
www.allitebooks.com

http://www.allitebooks.org

Implementing OpenShift

A fast-paced, practical guide for using OpenShift to
deploy your own open source Platform-as-a-Service

Adam Miller

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Implementing OpenShift

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded
in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book
is sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2013

Production Reference: 1171013

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-472-2

www.packtpub.com

Cover image by Aashish Variava (aashishvariava@hotmail.com)

www.allitebooks.com

http://www.allitebooks.org

Credits

Author
Adam Miller

Reviewers
André Dietisheim

Daniel Kinon

Acquisition Editor
Vinay Argekar

Commissioning Editor
Harsha Bharwani

Technical Editors
Novina Kewalramani

Anita Nayak

Copy Editors
Dipti Kapadia

Gladson Monteiro

Sayanee Mukherjee

Kirti Pai

Project Coordinator
Romal Karani

Proofreader
Joanna McMahon

Indexer
Mehreen Deshmukh

Priya Subramani

Graphics
Yuvraj Mannari

Abhinash Sahu

Production Coordinator
Kirtee Shingan

Cover Work
Kirtee Shingan

www.allitebooks.com

http://www.allitebooks.org

About the Author

Adam Miller is currently employed at Red Hat Inc. as the Release Engineer
for OpenShift Online, Red Hat's auto-scaling Platform-as-a-Service (PaaS) for
applications. Adam has completed Bachelor's of Science in Computer Science
and Master's of Science in Information Assurance and Security, both from the Sam
Houston State University. He is a Red Hat Certified Engineer (Cert# 110-008-810),
and is an active member of the open source community with a running history
of contributions to the Fedora Project (FAS account name: maxamillion).

www.allitebooks.com

http://www.allitebooks.org

Acknowledgments

First, I would like to thank my family—my mother Kim, father John, stepfather Jim,
stepmother Veronica, stepsister Elizabeth, mother-in-law Kathy, father-in-law Kevin
and my grandparents, Bill and Mary-Jo—for their support in my writing of this book
and in everything I pursue. I would also like to thank the entire OpenShift Team at Red
Hat. They are the ones who've made OpenShift a reality and therefore made this book
a possibility. In particular, I'd like to thank those in the team who have been invaluable
mentors to me: Mike McGrath, Thomas Wiest, and Dan McPherson. I want to thank
a dear friend of mine, Kyle Derr, who has been a technical mentor over the years
and has helped me substantially reach a place that has made this book a possibility.
I would like to thank the community members of #rhel on irc.freenode.net for
the sanity checking and the technical guidance that they have provided over the years.
I would also like to thank Rob Marti for hiring and mentoring me while I was at Sam
Houston State University, this was largely a catalyst for what I didn't know at the time
would become the career I could only have hoped for. I would like to thank Thomas
Cameron for being a mentor, a motivator, and someone who provided guidance to
my endeavors that ultimately lead me to writing this book. Finally, I want to thank
my wife Amanda, the love of my life and primary source of inspiration in everything
I do, technical or otherwise. Without her support, this book and many other wonderful
occurrences in my life surely would not have happened.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

André Dietisheim was quite passionate about coding Assembly Language on
Commodore Amiga as a teenager. This fervor made him contribute later to the Java
open source community in general and the Eclipse platform in particular.

Today, he works on JBoss Tools, the Eclipse-based tooling that Red Hat Inc. provides.
He has also worked with Red Hat Inc. and his current task is to create Eclipse tooling
and a Java client for OpenShift.

Daniel Kinon has been in the IT industry for 14 years and working with computers
for much longer. Coming up through the ranks of Systems Administration, Daniel's
passion has always been focused on automation to meet the ever-growing demands
that software puts on infrastructure. Having experienced first hand the difficulties
inherent in implementing PaaS, the release of OpenShift was a welcomed addition to
Daniel's IT tool belt and proved extremely useful during his time working for Red Hat
Inc. as a Sr. Technical Account Manager. Today, Daniel is continuing to explore the
relationship between software demands and infrastructure scalability as the DevOps
Architect for MarketLive Inc., the leading provider of omni-channel eCommerce
technology and services. When he's not at the office or tinkering with Linux, Daniel
is a husband, father, electronics hobbyist, and home brewer.

I've never seen proof of anyone succeeding on their own; I've always
been baffled by those who would want to. I'd like to thank my
family and mentors for always believing in me, and helping me to
shape and hone my ideas and opinions, making me who I am today.
And a special thank you to my wife and daughter for their support,
inspiration, and smiles.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online
digital book library. Here, you can access, read and search across Packt's entire
library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Understanding the Essentials 9

The Cloud 9
Infrastructure as a Service (IaaS) 10
Platform as a Service (PaaS) 12
Software as a Service (SaaS) 13
SSH 14
Git 16

OpenShift – a bird's-eye view 22
Client tools 23

Broker 24
Node 24

Summary 25
Chapter 2: Using OpenShift 27

Getting started using OpenShift 28
Command-line utilities 29
Web Console 44
IDE Integrations 51
Summary 58

Chapter 3: OpenShift – Technologies and Working 59
Pluggable Authentication Modules for Linux 60
SELinux 61
CGroups 61
Software Collections 63
MCollective 64
Applications and Gears 64

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

The OpenShift architecture overview 65
The REST API 69
Summary 73

Chapter 4: Deploying an OpenShift PaaS 75
The Fedora Project 76
Ansible 82
Deployment 93
Summary 98

Index 99

Preface
When web developers traditionally came up with their next big idea, before they
could start writing any serious amount of code, they either had to deploy and run
their own infrastructure or had to submit a request to their system administration
team. This process would generally require some amount of budgetary approval
for computer hardware, storage, network allocation, space in a rack in their
organization's data center, as well as electrical, heating, and cooling considerations.

Now, with the widespread adoption of virtualization technologies, much of
this process can be expedited, but there is still the administrative overhead of
configuration and administration of the backend services needed to support the
development environment. This is where the innovation of the cloud comes in, not
just marketing buzz words that we all know and love, but real innovation that is
changing the shape of IT as we know it.

For those innovative minds looking to build the next big web application or
adventuring into a new web startup endeavor, these are real concerns that need
addressing. This is precisely the subject area where OpenShift aims to be the answer.
OpenShift is an open source PaaS (Platform as a Service) Cloud from Red Hat, Inc.
OpenShift is an application platform that enables developers to not worry about the
backend infrastructure, but instead worry about what they want to worry about, that
is writing code to bring to life the brilliant web application they've dreamed up.

Preface

[2]

OpenShift allows developers to access infrastructure technologies, such as web
servers, powering their favorite frameworks, in their favorite programming
languages, and using their favorite database backend. OpenShift, at the time of
writing, officially supports Perl, Python, PHP, Ruby, Java, and Node.js, along with a
pairing of MySQL, PostgreSQL, and MongoDB, which can all be utilized, along with
autoscaling that will dynamically respond to application load. OpenShift also offers
integration with Jenkins CI, RocksMongo, PHPMyAdmin, and a feature set that is
continuously growing. All of this can be controlled by either a web console, IDE
integrations, or from a set of command-line tools that are available for Linux, Mac,
and Windows. Deployment of code is handled by a popular version control system
named Git (http://git-scm.com/).

What this book covers?
As previously discussed, OpenShift is an open source platform, like a Service Cloud
environment, from Red Hat, Inc. OpenShift is not only a platform offering the
features listed in the previous text, but is also an open source project that has devised
three subprojects differing in the way they deliver the OpenShift technology to the
users, developers, and community members. Further, we would know about the
relationship between the subprojects, each of which has been described as follows:

• OpenShift Origin: It is an upstream open source project that is filed
under the Apache License 2.0, and it is where all the rapid innovation of the
platform happens and is targeted to be community powered and driven.
The source code is listed on GitHub under the OpenShift Origin page,
which is https://github.com/openshift/. It contains all the quickstarts,
developer tools, client utilities, as well as the server code that powers the
platform, which lives under the origin-server Git repository. OpenShift
Origin also hosts a web presence with a multitude of information, available
at http://openshift.github.io/. At the time of writing, OpenShift
Origin is an official feature of the community-driven Fedora Project's
GNU/Linux distribution; for more information please reference
https://fedoraproject.org/wiki/OpenShift_Origin.

Preface

[3]

• OpenShift Online: It is the online hosted version of OpenShift; it is
a hardened and stabilized version of the OpenShift Origin codebase.
OpenShift Online provides users with a working OpenShift environment
to utilize for free, in what is known as the "free tier", and the free offering that
is now free will always be free as per the OpenShift Online documentation.
There is also a commercialized offering of OpenShift Online, allowing for
the purchase of extra resources when they are needed or desired, as per the
OpenShift Online Pricing Guide (https://www.openshift.com/products/
pricing). The online version will be discussed in detail, covering how to use
OpenShift, because it is a great way to get up and run for free with minimal
startup effort.

• OpenShift Enterprise: It is the Enterprise open source PaaS that allows
customers to get a hardened and stabilized version of the OpenShift
Origin code that is fully supported by Red Hat. This product is available
for deployment on premises in the customer's own data center or private
cloud. OpenShift Enterprise also features integration with Red Hat's JBoss
Middleware platform. This product is available at the time of writing but
will not receive further discussion throughout this book because it does
not fit into the scope of this text, and anyone who is interested in this
product should pursue more information at the product's web page, that
is, https://www.openshift.com/products/enterprise.

Chapter 1, Understanding the Essentials, discusses what the cloud really is, what
it means for technologists, and demystifies the new realm of acronyms, such as
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as
a Service (SaaS). We will also go through an introductory session dedicated to the
Git and SSH technologies, as they are part of the OpenShift toolset that both end
users (WebDevs) and administrators (DevOps) will need to have some familiarity
with. Finally, we will perform a bird's eye overview of the OpenShift architecture,
covering different components of OpenShift itself.

Chapter 2, Using OpenShift, covers all the different ways for WebDevs to consume
OpenShift using different approaches. We will explore the command-line utilities,
the OpenShift web console (including an overview of what OpenShift calls "Quickstart
Applications"), as well as IDE integrations, where we walk through using JBoss dev
tools that is based on the very popular Eclipse IDE (http://www.eclipse.org/).

Preface

[4]

Chapter 3, OpenShift – Technologies and Working, discusses the technologies OpenShift
leverages to provide its unique architecture. We will cover Pluggable Authentication
Modules (PAM), Security Enhanced Linux (SELinux), Linux kernel Control Groups
(Cgroups), Software Collections (SCL), and the Marionette Collective (MCollective).
Once background knowledge has been established about building blocks, we will
spend time discussing each component of the architecture previously introduced in
Chapter 1, Understanding the Essentials. This section will include the OpenShift Broker,
Node, Web Console, and the OpenShift REST API.

Chapter 4, Deploying an OpenShift PaaS, is mostly going to interest those who are in
the DevOps arena and are interested in deploying OpenShift Origin to host their
own PaaS. Here, we're going to introduce the Fedora Project and its relationship with
OpenShift Origin. There will be an introduction to some open source virtualization
technologies that will be used for demonstration purposes and can be used to follow
along, or your virtualization technology of choice can be used. We will briefly discuss
the topic of configuration management and orchestration, including an introduction
to the open source Ansible IT orchestration engine (http://www.ansibleworks.
com/); from there we will discuss methods of deploying your own OpenShift Origin
environment, including a walk through using what is known as an Ansible "Playbook".
Finally, we will show how to interact with your newly deployed OpenShift Origin
environment just as you would with the OpenShift Online hosted service.

What you need for this book
There is a certain level of prerequisite knowledge expected; you should either be
a web developer, well versed in your web framework of choice, or a little knowledge
of the Git version control system would be preferred, but it will be covered in some
capacity later on, so if Git is not high on the reader's skill list, fret not. For those who
continue on to the DevOps portion of the text, please be aware that an introductory
understanding of GNU/Linux administration is expected with preference for Red
Hat Enterprise Linux or Fedora Linux administration, as these will receive focus in
the instructional sections. However, the functionality of the platform will be covered
at length in its own right, so explicit understanding of Red Hat and/or Fedora is not
a hard requirement.

For those who are not running Red Hat Enterprise Linux
(https://www.redhat.com/products/enterprise-linux/)
but prefer one of the "RHEL Clones", such as CentOS
(https://www.centos.org/) or Scientific Linux
(https://www.scientificlinux.org/), the instructional portion
of this book will be fully applicable and should function just fine.

Preface

[5]

Who the book is for?
This book is for web developers in search of a development platform that offers an
easier way to deploy and develop their web applications. OpenShift provides this
using industry standard technology upon a flexible platform that offers the ability
to write code the way the developer wants without any vendor lock-in. This book
will also branch into the DevOps territory and touch on deploying the upstream
OpenShift Origin codebase in a simple configuration to show how OpenShift makes
life easier, not only for developers but also for those who manage the infrastructure
upon which these developers depend.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "Gear using the quota command without
actually entering into an interactive shell session remotely."

A block of code is set as follows:

#!/usr/bin/env ruby

puts "Hello world!"

Any command-line input or output is written as follows:

user@mylaptop$ ssh user@server.example.com 'quota'

Disk quotas for user user@server.example.com (uid 6017):

Filesystem blocks quota limit grace files quota limit
grace

/dev/mapper/EBSStore01-user_home01

 604 0 1048576 172 0 40000

Preface

[6]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once
we select Create Application, we will be presented with a screen that offers details
about our database, how to access the application's gear, cloning our new Git
repository and more".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[7]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works, in any form,
on the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Understanding the Essentials
This might be an old adage but it most certainly doesn't make it any less true: before
we learn to run, we must first learn to walk, and even before that, we must learn
to crawl. Effectively, this chapter will progress through a little crawling and then
some walking in the world of Cloud Technologies, SSH utility, Git Source Control
Management software, and onto OpenShift. You'll be running in no time. If you
are well versed in the topics leading up to the OpenShift specifics, please feel free
to simply skim through the sections offering this background information or skip
them altogether as they will most likely be review material. However, if this is new
territory to you, please proceed. For those who have some experience in this area,
hopefully the following passages will be a helpful refresher.

The Cloud
The mythical creature known as "The Cloud" has become a juggernaut of marketing
collateral that often makes those who are technologically inclined want to laugh
hysterically or run for the hills. However, it is in fact a paradigm of Information
Technology that has taken the market by storm and has no inclination of leaving
any time soon. Aside from the marketing hype, this concept of the cloud is truly
an evolution of IT that aims to make lives easier for those who use, manage, design,
and implement technology. Within the notion of "The Cloud", there are three
main Service Models, as per the National Institute of Standards and Technology
(NIST) definition of Cloud Computing (http://csrc.nist.gov/publications/
nistpubs/800-145/SP800-145.pdf), or areas of the cloud that are different in
their advantages and disadvantages as well as their goals and feature sets. The three
service models are:

• Infrastructure as a Service (IaaS)
• Platform as a Service (PaaS)
• Software as a Service (SaaS)

www.allitebooks.com

http://www.allitebooks.org

Understanding the Essentials

[10]

Each of these is listed "as a Service" because the cloud is largely about taking
traditional components from Information Technology and offering them as a service
either to customers or users within an organization in order to provide a more
flexible environment. One thing to note here is that these service models are loosely
coupled such that we may use them together, but we do not inherently require all
the layers in order to create a cloud architecture.

It was mentioned that the cloud has layers. This is mostly an attempt to help us
understand how it all fits together, where the distinction between the service models
exists, the roles they play, and how each can be applicable to their target user base.
We can visualize these different service models as layers built upon one another, not
unlike that of a stack. The lower you are in the stack, the more components you, as
a user, are responsible for managing, and the higher you are in the stack, the more
your service provider is responsible for. The following diagram will show this
example, and further explanation will follow in the coming sections in this chapter:

More

to

manage,

more

flexibility

Software as a Service (SaaS)

Infrastructure as a Service (IaaS)

Plaform as a Service (PaaS)

Service models of cloud computing

Infrastructure as a Service (IaaS)
Beginning at the bottom of our stack, we will find the foundation upon which
other layers will often be built. This layer is known as Infrastructure as a Service
(IaaS), and it has become a part of the natural evolution to traditional virtualization
technologies largely deployed in data centers all over the world. Within an IaaS
cloud environment, all the aspects of an infrastructure are virtualized into an
abstraction structure. With the introduction of this abstraction, we allow for these
components to be utilized in a more flexible manner. Often found within IaaS
Clouds are virtualized compute nodes, which are equivalent to traditional virtual
machines but are more dynamic or ephemeral in nature. Storage is considered to be
virtualized as well and is deployed in a scaled-out approach, generally offering block
storage both as ephemeral resources or as persistent disks. Also common among IaaS
environments are virtual networks and virtual firewalls allowing for the separation
of resources on the network by creating network security zones.

Chapter 1

[11]

As a user of IaaS Cloud, there are no ticketing systems for which we have to file
requests in order to retrieve the resources that the systems administration or
operations team provide. Instead, the service model offers the ability to simply
provide what is needed. IaaS offers its power and flexibility at this point where
we, as a user, are left to make decisions on criteria such as:

• Operating System Deployment (OSD)
• Service Daemon Configuration (SDC)
• Storage Provisioning (SP)
• Network Configuration (NC)
• Backups

While these items are criteria that attribute to the flexibility of IaaS, they also incur
the overhead of needing a DevOps team or, at a minimum, someone on the staff
knowledgeable in the area of DevOps and dedicated to the project at hand. There are
a number of open source IaaS solutions that have gained considerable popularity,
which will provide great examples and a wealth of documentation for readers who
would like to continue on their education in this space. This list is alphabetical and
possibly not all-inclusive:

• Apache CloudStack: https://cloudstack.apache.org/
• Eucalyptus: http://www.eucalyptus.com/
• Nimbus: http://www.nimbusproject.org/
• OpenNebula: http://www.opennebula.org/
• OpenStack: http://www.openstack.org/

https://cloudstack.apache.org/
http://www.eucalyptus.com/
http://www.nimbusproject.org/
http://www.opennebula.org/
http://www.openstack.org/

Understanding the Essentials

[12]

DevOps is a new paradigm where the Dev and Ops teams work together
in order to solve the need for increased release cycles. The term has
been coined by a movement in response to the widening gap between
the Dev and Ops teams. It is aimed to solve the problems where a Dev
team would write code and hand it over to the Ops team and there was
very little coordination between the two. DevOps utilizes the aspects
of the cloud, configuration management, and automation tools to satisfy
the Dev team's requirement for fast-moving environments, and the Ops
team's requirement of a stable and controlled infrastructure.

