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Foreword 

How Intelligent Must A System Be for Image Analysis? 

Professor Dr Ryszard Tadeusiewicz 
Head of the Automatic Control Department,  

AGH University of Science and Technology, Krakow, Poland 
email: rtad@agh.edu.pl 

 
 
 
 

It is an honor to have been invited to write some words of introduction to this 
unique book. As a computer vision specialist I am a familiar with the problems 
and some of the methods of the image analysis. I have been involved for many 
years in artificial intelligence research. I therefore read all of the chapters in this 
book carefully and I find it to be a very valuable and impressive contribution to 
the subject. A general overview of the book’s contents is done in Chapter 1 enti-
tled Advances in Intelligent Image Analysis. The editors of the book wrote this 
valuable oversight. In the chapter a birds eye survey of computer vision problems 
and methodology is presented. This overview is one of the best I have ever read. 
Therefore in this introduction I am not able give characteristic of the books con-
tents. This is because it is very well done. Therefore in this introduction I will 
focus my attention on the word “intelligent” which is expressed in the title of the 
book and also in the text of many chapters. I will now try to answer the question 
formulated as part of the title of foreword:  

How Intelligent Must A System Be for Image Analysis?  

Apparently the answer is both simple and evident. All systems used should be as 
intelligent as possible. This also applies to the system used for image analysis. 

The practical application is not so simple. Artificial intelligence is of course a 
very exciting property of contemporary IT systems. It is also very convenient and 
very useful in most cases where it is possible to use such a system. In my opinion 
every reader of this book after short reflection will be able to give many examples, 
where some systems are found to be too intelligent. Writing about systems which 
are “too intelligent” I think about such systems, which are supposed to help us 
when we use them. This artificial invention can go too far and particular systems 
are in practice not suitable for this reason. 
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VI Foreword
 

A simple example would be the following. Contemporary word processors are 
“intelligent”. They check spelling and try to correct mistakes. Sometimes it works, 
sometimes the result is worse. Most corrections are well done and useful. Some-
times correction of a simple typing error leads to the use of an unsuitable word. 
Thus an “intelligent correction” can change sense of the whole sentence or even 
the whole paragraph. In my opinion the use of “intelligence” is harmful and not 
useful.  

Another simple example is spam filtering in email acquisition systems. Spam is 
a big problem and everybody loses valuable time in removing unnecessary items 
from an ever increasing stream of incoming information. Intelligent spam filtering 
never works without error and every day I must check my email inbox and my 
trashcan because of the many errors. Because of these “intelligent” algorithms 
many of the spams remain seemingly useful worthy contributions and attention 
worthy in the inbox. Frequently many important and valuable letters are automati-
cally thrown into the garbage. I consequently wonder if my own self made addi-
tional filter selection for this “garbage” is not perceptive enough to sort the infor-
mation and important messages can be lost in the sorting process. In my opinion 
such apparently “intelligent” but inaccurate mail selection machines cannot be 
safely used. Unfortunately it is very difficult to switch off this option. This is 
because the producer of such an “intelligent” tool is proud from his/her achieve-
ment and could never believe it to be harmful.  

In both of the above quoted above cases we must take into account available 
methods of intelligent processing and analysis of the text data. This book is dedi-
cated to the intelligent processing and the analysis of the images. But when consid-
ering its use in the computer vision area the question “how much intelligence really 
necessary”? The problem becomes even more important and more complicated. 

For all readers of this book it is evident that the image when treated as a data 
structure is much more complicated than the simple text. Images must be consid-
ered as two-dimensional when grayscale used or multidimensional when color and 
multispectral data representation is taken into account. It is evident, that such 
multidimensional data which has many such important features registered. The 
mutual relation between the pixels or voxels is much more complicated than sim-
ple text which is treated as merely a string of letters. We must also take into  
account that the human ability for image interpretation, assessment and under-
standing are almost ideal. Therefore almost always a visual inspection of the im-
age will be much more advanced, precise and subtle than the efficiency of any 
computer vision program. People will not accept mistakes in image processing, 
which are evident for human assessment in all situations. The problem which is to 
be solved by the specialized software is very difficult. Error caused by the input 
data and included noises. The human eye is not sensitive to these noises and the 
human brain is able in a very clever manner to select useful information obtained 
from observed data. If a computer makes mistake the system user is very per-
plexed. Therefore the application of intelligent methods to the image processing, 
analysis and interpretation must be introduced using special care.  
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Foreword VII
 

A Detailed Explanation Follows 

The typical way in which computer vision applied to any particular use may be 
divided into five or possibly six steps as shown in Figure 1. The steps are listed 
here. The discussion of the usefulness of artificial intelligence for particular steps 
is done in the next paragraphs.  

The first step is part of the image acquisition process. Next we come to image 
filtration and other image processing procedures. Next step in the process is the 
image segmentation. A further step leads to image analysis. After the analysis we 
can enter the image classification and perhaps also recognition. Lastly but not 
least we try to apply an automatic understanding of the image and the image-based 
decision making process. 

The next question is: Which level of the artificial intelligence can be applied 
and which one should be applied in the particular steps of the computer vision 
procedures? 

The image acquisition process is in most applications not connected with ad-
vanced artificial intelligence methods requirements. When taking photos or for 
video recording intelligence is not necessary. Sometimes however we may observe 
exceptions. For example when the object which should be represented and analyzed 
on the image is moving and must be found on the space before photocopy. Image 
acquisition needs intelligent procedures. When there are many objects visible and 
we must select one of interest for the image processing and interpretation – the 
image acquisition must be combined with intelligent scene analysis. In typical 
situations the image acquisition does not need intelligence.  

When the correct image is registered by the computer vision system we typi-
cally need to do some processing. This may include image filtering, denoising or 
enhancement. In different systems we may use different image processing meth-
ods. This is because the noise filtration process as well as image enhancement 
strongly depend on the final destination of the image processing. Even elementary 
questions such as about the difference between the useful signal and the noise is 
not evident without a special analysis related to the main goal of the image inter-
pretation process.  

For example when considering medical images (e.g. images from magnetic 
resonance scanner) we can obtain (in simplest case) two types of visual informa-
tion: general shapes of the internal organs and textures filling these shapes inside. 
Depending on the goal of the investigation we can concentrate on the forms and 
dimensions of the organs or we can take into account the properties of the tissue, 
which can be evaluated (assessed) on the basis of image texture. Therefore once 
the shape of large objects visible on the image is source of useful information (this 
is pure signal) and the texture must be treated as noise and should therefore be 
filtered. For another purpose filtration must be performed in the opposite direc-
tion. That is by enhancing high frequency image components (That is the elements 
of the texture) and removing low frequency elements (That is big objects which 
relate to the particular organs).  
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Fig. 1. Elements of the computer vision structure used for discussion  
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Foreword IX
 

The question is, whether the selection of the proper method of image filtration and 
enhancement can be selected automatically during the preprocessing of registered 
image – or not. Another formulation of the same question is following: Are the artifi-
cial intelligence methods are applicable for image processing level and if so why?  

If particular form of adaptive image enhancement can be defined and practi-
cally performed, we can then think about the intelligent image processing. Other-
wise we must think about two definitely separated processes: One of the processes 
is related to the intelligent selection of a proper method of image processing. It 
must be performed by a person, who is only intelligent operator in the whole sys-
tem. Another process is image processing. For example this may be filtration, 
enhancement, object-background differentiation. This is done using a computer. 
This second process typically involves a lot of mathematical operations because of 
millions pixels which are in the processed image. We must take also into account 
the context processing. For the evaluation value of one pixel on the output image 
need calculations taking into account the same pixel on the source image and 
some pixels in the neighborhood. If we imagine, that appropriate calculations 
related to the selected method of image filtering, must be performed for every 
pixel, the computational load is high for this step of image processing. The algo-
rithms for image processing done by computer have no intelligent components. 
Intelligent analysis of the processing purpose and the selection of the optimal 
processing method is as yet done by human mind. 

There is a similar situation during the image segmentation process. Before 
analysis, recognition and also automatic interpretation of the image – we must 
select the objects, whose features will be calculated during the image analysis 
process. A proper classification is essential for the image-based decision making 
processes. The differentiation between object and background is not simple when 
the general situation is considered. Differentiation between objects is important 
when considering the final destination of the whole analysis. Objects which are of 
only marginal importance can also very difficult problem. Here intelligent meth-
ods are indispensable. 

Another area where artificial intelligence methods are necessary is that of im-
age analysis. The main goal of image analysis is the transformation of the source 
image to the parametric form. Instead of huge number of pixels and voxels repre-
senting image itself, after the analysis we have sparse parameters. The information 
value can be equivalent or perhaps better when pursuing the principal goal of the 
whole system. That can be in the medical diagnosis field. This is the most goal-
dependent step in the whole of the computer vision system functioning. In the 
general case it may be very responsible and useful to consider the use of artificial 
intelligence methods.  

After describing the image by means of the selected method which can include 
artificial intelligence, we can reach the final decision making process. At this level 
of image interpretation artificial intelligence is indispensable. All non trivial 
methods of pattern clustering, classification and pattern recognition must be based 
on the use of artificial intelligence methods. The same situation is related to meth-
ods of automatic understanding. These are knowledge-based methods and can be 
used only when proper artificial intelligence algorithms have been developed.  
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X Foreword
 

Concluding this discussion: Problems and tasks described and discussed in the 
present book are important and lie within image processing and analysis area. 
Therefore everybody, who reads this book, will be more successful in both the 
theoretical and practical problem solving in the image processing area and com-
puter vision based activities. In my opinion everybody reading this book will learn 
much as a result of the information contained in. 
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Preface 

For a complete historical view of the digital image processing area, we are forced 
to return to the 1940s and the beginning of 1950s. This is because, it is when some 
fundamental research on the military application of image analysis were at-
tempted. In the 1960s such applications as character recognition, satellite imagery, 
image enhancement, medical image processing and videophone were studied. The 
rapid development of cheaper and faster computers in 1970s, enabled some par-
ticular problems such as television standards conversion, where images are proc-
essed in real time. The Massachusetts Institute of Technology (MIT) played an 
important role in the development of these industrial applications. Visual percep-
tion has also been used in the robotics field to locate significant objects. A system 
of image analysis enabled the control of a robotic arm for industrial use. 

An enormous growth of the industrial applications of machine vision occured in 
the 1980s. This was due to the commercial availability of single board image 
processors, cameras for industrial applications, and the development of grayscale 
machine vision algorithms. The advancing computer technology in the 1990s 
allowed the development of very smart cameras. These were able to extract infor-
mation from collected image data. This was also due to the development of the 
processing chip. These technical developments forced the progression of advanced 
studies. Consequently many methods and algorithms have since been studied and 
applied. In this decade the first robot vision system for navigation has been created 
(robot Polly, constructed by I. Horswill). The speed was obtained in the order of 
one meter per second.  

Vision systems were developed and used in car control systems. A well known 
example of a car steered by computer was ALVINN. In this example, a human 
driver controlled the brakes and the throttle. A fully controlled by computer sys-
tem car-robot later drove more than 1000 miles, in the traffic. Critical situations 
however were managed by the driver. Some Artificial Intelligence systems used 
for threat-detection include machine vision applications. They have been devel-
oped due to forced research in this field. The 2001 attacks proved a powerful in-
centive for this development. 

Advances in medical imaging now play a very important role in medical diag-
nostic processes. The need for such computer assistance in detection and diagnosis 
fields stimulate the need for the rapid development of those methods and applica-
tion of images processing and analysis. Recently, the need for image interpretation 
and subsequent understanding has become imperative. Such computer systems in 
medicine improve clinical decisions. Computers were applied to medical images 
from the early days. This was as early as the 1950s. Their intensive development 
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may be observed from 1980s. Normal and pathological images are also collected 
and analyzed to improve the teaching of students and in the daily work of medical 
doctors. 

Image processing and analysis techniques are intensively applied in many very 
different fields. The collections of images are now described. That is the images 
obtained should be annotated by appropriate words. Such a task is very burden-
some for humans, and consequently automatic methods of image annotation have 
been intensively studied. Image retrieval is interesting and valuable research area. 

All of the above applications of computer vision systems are extremely impor-
tant both from the practical and scientific point of view. The most fascinating area 
is that of image understanding. We can interpret a given image and determine 
what it presents. Examples include expressions of fear, gladness, impression, for 
example. The question is: how we can make a computer ‘read’ the meaning of any 
given image? The proper interpretation of images is a very important first step. An 
example is that of Medical Decision Support System Development. This involves 
searching for similar images. Here similarity as in the context of the meaning of 
the images. It appears that good image interpretation of the results may require 
some prior knowledge. 

We present here only a small introduction to new and important research in the 
images processing and analysis area. It is hoped that this book will be useful for 
scientists and students involved in many aspects of image analysis. The book does 
not attempt to cover all of the aspects of Computer Vision, but the chapters do 
present some state of the art examples. It also provides an indication to some new, 
original results. 

We thank all authors and reviewers involved in the book preparation process. 
Their commitment has allowed us to complete the work. We hope that that this 
book will be helpful in the development of future research. Thanks are also due to 
Dr Neil Allen for the fruitful discussion during the development phase of this 
book. 
 

 Halina Kwaśnicka, Poland 
Lakhmi C. Jain, Australia 
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Chapter 1 
Advances in Intelligent Image Analysis 

Halina Kwaśnicka and Lakhmi C. Jain* 

Abstract. This chapter presents some recent advances in the area of computer 
vision. The various stages involved in the area of image processing and their inter-
pretation are described. The first step is that of image registration. That is, the over-
lay two or more images of the same scene. These are taken from different view-
points, at different times or possibly by different sensors. The next phase is image 
preprocessing. This mainly involves image enhancement and clearing for example. 
Other problem is that of image analysis. This is the extraction of important features 
of the image. Having obtained a description of the image, the process of object 
(pattern) recognition can be performed. All of these tasks are very important and 
useful, they still do not give a semantic interpretation of images. Image interpreta-
tion, similar image searching is still a major challenge facing researchers. The 
second part of this chapter summarises the remaining chapters of the book. 

1   Introduction  

One of a number of definitions of Artificial Intelligence is “the field of study  
that seeks to explain and emulate intelligent behavior in terms of computational 
processes” [14]. The other claims that it is “the branch of computer science that 
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attempts to emulate intelligent behavior by automation” [11]. The tremendous 
advances in artificial intelligence include learning possibilities, knowledge proc-
essing including imprecise knowledge for example. This work covers a very wide 
application area. One of the most important problems is knowledge acquisition 
from vast collections of data. Initially researchers considered only numerical and 
symbolic values of data to be of value. An important issue is that of text under-
standing. This includes information retrieval from text documents, automatic 
translators, for example. Other sources of data source are images. Human beings 
can easily see and interpret images. We are able to determine the emotions ex-
pressed by these images, and to correctly interpret a given image. For example 
whether that it presents danger or pleasure. 

Image processing is a very vast, popular, and important field of studies. Proc-
esses arising from images are clearing, enhancing, repair of image understanding. 
Generally speaking, image processing is the manipulation of signals which are 
inherently multidimensional [8]. Often photographs (or other images) and video 
sequences are such signals. The main goals of image processing one can indicate: 
images compression; images enhancement or restoration; images recognition; 
images understanding; images visualization convenient for users. Different image 
processing techniques are useful in numerous areas which include medicine, video 
communication, astronomy, archeology, electronic games, and many others.  

We will shortly describe a number of different problems which indicate the 
wide range of the image processing area.   

Beginning with real objects, and commencing with objects need to be regis-
tered. Typically, image registration is essential in remote sensing. For example, 
environmental monitoring, integrating information into geographic information 
systems (GIS). In medicine for example, the combining of computer tomography 
(CT), NMR data to present a more complete information base on the patient, 
monitoring tumor growth, treatment verification; in cartography, and so on. Image 
registration is a process in which two or more images are captured of a same 
scene, taken from several different viewpoints, at different times. This information 
is captured using different sensors which may overlap. A review of recent and 
classic image registration methods is given in [16]. 

The next task in image processing procedure is image preprocessing. The 
methods used depend on the particular goal of the image processing [1], [6, 7]. 
The preprocessing phase is comprised of a series of operations, which are used to 
enhance this image. Very often a number of different filters are used in this proc-
ess. The operations also suppress undesired noise data and enhances some image 
features that are important for further processing. The image processing methods 
used should be able to answer the question: of how best to increase the quality and 
visibility of the present image? 

Image analysis or image description is another task in the image processing 
[4, 5]. The aim of this phase is the extraction of useful information from the  
processed digital image. Some methods such as detection of the edges, try  
to mimic human visual perception processes. These image analysis methods help 
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us to answer the question: what are the exact values of selected features of the 
image? [15]. 

Having obtained important features of the image we can perform the object 
recognition task [13]. The main aim of this is to answer the question: which, if 
any, of a given set of objects (patterns) appear in the image considered or the im-
age sequence. The object recognition problem can be defined as the problem of 
matching models from a given database. The representations of those models are 
extracted from the digital image. The representation of the object model plays 
very important role and a number of different approaches are studied [5], [7]. 
Recognition systems consist of two phases. The first is the construction of a model 
library from the descriptions of the given (known) objects. Then there is the rec-
ognition process. Here the system is presented together with a perspective image. 
This determines the location of the image and identity of any objects which may 
be located from a given library. 

Performing all above tasks we can receive information concerning the names of 
all objects in that image. It is known that, often, images which are apparently 
similar can hide a semantically different content. The vice versa situation applies. 
So the very important problems arise: one is how to obtain and possess semantic 
knowledge from these images. It also means using a process of image understand-
ing and interpretation. 

From Tadeusiewicz [15] we can say that automatic image understanding allows 
us to answer a number of questions. These include: what follows from the visual-
ized details? What is the meaning of the features extracted from the image?  
What follows from the existence of individual objects belonging to particular 
classes in the image? Proper interpretation of the images is vitally important. For 
example, in the problem of Medical Decision Support Systems. It seems that  
adequate image interpretation of the results may require some measure of prior 
knowledge. [15]. 

Two more concepts closely connected with the image processing field are: 
Computer Vision and Machine Vision [2]. According to the Free On-line Dic-
tionary of Computing (http://dictionary.die.net) Computer Vision is the branch 
of Artificial Intelligence concerned computer processing of images obtained 
from real world. Typically it consists of low level processing and high level 
pattern recognition and image understanding of features present in the consid-
ered image. Narrowing, or using computer vision for application to factory 
automation is called Machine Vision. Machine vision systems can work in a 
similar manner to human inspectors. They visually inspect assembly lines to 
judge the quality of workmanship. Machine vision systems use digital cameras 
and image processing software to perform these inspections. A machine vision 
system is a computer system that can make decisions based on the analysis of 
digital images. A single machine vision system performs a narrowly defined 
task. For example, counting objects on a conveyor, reading serial numbers and 
searching for surface defects. Computer systems reveal many advantages in 
contrast to human inspectors. That is, they are liable to make fewer mistakes 
because they do not get sick, do not tire and work repeatedly. On the other 
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hand, humans may display a finer perception over the short periods and have 
greater flexibility. They can adapt to new problems. 

We realise that computers ‘see’ in another way than human beings. People use 
inference and prior knowledge or experience and can interpret images according 
to the context and the ultimate goal of the image analysis. 

Image retrieval is another problem that has been intensively studied. It is asso-
ciated with the concept of image similarity. We wish to develop a computer sys-
tem which is able to find similar images to a given image. Similarity plays very 
important role. Viable similarity measure decides the efficacy of retrieving images 
having a related content. Each person can find a similar image to a given one. This 
image is similar in our view. Images similarity term is not precise. It is very sub-
jective when used by various people. One can expect that such a computer system 
will be imprecise and, it possibly will need to be tuned for individual users. Ac-
counting for the human perspective and expectations, the similar images retrieving 
is difficult, if at all possible [24]. One approach to image retrieval is application of 
object recognition paradigm with a similarity measure of the recognized concepts. 
Instead of low level image features based queries, the user is able to formulate a 
meaningful concept based queries [10]. This image retrieval scheme is sometimes 
referred as Annotation Based Image Retrieval [9]. This is in contrast to classic 
Content Based Image Retrieval. The key disadvantage of such approach is that the 
number of concepts is both predefined and is finite [12], [14]. The object recogni-
tion based paradigm is not applicable when it is faced with the infinite diversity of 
the surrounding world [3]. Effective image retrieval can require the continuous 
creation of new concepts. 

2   Chapters Included in the Book 

This book includes thirteen chapters. Chapter one gives an introduction to the 
image processing field and different problems connected with this area. Brief 
summaries of chapters included in the book are given. 

Chapter 2 deals with multi-class classification using subclass problem-
dependent error correcting output codes. The authors have presented a novel way 
in which to model complex multi-class classification problems. The technique has 
been validated and the improvement in performance is demonstrated. 

Chapter 3 is about morphological operator design. The author gives a descrip-
tion of the translation invariant morphological operator learning. This uses train-
ing images supported by the sub-decomposition representation structure of these 
operators. 

Chapter 4 is about an extended notion of salience for use in object recognition. 
The authors demonstrate the link between salience and cascaded processes. They 
show why and how these could be constructed. 

Chapter 5 considers fast and efficient local features for the detection for use in 
image recognition. The authors presented a new method for the detection and 
filtering of local features. The technique is validated to prove its superiority. 
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Chapter 6 is about visual perception in image analysis process. The author in-
troduces a form of perceptual image analysis using a methodology for determining 
the resemblance between pairs of visual tolerance spaces within the context of 
digital images. 

Chapter 7 is about magnetic resonance (MR) imaging. An overview of the 
structural MR imaging is presented and a variety of applications for the diagnoses 
of neurological diseases are discussed. 

Chapter 8 deals with the detection of similarities in the context of digital im-
ages. This approach is useful for image retrieval and in the solution of the image 
correspondence problem. What is important in this chapter is the near set approach 
to object recognition. Sets of objects X,Y are considered near each other if the sets 
contain objects with at least partial matching descriptions. 

Chapter 9 gives a technique for the detection of near duplicate fragments in im-
ages having unknown contents. The technique is validated to demonstrate the 
superiority of this approach. 

Chapter 10 is about feature analysis for object and scene categorization.  
It demonstrates that feature analysis is indispensable in constructing effective 
classifiers. 

Chapter 11 introduces curve and edge parameterization by moments. Examples 
are used to demonstrate the applications in analytically-defined image functions, 
generated images, and real-world images. 

Chapter 12 is about intelligent approaches to colour palette design. It demon-
strates that intelligent approaches outperform the standard colour quantisation 
techniques in terms of their image quality. 

Chapter 13 is about mean shift and its application in image segmentation. It is 
demonstrated that the application of a mean shift process can improve image  
segmentation algorithms. 

3   Conclusion 

This chapter presents a short overview of the use of computers for image process-
ing and analysis. The main tasks and concepts connected with this area are de-
scribed. Some new and important problems are underlined. 

The book chapters do not cover the whole area of computer vision, but give an 
overview of research in this field. Particular chapters present the state of the art as 
well as the authors’ researches and results. 

The short presentation of problems connected with widely understood computer 
vision systems show that the results are far from satisfying the expectations and 
needs. A number of books, conferences, journal titles, and other publications  
dedicated to computer vision is now being developed but there is still a need for 
further research in the area. Maybe that close cooperation by specialists from 
different centers and different countries will accelerate the development of this 
fascinating and important field. We hope that this book will contribute and lead to 
closer cooperation between the various centers and researchers. 
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Abstract. A common way to model multi-class classification problems is by means
of Error-Correcting Output Codes (ECOC). Given a multi-class problem, the ECOC
technique designs a codeword for each class, where each position of the code identi-
fies the membership of the class for a given binary problem. A classification decision
is obtained by assigning the label of the class with the closest code. In this paper,
we overview the state-of-the-art on ECOC designs and test them in real applications.
Results on different multi-class data sets show the benefits of using the ensemble of
classifiers when categorizing objects in images.
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1 Introduction

In the literature, one can find several powerful binary classifiers. However, when one
needs to deal with multi-class classification problems, many learning techniques
fail to manage this information. Instead, it is common to construct the classifiers
to distinguish between just two classes, and to combine them in some way. In this
sense, Error Correcting Output Codes (ECOC) were born as a general framework
to combine binary problems to address the multi-class problem. The strategy was
introduced by Dietterich and Bakiri [17] in 1995. Based on the error correcting
principles [17] and because of its ability to correct the bias and variance errors of
the base classifiers [16], ECOC has been successfully applied to a wide range of
image analysis applications, such as face recognition [30], face verification [15],
text recognition [11] or manuscript digit classification [32].

The ECOC technique can be broken down into two distinct stages: encoding and
decoding. Given a set of classes, the coding stage designs a codeword1 for each
class based on different binary problems. The decoding stage makes a classification
decision for a given test sample based on the value of the output code.

At the coding step, given a set of N classes to be learnt, n different bi-partitions
(groups of classes) are formed, and n binary problems (dichotomizers) are trained.
As a result, a codeword of length n is obtained for each class, where each bit of
the code corresponds to the response of a given dichotomizer (coded by +1, -1,
according to their class set membership). Arranging the codewords as rows of a
matrix, we define a coding matrix M, where M ∈ {−1,1}N×n in the binary case.

It was when Allwein et al. [1] introduced a third symbol (the zero symbol) in
the coding process when the coding step received special attention. This symbol
increases the number of partitions of classes to be considered in a ternary ECOC
framework by allowing some classes to be ignored. Then, the ternary coding matrix
becomes M ∈ {−1,0,1}N×n. In this case, the symbol zero means that a particular
class is not considered by a certain binary classifier.

The decoding step was originally based on error-correcting principles under the
assumption that the learning task can be modeled as a communication problem, in
which class information is transmitted over a channel [17]. During the decoding
process, applying the n binary classifiers, a code is obtained for each data point in
the test set. This code is compared to the base codewords of each class defined in
the matrix M, and the data point is assigned to the class with the closest codeword.

In this paper, we overview the state-of-the-art ECOC designs. We describe the
different ECOC strategies available from both the binary and the ternary ECOC
frameworks. We analyze the complexity in terms of the number of classifiers and
test the designs on different multi-class data sets, showing the benefits of using the
ensemble of classifiers when categorizing objects in images.

The paper is organized as follows: Section 2 overview the state-of-the-art ECOC
designs. Section 3 shows the experimental results on two challenging image catego-
rization problems. Finally, section 4 concludes the paper.

1 The codeword is a sequence of bits of a code representing each class, where each bit
identifies the membership of the class for a given binary classifier.
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2 ECOC Designs

The most well-known binary coding strategies are the one-versus-all strategy [19],
where each class is discriminated against the rest of classes, and the dense ran-
dom strategy [1], where a random matrix M is generated maximizing the rows and
columns separability in terms of the Hamming distance [17]. In Fig. 1(a), the one-
versus-all ECOC design for a 4-class problem is shown. The white regions of the
coding matrix M correspond to the positions coded by 1, and the black regions to
-1. Thus, the codeword for class C1 is {1,−1,−1,−1}. Each column i of the coding
matrix codifies a binary problem learned by its corresponding dichotomizer hi. For
instance, dichotomizer h1 learns C1 against classes C2,C3 and C4, dichotomizer h2

learns C2 against classes C1,C3 and C4, etc. An example of a dense random matrix
for a 4-class problem is shown in Fig. 1(c).

(a) (b)

(c) (d)

Fig. 1 One-versus-all (a), one-versus-one (b), dense random (c), and (d) sparse random
ECOC designs.
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The classical coding designs in the ternary ECOC framework are the one-versus-
one [13] and the random sparse coding [1]. Fig. 1(b) shows the one-versus-one
ECOC configuration for a 4-class problem. In this case, the grey positions corre-
spond to the zero symbol. A possible sparse random matrix for a 4-class problem is
shown in Fig. 1(d). Note that the previous coding designs are predefined. Thus, the
training data is not considered until the coding matrix M is constructed. Then, each
dichotomizer uses the coded positions of M to train the different binary problems.

The most frequently applied decoding strategies are the Hamming (HD) [19] and
the Euclidean (ED) decoding distances [13]. With the introduction of the zero sym-
bol, Allwein et al. [1] showed the advantage of using a loss based function of the
margin of the output of the base classifier. Recently, the authors of [9] proposed a
Loss-Weighted strategy to decode, where a set of probabilities based on the perfor-
mances of the base classifiers are used to weight the final classification decision.
In Fig. 1, each ECOC codification is used to classify an input object X . The input
data sample X is tested with each dichotomizer hi, obtaining an output Xi. The final
code {X1, ...,Xn} of the test input X is used by a given decoding strategy to obtain
the final classification decision. Note that in both, the binary and the ternary ECOC
framework, the value of each position Xj of the test codeword can not take the value
zero since the output of each dichotomizer hj ∈ {−1,+1}.

Recently, new improvements in the ternary ECOC coding demonstrate the suit-
ability of the ECOC methodology to deal with multi-class classification problems
[27][26][10][29][5]. These recent designs use the knowledge of the problem-domain
to learn relevant binary problems from ternary codes. The basic idea of these meth-
ods is to use the training data to guide the training process, and thus, to construct
the coding matrix M focusing on the binary problems that better fits the decision
boundaries of a given data set. The definition of new coding designs also motivated
the design of novel decoding methodologies [9]. Next, we describe some of these
recent designs: ECOC-ONE, DECOC, Sub-class ECOC coding, and Loss-Weighted
decoding.

2.1 ECOC-ONE Coding

ECOC-Optimal Node Embedding defines a general procedure capable of extending
any coding matrix by adding dichotomizers based on a discriminability criterion.
In the case of a multiclass recognition problem, the procedure starts with a given
ECOC coding matrix. Then, this ECOC matrix is increased in an iterative way,
adding dichotomizers that correspond to different sub-partitions of classes. These
partitions are found using greedy optimization based on the confusion matrices so
that the ECOC accuracy improves on both training and validation sets. The training
set guides the convergence process, and the validation set is used to avoid overfitting
and to select a configuration of the learning procedure that maximizes the gener-
alization performance [17]. Since not all problems require the same dichotomiz-
ers structure -in form of sub-partitions-, the optimal node embedding approach
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Table 1 ECOC-ONE general algorithm

Given Nc classes and a coding matrix M:

while error > ε or errort < errort−1, t ∈ [1,T ]:

Compute the optimal node t:

1) Test accuracy on the training and validation sets St and Sv.

2) Select the pair of classes with the highest error analyzing the confu-
sion matrices from St and Sv.

3) Find the partition that minimizes the error rate in St and Sv.

4) Compute the weight for the dichotomy of the partition based on its
classification score.

Update the matrix M.

generates an optimal ECOC-ONE matrix dependent on the hypothesis performance
in a specific problem domain.

Table 1 shows the summarized steps for the ECOC-ONE approach. Note that, the
process described is iterated while the error on the training subsets is greater than ε
or the number of iterations i ≤ T . An example of an ECOC-ONE strategy applied
to a four-class classification example can be found in Fig. 2. The initial optimal
tree corresponds to the dichotomizers of optimal sub-partition of the classes. This
tree has been generated using accuracy as a sub-partition splitting criterion. After
testing the performance of the ensemble tree (composed by the columns {h1,h2,h3}
of the ECOC matrix M of Fig. 2(b)), let assume that classes {C2,C3} get maximal
error in the confusion matrices νt and νv. We search for the sub-partition of classes
using the training and validation subsets so that the error between {C2,C3} and all
previous misclassified samples is minimized. Suppose now that this sub-partition is
{C1,C3} versus {C2}. As a result, a new node N4 corresponding to dichotomy h4

is created. We can observe in Fig. 2 that N4 uses a class partition that is present in
the tree. In this sense, this new node connects two different nodes of the tree. Note
that using the previously included dichotomizers, the partition {C1,C3} is solved by
N2. In this way, the Hamming distance between C2 and C3 is increased by adding
the new dichotomy to the whole structure. At the same time, the distance among the
rest of the classes is usually maintained or slightly modified.

One of the desirable properties of the ECOC matrix is to have maximal dis-
tance between rows. The ECOC-ONE procedure focuses on the relevant difficult
partitions, increasing the distance between ”close” classes. This fact improves the
robustness of the method since difficult classes are likely to have a greater number
of dichotomizers centered on them. In this sense, it creates different geometrical
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(a) (b)

Fig. 2 (a) Optimal tree and first optimal node embedded, (b) ECOC-ONE code matrix M for
four dichotomizers.

arrangements of decision boundaries, and leads the dichotomizers to make different
bias errors.

2.2 DECOC and Sub-class ECOC Coding

One of the main reasons why the recent problem-dependent designs [27][26][10]
attains a good performance is because of the high number of possible sub-groups
of classes that is possible in the ternary ECOC framework. On the other hand, us-
ing the training data in the process of the ECOC design allows to obtain compact
codewords with high classification performance. However, the final accuracy is still
based on the ability of the base classifier to learn each individual problem. Difficult
problems, those which the base classifier is not able to find a solution for, require
the use of complex classifiers, such as Support Vector Machines with Radial Basis
Function kernel [23], and expensive parameter optimizations. Look at the example
of Fig. 3(a). A linear classifier is used to split two classes. In this case, the base clas-
sifier is not able to find a convex solution. On the other hand, in Fig. 3(b), one of the
previous classes has been split into two sub-sets, that we call sub-classes. Then, the
original problem is solved using two linear classifiers, and the two new sub-classes
have the same original class label. Some studies in the literature tried to form sub-
classes using the labels information, which is called Supervised Clustering [31][7].
In these types of systems, clusters are usually formed without taking into account
the behavior of the base classifier that learns the data. In a recent work [33], the
authors use the class labels to form the sub-classes that improve the performance of
particular Discriminant Analysis algorithms.

From an initial set of classes C of a given multi-class problem, the objective of
the Sub-class ECOC strategy is to define a new set of classes C′, where |C′| > |C|,
so that the new set of binary problems is easier to learn for a given base classifier.
For this purpose, the approach uses a guided procedure that, in a problem-dependent
way, groups classes and splits them into sub-sets if necessary.
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(a) (b)

Fig. 3 (a) Decision boundary of a linear classifier of a 2-class problem. (b) Decision bound-
aries of a linear classifier splitting the problem of (a) into two more simple tasks.

Recently, the authors of [27] proposed a ternary problem-dependent design of
ECOC, called DECOC, where given N classes, a high classification performance is
achieved with only N −1 binary problems. The method is based on the embedding
of discriminant tree structures derived from the problem domain. The binary trees
are built by looking for the partition that maximizes the mutual information (MI)
between the data and their respective class labels. Look at the 3-class problem shown
on the top of Fig. 4(a). The standard DECOC algorithm considers the whole set
of classes to split it into two sub-sets of classes ℘+ and ℘− maximizing the MI
criterion on a sequential forward floating search procedure (SFFS). In the example,
the first sub-sets found correspond to ℘+ = {C1,C2} and ℘− = {C3}. Then, a base
classifier is used to train its corresponding dichotomizer h1. This classifier is shown
in the node h1 of the tree structure shown in Fig. 4(d). The procedure is repeated until
all classes are split into separate sub-sets ℘. In the example, the second classifier is
trained to split the sub-sets of classes ℘+ = C1 from ℘− = C2 because the classes
C1 and C2 were still contained in a single sub-set after the first step. This second
classifier is codified by the node h2 of Fig. 4(d). When the tree is constructed, the
coding matrix M is obtained by codifying each internal node of the tree as a column
of the coding matrix (see Fig. 4(c)).

In the case of Sub-class ECOC, sequential forward floating search (SFFS) is also
applied to look for the sub-sets ℘+ and ℘− that maximizes the mutual information
between the data and their respective class labels [27].

Given a N-class problem, the whole set of classes is used to initialize the set L
containing the sets of labels for the classes to be learned. At the beginning of each
iteration k of the algorithm, the first element of L is assigned to Sk in the first step of
the algorithm. Next, SFFS [25] is used to find the optimal binary partition BP of Sk

that maximizes the mutual information I between the data and their respective class
labels.

To illustrate the procedure, let us return to the example of the top of Fig. 4(a).
On the first iteration of the sub-class ECOC algorithm, SFFS finds the sub-set
℘+ = {C1,C2} against ℘− = {C3}. The encoding of this problem is shown in the
first matrix of Fig. 4(c). The positions of the column corresponding to the classes of
the first partition are coded by +1 and the classes corresponding to the second parti-
tion to -1, respectively. In the Sub-class procedure, the base classifier is used to test
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(a) (b)

(c)

(d) (e)

Fig. 4 (a) Top: Original 3-class problem. Bottom: 4 sub-classes found. (b) Sub-class ECOC
encoding using the four sub-classes using Discrete Adaboost with 40 runs of Decision
Stumps. (c) Learning evolution of the sub-class matrix M. (d) Original tree structure without
applying sub-class. (e) New tree-based configuration using sub-classes.
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if the performance obtained by the trained dichotomizers is sufficient. Observe the
decision boundaries of the picture next to the first column of the matrix in Fig. 4(b).
One can see that the base classifier finds a good solution for this first problem.

Then, the second classifier is trained to split ℘+ = C1 against ℘− = C2, and its
performance is computed. To separate the current sub-sets is not a trivial problem,
and the classification performance is poor. Therefore, the procedure tries to split the
data J℘+ and J℘− from the current sub-sets ℘+ and ℘− into more simple sub-sets.
Then, the splitting criteria SC takes as input a data set J℘+ or J℘− from a sub-set ℘+

or ℘−, and splits it into two sub-sets J+
℘+ and J−℘+ or J+

℘− and J−℘− .

When two data sub-sets {J+
℘+ ,J−℘+} and {J+

℘− ,J−℘−} are obtained, only one of
both split sub-sets is used. The selected sub-sets are those that have the highest
distance between the means of each cluster. Suppose that the distance between J+

℘−
and J−℘− is larger than between J+

℘+ and J−℘+ . Then, only J℘+ , J+
℘− , and J−℘− are

used. If the new sub-sets improve the classification performance, new sub-classes
are formed, and the process is repeated.

In the example of Fig. 4, applying the splitting criteria SC over the two sub-sets,
two clusters are found for ℘+ = C1 and for ℘− = C2. Then, the original encoding
of the problem C1 vs C2 (corresponding to the second column of the matrix in the
center of Fig. 4(c)) is split into two columns marked with the dashed lines in the
matrix on the right. In this way, the original C1 vs C2 problem is transformed to
two more simple problems {C11} against {C2} and {C12} against {C2}. Here the
first subindex of the class corresponds to the original class, and the second subindex
to the number of sub-class. It implies that the class C1 is split into two sub-classes
(look at the bottom of Fig. 4(a)), and the original 3-class problem C = {C1,C2,C3}
becomes the 4-sub-class problem C′ = {C11,C12,C2,C3}. As the class C1 has been
decomposed by the splitting of the second problem, we need to save the information
of the current sub-sets and the previous sub-sets affected by the new splitting. For
this purpose, we use the object labels to define the set of sub-classes of the current
partition℘c. If new sub-classes are created, the set of sub-classes C′ and the data for
sub-classes J′ have to be updated. Note that when a class or a sub-class previously
considered for a given binary problem is split in a future iteration of the procedure,
the labels from the previous sub-sets {℘+,℘−} need to be updated with the new
information. Finally, the set of labels for the binary problems℘′ is updated with the
labels of the current sub-set℘′ =℘′ ∪℘c. In the example of Fig. 4, the dichotomizer
h1 considers the sub-sets ℘+

1 = {C1,C2} and ℘−
1 = {C3}. Then, those positions

containing class C1 are replaced with C11 and C12. The process is repeated until the
desired performance is achieved or the stopping conditions are full-filled.

The conditions that guide the learning and splitting process are defined by the
set of parameters θ = {θsize,θper f ,θimpr}, where θsize corresponds to the minimum
size of a sub-set to be clustered, θper f contains the minimum error desired for each
binary problem, and θimpr looks for the improvement of the split sub-sets regarding
the previous ones. In the example of Fig. 4, the three dichotomizers h1, h2, and h3

find a solution for the problem (look the trained boundaries shown in Fig. 4(b)),
obtaining a classification error under θper f , so, the process stops. Now, the original
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Table 2 Problem-dependent Sub-class ECOC algorithm.

Inputs: J,C,θ = {θsize,θper f ,θimpr} //Thresholds for the number of samples, perfor-
mance, and improvement between iterations

Outputs: C′,J′,℘′,M
[Initialization:]
Create the trivial partition {℘+

0 ,℘−
0 } of the set of classes {Ci}: {℘+

0 ,℘−
0 } =

{{ /0},{C1,C2, ...,CN}}
L0 = {℘−

0 };J′ = J;C′ = C;℘′ = /0;M = /0;k = 1

Step 1 Sk is the first element of Lk−1
L′

k = Lk−1\{Sk}
Step 2 Find the optimal binary partition BP(Sk):
{℘+

k ,℘−
k } = argmaxBP(Sk)(I(x,d(BP(Sk))))

where I is the mutual information criterion, x is the random variable associated to the
features and d is the discrete random variable of the dichotomy labelsa, defined in the
following terms,

d = d(x,BP(Sk)) =
{

1 if x ∈Ci|Ci ∈℘+
k

−1 if x ∈Ci|Ci ∈℘−
k

Step 3 // Look for sub-classes
{C′,J′,℘′} = SPLIT(Jp+

k
,Jp−k

,C′,J′,J,℘′,θ )b

Step 4 Lk = {L′
k ∪℘i

k} if |℘i
k| > 1 ∀i ∈ {+,−}

Step 5 If |Lk| �= 0
k = k +1 go to Step 1

Step 6 Codify the coding matrix M using each partition {℘+
i ,℘−

i } of ℘′, i ∈ [1, .., |℘′|]
and each class Cr ∈℘i = {℘+

i ∪℘−
i } as follows:

M(Cr , i) =

⎧⎨
⎩

0 if Cr �∈℘i

+1 if Cr ∈℘+
i

−1 if Cr ∈℘−
i

(1)

a Use SFFS of [25] as the maximization procedure and MI of [27] to estimate I.
b Using the splitting algorithm of table 3.

tree encoding of the DECOC design shown in Fig. 4(d) can be represented by the
tree structure of Fig. 4(e), where the original class associated to each sub-class is
shown in the leaves. The algorithms summarizing the subclass approach and the
splitting methodology are shown in tables 2 and 3, respectively.

Summarizing, when a set of objects belonging to different classes is split, object
labels are not taken into account. It can be seen as a clustering in the sense that the
sub-sets are split into more simple ones while the splitting constraints are satisfied.
It is important to note that when one uses different base classifiers, the sub-class
splitting is probably applied to different classes or sub-classes, and therefore, the
final number of sub-classes and binary problems differs.

Finally, to decode the new sub-class problem-dependent design of ECOC, the
authors use the recently proposed Loss-Weighted decoding design described in the
next section.
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Table 3 Sub-class SPLIT algorithm.

Inputs: J℘1 ,J℘2 ,C′,J′,J,℘′,θ // C′ is the final set of classes, J′ the data for the final set
of classes, and ℘′ is the labels for all the partitions of classes of the final set.

Outputs: C′,J′,℘′
Step 1 Split problems:
{J+

℘+ ,J−℘+} = SC(J℘+)a

{J+
℘− ,J−℘−} = SC(J℘−)

Step 2 Select sub-classes:
if |J+

℘+ ,J−℘+ | > |J+
℘− ,J−℘− | // find the largest distance between the means of each sub-set.

{J+
+ ,J−+} = {J+

℘+ ,J℘−}; {J+
− ,J−−} = {J−℘+ ,J℘−}

else
{J+

+ ,J−+} = {J+
℘− ,J℘+}; {J+− ,J−−} = {J−℘− ,J℘+}

end

Step 3 Test parameters to continue splitting:
if T EST PARAMETERS(J℘1 ,J℘2 ,J1

1 ,J2
1 ,J1

2 ,J2
2 ,θ )// call the function with the new sub-

sets
{C′,J′,℘′} = SPLIT(J1

1 ,J2
1 ,C′,J′,J,℘′,θ )

{C′,J′,℘′} = SPLIT(J1
2 ,J2

2 ,C′,J′,J,℘′,θ )
end
Step 4 Save the current partition:
Update the data for the new sub-classes and previous sub-classes if intersections exists
J′.
Update the final number of sub-classes C′.
Create ℘c = {℘c1 ,℘c2} the set of labels of the current partition.
Update the labels of the previous partitions ℘.
Update the set of partitions labels with the new partition ℘′ =℘′ ∪℘c.

a SC corresponds to the splitting method of the input data into two main clusters.

To show the effect of the Sub-class ECOC strategy for different base classifiers,
we used the previous toy problem of the top of Fig. 4(a). Five different base classi-
fiers are applied: Fisher Linear Discriminant Analysis (FLDA), Discrete Adaboost,
Nearest Mean Classifier, Linear SVM, and SVM with Radial Basis Function kernel.
Using these base classifiers on the toy problem, the original DECOC strategy with
the Loss-Weighted algorithm obtains the decision boundaries shown on the top row
of Fig. 5. The new learned boundaries are shown on the bottom row of Fig. 5 for
fixed parameters θ . Depending on the flexibility of the base classifier more sub-
classes are required, and thus, more binary problems. Observe that all base clas-
sifiers are able to find a solution for the problem, although with different types of
decision boundaries.

2.3 Loss-Weighted Decoding

The Loss-Weighted decoding is defined as a combination of normalized proba-
bilities to adapt the decoding to both binary and ternary ECOC frameworks. The
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(a) (b) (c) (d) (e)

Fig. 5 Sub-class ECOC without sub-classes (top) and including sub-classes (bottom): for
FLDA (a), Discrete Adaboost (b), NMC (c), Linear SVM (d), and RBF SVM (e).

properties of the decoding strategy are encoded in a matrix that is used to weight the
decoding process. Moreover, as not all the hypotheses have the same performance
on learning the data samples, the accuracy of each binary problem is used to adjust
the final classification decision.

A weight matrix MW is defined by assigning to each position of the codeword
codified by {−1,+1} a weight of 1

n−z , where z is the number of positions codified
by zero. We assign to each position (i, j) of a performance matrix H a continuous
value that corresponds to the performance of the dichotomizer h j classifying the
samples of class Ci as follows:

H(i, j) =
1
mi

mi

∑
k=1

ϕ(h j(ρ i
k), i, j), based on ϕ(x j, i, j) =

{
1, if x j = y j

i ,
0, otherwise.

(2)
where mi are the number of samples of class Ci, ρ is a test sample, and xi and yi are
the j-th position of a test and a class codeword, respectively. Note that eq.(2) makes
H to have zero probability at those positions corresponding to unconsidered classes.

We normalize each row of the matrix H so that MW can be considered as a discrete
probability density function:

MW (i, j) =
H(i, j)

∑n
j=1 H(i, j)

, ∀i ∈ [1, ...,N], ∀ j ∈ [1, ...,n] (3)

In Fig. 6, a weight matrix MW for a 3-multi-class problem of four hypotheses is
estimated. Figure 6(a) shows the coding matrix M. The matrix H of Fig. 6(b) rep-
resents the accuracy of the hypotheses classifying the instances of the training set.
The normalization of H results in a weight matrix MW shown in Fig. 6(c).

Once we obtain the weight matrix MW , we introduce the weight matrix in the
Loss-based decoding. The decoding estimation is obtained by means of an ELB
decoding model L(∂ ) = e−∂ , where ∂ corresponds to y j

i · f (ρ , j), weighted using
MW :

www.allitebooks.com
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(a) (b) (c)

Fig. 6 (a) Coding matrix M of four hypotheses for a 3-class problem. (b) Performance matrix
H. (c) Weight matrix MW .

LW (ρ , i) =
n

∑
j=1

MW (i, j)L(y j
i · f (ρ, j)) (4)

The summarized algorithm is shown in table 4.

Table 4 Loss-Weighted algorithm.

Loss-Weighted strategy: Given a coding matrix M,

1) Calculate the performance matrix H:

H(i, j) =
1

mi

mi

∑
k=1

ϕ(h j(ρ i
k), i, j) based on ϕ(x j, i, j) =

{
1, if x j = y

j
i ,

0, otherwise.
(5)

2) Normalize H: ∑n
j=1 MW (i, j) = 1, ∀i = 1, ...,N:

MW (i, j) =
H(i, j)

∑n
j=1 H(i, j)

, ∀i ∈ [1, ...,N], ∀ j ∈ [1, ...,n] (6)

3) Given a test data sample ρ , decode based on:

LW (ρ, i) =
n

∑
j=1

MW (i, j)L(y j
i · f (ρ , j)) (7)

3 Experimental Results

In this section, we test the state-of-the-art ECOC configurations on two challenging
image analysis applications: a real 9-class traffic sign classification problem from
the Geomobil project of [4] and Intravascular Ultrasound Tissue Characterization.
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3.1 Traffic Sign Categorization

For this experiment, we use the video sequences obtained from the Mobile Mapping
System [4] to test a real traffic sign categorization problem. We choose the speed
data set since the low resolution of the image, the non-controlled conditions, and
the high similarity among classes make the image categorization a difficult task. In
this system, the position and orientation of the different traffic signs are measured
with fixed video cameras in a moving vehicle. The system has a stereo pair of cal-
ibrated cameras, which are synchronized with a GPS/INS system. The result of the
acquisition step is a set of stereo-pairs of images with their position and orienta-
tion information. Fig. 7 shows several samples of the speed data set used for the
experiments. The data set contains a total of 2500 samples divided into nine classes.
Each sample is composed by 1200 pixel-based features after smoothing the image
and applying a histogram equalization. From this original feature space, about 150
features are derived using a PCA that retained 90% of the total variance.

Fig. 7 Speed data set samples.

The performance and the estimated ranks using the different ECOC strategies for
the different base classifiers are shown in table 5. These results are also illustrated
in the graphics of Fig. 8. The random matrices were selected from a set of 20000
randomly generated matrices, with P(1) = P(−1) = 0.5 for the dense random ma-
trix and P(1) = P(−1) = P(0) = 1/3 for the sparse random matrix. The number of
binary problems was fixed to the number of classes. Therefore, a direct comparison
to the one-versus-all and DECOC designs is possible. Each strategy uses the previ-
ously mentioned Linear Loss-weighted decoding to evaluate their performances at
identical conditions. To evaluate the performance of the different experiments, we
apply stratified ten-fold cross-validation and test for the confidence interval at 95%
with a two-tailed t-test [8].

In this particular problem, the sub-class is only required for Discrete Adaboost
and NMC, while the rest of base classifiers are able to find a solution for the training
set without the need for sub-classes. Finally, though the results do not significantly
differ between the strategies, the Sub-class ECOC approach attains a better position
in the global rank of table 5.

3.2 Intravascular Ultrasound Tissue Characterization

Cardiovascular diseases represented the first cause of sudden death in the occiden-
tal world [22]. Plaque rupture is one of the most frequent antecedent of coronary
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Table 5 Rank positions of the classification strategies for the Speed data set.

one-versus-one one-versus-all dense sparse DECOC Sub-class ECOC
D. Adaboost 66.1(3.1) 56.6(3.1) 55.2(2.8) 52.3(3.6) 58.6(3.2) 60.8(3.1)

NMC 60.7(3.2) 50.65(3.7) 47.4(3.8) 45.1(3.8) 51.9(3.2) 62.8(3.1)
FLDA 74.7(2.8) 71.4(2.9) 74.9(2.6) 72.7(2.5) 72.6(2.8) 76.2(3.0)

Linear SVM 74.9(2.7) 72.3(2.1) 71.8(2.1) 68.2(2.9) 78.9(2.1) 78.9(1.9)
RBF SVM 45.0(0.9) 45.0(0.9) 45.0(0.9) 44.0(0.9) 45.0(0.9) 45.0(0.9)

Global rank 1.8 3.6 3.4 4.6 2.6 1.2

pathologies. Depending on the propensity to collapse, coronary plaque can be di-
vided into stable and vulnerable plaque [3]. According to pathological studies, the
main features of a stable plaque are characterized by the presence of a large lipid
core with a thin fibrous cap. This last type of plaque can rupture generating thrombi
followed by an intimal hyperplasia. Therefore, an accurate detection and quantifi-
cation of plaque types represents an important subject in the diagnosis in order to
study the nature and the plaque evolution to predict its final effect.

One of the most widely used diagnostic procedures consists of screening the
coronary vessels employing Intravascular Ultrasound Imaging (IVUS). This tech-
nique yields a detailed cross-sectional image of the vessel allowing coronary arteries
and their morphology to be extensively explored. This image modality has become
one of the principal tools to detect coronary plaque. An IVUS study consists of in-
troducing a catheter which shots a given number of ultrasound beams and collect
their echoes to form an image. According with these echoes, three distinguishable
plaques are considered in this type of images: calcified tissue (characterized by a
very high echo-reflectivity and absorbtion of the ultrasound signal), fibrous plaque
(medium echo-reflectivity and good transmission coefficient), and lipidic or soft
plaque (characterized with very low reflectance of the ultrasound signal).

