1 = reshape(y,L/16,16);
RC6enctextRC6 = zeros(L/16,16);
 %CBC
for i = 1:L/16
plaintext = plaintext1(i,:);
if i = =1
plaintexts = bitxor(plaintext,CO);
else plaintexts = bitxor(plaintext,RC6enctext);

261aPPendIx a

© 2010 Taylor & Francis Group, LLC

end;
RC6enctext = RC6enc(plaintexts,r,keyi);
RC6enctextRC6(i,:) = RC6enctext;
end;
xa = uint8(RC6enctextRC6(:));

function xa = RC6EncCBCImage(x,key,r,CO)
%Encrypt Image using RC6 in CBC mode
[m,n] = size(x);
y = double(x);
keyi = RC6keygen(key,r);
plaintext1 = reshape(y',16,m*n/16)';
RC6enctextRC6 = zeros(m*n/16,16);
 %CBC
for i = 1:m*n/16
 plaintext = plaintext1(i,:);
 if i = =1
 plaintexts = bitxor(plaintext,CO);
 else
 plaintexts = bitxor(plaintext,RC6enctext);
 end;
 RC6enctext = RC6enc(plaintexts,r,keyi);
 RC6enctextRC6(i,:) = RC6enctext;

end;
ya = reshape(RC6enctextRC6',n,m)';
xa = uint8(ya);

function xa = RC6EncCBCImageC(x,key,r,CO)
%Encrypt Colored Image using RC6 in CBC mode
x1 = x(:,:,1);
x2 = x(:,:,2);
x3 = x(:,:,3);
[m,n] = size(x1);
y1 = double(x1);
y2 = double(x2);
y3 = double(x3);
keyi = RC6keygen(key,r);
plaintext(:,:,1) = reshape(y1',16,m*n/16)';
plaintext(:,:,2) = reshape(y2',16,m*n/16)';
plaintext(:,:,3) = reshape(y3',16,m*n/16)';
RC6enctext = x;
 %CBC
for i = 1:3 plaintext1 = plaintext(:,:,i);
 RC6enctextRC6 = RC6CBC(plaintext1,m,n,CO,r,keyi);

262 aPPendIx a

© 2010 Taylor & Francis Group, LLC

 RC6enctextRC6 = reshape(RC6enctextRC6',n,m)';
 RC6enctext(:,:,i) = RC6enctextRC6;
end;
xa = uint8(RC6enctext);

function [xa, Fs, nbits] = RC6EncCFBAudio(x, Fs,
nbits,key,r,CO)
%Encrypt Audio using RC6 in CFB mode

L = length(x);
y = double(x);
keyi = RC6keygen(key,r);
plaintext1 = reshape(y,L/16,16);
RC6enctextRC6 = zeros(L/16,16);
 % CFB
for i = 1:L/16
 plaintext = plaintext1(i,:);
 if i = =1
 cr1 = RC6enc(CO,r,keyi);

 RC6enctext = bitxor(plaintext,cr1);
 else
 cr1 = RC6enc(RC6enctext,r,keyi);

 RC6enctext = bitxor(plaintext,cr1);

 end;

 RC6enctextRC6(i,:) = RC6enctext;

end;

xa = uint8(RC6enctextRC6(:));

function xa = RC6EncCFBImage(x,key,r,CO)
%Encrypt Image using RC6 in CFB mode
[m,n] = size(x);
y = double(x);
keyi = RC6keygen(key,r);
plaintext1 = reshape(y',16,m*n/16)';
RC6enctextRC6 = zeros(m*n/16,16);
% CFB
for i = 1:m*n/16
 plaintext = plaintext1(i,:);
 if i = =1

263aPPendIx a

© 2010 Taylor & Francis Group, LLC

 cr1 = RC6enc(CO,r,keyi);

 RC6enctext = bitxor(plaintext,cr1);
 else
 cr1 = RC6enc(RC6enctext,r,keyi);
 RC6enctext = bitxor(plaintext,cr1);

 end;

 RC6enctextRC6(i,:) = RC6enctext;
 end;

ya = reshape(RC6enctextRC6',n,m)';
xa = uint8(ya);

function xa = RC6EncCFBImageC(x,key,r,CO)
%Encrypt Colored Image using RC6 in CFB mode
x1 = x(:,:,1);
x2 = x(:,:,2);
x3 = x(:,:,3);
[m,n] = size(x1);
y1 = double(x1);
y2 = double(x2);
y3 = double(x3);
keyi = RC6keygen(key,r);
plaintext(:,:,1) = reshape(y1',16,m*n/16)';
plaintext(:,:,2) = reshape(y2',16,m*n/16)';
plaintext(:,:,3) = reshape(y3',16,m*n/16)';
RC6enctext = x;
 % CFB
for i = 1:3 plaintext1 = plaintext(:,:,i);
 RC6enctextRC6 = RC6CFB(plaintext1,m,n,CO,r,keyi);
 RC6enctextRC6 = reshape(RC6enctextRC6',n,m)';
 RC6enctext(:,:,i) = RC6enctextRC6;
end;
xa = uint8(RC6enctext);

function [xa, Fs, nbits] = RC6EncECBAudio(x, Fs,
nbits,key,r)
%Encrypt Audio using RC6 in ECB mode
L = length(x);
y = double(x);
keyi = RC6keygen(key,r);
plaintext1 = reshape(y,L/16,16);
RC6enctextRC6 = zeros(L/16,16);

264 aPPendIx a

© 2010 Taylor & Francis Group, LLC

 % ECB
for i = 1:L/16
 plaintext = plaintext1(i,:);
 RC6enctext = RC6enc(plaintext,r,keyi);
 RC6enctextRC6(i,:) = RC6enctext;
end;

xa = uint8(RC6enctextRC6(:));

function xa = RC6EncECBImage(x,key,r)
%Encrypt Image using RC6 in ECB mode
[m,n] = size(x);
y = double(x);
keyi = RC6keygen(key,r);
plaintext1 = reshape(y',16,m*n/16)';
RC6enctextRC6 = zeros(m*n/16,16);
% ECB
for i = 1:m*n/16
 plaintext = plaintext1(i,:);
 RC6enctext = RC6enc(plaintext,r,keyi);
 RC6enctextRC6(i,:) = RC6enctext;

end;
ya = reshape(RC6enctextRC6',n,m)';
xa = uint8(ya);

function xa = RC6EncECBImageC(x,key,r)
%Encrypt Colored Image using RC6 in ECB mode
x1 = x(:,:,1);
x2 = x(:,:,2);
x3 = x(:,:,3);
[m,n] = size(x1);
y1 = double(x1);
y2 = double(x2);
y3 = double(x3);
keyi = RC6keygen(key,r);
plaintext(:,:,1) = reshape(y1',16,m*n/16)';
plaintext(:,:,2) = reshape(y2',16,m*n/16)';
plaintext(:,:,3) = reshape(y3',16,m*n/16)';
RC6enctext = x;
% ECB
for i = 1:3 plaintext1 = plaintext(:,:,i);
 RC6enctextRC6 = RC6ECB(plaintext1,m,n,r,keyi);
 RC6enctextRC6 = reshape(RC6enctextRC6',n,m)';
 RC6enctext(:,:,i) = RC6enctextRC6;

265aPPendIx a

© 2010 Taylor & Francis Group, LLC

end;
xa = uint8(RC6enctext);

function [xa, Fs, nbits] = RC6EncOFBAudio(x, Fs,
nbits,key,r,CO)

%Encrypt Audio using RC6 in OFB mode
L = length(x);
y = double(x);
keyi = RC6keygen(key,r);
plaintext1 = reshape(y,L/16,16);
RC6enctextRC6 = zeros(L/16,16);
 % OFB
 for i = 1:L/16

 plaintext = plaintext1(i,:);
 if i == 1
 cr = RC6enc(CO,r,keyi);
 else
 cr = RC6enc(cr,r,keyi);
 end;
 RC6enctext = bitxor(plaintext,cr);
 RC6enctextRC6(i,:) = RC6enctext;
end;
xa = uint8(RC6enctextRC6(:));

function xa = RC6EncOFBImage(x,key,r,CO)
 %Encrypt Image using RC6 in OFB mode
 [m,n] = size(x);
 y = double(x);
 keyi = RC6keygen(key,r);
 plaintext1 = reshape(y',16,m*n/16)';
 RC6enctextRC6 = zeros(m*n/16,16);
 % OFB
 for i = 1:m*n/16
 plaintext = plaintext1(i,:);

 if i == 1
 cr = RC6enc(CO,r,keyi);
 else
 cr = RC6enc(cr,r,keyi);

 end;
 RC6enctext = bitxor(plaintext,cr);
 RC6enctextRC6(i,:) = RC6enctext;

end;

266 aPPendIx a

© 2010 Taylor & Francis Group, LLC

ya = reshape(RC6enctextRC6',n,m)';
xa = uint8(ya);

function xa = RC6EncOFBImageC(x,key,r,CO)
%Encrypt Colored Image using RC6 in OFB mode
x1 = x(:,:,1);
x2 = x(:,:,2);
x3 = x(:,:,3);
[m,n] = size(x1);
y1 = double(x1);
y2 = double(x2);
y3 = double(x3);
keyi = RC6keygen(key,r);
plaintext(:,:,1) = reshape(y1',16,m*n/16)';
plaintext(:,:,2) = reshape(y2',16,m*n/16)';
plaintext(:,:,3) = reshape(y3',16,m*n/16)';
RC6enctext = x;
% OFB
for i = 1:3 plaintext1 = plaintext(:,:,i);
 RC6enctextRC6 = RC6OFB(plaintext1,m,n,CO,r,keyi);
 RC6enctextRC6 = reshape(RC6enctextRC6',n,m)';
 RC6enctext(:,:,i) = RC6enctextRC6;
end;
xa = uint8(RC6enctext);

function s = keygen(key,r)
%RC6 Key Generation
p = [99 81 225 91];
q = [185 121 55 158];
s(1,:) = p;
for i = 2:2*r+4
 s(i,:) = add(s(i-1,:),q);
end; i = 1;
a = zeros(1,4);
b = zeros(1,4);
v = 3*(2*r+4);
for h = 1:v
 s(i,:) = add(s(i,:),a);
 s(i,:) = add(s(i,:),b);
 s(i,:) = shifting(s(i,:),3);
 a = s(i,:);
 key = add(key,a);
 key = add(key,b);
 key = shifting(key,LSB5(add(a,b)));
 b = key;

267aPPendIx a

© 2010 Taylor & Francis Group, LLC

 if i == 2*r+4
 i = 1;
 end
end

function RC6enctextRC6 = OFB(plaintext1,m,n,CO,r,keyi)
%Encrypt data using RC6 in OFB mode
RC6enctextRC6 = zeros(m*n/16,16);
for i = 1:m*n/16
 plaintext = plaintext1(i,:);

 if i == 1
 cr = RC6enc(CO,r,keyi);

 else
 cr = RC6enc(cr,r,keyi);

 end;

 RC 6enctext = bitxor(plaintext,cr); RC6enctextRC6(i,:)
= RC6enctext;

end;

fu nction plaintextRC6 = RC6OFBDec(RC6enctext1,m,n,CO,r,
keyi)

%Decrypt data using RC6 in OFB mode
plaintextRC6 = zeros(m*n/16,16);
for i = 1:m*n/16
 RC6enctextss = RC6enctext1(i,:);
 if i = =1
 cr = RC6enc (CO,r,keyi);
 re_plaintext = bitxor(RC6enctextss,cr);
 else

 cr = RC6enc(cr,r,keyi);
 re_plaintext = bitxor(RC6enctextss,cr);
 end;

 plaintextRC6(i,:) = re_plaintext;

end;

function y = RC6sub(x,w)
%z = a-a1mod 2^32

268 aPPendIx a

© 2010 Taylor & Francis Group, LLC

a = frombase256(x);
a1 = frombase256(w);
z = mod(a-a1,2^32);
y = tobase256(z);

function out = shifting (w,n)
% shifting w by n
y = dec2bin(w,8);
y = rot90 (y); y = y(:);
y = circshift(y,n);
y = reshape(y,8,4)';
out = bin2dec(y(:,end:-1:1));

function y = shiftleft(key,round)
% RC6 Shifting
if (round = =1||round = =2||round = =9||round = =16)
 y = circshift(key,1); else
 y = circshift(key,2); end

function y = tobase256(x)
%convert Hex to 256 bits base
for i = 4:-1:1
 y(i) = fix(x/256^(i-1)); x = x-(y(i)
 *256^(i-1));
end

function c = add(a,b)

%c = a+b mode 2^8
c = zeros(1,4);
for i = 1:4
 c(i) = mod(a(i)+
 b(i),2^8); if
 (i+1)~ = 5
 a(i+1) = a(i+1)+fix((a(i)+b(i))/256);
 end;
 end;

function y = binvec2decA(x)
%convert binary to decimal
y = 0;
for i = 1:length(x)
 y = y+x(i)*2^(i-1);
end;

269aPPendIx a

© 2010 Taylor & Francis Group, LLC

function cipherdes1 = cipher(plaindes1,r,keyi)
%%
%%%%%%%%%%%%%%%%%%
%this file for the encryption of the plaintext to a
ciphertext using des
% clc
% clear all bin = zeros(8);
for i = 1:8
 bin(i,:) = dec2binvecA(plaindes1(i),8);
end;
plaindes = rot90(bin);
plaindes = plaindes(:);
ip = InitialPermutation(plaindes);
left = ip(1:32);
right = ip(33:64);
for round = 1:r
 expansion = exp1(right);
 xor_one = bitxor(expansion',keyi(round,:));
 substitution = DESsub(xor_one);
 permutation = p(substitution);
 xor_two = bitxor(left,permutation);
if round ~ = r left = right;
 right = xor_two;
else

 left = xor_two;
end;
end;
y(1:32) = left; y(33:64) = right;

cipherdesBIN1 = finalpermutation(y);

cipherdesBIN1 = reshape(cipherdesBIN1,8,8)';
cipherdes1 = zeros(1,8);
for i = 1:8
 cipherdes1(i) = binvec2decA(cipherdesBIN1

(i,end:-1:1));
end;

function y = Convert256toHex(x)
%convert 256 base numbers to Hex.
a = length(x);
j = 1;
y = zeros(1,2*a);
for i = 1:a

270 aPPendIx a

© 2010 Taylor & Francis Group, LLC

y(j) = fix(x(i)/16); y(j+1) = x(i)-y(j)*16; j = j+2;
end

function y = dec2binvecA(x,size)
%Convert decimal to binary
y = zeros(1,size);
z = zeros(1,size+1);
z(1) = x;
for i = 1:size
 y(i) = mod(z(i),2^i)/2^(i-1);
 z(i+1) = z(i)-y(i)*2^(i-1);
end;
% y = y(end:-1:1);

function plaindes1 = decry(cipherdes1,r,keyi)
%DES decryption
bin = zeros(8);
for i = 1:8
 bin(i,:) = dec2binvecA(cipherdes1(i),8);
end;
cipherdes = rot90(bin);
cipherdes = cipherdes(:);

ip = InitialPermutation(cipherdes);

left = ip(1:32);
right = ip(33:64);

for round = r:-1:1 expansion = exp1(right);
 xor_one = bitxor(expansion',keyi(round,:));
 substitution = DESsub(xor_one);
 permutation = p(substitution);
 xor_two = bitxor(left,permutation);
if round ~ = 1
 left = right;
 right = xor_two;
else
 left = xor_two;
end;
end;

y(1:32) = left;
y(33:64) = right;

plaindesBIN1 = finalpermutation(y);

271aPPendIx a

© 2010 Taylor & Francis Group, LLC

plaindesBIN1 = reshape(plaindesBIN1,8,8)';
plaindes1 = zeros(1,8);
for i = 1:8
 plaindes1(i) = binvec2decA(plaindesBIN1(i,
end:-1:1));
end;

fun ction DESenctextDES = DESCBC(plaintext1,m,n,CO,r,
keyi)

%Encrypt data using DES in CBC mode
DESenctextDES = zeros(m*n/8,8);
for i = 1:m*n/8
 plaintext = plaintext1(i,:);
 if i == 1
 plaintexts = bitxor(plaintext,CO);
 else
 plaintexts = bitxor(plaintext,DESenctext);
 end;
 DESenctext = cipher(plaintexts,r,keyi);
 DESenctextDES(i,:) = DESenctext;

end;

fun ction plaintextDES = DESCBCDec(DESenctext1,m,n,CO,
r,keyi)

%Decrypt data using DES in CBC mode

plaintextDES = zeros(m*n/8,8);
for i = 1:m*n/8
 DESenctextss = DESenctext1(i,:);
 re_plaintext = decry(DESenctextss,r,keyi);
 if i == 1
 plaintext = bitxor(re_plaintext,CO);
 else
 plaintext = bitxor(re_plaintext,DESenctext1

((i-1),:));
 end;
 plaintextDES(i,:) = plaintext;
end;

fun ction ciphertextDES = DESCFB(plaintext1,m,n,CO,r,
keyi)

%Encrypt data using DES in CFB mode

ciphertextDES = zeros(m*n/8,8);

272 aPPendIx a

© 2010 Taylor & Francis Group, LLC

for i = 1:m*n/8
 plaintext = plaintext1(i,:);
 if i == 1
 cr1 = cipher(CO,r,keyi);

 ciphertext = bitxor(plaintext,cr1);
 else
 cr1 = cipher(ciphertext,r,keyi);

 ciphertext = bitxor(plaintext,cr1);
 end;
 ciphertextDES(i,:) = ciphertext;

end;

fun ction plaintextDES = DESCFBDec(ciphertext1,m,n,CO,
r,keyi)

%decrypt data using DES in CFB mode

plaintextDES = zeros(m*n/8,8);
for i = 1:m*n/8
 ciphertextss = ciphertext1(i,:);
 if i = =1
 cr1 = cipher(CO,r,keyi);

 re_plaintext = bitxor(ciphertextss,cr1);
 else
 cr1 = cipher(ciphertext1(i-1,:),r,keyi);

 re_plaintext = bitxor(ciphertextss,cr1);
 end;

 plaintextDES(i,:) = re_plaintext;

end;

fun ction [xa1,Fs,nbits] = DesDecCBCAudio(x1,Fs,nbits,
key,r,CO)

%Decryption Audio using DES in CBC mode

keyi = DESkeygen(key,r);
%CBC L = length(x1);
y1 = double(x1);
plaintextDES = zeros(L/8,8);
ciphertext1 = reshape(y1,L/8,8);

273aPPendIx a

© 2010 Taylor & Francis Group, LLC

for i = 1:L/8
 ciphertextss = ciphertext1(i,:);
 re_plaintext = decry(ciphertextss,r,keyi);
 if i == 1
 plaintext = bitxor(re_plaintext,CO);
 else
 plaintext = bitxor(re_plaintext,ciphertext1

((i-1),:));
 end;
 plaintextDES(i,:) = plaintext;
end;
xa1 = uint8(plaintextDES(:));

function xa1 = DesDecCBCImage(x1,key,r,CO)
%Decrypt Image using DES in CBC mode

keyi = DESkeygen(key,r);
%CBC
[m,n] = size(x1);
y1 = double(x1);
plaintextDES = zeros(m*n/8,8);
ciphertext1 = reshape(y1',8,m*n/8)';

for i = 1:m*n/8
 ciphertextss = ciphertext1(i,:);
 re_plaintext = decry(ciphertextss,r,keyi);
 if i == 1

 plaintext = bitxor(re_plaintext,CO);
 else
 plaintext = bitxor(re_plaintext,ciphertext1

((i-1),:));
 end;
 plaintextDES(i,:) = plaintext;

end;
ya1 = reshape(plaintextDES',n,m)';

xa1 = uint8(ya1);

function xa1 = DesDecCBCImageC(x,key,r,CO)
%Decrypt Colored Image using DES in CBC mode

keyi = DESkeygen(key,r);
%CBC

274 aPPendIx a

© 2010 Taylor & Francis Group, LLC

x1 = x(:,:,1);
x2 = x(:,:,2);
x3 = x(:,:,3);
y1 = double(x1);
y2 = double(x2);
y3 = double(x3);
[m,n] = size(x1);
plaintext(:,:,1) = reshape(y1',8,m*n/8)';

plaintext(:,:,2) = reshape(y2',8,m*n/8)';
plaintext(:,:,3) = reshape(y3',8,m*n/8)';
ciphertext = x;
for i = 1:3
plaintextDES = plaintext(:,:,i);
DESenctext = DESCBCDec(plaintextDES,m,n,CO,r,keyi);
DESenctext = reshape(DESenctext',n,m)';
ciphertext(:,:,i) = DESenctext;

end;
a1 = uint8(ciphertext);

fun ction [xa1,Fs,nbits] = DesDecCFBAudio(x1,Fs,nbits,
key,r,CO)

%Decrypt Audio using DES in CFB mode

keyi = DESkeygen(key,r);
%CFB L = length(x1);
y1 = double(x1);
plaintextDES = zeros(L/8,8);
ciphertext1 = reshape(y1,L/8,8);
for i = 1:L/8
 ciphertextss = ciphertext1(i,:);
 if i == 1
 cr1 = cipher(CO,r,keyi);

 re_plaintext = bitxor(ciphertextss,cr1);
 else
 cr1 = cipher(ciphertext1(i-1,:),r,keyi);

 re_plaintext = bitxor(ciphertextss,cr1);
 end;

 plaintextDES(i,:) = re_plaintext;

end;

275aPPendIx a

© 2010 Taylor & Francis Group, LLC

xa1 = uint8(plaintextDES(:));

function xa1 = DesDecCFBImage(x1,key,r,CO)
%Decrypt Image using DES in CFB mode

keyi = DESkeygen(key,r);
%CFB
[m,n] = size(x1);
y1 = double(x1);
plaintextDES = zeros(m*n/8,8);
ciphertext1 = reshape(y1',8,m*n/8)';
for i = 1:m*n/8
 ciphertextss = ciphertext1(i,:);
 if i == 1
 cr1 = cipher(CO,r,keyi);

 re_plaintext = bitxor(ciphertextss,cr1);
 else
 cr1 = cipher(ciphertext1(i-1,:),r,keyi);

 re_plaintext = bitxor(ciphertextss,cr1);
 end;
 plaintextDES(i,:) = re_plaintext;
end;
ya1 = reshape(plaintextDES',n,m)';

xa1 = uint8(ya1);

function xa1 = DesDecCFBImageC(x,key,r,CO)
%Decrypt Colored Image using DES in CFB mode

keyi = DESkeygen(key,r);
%CFB
x1 = x(:,:,1);
x2 = x(:,:,2);
x3 = x(:,:,3);
y1 = double(x1);
y2 = double(x2);
y3 = double(x3);
[m,n] = size(x1);
plaintext(:,:,1) = reshape(y1',8,m*n/8)';
plaintext(:,:,2) = reshape(y2',8,m*n/8)';
plaintext(:,:,3) = reshape(y3',8,m*n/8)';
ciphertext = x;
for i = 1:3 plaintextDES = plaintext(:,:,i);