The common tools in this area are the configuration management
software, and readers interested in this area are encouraged to read up
on one or many of the following (listed alphabetically):

• Ansible: http://www.ansibleworks.com/
• Bcfg2: https://trac.mcs.anl.gov/projects/bcfg2
• Chef: http://www.opscode.com/chef/
• Puppet: http://puppetlabs.com/
• Salt: http://saltstack.org/

Platform as a Service (PaaS)
Moving up one layer in our stack example, we find ourselves at Platform as
a Service (PaaS). This service model aims to offer some of the flexibility of an
IaaS while removing a great deal of the overhead such as the need to maintain
the operating system, storage, deployment, provisioning, and configuration
management. The offerings in this space will take the abstraction one level higher,
and instead of virtualizing every component of the infrastructure that would
normally be provisioned as hardware, PaaS effectively offers the pieces of a puzzle,
which when put together, provide the platform on which applications can run.
In a PaaS environment, the administrators, developers, or deployment managers
of web applications can select the components upon which their application will run,
such as the service daemon, programming language, web framework, and database.
At this point, the end user's decision should focus more on whether the PaaS being
reviewed offers features needed by the individual interested in hosting, deploying,
or developing a particular application, along with its capacity, scaling, backup,
and any other potential concerns.

http://saltstack.org/
http://saltstack.org/

Chapter 1

[13]

Now, there are a number of PaaS providers available and anyone looking to select
one should indeed spend some time with their favorite search engine to find
candidates interested in becoming their provider. The top contenders should also
be taken for a test drive before making any hard decisions. However, since this book
is about OpenShift, I hope the reader has decided to use OpenShift, and other PaaS
providers will not be discussed as such. One thing to note as a tie-in with the stack
analogy is how some PaaS architectures are tightly integrated with IaaS using
an Application Programming Interface (API). The API can be used as a means
of automating tasks within IaaS from the perspective of PaaS, such as launching
a new compute node, auto-configuring its storage and services daemons, and adding
these new resources to the PaaS environment to increase capacity. Also note that
even if PaaS Clouds are not integrated directly to IaaS, they are often deployed
on top of IaaS because of the flexible nature of IaaS Clouds.

Software as a Service (SaaS)
Sitting on the top layer of the stack, Software as a Service (SaaS) is the cloud
evolution of hosted web applications. This layer of abstraction removes the largest
amount of control from the user or customer as they take upon the role of simply
a user, or possibly as an application administrator, and the entire platform upon
which it runs is managed by the service provider as well as all the infrastructure
concerns. However, as with all things where there is "give", there must be "take",
and in this scenario, the "give" is a loss of control and flexibility in terms of
architectural decisions, choice of backend programming languages, frameworks,
databases, and any other selections of technology used. The "take" side of this and
why this service model gains such widespread adoption is that some organizations,
companies, or teams do not have the expertise, the desire to take on the technical
aspects of a hosted web application, or might consider such functions as a burden.
Common examples of SaaS hosting are Customer Relations Management (CRM),
Enterprise Resource Planning (ERP), Management Information Systems (MIS),
as well as other essential business-focused software solutions.

Understanding the Essentials

[14]

SSH
Where did all the clouds go? Why are we talking about SSH all of a sudden? Well,
we're talking about SSH because it is an important component of OpenShift as
well as other PaaS Clouds. SSH is an acronym for Secure Shell and it is a network
communications protocol that creates encrypted connections for remote command
executions, shell sessions, and data transfer. From a user's standpoint, SSH is quite
simple to use, but do not let that be an indication of its potential as it is quite powerful.
We will briefly discuss some simple SSH commands in context to the OpenShift use
cases, but first, we need to understand a couple of things about how SSH works so
that we can set up some prerequisites. The first thing on our list of prerequisites is the
fact that SSH offers public- or private-key-based authentication, which is extremely
common and is also used by OpenShift. The most popular implementation of SSH
is arguably OpenSSH (http://www.openssh.com/), which is used by OpenShift.
OpenSSH can also use other methods for authentication, such as passwords, Single
sign-on mechanisms, and even Two-factor authentication. These alternatives are not
covered here as they are not applicable to our coverage of OpenShift.

Once public keys are in place, something that OpenShift's client utilities will set up
for us, we can simply run the following command to connect to a remote server in
order to run commands in an interactive shell.

If we are doing this against a server that is not an OpenShift Gear, we
will have to verify whether the configurations are in place to allow for
passwordless SSH; there are many guides on this online so we won't
discuss it here.

Gears will be explained at length in a later section, but it's effectively
a GNU/Linux sandbox environment that is resource constrained and
secured with SELinux.

user@mylaptop$ ssh username@server.example.com

user@server.example.com$

If you are using a GNU/Linux distribution or Mac OS X, you will most likely have
an SSH client preinstalled; however, if you are a Windows user, you will need to install
a third-party SSH client application such as PuTTY (http://www.putty.org/).

In the preceding example, the shell prompt, user@mylaptop$, is used to signify
a shell on the local machine, and once the SSH connection is established, the prompt
changes to user@server.example.com$, signifying that the shell session that is
currently at our fingertips is on a different machine. While shell prompts will vary
greatly in the wild because of the flexibility of their configuration, this should serve
as a decent placeholder to understand that once we are typing into a shell prompt at
user@server.example.com$, these commands are happening remotely.

http://www.openssh.com/
http://www.openssh.com/
mailto:username@server.example.com
mailto:username@server.example.com
mailto:username@server.example.com

Chapter 1

[15]

The following diagram shows a simple layout of a client computer (such as a laptop)
and a server system, along with a sample user account that resides on the server
system, cleverly named user that will offer itself as a high-level overview
of the introductory example we previously covered.

There are actually a lot of steps going on in the
background of this diagram that have to do with setting
up the encrypted connection, but an in-depth coverage
of these is not within the scope of this publication.

user@mylaptop SSH user@server.example.com

An overview of SSH

Another thing we can do with SSH, other than logging in to a remote shell, is
execute single commands remotely and receive their output in the local terminal.
The following example will display how to obtain our quota information from
an OpenShift Gear using the quota command, without actually entering into an
interactive shell session remotely.

OpenShift shell prompts do not actually look like this in real usage; the prompt in the
example was modified to maintain consistency with the previous examples. The actual
OpenShift prompts and SSH username formatting will be covered in later sections.

user@mylaptop$ ssh user@server.example.com 'quota'

Disk quotas for user user@server.example.com (uid 6017):

Filesystem blocks quota limit grace files quota limit
grace

/dev/mapper/EBSStore01-user_home01

 604 0 1048576 172 0 40000

As we can see here, the command was executed remotely and the output was sent back
to us providing seamless interaction, almost as though we ran the command locally.

SSH is often just used outside interactive shells and remote-command execution.
Many utilities in traditional Unix and Unix-like operating systems use or have the
option to use SSH as their data transport in order to provide secure transmission
of whatever data they need to move between two hosts. Common utilities in this
category are rsync, scp, mercurial (hg), and git, which leads us into the next
section based on git.

Understanding the Essentials

[16]

Git
Once upon a time, developers would maintain complex directory structures of
source code that would live on a central server. Members of the development team
would mount the directory over a shared file system or develop collectively on the
same server, both of which posed a laundry list of problems. There is a classification
of utility known as Version Control Systems (VCSs), which solve these issues.
VCSs create the ability to maintain a manifest of differentials between "commits"
or "versions" of a code base and much more. The VCS of choice for code management
and deployment with OpenShift is named Git. The following is an excerpt from
the Git website (http://git-scm.com/):

"Git is a free and open source distributed version control system designed to handle
everything from small to very large projects with speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast performance. It
outclasses SCM tools like Subversion, CVS, Perforce, and ClearCase with features
like cheap local branching, convenient staging areas, and multiple workflows".

Before we go too deep into the details of Git, there needs to be some discussion about
a few Git concepts that are essential to understanding how Git functions and why
it is so powerful for developers. The first of which is the notion of a branch. In Git,
there is the source-code repository that has been initialized to be tracked, and within
that repository, there can be many branches. A branch is effectively a sub-repository
snapshot that maintains its own change logs, snapshots, metadata, and so on. A Git
branch is not a unique concept as other version control systems share this feature,
but many who have never experienced it might find it difficult to follow at first,
so hopefully the following diagram will help to clarify:

Time

master dev some_feature

Overview of the Git branch

http://git-scm.com/

Chapter 1

[17]

In the preceding diagram, there are three lines, each representing a branch. A focal
point to make note of is what is known as the master branch, which is created by
default when you create and initialize a Git repository. It stands to note that at the
time a branch is created, it is a point-in-time snapshot of the code base from where
the branch originates, and each branch can receive code commits independently
from one another. Within the diagram, in this hypothetical Git repository, there are
two other branches. One is called dev and another is called some_feature, both of
which are meant to show that this is all the same code base but has deviations during
the development timeline. The arrows moving between the branches introduce
another concept from Git called a merge. In Git, when you merge from one branch
to another, you are applying the change set or differential from another branch upon
the current one. Git has a number of clever methods for accomplishing this task,
but it should be mentioned that there is a possibility of a conflict that would have
to be resolved before the merge operation can be completed. There are methods for
mitigating the risk of merge conflicts, which will be discussed later in this section.
The manner in which developers perform their branch-and-merge process is up
to their respective development team. There are many approaches to branch/merge
development cycles, each with advantages and disadvantages, and discussions
of these exist far and wide on the Internet. It is advisable to spend some time
researching to find the one that best fits a project's development style.

This has been a very rapid discussion of Git concepts, and we
have only scraped the surface of its power and distributed nature.
It would be advisable to spend some time with the Git project's
documentation (http://git-scm.com/doc) for users who are
interested in the breadth of capability that Git offers.

Hopefully, there is enough background information covered up to this point in
order to start working with Git, so we will first want to set up a couple of global
parameters for good measure.

While it was not covered here, it is assumed that Git is installed on the
user's system. For GNU/Linux users of debian-based distributions,
this can be done with apt-get install git as the root (or the
git-all package to pull in all subpackages) or from a Fedora- or Red
Hat-based system, it can be accomplished using yum install git
as the root. Other Linux distributions are likely to have the installable
package name of git in their respective repositories. For users of Mac
OS X or Windows, please visit Git's download site (http://git-
scm.com/downloads) in order to obtain your installation medium.

Understanding the Essentials

[18]

When using Git for the first time, the first order of business is to set a few global Git
settings such as developer identity, editor of choice, and diff tool (for merges). Run
the following commands as the system user (that is, as a non-root user), which will
be used for development, replacing the name and e-mail address with your own:

$ git config --global user.name "John Smith"

$ git config --global user.email johnsmith@example.com

Next up on the list will be to configure the editor of choice. Most developers like
to use either vim or emacs, but these are certainly not the only editors in town,
so use what fits best. We can configure the editor as follows:

$ git config --global core.editor vim

After these are in place, it would also be wise to configure a merge tool, which is
used to assist when handling the merge conflicts. On my system, which is Fedora 19,
at the time of writing, the command git mergetool –tool-help lists the following
as valid entries as a merge tool: araxis, bc3, codecompare, diffuse, ecmerge,
emerge, gvimdiff, kdiff3, meld, opendiff, p4merge, tkdiff, tortoisemerge,
vimdiff, and xxdiff. These tools are simple examples of merge utilities that can be
used, and we should select one we feel comfortable with, or accept the defaults for
your system if this is uncharted territory. For those using a GNU/Linux distribution
as their development platform of choice, and who enjoy graphical environments,
meld and kdiff3 have both received a lot of positive feedback and would likely be
a decent place to start. As a vim user, vimdiff is the merge tool of choice and we'll
configure it as follows:

$ git config --global merge.tool vimdiff

There are also a number of other configurable Git variables, which may be found
using either the Git documentation found on their website or via the git-config
main page.

Moving on, for the sake of the example, let's assume that there is an application we
are going to write named my_app. For simplicity, it will just be a simple "Hello World"
example in Ruby, but it will be enough to cover the basic usage commands. First, we
need a directory that we will turn into a Git repository using the following commands:

$ mkdir my_app

$ cd my_app

$ git init

Initialized empty Git repository in ~/myapp/.git/

Chapter 1

[19]

That's it. That's the magic; we did it! See how easy that was? It is truly amazing how
powerful Git is, considering how simple it is to use. Next up, we need to create a file
named app.rb with the following contents:

#!/usr/bin/env ruby

puts "Hello world!"

Downloading the example code

You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

The #!/usr/bin/env ruby line is what is called a shebang,
and it defines the environment in which the file should be executed.
This is a common Unix-ism and will have no effect on the
Windows environments.

Since we have a file and some contents, we'll now need to add it to git in order
to be tracked by Git using the following command:

 $ git add app.rb

Then to check the status of our Git repository, run the following command and you
should get a similar output:

$ git status

On branch master

#

Initial commit

#

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

#

new file: app.rb

#

www.allitebooks.com

http://www.allitebooks.org

Understanding the Essentials

[20]

The portion of these lines of commands that is of interest is the Changes to be
committed part. This means we've added changes to a "staging" status and it is ready
to be committed to the Git log. Also, we can add a commit message to provide some
context to what the contents of this commit are. We will commit and then check
the Git log; remember, Git maintains a log of all the code that is committed to the
repository. Commit the code and view the Git logs with the following commands:

$ git commit -m "Initial commit of app.rb, Hello World example"
[master (root-commit) 77839fd] Initial commit of app.rb, Hello World
example
1 file changed, 3 insertions(+)
create mode 100644 app.rb

$ git log
commit 77839fdef6f17012797e93f05516d342570d31d6
Author: Adam Miller <maxamillion@fedoraproject.org>
Date: Wed Jan 9 23:21:04 2013 -0600
Initial commit of app.rb, Hello World example

One thing to note here is that if you were to run the command, git show, it will show
you the latest entry in the Git log, including the changes committed as follows. We will
see the line start with two paths that don't really exist, a/app.rb and b/app.rb, these
are effectively placeholders that show the differential between what app.rb used to
be and what it is now within this Git branch:

$ git show

commit 77839fdef6f17012797e93f05516d342570d31d6

Author: Adam Miller <maxamillion@fedoraproject.org>

Date: Wed Jan 9 23:21:04 2013 -0600

 Initial commit of app.rb, Hello World example

diff --git a/app.rb b/app.rb

new file mode 100644

index 0000000..2966711

--- /dev/null

+++ b/app.rb

@@ -0,0 +1,3 @@

+#!/usr/bin/env ruby

+

+puts "Hello world!"

Chapter 1

[21]

In the preceding output, there is a commit ID, which is a unique identifier for this
commit, followed by the Author and Date stamp for the commit.

A quick side mention that should be considered is that date
stamps are not always chronologically ordered as we might
think they should be, and this can happen in a number of ways,
but most commonly, are going to be time zones of commits in a
distributed development model or merges intermingling commits.

After the commit ID, the Author, and the Date stamp, is the commit message and
the diff. For those familiar with the diff and patch tools, they will feel right at
home with this output formatting and its meanings. If this is new territory, fret
not as the output is relatively straightforward: the lines with a + character prepended
are additions to the file, lines with a - character prepended are removals from
the file, lines without any prepended characters are not modified, and lines with
the @@ characters are offsets in the file.

If the Git repository we were working with had not been initialized on our local
machine, but instead had been cloned from a remote repository, which is what
happens when you use OpenShift, there would be one more command needed
to propagate this commit to the remote server: git push. Do you remember we
have mentioned before that Git is distributed, and therefore, the commit we made
previously was only to our local repository? By performing a git push, we are
"pushing" those changes out to a remote location. The default remote location in
Git nomenclature is known as origin, but we need not supply that information
to the command because by default it is assumed.

Note that the following output is from an OpenShift Git repository
and will contain some output that might not be very meaningful,
but don't worry as this will be covered at length in the later sections.

$ git push

Counting objects: 4, done.

Delta compression using up to 4 threads.

Compressing objects: 100% (2/2), done.

Writing objects: 100% (3/3), 290 bytes, done.

Total 3 (delta 1), reused 0 (delta 0)

remote: restart_on_add=false

remote: Waiting for stop to finish

remote: Done

Understanding the Essentials

[22]

remote: restart_on_add=false

remote: ~/git/sinatra.git ~/git/sinatra.git

remote: ~/git/sinatra.git

remote: Running .openshift/action_hooks/pre_build

remote: Running .openshift/action_hooks/build

remote: Running .openshift/action_hooks/deploy

remote: hot_deploy_added=false

remote: Done

remote: Running .openshift/action_hooks/post_deploy

To ssh://891a6370bd884b348305552b1c9485e7@sinatra-admiller.rhcloud.com/~/
git/sinatra.git/

 bab6f7c..e703aa8 master -> master

OpenShift – a bird's-eye view
In this section we will discuss OpenShift at a very high level, showing certain
components of the backend, explaining a little about how everything fits together
and how it works, without getting too much in depth with each. That level
of granularity will be explored in later sections and might not be applicable
to everyone's interests.

REST API

Broker

OpenShift
Client Tools

DNS Server

MongoDB

Node

OpenShift—a bird's-eye view

Chapter 1

[23]

Following the preceding diagram, we will walk through the path where traffic
will flow, starting with the perspective of a user utilizing the OpenShift Client
Tools. From there, we will proceed by stepping through the components so that
we can get a basic feel of the way the platform works before diving deeper into
the individual levels. Both the DNS server and the MongoDB system will not
receive much focus at this time as DNS and database servers are conceptually
extremely widespread technologies and this is meant to be a high-level discussion;
they will, however, receive focus in later sections. OpenShift is written in the Ruby
programming language (http://www.ruby-lang.org) using the very popular
Ruby on Rails (http://rubyonrails.org/) web framework. This will
be noteworthy for any reader who may be interested in joining the OpenShift
Origin upstream development community.