Despite the high importance of studying the whole coronary vessel, in clini-
cal practice, this plaque characterization is performed manually in isolated images.
Moreover, due to the variability among different observers, a precise manual charac-
terization becomes very difficult to perform. Therefore, automatic analysis of IVUS
images represents a feasible way to predict and quantify the plaque composition,
avoiding the subjectivity of manual region classification and diminishing the char-
acterization time in large sequences of images. Given its clinical importance, auto-
matic plaque classification in IVUS images has been considered in several research
studies. The process can be divided into two stages: plaque characterization step
which consists of extracting characteristic features in order to describe each tissue,
and a classification step where a learning technique is used to train a classifier.

In this section, we present an intravascular data set based on texture-based fea-
tures, RF signals, combined features, and slope-based features to characterize the
different types of tissues.
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Discrete Adaboost NMC

FLDA Linear SVM

RBF SVM

Fig. 8 Speed data set performances.

Feature Extraction
We consider three types of features, the first ones obtained from RF signals, the
second ones based on texture-based features from reconstructed images, and finally,
the slope-based features proposed in [18].
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RF Features
In order to analyze ultrasound images, the RF signals are acquired from the IVUS
equipment with a sampling rate of at least two times the transducer frequency, and
filtered using a band-pass filter with 50% gain centered at the transducer frequency
[14]. Then, an exponential Time Gain Compensation (TGC) is applied [14]. Once
the RF signals have been acquired, filtered and exponentially compensated by the
TGC, the power spectrum is obtained. Nair et al. in [18] show the modelling of the
power spectrum using Autoregressive Models (ARM) as one of the most suitable
and stable methods to analyze ultrasound signals [18]. It also represents an alterna-
tive to the Fourier Transform since the ARM have been proved to be more stable
when small signal windows are considered.

The ARM are defined as a linear prediction equation where the output x at a
certain point t for each A-line is equal to a linear combination of its p previous
outputs weighted by a set of parameters ap [24]:

x(t) =
p

∑
k=1

ap(k)x(t − k),

where p is the ARM degree and the coefficients ap are calculated minimizing the
error of the modelled spectrum with respect to the original using the Akaike’s error
prediction criterium [24].

A sliding window is formed by n samples and m contiguous A-lines with a dis-
placement of n/4 samples and m/3 A-lines in order to obtain an average AR model
of a region. Only one side of the obtained spectrum is used because of its symmet-
rical properties. This spectrum is composed of h sampled frequencies ranging from
0 to fs/2 [24].

In addition to the spectrum, two global measures are computed: the energy of
the A-line and the energy of the window spectrum. All these features are compiled
into a unique vector of h + 2 dimensions which is used as a feature vector in the
classification process.

Texture Features Extraction
Given that different plaques can be discriminated as regions with different grey-level
distributions, it is a natural decision to use texture descriptors. In the bibliography,
one can find a wide set of texture descriptors and up to our knowledge there are no
optimal texture descriptors for image analysis in the general case. Our strategy is
instead of trying to find out the optimal texture descriptor for our problem to gather
several families of descriptors and apply multiple classifiers able to learn and extract
the optimal features for the concrete problem.

Therefore, we employ three different texture descriptors: co-occurrence Ma-
trix [20], local binary patterns [21] and Gabor filters [6, 2]. Additionally, taking
into account that highly non-echogenic plaques produce significant shade in the ra-
dial direction of the vessel, we include in the feature set the presence of shading in
the image as a complementary feature.

The co-occurrence matrix is defined as the estimation of the joint probability
density function of gray level pairs in an image [20]. The sum of all element values
is:
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P(i, j,D,θ) = P(I(l,m) = i⊗ I(l +Dcos(θ ),m +Dsin(θ )) = j),

where I(l,m) is the gray value at pixel (l,m), D is the distance among pixels and
θ is the angle between neighbors. We have established the orientation θ to be
[0o,45o,90o,135o] [28, 20]. After computing this matrix, Energy, Entropy, Inverse
Difference Moment, Shade, Inertia and Promenance measures are extracted [20].

Local Binary Patterns (LBP) are used to detect uniform texture patterns in circu-
lar neighborhoods with any quantization of angular space and spatial resolution [21].
LBP are based on a circular symmetric neighborhood of P members with radius R.
To achieve gray level invariance, the central pixel gc is subtracted to each neighbor
gp, assigning the value 1 to the result if the difference is positive and 0, otherwise.
LBPs are defined as follows:

LBPR,P = ∑P
p=0 a(gp − gc) ·2p

A Gabor filter is a special case of wavelets [6] which is essentially a Gaussian modu-
lated by a complex sinusoid s. In 2D, it has the following form in the spatial domain:

h(x,y) = 1
2πσ2 exp{− 1

2 [( x2+y2

σ 2 )]} · s(x,y)
s(x,y) = exp[−i2π(Ux+Vy)] φ = arctanV/U

where σ is the standard deviation, U and V represent the 2D frequency of the com-
plex sinusoid, and φ is the angle of the frequency.

According to [12], one of the main differences in the appearance of calcified
tissue compared to the rest of tissue types is the shadow which is appreciated behind
it. In order to detect this shadow, we perform an accumulative mean of the pixels
gray values on the polar image from a pixel to the end of the column (the maximal
depth considered). As a result of extracting the texture descriptors, we construct
an n-dimensional feature vector where n = k + l + m + 1, k is the number of co-
occurrence matrix measurements, l is the number of Gabor filters, m is the number
of LPB and the last feature is the measure of the ”shadow” in the image.

Intravascular data set
In order to generate the data sets, we used the RF signals and their reconstructed im-
ages from a set of 10 different patients with Left Descent Artery pullbacks acquired
in Hospital ”German Trias i Pujol” from Barcelona, Spain. All these pullbacks con-
tain the three classes of plaque. For each one, 10 to 15 different vessel sections were
selected to be analyzed. Two physicians independently segmented 50 areas of in-
terest per pullback. From these segmentations we took 15 regions of interest (ROI)
of tissue per study randomly making a total of 5000 evaluation ROIs. To build the
data set, these selections were mapped in both RF signals and reconstructed images.
In order to reduce the variability among different observers, the regions where both
cardiologist agreed have been taken under consideration. Some samples from the
data set are shown on the left of Fig. 9.

To generate the data set on texture features, the intersection between segmented
images is mapped into a feature vector. Then, all the features collected are cate-
gorized by patient and each of the three possible plaques type. The image features
are extracted by using the previous texture descriptors: Co-ocurrence Matrix, Lo-
cal Binary Patterns, and Gabor Filters. Those features are calculated for each pixel
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Fig. 9 Left: IVUS data set samples. Right: (top) segmentation by a physician and (down) Au-
tomatic classification with Texture-Based Features. The white area corresponds to calcium,
the light gray area to fibrosis, and the dark gray area to soft plaque.

and gathered in a feature vector of 68 dimensions. An example of a manual and
automatic texture-based segmentation for the same sample is shown on the right of
Fig. 9.

To generate the data set of RF features, the RF signals have been acquired using a
12-bit acquisition card with a sampling rate of fs = 200MHz. The IVUS equipment
used is Galaxy II from Boston Scientific with a catheter transducer frequency of
f = 40Mhz, and it is assumed a sound speed in tissue of 1565m/s. Each IVUS
image consists of a total of 256 A-lines (ultrasound beams), with a radial distance of
r = 0.65cm. The attenuation in tissue factor used is α = 1Db/Mhz×cm. To analyze
the RF signals, the sliding window is composed of n = 64 samples of depth and
m = 12 radial A-lines, and the displacement is fixed in 16 samples and four A-lines.
The power spectrum of the window ranges from 0 to 100MHz and it is sampled
by 100 points. Then, it is complemented with two energy measures yielding a 102
feature vector.

We also consider a third data set that concatenates the descriptors from the previ-
ous RF and texture-based features, obtaining a feature vector of length 170 features.

Slope-based features
Finally, the fourth data set considers the slope-based features proposed by [18]. In
particular, each sample is characterized by means of 14 slope-based features corre-
sponding to: maximum power in DB from 20 to 60 MHz, frequency at the maximum
power, negative slope in db/MHz between maximum and 60, minimum power in
that slope, frequency corresponding to this negative slope, the estimated y intercept
of this slope, the positive slope in db/Mhz between 20 and maximum, minimum
power in that slope, frequency corresponding to this negative slope, the estimated y
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intercept of this slope, the mean power, the power at 0 MHz, power Db at 100 Mhz,
and the power at the midband frequency (40 MHz) in DB [18].

To solve the problem of Intravascular tissue characterization we apply the Sub-
class ECOC strategy over the four previous data sets.

IVUS characterization with sub-classes
For this experiment, we use the four previous IVUS data sets. To measure the per-
formances, we apply leave-one-patient-out evaluation.

Applying NMC, Adaboost, and FLDA over a set of ECOC configurations, the per-
formance results for RF features, texture-based features, combined RF and texture-
based features, and slope-based features are shown in Fig. 10. Comparing the results
among the different data sets, one can see that the worst performances are obtained
by the RF and slope-based features, which obtain very similar results for all the
base classifiers and ECOC configurations. The texture-based features obtain in most

Performance results with Radial Frequency features

Performance results with texture-based features

Performance results combining features

Performance results with slope-based features

Fig. 10 Performance results for different sets of features, ECOC designs and base classifiers
on the IVUS data set.
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cases results upon 90%. Finally, the data set of combined RF and texture-based fea-
tures slightly outperform the results obtained by the texture-based feature, though
the results do not significantly differ.

Concerning the classification strategies, observing the obtained performances in
Fig. 10, one can see that independently of the data set and the ECOC design applied,
the Sub-class ECOC approach always attains the best results. To compare these per-
formances, the mean rank of each ECOC design considering the twelve different
experiments is shown in table 6. In this case, the rankings are obtained estimating
each particular ranking r j

i for each problem i and each ECOC configuration j, and
computing the mean ranking R for each ECOC design as R j = 1

N ∑i r j
i , where N is

the total number of problems (3 base classifiers × 4 data sets). One can see that the
Sub-class ECOC attains the best position for all experiments. To analyze if the dif-
ference between methods ranks are statistically significant, we apply the Friedman
and Nemenyi tests. In order to reject the null hypothesis that the measured ranks dif-
fer from the mean rank, and that the ranks are affected by randomness in the results,
we use the Friedman test. The Friedman statistic value is computed as follows:

X2
F =

12N
k(k +1)

[∑
j

R2
j −

k(k + 1)2

4
] (8)

In our case, with k = 6 ECOC designs to compare, X2
F = 30.71. Since this value is

undesirable conservative, Iman and Davenport proposed a corrected statistic:

FF =
(N − 1)X2

F

N(k− 1)−X2
F

(9)

Applying this correction we obtain FF = 11.53. With six methods and twelve ex-
periments, FF is distributed according to the F distribution with 5 and 55 degrees of
freedom. The critical value of F(5,55) for 0.05 is 2.40. As the value of FF is higher
than 2.45 we can reject the null hypothesis. One we have checked for the for the
non-randomness of the results, we can perform a post hoc test to check if one of
the techniques can be singled out. For this purpose we use the Nemenyi test - two
techniques are significantly different if the corresponding average ranks differ by at
least the critical difference value (CD):

CD = qα

√
k(k +1)

6N
(10)

where qα is based on the Studentized range statistic divided by
√

2. In our case,
when comparing six methods with a confidence value α = 0.10, q0.10 = 1.44. Sub-
stituting in eq.10, we obtain a critical difference value of 1.09. Since the difference
of any technique rank with the Sub-class rank is higher than the CD, we can infer
that the Sub-class approach is significantly better than the rest with a confidence of
90% in the present experiments.



28 S. Escalera et al.

Table 6 Mean rank for each ECOC design over all the experiments.

ECOC design one-versus-one one-versus-all dense random
Mean rank 2.33 5.08 4.25

ECOC design sparse random decoc sub-class
Mean rank 5.00 2.67 1.00

4 Conclusions

In this paper, we reviewed the state-of-the-art on coding and decoding designs of
Error-Correcting Output Codes. We analyzed the most recent ensemble strategies,
showing their benefit to deal with multi-class classification in image analysis. More-
over, the different ECOC configurations were used to solve two challenging com-
puter vision applications: traffic sign classification and intravascular ultrasound tis-
sue characterization, with high success.
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Chapter 3
Morphological Operator Design from
Training Data
A State of the Art Overview

Nina S.T. Hirata

Abstract. Mathematical morphology offers a set of powerful tools for im-
age processing and analysis. From a practical perspective, the expected re-
sults of many morphological operators can be intuitively explained in terms
of geometrical and topological characteristics of the images. From a formal
perspective, mathematical morphology is based on complete lattices, which
provides a solid theoretical framework for the study of algebraic properties
of the operators. Despite of these nice characteristics, designing morpholog-
ical operators is not a trivial task; it requires knowledge and experience. In
this chapter, a self-contained exposition on the design of translation-invariant
morphological operators from training data is presented. The described train-
ing procedure relies on the canonical sup-decomposition theorem of mor-
phological operators, which in the context of binary images states that any
translation-invariant operator can be expressed uniquely in terms of two ele-
mentary operators, erosions and dilations, plus set operations. An important
issue considered in this exposition is how the bias-variance tradeoff manifests
within the training context and how its understanding can lead to approaches
that generate better results. Several application examples that illustrate the
usefulness of the described design procedure are also presented.

Keywords: morphological operator, translation-invariance, Boolean func-
tion, automatic design, training, bias-variance tradeoff.

Introduction

The field of mathematical morphology emerged in the sixties in the context of
binary image analysis. The works by Georges Matheron [Matheron, 1975] and
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Jean Serra [Serra, 1982] are considered the main references, having inspired
and influenced subsequent works in the field. In [Matheron and Serra, 2002],
the reader may find an account on the birth of mathematical morphology.

Nowadays, morphological image operators are widely available in many im-
age processing libraries and packages. Several morphological operators, such
as erosion, dilation, opening, closing, morphological gradient and watershed
segmentation, just to list a few of them, are commonly used. A nice char-
acteristic of these operators is that the way they operate on an image can
be intuitively explained in terms of geometrical and topological properties of
the image [Serra, 1982, Soille, 2003, Dougherty and Lotufo, 2003].

In addition, mathematical morphology is based on a sound mathematical
framework. From a pure algebraic point of view, morphological operators can
be modeled as mappings between complete lattices. The literature presents a
number of formal studies regarding algebraic properties of the morphological
operators [Serra, 1988, Heijmans and Ronse, 1990, Ronse and Heijmans, 1991,
Banon and Barrera, 1991, Banon and Barrera, 1993, Heijmans, 1994].

Despite that, the use of complex operators, such as those obtained by
sequentially composing simpler operators, does not seem to be a common
practice. In fact, some expert level knowledge and experience seem to be key
factors for successfully designing complex morphological operators. The de-
sign process is usually a trial and error based procedure, in which one needs
not only to define the proper composition but also to determine the ade-
quate parameters of each operator. In other cases, the nature of the operator
requires more patience than skill. Problems that consist of fine tuning struc-
turing elements to match several types of templates are typically the case of
the latter type. Designing such type of operators is a very time-consuming
and error-prone task.

A possible approach to deal with these issues is to use machine learning
based techniques to design the operators. Ideally, the user should specify the
desired image transformation in a high level description. Such description
would then be automatically mapped to a low-level description of a suitable
image operator.

In order to build such mapping, an expressive representation form
for the operators must be available. A first general representation prop-
erty, due to Matheron, states that every increasing morphological oper-
ator can be expressed as a union of erosions [Matheron, 1975]. Later,
Maragos showed the sufficient condition for the existence of minimal rep-
resentations of such form [Maragos, 1985]. These results were later ex-
tended for the non-necessarily increasing operators by Banon and Barrera
[Banon and Barrera, 1991, Banon and Barrera, 1993]. According to that ex-
tension, any translation-invariant operator can be expressed in terms of
four elementary operators, namely erosions, dilations, anti-erosions and anti-
dilations. These results are powerful in the sense that they provide a common
representation structure for the class of translation-invariant operators.
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Dougherty was one of the first to exploit these representation struc-
tures in order to design morphological operators automatically from train-
ing data. Desired image transformations were specified through pairs of
input-output image samples, like the ones shown in Fig. 1. The first works
were restricted to the class of increasing binary morphological operators
[Dougherty, 1992a], and later they have been extended to the non-necessarily
increasing [Dougherty and Loce, 1993, Barrera et al., 1997] and non-binary
cases [Dougherty, 1992b, Hirata Jr. et al., 2000].

Fig. 1 High level description of an image transformation through an input-output
pair of images. Input image (left) from [Agam et al., 2006], and output image (right)
obtained by manually editing the input image. Scale modified.

Prior to that, some attempts for the automatic design of morphological
operators have appeared also in [Schimitt, 1989, Vogt, 1989, Joo et al., 1990].
More recent approaches such as [Harvey and Marshall, 1996, Yoda et al., 1999,
Quintana et al., 2006] consider sequential or hybrid decomposition structure
of the operators. For instance, the number of operators in the composition are
allowed to vary up to a maximum number of erosions and/or dilations, with
structuring element size varying within a predefined range.

Another class of operators, directly related to mathematical mor-
phology, that received great attention are the stack filters. Stack filters
[Wendt et al., 1986] have been introduced independently to mathematical
morphology as a generalization of the median filters. They consist of filters
whose results can be obtained by thresholding the input image at every level,
then applying the filter to the binary images resulting at each level, and then
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summing up the binary results. The connection of stack filters and mathemat-
ical morphology soon became evident. From the perspective of morphological
operators, stack filters are gray-scale image increasing operators, with flat
structuring elements [Maragos and Schafer, 1987, Heijmans, 1994]. To date,
several approaches have been proposed for the design of stack filters from
training data [Coyle and Lin, 1988, Lin and Kim, 1994, Tăbuş et al., 1996,
Yoo et al., 1999, Lee et al., 1999, Dellamonica Jr. et al., 2007]. Since stack
filters are characterized by positive Boolean functions, their design has much
in common with the design of increasing binary morphological operators,
which are also characterized by Boolean functions of the same type.

This chapter is devoted to the presentation of a self-contained state of the
art overview on the design of morphological operators from training data in
the following scenario: the design goal is specified in high level abstraction
through pairs of input-output images, which will serve as training data to a
learning system. The learning system will then output a sup-decomposition
structure of an operator that minimizes the mean absolute error (between the
resulting image and the ideal output image). The presentation is restricted
to the context of binary image operator design. However, extension of the
concepts to gray-scale image mappings is straightforward, as will be pointed
out in the conclusion.

The organization of this chapter is as follows. In Section 1, basic notations,
terminologies and definitions that will help the understanding of which oper-
ators and representation are considered for the design problem are presented.
In Section 2 a formulation of the design problem as an statistical estimation
problem is first presented. Then, a machine learning based approach to solve
the problem is described and the steps of the training procedure are detailed
and illustrated through an example. In Section 3, a bias-variance decompo-
sition of the design error is discussed together with approaches to mitigate
these errors. In Section 4, several application examples are presented. In Sec-
tion 5, the chapter is concluded with a brief summary of the main ideas and
discussions on current challenges and future steps.

1 Binary Morphological Operators

Let E = Z
2, the Cartesian grid, be the image domain. Each point in E

corresponds to a pixel location. The origin of E is denoted 0. Given two points
x and y in E, x+y denotes the usual vector addition in E. Given a set X ⊆ E,
Xc denotes the complementary set with respect to E; Xz = {x+ z : x ∈ X}
denotes the translate ofX by z; and X̌ = {−x : x ∈ X} denotes the transpose
of X . The power set of a set A is denoted P(A).

A binary image defined on E can be expressed as a function f from E to
{0, 1}. The set of all such mappings is denoted {0, 1}E. A function f ∈ {0, 1}E
can be seen as an indicator function of a set Sf ⊆ E, that is, for any x ∈ E,
x ∈ Sf ⇐⇒ f(x) = 1. The set Sf (points such that f(x) = 1) corresponds
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to the foreground pixels of image f , while Scf (points such that f(x) = 0)
corresponds to the background pixels. Because of this relation between sets
and binary functions, a binary image will be referred as a function or, inter-
changeably, as a subset, depending on the context. The collection P(E) is
understood as the set of all possible binary images on E. In order to simplify
notation, both functions and corresponding sets are denoted by a same let-
ter. Thus, x ∈ S or S(x) = 1 indicates that x is a pixel in the foreground of
image S.

A binary image mapping, or binary image operator, is a mapping from
{0, 1}E to {0, 1}E or, equivalently, from P(E) to P(E). Because of the latter,
binary image operators are also called set operators.

Sets form a rich algebraic structure known as Boolean lattice or Boolean
algebra (see, for instance, [Heijmans, 1994] for more details). The usual set
inclusion relation is a partial order relation (that is, it is reflexive, anti-
symmetric and transitive). The notion of partial order allows the definition
of intervals. Given two sets A,B ∈ P(E), the interval with extremities A and
B is given by [A,B] = {X : A ⊆ X ⊆ B}. If A �⊆ B then [A,B] = ∅.

Erosion and dilation. Two important operators from mathematical mor-
phology are erosion and dilation. Given a binary image X and a set B called
structuring element, the erosion and dilation of X by B are defined1, respec-
tively, as

εB(X) = {x ∈ E : Bx ⊆ X} (1)

δB(X) = {x ∈ E : B̌x ∩X �= ∅} . (2)

The structuring element plays the role of locally probing the input image; the
output at a given location is determined by the relation between the structur-
ing element and the image around that location. By considering structuring
elements of different sizes and shapes, images can be analyzed with respect
to different geometrical and topological features.

Erosions and dilations are dual operators, that is, δB(X) = (εB̌(Xc))c.
This relation will be useful later.

Many operators can be defined by composing the elementary operators
erosion and dilation. For instance, the opening of an image X by structuring
element B is defined as γB(X) = δB(εB(X)), while the closing is defined as
ϕB(X) = εB(δB(X)). The morphological gradient is defined as ∇B(X) =
δB(X) \ εB(X), where \ denotes the set difference.

Hit-or-miss. Another important operator is the so called hit-or-miss. Given
two structuring elements, A and B, hit-or-miss is defined as
1 The definition of dilation is sometimes with Bx in place of B̌x, which may cause

some confusion. See more details in [Soille, 2003]. Also, since usually a symmetric
structuring element is used (which implies B̌ = B), this difference ends up having
no consequences in practice.
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Fig. 2 Top row: the two structuring elements, A and B, with origin at the center.
Bottom row: the set of black dots in the three images indicate, respectively, the
points in which A hits X, the points in which B hits the background (or, equiva-
lently, misses X), and the points detected by H(A,B).

H(A,B)(X) = {x ∈ E : Ax ⊆ X and Bx ⊆ Xc} = εA(X) ∩ εB(Xc) . (3)

Hit-or-miss finds locations in which the first structuring element fits into
the foreground while the second one fits to the background (or, equivalently,
misses the foreground). If A ∩ B �= ∅ the result is empty. Figure 2 shows
an example. Dark boxes represent the foreground pixels while non-filled ones
represent background pixels. This convention will be used throughout the
chapter.

An operator closely related to H is the sup-generating or wedge operator.
It is characterized by a pair (A,B) of structuring elements, such that A ⊆ B,
and is defined as

Λ(A,B)(X) = {x ∈ E : Ax ⊆ X ⊆ Bx} = εA(X) ∩ (δB̌c(X))c . (4)

This operator verifies if the shape around x is between A and B. Since {x ∈
E : X ⊆ Bx} = {x ∈ E : Bcx ∩X = ∅} = {x ∈ E : Bcx ∩X �= ∅}c = (δB̌c(X))c

and because of the duality relation (δB̌(X))c = εB(Xc) between erosions and
dilations, it follows that Λ(A,B)(X) = H(A,Bc)(X).

One difference between hit-or-miss and wedge operators is that in the
former both structuring elements are usually small and finite while in the
latter the second structuring element is unbounded.

Sup-decomposition of translation-invariant operators. The kernel of
an operator Ψ is defined as

K(Ψ) = {X ⊆ E : 0 ∈ Ψ(X)} . (5)

An operator Ψ : P(E) → P(E) is translation-invariant if, for any X ∈ P(E)
and z ∈ E, [Ψ(X)]z = Ψ(Xz). If Ψ is translation invariant, then

Ψ(X) =
⋃

[A,B]⊆K(Ψ)

Λ(A,B)(X) (6)

(see a proof in [Banon and Barrera, 1991, Heijmans, 1994]).
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The set of all maximal intervals contained in K(Ψ) is called the basis of
Ψ and denoted B(Ψ). The minimal decomposition theorem for translation-
invariant operators [Banon and Barrera, 1991] states that

Ψ(X) =
⋃

[A,B]∈B(Ψ)

Λ(A,B)(X) . (7)

If Ψ is increasing and A is in the kernel of Ψ , then any set B such that A ⊆ B
is also in the kernel. Thus intervals in the basis of an increasing operator
are of the form [A,E]. Note that if B = E, then (δB̌c(X))c = (δĚc(X))c =
(δ∅(X))c = ∅c = E. Thus, in Eq. 7 one has Λ(A,B) = εA, and that leads to the
sup-decomposition of increasing operators due to Matheron [Matheron, 1975].

Local definition. Given a non-empty setW in E, called window, an operator
Ψ is locally defined within W if, for any X ⊆ E,

[Ψ(X)](x) = [Ψ(X ∩Wx)](x) . (8)

Suppose W is finite and let n = |W | (cardinality of W ). Let ψ : {0, 1}n →
{0, 1} be a Boolean (or switching) function with n variables x1, x2, . . . , xn.
Suppose each Boolean variable xi is assigned respectively to each point wi ∈
W . For each location z ∈ E, an assignment is defined by doing xi = 1 ⇐⇒
wi ∈ X−z ∩ W (this is equivalent to checking if wi + z ∈ X), and xi = 0
otherwise. Such assignment is denoted by ψ(X−z ∩W ).

Locally defined operators can be characterized by local functions ψx :
{0, 1}n → {0, 1}, by the following relation:

[Ψ(X)](x) = ψx(X−x ∩W ) . (9)

If Ψ is translation-invariant, then ψx = ψy for any x, y ∈ E.

W -operators. Operators that are translation-invariant and locally defined
are called W -operators. Notice that, although W seems to impose a restric-
tion to the class of operators, it is flexible enough to include all translation-
invariant operators (for that, one only needs to consider W = E).

Many operators are locally defined. For instance, εA and δA are locally
defined within W = A. The Boolean function that characterizes εA is given
by the logical product x1 x2 . . . xn, for this is the logical expression that will
output 1 only if every xi equals 1. In the case of dilations, the function is
x1 +x2 + . . .+xn because it suffices that only one xi equals 1 in order to the
function value be equal to 1. Hit-or-miss operators with parameters (A,B)
correspond to logical product terms in which variables related to elements
that are both in A and Bc appear uncomplemented (xi), those that are
neither in A nor in Bc appear complemented (xi), and those that are not in
A but are in Bc are don’t cares (do not appear in the logical product term).
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Since the local definition property implies 0 ∈ Ψ(S) ⇐⇒ 0 ∈ Ψ(S ∩W ),
kernel elements can be constrained within W . Therefore, for W -operators the
kernel definition can be rewritten as

K(Ψ) = {X ⊆W : 0 ∈ Ψ(X)} , (10)

and the locally defined wedge operator as

Λ(A,B)(S) = {x ∈ E : Ax ⊆ (S ∩Wx) ⊆ Bx}
= {x ∈ E : A ⊆ (S−x ∩W ) ⊆ B} , (11)

with A ⊆ B ⊆W .
The local definition property plus translation-invariance is sufficient to

establish a lattice isomorphism between W -operators and Boolean func-
tions [Barrera and Salas, 1996]. The canonical decomposition of Boolean
functions as a sum of products corresponds to the sup-decomposition of
operators by trivial intervals of the type [A,A] for each A in the kernel
of Ψ . The minimal sum of products form corresponds to the minimal sup-
decomposition (each product term corresponds to a basis interval). Further-
more, the representation of increasing operators as a supremum of erosions
correspond to the representation of monotone (or positive) Boolean func-
tions as a sum of products, each one involving no complemented variables.
As in the case of Boolean functions, W -operators also admit dual canonical
representations [Banon and Barrera, 1991].

2 Designing Morphological Operators from Training
Images

The problem formulation presented below is essentially the one stated
in early works on this approach. Among them, representative ones
are [Dougherty and Loce, 1994, Barrera et al., 1997].

Images to be processed and corresponding desired output images are con-
sidered to be, respectively, realizations of random sets S and I, with joint
distribution P (S, I). It is also supposed that they are characterized by a
jointly stationary local process (S ∩Wz, I(z)), with realizations of S∩Wz in
P(Wz) and of I(z) in {0, 1}. Owing to stationarity, location z may be dropped
from notation and thus the local process is denoted (X,y). Realizations of
X are in P(W ) and realizations of y are in {0, 1}.

Under these assumptions, the optimality of W -operators is characterized
by a probabilistic error in terms of the local process (X,y). The mean absolute
error (MAE) of Ψ , defined by a local function ψ, with respect to a joint process
(S, I), characterized by a local joint process (X,y), is given by

MAE〈Ψ〉 = E[|ψ(X) − y|] . (12)
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Given Ψ , its MAE can be written as

MAE〈Ψ〉 =
∑
(X,y)

|ψ(X) − y|P (X, y)

=
∑
(X,0)

ψ(X)P (X, 0) +
∑
(X,1)

|ψ(X) − 1|P (X, 1)

=
∑

{X:ψ(X)=1}
P (X, 0) +

∑
{X:ψ(X)=0}

P (X, 1) . (13)

The amount each X contributes to MAE does not depend on how much
others contribute. Thus, in order to minimize MAE, one should choose for
each X the value of ψ(X) based on P (X, y), y ∈ {0, 1}. More precisely, the
optimal operator with respect to a local joint process (X,y) under the MAE
criterion is given by

ψ(X) =

⎧⎨
⎩

1, if P (X, 0) < P (X, 1),
0, if P (X, 0) > P (X, 1),
1 or 0, if P (X, 0) = P (X, 1).

(14)

Equation 14 means that, if the joint probability P (X,y) is known, so it is
the optimal MAE operator. However, in practice P (X,y) is not known for
every possible pattern X . In the following section, a machine learning based
formulation to estimate an optimal operator from training data is described.

Basic Training Procedure

An approach proposed in early works (such as [Barrera et al., 1997,
Barrera et al., 2000]), which is here called the basic training procedure, con-
sists in estimating the joint probabilities P (X, y), X ∈ P(W ) and y ∈ {0, 1},
from training images. The set of training images consists of pairs (Si, Ii),
i = 1, . . . ,m, where Si corresponds to an input image (an image to be pro-
cessed) and Ii corresponds to its respective output (desired ideal result).
These images are usually prepared by manual edition. The basic training
procedure is composed with the following main steps:

Step 1 – estimation of P (X, y). Window W is slided on the input image
of each training pair (Si, Ii). For each pixel p of Si, the pattern X under W
(X = (Si)−p ∩ W ) and its respective output value y = Ii(p) are recorded
into a frequency table. If the translated window W is not entirely contained
in the image domain, then the corresponding pixel location is ignored. The
result of this step is an estimate P̂ (X, y) of P (X, y).

Step 2 – optimal decision. For each observed pattern X , a value aiming to
minimize MAE is chosen for ψ(X) : if P̂ (X, 1) > P̂ (X, 0), then ψ(X) = 1 and,
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otherwise, ψ(X) = 0. In the cases in which P̂ (X, 1) = P̂ (X, 0), assignment
to either 1 or 0 is equivalent in terms of MAE. By convention, ψ(X) = 0
is adopted. This choice is reasonable if the probability of foreground pixels
being mapped to output background is larger or equal to the opposite. The
results of this step are partly defined kernel and non-kernel sets.

Step 3 – generalization. In step 2, if all patterns X are observed, the
estimated optimal MAE operator will be completely defined. However, in
practice, unless window W is very small, not all patterns are observed in
step (1), leading to an incompletely specified function. In order to complete
the definition, a training algorithm is used. Specifically, a Boolean function
minimization algorithm [Hirata et al., 2002] is used. Besides generalization
(completion of definition), it transforms trivial intervals of the form [X,X ]
to maximal ones, generating a more compact representation.

It should be noted that, from a computational point of view, the learning part
of the procedure is a classification problem in which the goal is to discrimi-
nate kernel from non-kernel elements. Therefore, any classification algorithm
could be applied on data obtained in step (2) or even in step (1). An advan-
tage of using Boolean function minimization as a learning algorithm is the
fact that the result is in sum of products form, which has a straightforward
interpretation in terms of morphological operators (i.e., as a supremum of
wedge operators). That allows, for instance, an easy interpretation of the
morphological effects of the operator on the images. On the other hand, it
is important to mention that there is an essential difference between learn-
ing classifiers and learning operators: operators are endowed with properties
and structures that can be explored in the design process together with the
geometrical conformation of the features (observations related to individual
window points).

Design Example

The steps described above are illustrated through a detailed analysis of an
example. Consider the problem of detecting end-points in binary images. A
training pair of images is shown in Fig. 3. At the left side is the input image
and at the right side is the (ideal) output image.

Fig. 3 A training pair of images for (vertical and horizontal) end point detection.
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Considering the 5-point elementary cross window, the patterns observed
in the input image and the corresponding output frequencies are shown in
Fig. 4.

1:0 6:0

1:0 2:0 1:0 0:1 1:0 4:0 2:0 1:0

0:1 8:0 1:0 1:0 1:0 1:01:0

0:14:0 2:0 2:0 1:0 0:1

Fig. 4 Frequency table. For each pattern X, two frequencies f0 : f1 are shown (f0

is the frequency of occurrences of (X, 0) while f1 is the frequency of occurrences of
(X, 1)).

Since n = 5, the number of possible patterns within W is 32. However,
only 23 of them have been observed in the above training data. Among these,
four are such that P (X, 1) > P (X, 0). After Boolean function minimization,
the four intervals that define the estimated operator is shown in Fig. 5.

Fig. 5 Intervals of the operator estimated from the training data shown in Fig. 4.

Figure 6 shows two test images and the respective results (black dots) gen-
erated by the trained operator, overlaid on them. The result for the image

Fig. 6 Test images and respective results (black dots).

at the left side is as expected. However, in the image at the right side, four
pixels in the diagonal lines that are not end points are marked. These errors
are due to the fact that these points correspond to patterns that were not
observed during training. Specifically, in the above example, the training im-
age contains only 4-connected patterns, while the second test image contains
8-connected patterns.
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Generalization refers to the ability of the operator to correctly classify
those patterns that were not observed during training. If one wishes to obtain
operators that correctly classify all patterns, then the training images should
contain most of the relevant patterns.

3 The Bias-Variance Tradeoff

Let Ψopt be the overall optimal operator in a given application domain. The
underlying window Wopt of Ψopt is unknown (and possibly infinite), but its
existence is admitted for purposes of error analysis. Suppose Wopt is finite
and that a Wopt-operator is designed from a set of training images, result-
ing in the estimated optimal operator Ψ̂opt. The difference Δ(Ψ̂opt, Ψopt) =
MAE〈Ψ̂opt〉−MAE〈Ψopt〉 corresponds to the estimation error. The expected
estimation error can then be expressed as the expected error E[Δ(Ψ̂opt, Ψopt)]
with respect to all possible sets of training images.

On the other hand, let C be a subspace of the space of all Wopt-operators.
For instance, C could be the space of W -operators for a window W ⊂Wopt.
The optimal operator in this constrained space C is denoted ΨC and the
difference Δ(ΨC , Ψopt) = MAE〈ΨC〉 −MAE〈Ψopt〉 corresponds to the con-
straint error. Let Ψ̂C be the operator designed in C; then its estimation error
is given by Δ(Ψ̂C , ΨC) = MAE〈Ψ̂C〉 −MAE〈ΨC〉.

Relative to the globally optimal operator, the main goal in the design
process is to minimize the difference Δ(Ψ̂C , Ψopt) = MAE〈Ψ̂C〉−MAE〈Ψopt〉.
The error of the estimated operator Ψ̂C can be written as

Δ(Ψ̂C , Ψopt) = MAE〈Ψ̂C〉 −MAE〈Ψopt〉
= MAE〈Ψ̂C〉 −MAE〈ΨC〉

+MAE〈ΨC〉 −MAE〈Ψopt〉
= Δ(Ψ̂C , ΨC) +Δ(ΨC , Ψopt) .

The expected error of Ψ̂C relative to the optimal operator is

E[Δ(Ψ̂C , Ψopt)] = E[Δ(Ψ̂C , ΨC)] +Δ(ΨC , Ψopt) (15)

and it is composed of two terms: the estimation error restricted to the sub-
space C plus the constraint error, which is a (unknown) constant.

This error expression explains the bias-variance error decomposi-
tion [Hastie et al., 2009] in the context of W -operator design from training
data. The second term in the summation corresponds to the bias error: if the
constraint is too severe so as to restrict the operator space too much, it leads
to high bias. The first term is related to the variance error: a too large space
may imply a too large estimation error.
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In practice, restriction is imposed by fixing a window W . Considering a
fixed amount of training data, it is common that a plot of the MAE against
window size exhibits a U-shaped curve, as the ones shown in Fig. 7. As can
be seen, the MAE is very large for small windows and, as the window size
increases, MAE error drops considerably until to the point where it starts to
oscillate and then to slowly increase. This behavior can be explained by the
bias-variance decomposition of the error: for small windows, MAE error is
large due to strong bias (space constraint) whereas for large windows MAE
error tends to increase due to variance (large estimation error). This type of
behavior is generally observed irrespective to the amount of training data.
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Fig. 7 MAE curve for different window sizes, with fixed amount of training data.

Comparing Eq. 15 with E[Δ(Ψ̂opt, Ψopt)] it is clear that constraint C is ben-
eficial if the constraint error plus estimation error in the constrained space
(E[Δ(Ψ̂C , ΨC)] +Δ(ΨC , Ψopt)) is smaller than estimation error in the uncon-
strained space (E[Δ(Ψ̂opt, Ψopt)]).

An undoubtedly secure way to mitigate this tradeoff is to set up a large
window, so as to avoid bias, and increase the amount of training data so as to
reduce variance. However, in many cases, training data is not easily obtained.
In a realistic scenario, the number of training images is fixed. Thus, one needs
to make choices that represent the best tradeoff between bias and variance
for the given amount of training data.

In the following subsections, approaches that have been proposed to tackle
this issue, considering situations in which the number of training images is
fixed, are presented. These approaches are grouped in two categories: one that
considers constrained operator spaces (by algebraic or structural constraints)
and a second one that exploits data modeling.

Algebraic Constraint

One possible approach to constrain the space of operators is by considering
subclasses of operators that satisfy some algebraic properties.
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Anti-extensive operators. An operator Ψ is anti-extensive if, for any X ∈
P(E), Ψ(X) ⊆ X . In words, they are operators such that the resulting image
is a subset of the input image. Typical applications that require this type of
operators are additive noise filtering and segmentation.

An immediate consequence of this property is that all elements of the
kernel contains the origin. Therefore, the design algorithm can safely set
ψ(X) = 0 for all patterns X that does not contain the origin. Moreover,
since no pixel in the background will be mapped to a foreground pixel in the
resulting image, there is no need to analyze background pixels during joint
probability estimation and application of the designed operators. This saves
computational time.

Increasing operators. Increasing operators are those that preserve the or-
der relation, i.e., Ψ is increasing if, for any X,Y ∈ P(E), X ⊆ Y implies that
Ψ(X) ⊆ Ψ(Y ). In terms of kernel elements this means that if a given set X
is in the kernel so do all other sets Y such that X ⊆ Y , and symmetrically,
if a set X is not in the kernel then so do not all other sets Y such that
Y ⊆ X . The characteristic Boolean functions of such operators are positive
(monotone).

The optimal MAE operator defined in Eq. 14 is not necessarily increasing.
In order to design an increasing operator, one has to switch the decision
value on some patterns. However, any switching comes with an increase in
the MAE error. More specifically, the error increase relative to the optimal
operator due to switching ψ(X) from y to 1−y is P (X, y)−P (X, 1−y) (see,
for instance [Hirata et al., 2000a], for more details). In addition, switching
the value at a given pattern may imply the need to switch the values of other
patterns.

This problem can be formulated as a linear programming (LP) problem.
However, since the number of variables and constraints in this formulation
grows exponentially with the window size, the resulting LP problem is com-
putationally challenging. An exact algorithm to solve this problem has been
proposed in [Dellamonica Jr. et al., 2007]. By breaking the problem into sub-
problems, it is able to efficiently solve instances with about 25 variables in
standard desktop computers at a expense of memory usage. Another algo-
rithm to solve the problem of designing increasing operators appears in the
context of stack filter design [Yoo et al., 1999]. It relies on an iterative tech-
nique that is guaranteed to converge. One drawback is that the convergence
speed is not controlled.

Most interesting design application examples of increasing operators ap-
pear in the context of stack filters.
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Structural Constraint

Another way to constrain the class of operators is by considering a specific de-
composition structure of the operators. For instance, fixing a window W con-
strains the space to the class of W -operators. Finding an adequate window,
that leads to minimum error, is a challenging subproblem that is equivalent to
the classical feature selection problem [Guyon and Elisseeff, 2003]. However,
rather than considering the canonical decomposition of operators, one can
consider any other specific structure. For instance, one could think of a se-
quence of erosions and dilations, or sequential composition of operators from
some subclasses of operators. Such structures are explored in some works that
employ evolutionary approaches [Yoda et al., 1999, Quintana et al., 2006].

Recently, a multilevel design approach has been proposed as a way to mit-
igate the bias-variance tradeoff issue [Hirata, 2009]. It is inspired on stacked
generalization, a classifier combination technique [Wolpert, 1992]. The basic
idea consists in first designing several image operators according to the ba-
sic procedure described above, each one based on its own window, and then
combining the resulting images in order to reach a kind of consensus. The
combination rule is also determined by training. This idea of combining the
results of previous level operators can be extended to an arbitrary number of
training levels. The iterative training approach for designing morphological
operators, previously reported in [Hirata et al., 2000b], is a particular case of
the multilevel training scheme.

Iterative and multilevel approaches successively refine the result and that
could be considered an explanation to the improved performance of multi-
level operators relative to the performance of single level operators. While
this is an intuitive explanation, a more formal explanation relies on the bias-
variance decomposition of error. When two operators, based on windows W1

and W2, are sequentially composed, the resulting operator may depend on a
neighborhood whose dimensions are up to δW2(W1) (the dilation of W1 by
W2). This means that composed operators form a larger subspace of opera-
tors (smaller bias) and, since individual operators are based on not so large
windows, their estimation error is kept small implying also in overall smaller
estimation error (smaller variance).

Additional details as well as some experimental results of the multilevel
approach can be find in [Hirata, 2009].

Data Model Related Issues

While the two approaches above deal with constrained operator
spaces, a third way relates to data modeling. For instance, an at-
tempt to model the joint probabilities P (X,y) has been considered in
[Dougherty and Barrera, 1997]. Another natural approach could rely on
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deformations of the observed patterns as a way to increase the amount of
training data. However, that would require a careful selection of the defor-
mation model, a difficult task in general. In addition, the design approach
would become too content dependent.

A simple idea explored recently towards increasing the amount of train-
ing data is based on the observation that, for many image processing tasks,
a relatively small resolution image is enough. For instance, many examples
presented in this work, related to document image processing, consider im-
ages with spatial resolution of approximately 100dpi. Another reason to use
such low resolution images is that otherwise a too large window would be re-
quired in the design process. At the same time, images are usually obtained
in higher resolution (in the case of documents, 300dpi) and then its resolu-
tion is reduced by software. Rather than just reducing the resolution of the
images for training, a possible approach is to consider different resolution
reduction algorithms in order to obtain multiple low resolution images from
each high resolution image. For instance, if four algorithms are used, then
four low resolution images will be generated and they will correspond to a
four times larger training data set.

Fig. 8 (a) Four down-samplings by
choosing one pixel from each group
of 4 pixels.

Fig. 8 (b) A sparse window corre-
sponding to a 3 × 3 window.

A simple resolution reduction algorithm is down-sampling by choosing
equally spaced pixels from alternate rows and columns. A nice characteristic
in this case is the fact that operator training can be done without changing
the design procedure described above and without explicitly generating
the low resolution images. For instance, the training data obtained by a
3 × 3 window from the four down-sampled images shown in Fig. 8(a) is
equivalent to the training data obtained using the corresponding sparse
window, shown in Fig. 8(b), directly on the original high resolution image.
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Thus, one only needs to consider high resolution training images and sparse
windows that mimic the down sampling effects. This is a simple yet effective
technique to increase the precision of trained operators. Preliminary results
of this approach appear in [Hirata and Dornelles, 2009].

4 Application Examples

In this section a series of application examples are presented with the in-
tention of illustrating the types of results that can be achieved using the
training procedure described in this chapter. The pairs of images shown in
this section refer to test images (independent of training images) and respec-
tive results obtained with the trained operators. For each example, the whole
image shown in reduced scale provides an overall view of the result, while
scale unchanged cropped region highlights details of the resulting image.

Although not exhibited here, for binary images, experimental results show
that MAE agrees with visual perception: the smaller the MAE the better the
resulting image according to visual inspection.

For each case, the training procedure followed a two-level scheme, using no
more than a total of 10 training images. These training images were divided

Fig. 9 Character segmentation: all occurrences of letter s have been identified.
Some are perfectly segmented, while few are not.
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Fig. 10 Text segmentation: boldface fonts, which are less common, are not very
well segmented. Still, the segmentation result is very good.

in two parts, part of it (larger set) being used for the training of first-level
operators and the rest (smaller set) for the training of second-level oper-
ators. The number of operators in the first-level training as well as their
corresponding windows have been chosen manually. Low resolution images
(100dpi) were used in all cases, except in the examples of noise filtering in
text images (Figs. 13 and 14). For those, high resolution images in conjunc-
tion with sparse windows have been used (input images from Tobacco800
Complex Document Image Database [Lewis et al., 2006, Agam et al., 2006]).

5 Concluding Remarks

A state of the art overview on translation-invariant morphological operator
(W -operator) learning from training images has been presented. From a ma-
chine learning perspective, the problem of learning W -operators can be seen
as a classification problem. Specifically, in the binary case, the goal is to

www.allitebooks.com

http://www.allitebooks.org
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Fig. 11 Text segmentation: some less common characters such as capital T and Z
are not perfectly segmented.

classify patterns defined within a given window as kernel or non-kernel ele-
ments. Because of the lattice isomorphism between W -operators and Boolean
functions, the problem reduces to the problem of estimating a Boolean func-
tion that characterizes an operator. However, the fact that W -operators are
endowed with properties and structures of lattice theory adds information
that are not usually present in common classification problems. Such infor-
mation open possibilities, for instance, to explore algebraic and structural
constraints on the space of operators to mitigate the bias-variance tradeoff.

An important aspect of the learning approach described in this chapter is
its flexibility with respect to applications. As shown in the provided examples,
good results are obtained for a variety of image processing tasks. The results
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Fig. 12 Boolean noise filtering from synthetic images.

obtained so far indicate that, as far as representative training images are
provided, operators with good performance can be obtained. It should be
noted that the learned operators are not rotation or scale invariant. Although
this is a drawback, it can be overcome by providing training images that
contemplate such cases.

Recently proposed multilevel training model offers the possibility to bal-
ance model bias and precision variance in order to obtain operators with
better performance. Also, by considering the problem from a machine learn-
ing perspective, it becomes possible to consider a mixed multilevel approach.
In such approach, not only geometrical patterns within a window, but also
other data related to scale, orientation, or topological information, that are
not easily captured within a window, could be integrated as features.

One of the challenges in the design procedure is finding an appropri-
ate window, one that results in optimal MAE for the given number of
training images. Although some attempts have been made in this direc-
tion [Martins Jr. et al., 2006], this issue needs more investigation. It cor-
responds to the classical feature selection problem. Furthermore, with the
multilevel training model, an additional challenge is to find a proper mul-
tilevel training architecture, i.e., the number of operators in each training
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Fig. 13 Noise filtering.

Fig. 14 Noise filtering.

level as well as their respective windows. Some preliminary works that use
information theory related concepts [Santos et al., 2010] and genetic algo-
rithm [Dornelles and Hirata, 2010] offer perspectives for possible approaches
to this problem.
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Fig. 15 Character (text) segmentation: characters were relatively well segmented.

Several concepts as well as the design procedure described for bi-
nary images can be extended to gray scale images [Dougherty, 1992b].
A major difference is in the complexity of the local function that char-
acterizes an operator. If the number of gray levels is k, then there
are k|W | possible patterns within window W and thus k(k|W |) possi-
ble functions from W to {0, 1, . . . , k − 1}. From a machine learning
perspective, gray-scale W -operators correspond to multiclass classifiers.
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Fig. 16 Circular object segmentation.

Designing gray-scale morphological operators is therefore expected to be both
computationally and statistically much more challenging than designing bi-
nary image operators. Existing approaches are limited to subclasses of op-
erators or very simple applications. The multilevel approach may be a way
to make the extension to gray-scale operators viable for a large range of
applications.
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Fig. 17 Dashed rectangle segmentation.
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Fig. 18 Texture segmentation.
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Chapter 4
Task-Specific Salience for Object
Recognition

Jerome Revaud, Guillaume Lavoue, Yasuo Ariki, and Atilla Baskurt

Abstract. Object recognition is a complex and challenging problem. It in-
volves examining many different hypothesis in terms of the object class, po-
sition, scale, pose, etc., but the main trend in computer vision systems is to
lazily rely on the brute force capacity of computers, that is to explore every
possibilities indifferently. Sadly, in many case this scheme is way too slow
for real-time or even practical applications. By incorporating salience in the
recognition process, several approaches have shown that it is possible to get
several orders of speed-up. In this chapter, we demonstrate the link between
salience and cascaded processes and show why and how those ones should be
constructed. We illustrate the benefits that it provides, in terms of detection
speed, accuracy and robustness, and how it eases the combination of het-
erogeneous feature types (i.e. dense and sparse features) by some innovating
strategies from the state-of-the-art and a practical application.

Keywords: task-specific salience, cascades, feature combination,
optimization.

1 Introduction

When it comes to understand a new image, a human being immediately
“knows” which spots to focus on to get a fast understanding of the scene.
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This intuition has a lot to do with the pre-processing done automatically by
the pre-cognitive system in our brain in order to predict interest areas in
the image. This phenomena is materialized through the eyes by a series of
extremely fast small jumps of the iris known as “saccades”, in which the eyes
successively stop for a few milliseconds on some spots perceived as salient.
The main purpose of this saccadic movement is to save body resources by
sensing only small parts of the scene with a greater resolution. For instance,
flat areas like the sky are of smaller interest for scene understanding, so
almost no time is spent analyzing them. Interestingly enough, one can draw
a central parallel between the human (or animal) vision system and what
we would like to introduce in this chapter. More precisely, the very notion
of salience is worth investigating further with respect to its application in
computer vision for object recognition. We mean here by object recognition
the joint detection and localization of an object in the widest sense, i.e., from
a specific object (e.g. this book) to a class of objects (e.g. cars, faces). Some
recognition examples are shown in Figure 6 in this case of specific object
detection.

In a general frame, salience is often defined as the state or quality of an item
that stands out relatively to neighboring items. Although this definition is not
inexact strictly speaking, it needs to be refined with respect to the goal of this
chapter. Similarly to the way in which the saccades are generated by a neu-
ronal mechanism that bypasses time-consuming circuits to restrain most of
the work to a few salient areas, we will refer to the term salience as a low-level,
easy to extract, property of an image region that is used in the perspective of
reducing computations for a specific task of object recognition. Saliency maps
have already been defined by [Itti et al., 1998] in order to extract prominent,
singular image spots using different channels (luminance, color, movement,
texture, and so on). Subsequent works along the same line include those of
[Walther and Koch, 2006] and [Paletta and Fritz, 2008]. Those systems how-
ever focus on biologically plausible systems for general purpose detection,
whereas in this chapter we put aside the biological aspect and rely on more
specific definitions of salience which depend on the exact tasks to accomplish.
Searching for cats or for faces, for example, would involve different definitions
of salience although the general principles mentioned earlier would stay true
(i.e. salience as a coarse first-pass in order to reduce information processing)
and in the same kind of idea to the ones used for extracting saliency maps.
The reader interested by this biological aspect of salience can found further
details about cognitive approaches in the book series Attention in Cognitive
Systems, Springer (e.g. see [Paletta and Tsotsos, 2008]).