276 aPPendIx a

© 2010 Taylor & Francis Group, LLC

 DESenctext = DESCFBDec(plaintextDES,m,n,CO,r,keyi);
 DESenctext = reshape(DESenctext',n,m)';
 ciphertext(:,:,i) = DESenctext;
end

xa1 = uint8(ciphertext);

fun ction [xa1,Fs,nbits] = DesDecECBAudio(x1,Fs,nbits,
key,r)

%Decrypt Audio using DES in ECB mode

keyi = DESkeygen(key,r);
%ECB L = length(x1);
y1 = double(x1);
plaintextDES = zeros(L/8,8);
ciphertext1 = reshape(y1,L/8,8);
for i = 1:L/8 ciphertextss = ciphertext1(i,:);
 re_plaintext = decry(ciphertextss,r,keyi);
 plaintextDES(i,:) = re_plaintext;

end;
xa1 = uint8(plaintextDES(:));

function xa1 = DesDecECBImage(x1,key,r)
%Decrypt Image using DES in ECB mode

keyi = DESkeygen(key,r);
%ECB
[m,n] = size(x1);
y1 = double(x1);
plaintextDES = zeros(m*n/8,8);
ciphertext1 = reshape(y1',8,m*n/8)';
for i = 1:m*n/8
 ciphertextss = ciphertext1(i,:);
 re_plaintext = decry(ciphertextss,r,keyi);
 plaintextDES(i,:) = re_plaintext;
end;
ya1 = reshape(plaintextDES',n,m)';
xa1 = uint8(ya1);

function xa1 = DesDecECBImageC(x,key,r)
%Decrypt Colored Image using DES in ECB mode

keyi = DESkeygen(key,r);
%ECB x1 = x(:,:,1);

277aPPendIx a

© 2010 Taylor & Francis Group, LLC

x2 = x(:,:,2);
x3 = x(:,:,3);
y1 = double(x1);
y2 = double(x2);
y3 = double(x3);
[m,n] = size(x1);
plaintext(:,:,1) = reshape(y1',8,m*n/8)';
plaintext(:,:,2) = reshape(y2',8,m*n/8)';
plaintext(:,:,3) = reshape(y3',8,m*n/8)';
ciphertext = x;
for i = 1:3 plaintextDES = plaintext(:,:,i);
 DESenctext = DESECBDec(plaintextDES,m,n,r,keyi);
 DESenctext = reshape(DESenctext',n,m)';
 ciphertext(:,:,i) = DESenctext;
end
xa1 = uint8(ciphertext);

fun ction [xa1,Fs,nbits] = DesDecOFBAudio(x1,Fs,nbits,
key,r,CO)

%Decrypt Audio using DES in OFB mode

keyi = DESkeygen(key,r);
%OFB L = length(x1);
y1 = double(x1);
plaintextDES = zeros(L/8,8);
ciphertext1 = reshape(y1,L/8,8);
for i = 1:L/8
 ciphertextss = ciphertext1(i,:);
 if i = =1
 cr = cipher(CO,r,keyi);
 re_plaintext = bitxor(ciphertextss,cr);
 else cr = cipher(cr,r,keyi);
 re_plaintext = bitxor(ciphertextss,cr);
 end;

 plaintextDES(i,:) = re_plaintext;

end;
xa1 = uint8(plaintextDES(:));

function xa1 = DesDecOFBImage(x1,key,r,CO)
%Decrypt Image using DES in OFB mode

keyi = DESkeygen(key,r);
%OFB [m,n] = size(x1);

278 aPPendIx a

© 2010 Taylor & Francis Group, LLC

y1 = double(x1);
plaintextDES = zeros(m*n/8,8);
ciphertext1 = reshape(y1',8,m*n/8)';
for i = 1:m*n/8
 ciphertextss = ciphertext1(i,:);
 if i == 1 cr = cipher(CO,r,keyi);
 re_plaintext = bitxor(ciphertextss,cr);
 else cr = cipher(cr,r,keyi);
 re_plaintext = bitxor(ciphertextss,cr);
 end;
 plaintextDES(i,:) = re_plaintext;
end;
ya1 = reshape(plaintextDES',n,m)';
xa1 = uint8(ya1);

function xa1 = DesDecOFBImageC(x,key,r,CO)
%Decrypt Colored Image using DES in OFB mode

keyi = DESkeygen(key,r);
%OFB x1 = x(:,:,1);
x2 = x(:,:,2);
x3 = x(:,:,3);
y1 = double(x1);
y2 = double(x2);
y3 = double(x3);
[m,n] = size(x1);
plaintext(:,:,1) = reshape(y1',8,m*n/8)';
plaintext(:,:,2) = reshape(y2',8,m*n/8)';
plaintext(:,:,3) = reshape(y3',8,m*n/8)';
ciphertext = x;
for i = 1:3 plaintextDES = plaintext(:,:,i);
 DE Senctext = DESOFBDec(plaintextDES,m,n,CO,r,

keyi);
 DESenctext = reshape(DESenctext',n,m)';
 ciphertext(:,:,i) = DESenctext;
end

xa1 = uint8(ciphertext);

function DESenctextDES = DESECB(plaintext1,m,n,r,keyi)
%Encrypt Data using DES in ECB mode

DESenctextDES = zeros(m*n/8,8);
for i = 1:m*n/8
 plaintext = plaintext1(i,:);
 DESenctext = cipher(plaintext,r,keyi);

279aPPendIx a

© 2010 Taylor & Francis Group, LLC

 DESenctextDES(i,:) = DESenctext;

end;

fun ction plaintextDES = DESECBDec(DESenctext1,m,n,r,
keyi)

%Decrypt data using DES in ECB mode

plaintextDES = zeros(m*n/8,8);
for i = 1:m*n/8
 DESenctextss = DESenctext1(i,:);
 re_plaintext = decry(DESenctextss,r,keyi);
 plaintextDES(i,:) = re_plaintext;

end;

fun ction [xa,Fs,nbits] = DesEncCBCAudio(x,Fs,nbits,
key,r,CO)

%Encrypt Audio using DES in CBC mode

L = length(x);
y = double(x);
keyi = DESkeygen(key,r);
plaintext1 = reshape(y,L/8,8);
ciphertextDES = zeros(L/8,8);
 %CBC
for i = 1:L/8
 plaintext = plaintext1(i,:);
 if i == 1
 plaintexts = bitxor(plaintext,CO);
 else
 plaintexts = bitxor(plaintext,ciphertext);
 end;
 ciphertext = cipher(plaintexts,r,keyi);
 ciphertextDES(i,:) = ciphertext;
end;
xa = uint8(ciphertextDES(:));

function xa = DesEncCBCImage(x,key,r,CO)
%Encrypt Image using DES in CBC mode
[m,n] = size(x);
y = double(x);
keyi = DESkeygen(key,r);
plaintext1 = reshape(y',8,m*n/8)';
ciphertextDES = zeros(m*n/8,8);

280 aPPendIx a

© 2010 Taylor & Francis Group, LLC

 %CBC
for i = 1:m*n/8
 plaintext = plaintext1(i,:);
 if i = =1
 plaintexts = bitxor(plaintext,CO);
 else
 plaintexts = bitxor(plaintext,ciphertext);
 end;
 ciphertext = cipher(plaintexts,r,keyi);
 ciphertextDES(i,:) = ciphertext;

end;
ya = reshape(ciphertextDES',n,m)';
xa = uint8(ya);

function xa = DesEncCBCImageC(x,key,r,CO)
%Encrypt Colored Image using DES in CBC mode
x1 = x(:,:,1);
x2 = x(:,:,2);
x3 = x(:,:,3);
[m,n] = size(x1);
y1 = double(x1);
y2 = double(x2);
y3 = double(x3);
keyi = DESkeygen(key,r);
plaintext(:,:,1) = reshape(y1',8,m*n/8)';
plaintext(:,:,2) = reshape(y2',8,m*n/8)';
plaintext(:,:,3) = reshape(y3',8,m*n/8)';
DESenctext = x;
 %CBC
for i = 1:3 plaintext1 = plaintext(:,:,i);
 DESenctextDES = DESCBC(plaintext1,m,n,CO,r,keyi);
 DESenctextDES = reshape(DESenctextDES',n,m)';
 DESenctext(:,:,i) = DESenctextDES;
end;
xa = uint8(DESenctext);

fun ction [xa,Fs,nbits] = DesEncCFBAudio(x,Fs,nbits,key,
r,CO)

%Encrypt Audio using DES in CFB mode
L = length(x);
y = double(x);
keyi = DESkeygen(key,r);
plaintext1 = reshape(y,L/8,8);
ciphertextDES = zeros(L/8,8);

281aPPendIx a

© 2010 Taylor & Francis Group, LLC

 % CFB
for i = 1:L/8
 plaintext = plaintext1(i,:);
 if i = =1
 cr1 = cipher(CO,r,keyi);
 ciphertext = bitxor(plaintext,cr1);
 else cr1 = cipher(ciphertext,r,keyi);
 ciphertext = bitxor(plaintext,cr1);
 end;
 ciphertextDES(i,:) = ciphertext;
end;
xa = uint8(ciphertextDES(:));

function xa = DesEncCFBimage(x,key,r,CO)
%Encrypt Image using DES in CFB mode
[m,n] = size(x);
y = double(x);
keyi = DESkeygen(key,r);
plaintext1 = reshape(y',8,m*n/8)';
ciphertextDES = zeros(m*n/8,8);
% CFB
for i = 1:m*n/8
 plaintext = plaintext1(i,:);
 if i = =1
 cr1 = cipher(CO,r,keyi);
 ciphertext = bitxor(plaintext,cr1);
 else cr1 = cipher(ciphertext,r,keyi);
 ciphertext = bitxor(plaintext,cr1);
 end;
ciphertextDES(i,:) = ciphertext;
end;
ya = reshape(ciphertextDES',n,m)';

xa = uint8(ya);

function xa = DesEncCFBImageC(x,key,r,CO)
%Encrypt Colored Image using DES in CFB mode

x1 = x(:,:,1); x2 = x(:,:,2); x3 = x(:,:,3);
[m,n] = size(x1); y1 = double(x1);
y2 = double(x2); y3 = double(x3);
keyi = DESkeygen(key,r);
plaintext(:,:,1) = reshape(y1',8,m*n/8)';
plaintext(:,:,2) = reshape(y2',8,m*n/8)';

282 aPPendIx a

© 2010 Taylor & Francis Group, LLC

plaintext(:,:,3) = reshape(y3',8,m*n/8)';
DESenctext = x;
 % CFB
for i = 1:3 plaintext1 = plaintext(:,:,i);
 DESenctextDES = DESCFB(plaintext1,m,n,CO,r,keyi);
 DESenctextDES = reshape(DESenctextDES',n,m)';
 DESenctext(:,:,i) = DESenctextDES;
end;
xa = uint8(DESenctext);

function [xa,Fs,nbits] = DesEncECBAudio(x,Fs,nbits,
key,r)
%Encrypt Audio using DES in ECB mode
L = length(x);
y = double(x); keyi = DESkeygen(key,r);
plaintext1 = reshape(y,L/8,8);
ciphertextDES = zeros(L/8,8);
 % ECB
for i = 1:L/8 plaintext = plaintext1(i,:);
 ciphertext = cipher(plaintext,r,keyi);
 ciphertextDES(i,:) = ciphertext;
end;
xa = uint8(ciphertextDES(:));

function xa = DesEncECBImage(x,key,r)
%Encrypt Image using DES in ECB mode

[m,n] = size(x);
y = double(x); keyi = DESkeygen(key,r);
plaintext1 = reshape(y',8,m*n/8)';
ciphertextDES = zeros(m*n/8,8);
% ECB
for i = 1:m*n/8 plaintext = plaintext1(i,:);
 ciphertext = cipher(plaintext,r,keyi);
 ciphertextDES(i,:) = ciphertext;

end; ya = reshape(ciphertextDES',n,m)'; xa = uint8(ya);

function xa = DesEncECBImageC(x,key,r)
%Encrypt Colored Image using DES in ECB mode
x1 = x(:,:,1); x2 = x(:,:,2); x3 = x(:,:,3);
[m,n] = size(x1); y1 = double(x1);
y2 = double(x2);
y3 = double(x3); keyi = DESkeygen(key,r);
plaintext(:,:,1) = reshape(y1',8,m*n/8)';

283aPPendIx a

© 2010 Taylor & Francis Group, LLC

plaintext(:,:,2) = reshape(y2',8,m*n/8)';
 plaintext(:,:,3) = reshape(y3',8,m*n/8)';
DESenctext = x;

for i = 1:3 plaintext1 = plaintext(:,:,i);
 DESenctextDES = DESECB(plaintext1,m,n,r,keyi);
 DESenctextDES = reshape(DESenctextDES',n,m)';
 DESenctext(:,:,i) = DESenctextDES;
end;
xa = uint8(DESenctext);

fun ction [xa,Fs,nbits] = DesEncOFBAudio(x,Fs,nbits,
key,r,CO)

%Encrypt Audio using DES in OFB mode
L = length(x);
y = double(x); keyi = DESkeygen(key,r);
plaintext1 = reshape(y,L/8,8);
ciphertextDES = zeros(L/8,8);
 % OFB
for i = 1:L/8 plaintext = plaintext1(i,:); if i == 1
 cr = cipher(CO,r,keyi);
 else cr = cipher(cr,r,keyi);
 end; ciphertext = bitxor(plaintext,cr);
 ciphertextDES(i,:) = ciphertext;
end;
xa = uint8(ciphertextDES(:));

function xa = DesEncOFBImage(x,key,r,CO)
%Encrypt Image using DES in OFB mode

[m,n] = size(x);
y = double(x); keyi = DESkeygen(key,r);
plaintext1 = reshape(y',8,m*n/8)';
ciphertextDES = zeros(m*n/8,8);
% OFB
for i = 1:m*n/8 plaintext = plaintext1(i,:); if i == 1
 cr = cipher(CO,r,keyi);
 else cr = cipher(cr,r,keyi);
 end; ciphertext = bitxor(plaintext,cr);
 ciphertextDES(i,:) = ciphertext;
end; ya = reshape(ciphertextDES',n,m)'; xa = uint8(ya);

function xa = DesEncOFBImageC(x,key,r,CO)
%Encrypt Colored Image using DES in OFB mode

284 aPPendIx a

© 2010 Taylor & Francis Group, LLC

x1 = x(:,:,1);
x2 = x(:,:,2);
x3 = x(:,:,3);
[m,n] = size(x1);
y1 = double(x1);
y2 = double(x2);
y3 = double(x3);
keyi = DESkeygen(key,r);
plaintext(:,:,1) = reshape(y1',8,m*n/8)';
plaintext(:,:,2) = reshape(y2',8,m*n/8)';
plaintext(:,:,3) = reshape(y3',8,m*n/8)';
DESenctext = x;
% OFB
for i = 1:3 plaintext1 = plaintext(:,:,i);
 DESenctextDES = DESOFB(plaintext1,m,n,CO,r,keyi);
 DESenctextDES = reshape(DESenctextDES',n,m)';
 DESenctext(:,:,i) = DESenctextDES;
end;
xa = uint8(DESenctext);

function key1 = DESkeygen(Mainkey,r)
%DES Key Generation
% Inserting master key
% clc
% clear all

% Mainkey = ['A';'A';'B';'B';'0';'9';'1';'8';'2';'7';'
3';'6';'C';'C';'D';'D'];

key2 = Convert256toHex(Mainkey);
key = zeros(r,4); for i = 1:r
key(i,:) = dec2binvecA(key2(i),4); end
key = rot90(key);
key = key(:);

 a = [57 49 41 33 25 17 9 1 58 50 42 34 26 18 10 2 59
51 43 35 27 19 11 3 60 52 44 36 63 55 47 39 31
23 15 7 62 54 46 38 30 22 14 6 61 53 45 37 29 21
13 5 28 20 12 4];

 b = [14 17 11 24 1 5 3 28 15 6 21 10 23 19 12 4 26 8
16 7 27 20 13 2 41 52 31 37 47 55 30 40 51 45 33
48 44 49 39 56 34 53 46 42 50 36 29 32];

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 output1 = key(a);
 key1 = zeros(r,48);
 left = output1(28:-1:1);

285aPPendIx a

© 2010 Taylor & Francis Group, LLC

 right = output1(56:-1:29);
 for i = 1:r
 left = shiftleft(left,i);
 right = shiftleft(right,i);
 output(28:-1:1) = left;
 output(56:-1:29) = right;
 key1(i,:) = output(b);
end

fun ction ciphertextDES = DESOFB(plaintext1,m,n,CO,r,
keyi)

%Encrypt data using DES in OFB mode

ciphertextDES = zeros(m*n/8,8);
for i = 1:m*n/8
 plaintext = plaintext1(i,:);

 if i == 1
 cr = cipher(CO,r,keyi);

 else
 cr = cipher(cr,r,keyi);

 end;
 ciphertext = bitxor(plaintext,cr);
 ciphertextDES(i,:) = ciphertext;

end;

fun ction plaintextDES = DESOFBDec(ciphertext1,m,n,CO,
r,keyi)

%Decrypt data using DES in OFB mode

plaintextDES = zeros(m*n/8,8);
for i = 1:m*n/8
 ciphertextss = ciphertext1(i,:);
 if i = =1
 cr = cipher (CO,r,keyi);
 re_plaintext = bitxor(ciphertextss,cr);
 else cr = cipher(cr,r,keyi);
 re_plaintext = bitxor(ciphertextss,cr);
 end;

 plaintextDES(i,:) = re_plaintext;

end;

286 aPPendIx a

© 2010 Taylor & Francis Group, LLC

function y = sub(in)
%DES substitution
in1 = reshape(in',6,8)';
x = zeros(1,8);
for i = 1:8
 x(i) = binvec2decA(in1(i,end:-1:1));
end;
s = [14 0 4 15 13 7 1 4 2 14 15 2 11 13 8 1 3 10 10 6 6

12 12 11 5 9 9 5 0 3 7 8 4 15 1 12 14 8 8 2 13 4 6
9 2 1 11 7 15 5 12 11 9 3 7 14 3 10 10 0 5 6 0 13;

 15 3 1 13 8 4 14 7 6 15 11 2 3 8 4 14 9 12 7 0 2 1
13 10 12 6 0 9 5 11 10 5 0 13 14 8 7 10 11 1 10 3 4
15 13 4 1 2 5 11 8 6 12 7 6 12 9 0 3 5 2 14 15 9;

 10 13 0 7 9 0 14 9 6 3 3 4 15 6 5 10 1 2 13 8 12 5
7 14 11 12 4 11 2 15 8 1 13 1 6 10 4 13 9 0 8 6 15
9 3 8 0 7 11 4 1 5 2 14 12 3 5 11 10 5 14 2 7 12;

 7 13 13 8 14 11 3 5 0 6 6 15 9 0 10 3 1 4 2 7 8 2 5
12 11 1 12 10 4 14 15 9 10 3 6 15 9 0 0 6 12 10 11
1 7 13 13 8 15 9 1 4 3 5 14 11 5 12 2 7 8 2 4 14;

 2 14 12 11 4 2 1 12 7 4 10 7 11 13 6 1 8 5 5 0 3
15 15 10 13 3 0 9 14 8 9 6 4 11 2 8 1 12 11 7
10 1 13 14 7 2 8 13 15 6 9 15 12 0 5 9 6 10 3 4
0 5 14 3;

 12 10 1 15 10 4 15 2 9 7 2 12 6 9 8 5 0 6 13 1 3 13
4 14 14 0 7 11 5 3 11 8 9 4 14 3 15 2 5 12 2 9 8 5
12 15 3 10 7 11 0 14 4 1 10 7 1 6 13 0 11 8 6 13;

 4 13 11 0 2 11 14 7 15 4 0 9 8 1 13 10 3 14 12 3 9
5 7 12 5 2 10 15 6 8 1 6 1 6 4 11 11 13 13 8 12 1 3
4 7 10 14 7 10 9 15 5 6 0 8 15 0 14 5 2 9 3 2 12;

 13 1 2 15 8 13 4 8 6 10 15 3 11 7 1 4 10 12 9 5 3 6
14 11 5 0 0 14 12 9 7 2 7 2 11 1 4 14 1 7 9 4 12 10
14 8 2 13 0 15 6 12 10 9 13 0 15 3 3 5 5 6 8 11];

out1 = zeros(1,8);
for i = 1:8
out1(i) = s(i,x(i)+1);
end
out = zeros(8,4);
for i = 1:8
 out(i,:) = dec2binvecA(out1(i),4);
end
out = rot90(out);
y = out(:);

function expansion = exp1(right)
%DES expansion

287aPPendIx a

© 2010 Taylor & Francis Group, LLC

a = [32,1,2,3,4,5,4,5,6,7,8,9,8,9,10,11,12,13,12,13,14,
15,16,17,16,17,18,19,20,21,20,21,22,23,24,25,24,25,
26,27,28,29,28,29,30,31,32,1];

expansion = right(a);

function y = finalpermutation(x)
%DES final permutation

a = [40 8 48 16 56 24 64 32 39 7 47 15 55 23 63 31 38
6 46 14 54 22 62 30 37 5 45 13 53 21 61 29 36 4 44
12 52 20 60 28 35 3 43 11 51 19 59 27 34 2 42 10
50 18 58 26 33 1 41 9 49 17 57 25];

y = x(a);

function y = frombase256(x)
%Convert 256 base number to decimal
y = 0;
for i = 1:4
 y = y+(x(i)*256^(i-1));
end

function ip = InitialPermutation(plaindes)
%DES Initial Permutation
a = [58 50 42 34 26 18 10 2 60 52 44 36 28 20 12 4 62