Ruby is an open source, multi-platform, object-oriented programming
language that has gained considerable popularity in recent years,
especially in the realm of web development in large, thanks to
the Ruby on Rails web framework, which is also open source.
More information on each of these, respectively, can be found at
http://www.ruby-lang.org/en/http://rubyonrails.org/.

Client tools
The layer where OpenShift users will spend most of their time developing or hosting
their web application is the client tools. The client tools will communicate with
the server known as a broker, which we will cover shortly. Within the category of
client tools, there are a number of options: first is the command-line interface that is
distributed as a RubyGem. The Gem itself is distributed on https://rubygems.org/
gems/rhc, and more information about it and its code base can be found on GitHub
(https://github.com/openshift/rhc/).

A RubyGem is a package management format that is the standard
for distributing and consuming software, and software libraries
written in the Ruby programming language. These packages are often
repackaged into GNU/Linux distribution's native package format
such as rpm or deb so that it can be easily deployed and installed. For
more information about RubyGems, visit https://rubygems.org/.

https://rubygems.org/gems/rhc

Understanding the Essentials

[24]

Aside from the RubyGem version of the command-line client tools, there are also
various Integrated Development Environments (IDEs) that offer integration
as well as the Web Console, all of which allow for the developer to utilize the
OpenShift platform. At the time of this writing, the Red Hat JBoss Developer Studio,
which is an IDE from Red Hat based on Eclipse (https://devstudio.jboss.com),
an Eclipse plugin, and the Zend Studio IDEs, offer OpenShift client-integration
plugins. However, it should be noted that no matter the utility, all end user tools
utilize the Representational State Transfer Application Programming Interface
(REST API) on the backend. This will be covered in more detail later.

Broker
Interaction with OpenShift happens through the broker. This component of
OpenShift can be thought of as the facilitator, as it handles REST API calls
and translates them into actions. These actions can be DNS updates, user
authentication, or an application action such as creation, deletion, or other state
changes. When these actions are sent to the broker, it will make its decisions
and utilize a message-passing mechanism to instruct other components within
OpenShift to carry out a task. Depending on the task required, the broker will
send a message such as the following to a supporting system:

• Name server record updates
• Application state transition
• User authentication
• Node tasks: performing actions against a user's application environment

Node
When an OpenShift user creates an application, they do so within a container that
has been titled as Gear, and multiple OpenShift gears will live on a single Node.
Multiple nodes can exist in an OpenShift environment, but the important point to
be observed here, which makes the OpenShift PaaS unique, is that it's multitenant
at the operating system level or at the platform layer, which offers high density.
These nodes are the work horses. This is where the applications run, the databases
run, the Git repositories live, as well as what is known as a Cartridge will execute
(more on cartridges later), and the location that we will land at when we SSH into
our application or Gear.

https://devstudio.jboss.com/

Chapter 1

[25]

Summary
This has been a whirlwind take on all things in cloud computing and most notably
that of Platform as a Service. In this chapter, we have also covered some background
utilities such as SSH and Git that are essential for using OpenShift, and we even
took a high-level look into the OpenShift architecture in order to see how all the
components fit together. Next up, we will move on to actually using OpenShift by
utilizing the hosted free OpenShift Online service, as we explore all the ways we are
able to deploy our applications into "The Cloud" using OpenShift.

Using OpenShift
In Chapter 1, Understanding the Essentials, we discussed a number of technologies,
including coverage of the Cloud and its service model paradigms, SSH, and Git,
and a very high-level overview of the OpenShift Architecture in order to gain
perspective on how all the components combine to deliver a platform as a service.
Now, we are about to begin utilizing this platform for our development or web
application hosting needs.

The following are the three common ways in which we can utilize OpenShift as a user:

• Command-line utilities
• Web Console
• IDE integration

Each of these utilize the OpenShift REST API at the backend; therefore, as a user,
we could potentially orchestrate OpenShift using the API with such common
command-line utilities as curl to write scripts for automation. We could also use
the API to write our own custom user interface, if we had the desire. In the following
sections, we will explore using each of the currently supported user experiences,
all of which can be intermixed as they communicate with the backend in a uniform
fashion using the REST API previously mentioned.

Using OpenShift

[28]

Getting started using OpenShift
As discussed previously, we will be using the OpenShift Online free hosted service
for example portions. OpenShift Online has the lowest barrier of entry from a user's
perspective because we will not have to deploy our own OpenShift PaaS before
being able to utilize it. Since we will be using the OpenShift Online service, the
very first step is going to be to visit their website and sign up for a free account via
https://openshift.redhat.com/app/account/new.

New account form

Once this step is complete, we will find an e-mail in our inbox that was provided
during sign up, with a subject line similar to Confirm your Red Hat OpenShift
account; inside that e-mail will be a URL that needs to be followed to complete
the setup and verification step. Now that we've successfully completed the sign up
phase, let's move on to exploring the different ways in which we can use and interact
with OpenShift.

Chapter 2

[29]

Command-line utilities
Due to the advancements in modern computing and the advent of mobile devices
such as tablets, smart phones, and many other devices, we are often accustomed to
Graphical User Interface (GUI) over Command-Line Interface (CLI) for most of our
computing needs. This trend is heavier in the realm of web applications because of the
rich visual experiences that can be delivered using next generation web technologies.
However, those of us who are in the development and system administration circles
of the world are no strangers to the CLI, and we know that it is often the most
powerful way to accomplish an array of tasks pertaining to development and
administration. Much of this is a credit to powerful shell environments that have their
roots in traditional UNIX environments; popular examples of these are bash and zsh.
Also, in more recent years, PowerShell for the Microsoft Windows platform has aimed
to provide some relatively similar CLI power.

The shell, as it is referenced here, is that of a UNIX shell, which
is a command interpreter that supports such features as variables,
functions, pipes, I/O redirection, variable substitution, flow
control, conditionals, the ability to be scripted, and more. There
is also a POSIX standard for a shell that defines a standard set of
features and behaviors that must be complied with, allowing for
portability of complex scripts.

With this inherent power at the fingertips of the person who wields the command line,
the development team of the OpenShift PaaS has written a command-line utility,
much in the spirit of offering powerful utilities to its users and developers. Before
we get too deep into the details, let's quickly look at what a normal application
creation and deployment requires in OpenShift using the following command:

$ rhc app create myawesomewebapp ruby-1.9

$ cd myawesomewebapp

(Write, create, and implement code changes)

$ git commit -a -m "wrote awesome code"

$ git push

www.allitebooks.com

http://www.allitebooks.org

Using OpenShift

[30]

It will be discussed at length shortly, but for a quick rundown, the
rhc app create myawesomewebapp ruby-1.9 command
creates an application, which runs on OpenShift using ruby-1.9
as the programming platform. Behind the scenes, it's provisioning
space, resources, and configuring services for us. It also creates a
git repository that is then cloned locally—in our example named
myawesomewebapp—and in order to access this, we need to
change directories into the git repository. That is precisely what
the next command cd myawesomewebapp does. Finally, the git
commands should look familiar to the commands in Chapter 1,
Understanding the Essentials.

And you're live, running your web application in the cloud. While this is an
extremely high-level overview and there are some prerequisites necessary, normal
use of OpenShift is that easy. In the following section, we will discuss at length
all the steps necessary to launch a live application in OpenShift Online using the rhc
command-line utility and git.

This command-line utility, rhc, is written in the Ruby programming language
and is distributed as a RubyGem (https://rubygems.org/). This is the
recommended method of installation for Ruby modules, libraries, and utilities due
to the platform-independent nature of Ruby and the ease of distribution of gems.

The rhc command-line utility is also available using the native
package management for both Fedora and Red Hat Enterprise Linux
(via the EPEL repository, available at https://fedoraproject.
org/wiki/EPEL) by running the yum install rubygem-rhc
command.

Another noteworthy proponent of RubyGems is that they can be installed to a user's
home directory within their local machine's operating system, allowing them to
be utilized even in environments where systems are centrally managed by an IT
department. RubyGems are also installed using the gem package manager for users
of GNU/Linux package managers, such as yum, apt-get, and pacman or Mac OS X's
community homebrew (brew) package manager, which will be familiar with
the concept. For those unfamiliar with these concepts, a package manager will track
a software named "package" and its dependencies, handle installation, updates,
as well as removal. We will take a short moment to tangent into the topic of
RubyGems before moving on to the command-line utility for OpenShift to ensure
that we don't leave out any background information.

Chapter 2

[31]

The following sections will assume that we have Ruby and
RubyGems installed. If that is not the case, now would be the
time to follow the installation instructions for both of these at
the following URLs respectively:

http://www.ruby-lang.org/en/downloads/ and
https://rubygems.org/pages/download

These can also be installed using the local package manager
for your GNU or Linux distribution of choice. Ruby comes
installed by default on Mac OS X; as of now the latest version
available at this time is Mountain Lion (10.8).

The following command will install the gem of the OpenShift client tools called rhc,
which is available at https://rubygems.org/gems/rhc; also, note that specific
versions are likely to vary as development continues on gems:

$ gem install rhc

Fetching: rhc-1.13.6.gem (100%)

Fetching: httpclient-2.3.2.gem (100%) ===================================
====================
If this is your first time installing the RHC tools, please run 'rhc
setup'

===
Successfully installed httpclient-2.3.2

Successfully installed rhc-1.13.6

2 gems installed

Installing ri documentation for httpclient-2.3.2...

Installing ri documentation for rhc-1.13.6...

Installing RDoc documentation for httpclient-2.3.2...

Installing RDoc documentation for rhc-1.13.6...

There are a couple of things to note from the preceding output. If we previously did
not have the RubyGems system or any preexisting gems installed, we would likely
see considerably more output, as more dependencies would be downloaded and
installed. If this is the case, don't be alarmed, as this is normal. This also helps to not
overload the example with unnecessary output. If we were to take a moment to look
at the listing of the currently installed gems, we could run the following command
to get a reporting (some lines are omitted for brevity):

$ gem list –local

activesupport (3.2.9)

Using OpenShift

[32]

addressable (2.3.2)

archive-tar-minitar (0.5.2)

aws-sdk (1.6.5)

bigdecimal (1.1.0)

builder (3.1.4)

bundler (1.1.4)

.

... (omitted output)

.

rhc (1.13.6, 1.12.4, 1.3.8, 1.2.7, 1.1.11)

rspec (1.3.2)

ruby-lint (0.0.2)

... (omitted output)

The main point to note from the preceding output is that the rhc gem has multiple
versions listed in the parenthesis next to its gem name. This is to signify that there
are multiple versions installed. In the event it were a software library instead
of a command-line utility, we may want to maintain multiple versions installed
in parallel. Another neat feature is that gems can signify a dependency upon specific
versions of the libraries or utilities they require; this parallel install flexibility allows
different gems to not be restricted to requiring the same versions of the things they
depend upon from the RubyGems repository. For more information on
the capabilities of the gem utility, run the gem help command.

Now that we are a little more familiar with what RubyGems are and the capabilities
of the gem utility, we can move on to using our OpenShift client utility, which
we installed in a previous example, called rhc. As noted in the output of the gem
install rhc command, we were presented with the If this is your first time
installing the RHC tools, please run 'rhc setup' message, and we will assume
that is in fact the case and will follow along with that.

At the time of writing, the latest released version of rhc was
1.13.6 and that is what will be used for the duration of the
text—the exact output from the utility or some interactions are
subject to change in later versions. In the event of inconsistencies,
always refer to the upstream project's documentation at
https://www.openshift.com/get-started/.

$ rhc setup

OpenShift Client Tools (RHC) Setup Wizard

Chapter 2

[33]

This wizard will help you upload your SSH keys, set your application
namespace, and check that other programs like Git are properly installed.

Login to openshift.redhat.com: username@example.com

Password: ************

Saving configuration to /home/adam/.openshift/express.conf ... done

No SSH keys were found. We will generate a pair of keys for you.

 Created: /home/adam/.ssh/id_rsa.pub

Your public SSH key must be uploaded to the OpenShift server to access
code. Upload now? (yes|no) yes

Since you do not have any keys associated with your OpenShift account,
your new key will be uploaded as the 'default' key.

 Type: ssh-rsa

 Fingerprint: 90:31:b1:25:f5:0e:c0:b3:fb:7e:5e:b8:7b:9b:d7:47

Uploading key 'default' from /home/adam/.ssh/id_rsa.pub ... done

Checking for git ... needs to be installed

Automated installation of client tools is not supported for your
platform. You will need to manually install git for full OpenShift
functionality.

Checking common problems . done

Checking your namespace ... none

Your namespace is unique to your account and is the suffix of the public
URLs we assign to your applications. You may configure your namespace
here or leave it blank and use 'rhc domain create' to create a namespace
later. You will not be able to create applications without first
creating a namespace.

Using OpenShift

[34]

Please enter a namespace (letters and numbers only) |<none>|: packtbook
Your domain name 'packtbook' has been successfully created

Checking for applications ... none

Run 'rhc app create' to create your first application.

.

... Omitted for brevity...

.

 You are using 0 of 3 total gears

 The following gear sizes are available to you: small

Your client tools are now configured.

In the preceding output, we accomplished a number of things; first we allowed
the rhc tool to create SSH keys on our behalf and upload them to the OpenShift
service. We then were informed that we are lacking an installation of the git utility
(this command was run in a base installation of Fedora 19 for example purposes);
this is something that can be automatically installed on our behalf for some systems,
but not all. I've left this output in the example to show that the utility will install this
for us if possible, or at least let us know that git is an essential part of our OpenShift
experience, as noted in Chapter 1, Understanding the Essentials. Next on the list of
things our setup accomplishes for us is that it creates the domain space in which
our OpenShift applications will live. When using the OpenShift Online service, this
will act as your subdomain of the rhcloud.com web domain space, and all our web
applications will be assigned a name in the following format:

<application_name>-<domain_name>.rhcloud.com

This format is the way in which each user's application may obtain a global DNS entry
and still remain unique. In addition to this setup step, we should take a moment
to note that OpenShift Online does offer a DNS alias functionality so that we can use
our own domain names, if we so choose. The final step from the rhc setup output is
showing us the number of application gears we are currently consuming. We covered
this in Chapter 1, Understanding the Essentials, but I will quickly recap; effectively, a Gear
is a resource abstraction that can contain a single "application," which in most cases
is equivalent to an application framework or language runtime Cartridge (cartridge
being the building blocks that we combine to create the platform upon which we
write or run our application). Currently, it is also able to contain one or many add-on
cartridges, such as a database, jenkins, or database administrative frontend.

Chapter 2

[35]

The portion of the output that is omitted in the previous example lists the currently
available cartridge types that provide runtimes, databases, and frameworks we may
select from, to either develop or deploy on top. This output will be useful shortly,
so it was left out to keep the verbosity to a minimum.

Now that we have set up our command-line utilities and defined a domain for our
applications to live within, let's explore a little bit of what we can do and see with
the command-line utilities. First, let's actually create an application so that we can
perform a little bit of development. Note that the development demonstration here
will only show a simple example using Ruby 1.9 and the Sinatra web framework
(http://www.sinatrarb.com/), but OpenShift supports far more than just this
language runtime for application development. In order to obtain a complete list
of the application runtimes and frameworks available, run the following command
and observe its output. Take into account that this list is subject to change as ongoing
development increases the options available to us as users:

$ rhc cartridge list

jbossas-7 JBoss Application Server 7 web

jbosseap-6 (*) JBoss Enterprise Application Platform 6.1.0 web

jenkins-1 Jenkins Server web

nodejs-0.6 Node.js 0.6 web

perl-5.10 Perl 5.10 web

php-5.3 PHP 5.3 web

python-2.6 Python 2.6 web

python-2.7 Python 2.7 web

python-3.3 Python 3.3 web

ruby-1.8 Ruby 1.8 web

ruby-1.9 Ruby 1.9 web

jbossews-1.0 Tomcat 6 (JBoss EWS 1.0) web

jbossews-2.0 Tomcat 7 (JBoss EWS 2.0) web

zend-5.6 Zend Server 5.6 web

diy-0.1 Do-It-Yourself 0.1 web

10gen-mms-agent-0.1 10gen Mongo Monitoring Service Agent addon

cron-1.4 Cron 1.4 addon

jenkins-client-1 Jenkins Client addon

mongodb-2.2 MongoDB NoSQL Database 2.2 addon

mysql-5.1 MySQL Database 5.1 addon

Using OpenShift

[36]

metrics-0.1 OpenShift Metrics 0.1 addon

haproxy-1.4 OpenShift Web Balancer addon

phpmyadmin-3 phpMyAdmin 3.4 addon

postgresql-8.4 PostgreSQL Database 8.4 addon

postgresql-9.2 PostgreSQL Database 9.2 addon

rockmongo-1.1 RockMongo 1.1 addon

switchyard-0 SwitchYard 0.8.0 addon

Note: Web cartridges can only be added to new applications.

(*) denotes a cartridge with additional usage costs.

There are two things that can be taken away from the preceding output. The first is
that there are designations between a web cartridge and an addon cartridge. A web
cartridge is going to be either a language runtime or a web framework. You may not
combine multiple web frameworks within a single gear, but may combine a single web
cartridge and one or many add-on cartridges, provided they are compatible (that is,
you wouldn't combine phpymyadmin with postgresql-8.4 as phpmyadmin is made for
use with the MySQL database). The second take away is that, in some instances, such
as the Ruby programming language cartridge in the preceding output, it is possible
that there are more than single versions of a cartridge currently supported, which
offers us flexibility in our choices as the end user. This, however, adds some overhead
to our rhc commands in order to specify the version. One nice thing to combat this
is that, as of the rhc version 1.13.6, and likely in all newer versions, the ability to "short
hand" cartridge names is now supported, as we will see shortly.