A second major point, closely related to the utilization of salience in
image analysis, is the combination of different types of image features for
object recognition. Although those two themes could theoretically be dis-
cussed separately, it appears more and more obvious as one deepens the
subject that the utilization of salience is of a great help for associating to-
gether different types of features. Indeed, the key insight is that by dividing
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the detection process into several stages (with the first one being salient region
detection), one can replace a single decision on a multi-type feature set by a
succession of decisions each of them concerning a single type of features. This
cascade-based detection scheme is not new in itself [Viola and Jones, 2001,
Fleuret and Geman, 2001, Elad et al., 2001]; however, it is only recently that
some approaches have taken advantage of its potential to combine differ-
ent types of features in order to increase performances [Gu et al., 2009,
Fleuret and Geman, 2008]. We give a practical and explicit example in sec-
tion 3 to concretely illustrate how to use salience in a cascade-based scheme in
order to firstly (a) combine different types of features (e.g. sparse and dense
types, see §2 and §2), possibly incompatible in many classical frameworks,
and secondly (b) to increase the detection time to its utmost.

In the following of this chapter, we begin by presenting in details an ex-
tended definition of salience in section 2. This includes various aspects such
as describing the global shape of a salience-oriented detection process (§2),
explaining how to combine different feature types (§2) and how to build a
salience detector according to the exact task to accomplish (§2). For each
point, we highlight the main divergence points with mainstream works in
terms of advantages or drawbacks. We then put those principles into appli-
cation in a specific object recognition framework (section 3) and we provide
quantitative and comparative evaluations (§3) to demonstrate the superiority
of this kind of approaches on the state-of-the-art. Finally, we conclude and
give some perspectives in section 4.

2 An Extended Definition of Salience

Roughly speaking, the main trend in object recognition is as follow: (1) to
exhaustively extract features in the image or in a rectangular image win-
dow like in [Dalal and Triggs, 2005], and (2) to use the resulting feature vec-
tor to take a decision upon its content (typically: a binary decision of the
type target/clutter) through a classifier (either generative or discriminative).
Although this description may sound somehow simplistic, most works can
roughly fit with it. Indeed, this scheme can work pretty well in most situa-
tions, but in this section we want to highlight the drawbacks of this strategy
with respect to salience-oriented methods. As presented in the introduction,
salience is to be seen in this study as local, low-level information of the image
which can be used to save computations and enable more complex process-
ing including combining different feature types. To sum up, this definition
includes three aspects:

1. The structure of the detection process: how the processing pipeline should
be organized to make the most of salience.

2. The definition of salience: how it is precisely defined with respect to the
object or the class of objects to recognize.
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3. The feature combination: how different types of features can be used at
the same time in such a framework.

We now describe in detail each of these aspects in order to give a pre-
cise though general description of a salience oriented framework in object
recognition. In the same time, a description of mainstream approaches is
provided to enhance the advantages provided by the use of salience in the
detection process.

The Structure of the Detection Process

A critical interest of using salience lies in the fact of being able to cut off
the computations as soon as possible, i.e. when a negative outcome becomes
evident, one should stop spending energy into the detection process. For in-
stance, it seems trivial for us that searching for faces or cars in uniform areas
such as a blue sky is useless. Yet, the computer vision world usually do not
take into account such clues. An historical reason for this fact is that many
object recognition methods were actually adapted from the essentially differ-
ent task of image classification [Harzallah et al., 2009]. Image classification
consists of extracting global image features in a first step and taking a de-
cision about its content in a second step (typically, does it contain a dog,
buildings, etc.). Experiments on difficult datasets like Pascal VOC dataset
[Everingham et al.] have shown impressive results, but this is still far from
what would be expected from a human being. Indeed, it appears more intu-
itive to us that classifying a picture as “dog” would first imply to recognize
where is the dog before knowing that a dog is in picture. As a result, we
believe that producing better results also involves a better understanding of
the image content: what is in there, where, and how, for instance.

The problem of sliding window approaches like [Dalal and Triggs, 2005] is
that it involves to examine tens of thousands sub-images per image indepen-
dently (according to [Gu et al., 2009]), each time applying the same feature
extraction and classification process to each of them. This simple scheme do
enable invariance to translation and scale (invariance to pose and noise be-
ing handled by the classifier and invariance to illumination by the features),
but the same amount of computations is spent whether the considered im-
age region is plain blue sky or not. Intuitively, one can understand that this
procedure is far from the optimum computationally speaking and that many
time that could be reinvested into more complex tasks, is lost. Moreover, such
approach becomes dramatically costly for detecting more than one type of
object provided that the window aspect ratio, the features or the classifiers
used are different. Obviously, using salience here in such framework could
save a large amount since it would enable to eliminate entire regions on the
test image basing only on a few very simple low-level tests. For example,
Vedaldi et al. [Vedaldi et al., 2009] have reported a decrease of processing
time per image from 27 hours to 67 seconds when they used salience to filter
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the mass of possible windows. Fleuret and Geman [Fleuret and Geman, 2008]
have also noted that this slowness is an important drawback for major ap-
plications using detection, such as real-time detection in video or indexing of
large databases of pictures since they require very low computation times in
order to process several scenes per second.

A solution for such issue is to decompose the recognition process
into several successive steps. This is known in the literature as cas-
cade [Viola and Jones, 2001, Elad et al., 2001] or coarse-to-fine recognition
[Fleuret and Geman, 2001] ([Gangaputra and Geman, 2006] provides a uni-
fication of those two related concepts). In both case, the recognition process
is fragmented so as to enable an early ending: instead of taking a decision on
the full available knowledge, like is done typically in classification approaches
(with Support Vector Machine for instance), the global decision function
F : �n → {0, 1} is divided into a set of smaller, more compact functions
fi : �qi → {0, 1} that can be evaluated sequentially:

F (x) ≡
⊗
i

fi(xi) with ∀i qi < n, i.e. xi ⊂ x

where x represents the full feature vector and
⊗

is a generic sequence oper-
ator that can take various forms. Since in the real world, the vast majority
of input vectors are clutters [Elad et al., 2001, Eveland et al., 2005], the pur-
pose of the chain of subclassifiers {fi} is to label x as clutter as fast as
possible. Hence, each fi is dedicated to clutter detection rather than true
positive labelling: a single negative decision suffices to ensure a final nega-
tive detection and makes the classification process exits. We illustrate this
process in Figure 1.(b) with a 3 layered cascade (in the following, we refer
to the term layer as a stage in the detection process corresponding to the
evaluation of a single subclassifier). Of course, in order to keep the interest of
the procedure, each of those subclassifiers fi has to depend on a reduced set
of features xi ⊂ x so as to correspondingly reduce their complexity. Thus, by
ordering the fi in a smart way - i.e. the faster decisions are evaluated first -
one can avoid a lot of computations and hence efficiently simulate the effect
of salience. In fact, it is natural to let later stages use more target-class pro-
totypes than earlier ones, thus allowing the classifier to more closely model
the effective support of the distribution [Eveland et al., 2005].

Construction of the cascade. Intuitively, one may be afraid that the ap-
proximation of a global decision function by a sequence of simpler ones may
deteriorate the performances, fortunately it is not necessarily the case. By
ensuring a null false negative rate for each fi, it is straightforward to see
that no true detection is forgotten while in the same time a vast field of clut-
ter is evacuated from the decision process. A nearly null false negative rate
is achieved in practice by adjusting the decision surface of each fi, usually,
by varying a constant bias term added at the output of the classifier. This
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Fig. 1 Comparison between a classical detection process and a cascaded detection
process. (a) Standard process; (b) cascade with 3 layers. Each layer is activated if
the previous layer returns a positive response.

operation however needs some precautions in order to avoid over-fitting is-
sues and is therefore generally done by using a validation set disjoint of the
set used to train the classifier. Since in practice a null false negative rate
may lead to classify every sample as positive, the false positive rate has also
to remain as low as possible; this tradeoff between these two conditions is
achieved by adjusting the bias term or, in certain cases, by complexifying the
subclassifiers. The final algorithm is thus to add layers iteratively, each time
ensuring for the new subclassifier that both targets (i.e. maximum false neg-
ative rates and minimum true negative rate) are met. The procedure stops
when the overall target rates are met [Viola and Jones, 2001].

The general procedure for training a cascade involves boostrapping
[Lampert, 2010, Viola and Jones, 2004]. In the context of machine learning,
boostrapping denotes the action of reusing negative samples wrongly classi-
fied as positive by the previous classifier to train the current classifier. In a
cascade, it is straightforward to put in practice: it suffices to run the (incom-
plete) cascade detector on background images that are known not to contain
the model object and to collect false positives to train the new cascade layer
(in addition to true positive samples collected in the same fashion on model
images). As a consequence, the same learning algorithm will yield a different
subclassifier (in fact more complex) because the set of negative samples is
different: they gradually become harder and harder to classify as the layer
depth increases.
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Finally, a promising track seems to be connecting the cascade layers to-
gether. Instead of disjoint layers trained independently as in the precursory
work of Viola and Jones [Viola and Jones, 2001], some works have recently
investigated the possibility of reusing the subclassifier real-valued results (i.e.
before binary thresholding). Huang et al. [Huang et al., 2004], for instance,
have proposed to reinject the real-valued result of the previous subclassifier
fi−1 in the current subclassifier fi to simulate the integration of the fea-
tures used for fi−1 in fi. This have been shown to significantly improve the
results as well as decreasing the complexity of the decision functions. In a
different fashion, Felzenszwalb et al. [Felzenszwalb et al., 2010] summed the
real-valued subclassifiers responses across the layers. Since this sum actually
symbolizes the distance to the model of what is found instead in the image
(i.e., a perfect model match would yield a null distance), the detection process
exits as soon as the sum exceeds a fixed threshold, different for each layer. It
enables more flexibility and robustness as even if one important model part
was occluded it would not necessarily stop the detection process.

To conclude this section, cascades are the ideal way of making the most
of salience: the idea is to smartly order the succession of tests in the cascade
such that the first test would also be the least expensive one. This can be
seen as a generalization of the single-level of salience used by our eyes, in
which the saccades are generated by a neuronal mechanism that bypasses
time-consuming circuits to directly activate the eye muscles. In a cascaded
approach, salience operates at several levels although its “core activity” only
concerns the first layer. For instance, in the face detector of Viola and Jones
[Viola and Jones, 2001], the full cascade contains 38 layers and more than
6000 individual features (i.e. 158 features per layer, on average), but the de-
tector of the first layer only takes its decision based on a single feature. In
sum, it acts as a salience detector (for faces) by pre-selecting a set of in-
terest regions at an extremely low computational price, that is, only consid-
ering low-level pixel information. Subsequent layers iteratively refines those
detections by increasing the number of tests/features and hence the com-
plexity level of the analysis. There also exists intermediary works between
hard cascades like [Viola and Jones, 2001, Elad et al., 2001] and soft cas-
cades in which the decision functions are more connected [Huang et al., 2004,
Felzenszwalb et al., 2010].

Optimal Salience Detector for a Given Task

Now that a global framework has been set up for object recognition, we need
to dwell on the definition of salience that is going to be used practically
for detection. In fact, there exist two possibilities: either define an ad hoc,
task-specific salience, either use an existing generic detector. Empirically,
class object recognition often deals with task-specific salience definitions while
single object recognition usually takes advantage of existing generic detectors.
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We now give a review of the advantages and drawbacks of both techniques
and when or why each one should be used.

Generic salience detectors. To begin with, generic salience detectors pro-
pose to select a subset of spots from all possible spots within an image. Here,
we mean by “spot” a set of connected pixels (e.g. lines or regions) although it
can reduce to single points in the oriented image scale-space (e.g. see interest
point detectors, or keypoints, like SIFT [Lowe, 2004]). The reduction of pos-
sibilities due to this selection is generally massive, hence it can be thought as
equivalent to the first layer of a cascade: indeed, only those spots selected by
the generic detector are further analyzed in the rest of the detection process.

The extraction generally follows a low-level rule, as salience implies,
defined in term of mathematical invariance to a subset of expected trans-
formations: namely, lighting change, rescaling, in-plane rotation and even
affine transformations [Rothganger et al., 2006] as an approximation of per-
spective effects. Edges or regions, for instance, are robust to most usual
transformations. In the literature, those spots are often addressed as “sparse
features” or “local features” due to their limited number and localized
aspect. In the following of the paragraph, we drop the term “sparse” for
simplicity. Existing detectors has been developed from almost the very be-
ginning of image processing and a non-exhaustive list includes edge detec-
tors (Canny [Canny, 1986]), keypoint detectors (SIFT [Lowe, 2004], MSER
[Matas et al., 2002], Hessian-Harris corners [Harris and Stephens, 1988]) and
region detectors like[Arbelaez et al., 2009].

Since the properties used for extracting these features are invariant to real-
world transformation, a widely used technique for specific object detection is
to describe the model object by a set of these local features in the training
stage; and to search those features in the detection stage basing firstly on
their individual appearance (i.e. pairwise matches between keypoints, lines or
regions) and secondly on their geometrical consistency (i.e. relative positions
of the features) [Lowe, 2004, Rothganger et al., 2006]. In this case, the feature
extraction step is equivalent to a first cascade layer based on salience, at the
difference that all features are extracted at once before further processing
(i.e. visual and geometrical matching, here corresponding to a second cacade
layer) are applied. To sum up, salience is used in this process to initially
simplify the huge search space that is an image into a much smaller set of
features, easier to handle separately.

Using those salience detectors could also appear to be an excellent solu-
tion for recognizing class of objects; however, there are some drawbacks. The
main problem lies in the definition of the features themselves which are too
much specific: their low-level nature makes them not invariant to semantic
transformations that occur in the case of intra-class variations. Indeed in
the case of specific object detection, the robustness of the system is usually
expected to be higher than for detection of class of objects (e.g. invariance
to rotation is added) in order to compensate for the extra-simplicity of the
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task. To solve this issue, several solutions exist. Chum and Zisserman have
proposed an original voting system which elects a subset of image windows in
which the model is likely to be found [Chum and Zisserman, 2007]. For that
purpose, pairs of a keypoint and an associated rectangle are learned from
training images based on the most discriminative keypoints with respect to
the model objects. During test, votes in the form of rectangular windows
are generated from the learned pairs and are aggregated using mean-shift
clustering, resulting in a small set of windows left for more complex exami-
nation [Vedaldi et al., 2009]. A similar principle was proposed using regions
instead of keypoints by Gu et al [Gu et al., 2009]. Finally, bag-of-features
(BOF) is also a popular way to bypass the keypoint specificity: by clustering
keypoints, a dictionary is formed to generate keypoint histograms which ig-
nore the spatial relationships among the points and thus give more flexibility
[Csurka et al., 2004]. Such techniques are however not always sufficient for all
tasks. Indeed, a single generic salience detector considers only one mathemat-
ical property and thus may not be adapted to every possible object classes.
Typically, keypoint detectors works well for textured objects like motos or
books; but they become quite inefficient when it comes to plain object like
coffee mugs or swans, as well as their derivatives like bag-of-features. As a
result, more dedicated salience detectors have to be derived in an ad hoc
manner, usually resulting in more than one cascade layers contrary to the
case of generic salience detectors.

Ad hoc salience. Higher-level objects like faces or pedestrians offer few
invariant low-level features because of the important amount of intra-class
variations. As a result, generic detectors cannot spot them reliably. For such
difficult cases, it is often necessary to build an ad hoc detector, directly
derived from the training sample set. A single layer of salience, like in the
previous paragraph, is often not sufficient due to the difficulty of the task;
instead, a cascade is build where each layer gradually filter out more and
more negative samples. Somehow, this strategy can be simpler to implement
because generally, the same learning algorithm is used to learn every layer,
i.e. from the salience level (first layer) to the ultimate layer.

The usual strategy to build the cascade has been already described in
Subsection 2. Historically, AdaBoost [Freund and Schapire, 1995] have been
a preferred classifier in this context. AdaBoost is a meta algorithm for ma-
chine learning that builds a strong classifier from a linear combination of
weak learners, their exact implementation being left to the user. One rea-
son for the success of AdaBoost lies in the simplicity of training, efficiency
and rapidity that can be achieved through boosting. Another reason is more
related to this chapter and is that the boosting process can be viewed as a
feature selection process [Torralba et al., 2007]. As a result, boosting is per-
fectly suited for salience issues since it produces a compact classifier that
is fast to evaluate and that needs a small number of features to take a de-
cision. The constraint in this case is to use stumps as weak learners. In the
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literature [Fleuret and Geman, 2008, Torralba et al., 2007], a decision stump
is a degenerate decision tree with a single node. Thus it is an overly simplified
learner which depends on a single feature, of the form

hm(x) =

{
a if xf < θ

b otherwise

where xf denotes the f ’th component (dimension) of the feature vector x.
Since the algorithm of AdaBoost iteratively picks the weak learner owning the
minimal classification error with respect to the sample weights (the weights
of misclassified samples increase throughout the iterations), the final strong
classifier results in fact in a selection of the most discriminant features. To
give a short example of the interest of using boosting to build cascade, a time
ratio of several order of magnitudes was reached by Liu et al. [Liu et al., 2005]
with respect to a Support Vector Machine (SVM): they have obtained a com-
parable accuracy from boosting with an extremely small training model (2000
times smaller than the SVM model) and with a very high speed in classifi-
cation (54 times faster than a SVM). This is due to the fact that a SVM
uses every available features, building extraordinary complex decision sur-
faces, while boosting intrinsically minimizes the number of regression stumps
used. Another famous example that used AdaBoost is the face detector of
Viola et al. [Viola and Jones, 2001]. The classifier of the first cascade layer
takes its decision according to a single Haar feature, capitalizing on the fact
that the eye area is often darker than the cheeks. Recently, some cascades
have been developed using SVMs as subclassifiers. The trick in this case re-
lies on selecting kernels of gradually increasing complexity across the layers
[Harzallah et al., 2009, Vedaldi et al., 2009]: a fast linear kernel for the first
layer, a quasi-linear kernel for the second layer and a non-linear kernel in
the third layer. Other examples of ad hoc salience detectors include more
elaborate face detectors [Huang et al., 2005] or the template based detector
of Felzenszwalb et al. [Felzenszwalb et al., 2010]. In this last example, the
salience part is defined as a template matching of a low-resolution version of
the root model part. Once the root has been found in the image, the other
parts are searched around in a greedy fashion. When too many other parts
have not been successfully found, the search stops. The authors have reached
similar level of state-of-the-art performances than with a full template search
achieving a speed-up factor of 10 to 20 times faster.

The Feature Combination Problem

Now that we have detailed how salience is practically used in object recog-
nition to reduce and optimize the search, we now explicitely extend to the
multi-feature case (i.e. when more than one type, or channel, of features is
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available) where computational issues are even more justified and show the
numerous benefits that salience can bring in this case.

The combination, or fusion, of different types of features in a same ap-
proach is usually a non-trivial matter in computer vision and especially for
object recognition. It often raises several well-known issues, such as the nor-
malization problem, the increase of computational complexity due to feature
extractions and the inherent difficulties to combine heterogeneous types of
features: global/dense features (e.g. textures) with local/sparse features (e.g.
keypoints). In contrast, systems that are using salience, by their cascaded
nature, can easily bypass all those problems at once.

Normalization issues. Different types of features involve different ranges
of values and it gets generally bothersome when such heterogeneous val-
ues are gathered in a same feature vector. In the literature, normalization
is generally achieved by assuming that each component of the global fea-
ture vector follows a Gaussian distribution (meaning, subtracting the mean
and dividing by the standard deviation) or a chi-square distribution in the
case of histograms [Vedaldi et al., 2009]. In practice however, such hypothe-
ses are not always realistic. Recent works on Multiple Kernel Learning (MKL)
have contributed to partially solve some of these issues (combining hetero-
geneous types by using a linear combination of dedicated kernels), but the
results can be still disappointing compared to a simple averaging for instance
[Gehler and Nowozin, 2009, Vedaldi et al., 2009].

A first benefit in a salience-oriented framework is that in a cascade, the
different subclassifiers {fi} use different subsets ϕi of the whole feature set
ϕ: fi : ϕi → {0, 1}. Let’s first assume that each Ti only contains features
picked out from a particular type (e.g. a texture or an edge descriptor). In
this case each decision function combines comparable features, which shrugs
off most of the problems: there are no need for normalization and no com-
bination of heterogeneous types. We illustrate such a method in section 3
in which heterogeneous types (namely, dense textures, sparse keypoints and
semi-sparse edges) are used alternately in the subclassifiers. Nonetheless, this
strong constraint (one feature type per subclassifier) does not always fit with
reality but note that in the particular case of using AdaBoost to build the
cascade, normalization is solved thanks to the way in which subclassifiers are
built using weak learners (i.e. stumps, see §2) intrinsically acting as single
feature normalizers.

Computational issues. Feature extraction is a time-consuming process
which can even become a bottleneck in a standard object detection ap-
plication. For instance, Vedaldi et al. [Vedaldi et al., 2009] have evaluated
that, in the perspective of a classical approach (see Figure 1.(a)), just com-
puting the input for all possible windows is prohibitively slow. On the
contrary, a salience-oriented framework offers efficient ways to reduce the
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computational burden. As the decisions are taken temporally (i.e. one after
the others), it becomes possible to prune every unnecessary feature extrac-
tion work. Ideally, a cascaded system is expected to extract the features at
run-time, i.e., just before they are required for evaluation by a subclassifier
(see Figure 1.(b)). This way, only a few spots in the image get closely exam-
ined, saving important amounts of computational power as demonstrated by
[Felzenszwalb et al., 2010] for instance.

In particular, it can be interesting to limit the number of feature types
used in the first cascade layers (i.e. the part of the cascade which is eval-
uated the most frequently). Since feature types are generally independent,
each type requires its own machinery to be extracted from the image. By
retaining a subset or even single feature type to feed the subclassifier of the
first layer, the time spent to extract all the other types will be saved. Such a
strategy was used independently by Harzallah et al. [Harzallah et al., 2009]
and Vedaldi et al. [Vedaldi et al., 2009]. In the first case, only the feature type
the the least expensive to compute (namely, histogram of oriented gradient
optimized through integral images) was used for the initial cascade layer,
without significant loss of performance compared to using all types. In the
second case, jumping window technique relying again on a single type (namely
SIFT keypoints) was used to generate candidate windows sent to the second
cascade layer. Finally, other techniques like dynamic programming can be
combined with cascade as done in [Felzenszwalb et al., 2010] (here, indexing
response maps in order not to recompute them later) to further reduce the
computational burden.

3 A Practical Example for Specific Object Recognition

We illustrate in this section the principles stated above in the form of a
practical application of object detection. The objective here is to recognize
a single model object (for simplicity and clarity) in images. Although well-
known systems like Lowe’s [Lowe, 2004] already exists for that purpose, it
remains challenging because of the drop in performances of generic detectors
in difficult conditions: either in the case of noisy images, either because of
poorly textured model objects (see the experiments in section 3).

To solve these issues, we develop a salience-oriented framework that takes
advantage of different feature types, some of which being sparse, some being
dense. In the following, we begin by presenting mainstream state-of-the-art
works about specific detection to highlight the differences with our method
(§3). Then, we briefly present the different feature types used in our frame-
work and their indexing in §3. Afterward, we describe the construction of the
cascade (here, a lattice) and the detection mechanism (§3). Finally, we quan-
titatively demonstrate the quality of this approach both in terms of detection
performances and recognition time in Subsection 3. More specifically, we show
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that standard state-of-the-art method are outperformed by this cascade and
multi-features detector.

Previous Works

Specific object recognition has been a challenging problem since at least
30 years. Recently, the apparition of interest points (or keypoints) as dis-
cussed in §2 has enabled a considerable simplification of the problem. In-
deed, the search of a specific object immediately translates to the problem
of finding a geometrically consistent correspondence between two sets of key-
points: one set originating from the model image, and the other one from
the scene image. Since each keypoint is supported by a descriptor (most of-
ten expressed in terms of histograms of oriented gradient measured in the
surrounding of the point) specific enough to evacuate most pairwise match
ambiguities, the problem becomes tractable. In addition, the generic nature of
keypoints allows detecting a large variety of model objects (e.g. books, toys,
bottles, etc.), whereas in the case of class object recognition template fea-
tures specific to the model class have typically to be learned during training
[Vidal-Naquet and Ullman, 2003, Epshtein and Ullman, 2007].

In short, the usual strategy in the literature is to decompose the model and
test images into a discrete set of invariant (salient) keypoints, each of them
depicted by a local descriptor. Then, the matching is performed in two steps:
(a) descriptors are compared independently in a pairwise fashion in order
to elect a set a credible matches, and (b) geometric constraints are used to
reject inconsistent assortments of points. For this last step, either RANSAC
[Fischler and Bolles, 1981] or Hough/voting strategies [Lowe, 2004] can be
used to retrieve the position of the object in the scene despite important
clutter and/or viewpoint change. The problem in this scheme lies in the
features: since salience is a compulsory prerequisite for all the remaining pro-
cessing, any problem affecting their extraction can prevent the recognition
from working properly. Typically, keypoints repeatability (i.e. robustness) is
not so good when it comes to noisy conditions or moderate 3D viewpoint
changes (more than 25-30° according to [Moreels and Perona, 2007]). Differ-
ent papers have studied how to improve the probabilistic model used in step
(b) like [Moreels and Perona, 2005], but to our knowledge none of them tack-
les the feature reliability problem.

A solution to this issue would then be to integrate different types of im-
age features (including dense features) in the same framework, but this is
generally difficult due to the heterogeneity of the feature types and to the
aberration of using a slow feature type with respect to real-time constraint
generally required in such applications. We show in the proposed approach
how to combine with a cascade model salient and non-salient features without
reducing the detection time while in the same time significantly increasing
the performances on a noisy dataset. The scheme we adopt is to represent the
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model image as a graph of local features and then applying ideas developed
by Messmer and Bunke [Messmer and Bunke, 1998] for matching subgraphs
and Viola and Jones [Viola and Jones, 2001] for the cascade process. In the
end, our specific object recognition system can deal with noise and occlusion
while still being minimalist in terms of computations.

More generally, our purpose is to illustrate that both specific or class ob-
ject recognition categories should borrow ideas and techniques from the other
category. While it was not possible in the past (dense features for class object
recognition, discrete salient features for single object recognition), cascaded
approaches made this feasible by decomposing the process into several step
where different feature types can be used. More generally, our purpose is to
illustrate that both specific or class object recognition categories should bor-
row ideas and techniques from the other category. While it was not possible
in the past (dense features for class object recognition, discrete salient fea-
tures for single object recognition), cascaded approaches made this feasible
by decomposing the process into several step where different feature types
can be used (see §2).

Used Features

We now lean onto the three different types of features used in our recognition
system:

• Keypoints, denoted by ϕK .
• Edges, denoted by ϕE .
• Textures, denoted by ϕT .

For each type ϕi ∈ ϕ with ϕ = {ϕK , ϕE , ϕT }, we outline its properties
below and define a pairwise distance between local features. This distance is
referred to as local kernel K : ϕi×ϕi → R since it takes into account both the
positions p = {x, y, σ, θ} of the two features (respectively, their center, scale
and orientation) and their visual descriptors z, in contrast with standard
kernels as in MKL which act at a global scale. This distance is used in the
recognition process to evaluate local similarities between the model and the
scene image in the cascade subclassifiers.

Keypoints. We used SIFT keypoints since it has been shown to be well
suited for single object recognition [Lowe, 2004]. SIFT keypoints are points
in the oriented scale-space of the image, the invariant property used here is
the extrema in the difference of Gaussian space. This property especially fits
textured objects as strong textures provide the most stable keypoints under
usual transformations (rotation, scaling, translation, etc.). The descriptor
used for the keypoints is also the SIFT descriptor: it consists of a local patch
around the interest point described in terms of oriented gradient histogram
(thus handling invariance to illumination).
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In our framework, the SIFT detector serves as a salience detector in the
image. Namely, only regions where a SIFT keypoint was found are further an-
alyzed, of course at the extra-condition that the keypoint descriptor matches
a model one. Each image keypoint φk ∈ ϕK is formally defined by a center
ck = (x, y), a radial vector hk = (σcos θ, σsin θ) and a descriptor zk of 128
dimensions. The local kernel between two keypoints φk , φl is defined as:

KK(φk, φl) =

{
‖cl − ck‖2 + α2

K ‖hl − hk‖2 if ‖zl − zk‖ ≤ ηK ,

∞ otherwise.

where ηK is a constant threshold that defines the acceptable amount of noise
to match two keypoints (see §3). Since the system will need in the following to
quickly compare a given (model) keypoint at a given location versus all key-
points present in the scene image, we index the scene keypoints in a k-d tree.
Contrary to [Lowe, 2004], this indexing is based on the position information
c and h instead of the descriptor.

Edges. We used the Canny edge detector [Canny, 1986] followed by a step
of polygonization to obtain a bunch of line segments. A segment φe ∈ ϕE is
only defined by its center ce and its radial vector he such that the boundaries
of the segments are ce + he and ce − he. The local kernel KE between two
edges φe and φf is the maximum of the minimum distance between each pair
of pixels lying on both edges:

KE(φe, φf ) =

⎧⎨
⎩

max
p∈[−1,1]

min
q∈[−1,1]

‖(ce + phe) − (cf + qhf )‖ if |θf − θe| ≤ ηE ,

∞ otherwise.

(since no visual descriptor comes with a line, we simply check the orientation).
Again, we used 6 distance maps (one for each orientation, so that ηE =
30° actually) to reduce the search time of a given line segment against all
existing segments in the scene image. This technique is robust to a noisy
segmentation since the distance does not vary if the existing line undergoes
cuts or oversize. When the algorithm needs to retrieve the closest segment in
the image corresponding to the request, we back-project the query onto the
closest image edges. Thanks to this operation, the set of possible retrieved
segments is infinite. One can thus think of the edge feature type as a flexible
feature in the sense that it can adapt to the current search (i.e. this behavior
is clearly impossible to implement in a classical graph matching application
where the set of feature is finite and well defined before proceeding to the
matching). Therefore we call edges semi-salient features in our framework.

Textures. We derived a new texture descriptor from the work of Tola and
Lepetit about the DAISY feature [Tola et al., 2008]. Since textures are dense
features, they exist for every pixel of the image scale-space. In our case,
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the descriptor zu of a texture feature φu ∈ ϕT is defined as the concate-
nation of three subdescriptors extracted at the same location cu but at dif-
ferent scales σu/1.54, σu and 1.26σu (according to a similar construction in
[Kruizinga and Petkov, 1999]). Each subdescriptor is an 8-bins histogram of
the gradient extracted at the corresponding position, scale and orientation
(see [Tola et al., 2008] for details). The local kernel is simply defined as the
Euclidean distance between the two descriptors, provided the two locations
are not too far away in the scale-space:

KT (φu, φv) =

{
‖zu − zv‖ if ‖cu − cv‖2 + α2

T ‖hu − hv‖2 ≤ ηT ,

∞ otherwise.

As in the original paper, we precomputed eight gradient maps (one for each
orientation) at the finest scale and spanned the rest of the scale-space with a
pyramid of Gaussian. In our case, we found it faster than extracting features
at run-time in an independent fashion (the pre-computation step takes less
than 60 ms for a 720x480 image).

Finally, we introduce here the notation minI Kt(φ) ≡ minψ∈ϕt Kt(φ, ψ) to
mean that a given “request” feature φ is searched against all possible image
features of the same type t, hence the notation of the minimum of Kt on the
whole image I.

Description of the Algorithm

We used a cascade-based detector constructed in the form of an incomplete
lattice. A lattice L = {N,E,X, Y } is a structure comparable to a tree at
the difference that two different paths starting from the root can meet up
later (but still excluding cycles, since edges are oriented). Here, N denotes

Ø

Fig. 2 (a) Idealized model images. (b) Lines, triangles and ellipses represents dif-
ferent types of local features, connected if they are close enough. (c) Example of a
lattice built with this idealized model.
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the set of nodes, X their associated content (see below), E ⊂ N ×N the set
of oriented edges and Y their content. A toy example of such an incomplete
lattice is presented in Figure 2.(c).

In this perspective, each lattice node n ∈ N represents a collection of
local model parts, where we mean by a part a single local feature: namely, a
keypoint, an edge or a texture as defined in Subsection 3. Formally, xn ⊆ ϕ
where xn ∈ X denotes the content of node n. Then, each lattice edge e =
(n → m) ∈ E corresponds to the addition of a single feature φe ∈ ϕ to the
starting node (hence xm = xn ∪φe) at a given location pe, defined relatively
to the locations of the features already present in that node:

ye = (φe = (pe, zφe), fe) ∈ Y.

As in usual cascades, a subclassifier fe is associated with this addition in
order to evaluate its (binary) outcome during the detection stage (assuming
that the collection of parts in node n has already been successfully detected).
It specifically consists of taking a decision upon whether or not the new
part φe can be found in the scene image at a position relative to the set of
already detected parts. In the case of a negative answer, the current path is
abandoned, otherwise the end node m is reached and the algorithm reiterates
the procedure with the edges starting from that node. When a leaf node is
reached, a vote is cast for the corresponding extrapolated model position in
the scene image. The final step is a classical clustering of the votes.

To detect an object in the image at a given pose, one must feed the lat-
tice with an initial local feature. In our case, we used the SIFT keypoints
as starting points for the algorithm (which thus imposes that the features
added between the root and the first lattice layer are necessarily keypoints).
To completely scan the space of model poses, the procedure is iterated for
every scene keypoint. The pseudo-code for the detection algorithm is listed
in Algorithm 1. In our framework, the subclassifiers fi : R →{0, 1} are sim-
plified to the uttermost since they only take as input a single real parameter
returned by the local kernel of the type corresponding to the feature φe being
tested. Of course, the position of the searched feature is adjusted in the scene
image so as to be equivalent relatively to the positions of the already detected
parts x′n. By a slight abuse of notation, we denoted by {p′

n} the positions of
the features present in xn’. To compute this alignment, we simply used a 2D
similarity transform.

Construction of the lattice. The lattice is constructed in a greedy fashion.
Nodes are added to the lattice until a sufficient detection rate is achieved.

To begin with, the first lattice layer is built using the most reliable model
keypoints. This information is estimated from a few model images (in our
experiments, no more than 4) in which the model object is shot in various
lighting conditions. The purpose of this strategy is to enable a nearly null
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Algorithm 1 Pseudo-code for the detection lattice.
Require: input image I
Require: keypoint set ϕK of the image I
Require: detection lattice L
Output: List of votes V
Main:

V := ∅
n0 :=root node of L
for every k ∈ ϕK :

for every edge e = (n0 → m):
if ‖zk − zφe‖ < η′

K then
V := V ∪ RunLattice(m, {k}, I)

end if
end for

end for
return V

RunLattice(n, xu, I):
// n is a model lattice node containing model parts xn

// xu is the corresponding set of parts detected in the scene image
if n is a leaf node then

pmodel := extrapolated model position from pu

return pmodel

end if
V := ∅
for every edge e = (n → m):

p′
e := relative position to {pu} with respect to pe

φ′
e := (p′

e, zφe) // update feature position
if fe(minI K(φ′

e)) then
φnew := arg minI K(φ′

e)
V := V ∪ RunLattice(m, u ∪ φnew, I)

end if
end for
return V

false negative rate in the first lattice layer, while still discriminating a large
part of clutter.

Then, subsequent lattice layers are built using a greedy algorithm similar
to the one of [Vidal-Naquet and Ullman, 2003]: the layers are added one after
the others. Specifically, a large set of candidate nodes is proposed for the new
layer (the one being added). Each of those nodes consists of an upgrade of
an existing node in the previous layer, i.e. a new feature is added to this
node with the associated edge. The new feature has a random type and
is randomly sampled in the vicinity of the other node features. This last
condition comes from the fact that we want to build compact aggregates of
features both to enable robustness to occlusion and to accelerate the training.
Then, we evaluate each of those candidate nodes using Shannon’s theory as
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did [Vidal-Naquet and Ullman, 2003]. This enables both to select the optimal
threshold for the subclassifiers and to evaluate the joint efficiency of the
nodes thanks to the addition in mutual information. The best candidates are
kept, the others are eliminated. As in usual cascade, we use bootstrapping
for learning: only true and false positives that reach the candidate nodes
are used for learning. True positives are found on model images while false
negatives are collected by launching the detection on background images.
When a lattice node generates a sufficiently small proportion of false positives
(typically, less than 5%), then its growth is stopped and it becomes a leaf
node.

All in all, the lattice is robust to occlusion thanks to the variety of leaf
nodes available for detection, each of them taking care of a reduced area
of the whole model. Low run-time complexity is also achieved because of
the cascaded structure: indeed, most tests (i.e. evaluations of a local ker-
nel) are pruned and thus never carried out during detection. In our frame-
work, we considered each such tests to be equally costly independently
of the kernel type, but we could have integrated that information as in
[Gangaputra and Geman, 2006] to favor cheap tests.

Relationship with Others Cascaded Approaches

Although our detection system relies on a cascade, there exists significant
differences with the approaches presented in Section 2:

• Contrary to cascades for class object detection like the ones of
[Harzallah et al., 2009, Vedaldi et al., 2009], the subclassifiers in our sys-
tem do not become more complex as the layer increases. Each subclassifier
remains focused on thresholding the result of a single local kernel whatever
its layer. This is due to the nature of our lattice which originates from a
model graph (see Section 3).

• For the same reason, our approach only deals with a subpart of the ob-
ject’s surface whereas this limitation does not exist in classical cascaded
approach like [Viola and Jones, 2004]. The reason behind this choice is
to enable robustness to occlusion. Interestingly, [Paletta and Fritz, 2008]
have developed a similar approach but for a different reason. In their sys-
tem, they learn saccadic patterns of features in order to reduce the amount
of information to process, hence enabling an efficient detection.

• Our system used the mutual information theory in order to
build the subclassifiers. We believe this choice to be uncommon,
as most often boosting techniques (see [Viola and Jones, 2004,
Huang et al., 2005, Fleuret and Geman, 2008]) or SVMs (see
[Vedaldi et al., 2009, Harzallah et al., 2009]) are preferred. Those main-
stream classifiers are well suited for dense features, but do not fit well our
rotation and scale invariant system that uses sparse features.
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Quantitative Evaluation

We present in this section an evaluation of our method with respect to other
existing techniques for specific object detection.

Parameter Settings

Kernel parameters. A few parameters have to be fixed a priori to tune the
degree of freedom of the kernels. Each parameter define a sort of bounding
box on the local area where the on-line search takes place, so they can be
used to balance a long search time against a good robustness.

The threshold ηK was set to η′K = 0.5 for the root subclassifiers (see Al-
gorithm 1) and to ηK = 0.7 for the subsequent levels. In the first case, it
corresponds to a virtual vocabulary of about 1000 visual words: indeed, the
probability that two random descriptors matches p(‖z1 − z0‖ ≤ ηK) is worth
about 1/1000 according to our tests on natural images. This vocabulary size
is a common setting in bag-of-feature systems [Csurka et al., 2004]. We re-
laxed this threshold for the subclassifiers in the subsequent layers to enable
more robustness, which empirically resulted in improved performances. Also,
we empirically set α2

K = 8 to balance x/y position against scale and orienta-
tion. Since textures descriptors vary smoothly along the image pixels, they
are robust to slight positioning errors so we considered a unique test as suf-
ficient, i.e. we set α2

T = 1 and ηT = 0. This intuition was confirmed by the
experiments (see Subsection 3).

Lattice parameters. The lattice is parametrized by several different
constants:

• N1: the number of node in the first lattice layer. Since in this layer each
node only contains a single model keypoint, at least one of those N1 model
keypoints must be present in the scene for the object to be detected. We
tried different values in the range [8, 24] and intermediate values ofN1 = 16
and 20 gave the best results (see Figure 4).

• pmin : the stopping probability to assert that a node becomes terminal in
the lattice (i.e. a leaf node). Formally, the precision, or positive prediction
value, is empirically evaluated for each node during training based on
positive and negative image sets. When the precision exceeds pmin, the
node is not grown anymore (note that this occurs independently of the
layer: a node may terminate sooner than an other one if the features that
it contains are more model-specific). We tried different values and pmin =
0.95 appears to be an good choice.

• Nmax
children: the maximum number of children per nodes was set to 4 without

noticeable differences with neighboring values.



Task-Specific Salience for Object Recognition 79

Fig. 3 The ten model objects used in the experiments.

• Lmax: the maximum width of the lattice. This value is important so that
the lattice do not explode in term of node count and thus detection time.
We empirically set Lmax = 4N1.

In our experiments, the parameters that appeared to really matters were N1

in the first place and pmin in the second place. The other ones did not change
fundamentally the outcome of the experiments. As a consequence, we only
varied N1 in the experiments after having fixed the other parameters to their
optimal value (Subsection 3).

Experimental settings. In order to highlight the increase of robustness due
to the addition of semi-salient and non-salient types of features (i.e. edges,
textures), we compare our approach to existing keypoint-based systems on a
realistic dataset for robotic vision. The variety of represented noises includes
a poor/garish luminosity due to the indoor lighting, various camera noises
(captor noise, movement blur, video interlace). Moreovover, the model objects
themselves are not always heavily textured, which makes the detection harder
for keypoint-based systems.

The dataset consists of 2838 independant images where the ground truth
(ten model objects) was manually labeled. The images come from videos
manually shot with a standard SONY Handycam camera sampled at 10 fps.
The model objects are visible in Figure 3 and were chosen so as to cover
a large range of possible indoor objects: some are textured, some are not;
some have complex 3D shapes; some are more prone to specular reflections;
etc. Each object is visible in a few hundreds of frames and all objects were
searched in the whole set of frames (multiple instances per frame are allowed).
In order to conform ourselves to a realistic case of use, we only used 19 photos
as negative training set (shared to train all models) and less than 4 positive
images per model.

Comparison with existing systems. We compared our system against
widely used specific object detection methods from the state-of-the-art:
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• The baseline RANSAC [Fischler and Bolles, 1981] with a k-d tree match-
ing scheme followed by an homography.

• The locally optimized RANSAC (LO-RANSAC) by Chum et al.
[Chum et al., 2003] adapted by Philbin et al. [Philbin et al., 2007].

• The object recognition system by Lowe [Lowe, 2004].

Fig. 4 Global Recall-Precision
curves on the robotic dataset for the
proposed lattice with N1 ∈ [8, 24].

Fig. 5 Comparison with existing
systems in terms of recall-precision
curves on the robotic dataset (N1 =
20).

Quantitative results. Results are presented in Figure 4 and Figure 5 in
terms of recall-precision curves. Recall and precision are defined as Nc/Ng
and Nc/Nd respectively, where Nc is the number of correct detections, Ng the
number of ground truth boxes and Nd the total number of detections (the
higher is the curve, the better). Some detection examples are shown in fig. 4.

To begin with, we investigated the influcence of the parameter N1 which
represents the number of nodes in the first lattice layer. Since the detection
speed is roughly proportional to N1, it is important to keep its value as small
as possible. Interestingly enough, the curves presented in Figure 4 show that
an intermediary value of N1 = 20 yields the best detection performance.
Practically, it implies that the detection can be efficiently initiated by a small
number of features for each model (the most stable ones). Moreover, it justifies
our choice for the algorithm design to rely on a generic salient detector as
a virtual first cascade layer, since a nearly null false negative rate is indeed
reached as shown by the extremly high values of recall (more than 70%, to
relate to only 20% at most with existing detectors).

We also compared our lattice with existing specific object detectors and
with the same method without using edges or textures. Globally, our system
outperforms the keypoint-based methods for every value of N1, including the
smallest N1 = 8 (only the curve with N1 = 20 is drawn in Figure 5 for
clarity). The contribution of semi- and nonsalient features (namely, edges
and textures) is clearly important as shown by the difference of recall and
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precision between the proposed method with N1 = 20 (curve “OURS” in
Figure 5) and the same method without using these features (curve “OURS
(keypoints only)” in Figure 5). Nonsalient features are indeed less disturbed
by noise than sparse features. Note that our method already outperforms
existing systems even without using extra features; this comes from the fact
that (1) Lowe’s method and LO-RANSAC requires respectively at least 3
and 4 correctly matched keypoints to assert a single detection, which is a
rather difficult pre-requisite in noisy conditions, whereas we require only 2
keypoints; and (2) the proximity constraint that we used to build the lattice
nodes helps to filter out more false positives, whereas the other methods are
global and hence more sensitive to noise. To conclude with, we prove here
that a cascade structure can enable more recall than non-cascaded systems if
the null false negative rate constraint is effectively enforced without sacrifying
detection performances at all.

Detection speed. The proposed method is also faster for the detection
than the other methods: 54 ms/image on average for 10 objects (N1 = 20),
while Lowe’s method and LO-RANSAC requires ~70 ms and RANSAC about
224 ms. This result straightly follows from the cascaded lattice structure.

Our method however requires some additional pre-computations (done
once per image) with respect to the edge and texture features (see §3). The
times spent for these operations are respectively 155 ms and 60 ms for pre-
computing the oriented edge maps and the pyramids of texture, respectively.
We believe it to be small regarding the time required by the SIFT detec-
tor (1648 ms per image, on average, using the executable provided by Lowe
[Lowe, 2004]) and the increase of recognition performance due to the extra
feature types.

4 Conclusion and Perspectives

An extended vision of how salience can be used for task-specific object recog-
nition was given in this chapter. Salience efficiently reduces the computa-
tional burden, which is currently a major worrying for most practical imple-
mentation, thanks to the cascaded shape resulting from its implementation.
Salience also helps to combine different types of features together, again with-
out proportionally increasing the computations since most work is pruned.
In practice, it requires to select one of the two following techniques: either a
generic salience detector, like a keypoint extractor for instance, which acts as
the virtual initial layer of the cascade; or either an ad hoc detector in order
to decompose the problem of detecting salient areas in many subclassifiers
of gradually increasing complexity in the case of important intra-class vari-
ations. To sum-up, the way in which we take advantage of salience strongly
depends on the task to accomplish, i.e., on the object or class of objects we
want to recognize.
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Fig. 6 Examples of correct detections from the robotic dataset (2800 test images)
and the Caltech-101 “stop sign” class [Fei-Fei et al., 2006] (only one training image
was used in that case).

A practical application was presented to illustrate how to implement the
principles discussed above for the case of specific object recognition. The
proposed system outperforms in every points classical approaches from the
state-of-the-art that do not take advantage of a cascaded structure: both the
detection time and performances are better. Moreover, the cascade provides
a straightforward way to combine heterogeneous types of features which was
shown to result in a huge increase of detection performances.

Finally, a promising track seems to connect the cascade layers to-
gether to enable more robustness and flexibility, as in the recent work of
[Felzenszwalb et al., 2010]. This way, the progression in the cascade does not
depend on absolutely finding every model parts but on the contrary can
afford some digression with the perfect model match.
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Chapter 5
Fast and Efficient Local Features
Detection for Building Recognition

G.P. Nguyen and H.J. Andersen

Abstract. The vast growth of image databases creates many challenges for
computer vision applications, for instance image retrieval and object recogni-
tion. Large variation in imaging conditions such as illumination and geomet-
rical properties (including scale, rotation, and viewpoint) gives rise to the
need for invariant features; i.e. image features should have minimal differ-
ences under these conditions. Local image features in the form of key points
are widely used because of their invariant properties. In this chapter, we ana-
lyze different issues relating to existing local feature detectors. Based on this
analysis, we present a new approach for detecting and filtering local features.
The proposed approach is tested in a real-life application which supports
navigation in urban environments based on visual information. The study
shows that our approach performs as well as existing methods but with a
significantly lower number of features.

1 Introduction

The vast growth of images creates many challenges for computer vision ap-
plications in general, and image recognition in particular. Large variation
in imaging conditions such as geometrical properties (including scale, ori-
entation, and viewpoint) and illumination lead to very high demands be-
ing placed on the effectiveness of image features. Specifically, image features
should be invariant (i.e. have minimal changes) under these divergent imaging
conditions.

Early on in the development of image recognition, the use of global fea-
tures was the most common approach. Global features are features capturing
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information from the whole image, and representing each image by a single
feature vector such as color histograms. Global features are unable to dis-
tinguish foreground from background as this information is mixed together,
which means their application is usually limited to cases with uniform back-
grounds. In addition, image clutter and occlusions pose major problems in
the use of global features. To overcome this limitation, local features were
later developed, which are computed at different areas within a given image,
for example points, edges, or image patches. Information extracted from these
areas are called descriptors. An image is then represented by a set of local
feature descriptors.

Local features have been applied successfully because of their stability un-
der different imaging conditions [1, 2, 3, 4, 5, 6]. Commonly used local features
include those extracted from interest points at different types of junctions, on
contrast areas, or on texture areas [2]. Despite their wide utilization, however,
some features of local descriptors have not been fully investigated.

Image recognition under outdoor conditions constitutes an extreme case in
which many factors interfere with the appearance of the scene. For building
recognition, most existing systems carry out the evaluation with images taken
from different viewpoints and with different scales and orientations [7, 8, 9],
but seasonal, daytime, and weather variations are generally not considered.
For example, an image of a building in summer will be significantly more illu-
minated than the same image during winter. Moreover, seasonal changes also
affect the appearance of the scene: in winter, buildings can be partly covered
by snow; and at Christmas time and on other special occasions, buildings
may be decorated. Other factors like shadow, shading, reflection, or scene
occlusion caused by non-static elements such as people or cars may further
interfere with the recognition process. Yet despite these obvious influences of
temporal variation on recognition performance, such factors have not been
fully analyzed. In this chapter, we address this challenge in an effort to con-
tribute to the development of robust landmark detection systems.

Another major issue in approaches using local detectors is that they usu-
ally produce a large number of local features. On the one hand, this presents
very rich information with which to analyze the image content, but on the
other hand, it raises issues of computational processing time, storage, and per-
formance efficiency. For example, SIFT detectors on average create ∼ 2000
features for an image of 500x500 pixels [3]. This number can increase signif-
icantly when the image contains many details. Since the computational cost
of matching is positively correlated with the number of features extracted,
solving this issue is essential.

Recently, more attention has been paid to recognition speed in application
systems [10, 11] such as robot tracking [12, 13], and to real-time recogni-
tion with mounted devices [14]. To meet this speed requirement, different
approaches for improving local detectors have been proposed. In [15], the au-
thors present a method for reducing the dimensionality of SIFT descriptors
using the PCA dimensional reduction method which projects the original
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SIFT feature space from 128 dimensions to 20 dimensions. This PCA-SIFT
method results in significant space benefits, and requires a third of the time
in the matching phase compared to the original SIFT.

A different approach is put forward in [11], where a vocabulary tree is used
to index features. The k-means algorithm is used to cluster all features and
place them in the correct branch. For each query image, extracted features
are traced down the tree, a score list is given for all leaves, and the one with
the highest score is returned as the best match. This approach has proven to
be very fast and scalable to a very large number of features.

Neither of the approaches mentioned above alter the original number of
features; however, not all features are equally important. Some detected fea-
tures, for example, are irrelevant in the recognition phase. In such cases,
having too many features often reduces the recognition rate. For this reason,
attention should be focused only on those features that are informative.

In summary, in this chapter we address the following two problems that
can arise when using local feature descriptors for image recognition:

(i) The influence of significant temporal variation, especially in outdoor en-
vironments, such as different times of day, or from one day to another.

(ii) The provision of an efficient approach to deal with the large number of lo-
cal features by selecting a subset of informative features that should meet
two essential requirements. The first requirement is processing speed. The
second is system performance; i.e. while reducing information from the
original set, the system should perform as well as or even better than
existing systems.

The chapter is organized as follows. Section 2 provides a short review of exist-
ing methods for detecting local feature points. This is followed in section 3 by
our comparison of existing methods in the case of large temporal variation.
We then present a new approach that provides an efficient solution to deal
with the large number of local features in section 4. Subsequently, we setup
a complete system for image recognition using a combination of the above
techniques. And finally, to evaluate the proposed system, we implement a
real-life application using mobile phones (section 5.2) for navigation based
on visual information of nearby buildings.

2 Local Feature Detectors

A number of local descriptors are proposed in the literature, including several
comprehensive reviews [1, 2]. Various authors compare a number of existing
local descriptors, such as the scale-invariant feature transform (SIFT) [3],
shape context [16], and moment invariants [17]. The evaluations demonstrate
that the SIFT-based descriptors, such as the original SIFT features by Lowe
[3] and PCA-SIFT by Ke and Sukthankar [15], outperform other transforms.
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Therefore, these descriptors seem to be favorable choices for image recognition
systems [18, 19, 9, 7].

SIFT’s method for detecting local features consists of three main steps.
Given an image set I = {Ii(x, y)}: first, each input image Ii(x, y) is repre-
sented at different scales, i.e. scale-space representation, using difference-of-
Gaussian (DoG) function D(x, y, σ)

D(x, y, σ) = (G(x, y, kσ) −G(x, y, σ)) ∗ Ii(x, y) (1)

where G(x, y, σ) is a variable scale Gaussian, and ∗ is the convolution op-
eration in x and y. k is set to 21/s, and s is an integer number . Figure 1
shows an example of a scale-space representation. This step is used to identify
potential key points that are invariant to scale and orientation.