54 46 38 30 22 14 6 64 56 48 40 32 24 16 8 57 49
41 33 25 17 9 1 59 51 43 35 27 19 11 3 61 53 45 37
29 21 13 5 63 55 47 39 31 23 15 7];

ip = plaindes(a);

function y = LSB5(x)
%return the 5 least significant bits of x
y = dec2bin(x(1),8);
u = y(8:-1:3); u = u(end:-1:1);
y = bin2dec(u);

function y = CHaoticCipher(im)
% This function encrypts square image using baker map
im = double(im);
n = [10,5,12,5,10,8,14,10,5,12,5,10,8,14,10,5,12,5,10,8,

14,10,5,12,5,10,8,14,10,5,12,5,10,8,14,10,5,12,5,10,
8,14,10,5,12,5,10,8,14,10,5,12,5,10,8,14,];

[pr,pc] = chaomat(n);
pim = chaoperm(im,pr,pc,3,'forward');
y = uint8(pim);
imshow(y);

288 aPPendIx a

© 2010 Taylor & Francis Group, LLC

 function [pr,pc] = chaomat(n)
%
I = sum(n);
k = size(n,2);
for i = 1:k
 N(i+1) = 1;
 for j = 1:i
 N(i+1) = N(i+1)+n(j);
 end
end

N(1) = 1;

for cb = 1:k
 for rb = 1:n(cb)
 rbstartcol(rb) = mod((rb-1)*I,n(cb));
 rbendcol(rb) = mod((rb*I-1),n(cb));
 rbstartrow(rb) = fix(((rb-1)*I)/n(cb));
 rbendrow(rb) = fix((rb*I-1)/n(cb));
 mincol(rb) = min([rbendcol(rb)+1,rbstartcol(rb)]);
 maxcol(rb) = max([rbendcol(rb),rbstartcol(rb)-1]);
 end
for i = 1:I
 for j = N(cb):N(cb+1)-1
 n ewindex(i,j-N(cb)+1) = (i-1)*n(cb)+(n(cb)-

j+N(cb)-1);
 n ewindexmod(i,j-N(cb)+1) = mod(newindex(i,j-

N(cb)+1),n(cb));
 n ewindexquotient(i,j-N(cb)+1) = fix(newindex(i,j-

N(cb)+1)/n(cb));
 r owblockindex(i,j-N(cb)+1) = fix(newindex(i,j-

N(cb)+1)/I)+1;
 end
end
for i = 1:I
 for j = 1:n(cb)
 for rb = 1:n(cb)
 if rowblockindex(i,j) = =rb;
 if newindexmod(i,j)>maxcol(rb)
 c ol = rbendrow(rb)-

newindexquotient(i,j)+(n(cb)-1-
newindexmod(i,j))*(rbendrow(rb)-
rbstartrow(rb));

 elseif newindexmod(i,j)> = mincol(rb) &
newindexmod(i,j)< = maxcol(rb)

289aPPendIx a

© 2010 Taylor & Francis Group, LLC

 if rbstartcol(rb)>rbendcol(rb)
 c = 0;
 d = -1;
 else
 c = 1;
 d = 1;
 end
 c ol = (rbendrow(rb)-

rbstartrow(rb))*(n(cb)-1-
maxcol(rb))+(rbendrow(rb)-newindexquot
ient(i,j)+c)+(maxcol(rb)-
newindexmod(i,j))*(rbendrow(rb)-
rbstartrow(rb)+d);

 else%if newindexmod(i,j)< = mincol(rb)
 c ol = I-mincol(rb)*(rbendrow(rb)-

rbstartrow(rb))+(rbendrow(rb)-newindex
quotient(i,j)+1)+(mincol(rb)-1-
newindexmod(i,j))*(rbendrow(rb)-
rbstartrow(rb));

 end
 row = 1+I-N(cb+1)+rowblockindex(i,j);
 end
 end
 pr(i,j+N(cb)-1) = row;
 pc(i,j+N(cb)-1) = col;
 end
 end
end

function out = chaoperm(im,pr,pc,num,forward)

%
[rows,cols] = size(im);
mat = zeros([rows,cols,num+1]);
mat(:,:,1) = im(:,:);
for loc = 2:num+1
if(strcmp(forward,'forward'))
 for i = 1:rows
 for j = 1:cols
 m at(pr(i,j),pc(i,j),loc) =

mat(i,j,loc-1);
 end
 end
elseif(strcmp(forward,'backward'))
 for i = 1:rows

290 aPPendIx a

© 2010 Taylor & Francis Group, LLC

 for j = 1:cols
 mat(i,j,loc) = mat(pr(i,j),pc(i,j),loc-1);
 end
 end
 end
end
out = mat(:,:,num+1);

function ID = IDMF(x,y)
%this fuunction(irregular Deviation Measuring Factor) is
based on how much the deviation cased by encryption is
%irregular.
%x:-Original Image
%y:-Encrypted Image
%D:-Maximum Deviation Measuring Factor
x = double(x);
y = double(y);
%first,calculate the difference between each pixel
value before and after
%encryption
D = uint8(abs(x-y));
%calculate the H histogram of the difference
H = imhist(D)
%calculate the average of H
DC = 0;
for i = 1:256
 DC = DC+H(i);
end
DC = DC/256;
%subtract the DC from H at every point
for i = 1:256
 AC(i) = abs(H(i)-DC);
end
%calculate the sum of AC
ID = 0;
for i = 1:256
 ID = ID+AC(i);
End;
%the lower the value, the better the encryption

function D = MDMF(x,y)
%t his fuunction calculates the Maximum Deviation
Measuring Factor which

%c alculates the deviation between the original and
encrypted image.

291aPPendIx a

© 2010 Taylor & Francis Group, LLC

%x:-Original Image
%y:-Encrypted Image
%D:-Maximum Deviation Measuring Factor
%f irst,calculate the histogram between the original
and encrypted image

x1 = imhist(x);
y1 = imhist(y);
%then calculate the difference between the two
diff = abs(y1-x1);
%then calculate D as follows
D1 = 0;
for i = 2:255
D1 = D1+diff(i);
end;
D2 = (diff(1)+diff(255))/2;
D = D1+D2;
function y = psnr(im1,im2)
%Peak Signal to Noise Ratio
MSEa = 0;
[m,n] = size(im1);
im1 = double(im1);
im2 = double(im2);
for i = 1:m
for j = 1:n
x = double(im1(i,j)-im2(i,j));
x1 = x^2/(m*n);
MSEa = MSEa+x1;
end;
end;
MSEa = double(MSEa);
y = 10*log10((255^2)/MSEa);

293© 2010 Taylor & Francis Group, LLC

Appendix B

%Image with no Encryption over OFDM system + AWGN
%Transmitter..
%Data Generation

f = imread ('Cameraman.tif');
[M,N] = size(f) ;
g1 = im2col(f, [M,N], [M,N], 'distinct');
h1 = dec2bin(double(g1));
[M1,N1] = size(h1) ;
z1 = zeros (M1,N1) ;
for i = 1
M1
for j = 1: N1
z1(i,j) = str2num(h1(i,j));
end;
end;
[R1,T1] = size(z1) ;
zz1 = reshape(z1,R1*T1, 1);
% The transmitted data
zz = [zz1];
 trel = poly2trellis(7,[171 133]);% Trellis
 data1 = zz;
 zz = convenc(data1,trel);
s1 = length(zz);
 para = 128;

294 aPPendIx b

© 2010 Taylor & Francis Group, LLC

nd = 6; %number of information OFDM symbol for one
loop

ml = 2; %Modulation level: QPSK
sr = 250000; %symbol rate
 br = sr.*ml; %Bit rat per carrier
Ipoint = 8;%Number of over samples
gilen = 32;
flat = 1;
fd = 600;

 fftlen = para;
 noc = para;
 ofdm_length = para*nd*ml; %Total no for one loop

%Dividing the image into blocks
nloops = ceil((length(zz))/ofdm_length);
new_data = nloops*ofdm_length ;
nzeros = new_data - length(zz);
input_data = [zz;zeros(nzeros,1)];
input_data2 = reshape(input_data,ofdm_length,nloops);

%Transmission ON FFT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata1 = input_data2(:,jj)';
 demodata = fft_channel(serdata1,para,nd,ml,gilen,fftl
en,sr,ebno, br);

 demodata1(:,jj) = demodata(:); % the
output of ofdm columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
part1 = yy(1: s1);
 yy11 = part1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%DECODING
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1

295aPPendIx b

© 2010 Taylor & Francis Group, LLC

for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

 end

%Transmission ON DCT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata1 = input_data2(:,jj)';
 demodata = dct_channel(serdata1,para,nd,ml,gilen,f

ftlen,sr,ebno, br);
 demodata1(:,jj) = demodata(:); % the output of

ofdm columns
end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%DECODING
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);

296 aPPendIx b

© 2010 Taylor & Francis Group, LLC

for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)
 MSE11 = sum(sum((double(f)/255-output_image1).^2))/

prod(size(f));
PSNR1 = 10*log(1/MSE11)/log(10);

end
%Transmission ON DWT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata1 = input_data2(:,jj)';
 demodata = dwt_channel(serdata1,para,nd,ml,gilen

,fftlen,sr,ebno, br);
 demodata1(:,jj) = demodata(:); % the

output of ofdm
columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%DECODING
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);

297aPPendIx b

© 2010 Taylor & Francis Group, LLC

for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)
 MSE11 = sum(sum((double(f)/255-output_image1).^2))/

prod(size(f));
PSNR1 = 10*log(1/MSE11)/log(10);

 end

%Original clipping + companding + AWGN
%Transmitter ...
%Data Generation

f = imread ('Cameraman.tif');
[M,N] = size(f) ;
g1 = im2col(f, [M,N], [M,N], 'distinct');
h1 = dec2bin(double(g1));
[M1,N1] = size(h1) ;
z1 = zeros (M1,N1) ;
for i = 1: M1
for j = 1: N1
z1(i,j) = str2num(h1(i,j));
end;
end;
[R1,T1] = size(z1) ;
zz1 = reshape(z1,R1*T1, 1);
% The transmitted data
zz = [zz1];

%ENCODING ..
 trel = poly2trellis(7,[171 133]);% Trellis
 data1 = zz;

298 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 zz = convenc(data1,trel);
s1 = length(zz);
 para = 128;
nd = 6; %number of information OFDM symbol for one loop
ml = 2; %Modulation level: QPSK
sr = 250000; %symbol rate
 br = sr.*ml; %Bit rat per carrier
Ipoint = 8;%Number of over samples
gilen = 32;
flat = 1;
fd = 600;

 dctlen = para;
 noc = para;
 ofdm_length = para*nd*ml; %Total no for one loop

%Dividing the image into blocks
nloops = ceil((length(zz))/ofdm_length);
new_data = nloops*ofdm_length ;
nzeros = new_data - length(zz);
input_data = [zz;zeros(nzeros,1)];
input_data2 = reshape(input_data,ofdm_length,nloops);

%Transmission ON FFT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata1 = input_data2(:,jj)';
 demodata = fft_channel_clipping_companding(serda

ta1,para,nd,ml,gilen,dctlen,sr,ebno,
br);

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;

299aPPendIx b

© 2010 Taylor & Francis Group, LLC

%DECODING ..
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
%The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/
prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));
PSNR1 = 10*log(1/MSE11)/log(10);

 end

%Transmission ON DCT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata1 = input_data2(:,jj)';
 demodata = dct_channel_clipping_companding(serda

ta1,para,nd,ml,gilen,dctlen,sr,ebno,
br);

 demodata1(:,jj) = demodata(:); % the
output of ofdm columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);

300 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%DECODING ..
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;
output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

end

%Transmission ON DWT_OFDM

for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata1 = input_data2(:,jj)';
 demodata = dwt_channel_clipping_companding(serda

ta1,para,nd,ml,gilen,dctlen,sr,ebno,
br);

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

301aPPendIx b

© 2010 Taylor & Francis Group, LLC

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%DECODING ..
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
%The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

end

%Image without Encryption + clipping over
 estimated channel
%Transmitter ...
%Data Generation
f = imread ('Cameraman.tif');
[M,N] = size(f) ;
g1 = im2col(f, [M,N], [M,N], 'distinct');
h1 = dec2bin(double(g1));
[M1,N1] = size(h1) ;
z1 = zeros (M1,N1) ;
for i = 1: M1
for j = 1: N1

302 aPPendIx b

© 2010 Taylor & Francis Group, LLC

z1(i,j) = str2num(h1(i,j));
end;
end;
[R1,T1] = size(z1) ;
zz1 = reshape(z1,R1*T1, 1);
% The transmitted data
zz = [zz1];

%ENCODING ..
 trel = poly2trellis(7,[171 133]);% Trellis
 data1 = zz;
 zz = convenc(data1,trel);
s1 = length(zz);
 para = 128;
nd = 6; %number of information OFDM symbol for one

loop
m1 = 2; %Modulation level: QPSK
sr = 250000; %symbol rate
 br = sr.*m1; %Bit rat per carrier
Ipoint = 8;%Number of over samples
gilen = 32;
flat = 1;
fd = 600;
 fftlen = para;
 noc = para;
 ofdm_length = para*nd*m1; %Total no for one

loop

%Dividing the image into blocks
nloops = ceil((length(zz))/ofdm_length);
new_data = nloops*ofdm_length ;
nzeros = new_data - length(zz);
input_data = [zz;zeros(nzeros,1)];
input_data2 = reshape(input_data,ofdm_length,nloops);

%Transmission ON FFT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata = input_data2(:,jj)';
 demodata = fft_channel_estimation_no_mapping_cli

pping(serdata,para,nd,m1,gilen,fftlen
,sr,ebno, br,fd,flat);

303aPPendIx b

© 2010 Taylor & Francis Group, LLC

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%DECODING ..
yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

end

 %Transmission ON DCT_OFDM

for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns

304 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 serdata = input_data2(:,jj)';
 demodata = dct_channel_estimation_no_mapping_cli

pping(serdata,para,nd,m1,gilen,fftlen
,sr,ebno, br,fd,flat);

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

%Received image
[Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
yy = reshape (demodata1,Mr*Nr,1);%
part1 = yy(1: s1);
yy11 = part1;
%DECODING ..
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

 end

 %Transmission ON DWT_OFDM

305aPPendIx b

© 2010 Taylor & Francis Group, LLC

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata = input_data2(:,jj)';
 demodata = dwt_channel_estimation_no_mapping_cli

pping(serdata,para,nd,m1,gilen,fftlen
,sr,ebno, br,fd,flat);

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%DECODING ..
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

end

306 aPPendIx b

© 2010 Taylor & Francis Group, LLC

%Image with no Encryption over OFDM system +
offset + cyclic prefix + AWGN
%Transmitter ...
%Data Generation
%Transmitter

%Data Generation
f = imread ('Cameraman.tif');
[M,N] = size(f) ;
g1 = im2col(f, [M,N], [M,N], 'distinct');
h1 = dec2bin(double(g1));
[M1,N1] = size(h1) ;
z1 = zeros (M1,N1) ;
for i = 1: M1
for j = 1: N1
z1(i,j) = str2num(h1(i,j));
end;
end;
[R1,T1] = size(z1) ;
zz1 = reshape(z1,R1*T1, 1);
% The transmitted data
zz = [zz1];
 trel = poly2trellis(7,[171 133]);% Trellis
 data1 = zz;
 zz = convenc(data1,trel);
s1 = length(zz);
 para = 128;
nd = 6; %number of information OFDM symbol for one loop
m1 = 2; %Modulation level: QPSK
sr = 250000; %symbol rate
 br = sr.*ml; %Bit rate per carrier
Ipoint = 8;%Number of over samples
gilen = 32;
flat = 1;
fd = 600;
epsilon = 0.1;

 fftlen = para;
 noc = para;
 ofdm_length = para*nd*ml; %Total no for one loop

%Dividing the image into blocks

nloops = ceil((length(zz))/ofdm_length);
new_data = nloops*ofdm_length ;

307aPPendIx b

© 2010 Taylor & Francis Group, LLC

nzeros = new_data - length(zz);
input_data = [zz;zeros(nzeros,1)];
input_data2 = reshape(input_data,ofdm_length,nloops);

%Transmission ON FFT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata = input_data2(:,jj)';
 demodata = fft_channel_offset_g(serdata,para,nd,

m1,gilen,fftlen,sr,ebno, br,epsilon);
 demodata1(:,jj) = demodata(:); % the

output of ofdm
columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%DECODING
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

308 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

 end

 %Transmission ON DCT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata1 = input_data2(:,jj)';
 demodata = dct_channel_offset_g(serdata1,para,

nd,m1,gilen,fftlen,sr,ebno,
br,epsilon);

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%DECODING
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans

309aPPendIx b

© 2010 Taylor & Francis Group, LLC

 MSE1 = sum(sum((double(f)/255-output_image).^2))/
prod(size(f));

PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

 end

 %Transmission ON DWT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata1 = input_data2(:,jj)';
 demodata = dwt_channel_offset_g(serdata1,para,

nd,m1,gilen,fftlen,sr,ebno,
br,epsilon);

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%DECODING
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

310 aPPendIx b

© 2010 Taylor & Francis Group, LLC

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

end

%Image with no Encryption over OFDM system + offset +
zero padding + AWGN
%Transmitter ...
%Data Generation

f = imread ('Cameraman.tif');
[M,N] = size(f) ;
g1 = im2col(f, [M,N], [M,N], 'distinct');
h1 = dec2bin(double(g1));
[M1,N1] = size(h1) ;
z1 = zeros (M1,N1) ;
for i = 1: M1
for j = 1: N1
z1(i,j) = str2num(h1(i,j));
end;
end;
[R1,T1] = size(z1) ;
zz1 = reshape(z1,R1*T1, 1);
% The transmitted data
...............
zz = [zz1];
 trel = poly2trellis(7,[171 133]);% Trellis
 data1 = zz;
 zz = convenc(data1,trel);
s1 = length(zz);
 para = 128;
nd = 6; %number of information OFDM symbol for one loop
m1 = 2; %Modulation level: QPSK
sr = 250000; %symbol rate
 br = sr.*ml; %Bit rate per carrier
Ipoint = 8;%Number of over samples
gilen = 32;

311aPPendIx b

© 2010 Taylor & Francis Group, LLC

flat = 1;
fd = 600;
epsilon = 0.1;
 fftlen = para;
 noc = para;
 ofdm_length = para*nd*ml; %Total no for one loop

%Dividing the image into blocks
nloops = ceil((length(zz))/ofdm_length);
new_data = nloops*ofdm_length ;
nzeros = new_data - length(zz);
input_data = [zz;zeros(nzeros,1)];
input_data2 = reshape(input_data,ofdm_length,nloops);

%Transmission ON FFT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata = input_data2(:,jj)';
 demodata = fft_channel_offset_zg(serdata,para,

nd,m1,gilen,fftlen,sr,ebno,
br,epsilon);

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

%Received image
[Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%DECODING
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;

312 aPPendIx b

© 2010 Taylor & Francis Group, LLC

hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

end

%Transmission ON DCT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata1 = input_data2(:,jj)';
 demodata = dct_channel_offset_zg(serdata1,para,n

d,m1,gilen,fftlen,sr,ebno,
br,epsilon);

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%DECODING
yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);

313aPPendIx b

© 2010 Taylor & Francis Group, LLC

for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

 end

%Transmission ON DWT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata1 = input_data2(:,jj)';
 demodata = dwt_channel_offset_zg(serdata1,para,n

d,m1,gilen,fftlen,sr,ebno,
br,epsilon);

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;

314 aPPendIx b

© 2010 Taylor & Francis Group, LLC

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%DECODING
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

end

%Image with no Encryption + OFDM + offset + cyclic
prefix + over estimated channel...
%Transmitter ...
%Data Generation

%Transmitter ...