Chapter 2

[37]

At this point, it is time to create an application using our rhc command-line utilities.
We can name our application almost anything we would like, but the name must
be alphanumeric and cannot contain a - character. For this example, we will be using
the application named as sinatra since that is the framework we will be using:

$ rhc app create sinatra ruby-1.9

Application Options

 Namespace: packtbook

 Cartridges: ruby-1.9

 Gear Size: default

 Scaling: no

Creating application 'sinatra' ... done

Waiting for your DNS name to be available ... done

Downloading the application Git repository ...

Cloning into 'sinatra'...

Your application code is now in 'sinatra'

sinatra @ http://sinatra-packtbook.rhcloud.com/ (uuid:
be1556f7c367494899b7a3fac08b746e) ---------------------------------------
--- --------

 Created: 10:38 PM Gears: 1 (defaults to small)

 Git URL: ssh://be1556f7c367494899b7a3fac08b746e@sinatra-packtbook.
rhcloud.com/~/git/sinat ra.git/

 SSH: be1556f7c367494899b7a3fac08b746e@sinatra-packtbook.rhcloud.com

 ruby-1.9 (Ruby 1.9)

 Gears: 1 small

RESULT:

Application sinatra was created.

Using OpenShift

[38]

Upon completion of this command being run, a few things have occurred. First,
we have provisioned a gear on the OpenShift Online service by running the
ruby-1.9 cartridge. Next, a DNS entry is created and propagated so that our web
application is live and available to us, as well as the world, as soon as its creation
is completed. Finally, we will have a local git repository within our current working
directory with the same name as our application name; in this case it is sinatra. As
mentioned, our DNS name has been propagated. So, in this example, the application
name is sinatra, and my previously chosen domain or namespace was packtbook.
I can then navigate to http://sinatra-packtbook.rhcloud.com/ and be presented
with the Welcome to OpenShift starter page, as shown in the following screenshot:

Welcome to OpenShift

Here we see some simple welcome notes and a bit of guidance on what steps must
be followed as an OpenShift user. Before going too far, let's look at what OpenShift
created for us. In this example, we have the git repository named Sinatra, and
as mentioned before, this is not an ordinary directory; it is in fact a cloned git
repository whose origin lives on the gear created with the rhc client tools. Now
let's change directories into our application's cloned git repository and take a look
at everything that has been laid out for us using the following command:

~]$ cd sinatra/

sinatra]$ ls
config.ru public README tmp

Chapter 2

[39]

Here we can see that our git repository is not empty but is prepopulated based on
the cartridge we selected. So, if your choice of language cartridge was not ruby-1.9,
your predefined layout could potentially be different. The most important file in this
directory is going to be the README file, as it discusses deployment characteristics
specific to not only the language cartridge of choice, but also to OpenShift itself.
The following is an excerpt from the README file located in this example just to give
an idea of some of the information that can be found here:

Repo layout
===========
tmp/ - Temporary storage
public/ - Content (images, css, etc. available to the public)
config.ru - This file is used by Rack-based servers to start the
application.
.openshift/action_hooks/pre_build - Script that gets run every git
push before the build
.openshift/action_hooks/build - Script that gets run every git push as
part of the build process (on the CI system if available)
.openshift/action_hooks/deploy - Script that gets run every git push
after build but before the app is restarted
.openshift/action_hooks/post_deploy - Script that gets run every git
push after the app is restarted
.
... Omitted for brevity...
.

Something interesting in the output are the git hooks; these are scripts that are
run at different points during the deployment of your application and can be
used for an array of functionality; however, most often, this provides a tie in for
Continuous Integration (CI). Also found in this README file is information on how
to access gear resources, such as database hostname, port, username, and password
all through environment variables so that these need not be stored within your
source code. Since we are using the Ruby programming language for this example,
the README file also discusses using Gemfile along with the RubyGem bundler
utility (http://gembundler.com/). It does so in order to automatically satisfy
dependencies and allow users to lock specific versions of dependencies in place
with Gemfile.lock.

What is Gemfile.lock? Gemfile.lock is effectively a manifest
built from Gemfile that allows you to define a specific "locked"
version of all the dependencies of your application.

www.allitebooks.com

http://www.allitebooks.org

Using OpenShift

[40]

If you were to select a different language for your development purposes, the contents
of this README file would contain specific information for your platform of choice,
and I certainly recommend you to familiarize yourself with its contents. Now that
we're all familiar with the README file and its inherent power as an information source,
let's move on to deploying our demonstration application. First thing we will need
is to create our Gemfile file in order to make sure we have the dependencies needed
for our example application. We do this using the following code:

Edit File: ~/sinatra/Gemfile

source 'http://mirror1.ops.rhcloud.com/mirror/ruby/'
gem 'rack'
gem 'sinatra'

We should notice here that our source entry is an OpenShift rhcloud domain entry
whose information was provided from the README file. It is also the OpenShift local
mirror for rubygems.org so that deployments can occur at a more rapid pace when
resolving dependencies. Now that it is in place, the next thing on the agenda is
our config.ru file, most likely those familiar with Ruby web development will be
familiar with this file, but those who come from other fields just need to know that
this is a file used with rack-based (http://rack.github.io/) applications. The
built in config.ru in our git repo contains code for the production of the OpenShift
welcome page but we no longer want that, so we will be effectively deleting and
replacing its contents with the following code:

Edit File: ~/sinatra/config.ru

require 'rubygems'
require 'bundler'
Bundler.require

require './app.rb'
run Sinatra::Application

A short note about what we're doing with config.ru, but
first we need to unearth some mystery about Sinatra. Sinatra
is a web framework dependent on rack, which is a web server
interface allowing for a modular and portable method of
developing on the web in Ruby. We use config.ru to tell rack
what framework or frameworks, or "middleware", we want to
use, and in this case that is Sinatra.

Chapter 2

[41]

With this in place, we have laid the ground work to run our Sinatra application, which
we will call app.rb as noted on the sixth line of our config.ru file. The following
is an example of a Sinatra web application and is intentionally left brief so we don't
tangent too far into, "How to write Sinatra web applications?" but instead focus on its
deployment upon OpenShift. For more information on Sinatra, feel free to visit their
upstream project's documentation at http://www.sinatrarb.com/documentation:

Edit File: ~/sinatra/app.rb

get '/' do
 "<h1> Awesome! I'm running on OpenShift! </h1>"
end

We're all set; next up is just a little bit of git, which we should remember from
Chapter 1, Understanding the Essentials. We will run git add so that git is tracking
our files, then git commit to commit to our local git repository, and then git push
to origin. The code to do this is as follows:

sinatra]$ git add app.rb config.ru Gemfile

sinatra]$ git commit -m "First commit to OpenShift"
On branch master
Your branch is ahead of 'origin/master' by 1 commit.
(use "git push" to publish your local commits)
#
nothing to commit, working directory clean

sinatra]$ git push
Counting objects: 7, done.
Compressing objects: 100% (5/5), done.
Writing objects: 100% (5/5), 675 bytes, done.
Total 5 (delta 0), reused 0 (delta 0)
remote: restart_on_add=false
remote: Waiting for stop to finish
remote: Waiting for stop to finish
remote: Waiting for stop to finish
remote: Waiting for stop to finish
remote: Done
remote: restart_on_add=false
remote: Running .openshift/action_hooks/pre_build
remote: Bundling RubyGems based on Gemfile/Gemfile.lock to repo/
vendor/bundle with 'bundle install --deployment'
remote: The --deployment flag requires a Gemfile.lock. Please make
sure you have checked your Gemfile.lock into version control before
deploying.

Using OpenShift

[42]

remote: Running .openshift/action_hooks/build
remote: Running .openshift/action_hooks/deploy
remote: hot_deploy_added=false
remote: Done
remote: Running .openshift/action_hooks/post_deploy
To ssh://be1556f7c367494899b7a3fac08b746e@sinatra-packtbook.rhcloud.
com/~/git/sinatra.git/
 18de7cf..27fe9d3 master -> master

And we're done! We have officially deployed a web application to OpenShift.
If you have followed along and visited your application's URL, you should see the
following screenshot in your web browser:

A running Ruby application

Now before we switch gears and explore one of the other methods of interacting
with OpenShift, we should spend a few moments looking at some commands,
mentioned in the following table, that are useful during development:

rhc command Uses and examples

rhc cartridge list This will list out all the available cartridges to select
from, including the addon cartridges that provide
extended functionality.

rhc domain show This will display information about your application
domain namespace, including the information to
interface with the gear directly through ssh, as well
as connection information about database addon
cartridges.

rhc app show This will show similar information to what rhc
domain show does but will only display it for a specific
application and not for all applications within the
domain namespace.

rhc port-forward This will allow you to forward a remote port from your
application gear to your local workstation.

rhc tail This command will tail log files from your gear over an
ssh tunnel. This is similar to SSHing into your gear and
using the tail utility with the -f flag on log files.

Chapter 2

[43]

rhc command Uses and examples

rhc snapshot This command will click a snapshot of the current state
of our application and save it locally to create a point in
time, backing up or restoring from a previous snapshot.

rhc ssh This command will allow you to SSH into your
application by name without needing to obtain your
ssh information from alternative methods.

While on the topic of command-line utilities that are useful during development, we
should discuss what's available from the shell session when you SSH into your gear
using the SSH: line from the rhc app show or rhc domain show output. SSH access
is permitted using the same keys that are set up and used along with the rhc utility.
We could, of course, use rhc ssh <application_name> as a shorthand alternative
for looking up the information, if we prefer. Commands available from the ssh shell
on our gears are listed in the following table:

Shell command Description

ctl_app This command allows you to control your application's
service daemon; you can start, stop, restart, gracefully
restart, gracefully stop, and check the status where
applicable.

ctl_all This command allows you to perform the same
functions as ctl_app, but it will also issue the same
control command to the main application cartridge as
well as all the currently embedded addon cartridges,
wherever applicable.

tail_all This command will accomplish the equivalent
of performing tail -f on all applicable log files
pertaining to a gear.

export This will display all the currently defined environment
variables within the gear currently SSH'd into.

rm This is a command to remove files and directories; this
is the GNU rm utility from coreutils.

ls This command lists files and directories; this is the GNU
ls utility from coreutils.

ps Reports a snapshot of current processes. This is from
the procps-ng project and accepts all the familiar
command arguments.

Using OpenShift

[44]

Shell command Description

kill This command kills a currently running process; this
kills the implementation from util-linux and is useful
for dealing with hung processes.

mysql, mongo, psql Each of these commands offer a direct access control
interface for their respective databases.

quota This command displays our current quota for disk space
on the gear.

At this point, we have covered far and wide the materials that are needed to utilize
OpenShift with the command-line client utilities, but one thing we must not do
is neglect the other ways in which we can consume OpenShift and, as such, we will
be moving on to the online web interface and then to IDE integrations.

Web Console
With the advent of modern web technologies such as HTML5, user interactions with
the web have become more and more common, and that mindset is exactly what
OpenShift aims to help developers deliver, or provide application administrators the
ability to run. In this spirit, the OpenShift development team has written their own
web user interface on which we can perform the following actions on applications:

• View
• Create
• Delete
• Restart
• Obtain detailed information

Chapter 2

[45]

In this section, we will walk through the steps and show how to interact with
the OpenShift Online web console.

The OpenShift web console, just as the command-line utilities,
is continuously undergoing active development, so certain
views in the diagrams to follow are subject to change.

First, we will need to log in; then navigate to https://openshift.com with your
favorite web browser and click on MY APPS at the top right. From there, we will
be presented with a page similar to the following screenshot:

My Applications

Using OpenShift

[46]

The thing we should notice here in this layout is that we can see the application
from the example in the Command-line utilities section of this chapter; if you followed
along, you should see this as well when you log in. Now, since we created that
application using the command-line tools, wrote a little code, and deployed it to the
cloud, we should try out a different avenue of workflow for this example. What we'll
do here is select the ADD APPLICATION option, shown in the preceding image,
and we will be presented with the page found in the following screenshots, where
screenshot A is what you'll find at the top, and screenshot B is what you'll find when
you scroll down to the midsection; this was done for clarity:

Screenshot A – Creating a new application

Screenshot B – Creating a new application

Chapter 2

[47]

On this page, we find a multitude of options for deploying applications just as we
did with command-line utilities. One thing to note in the preceding image is that
we have a section named Instant App. While there is documentation on how to
accomplish deploying these, and many more with the command-line utilities, this
section of the interface offers us a one-click option to deploy. If we were to deploy
these using command-line utilities, we would use what is known as the QuickStarts
application (https://www.openshift.com/developers/get-started). Using
the web console, we can deploy a number of the more popular of the QuickStarts
instantly, hence, we use Instant App. Let's go ahead and select Wordpress 3.4, which
will result in the automatic deployment of Wordpress, an extremely popular open
source blogging and content management system (http://wordpress.org/). In the
following screenshot, we are prompted to name the application just as we provided
an application in the Command-line utilities section; for this example, I decided to be
extremely creative and select the name wordpress as can be noted in the following
screenshot. The following two screenshots are of the same web page but different
sections; once again, this distinction is made for clarity. The latter of the two will
be the bottom of the page where we select Create Application:

Screenshot A – Instant App, named Wordpress

Using OpenShift

[48]

Screenshot B – Instant App, named Wordpress

In the spirit of openness, the OpenShift web console does not try to hide details away
from us, the users. Instead, the console shows us details of what is happening behind
the scenes. One example is the source code URL from where Instant App is being
deployed, so that if we desired, we can Git clone the repository and see what makes
all of this possible. Also, in the preceding image, it is mentioned that the PHP 5.3 and
MySQL Database 5.1 cartridges are used together; this is so that we are aware of the
building blocks being used just as if we'd done so ourselves with the command-line
utilities. Once we select Create Application, we will be presented with a screen that
offers details about our database, how to access the application's gear, cloning our
new Git repository, and more.

Chapter 2

[49]

Application information

Now that our application is created, we have information about it and the methods
to access it. If we were to return to the overview of our applications' listing, we would
see both of the examples we have created so far, as shown in the following screenshot:

My Applications

www.allitebooks.com

http://www.allitebooks.org

Using OpenShift

[50]

From this dialog box, we can select the application we just created and view all
the details as a reference point. There are some basic control functionalities also
contained within this view of our application. One of these includes the ability
to add another cartridge, such as phpmyadmin if we want a web interface
to administer our database, as shown in the following screenshot:

Application web control

Last, but not the least, let's visit our newly deployed Wordpress deployment:

Wordpress

Chapter 2

[51]

With our application deployed and the web application explored, it is now time
to spend some time with Integrated Development Environment (IDE), also known
as JBoss Developer Studio.

IDE Integrations
Some developers enjoy their command-line editors, such as Vim or Emacs; some
enjoy a graphical text editor targeted at developers, such as Gedit, Sublime Text,
Kate, TextMate, or Notepad++, and others enjoy an IDE. An IDE is a piece of
software used to develop software, often containing things such as build automation
tools, debugging capabilities, compilers, interpreters, and often with a plugin
ecosystem to provide extended functionality. Two examples of very popular IDEs
are the Open Source IDE, named Eclipse, and Microsoft's Visual Studio. Continuing
with the theme of offering developers as much choice as possible, not only does
OpenShift offer command-line utilities and a web console, but also an IDE with
built-in OpenShift capabilities named JBoss Developer Studio (JBDS) by Red Hat,
which is based on the Open Source Eclipse IDE.

The first step is to download and install JBDS by following the instructions available
at https://devstudio.jboss.com/download/7.x.html; once installed, we will
be presented with a dialog box similar to the following screenshot:

JBoss Developer Studio – the Welcome tab

Using OpenShift

[52]

At this point, we should select Getting Started, and then we will see the JBDS
workspace that contains a number of panels and toolbars. Of these, we will see
JBoss Central in the center pane and inside this contains an entry titled OpenShift
Application, as shown in the following screenshot:

JBoss Developer Studio – the JBoss Central tab

Chapter 2

[53]

Since we are using OpenShift, we of course want to select this option. Once this
option is selected, we will enter our login information and password so that JBDS
will communicate with the OpenShift Online servers to log in and provide our IDE
with access to our applications. This is shown in the following screenshot:

JBoss Developer Studio – Sign in to OpenShift

We could also have gone directly to import an existing application
by navigating to File | Import | OpenShift | Existing OpenShift
Application.

Using OpenShift

[54]

Once authenticated, we will be given the option to create a new application or use
an existing application. For this example, we will select the option Use an existing
application: and see how JBDS is able to access our account and import applications,
as shown in the following screenshot:

JBoss Developer Studio – Setup OpenShift Application

Upon selecting the option to use existing applications and clicking on Browse,
we are presented with a dialog box that shows the applications existing within
our account in the OpenShift Online service. If we've been following along with
the previous examples, there should be two applications already created, namely,
sinatra and wordpress, as shown in the following screenshot:

Chapter 2

[55]

JBoss Developer Studio – selecting an application

Let's select the existing sinatra application. We do this because it is something
we edited in a previous example and is considerably more simple than the code
base for wordpress, which will make it easier for us to navigate, as shown in
the following screenshot:

JBoss Developer Studio – selecting an application named Sinatra

Using OpenShift

[56]

Once we have selected the sinatra application, we will be presented with a dialog
box that might seem a little confusing as it wants us to set up a new project for an
existing application. Now, those familiar with the Eclipse IDE will not likely find
this to be outside the norm, but those who are not well versed in Eclipse will likely
find this to be slightly odd. However, do not worry as this is normal and the project
is inherent to Eclipse and is not directly correlated to OpenShift, but since we are
using the JBDS IDE, which is based on Eclipse, it shares this behavior. Due to the
fact that this example is using a fresh installation of JBDS, we will select Create
a new project, as shown in the following screenshot:

JBoss Developer Studio – creating a project

Chapter 2

[57]

With the JBDS project in place, we will now point the IDE to our Git repository and
can either import an existing project or use the remote branch. Because we've cloned
previously using examples, we can use the local Git repository path and adopt
its branch, as shown in the following screenshot:

JBoss Developer Studio – Cloning settings

Using OpenShift

[58]

Once this selection is made, we will be brought back to a view of JBDS that is very
similar to the one we've seen previously, but at this time, we will notice that in the
left panel, our code repository has been imported. The account that we provided
is now listed in the OpenShift Explorer, which will show accounts, applications,
and add-on cartridges in the tree structure. JBDS also created a server adapter
that we can use to easily push changes to OpenShift in the standard IDE fashion,
as shown in the following screenshot:

JBoss Developer Studio – the code repository

At this point, we can select a file, edit code, commit code to our local repository,
and deploy it to OpenShift, all with the click of a button. This, of course, utilizes
the server adapter mentioned previously.