Next, key points are extracted at each scale level using local maxima de-
tection; i.e. by comparing a pixel to its neighbors in the scale-space. Points
along edges are eliminated. After that, orientation is assigned to each key
point using local image gradient directions. This is done by computing a his-
togram of local gradient directions, and selecting a peak corresponding to
the dominant direction of the local gradient. Each key point now contains
information about its location in the image, the scale where the key point is
found, and orientation calculated from the previous step. Finally, descriptors
are computed for each key point. A patch size of 16 × 16 sample is drawn,
centered at the key point and having the orientation of that point. The patch
is divided into 4 × 4 sub patches. Within each sub patch, an 8-dimensional
orientation histogram is calculated using the same technique as described in
the orientation assignment step. In total, this creates a 4 × 4 × 8 = 128-
dimensional feature vector as a descriptor for a key point.

Fig. 1 Application of DoG for scale-space representation.
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Fig. 2 An image represented in a scale-space.

More recently, Brown et al. [20] have developed a new feature-based de-
scriptor for matching and recognition, known as multi-scale oriented patches
(MOPS). The authors discuss comparisons between SIFT and MOPS, and
conclude that their recognition performances are comparable. The method
can be briefly described as follows:

Each input image Ii(x, y) ∈ I is incrementally smoothed with a Gaussian
kernel {σi}i=1..n. An image pyramid is then constructed by down-sampling
at rate r of the image, as illustrated in figure 2.

In the second step, interest points are extracted using the Harris corners
detector at each pyramid level (figure 3). This step returns a set of points
located where the corner strength is a local maximum of a 3×3 neighborhood

Fig. 3 Examples of MOPS features. The size of the circles represent the pyramid
level where the features are extracted, and the inner lines represent the orientations.
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and above a threshold of 10. Third, a Taylor expansion is used to find the
sub-pixel precision (up to the quadric term) at those extreme points. Each
extreme point is described by its orientation in a window of size 28 × 28
(corresponding to a Gaussian kernel with σ = 4.5), and sampling of gray-level
values in a 40× 40 neighborhood, in a grid with a spacing of 5 pixels rotated
according to the orientation. This gives a feature vector for each landmark
consisting of 8 × 8 gray-level values. The feature vector is standardized by
subtracting the mean and dividing by its standard deviation. Finally, a Haar
wavelet transform is applied to the 8 × 8 descriptor patch to form a feature
vector of 64-dimensions FIi(x,y).

3 Local Feature Detectors under Large Temporal
Variation

In this section, we concentrate on the influence of large temporal variation
on local feature detectors. The two detectors described above provide input
for our investigation.

As mentioned in section 1, image recognition in outdoor environments is
an extreme case where the large temporal variation is common. To compare
the performance of the two local feature detectors under large temporal vari-
ation, we apply them to a building recognition application. Figure 4 shows
an example of images of the same building taken at different settings.

Fig. 4 An example of large temporal variation, where a building is captured at
different times of the day and season.

The test set consists of 442 images of 19 different buildings. Images of
the buildings were captured by different people to achieve natural variation
in viewpoint and style of capturing images. This brings the testing system
much closer to a real application, where buildings are usually captured in
different styles. To create large temporal variation in the dataset, the images
were also taken at different times of the day and year, in varying weather
conditions such as very cloudy or very sunny. Building decorations were taken
into account as well, to ensure large variation in the buildings’ appearance.
The images were captured at the following times:

1. 16/11/2006: during daytime (a cloudy day).
2. 17/11/2006: in the evening (with electrical lights on).
3. 28/11/2006: during daytime (with Christmas decoration).
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4. 29/11/2006: during daytime (with Christmas decoration).
5. 05/12/2006: in the evening (with Christmas decoration).
6. 03/05/2007: summer time (a sunny day), during daytime (many buildings

decorated with Danish flags).

For the evaluation, features from all images were calculated and stored as
off-line data. Then, each image was chosen from the database in sequence
and used as a query image. Features of the selected query were compared to
those of all other 441 images in the database. This features matching step was
similar to that performed by Brown et al. [20]. The system returned a ranked
list of matched results, and the top rank m images, where m = [1 . . . 5], were
then reported. Precision was computed as the top m for each query image,
and finally averaged over all 442 query images to obtain the average precision
performance.

Figure 5 shows the average precision result with m = [1 . . . 5]. For com-
parison, the MOPS approach is compared with the commonly used SIFT
extractor. In the implementation, the default parameters for the SIFT ex-
tractor as indicated by Lowe [3] were used. Top ranked lists and the average
precision over all queries were returned, and are also illustrated in figure 5.

Our experimental results show that the MOPS features adapt much better
when it comes to recognizing buildings under large temporal variation as
well as different viewpoints, scales, and orientations. On average, the system
performance with MOPS is considerably improved over that with the SIFT
features. In figure 6, we show the recognition results of two example queries
of building recognition under large temporal variation using MOPS. In the
first example, the query building is captured on a sunny summer day, where
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(a)

(b)

Fig. 6 Two examples using MOPS for recognition of buildings under large tem-
poral variation. The top-left image is the query image. Next, from left-to-right and
top-bottom is the ranked list of matched images.

the bar is open and many people are sitting in front of the building. The
MOPS method is able to return images of the same building at winter time
when the bar is closed, with no decoration, and very different illumination.

Using MOPS, we were able to achieve a high performance with 0.85 pre-
cision in the top match. We, therefore, chose MOPS as the basis for further
investigation.

4 Selection of Informative Local Features

4.1 Uniqueness Filtering for Local Features

When developing techniques for selecting features, it is generally assumed
that certain features are more important than others. The terms “discrimi-
native” and “informative” are usually used to describe those features. Li and
Kosecka [21] observe that certain features are more stable and thus better
able to handle variations in scale and viewpoint. It is these feature that they
therefore aim to select. For each feature extracted by means of the SIFT
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detector from each image at each location, they calculate a posterior proba-
bility. The probability values are used as ranking criteria. Brown et at. [20]
present an adaptive non-maximal suppression (ANMS) algorithm that selects
a subset of interest points based on their corner strength. The general idea of
this algorithm is that for each point extracted through the process described
above, they calculate the corner strength, then select strongest points within
a neighborhood of radius k pixels. In all these experiments, the authors select
a maximum of 500 points for each image, meaning that a set of 500 features
is used to describe the content of an image. Another technique for selecting
informative (i-SIFT) features using the SIFT detector is put forward by Fritz
et al. [19]. In this approach, informative features are defined as those that
appear in discriminative regions. These regions are detected on the basis of
an entropy-coded image derived by calculating posterior distribution.

In this section, we propose a different method for defining the discrimina-
tive descriptors that identify the most salient features in a given image. One
salient property is rarity, as defined by Kadir and Brady [22], and Schiele
and Crowley [23], which identifies those discriminative descriptors that are
almost unique, i.e. which maximize discrimination between objects. We thus
propose to select descriptors on the basis of their uniqueness i.e. their rarity
within a descriptor set.

Definition: A unique feature has an identifiable property that distinguishes
it from other features in the image.

In other words, in a feature space where all descriptors are located, a
unique feature is the one with the fewest features within its ε-neighborhood.
Starting from this definition, our method of selecting unique features is as
follows.

Given an image I, assume that I has k descriptors or feature vec-
tors FI = {F1, F2, . . . , Fk}. To calculate the uniqueness of each feature,
we first compute the dissimilarity values between feature vectors. For the
MOPS descriptors, L2 distance is used as the dissimilarity function. We have

Sij =
√∑t

l=1(f
i
l − f j

l )2, where f i
l and f j

l are components of feature vectors
Fi and Fj respectively, and t = 64. Each feature vector Fi is compared to
the others {F1, . . . , Fi−1, Fi+1, . . . , Fk}. We then obtain a set of dissimilar-
ity values {Si1, Si2, . . . , Si,i−1, Si,i+1, . . . , Sik}. To decide whether two feature
vectors are similar or not, an ε neighborhood is established. If a feature point
Fj in the given feature space falls within the ε-neighborhood of Fi, it is con-
sidered similar to Fi, i.e.

If Sij < ε then Fi and Fj are similar,
otherwise Fi and Fj are dissimilar.

As indicated in our definition of a unique feature, we select features that have
the smallest number of similar features within their ε-neighborhood. This
means that the greater the number of neighbors, the less unique the feature
is. Hence, the uniqueness of a feature vector Fi in image I is formulated as:
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UFi = ‖{Sij < ε}‖j=1..k,j �=i

4.2 Evaluation

A number of experiments to evaluate the proposed technique for filtering
local features were performed using the data-set as described in section 3.
The MOPS detector was applied to all images with default parameters and
all extracted features were stored. Next, the method for selecting the unique
features of each image was applied. These unique features were stored sepa-
rately. As the extraction of unique features from the images was carried out
off-line, the processing time was not important. Instead, our focus was on
comparing the performance with that achieved by other methods.

To evaluate performance during the matching process, precision values
were reported. Each image in the data-set was sequentially used as a query.
The query was then compared to all other images in the corresponding data-
set. The top five best matches were returned, and the precision values cal-
culated for each of the images. The baseline was the performance achieved
by using the default MOPS detector on all extracted features. We also ap-
plied the adaptive non-maximal suppression (ANMS) selection method as
described by Brown et al. [20], which selects the strongest features on the
basis of corner strength. To ensure a fair comparison, experiments with dif-
ferent numbers of selected features were performed, namely 100, 200, 300,
500, 800, and 1000. In all experiments, the unique features were identified
using ε = 0.3.

First, we present the results from different cases in which varying numbers
of descriptors were used, as shown in figure 7. k∗ represents our uniqueness
filtering method. In this table, the last row is the default MOPS with all

Fig. 7 Experiments with different
numbers of unique features per im-
age vs. the default MOPS detector.
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Fig. 9 Precision vs. number of top
ranked images. Results show perfor-
mance using our approach (full lines) vs.
ANMS (dotted lines) to select descrip-
tors.

Fig. 10 Examples of buildings with
500 selected descriptors using unique-
ness criteria vs. ANMS.

features taken into account. The second column reports the average number
of descriptors per image, while the third column reports the total descriptors
of each data-set. They show that, on average, the number of features extracted
in the default cases is significantly larger.

Figure 8 presents the recognition results, where we compare performance
when different numbers of unique features are used, versus default perfor-
mance when all extracted features are employed. The figure shows that al-
though the default MOPS has the highest number of descriptors, it performs
less accurately than our method, which uses smaller numbers of descriptors.
The results achieved by using a certain number of unique features are sig-
nificantly better. A selection of 300 features enables the reliable recognition
of a given building, although even with fewer features we still obtained a
relatively high recognition rate of 70% in the best match. With 500 unique
features, i.e. fewer than ∼ 1

4
of the total descriptors, we achieved the same

performance as the default approach. Further improvement is shown with
800 and 1000 unique features. We can also see from the figure that there is
a saturation point between 800 and 1000 descriptors, at which there is little
improvement in performance. This means more descriptors are unnecessary,
and may even reduce performance by creating disturbance.

In the next experiment, we compared the performance achieved by our
approach with that achieved when using ANMS to select descriptors. Figure
9 shows the result of the two approaches with different numbers of selected
descriptors. The dotted lines represent the results for the ANMS approach,
and the solid lines represent the results for our uniqueness method. With
100 or 200 selected descriptors, the performance of the two approaches was
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comparable. Where a higher number of descriptors was used, our proposed
approach achieved better results.

In figure 10, we present some examples of buildings with 500 selected
descriptors. All features are first extracted, then two different filtering ap-
proaches are used. The left column shows the results produced with the pro-
posed approach, and the right column the results produced with ANMS. In
general, the two methods select very similar descriptors. ANMS selects fea-
tures on the basis of their corner strength, which means the features selected
are mainly corners. In our case, we do not consider corners the most impor-
tant features, as they will recur in other similar areas. The features selected
should be those that are least like other features in the same image: i.e. where
they are resembled by the smallest number of features in each image. Since
corners are not our first priority in selection, other salient details are chosen
instead.

The foregoing has demonstrated that the proposed approach for selecting
informative features both reduces the number of local features extracted, and
improves the recognition performance.

5 System and Application

5.1 System Scheme

As our investigation has answered the two questions stated in section 1, we
are now able to draw up a complete scheme for an image recognition system.
Figure 11 shows an overview of the proposed scheme, made up of two stages.
In the off-line stage, database images provide input for the feature extraction
step using MOPS, after which uniqueness filtering is applied to select the
informative features. In the on-line stage, the user provides a query image,
and the system extracts and filters the features of that image. These query
features are then compared to the off-line data and the system returns a list
of matching images.

5.2 Application

The ultimate test of our system is in a real-life application. For that purpose,
we have developed a scenario where we provide user information to help
individuals navigate in unfamiliar areas using visual information from the
surrounding environment, i.e. nearby buildings. Assume that you have to go
somewhere but you don’t know how to get there. Traditionally, you would
first have to locate yourself on a paper map, then spend time figuring out
the best route. Integrated software to instruct users via mobile devices such
as PDAs or mobile phones is now replacing this traditional approach. The
currently available products in this field are supported by systems such as
GoogleStreet for the geo-referencing of information. However, the occlusion
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Fig. 11 The scheme of our image recognition system.

of satellites and significant drifts especially apparent in urban environments
serve to limit GPS service. Moreover, visual information is a rich source
of information for localization and navigation that is in accordance with
the way we as humans navigate, and may thus give rise to a versatile and
robust method easily adapted by users. In our application, when the user
needs a route description, he or she need only take a picture of a nearby
building in order to retrieve feedback regarding the location as well as guiding
instructions.

5.3 Scenario

In this section, we describe our mobile phone application to help users navi-
gate in urban environments. We set up a scenario in which users are placed
in an unfamiliar area, and instructed to make their way from one location to
another. Each user is provided with a mobile phone with a built-in camera.
If a user needs navigation assistance, he or she will capture an image of a
nearby building, and send it to the server for guidance. At the server, the
system processes the image and searches through the database to find possi-
ble matches. Matching images and associated information are then sent back
to the user. This process is illustrated in figure 12.

At the starting point, the user sees a welcome screen with different desti-
nations. By selecting a certain image, the user chooses the destination and
starts the application. Figure 13 shows the mobile phone interface of this
step; information on the selected destination is displayed at the bottom of
the screen. Then, the user sees an overview map with a route drawn from the
starting point to the destination. In this way, the interface gives the user an
overall view of the journey as well as the estimated walking time.
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Fig. 12 Overview of client-server system for visual-based navigation in urban en-
vironments.

Fig. 13 Welcome screen Fig. 14 Overview route

Along the route, we mark a number of buildings as way-points depending
on how far away the destination is. This number is determined before-hand
and stored for each route. In our application, the distance between two way-
points is approximately 300 meters. This means that the overview route is
divided into several sub-routes, with the user navigating only on ”sub-route
level” at any given time. This makes it easier for the user to remember the
map, especially when the destination is far away. Figure 15 shows an interface
with the sub-route map, which we call a mini map. This interface shows
the route from the current location to the nearest way-point, with a route
description. It also displays a picture of the next way-point, so that the user
knows what to look out for. When the user reaches to the next way-point, he
or she simply clicks on the button ”I AM HERE” to get further instructions.

To ensure that the user actually reaches the right way-point, we ask the
user to take a picture of the building and send it to the server. The server
then performs the building recognition process to find matching images. A
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Fig. 15 Sub-route Fig. 16 Retrieved information

list of the top 5 best matches is returned, and the user chooses the one that
he or she thinks is the most similar (figure 16). If the system fails to find
at least one correct match, the user is prompted to take another image, as
the failure may be caused by the quality of the query image (e.g. if it is too
blurred). If the user is now able to find an image from the matching list, the
next sub-route interface is shown with a new mini map and route description.
These steps are repeated until the user reaches the destination.

5.4 Evaluation

To test the application, we simulated user actions. We set up a number of
routes from one location to another in the test area, where images had been
captured (section 3). Out of 19 buildings, we randomly created 50 different
routes. Each route contained three way-points, i.e. simulated users had to
pass through those way-points to reach the destination. This meant that for
each route, we ran the recognition system at least four times. Figure 17 shows
an example of a route from building 1 to building 14 which passes through 3
way-points, namely buildings 18, 13, and 15.

At each way-point, an image of that building was randomly selected from
the query set. If there was a correct match, it was returned from the server
and the simulation continued with the next way-point. If there was no correct
match, another query image was randomly chosen, which simulated a user’s
action of taking a new picture of the building. We allowed this step to repeat
a maximum of three times. If there was still no correct match after three
tries, the simulation stopped and we reported it as a failed case. If the simu-
lation reached the destination, we reported it as a successful case. Finally, we
computed the percentage for these cases, which revealed that our experiment
yielded a 99% success rate when allowed three trials per building.
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Fig. 17 An example of a route passing through 3 way-points.

As a real-time application, time is also an essential factor. We recorded
both the recognition processing time and the waiting time. The former is the
time needed to complete the recognition process, i.e. the feature extraction
and matching time. The latter refers to the total time the user has to wait
after sending a query image to the server, and before receiving the information
back. This means that after the user takes a picture of a building, a timer
starts when he or she presses the ”Get information” button, and finishes
when all information is received from the server and displayed to the user.

Fig. 18 Run-time performance of the navigation system. The blue bar is the time
taken to upload and download information to and from the server. The red bar is
the time needed for feature extraction and matching.
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The response time for each query image has been averaged, and figure 18
shows the total response time as a bar plot. The top bar is the time it took
to upload the image to the server and receive a response, while the bottom
bar is the time it took to display the result to the user. The two bars are
stacked to indicate the total time, which is what the user would experience.
On average, the recognition processing time was 3.9 seconds and the display
time 2.3 seconds, giving a total time of 6.2 seconds.

6 Conclusion

In this chapter we have indicated how the local feature image recognition
method MOPS may be filtered to a subset of the original local features while
still maintaining performance. Filtering of features is of particular interest for
applications running on resource-limited devices such as mobile phones. Our
application aims to help users to navigate in urban environments by providing
feedback with map and guidance directions when the user sends an image of
a nearby building. The simulation and tests reported on here demonstrate
the potential of the proposed application in a real-life navigation setting.

Acknowledgements. This research is supported by the IPCity project (FP-2004-
IST-4-27571), a EU-funded Sixth Framework program Integrated Project on Inter-
action and Presence in Urban Environments.
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Chapter 6
Visual Perception in Image Analysis�

Digital Image Content via Tolerance Near Sets

James F. Peters

Abstract. This chapter considers how visual perception can be used to advantage
in image analysis. The key to the solution to this problem was first pointed out by
J.H. Poincaré in 1893 in his representation of the results of G.T. Fechner’s 1860
psychophysics experiments with sensation sensitivity in lifting small weights. The
focus of Fechner’s experiments was on sensation sensitivity. By contrast, the focus
of Poincaré rendition of Fechner’s experiments was on determining sets of sim-
ilar sensations that serve as a model for a physical continuum. In what he later
called a representative space (aka, tolerance space), Poincar’e informally discerned
tolerance relations in determining tolerance classes containing perceptually indistin-
guishable sensations. A formal view of tolerance spaces was first introduced by E.C.
Zeeman in 1962 (nearly 70 years after Poincaré’s work on representative spaces).
Unlike Poincaré, Zeeman focused on visual acuity in formulating the idea of a tol-
erance space. By defining a tolerance relation, one provides a basis for a rigorous
study of resemblance between perceptual objects such as digital images or observed
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behaviour patterns of collections of social robots. Eventually, the study of the re-
semblance of disjoint sets by Z. Pawlak and J.F. Peters, starting in 2002, led to the
discovery of a formal basis for measuring the degree of nearness between distinct
tolerance spaces. The main contribution of this paper is the introduction of a form
of perceptual image analysis in terms of a methodology for determining the resem-
blance between pairs of visual tolerance spaces defined within the context of digital
images.

Keywords: Image correspondence, metric space, nearness, near sets, perception,
perceptual image analysis, resemblance, tolerance space.

1 Introduction

This chapter considers how visual perception can be used to solve image analysis
problems such as discerning the extent of correspondence between images. The so-
lution to the image correspondence utilizes image matching strategies to establish
affinities between two or more images. This is one of the central tasks in photogram-
metry and computer vision. Recently, it has been shown that tolerance near sets can
be used in a perception-based approach to discovering correspondences between im-
ages (see, e.g., [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]). Disjoint sets that resemble
each other are called near sets [15]. The study of near sets is directly related to more
recent work on similarity, tolerance, covering systems, and resemblance [16, 17, 18]
and a tolerance space view of what we see [3].

1.1: Walk-
ing dog on
stilts [1]

1.2: cover,
p=5, ε = 0.1

1.3: cover,
p=10,
ε = 0.1

1.4: cover,
p=15,
ε = 0.1

1.5: cover,
p=20,
ε = 0.1

Fig. 1 Sample Image Coverings Determined by Tolerance Relation �gr,ε ; see (1)

2 Related Works

Work on a basis for near sets began in 2002, motivated by image analysis and in-
spired by a study of the perception of the nearness of physical objects carried out
in cooperation with Zdzisław Pawlak in [19]. This initial work led to the introduc-
tion of near sets [20], elaborated in [21, 13]. The introduction of tolerance near sets
leads to a perception-based approach to discovering resemblances between digital
images. This approach to the study of perceptual resemblances also leads to the
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introduction of perceptual representative spaces that are a generalization of the no-
tion of a representative space introduced by J.H. Poincaré in [22] in a study of the
contrast between the properties of physical and mathematical continua.

The proposed approach to measuring similarities between images in a visual
space has been inspired by J.H. Poincaré’s approach to organising visual sensa-
tions in sets of similar sensations [22, 23, 24] that later became known as tolerance
classes, work by E.C. Zeeman on tolerance spaces inspired by human visual per-
ception [25], and is directly related to the design of robotic vision systems (see,
e.g., [26, 27, 28, 29]). A vision system mimics the power and capability of the hu-
man sense of sight (i.e. the ability to detect light) combined with some type of cog-
nition, perception, or interpretation of the stimulus. Even though a complete survey
of vision systems is outside the scope of this chapter, the following examples are
presented to give an idea as to the various types of vision systems. [30] present a
vision system with the goal to position multiple cameras to identify and track mul-
tiple objects of interest in dynamic multiobject environments. [31] use 3-D time of
flight (rather than stereo vision) to control a robot in a simulation of loading a con-
tainer ship. The visual system generates range data to the objects that need to be
loaded onto a ship, and performs segmentation of an image generated from range
date to identify the centre of gravity and the rotation angle (information necessary
to grab the simulated containers). Finally, another example of a vision system is the
CogV system presented in [32] which mimics saccade and vergence movements in
a binocular camera system to identify objects of interest in the field of view.

3 Tolerance Spaces and Visual Perception

The term tolerance space was coined by E.C. Zeeman in 1961 in modelling visual
perception with tolerances [33, 34]. A tolerance space is a set X supplied with a
binary relation � (i.e., a subset � ⊂ X ×X) that is reflexive (for all x ∈ X , x � x)
and symmetric (for all x,y∈X , x� y and y� x) but transitivity of � is not required.
Sets of similar elements in a tolerance relation are called preclasses, introduced by
M. Schroeder and M. Wright [35]. A set A ⊂� is a preclass if, and only if ∀x,y ∈
A, x � y. A tolerance class is a maximal preclass in a tolerance relation. Let O⊂ X
denote a family of subsets of X . A family O is a cover of a set X if, and only if every
element of X belongs to some subset of O [36]. A covering of X is determined by �.

For example, it is possible to define a tolerance space relative to sets of images.
This is made possible by assuming that each image is a set of fixed points. Put
p ∈ [1,n],n ∈ N (natural numbers). Let O denote a set of perceptual objects (e.g.,
p× p greyscale subimages) and let gr(x) = average grey level of subimage x. Define
the tolerance relation �gr,ε , where

�gr,ε= {(x,y) ∈ O×O : |gr(x)−gr(y)| ≤ ε}, (1)

for some tolerance ε ∈ ℜ (reals). Then (O,�gr,ε) is a sample tolerance space. A
tolerance �gr,ε is directly related to the exact idea of closeness or resemblance (i.e.,
perception being within some ε) in comparing object descriptions. The basic idea is
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to find objects such as digital images that resemble each other with a tolerable level
of error. The choice of p (for p× p subimages) determines the granularity of an
image covering and influences the time required to construct image covers. Sample
choices of p ∈ {5,10,15,20} with ε = 0.1 are shown in Figures 1.2-1.5 for covers
of the drawing in the Fig. 1.1.

Tolerance relations provide a basis for representative spaces introduced by J.H.
Poincaré [22, 23, 24]. A representative space is denoted by 〈 X ,� 〉 for a finite, non-
empty set X and a tolerance relation �. For Poincaré, a representative space (aka,
tolerance space) is a model for a physical continuum (pc). The elements of a pc
are sets of similar sensations implicitly determined by a similarity relation. Such a
similarity relation is perception-based and is characterized by the term perceptually
indistinguishable. Let W denote a set of sensations that result from lifting small,
hand-held weights and let �ε denote a perceptual similarity relation.

For example, let w10,w11,w12 ∈ W denote 10, 11, and 12 gm weights. respec-
tively. Put ε = 1. Assume that X ,Y ⊂ W and X = {w11,w11},Y = {w11,w12}
are sets of perceptually indistinguishable weights determined by �ε , where each
hand holds one of the weights. In effect, X ,Y are examples of preclasses belong
to the relation �ε . By way of illustration, the preclass shown in Fig. 2 represents
a set of perceptually indistinguishable weight-lifting sensations. The pair (W,�ε)
is an example of a Poincaré form of representative space that represents human
weight-lifting perceptions, i.e., w1 �ε w2, since |w1−w2| ≤ 1 and w2 �ε w3, since
|w2−w3| ≤ 1. Poincaré’s introduction of representative spaces in [22] stems from
his interpretation of G. Fechner’s 1860 notion of psychophysics, sensory circles and
measurement of sensitivity to changes in external stimuli [37, 38]. Recent work on
representative spaces has led to the introduction of perceptual representative spaces
(PRSs) that provide useful frameworks for images analysis and image retrieval [3].

In a pc, almost solutions are common and a given equation has no exact so-
lution. An almost solution of an equation (or a system of equations) is an object
which, when substituted into the equation, transforms it into a numerical ’almost
identity’, i.e., a relation between numbers which is true only approximately (within
a prescribed tolerance) [39]. Equality in the physical world is meaningless, since
it can never be verified either in practice or in theory. Hence, the basic idea in a
tolerance space view of digital images, for example, is to replace the indiscerni-
bility relation in rough sets with a perceptual tolerance relation in covering im-
ages with homologous regions where there is a high likelihood of overlaps, i.e.,

Fig. 2 Set of Sensations
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non-empty intersections between tolerance classes that are sets of subimages with
similar descriptions.

This is the main idea underlying representative spaces introduced by Henri
Poincaré [22, 23, 24]. A representative space (aka, tolerance space) is a model
for a physical continuum (pc). The elements of a pc are sets of similar sensa-
tions implicitly determined by a similarity relation. Such a similarity relation is
perception-based and is characterized by the term perceptually indistinguishable.
Let W denote a set of sensations that result from lifting small, hand-held weights
and let �ε denote a perceptual similarity relation. For example, let w1,w2,w3 ∈ W
denote 10, 11, and 12 gm weights and let ε = 1. Assume that X ,Y ⊂ W and
X = {w1,w2},Y = {w2,w3} are sets of perceptually indistinguishable weights de-
termined by �ε , where each hand holds one of the weights.

This paper has the following organization. A brief history of near sets that pro-
vide a foundation for perceptual image analysis is given in Sect. 4. This history
includes a consideration of both spatially near sets defined relative to the F. Haus-
dorff lower distance between points and perceptually near sets defined relative to a
metric space for a set of n-dimensional feature vectors of real numbers representing
features of perceived objects and a distance function that measures the closeness
or apartness of pairs of feature vectors. Visual tolerance spaces are introduced in
Sect. 5. A visual tolerance space for digital images is introduced in Sect. 6. Mea-
suring the resemblance between tolerance spaces is considered in Sec. 7. The main
contribution of this paper is the introduction of a form of perceptual image analysis
in terms of a methodology for determining the resemblance between pairs of visual
tolerance spaces defined within the context of digital images.

4 History of Near Sets Underlying Perception in Image Analysis

The notion of nearness in mathematics and the notion of resemblance in the percep-
tion of physical objects such as digital images can be traced back to J.H. Poincaré,
who introduced sets of similar sensations (nascent tolerance classes) to represent
the results of G.T. Fechner’s sensation sensitivity experiments [38] and a framework
for the study of resemblance in representative spaces as models of what he termed
physical continua [40, 22, 24]. The elements of a physical continuum (pc) are sets
of sensations. The notion of a pc and various representative spaces (tactile, visual,
motor spaces) were introduced by Poincaré in an 1894 article on the mathematical
continuum [40], an 1895 article on space and geometry [22] and a compendious
1902 book on science and hypothesis [24] followed by a number of elaborations,
e.g., [41]. The 1893 and 1895 articles on continua (Pt. 1, ch. II) as well as repre-
sentative spaces and geometry (Pt. 2, ch IV) are included as chapters in [24]. Later,
F. Riesz introduced the concept of proximity or nearness of pairs of sets at ICM in
1908 [42]. During the 1960s, E.C. Zeeman introduced tolerance spaces in modeling
visual perception [25]. A.B. Sossinsky observed in 1986 [39] that the main idea un-
derlying tolerance space theory comes from Poincaré, especially [22] (Poincaré was
not mentioned by Zeeman). In 2002, Z. Pawlak and J. Peters considered an informal
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approach to the perception of the nearness of physical objects such as snowflakes
that was not limited to spatial nearness [43]. In 2006, a formal approach to the near-
ness of objects was considered by J. Peters, A. Skowron and J. Stepaniuk [44] in the
context of proximity spaces [45, 46, 47, 48, 49]. In 2007, near sets were introduced
by J. Peters [20, 21], followed by the introduction of tolerance near sets [50, 3].

In 1906, M. Fréchet introduced the idea of a metric spacemetric space in connec-
tion with a study of function spaces [51]. Fréchet observed that a distance function
ρ : X ×X → ℜ can be defined on any non-empty set X and called it a metric. Thus
was born the concept of a metric space.

Definition 1. Pseudometric Space
The pair 〈X ,ρ〉 denote a metric space that consists of non-empty set X and function
ρ defined on the set X , assuming non-negative values and satisfying the following
conditions for all x,y,z ∈ X .
(M.1) ρ(x,y) = 0 ⇐⇒ x = y,
(M.2) ρ(x,y) = ρ(y,x) (symmetry),
(M.3) ρ(x,z) ≤ ρ(x,y)+ ρ(y,z) (triangle inequality).

The notion of a pseudometric space formalizes the notion of the relative nearness
of points. For example, a point x is absolutely near a set A if, and only if ρ(x,A) =
0 [52]. The study of metric spaces depends upon the fundamental concept of the
limit point of a set that can be described in terms of nearness of a point to a set
which was first suggested by F. Riesz [42].

Remark 1. Point
Let O denote a family of subsets of a set X . The term point is interpreted to mean
either a point is a tuple of real numbers in n-dimensional Euclidean space denoted
by ℜn [36] or elements of a non-empty set X in topological space 〈X ,O〉 [53] or
elements of X in a metric space 〈X ,ρ〉 [53]. In our case, a point is an n-dimensional
feature vector in ℜn representing a description (see (6)) of a perceptual object such
as a pixel or a subimage (collection of pixels) or an image patch (collection of
subimages) in a digital image.

For a point x and a non-empty set B, define a lower distance

ρ(x,B) = inf
y∈B

xy, (2)

i.e., the greatest lower bound of the distances of x from points y ∈ B. F. Hausdorff
introduced lower distance in his 1914 work on the elements of set theory [54],
later translated by J.R. Aumann for the American Mathematical Society [55]. The
Hausdorff lower distance ρ(x,B) = inf{ρ(x,b) : b ∈ B} is a continuous function of
x [55].

In a metric space 〈X ,ρ〉, the gap between two non-empty sets A,B⊂ X is denoted
by Dρ(A,B) in [56], i.e.,

Dρ(A,B) = inf{ρ(a,b) : a ∈ A,b ∈ B}. (3)
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Another formulation of the the gap distance (3) between a pair of non-empty sets
A,B ⊂ X in a metric space 〈X ,ρ〉 appears in N. Bourbaki, written as

ρ(A,B) = inf
x∈A,y∈B

ρ(x,y). (4)

F. Riesz introduced the concept of nearness of pairs of sets at the ICM in Roma in
1908 [42]. Two types of near sets can be identified, namely, spatially near sets based
on spatial separation between points in pairs of sets and perceptually near sets based
on the extent of the separation between object descriptions (n-dimensional feature
vectors of real values) defined within a feature space. The nearness between sets A,B
was originally restricted to a zero lower distance between A and B, i.e., Dρ(A,B) [57]
and applied in the context of digital images in [58]. By relaxing the zero distance
requirement, a non-spatial nearness between sets is given in Def. 2.

Definition 2. Near Sets of Perceptual Objects
Put ε ∈ [0,∞) and let B denote a countable set of probe functions representing
perceptual object features. Let 〈X ,ρB〉 denote a pseudometric space with a non-
empty set of perceptual objects X and distance function ρB. Disjoint sets A,B ⊂ X
are near sets if, and only if the gap distance DρB

(A,B) ≤ ε .

In other words, the nearness of disjoint sets of perceptual objects is defined relative
to the Hausdorff lower distance between corresponding sets of descriptions of the
objects. That is, disjoint sets of objects with descriptions that are close enough to
each other are viewed as near sets. Def. 2 relaxes the requirement that Dρ(A,B) = 0
for the nearness of sets in [45]. A non-spatial view of near sets appears in [59] and,
more recently, nearness of sets based on resemblance (similar features of objects in
sets) in [21], [48]. In this work, the distance function ρB is defined using the Lp

norm distance. With this in mind, notice that (5) can be rewritten using ρB. Various
forms of ρB considered in the context of pseudometric spaces are given in [60].

Put ε ∈ [0,∞). Put A,B⊂X ,x∈A,y∈B,B = {φ : φ : X →ℜ},φi ∈B and τB,ε is
a tolerance relation in a perceptual representative space 〈X ,τB,ε 〉 introduced in [3],
i.e.,

τB,ε = {(x,y) ∈ X ×X : ‖ φ(x)−φ(y) ‖p≤ ε}, (5)

where ‖ · ‖p= (∑k
i=1 · p

i )
1
p (Lp norm distance).

A function φ ∈ B denotes a probe function representing a feature of a percep-
tual object. The notion of a probe function was introduced by M. Pavel [61] in a
study of image registration viewed in the context of general topology. A perceptual
representative space denoted by 〈 X ,τB,ε 〉 is a recent generalization of a Poincaré
representative space [3]. This form a representative space is considered perceptual,
since it is defined in terms of a finite, non-empty set of perceptual objects such as
digital images and a tolerance relation τB,ε . The relation τB,ε is itself considered
perceptual, since it determines a covering of a set X relative to a countable set of
probe functions representing perceived features of objects in X .
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Proposition 1. [3]
A perceptual representative space 〈 X ,τB,ε 〉 is a generalization of a Poincaré rep-
resentative space.

Let
φB(x) = (φ1(x),φ2(x), . . . ,φi(x), . . . ,φk(x)) (6)

denote a feature vector description of x in ℜn.

Remark 2. Perceptual Metric Space
If we let X denote a finite, non-empty set of perceptual object descriptions (feature
vectors), then 〈X ,‖ · ‖p〉 is a perceptual pseudometric space.

Definition 3. Perceptually Near Sets [4, 62]
Sets A,B are perceptually near (denoted by A ��τB,ε

B) if, and only if, there are

x ∈ A,y ∈ B such that
‖ φB(x)−φB(y) ‖p≤ ε.

Perceptually near sets can also be can be viewed more globally in terms of pre-
classes. Let X ,YB denote finite, non-empty, disjoint sets and countable set of probe
functions. The tolerance relation in (5) determines a covering for X and Y . Let
Hε

B(X) denote the set of preclasses in the covering of X determined by τB,ε . Simi-
larly, Hε

B(Y ) denotes the set of preclasses in the covering of Y determined by τB,ε .

Proposition 2. Sets X and Y are perceptually near sets (X ��τB,ε
Y ) if, and only if

there are preclasses A ⊂ Hε
B(X),B ⊂ Hε

B(Y ) such that A ��τB,ε
B.

Proof. Consider
⇒ Assume X ��τB,ε

Y . Then, from Def. 3, there are x ∈ X ,y ∈ Y such that x τB,ε y,

i.e., ‖ φB(x)−φB(y) ‖p≤ ε . Put x ∈ A ⊂ Hε
B(X) and y ∈ B ⊂ Hε

B(Y ). Again, from
Def. 3, A ��τB,ε

B.

⇐ Assume A ⊂ Hε
B(X),B ⊂ Hε

B(Y ) such that A ��τB,ε
B. Then from Def. 3, there

are x ∈ A,y ∈ B such that x τB,ε y. In other words, X ��τB,ε
Y . �

Interest in nearness in digital images is fairly widespread. The concept of nearness
enters as soon as one starts studying digital images (see, e.g., [58, 63, 64, 2, 4,
3]). The digital image of a photograph should resemble, as accurately as possible,
the original subject, i. e., an image should be globally close to its source. Since
proximity deals with global properties, it is appropriate for this study. The quality
of a digital image depends on proximity and this proximity is more general than the
one obtained from a metric. We note here that a digital image of a landscape is made
up of a very limited number of points (depending on the sensory array of a camera),
whereas the original landscape in a visual field contains many more points than its
corresponding digital image. However, from the point of view of perception, they
are near, depending on the tolerance we choose rather crudely in comparing visual
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field segments of a real scene with digital image patches (sets of scattered pixels).
To make such comparisons work, the requirement that the image should appear as
precise as possible as the original is relaxed. And the precise-match requirement
is replaced by a similarity requirement so that a digital image should only remind
us (within some tolerance) of the original scene. Then, for example, a cartoon in a
newspaper of a person may be considered near, if parts of a cartoon are similar or if
it resembles an original scene. Spatially near digital images were considered [58].
Descriptively near digital images are considered in [47, 64, 2, 4, 3].

5 Visual Tolerance Spaces and What We See

E.C. Zeeman pointed out that we do not perceive Euclidean 2D space with one eye
because the Euclidean plane has an infinite number of points and the brain contains
only a finite number of atoms [25]. Zeeman also illustrates tolerance spaces relative
to visual sensation, e.g., consider Zeeman’s proposed visual acuity tolerance space.

Fig. 3 Retina-to-visual cortex sensory signals path

Example 1. Visual Acuity Tolerance
Let S2 denote a large sphere concentric with the right eyeball and let 〈V,ξ 〉 denote a
visual acuity tolerance space (from [25]), where V ⊆ S2 is the visual field of the right
eye1 while ξ is the visual acuity tolerance on V consisting of all pairs of elements
of V which are indistinguishable: its distance is less than λ ∈ (0,+∞) according to
some metric from S2 (Zeeman uses angular distance), i.e., ξ is a distance tolerance.

The notion of a sensation in Poincaré [41] and a physical model for a probe func-
tion2 from near set theory [13] is implicitly explained by Zeeman [25] in terms of
mappings of sense inputs from sensory units in the retina of the eye to visual cortex
cells of the brain (see, e.g., Fig. 3). In this case, Zeeman considers a new tolerance
space 〈Y,η〉 in which Y is a right visual lobe3 and η is a tolerance defined to be

1 The visual field is everything in the physical world that causes light to fall on the retina of
the eyeball.

2 The term probe function was introduced by M. Pavel in 1993 as part of a study of image
registration and classical topology in discerning patterns in digital images [61].

3 Zeeman considers the case where the set of nerve cells in the lateral geniculate bodies are
stimulated by steady points of light in a visual field.
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η = α−1 ◦α, where a relation α ⊆ V ×Y is interpreted in terms of a light at x that
stimulates y and two points y1,y2 ∈Y are in the relation η when they are stimulated
by at least one x ∈V .

A sense input can be represented by a number representing the intensity of the
light from the visual field impacting on the retina. The intensity of light from the vi-
sual field will determine the level of stimulation of a cortex cell from retina sensory
input. Over time, varying cortex cell stimulation has the appearance of an electrical
signal that travels along the optical path from retina to visual cortex (see, e.g. [65]).
The magnitude of cortex cell stimulation is a real-value. The combination of retina
impulses sent to cortex cells (visual stimulation) is likened to what Poincaré calls
sets of sensations. This model for sensation underlies what is known as a probe
function in near set theory [21, 13].

Example 2. Indistinguishability Relation Between Sets
Zeeman also points out that a tolerance ξ on V induces another tolerance Ξ on the
subsets of V : for any X1,X2 ⊆ V , X1ΞX2 iff X1 ⊆ ξ (X2) and X2 ⊆ ξ (X1). Zeeman
calls the relation Ξ an indistinguishability relation (between sets) [25]. Notice that
in image processing, X1,X2 can be interpreted as digital images, where the relation
Ξ is an example of a relation between images (one of the main tools in a near set-
based approach in image analysis, e.g., [2, 64, 13, 66]).

Fig. 4 King George class Locomotive [67] Patch Preclasses

6 Visual Space

Visual space is considered both by Poincaré [24] and Zeeman [25]. A visual space is
an outcome of perception consisting of representation of sensations resulting from
light reflected from objects in a visual field4, i.e., representations of visual sensations
taken collectively (following Poincare) create a visual space.

Representations of sensations are presented in near set theory in a perceptual
representative space 〈 O,τB,ε 〉 consisting of a finite, non-empty set O of perceptual

4 The visual field is everything in the physical world that causes light to fall on the retina of
the eyeball.
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5.1: King George engine [67] 5.2: Engine cover, p = 5

Fig. 5 Visual Space

objects such as patches in digital images and a tolerance relation τB,ε defined in
terms of a countable family F of probe functions and a tolerance ε[3]. In this work,
the term visual representative space (vis-à-vis J.H. Poincaré) is used interchange-
ably with the term visual tolerance space (vis-à-vis E.C. Zeeman). In digital image
processing, perceptual objects can be interpreted in various ways [13], e.g. as pixels
or image patches (an image patch is a p× p5 array of pixels in a digital image, where
p is the number of pixels). Visual images (as well as results of perceptions of other
types) in near set theory are presented as subsets of a set of perceptual objects [13].
Thus, a visual sense input can be represented by image patches containing picture
elements (pixels) with varying light intensities. In such cases, preclasses consist of
image patches (see e.g. a preclass representing very similar various shadows with
apparently similar grey level intensities in the sketch of a locomotive in Fig. 4).
The intensity of light from the visual field will determine the level of stimulation of
a cortex cell from retina sensory input. Over time, varying cortex cell stimulation
has the appearance of an electrical signal that travels along the optical path from
retina to visual cortex (see, e.g., [65]). The magnitude of cortex cell stimulation is
a real-value. Multiple retina impulses sent to cortex cells (visual stimulation) are
likened to what Poincaré calls sets of sensations. Poincaré confines his comments
on visual space to its lack of homogeneity, which is consistent with the contem-
porary view of visual space (i.e., all points of the retina do not play the same role
(points of light at the edge of the retina are less distinct than points of light impact-
ing on the centre of the retina) and non-isotropic (impressions made by perception
of depth of points of light are not the same in all directions) [24, II.4]. In keeping
with Poincaré’s approach in assembling sets of similar visual sensations, one can
imagine the assembly of sets of similar visual sensations (preclasses) resulting from
the perception of similar light intensities (see, e.g., bounded region representing a
sample hat preclass containing 5×5 image patches with similar average grey levels
in Figs 5.2 and 6.2). Scattered shaded boxes in image patches with the same average
greylevel intensity represent a single preclass in an image cover.

5 Here we follow the notational convention widely used in image processing (e.g., [68]),
where the term array of pixels is synonymous with a matrix of pixels.
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6.1: Coach train [69] 6.2: Train cover

Fig. 6 Another Visual Space

Example 3. Visual Tolerance Space for Digital Images
There is an obvious practical application of Poincaré’s approach to defining a rep-
resentative space for vision. That is, it is possible to extract from image regions6

clusters of preclasses containing digital image patches with similar average inten-
sities. Let O denote a set of grey level image patches and let φgr : O → ℜ. For
x ∈ O, φgr(x) is an average grey level of patch x. For the tolerance relation in (5),
put B = {φgr} and write τφgr ,ε to denote a single function relation. Consider the
visual tolerance space 〈O,τφgr ,ε〉 with a relation τφgr ,ε defined in (7).

τφgr ,ε = {(x,y) ∈ O×O : |φgr(x)−φgr(y)| ≤ ε}. (7)

For example, the image patches covered with shaded boxes represent a maximal
locomotive preclass in Fig. 5.2). Similarly, one can identify a coach train preclass
in Fig. 6.2 that is part of the cover for the train shown in Fig. 6. Since both covers
have image patches containing shaded boxes, then Fig. 5.2 ��τφgr ,ε

Fig. 6.2, i.e., the

locomotive in Fig. 5.2 resembles the coach train in Fig. 6.2 for subimage description
based on average greylevel, p = 5,ε = 0.1. Sample preclasses are shown in Fig. 7.1
and 7.2.

7 Resemblance between Tolerance Spaces

Poincaré and Zeeman presage the introduction of near sets [20, 21] and research
on similarity relations, e.g., [16, 39, 18]. Distance tolerance relations are directly
related to the idea of closeness or resemblance (i.e., being within some tolerance)
in comparing objects such as the digital images. By way of application of Poincarś
approach in defining visual spaces and Zeeman’s approach to tolerance relations, the
basic idea in this section is to compare objects such as image patches in the interior
of digital images (e.g., the 10×10 patches in Fig. 7.1 and Fig. 7.2) and discern image
patches that resemble each other relative to one or more features with a tolerable
level of error. By restricting the comparison of image patches to one feature (e.g.,
average grey level of an image patch), the study of resemblance between patches in
digital images is analogous to Poincaré’s approach to discovering sets of sensations

6 An image region is a set of contiguous image patches and more than one region can contain
very similar image patches (see, e.g., [13]).
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7.1: Engine preclass 7.2: Train Preclass

Fig. 7 Sample Image Preclasses, p = 10,ε = 0.1

in a representative space such as the weight-lifting space in Example 4 or the visual
space in Example 3 (see, in particular, the realization of a set of indistinguishable
sensations in comparing hand-held weights in Fig. 2). Considering more than one
feature in the study of Poincaré’s representative spaces is outside the scope of this
article (see, e.g., [2, 64] for tolerance spaces defined relative to multiple features
such as colour, texture, edge intensity, edge-orientation).

Example 4. Poincaré’s Representative Weight-Lifting Space
Poincaré repeatedly refers to Fechner’s weight-lifting experiment. In Poincaré’s
hands, there is a shift from Fechner’s search for a measure of sensation to the intro-
duction of a representative space7 containing representations of our sensations [24,
II.4]. Let W denote a set containing sensations resulting from weight lifting, e.g.,
sensations w1,w2,w3 recorded by Fechner for 10, 11, and 12 gm weights, respec-
tively. From a perceptual point of view, Poincaré observes that w1 is indistinguish-
able from w2, w2 is indistinguishable form w3, but w1 is distinguishable from w3.

This view of weight-lifting sensations leads to sets of indistinguishable sensa-
tions (i.e., preclasses such as the one shown in Fig 2). Let ε denote a threshold on
‘perceived difference in weights’ and let φ : W → ℜ. For x ∈ W(φ(x) is the per-
ceived weight, the sensation one experiences when lifting x). Poincaré implicitly
defines a tolerance space 〈W,�φ ,ε〉 (he calls it a representative space [24]). Impicit
in Poincaré’s reasoning about a represenative weight-lifting space is the tolerance
relation defined in (8).

�φ ,ε= {(x,y) ∈W ×W : |φ(x)−φ(y)| ≤ ε}. (8)

Let the family of preclasses of a perceptual representative space 〈W,�φ ,ε〉 be de-
noted by PHε

φ (W ). It follows from definitions that a set A ⊂ W is a preclass of the
relation �φ ,ε , A ∈ PHε

φ (W), if |φ(x)− φ(y)| ≤ ε for every x,y ∈ A. Then taking
Fechner’s example and restricting W = {w1,w2,w3}, the weight-lifting sensations

7 l’espace représentatif [22, p.2], [24, I.4,77].
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separate into overlapping preclasses A,B ∈ PHε
φ , A = {w1,w2} and B = {w2,w3}.

These preclasses are elements in what Poincaré calls a physical continuum [24, I.2,
51]. Poincaré did not consider the resemblance between representative spaces. Zee-
man [33, p. 242] does consider pairs of tolerance spaces 〈X ,ξ 〉 and 〈X ,η〉 that are
related to each other if there exists a relation α ⊂ X ×Y such that ξ = α ·α−1

and η = α−1 ·α (see Example 1). However, Zeeman did not consider the similarity
between tolerance spaces. That is the central topic in this section (an approach to
measuring the resemblance between pairs of visual tolerance spaces is given here).

Example 5. Tolerance Space-Based Nearness Measure
Let O denote a set of image patches and let X ,Y ⊂ O denote sets of image patches
in individual digital images. After the manner in Example 3, consider a tolerance
relation τφ ,ε on X ,Y defined relative to a probe function φ and ε ∈ (0,+∞), i.e., for
the relation defined in (5), put B = {φ}. Then consider the covering of tolerance
classes on the set X ∪Y for X ,Y ⊂ O determined by τφ ,ε .

Let Hε
φ (X ∪Y ) denote the family of all tolerance classes of relation τφ ,ε on the

set X ∪Y . Notice that τφ ,ε is defined over a perceptual pseudometric space 〈X ∪Y,‖
· ‖p〉 (see Remark 2). The tNM nearness measure (introduced in [70], elaborated
in [71, 2]) estimates the degree of resemblance between X and Y . This measure is
defined in (9) as the weighted average of the closeness between the cardinality (size)
of sets A∩X and A∩Y where A ∈ Hε

φ (X ∪Y ) and the cardinality of tolerance class
A is used as the weighting factor.

tNM(X ,Y ) =

∑
A∈Hε

φ (X∪Y )

(
min{|A∩X |, |A∩Y |}
max{|A∩X |, |A∩Y |} · |A|

)

∑
A∈Hε

φ (X∪Y )
|A| . (9)

Example 6. Resemblance Between a Pair of Visual Tolerance Spaces
Start with a pair of visual tolerance spaces 〈X ,τφ ,ε 〉 and 〈Y,τφ ,ε 〉 for particular
choices of the probe function φ (in this Example, two choices of φ are given). First,
the digital images in Fig. 5.1 and Fig. 6.1 are transformed into sets of p× p image
patches. In this example, p = 5,ε = 0.01. The transformation of digital images into
sets of image patches for particular p,ε and the use of tNM in (9) to measure the
resemblance between images has recently been made possible in a public-domain
NEAR system toolset [72].

Put X ,Y in Example 5 equal to the images viewed as sets of image patches in
Fig. 7.1 and Fig. 7.2, respectively. After the manner in Example 3, consider a toler-
ance τφgr ,ε on X ,Y . That is, consider a covering of tolerance classes on a set X ∪Y
determined by τφgr ,ε given in (7) and φgr as defined in Example 3 with ε ∈ (0,+∞).
Let Hε

φgr
(X ∪Y ) denote the family of all tolerance classes of relation τφgr ,ε on the set

X ∪Y .
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Fig. 8 Preclass Consisting of Similar Image Patches from Figs. 7.1 & 7.2

A sample preclass constructed with similar image patches (some in the set of
image patches in Fig. 7.1 and some image patches in Fig 7.2) is shown in Fig. 8.
Table 1 gives some sample results for various choices of p and ε .

Table 1 Greyscale Image Nearness Estimates Table.

Relation Edge Length p Tolerance ε tNM(X ,Y )
τφgr ,0.1 20 0.1 0.2409

τφgr ,0.15 20 0.1 0.2499

τφgr ,0.2 20 0.2 0.2540

τφgr ,0.1 15 0.1 0.2242

τφgr ,0.15 15 0.15 0.2276

τφgr ,0.2 15 0.2 0.2410

From Table 1, it is apparent that the original images in Fig. 5.1 and Fig. 6.1 are
not very near (have little resemblance). For the experiments recorded in Table 1, the
best result is 0.2540 for p = 20,ε = 0.2.

However, the measure of image resemblance using tNM will change (probably
increase), if one were to consider other features (either singly or in various combi-
nations). For example, if we introduce a probe function (denoted by φeo) to compute
the average edge orientation of subimages in the locomotive and touring train, one
can expect higher nearness measurements, since one can observe that there are many
edges that are similar in both images (see Table 2).

The results in Table 1 corroborate our perception concerning the abundance of
similar edges in both the locomotive and touring train images. That is, from 0.5151

with p = 20,ε = 0.01, and from 0.5161 with p = 15,ε = 0.01, it can be concluded
that the images in Fig. 5.1 and Fig. 6.1 are moderately near each other relative
to edge orientation. Many other results with various nearness measures have been
reported in [71, 64, 5, 6, 7, 8, 73] and numerous other studies of image resemblance
in [2].
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Table 2 Image Edge Orientation Nearness Estimates Table.