%Data Generation
f = imread ('Cameraman.tif');
[M,N] = size(f) ;
g1 = im2col(f, [M,N], [M,N], 'distinct');
h1 = dec2bin(double(g1));
[M1,N1] = size(h1) ;
z1 = zeros (M1,N1) ;
for i = 1: M1
for j = 1: N1
z1(i,j) = str2num(h1(i,j));
end;

315aPPendIx b

© 2010 Taylor & Francis Group, LLC

end;
[R1,T1] = size(z1) ;
zz1 = reshape(z1,R1*T1, 1);
% The transmitted data
zz = [zz1];

%ENCODING ..
 trel = poly2trellis(7,[171 133]);% Trellis
 data1 = zz;
 zz = convenc(data1,trel);
s1 = length(zz);
 para = 128;
nd = 6; %number of information OFDM symbol for one

loop
m1 = 2; %Modulation level: QPSK
sr = 250000; %symbol rate
 br = sr.*m1; %Bit rate per carrier
Ipoint = 8;%Number of over samples
gilen = 32;
flat = 1;
fd = 600;

 fftlen = para;
 noc = para;
 ofdm_length = para*nd*m1; %Total no for one loop

%Dividing the image into blocks
nloops = ceil((length(zz))/ofdm_length);
new_data = nloops*ofdm_length ;
nzeros = new_data - length(zz);
input_data = [zz;zeros(nzeros,1)];
input_data2 = reshape(input_data,ofdm_length,nloops);

%Transmission ON FFT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata = input_data2(:,jj)';
 demodata = fft_channel_estimation_no_mapping_g(s

erdata,para,nd,m1,gilen,fftlen,sr,e
bno, br,fd,flat);

316 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%DECODING ..
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

end

%Transmission ON DCT_OFDM

for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns

317aPPendIx b

© 2010 Taylor & Francis Group, LLC

 serdata = input_data2(:,jj)';
 demodata = dct_channel_estimation_no_mapping_g(s

erdata,para,nd,m1,gilen,fftlen,sr,e
bno, br,fd,flat);

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%DECODING ..
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

 end

 %Transmission ON DWT_OFDM

318 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata = input_data2(:,jj)';
 demodata = dwt_channel_estimation_no_mapping_g(s

erdata,para,nd,m1,gilen,fftlen,sr,e
bno, br,fd,flat);

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%DECODING
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

end

319aPPendIx b

© 2010 Taylor & Francis Group, LLC

%Image with no Encryption + OFDM + offset + zero
padding + over estimated channel........
%Transmitter ...
%Data Generation
%Transmitter ...
%Data Generation
f = imread ('Cameraman.tif');
[M,N] = size(f) ;
g1 = im2col(f, [M,N], [M,N], 'distinct');
h1 = dec2bin(double(g1));
[M1,N1] = size(h1) ;
z1 = zeros (M1,N1) ;
for i = 1: M1
for j = 1: N1
z1(i,j) = str2num(h1(i,j));
end;
end;
[R1,T1] = size(z1) ;
zz1 = reshape(z1,R1*T1, 1);
% The transmitted data
zz = [zz1];

%ENCODING ..
 trel = poly2trellis(7,[171 133]);% Trellis
 data1 = zz;
 zz = convenc(data1,trel);
s1 = length(zz);
 para = 128;
nd = 6; %number of information OFDM symbol for one
loop
m1 = 2; %Modulation level: QPSK
sr = 250000; %symbol rate
 br = sr.*m1; %Bit rate per carrier
Ipoint = 8;%Number of over samples
gilen = 32;
flat = 1;
fd = 600;

 fftlen = para;
 noc = para;
 ofdm_length = para*nd*m1; %Total no for one loop

%Dividing the image into blocks

nloops = ceil((length(zz))/ofdm_length);

320 aPPendIx b

© 2010 Taylor & Francis Group, LLC

new_data = nloops*ofdm_length ;
nzeros = new_data - length(zz);
input_data = [zz;zeros(nzeros,1)];
input_data2 = reshape(input_data,ofdm_length,nloops);

%Transmission ON FFT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata = input_data2(:,jj)';
 demodata = fft_channel_estimation_no_mapping_zg

(serdata,para,nd,m1,gilen,fftlen,sr,e
bno, br,fd,flat);

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%DECODING ..
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans

321aPPendIx b

© 2010 Taylor & Francis Group, LLC

 MSE1 = sum(sum((double(f)/255-output_image).^2))/
prod(size(f));

PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

 end

 %Transmission ON DCT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata = input_data2(:,jj)';
 demodata = dct_channel_estimation_no_mapping_zg

(serdata,para,nd,m1,gilen,fftlen,sr,e
bno, br,fd,flat);

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%DECODING ..
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;
end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans

322 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

 end

 %Transmission ON DWT_OFDM

 for ebno = [0,2,4,6,8,10];

demodata1 = zeros(ofdm_length,nloops);
for jj = 1: nloops % loop for columns
 serdata = input_data2(:,jj)';
 demodata = dwt_channel_estimation_no_mapping_zg(

serdata,para,nd,m1,gilen,fftlen,sr,e
bno, br,fd,flat);

 demodata1(:,jj) = demodata(:); % the
output of ofdm
columns

end

%Received image
 [Mr,Nr] = size(demodata1);
% demodata2 = demodata1(:);
 yy = reshape (demodata1,Mr*Nr,1);%
 part1 = yy(1: s1);
yy11 = part1;
%DECODING ..
 yy11 = vitdec(yy11',trel,1,'term','hard');% Decode.

yy1 = reshape(yy11,[R1,T1]);
for i = 1: M1
for j = 1: N1
zn1(i,j) = num2str(yy1(i,j));
end;

323aPPendIx b

© 2010 Taylor & Francis Group, LLC

end;
hn1 = bin2dec(zn1);
gn1 = col2im(hn1, [M,N], [M,N], 'distinct');
 %The Error between Trans
 output_image = gn1/255;

output_image1 = medfilt2(output_image);

%The Error between Trans
 MSE1 = sum(sum((double(f)/255-output_image).^2))/

prod(size(f));
PSNR = 10*log(1/MSE1)/log(10)

 MSE11 = sum(sum((double(f)/255-output_image1).^2))/
prod(size(f));

PSNR1 = 10*log(1/MSE11)/log(10);

end

%%
function outdemodata = fft_channel(serdata,para,nd,m1,

gilen,fftlen,sr,ebno, br)

%serial to parallel conversion

paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length(ich01)

,Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;
%IFFT
x = ich1 + qch1.*j;
y = ifft(x);
ich2 = real (y);
qch2 = imag (y);

%Guard interval insertion

[ich3,qch3] = giins(ich2,qch2,fftlen,gilen,nd);
fftlen2 = fftlen + gilen;

%Attenuation Calculation

324 aPPendIx b

© 2010 Taylor & Francis Group, LLC

spow = sum(ich3.^2+qch3.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);

%Receiver ...
%AWGN addition

 [ich4,qch4] = comb(ich3,qch3,attn);

%Guard interval removal
 [ich5,qch5] = girem (ich4,qch4,fftlen2,gilen,nd);
%FFT
rx = ich5 + qch5.*j;
ry = fft(rx);
ich6 = real (ry);
qch6 = imag (ry);

%Demodulation ..
 ich7 = ich6./kmod;
 qch7 = qch6./kmod;
 outdemodata = qpskdemod (ich7,qch7,para,nd,m1);
function outdemodata = dct_channel(serdata,para,nd,m1,

gilen,dctlen,sr,ebno, br)

%serial to parallel conversion

paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] =
compoversamp(ich01,qch01,length(ich01),Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;
%IDCT ..
x = ich1 + qch1.*j;
y = idct(x);
ich2 = real (y);
qch2 = imag (y);

%Guard interval insertion

[ich3,qch3] = giins(ich2,qch2,dctlen,gilen,nd);
dctlen2 = dctlen + gilen;

325aPPendIx b

© 2010 Taylor & Francis Group, LLC

%Attenuation Calculation

spow = sum(ich3.^2+qch3.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);

%Receiver ...

%AWGN addition

 [ich4,qch4] = comb(ich3,qch3,attn);

%Guard interval removal
[ich5,qch5] = girem (ich4,qch4,dctlen2,gilen,nd);
%DCT ...
rx = ich5 + qch5.*j;
ry = dct(rx);
ich6 = real (ry);
qch6 = imag (ry);

%Demodulation ..
 ich7 = ich6./kmod;
 qch7 = qch6./kmod;
 outdemodata = qpskdemod (ich7,qch7,para,nd,m1);

function outdemodata = dwt_channel(serdata,para,nd,m1,
gilen,dctlen,sr,ebno, br)

%serial to parallel conversion

paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length

(ich01), Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;
%IDWT ..
x = ich1 + qch1.*j;
y = wavelet('D6',-1,x,'zpd'); % Invert 5 stages
%; % 2D wavelet transform
% R = wavelet('2D CDF 9/7',-2,Y); % Recover X from Y%
Forward transform with 5 stages

326 aPPendIx b

© 2010 Taylor & Francis Group, LLC

ich2 = real (y);
qch2 = imag (y);

%Guard interval insertion

[ich3,qch3] = giins(ich2,qch2,dctlen,gilen,nd);
dctlen2 = dctlen + gilen;

%Attenuation Calculation

spow = sum(ich3.^2+qch3.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);

%Receiver ...

%AWGN addition

 [ich4,qch4] = comb(ich3,qch3,attn);

%Guard interval removal
 [ich5,qch5] = girem (ich4,qch4,dctlen2,gilen,nd);
%DWT ...
rx = ich5 + qch5.*j;
ry = wavelet('D6',1,rx,'zpd');; % 2D wavelet transform
% R = wavelet('2D CDF 9/7',-2,Y); % Recover X from Y;
ich6 = real (ry);
qch6 = imag (ry);

%Demodulation ..
 ich7 = ich6./kmod;
 qch7 = qch6./kmod;
 outdemodata = qpskdemod (ich7,qch7,para,nd,m1);

function outdemodata = fft_channel_clipping_companding
(serdata,para,nd,m1,gilen,fftle
n,sr,ebno, br)

paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length

(ich01),Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;

327aPPendIx b

© 2010 Taylor & Francis Group, LLC

qch1 = qch.*kmod;

%IFFT
x = ich1 + qch1.*i;
y = ifft(x);
CR = 4;
 clipping_threshold = (10^(CR/10))*sqrt(mean(ab

s(y).^2));
 tx_signal_Ang = angle(y);

 for ii = 1: length(y)
 if y(ii) = = y(ii);
 y(ii) = y(ii);

 elseif abs(y(ii)).^2> clipping_threshold
 y(ii) = clipping_threshold.*exp(sqrt

(-1)*tx_signal_Ang(ii));

 end
 end
%companding
u = 4;

 tx_lfdma_max = max(abs(y(1: nd*para)));
 tx_lfdma_Abs = abs(y(1: nd*para)); % tx data

amplitude

 TxSamples_lfdma1 = tx_lfdma_max*((log10(1+u*(tx_
lfdma_Abs./tx_lfdma_max)))/
log10(u+1)).*sign(y(1:
nd*para));

 tx_ifdma_max = max(abs(y(1: nd*para)));
 tx_ifdma_Abs = abs(y(1: nd*para)); % tx data

amplitude
 yy = tx_ifdma_max*((log10(1+u*(tx_ifdma_Abs./

tx_ifdma_max)))/log10(u+1)).*sign(y
(1: nd*para));

ich3 = real (yy);
qch3 = imag (yy);

%Guard interval insertion

[ich4,qch4] = giins(ich3,qch3,fftlen,gilen,nd);

328 aPPendIx b

© 2010 Taylor & Francis Group, LLC

fftlen2 = fftlen + gilen;

%Attenuation Calculation
spow = sum(ich4.^2+qch4.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);
%fading ..
%******* Create Rayleigh fading channel object.*******
%******************* AWGN addition *******************
%Receiver ...

%AWGN addition

 [ich5,qch5] = comb(ich4,qch4,attn);
%perfect fading compensation

%Guard interval removal
 [ich6,qch6] = girem (ich5,qch5,fftlen2,gilen,nd);
%FFT ...
rx = ich6 + qch6.*j;

 %%%%%%%%%%% Expanding
 rx_lfdma_Abs = abs(rx);
 r_lfdma_max = tx_lfdma_max;

RxSamples_lfdma = (r_lfdma_max/u)*(exp(log10(1+u)*2.30
2585093*rx_lfdma_Abs./r_lfdma_max)-1).*sign(rx);

 rx_ifdma_Abs = abs(rx);
 r_ifdma_max = tx_ifdma_max;

rxx = (r_ifdma_max/u)*(exp(log10(1+u)*2.302585093
*rx_ifdma_Abs./r_ifdma_max)-1).*sign(rx);

ry = fft(rxx);
ich7 = real (ry);
qch7 = imag (ry);

%Demodulation ..
 ich10 = ich7./kmod;
 qch10 = qch7./kmod;
 outdemodata = qpskdemod (ich10,qch10,para,nd,m1);

function outdemodata = dct_channel_clipping_companding
(serdata,para,nd,m1,gilen,dctlen,sr,ebno, br)

329aPPendIx b

© 2010 Taylor & Francis Group, LLC

%serial to parallel conversion

paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length

(ich01),Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;
%IDCT ..
x = ich1 + qch1.*j;
y = idct(x);

CR = 4;
 clipping_threshold = (10^(CR/10))*sqrt(mean(ab

s(y).^2));
 tx_signal_Ang = angle(y);

 for ii = 1: length(y)
 if y(ii) = = y(ii);
 y(ii) = y(ii);

 elseif abs(y(ii)).^2> clipping_threshold
 y(ii) = clipping_threshold.*exp(sqrt(-1)*tx_

signal_Ang(ii));

 end
end
%companding
u = 4;

 tx_lfdma_max = max(abs(y(1: nd*para)));
 tx_lfdma_Abs = abs(y(1: nd*para)); % tx data

amplitude

 TxSamples_lfdma1 = tx_lfdma_max*((log10(1+u*
(tx_lfdma_Abs./tx_lfdma_
max)))/log10(u+1)).*sign(y
(1: nd*para));

 tx_ifdma_max = max(abs(y(1: nd*para)));
 tx_ifdma_Abs = abs(y(1: nd*para)); % tx data

amplitude

330 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 yy = tx_ifdma_max*((log10(1+u*(tx_ifdma_Abs./
tx_ifdma_max)))/log10(u+1)).*sign(y(1:
nd*para));

ich2 = real (yy);
qch2 = imag (yy);

%Guard interval insertion

[ich3,qch3] = giins(ich2,qch2,dctlen,gilen,nd);
dctlen2 = dctlen + gilen;

%Attenuation Calculation

spow = sum(ich3.^2+qch3.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);

%Receiver ...

%AWGN addition

 [ich4,qch4] = comb(ich3,qch3,attn);

%Guard interval removal
 [ich5,qch5] = girem (ich4,qch4,dctlen2,gilen,nd);
%DCT ...
rx = ich5 + qch5.*j;

 %%%%%%%%%%% Expanding
 rx_lfdma_Abs = abs(rx);
 r_lfdma_max = tx_lfdma_max;

RxSamples_lfdma = (r_lfdma_max/u)*(exp(log10(1+u)*2.30
2585093*rx_lfdma_Abs./r_lfdma_max)-
1).*sign(rx);

 rx_ifdma_Abs = abs(rx);
 r_ifdma_max = tx_ifdma_max;

rxx = (r_ifdma_max/u)*(exp(log10(1+u)*2.302585093
*rx_ifdma_Abs./r_ifdma_max)-1).*sign(rx);

ry = dct(rxx);
ich6 = real (ry);

331aPPendIx b

© 2010 Taylor & Francis Group, LLC

qch6 = imag (ry);

%Demodulation ..

 ich7 = ich6./kmod;
 qch7 = qch6./kmod;
 outdemodata = qpskdemod (ich7,qch7,para,nd,m1);

function outdemodata = dwt_channel_clipping_companding
(serdata,para,nd,m1,gilen,dctlen,sr,ebno, br)

%serial to parallel conversion

paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length

(ich01),Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;
%IDWT ..
x = ich1 + qch1.*j;
y = wavelet('D6',-1,x,'zpd'); % Invert 5 stages
%; % 2D wavelet transform
% R = wavelet('2D CDF 9/7',-2,Y); % Recover X from Y%
Forward transform with 5 stages
CR = 4;
 clipping_threshold = (10^(CR/10))*sqrt(mean(ab

s(y).^2));
 tx_signal_Ang = angle(y);
 for ii = 1: length(y)
 if y(ii) = = y(ii);
 y(ii) = y(ii);

 elseif abs(y(ii)).^2> clipping_threshold
 y(ii) = clipping_threshold.*exp(sqrt

(-1)*tx_signal_Ang(ii));

 end
end
%companding
u = 4;

332 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 tx_lfdma_max = max(abs(y(1: nd*para)));
 tx_lfdma_Abs = abs(y(1: nd*para)); % tx data

amplitude
 TxSamples_lfdma1 = tx_lfdma_max*((log10(1+u*

(tx_lfdma_Abs./tx_lfdma_
max)))/log10(u+1)).*sign
(y(1: nd*para));

 tx_ifdma_max = max(abs(y(1: nd*para)));
 tx_ifdma_Abs = abs(y(1: nd*para)); % tx data

amplitude
 yy = tx_ifdma_max*((log10(1+u*(tx_ifdma_Abs./

tx_ifdma_max)))/log10(u+1)).*sign(y(1:
nd*para));

ich2 = real (yy);
qch2 = imag (yy);

%Guard interval insertion

[ich3,qch3] = giins(ich2,qch2,dctlen,gilen,nd);
dctlen2 = dctlen + gilen;

%Attenuation Calculation

spow = sum(ich3.^2+qch3.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);

%Receiver ...
%AWGN addition
 [ich4,qch4] = comb(ich3,qch3,attn);

%Guard interval removal

 [ich5,qch5] = girem (ich4,qch4,dctlen2,gilen,nd);
%DWT ...
rx = ich5 + qch5.*j;

 %%%%%%%%%%% Expanding
 rx_lfdma_Abs = abs(rx);
 r_lfdma_max = tx_lfdma_max;

RxSamples_lfdma = (r_lfdma_max/u)*(exp(log10(1+u)*2.30
2585093*rx_lfdma_Abs./r_lfdma_max)
-1).*sign(rx);

333aPPendIx b

© 2010 Taylor & Francis Group, LLC

 rx_ifdma_Abs = abs(rx);
 r_ifdma_max = tx_ifdma_max;

rxx = (r_ifdma_max/u)*(exp(log10(1+u)*2.302585093
*rx_ifdma_Abs./r_ifdma_max)-1).*sign(rx);

ry = wavelet('D6',1,rxx,'zpd');; % 2D wavelet transform
% R = wavelet('2D CDF 9/7',-2,Y); % Recover X from Y;
ich6 = real (ry);
qch6 = imag (ry);

%Demodulation ..
ich7 = ich6./kmod;
qch7 = qch6./kmod;
outdemodata = qpskdemod (ich7,qch7,para,nd,m1);

function outdemodata = fft_channel_estimation_no_
mapping_clipping(serdata,para,nd,m1,gilen,fftlen,sr,e
bno, br,fd,flat)

paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length
(ich01),Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;
%channel estimation data generation
kndata = zeros(1,fftlen);
kndata0 = 2.*(rand(1,para)<0.5)-1;
kndata(1: para/2) = kndata0(1: para/2);
kndata((para/2)+1: para) = kndata0((para/2)+1: para);
ceich = kndata;
ceqch = zeros(1,para);
%data mapping ..
ich2 = [ceich.' ich1];
qch2 = [ceqch.' qch1];
%IFFT ..
x = ich2 + qch2.*i;

y = ifft(x);
CR = 4;
 clipping_threshold = (10^(CR/10))*sqrt(mean(ab

s(y).^2));

334 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 tx_signal_Ang = angle(y);
 for ii = 1: length(y)
 if y(ii) = = y(ii);
 y(ii) = y(ii);

 elseif abs(y(ii)).^2> clipping_threshold
 y(ii) = clipping_threshold.*exp(sqrt(-1)*tx_

signal_Ang(ii));

 end
 end

ich3 = real (y);
qch3 = imag (y);

%Guard interval insertion
[ich4,qch4] = giins(ich3,qch3,fftlen,gilen,nd+1);
fftlen2 = fftlen + gilen;

%Attenuation Calculation
spow = sum(ich4.^2+qch4.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);
%fading ..
%******* Create Rayleigh fading channel object.*******
tstp = 1/sr/(fftlen+gilen);
itau = [0,2,3,4];
dlvll = [0,10,20,25];
n0 = [6,7,6,7];
th1 = [0,0,0,0];
itnd1 = [1000,2000,3000,4000];
now1 = 4;
itnd0 = nd*(fftlen+gilen)*20;
[ifade,qfade,ramp,rcos,rsin] = sefade(ich4,qch4,itau,d
lvll,th1,n0,itnd1,now1,length(ich4),tstp,fd,flat);
itnd1 = itnd1+itnd0;
ich4 = ifade;
qch4 = qfade;

%******************* AWGN addition *******************
%Receiver ...

%AWGN addition
[ich5,qch5] = comb(ich4,qch4,attn);

335aPPendIx b

© 2010 Taylor & Francis Group, LLC

%perfect fading compensation
 ifade2 = 1./ramp.*(rcos(1,:).*ich5+rsin

(1,:).*qch5);
 qfade2 = 1./ramp.*(-rsin(1,:).*ich5+rcos

(1,:).*qch5);
 ich5 = ifade2;
 qch5 = qfade2;

%Guard interval removal
 [ich6,qch6] = girem (ich5,qch5,fftlen2,gilen,nd+1);
%FFT ...
rx = ich6 + qch6.*j;
ry = fft(rx);
ich7 = real (ry);
qch7 = imag (ry);
%fading compensation by channel estimation symbol
ce = 1;
ice0 = ich2(:,ce);
qce0 = qch2(:,ce);
ice1 = ich7(:,ce);
qce1 = qch7(:,ce);
%calculate reverse rotation
iv = real((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).

*(ice1-i.*qce1));
qv = imag((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).

*(ice1-i.*qce1));
%matrix for reverse rotation
ieqv1 = [iv iv iv iv iv iv iv];
qeqv1 = [qv qv qv qv qv qv qv];
%reverse rotation
icompen = real((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
qcompen = imag((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
ich7 = icompen;
qch7 = qcompen;
%channel estimation symbol removal
knd = 1; %number of known channel estimation ofdm

symbol
ich9 = ich7(:,knd+1: nd+1);
qch9 = qch7(:,knd+1: nd+1);

%Demodulation ..
ich10 = ich9./kmod;
qch10 = qch9./kmod;
outdemodata = qpskdemod (ich10,qch10,para,nd,m1);

336 aPPendIx b

© 2010 Taylor & Francis Group, LLC

function outdemodata = dct_channel_estimation_no_
mapping_clipping(serdata,para,n
d,m1,gilen,fftlen,sr,ebno,
br,fd,flat)

paradata = reshape(serdata,para,nd*m1);

%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length(ich01)

,Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;
%channel estimation data generation
kndata = zeros(1,fftlen);
kndata0 = 2.*(rand(1,para)<0.5)-1;
kndata(1: para/2) = kndata0(1: para/2);
kndata((para/2)+1: para) = kndata0((para/2)+1: para);
ceich = kndata;
ceqch = zeros(1,para);
%data mapping ..
ich2 = [ceich.' ich1];
qch2 = [ceqch.' qch1];
%IDCT ..
x = ich2 + qch2.*i;

y = idct(x);

CR = 4;

 clipping_threshold = (10^(CR/10))*sqrt(mean(ab
s(y).^2));

 tx_signal_Ang = angle(y);
 for ii = 1: length(y)
 if y(ii) = = y(ii);
 y(ii) = y(ii);
 elseif abs(y(ii)).^2> clipping_threshold
 y(ii) = clipping_threshold.*exp(sqrt(-1)*tx_

signal_Ang(ii));

 end
end

ich3 = real (y);

337aPPendIx b

© 2010 Taylor & Francis Group, LLC

qch3 = imag (y);

%Guard interval insertion

[ich4,qch4] = giins(ich3,qch3,fftlen,gilen,nd+1);
fftlen2 = fftlen + gilen;

%Attenuation Calculation

spow = sum(ich4.^2+qch4.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);
%fading ..
%******* Create Rayleigh fading channel object.*******
tstp = 1/sr/(fftlen+gilen);
itau = [0,2,3,4];
dlvll = [0,10,20,25];
n0 = [6,7,6,7];
th1 = [0,0,0,0];
itnd1 = [1000,2000,3000,4000];
now1 = 4;
itnd0 = nd*(fftlen+gilen)*20;
[ifade,qfade,ramp,rcos,rsin] = sefade(ich4,qch4,itau,d
lvll,th1,n0,itnd1,now1,length(ich4),tstp,fd,flat);
itnd1 = itnd1+itnd0;
ich4 = ifade;
qch4 = qfade;

%******************* AWGN addition *******************
%Receiver ...