Summary
Hopefully, we can select our preferred method of deploying on OpenShift, and
developers of all backgrounds, preferences, and development platforms will feel
at home working with OpenShift as a development and deployment platform.
In Chapter 3, OpenShift – Technologies and Working, we will work through some details
of how the OpenShift platform works internally as a service, discussing the different
components and their individual roles within the service.

OpenShift – Technologies
and Working

In Chapter 2, Using OpenShift, we discussed how to use OpenShift from an end user
perspective, as a developer or web application administrator who might utilize
OpenShift as an auto-scaling hosting environment. This chapter will take a deeper
look into the technologies that drive OpenShift from the backend. The material we
will cover in the following sections may not interest all parties, but those interested
in what makes OpenShift tick should feel encouraged to read on and take a peek
behind the curtains. Also, those who aim to deploy or host their own OpenShift
Origin or Enterprise infrastructure, are likely find the information within the
following sections of interest.

Before we delve too far into OpenShift nomenclature and inner workings, we should
be sure and spend some time discussing the technologies that OpenShift relies
upon. In the following sections, we cover what OpenShift utilizes in order to deliver
its user experience, along with its unique architecture of Operating System level
multitenancy. We will cover the following technologies in this chapter:

• Pluggable Authentication Modules for Linux
• SELinux
• Cgroups
• Software Collections
• Marionette Collective

These technologies are the building blocks upon which the unique architecture
of OpenShift was built and we will spend some time with each one.

www.allitebooks.com

http://www.allitebooks.org

OpenShift – Technologies and Working

[60]

Pluggable Authentication Modules for
Linux
The first technology we're going to discuss is Pluggable Authentication Modules
(PAM) for Linux, which is a set of libraries that offers a single point of authentication
for Linux-based operating systems. This is effectively the backend upon which
privilege escalating utilities within the system will hand over the responsibility
of authentication in a dynamic and configurable fashion. System administrators
are able to modify the way different sessions and services authenticate the system
using module configurations. Through the use of modules, PAM makes each of the
following authentication functions separately configurable:

• Account management
• Authentication management
• Password management
• Session management

OpenShift uses this mechanism and has developed a custom PAM module that
assists in providing the multitenant nature of OpenShift gears.

The source code for the OpenShift PAM module is also
available as part of the origin-server Git repository found at
https://github.com/openshift/origin-server,
for those who would like to dig into that source code.

Another PAM module heavily in use with OpenShift that assists in delivering the
gear architecture is pam_namespace. It allows for each user or session to maintain
its own namespace for directory structures, keeping one another from being able to
view or impede upon one another's namespace. On the pam_namespace.8 man page,
the pam_namespace module is described such that,

"The pam_namespace PAM module sets up a private namespace for a session
with polyinstantiated directories. A polyinstantiated directory provides a different
instance of itself based on user name, or when using SELinux, user name, security
context or both."

Citations: S. Smalley, J. Desai, C. Sellers, J. Desai, C. Sellers, S. Grubb, X. Toth, T. Mraz.

This module is on how each OpenShift application's gear is able to have, for
example, its own /tmp/ directory and no other user, application, or Gear is able
to access it. The example of how /tmp/ functions are also delivered in parallel
using the SELinux technology for enhanced security will be discussed under
the SELinux heading in this chapter.

Chapter 3

[61]

SELinux
The second technology we will spend some time covering in this chapter is called
Security Enhanced Linux (SELinux). This is a security technology originally
developed by the United States National Security Agency to bring a heightened
level of security capabilities to the Linux kernel. As an overview, this technology,
best described as an upstream project at http://www.nsa.gov/research/selinux/
index.shtml explains,

"NSA Security-enhanced Linux is a set of patches to the Linux kernel and
some utilities to incorporate a strong, flexible mandatory access control (MAC)
architecture into the major subsystems of the kernel. It provides an enhanced
mechanism to enforce the separation of information based on confidentiality
and integrity requirements, which allows threats of tampering and bypassing
of application security mechanisms to be addressed and enables the confinement
of damage that can be caused by malicious or flawed applications. It includes a set
of sample security policy configuration files designed to meet common, general-
purpose security goals."

In a brief overview, SELinux will assign a set of contexts to files and processes,
then use a set of policies that are defined in order to control transactions that can
occur in the system between these contexts. This is how OpenShift limits different
application's gears from being able to access parts of the system they should not
be, such as the lower-level system and other application's gears running on the same
node. Those interested in an in-depth look into SELinux are encouraged to explore
the Red Hat SELinux guide available at https://access.redhat.com/knowledge/
docs/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/.

CGroups
The Linux kernel contains a large number of features, one of which is Control Groups
(cgroups), which are kernel level constructs that allow for resource constraints. This
is the mechanism upon which OpenShift is able to limit resources per application gear,
and is combined with SELinux in order to offer the functionality of multitenancy at
the Operating System level instead of relying on a form of virtualization or IaaS cloud.

OpenShift – Technologies and Working

[62]

For topics on Linux kernel documentation, there are a few places more authoritative
than the official documentation that comes with the kernel source code; therefore,
we shall refer to the discussion of cgroups definitions from a definite source:

"Definitions:

A *cgroup* associates a set of tasks with a set of parameters for one or
more subsystems.

A *subsystem* is a module that makes use of the task grouping facilities provided
by cgroups to treat groups of tasks in particular ways. A subsystem is typically
a "resource controller" that schedules a resource or applies per-cgroup limits,
but it may be anything that wants to act on a group of processes,
e.g. a virtualization subsystem.

A *hierarchy* is a set of cgroups arranged in a tree, such that every task in the
system is in exactly one of the cgroups in the hierarchy, and a set of subsystems;
each subsystem has system-specific state attached to each cgroup in the hierarchy.
Each hierarchy has an instance of the cgroup virtual filesystem associated with it.

At any one time there may be multiple active hierarchies of task cgroups.
Each hierarchy is a partition of all tasks in the system.

User level code may create and destroy cgroups by name in an instance of the
cgroup virtual file system, specify and query to which cgroup a task is assigned,
and list the task pids assigned to a cgroup. Those creations and assignments only
affect the hierarchy associated with that instance of the cgroup file system.

On their own, the only use for cgroups is for simple job tracking. The intention
is that other subsystems hook into the generic cgroup support to provide new
attributes for cgroups, such as accounting/limiting the resources which processes
in a cgroup can access. For example, cpusets (see Documentation/cgroups/cpusets.
txt) allows you to associate a set of CPUs and a set of memory nodes with the tasks
in each cgroup."

The preceding quote is from the upstream Linux kernel documentation available
at https://www.kernel.org/doc/Documentation/cgroups/cgroups.txt.
Citations: P. Menage, P.Jackson,C. Lameter.

Chapter 3

[63]

Software Collections
When working with GNU/Linux distributions, there are different life cycles of the
code base contained in their package set, which can require special considerations
for deployment of package sets that deviate from what is shipped in the official
repository of our distribution. The examples of Enterprise Linux distributions are
Red Hat Enterprise Linux, CentOS, and Scientific Linux, where the core operating
system's package set is maintained to be stable, controlled, and predictable for the
10-year lifecycle of the code base. Refer to https://access.redhat.com/support/
policy/updates/errata/. This comes with some implications based on how
to effectively introduce updated package sets without compromising the stability
and consistency of the core platform upon which we rely. This is where Software
Collections come in. Software Collections is a system in which we can maintain
namespaces for rpm package sets and enable them at will without affecting the
system itself. This also allows for the ability to install multiple versions of the same
software, such as an interpreted language in parallel, without impeding upon one
another. As an example of this, we will demonstrate using the scl command-line
utility to enable the Software Collection for ruby 1.9.3 on a Red Hat Enterprise
Linux 6 machine, as follows:

$ ruby -v

ruby 1.8.7 (2011-06-30 patchlevel 352) [x86_64-linux]

$ scl enable ruby193 bash

$ ruby -v

ruby 1.9.3p327 (2012-11-10 revision 37606) [x86_64-linux]

As can be seen from the preceding command output, we are able to change the
running version of ruby without having to change any binary names in our
commands or runtimes. Software Collections can also be used for any component
within the system; at the time of writing this book, the upstream project hosted
at FedoraHosted contained the SCL package repositories for postgresql, python
3.x, ruby 1.9.3, httpd 2.4.x, and many more. Those from DevOps and system
administration backgrounds who maintain custom package repositories are
encouraged to explore this topic in depth. But this brief introduction should be
sufficient for explanations on how this technology fits into OpenShift in deployments
through Red Hat Enterprise Linux and its cloned distributions, such as CentOS and
Scientific Linux. More information on SCL can be found at the following resources:

• https://fedoraproject.org/wiki/SoftwareCollections

• https://fedorahosted.org/SoftwareCollections/

• https://access.redhat.com/site/documentation/en-US/Red_Hat_
Developer_Toolset/1/html/Software_Collections_Guide/

OpenShift – Technologies and Working

[64]

MCollective
Marionette Collective (MCollective) is an open source framework for server
orchestration and parallel job execution across an environment of distributed
systems, written and developed by Puppet Labs. It leverages either STOMP
compliant or AMQP message-passing mechanisms in the background, and provides
an easy-to-use and consistent set of commands, as well as an API that will assist in
the facilitation of almost anything needed between a distributed set of servers. More
information about MCollective can be found at http://docs.puppetlabs.com/
mcollective/index.html.

Popular examples of STOMP or AMQP message-passing
mechanisms are ActiveMQ (https://activemq.apache.org/),
 RabbitMQ (http://www.rabbitmq.com/), and QPID
(https://qpid.apache.org/).

Applications and Gears
With an understanding of the background technologies that provide a functionality
offered in OpenShift, we need to revisit the notion of applications and gears.
When we use command-line client utilities, a web administration console, or IDE
integration to create an application, it creates one or many gears for our Application.
Remembering that this Gear is a resource container constrained with cgroups and
confined by SELinux, we can conceptually think of this as our "slice" of the Operating
System; within this slice will be our cartridges. We've covered cartridges previously,
but as a reminder, these are effectively the puzzle pieces with which we assemble
the platform for our web applications, such as language runtimes, databases, and
the plugin functionality. A single OpenShift application can consume multiple
OpenShift gears in different scenarios, the most common of which is in the situation
of an auto-scaling event. The following diagram demonstrates this relationship:

Application

Gear

HAProxy

Gear

ruby- 1.9

Our code

Gear

ruby- 1.9

Our code

Gear

mongodb

rockmongo

Applications and Gears, a scaled-out example

Chapter 3

[65]

In the preceding diagram, we have a single application that is currently scaled out,
meaning that an HAProxy gear is spawned, the second gear of our application and
second copy of our code is spawned, and all the application web requests will, from
that point through the HAProxy node with requests, load balance between the other
application gears.

The OpenShift architecture overview
The preceding diagram offers an overview of the OpenShift architecture. In the
following sections, we will be discussing how each component fits together and
how they function. At this point, we should travel through a workflow and visit the
different points along the path our code travels, and take small detours from the main
data flow in order to spend time covering events that occur along the way, as follows:

MCollective

MongoDB

Authentication

DNS

Client

MCollective

Broker

REST API

MCollective

MCollective

Node
Gears

OpenShift architecture

OpenShift – Technologies and Working

[66]

At the starting point, we would be using some sort of end user interface of the
OpenShift service and for the sake of the example, let's assume that choice is
the command-line client utilities. When we run an rhc command, the utilities
on the backend make a REST API call to Broker as Broker is the central point
of orchestration for the service.

We will discuss REST API in a later section.

Let's take a moment to walk through an example of an action we would perform
with the rhc command-line utility and discuss what will happen on the backend
of our OpenShift infrastructure. When we create an OpenShift application using
the rhc app create -a myapp -t ruby-1.9 command, the client utilities make
a REST API call, which results in the request being sent to Broker; it will first check
with our authentication backend to make sure we are who we claim to be, or at
least someone with proper credentials. Note that the authentication backend can
be configured to support a number of different mechanisms using the OpenShift
origin or enterprise code, based on the plugins available. Once the user request is
properly authenticated, Broker will update the DNS system to propagate the name
of the application within our OpenShift domain namespace. At the point the DNS
creation is complete, Broker will traverse through an algorithm that will select Node
with the least amount of load; this determines how populated Node is, which types
of Cartridges are deployed on it, and the usage analytics. Node selected from this
algorithm will be the one upon which a new Gear will be created for our Application
to consume. With the selection made, Broker will instruct Node via MCollective
to perform the task of the Gear creation containing Cartridge that we've selected.
The Gear information will, at this point, be stored within the MongoDB data store
as well as correlated with the account information to maintain mapping of the user
to the domain, and to determine which applications live within the user's domain.

In order to construct Gear on Node, the following process is followed: a unique ID
is generated, a SELinux context is created, and these are mapped to a traditional
UNIX-style ID for the specific machine Gear is created upon. The container is set
up with the resource constraints put forth by the configurations for the Gear sizes
using cgroups. Polyinstantiated directories are set up using PAM and they adhere
to the SELinux policies, making sure our application stays within its confines, as well
as to keep other applications out of our space. At the point the container setup is
complete, Cartridge will be installed based on the cartridge's YAML manifest. These
manifests can be found in the upstream github repository under the listing for each
of the cartridges. At this point, we are able to SSH into our Gear and the prompt
we would be presented with is a limited shell within this environment.

Chapter 3

[67]

YAML is a data serialization standard. For more
information, visit http://www.yaml.org/.

Since we're now familiar with how to create an application, we should map the flow of
traffic within OpenShift once we have Gears up and running. A web request will come
out from somewhere in cyberspace, it will go to whichever Node that our application's
DNS pointer happens to point to, and it will hit Node and be routed through a proxy
(more on this shortly). In the event our Gear is running, the request will be received
and our application will respond to it. However, in the event that our application has
not received traffic within a certain span of time, it will be put into an "idle" state by
OpenShift in order to reclaim resources previously used by the application.

If our application has been "idled" due to extended inactivity, the request will be
caught by a proxy component of the OpenShift Node, our Gear will be brought
out of the idled state, and the request will be passed on to it. It should also be noted
that within the nodes, there is a set of internal IP addresses and ports for services
versus external IP addresses and ports; these are part of the gear's metadata that is
orchestrated by Broker based on Cartridge in use, and these attributes are set within
Gears, using the environment variables we discussed in previous sections.

Previously, in Chapter 2, Using OpenShift, we briefly mentioned environment
variables within our gear; these exist in a set of files within the ~/.env/ directory
on the gear and those that are in use are populated as needed. The environment
variables available to our gear at the time of writing are as follows:

HISTFILE OPENSHIFT_MONGODB_DB_PORT

OPENSHIFT_APP_DNS OPENSHIFT_MONGODB_DB_URL

OPENSHIFT_APP_NAME OPENSHIFT_MONGODB_DB_USERNAME

OPENSHIFT_APP_UUID OPENSHIFT_NODEJS_IP

OPENSHIFT_DATA_DIR OPENSHIFT_NODEJS_LOG_DIR

OPENSHIFT_GEAR_DNS OPENSHIFT_NODEJS_PORT

OPENSHIFT_GEAR_NAME OPENSHIFT_REPO_DIR

OPENSHIFT_GEAR_UUID OPENSHIFT_ROCKMONGO_IP

OPENSHIFT_HOMEDIR OPENSHIFT_ROCKMONGO_LOG_DIR

OPENSHIFT_INTERNAL_IP OPENSHIFT_ROCKMONGO_PORT

OPENSHIFT_INTERNAL_PORT OPENSHIFT_TMP_DIR

OPENSHIFT_MONGODB_DB_HOST PATH

OPENSHIFT_MONGODB_DB_LOG_DIR USER_VARS

OPENSHIFT_MONGODB_DB_PASSWORD

OpenShift – Technologies and Working

[68]

Some of these are important to understand some of the inner workings of the
OpenShift traffic flow. A gear is given internal and external ports for different services
and components. The internal versions map behind the scenes in order to allow each
gear to bind to ports as needed, and these are mapped to a random port on the node
itself, and set into a reverse proxy configuration so that the outside world can access
the application based on the DNS name and its services' default ports. All of this port
abstraction and orchestration is handled automatically by OpenShift and does not
need to be the concern of application developers or web app users, but instead can be
utilized by referencing any one of these environment variables. Details of which of the
environment variables may be pertinent to our application are contained in the README
file associated with the cartridge that we selected.

Node

10.10.123.31:34232
Gear

Cartridge
Ruby-1.9

127.4.52.1:8080

Node reverse proxy

In the preceding diagram, we can see that the OpenShift Gear to Node port mapping
is relatively random in terms of which port is held by the Gear mapping, but what
occurs behind the scenes is that an HAProxy (http://haproxy.1wt.eu/) rule is put
in place for the Virtual Host, which points to our Gear on Node so that requests are
routed correctly to our web app. This intra-gear networking is accomplished using
the proper implementation of Linux kernel's RFC 3330 in respect to the loopback
network (http://tools.ietf.org/html/rfc3330). This allows us to route all the
IP addresses within the loopback IP space locally on the host without assigning them
to an interface. However, OpenShift takes it one step further and applies the iptables
(http://www.netfilter.org/projects/iptables/index.html) firewall rules
on Node to isolate traffic within the loopback network properly. This is done to stop
the gears that should not communicate from communicating.