Relation Edge Length p Tolerance ε tNM(X ,Y )
τφeo,0.01 20 0.01 0.5151

τφeo,0.1 20 0.1 0.4670

τφeo,0.2 20 0.2 0.4465

τφeo,0.01 15 0.01 0.5161

τφeo,0.1 15 0.1 0.4528

τφeo,0.2 15 0.2 0.4529

Fig. 9 NEAR system GUI [74]

8 Implementation of a Nearness System

The goal of the NEAR system is to demonstrate applications of the near set the-
ory. A complete tutorial and the NEAR system itself is available for downloading
at [74]. The system implements a Multiple Document Interface (MDI) (see, e.g.,
Fig. 9) where each separate processing task is performed in its own child frame.
The objects (in the near set sense) in this system are subimages of the images being
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processed and the probe functions (features) are image processing functions defined
on the subimages. The system was written in C++ and was designed to facilitate
the addition of new processing tasks and probe functions8. Currently, the system
performs a number of major tasks, namely, displaying equivalence and tolerance
classes for an image, segmentation evaluation, measuring the nearness of pairs of
images, content-based image retrieval (CBIR) on a selected image database, dis-
playing the output of processing an image using an individual probe functions, and
storing the results of an image analysis session in a location selected by a researcher.
This report is organized as follows:

topic.1 Brief introduction to near set theory implemented in the NEAR system,
topic.2 Implemented distance functions: tNM, Hausdorff, Hamming,
topic.3 Perceptual image processing

• Probe functions,
• Average greyscale value,
• Normalized RGB,
• Shannon entropy,
• Pal entropy,
• Edge-based probe functions (Mallat’s method),
• Grey level co-occurrence matrices,
• Zernike moments
• CIELUV colour space,

topic.4 Approximate nearest neighbours
topic.5 Equivalence class frame
topic.6 Tolerance class frame
topic.7 Segmentation evaluation frame
topic.8 Near image frame
topic.9 Feature display frame

9 Conclusion

This chapter introduces a visual perception approach in image analysis (briefly, per-
ceptual image analysis). This approach has been motivated by a need to solve the
image correspondence problem in terms of perceived resemblances between digi-
tal images. What the eye sees should correspond, to some extent, to measures of
nearness between pairs of images. Pointers on how to go about establishing a per-
ceptual image analysis can be found in studies of representative space models of
physical continua by Poincaré toward the end of the 19th century and the connec-
tion between visual acuity and tolerance spaces introduced by Zeeman during the
1960s. In addition, the parallel discoveries about spatially near sets that began with
F. Riesz in 1908 and continued with the introduction of proximity spaces in a sem-
inal work by S.A. Naimpally in 1970, amplified and extended by others, led to the

8 Parts of the Graphical User Interface (GUI) were inspired by the GUI reported in [75] and
the wxWidgets example in [76].
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recent discovery of tolerance near sets that are perception-based and not limited to
spatial nearness. The important thing here is the need to arrive at an understanding
of the meaning of a point in perceptual representative spaces and the formulation of
description-based pseudometric spaces suitable for image analysis. This chapter is
attentive to both research streams (i.e., tolerance space stream and near set stream)
in presenting a viable approach to solving the image correspondence problem and
in arriving at a satisfactory approach to perceptual image analysis.
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Chapter 7 
An Introduction to Magnetic Resonance 
Imaging: From Image Acquisition to Clinical 
Diagnosis 

Kenneth Revett* 

Abstract. Magnetic resonance imaging provides a comprehensive and non-invasive 
view of the structural features of living tissue at very high resolution (typically on 
the 1-2 mm scale). A variety of pulse sequences have been developed that provide 
quantitative information regarding the structural features of a variety of tissue 
classes, providing details that are extremely beneficial in a clinical setting. Unlike 
positron emission tomography (PET), MRI as it does not deploy the use of 
radioactive isotopes, and hence can be performed repeatedly. Modern day MRI 
scanners can provide extremely high resolution images in a relatively short period of 
time (approximately 20 minutes) on average in a typical diagnostic scan. A variety 
of measurements can be made in a single scanning session through the application of 
serial pulse sequences. These pulse sequences are computer programmes that control 
the scanner parameters, which in turn control factors such as tissue contrast. By 
deploying the appropriate pulse sequence, One can obtain detailed information about 
the vasculature of a region of the body (magnetic resonance angiogram), deep tissue 
injury, and more recently one can obtain information regarding the microstructural 
features of the brain. Indeed, MRI is routinely used to identify and/or confirm the 
diagnosis of a variety of brain parenchyma or vasculature diseases such as multiple 
sclerosis and stroke respectively. With further improvements in the electronics and 
pulse sequences, more detailed and accurate imaging techniques may provide 
medical science with the opportunity to automate the diagnosis of a variety of 
diseases which present ultastructural changes. 
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1   Introduction to MRI 

Magnetic resonance imaging is a technology that provides high quality images 
utilising the intrinsic magnetic properties of matter. MRI is utilised as a diagnostic 
tool in medicine, which will be the focus of this chapter. More specifically, MRI is 
a non-invasive method for acquiring high resolution images of the internal 
structures of the body non-invasively. This ability has placed MRI as an 
indispensable tool for clinical diagnosis of a number of diseases, ranging from 
minor sports injuries to multiple sclerosis. The purpose of this chapter is to 
provide an overview of structural MR imaging and describe how MRI can be used 
to diagnose a variety of neurological diseases. The first section of the chapter will 
describe how an MRI is obtained – covering the basic aspects of image 
acquisition. This is followed by a discussion of imaging modalities such as T1, T2, 
and proton density (PD) imaging, with an emphasis on enhancing tissue class 
contrast. This is followed by a section on the application of machine learning 
techniques for processing MRI images to enhance the information content in the 
context of providing additional information for clinical diagnosis. The last section 
discusses two classes of conditions that have been studied extensively using MRI 
technology. 

1.1   The Historical Development of MRI 

MRI is based on a technology that was established in the mid part of the 20th 
century - nuclear magnetic resonance (NMR), the discovery of which resulted in 
several Noble Prizes (notably Felix Bloch and Edward Purcell in Physics, 1952, 
see http://nobelprize.org/nobel_prizes/physics/laureates/1952/purcell-lecture.pdf 
for details). NMR relies on the observation that when certain nuclei were placed in 
a strong static magnetic field, and then exposed to an additional oscillating 
magnetic field, certain atoms will absorb energy from the oscillating magnetic 
field, provided the energy level is correct for the particular atom. Once the 
secondary oscillating magnetic field is turn off, the atoms in the sample will 
release a packet of energy, which is detected using an appropriately designed 
receiver. In this way, the sample is probed to determine if a particular atom exists 
in a sample of material, and in addition, the quantity can be determined as well. 
This is a very brief overview of NMR, as it s applied to chemical spectroscopy – 
the determination of the chemical composition of matter. The trick to NMR is to 
ensure the secondary oscillating magnetic field impart the correct amount of 
energy into the sample. Typically, the energy is in the radio frequency (RF) part of 
the spectrum. In order for NMR to work, the energy of the incoming magnetic 
field must correspond to the precessional frequency of the atoms being probed. 
Precession – which is a process whereby a rotating charged particle such as a 
proton rotates on its axis as the Earth does. Each type of proton has its own 
precessional frequency – termed the Larmor frequency (after the Irish physicist, 
Sir Joseph Larmor), whom had discovered that there is a quantitative relationship 
between an applied magnetic field and the precessional frequency of protons. 



An Introduction to Magnetic Resonance Imaging 129
 

More specifically, the Larmor frequency quantifies the angular frequency of 
precession of nuclear spins as a function of the applied magnetic field. Hence, 
NMR relies on the properties of the nucleus, and this fact is reflected in the name 
of the technology: NMR – nuclear magnetic Resonance.  

The 'nuclear' component was applied because only the nuclei of certain atoms 
would resonate at a particular frequency when exposed to an externally applied 
magnetic field. It turns out that atoms with an odd number of protons in their 
nucleus are able to produce a signal under the conditions deployed in NMR. This 
property is well known in the Quantum Physics world – and they have assigned a 
quantum label to it – called S for spin. The term 'magnetic' was used because the 
phenomenon requires static and oscillating magnetic fields, and lastly, 'resonance' 
was used because of the frequency of precession (also termed resonance) is 
dependent partially on the magnitude of the magnetic fields. NMR was initially 
deployed as an analytical chemistry technique, principally to investigate the 
atomic composition of compounds. NMR became the method of choice for 
quantitative chemistry, but in addition, served as the basis for a new technology 
that was named MRI. 

In 1973, Paul Lauterbur published a paper entitled 'image formation by induced 
local interactions; examples employing magnetic resonance,' in the journal Nature 
(Lauterbur, 1973). This paper initiated the new field of MRI, which Lauterbur 
termed 'zeugmatography,' from the Greek (zeugmo), meaning to join together. He 
was referring to joining together weak and strong magnetic fields for producing a 
2D image, thus extending spectral analysis from 1D (as in NMR spectroscopy) to 
2D (and thus earning him the title 'father of MRI'). Although Lauterbur's initial 
study did not involve living tissue (he imaged 2 test tubes - see Figure 1), his 
results clearly provided the impetus to apply this technology to other domains - 
such as imaging the structure of complex materials.  

In the 1970's, a number of laboratories were experimenting and refining a 
separate technology termed computed tomography, sometimes referred to as 
Computed Axial Tomography (CT or CAT). Tomography, (from the Greek term 
tomos) means to "cut" and computed refers to the way the image was produced 
using computer based technology. CT as we currently know it was developed by 
the British engineer Godfrey Hounsfield in 1972, for which he won the Nobel 
Prize for Physiology or Medicine, 1979. CT is itself a technology that was derived 
from X-ray technology, first discovered by Wilhelm Roentgen in 1895 (yet 
another Nobel Prize winner!). CT utilises the imaging power of X-rays, but to 
acquire more depth in the image required the X-ray device to move (or likewise 
the object must be rotated) so that the object is imaged from different angles. The 
pictures from various angles are then combined to form a single image of the 
object (see Figure 2 for one of the original images from the early 1970's). The 
significant contribution from CT to the burgeoning MRI technology was the 
concept of forming a tomogram - a 2D projection of the object in the scanner onto 
a film. This advance provided greater in plane resolution, which is a requirement 
for modern day MRI technology. MRI then can be attributed to the confluence of 
two very different - yet complimentary technologies: NMR provided the analytical 
power and CT provided the tomographic component. In addition, a number of 
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Fig. 1 This image was one of the first MRI images produced - it was taken by Prof 
Lauterbur, the father of MRI' - and depicts 2 test tube taken from a superior (top-down) 
view.  

 

Fig. 2 An early and modern CT image of an axial slice through a human brain, using state-
of-the-art technology at the time, ca. 1975 for the original (on the left, and 2005 for a 
modern image on the right). 

scientists have provided valuable insights and refinements along the course of the 
development of MRI. The next section presents an overview of MRI technology in 
its current form.  

2   The Basics of MRI 

MRI provides a high quality image in terms of spatial resolution of an object 
placed within the scanner (see Figure 3 for a typical medical grade MRI scanner). 
It is a tomographic technique (like CT) that creates a set of images (each 
essentially in 2D) of a subject when placed in the scanner, in the form of a 
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collection of slices, much like a loaf of bread. When the slices are placed next to 
each other, and viewed using specialised computer software, the slices form a 
continuous 3D image of the object. The images contain details about the structural 
features of the material - in this chapter, the discussion will focus exclusively on 
imaging the brain.  

The brain is a complex structure, containing a variety of tissue types such as 
cerebrospinal fluid (CSF), grey matter (GM), white matter (WM), vasculature, 
along with other tissue types that are found in the skull cavity such as muscle, fat, 
and other minor components. The task of producing a clinically relevant MRI 
image is to generate an image that provides contrast between the various tissue 
types of interest, without compromising spatial resolution – clarity. As you will 
soon discover, there is a delicate balance between the clarity of an image – which 
is characterised by the amount of signal acquired given some inherent noise level 
–termed the signal-to-noise (SNR) ratio. Each tissue type will generate a signal 
when exposed to an appropriate MRI procedure (if for instance we are using the 
Hydrogen atom as our probe) – the magnitude of which is dependent upon the 
number of atoms and their unique chemical environment. This is the basis of 
contrast between tissue types the difficulty is to create an image with maximal 
contrast between the various tissue types, without compromising SNR. A high 
resolution image will provide information that will greatly assist a physician in 
diagnosing and/or determining the extent or the level of progression of a given 
medical condition. 

 

Fig. 3 A cut-away view of a scanner with a subject inside the scanner bore, illustrating the 
major features of a medical grade, closed-MRI scanner. Image source:  
http://www.magnet.fsu.edu/education/tutorials/magnetacademy/mri/images/mri-scanner.jpg 
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Diseases and medical conditions typically produce structural changes across 
one or more tissue types in the brain - a classic example is a stroke. A stroke is 
caused by a reduction of the blood supply to a region of the brain. When this 
happens, tissue dies, which in turn changes the properties of the tissue in the 
effected region(s) of the brain. The altered tissue properties can be detected and 
even quantified with an appropriate type of high resolution MRI scan. As another 
example, multiple sclerosis (MS), a debilitating disease which causes a reduction 
in nerve conduction and plaques, can be detected using MRI at two different 
levels. At one level, lesions can be detected using typical high resolution imaging 
protocols and in addition, the subtle changes in the structure of white matter can 
be detected through diffusion weighted imaging techniques (Schmierer et al., 
2010). Moreover, the stage of the disease can be quantified fairly accurately, and 
is typically correlated with overt cognitive and physiological symptoms. There are 
a wide range of diseases and medical conditions that produce alterations in brain 
anatomy - both at the macro and micro-structural levels. The role of MRI in 
medicine is to highlight these changes - how this is done is addressed in the next 
section.  

2.1   Overview of the Image Acquisition Process 

There are several components to an MRI system: the scanner hardware itself,  
with a collection of supra paramagnetic magnets, a radio frequency (RF) 
receivers/transmitters (also a type of magnet, but one that oscillating), a computer 
based control center, and a pulse sequence. A pulse sequence is a software base 
system that allows the radiologists to create very specific types of image scans 
based on a set of parameters that control the operation of the hardware 
components. A typical scan takes approximately 10-20 minutes, depending on the 
purpose of the scan - that is what condition/disease is being investigated. Note that 
the subject is perfectly safe during this process - no harmful radiation is used, 
either in the form of radioisotopes or ionizing radiation (as is used in PET/CT 
scans). Instead, MRI influences the natural behaviour of certain atomic nuclei 
through the application of magnetic fields to produce images. The material is 
placed within the scanner, and a large static magnetic field is applied which 
magnetises susceptible material contained within the scanner. For the discussion 
in this chapter, the focus will be on using the Hydrogen atom as the probe, as it 
occupies 60% of the total atoms in a human body (principally in the form of 
water). The atoms in the subject respond to the static magnetic field (which is on 
the order of 1.5-3.0 T) by aligning either with or against the applied magnetic 
field, acting as a collection of tiny magnets themselves. The protons remain in this 
configuration while the externally applied magnetic field is on – or until another 
magnetic field is applied. Then a radio frequency (RF) pulse of electromagnetic 
radiation (this is an oscillating magnetic field from the RF transmitter) is applied 
to the subject in the scanner very briefly. If the energy is correct (i.e. at the right 
frequency for Hydrogen atoms), this RF pulse imparts energy into the hydrogen 
protons, and in the process begin to move against the direction of the externally  
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Fig. 4 An example of a signal termed a free Induction decay (FID), emitted when the RF 
pulse has been turned off. 

applied magnetic field for the duration of the RF pulse. Once the RF pulse is turned 
off, the displaced magnetised material returns back to alignment with the externally 
applied magnetic field. When this happens, energy is released which is detected by a 
receiver (the RF receiver component) placed around the tissue of interest (i.e. the 
brain). The profile of a signal is illustrated in Figure 4, which depicts an oscillating 
signal whose amplitude decays with time – that is a periodic signal encased in an 
exponentially decaying envelope. The energy is in the form of an oscillating 
magnetic field - which induces an alternating current (AC) in the recording circuitry. 
The AC current is sampled in order to digitise the input for storage within a 
computer system. This data is used to form an image, which is typically collected as 
a series of 'slices' - each representing a section through the region of the body 
scanned. The numeric data associated with the scan is stored as part of the patient 
record, which can be viewed off-line using a variety of applications such as 
MRIcron (see http://www.cabiatl.com/mricro/mricron/install.html). The resulting 
images are used by medical practitioners to evaluate the status of the patient for 
diagnostic purposes. Note that these 'films' are essentially copies of the slices printed 
on specialised paper - available for visual inspection immediately after the scan - a 
very nice feature. In the next section, this process is described in more detail, so the 
reader will gain a fuller understanding of the process of image formation.  

2.2   The Physics behind MRI 

At the heart of any MRI system is the scanner itself, which houses a large magnet. 
Typical MRI grade magnetic field strengths are measured in units called Tesla, 
named after the Serbian born scientist Nikola Tesla. The Tesla (abbreviated T) is 
equivalent to 10,000 Gauss (G), the SI unit for magnetic flux density. For 
perspective, the Earth's gravitational field has a magnetic flux density of 0.5 G, 
and a typical refrigerator magnet has a value of approximately 50 G. In contrast, a 
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typical medical grade MRI scanner houses a 1.5T magnet - and some research 
grade scanners can go up to 8T. The magnitude of the magnet (in terms of T) has a 
significant impact on the quality (in terms of resolution) of the resulting images - 
much like the quality of a digital camera (resolution) depends on the number of 
pixels it stores for each image.  

There are two basic forms of scanners: open and closed forms. Open form 
scanners are typically flat bed scanners, where the subject lies down on, much like 
a bed. This configuration is typically used for subjects that are not comfortable 
entering into a closed, whole body scanner, which has a tunnel like configuration. 
For instance, anyone whom is claustrophobic might find the closed configuration 
uncomfortable, as well as young children, or obese individuals might find it 
difficult to fit into the bore of the scanner. A drawback of the open configuration 
is the inability to produce a strong magnetic field around the subject. Therefore, 
open configuration systems tend to have low field strengths (015-0.5 T), which 
reduces the resolution of the resulting images. On the other hand, closed forms 
provide a tube into which the subject is placed, and are typically of sufficient 
length to house the entire length of an individual. The subject is placed on a gantry 
which is then moved into the bore of the scanner electronically. This configuration 
provides a much stronger and a constant magnetic field strength, and hence a 
higher resolution image set can be obtained.  

Magnets found in closed forms are typically superconducting magnets, which 
need to be cooled to very low temperatures in order to produce a high quality and 
powerful magnetic flux. These are electromagnets, which are built from coils of 
superconducting wire. Essentially, a large solenoid, the superconducting wire 
(typically made from a substance such as niobium-titanium) is wrapped around a 
core, and the entire housing must be kept at extremely low temperatures (@ 10K) 
in order for the material to be in a superconducting state. Typically, a substance 
such as liquid helium is used to maintain the temperature below the critical 
temperature, which is one of the reasons for the expensive price tag of a medical 
grade MRI scanner (1-1.5 Millions $).  

When a substance (such as a person) is placed inside an MRI scanner, the 
material elements respond to the magnetic field according to its magnetic 
susceptibility, which is a measure of how magnetised it becomes. There are three 
basic classes of objects with respect to magnetic susceptibility: diamagnetic, 
paramagnetic, and ferromagnetic. Briefly, diamagnetic materials respond by 
producing a small magnetic field in the opposite direction of the applied magnetic 
field. In effect, these materials reduce the overall magnet field - these substances 
are not magnetisable at all (i.e. plastic). Paramagnetic materials are magnetisable, 
but only for the duration of the magnetic field. Notably, certain metabolic forms of 
haemoglobin, such as de-oxyhemoglobin are very paramagnetic. Hemosiderin, a 
breakdown product of blood (as occurs at the end-stage of a hemmorhage) is supra 
magnetic - much like niobium-titanium, used in the magnetic core of an MRI 
scanner. Ferromagnetic substances are strongly attracted to a magnetic field - and 
are permanently magnetise - such as load-stone. Typical hobby magnets are 
examples of substances belonging to this category. The human body is generally  
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Fig. 5 The alignment of protons in an external magnetic field. 

diamagnetic - for example bulk water found in tissues is diamagnetic. A natural 
question to ask is: What happens when a body is placed in the scanner?  

Since MRI is based on NMR technology, one would expect any response to the 
injection of energy would be due to interactions within the nucleus, which is 
indeed the case. As one will remember from chemistry, water, the most abundant 
substance in the body, consists of 2 H atoms and 1 Oxygen atom. The Hydrogen 
nucleus consists of a single proton, a spinning particle with a positive charge. It is 
well known that spinning charges generate a small but measurable magnetic field 
(as proposed by Felix Bloch). When the magnet is turned on, the protons in water 
respond by aligning with the applied external magnetic field. From quantum 
mechanics, it is known that atomic nuclei have a property termed 'spin' - or more 
accurately a spin quantum number S. The S for the hydrogen nucleus - a single 
proton is 1/2. There are 2S + 1 possible spin states for a given atom, and hence 
there are 2 spin states for a hydrogen atom. The energy states for the hydrogen 
atom are designated ± ½. The result of this is that there are two energy states for 
the hydrogen atom. On state, which we can designate as the '+' energy level is 
energetically favorable relative to the other possible state (denoted as '-' for 
example), which is energetically less stable. If there were equal number of protons 
in each of these two states, they would not produce a net magnetic field, because 
there would not be any net polarity. In atoms with an odd number of protons, it is 
not possible to have an equal number of protons populating each energy level – 
there will always be 1 more in one of the two states. This response to an externally 
applied magnetic field results in the production of a net magnetic field – termed a 
magnetic dipole. Each magnet (which is really just a spinning aligned proton is 
extremely small, that is why you need to use probes that are extremely abundant – 
such as Hydrogen atoms), The magnitude of the impressed magnetic dipole 
moment depends on the number of protons that are not paired with protons in the 
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opposite direction. Typically, one finds that there will be approximately one in 
approximately 106 protons that will align in the higher energy state direction, 
yielding a very small magnetic dipole. This may not sound like a lot (1 in 106), but 
one has to remember that in 1 mole of water (18 grams), there are 6.02 x 1023 
atoms - so there is the potential for a lot of protons to align in favor of the higher 
energy state, producing a large magnetic moment (on the order of 1015). This 
process is illustrated in Figure 6, which highlights the imposed net magnetic 
dipole induced in the material due to the application of the external magnetic field. 
These protons remain in their configuration as long as the magnetic field is 
applied (they are diamagnetic), and will revert back to their ground state when the 
field is removed.  

 

Fig. 6 Net magnetisation vector when the external magnetic field is turned on. 

In addition to forming a magnetic dipole moment aligned in the direction of the 
applied magnetic field, the protons will precess – revolve around the principle axis 
of the main external magnetic field, much like a top does when it is set into 
motion and begins to slow down. Precession is characterised by an angular 
frequency, which is related to the normal linear frequency according to the 
following: ω = 2πf, where f is the linear frequency. There is a relationship between 
the angular frequency of precession and the magnitude of the magnetic field - the 
Larmor equation - ω = γB, where B is the magnitude of the magnetic field, and γ 
is the gyromagnetic constant (42.57 MHz/T for the hydrogen nucleus). The 
gyromagnetic ratio is a proportionality factor that is unique for each nucleus that 
contains an odd number of protons: for instance 19F has a value for γ of 40.0 
MHz/T. It must be re-iterated that each atom that is magnetically susceptible has 
its own unique gyromagnetic constant. This is a fundamental property of 
behaviour of matter at the atomic level – and provides a way to image different 
types of atoms with extreme selectivity.  

At this point, with the subject in the scanner, we are now ready to extract a 
collection of signals that will be used to generate the MRI image of the tissue of 
interest (i.e. the brain). Remember, the magnetic dipole induced by the external 
field is aligned along the Z-axis, with protons precessing at their Larmor 
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frequency. Everything will remain this way unless the magnetic field experienced 
by the subject changes. If the magnetic field is changed in a particular way – then 
a signal can be generated from the subject. This is the subject of the next section. 

2.3   Generation of an MRI Image 

The MRI signal that is recorded is produced by disturbing protons that have 
become aligned in the Z-axis - along the direction of the applied magnetic field, 
termed B0. More specifically, as in NMR, if we impart energy at the right strength, 
then we can induce resonance within the material (i.e. Hydrogen protons). To do 
this requires the use of energy in the radio frequency (RF) range - which is 
extremely low energy, well below that of visible light. The RF transmitter is 
aligned orthogonally to the external magnetic field – in the X-Y plane. The 
application of an RF pulse, at the right frequency (the Larmor frequency), causes 
protons to flip (typically 90o) from the Z-axis to the transverse plane (along the  
X-Y axis) for the duration of the pulse. The protons will only ‘flip’ into the 
transverse plane if the imparted energy (in the form of an oscillating magnetic 
field) is at the correct frequency – note that energy and frequency are related to 
one anther – so one could speak of the right energy level as well. It is like a child 
on a swing wish to be pushed to move higher. The effort of pushing will only be 
effective if you push the child at the right point along their trajectory. Only at this 
frequency will energy be imparted into the system. When the right level of energy 
is imparted in MRI, to atoms aligned with an external field, they flip and begin to 
resonate in the transverse plane. So the protons now have absorbed energy. When 
this energy is released, the precessing protons begin to fall back down into the 
longitudinal plane. As they do, they release energy – again in the RF range. 
Within approximately 1 second, after turning off the RF pulse, all the protons will 
become realigned with the externally applied magnet field – precessing again in 
the Z-axis. But, while the protons are relaxing back down to their ground state, 
they emit energy which can be detected by a piece of hardware called an RF 
receiver, which is oriented in a certain direction (usually the X-axis). This receiver 
records the magnetic dipoles when they are aligned in the direction of the receiver 
coil – in this case the X-axis. This will produce an oscillating magnetic field, 
which creates an electrical signal (see Faraday’s Law of Induction for more 
details). It is this current that is produced by the protons that form the signal that is 
used to produce an MRI image. The magnitude of the signal is dependent  
upon several factors - the principle one being the number of protons in the sample 
Up to this point, the sample is the subject in the scanner – under the RF 
transmitter/receiver coils – which is the entire head. Sp  

Acquiring high resolution images is not part of the NMR technology itself – the 
NMR part of MRI only tells us how to acquire a signal from the material 
substance. To acquire the signal in such a way as to ensure one has sufficient 
spatial resolution requires a carefully designed scanning protocol. The process 
requires first of all, flipping the protons in the transverse plane thousands or more 
times during the course of the scan. This ensures that we have thousands of signals  
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Fig. 7 Depiction of the precession around the externally applied magnetic field, oriented 
along the Z-axis, just prior to turning on the RF pulse. 

from the subject – and the next step is to ensure that these signals are recorded in a 
spatially varying manner. The subject matter is partitioned logically into regions 
termed voxels – essentially a 3D volume of tissue. Each voxel is described by  
3 coordinates or axes: x,y,z. The Z-axis is along the axial or the longitudinal  
plane – along the long part of the body. Perpendicular to this axis is the x-y plane, 
also termed the transverse plane. In MRI, we typically first take the subject and 
partition it along with longitudinal plane (along the Z-axis) – must like slicing a 
loaf of bread. The next stage entails cutting each slice in the X-Y directions – so 
now we will have a collection of cubes – these are the voxels. What we would like 
it to do is acquire a signal from each of these voxels – and then if we can put all of 
the voxels back together the way they were created in the first place, we have a 
signal map of the entire subject that preserves the spatial relations of the source of 
the signals – the brain. How this is done – is described in the next sections, 
starting with the slice selection process. 

2.4   Slice Selection  

In order to partition the brain (or any object placed in the scanner) into a series of 
slices, an additional magnetic field is required. This additional magnetic field is 
typically termed a head-coil when imaging the brain. The head coil provides an 
additional magnetic field that can be superimposed upon the longitudinal magnetic 
field. The head coil creates a linear magnetic gradient, which is applied along the  
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Fig. 8 The slice select gradient, superimposed on the externally applied magnetic field. 

longitudinal plane for axial imaging. The effect of the slice selection gradient as it 
is called, it to vary the magnetic field in a linear way. For instance, Figure 7 
depicts the net magnetic field when the slice selection gradient field has been 
turned on. At one end of the head, the magnetic field is 1.4 T, and the other end it 
is 1.6 T, and the central position experiences a magnetic field of 1.5 T. (the static 
external magnetic field strength). Why is this useful? Well if you remember the 
Larmor equation, it states that the energy required to produce resonance is 
proportional to the magnitude of the magnetic field. The energy for a position that 
experiences a 1.5 T magnetic field strength will require a differing amount of 
energy for it to resonate then a position that requires 1.51 T and so forth along the 
edge of the slice select gradient. The gradient is designed to vary linearly along 
the entire region to be scanned. The energy imparted into the system is termed an 
RF pulse, which can be made to vary in energy by selecting appropriate imaging 
parameter values – this is part of the task of the pulse sequence.  

Figure 8 depicts the effect of superimposing the slice gradient onto the B0 
gradient. The slope of the gradient influences how quickly the gradient changes 
spatially. What we would like to have is control over how thick the slice is. This is 
in part determined by the slope of the slice select gradient – if it is shallow, then 
we can have thicker slices – so the slice thickness is inversely proportional to the 
slope of the slice select gradient. There is another way to affect the slice thickness 
– this has to do with the frequency range of the RF pulse that we inject into the 
sample. For details, see the excellent text by Hashemi and Colleagues (Hashemi et 
al., 2003) – but very briefly, when we turn on the RF pulse – it can consist of a 
range of frequencies – all centered on any particular frequency of interest. 
Typically, the centre frequency corresponds to the central frequency of the slice 
that we are trying to excite. Therefore, the range of frequencies in the RF pulse – 
termed the bandwidth will ultimately determine the slice thickness, given a 
constant slice select gradient. That is, an RF pulse with a wide bandwidth will 
excite more of the linear space along the gradient and hence produce a larger slice.  

Now, varying the RF pulse centre frequency allows us to move along the slice 
select gradient, each time flipping on a range of tissue into the transverse plane. 
This is effect has produced our slices – and has extracted one of the dimensions 
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for our voxel – the Z-axis. If we record from a slice, we will receive signals from 
the entire slice – which though better than the entire brain, is not enough yet. What 
we need to do is to also partition each slice into the X-Y planes – obtain a signal 
from each of these sections – at each slice – and then we have a true 3D 
measurement. This process of extracting information from a slice is termed spatial 
encoding, and is described in the next section. 

2.5   Spatial Encoding 

Spatial encoding refers to the process of extracting signals from specific locations 
within the subject. Ultimately, what is expected from MRI is a high resolution 
map of the various tissue components of the subject. To produce a 3D map of the 
subject, the material is first divided into a series of slices - much like a loaf of 
bread. Typically, when imaging the brain, the slices are arranged in the axial 
(longitudinal) plane - that is along the long axis of the body. Typically, the slices 
are approximately 1-5 mm thick, covering the entire head. Each slice in turn can 
be examined in both the X-Y directions, yielding a 3D volumetric picture of the 
proton distribution within the brain. This process effectively partitions the region 
being scanned (e.g. the brain) into a collection of 3D volume elements, termed 
voxels. The final image produced is the magnitude of the signal, reported as a 
single scalar value, for each voxel. As long as the voxel topology is preserved 
during the process of creating the image, the final image will reflect the signal 
distribution of the scanned material - i.e. the subject's brain. 

After the application of the slice select gradient, the subject (e.g. the brain) has 
been partitioned into a series of slices, thereby providing spatial information along 
the axial direction - along the z-axis. This step will produce a series of images 
(equal to the number of slices), each of which will contain the signal from all of 
the protons in the slice. Remember, the Larmor frequency of the incoming RF 
pulse must match the Larmor frequency of the tissue. The MRI scan manipulates 
the Larmor frequency of tissue by the careful placement and setting of magnetic 
field gradients. With the application of slice selection, the MRI signal will reflect 
the properties of the entire slice - which, though better than a signal from the 
entire brain, still does not provide the required spatial resolution suitable for 
clinical diagnosis. The last stage towards this goal is termed spatial encoding, 
which provides in-plane (within a slice) details along the X-Y directions. In 
combination with the slice select stage, the tissue is now imaged at the highest 
level of resolution, at the voxel level (with 3D coordinates: X,Y,Z).  

Spatial encoding is produced by the application of two additional gradients: a 
phase and a frequency encoding gradient. The phase encoding gradient is used to 
alter the phase of voxels in the Y-direction, and the frequency encoding gradient is 
used to change the precessing frequency in the X-direction. The process of spatial 
encoding is depicted n Figure 9. Without spatial encoding, the signal acquired after 
slice selection will be the sum of the signals from the entire slice. As an example, 
consider a 4x4 matrix representation of a slice, and the associated magnitude of the 
signal in each region wave. What we would like to do is partition the slice (in this 
example into 4 columns and 4 rows), and be able to acquire a signal from each of 
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the 16 subsections of the slice. Briefly, this is accomplished  
by applying two additional gradients - a phase encoding gradient which is applied 
along the Y-direction, and a frequency encoding gradient, applied in the  
X-direction. The purpose of the phase encoding gradient is to alter the phase of the 
protons along the Y-direction. This is accomplished by applying a gradient 
(magnetic field) along the Y-direction, in a manner very similar to that for slice 
selection. Each row will be exposed to a different magnetic field (except for the 
central row which will remain unchanged) for the same reason as in the slice select 
gradient – it is the zero centre of the applied gradient. This is turn alters the Larmor 
frequency of the material in each of the rows. Now the protons will change phase 
across the rows, because they will each be disturbed by a slightly different 
magnetic field, which causes the precession to change its phase. The last stage 
requires encoding along the X-axis, which is across the columns. This is done after 
the phase encoding phase, and is implemented using a frequency shifting operation. 
That is a frequency encoding gradient (sometimes called the ‘Read Out’ gradient – 
because t is turned on when we record a signal) is applied, again in a manner 
identical to the slice select and the phase encoding gradients. Now the additional 
applied gradient induces a change in the magnetic field experience by the slice 
along the X-axis. Again, those columns to the left of the central column will 
experience a lower gradient and those to the right will experience higher gradient. 
The thickness along each dimension is again dependent upon the bandwidth and the 
corresponding Larmor frequency present n the applied gradients. The frequency 
encoding gradient changes the angular frequency of the spinning protons because 
each column will be experiencing a different externally applied magnetic field – 
and hence will spin at a different rate. The recording hardware records signals with 
a particular phase and a particular angular frequency – so each element in the grid 
will be detected as a separate signal – this is the concept of spatial encoding. 

 

Fig. 9 A depiction of the process of spatial encoding, highlighting the phase (along the  
Y-axis) and the frequency encoding steps.  
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Note that to implement spatial encoding requires that we apply additional 
magnets (RF pulses) at certain energies and in certain temporal and arrangements. 
The sequence of gradients is: slice select, then turn of the phase encoding gradient 
briefly, turn it off, and then turn on the frequency encoding gradient – then record 
the signal. This is the basic idea behind a pulse sequence, which defines which 
gradients are turned on, at what energies, and at what times. We now have the 
concept of a voxel – a 3D volume of tissue from which we can extract a signal 
from. Note that typical matrices are much larger than the example provided here - 
typical values are 256 x 256 (that is 256 phase and frequency encoding gradients 
are applied). The size of the matrix ultimately determines the resolution of the 
object, for a given volume. Typical sizes of voxels in high resolution are 2x2x2 
mm - providing a very high level of resolution that is suitable for medical 
diagnosis. Figure 10 presents a more realistic image of a slice with respect to 
spatial encoding and the corresponding axes labelled in the imaging domain. 

 

Fig. 10 A hypothetical slice that has been partitioned into volxels and the corresponding 
axes which has been labelled with their corresponding MRI encoding labels. 

We now have a mechanism for partitioning a volume of tissue into a series of 
small voxels - each producing a signal that is recorded by the MRI scanner, and 
used to construct a 3D map of the tissue for visual inspection. The question remains 
- how does the neuroanatomy map onto a signal? Why do different parts of the 
brain yield voxels with differing intensity values? It is well known that the brain is 
composed of a variety of tissue types: the principle cerebral spinal fluid (CSF), 
white matter (WM), grey matter (GM), vasculature, surrounded by fat, muscle, and 
bone predominantly. Each of these tissues types contains a large number of 
protons, but they exists in different chemical configurations. For instance, the CSF 
contains a large amount of bulk water, and so the protons are able to move freely in 
the CSF. White matter on the other hand has protons associated primarily in the 
hydrocarbon chains that make up the myelin sheath. Different tissue classes 
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therefore present protons in slightly differing configurations. These subtle 
differences will produce characteristic but unique signals which are detectable 
using MRI. Provided the spatial resolution is sufficient, a voxel may contain purely 
white matter, grey matter, or other tissue classes. This will result in an image that 
contains fine structural detail of the brain. But in many cases, the tissue contrast is 
less then desirable - for instance a voxel may contain white matter and grey matter, 
yielding a mixture that is different from either tissue class. Tissue boundaries often 
present difficulties with respect to image clarity because they tend to present abrupt 
changes in proton densities. These issues are partially addressed by a small number 
of scanning parameters, which will be discussed next. 

3   Tissue Contrast 

There are several imaging modalities that were developed to enhance tissue 
contrast - the most popular ones are termed T1, T2, and PD. These modalities, 
termed weightings in the literature, reflect the physical properties of protons with 
respect to how they respond to an applied magnetic field. For instance, T1 is a 
measure of the time it takes for protons to relax back down to the B0 gradient 
when the RF pulse is turned off. Different tissue classes will respond with their 
own characteristic T1 value - which is typically on the order of 500 ms for white 
matter (see table 1 for full details). Each tissue class has a different T1 value, and 
therefore, the pulse sequence can be designed to highlight the differences based on 
the unique set of T1 values each tissue class exhibits. When one deploys such a 
pulse sequence, it is termed a T1-weighted image. Likewise, each tissue class has 
a unique T2 value, which represents the loss of signal in the transverse plane after 
protons have been flipped into that plane. Almost immediately, protons begin to 
lose phase coherence and the signal decays in proportion to the extent of phase 
coherence. As for the T1 time, each tissue class has a characteristic T2 value as 
well. The pulse sequence can be designed to highlight differences in T2 values for 
different tissue classes, resulting in a T2-weighted image. Lastly, a proton density 
(PD) image can be formed that reduces the T1 and T2 weighting of a voxel, 
relying solely on the number of protons contained within the voxel. This is termed 
a PD-weighted image. each imaging modality provides a slightly different picture 
of the brain, as is illustrated in Figure 13.  

The T1 of a tissue reflects the rate at which it reverts back to the ground state 
after being flipped into the transverse plane via an RF pulse at the required Larmor 
frequency. Figure 11 depicts in graphical form the trajectory that occurs during 
this process, which can be described by the following equation: 

 
S = (1-e-t/T1)                                                     (1) 

 
where 'S' is the recorded signal, 't' is time, and 'T1' is the longitudinal relaxation 
time.  

The trajectory is an increasing exponential, which ranges from zero (0) 
immediately when the RF pulse is turned off, up to a maximum of 1 after some  
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Fig. 11 The left panel indicates the temporal profile of tow tissues with differing T1 time 
constants. The right hand panel illustrates the genera process of longitudinal relaxation, the 
basis for T1-weighted imaging.  

time. More specifically, 63% of the signal will be recovered in the z-axis after a 
time T1. By 4-5 T1 times, the signal is essentially completely recovered along the 
z-axis. In figure 12, we see the T1 profile of 2 hypothetical tissues. In order to 
weight an image for T1, what we want is to choose a time that maximises the 
signal differences between the two tissues classes. In figure 12, we see that classes 
A and B are most distinguishable at short time periods - this region provides the 
greatest contrast between these two tissues classes. As the time increases, beyond 
several t1 times, the signal between the two classes is very similar, and we would 
lose contrast as a result. So the T1 is a time - and is calculated as the time taken 
for 63% of the signal to recover in the z-axis, and is characteristic for each tissue 
class. By exploiting these differences, we can weight an image to produce 
enhanced contrast between tissues classes based on this feature. This is termed a 
T1-weighted image. 

Another popular way to weight an image, termed a T2 weighting, relies on the 
time over which protons lose their magnetisation in the transverse plane. When 
protons are flipped by the RF pulse, protons are precessing about the x-y plane, 
with no signal in the z-axis. After the RF pulse is turned off, the protons, while 
still in the x-y plane begin to interact with one another, reducing the strength of 
the signal they initially produced in the transverse plane. Very quickly, the protons 
become desynchronised, resulting in an exponential loss of signal in the transverse 
plane.  

S = e-t/T2                                                        (2) 

where 'S' is the recorded signal, 't' is time, and 'T2' is the transverse relaxation 
time. 

The time at which the signal in the transverse plane decreases to 63% of  
its original value is termed the T2 relaxation time. Its trajectory is depicted in 
Figure 12. Typically, T2 times tend to be much shorter than T1 times, with typical 
values somewhere around 100 ms. Again, just like the T1, major tissue classes 
have characteristic T2 values, which can be used to create a T2-weighted image.  
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Fig. 12 The left panel indicates the temporal profile of tow tissues with differing T2 time 
constants. The right hand panel illustrates the general process of transverse (or spin-spin 
interactions) relaxation, the basis for T2-weighted imaging.  

A proton density (PD) weighted image is designed to minimise the T1 and T2 
weightings of tissues. A long T1 and a short T2 value will eliminate the T1 and T2 
contributions to the image, yielding a purely proton density weighted image. The 
equation that describes PD is the following: 

S = N(H)*(1-e-t/T1)*e-t/T2                                              (3) 

where N(H) is the proton density, and the other terms are for T1 and T2 as per 
above. 

That is, if you look at the equations for T1 and T2, you will note that as time (t) 
is very long, the T1 term approaches one, effectively removing the T1 contribution 
to the signal. If the T2 value is short (i.e. small), the T2 term also disappears (goes 
to 1), and we are only left with the N(H) term, which is a measure of the number 
of protons in a voxel - the proton density. Figure 13 displays a set of three images 
from different axial positions using the three principal imaging modalities of T1, 
T2, and PD. One should note that differences in the intensity/brightness of the 
three major tissue classes (CSF, WM, and GM) across each modality. 

 

Fig. 13 A set of T1, T2, and PD-weighted images taken from the same scanner, at differing 
axial locations from a healthy subject. 
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These terms are intrinsic factors of tissue - how can they be used to enhance 
tissue contrast? There are two scanner parameters - TR and TE that can be set up 
by the scanning protocol. TR stands for repetition time, which is a measure of time 
between turning on successive RF pulses. when the RF pulse is turned on, we are 
ready to record a signal. If the TR is set at approximately the T1 value, then we 
will have a T1-weighted image. So the T1 values associated with the intrinsic 
tissue properties are used by the scanning protocol to produce the appropriately 
weighted image. Likewise, the TE - which is the time to echo, influences the T2 
property of tissues. The TE is the time after the RF pulse has been turned off and 
the signal is recorded. Figure 12 depicts two theoretical tissue classes, A and B, 
and their decay profile as a function of time (that is, their T2 profiles). One can see 
that the differences between the two tissue classes increase over time. Therefore, if 
one wishes to T2-weight an image, the time of measurement (the 't') in equation 2 
should be fairly long - longer than the T2 value for the tissue of interest. Table 1 
summarises the values of TR and TE required to produce images of various 
weightings (T1, T2, and PD). It should be noted that there are a variety of 
additional parameters that can be tuned during the scanning process to create a 
wide variety of pulse sequences, which in turn elicit very detailed and specific 
types of contrast. It is beyond the scope of this chapter to discuss these issues, but 
the interested reader is directed to the following sources (Hashemi et al, 2003). 

4   Image Processing of MRI 

After an image volume has been collected, one can view the volume to determine 
if there are any abnormalities which can be used for diagnostic purposes directly. 
In addition to such a qualitative analysis, one would like to have a quantitative 
estimate of the extent of the changes, in terms of the number of voxels involved, 
across all tissue classes. Other measures, such as the diffusion coefficient of water 
in various directions can be acquired, providing details on the underlying micro 
structure of brain tissue can be acquired fairly routinely. The processing stages 
applied to MRI volume sets is quite extensive, in what follows is a very brief 
survey of some typical approaches that have been applied. The ultimate goal of 
these approaches is to acquire detailed information that may not be obvious from 
viewing a series of slices from a brain volume - which can be a tedious and error 
prone task. In addition, certain features of brain injury, such as diffusion changes 
can not be viewed on classical imaging modalities (T1, T2, PD) as they are not 
designed for estimating the relevant parameters. The text by Tofts provides a very 
comprehensive survey of this interesting approach to MRI analysis (Tofts, 2003). 

Table 1 Summary of the relative durations of TR (repetition time) and Te (echo time) on 
the MRI weighting. 

 T1-weighted T2-weighted PD 
TR Short Long Long 
TE Short Long Short 
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4.1   Edge Detection  

The ability to demarcate the borders of tissues and other structures is one of the 
first image processing steps. For instance, separating the head from an image is a 
necessary step in performing many quantitative tasks - see Figure 15 for an 
example of segmentation of the skull from the background. Detecting edges 
typically relies on the continuity of voxels with respect to their magnitude. For 
instance, an abrupt change in the magnitude of a voxel may indicate an edge - to 
be certain, one then searches locally, looking to see if there are other voxels with a 
similar magnitude. These voxels are then examined to see if there is continuity 
between them - that they are more or less contiguous. If so, then it is fairly certain 
that an edge has been detected. This approach can be used to separate the skull 
from the background in an image.  

There are a number of edge detecting operators that have been applied to MRI 
image datasets. Roberts introduced one of the earliest edge detection algorithms 
(1965), named after him, in which he convolved the image with two spatial 
operators, which were designed to enhance any edges that were orthogonal to one 
another. This approach was susceptible to noise, and so other approaches have 
been advanced since this time. The Prewitt and Sobel edge detection algorithms 
are similar in their simplicity to the Robert's approach, but are less susceptible to 
noise, and produce superior edge detection. The Sobel and Prewitt methods solved 
the issues associated with noise, but did not consider issues of scale This is largely 
the result of the convolution operators applied - which were typically 3x3 
matrices, suitable for features that are on the voxel level, but fail to take into 
account edges that exist over variable widths. Two approaches have been 
proposed to handle the issue of scale: the Marr-Hildreth and the Canny 
approaches. Essentially, these two approaches are similar: they both performed a 
smoothing operation using a Gaussian template which includes a scale parameter. 
In the Canny approach, the derivative was used to find the zero crossing point, 
which would indicate and edge. The Marr-Hildreth approach took the double 
derivative to find an edge. The interested reader should consult any text on image 
processing (see Morris, 2004). 

Edge detection has largely been subsumed under the need for image 
segmentation - which not only includes edges - but also the material within an 
closed edge border, which may differ from the voxels at the edges. In the next 
section, a few examples of image segmentation are presented to give you a feel for 
the process and show you what sort of results can be obtained. 

4.2   Image Segmentation 

We now have discussed how to acquire a high resolution, 3D volumetric image of 
the brain, with maximal contrast between tissue classes. How is the data to be used 
for diagnostic purposes? In one simple sense, the images could be viewed 
manually by a trained radiologists/clinician, visually inspecting the image for 
subtle cues which may provide the required details for a diagnosis - or to confirm  
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Fig. 14 An example of a multi-layer feedforward neural network architecture, consisting of 
2 layers (in addition to the inputs which many do not consider to be a proper layer). 

a suspected diagnosis. Many conditions, such as stroke, or Alzheimer's yield very 
obvious structural changes in the brain and are easy to detect. Other conditions, 
such as multiple sclerosis (MS), produce more subtle changes that are not so 
obvious. In addition to the qualitative aspects a disease presents on the structural 
integrity of tissue, one may also wish to quantify the extent of the changes. This 
typically can not be performed by visual inspection, and may require the use of 
purpose built computer based applications.  

The ability to quantify tissue classes is a very important and by now routine 
step towards quantitative analysis of MRI data. The relative amounts of CSF, 
WM, and GM is fairly constant across individuals. Any significant deviation from 
standard values may indicate a pathological condition. For instance, various 
dementias reveal significant reductions in the amount of GM. Further, an increase 
in the number of non-standard tissue class voxels may indicate a lesion - as lesion 
voxels may yield values that are not consistent with those associated with typical 
tissue class values. In addition, it would be very useful to have a quantitative 
measure of the extent of a lesion, whether it was produced by MS or a tumour. A 
first step towards this quantitative analysis relies on the use of image segmentation 
techniques. 

Image segmentation refers to labelling each voxel with its corresponding tissue 
class - it is essentially a classification task. If every voxel can be accurately 
labelled, then one can simply simply count or otherwise record the entire volume 
occupied by that class. But typically, life is not so easy - many voxels may contain 
signals that were generated by two classes - and hence the recorded value is a 
linear sum of the relative contributions from each class. This is especially true for 
boundary regions - such as might occur with CS and white matter or white matter 
and grey matter. This effect is termed the 'partial volume effect' - PVE, and will 
reduce the classification accuracy - or at the very least, make it somewhat more 
difficult than it could be. Barring the PVE effect, how can one approach image 
segmentation?  
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Fig. 15 A example of tissue segmentation, where the top image is the original T2-weighted 
image, the left most image is GM, the bottom image is CSF, and the right-most image is the 
skull. From Li & Chi, 2005. 

There are two basic methods for image segmentation - one termed supervised 
and the other unsupervised. In the supervised method, one must select a seed 
voxel - that is, if one wishes to quantify grey matter, then one must highlight a 
voxel (or a collection of voxels) that are definitely GM according to some known 
criteria. The criteria is typically expert neuroanatomical/medical knowledge, but 
could be further validated by the magnitude of the signal, which is typically 
characteristic for a scanning modality (i.e. T1 or T2). Care must be taken with this 
approach though, as different scanners may yield different magnitudes - via 
differences in scanner gain for example. One may therefore have to normalise the 
data - re-scale it across the range of values that are present in the image set to 
solve this problem. Once a seed has been selected, the software will then deploy a 
variety of methods to find other voxels with the same properties, and label them 
accordingly. This process is repeated for all tissue types of interest.  

Segmentation using an unsupervised learning approach by definition is 
achieved with no or minimal human intervention. There are no labels attached to a 
training set - instead the algorithm itself provides labels to the entire set of voxels 
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in the images. A majority of unsupervised approaches used in image segmentation 
utilise some form of data clustering, where the information content of voxels is 
used in the classification process. As an example, the C-means algorithm has been 
applied with considerable success.  

An example of a popular supervised technique deployed in image segmentation 
relies on the use of neural networks. A neural network is a computational device 
that was inspired by the computational capacities of neurons - it is a biologically 
inspired model of computation. The historical developments of neural networks 
started in 1943, with the formulation of the McCulloch and Pitts neuron. Since 
that time, the field of neural networks has grown extensively, with applications in 
engineering, aviation, and medicine to name a few. Neural networks can be used 
in many ways - but for image segmentation, it is typically utilised as a 
classification device. Neural networks contain two principle elements: an 
architecture and a learning rule. The architecture consists of one or more 
processing nodes, which are connected to one another in a particular way. The 
nodes are connected to each other via a weight - which quantifies the impact one 
node has on another node. Much like neurons in biological systems, the weights 
reflect the gain of the response to the inputs from other neurons. The learning rule 
is an algorithm that sets the weights between neurons in a manner that facilitates 
the classification task. The way the system works can be summarised in the 
following way: examples of mappings are presented to the network - in the form 
of an input-output relationship. When a particular input is presented - the network 
should produce a specific output. In order to facilitate this mapping, the network is 
trained using a subset of the objects it is to be trained to classify - this is termed 
the training set. Each element in the training set is presented one at a time, usually 
drawn randomly from a sample, and the output of the network is produced. The 
output is compared with what the actual output value should be - this is what 
makes this a supervised approach. If the output doesn't match the true output, then 
the network needs to adjust itself. This self-adjustment is accomplished through 
alterations of the weights - the connections between processing nodes. The 
weights are adjusted in proportion to the errors associated with the produced 
output, relative to the desired output. This process is repeated until the errors 
produced after presenting the entire training set is below a threshold, such as 5%, 
then the network is considered properly trained. Once the network has been 
trained, it then can be used to classify unknown examples. How well it does this is 
a measure of how well the network was able to generalise. In the current context - 
samples of known voxels from all tissue classes would be used for training 
purposes. Once the network has been trained, it can be used to classify the rest of 
the voxels.  