%AWGN addition

 [ich5,qch5] = comb(ich4,qch4,attn);
 %perfect fading compensation
...............
ifade2 = 1./ramp.*(rcos(1,:).*ich5+rsin(1,:).*qch5);
qfade2 = 1./ramp.*(-rsin(1,:).*ich5+rcos(1,:).*qch5);
ich5 = ifade2;
qch5 = qfade2;

%Guard interval removal
[ich6,qch6] = girem (ich5,qch5,fftlen2,gilen,nd+1);
%DCT ...
rx = ich6 + qch6.*j;

338 aPPendIx b

© 2010 Taylor & Francis Group, LLC

ry = dct(rx);
ich7 = real (ry);
qch7 = imag (ry);
%fading compensation by channel estimation symbol
ce = 1;
ice0 = ich2(:,ce);
qce0 = qch2(:,ce);
ice1 = ich7(:,ce);
qce1 = qch7(:,ce);
%calculate reverse rotation
iv = real((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).
*(ice1-i.*qce1));
qv = imag((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).
*(ice1-i.*qce1));
%matrix for reverse rotation
ieqv1 = [iv iv iv iv iv iv iv];
qeqv1 = [qv qv qv qv qv qv qv];
%reverse rotation
icompen = real((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
qcompen = imag((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
ich7 = icompen;
qch7 = qcompen;
%channel estimation symbol removal
knd = 1; %number of known channel

estimation ofdm symbol
ich9 = ich7(:,knd+1: nd+1);
qch9 = qch7(:,knd+1: nd+1);

%Demodulation ..
ich10 = ich9./kmod;
qch10 = qch9./kmod;
outdemodata = qpskdemod (ich10,qch10,para,nd,m1);

function outdemodata = dwt_channel_estimation_no_
mapping_clipping(serdata,para,nd,m1,gilen,fftlen,sr,e
bno, br,fd,flat)

paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length

(ich01),Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;

339aPPendIx b

© 2010 Taylor & Francis Group, LLC

%channel estimation data generation
kndata = zeros(1,fftlen);
kndata0 = 2.*(rand(1,para)<0.5)-1;
kndata(1: para/2) = kndata0(1: para/2);
kndata((para/2)+1: para) = kndata0((para/2)+1: para);
ceich = kndata;
ceqch = zeros(1,para);
%data mapping ..
ich2 = [ceich.' ich1];
qch2 = [ceqch.' qch1];

%IDWT ..
x = ich2 + qch2.*j;
y = wavelet('D6',-1,x,'zpd'); % Invert 5 stages
%; % 2D wavelet transform
% R = wavelet('2D CDF 9/7',-2,Y); % Recover X from Y%
Forward transform with 5 stages
CR = 4;
 clipping_threshold = (10^(CR/10))*sqrt(mean(ab

s(y).^2));
 tx_signal_Ang = angle(y);
 for ii = 1: length(y)
 if y(ii) = = y(ii);
 y(ii) = y(ii);
 elseif abs(y(ii)).^2> clipping_threshold
 y(ii) = clipping_threshold.*exp(sqrt

(-1)*tx_signal_Ang(ii));

 end
end

ich3 = real (y);
qch3 = imag (y);
%Guard interval insertion

[ich4,qch4] = giins(ich3,qch3,fftlen,gilen,nd+1);
fftlen2 = fftlen + gilen;

%Attenuation Calculation

spow = sum(ich4.^2+qch4.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);
%fading ..
%******* Create Rayleigh fading channel object.*******

340 aPPendIx b

© 2010 Taylor & Francis Group, LLC

tstp = 1/sr/(fftlen+gilen);
itau = [0,2,3,4];
dlvll = [0,10,20,25];
n0 = [6,7,6,7];
th1 = [0,0,0,0];
itnd1 = [1000,2000,3000,4000];
now1 = 4;
itnd0 = nd*(fftlen+gilen)*20;
[ifade,qfade,ramp,rcos,rsin] = sefade(ich4,qch4,itau,d
lvll,th1,n0,itnd1,now1,length(ich4),tstp,fd,flat);
itnd1 = itnd1+itnd0;
ich4 = ifade;
qch4 = qfade;

%*******************AWGN addition ********************
%Receiver ...

%AWGN addition
 [ich5,qch5] = comb(ich4,qch4,attn);
 %perfect fading compensation
 ifade2 = 1./ramp.*(rcos(1,:).*ich5+rsin

(1,:).*qch5);
 qfade2 = 1./ramp.*(-rsin(1,:).*ich5+rcos

(1,:).*qch5);
 ich5 = ifade2;
 qch5 = qfade2;

%Guard interval removal
 [ich6,qch6] = girem (ich5,qch5,fftlen2,gilen,nd+1);
%DWT ...
rx = ich6 + qch6.*j;
ry = wavelet('D6',1,rx,'zpd');; % 2D wavelet

transform
% R = wavelet('2D CDF 9/7',-2,Y); % Recover X from Y;
ich7 = real (ry);
qch7 = imag (ry);
%fading compensation by channel estimation symbol
ce = 1;
ice0 = ich2(:,ce);
qce0 = qch2(:,ce);
ice1 = ich7(:,ce);
qce1 = qch7(:,ce);
%calculate reverse rotation
iv = real((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).

*(ice1-i.*qce1));

341aPPendIx b

© 2010 Taylor & Francis Group, LLC

qv = imag((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).
*(ice1-i.*qce1));

%matrix for reverse rotation
ieqv1 = [iv iv iv iv iv iv iv];
qeqv1 = [qv qv qv qv qv qv qv];
%reverse rotation
icompen = real((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
qcompen = imag((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
ich7 = icompen;
qch7 = qcompen;
%channel estimation symbol removal
knd = 1; %number of known channel estimation ofdm
symbol
ich9 = ich7(:,knd+1: nd+1);
qch9 = qch7(:,knd+1: nd+1);

%Demodulation ..
ich10 = ich9./kmod;
qch10 = qch9./kmod;
outdemodata = qpskdemod (ich10,qch10,para,nd,m1);

function outdemodata = fft_channel_offset_g(serdata,pa
ra,nd,m1,gilen,fftlen,sr,ebno, br,epsilon)

%serial to parallel conversion
paradata = reshape(serdata,para,nd*m1);

%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);

% [ich0,qch0] = compoversamp(ich01,qch01,length
(ich01),Ipoint);

kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;

%IFFT ..
x = ich1 + qch1.*j;
y = ifft(x);
ich2 = real (y);
qch2 = imag (y);

%Guard interval insertion
[ich3,qch3] = giins1(ich2,qch2,fftlen,gilen,nd);
fftlen2 = fftlen + gilen;

342 aPPendIx b

© 2010 Taylor & Francis Group, LLC

%Attenuation Calculation
spow = sum(ich3.^2+qch3.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);

%offset ..
n = para/2;
offset = exp(j*2*pi*n*epsilon/para);
i_rx_signal = ich3.*offset;
q_rx_signal = qch3.*offset;
ich3a = i_rx_signal ;
qch3a = q_rx_signal ;

%Receiver ...
%AWGN addition
[ich4,qch4] = comb(ich3a,qch3a,attn);

%Guard interval removal
[ich5,qch5] = girem1 (ich4,qch4,fftlen2,gilen,nd);

%FFT ...
rx = ich5 + qch5.*j;
ry = fft(rx);
ich6 = real (ry);
qch6 = imag (ry);

%Demodulation ..
 ich7 = ich6./kmod;
 qch7 = qch6./kmod;
 outdemodata = qpskdemod (ich7,qch7,para,nd,m1);

function outdemodata = dct_channel_offset_g(serdata,pa
ra,nd,m1,gilen,fftlen,sr,ebno, br,epsilon)

%serial to parallel conversion
paradata = reshape(serdata,para,nd*m1);

%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);

% [ich0,qch0] = compoversamp(ich01,qch01,length
(ich01),Ipoint);

kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;

343aPPendIx b

© 2010 Taylor & Francis Group, LLC

%IDCT ..
x = ich1 + qch1.*j;
y = idct(x);
ich2 = real (y);
qch2 = imag (y);

%Guard interval insertion
[ich3,qch3] = giins1(ich2,qch2,fftlen,gilen,nd);
fftlen2 = fftlen + gilen;

%Attenuation Calculation
spow = sum(ich3.^2+qch3.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);

%offset ..
n = para/2;
offset = exp(j*2*pi*n*epsilon/para);
i_rx_signal = ich3.*offset;
q_rx_signal = qch3.*offset;
ich3a = i_rx_signal ;
qch3a = q_rx_signal ;

%Receiver ...
%AWGN addition
 [ich4,qch4] = comb(ich3a,qch3a,attn);

%Guard interval removal
[ich5,qch5] = girem1 (ich4,qch4,fftlen2,gilen,nd);

%DCT ...
rx = ich5 + qch5.*j;
ry = dct(rx);
ich6 = real (ry);
qch6 = imag (ry);

%Demodulation ..
ich7 = ich6./kmod;
qch7 = qch6./kmod;
outdemodata = qpskdemod (ich7,qch7,para,nd,m1);
function outdemodata = dwt_channel_offset_g(serdata,pa

ra,nd,m1,gilen,dctlen,sr,ebno,
br,epsilon)

%serial to parallel conversion

344 aPPendIx b

© 2010 Taylor & Francis Group, LLC

paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length
(ich01),Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;
%IDWT ..
x = ich1 + qch1.*j;
y = wavelet('D6',-1,x,'zpd'); % Invert 5 stages

% 2D wavelet transf
% R = wavelet('2D CDF 9/7',-2,Y); % Recover X from Y%

Forward transform with 5 stages
ich2 = real (y);
qch2 = imag (y);

%Guard interval insertion
[ich3,qch3] = giins1(ich2,qch2,dctlen,gilen,nd);
dctlen2 = dctlen + gilen;

%Attenuation Calculation
spow = sum(ich3.^2+qch3.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);

%offset ..
n = para/2;
offset = exp(j*2*pi*n*epsilon/para);
i_rx_signal = ich3.*offset;
q_rx_signal = qch3.*offset;
ich3a = i_rx_signal ;
qch3a = q_rx_signal ;

%Receiver ...
%AWGN addition
 [ich4,qch4] = comb(ich3a,qch3a,attn);
%Guard interval removal
 [ich5,qch5] = girem1 (ich4,qch4,dctlen2,gilen,nd);
%DWT ...
rx = ich5 + qch5.*j;
ry = wavelet('D6',1,rx,'zpd');; % 2D wavelet transform
% R = wavelet('2D CDF 9/7',-2,Y); % Recover X from Y;
ich6 = real (ry);

345aPPendIx b

© 2010 Taylor & Francis Group, LLC

qch6 = imag (ry);

%Demodulation ..
ich7 = ich6./kmod;
qch7 = qch6./kmod;
outdemodata = qpskdemod (ich7,qch7,para,nd,m1);

function outdemodata = fft_channel_offset_zg(serdata,p
ara,nd,m1,gilen,fftlen,sr,ebno,
br,epsilon)

%serial to parallel conversion
paradata = reshape(serdata,para,nd*m1);

%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);

% [ich0,qch0] = compoversamp(ich01,qch01,length
(ich01),Ipoint);

kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;

%IFFT ..
x = ich1 + qch1.*j;
y = ifft(x);
ich2 = real (y);
qch2 = imag (y);

%Guard interval insertion
[ich3,qch3] = giins2(ich2,qch2,fftlen,gilen,nd);
fftlen2 = fftlen + gilen;

%Attenuation Calculation
spow = sum(ich3.^2+qch3.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);

%offset ..
n = para/2;
offset = exp(j*2*pi*n*epsilon/para);
i_rx_signal = ich3.*offset;
q_rx_signal = qch3.*offset;
ich3a = i_rx_signal ;
qch3a = q_rx_signal ;

346 aPPendIx b

© 2010 Taylor & Francis Group, LLC

%Receiver ...
%AWGN addition
[ich4,qch4] = comb(ich3a,qch3a,attn);

%Guard interval removal
[ich5,qch5] = girem1 (ich4,qch4,fftlen2,gilen,nd);

%FFT ...
rx = ich5 + qch5.*j;
ry = fft(rx);
ich6 = real (ry);
qch6 = imag (ry);

%Demodulation ..
 ich7 = ich6./kmod;
 qch7 = qch6./kmod;
 outdemodata = qpskdemod (ich7,qch7,para,nd,m1);

function outdemodata = dct_channel_offset_zg(serdata,p
ara,nd,m1,gilen,fftlen,sr,ebno,
br,epsilon)

%serial to parallel conversion
paradata = reshape(serdata,para,nd*m1);

%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);

% [ich0,qch0] = compoversamp(ich01,qch01,length
(ich01),Ipoint);

kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;

%IDCT ..
x = ich1 + qch1.*j;
y = idct(x);
ich2 = real (y);
qch2 = imag (y);

%Guard interval insertion
[ich3,qch3] = giins2(ich2,qch2,fftlen,gilen,nd);
fftlen2 = fftlen + gilen;

%Attenuation Calculation

347aPPendIx b

© 2010 Taylor & Francis Group, LLC

spow = sum(ich3.^2+qch3.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);

%offset ..
n = para/2;
offset = exp(j*2*pi*n*epsilon/para);
i_rx_signal = ich3.*offset;
q_rx_signal = qch3.*offset;
ich3a = i_rx_signal ;
qch3a = q_rx_signal ;

%Receiver ...
%AWGN addition
 [ich4,qch4] = comb(ich3a,qch3a,attn);

%Guard interval removal
 [ich5,qch5] = girem1 (ich4,qch4,fftlen2,gilen,nd);

%DCT ...
rx = ich5 + qch5.*j;
ry = dct(rx);
ich6 = real (ry);
qch6 = imag (ry);

%Demodulation ..
ich7 = ich6./kmod;
qch7 = qch6./kmod;
outdemodata = qpskdemod (ich7,qch7,para,nd,m1);

function outdemodata = dwt_channel_offset_zg(serdata,p
ara,nd,m1,gilen,dctlen,sr,ebno,
br,epsilon)

%serial to parallel conversion
paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length

(ich01),Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;
%IDWT ..
x = ich1 + qch1.*j;

348 aPPendIx b

© 2010 Taylor & Francis Group, LLC

y = wavelet('D6',-1,x,'zpd'); % Invert 5 stages

% 2D wavelet transf
% R = wavelet('2D CDF 9/7',-2,Y); % Recover X from Y%
Forward transform with 5 stages
ich2 = real (y);
qch2 = imag (y);

%Guard interval insertion
[ich3,qch3] = giins2(ich2,qch2,dctlen,gilen,nd);
dctlen2 = dctlen + gilen;

%Attenuation Calculation
spow = sum(ich3.^2+qch3.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);

%offset ..
n = para/2;
offset = exp(j*2*pi*n*epsilon/para);
i_rx_signal = ich3.*offset;
q_rx_signal = qch3.*offset;
ich3a = i_rx_signal ;
qch3a = q_rx_signal ;

%Receiver ...
%AWGN addition
[ich4,qch4] = comb(ich3a,qch3a,attn);
%Guard interval removal
[ich5,qch5] = girem1 (ich4,qch4,dctlen2,gilen,nd);
%DWT ...
rx = ich5 + qch5.*j;
ry = wavelet('D6',1,rx,'zpd');; % 2D wavelet transform
% R = wavelet('2D CDF 9/7',-2,Y); % Recover X from Y;
ich6 = real (ry);
qch6 = imag (ry);

%Demodulation ..
ich7 = ich6./kmod;
qch7 = qch6./kmod;
outdemodata = qpskdemod (ich7,qch7,para,nd,m1);
function outdemodata = fft_channel_estimation_no_mappi

ng_g(serdata,para,nd,m1,gilen,f
ftlen,sr,ebno, br,fd,flat)

349aPPendIx b

© 2010 Taylor & Francis Group, LLC

paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length(ich01)
,Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;
%channel estimation data generation
kndata = zeros(1,fftlen);
kndata0 = 2.*(rand(1,para)<0.5)-1;
kndata(1: para/2) = kndata0(1: para/2);
kndata((para/2)+1: para) = kndata0((para/2)+1: para);
ceich = kndata;
ceqch = zeros(1,para);
%data mapping ..
ich2 = [ceich.' ich1];
qch2 = [ceqch.' qch1];

%IFFT ..
x = ich2 + qch2.*i;
y = ifft(x);
ich3 = real (y);
qch3 = imag (y);

%Guard interval insertion
[ich4,qch4] = giins1(ich3,qch3,fftlen,gilen,nd+1);
fftlen2 = fftlen + gilen;

%Attenuation Calculation
spow = sum(ich4.^2+qch4.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);

%fading ..
%******* Create Rayleigh fading channel object.*******
tstp = 1/sr/(fftlen+gilen);
itau = [0,2,3,4];
dlvll = [0,10,20,25];
n0 = [6,7,6,7];
th1 = [0,0,0,0];
itnd1 = [1000,2000,3000,4000];
now1 = 4;
itnd0 = nd*(fftlen+gilen)*20;

350 aPPendIx b

© 2010 Taylor & Francis Group, LLC

[ifade,qfade,ramp,rcos,rsin] = sefade(ich4,qch4,itau,d
lvll,th1,n0,itnd1,now1,length(ich4),tstp,fd,flat);
itnd1 = itnd1+itnd0;
ich4 = ifade;
qch4 = qfade;

%******************* AWGN addition *******************
%Receiver ...
%AWGN addition
 [ich5,qch5] = comb(ich4,qch4,attn);
 %perfect fading compensation
 ifade2 = 1./ramp.*(rcos(1,:).*ich5+rsin

(1,:).*qch5);
 qfade2 = 1./ramp.*(-rsin(1,:).*ich5+rcos

(1,:).*qch5);
 ich5 = ifade2;
 qch5 = qfade2;

%Guard interval removal
 [ich6,qch6] = girem1 (ich5,qch5,fftlen2,gilen,nd+1);
%FFT ...
rx = ich6 + qch6.*j;
ry = fft(rx);
ich7 = real (ry);
qch7 = imag (ry);
%fading compensation by channel estimation symbol
ce = 1;
ice0 = ich2(:,ce);
qce0 = qch2(:,ce);
ice1 = ich7(:,ce);
qce1 = qch7(:,ce);
%calculate reverse rotation
iv = real((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).

*(ice1-i.*qce1));
qv = imag((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).

*(ice1-i.*qce1));
%matrix for reverse rotation
ieqv1 = [iv iv iv iv iv iv iv];
qeqv1 = [qv qv qv qv qv qv qv];
%reverse rotation
icompen = real((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
qcompen = imag((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
ich7 = icompen;
qch7 = qcompen;
%channel estimation symbol removal

351aPPendIx b

© 2010 Taylor & Francis Group, LLC

knd = 1; %number of known channel estimation ofdm
symbol
ich9 = ich7(:,knd+1: nd+1);
qch9 = qch7(:,knd+1: nd+1);

%Demodulation ..
ich10 = ich9./kmod;
qch10 = qch9./kmod;
outdemodata = qpskdemod (ich10,qch10,para,nd,m1);

function outdemodata = dct_channel_estimation_no_mappi
ng_g(serdata,para,nd,m1,gilen,f
ftlen,sr,ebno, br,fd,flat)

paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length

(ich01),Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;
%channel estimation data generation
kndata = zeros(1,fftlen);
kndata0 = 2.*(rand(1,para)<0.5)-1;
kndata(1: para/2) = kndata0(1: para/2);
kndata((para/2)+1: para) = kndata0((para/2)+1: para);
ceich = kndata;
ceqch = zeros(1,para);
%data mapping ..
ich2 = [ceich.' ich1];
qch2 = [ceqch.' qch1];

%IDCT ..
x = ich2 + qch2.*i;
y = idct(x);
ich3 = real (y);
qch3 = imag (y);

%Guard interval insertion

[ich4,qch4] = giins1(ich3,qch3,fftlen,gilen,nd+1);
fftlen2 = fftlen + gilen;

%Attenuation Calculation

352 aPPendIx b

© 2010 Taylor & Francis Group, LLC

spow = sum(ich4.^2+qch4.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);
%fading ..
%******* Create Rayleigh fading channel object.*******
tstp = 1/sr/(fftlen+gilen);
itau = [0,2,3,4];
dlvll = [0,10,20,25];
n0 = [6,7,6,7];
th1 = [0,0,0,0];
itnd1 = [1000,2000,3000,4000];
now1 = 4;
itnd0 = nd*(fftlen+gilen)*20;
[ifade,qfade,ramp,rcos,rsin] = sefade(ich4,qch4,itau,d
lvll,th1,n0,itnd1,now1,length(ich4),tstp,fd,flat);
itnd1 = itnd1+itnd0;
ich4 = ifade;
qch4 = qfade;

%****************** AWGN addition ********************
%Receiver ...