Chapter 3

[69]

To sum up, Broker is the control point or the "brains of the operation", such that
it orchestrates the rest of the environment to act on the user's behalf via REST
API. Broker is responsible for DNS entries, user authentication, account metadata
mapping, gear creation and deletion (delegation to the nodes via MCollective),
and gear distribution across nodes. Node is responsible for running Gear, mapping
its components to an application, idling and un-idling gears based upon load,
and collectively keeping the underlying technologies we've discussed previously
configured automatically for each Gear.

The REST API
In the previous sections, we have mentioned a REST API in passing, but we
will now explore the topic. For those not familiar, REST API is an acronym for
Representational State Transfer Application Programming Interface. This is
a model in which a request of a URL constitutes a state transition, and the response
from the server after processing this request is a representation of the resource
that exists at the other end of the URL. The REST model is closely related to HTTP
capabilities and mirrors its functions, such as GET, POST, PUT, and DELETE. Using
this, we are able to interact with our service or resource without a hard requirement
on a specific programming language binding, because as long as there's an HTTP
capability, we are able to utilize the API. Almost all programming languages
have this built-in functionality and it even allows us to utilize resources via
command-line utilities that provide HTTP functionalities, such as curl.

We will use the curl utility in order to do an introduction to the OpenShift REST
API, so the first thing we want to do is see what is available as resources from
the service as follows:

$ curl -k -X GET \

 https://openshift.redhat.com/broker/rest/api

{"data":{"API":{"href":"https://openshift.redhat.com/broker/
rest/api","method":"GET","optional_params":[],"rel":"API entry
point","required_params":[]},"GET_ENVIRONMENT":{"href":"https://
openshift.redhat.com/broker/rest/environment","method":"GET","op
tional_params":[],"rel":"Get environment information","required_
params":[]},"GET_USER":{"href":"https://openshift.redhat.com/broker/
rest/user","method":"GET","optional_params":[],"rel":"Get user
information","required_params":[]},"LIST_DOMAINS":{"href":"https://
openshift.redhat.com/broker/rest/domains","method":"GET","optio
nal_params":[],"rel":"List domains","required_params":[]},"ADD_
DOMAIN":{"href":"https://openshift.redhat.com/broker/rest/domains","me
thod":"POST","optional_params":[],"rel":"Create new domain","required_
params":[{"description":"Name of the domain","invalid_options":["amentra"
,"aop","apiviz","arquillian","blacktie","boxgrinder","byteman","cirras","
cloud","cloudforms","cygwin","davcache","dogtag","drools","drools","e

OpenShift – Technologies and Working

[70]

jb3","errai","esb","fedora","freeipa","gatein","git","gfs","gravel","guv
nor","hibernate","hornetq","iiop","infinispan","ironjacamar","javassist"
,"jbcaa","jbcd","jboss","jbpm","jdcom","jgroups","jmx","jopr","jrunit","
jsfunit","kosmos","liberation","makara","mass","maven","metajizer","meta
matrix","mobicents","mod_cluster","modeshape","mugshot","mysql","netty",
"openshift","osgi","overlord","ovirt","penrose","picketbox","picketlink"
,"portletbridge","portletswap","posse","pressgang","qumranet","railo","r
edhat","resteasy","rhca","rhcds","rhce","rhcsa","rhcss","rhct","rhcva","
rhel","rhev","rhq","rhx","richfaces","riftsaw","savara","scribble","seam
","shadowman","shotoku","shrinkwrap","snowdrop","solidice","spacewalk","
spice","steamcannon","stormgrind","switchyard","tattletale","teiid","toh
u","torquebox","weld","wise","xnio"],"name":"id","type":"string","valid_
options":[]}]},"LIST_CARTRIDGES":{"href":"https://openshift.redhat.com/
broker/rest/cartridges","method":"GET","optional_params":[],"rel":"List
cartridges","required_params":[]},"LIST_QUICKSTARTS":{"href":"https://
openshift.redhat.com/community/api/v1/quickstarts/promoted.
json","method":"GET","optional_params":[],"rel":"List
quickstarts","required_params":[]},"SHOW_QUICKSTART":{"href":"https://
openshift.redhat.com/community/api/v1/quickstarts/:id","method":"GET"
,"optional_params":[],"rel":"Retrieve quickstart with :id","required_
params":[{"description":"Unique identifier of the quickstart","invalid_op
tions":[],"name":":id","type":"string","valid_options":[]}]},"SEARCH_
QUICKSTARTS":{"href":"https://openshift.redhat.com/community/api/v1/
quickstarts.json","method":"GET","optional_params":[],"rel":"Search
quickstarts","required_params":[{"description":"The search term to use
for the quickstart","invalid_options":[],"name":"search","type":"string",
"valid_options":[]}]}},"messages":[],"status":"ok","supported_api_version
s":[1.0,1.1,1.2,1.3],"type":"links","version":"1.3"}

This output is in the JSON format, which stands for JavaScript
Object Notation and it has become a staple format in web
technologies for data transmission. For more information,
please visit http://json.org/.

In the preceding output, we have sent a request to the REST API at its root, which
will provide us with information about the resources available to us, as well
as information about which versions of the REST API are currently supported.
You have probably noticed that the preceding command looks garbled. For the sake
of sanity, I suggest using the following command to pipe the output from curl
to a simple python call:

curl -k X \

 GET"https://openshift.redhat.com/broker/rest/api" | python -mjson.
pretty

Chapter 3

[71]

The preceding command assumes you have python installed. If
you are using either Mac OS X or a popular distribution of GNU/
Linux, such as Fedora, Debian, OpenSUSE, Arch, or Ubuntu, you
are most likely to already have this installed. If you are running
Windows or are unfamiliar with python, it is recommended to
visit http://www.python.org/ for more information, both
on the python programming language as well as the installation
instructions.

The output of the curl command in the preceding command was omitted in its
entirety for brevity, as the end result is quite verbose. The following is a short sample
of what the formatting would look like when running a JSON "pretty print":

 "API": {

 "href": "https://openshift.redhat.com/broker/rest/api",

 "method": "GET",

 "optional_params": [],

 "rel": "API entry point",

 "required_params": []

 },

 "GET_ENVIRONMENT": {

 "href": "https://openshift.redhat.com/broker/rest/
environment",

 "method": "GET",

 "optional_params": [],

 "rel": "Get environment information",

 "required_params": []

 },

 "GET_USER": {

 "href": "https://openshift.redhat.com/broker/rest/user",

 "method": "GET",

 "optional_params": [],

 "rel": "Get user information",

 "required_params": []

 },

 "LIST_CARTRIDGES": {

 "href": "https://openshift.redhat.com/broker/rest/
cartridges",

 "method": "GET",

OpenShift – Technologies and Working

[72]

 "optional_params": [],

 "rel": "List cartridges",

 "required_params": []

 },

 "LIST_DOMAINS": {

 "href": "https://openshift.redhat.com/broker/rest/domains",

 "method": "GET",

 "optional_params": [],

 "rel": "List domains",

 "required_params": []

 },

 "LIST_QUICKSTARTS": {

 "href": "https://openshift.redhat.com/community/api/v1/
quickstarts/promoted.json",

 "method": "GET",

 "optional_params": [],

 "rel": "List quickstarts",

 "required_params": []

 },

While this output is certainly more easy on the eyes, its considerably more long-
winded, so a large portion of it has been left out. Something to note here though
is that, by running the GET function on the main API URL, we are able to explore
other parts of the API; you will see here that the functionality we are interested
in is written all in caps, such as LIST_DOMAINS. In order to obtain that resource,
we would use the URL described in the "href" portion of the object, which is
https://openshift.redhat.com/broker/rest/domains. If we are to run the
curl command from our previous example using a GET function and our username
and password combination, we would see the following output, which is obtainable
from that resource:

$ curl -k -X GET https://openshift.redhat.com/broker/rest/domains --user
"myuser@example.com:mypassword" | python -mjson.pretty

Output omitted for brevity

"LIST_APPLICATIONS": {

 "href": "https://openshift.redhat.com/broker/rest/
domains/mydomain/applications",

Chapter 3

[73]

 "method": "GET",

 "optional_params": [],

 "rel": "List applications",

 "required_params": []

 },

Now, we can see in the snippet of the preceding output that we're able to obtain
an application listing within our domain. If we were to look back at our rhc
command-line utility and run the rhc domain show command, it would provide
us with a certain amount of information about our domain, the applications within
it, and the cartridges within our applications. We can obtain this data from the
command line using the curl utility, along with the URL listed in the "href" section
of the object, to obtain some insight as to what the command-line client does for us
by abstracting away the raw REST API into a user-friendly utility, by using
the following command:

$ curl -k -X GET \

https://openshift.redhat.com/broker/rest/domains/mydomain/applications \

 --user "myusername@example.com:mypassword"

The output from this command is quite long. When run against my domain and
sent through the python command from our previous example to "pretty print" the
JSON, the line count of the output was 1010, and therefore it too has been omitted
in order to not waste unnecessary page space with JSON outputs. If you've followed
along, you should have more of an insight into how to interact with the OpenShift
service via its REST APIs and how these requests get processed internally by the
different OpenShift components. The REST API itself is, however, continuing to
evolve, which is why there is a section that notates a supported version of the API
so that different versions may be selected. So, it is always advisable to consult the
upstream documentation to see what has changed. For more information, it would
be beneficial to visit https://access.redhat.com/knowledge/docs/OpenShift/
and select the REST API Guide option for information on the latest version.

Summary
In this chapter, we have explored what makes OpenShift tick, covering the
technologies upon which it depends, such as SELinux, Cgroups, and in some
deployments, Software Collections. From there, we looked at an overview of the
OpenShift architecture and broke it down piece by piece to discuss how each
component works in its own right, as well as all together in order to make a fully
functional platform. This level of understanding will be extremely helpful as we move
forward to the next chapter and discuss topics of DevOps and automated deployment.

Deploying an OpenShift
PaaS

Leading up to this point, we have focused pretty heavily on an end user or
a developer perspective of OpenShift. Even discussions surrounding the OpenShift
architecture, internal components, and walking through the flow of data through
the environment is helpful to developers in understanding what's happening behind
the scenes of the platform upon which they rely. While the journey through
the architecture was invaluable to those of us in Systems Administration, Operations,
or DevOps roles, it was not primarily focused on that audience, but it will change
as we move forward. This chapter will be used as a resource not only for deploying
OpenShift, but also for providing different avenues that can be taken by those who
wish to work with their very own open source PaaS. Once again, note that this can
be done with physical hardware, virtual machines, or cloud instances running
on an IaaS cloud. Since we will be deploying on our own systems, we will be using
the upstream open source code base known as OpenShift Origin.

As mentioned previously, there are multiple ways through which we can consume
OpenShift Origin. At the time of this writing, we are able to install OpenShift
Origin using:

• Nightly built rpm package sets from the upstream project
• Packages available in the Fedora Project rpm repository
• The upstream source code

Deploying an OpenShift PaaS

[76]

We will first take a moment to discuss OpenShift Origin and Fedora along with
a little history and future plans surrounding their relationships with the greater open
source community. After that, we will talk about installing Fedora inside a virtual
machine using an open source virtualization technology called Kernel Based Virtual
Machine (KVM). For more info, check http://www.linux-kvm.org. Before we
delve too deep into these topics, it must be pointed out that the subject
of deployment certainly falls within the DevOps realm and we will be utilizing
a tool that certainly fits well within that topic space. One of the most powerful
tools in the DevOps tool chain is a configuration management system combined
with the capability to perform server orchestration, and sometimes we're fortunate
that a single utility offers both. The tool we will use in this section to perform the
deployment of OpenShift Origin is called Ansible and we will discuss it shortly,
but first let's talk a bit about the Fedora Project.

The Fedora Project
The Fedora Project has been mentioned briefly in the earlier sections but we
will spend some time discussing the relationship between OpenShift and the
Fedora Project. We will also cover their relationship with a broader community of
contributors or potential contributors around the world. Contributors in this sense
are those who participate in open source to help advance Free/Libre open source
software and innovate it more rapidly in a collaborative manner. The Fedora Project
aims to be a central hub in which like-minded developers, technologists, enthusiasts,
designers, technical writers, makers, innovators, thinkers, and general fans can
come together and help one another foster an environment in which open source
software can flourish. The Fedora Project is a community-powered and governed
project that is sponsored by Red Hat Inc. The Fedora Project members power a large
number of community subprojects in the realm of documentation, design, technical
evangelists (known as Fedora Ambassadors—https://fedoraproject.org/wiki/
Ambassadors), and many other Special Interest Groups (https://fedoraproject.
org/wiki/Category:SIGs?rd=SIGs).

Fedora is a project where upstream is the key. It is a premier place for projects
such as OpenShift Origin to spend time in getting their code, community exposure,
interests, and welcome new community members, users, and contributors. The
Fedora Project has a reputation for not only its ongoing upstream contributions,
such that code does not traditionally make it into the Fedora repositories without
first being contributed to the upstream project from where it originated, but also for
its belief in the value of free software. As many people come into the Fedora Project
from the external world, they are greeted by the Fedora Core Values:

• Freedom
• Friends

Chapter 4

[77]

• Features
• First

One of the main things that the Fedora Project produces is the Fedora GNU/Linux
distribution; it is the basis for Red Hat Enterprise Linux and these will often share
common technologies. Something to note about the differences found within these
two distributions of GNU/Linux is that Fedora is very focused on the latest and
greatest available in software technologies and will often track the most up-to-date
versions of open source software. Fedora developers will either choose to ship
these by default on a fresh installation or have it available for download in the rpm
repositories utilizing the yum package manager (or optionally, other compatible
package managers).

The Yum package manager is the default package manager used
by both the Fedora and Red Hat Enterprise Linux operating
systems, but alternatives for these systems do exist. These
package managers are used to track software installed in the
system as well as dependencies thereof, much like we saw with
the Gem utility in previous sections. But they are considerably
more powerful in that they are not limited to RubyGems. Those
not familiar with yum are encouraged to seek more information
for the upstream project from http://yum.baseurl.org/.

The Fedora GNU/Linux distribution aims to deliver cutting-edge technology and
always pushes the envelope on next generation technologies, which releases a new
version every six months and maintains approximately a one-year lifecycle per release.
A lifecycle in the context of a GNU/Linux distribution is effectively how long from the
point in time it is released it will continue to receive software updates for security and
bug fixes. The Red Hat Enterprise Linux distribution is aimed towards environments
where stability and length of life cycle is desired and, at the time of this writing, offers
a 10-year default life cycle. However, due to the areas where technologies are shared
and the fact that Red Hat Enterprise Linux receives what are known as backports
that deliver features (https://access.redhat.com/support/policy/updates/
errata/), both of these offer the software requirements that we have discussed in
previous sections, such as SELinux, cgroups, and pam_namespaces, so we are able
to use either of these as a basis to deploy OpenShift upon.

A reason we've appeared to become derailed from the topic of OpenShift and on
into a segment about Fedora is because this is the chosen upstream GNU/Linux
distribution upon which OpenShift Origin is actively developed. Also at the time
of this writing, OpenShift Origin is an official feature of Fedora and it can be installed
from the official Fedora Repositories. Please refer to https://fedoraproject.org/
wiki/OpenShift_Origin for more information about this inclusion and to check
all the available options through the official Fedora Repositories.

Deploying an OpenShift PaaS

[78]

Since we will be using Fedora as our deployment platform for OpenShift Origin,
we will need to have it installed on some hardware, in a virtual machine, or in an
IaaS cloud instance somewhere. I will show you an example of how to perform an
automated deployment using QEMU-KVM (http://www.linux-kvm.org/page/
Main_Page, http://wiki.qemu.org/KVM) and a Fedora installer technology called
Kickstart (https://fedoraproject.org/wiki/Anaconda/Kickstart). If this
example does not fit for your exact configuration, there are a multitude of ways
in which to consume Fedora, much of which can be found at the following resources:

• https://fedoraproject.org/wiki/Fedora_Quick_Install_Guide

• http://docs.fedoraproject.org/en-US/Fedora/19/html/
Installation_Guide/index.html

• http://fedoraproject.org/en/get-fedora-options#cloud

In the following example, OpenShiftOrigin is the virtual machine's name, but first
we need to install the virtualization components on our Fedora machine. Again,
we're assuming that we are running Fedora GNU/Linux at this point:

$ yum -y install @virtualization

$ service libvirtd start

$ chkconfig libvirtd on

$ virsh net-define /usr/share/libvirt/networks/default.xml

$ virsh net-start default

In the preceding series of commands, we have run what is known as a Group Install
of the virtualization packages for Fedora, then started the libvirtd service, as well
as checked to make sure it will start automatically when we boot our machine. From
there we've used the libvirt command-line utility known as virsh to define
our default network using the default config that comes with libvirt, as well
as started that network. Please note that we've just taken a whirlwind approach to
virtualization on Fedora, but that's only for the sake of brevity so that we can move
on to the main course, that is, deploying OpenShift Origin. It is recommended for
anyone not familiar with the steps that just took place to pursue more information
from the Fedora Documentation Project on the topic of virtualization, which
can be found at https://docs.fedoraproject.org/en-US/Fedora/19/html/
Virtualization_Getting_Started_Guide/index.html.