A clustering type algorithm is a classic example of an unsupervised 
segmentation approach. Clustering is an approach that examines each voxel in the 
image - or in the region of interest (ROI) selected by a person - and assign it to a 
particular class. The class labels are initially seeded by a human operator - there 
will be a class label for each tissue class one wishes to classify (these are called 
the cluster centers). The algorithm will then go through and look at each voxel, 
one at a time, and decides which cluster center it is closest to. The measure of  
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Fig. 16 An example of the concept of clustering, which contains 3 separate clusters, which 
are separated spatially by the values of the features. 

similarity is typically based on some measure in magnitude space. - for instance if 
one class label has a magnitude of 650 and another 1,300, then if an unlabelled 
voxel has a magnitude of 1,250, then one would calculate the distance to each of 
the classes and assign it the label of the closest matching class (the one 
corresponding to the value of 1300). Typically the Euclidean distance is used for 
the distance metric, though there are many other metrics that have been deployed 
(see 4.3 for details). Then, one re-calculates the new cluster centers for each class 
based on the average of the voxels with a given label. In effect, what we have 
done is to calculate a mean value for each class after each voxel has been 
associated with a cluster. This step is performed for each class, until all of the 
voxels have been assigned a class label, or until some other convergence criteria 
has been met (such as the change in the position of the cluster centres). This 
approach is termed c-means, where the 'c' refers to the number of clusters 
expected in the data.  

Regardless of the segmentation approach deployed, the examples used for 
training (or the seed values for a clustering approach) are extremely important in 
terms of the overall classification accuracy. Even when seeds are properly chosen, 
there will be a significant number of voxels that occur at tissue boundaries, which 
may exhibit a significant partial volume effect. The extent of PVE will depend on 
the resolution of the image - which is reflected in the size of the voxels. Large 
voxels tend to enhance the signal to noise ratio (SNR), because more protons exist 
within the voxel. Unfortunately, large voxels reduce the spatial resolution - one 
needs to find a balance between SNR and resolution - which depends on the task 
at hand. One way to estimate the extent of this effect is to produce a simple 
histogram of the data. Most image viewers provide a function that will display a 
histogram of a complete slice. The histogram should display a series of peaks that 
correspond to the various tissue classes in the slice. The overlap between peaks is 
the area of concern - the larger this region is, the more difficult the segmentation 
task will be (the overlapping regions are indicative of the extent of PVE 
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contribution to the data). To date, there is no definitive method for removing the 
PVE - at best one can try to model it using some sort of fuzzy approach, such as 
fuzzy c-means. The interested reader is directed to Ballester et al., 2002, for more 
details. Another difficulty associated with segmentation is the effect of intensity 
nonuniformity (INU), which causes a spatial blurring over a region of a slice 
(potentially across all slices). It is typically caused by imperfections in the 
gradient coils, and generates a systematic error across slices. If the segmentation 
depends on the absolute magnitude of the voxels - which the above mentioned 
approaches do, then care must be taken when selecting seeds or training 
exemplars. Typically, a histogram of a large ROI will provide some measure of 
the stability of the signal - indicating the existence of an INU effect. An approach 
to reducing its effect if present is to perform a smoothing operation, which will 
blend the subtle changes across the tissue, reducing the likelihood that a new class 
will be produced from the region containing INU effects.  

It should be noted that most segmentation approaches operate on a per slice basis. 
Once completed, the slices can be collated and registered together to form a true 3D 
image (a volume). Depending on the software available, the number of voxels per 
class of interest can be calculated, providing an estimate of the percentage of the 
image space it occupies. Further, some applications are then able to 'remove' a tissue 
class or any arbitrarily selected ROI from the image set (slice/volume). These ROIs 
can then be displayed and manipulated by magnification and/or rotation operations 
to provide a very interactive capability for the user.  

4.3   Voxel-Based Morphometry 

Many investigators have proposed the idea of detecting changes in brain structure 
by attempting to directly compare a brain with suspected structural pathology 
against a normal brain. The basic idea is to map the two brains onto a common 
frame of reference - referred to as a common stereotactic space, which requires the 
brains are matched up (registered) along all of the major brain landmarks. This is 
typically followed by a segmentation algorithm, which could be used to extract 
voxels according to tissue classes. Then direct comparisons between normal and 
suspected pathological brains can be made at the voxel level. This approach is 
designed to provide an unbiased and comprehensive assessment of anatomical 
differences throughout the brain (Ashburner & Friston, 2000). There are a variety 
of software packages that implement VBM, arguably the most popular being the 
SPM (Statistical Parametric Mapping) package, available as an add-on toolbox for 
Matlab (see http://www.fil.ion.ac.uk for the SPM homepage). From a more 
practical perspective, the steps involved in VBM analysis can are: spatial 
normalisation of the images (across all slices) and subjects to a common 
stereotactic space, extracting the tissue class of interest (i.e. grey matter) from the 
normalised images, smoothing, and then a statistical analysis to compare the 
brains from the subjects.  

The spatial normalisation step is required to account for differences in brain 
shapes, sizes, and volumes. The average human brain has a typical volume of 
approximately 1,300cc, but this is highly dependent on gender, age, and ethnic 
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origin. A study of 46 adults of European descent yielded a mean brain volume of 
1274 cc for men (range 1053-1499cc) and a mean of 1131 cc (range 975-1398cc) 
for women (Cosgrove et al., 2007). This inherent variability requires some form of 
registration and scaling so that the brains are compared on an absolute as opposed 
to a relative basis. To perform the normalisation process requires the use of a 
template - which is considered to be an 'ideal' brain. A widely used brain template 
is available for use produced by the Montreal Neurological Institute (MNI) brain 
Imaging Centre, which has produced a high resolution brain (segmented at 1cc 
sized voxels), which was derived from the average of 152 healthy individuals 
scanned multiple times using high resolution MRI across a variety of pulse 
sequences (T1, T2, PD). Note the SPM package incorporates some version of the 
MNI brain (as their gold standard) for registration purposes.  

In addition, there is a commonly used stereotactic brain atlas, developed by 
Talairach and Tournoux - typically referred to as mapping into the Tailarach-space 
(Talairach & Tournoux, 1988) The Talairach-space refers to stereotactic 
coordinates (3D) of structures within the brain, that can be used for registration of 
images - and allows for a common point of reference. A set of potentially 
invariant reference points are utilised - the anterior and posterior commissure lines 
are used - and a horizontal line is drawn through them. This line traverses the 
midline of the brain, and hence defines a coordinate system. Distances for a given 
brain structure is reported in terms of the distance (Talairach distance) to the 
anterior commissure point. This coordinate system facilitates the image 
registration process by providing landmarks that much be matched up during the 
process of mapping two brains together - the purpose of registration.  

In order to match up two different brains, regions must be shifted through a 
variety of spatial transformations, until the overlap between the two brains is 
maximal (or the error is minimal).  A variety of translation protocols have been 
deployed, but typically can be classed into either a linear transformation approach 
or a non-rigid or elastic approach. Very generally, the linear transformations 
include translations, rotations, scaling, and other affine transformation to register 
two volumes together. Non-rigid registration deploys a local warping of structure in 
order to produce the required alignment. Typical approaches utilise various 
localised geometrical operations such as surface splines and deformation models. 
There are a variety of techniques that have been utilised for this process, the details 
of which would take up a single tome in its own right, but the interested reader 
should consult (Ashburner & Friston, 2000, Mechelli et al., 2005) for more details. 

Once the spatial normalisation process has been completed, the volumes are 
segmented using a variety of techniques – as mentioned in section 4.2 for some 
examples. The ultimate purpose here is to extract either the argy matter or white 
matter from the volumes for subsequent quantitative analysis. Typically, the tissue 
segments are smoothed, which helps reduce the magnitude of outlier voxels - by 
shifting their values towards the mean for the tissue class, which in turn adds 
statistical power to the subsequent stage of voxel labelling. In addition, smoothing 
may help compensate for the inevitable errors that may result from the registration 
process. Once this step has been completed, the volumes are ready to be analysed 
quantitatively, on a voxel-by-voxel basis. 
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Typically, a statistical approach is deployed to perform the voxel-based analysis 
- yielding statistical parametric maps as an example approach. The basic approach 
deploys standard statistical measures such as t-tests and F tests between subjects 
across various ROIs or volumes of interest (VOIs). The final result is a quantitative 
methodology for comparing subjects belonging to different categories - i.e. normal 
versus disease. with this technique, one can identify and quantify differences in 
anatomical structure between the two different groups, providing a basis for further 
examination of the subject. In addition, this approach can be used to map disease 
progression or the effectiveness of treatment for a given medical condition that can 
be mapped using MRI. Note that there are several other approaches besides  
VBM for quantifying tissue classes, and the interested reader is directed to 
(Mechelli et al., 2005) for details. There is simply not enough space to discuss all 
the approaches in a single book chapter. The next section provides a survey of a 
sample of medical conditions that yield MRI signatures, highlighting the imaging 
modalities deployed and the key results. 

4.4   Fiber Tractography 

A relatively recent MRI modality was developed that examines the diffusivity of 
water - that is it measures the diffusion coefficient of water along multiple 
directions. Diffusion refers to the movement of molecules in some medium - in 
this case, a liquid medium such as the interstitial space that surrounds tissues, or 
the intracellular space. In bulk fluids, such as the CSF, water molecules are free to 
diffuse in any direction without running into physical barriers, which would tend 
to impede its flow in a particular direction. Such tissues are describes as isotropic - 
in that they do not influence the directional translation of molecules engaged in 
pure Brownian motion. In densely packed tissues, such as white matter, there are 
barriers to diffusion, as cellular membranes may impede the net movement of 
molecules - this type of tissue is termed anisotropic. White matter induces 
anisotropy - and this fact can be used to measure the direction of fiber tracts 
within the brain - this process results in what is termed fiber tractography.  

Fiber tractography is an MRI technique that provides detailed information 
regarding the structural arrangements of tissue - and has been applied predominantly 
to white matter tracts. These tracts provide information about how axons in the CNS 
are connected together. A special imaging modality, termed diffusion tensor imaging 
(DTI) is used for this purpose. The pulse sequence is designed to detect the 
translational motion of molecules by recording across a selection of coordinates. 
Typically 9 directions are recorded, as is illustrated in Figure 17, which is termed the 
diffusion tensor (Bozzali & Cherunini, 2007, Basser et al., 2000). 

 The diffusion tensor provides directional information regarding the net 
diffusion of water molecules, and the principal axis is used to describe an ellipse, 
the principal direction being along the fiber tracks. The voxels will then consists 
of principal diffusion directions, and hence map out the direction of the fibers. An 
example of a DTI map is presented in Figure 18. DTI imaging can be used to  
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Fig. 17 An example of a diffusion tensor with 9 separate recording directions. Note the 
principle axes are along the main diagonal of this tensor matrix. 

 
 

Fig. 18 An example of fiber tractography, highlighting most of the major white matter 
tracts. Taken from  
http://www.biomed.ee.ethz.ch/research/bioimaging/brain/diffusion_fiber_tracking 

examine quantitatively processes that disturb the microstructure of tissues. For 
instance, Multiple Sclerosis is a disease where myelin is destroyed through an 
auto-immune response. The extent of demyelination can be quantified using  
DTI imaging. This form of imaging has also been deployed to examine tissue 
damage resulting from stroke, and a variety of other neurological disorders 
(Ciccarelli et al., 2003, DaSilva et al., 2003).  
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5   Medical Applications 

MRI has been used as a clinical tool for well over 30 years now - essentially since 
its invention. It was immediately recognised that the ability to examine structural 
information below the skin across the entire body was an unparalleled event in 
clinical diagnosis. With the appropriate hardware, pulse sequences, and contrast 
enhancement techniques, MRI can be used to investigate virtual any disease that 
yields a change in anatomical structure. This chapter has intentionally omitted 
another facet of MRI - functional imaging, designed to elicit information 
regarding functional activity within the brain. The interested reader is encouraged 
to consult (Ogawa et al., 1990, Logothetis, 2001) for a comprehensive exposition 
on this fascinating topic. Typical diseases examined using MRI include stroke, 
multiple sclerosis, Alzheimer's disease, and various forms of dementia. The 
diseases described in this section form a continuum with respect to the ease of 
detecting the disease both in terms of the resulting structural changes and the level 
of sophistication of the scanning protocol. Strokes tend to be quite evident on an 
MRI, visible with a variety of different scanning protocols. Dementias on the other 
hand may present subtle, but diffuse effects which are more difficult to detect and 
quantify. Issues such as quantifying the extent of the lesions may require 
specialised pulse sequences to enhance contrast, increasing the quantitative 
estimate of its extent and volume. In addition, it is very important to understand 
which regions of the brain have become infiltrated by the lesion - so the reliance 
on accurate segmentation approaches is critical in this regard. A variety of 
dementias - such as Alzheimer's (AD) and frontotemporal dementia (FTD) present 
very similar structural changes and require careful and very selective strategies for 
differentiation (Weiner, 2007, Wolf & Detre, 2007 ).  

5.1   Stroke 

Conditions such as stroke produce tissue damage through reductions in blood 
supply - either through an embolism or a hemorrhage (see Figure 18). The extent 
of the damage is primarily determined by the location of the occlusion - if it 
occurs at the start of the vessel - the damage can be widespread as the vascular 
territory is very large. Likewise, if the damage occurs at the distal end of a vessel, 
the damage can be quite focal and much harder to detect and quantify. The 
resulting tissue damage will occur across all tissue types - the condition is not 
restricted to white or gray matter for instance. When examining a stroke, issues 
such as the extent of the damage and the underlying structures that are involved is 
clinically important. A high resolution T1-weighted image is often used to provide 
a high resolution image for processing. The extent of the damage is typically 
quantified using a segmentation process - designed to demarcate and quantify the 
extent of the damage. In addition, the determination of which brain structures are 
included in the lesion is vitally important for prognosis and rational therapeutic 
strategies. This process can be facilitated using a Talairach mapping, which can 
provide information about which structures have become infarcted.  
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Fig. 19 A T2-weighted axial image of a patient that has presented with symptoms of a 
stroke. Note the hyperintense region n the middle of the left hemisphere – this indicates that 
there has been an alteration of tissue structure – indicative of acute focal brain trauma. 

T1or T2 -weighted images of stroke provide a snapshot of the damage caused by 
a stroke. In many cases though, a stroke evolves over time - expanding over the 
course of hours and even a few days after the event. A significant part of the 
expansion of a stroke is due to the effect of cerebral edema - a build-up of fluid 
within the brain that is generated by the stroke event. There are two types of edema 
- cytotoxic and vasogenic. Either can caused the extent of the damage to increase 
due to enhanced pressure on the underlying tissue. Cytotoxic edema refers to an 
increase in cellular water content - which will damage tissue due to disruption of 
cellular structures such as cell membranes (Loubinoux et al., 1997, Desmond et al., 
2001). Vasogenic edema is typically caused by a breakdown of the blood brain 
barrier (BBB), which provides a barrier between the between the brain and the rest 
of the body. When the BBB integrity has been breached, which can occur as a 
result of a brain hemmorhage - the fluid balance within the brain is disrupted - but 
this time from the extracellular space - the region of the brain that doesn't contain 
cellular components. Vasogenic edema induces additional tissue damage due to 
hydrostatic pressure effects. The extent of the final tissue damage is related to the 
extent of the edema - and hence if one could estimate its extent in time - this would 
provide an estimate of the expected extent of the infarct expansion. 

An imaging protocol called diffusion weighted imaging (DWI), detects subtle 
structural changes that reflect the extent of edema. This imaging technique 
measures the diffusion of water in a directional fashion. The diffusion coefficient 
reflects the mobility of water in a particular in 3D space - and is measured in units 
of area per unit time (μm2/s). Cytotoxic edema tends to reflect the current 
physiological status of the tissue and does not appear to evolve over time. 
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vasogenic edema on the other hand, reflects the potential for damage - in that a 
high level of vasogenic edema at the early stage of a stroke indicates a significant, 
though variable progression of tissue damage. it is therefore important to be able 
to differentiate cytotoxic from vasogenic edema, and to be able to quantify its 
extent. This ability is provided by pulse sequencing, imaging modalities that are 
able to detect the diffusion coefficient of water. This information can only be 
obtained through neuroimaging techniques based on MRI. 

5.2   Dementias 

Dementia is a progressive neurodegenerative disease that is typically diagnosed 
through behavioral deficits that tend to occur in later stages in life. By the time the 
effects are noticeable from behavioral evidence, the diagnosis is fairly clear. What 
would be useful, is to have some sort of signature that could be used to predict its 
occurrence. In addition, it would be very informative to know which brain 
structures were altered during the course of the disease progression. In addition, 
there are a variety of dementias, all producing debilitating alterations in cognitive 
ability. For instance, two of the principle dementias, Alzheimer's Disease (AD) 
and frontotemporal dementia (FTD) produce very similar responses from a clinical 
perspective, and FTD is often mistaken for AD.  

Frontotemporal dementia is a neurodegenerative condition involving the frontal 
aspects of the brain. It is the second-most common dementia after Alzheimer's 
disease, which principally affects the hippocampus and the temporal lobe. In their 
early stages, the two diseases present similar symptoms, making accurate 
diagnosis difficult. There are two principle mechanisms involving MRI that can be 
used to distinguish between these two different candidate diagnoses: one relies on 
measuring cortical thickness, and the other relies on an MRI modality termed 
arterial spin labelling (ASL). More specifically, Alzheimer's disease is associated 
with cortical thinning across all brain lobular regions (frontal, parietal, temporal 
and occipital lobes), while a different regional pattern of cortical thinning is found 
in FTD, involving primarily the frontal and temporal lobes. Cortical thickness 
measures can be established using voxel-based morphometry (VBM), which 
provides a quantitative estimate of cortical thickness across the entire aspect of the 
cortex (Ashburner & Friston, 2000). Therefore, cortical thinning may be 
diagnostic for differentiating FTD from AD - there is regional cortical thinning in 
both, but the regions tend to differ significantly. The best discriminator between 
Alzheimer's disease and FTD was parietal lobe atrophy in Alzheimer's disease. 
The latest research findings indicate dementia severity is negatively correlated 
with cortical thickness in Alzheimer's disease, while comparable correlations in 
FTD were not significant (Weiner, 2007, Wolf & Detre, 2007). 

ASL is an imaging technique that measures perfusion levels in the tissue of 
interest. Cerebral blood flow is reduced (hypoperfusion) in patients diagnosed 
with dementia - whether it is a cause or effect remains to be elucidated (Detre, 
2008). Not withstanding the issue of causality, patients with dementia are 
diagnosed with considerable hypoperfusion - the pattern of which may be  
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Fig. 20 A T2-weighted mid-sagittal image of a patient suspected of frontotemporal 
dementia (FTD) s on the left, and an axial image of a patient diagnosed with Alzheimer’s 
disease on the right Both present a reduction in tissue volume, but in differing areas and to 
differing degrees. 

diagnostic for a particular form of dementia. DTF and AD can be differentiated 
based on the spatial pattern of hypoperfusion - with the later producing 
hypoperfusion in the right frontal lobe regions, relative to patients with AD, which 
presented a more diffuse pattern of hypoperfusion (Du et al., 2006).  

There are a variety of other forms of dementias - many are of vascular origin 
that can be detected using some form of perfusion based MRI. As new imaging 
techniques emerge - additional features associated with a variety of dementias will 
become available - but they must be matched with cognitive observations in order 
to provide the necessary correlations. As convenient and harmless as MRI scans 
are - not everyone will routinely undergo an MRI scan unless it is indicated by 
more traditional and routine observations and clinical measurements.  

6   Conclusion 

The ability to acquire high resolution images of internal structure of living 
organisms produced by MRI is unparalleled in the imaging world. Fine anatomical 
details can be brought into focus with high contrast across and in a high definition 
format - with voxels at mm dimensions. MRI provides access to structural deficits 
from direction measurements of their proton content - and can also examine and 
quantify cerebral blood flow - which provides a measure of the life expectancy of 
tissue challenged with alterations in cerebral blood flow. Software has been 
developed that allows a clinician to segment, extract, and quantify images at the 
voxel level in many cases. This technology is afforded to patients without any 
possibility of damaging repercussions - there is no radioactive materials nor 
ionizing radiation involved - the procedure is relatively quick and can be repeated 
without any significant side-effects.  

The future of MRI is bright (even on a PD-weighted image!) - new pulse 
sequences are being developed at a rapid pace - each providing a unique window 
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into the structural (no mention has been made regarding functional MRI in this 
chapter) effects produced by disease. Currently, the principle features that are 
recordable using MRI rely on perfusion, diffusion, and proton density of tissue. 
These features provide a wealth of information regarding the structural integrity of 
tissue - both in cases of disease and the normal ageing process. The quantitative 
aspects of MRI is an area that will continue to develop - in hand with novel pulse 
sequences. In conjunction with data from clinical and other venues, the 
applicability of MRI in the medical domain will continue to flourish. 
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Chapter 8
Image Analysis in Poincaré-Peters Perceptual
Representative Spaces�

A Near Set Approach

Sheela Ramanna

Abstract. The problem considered in this paper is how to detect similarities in the
content of digital images, useful in image retrieval and in the solution of the im-
age correspondence problem, i.e., to what extent does the content of one digital
image correspond to content of other digital images. The solution to this problem
stems from a recent extension of J.H. Poincaré’s representative spaces from 1895
introduced by J.F. Peters in 2010 and near sets introduced by J.F. Peters in 2007.
Elements of a perceptual representative space are sets of perceptions arising from
n-dimensional image patch feature vector comparisons. An image patch is a set of
subimages. In comparing digital images, partitions of images determined by a par-
ticular form of indiscernibility relation ∼B is used. The L1 (taxicab distance) norm
in measuring the distance between feature vectors for objects in either a percep-
tual indiscernibility or a perceptual tolerance. These relations combined with finite,
non-empty sets of perceptual objects constitute various representative spaces that
provide frameworks for image analysis and image retrieval. An application of rep-
resentative spaces and near sets is given in this chapter in terms of a new form of
content-based image retrieval (CBIR). This chapter investigates the efficacy of per-
ceptual CBIR using Hausdorff, Mahalanobis as well as tolerance relation-based dis-
tance measures to determine the degree of correspondence between pairs of digital
image. The contribution of this chapter is the introduction of a form of image anal-
ysis defined within the context of Poincare-Peters perceptual representative spaces
and near sets.
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1 Introduction

This chapter considers a solution to the problem of detecting similarities in dig-
ital images from based on a recent extension of J.H. Poincaré’s representative
spaces [1, 2] introduced by J.F. Peters in 2010 [3] and near sets introduced by J.F.
Peters in 2007 [4, 5] and elaborated in [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
Briefly, near sets are disjoint sets that resemble each other. Resemblance between
objects such image patches in digital image is represented by object description. A
description is defined by an n-dimensional feature vector of real values, each value
representing an observable feature such graylevel intensity or colour brightness. For
example, the cmyk image in Fig. 1.1 resembles (is near) the image in Fig. 1.2, since
both images have (magenta) colour patches. Similarly, Fig. 1.2 is near Fig. 1.3,
since both images have (grey) colour patches.

1.1: cmyk image
patches

1.2: near cmyk
colour patches,
i.e., Patches in
1.1 visually near
Patches 1.2

1.3: least near cmyk
colour patches,
i.e., Patches in 1.1
less visually near
Patches 1.3

Fig. 1 Sample Near Colour Sets

In Poincaré, a representative space [1] models a physical continuum that is nei-
ther homogeneous nor isotropic (the same in all directions) and contrasts with a
mathematical continuum such as the familiar one in Euclidean geometry [?]. The
elements of a physical continuum are sets of similar (perceptually indistinguish-
able) sensations. A set of similar sensations is determined by an implicit tolerance
relation �φ ,ε , where φ is perceptible feature of sensation such as intensity of pin-
point pressure on the skin and ε ∈ [0,+∞) is a tolerance used to compare sensation
feature values. Let X ,ℜ denote a set of sensations and set of real numbers, respec-
tively. Put x,y ∈ X . Let φ : X → ℜ+ denote a probe that maps sensations to real
values. Then a simple tolerance relation is defined by

�φ ,ε= {(x,y) ∈ X ×X : |φ(x)−φ(y)| ≤ ε}.
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2.1: Sample aircraft 2.2: Aircraft classes

2.3: Sample aircraft class

Fig. 2 Sample Covering

A sample representative space is denoted by 〈X ,�φ ,ε 〉. For example, let X denote
a non-empty set of greylevel intensities in a visual image. In Poincaré’s view, a
pair of intensities x,y belong to A ⊂ X in case where x �φ ,ε y. For simplicity, let
1.1 = Fig. 1.1, for example. Then the following two sets can be identified, namely,
A = {1.1, 1.2}, B = {1.2, 1.3}, indicating the visual “intersection” of three separate
images. For an in-depth study of non-empty perceptual description-based intersec-
tion between disjoint sets, see [10].

A sample covering (all tolerance classes , each containing8× 8 subimages of
Fig. 2.1) is shown in Fig. 2.2. The relation�φ ,ε ,φ : X →ℜ (greylevel intensity) ,ε =
0 determines the classes denoted with a mixture (grey) image patches in Fig. 2.2.
The relation �{φ1,φ2},ε ,φ1 : X → ℜ (greylevel intensity), and φ2 : X → ℜ (edge ori-
entation) determines the class denoted with (green) image patches in Fig. 2.3, i.e.,
the image patches in this sample class each have the same average greylevel intensi-
ties and average edge orientation of the pixels in each of the patches shown, starting
with the lower edge of the cockpit (this can be verified by starting with one of the

(black) subimages in the cockpit region, working round the parts of the aircraft
in Fig. 2.3, comparing other subimage greylevels the greylevel of the subimage that
you start with.

This chapter includes an application of the proposed approach to solving the im-
age correspondence problem in terms of a new form of content-based image retrieval
(CBIR). In a CBIR system, image retrieval from large image databases is based
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on some similarity measure of the actual contents of images rather than metadata
such as captions or keywords. Image content can include colors, shapes, textures,
or any other information that can be derived from an image. Most CBIR systems
have one thing in common: images are represented by numeric values that signify
properties of the images such as features or descriptors that facilitates meaningful
retrieval [19]. In general, there are two approaches (i) the discrete approach is in-
spired by textual information retrieval and uses text retrieval metrics. This approach
requires all features to be mapped to binary features; the presence of a certain image
feature is treated like the presence of a word in a text document, (ii) the continuous
approach is similar to nearest neighbor classification. Each image is represented by
a feature vector and features are compared and subsequently ranked using various
distance measures. Image patches (i.e., sub-images of images) or features derived
from image patches offer very promising approaches to CBIR [19]. Different types
of local features can then be extracted for each subimage and used in the retrieval
process. Our approach to perceptual CBIR can be viewed as an image patch ap-
proach where local feature values are first extracted from subimages. In the proposed
approach to CBIR, image classes in an image covering determined by a tolerance
relation provide the content used in the form of CBIR introduced in this chapter.
This approach stems from a number of recent studies of the use of tolerance spaces
in solving the image correspondence problem [16, 20, 11, 21, 3, 12, 22].

This paper has the following organization. The basic notation used in this chapter
as well as an introduction to object description, perceptual systems and perceptual
Pawlak partitions (PIPs) are introduced in Sect. 3. Then, in Sect. 4, a brief intro-
duction to near sets is given. Probe functions for image features investigated in this
chapter are given in Sect. 5. The distance measures are briefly explained in Sect. 6.
Extensive set experiments to illustrate the new approach to CBIR are given in Sect. 7
and Sect. 8.

2 Related Works

An extensive survey of a broad range of image retrieval systems which includes a
comparison of selected features, querying schemes and matching methods can be
found in [23, 24]. Similarity between pairs of images can be defined with respect
to either the image content or with respect to concepts that is derived from the vi-
sual content of an image [25, 26]. Designing a complete image retrieval system
would require an image indexing scheme, user interface design, possibly relevance
feedback or active learning procedures to facilitate interactive searches [27, 28, 29].
Although features such as color, shape, texture are considered to be helpful in hu-
man judgment of image similarity, human perception is not fully considered at the
algorithmic stage of feature extraction. In [30], a cognitive discriminative biplot,
is used to capture perceptual similarity. This method is structural where point dia-
grams capture the objects, their relationships and data variations. The evaluation of
the biplot is conducted using a standard nearest neighbour algorithm.
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Our solution to the image correspondence problem stems from an approach to
pairwise comparison of images that is similar to G. Fechner’s 1860 approach to
comparing perceptions in psychophysics experiments [31]. For Fechner, a pair of
perceptions are indistinguishable if there is no perceptible difference in a particular
feature of the perceived objects, e.g., perception resulting from lifting small objects
where the feature is weight.

Of interest here is a solution to establishing a correspondence between regions
of pairs of images using image comparison strategies. The particular form of parti-
tions of sets considered here are named after Z. Pawlak because the partitions are
defined by an equivalence relation inspired by the original indiscernibility relation
introduced by Z. Pawlak in 1981 [32] and elaborated in [33, 34]. The indiscernibility
relation is a basic building block in defining rough sets [33].

Rough set-based approach to image analysis dates back to the early 1990s. The
application of rough sets in image analysis was launched in a seminal paper pub-
lished by A. Mrózek and L. Plonka [35]. The early work on the use of rough sets
in image analysis can be found in [36, 37, 38, 39, 40, 41, 42]. A review of rough
sets and near sets in medical imaging can be found in [14]. More recently, D. Sen
and S.K. Pal [43] introduce an entropy based, average image ambiguity measure to
quantify greyness and spatial ambiguities in images. This measure has been used
for standard image processing tasks such as enhancement, segmentation and edge
detection. Forms of rough entropy have also been used in a clustering approach to
image segmentation [44, 16]. Papers related to the foundations and applications of
fuzzy sets, rough sets and near sets approaches in image analysis can be found in
S.K. Pal and J.F. Peters [16].

In solving the image correspondence problem, each image is viewed as set of
points. One often used approach is to assign weight to point sets and to define
distance functions that incorporates not only the position but also the weight of
points [45]. A well-known distance function is the Earth Movers Distance(EMD)
[46]. A Proportional Transportational Distance (PTD) was introduced by Giannopo-
lus and Veltkamp in [45]. PTD is a pseudo-metric that is invariant under rigid mo-
tion, respects scaling and obeys triangle inequality. This is in contrast to EMD which
does not obey triangle inequality for sets of unequal total weight.

Our approach is to consider partitions of images that are defined by a perceptual
indiscernibility relation introduced by J.F. Peters and S. Ramanna in [6] and elabo-
rated in [12, 3, 16], where the descriptions of regions of images are compared. Let
x,y denote a pair of subimages in an image X and let B denote a set of real-valued
functions that represent subimage features. In the simplest form of a perceptual in-
discernibility relation ∼B, put ∼B= {(x,y) ∈ X ×X | ∀φ ∈ B,φ(x) = φ(y)}. In
comparing a pair of images X ,Y , a partition of each image is defined by ∼B . Then
pairs of digital images are near sets to the extent that partitions of the images resem-
ble each other, i.e., image resemblance is present in the case where pairs of classes
A ⊂ X ,B ⊂ Y contain subimages x ∈ A,y ∈ B where x ∼B y. In this paper, the de-
gree of image resemblance is determined by specialized forms of distance measures:
Hausdorff [47, 48, 49], Mahalanobis [50, 51] and tolerance nearness measures.
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3 Basic Notions

This section briefly presents the basic notions underlying perceptually near Pawlak
partitions used in this work.

3.1 Description and Perceptual Systems

An object description in rough set theory is defined by vectors of attribute values
in an information table. However, in near set theory, description of an object x is
defined by means of a vector of real-valued function values φ(x), named probe
functions, that gives some measurable (or perceivable features) of an object in the
physical world.

φB(x) = (φ1(x),φ2(x), ...,φi(x), ...,φl(x)), (1)

where φi : X → ℜ (reals). The object description representation in (1), was first
introduced in [52] based on the intuition that object descriptions are analogous to
recorded measurements from sensors and hence the name probe function. Near set
theory is defined in the context of a perceptual system [17]. A perceptual system
is defined as a set of perceptual objects O along with a set of probe functions F =
{φ1,φ2, ...,φL} and is denoted by

〈
O,F

〉
. Nearness relation is then defined between

sets of perceptual objects from the perceptual system relative to the probe functions
defined in the perceptual system. Sets X ,Y ⊆ O are weakly near to each other if,
and only if there are x ∈ X and y ∈ Y and there is B ⊆ F such that x and y are
indiscernible to each other (i.e, ∀φi ∈ B,φi(x) = φi(y)).

Definition 1. Perceptual System
A perceptual system 〈O,F〉 consists of a sample space O containing a finite, non-
empty set of sensed sample objects and a countable, non-empty set F containing
probe functions representing object features.

The perception of physical objects and their description within a perceptual system
facilitates pattern recognition and the discovery of sets of similar objects.

3.2 Perceptual Pawlak Partitions

It is possible to extend the original idea of an indiscernibility relation between ob-
jects [32, 34, 53] to what is known as perceptual indiscernibility (introduced in [12])
that befits the perception of objects in the physical world, especially in science and
engineering applications where there is an interest in describing, classifying and
measuring device signals and various forms of digital images.

Definition 2. Perceptual Indiscernibility Relation [12]
Let 〈O,F〉 be a perceptual system. Let B ⊆ F and let φB(x) denote a description of
an object x ∈ O of the form (φ1(x),φ2(x), . . . ,φi(x), . . . ,φk(x)). A perceptual indis-
cernibility relation ∼B is defined relative to B, i.e.,
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3.1: Lena 3.2: Lena Greyscale Seg-
mentation

3.3: Lena Greyscale, edge-
orientation segmentation

3.4: Mona Lisa (ML) 3.5: ML Greyscale Segmen-
tation

3.6: ML Greyscale, edge-
orientation segmentation

Fig. 3 Sample Segmentations

∼B= {(x,y) ∈ O×O | ‖ φB(x)−φB(y) ‖1= 0} ,
where ‖ · ‖1 = ∑k

i=1 | · |(L1 norm).

In this section, classes are defined in the context of perceptual partitions of digital
images.

Definition 3. Perceptual Pawlak Partitions
Let 〈O,F〉 be a perceptual system. Let X ⊆ O,B ⊆F. A perceptual Pawlak partition
(PIP) of X defined by ∼B is denoted by X

/∼B
, i.e.,

X
/∼B

=
⋃
x∈X

x/∼B
.

A perceptual Pawlak partition is a cover of X [54], i.e., a separation of the ele-
ments of X into non-overlapping classes where x/∼B

denotes an equivalence class
containing x.
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4.1: Lena Greyscale 4.2: Lena Greyscale Eye
Class

4.3: Lena Greyscale, edge-
orientation Eye Class

4.4: Mona Lisa Greyscale 4.5: Mona Lisa Greyscale
Eye Class

4.6: Mona Lisa Greyscale,
edge-orientation Eye Class

Fig. 4 Sample Classes

Example 1. Sample Greyscale Classes
Sample feature-based segmentations are shown in Fig. 4. The boxes in Fig. 3.2
and Fig. 3.5 represent greyscale classes. These classes reveal the contrast between
Lena and Mona Lisa, i.e., the shading over Lena’s eyes, bridge of her nose tends,
hatbrim and hatfrong tend to be uniformly spread over Mona Lisa’s face and appear
prominently on either side of Mona Lisa’s head.

Example 2. Sample Perceptual Edge Classes in Pawlak Partition
Fig. 3 presents two examples of perceptual Pawlak partitions. The boxes in Fig. 4.3
and Fig. 4.6 represent edge orientation classes. Each class contains subimages with
the matching edge orientations.

The different coloured regions in Fig. 4.3 and Fig. 4.6 represent different equiva-
lence classes based on B = {eo}. It is worth noting that the size (and the nature) of
the equivalence classes are much smaller for the eo feature when compared with gs
feature.
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4 Near Sets and Perceptually Near Pawlak Partitions

The basic idea in the near set approach to object recognition
is to compare object descriptions. Sets of objects X ,Y
are considered near each other if the sets contain objects
with at least partial matching descriptions.

–Near sets. General theory about nearness of objects,
–J.F. Peters, 2007.

4.1 Near Sets

Near sets are disjoint sets that resemble each other [15]. Resemblance between dis-
joint sets occurs whenever there are observable similarities between the objects in
the sets. Similarity is determined by comparing lists of object feature values. Each
list of feature values defines an object’s description. Comparison of object descrip-
tions provides a basis for determining the extent that disjoint sets resemble each
other. Objects that are perceived as similar based on their descriptions are grouped
together. These groups of similar objects can provide information and reveal pat-
terns about objects of interest in the disjoint sets.

Near set theory provides methods that can be used to extract resemblance infor-
mation from objects contained in disjoint sets, i.e., it provides a formal basis for
the observation, comparison, and classification of objects. The discovery of near
sets begins with choosing the appropriate method to describe observed objects. This
is accomplished by the selection of probe functions representing observable object
features. A basic model for a probe function was introduced by M. Pavel [55] in the
text of image registration and image classification. In near set theory, a probe func-
tion is a mapping from an object to a real number representing an observable feature
value [5]. For example, when comparing objects in digital images, the texture fea-
ture (observed object) can be described by a probe function representing contrast,
and the output of the probe function is a number representing the degree of contrast
between a pixel and its neighbour.

Probe functions provide a basis for describing and discerning affinities between
objects as well as between groups of similar objects [6]. Objects that have, in some
degree, affinities are considered near each other. Similarly, groups of objects (i.e.
sets) that have, in some degree, affinities are also considered near each other.

Definition 4. Near Sets
Let 〈O,F〉 be a perceptual system. Let X ,Y ⊂ O be disjoint sets in O and B ⊆ F.
X ��B Y (X and Y are near each other) if, and only if there are x ∈ X ,y ∈ Y , where
x ∼B y, i.e., x and y have matching descriptions.

Preclasses in tolerance relations were introduced by M. Schroeder and M. Wright
[56].

Definition 5. Perceptual Preclass [16]
Let

〈
O,F

〉
be a perceptual system, A ⊂ ∼=B,ε . A is a preclass in ∼=B,ε if, and only if

∀x,y ∈ A, x ∼=B,ε y.
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Fig. 5 Growth of Representative Spaces

A tolerance class is a maximal preclass in a tolerance relation. Considered in the
context of perceptual tolerance relations, we obtain

Definition 6. Perceptual Class [16]
Let

〈
O,F

〉
be a perceptual system, A ⊂ ∼=B,ε . A is a perceptual tolerance class in

∼=B,ε if, and only if A is a maximal preclass in ∼=B,ε . Unless otherwise specified,
C∼=B,ε denotes a perceptual tolerance class.

Every pair of objects x,y in a perceptual tolerance class C∼=B,ε must satisfy the
condition ‖ φB(x)− φB(y) ‖2≤ ε , i.e., x,y have similar descriptions. Perceptual
systems and tolerance near sets provide a feature-based solution of the image cor-
respondence problem. The basic idea is to discover tolerance classes containing
images with descriptions that differ from each other within a preset tolerance. Let
B ⊆ F denote a set of probe functions representing object features. Pairs of images
X ,Y with coverings defined by a tolerance relation resemble each other in the case
where X ��

B,ε Y for some tolerance ε .

Definition 7. Tolerance Near Sets
Let 〈O,F〉 be a perceptual system. Put ε ∈ ℜ,B ⊂ F. Let X ,Y ⊂ O denote disjoint
sets with coverings determined by a tolerance relation ∼=B,ε . Sets X ,Y are tolerance
near sets if, and only if there are preclasses A ⊂ X ,B ⊂ Y such that A ��

B,ε B.

Notice that ��
B,ε is a specialized form of the weak nearness relation ��

F
in Def. 7

and shown to be a tolerance relation in Corollary 5.5 [17].

4.2 Representative Spaces

One the simplest forms of a representative space is a direct result of the perceptual
indiscernibility relation in Def. 2.
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Definition 8. Perceptual Representative Space [6, 3]
A perceptual representative space is denoted by 〈O,∼B〉 where O is a non-empty
set of perceptual objects, B a countable set of probe functions, and ∼B is a percep-
tual indiscernibility relation.

Even with its failure to take into account the problem of varying similarity between
image patches in digital images , this form of representative space has proven to be
quite useful (see, e.g., [9]).

Definition 9. Poincaré Representative Space [1]
A Poincaré representative space is denoted by 〈O,�φ ,ε 〉 where O is a non-empty
set of sensations, φ a single probe function φ → ℜ, and �φ ,ε is a tolerance relation

�φ ,ε= {(x,y) ∈ O×O : |φ(x)−φ(y)| ≤ ε}.

A.B. Sossinsky observed in 1986 [57] that the main idea underlying tolerance space
theory comes from Poincaré, especially [1] (Poincaré work on representative spaces
(aka tolerance spaces) was not mentioned by Zeeman). In 2002, Z. Pawlak and J.
Peters considered an informal approach to the perception of the nearness of physical
objects such as snowflakes that was not limited to spatial nearness [58]. In 2006, a
formal approach to the nearness of objects was considered by J. Peters, A. Skowron
and J. Stepaniuk [13] in the context of proximity spaces [59, 60, 61, 62]. The term
tolerance space was coined by E.C. Zeeman in 1961 in modelling visual perception
with tolerances (Zeeman, 1962; Zeeman and Buneman, 1968). A tolerance space is
a set X supplied with a binary relation � (i.e., a subset � ⊂ X ×X) that is reflexive
(for all x∈X , x � x) and symmetric (for all x,y∈X , x� y and y� x) but transitivity
of � is not required. For example, it is possible to define a tolerance space relative
to sets of images. This is made possible by assuming that each image is a set of fixed
points.

This leads to what are known as perceptual representative spaces introduced
in [3]. Consider, now, a countable set B containing probe functions in a perceptual
system and a more general tolerance relation �B,ε . This leads to what are known as
perceptual representative spaces introduced in [3].

Definition 10. Perceptual Tolerance Representative Space [3]
A perceptual representative space is denoted by 〈O,�B〉 where O is a non-empty
set of perceptual objects, B a countable set of probe functions, and �B tolerance
relation

�B,ε= {(x,y) ∈ O×O :‖ φB(x)−φB(y) ‖p≤ ε},

where ‖ · ‖p= (∑n
i=1( · p

i )
1
p (Lp norm). Usually, either p = 1 (taxicab distance) or

p = 2 (Euclidean distance). In this chapter, p = 1.

Perceptual representative spaces have close affinity with proximity spaces [63, 64,
65, 66, 67, 68], especially in terms of recent work on nearness in digital images [69].
Originally, the notion of nearness between sets (proximity relation between sets)
was derived from a spatial meaning of distance by V. Efremovic̆ [67, 68]. Later,
the notion of proximity between sets became more general and closer to the notion
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of nearness underlying near sets, i.e., proximity not limited to a spatial interpreta-
tion was introduced by S.A. Naimpally in 1970 [63] (see, e.g., [64, 65]). This later
form of proximity relation permits either a quantitative (spatial) or qualitative (non-
spatial) interpretation.

Perceptual representative spaces are patterned after the original notion of a rep-
resentative space introduced by J.H. Poincaré during the 1890s [1]. Poincaré’s form
of representative space was used to specify a physical continuum associated with
a source of sensation, e.g., visual, tactile, motor. A perceptual representative space
P = 〈O,∼B〉 is a generalization of Poincaré’s representative space inasmuch as
P represents sets of similar perceptual objects in a covering of O determined by a
relation such as ∼B .

For example, a digital image X can be viewed as a set of points represented
by image pixels (picture elements). Pairs of digital images containing pixels with
matching descriptions are near sets. Now consider the partition pairs of disjoint
sets.

Proposition 1. Let 〈O,∼B〉 denote a perceptual representative space and let X ,Y ⊂
O denote disjoint sets in O and B a set of probe functions representing object fea-
tures. Then X ��B Y if, and only if X/∼B

��B Y/∼B
.

Proof. Let 〈O,∼B〉 denote a perceptual representative space, where O is a non-
empty set of perceptual objects, B a set of probe functions representing object fea-
tures. And let X ,Y ⊂ O denote a pair of disjoint sets. A perceptual indiscernibility
relation ∼B determines, for example, a partition of X , separation of X into disjoint
subsets. Consider quotient sets X/∼B

,Y/∼B
determined by ∼B.

⇒ Assume X ��B Y . Then, from Def. 4, there are x ∈ X ,y ∈ Y such that x ∼B y.
That is, x ∈ X/∼B

,y ∈ Y/∼B
have matching descriptions. Then, again from Def. 4,

X/∼B
��B Y/∼B

.
⇐ Assume X/∼B

��B Y/∼B
. The proof that therefore X ��B Y again follows from

Def. 4 and the approach in the proof is symmetric with the proof of ⇒. ��
Corollary 1. Let 〈O,∼B〉 denote a perceptual representative space, where O is a
non-empty set of digital images, B a set of probe functions representing subimage
features, and ∼B is a perceptual indiscernibility relation. Also, let X ,Y ⊂ O denote
digital images in O. Then X ��B Y if, and only if there are x/∼B

∈ X/∼B
and y/∼B

∈
Y/∼B

such that x/∼B
��B y/∼B

.

It is now possible to specialize Cor. 1 by considering O to be a non-empty set of sam-
ple digital images (sets of points). The partition of a digital image X (set of points)
entails the selection of a subimage size, usually containing p× p pixels. In picture
terms, p is the number of points on a subimage edge. Let x ∈ X denote a subimage
in X and let x

/∼B
denote a class containing x, where every other subimage in x

/∼B

has description similar to the description of x. In other words, a class in a parti-
tion of X consists of one more more subimages with similar descriptions. In image
processing terms, such a partition determines an image segmentation consisting of
non-overlapping regions that are identified with classes.
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Corollary 2. Let 〈O,∼B〉 denote a perceptual representative space, where O is a
non-empty set of digital images, B a set of probe functions representing subimage
features, and ∼B is a perceptual indiscernibility relation. Also, let X ,Y ⊂ O denote
digital images in O. Then X ��B Y if, and only if X/∼B

��B Y/∼B
.

An obvious extension of Prop. 1 is given in Prop. 2. Let O denote a set of finite,
non-empty set image patches and let X ,Y ⊂ O denote disjoint sets of image patches
in individual digital images. Also, let Hε

B(X ∪Y ) denote the family of all tolerance
classes of relation ∼=B on the set X ∪Y .

Proposition 2. Let 〈O,∼=B,ε 〉 denote a perceptual representative space and let X ,Y ⊂
O denote disjoint sets in O and B a set of probe functions representing object fea-
tures. Let A ⊂ Hε

B(X),B ⊂ Hε
B(Y ). Then X ��

B,ε Y if, and only if A ��
B,ε B

Proof. Symmetric with the proof of Prop. 1. ��

6.1: Image im1 partition 6.2: Image im2 partition

Fig. 6 Sample Perceptually Near Image Partitions

Example 3. Perceptually Near Digital Image Partitions
Let 〈O,∼B〉 denote a perceptual representative space, where O is a non-empty set
of digital images, B a set of probe functions representing subimage features, and
∼B is a perceptual indiscernibility relation. Consider the images Im1, Im2 ⊂ O in
Fig. 6.1 and Fig. 6.2, respectively. Let gs denote a function that returns the average
greyscale value for the pixels in a subimage and assume B = {gs}. Let x/∼{gs}

∈
X/∼{gs}

,y/∼{gs}
∈ Y/∼{gs}

denote classes represented by a grey-shaded box in the

partition of the images in Fig. 6.1 and Fig. 6.2. In effect, the classes with grey-
shaded boxes represent subimages that have matching descriptions.

Since these images contain classes (represented by shaded boxes) with matching
shades of grey determined by ∼B, such classes are examples of near sets. That is,
since there are classes in the segmentations in Fig 6 that are near sets, we know from
Def. 4 that Im1/∼{gs}

��B Im2/∼{gs}
. Then, from Cor. 2, Im1 ��B Im2.

Example 4. Tolerance Space-Based Near Digital Images
Let O denote a set of finite, non-empty set image patches and let X ,Y ⊂ O de-
note disjoint sets of image patches in individual digital images. Also, let Hε

B(X)
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7.1: Image im3 7.2: Partition of image Im3 7.3: Set X in image Fig. 7.2

7.4: Image im4 7.5: Partition of image Im4 7.6: Set Y in image Fig. 7.5

Fig. 7 Sample Perceptually Near Partitions

Fig. 8 Sample Perceptually Near Image Tolerance Classes

denote the family of all tolerance classes of relation ∼=B on image X and let
Hε

B(Y ) denote the family of all tolerance classes of relation ∼=B on image Y .
Let 〈O,∼=B,ε〉 denote a perceptual tolerance representative space and let X ,Y ⊂ O
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denote disjoint sets in O and B a set of probe functions representing object features.
Let A ⊂ Hε

B(X),B ⊂ Hε
B(Y). From Prop. 2, we know that X ��

B,ε Y if, and only if
A ��

B,ε B. For example, in Fig. 8, a pair of tolerance classes are shown, one class
on the Mona Lisa image in Fig. 4.4 and another class on Lena in Fig. 4.1. Notice
the subimage in the left hand corner of Lena’s right eye. All of the and
image patches shown in the two images correspond to subimages that have average
greylevels and edge orientations that are similar (within tolerance ε = 0.1) to the
average greylevel and edge orientation of the right eye subimage.

4.3 Perceptually Near Digital Images

The partition of an image defined by ∼B results in the separation of the parts of the
image into equivalence classes, i.e., results in an image segmentation. A ∼B-based
segmentation is called a perceptually indiscernible partition (PIP). Notice that, by
definition, a class in the partition of an image is set of subimages with matching
descriptions.

In the partition in Fig. 7.2, for example, a single class is represented by the
(dark grey) shaded boxes scattered throughout the partition. Depending on the

features chosen, PIPs will be more or less perceptually near each other. The
notion of perceptually near partitions was introduced in [4, 70] and elaborated
in [12, 17, 15, 18, 71].

Definition 11. Perceptually Near Pawlak Partitions
Let 〈O,F〉 be a perceptual system, where O is a non-empty set of picture elements
(points) and X ,Y ⊂ O, i.e., X ,Y are digital images, and B ⊆ F. X

/∼B
��B Y

/∼B
if,

and only if there are x/∼B
∈ X

/∼B
,y/∼B

∈ Y
/∼B

such that x/∼B
��B y/∼B

.

Example 5. Subimages That Resemble Each Other
Let 〈O,F〉 be a perceptual system. Assume that O is a set of images (each image is
a set of points). Let I1, I2 ⊂ O and let I1/∼B

, I2
/∼B

be partitions defined by ∼B.

I1/∼B
��B I2/∼B

if, and only if there are subimages X ⊆ I1/∼B
,Y ⊆ I2/∼B

, where
X ��B Y . That is, there are subimages X ,Y that resemble each other (X ,Y are near
sets). Notice that I1 and I2 can either be the same image or two different images.

Example 6. Sample Perceptually Near Image Partitions
Consider images Im3, Im4 in Fig. 7.1, 7.4, respectively. Each shaded box in Fig-
ures 7.2, 7.5 have a uniform greylevel representing the greylevel of the pixels inside
the shaded area. That is, since both X ,Y contain subimages represented by, for ex-
ample, (light grey) shaded areas (X ,Y contain subimages with matching descrip-
tions, namely, ).

From Def. 11, the partitions Im3/∼B
, Im4/∼B

in Figures 7.2, 7.5 are perceptu-
ally near each other (Im3/∼B

��B Im4/∼B
), since the subimages X ⊂ Im1/∼B

in Fig. 7.3 and Y ⊂ Im2/∼B
in Fig. 7.6 are examples of perceptually near sets,
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i.e. from Def. 4 and the presence of subimages with matching grey levels in both X
and Y , we conclude that X ��B Y .

Example 7. Sample Near Image Coverings
Consider images X (Mona Lisa), Y (Lena) in Fig. 7. Each shaded box in these im-
ages have average greylevels and average edge orientation for the pixels inside the
parts of the images patches shown in both images. For this reason, X is near (resem-
bles) Y , i.e., X ��

B,ε Y (this follows from Prop. 2).

5 Probe Functions for Image Features

This section briefly introduces probe functions for image features used in the CIBR
experiments reported in this chapter.

5.1 Edge Features

Edge features include edge orientation (eo) and edge intensity (ei). Edge features are
extracted using a wavelet-based multiscale edge detection method from [72]. This
method involves calculation of the gradient of a smoothed image using wavelets,
and defines edge pixels as those that have locally maximal gradient magnitudes in
the direction of the gradient.