%AWGN addition
 [ich5,qch5] = comb(ich4,qch4,attn);
 %perfect fading compensation
 ifade2 = 1./ramp.*(rcos(1,:).*ich5+rsin

(1,:).*qch5);
 qfade2 = 1./ramp.*(-rsin(1,:).*ich5+rcos

(1,:).*qch5);
 ich5 = ifade2;
 qch5 = qfade2;

%Guard interval removal
 [ich6,qch6] = girem1 (ich5,qch5,fftlen2,gilen,nd+1);
%DCT ...
rx = ich6 + qch6.*j;
ry = dct(rx);
ich7 = real (ry);
qch7 = imag (ry);
%fading compensation by channel estimation symbol
ce = 1;
ice0 = ich2(:,ce);
qce0 = qch2(:,ce);
ice1 = ich7(:,ce);
qce1 = qch7(:,ce);

353aPPendIx b

© 2010 Taylor & Francis Group, LLC

%calculate reverse rotation
iv = real((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).
*(ice1-i.*qce1));
qv = imag((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).
*(ice1-i.*qce1));
%matrix for reverse rotation
ieqv1 = [iv iv iv iv iv iv iv];
qeqv1 = [qv qv qv qv qv qv qv];
%reverse rotation
icompen = real((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
qcompen = imag((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
ich7 = icompen;
qch7 = qcompen;
%channel estimation symbol removal
knd = 1; %number of known channel estimation ofdm
symbol
ich9 = ich7(:,knd+1: nd+1);
qch9 = qch7(:,knd+1: nd+1);

%Demodulation ..
ich10 = ich9./kmod;
qch10 = qch9./kmod;
outdemodata = qpskdemod (ich10,qch10,para,nd,m1);

function outdemodata = dwt_channel_estimation_no_mappi
ng_g(serdata,para,nd,m1,gilen,f
ftlen,sr,ebno, br,fd,flat)

paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length(ich01)
,Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;
%channel estimation data generation
kndata = zeros(1,fftlen);
kndata0 = 2.*(rand(1,para)<0.5)-1;
kndata(1: para/2) = kndata0(1: para/2);
kndata((para/2)+1: para) = kndata0((para/2)+1: para);
ceich = kndata;
ceqch = zeros(1,para);
%data mapping ..
ich2 = [ceich.' ich1];

354 aPPendIx b

© 2010 Taylor & Francis Group, LLC

qch2 = [ceqch.' qch1];

%IDWT ..
x = ich2 + qch2.*j;
y = wavelet('D6',-1,x,'zpd'); % Invert 5 stages
%; % 2D wavelet transform
% R = wavelet('2D CDF 9/7',-2,Y); % Recover X from Y%
Forward transform with 5 stages

ich3 = real (y);
qch3 = imag (y);

%Guard interval insertion
[ich4,qch4] = giins1(ich3,qch3,fftlen,gilen,nd+1);
fftlen2 = fftlen + gilen;

%Attenuation Calculation

spow = sum(ich4.^2+qch4.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);
%fading ..
%******* Create Rayleigh fading channel object.*******
tstp = 1/sr/(fftlen+gilen);
itau = [0,2,3,4];
dlvll = [0,10,20,25];
n0 = [6,7,6,7];
th1 = [0,0,0,0];
itnd1 = [1000,2000,3000,4000];
now1 = 4;
itnd0 = nd*(fftlen+gilen)*20;
[ifade,qfade,ramp,rcos,rsin] = sefade(ich4,qch4,itau,d
lvll,th1,n0,itnd1,now1,length(ich4),tstp,fd,flat);
itnd1 = itnd1+itnd0;
ich4 = ifade;
qch4 = qfade;

%****************** AWGN addition ********************
%Receiver ...
%AWGN addition
 [ich5,qch5] = comb(ich4,qch4,attn);
 %perfect fading compensation
 ifade2 = 1./ramp.*(rcos(1,:).*ich5+rsin

(1,:).*qch5);

355aPPendIx b

© 2010 Taylor & Francis Group, LLC

 qfade2 = 1./ramp.*(-rsin(1,:).*ich5+rcos
(1,:).*qch5);

 ich5 = ifade2;
 qch5 = qfade2;

%Guard interval removal
 [ich6,qch6] = girem1 (ich5,qch5,fftlen2,gilen,nd+1);
%DWT ...
rx = ich6 + qch6.*j;
ry = wavelet('D6',1,rx,'zpd');; % 2D wavelet

transform
% R = wavelet('2D CDF 9/7',-2,Y); % Recover X from Y;
ich7 = real (ry);
qch7 = imag (ry);

%fading compensation by channel estimation symbol
ce = 1;
ice0 = ich2(:,ce);
qce0 = qch2(:,ce);
ice1 = ich7(:,ce);
qce1 = qch7(:,ce);
%calculate reverse rotation
iv = real((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).
*(ice1-i.*qce1));
qv = imag((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).
*(ice1-i.*qce1));
%matrix for reverse rotation
ieqv1 = [iv iv iv iv iv iv iv];
qeqv1 = [qv qv qv qv qv qv qv];
%reverse rotation
icompen = real((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
qcompen = imag((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
ich7 = icompen;
qch7 = qcompen;
%channel estimation symbol removal
knd = 1; %number of known channel estimation ofdm
symbol
ich9 = ich7(:,knd+1: nd+1);
qch9 = qch7(:,knd+1: nd+1);

%Demodulation ..
ich10 = ich9./kmod;
qch10 = qch9./kmod;
outdemodata = qpskdemod (ich10,qch10,para,nd,m1);

356 aPPendIx b

© 2010 Taylor & Francis Group, LLC

function outdemodata = fft_channel_estimation_no_map-
ping_zg(serdata,para,nd,m1,gile
n,fftlen,sr,ebno, br,fd,flat)

paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length
(ich01),Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;
%channel estimation data generation
kndata = zeros(1,fftlen);
kndata0 = 2.*(rand(1,para)<0.5)-1;
kndata(1: para/2) = kndata0(1: para/2);
kndata((para/2)+1: para) = kndata0((para/2)+1: para);
ceich = kndata;
ceqch = zeros(1,para);
%data mapping ..
ich2 = [ceich.' ich1];
qch2 = [ceqch.' qch1];

%IFFT ..
x = ich2 + qch2.*i;
y = ifft(x);
ich3 = real (y);
qch3 = imag (y);

%Guard interval insertion
[ich4,qch4] = giins2(ich3,qch3,fftlen,gilen,nd+1);
fftlen2 = fftlen + gilen;

%Attenuation Calculation

spow = sum(ich4.^2+qch4.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);
%fading ..
%*******Create Rayleigh fading channel object.********
tstp = 1/sr/(fftlen+gilen);
itau = [0,2,3,4];
dlvll = [0,10,20,25];
n0 = [6,7,6,7];
th1 = [0,0,0,0];

357aPPendIx b

© 2010 Taylor & Francis Group, LLC

itnd1 = [1000,2000,3000,4000];
now1 = 4;
itnd0 = nd*(fftlen+gilen)*20;
[ifade,qfade,ramp,rcos,rsin] = sefade(ich4,qch4,itau,d
lvll,th1,n0,itnd1,now1,length(ich4),tstp,fd,flat);
itnd1 = itnd1+itnd0;
ich4 = ifade;
qch4 = qfade;

%***************** AWGN addition *********************
%Receiver ...
%AWGN addition

 [ich5,qch5] = comb(ich4,qch4,attn);
 %perfect fading compensation
 ifade2 = 1./ramp.*(rcos(1,:).

*ich5+rsin(1,:).*qch5);
 qfade2 = 1./ramp.*(-rsin(1,:). *ich5+rcos

(1,:).*qch5);
 ich5 = ifade2;
 qch5 = qfade2;

%Guard interval removal
 [ich6,qch6] = girem1 (ich5,qch5,fftlen2,gilen,nd+1);
%FFT ...
rx = ich6 + qch6.*j;
ry = fft(rx);
ich7 = real (ry);
qch7 = imag (ry);
%fading compensation by channel estimation symbol
ce = 1;
ice0 = ich2(:,ce);
qce0 = qch2(:,ce);
ice1 = ich7(:,ce);
qce1 = qch7(:,ce);
%calculate reverse rotation
iv = real((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).

*(ice1-i.*qce1));
qv = imag((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).

*(ice1-i.*qce1));
%matrix for reverse rotation
ieqv1 = [iv iv iv iv iv iv iv];
qeqv1 = [qv qv qv qv qv qv qv];
%reverse rotation
icompen = real((ich7+i.*qch7).*(ieqv1+i.*qeqv1));

358 aPPendIx b

© 2010 Taylor & Francis Group, LLC

qcompen = imag((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
ich7 = icompen;
qch7 = qcompen;
%channel estimation symbol removal
knd = 1; %number of known channel estimation ofdm

symbol
ich9 = ich7(:,knd+1: nd+1);
qch9 = qch7(:,knd+1: nd+1);

%Demodulation ..
ich10 = ich9./kmod;
qch10 = qch9./kmod;
outdemodata = qpskdemod (ich10,qch10,para,nd,m1);

function outdemodata = dct_channel_estimation_no_map-
ping_zg(serdata,para,nd,m1,gile
n,fftlen,sr,ebno, br,fd,flat)

paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length

(ich01),Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;
%channel estimation data generation
kndata = zeros(1,fftlen);
kndata0 = 2.*(rand(1,para)<0.5)-1;
kndata(1: para/2) = kndata0(1: para/2);
kndata((para/2)+1: para) = kndata0((para/2)+1: para);
ceich = kndata;
ceqch = zeros(1,para);
%data mapping ..
ich2 = [ceich.' ich1];
qch2 = [ceqch.' qch1];

%IDCT ..
x = ich2 + qch2.*i;
y = idct(x);
ich3 = real (y);
qch3 = imag (y);
%Guard interval insertion
[ich4,qch4] = giins2(ich3,qch3,fftlen,gilen,nd+1);
fftlen2 = fftlen + gilen;

359aPPendIx b

© 2010 Taylor & Francis Group, LLC

%Attenuation Calculation
spow = sum(ich4.^2+qch4.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);
%fading ..
%******* Create Rayleigh fading channel object.*******
tstp = 1/sr/(fftlen+gilen);
itau = [0,2,3,4];
dlvll = [0,10,20,25];
n0 = [6,7,6,7];
th1 = [0,0,0,0];
itnd1 = [1000,2000,3000,4000];
now1 = 4;
itnd0 = nd*(fftlen+gilen)*20;
[ifade,qfade,ramp,rcos,rsin] = sefade(ich4,qch4,itau,d
lvll,th1,n0,itnd1,now1,length(ich4),tstp,fd,flat);
itnd1 = itnd1+itnd0;
ich4 = ifade;
qch4 = qfade;

%******************* AWGN addition *******************
%Receiver ...

%AWGN addition

 [ich5,qch5] = comb(ich4,qch4,attn);
 %perfect fading compensation
 ifade2 = 1./ramp.*(rcos(1,:). *ich5+rsin

(1,:).*qch5);
 qfade2 = 1./ramp.*(-rsin(1,:). *ich5+rcos

(1,:).*qch5);
 ich5 = ifade2;
 qch5 = qfade2;

%Guard interval removal
 [ich6,qch6] = girem1 (ich5,qch5,fftlen2,gilen,nd+1);
%DCT ...
rx = ich6 + qch6.*j;
ry = dct(rx);
ich7 = real (ry);
qch7 = imag (ry);
%fading compensation by channel estimation symbol
ce = 1;
ice0 = ich2(:,ce);
qce0 = qch2(:,ce);

360 aPPendIx b

© 2010 Taylor & Francis Group, LLC

ice1 = ich7(:,ce);
qce1 = qch7(:,ce);
%calculate reverse rotation
iv = real((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).
*(ice1-i.*qce1));
qv = imag((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).
*(ice1-i.*qce1));
%matrix for reverse rotation
ieqv1 = [iv iv iv iv iv iv iv];
qeqv1 = [qv qv qv qv qv qv qv];
%reverse rotation
icompen = real((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
qcompen = imag((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
ich7 = icompen;
qch7 = qcompen;
%channel estimation symbol removal
knd = 1; %number of known channel estimation ofdm

symbol
ich9 = ich7(:,knd+1: nd+1);
qch9 = qch7(:,knd+1: nd+1);

%Demodulation ..
ich10 = ich9./kmod;
qch10 = qch9./kmod;
outdemodata = qpskdemod (ich10,qch10,para,nd,m1);

function outdemodata = dwt_channel_estimation_no_map-
ping_zg(serdata,para,nd,m1,gile
n,fftlen,sr,ebno, br,fd,flat)

paradata = reshape(serdata,para,nd*m1);
%QPSK modulation
[ich,qch] = qpskmod(paradata,para,nd,m1);
% [ich0,qch0] = compoversamp(ich01,qch01,length(ich01)
,Ipoint);
kmod = 1/sqrt(2);
ich1 = ich.*kmod;
qch1 = qch.*kmod;
%channel estimation data generation
kndata = zeros(1,fftlen);
kndata0 = 2.*(rand(1,para)<0.5)-1;
kndata(1: para/2) = kndata0(1: para/2);
kndata((para/2)+1: para) = kndata0((para/2)+1: para);
ceich = kndata;
ceqch = zeros(1,para);

361aPPendIx b

© 2010 Taylor & Francis Group, LLC

%data mapping ..
ich2 = [ceich.' ich1];
qch2 = [ceqch.' qch1];

%IDWT ..
x = ich2 + qch2.*j;
y = wavelet('D6',-1,x,'zpd'); % Invert 5 stages
%; % 2D wavelet transform
% R = wavelet('2D CDF 9/7',-2,Y); % Recover X from Y%
Forward transform with 5 stages

ich3 = real (y);
qch3 = imag (y);

%Guard interval insertion
[ich4,qch4] = giins2(ich3,qch3,fftlen,gilen,nd+1);
fftlen2 = fftlen + gilen;

%Attenuation Calculation
spow = sum(ich4.^2+qch4.^2)/nd./para;
attn = 0.5*spow*sr/br*10.^(-ebno/10);
attn = sqrt (attn);
%fading ..
%****** Create Rayleigh fading channel object.********
tstp = 1/sr/(fftlen+gilen);
itau = [0,2,3,4];
dlvll = [0,10,20,25];
n0 = [6,7,6,7];
th1 = [0,0,0,0];
itnd1 = [1000,2000,3000,4000];
now1 = 4;
itnd0 = nd*(fftlen+gilen)*20;
[ifade,qfade,ramp,rcos,rsin] = sefade(ich4,qch4,itau,d
lvll,th1,n0,itnd1,now1,length(ich4),tstp,fd,flat);
itnd1 = itnd1+itnd0;
ich4 = ifade;
qch4 = qfade;

%******************* AWGN addition *******************
%Receiver ...

%AWGN addition

 [ich5,qch5] = comb(ich4,qch4,attn);
 %perfect fading compensation

362 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 ifade2 = 1./ramp.*(rcos(1,:).*ich5+rsin
(1,:).*qch5);

 qfade2 = 1./ramp.*(-rsin(1,:).*ich5+rcos
(1,:).*qch5);

ich5 = ifade2;
qch5 = qfade2;

%Guard interval removal
 [ich6,qch6] = girem1 (ich5,qch5,fftlen2,gilen,nd+1);
%DWT ...
rx = ich6 + qch6.*j;
ry = wavelet('D6',1,rx,'zpd');; % 2D wavelet transform
% R = wavelet('2D CDF 9/7',-2,Y); % Recover X from Y;
ich7 = real (ry);
qch7 = imag (ry);

%fading compensation by channel estimation symbol
ce = 1;
ice0 = ich2(:,ce);
qce0 = qch2(:,ce);
ice1 = ich7(:,ce);
qce1 = qch7(:,ce);
%calculate reverse rotation
iv = real((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).
*(ice1-i.*qce1));
qv = imag((1./(ice1.^2+qce1.^2)).*(ice0+i.*qce0).
*(ice1-i.*qce1));
%matrix for reverse rotation
ieqv1 = [iv iv iv iv iv iv iv];
qeqv1 = [qv qv qv qv qv qv qv];
%reverse rotation
icompen = real((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
qcompen = imag((ich7+i.*qch7).*(ieqv1+i.*qeqv1));
ich7 = icompen;
qch7 = qcompen;
%channel estimation symbol removal
knd = 1; %number of known channel estimation ofdm
symbol
ich9 = ich7(:,knd+1: nd+1);
qch9 = qch7(:,knd+1: nd+1);

%Demodulation ..
ich10 = ich9./kmod;
qch10 = qch9./kmod;
outdemodata = qpskdemod (ich10,qch10,para,nd,m1);

363aPPendIx b

© 2010 Taylor & Francis Group, LLC

function [iout,qout] = qpskmod(paradata,para,nd,m1)

%**************** variables **********************
% paradata : input data (para-by-nd matrix)
% iout : output Ich data
% qout : output Qch data
% para : Number of parallel channels
% nd : Number of data
% m1 : Number of modulation levels
% (QPSK = 2 16QAM = 4)

%***

m2 = m1./2;

paradata2 = paradata.*2-1;
count2 = 0;
for jjj = 1: nd
 isi = zeros (para,1);
 isq = zeros (para,1);
 for ii = 1 : m2
 isi = isi + 2.^(m2 - ii).*paradata2

((1: para),ii+count2) ;
 isq = isq + 2.^(m2 - ii).*paradata2

((1: para),m2+ii+count2) ;
 end
 iout((1: para),jjj) = isi;
 qout((1: para),jjj) = isq;
 count2 = count2 + m1;
end
%******************** End of file ********************

function [demodata] = qpskdemod(idata,
qdata,para,nd,m1)

%**************** variables **********************

% idata : input Ich data
% qdata : input Qch data
% demodata : demodulated data
% para : Number of parallel channels
% nd : Number of data
% m1 : Number of modulation levels
% (QPSK = 2 16QAM = 4)
%***

364 aPPendIx b

© 2010 Taylor & Francis Group, LLC

demodata = zeros (para,m1*nd);
demodata ((1: para), (1: m1 : m1*nd-1)) =
idata((1: para), (1: nd)) > = 0;
demodata ((1: para), (2: m1 : m1*nd)) =
qdata((1: para), (1: nd)) > = 0;

%****************** End of file *********************

function varargout = wavelet(WaveletName,Level,X,Ext,
Dim)

%WAVELET Discrete wavelet transform.
% Y = WAVELET(W,L,X) computes the L-stage discrete
wavelet transform

% (DWT) of signal X using wavelet W. The length of X
must be

% divisible by 2^L. For the inverse transform,
WAVELET(W,-L,X)

% inverts L stages. Choices for W are
% 'Haar' Haar
% 'D1','D2','D3','D4','D5','D6' Daubechies'
% 'Sym1','Sym2','Sym3','Sym4','Sym5','Sym6' Symlets
% 'Coif1','Coif2' Coiflets
% 'BCoif1' Coiflet-like [2]
% 'Spline Nr.Nd' (or 'bior Nr.Nd') for Splines
% Nr = 0, Nd = 0,1,2,3,4,5,6,7, or 8
% Nr = 1, Nd = 0,1,3,5, or 7
% Nr = 2, Nd = 0,1,2,4,6, or 8
% Nr = 3, Nd = 0,1,3,5, or 7
% Nr = 4, Nd = 0,1,2,4,6, or 8
% Nr = 5, Nd = 0,1,3, or 5
% 'RSpline Nr.Nd' for the same Nr.Nd pairs Reverse
splines

% 'S+P (2,2)','S+P (4,2)','S+P (6,2)', S+P
wavelets [3]

% 'S+P (4,4)','S+P (2+2,2)'
% 'TT' “Two-Ten” [5]
% 'LC 5/3','LC 2/6','LC 9/7-M','LC 2/10', Low
Complexity [1]

% 'LC 5/11-C','LC 5/11-A','LC 6/14',
% 'LC 13/7-T','LC 13/7-C'
% 'Le Gall 5/3','CDF 9/7' JPEG2000 [7]
% 'V9/3' Visual [8]
% 'Lazy' Lazy wavelet
% Case and spaces are ignored in wavelet names, for
example, 'Sym4'

365aPPendIx b

© 2010 Taylor & Francis Group, LLC

% may also be written as 'sym 4'. Some wavelets have
multiple names,

% 'D1', 'Sym1', and 'Spline 1.1' are aliases of the
Haar wavelet.

%
% WAVELET(W) displays information about wavelet W and
plots the

% primal and dual scaling and wavelet functions.
%
% For 2D transforms, prefix W with '2D'. For example,
'2D S+P (2,2)'

% specifies a 2D (tensor) transform with the S+P
(2,2) wavelet.

% 2D transforms require that X is either MxN or MxNxP
where M and N

% are divisible by 2^L.
%
% WAVELET(W,L,X,EXT) specifies boundary handling EXT.
Choices are

% 'sym' Symmetric extension (same as 'wsws')
% 'asym' Antisymmetric extension, whole-point
antisymmetry

% 'zpd' Zero-padding
% 'per' Periodic extension
% 'sp0' Constant extrapolation
%
% Various symmetric extensions are supported:
% 'wsws' Whole-point symmetry (WS) on both boundaries
% 'hshs' Half-point symmetry (HS) on both boundaries
% 'wshs' WS left boundary, HS right boundary
% 'hsws' HS left boundary, WS right boundary
%
% Antisymmetric boundary handling is used by default,
EXT = 'asym'.

%
% WAVELET(...,DIM) operates along dimension DIM.
%
% [H1,G1,H2,G2] = WAVELET(W,'filters') returns the
filters

% associated with wavelet transform W. Each filter is
represented

% by a cell array where the first cell contains an
array of

% coefficients and the second cell contains a scalar
of the leading

366 aPPendIx b

© 2010 Taylor & Francis Group, LLC

% Z-power.
%
% [X,PHI1] = WAVELET(W,'phi1') returns an
approximation of the

% scaling function associated with wavelet transform W.
% [X,PHI1] = WAVELET(W,'phi1',N) approximates the
scaling function

% with resolution 2^-N. Similarly,
% [X,PSI1] = WAVELET(W,'psi1',...),
% [X,PHI2] = WAVELET(W,'phi2',...),
% and [X,PSI2] = WAVELET(W,'psi2',...) return
approximations of the

% wavelet function, dual scaling function, and dual
wavelet function.

%
% Wavelet transforms are implemented using the lifting
scheme [4].

% For general background on wavelets, see for example
[6].

%
%
% Examples:
% % Display information about the S+P (4,4) wavelet
% wavelet('S+P (4,4)');
%
% % Plot a wavelet decomposition
% t = linspace(0,1,256);
% X = exp(-t) + sqrt(t - 0.3).*(t > 0.3) - 0.2*
(t > 0.6);
% wavelet('RSpline 3.1',3,X); % Plot the decomposition
of X

%
% % Sym4 with periodic boundaries
% Y = wavelet('Sym4',5,X,'per'); % Forward transform
with 5 stages

% R = wavelet('Sym4',-5,Y,'per'); % Invert 5 stages
%
% % 2D transform on an image
% t = linspace(-1,1,128); [x,y] = meshgrid(t,t);
% X = ((x+1).*(x-1) - (y+1).*(y-1)) + real(sqrt(0.4 -
x.^2 - y.^2));
% Y = wavelet('2D CDF 9/7',2,X); % 2D wavelet transform
% R = wavelet('2D CDF 9/7',-2,Y); % Recover X from Y
% imagesc(abs(Y).^0.2); colormap(gray); axis image;
%

367aPPendIx b

© 2010 Taylor & Francis Group, LLC

% % Plot the Daubechies 2 scaling function
% [x,phi] = wavelet('D2','phi');
% plot(x,phi);
%
% References:
% [1] M. Adams and F. Kossentini. “Reversible Integer-
to-Integer Wavelet Transforms for Image Compression.”
IEEE Trans. on Image Proc., vol. 9, no. 6, Jun. 2000.