Chapter 4

[79]

Next up we will be performing the installation of Fedora using all the wonderful
automation tools. Our virtual machine will be given a 15 GB hard drive image, 2
vCPUS (not necessary, but helps speed up the process), and 2 GB of RAM. There is not
a hard requirement on RAM but it is recommended to have 2 GB as a minimum, and
the number of active Gears you can run simultaneously will depend on the amount
of RAM your system has. Following is a code snippet for this purpose:

$ image_name="OpenShiftOrigin"
$ image_path=/opt/$image_name

$ qemu-img create "$image_path" 15G -f raw
$ parted "$image_path" mklabel msdos
$ parted --align optimal "$image_path" mkpart primary ext4 1M 15G
$ mkfs.ext4 -F "$image_path"

$ kickstart_args='ks=http://maxamillion.fedorapeople.org/base-
fedora-19.cfg'

$ virt-install --name="$image_name" --ram=2048 --vcpus=2 --hvm \
 --disk "$image_path" --graphics spice -d --wait=-1 --autostart \
 --location http://mirrors.kernel.org/fedora/releases/19/Fedora/
x86_64/os/ \
 -x "$kickstart_args" --connect qemu:///system --network
network=default

Let's take a moment to walk through what's happening in the preceding example.
First, we're assigning two variables image_name and image_path, which will contain
the Virtual Machine's name and the path to its virtual image on our host's local disk,
respectively. Next we are using the qemu-img command to create a raw image that
is 15 GB in size. At this point, we will use the GNU-parted utility to partition this
image so that it is suitable for a filesystem to be created upon.

We could technically create a filesystem directly on a raw
image but normally the OS installer will prefer that we have
a more traditional layout. It should also be noted that this
automated configuration is extremely simple and should be
used for testing or development purposes.

Deploying an OpenShift PaaS

[80]

Once we have our partition created, we will then set the kickstart parameters that
will be needed for the following, very large, single command that will work along
with libvirt (http://libvirt.org/) in order to define a virtual machine domain, offer
it networking capabilities using the default virtual network as defined within libvirt,
and begin the installation of a virtual machine. This process will be very verbose
in your terminal window, and if you have X11 installed with some sort of Desktop
Environment up and running, it will also launch what is known as virt-viewer
so that we may watch the installation process. This graphical window will be showing
a text-based prompt too and you will see the output of the automated install scroll
by. Once the initial download of the packages is complete, you will be prompted
with the Anaconda installer, which will show the installation and will look like
the following screenshot:

Fedora 19 Kickstart install

The root password for this example kickstart installation
is openshift! and should be changed immediately after
installation is complete if this is to be used for more than
just an example environment.

Chapter 4

[81]

Once this is complete, the virtual machine will reboot and we will be presented
with a login prompt, and then we're ready to get moving with our OpenShift
Origin deployment. First things first, and that will be to configure the network
within our Virtual Machine. To do so, edit the file /etc/sysconfig/network-
scripts/ifcfg-eth0 such that it reflects the following:

DEVICE=eth0
HWADDR=52:54:00:fc:62:cd
BOOTPROTO=static
NM_CONTROLLED=yes
IPADDR=192.168.122.10
NETMASK=255.255.255.0
DNS1=192.168.122.1
GATEWAY=192.168.122.1
ONBOOT=yes

Save this file and run the following command that will restart the NetworkManager
service putting our configuration into effect:

service NetworkManager restart

The HWADDR in your config is going to be different than what is
found in the preceding example and should be left set to what it
was set during installation. There also may be a field titled UUID,
and if this is present it should also be left alone.

At this point our environment is set up and ready to move on, and this will be used
as the platform upon which we deploy OpenShift Origin. As an aside, hopefully
we've covered enough of the Fedora Project so that those who are reading about
it for the first time have an added interest in learning more. We've outlined the
relationship between the OpenShift Origin project and that of Fedora in a way
that hopefully everyone is comfortable with understanding, and we are now ready
to perform some deployment of OpenShift Origin using the Fedora GNU/Linux
distribution as our host operating system.

Deploying an OpenShift PaaS

[82]

Ansible
Ansible (https://github.com/ansible/ansible) is a simple, yet advanced, open
source system orchestration utility that offers the ability to run ad-hoc commands
across a large number of hosts in parallel, to orchestrate sets of commands, as well
as configure management. Ansible has a very large set of modules for automating
a multitude of tasks (http://www.ansibleworks.com/docs/modules.html).
When utilizing a module to perform something, this is known as a Task, as we
will learn shortly. We can combine these Tasks into what is known in Ansible
nomenclature as a Play and these can be combined into what Ansible calls
Playbooks. We can then run Playbooks using the ansible-playbook command.
For those in the DevOps arena unfamiliar with Ansible, fear not as it is the new
kid on the block and easy to learn, as we will see shortly. Now, don't let the fact
that Ansible is new be a cause for concern as the open source project won the
Black Duck Open Source Rookie of the Year 2012 award (http://www.wired.
com/wiredenterprise/2013/01/open-source-rookies-of-year/) and is
backed by a startup known as AnsibleWorks (http://www.ansibleworks.com/),
for those interested in seeking support and services.

Some interesting points about Ansible that should be noted early on are that we
don't need to introduce a new specific daemon to run Ansible as it utilizes SSH,
which everyone reading this book should at least be familiar with as we have
covered it in Chapter 1, Understanding the Essentials. We don't need to open another
port in our firewalls because if we can SSH into our servers, we can run Ansible
on them. Ansible also does not require us to learn any sort of programming
language or domain-specific language in order to create very powerful configuration
automation, as it uses very simple YAML (http://www.yaml.org/) files paired
with its running list of modules. One last thing to note about Ansible before we dig
in is that its actions are idempotent, meaning that if we run the same action over
and over, it should always leave the system in the same state as it did the first time
we performed that action.

Let's go ahead, dive in, and start getting our hands dirty, and we will learn some
"Intro to Ansible" along the way. Since we're only going to be using Fedora for the
duration of this section, we will first want to install Ansible by running the following
command as root:

yum -y install ansible

http://www.ansibleworks.com/docs/modules.html

Chapter 4

[83]

If you prefer to run Ansible from a different operating system
and have set up a Fedora Virtual Machine on your own for the
duration of this example, please consult the AnsibleWorks site
for installation instructions: http://www.ansibleworks.
com/docs/gettingstarted.html.

Once installed, if we are to use the example environment we just set up with the
automated deployment kickstart utility, we will have a couple of setup tasks; first,
we will need to generate SSH keys (those who already have a set of SSH keys feel
free to skip this step):

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/root/.ssh/id_rsa):

Created directory '/root/.ssh'.

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/.ssh/id_rsa.

Your public key has been saved in /root/.ssh/id_rsa.pub.

The key fingerprint is:

df:8c:88:79:75:40:82:71:72:bd:8c:43:09:ab:b1:b5 root@localhost.
localdomain

The key's randomart image is:

+--[RSA 2048]----+

| +++o. |

| .=oo. |

| . o. o.. |

| = .o o. |

| o E S.. . |

| o + = |

| o o o o |

| . |

| |

+-----------------+

Deploying an OpenShift PaaS

[84]

With our SSH key in place, we will want to use the ssh-copy-id utility in order to
copy it over to our virtual machine so that we can perform key-based authentication
for the duration of our use case. We will do so by running the following command:

$ ssh-copy-id root@192.168.122.10

The authenticity of host '192.168.122.10 (192.168.122.10)' can't be
established.

RSA key fingerprint is c3:11:15:ae:5d:15:09:77:31:3c:fb:ce:de:5c:0f:d8.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.122.10' (RSA) to the list of known
hosts.

root@192.168.122.10's password:

Now try logging into the machine, with "ssh root@192.168.122.10", and
check in:

 ~/.ssh/authorized_keys

to make sure we haven't added extra keys that you weren't expecting.

At this point we should be able to SSH into the virtual machine we created earlier
without any prompt for passwords. Onward and upward, let's do some interactive
commands to get a feel for what Ansible can do and what we can do with Ansible.
First, we will need to modify either the default configuration file for the Ansible host
inventory or create a temporary one. The default is located at /etc/ansible/hosts
and it contains some examples of how hosts can be expressed using some globing
and ranges in fields, but for now we will use a temporary host file so as to not
disturb the one on the system, and also to show how to use a custom hosts inventory.
Create a file in the home directory of the user you've been working as by editing ~/
ansiblehosts with your favorite editor and placing inside it the following:

[brokers]
192.168.122.10

[nodes]
192.168.122.10

[support_nodes]
192.168.122.10

Chapter 4

[85]

What we have done here is created three host groups, each with only one member
assigned by IP. Now the single host in each host group happens to be the same
IP since we'll be deploying all components of OpenShift Origin to the same
machine. This is certainly not the extent of the functionality found within Ansible
host files. As can be seen here, the hosts server inventory file is a simple INI file
(https://en.wikipedia.org/wiki/INI_file), such that our host groups
are contained within brackets, or are listed as "subjects" in INI vocabulary terms.
All IP addresses or hostnames listed in the following code snippet are a host group
name belonging to that group; we can have many hosts within a group specified
by either an IP or DNS pointer. The following is an example snippet from the
default /etc/ansible/hosts file that shows some of this capability:

Ex 1: Ungrouped hosts, specify before any group headers.
#green.example.com
#blue.example.com
#192.168.100.1
#192.168.100.10

Ex 2: A collection of hosts belonging to the 'webservers' group
[webservers]
alpha.example.org
beta.example.org
192.168.1.100
192.168.1.110

If you have multiple hosts following a pattern you can specify
them like this:
www[001:006].example.com

Ex 3: A collection of database servers in the 'dbservers' group
[dbservers]
db01.intranet.mydomain.net
db02.intranet.mydomain.net
10.25.1.56
10.25.1.57

Here's another example of host ranges, this time there are no
leading 0s:
db-[99:101]-node.example.com

Deploying an OpenShift PaaS

[86]

Alright, now that we have an understanding of the hosts files and have written our
own, let's take Ansible for a quick spin, running some interactive commands using
the groups we've defined in our example. The following command will use Ansible's
ping module to make sure the machines within the specified group are accessible;
of course we only have one machine for the sake of simplicity, but this will still help
get the idea:

$ ansible brokers -m ping -i ~/ansiblehosts -u root

192.168.122.10 | success >> {

 "changed": false,

 "ping": "pong"

}

What we've done here is relatively simple in nature, but it has allowed us to
communicate with all the servers within the brokers group that are listed in
the ~/ansiblehosts inventory file, using the ping module. We have told Ansible
to use the root user with the -u parameter. We could have also specified all
where we specified brokers so that every server within the inventory would have
had the specified action run against them, but since we only have one server for
our example, it would have been redundant. Next up we should do something
a little more advanced. We'll perform this action in two ways to show off a little
of the power of the simplicity, and also to show an example of a built-in module;
the importance of built-in modules will become apparent shortly.

The output of the following command has been modified for brevity,
it will look similar but there is going to be more of it. This is expected.
Also, if you have followed this guide step-by-step without running
any other commands, you will see a warning about importing a GPG
key from the Fedora Project, this is also normal and expected.

$ ansible brokers -m shell -a "yum -y install vim-enhanced" -i ~/
ansiblehosts -u root

192.168.122.10 | success | rc=0 >>

Loaded plugins: langpacks, refresh-packagekit

Resolving Dependencies

--> Running transaction check

---> Package vim-enhanced.x86_64 2:7.4.016-1.fc19 will be installed

--> Processing Dependency: vim-common = 2:7.4.016-1.fc19 for package:
2:vim-enhanced-7.4.016-1.fc19.x86_64

--> Processing Dependency: perl(:MODULE_COMPAT_5.16.3) for package:
2:vim-enhanced-7.4.016-1.fc19.x86_64

--> Processing Dependency: libperl.so()(64bit) for package: 2:vim-

Chapter 4

[87]

enhanced-7.4.016-1.fc19.x86_64

--> Processing Dependency: libgpm.so.2()(64bit) for package: 2:vim-
enhanced-7.4.016-1.fc19.x86_64

---> Package vim-common.x86_64 2:7.4.016-1.fc19 will be installed

--> Processing Dependency: vim-filesystem for package: 2:vim-
common-7.4.016-1.fc19.x86_64

---> Package vim-filesystem.x86_64 2:7.4.016-1.fc19 will be installed

--> Running transaction check

--> Finished Dependency Resolution

Dependencies Resolved

===
=======

 Package Arch Version Repository
Size

===
=======

Installing:

 vim-enhanced x86_64 2:7.4.016-1.fc19 updates
1.0 M

Installing for dependencies:

 vim-common x86_64 2:7.4.016-1.fc19 updates
5.9 M

 vim-filesystem x86_64 2:7.4.016-1.fc19 updates
9.1 k

Transaction Summary

===
=======

Install 1 Package (+16 Dependent packages)

Total download size: 18 M

Installed size: 59 M

Downloading packages:

Public key for perl-Carp-1.26-243.fc19.noarch.rpm is not installed

Public key for gpm-libs-1.20.6-33.fc19.x86_64.rpm is not installed

Deploying an OpenShift PaaS

[88]

Total 981 kB/s | 18 MB
00:18

Retrieving key from file:///etc/pki/rpm-gpg/RPM-GPG-KEY-fedora-x86_64

Running transaction check

Running transaction test

Transaction test succeeded

Running transaction

 Installing : 2:vim-filesystem-7.4.016-1.fc19.x86_64
14/17

 Installing : 2:vim-common-7.4.016-1.fc19.x86_64
15/17

 Installing : 2:vim-enhanced-7.4.016-1.fc19.x86_64
17/17

 Verifying : 2:vim-common-7.4.016-1.fc19.x86_64
10/17

 Verifying : 2:vim-filesystem-7.4.016-1.fc19.x86_64
13/17

Installed:

 vim-enhanced.x86_64 2:7.4.016-1.fc19

Dependency Installed:

 vim-common.x86_64 2:7.4.016-1.fc19

 vim-filesystem.x86_64 2:7.4.016-1.fc19

Complete!

In the previous command we used Ansible to run a single command within a shell
environment on the remote servers. There is another module known as command,
which is similar but does not provide the shell environment so all paths need to
be absolute. Next, we will utilize the yum module to perform the same action but
without the need to write the raw command. Note the state field changed: true
in the JSON output of the action; if we were to run the Ansible command again
it would be altered to changed: false and this alteration relates to the previous
mention about the fact that Ansible's orchestration is idempotent. A code snippet
for this is as follows:

$ ansible brokers -m yum -a "pkg=vim-enhanced state=installed" -i

~/ansiblehosts -u root

192.168.122.10 | success >> {

Chapter 4

[89]

 "changed": false,

 "msg": "",

 "rc": 0,

 "results": [

 "vim-enhanced-7.4.016-1.fc19.x86_64 providing vim-enhanced is
already installed"

]

}

These commands we have run are considered tasks and we are able to combine tasks
using a very simple YAML syntax in order to create a playbook. Since we've written
a couple of simple commands, let's put them together and make a simple playbook
that we can execute and view some output from. One thing we're going to also do
here is take the opportunity to introduce Jinja2 (http://jinja.pocoo.org/docs/),
the simple yet powerful open source templating tool that Ansible uses for templating
file manifests.

Jinja2 is capable of a multitude of features including, but not limited to, variable
substitution, conditionals, flow control, loops, template inheritance, and configurable
syntax. Most of these we will not be discussing, but those who are interested in more
advanced features should certainly visit the project's website in order to see all that
Jinja2 has to offer. Now, in order to prepare ourselves for the Ansible playbook, we
will need our template, which is going a to use simple variable substitution; so create
a directory named ~/templates and place the following contents inside a file located
at ~/templates/example_template.j2:

This template is awesome, we can do all kinds of fun configuration with
it:

Variables starting with the name ansible_ are supplied by "facts"

that the ansible 'setup' module

My IP Address is: {{ ansible_default_ipv4.address }}

This variable is set in our playbook

My custom configuration parameter is: {{ my_config_param }}

http://jinja.pocoo.org/docs/

Deploying an OpenShift PaaS

[90]

With the template in place, we can now write our simple example YAML-based
Playbook which is as follows. We will take a moment to go through it step-by-step, so
fear not if it looks slightly odd at first glance. This file should be named example.yml:

This is an example Playbook

#

- name: Example Play

 hosts: brokers

 user: root

 vars:

 my_config_param: some_config_parameter

 motd: "Ansible is awesome!"

 tasks:

 - name: Install vim-enhanced

 yum: pkg=vim-enhanced state=installed

 - name: Install my template

 template: src=templates/example_template.j2

 dest=/etc/example.conf

 owner=root group=root mode=0644 backup=yes

The very first line contains a series of three - characters, which is YAML syntax, for
marking the "starting point" of a YAML document. After the initial line, we see the
name of the current Play, the name designated to a set of combined actions within
Ansible. A single Playbook may contain multiple Plays, but note that each one has
its own variable scope and that order matters as Ansible will execute each Play,
and the action within a Play, from top to bottom. Inside the Play named "Example
Play" we defined the default set of hosts to run against within the hosts: directive,
defined the default user to run the tasks within this playbook as with the user:
directive, defined some variables needed for the tasks, and finally defined the tasks
to be performed. The first task is a yum install and I've borrowed the example we've
already run previously but wanted everyone to see it in action within a Playbook.

Chapter 4

[91]

Finally our example playbook uses the templating engine to install a rather useless
"configuration" file on the location /etc/example.conf on the remote system, but
shows off a decent amount of the power this offers us. As we can see, the template:
directive is the module in use here and we are providing it with the parameters of the
template's source src= directive. We then define the destination location on the remote
system of the file that, after having gone through interpretation using the templating
engine, the file should be located and it is defined with the dest= directive. Then we
provide the parameter's owner, group, and mode of the file in the location specified
by the owner=, group=, and mode= directives. One last thing we've done is specified
that we want Ansible to create a backup of a file on the remote system, if in the event
it is pre-existing and would be modified by the Playbook. Alright, we should be ready
to go, so let's run this thing!

The command ansible is for ad-hoc server orchestration,
whereas the command ansible-playbook is used for
running predefined or preconfigured Playbooks, so be sure
to take notice of that in the following example.

$ ansible-playbook example.yml -i ~/ansiblehosts

PLAY [Example playbook] *********************

GATHERING FACTS *********************

ok: [192.168.122.10]

TASK: [Install vim-enhanced] *********************

ok: [192.168.122.10]

TASK: [Install my template] *********************

changed: [192.168.122.10]

PLAY RECAP *********************

192.168.122.10 : ok=3 changed=1 unreachable=0
failed=0

Deploying an OpenShift PaaS

[92]

As we can see, each task ran, and since we've already installed vim-enhanced
previously in the example, the task simply returned ok, which once again relates
back to the idempotent nature of Ansible. I won't consume too much space with
showing all of the output one more time, but we would see the following Play Recap,
as the template would not make any modifications on a second or any subsequent
run if we did not alter the template itself:

PLAY RECAP *********************

192.168.122.10 : ok=3 changed=0 unreachable=0
failed=0

Alright, one more thing, let's inspect the file that was laid down, and just for the fun
of it, let's use Ansible to do it!