5.2 Region Features

Region features include both texture and colour from [73]. Hue and Saturation
colour characteristics taken together are called Chromaticity. The texture features
carry information about the relative position of pixels in an image rather than just
the histogram of the intensities. Let G be the co-occurrence matrix whose element
gi j is the number of times that pixel pairs with intensities zi and z j occur in image
f specified by operator Q with L possible intensity levels where 1 ≤ i, j ≤ L. Q
defines position of two pixels relative to each other. pi j is the probability that a pair
of points satisfying Q with intensities zi and z j defined as follows:

pi j =
gi j

n
,where n is the total number of pixel pairs

mr and mc are means computed along rows and columns respectively and σr and
σc are standard deviations computed along rows and columns respectively of the
normalized G. The following probe function for texture features are considered in
this paper:
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φC =
K

∑
i=1

K

∑
j=1

(i−mr)( j−mc)pi j

σrσ̇c
,Correlation, (2)

φCt =
K

∑
i=1

K

∑
j=1

(i− j)2 ṗi j,Contrast, (3)

φE =
K

∑
i=1

K

∑
j=1

p2
i j,Energy, (4)

φH =
K

∑
i=1

K

∑
j=1

pi j

1 + |i− j| ,Homogeneity, (5)

φh =
K

∑
i=1

K

∑
j=1

ṗi j ˙log2 ṗi j,Entropy. (6)

6 Nearness Measures

This section briefly presents the four nearness measures used to quantify the degree
of resemblance between images. It should also be observed that O in a perceptually
representative space is viewed as a metric space with a metric defined in obvious
ways by means of, for example, the L1 norm from Def. 2. The approach to defin-
ing nearness methods in this section was first introduced in [11] and elaborated
in [21].

The nearness methods introduced in this section are defined relative to some dis-
tance D between images (0<D<Dmax). That is, a nearness measure NM is defined
as a function of distance, NM = ν(D), such that the ν(.) is monotonically decreasing
(higher distance means lower nearness), ν(Dmax) = 0 and ν(0) = 1. The following
function is used when there is a finite maximum value (Dmax) for D.

NM = ν(D) = 1−
(

D
Dmax

)γ
, (7)

where D/Dmax is the normalized distance between 0 and 1 and γ is a scaling factor.
The scaling factor γ is introduced here to modify distribution of distances around
zero (γ < 1) or around one (γ > 1). A value of γ = 0.5 is considered to prevent
the vales of NM from being very close to 1. In cases where there is no maximum
finite distance or when Dmax >> 0, the following function is used to obtain nearness
measures between 0 (D → ∞) and 1 (D = 0).

NM = ν(D) =
1

1 +D
(8)
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6.1 Tolerance Representative Space-Based Nearness Measures

Tolerance nearness measure (tNM) and tolerance covering nearness measure
(tcNM) are based on the idea that if one considers the union of two images as the
set of perceptual objects, tolerance classes should contain almost equal number of
subimages from each image. In other words, a tolerance class which is defined over
the union of two images should cover both images equally. The name tolerance
covering nearness measure comes from this interpretation. The tolerance nearness
measure (tNM) was first introduced by Henry and Peters [14]. In this paper, a more
simple interpretation of tNM is introduced and also a modified version of the mea-
sure leads to a tolerance covering nearness measure (tcNM) that introduced by A.-H.
Meghdadi [21].

Let O denote a set of finite, non-empty set image patches and let X ,Y ⊂ O denote
disjoint sets of image patches in individual digital images. Consider perceptual tol-
erance representative space 〈O,∼=B,ε 〉 defined with a tolerance relation ∼=φ ,ε on X ,Y
relative to a set of probe functions B and ε ∈ (0,+∞) and consider the covering of
tolerance classes on a set X∪Y for X ,Y ⊂O determined by ∼=φ ,ε . Let Hε

B(X ∪Y ) de-
note the family of all tolerance classes of relation ∼=B on the set X ∪Y . The tNM∼=B,ε
nearness measure (introduced in [74], elaborated in [75]) estimates the degree of
resemblance between X and Y . This measure is defined in (9) as the weighted av-
erage of the closeness between the cardinality (size) of sets A∩X and A∩Y where
A ∈ Hε

B(X ∪Y) and the cardinality of tolerance class A is used as the weighting
factor.

tNM∼=B,ε
(X ,Y ) =

∑
A∈Hε

B(X∪Y )
T · |A|

∑
A∈Hε

B(X∪Y )
|A| , (9)

T =
min{|A∩X |, |A∩Y |}
max{|A∩X |, |A∩Y |} . (10)

The tcNM nearness measure, on the other hand, is defined in two steps. First, a toler-
ance covering distance measure (tcDM) is defined in (11) as a measure of difference
between the intersection of tolerance classes with either images. Then, tcNM in (12)
is defined by converting the tcDM distance to a measurement of nearness using (7).

tcDM = ∑
A∈Hε

B(X∪Y )

|A∩X | − |A∩Y |
|A∩X | + |A∩Y | , (11)

tcNM = 1−
√

tcDM
|Hε

B(X ∪Y )| , (12)

where |Hε
B(X ∪Y )| is the total number of tolerance classes defined over the covering

of X ∪Y using ∼=B,ε .
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6.2 Hausdorff Nearness Measure (HdNM)

Hausdorff distance [47, 48, 49, 54] is defined between two finite point sets in a
metric space. Assume d(x,y) is a distance defined between points x and y in a metric
space. Let X and Y be sets of points in the space. The Hausdorff distance ρH(X ,Y )
between sets X and Y [54] is defined in (13). Then to such a space, we apply the
Hausdorff distance between sets in measuring the resemblance between sets.

ρH(X ,Y) = max{dH(X ,Y),dH(Y,X)}, (13)

where

dH(X ,Y) = max
x∈X

{min
y∈Y

{d(x,y)}}, (14)

dH(Y,X) = max
y∈Y

{min
x∈X

{d(x,y)}}. (15)

dH(X ,Y ) and dH(Y,X) are directed Hausdorff distances from X to Y and from
Y to X , respectively. In comparing images X ,Y , a Hausdorff nearness measure
HdNM(X ,Y ) = 1

1+ρH(X ,Y ) . The Hausdorff nearness measure HdNM is typically used
to find a part of a test image that matches a given query or template image.

6.3 Generalized Mahalanobis Nearness Measure (gMNM)

The generalized Mahalanobis nearness measure (gMNM) was first introduced in
[76]. The Mahalanobis distance [51] is a form of distance between two points in the
feature space with respect to the variance of the distribution of points. The original
Mahalanobis distance is usually defined between two sample multivariate vectors x
and y as follows [77].

DM(x,y) = (x−y)T Σ−1(x−y), (16)

where the vectors are assumed to have a normal multivariate distribution with the co-
variance matrix Σ . This formula is usually used to measure the distance DM(x,m)
between a vector x and the mean of the distribution m. Following the same ap-
proach, the Mahalanobis distance can be used to define a distance measure between
two separate distributions. Let us assume χ1 = (Σ1,m1) and χ2 = (Σ2,m2) are two
normal multivariate distributions with means m1,m1 and covariance matrices Σ1,Σ2.
Moreover, assume that P(ω1) and P(ω2) represent prior probabilities of the given
distributions. A generalized Mahalanobis distance between the two distributions is
defined as follows [78, 77].

gMD =
√

(m1 −m2)T Σ−1
W (m1 −m2), (17)

where Σ−1
W refers to the within-class covariance matrix defined as in equation 18
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ΣW = ∑
i=1,2

(
P(ωi) ∑

x∈χi

(x−mi)(x−mi)T

ni

)
. (18)

Therefore, a generalized Mahalanobis distance-based nearness measure (gMNM)
between two images is defined as follows. Let X and Y denote sets of perceptual
objects (images). Let Φ̄X and Φ̄Y represent the mean feature vector for all the per-
ceptual objects x ∈ X and y ∈Y , respectively. Also, let ΣX and ΣY be the covariance
matrices of the multivariate distributions of ΦX and ΦY (feature values), respec-
tively. Then

gMD(X ,Y ) =
√

(Φ̄X − Φ̄Y )T Σ−1
X,Y (Φ̄X − Φ̄Y ), (19)

gMNM(X ,Y ) =
1

1+ gMD(X ,Y)
, (20)

where

ΣX ,Y =
1
2

(ΣX +ΣY ) . (21)

7 Illustration: Image Nearness Measures

We illustrate the application of the image nearness measures in an image retrieval
context with images drawn from the SIMPLIcity database [79] and using the Megh-
dadi toolset [11]. Table 1 includes pair-wise comparison of the query image num-
bered 420 with sample test images drawn from different categories such as di-
nosaurs, buildings and so on (see section 7.4 for a complete list). The experiments
include a number of different image features for various subimage sizes (p). The
notation for image features used in experiments are given next.

T =texture features denoted by CCtEH from Sec. 5.2,

h =entropy,

ei =edge intensity,

eo =edge orientation,

eio =edge intensity and edge orientation taken together,

C =chromaticity feature with hue and saturation taken together.

For conciseness (column compression), symbols represented feature are concate-
nated in Table 1. For example, T eioh denotes the fact that the texture features (cor-
relation, contrast, energy, homogeneity, entropy) and edge features (edge intensity
and edge orientation) are used to compute nearness measures for a pair of images.
The measurements reflect various subimage sizes from pixel matrices ranging in
size from 20 × 20 to 5 × 5. Our choice of an 8 × 8 matrix was influenced by the re-
trieval quality of the nearness measurements and also the computation time. Image
retrieval typically involves comparison of a large number of images and the issue of
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Table 1 Nearness Measurements

p Feature Images gMNM HdNM p Feature Images gMNM HdNM

20 T eo 420,423 0.61 0.80 8 greyeio 420,304 0.10 0.75
5 T eo 420,423 0.82 0.90 8 grey 420,304 0.10 0.86
5 T eio 420,423 0.81 0.87 10 T eioh 420,474 0.89 0.81

10 T eio 420,474 0.97 0.83 5 T eioh 420,423 0.75 0.86
5 T 420,474 0.99 0.96 5 T eiohC 420,423 0.4 0.76
5 T eio 420,474 0.95 0.75 5 T eiohC 420,460 0.90 0.75
5 T eo 420,432 0.90 0.85 5 T eioh 420,460 0.90 0.75
5 T eio 420,432 0.90 0.85 5 T eio 420,460 0.90 0.76
5 T eioh 420,432 0.79 0.83 5 T eo 420,460 0.91 0.79
5 T eiohC 420,432 0.60 0.715 5 T eioh 420,456 0.24 0.74
5 T eo 420,436 0.85 0.87 5 T eio 420,456 0.24 0.74
5 T eio 420,436 0.85 0.83 5 T eo 420,456 0.24 0.74
5 T eioh 420,436 0.78 0.80 5 T eiohC 420,436 0.36 0.68
8 T eio 420,478 0.77 0.83 8 eio 420,478 0.79 0.98
8 T eio 420,484 0.94 0.86 8 eio 420,484 0.95 0.98
8 T eio 420,424 0.73 0.81 8 eio 420,424 0.74 0.96
8 T eio 420,473 0.94 0.82 8 eio 420,473 0.99 0.98
8 T eio 420,490 0.87 0.79 8 eio 420,490 0.95 0.99
8 T eio 420,514 0.128 0.72 8 eio 420,514 0.42 0.99
8 T eio 420,703 0.07 0.76 8 eio 420,703 0.34 0.97
8 T eio 420,600 0.32 0.72 8 eio 420,600 0.48 0.97
8 T eio 420,200 0.29 0.77 8 eio 420,200 0.37 0.97
8 T eio 420,304 0.34 0.74 8 eio 420,304 0.48 0.97
8 T eio 420,499 0.93 0.85 8 eio 420,499 0.95 0.98
8 T eio 420,408 0.61 0.78 8 eio 420,408 0.73 0.97
8 T eio 420,410 0.71 0.75 8 eio 420,410 0.77 0.96
8 teio 420,423 0.84 0.85 8 eio 420,423 0.93 0.98
8 T eio 420,432 0.88 0.81 8 eio 420,432 0.95 0.9
8 T eio 420,436 0.79 0.78 8 eio 420,436 0.94 0.97
8 T eio 420,456 0.93 0.84 8 eio 420,456 0.98 0.98
8 T eio 420,460 0.96 0.86 8 eio 420,460 0.99 0.98
8 T eio 420,474 0.95 0.85 8 eio 420,474 0.95 0.98

computation time is important. It can also be observed that adding entropy and chro-
maticity features does not add to the discriminatory power of nearness measures.

7.1 Analysis of Hausdorff Nearness Measure: Image Retrieval
Experiments

In this section, we discuss the significance of the Hausdorff nearness measure values
drawn from Table 1.

Fig. 9 shows 20 images (1 query and 19 test) ordered by their HdNM values us-
ing only the eio edge features. It can be observed that i) the difference between the
measure values of the nearest and furthest images is very small (0.99 vs 0.96) and
ii) images 9.3, 9.19 and 9.20 are also out of sequence. Fig. 10 shows the same 20
images ordered by their HdNM values using both edge features and texture features
T eio. It is noteworthy that all images belonging to the same category as the query
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9.1: Query,
M=1

9.2: M=0.99 9.3: M=0.99 9.4: M=0.98 9.5: M=0.98

9.6: M=0.98 9.7: M=0.98 9.8: M=0.98 9.9: M=0.98 9.10: M=0.98

9.11: M=0.98 9.12: M=0.98 9.13: M=0.97 9.14: M=0.97 9.15: M=0.97

9.16: M=0.97 9.17: M=0.97 9.18: M=0.97 9.19: M=0.96 9.20: M=0.96

Fig. 9 Images ordered by HdNM measure values with Edge Features

image are now retrieved in the proper sequence. Also the difference between the
measure values of the nearest and furthest images shows some improvement(0.86
vs 0.72).

7.2 Analysis of Generalized Mahalanobis Nearness Measure:
Image Retrieval Experiments

In this section, we discuss the significance of the generalized Mahalanobis nearness
measure values drawn from Table 1. Fig. 11 shows 20 images (1 query and 19
test images) ordered by their gMNM values using only the edge features eio. It
can be observed that i) the difference between the measure values of the nearest
and furthest images is fairly large (0.99 vs 0.34) compared with HdNM measure
ii) all images belonging to the same category as the query image are retrieved in
the proper sequence. Fig. 12 shows the same 20 images ordered by their gNM
values using both edge features and texture features T eio. It can be observed that
the difference between the measure values of the nearest and furthest images (0.96
vs. 0.07) is considerable, when additional features are added and that the texture
features contribute significantly to the quality of the image retrieval.
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10.1: Query,
M=1

10.2: M=0.86 10.3: M=0.86 10.4: M=0.85 10.5: M=0.85

10.6: M=0.85 10.7: M=0.84 10.8: M=0.83 10.9: M=0.82 10.10: M=0.81

10.11: M=0.81 10.12: M=0.79 10.13: M=0.78 10.14: M=0.78 10.15: M=0.77

10.16: M=0.76 10.17: M=0.75 10.18: M=0.74 10.19: M=0.72 10.20: M=0.72

Fig. 10 Images ordered by HdNM measure values with Edge and Texture Features

7.3 Remarks on Quality of Retrieval

The observations in sections 7.2 and 7.1 reveal that the generalized Mahalanobis
nearness measure is a better measure in terms of its discriminatory power and its
stability. The Hausdorff measure calculates distance between two sets of feature-
valued vectors extracted from subimages in two images using the L1 norm. In ad-
dition, the edge intensity and edge orientation features are not sufficient to get a
good match between the query image and the test images, even though the mea-
sure is modified to compensate for the effect of outliers (see eqns. 14 and 15).
The Mahalanobis measure calculates distance between feature vectors with respect
to the covariance of the multivariate distribution of mean feature values extracted
from subimages in two images. It can be seen that with just the edge intensity and
edge orientation features, the Mahalanobis nearness measure is able to find a good
match for the query image. This is because this measure takes into account not only
in-class co-variance, but also prior probabilities.
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11.1: Query 11.2: M=0.99 11.3: M=0.99 11.4: M=0.98 11.5: M=0.95

11.6: M=0.95 11.7: M=0.95 11.8: M=0.95 11.9: M=0.95 11.10: M=0.94

11.11: M=0.93 11.12: M=0.79 11.13: M=0.77 11.14: M=0.74 11.15: IM=0.73

11.16: M=0.48 11.17: M=0.48 11.18: M=0.42 11.19: M=0.37 11.20: M=0.34

Fig. 11 Ordered by gMNM-measure values with Edge Features

7.4 Performance Measure

Several performance evaluation measures have been proposed based on the well-
known precision(P) and the recall(R) to evaluate the performance of CBIR meth-
ods [80]. We use the following definitions for P and R:

P =
Number of relevant images retrieved

Total number of images retrieved
, (22)

R =
Number of relevant images retrieved

Total number of relevant images
. (23)

We have used a total of 578 images drawn from the SIMPLIcity database in the six
categories (see Fig.9). Table 2 shows the average measure values for images in each
category.

However, the individual pair-wise measure values vary within each category. In
order to establish relevancy of the test images, a threshold th for the nearness value
which acts as a cut-off needs to be determined. Notice that the total number of
relevant images should not be > 100 (size of the query image category set). Using
this approach, we obtain the following results for P and R with th = 0.6:
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12.1: Query 12.2: M=0.96 12.3: M=0.95 12.4: M=0.94 12.5: M=0.94

12.6: M=0.93 12.7: M=0.93 12.8: M=0.88 12.9: M=0.87 12.10: M=0.84

12.11: M=0.79 12.12: M=0.77 12.13: M=0.73 12.14: M=0.71 12.15: M=0.61

12.16: M=0.34 12.17: M=0.32 12.18: M=0.29 12.19: M=0.13 12.20: M=0.07

Fig. 12 Images ordered by gMNM-measure values with Edge and Texture Features

PT eio =
100
578

= 0.173 using Hausdorff HdNM, (24)

RT eio =
100
100

= 1.0 using Hausdorff HdNM, (25)

PT eio =
99
99

= 1.0 using Mahalanobis gMNM, (26)

RT eio =
99
100

= 0.99 using Mahalanobis gMNM. (27)

It is noteworthy that on a large sample of images, Mahalanobis gMNM distance
measure is more precise than the Hausdorff HdNM distance measure for the same
threshold value(see, eqn. (24)).

Table 2 Nearness Measurements

Category Number of Images Average gMNM AverageHdNM

Building 100 0.27 0.77
Bus 94 0.24 0.75

Dinosaurs 100 0.84 0.82
Elephant 100 0.19 0.74
Flower 84 0.31 0.73
Horse 100 0.12 0.74
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Table 3 Set of probe functions: B = {φ1,φ2, ...,φ11}

Probe function Feature Description

φ1 Colour Average grey level of pixels
φ3,φ4,φ5 Colour Red, Green and Blue colour components
φ6 Shape Average edge intensity
φ7 Shape Dominant edge orientation
φ2 Texture Entropy of the greylevel values
φ8 Texture Contrast
φ9 Texture Correlation
φ10 Texture Uniformity
φ11 Texture Homogeneity

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100

Number of images retrieved

re
le

va
nt

 im
ag

es

QairA

 

 
tNM
HdNM
tcNM

13.1: CBIR: First trial

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

Number of images retrieved

re
le

va
nt

 im
ag

es

QairB

 

 
tNM
HdNM
tcNM

13.2: CBIR: Second trial
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13.3: CBIR: First trial
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13.4: CBIR: Second trial

Fig. 13 Comparison of CBIR results on Caltech & Simplicity
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14.1: CBIR: First trial
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14.2: CBIR: Second trial

Fig. 14 Comparison of CBIR results on Simplicity

8 CBIR Experiments on Two Image Archives

In this section we report results of experiments on more substantial image archives.
Two different types of trials were performed on all of the images in two separate
image archives, with 600 images from the Caltech archive [81] and the 1000 images
from the Simplicity archive [79]. Each query image is compared with all of the
images in an image archive. The number of the most relevant images (i.e., those
images that most closely resemble the query image) in the first 100 images retrieved
from each image archive are reported. The relevancy of a retrieved test image Y
in relation to a query image X is determined by the degree of nearness of X ,Y
computed using the tNM, tcNM,HdNM measures.

Description of CBIR Retrieval Trials
T.1 In this first trial, only shape features (edge intensity and edge orientation)

with ε = 0.2 are used to determine coverings in each query image and test
image pair. The set of probe functions B = {φ6,φ7} are listed in Table 3.
In this first trial, the tNM,tcNM,HdNM measures are applied to each pair
of image of image coverings.

T.2 In the second trial, colour, texture and shape features represented by the
11 different probe functions in Table 3 and ε = 1.1 are used to determine
coverings in each query image and test image pair. In this second trial,
the tNM,tcNM,HdNM measures are also applied to each pair of image of
image coverings.

The trials reported in this section represent an application of Prop. 2, where the
nearness of each pair of images is determined by a comparison of classes found in
the coverings of the query and test images. The coverings themselves are viewed in
the context of perceptual representative spaces that are specialized forms of Zeeman
tolerance spaces and represent an application of Prop. 1.

The results of two trials are shown in Figures 13 and 14. With one exception,
it can be observed that the Hausdorff nearness measure HdNM is more accurate
in measuring the correspondence of each query image to the test images in both
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the Caltech and Simplicity image archives. In other words, for the results in five of
the trials reported in Figures 13.1, 13.2, 13.3, 13.4, 14.2, the HdNM measure more
accurately determines the extent that a query image image resembles a test image.
The one exception in these results of Trial T.1 (comparison of shape features) can
be observed in Fig. 14.1, where the tNM,tcNM measures outperform the Hausdorff
HdNM measure in determining the correspondence between an ROI query image
and each of the test images.

9 Conclusion

This chapter introduces a form of image analysis defined within the context of
Poincaré-Peters perceptual representative spaces and near sets. To preserve the rep-
resentative heritage that began with J.H. Poincaré’s representation of physical con-
tinua as set of similar sensations (e.g., visual, tactile, audio), the term representative
space (RS) has been used as a synonym for various forms of tolerance spaces. The
Poincaré-Peters RS generalises Poincaré’s original RS because it represents one or
more features of sensation in determining the similarity of sensations. The focus in
this chapter is on visual space containing points that are subimages. The new form
of RS provides a framework for vision systems and CBIR.

It should also be mentioned that there is a clear distinction between a Zeeman
tolerance space and a perceptual tolerance space. A Zeeman tolerance space does
not take into account the features of objects in a visual space. By contrast, the focus
of perceptual tolerance spaces is on tolerance relations defined in terms of one or
more features of points in a visual space. Each set of image features leads to a
particular perceptual tolerance space. Notice that Pawlak indiscernibility relations
are specialized forms of tolerance relations inasmuch as an indiscernibility relation
is reflexive and symmetric as well as transitive. Remarkably, a perceptual space
(X ,�B) with a set of perceptual objects X and perceptual indiscernible relation �B

that determines a partition of X that is highly useful in image analysis. This has been
demonstrated in [8]. In general, however, a perceptual tolerance space (X ,τB) with
a set of perceptual objects X and perceptual tolerance relation τB has proved to be
more useful in image analysis(see, e.g., [9, 16]). This is the case because elements
of one tolerance class often are also members of other tolerance classes in a cover
determined by τB . This fact tends to make it easier to discern similarities between,
for example, regions of a pair of digital images.

In the proposed approach to CBIR, image classes determined by a tolerance rela-
tion provide the content useful in image retrieval. The degree of image resemblance
is determined by specialized forms of distance measures Hausdorff, Mahalanobis
and tolerance nearness measures. Sample experiments reported in this chapter sug-
gest that the proposed approach to CBIR is quite promising. Future work will in-
clude near set-based object recognition and more advanced forms of CBIR.
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Chapter 9
Local Keypoints and Global Affine Geometry:
Triangles and Ellipses for Image Fragment
Matching

Mariusz Paradowski and Andrzej Śluzek

Abstract. Image matching and retrieval is one of the most important areas of com-
puter vision. The key objective of image matching is detection of near-duplicate
images. This chapter discusses an extension of this concept, namely, the retrieval
of near-duplicate image fragments. We assume no a’priori information about visual
contents of those fragments. The number of such fragments in an image is also un-
known. Therefore, we address the problem and propose the solution based purely
on visual characteristics of image fragments The method combines two techniques:
a local image analysis and a global geometry synthesis. In the former stage, we
analyze low-level image characteristics, such as local intensity gradients or local
shape approximations. In the latter stage, we formulate global geometrical hypothe-
ses about the image contents and verify them using a probabilistic framework.

1 Introduction

Local image features have always been one of the fundamental mechanisms in ma-
chine vision. Although a wide selection of diversified local features exist, we are
particularly interested in keypoints (also referred to as interest points). The concept
of keypoints appeared almost 30 years ago (e.g. [7, 19]) but their main idea has re-
mained unchanged until today. In general, keypoints indicate image fragments with
distinctive visual characteristics. It is assumed that the characteristics are so promi-
nent that whenever the same objects/scenes appear in another image, most of such
fragments would be again detected as keypoints. Therefore, by matching keypoints
with similar characteristics, the local similarities between images can be established.
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Originally, keypoints were proposed primarily for stereovision, [19], where the
problem of local correspondences was critical for a proper depth estimation. Those
keypoints were relatively simple corner points detected over small areas of fixed
size (e.g. [7, 19]). In the following years, however, the importance of keypoints
in a more general task of image matching (including image search and retrieval)
has been identified (e.g. [23]). For such applications, more sophisticated types of
keypoints are needed. These keypoints, apart from being insensitive to illumina-
tion and contrast variations, should remain invariant (at least approximately) under
shape deformations typically encountered in 2D visualization of 3D scenes. Thus,
scale-invariant keypoint detectors have been proposed (e.g. [2, 13]) followed by
affine-invariant (approximately or fully) detectors (e.g. [16, 20]). Such keypoints
are usually represented by circles or ellipses indicating the keypoint’s scale/shape
so that the term key regions seems more appropriate. There also exist keypoint de-
tectors that are directly based on the local shapes (e.g. MSER proposed in [15]) for
which the elliptical approximations are more intuitive.

Keypoints are almost universally represented by n-dimensional descriptors (char-
acterizing selected local properties of image intensities or colours) so that vi-
sual similarities between keypoints can be measured as distances between points
in n-dimensional spaces. Various keypoint descriptors have been proposed (e.g.
[1, 2, 9, 11, 14, 18, 28]) and benchmarked (e.g. [17]).

In this work, we are not particularly concerned about the type of keypoint detec-
tors and descriptors used, although certain preferences are highlighted in Section 2.
We just exploit the fact that hundreds (or even thousands) of keypoints typically de-
tected in a single image provide a large amount of (mostly) stable and (usually) use-
ful visual data. Therefore, keypoint-based image matching, search and retrieval have
recently gained popularity in highly diversified applications (ranging from video
browsing, e.g. [32], satellite image processing, e.g. [27], to urban navigation sys-
tems, e.g. [29]).

The major difficulties is such applications arise from the lack of contextual fac-
tors in the individual keypoint matching. In other words, visually similar keypoints
can represent a similar/identical object only if the similarity is consistent within
a wider context. The consistency is usually modeled by a geometric distortion uni-
formly transforming a group of matching keypoints from one image to another. Typ-
ically considered mappings include scaling+rotation and affine transforms, as most
distortions presents in natural-world images can be sufficiently accurately approx-
imated (at least locally) by such mappings. Thus, the objective of keypoint-based
image matching can be specified as the identification of groups of matched key-
points that satisfy the geometric constraints of the underlying transformation.

For such problems, the RANSAC paradigm, e.g. [4], is the standard solution
from which techniques used in other works have been directly or indirectly devel-
oped. This paradigm assumes that local feature matches might be incorrect due to
measurement errors (incorrect detection and localization by a detector) or classifi-
cation errors (similar descriptors representing unrelated visual contents). If correct
matches constitute at least a significant percentage of all matches, the outliers can
be (more or less effectively) rejected.
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As mentioned above, affine transforms are considered the distortion model for
images matching (even though RANSAC can be applied to more complex trans-
formations) since perspective distortions are locally approximated well enough by
affine functions. However, non-linear models on top of affine transforms are also
sometimes considered (e.g. [28]). Such an approach works quite well for near-
duplicate image matching/retrieval (where images contain the same scene though
possibly captured under different viewing setting or photometric conditions). This
is the most popular problem, widely used to illustrate or benchmark performances
of various keypoint detectors and descriptors (e.g. [2, 3, 14, 16, 17, 28, 32], etc.).
A similar (though a more general) problem is near-duplicate sub-image match-
ing/retrieval where we attempt to identify (database) images containing the image
of interest (a query image) as a fragment (e.g. [9, 12]).

Neither near-duplicate image nor near-duplicate sub-image matching techniques
address the issue of detecting unspecified similar fragments in images of unpre-
dictable, possibly unrelated contents. It can be noticed that the RANSAC paradigm
is not applicable to such a problem, since correct keypoint matches can constitute an
insignificant (or even statistically negligible) percentage of all matches. Recently, a
partial solution has been proposed in [31], where only similarities modeled by rota-
tions and scalings are considered. Another study, [8], proposed a solution that seems
feasible only for the pre-selected scenarios since visual bags-of-words are precom-
puted from representative images (video-frames) for each scenario. Both method
use keypoints as the underlying local features.

In this chapter we present the most general currently existing (to our best knowl-
edge) solution. Formally, we can specify it as follows:

Given two random images (i.e. with no prior knowledge about their con-
tents) I and J, identify pairs of near-duplicate image fragments that are related
by affine transformations. The term ”near-duplicate fragments” refers to frag-
ments depicting (almost) identical objects. However, the visual appearances of
those fragments may differ, because of different scene and camera settings,
photometric conditions, digitization parameters and possibly because of cer-
tain deformation of the objects.

The method is also general in a sense that we do not restrict our method to partic-
ular types of keypoint detectors or descriptors. However, the recommended typical
choices are briefly overviewed in Section 2. Section 3 is the central part of the chap-
ter. There, we discuss strategies of keypoint matching, details of affine transforma-
tion building from two types of geometric structures, two decomposition techniques
for affine transformations and, finally, the methodology of affine histogram building.
The affine-related near-duplicate fragments are eventually identified as prominent
spikes of such histograms. Performance evaluation, the parameter-tuning issues, and
prospective applications of the method are overview in Section 4.

This chapter summarizes and updates results of our recent research papers (some
of them not published yet). For example, one of the papers ([21]) discusses the
image fragment matching using triangles of keypoint, while another ([22]) focuses
on elliptical approximations of key regions surrounding the keypoints. The chapter,
together with the program executables and an exemplary visual database available
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at http://www.ii.pwr.wroc.pl/∼visible, presents a ready-to-use technology for image
fragment matching in various machine vision applications.

2 Keypoints: Detectors and Descriptors

Calculation of local image characteristics is the first and elementary step in many
image analysis approaches. It provides the necessary data for all following steps.
First, we will address the problem of keypoint detection. Later, we discuss the prob-
lem of feature calculation describing these keypoints.

2.1 Keypoint Detectors

The method proposed in this chapter can prospectively work with any types of key-
point detectors. The only assumption is that the corresponding keypoint descriptors
are available (preferably in a form of n-dimensional vectors) so that similarities be-
tween keypoint can be established. However, we focus on three popular detectors
known to be reliable performers under a wide range of photometric and geometric
distortions (including affine transformations). Moreover, all these detectors return
keypoints in a form of elliptical key regions (which are important in the second
variant of the presented work) with the keypoint coordinates at the centre of the cor-
responding ellipse. The detectors differ, however, in the underlying mathematics. To
illustrate the concept of elliptical keypoints, in Fig. 1 we show generated keypoints
for an exemplary image.

(a) Original image (b) Harris-Affine (c) Hessian-Affine (d) MSER

Fig. 1 Examples of detected elliptical key regions, near 500 most prominent regions are
chosen.

2.1.1 Harris-Affine Keypoint Detector

Harris-Affine detector has been derived from the corner detector proposed in [7].
This corner detector is based on the autocorrelation matrix of the image intensity
function I(x,y) averaged over a small area (usually the averaging is modeled by an
isotrophic Gaussian filter g(σI) determining the integration area)
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A(x,y,σI) = g(σI)⊗
[

I2
x IxIy

IxIy I2
y

]
, where Ix =

∂ I(x,y)
∂ x

and Iy =
∂ I(x,y)

∂y
.

(1)
The proposed measure of ”cornerness” (related to the eigenvalues of matrix A) is

R(x,y) = det(A)−αtrace2(A) (2)

where typical values of α are in 0.04-0.08 range.
A keypoint (corner point) is detected at (x,y) locations where R(x,y) exceeds a

predefined threshold and reaches a local maximum.
If the image is rescaled, the detection should be performed over the correspond-

ingly changed area, i.e. the detector’s Gaussain kernel should be modified.
Image rescaling is usually modeled by the convolution of the intensity function

I(x,y) with another isotrophic Gaussian filter g(σD) so that Eq. 1 converts to:

A(x,y,σI ,σD) = σ2
Dg(σI)⊗

[
ID2

x IDxIDy

IDxIy ID2
y

]
, where IDx/y =

∂ I(x,y,σD)
∂ x/y

.

(3)
Both Gaussian filters should change proportionally (typically σD = 0.7σI) so that
Eq. 2 has three variables, if the image is analyzed in multiple scales.

R(x,y,σ) = det(A)−αtrace2(A). (4)

Harris-Laplace detector identifies the local maxima of Eq. 4 in three dimensions and,
thus, returns not only the coordinates of each keypoint but also its optimum scale
(the size of the integration area is visualized by a circle of the radius proportional to
the scale).

Harris-Affine detector is a generalization of Harris-Laplace. The difference is that
we assume affine distortions of the underlying images (instead of a simple scaling)
so that both Gaussian kernels should change differently to preserve the local visual
characteristics of images.

Formally, we create another matrix A

A(x,y,ΣI ,ΣD) = det(ΣD)g(ΣI)⊗ (∇I(x,y,ΣD))(∇I(x,y,ΣD))T (5)

where ΣI and ΣD are the covariance matrices for the Gaussian kernels representing
affine deformations of the image (ΣD) and the integration area (ΣI). Again, the image
deformation and the integration area deformation should be proportional so that the
problem of keypoint detection consists in local maxima detection in a 5-dimensional
space (two coordinates and three parameters of the covariance matrix).

In [16], the problem is decomposed and simplified. First, the coordinates of key-
points are found using Harris-Laplace detector. Subsequently, the optimum affine
deformation (i.e. the optimum covariance matrix and the shape of corresponding
ellipse) is iteratively found for each keypoint.
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2.1.2 Hessian-Affine Keypoint Detector

Hessian-Affine detector is very similar to Harris-Affine. The only major difference
is the measure of ”cornerness”. Instead of A matrix of Eq. 1, the Hessian matrix of
second derivatives of the intensity function I(x,y) is used:

H(x,y) =
[

Ixx Ixy

Ixy Iyy

]
, where Ixy =

∂ 2I(x,y)
∂ x∂y

, etc. (6)

Keypoints are detected at coordinates where both the determinant and trace of H
matrix reach the local extremum.

det(H) = IxxIyy − I2
xy, trace(H) = Ixx + Iyy (7)

If the image is rescaled (i.e. its intensity is convolved with an isotrophic Gaussian
filter g(σ), the extrema are found over three dimensions, i.e. x,y,σ , and instead of
Eq. 7 we use

det(H) = σ 2 (IxxIyy − I2
xy

)
, trace(H) = σ (Ixx + Iyy) (8)

Other details of the detector are identical to Harris-Affine. In particular, it also re-
turns ellipses representing the scales (and affine distortions) of keypoints.

2.1.3 Maximally Stable Extremal Regions

Unlike the previous two keypoint detectors, the MSER (maximally stable extremal
regions) detector, proposed in [15], is not based on differential properties of image
intensities. Instead, it is based on a sequence of binary images (starting from all
white and terminating in all black) obtained by thresholding the image of interest
with a gradually increasing threshold. The set of all connected regions (some of
them are white and some are black) in such a sequence of images forms the set of
extremal regions.

Extremal regions of the same color are nested. For example, a black extremal
region Qt obtained for t threshold is placed within another black extremal region
Qt+Δ t obtained with t + Δt threshold. At the same time, by reducing the threshold
to t −Δ t, we obtain an extremal region (or several regions) Qt−Δ t that is within Qt .
For white extremal region the situation is reversed (a white region is within another
white region created by a lower threshold).

Maximally stable extremal regions (MSER) are those extremal regions that are
least sensitive (in terms of their area) to the threshold changes. Formally, MSERs
corresponds to the local minima of the following expression:

area(Qt+Δ t\Qt−Δt)
area(Qt)

. (9)

MSER detector obviously extracts regions of diversified sizes and shapes. However,
they are usually converted into ”proper” key regions. The MSER’s centre of mass
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becomes the keypoint, while the moment-based elliptical approximation (e.g. [24])
of the MSER’s shape forms the key region.

2.2 Keypoint Descriptors

As already mentioned, we are not particularly concerned about the type of keypoint
descriptors used in the proposed algorithms (as long as they accurately match visu-
ally similar key regions). However, a brief survey of the most popular descriptors
(based on different principles and having different dimensionalities) is included for
clarity and better understanding of the background.

The most straightforward (but also the least discriminative) keypoint descriptors
are color or intensity characteristics of their key regions.

More popular are differential keypoint descriptors that use image derivatives in
several ingenious ways. Typical examples of such descriptors include:

SIFT ([14]: This is a 128-dimensional descriptor representing (normalized) gra-
dient magnitudes in 8 major directions over a 4×4 grid superimposed on a circle (or
an ellipse normalized to a circle). Several modification and improvements of SIFT
exist, e.g. PCA-SIFT ([11]), CSIFT ([1]), ASIFT ([20]), etc.

GLOH ([17]): It is similar to SIFT but differs mainly in the shape of grid. Its 17×
16 grid in log-polar coordinates provides 272-dimensional vectors of local gradients.

Gradient moments ([17]): This descriptor consists of moments (up to second
order) of the image derivatives (up to second degree) computed over the key region.
Thus, the descriptor’s dimensionality is 25.

Other keypoint descriptors are more directly based on the image intensities. In
this category the following descriptors, among others, can be listed:

SURF ([2]): The image intensity is decomposed (within 4×4 grid superimposed
on a circle) into Haar wavelets. Each grid square is sub-divided into a 2×2 pattern
to calculate its Haar wavelets so 64 descriptor coefficients exist altogether. A similar
descriptor (on 3× 3 grids) using another set of Haar-like functions is proposed in
[28]. Its dimensionality is 36.

Color moment invariants ([18]): Generalized color moments (in three color
channels) combine shape and color information. 18 moment invariants for affine
geometric and photometric transformations (using moments up to first order and
second degree) are defined. Thus, this descriptor (computed on the normalized key
regions) is 18-dimensional.

3 Matching Image Fragments

In this section we presents two approaches to the detection of affine-related, near-
duplicate fragments in two images I and J. The approaches differ in one aspect
only. Affine transformations are reconstructed either by using three pairs of matched
keypoints (i.e. triangles) or by using two pairs of matched ellipses (key regions). All
other steps of the proposed method are basically identical.
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The main methodological challenge is to avoid prohibitively high computational
complexities (which can often happen when the large amounts of data are pro-
cessed). Thus, the ellipse-based approach with O(n2) complexity (where n esti-
mates the number of keypoints in an image) is superior to the triangle-based method
(O(n3) complexity). However, the accuracy of the less complex ellipse-based ap-
proach is slightly compromised.

Once near-duplicate image fragments are matched, we can compare image con-
tents at a higher level. Instead of correspondences between hundreds/thousands of
keypoints, we can address the issue from the perspective of similar regions usually
representing fragments of real objects.

In general, the proposed method consists in the following steps:

1: Find keypoints in input images and their descriptors (off-line step),
2: Find credible keypoint matches,
3: Build geometric structure for reconstruction of affine transformations,
4: Reconstruct affine transformations,
5: Decompose affine transformations into elementary transformations,
6: Build 6D parameter histograms of decomposed transformations,
7: Find high density areas (peaks) in 6D histogram,
8: Group found high density areas into objects.

All these steps (except the first one already explained in Section 2.1) are discussed
in the following sections.

3.1 Keypoint Matching

Even though performances of keypoint detectors are not perfect (in terms of the
actual robustness against viewpoint and illumination changes) they provide large
numbers of fairly stable features that can be matched with similarly large numbers
of features from other images. This strategy is applied in almost all current image
matching algorithms.

Generally, three keypoints matching schemes exist, [32]: one-to-one (O2O), one-
to-many (O2M) and many-to-many (M2M). In our work, only two of these schemes
are used: O2O and M2M. One-to-many is by definition asymmetric and, thus, it
does not fit into the general idea of our method.

O2O is much faster and sufficiently reliable unless images contain multiple
copies of the same object (although simple cases of such scenarios can be handled
as well). Alternatively, M2M usually generates much more matching pairs and is,
therefore, slower. However, keypoints are connected many-to-many and detection of
multiple copies of objects is easier. Otherwise, both methods perform similarly well
in the stated matching problem.

In our work we have implemented the following variants of the schemes:

• As O2O we use the mutual nearest neighbor method, i.e. keypoints are paired if
and only if they are mutual nearest neighbors.

• As M2M we use the nearest neighbor method. All nearest neighbors are used;
mutual nearest neighbors are represented only once (no duplicates).
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However, matched keypoint pairs are often duplicated. Some combinations of
detectors and descriptors (e.g. Harris-Affine and SIFT) tend to generate multiple
keypoints very close to each other or exactly at the same locations. Since our so-
lution is, in fact, density based such multiple keypoints may generate false density
spikes and thus produce artifacts. As a remedy, we detect such clusters of keypoint
pairs present in both images by measuring distances between them. The experimen-
tally selected threshold of keypoint distances is equal to 0.5% of the image resolu-
tion. Once such a cluster is detected, each keypoint is weighted 1/c, where c is the
number of keypoints in the cluster.

In the next step of the method, we create elementary geometric structures on top
of the keypoint pairs. These geometric structures have to be weighted accordingly.
Their weights are calculated by multiplying weights of all keypoint pairs contribut-
ing to a structure.

3.2 Affine Transformation Reconstruction

An affine transformation is a linear mapping followed by a translation. In case of
images, we are interested in affine transformations in two-dimensional spaces, i.e.
transformations are defined by six parameters. Four of the parameters form the linear
part, while the remaining two specify the translation vector.

If (x,y) are the source image I coordinates, and (u,v) represent the destination
image J coordinates, the affine transformation is represented by a homogeneous
matrix A: ⎡

⎣ u
v
1

⎤
⎦= A

⎡
⎣ x

y
1

⎤
⎦ , where A =

⎡
⎣ A B C

D E F
0 0 1

⎤
⎦ , (10)

where: A,B,D,E is the linear part and C,F is the translation vector.
Affine transformations have several useful properties (exploited in the later part

of this chapter):

1. co-linear points remain co-linear,
2. distance ratios of co-linear points are not changed,
3. triangles are mapped into triangles (possible in a degenerate form, i.e. a line or a

point),
4. second degree curves are mapped into second degree curves (possible in a de-

generate form),
5. parallel lines remain parallel.

Reconstruction of affine transformations from matched keypoints is the first step
of the global analysis of the image geometry. However, such a reconstruction can
be done in several different ways. In this chapter we use two elementary geometric
structures to reconstruct affine transformation, i.e. matched keypoints and matched
elliptical key regions. Our discussion starts from the former approach, as it is con-
ceptually simpler.
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3.2.1 Triples of Keypoints (Triangles)

A 2D affine transformation has six parameters so that we need a non-singular sys-
tem of six linear equations to reconstruct the transformation. Using the third prin-
ciple (triangles are mapped into triangles) we can form such a system of equations
from three matched pairs of non-colinear keypoints. Consider three points (x1,y1),
(x2,y2) and (x3,y3) in the source image I, and their counterparts (u1,v1), (u2,v2)
and (u3,v3) in the destination image J. To reconstruct the affine transformation from
these triangles, we solve the following system of equations:

⎡
⎢⎢⎢⎢⎢⎢⎣

A
B
C
D
E
F

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

v1

v2

v3

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1 y1 1 0 0 0
x2 y2 1 0 0 0
x3 y3 1 0 0 0
0 0 0 x1 y1 1
0 0 0 x2 y2 1
0 0 0 x3 y3 1

⎤
⎥⎥⎥⎥⎥⎥⎦

−1

. (11)

The triangle-based approach has two major advantages and one disadvantage. First,
it uses a non-singular system of linear equations which can be easily solved. Tri-
angle points (i.e. actually keypoints) are usually very precisely localized so that the
transformation is reconstructed with a high accuracy. However, the computational
complexity is a serious disadvantage. With n pairs of matched keypoint, the total
number of triangles can possibly reach n3, i.e. we have to deal with the memory and
computational complexity of O(n3). Considering that the number of matched pairs
can be higher than 1000, this is a serious inconvenience.

3.2.2 Ellipses and Points

The major reason to use the ellipse-based approach is O(n3) complexity of the
triangle-based technique. Using the ellipse-based approach, we can reduce the com-
putational and memory complexity to O(n2). Apart from this significant advantage
of the ellipse-based approach, a number of problems also exist, as we follow. Recre-
ation of a single affine transformation using the ellipse-based approach is conceptu-
ally and numerically more complex.

In this approach we assume one pair of matched elliptical key regions (with
matched keypoint in their centers) and another pair of matched keypoints. It should
be highlighted that the elliptical key regions (regardless of their type) are not actual
objects of the matched images. They are just the local estimates of the orientation,
anisotropy and/or shapes of the image intensities (see Section 2.1 for more details
on keypoints). This observation plays an important role in our subsequent analysis.

Assume an elliptical key region in image I with the center (xi,yi), two size-related
parameters Pi,Ri and a rotation parameter Qi. Then, the equation of the ellipse in
image I is:

Pi (x− xi)
2 + Qi (x− xi) (y− yi)+ Ri (y− yi)

2 = 1. (12)
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The corresponding ellipse (key regions) in image J would have a center point (ui,vi)
and three parameters Ai,Bi and Ci. The equation of this ellipse is:

Ai (u−ui)2 + Bi (u−ui)(v− vi)+Ci (v− vi)2 = 1. (13)

We cannot reconstruct the affine transformation from such a pair of ellipses because
a system of six equations with six unknowns cannot be formed from five parameters
of matched ellipses. On the other hand, two pairs of matched ellipses would provide
ten parameters, and the resulting system of equations would be overdetermined and
strongly contradictory.

Our next choice is a matched pair of ellipses and, additionally, a matched pair
of keypoints. This means seven equations altogether, i.e. system of equations is still
overdetermined. However, with only equation redundant, we can attempt some kind
of regularization that would provide a reliable reconstruction of affine transforma-
tions. The following problems should be addressed:

• What ellipse-related data should be eliminated to reduce the number of degrees
of freedom from seven to six?

• How to analytically calculate the affine transformation from the remaining data?
• How to select a unique affine transformation if multiple solutions are obtained?

Regularization of ellipses

The second listed affine property (see Section. 3.2) says that distance ratios of co-
linear points are not changed. In case of a pair of matched ellipses and another pair
of matched keypoints, this property should be satisfied for the points indicated in
Fig. 2. In fact, it is practically always violated.

We, therefore, propose to either resize one of the ellipses (or to reposition one of
the keypoints) so that the system of seven equations (five from the ellipse parameters
and two from the keypoint coordinates) with six unknowns (affine transformation
parameters) would be regularized into a system with seven unknowns.

The locations of keypoints are more credible data than the sizes of ellipses since
the latter ones are just the visual estimates of the local direction and anisotropy of
images, while their sizes are often determined by the keypoint detector (e.g. Harris–
Affine) in a finite number of iterations using discretized scales. Even if the ellipses
more directly represent the actual shapes, their sizes depend on the parameter set-
tings (e.g. the step size of image thresholding in MSER detector) and, thus, are only
roughly approximated. Keypoints, on the other hand, are usually quite accurately
localized by the detectors.

Therefore, in order to satisfy the affine properties in the ellipse+keypoint struc-
tures, we propose to resize one of the ellipses, and this technique is referred to as
ellipse regularization. A similar concept of scale omission has been presented for
homography transformation reconstruction using a pair of ellipses [10], however
the details are different.

First, ellipse and line intersections are calculated, as shown in Fig. 2, and the
intersection point distance ratios δI and δJ are calculated for both matched ellipses.
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Source image I

(x1,y1)

(x2,y2)

(xh,yh)

Destination image J

(u1,v1)

(u2,v2)

(uh,vh)

|(x1 ,y1)(x2,y2)|
|(xh ,yh)(x2,y2)|

= |(u1,v1)(u2,v2)|
|(uh,vh)(u2,v2)|

Fig. 2 Distance ratios between corresponding points co-linear remain unchanged under affine
transformations. In case of an arbitrary pair of matched ellipses and an arbitrary pair of
matched keypoint this condition is usually violated.

Then, the ellipse in the destination image J is resized according to the Δ coefficient
calculated as

Δ =
δJ

δI
, where δI =

|(x1,y1)(x2,y2)|
|(xh,yh)(x2,y2)| , δJ =

|(u1,v1)(u2,v2)|
|(uh,vh)(u2,v2)| . (14)

Once the ellipse is resized, the affine constraints are satisfied for the ellipse+keypoint
configurations. From the mathematical perspective, the seventh parameter Δ (that
constraints the existing variables) effectively reduces the number of degrees of free-
dom from seven to six.

Regularized ellipses and keypoints – the tangent line method

Once the ellipse is regularized, the affine transformation can be analytically recon-
structed form the ellipse+keypoint configurations. We exploit the fifth property of
affine transformations, i.e. the preservation of line parallelism.

Actually, we convert the problem into the previously discussed (in Section 3.2.1)
simple technique of affine transformation reconstruction from three pairs of points.

The first and the second pair of points are the centers of matched ellipses and
the pair of matched keypoints ((x1,y1),(u1,v1) and (x2,y2),(u2,v2) in Fig. 3, corre-
spondingly). The third pair of points would be determined using the idea shown in
the same figure.

Assume the ellipse-line intersection point (xh,yh) located between (x1,y1) and
(x2,y2), and its corresponding point (uh,vh) point between (u1,v1) and (u2,v2) in
the second ellipse.

Lines tangent to the ellipses can be found for (xh,yh) and (uh,vh), respectively.
These tangent lines are also related the same affine transformation. Subsequently,
the tangent lines are translated to the centres of the corresponding ellipses. The
equations of the translated tangent lines are:
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y = aIx +bI, aI = − 2P(xh−x1)+Q(yh−y1)
2R(yh−y1)+Q(xh−x1)

, bI = y1 −aIx1,

v = aJu+ bJ, aJ = − 2A(uh−u1)+B(vh−v1)
2C(vh−v1)+B(uh−u1) , bJ = v1 − aJu1,

(15)

where aI , bI , aJ , bJ are the respective tangent line parameters in images I and J,
while P,Q,R,A,B,C represent the ellipses specified in Eqs 12 and 13.

The intersection points of the translated tangent lines and the ellipses (there are
two such points for each ellipse) are the third points in triangles needed to recon-
struct the underlying affine transformation. Therefore, we can use e.g. (x3,y3) point
to form (together with (x1,y1) and (x2,y2)) a triangle in image I, while its coun-
terpart (u3,v3) would form the corresponding triangle (together with (u1,v1) and
(u2,v2)) in image J. The affine transformation would be easily retrieved from such
a pair of triangles.

Source image I

(x1,y1)

(x2,y2)

(xh,yh)

(x3,y3)

Destination image J

(u1,v1)

(u2,v2)
(uh,vh)

(u1
3,v

1
3)

(u2
3,v

2
3)

Fig. 3 The third pair of points to reconstruct an affine transformation is found from intersec-
tions of regularized ellipses and shifted tangent lines.

However, as and shown in Fig. 3, two options exist for (u3,v3) so that two alter-
native affine transformations can be found using ellipse+keypoint configurations.

This ambiguity can be solved in two ways, depending on the generally as-
sumed definition of ”near-duplicate planar objects”. If we exclude mirror reflec-
tions, (u2

3,v
2
3) point is the only choice for (u3,v3) because the affine transformation

should not change the direction of vectors’ cross-products. However, if we accept
mirror reflections as legitimate cases of ”near-identicities”, (x3,y3) can be mapped
into either (u1

3,v
1
3) or (u2

3,v
2
3), and the ambiguity would be solved differently.

Although we use only (x2,y2) and (u2,v2) as the matched keypoints, their cor-
responding elliptical key regions also exist. It can be, therefore, estimated under
which of the alternative affine transformations these key ellipses are more similar.
The affine transformation providing a higher similarity for this second pair of el-
lipses is chosen as the final one.

3.3 Affine Transformation Decomposition

Affine transformations describe distortions of planar surfaces. However, the infor-
mation about the geometry of such distortions cannot be easily extracted from the
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algebraic representation of transformations (see Eq.10). The parameters of such a
representation are not too meaningful and readable. Thus, in order to retrieve the
geometry of distortions involved in affine transformations, we decompose them into
sequences of basic operations. There are several ways of such a decomposition,
some of them more meaningful, some of them much less. In our work, we focus on
two decomposition techniques. For our needs, we have found these two techniques
meaningful and accurate enough . In particular, they provide a satisfactory level of
parameter stability in the generated decompositions of affine transformations.