%
% [2] M. Antonini, M. Barlaud, P. Mathieu, and
I. Daubechies. “Image Coding using Wavelet
Transforms.” IEEE Trans. Image Processing,vol. 1,
pp. 205-220, 1992.

%
% [3] R. Calderbank, I. Daubechies, W. Sweldens, and
Boon-Lock Yeo.“Lossless Image Compression using
Integer to Integer Wavelet Transforms.” ICIP IEEE
Press, vol. 1, pp. 596-599. 1997.

%
% [4] I. Daubechies and W. Sweldens. “Factoring Wavelet
Transforms into Lifting Steps.” 1996.

%
% [5] D. Le Gall and A. Tabatabai. “Subband Coding of
Digital Images Using Symmetric Short Kernel Filters
and Arithmetic Coding Techniques.” ICASSP'88,
pp.761-765, 1988.

%
% [6] S. Mallat. “A Wavelet Tour of Signal Processing.”
Academic Press, 1999.

%
% [7] M. Unser and T. Blu. “Mathematical Properties of
the JPEG2000 Wavelet Filters.” IEEE Trans. on Image
Proc., vol. 12, no. 9, Sep. 2003.

%
% [8] Qinghai Wang and Yulong Mo. “Choice of Wavelet
Base in JPEG2000.” Computer Engineering, vol. 30,
no. 23, Dec. 2004.

% Pascal Getreuer 2005-2006

if nargin < 1, error('Not enough input arguments.'); end
if ~ischar(WaveletName), error('Invalid wavelet
name.'); end

% Get a lifting scheme sequence for the specified
wavelet

368 aPPendIx b

© 2010 Taylor & Francis Group, LLC

Flag1D = isempty(findstr(lower(WaveletName),'2d'));
[Seq,ScaleS,ScaleD,Family] = getwavelet(WaveletName);

if isempty(Seq)
 error(['Unknown wavelet, ''',WaveletName,'''.']);
end
if nargin < 2, Level = ''; end
if ischar(Level)
 [h1,g1] = seq2hg(Seq,ScaleS,ScaleD,0);
 [h2,g2] = seq2hg(Seq,ScaleS,ScaleD,1);

 if strcmpi(Level,'filters')
 varargout = {h1,g1,h2,g2};
 else
 if nargin < 3, X = 6; end

 switch lower(Level)
 case {'phi1','phi'}
 [x1,phi] = cascade(h1,g1,pow2(-X));
 varargout = {x1,phi};
 case {'psi1','psi'}
 [x1,phi,x2,psi] = cascade(h1,g1,pow2(-X));
 varargout = {x2,psi};
 case 'phi2'
 [x1,phi] = cascade(h2,g2,pow2(-X));
 varargout = {x1,phi};
 case 'psi2'
 [x1,phi,x2,psi] = cascade(h2,g2,pow2(-X));
 varargout = {x2,psi};
 case ''
 fprintf('\n%s wavelet ''%s'' ',Family,WaveletName);
 if all(abs([norm(h1{1}),norm(h2{1})] - 1) < 1e-11)
 fprintf('(orthogonal)\n');
 else
 fprintf('(biorthogonal)\n');
 end

 fprintf('Vanishing moments: %d analysis,%d
reconstruction\n',...

 numvanish(g1{1}),numvanish(g2{1}));
 fprintf('Filter lengths: %d/%d-tap\n',...
 length(h1{1}),length(g1{1}));
 fprintf('Implementation lifting steps: %d\n\n',...
 size(Seq,1)-all([Seq{1,: }] = = 0));

369aPPendIx b

© 2010 Taylor & Francis Group, LLC

 fprintf('h1(z) =%s\n',filterstr(h1,ScaleS));
 fprintf('g1(z) =%s\n',filterstr(g1,ScaleD));
 fprintf('h2(z) =%s\n',filterstr(h2,1/ScaleS));
 fprintf('g2(z) =%s\n\n',filterstr(g2,1/ScaleD));

 [x1,phi,x2,psi] = cascade(h1,g1,pow2(-X));
 subplot(2,2,1);
 plot(x1,phi,'b-');
 if diff(x1([1,end])) > 0, xlim(x1([1,end])); end
 title('\phi_1');
 subplot(2,2,3);
 plot(x2,psi,'b-');
 if diff(x2([1,end])) > 0, xlim(x2([1,end])); end
 title('\psi_1');
 [x1,phi,x2,psi] = cascade(h2,g2,pow2(-X));
 subplot(2,2,2);
 plot(x1,phi,'b-');
 if diff(x1([1,end])) > 0, xlim(x1([1,end])); end
 title('\phi_2');
 subplot(2,2,4);
 plot(x2,psi,'b-');
 if diff(x2([1,end])) > 0, xlim(x2([1,end])); end
 title('\psi_2');
 set(gcf,'NextPlot','replacechildren');
 otherwise
 error(['Invalid parameter, ''',Level,'''.']);
 end
 end

 return;
elseif nargin < 5
 % Use antisymmetric extension by default
 if nargin < 4
 if nargin < 3, error('Not enough input

arguments.'); end
 Ext = 'asym';
 end

 Dim = min(find(size(X) ~ = 1));
 if isempty(Dim), Dim = 1; end
end

if any(size(Level) ~ = 1), error('Invalid
 decomposition level.'); end

370 aPPendIx b

© 2010 Taylor & Francis Group, LLC

NumStages = size(Seq,1);
EvenStages = ~rem(NumStages,2);

if Flag1D % 1D Transfrom
 %%% Convert N-D array to a 2-D array with dimension
Dim along the columns%%%

 XSize = size(X); % Save original dimensions
 N = XSize(Dim);
 M = prod(XSize)/N;
 Perm = [Dim: max(length(XSize),Dim),1: Dim-1];
 X = double(reshape(permute(X,Perm),N,M));
 if M = = 1 & nargout = = 0 & Level > 0
 % Create a figure of the wavelet decomposition
 set(gcf,'NextPlot','replace');
 subplot(Level+2,1,1);
 plot(X);
 title('Wavelet Decomposition');
 axis tight; axis off;

 X = feval(mfilename,WaveletName,Level,X,Ext,1);

 for i = 1: Level
 N2 = N;
 N = 0.5*N;
 subplot(Level+2,1,i+1);
 a = max(abs(X(N+1: N2)))*1.1;
 plot(N+1: N2,X(N+1: N2),'b-');
 ylabel(['d',sprintf('_%c',num2str(i))]);
 axis([N+1,N2,-a,a]);
 end

 subplot(Level+2,1,Level+2);
 plot(X(1: N),'-');
 xlabel('Coefficient Index');
 ylabel('s_1');
 axis tight;
 set(gcf,'NextPlot','replacechildren');
 varargout = {X};
 return;
 end

 if rem(N,pow2(abs(Level))), error('Signal length
must be divisible by 2^L.'); end

 if N < pow2(abs(Level)), error('Signal length
too small for transform level.'); end

371aPPendIx b

© 2010 Taylor & Francis Group, LLC

 if Level > = 0 % Forward transform
 for i = 1: Level
 Xo = X(2: 2: N,:);
 Xe = X(1: 2: N,:) +

xfir(Seq{1,1},Seq{1,2},Xo,Ext);

 for k = 3: 2: NumStages
 Xo = Xo + xfir(Seq{k-1,1},Seq

{k-1,2},Xe,Ext);
 Xe = Xe + xfir(Seq{k,1},Seq{k,2},Xo,Ext);
 end

 if EvenStages
 Xo = Xo + xfir(Seq{NumStages,1},

Seq{NumStages,2}, Xe,Ext);
 end

 X(1: N,:) = [Xe*ScaleS; Xo*ScaleD];
 N = 0.5*N;
 end
 else % Inverse transform
 N = N * pow2(Level);

 for i = 1: -Level
 N2 = 2*N;
 Xe = X(1: N,:)/ScaleS;
 Xo = X(N+1: N2,:)/ScaleD;
 if EvenStages

 Xo = Xo - xfir(Seq{NumStages,1},Seq{NumSta
ges,2},Xe,Ext);

 end

 for k = NumStages - EvenStages: -2: 3
 Xe = Xe - xfir(Seq{k,1},Seq{k,2},Xo,Ext);
 Xo = Xo - xfir(Seq{k-1,1},Seq{k-

1,2},Xe,Ext);
 end
 X([1: 2: N2,2: 2: N2],:) = [Xe - xfir

(Seq{1,1},Seq{1,2},Xo,Ext); Xo];
 N = N2;
 end
 end

 X = ipermute(reshape(X,XSize(Perm)),Perm);
% Restore original array dimensions

372 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 else % 2D Transfrom
 N = size(X);
 if length(N) > 3 |

any(rem(N([1,2]),pow2(abs(Level))))
 error('Input size must be either MxN or MxNxP

where M and N are divisible by 2^L.');
 end

 if Level > = 0 % 2D Forward transform
 for i = 1: Level
 Xo = X(2: 2: N(1),1: N(2),:);
 Xe = X(1: 2: N(1),1: N(2),:) +

xfir(Seq{1,1},Seq{1,2},Xo,Ext);

 for k = 3: 2: NumStages
 Xo = Xo + xfir(Seq{k-1,1},Seq{k-1,2},

Xe,Ext);
 Xe = Xe + xfir(Seq{k,1},Seq{k,2},Xo,Ext);
 end

 if EvenStages
 Xo = Xo + xfir(Seq{NumStages,1},Seq{NumSta

ges,2},Xe,Ext);
 end

 X(1: N(1),1: N(2),:) = [Xe*ScaleS; Xo*ScaleD];

 Xo = permute(X(1: N(1),2: 2: N(2),:),[2,1,3]);
 Xe = permute(X(1: N(1),1: 2: N(2),:),[2,1,3])...
 + xfir(Seq{1,1},Seq{1,2},Xo,Ext);
 for k = 3: 2: NumStages
 Xo = Xo + xfir(Seq{k-1,1},Seq{k-1,2},

Xe,Ext);
 Xe = Xe + xfir(Seq{k,1},Seq{k,2},Xo,Ext);
 end
 if EvenStages
 Xo = Xo + xfir(Seq{NumStages,1},Seq{NumSta

ges,2},Xe,Ext);
 end

 X(1: N(1),1: N(2),:) =
[permute(Xe,[2,1,3])*ScaleS,...

 permute(Xo,[2,1,3])*ScaleD];
 N = 0.5*N;
 end

373aPPendIx b

© 2010 Taylor & Francis Group, LLC

else % 2D Inverse transform
 N = N*pow2(Level);

 for i = 1: -Level
 N2 = 2*N;
 Xe = permute(X(1: N2(1),1: N(2),:

),[2,1,3])/ScaleS;
 Xo = permute(X(1: N2(1),N(2)+1: N2(2),:

),[2,1,3])/ScaleD;

 if EvenStages
 Xo = Xo - xfir(Seq{NumStages,1},Seq{NumStages,2}

,Xe,Ext);
 end

 for k = NumStages - EvenStages: -2: 3
 Xe = Xe - xfir(Seq{k,1},Seq{k,2},Xo,Ext);
 Xo = Xo - xfir(Seq{k-1,1},Seq{k-1,2},Xe,Ext);
 end
 X(1: N2(1),[1: 2: N2(2),2: 2: N2(2)],:) =...
 [permute(Xe - xfir(Seq{1,1},Seq{1,2},Xo,

Ext),[2,1,3]),...
 permute(Xo,[2,1,3])];
 Xe = X(1: N(1),1: N2(2),:)/ScaleS;
 Xo = X(N(1)+1: N2(1),1: N2(2),:)/ScaleD;

 if EvenStages
 Xo = Xo - xfir(Seq{NumStages,1},Seq{NumStages,2}

,Xe,Ext);
 end
 for k = NumStages - EvenStages: -2: 3
 Xe = Xe - xfir(Seq{k,1},Seq{k,2},Xo,Ext);
 Xo = Xo - xfir(Seq{k-1,1},Seq{k-

1,2},Xe,Ext);
 end
 X([1: 2: N2(1),2: 2: N2(1)],1: N2(2),:)

=...
 [Xe - xfir(Seq{1,1},Seq{1,2},Xo,Ext); Xo];
 N = N2;
 end
 end
end

varargout{1} = X;
return;

374 aPPendIx b

© 2010 Taylor & Francis Group, LLC

function [Seq,ScaleS,ScaleD,Family] =
getwavelet(WaveletName)
%GETWAVELET Get wavelet lifting scheme sequence.
% Pascal Getreuer 2005-2006

WaveletName = strrep(WaveletName,'bior','spline');
ScaleS = 1/sqrt(2);
ScaleD = 1/sqrt(2);
Family = 'Spline';

switch strrep(strrep(lower(WaveletName),'2d',''),' ','')
case {'haar','d1','db1','sym1','spline1.1','rspline1.1'}
 Seq = {1,0; -0.5,0};
 ScaleD = -sqrt(2);
 Family = 'Haar';
case {'d2','db2','sym2'}
 Seq = {sqrt(3) ,0; [-sqrt(3),2-sqrt(3)]/4,0;

-1,1};
 ScaleS = (sqrt(3)-1)/sqrt(2);
 ScaleD = (sqrt(3)+1)/sqrt(2);
 Family = 'Daubechies';
case {'d3','db3','sym3'}
 Seq = {2.4254972439123361,0; [-0.352387657680182

3,0.0793394561587384] ,0;
 [0.5614149091879961,-2.8953474543648969],2;

-0.0197505292372931,-2};
 ScaleS = 0.4318799914853075;
 ScaleD = 2.3154580432421348;
 Family = 'Daubechies';
case {'d4','db4'}
 Seq = {0.3222758879971411,-1; [0.3001422587485443

,1.1171236051605939],1;
 [-0.1176480867984784,0.0188083527262439],-1;
 [-0.6364282711906594,-2.1318167127552199],1;
 [0.0247912381571950,-

0.1400392377326117,0.4690834789110281],2};
 ScaleS = 1.3621667200737697;
 ScaleD = 0.7341245276832514;
 Family = 'Daubechies';
case {'d5','db5'}
 Seq = {0.2651451428113514,-1;

[-0.2477292913288009,-0.9940591341382633],1;
 [-0.2132742982207803,0.5341246460905558],1;
 [0.7168557197126235,-0.2247352231444452],-1;

375aPPendIx b

© 2010 Taylor & Francis Group, LLC

 [-0.0121321866213973,
0.0775533344610336],3;0.035764924629411,-3};

 ScaleS = 1.3101844387211246;
 ScaleD = 0.7632513182465389;
 Family = 'Daubechies';
case {'d6','db6'}
 Seq = {4.4344683000391223,0; [-0.214593449940913,

0.0633131925095066],0;
 [4.4931131753641633,-9.970015617571832],2;
 [-0.0574139367993266,0.0236634936395882],-2;
 [0.6787843541162683,-2.3564970162896977],4;
 [-0.0071835631074942,0.0009911655293238],-4;

-0.0941066741175849,5};
 ScaleS = 0.3203624223883869;
 ScaleD = 3.1214647228121661;
 Family = 'Daubechies';
case 'sym4'
 Seq = {-0.3911469419700402,0; [0.339243991864945

1,0.1243902829333865],0;
 [-0.1620314520393038,1.4195148522334731],1;
 -[0.1459830772565225,

0.4312834159749964],1;1.049255198049293,-1};
 ScaleS = 0.6366587855802818;
 ScaleD = 1.5707000714496564;
 Family = 'Symlet';
case 'sym5'
 Seq = {0.9259329171294208,0; -[0.131923027028234

1,0.4985231842281166],1;
 [1.452118924420613,0.4293261204657586],0;
 [-0.2804023843755281,0.0948300395515551],0;
 -[0.7680659387165244,1.9589167118877153],1;

0.1726400850543451,0};
 ScaleS = 0.4914339446751972;
 ScaleD = 2.0348614718930915;
 Family = 'Symlet';
case 'sym6'
 Seq = {-0.2266091476053614,0;
[0.2155407618197651,-1.2670686037583443],0;
 [-4.2551584226048398,0.5047757263881194],2;
 [0.2331599353469357 =,0.0447459687134724],-2;
 [6.6244572505007815,-18.389000853969371],4;
 [-0.0567684937266291,0.1443950619899142],-4;

-5.5119344180654508,5};
 ScaleS = -0.5985483742581210;
 ScaleD = -1.6707087396895259;

376 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 Family = 'Symlet';
case 'coif1'
 Seq = {-4.6457513110481772,0;[0.205718913884,

0.1171567416519999],0;
 [0.6076252184992341,-7.468626966435207],2;

-0.0728756555332089,-2};
 ScaleS = -0.5818609561112537;
 ScaleD = -1.7186236496830642;
 Family = 'Coiflet';
case 'coif2'
 Seq = {-2.5303036209828274,0;

[0.3418203790296641,-0.2401406244344829],0;
 [15.268378737252995,3.1631993897610227],2;
 [-0.0646171619180252,0.005717132970962],-2;
 [13.59117256930759,-63.95104824798802],4;
 [-0.0018667030862775,0.0005087264425263],-4;

-3.7930423341992774,5};
 ScaleS = 0.1076673102965570;
 ScaleD = 9.2878701738310099;
 Family = 'Coiflet';
case 'bcoif1'
 Seq = {0,0; -[1,1]/5,1;[5,5]/14,0;

-[21,21]/100,1};
 ScaleS = sqrt(2)*7/10;
 ScaleD = sqrt(2)*5/7;
 Family = 'Nearly orthonormal Coiflet-like';
case {'lazy','spline0.0','rspline0.0','d0'}
 Seq = {0,0};
 ScaleS = 1;
 ScaleD = 1;
 Family = 'Lazy';
case {'spline0.1','rspline0.1'}
 Seq = {1,-1};
 ScaleD = 1;
case {'spline0.2','rspline0.2'}
 Seq = {[1,1]/2,0};
 ScaleD = 1;
case {'spline0.3','rspline0.3'}
 Seq = {[-1,6,3]/8,1};
 ScaleD = 1;
case {'spline0.4','rspline0.4'}
 Seq = {[-1,9,9,-1]/16,1};
 ScaleD = 1;
case {'spline0.5','rspline0.5'}
 Seq = {[3,-20,90,60,-5]/128,2};

377aPPendIx b

© 2010 Taylor & Francis Group, LLC

 ScaleD = 1;
case {'spline0.6','rspline0.6'}
 Seq = {[3,-25,150,150,-25,3]/256,2};
 ScaleD = 1;
case {'spline0.7','rspline0.7'}
 Seq = {[-5,42,-175,700,525,-70,7]/1024,3};
 ScaleD = 1;
case {'spline0.8','rspline0.8'}
 Seq = {[-5,49,-245,1225,1225,-245,49,-

5]/2048,3};
 ScaleD = 1;
case {'spline1.0','rspline1.0'}
 Seq = {0,0; -1,0};
 ScaleS = sqrt(2);
 ScaleD = -1/sqrt(2);
case {'spline1.3','rspline1.3'}
 Seq = {0,0; -1,0; [-1,8,1]/16,1};
 ScaleS = sqrt(2);
 ScaleD = -1/sqrt(2);
case {'spline1.5','rspline1.5'}
 Seq = {0,0; -1,0; [3,-22,128,22,-3]/256,2};
 ScaleS = sqrt(2);
 ScaleD = -1/sqrt(2);
case {'spline1.7','rspline1.7'}
 Seq = {0,0; -1,0;

[-5,44,-201,1024,201,-44,5]/2048,3};
 ScaleS = sqrt(2);
 ScaleD = -1/sqrt(2);
case {'spline2.0','rspline2.0'}
 Seq = {0,0; -[1,1]/2,1};
 ScaleS = sqrt(2);
 ScaleD = 1;
case {'spline2.1','rspline2.1'}
 Seq = {0,0; -[1,1]/2,1;0.5,0};
 ScaleS = sqrt(2);
case {'spline2.2','rspline2.2','cdf5/3','legall5/3','s
+p(2,2)','lc5/3'}
 Seq = {0,0; -[1,1]/2,1;[1,1]/4,0};
 ScaleS = sqrt(2);
case {'spline2.4','rspline2.4'}
 Seq = {0,0; -[1,1]/2,1;[-3,19,19,-3]/64,1};
 ScaleS = sqrt(2);
case {'spline2.6','rspline2.6'}
 Seq = {0,0; -[1,1]/2,1;[5,-39,162,162,-

39,5]/512,2};

378 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 ScaleS = sqrt(2);
case {'spline2.8','rspline2.8'}
 Seq = {0,0; -[1,1]/2,1;[-35,335,-1563,

5359,5359,-1563,335,-35]/16384,3};
 ScaleS = sqrt(2);
case {'spline3.0','rspline3.0'}
 Seq = {-1/3,-1;-[3,9]/8,1};
 ScaleS = 3/sqrt(2);
 ScaleD = 2/3;
case {'spline3.1','rspline3.1'}
 Seq = {-1/3,-1;-[3,9]/8,1;4/9,0};
 ScaleS = 3/sqrt(2);
 ScaleD = -2/3;
case {'spline3.3','rspline3.3'}
 Seq = {-1/3,-1;-[3,9]/8,1;[-3,16,3]/36,1};
 ScaleS = 3/sqrt(2);
 ScaleD = -2/3;
case {'spline3.5','rspline3.5'}
 Seq = {-1/3,-1;-[3,9]/8,1;[5,-34,128,34,-5]

/288,2};
 ScaleS = 3/sqrt(2);
 ScaleD = -2/3;
case {'spline3.7','rspline3.7'}
 Seq = {-1/3,-1;-[3,9]/8,1;[-35,300,-1263,