$ ansible brokers -m shell -a "cat /etc/example.conf" -i ~/ansiblehosts

192.168.122.10 | success | rc=0 >>

This template is awesome, we could do all kinds of fun configuration with
it:

Variables starting with the name ansible_ are supplied by "facts"

that the ansible 'setup' module

My IP Address is: 192.168.122.10

This variable is set in our playbook

My custom configuration parameter is: some_config_parameter

It can be observed that the template did exactly what we wanted it to do and
installed the configuration file for us. Now, you may be asking yourself why this
book went from OpenShift Origin to Ansible all of a sudden. Well, that's because
it is one of the many ways that OpenShift can be deployed and happens to be your
author's favorite of the bunch.

Before we move on, we need to understand one more concept of Ansible and that
is what is called roles. A role in Ansible is meant to match up to the role in which
a server plays in your environment. For example, a server is likely to be a web server,
a database server, or a message queue server. Each of these things, and much more,
can be considered a role of that server and a single server can perform many roles.
The specific definition of roles configuration is outside the scope of this text as we
won't need to write any roles from scratch, but simply understand the concept as
it will be used in the next section. For more information on Ansible roles, please visit
http://www.ansibleworks.com/docs/playbooks.html#roles.

Chapter 4

[93]

The good news is we're not going to write an Ansible Playbook from scratch in order
to deploy, but instead we will use the one that your author has written and at the
time of this writing, I am working towards making it an official part of the OpenShift
Origin upstream project.

Deployment
There are many options in deploying OpenShift Origin, all of which are
documented at http://openshift.github.io/. The complete step-by-step guide
to deploying OpenShift Origin by hand is maintained in the official documentation
at http://openshift.github.io/documentation/oo_deployment_guide_
comprehensive.html. However, for the sake of not reinventing an already
well-designed wheel, we will not be covering deployment this way. We will
be using Ansible for deployment of our OpenShift Origin environment, and
the Ansible Playbook that we will use will be developed based on the procedures
found in the official documentation. As a reminder, we will be using a single-node
configuration such that all the components will be running on a single system,
but there will still be a logical breakout of a Broker, Node, and Broker Support
Nodes. The Broker Support Node is simply a logical breakout of services that
the OpenShift Broker requires. This will become more clear as we look at the
Ansible Playbook. The first step leading to deployment will be to clone the Git
repository from GitHub containing the Ansible Playbooks.

The contents of this may change as development of the Playbook
continues. Always consult the comments in the file we're about to edit
as well as the README.md file found within the Git repository.

$ git clone https://github.com/maxamillion/ansible-openshift_origin.git

Cloning into 'ansible-openshift_origin'...

remote: Counting objects: 1171, done.

remote: Compressing objects: 100% (505/505), done.

remote: Total 1171 (delta 503), reused 1168 (delta 502)

Receiving objects: 100% (1171/1171), 176.85 KiB | 0 bytes/s, done.

Resolving deltas: 100% (503/503), done.

If, for any reason, there are portions of the Ansible playbook cloned from
GitHub that are not functioning as expected or described in this text,
please file an issue ticket so that it can be fixed at https://github.
com/maxamillion/ansible-openshift_origin/issues.

http://openshift.github.io/
http://openshift.github.io/documentation/oo_deployment_guide_comprehensive.html
http://openshift.github.io/documentation/oo_deployment_guide_comprehensive.html
http://openshift.github.io/documentation/oo_deployment_guide_comprehensive.html

Deploying an OpenShift PaaS

[94]

We will then want to change directories so that our current working directory is
ansible-openshift_origin. From there we should first take note of the site.yml
file as it will give some insight into what roles each host group within our
site are taking on. The following are the contents of the site.yml file at the time
of this writing:

This Playbook would deploy the entire OpenShift Origin environment

- hosts: all
 roles:
 - role: common

- hosts: support_nodes
 roles:
 - role: mongod
 - role: activemq
 - role: named

- hosts: nodes
 roles:
 - role: oo-node

- hosts: brokers
 roles:
 - role: oo-broker
 - role: oo-console
 - role: mcollective-client

- hosts: all
 roles:
 - role: post-deploy

Here we can see that each host group has a set of roles that they will fulfill within
the Ansible Playbook. For all hosts we will want the role of common, which is simply
common tasks needed on every server. We also have the post-deploy role that will
perform simple cleanup and verification tasks where applicable. All other roles should
look familiar from previous discussions of OpenShift architecture. Of course, for those
curious about the details of the roles, I encourage you to poke around the roles/
directory found within the Git repository and become familiar with the tasks involved.

Chapter 4

[95]

We need to make a couple of edits before letting the magic happen, one of which
is to the group_vars/all file and that is to set our DNS server's IP address. Open
the file group_vars/all with the text editor of your choice and find the location
of the oo_ns_server_ip variable and set it to 192.168.122.10, which is the IP
we assigned to our virtual machine previously, as shown:

oo_ns_server_ip - the DNS server that is authoritative for your
environment
#
oo_ns_server_ip: "172.16.0.8"

Next we need to decide whether we would like to deploy the latest stable version
of OpenShift Origin or use the latest Nightly built RPM packages. We will be using
the stable version for a consistent experience as the Nightly builds can sometimes
contain unknown bugs. Edit the same file as before, group_vars/all, and find the
section OpenShift Origin Version and edit it to reflect the following:

OpenShift Origin Version - nightly or stable?
#
You can technically set both to true, but because of the package
versions oo_nightly will "win" at install/update time
#
oo_stable - if set to true it must be paired with a
oo_stable_ver number, at the time of this writing
version 2 is most recent.
oo_nightly: "false"
oo_stable: "true"
oo_stable_ver: "2"

What we can do from this point is run the site.yml playbook and it will deploy
the entire OpenShift environment for us.

Some of this output is likely to vary as continued development
efforts happen in OpenShift Origin, and the Ansible Playbook
is updated to reflect these changes, as well as continued work on
the Playbook to support more sophisticated deployments.

$ ansible-playbook site.yml -i ~/ansiblehosts -u root

PLAY [all] **

GATHERING FACTS ***

Deploying an OpenShift PaaS

[96]

ok: [192.168.122.10]

TASK: [Setup OpenShift Origin Nightly Repo] *****************************

skipping: [192.168.122.10]

TASK: [Setup OpenShift Origin Nightly Supplemental Repo]

skipping: [192.168.122.10]

TASK: [Setup OpenShift Origin Stable] ***********************************

changed: [192.168.122.10]

TASK: [Setup OpenShift Origin Nightly Supplemental Repo]

changed: [192.168.122.10]

TASK: [SELinux Enforcing (Targeted)] ************************************

ok: [192.168.122.10]

TASK: [Ensure Installed - policycoreutils] ******************************

ok: [192.168.122.10]

TASK: [Ensure Installed - policycoreutils-python]

changed: [192.168.122.10]

... (omitted for brevity) ...

PLAY RECAP **

192.168.122.10 : ok=136 changed=131 unreachable=0 failed=0

Chapter 4

[97]

There are a number of sections in the previous output that have
been omitted, so we don't spend too much time staring at output
that you also have on your computer screen. Those interested in
the individual steps can easily consult the Playbook's contents.

Now that our deployment is complete, we can point our rhc client towards our
newly installed OpenShift Origin platform as a Service Cloud environment, and use
it just as we used the Online offering in Chapter 2, Using OpenShift. We can do this
by running the same command we did in Chapter 2, Using OpenShift, in order to set
up our rhc client, but now passing an argument in the server.

At the time of this writing, the default username and password
set up by the Ansible Playbook is username: demo and password:
demo, but this could possibly change in the future so please
consult the README.md file available in the Git repository.

$ rhc setup --server=192.168.122.10
OpenShift Client Tools (RHC) Setup Wizard

This wizard will help you upload your SSH keys, set your application
namespace, and check that other programs like Git are properly installed.

Login to broker.example.com: demo
Password: ****

Saving configuration to /home/user/.openshift/express.conf ... done

No SSH keys were found. We will generate a pair of keys for you.

 Created: /home/user/.ssh/id_rsa.pub

Deploying an OpenShift PaaS

[98]

At this point we can use our rhc command-line tools in the same way we did with
OpenShift Online in Chapter 2, Using OpenShift. We can also access the Broker REST
API as we did with the OpenShift Online offering using the curl utility mentioned
in Chapter 3, OpenShift – Technologies and Working:

$ curl -k -X GET \

 https://192.168.122.10/broker/rest/api

{"data":{"API":{"href":"https://openshift.redhat.com/broker/
rest/api","method":"GET","optional_params":[],"rel":"API entry
point","required_params":[]},"GET_ENVIRONMENT":{"href":"https://
openshift.redhat.com/broker/rest/environment","method":"GET","optional_
params":[],"rel":"Get environment information","required_params":[]}

... (omitted for brevity)...

It should also be noted that we used the IP address for the configuration and
execution of the preceding example. However, if the client machine running the rhc
clients and curl utility were to point to the Broker, which is now running a Bind
DNS server (named), the fully qualified domain names could instead be used, such
as broker.example.com.

Summary
In this chapter we have discussed DevOps, the Fedora Project, and OpenShift's
relationship with Fedora. From there we deployed Fedora to a virtual machine
using open source virtualization tools. We covered the topic of using Ansible as
an orchestration and configuration management utility and used it to deploy
OpenShift to our Fedora virtual machine. Finally, we configured our rhc
command-line utility to point to our newly installed OpenShift Origin environment
so that we may utilize it, and showed how to use the REST API with our OpenShift
Origin environment. Hopefully we've all had a lot of fun and are now hacking
on our very own open source PaaS with ease, and have a better understanding of
all the technologies and utilities that are combined to make it all a reality. As always,
visit https://openshift.com for the latest on OpenShift news. Happy hacking!!

https://openshift.redhat.com/broker/rest/api
https://openshift.redhat.com/broker/rest/api
https://openshift.redhat.com/broker/rest/api
https://openshift.com/

Index
Symbols
-u parameter 86

A
ActiveMQ

URL 64
ADD APPLICATION option 46
addon cartridge 36
Ansible

about 76, 82-92
URL 12, 82

ansible-playbook command 82
AnsibleWorks

URL 82
Apache CloudStack

URL 11
Application 64, 65

B
backports 77
Bcfg2

URL 12
Broker, OpenShift 24
Broker Support Node 93

C
Cartridge 24
cd myawesomewebapp command 30
cgroups 61, 62
Chef

URL 12
CLI

about 29

using 29-44
Client tools

about 23
Broker 24
Node 24

cloud
Git 16-21
IaaS 10-12
PaaS 12, 13
SaaS 13
SSH 14, 15

Command-Line Interface. See CLI
Continuous Integration (CI) 39
control groups. See cgroups
ctl_all command 43
ctl_app command 43
curl command 71, 72
curl utility 69, 73

D
DevOps 12

E
Eucalyptus

URL 11
export command 43

F
Fedora Documentation Project

URL 78
Fedora Project

about 76-81
URL 76

[100]

G
Gear 64, 65
Gemfile.lock 39
gem help command 32
GET function 72
Git

about 16-21
URL 16

GitHub
URL 23

git repository 30, 38
git utility 34
Graphical User Interface (GUI) 29

H
HAProxy

about 65
URL 68

hierarchy 62

I
IaaS 10-12
IDE 51
IDE Integrations

about 51, 52
working 53-58

idempotent 82
Infrastructure as a Service. See IaaS
INI file

URL 85
Instant App section 47
Integrated Development Environment. See

IDE
iptables

URL 68

J
JavaScript Object Notation. See JSON
JBDS

about 51
cloning settings, screenshot 57
downloading, URL 51
screenshot 51

JBDS project
creating, screenshot 56

JBoss Central
screenshot 52

JBoss Developer Studio. See JBDS
Jinja2

about 89
URL 89

JSON
URL 70

K
Kernel Based Virtual Machine. See KVM
Kickstart

URL 78
kickstart parameter 80
kill command 44
KVM

URL 76

L
libvirt

URL 80
Linux

PAM, using for 60
Linux kernel documentation

URL 62
ls command 43

M
Marionette Collective. See MCollective
MCollective

about 64
URL 64

merge 17
merge tool 18
mongo command 44
mysql command 44

N
National Institute of Standards and Tech-

nology. See NIST
Nimbus

URL 11

[101]

NIST
URL 9

Node, OpenShift 24

O
OpenNebula

URL 11
OpenShift

about 22, 23, 28
architecture 65-69
CLI 29-44
Client tools 23, 24
new account form, screenshot 28
URL 28, 72
utilizing, ways 27
web console 44-51

OpenShift Management Console
screenshot 45

OpenShift Origin
deploying 93-98
URL 77

OpenShift PAM module
URL 60

OpenShift starter page
screenshot 38

OpenSSH
URL 14

OpenStack
URL 11

P
PaaS 12, 13
PAM

about 60
used, for Linux 60

pam_namespace 60
phpmyadmin cartridge 50
Platform as a Service. See PaaS
Playbooks 82
Pluggable Authentication Modules. See

PAM
ps command 43
psql command 44
Puppet

URL 12

PuTTY
URL 14

python
URL 71

Q
qemu-img command 79
QEMU-KVM

URL 78
QPID

URL 64
QuickStarts application

URL 47
quota command 15, 44

R
RabbitMQ

URL 64
rack-based

URL 40
Red Hat SELinux

URL 61
Representational State Transfer Application

Programming Interface. See REST
API

REST API 69-73
rhc app show command 42
rhc cartridge list command 42
rhc command-line utility 30, 37
rhc commands

list 42
rhc app show 42
rhc cartridge list 42
rhc domain show 42
rhc port-forward 42
rhc snapshot 43
rhc ssh 43
rhc tail 42

rhc domain show command 42
rhc port-forward command 42
rhc snapshot command 43
rhc ssh command 43
rhc tail command 42
rhc utility 43

[102]

rm 43
tail_all 43

sinatra application 37, 55
Sinatra web framework

URL 35
Software as a Service. See SaaS
Software Collections 63
SSH 14, 15
ssh-copy-id utility 84
subsystem 62

T
tail_all command 43
tail utility 42
Task 82

U
upstream 76

V
VCSs 16
Version Control Systems. See VCSs

W
web cartridge 36
web console

about 44
interacting with, steps 45-51

Wordpress
URL 47

Wordpress deployment 50

Y
YAML

URL 82
yum package manager 77

rm command 43
roles 92
Ruby 23
ruby-1.9 cartridge 38
RubyGem

about 23
URL 23, 30

RubyGem bundler utility
URL 39

Ruby on Rails
URL 23

Ruby programming language
URL 23

S
SaaS 13
Salt

URL 12
SCL

URL 63
Secure Shell. See SSH
Security Enhanced Linux. See SELinux
SELinux

about 61
URL 61

shebang 19
shell commands

ctl_all 43
ctl_app 43
export 43
kill 44
list 43
ls 43
mongo 44
mysql 44
ps 43
psql 44
quota 44

Thank you for buying
Implementing OpenShift

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

OpenNebula 3 Cloud Computing
ISBN: 978-1-84951-746-1 Paperback: 314 pages

Set up, manage and maintain your Cloud and learn
solutions for datacenter virtualization with this
step-by-step practical guide

1. Take advantage of open source distributed
file-systems for storage scalability and
high-availability

2. Build-up, manage and maintain your Cloud
without previous knowledge of virtualization
and cloud computing

3. Install and configure every supported
hypervisor: KVM, Xen, VMware

Google Apps: Mastering
Integration and Customization
ISBN: 978-1-84969-216-8 Paperback: 268 pages

Scale your applications and projects onto the cloud
with Google Apps

1. This is the English language translation of:
Integrer Google Apps dans le SI, copyright
Dunod, Paris, 2010

2. The quickest way to migrate to Google
Apps - enabling you to get on with tasks

3. Overcome key challenges of Cloud Computing
using Google Apps

Please check www.PacktPub.com for information on our titles

OpenStack Cloud Computing
Cookbook
ISBN: 978-1-84951-732-4 Paperback: 318 pages

Over 100 recipes to successfully set up and manage
coverage of Nova, Swift, Keystone, Glance, and
Horizone

1. Learn how to install and configure all the
core components of OpenStack to run an
environment that can be managed and operated
just like AWS or Rackspace

2. Master the complete private cloud stack from
scaling out compute resources to managing
swift services for highly redundant, highly
available storage

3. Practical, real world examples of each service
are built upon in each chapter allowing you
to progress with the confidence that they will
work in your own environments

Apache CloudStack Cloud
Computing
ISBN: 978-1-78216-010-6 Paperback: 294 pages

Leverage the power of Cloudstack and learn to
extend the CloudStack environment

1. Install, deploy, and manage a cloud service
using CloudStack

2. Step-by-step instructions on setting up and
running the leading open source cloud platform
CloudStack

3. Set up an IaaS cloud environment using
CloudStack

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Understanding the Essentials
	The Cloud
	Infrastructure as a Service (IaaS)
	Platform as a Service (PaaS)
	Software as a Service (SaaS)
	SSH
	Git

	OpenShift – a bird's-eye view
	Client tools
	Broker
	Node

	Summary

	Chapter 2: Using OpenShift
	Getting started using OpenShift
	Command-line utilities
	Web Console
	IDE Integrations
	Summary

	Chapter 3: OpenShift – Technologies and Working
	Pluggable Authentication Modules for Linux
	SELinux
	CGroups
	Software Collections
	MCollective
	Applications and gears
	The OpenShift architecture overview
	REST API
	Summary

	Chapter 4: Deploying an OpenShift PaaS
	The Fedora Project
	Ansible
	Deployment
	Summary

	Index