4096,1263,-300,35]/9216,3};
 ScaleS = 3/sqrt(2);
 ScaleD = -2/3;
case {'spline4.0','rspline4.0'}
 Seq = {-[1,1]/4,0; -[1,1],1};
 ScaleS = 4/sqrt(2);
 ScaleD = 1/sqrt(2);
 ScaleS = 1; ScaleD = 1;
case {'spline4.1','rspline4.1'}
 Seq = {-[1,1]/4,0; -[1,1],1;6/16,0};
 ScaleS = 4/sqrt(2);
 ScaleD = 1/2;
case {'spline4.2','rspline4.2'}
 Seq = {-[1,1]/4,0; -[1,1],1;[3,3]/16,0};
 ScaleS = 4/sqrt(2);
 ScaleD = 1/2;
case {'spline4.4','rspline4.4'}
 Seq = {-[1,1]/4,0; -[1,1],1;[-5,29,29,-5]

/128,1};
 ScaleS = 4/sqrt(2);
 ScaleD = 1/2;

379aPPendIx b

© 2010 Taylor & Francis Group, LLC

case {'spline4.6','rspline4.6'}
 Seq = {-[1,1]/4,0; -[1,1],1;[35,-265,998,998,-

265,35]/4096,2};
 ScaleS = 4/sqrt(2);
 ScaleD = 1/2;
case {'spline4.8','rspline4.8'}
 Seq = {-[1,1]/4,0; -[1,1],1;[-63,595,-2687,

8299,8299,-2687,595,-63]/32768,3};
 ScaleS = 4/sqrt(2);
 ScaleD = 1/2;
case {'spline5.0','rspline5.0'}
 Seq = {0,0; -1/5,0; -[5,15]/24,0; -[9,15]/10,1};
 ScaleS = 3*sqrt(2);
 ScaleD = sqrt(2)/6;
case {'spline5.1','rspline5.1'}
 Seq = {0,0; -1/5,0; -[5,15]/24,0;

-[9,15]/10,1;1/3,0};
 ScaleS = 3*sqrt(2);
 ScaleD = sqrt(2)/6;
case {'spline5.3','rspline5.3'}
 Seq = {0,0; -1/5,0; -[5,15]/24,0;

-[9,15]/10,1;[-5,24,5]/72,1};
 ScaleS = 3*sqrt(2);
 ScaleD = sqrt(2)/6;
case {'spline5.5','rspline5.5'}
 Seq = {0,0; -1/5,0; -[5,15]/24,0;

-[9,15]/10,1;[35,-230,768,230,-35]
/2304,2};

 ScaleS = 3*sqrt(2);
 ScaleD = sqrt(2)/6;
case {'cdf9/7'}
 Seq = {0,0; [1,1]*-1.5861343420693648,1;[1,1]

*-0.0529801185718856,0;
 [1,1]*0.8829110755411875,1;[1,1]*0.4435068520511

142,0};
 ScaleS = 1.1496043988602418;
 ScaleD = 1/ScaleS;
 Family = 'Cohen-Daubechies-Feauveau';
case 'v9/3'
 Seq = {0,0; [-1,-1]/2,1;[1,19,19,1]/80,1};
 ScaleS = sqrt(2);
 Family = 'HSV design';
case {'s+p(4,2)','lc9/7-m'}
 Seq = {0,0; [1,-9,-9,1]/16,2;[1,1]/4,0};
 ScaleS = sqrt(2);

380 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 Family = 'S+P';
case 's+p(6,2)'
 Seq = {0,0; [-3,25,-150,-150,25,-3]

/256,3;[1,1]/4,0};
 ScaleS = sqrt(2);
 Family = 'S+P';
case {'s+p(4,4)','lc13/7-t'}
 Seq = {0,0; [1,-9,-9,1]/16,2;[-1,9,9,-1]/32,1};
 ScaleS = sqrt(2);
 Family = 'S+P';
case {'s+p(2+2,2)','lc5/11-c'}
 Seq = {0,0; [-1,-1]/2,1;[1,1]/4,0; -[-1,1,1,-1]

/16,2};
 ScaleS = sqrt(2);
 Family = 'S+P';
case 'tt'
 Seq = {1,0; [3,-22,-128,22,-3]/256,2};
 ScaleD = sqrt(2);
 Family = 'Le Gall-Tabatabai polynomial';
case 'lc2/6'
 Seq = {0,0; -1,0; 1/2,0; [-1,0,1]/4,1};
 ScaleS = sqrt(2);
 ScaleD = -1/sqrt(2);
 Family = 'Reverse spline';
case 'lc2/10'
 Seq = {0,0; -1,0; 1/2,0; [3,-22,0,22,-3]/64,2};
 ScaleS = sqrt(2);
 ScaleD = -1/sqrt(2);
 Family = 'Reverse spline';
case 'lc5/11-a'
 Seq = {0,0; -[1,1]/2,1;[1,1]/4,0; [1,-1,-1,1]

/32,2};
 ScaleS = sqrt(2);
 ScaleD = -1/sqrt(2);
 Family = 'Low complexity';
case 'lc6/14'
 Seq = {0,0; -1,0; [-1,8,1]/16,1;[1,-6,0,6,-1]

/16,2};
 ScaleS = sqrt(2);
 ScaleD = -1/sqrt(2);
 Family = 'Low complexity';
case 'lc13/7-c'
 Seq = {0,0; [1,-9,-9,1]/16,2;[-1,5,5,-1]/16,1};
 ScaleS = sqrt(2);
 ScaleD = -1/sqrt(2);

381aPPendIx b

© 2010 Taylor & Francis Group, LLC

 Family = 'Low complexity';
 otherwise
 Seq = {};
return;
end

if ~isempty(findstr(lower(WaveletName),'rspline'))
[Seq,ScaleS,ScaleD] = seqdual(Seq,ScaleS,ScaleD);
Family = 'Reverse spline';
end

return;

function [Seq,ScaleS,ScaleD] =
seqdual(Seq,ScaleS,ScaleD)
% Dual of a lifting sequence

L = size(Seq,1);

for k = 1: L
 % f'(z) = -f(z^-1)
 Seq{k,2} = -(Seq{k,2} - length(Seq{k,1}) + 1);
 Seq{k,1} = -fliplr(Seq{k,1});
end

if all(Seq{1,1} = = 0)
 Seq = reshape({Seq{2: end,: }},L-1,2);
else
 [Seq{1: L+1,: }] = deal(0,Seq{1: L,1},0,Seq{1:

L,2});
end

ScaleS = 1/ScaleS;
ScaleD = 1/ScaleD;
return;

function [h,g] = seq2hg(Seq,ScaleS,ScaleD,Dual)
% Find wavelet filters from lifting sequence
if Dual, [Seq,ScaleS,ScaleD] =
seqdual(Seq,ScaleS,ScaleD); end
if rem(size(Seq,1),2), [Seq{size(Seq,1)+1,: }] =
deal(0,0); end

h = {1,0};
g = {1,1};

382 aPPendIx b

© 2010 Taylor & Francis Group, LLC

for k = 1: 2: size(Seq,1)
 h = lp_lift(h,g,{Seq{k,: }});
 g = lp_lift(g,h,{Seq{k+1,: }});
end

h = {ScaleS*h{1},h{2}};
g = {ScaleD*g{1},g{2}};

if Dual
 h{2} = -(h{2} - length(h{1}) + 1);
 h{1} = fliplr(h{1});

 g{2} = -(g{2} - length(g{1}) + 1);
 g{1} = fliplr(g{1});
end

return;

function a = lp_lift(a,b,c)
% a(z) = a(z) + b(z) c(z^2)

d = zeros(1,length(c{1})*2-1);
d(1: 2: end) = c{1};
d = conv(b{1},d);
z = b{2}+c{2}*2;
zmax = max(a{2},z);
f = [zeros(1,zmax-
a{2}),a{1},zeros(1,a{2} - length(a{1}) - z +
length(d))];
i = zmax-z + (1: length(d));
f(i) = f(i) + d;

if all(abs(f) < 1e-12)
 a = {0,0};
else
 i = find(abs(f)/max(abs(f)) > 1e-10);
i1 = min(i);
a = {f(i1: max(i)),zmax-i1+1};
end
return;

function X = xfir(B,Z,X,Ext)
%XFIR Noncausal FIR filtering with boundary handling.
% Y = XFIR(B,Z,X,EXT) filters X with FIR filter B with
leading

383aPPendIx b

© 2010 Taylor & Francis Group, LLC

% delay -Z along the columns of X. EXT specifies the
boundary
% handling. Special handling is done for one and two-
tap filters.

% Pascal Getreuer 2005-2006

N = size(X);

% Special handling for short filters
if length(B) = = 1 & Z = = 0
 if B = = 0
 X = zeros(size(X));
 elseif B ~ = 1
 X = B*X;
 end
 return;
end

% Compute the number of samples to add to each end of
the signal
pl = max(length(B)-1-Z,0); % Padding on the left end
pr = max(Z,0); % Padding on the right end

switch lower(Ext)
case {'sym','wsws'} % Symmetric extension, WSWS
if all([pl,pr] < N(1))
 X = filter(B,1,X([pl+1: -1: 2,1:

N(1),N(1)-1: -1: N(1)-pr],:,:),[],1);
 X = X(Z+pl+1: Z+pl+N(1),:,:);
 return;
 else
 i = [1: N(1),N(1)-1: -1: 2];
 Ns = 2*N(1) - 2 + (N(1) = = 1);
 i = i([rem(pl*(Ns-1): pl*Ns-1,Ns)+1,1:

N(1),rem(N(1): N(1)+pr-1,Ns)+1]);
 end
case {'symh','hshs'} % Symmetric extension, HSHS
 if all([pl,pr] < N(1))
 i = [pl: -1: 1,1: N(1),N(1): -1:

N(1)-pr+1];
 else
 i = [1: N(1),N(1): -1: 1];
 Ns = 2*N(1);

384 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 i = i([rem(pl*(Ns-1): pl*Ns-1,Ns)+1,1:
N(1),rem(N(1): N(1)+pr-1,Ns)+1]);

 end
case 'wshs' % Symmetric extension, WSHS
if all([pl,pr] < N(1))
 i = [pl+1: -1: 2,1: N(1),N(1): -1:

N(1)-pr+1];
 else
 i = [1: N(1),N(1): -1: 2];
 Ns = 2*N(1) - 1;
 i = i([rem(pl*(Ns-1): pl*Ns-1,Ns)+1,1:

N(1),rem(N(1): N(1)+pr-1,Ns)+1]);
 end
case 'hsws' % Symmetric extension, HSWS
 if all([pl,pr] < N(1))
 i = [pl: -1: 1,1: N(1),N(1)-1: -1:

N(1)-pr];
 else
 i = [1: N(1),N(1)-1: -1: 1];
 Ns = 2*N(1) - 1;
 i = i([rem(pl*(Ns-1): pl*Ns-1,Ns)+1,1:

N(1),rem(N(1): N(1)+pr-1,Ns)+1]);
 end
case 'zpd'
 Ml = N; Ml(1) = pl;
 Mr = N; Mr(1) = pr;
 X = filter(B,1,[zeros(Ml);X;zeros(Mr)],[],1);
 X = X(Z+pl+1: Z+pl+N(1),:,:);
 return;
case 'per' % Periodic
 i = [rem(pl*(N(1)-1): pl*N(1)-1,N(1))+1,1:

N(1),rem(0: pr-1,N(1))+1];
case 'sp0' % Constant extrapolation
 i = [ones(1,pl),1: N(1),N(1)+zeros(1,pr)];
case 'asym' % Asymmetric extension
 i1 = [ones(1,pl),1: N(1),N(1)+zeros(1,pr)];

 if all([pl,pr] < N(1))
 i2 = [pl+1: -1: 2,1: N(1),N(1)-1: -1:

N(1)-pr];
 else
 i2 = [1: N(1),N(1)-1: -1: 2];
 Ns = 2*N(1) - 2 + (N(1) = = 1);
 i2 = i2([rem(pl*(Ns-1): pl*Ns-1,Ns)+1,1:

N(1),rem(N(1): N(1)+pr-1,Ns)+1]);

385aPPendIx b

© 2010 Taylor & Francis Group, LLC

 end

 X = filter(B,1,2*X(i1,:,:) - X(i2,:,:),[],1);
 X = X(Z+pl+1: Z+pl+N(1),:,:);
 return;
otherwise
 error(['Unknown boundary handling,

''',Ext,'''.']);
end

X = filter(B,1,X(i,:,:),[],1);
X = X(Z+pl+1: Z+pl+N(1),:,:);
return;

function [x1,phi,x2,psi] = cascade(h,g,dx)
% Wavelet cascade algorithm

c = h{1}*2/sum(h{1});
x = 0: dx: length(c) - 1;
x1 = x - h{2};
phi0 = 1 - abs(linspace(-1,1,length(x))).';

ii = []; jj = []; s = [];

for k = 1: length(c)
 xk = 2*x - (k-1);
 i = find(xk > = 0 & xk < = length(c) - 1);
 ii = [ii,i];
 jj = [jj,floor(xk(i)/dx)+1];
 s = [s,c(k)+zeros(size(i))];
end

% Construct a sparse linear operator that iterates the
dilation equation

Dilation = sparse(ii,jj,s,length(x),length(x));

for N = 1: 30
phi = Dilation*phi0;
if norm(phi - phi0,inf) < 1e-5, break; end
phi0 = phi;
end

if norm(phi) = = 0
 phi = ones(size(phi))*sqrt(2); % Special case

for Haar scaling function

386 aPPendIx b

© 2010 Taylor & Francis Group, LLC

else
 phi = phi/(norm(phi)*sqrt(dx)); % Rescale result
end

if nargout > 2
 phi2 = phi(1: 2: end); % phi2 is approximately

phi(2x)
 if length(c) = = 2
 L = length(phi2);
 else
 L = ceil(0.5/dx);
 end

 % Construct psi from translates of phi2
 c = g{1};
 psi = zeros(length(phi2)+L*(length(c)-1),1);
 x2 = (0: length(psi)-1)*dx - g{2} - 0*h{2}/2;

 for k = 1: length(c)
 i = (1: length(phi2)) + L*(k-1);
 psi(i) = psi(i) + c(k)*phi2;
 end
end
return;

function s = filterstr(a,K)
% Convert a filter to a string
[n,d] = rat(K/sqrt(2));
if d < 50
 a{1} = a{1}/sqrt(2); % Scale filter by sqrt(2)
 s = '(';
else
 s = '';
end

Scale = [pow2(1: 15),10,20,160,280,inf];

for i = 1: length(Scale)
 if norm(round(a{1}*Scale(i))/Scale(i) -

a{1},inf) < 1e-9
 a{1} = a{1}*Scale(i); % Scale filter by a

power of 2 or 160
 s = '(';
 break;
 end
end

387aPPendIx b

© 2010 Taylor & Francis Group, LLC

z = a{2};
LineOff = 0;

for k = 1: length(a{1})
 v = a{1}(k);
 if v ~ = 0 % Only display nonzero coefficients
 if k > 1
 s2 = [' ',char(44-sign(v)),' '];
 v = abs(v);
 else
 s2 = '';
 end
 s2 = sprintf('%s%g',s2,v);
 if z = = 1
 s2 = sprintf('%s z',s2);
 elseif z ~ = 0
 s2 = sprintf('%s z^%d',s2,z);
 end
 if length(s) + length(s2) > 72 + LineOff % Wrap

long lines
 s2 = [char(10),' ',s2];
 LineOff = length(s);
 end
 s = [s,s2];
 end
z = z - 1;
end

if s(1) = = '('
 s = [s,')'];
 if d < 50, s = [s,' sqrt(2)']; end

 if i < length(Scale)
 s = sprintf('%s/%d',s,Scale(i));
 end
end

return;

function N = numvanish(g)
% Determine the number of vanishing moments from
highpass filter g(z)

for N = 0: length(g)-1 % Count the number of roots at
z = 1

388 aPPendIx b

© 2010 Taylor & Francis Group, LLC

 [g,r] = deconv(g,[1,-1]);
 if norm(r,inf) > 1e-7, break; end
end
return;

function [iout,qout] = delay(idata,qdata,nsamp,idel)
iout = zeros(1,nsamp);
qout = zeros(1,nsamp);
if idel ~ = 0
 iout(1: idel) = zeros(1,idel);
 qout(1: idel) = zeros(1,idel);
end
iout(idel+1: nsamp) = idata(1: nsamp-idel);
qout(idel+1: nsamp) = qdata(1: nsamp-idel);

function [iout,qout] = comb(idata,qdata,attn)
iout = randn(1,length(idata)).*attn;
qout = randn(1,length(qdata)).*attn;
iout = iout+idata(1: length(idata));
qout = qout+qdata(1: length(qdata));

function [iout,qout] = giins(idata,qdata,fftlen,gilen
,nd);

idata1 = reshape(idata,fftlen,nd);
qdata1 = reshape(qdata,fftlen,nd);
idata2 = [idata1(fftlen-gilen+1: fftlen,:);idata1];
qdata2 = [qdata1(fftlen-gilen+1: fftlen,:);qdata1];
iout = reshape(idata2,1,(fftlen+gilen)*nd);
qout = reshape(qdata2,1,(fftlen+gilen)*nd);

function [iout,qout] = girem(idata,qdata,fftlen2,gilen
,nd);

idata2 = reshape(idata,fftlen2,nd);
qdata2 = reshape(qdata,fftlen2,nd);
iout = idata2(gilen+1: fftlen2,:);
qout = qdata2(gilen+1: fftlen2,:);

function [iout,qout] = giins1(idata,qdata,fftlen,
gilen,nd);

idata1 = reshape(idata,fftlen,nd);
qdata1 = reshape(qdata,fftlen,nd);
gg = gilen/2;
idata2 = [zeros(gg,nd);idata1(fftlen-gg+1: fftlen,:)

;idata1];

389aPPendIx b

© 2010 Taylor & Francis Group, LLC

qdata2 = [zeros(gg,nd);qdata1(fftlen-gg+1:
fftlen,:) ;qdata1];

iout = reshape(idata2,1,(fftlen+gilen)*nd);
qout = reshape(qdata2,1,(fftlen+gilen)*nd);

function[iout,qout,ramp,rcos,rsin] = sefade(idata,qdat
a,itau,dlvl,th,n0,itn,n1,nsamp,tstp,fd,flat)
iout = zeros(1,nsamp);;
qout = zeros(1,nsamp);;
total_attn = sum(10.^(-1 .0. *dlvl./10.0));
for k = 1: n1
 atts = 10.^(-0.05.*dlvl(k));
 theta = th(k).*pi./180.0;
 [itmp,qtmp] = delay(idata,qdata,nsamp,itau(k));
 [itmp3,qtmp3,ramp,rcos,rsin] = fade(itmp,qtmp,ns

amp,tstp,fd,n0(k),itn(k),flat);
 iout = iout+atts.*itmp3./sqrt(total_attn);
 qout = qout+atts.*qtmp3./sqrt(total_attn);
end

function [iout,qout] = girem1(idata,qdata,fftlen2,gile
n,nd);

idata2 = reshape(idata,fftlen2,nd);
qdata2 = reshape(qdata,fftlen2,nd);
iout = idata2(gilen+1: fftlen2,:);
qout = qdata2(gilen+1: fftlen2,:);

function [iout,qout] = giins1(idata,qdata,fftlen,gilen
,nd);

idata1 = reshape(idata,fftlen,nd);
qdata1 = reshape(qdata,fftlen,nd);
idata2 = [zeros(gilen,nd);idata1];
qdata2 = [zeros(gilen,nd);qdata1];
iout = reshape(idata2,1,(fftlen+gilen)*nd);
qout = reshape(qdata2,1,(fftlen+gilen)*nd);

Digital & Wireless Communications

Presenting encryption algorithms with varying characteristics, Image Encryption:
A Communication Perspective examines image encryption algorithms for the
purpose of secure wireless communication. It considers two directions for image
encryption: permutation-based approaches and substitution-based approaches.

Covering the spectrum of image encryption principles and techniques, the book
compares image encryption with permutation- and diffusion-based approaches. It
explores number theory-based encryption algorithms such as the Data Encryption
Standard, the Advanced Encryption Standard, and the RC6 algorithms. It not only
details the strength of various encryption algorithms, but also describes their
ability to work within the limitations of wireless communication systems.

Since some ciphers were not designed for image encryption, the book explains
how to modify these ciphers to work for image encryption. It also provides
instruction on how to search for other approaches suitable for this task. To
make this work comprehensive, the authors explore communication concepts
concentrating on the orthogonal frequency division multiplexing (OFDM) system
and present a simplified model for the OFDM communication system with its
different implementations.

Complete with simulation experiments and MATLAB® codes for most of the
simulation experiments, this book will help you gain the understanding required
to select the encryption method that best fulfills your application requirements.

ISBN: 978-1-4665-7698-8

9 781466 576988

90000
6000 Broken Sound Parkway, NW
Suite 300, Boca Raton, FL 33487
711 Third Avenue
New York, NY 10017
2 Park Square, Milton Park
Abingdon, Oxon OX14 4RN, UK

an informa business

www.crcpress.com

IMAGE
ENCRYPTION
A Communication Perspective

Fathi E. Abd El-Samie u Hossam Eldin H. Ahmed
Ibrahim F. Elashry u Mai H. Shahieen

Osama S. Faragallah u El-Sayed M. El-Rabaie
Saleh A. Alshebeili

IM
A
G
E EN

CRYPTIO
N

El-Sam
ie u Ahm

ed u
 Elashry

Shahieen u
 Faragallah

El-Rabaie u
 Alshebeili

w w w . c r c p r e s s . c o m

K16760

K16760 cvr mech.indd 1 11/15/13 11:48 AM

	Front Cover
	Contents
	Preface
	About the Authors
	Chapter 1: Introduction
	Chapter 2: Fundamentals of Image Encryption
	Chapter 3: Encryption Evaluation Metrics
	Chapter 4: Homomorphic Image Encryption
	Chapter 5: Chaotic Image Encryption with Different Modes of Operation
	Chapter 6: Diffusion Mechanism for Data Encryption in the ECB Mode
	Chapter 7: Orthogonal Frequency Division Multiplexing
	Chapter 8: OFDM Limitations
	Chapter 9: Simulation Examples
	References
	Appendix A
	Appendix B
	Back Cover