3.3.1 Singular Value Decomposition

The first approach to affine transformation decomposition is based on singular value
decomposition (SVD) [21, 26]. In this decomposition we consider only 2D projec-
tions (into the camera plane) of 3D planar surfaces. In fact, the decomposition does
not have any three dimensional meaning. It is meaningful only in terms of elemen-
tary transformations of 2D image.

The elementary transformations used in this decomposition are: two 2D rotations
and two scale changes. The translation components of the transformations remain
the same as in the algebraic form of Eq.10 (see below).

Let us split an affine transformation it into the linear part K and the translation P:

A =

⎡
⎣ A B C

D E F
0 0 1

⎤
⎦=

[
K P
0T 1

]
,K =

[
A B
D E

]
,P =

[
pX

pY

]
=
[

C
F

]
. (16)

The linear transformation sub-matrix K is decomposed into elementary operations
as follows:

K = Rot(γ) ·Rot(−θ) ·N ·S ·Rot(θ). (17)

In such a decomposition, Rot represents a 2D rotation matrix, S is a positive defined
diagonal scaling matrix and N is either an identity matrix or a mirror reflection
matrix, i.e.

Rot(α) =
[

cosα −sinα
sinα cosα

]
,S =

[
sx 0
0 sy

]
,N =

[
1 0
0 ±1

]
. (18)

The presented decomposition can be modeled using a singular value decomposition.
SVD decomposes K matrix into a multiplication of three matrices U, D and V.
Matrices U and V are orthonormal and D is a positive defined diagonal matrix.
Matrix V is composed of eigenvectors of KTK, while eigenvalues of KTK form
(in the decreasing order) the diagonal of matrix D in . Matrix U is obtained by a
matrix multiplication from the other two. Thus, it is possible to express the linear
transformation matrix K by the matrices of SVD:

K = U ·D ·VT = U ·VT ·V ·D ·VT. (19)
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After the singular value decomposition is performed, the parameters of elementary
operations can be obtained as follows:

Rot(γ) = U ·VT, Rot(θ ) = VT, N ·S = D. (20)

It should be noted that the scaling factors have to be assigned according to the order
of eigenvalues (sx = λ1 and sy = λ2) which are always positive. However, in case
of mirror reflections a mirror reflection matrix N is used (see Eq. 18). Additionally,
we improve the processing of scaling factors in the later stages by using linearized
scales zx and zy:

z =
{

s−1 if s ≥ 1
1−1/s otherwise

. (21)

The range of angle θ (that defines shearing of affine transformations) is (0,π) while
the range of γ angle (representing the actual 2D rotation) is (0,2π). Two sets of
orthonormal eigenvectors (of the opposite directions) exist from which we take only
one. In case of identical eigenvalues, a singularity exists and the angles γ and θ are
indistinguishable.

3.3.2 3D Geometric Decomposition

Alternatively, we can decompose affine transformations assuming that shape distor-
tions of the same planar object in two images result from a 3D motion of the object
relatively to the camera system of coordinates, which is followed by a perspective
projection (approximated by an orthogonal projection and a scale change).

Any 3D motion is defined by a 3D rotation (i.e. three planar rotations) and a 3D
translation vector. Decompositions of 3D rotations into planar rotations are usually
based on Euler angles (e.g. [2, 5, 6]) and we propose to use one of such notations.
As shown in Fig. 4, we represent a 3D rotation as a rotation about OZ axis (φZ

angle), followed by a rotation about OX axis (φX angle) and another rotation about
OZ axis (φF angle). All rotations are about axes of a motionless frame OXYZ.

X

Y

Z

O

φZ

(a) 1st rotation – Z axis

X

Y

Z

O

φX

(b) 2nd rotation – X axis

X

Y

Z

O

φF

(c) 3rd rotation – Z axis

Fig. 4 Decomposition of 3D rotations into a sequence of planar rotations.
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When a 3D translation by a vector [pX , pY , pZ] is introduced, the homogeneous
transformation matrix HT of a 3D motion is represented by Eq. 22. The image co-
ordinates of the transformed object are found by applying the perspective projection
which is approximated by the following homogeneous matrix PR:

HT =

⎡
⎢⎢⎣

cF cZ − sFcX sZ −cF sZ − sF cX cZ sF sX pX

sF cZ + cFcX sZ −sF sZ + cF cX cZ −cFsX pY

−sX sZ sX cZ cX pZ

0 0 0 1

⎤
⎥⎥⎦ ,PR =

⎡
⎢⎢⎣

K 0 0 0
0 K 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ . (22)

Note that cF and sF indicate correspondingly cosφF and sinφF , etc.
The superposition of Eq. 22 matrices is a 2D affine transformation matrix in a

form containing parameters of the underlying 3D motion (the value of pZ translation
does not appear directly but it is ”hidden” in the scaling factor K):

PR ·HT =

⎡
⎢⎢⎣

K(cFcZ − sFcX sZ) −K(cF sZ + sFcX cZ) 0 K pX

K(sF cZ + cFcX sZ) K(−sF sZ + cFcX cZ) 0 K pY

0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ . (23)

The elements of the Eq. 23 matrix are compared to the algebraic representation of
affine transformations (Eq. 10) to form the following system of equations:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

K(cF cZ − sFcX sZ) = A
−K(cFsZ + sFcX cZ) = B
K(sF cZ + cFcX sZ) = D
K(−sFsZ + cFcX cZ) = E
K pX = C
K pY = F

(24)

from which the motion parameters would be computed.
Eq. 24 is a non-linear system of equations that has multiple solutions for φZ and

for φF :

φZ =
1
2

atan2

(
AB +DE,

B2 + E2 −A2 −D2

2

)
+
{

0,
π
2

,π,
3π
2

}
, (25)

φF =
1
2

atan2

(
AD+ BE,

A2 +B2 −D2 −E2

2

)
+
{

0,
π
2

,π ,
3π
2

}
. (26)

However, only two solutions exist altogether, from which the following values of φZ

and K can be found:

K = cZ (AcF +DsX )− sZ (BcF +EsX) , (27)

φX = arccos

(
cF(DsZ +EcZ)− sF(AsZ + BcZ)

K

)
. (28)
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Finally, the translational parameters pX and pY can be found as

pX =
C
K

, pY =
F
K

. (29)

It should be noted that the scaling factor K is also linearized using Eq. 21 (i.e.
similarly to SVD decomposition).

The solution becomes singular when both arguments of atan2 function in Eqs 25
and 26 are zeros. This happens for similarity transformations (no rotation about OX
axis – see Fig. 4) when the rotations by φZ and φF are indistinguishable.

3.4 Histograms of Affine Transformations

Parameters of decomposed transformations more meaningfully represent deforma-
tions of objects than algebraic parameters of affine transformations. Two proposed
decompositions provide values of rotations γ ∈Γ ,θ ∈Θ (or φZ ∈ΦZ,φX ∈ΦX ,φF ∈
ΦF ), translations pX ∈ PX , pY ∈ PY and scalings zX ∈ SX ,zY ∈ SY (or k ∈K) between
image fragments.

Usually there are tens or even hundreds of thousands of decomposed transforma-
tions representing relations between two images. This large volume of data should
be processed in a meaningful and computationally efficient way. To do this, a prob-
abilistic approach is proposed.

Let each affine transformation be a probabilistic event with six continuous vari-
ables. Such an event belongs to a six dimensional probabilistic space representing
all affine transformations. Depending on the selected decomposition, there are two
such density functions: Psvd(Γ ,Θ ,PX ,PY ,SX ,SY ) and P3d(ΦZ ,ΦX ,ΦF ,PX ,PY ,K).

Because the content of the processed images is unknown, the shape of distri-
butions is unpredictable either. We can only predict that groups of similar affine
transformations would form peaks in the density function. Since similar planar frag-
ments of images are mapped by the same affine transformations, the density func-
tions should have exactly as many density peaks as the number of similar fragments
in a pair of images, but the actual numbers of such fragments should be determined
from the density function itself.

As a simple example, we consider two images given in Fig. 5. Both images share
two identical objects (image fragments), i.e. a white bottle and a flu remedy pack.
Backgrounds of the images are completely different, containing many unrelated ob-
jects. As a further complication, the white bottle object is not actually planar. How-
ever, even for a such complex scene, the density peaks in the probability density
function are very distinctive.

The probability density histogram created for these two images corresponds to
the SVD decomposition of affine transformations. This is an arbitrary choice, and
the results for the 3D decomposition method are qualitatively identical. The his-
togram is shown as three two-dimensional density functions because a meaningful
visualization of a 6D density function is very difficult.
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(a) source image (b) target image

Fig. 5 Two scenes containing two identical objects – a white bottle and green flu remedy
pack. We demonstrate histograms using these two scenes.

Fig. 6 2D rotation probability density function generated by SVD decomposition. Two peaks
represent two objects located on the images. Each object is rotated differently.

The histogram in Fig. 6 presents the probability density function of two rotation
angles of SVD method, i.e. Psvd(Γ ,Θ) distribution. Two distinctive peaks are vis-
ible. Each of these peaks represents a single object shared by both scenes. From
the histogram, we can estimate how these objects how been rotated. Looking at the
main rotation angle γ , we judge that one of objects (represented by the left peak)
has not rotated. When we compare input images (see Fig. 5), the white bottle object
is, in fact, not rotated. The flu remedy pack object has been rotated by approx. 72◦.
Regarding the second angle, i.e. the auxiliary rotation angleθ , both objects are ro-
tated by about 18◦. These rotations exist due to a small perspective distortion caused
by different object localizations and different camera settings in both images.
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We can also notice different heights of the density peaks (the peak representing
the white bottle object is much lower). This can be attributed to different numbers of
keypoints in both objects. The surface of the flu remedy pack object is more textured,
which results in more keypoints. Additionally, the object is naturally larger than the
white bottle objects. Altogether, larger numbers of matched keypoint pairs generate
more triangles so that a larger number of affine transformations contributes to the
histogram peaks. We can observe a similar effect on all presented histograms.

Fig. 7 2D translation probability density function. Similarly to the rotation histogram, there
are two peaks representing two objects.

Next, we analyze the probability density function of 2D translations (which are
not affected by SVD decompositions). The histogram shown in Fig. 7 represents
Psvd(PX ,PY ) distribution. The range of modeled translations stretches from −200%
to 200% of image size. Larger translations are considered invalid and are cropped.
Translations modeled up to 200% of image size seem surprising but such a range
can be justified by the properties of affine transformations (see Eq. 10). It should be
noted that the linear component of the transformation may also introduce indirect
translations (depending on the center of coordinates). The actual translation (applied
after the linear mapping) compensates the effects of the indirect translations, and
sometimes more than 100% of image size has to be added to correct those indirect
translations.

The analysis of Fig. 7 histogram provides illustrative examples. The white bottle
objects has moved slightly right and downwards. Such a movement can be observed
for the lower histogram peak in the figure. The flu remedy pack object is a more in-
teresting case. The physical movement of the object between two images is slightly
upwards and leftwards. If we locate the center of coordinates in the upper left corner
of the image, both x and y coordinates of the object are reduced. However, we need
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Fig. 8 Scales (two dimensions) probability density function generated using SVD decompo-
sition. There are two peaks, but one is much less distinctive.

to take into account a near 90◦ rotation, i.e. u ≈ −y +C and v ≈ x + F. In such a
case, OX translation values (C) would be positive, while OY translation values (F)
– negative. We can observe such a result in the presented histogram.

The last presented histogram contains the scaling data. Fig. 8 shows the proba-
bility density function Psvd(SX ,SY ). As expected, its upper half is empty, because in
the SVD decomposition we assign the larger eigenvalue to OX scale and the smaller
eigenvalue becomes OY scale. Thus, no events can be generated sx < sy.

Similarly to the previous histograms, two peaks exist. However, one of the peaks
is much less distinctive. There are two reasons for such a large difference in peak
heights. The first reason (already mentioned) is a different number of triangles in
both objects. In fact, the flu remedy pack is represented by over 4000 triangles,
while white bottle contains less than 1000 triangles. The second reason is related to
the distribution of these triangles. The white bottle object is not planar so that the
perspective distortion is slightly different for various parts of the object. Thus, small
differences in the scales exist and the triangles are distributed among several neigh-
boring bins of the histogram. For the flu remedy pack object, most of the triangles
fall into the same bin, and it results in a very high peak.

Altogether, histograms of decomposed affine transformations (either SVD or 3D
decompositions) provide highly distinctive data about transformations relating sim-
ilar fragments of two images. These data, when handled properly, can be used to de-
tect such image fragments and, in fact, to detect objects or groups of objects present
in both scenes. However, if these fragments do not change their relative positions,
they will be detected as a single histogram peak because all of them are related by
the same transformation.
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3.5 Image Fragment Matching by Histogram Analysis

In the previous section we have shown how six dimensional probability density
functions of decomposed affine transformations can be used to detect similar frag-
ments (which usually represent the same objects) in images. To perform the de-
tection, we just need to find high-density areas of the probability density function.
We are actually interested not only in the density peaks, but also in their neighbor-
hoods. The neighborhoods represent small distortions of the object (e.g. non-planar
surfaces) or effects of perspective distortions.

Assume arbitrarily that we discuss only Psvd density functions. However, ex-
actly the same conclusions can be drawn for P3D density functions. In general,
we have to model all dependencies of the probability density function. In par-
ticular, we cannot assume independent variables, i.e. Psvd(Γ ,Θ ,PX ,PY ,SX ,SY ) �=
Psvd(Γ )Psvd(Θ )Psvd(PX)Psvd(PY )Psvd(SX)Psvd(SY ). If scales are assumed indepen-
dent of rotations and/or independent of translations, two or more objects the same
value of just one parameter could not be properly differentiated and analyzed. Thus,
we have to model Psvd(Γ ,Θ ,PX ,PY ,SX ,SY ) with all its complexities.

The largest problem with six dimensional densities is the efficient representation,
affecting both for memory constraints and processing time. A classic histogram has
O(r6) complexity, where r is the resolution of the histogram dimensions (typical
r should be larger than 100). Such a histogram could not be even memorized in
a modern personal computer. We need to consider other approaches to probability
density function construction and analysis. Thus, we propose to build the histogram
using hash-tables so that a linear complexity (both computational and memory) is
achieved. Formally, the complexity is O(p) where p is the number of affine transfor-
mations, which linearly depends on the number of elementary geometrical objects
– triangles or ellipses. Such an approach is similar to a classic kernel based non-
parametric method (Parzen window) in probability density modeling. Both tech-
niques have to iterate through all the data during the process of construction and
analysis of the density function.

The first step in the histogram building is discretization of all processed data (a
continuous probability density function converted into a discrete one). Discretiza-
tion is performed uniformly, and its parameters are presented in Section 4.1. Each
element of the hash-table is, in fact, a set of identical discretized transforms. Such a
set can be uniquely addressed by its all six parameters. Since all available decom-
posed transformations are placed into the hash-table, we can easily access bins of
the complete histogram bins by iterating over all data.

For each decomposed transformation we get all other transformations having the
same parameters to calculate the discretized probability value. The probability value
is used decide whether a histogram bin contains enough decomposed transforma-
tions to form an object. However, each transformations contributes to the density
only as much as it weights, where the weight is determined by weights of geometric
structures defining the transformation (see Section 3.1 for weighting details).

The decision on whether an object should be formed is made using thresholding,
where the threshold value t is arbitrarily set up. All histogram bins accumulating
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more than t of weighted contributions from decomposed transformations are con-
sidered similar fragments of two images. Such a simple approach detects not only
density peaks but also their neighboring areas (which are necessary to handle minor
distortions of objects).

3.6 Histogram Bins Grouping

Histogram bins grouping is the last operation in the proposed approach, in which
only bins with sufficiently high contents are processed. Each histogram bin contains
(apart from the affine parameters) a set of matched elementary geometric objects,
which we have discussed in Section 3.2. Grouping is based on two types of data:
neighborhood in histogram and similar locations of geometrical objects.

Histogram bin grouping consists of two separate steps. In the first step, we per-
form grouping according to neighborhood in the histogram. A simple flood-fill al-
gorithm is used for this purpose. In terms of the graph model, two histogram bins
belong to a single group if and only if there exists at least one path between them.
To keep the computational complexity low, we use only axial neighborhood with up
to 12 neighbors (in a 6D space). To effectively manage groups, we employ classic
union-find algorithm.

After the neighborhood-based grouping, the localization-based grouping is per-
formed. To do it effectively, we represent shapes of all generated groups (sets) as
convex-hulls. We iterate through all pairs of convex-hulls and determine their in-
tersection areas. Afterward, we calculate the relative intersection area, as a ratio
between the intersection area to the total area of both convex-hulls. Two convex-
hulls are grouped if and only if in both images the relative intersection areas are
greater than a given threshold. In the ellipse based approach we also have to remove
”needle” shaped convex-hulls (they are artifacts) by applying Malinowska shape
coefficient threshold.

4 Parameters, Evaluation and Applications

In this section we discuss practical aspects of the proposed method, including a
limited experimental evaluation. The full evaluations are presented in our research
papers, e.g. [21, 22]. We also discuss the parameter setup and the intuitive meaning
of parameters. Finally, we highlight an exemplary application of our method.

4.1 Method Parameters

Two types of the parameters have been used: general parameters and histogram
resolution parameters (the full analysis can be found in [21]). The most important
general parameters are histogram thresholds, i.e. tt for the triangle method and te for
the ellipse method. The higher values of these parameters, the less chance for false
positives, but also a lower chance of object detection. In the triangle-based method,
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we also have a parameter m responsible for the number of neighbor keypoints used
in triangle building. A correct balance of these parameters has to be found. There are
also additional parameters related to object construction and bin grouping. However,
they much less affect the performances. All parameters of the method (and their
recommended) values are shown in Tab. 1.

Table 1 Default values of the method’s main parameters.

Parameter Meaning Value
m Number of keypoint neighbors 60
tt Min. no. of triangles in histogram bins 10
te Min. no. of ellipses in histogram bins 3
dmin Min. triangle side, rel. to image size 2%
dmax Max. triangle side, rel. to image size 40%
αmin Min. angle of a triangle 3o

athr Min. intersection area of convex hulls 50%
sr Max. value of Malinowska shape coefficient 2

Parameters of the second group define size of the histogram bins (resolution).
These parameters are directly responsible for geometric aspects of the near-duplicate
retrieval. The higher the resolution, the lower margin for errors and more strict de-
tection of planar surfaces. On the other hand, lower resolutions enable detection
of slightly non-planar surfaces, introducing, however, a higher risk of false detec-
tions. Additionally, the issue of numerical errors in the affine transformation recon-
struction and decomposition should be taken into account. Some parameters of the
decomposed transformations are reconstructed with high quality, and others are sig-
nificantly noised. Because the parameters of decomposed transformations are mean-
ingful, it is possible to setup the resolution in such a way that the important details
captured while the noise is filtered.

In the SVD decomposition, θ angle is the most sensitive parameter. It is respon-
sible for modeling skew deformations, which are very difficult to capture. A similar
level of sensitivity is noticed for the φ f angle in the 3D decomposition. As a result,
we lower the resolutions of these two parameters, and thus minimize the effects of
inaccuracies. The main rotation angle γ in the SVD decomposition is reconstructed
with a high accuracy and can be modeled with a very high resolution. In case of 3D
decompositions, φx and φz rotation angles are also sensitive because the inaccura-
cies, which exist in a single dimension in the SVD approach, are distributed among
three dimensions. This is the major weakness of the 3D decomposition approach.
However, we cannot reduce the dimensionality of these two variables, because we
would also loose important geometric data.

Scalings in both decompositions are sensitive to perspective distortions, because
perspective projections cannot be modeled within the affine transformation frame-
work. To be able to compensate for such distortions to some extent, we deliber-
ately lower the scale resolution. Translations are the least affected parameters and
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Table 2 Histogram resolutions (bin sizes) for various dimensions in SVD and 3D decompo-
sitions

Triangles Ellipses
SVD decomposition 3D decomposition SVD decomposition
Dimension Bin size Dimension Bin size Dimension Bin size
x transl. 2% x tr. (x res) 4% x transl. 2%
y transl. 2% y tr. (y res) 4% y transl. 2%
γ angle 2o φx angle 1o γ angle 2o

θ angle 10o φz angle 1o θ angle 20o

zx lin. scale 10% φ f angle 4o zx lin. scale 10%
zy lin. scale 10% lin. scale 10% zy lin. scale 10%

we model them with high resolution. Resolutions of all histogram parameters (bin
sizes) are shown in Tab. 2.

4.2 Method Evaluation

Both the triangle-based and the ellipse-based algorithm have been evaluated on sev-
eral detectors and descriptors presented in Section 2 to show that the method is able
to work effectively with various approaches to keypoint extraction. The presented
results are a summary of our previous works [21, 22].

The triangle-based method uses only the location of keypoints. Shape of the key
region is irrelevant, thus both circular and elliptical detectors may be used. In our
evaluation we have used a range of detectors and descriptors (see Section 2). The cir-
cular detectors are Hessian-Laplace and SURF, while the elliptical ones are Harris-
Affine and MSER. The tested descriptors are SIFT, GLOH, moment invariants and
SURF. However, not all combinations of detectors and descriptors have been tested.

Table 3 Averaged matching quality results for the triangle based approach using various
combinations of local detectors (both circles and ellipses) and descriptors.

Score unit HarAff HarAff HarAff HesLap MSER SURF
SIFT GLOH Mom SIFT SIFT

O2O matching, SVD decomposition
Precision area 0.96 0.96 0.97 0.94 0.95 0.90
Recall area 0.64 0.51 0.47 0.51 0.53 0.49
Precision obj. 0.96 0.97 0.97 0.95 0.94 0.97
Recall obj. 0.81 0.71 0.70 0.69 0.69 0.62

O2O matching, 3D decomposition
Precision area 0.90 0.88 0.91 0.85 0.86 0.79
Recall area 0.54 0.41 0.34 0.42 0.47 0.49
Precision obj. 0.90 0.88 0.91 0.86 0.87 0.84
Recall obj. 0.74 0.64 0.56 0.64 0.66 0.65
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The experimental results are summarized in Tab. 3. It can be noted that in almost
all cases the achieved precision is very high, both in terms of image area and ob-
ject matching. However, Harris-Affine detector usually provides the best results. It
reaches 97% (in a combination with moment invariants descriptor) for both types
of measurement. This is a very satisfactory result, because it means almost no false
positives. Apart from a very high precision, we also get high recall values. In case
of area matching, it equals 64%, while in terms object matching it reaches 81%.
However, Harris-Affine produces higher numbers of keypoints compared to SURF
and MSER detectors so that the matching is slower. We would like to emphasize that
our objective is not to compare or benchmark the keypoint detectors. On the con-
trary, we want to demonstrate that the proposed approach can work effectively with
various kinds of detectors. For a comprehensive evaluation of keypoint detectors,
we recommend further reading, e.g. [17].

We have also compared the proposed decompositions of affine transformations.
Altogether, SVD decomposition performs slightly better. In particular, it better sepa-
rates accurate and inaccurate parts of affine transformation reconstruction. The most
difficult and inaccurate part of such reconstructions are skews. Thus, by reducing the
skew angle dimensionality in the histograms, we are able to minimize these inaccu-
racies. The resolution of other dimensions can be kept high to avoid false positives.

Such an approach is not possible in the 3D decomposition. Skews are entangled
in all three elementary rotations and we cannot minimize inaccuracies without loos-
ing important data. On the other hand, 3D decomposition follows the natural rules
of 3D motion modeling and could be an asset for a structural analysis of scenes.
Moreover, if we use high resolutions for all histogram dimensions, performances of
both approaches are much more similar.

Table 4 Averaged matching quality results for the ellipse based approach using various com-
binations of local elliptic based detectors and descriptors.

Score unit MSER MSER-RGB HarAff HarAff HarAff
SIFT SIFT SIFT GLOH Mom

Precision area 0.92 0.91 0.84 0.86 0.80
Recall area 0.50 0.48 0.48 0.39 0.40
Precision obj. 0.93 0.93 0.95 0.96 0.92
Recall obj. 0.68 0.65 0.64 0.55 0.58

A similar evaluation has been performed for the ellipse-based approach. How-
ever, in this case we could use only elliptical detectors: Harris-Affine and MSER.
Apart from the classic MSER, we have also used a modified version of MSER,
presented in [22]. We name this detector MSER-RGB. Its main idea is to improve
time performances. Thus, we first calculate MSER regions in three RGB channels,
and take only at most 333 largest ellipses from each channel. Such an approach
provides the immense speedup over a classic solution. In general, the ellipse-based
solution works faster than the triangle approach and we consider it a candidate for a
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real-time implementation, even though the results are slightly worse (the maximum
performance drop for MSER is 3%). Detailed results are presented in Tab. 4.

As expected, performances are more significantly affected by the detector selec-
tion than in the triangle approach. The best quality is achieved for MSER detector,
because it provides the highest quality of ellipse parameters (moment-based esti-
mation on pixel-based regions). Harris-Affine is much less effective, because of its
iterative procedure of ellipse estimation. Thus, for the ellipse-based approach we
clearly recommend MSER-based features.

(a) Indoors, a box and a bottle (b) Indoors, non-planar, a can (c) 15 km/h speed limit sign

(d) No-parking sign (e) Multiple object copies on
one image, O2O

(f) Multiple copies on both
images, M2M. All four com-
binations are detected.

Fig. 9 Examples of successfully matched objects. Various kinds of image transformations
are present.
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(a) Visually similar (though physically dif-
ferent) fragments of a non-planar object.

(b) Large camera pan, different time
of a day.

(c) Camera zoom, some details changed. (d) Large camera pan.

Fig. 10 Complex scenes containing many non-planar objects. Objects are far away and ap-
pear as near-planar surfaces.

Apart from the above evaluation we also present a series of matching examples,
containing both indoor and outdoor scenes. Fig. 9 demonstrates successful matches
for both planar and non-planar objects. Matching of non-planar objects is possible
due to effective grouping of neighboring bins. The proposed method is also able to
handle multiple copies of the same objects. The multiple copies can be in only one
image or in both images, but the second case is more difficult. Our experiments have
shown that only M2M approach is able to match such images. We have also exper-
imented with scenes containing multiple non-planar objects photographed from a
different viewpoint and from a longer distance (they appear planar). The matching
areas are almost always successfully detected, as shown in Fig. 10.

4.3 Forming Visual Classes – An Intended Application

Finally, we briefly discuss an intended application of the proposed near-duplicate
detection techniques [25]. Given a database of images, a binary relation can be es-
tablished between near-duplicates from various images. Using such a relation, we
propose visual clustering, which main goal would be to form visual classes. A sin-
gle visual class would consist of mutually near-duplicate fragments. Such classes
have (initially) no semantically meaningful names because near-duplicates are de-
tected without any prior knowledge about the image contents. When the database
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accumulates more images of the explored environment, more classes can be formed
and we can gradually replace the database images by the class models.

The idea can be presented using graphs, so that we first define the concepts of
graph cliques and node n-consistency. A graph (or a subgraph of a graph) is a
clique if it is fully connected, i.e. any two nodes are connected. A graph node is
n-consistent if it forms a clique with n− 1 other nodes of the graph. We propose
that the visual class is formed when an n-consistent clique is found in the graph of
near-duplicate fragments. Another fragment can be added to the existing class if:

• It is n-consistent with other nodes of the class, i.e. it is similar to n already mem-
orized fragments.

• It is not m-consistent (m > n) with other nodes of the visual class, i.e. it is not
similar to too many memorized fragments.

If n and m parameters are properly defined, such an approach would prevent unnec-
essary class growth. When an image fragment which is similar to most (≥ m) of
class representatives, it means that its visual form is already well represented within
the class. On the other hand, if the new image fragment is only n-consistent, it may
represent some novel and previously unseen properties of the class.

Of course, this is just an approach to the automatic class formation, a survey on
the topic can be found in [30].

5 Summary

In this chapter we have presented an approach to detecting near-duplicate fragments
in images of unknown contents, i.e. the concept of similarity is defined purely in the
visual sense. We detect near-identical objects captured under various conditions, e.g.
illumination changes, diversified background, camera settings, etc. No semantics is
added to the processed fragments and, thus, our approach is general and applicable
to various classes of images. The presented solution employs affine transformations
to capture near-identical planar surfaces. However, we have enabled the method
to detect slightly non-planar objects, e.g. cans, bottles. Detection of near-duplicate
planar surfaces is based on the local approach. We first detect visually meaningful
keypoints for the purpose of geometric reconstruction. During the reconstruction
of image geometry, statistical methods are employed. To make the processed data
meaningful, we decompose affine transformations into elementary transformations
such as translations, rotations and scaling. As a result, we can identify meaning-
ful peaks in probability density functions, representing physical transformations of
fragments between two scenes.

Together with the detailed description of the methods, we also show a short ex-
perimental verification, and specify an exemplary application. Other prospective ap-
plications include: navigation in unknown and changing environments and assisting
visually impaired people [25]. The basic and key concept in all these applications
is the complete lack of any prior knowledge about the observed world. In fact, we
assume that such systems should learn just by observing the environment.
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22. Paradowski, M., Śluzek, A.: Detection of image fragments related by affine transforms:
Matching triangles and ellipses. In: Proc. of ICISA 2010, Seoul, Korea, pp. 189–196
(2010)

23. Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. IEEE Trans.
PAMI 19(5), 530–534 (1997)
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Chapter 10
Feature Analysis for Object and Scene
Categorization

Jeremiah D. Deng

Abstract. Feature extraction and selection has always been an interesting is-
sue for pattern recognition tasks. There have been numerous feature schemes
proposed and empirically validated for image scene and object categorization
problems, no matter it is for general-purposed applications such as image re-
trieval, or for specific domains such as medical image analysis. On the other
hand, there are few attempts in assessing the effectiveness of these features
using machine learning methods of feature analysis. We review some recent
advances in feature selection and investigate the use of feature analysis and
selection in two case studies. Our aim is to demonstrate that feature selec-
tion is indispensable in providing clues for finding good feature combination
schemes and building compact and effective classifiers that produce much
improved performance.

Keywords: object categorization, scene categorization, feature analysis.

1 Introduction

It is obvious that we use a multitude of visual clues to conduct day-to-day
visual tasks such as object detection and scene classification. Over the last
few decades there has been intensive research work carried out on related
areas such as content-based image retrieval (CBIR), scene categorization,
and object recognition. There have been many feature schemes proposed
and widely applied in various studies. These include global or local feature
descriptors derived from the colour, texture, and shape information within
the image. Local descriptors such as SIFT and the bag-of-feature approach
has found success in some recent work (Fei-Fei and Perona, 2005).
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A notably fast developing research direction is medical image annota-
tion, enabled by recent advances of CBIR research. Various types of feature
schemes are proposed (Mojsilovic and Gomes, 2002; Lehmann et al., 2004)
and their performance compared using real-world datasets (Deselaers et al.,
2008). Despite these promising results so far obtained, there is still a lack of
feature analysis in the literature. Feature schemes are mostly borrowed from
object recognition and CBIR experiences in general, and their effectiveness
is assessed mostly empirically through trial-and-fail. There are few attempts
in utilizing and assessing combined feature schemes for scene classification.

On the other hand, feature selection has received increasing attention
in machine learning research. Although the ever-upgrading memory and
CPU configurations have made nowadays computers more and more pow-
erful, the amount of information, and sometimes the large dimensionality of
datasets, still challenge the efficiency and even the effectiveness of data mining
algorithms.

Feature selection as an important dimension reduction method can there-
fore make contribution from several aspects. First, with fewer features in-
cluded in classifiers, training can be done less costly (both in time and
memory). Indeed, with redundant and noisy data components removed, it
is possible that better classification performance can be achieved. Further-
more, feature analysis can help us rank or select the features, and also give us
clues about finding feature combinations that may produce potentially better
performance.

In this chapter, it is not our intention to give a thorough survey on feature
selection and analysis. Nor are we aiming at conducting a comprehensive
comparison study to examine various features proposed in the scene and
object categorization literature. Rather, we intend to use two case studies
to demonstrate that feature selection can be useful in handling complicated
image analysis tasks. In the following sections, first we will briefly review
some relevant work. In Section 3, we take a look of a few existing feature
selection algorithms. Section 4 follows to give two case studies in medical
image categorization and wildlife scene categorization respectively, where the
utilization of feature selection is explored. Some relevant feature schemes will
be introduced and in some cases modifications are introduced. The result
of feature selection and its implications are discussed. Finally, the paper is
concluded along with a discussion on future directions.

2 Relevant Work

During recent years, there has been a growing interest in studying the statis-
tics of natural images (Torralba and Oliva, 2003; Srivastava et al., 2003). Al-
though most of the efforts are focused on using global image information
such as Fourier spectral envelops (Oliva and Torralba, 2001), recent results
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questioned the effectiveness of using low-level power spectral information in
classifying indoor and outdoor scenes (Fei-Fei et al., 2007).

From the perspective of natural and man-made scene discrimination, one of
the early studies (Vailaya et al., 1998) employed a number of low level image
features such as edge direction histograms, colour histograms, and DCT mo-
ments. (Luo and Boutell, 2005) modified the feature extraction of frequency
spectra, using overcomplete ICA instead of PCA (Oliva and Torralba, 2001)
and achieved improved performance. Global features constructed for mod-
elling spatial layout properties within a scene has been found to be useful
for rapid scene classification and for guidance of local focus needed for ob-
ject recognition (Oliva and Torralba, 2006). The fractal properties of natural
scenes have also been explored for constructing a feature scheme for nat-
ural vs man-made scene discrimination along with other texture features
(Deng et al., 2008a). A relevant but slightly different direction is indoor-
outdoor scene classification, also employing various colour and texture fea-
tures (Szummer and Picard, 1998; Serrano et al., 2004; Payne and Singh,
2005).

Medical image analysis has become ever increasingly important. There
have been quite a few studies made on automatic medical image catego-
rization in recent years. A number of feature schemes have been developed
or employed, including blob size (Mojsilovic and Gomes, 2002), grayscale
co-occurrence and colour layout (Deselaers et al., 2008), Gabor filtering,
edge histogram (Tian et al., 2008), local binary patterns (Tian et al., 2008),
SIFT descriptor (Lowe, 2004; Deselaers et al., 2008), and fractal dimensions
(Lehmann et al., 2004) etc.

In general, local features have found popularity in recent literature
(Zhang et al., 2007). It is found that these local features are very effective in
classifying textures and objects. A comprehensive survey of local features cur-
rently used in computer vision research has been given by (Li and Allinson,
2008). Apart from advanced machine learning techniques such as the kernel
methods (Zhang et al., 2007), there is another notable trend that contributes
to the success of local features. Under the influence of modern information
retrieval research where a bag-of-words approach became very effective, a
bag-of-features counterpart has become popular in visual scene and object
recognition (Fei-Fei and Perona, 2005; Greenspan and Pinhas, 2007). This
approach adopts local visual features such as SIFT descriptors and colour
features, and then conducts clustering to construct the ‘visual words’. Im-
ages are then represented by a histogram of the occurrence of the visual
words. New local feature schemes are found to be complementary and have
formed a number of combinations (Zhang et al., 2007). We need, however,
to be aware of the potential drawbacks of this approach. First, the comput-
ing cost becomes more challenging when more features need to be extracted
and clustered. Secondly, with the high dimensionality of the feature data, the
classifiers are difficult to train and their performance becomes subject to the
‘curse-of-dimensionality’ and may deteriorate rapidly. Another side-effect is
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that, due to the complexity of feature space, it is often hard to interpret the
classification outcome. In particular, a lack of ability to ‘explain’ the out-
come does not encourage the wide adoption such computer-based diagnosis
systems in medical practice.

On the other hand, feature selection has been found to be indispens-
able to minimize classification error in many pattern recognition problems
(Guyon and Elisseeff, 2003; Peng et al., 2005; Deng et al., 2008b). Using ma-
chine learning techniques, features can be ranked by information entropy-
based indices, and an optimal subset can be searched out. For medical image
categorization, there are some studies on empirically exploring the effective-
ness of selected feature schemes, and it is found that some features are highly
redundant to each other (Deselaers et al., 2008). A relevant study based on
mutual information (Xu and Zhang, 2007) is conducted for general-purpose
image categorization, but the feature pool for selection is very limited. To
our knowledge, no one has attempted a comprehensive feature analysis for
the problem of medical image categorization. This work, despite of its limited
scope, is an attempt to fill this gap by assessing a few feature schemes using
a machine learning approach.

3 Feature Selection

With various feature schemes proposed for object and scene categorization
tasks, the sheer high-dimensionality becomes a challenge for building efficient
classifiers. In fact, not only there may exist strong redundancy between these
feature schemes, there may be some redundancy within individual feature
schemes that can be explored. It is therefore necessary to conduct feature
analysis and achieve dimension reduction through feature selection. In this
study, we employ a few filter-based methods to rank or select potentially
good features that allow for effective and efficient classification. The rest of
this section presents a brief introduction to these methods.

ReliefF

The ReliefF evaluator (Kira and Rendell, 1992) assesses the quality of at-
tributes for classification. The difference between two values of an attribute
Ak in instances i and j is defined as:

diff(Ak, i, j) =
|Ak(i) − Ak(j)|
maxAk − minAk

. (1)

The quality of Ak for classification can therefore be estimated by checking
the distance between instances found in the set of nearest neighbours Ω.
The estimate, denoted as W (Ak), is defined as the difference between the
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probabilities of neighbours belonging either to the same class, or to different
classes:

W (Ak) = P (diff(Ak)|(i, j) ∈ Ω, class(i) �= class(j))
−P (diff(Ak)|(i, j) ∈ Ω, class(i) = class(j)). (2)

Clearly, the bigger the W (Ak) value is, the better attribute Ak is for classi-
fication purpose.

Information Gain

On the other hand, to assess the quality of a feature used for classifica-
tion, a ranking approach based on statistical correlation can be adopted
(Guyon and Elisseeff, 2003). In general, if a feature is relevant to the class
label but is not redundant given the inclusion of other features, it is then a
good feature.

Given a set of features F = {f1, f2, ..., fn}, it is often the case that the
features can be redundant and noisy at the same time. Hence it makes sense
to evaluate the features and obtain a reduced feature set S in order to lever-
age further data analysis processes such as classification. We can define the
mutual information of two variables x and y as follows:

I(x, y) =
∫ ∫

p(x, y)
p(x, y)
p(x)p(y)

dxdy. (3)

To rank a feature fi, we need to calculate I(fi, c), i.e., the mutual informa-
tion between the feature and the corresponding class label c. In fact I(fi, c)
is often referred to as ‘information gain’ (IG). Based on information theory, a
number of indicators can be developed to rank the features by their correla-
tion to the class label. These include the information gain (IG) and symmetric
uncertainty (SU) measures etc. (Guyon and Elisseeff, 2003). Combined with
search algorithms, ranked feature sets can lead to effective feature schemes
that give satisfactory and even improved classification performance.

Minimal-Redundancy-Maximal-Relevance

Simply choosing the top-ranked features using the IG measures would be
however sub-optimal, since not only these selected features can be rather
relevant to each other, making the selection redundant in itself, but also
other features, which are less relevant but still useful for classification, have
less chance to be included in a selection of limited dimensionality.

As an improvement, in the minimal-redundancy-maximal-relevance
(mRMR) approach (Peng et al., 2005), both the features average relevance
to the class label
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D =
1
|S|

∑
fi∈S

I(fi, c), (4)

and the average mutual relevance between features

R =
1

|S|2
∑

fi,fj∈S
I(fi, fj), (5)

are taken into consideration to assess the feature selection, and the opti-
mization criterion for the search process is to find a subset S that gives
max(D − R) or max(D/R). A incremental forward search method is usu-
ally applied to work out a near-optimal subset selection S. Consequently, the
selected feature subset may not give the optimal classification performance.

4 Case Studies

We conducted two experiments as our case studies on feature analysis for
image scene and object categorization:

1. Medical image categorization, whose aim is to automatically identify the
following information by analyzing a radiographic image: modality, body
orientation, body part, and biological system examined;

2. Wildlife scene categorization and novelty detection. This is to analyze the
semantic content of a wildlife image and detect potential novelty.

In the following subsections we will introduce the experiment settings and
feature schemes examined, and present the feature analysis outcome and the
relevant classification performance.

Medical Image Categorization

Experiment settings. We used the IRMA database (Deselaers et al., 2008)
in this study. The database consists of 10,000 fully annotated radiographic
images collected from medical routine at the RWTH Aachen University Hos-
pital. The dataset has been widely used in a number of publications. Different
from the past usage (Deselaers et al., 2008), here we consider much finer clas-
sification, with 115 classes to model. Also, cross validation is used so as to
better assess the quality of feature schemes. Some example images are shown
in Fig. 1.

Feature schemes. Due to the particularities of medical imaging, medical
image analysis and annotation remain challenging tasks. Often generic fea-
ture descriptors inherited from CBIR research are employed to model the
image categories. It is not our intention to evaluate all the feature schemes
in literature. Especially, colour image features proposed in generic image
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Fig. 1 Example images in the IRMA database.

retrieval settings are not so relevant to radiographic images taken in grayscale.
Furthermore, we limit our scope to histogram descriptors derived from global
or regional image statistics.

MPEG-7 edge histogram descriptor (EHD). The EHD is a feature
descriptor widely used in CBIR research (Manjunath et al., 2001). It is
found to be effective especially when being combined with other descrip-
tors (Deselaers et al., 2008). EHD captures the spatial distribution of edges
on different orientations. There are six types of edges to be detected: verti-
cal, horizontal, 45◦ diagonal, 135◦ diagonal, non-directed, and no edge. Edge
detection is conducted over 2 × 2 macro-blocks split from the image, whose
masks are shown in Fig.2. Edge statistics, collected into a 6-bin histogram
over different edge types, are aggregated from these macro-blocks. Normally,
an image is partitioned into 4 × 4 sub-images, each generating a sub-image
edge histogram. Concatenating the edge histogram vectors results in a global
edge histogram of 96 dimensions. Semi-global and global statistics can also
be aggregated from the relevant macro-blocks and included in the final de-
scriptor. We consider the global EHD only in this study.
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Fig. 2 Macroblock masks used for edge detection in EHD. Edge orientations are,
clock-wise: vertical, horizontal, isotropic, 45 and 135 degrees.

Canny Edge Descriptor (CED). The MPEG-7 edge histogram does not
take into consideration of edge intensity. Medical images, since without using
colours, often bear very weak contrast and edge intensity may vary. For this
reason, we also consider using the Canny edge detector (Canny, 1986).
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The edge detection algorithm in Canny’s algorithm undergoes a number of
steps. First, the image is convolved with a Gaussian filter for noise reduction.
Edge intensity is then decided by taking gradient on the smoothed image. The
edge intensity can be defined on the image gradients on X- and Y-direction:

|G| = |Gx| + |Gy|. (6)

And the edge direction can also be derived as:

θ = atan(
|Gy |
|Gx| ). (7)

This is then followed by a tracking process that extracts pixels with the maxi-
mal gradient magnitude. Unlike other edge detectors (including the MPEG-7
EHD) that rely on a single threshold for edge detection, Canny’s algorithm
employs a hysteresis process with two thresholds to suppress noises.

With edge extracted by the Canny algorithm, a better edge descriptor
can be developed. For each image, we extract the the proportion of pixels
marked as ‘edge’, as well as the proportions of edges on 10 orientations and
10 intensity levels. This results in a feature code of 21 dimensions, denoted
as ‘CED1’.

(a) (b)

Fig. 3 (a) An example image; (b) Edge detected with orientation and intensity
information.

To assess the spatial difference of edge information, we cut the image hor-
izontally into 3 equal parts, and concatenate the edgy pixel proportions and
the orientation histograms. The edge intensity histogram, however remains
to be extracted globally. This gives us a second descriptor, noted as ‘CED2’,
of 43 dimensions.

Local binary patterns (LBP). LBPs have been shown to be a simple but
effective method of texture discrimination based on a simplification of di-
rectional grayscale difference histogram (Ojala et al., 1996). Consider a local
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3×3 window centered at the current pixel, as shown in Fig. 4. We denote the
central pixel as pc = (x, y), and the set of its neighbour pixels within a radius
of R as Ω = p1, p2, ..., pN . A binary weight is assigned to the neighbour cell
using the given index, if the corresponding grayscale intensity is greater than
that of the central pixel. The LBP code can be constructed from the following
weighted sum, after comparing the intensity of p and its N neighbours:

LBP (p) =
N∑
n=1

[sgn(I(pc) − I(pn)) + 1]2n−2, (8)

where I(pi) denotes the intensity of Pixel pi. As an example, the pattern
shown in Fig.4 will give a LBP value of 1 + 8 + 32 + 128 = 169. The LBP
values of all image pixels, ranging between 0 and 255, form a histogram for
the image. In a standard implementation, non-uniform values (i.e., with odd
number of binary transitions) are combined into one unit, joining the rest 58
uniform values to form a LBP histogram of 59 dimensions.

Fig. 4 Calculation of LBP. (a) The 3 × 3 window; (b) Example grayscale values
in the window; (c) the window thresholded by the central pixel and weighted by
binary weights.

MPEG-7 colour layout descriptor (CLD). The CLD captures the spatial
distribution of colour of an image and has been found to be useful in CBIR
queries such as query-by-sketch and query-by-examples. CLD is defined as
representative colours in YCrCb space on an 8 × 8 grid followed by DCT.
The DCT operation was intended to make the descriptor more compact for
fast database queries.

Different from previous usages in medical image annotation, the original
implementation of CLD in MPEG-7 XM (Manjunath et al., 2001) is not em-
ployed. Firstly, since radiography images are of grayscale only, there is no
need for colour space conversion. Also in our implementation of CLD we
skipped the DCT and quantization process, using the average grayscale in-
tensity value in each grid cell directly. This simplified version of CLD, denoted
as ‘sCLD’, is a 64-dimension vector of floating point values.

For example, the sCLD of the image in Fig.3(a) is displayed as a grayscale
block image shown in Fig.5.

Favourable results have been reported in (Tian et al., 2008) (Jeanne et al.,
2009) where all the images were pre-scaled to 512× 512 or 128× 128 in size.
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Fig. 5 Example of sCLD, extracted from the image shown in Fig.3(a).

Since the aspect ratio of the original images is not kept with rescaling, we
suspect that artificial information (rather than features extracted from the
images per se) was introduced. In this study, we do not scale the images at
all.

To allow for easy comparison with previous results, we employed nearest-
neighbour classifiers and support vector machines (SVM), the same as in
(Güld and Deserno, 2008) and (Deselaers et al., 2008).

Feature ranking. The effectiveness of various feature schemes is first as-
sessed using mutual information based evaluators (Peng et al., 2005). Because
of the large scale of the datasets, both vertically (i.e., with 10,000 samples)
and horizontally (e.g., often with more than 100 dimensions), we have ob-
tained only partial results on selected feature schemes. Here we report the
results on the EHD, sCLD and CED2 features using the following evaluator:
Information Gain (IG), ReliefF and mRMR. The first 30 top-ranked features
are listed in Table 1. The numbers following the feature code indicate the
ordered element of the relevant feature vector. For instance, ‘EHD8’ means
the the 8-th element of the EHD feature.

From these results it can be seen that different attribute evaluators have
good agreement with each other, despite some difference in their reported
ranking order. Among the first 30 attributes, all feature schemes have strong
presence. While CLD dominates in the outcome of the first two evaluations,
EHD and CED also take good portions for mRMR probably due to the effect
that the mRMR evaluator takes redundancy within feature selection into
account.

Classification results. Next, classifiers are trained on datasets extracted
by different feature schemes. The average prediction accuracies in 10-fold
cross validation are recorded. The performance of different feature schemes
is summarized in Table 2. Three classifiers are tested across various feature
schemes. The complexity value of all SVM models is set as 100.
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Table 1 Top 30 attributes ranked by the three evaluators. Here ‘CLD’ stands
for sCLD, and ‘CED’ stands for CED2. Numbers following the code indicate the
relevant component in that feature vector.

Rank IG Attr. ReliefF Attr. mRMR Attr.

1 0.927 CLD5 0.161657 CLD5 0.484 EHD8
2 0.819 CLD4 0.148411 CLD59 0.367 CED12
3 0.780 CLD59 0.148082 CLD4 0.266 CED6
4 0.763 CLD17 0.143255 CLD6 0.269 EHD6
5 0.757 CLD6 0.138884 CLD60 0.177 CED2
6 0.750 CLD53 0.137485 CLD17 0.179 EHD7
7 0.737 CLD9 0.136569 CLD58 0.179 CED9
8 0.736 CED6 0.134569 CLD61 0.187 CED14
9 0.725 CLD60 0.132183 CLD9 0.148 CED10
10 0.720 EHD1 0.131201 CLD62 0.145 CED3
11 0.712 CLD62 0.124875 CLD63 0.153 CED15
12 0.707 CLD61 0.116896 CLD25 0.134 EHD3
13 0.706 CED9 0.113067 CLD53 0.133 CLD57
14 0.704 CLD25 0.112321 CLD7 0.147 CED1
15 0.696 EHD2 0.11155 CLD52 0.126 CED7
16 0.694 CLD24 0.108843 CLD16 0.125 CLD4
17 0.687 CLD58 0.10849 CLD24 0.119 CED13
18 0.679 CED3 0.105808 CLD50 0.113 CED16
19 0.662 CLD52 0.104584 CLD15 0.112 CED8
20 0.655 CLD32 0.104034 CLD51 0.11 EHD4
21 0.650 EHD7 0.103739 EHD8 0.108 CLD52
22 0.638 CLD15 0.102721 CLD3 0.108 CLD23
23 0.620 CED10 0.101651 CLD64 0.099 CED5
24 0.618 CLD63 0.099635 CLD54 0.098 CLD5
25 0.608 CED2 0.099609 CLD33 0.094 CLD56
26 0.608 CLD40 0.095902 CLD55 0.094 EHD5
27 0.604 CLD45 0.095897 CLD32 0.093 CED4
28 0.596 CLD16 0.094111 CLD45 0.091 CLD12
29 0.592 CLD10 0.093179 CLD10 0.091 CLD49
30 0.590 CLD33 0.091933 CLD49 0.092 CED17

Our experiment results show that the proposed Canny descriptor CED1
outperforms the MPEG-7 EHD significantly. Due to the spatial information
included, CED2 performs even better than CED1. This, however, is compro-
mised by a higher dimensionality and consequently, a more costly computa-
tion process.

Since texture descriptors include more information than edge descriptors,
it is not surprising to see that the LBP outperforms all the edge descriptors.
Actually its performance is better than that of Gabor filtering as reported
in (Deselaers et al., 2008). The texture descriptors dimensionality is however
much greater than the edge descriptors.
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Table 2 Performance comparison of the feature schemes. The classification ac-
curacy and the corresponding F-measure are reported for each feature scheme -
classifier combination.

Feature scheme Dimensions
Performance: Accu.(%)/F-meas.

1-NN 10-NN SVM

EHDg 8 29.7/0.30 38.2/0.35 41.3/0.36
CED1 21 43.0/0.42 47.8/0.42 56.1/0.49
CED2 43 57.4/0.57 60.0/0.57 -
Gabor (Deselaers et al., 2008) - 55.1 - -
LBP 59 67.5/0.67 67.2/0.64 77.2/0.76
CLD (Deselaers et al., 2008) 64 52.3 - -
sCLD 64 72.6/0.72 73.4/0.70 77.5/0.77

sCLD+CED1 85 72.1/0.75 75.0/0.73 81.0/0.80
sCLD+LBP 123 76.9/0.76 75.6/0.74 83.4/0.73
sCLD+LBP / mRMR 80 76.4/0.76 75.1/0.73 82.3/0.82
sCLD+LBP / PCA 34 77.4/0.77 76.8/0.75 82.5/0.82

To contrast our results on feature analysis with the classification perfor-
mance, it is interesting to note that despite the relatively low classification ac-
curacy achieved by individual feature scheme, EHD and other feature schemes
all present positive contribution to category prediction. This also suggests
that potentially better performance can be achieved through combining some
of these feature schemes.

On the other hand, the modified CLD, despite being a simple descriptor
reporting spatially-located average intensity, gives the best performance. This
is a significant improvement over previously reported results (Deselaers et al.,
2008), noting that they used the original CLD implementation on the same
dataset. The CLD performance is slightly lower than what was reported in
(Jeanne et al., 2009) using SVM.

To find out whether a joint feature scheme can improve the performance,
we also tested two feature combinations: ‘sCLD+CED1’, ‘sCLD+LBP’. The
latter scheme, consisting of the best two individual feature sets, achieved a
much enhanced accuracy of 83.4% using SVM. Even though these are rather
different features, we attempted feature reduction on this combination, using
mRMR and PCA. The results are quite interesting. The reduced feature sets
manage to achieve the performance level of the original combined set of 123
dimensions. Despite being an unsupervised algorithm, PCA has delivered a
successful dimension reduction (down to 34 dimensions while keeping 95% of
variance), indicating significant redundancy in the joint feature set.

Wildlife Scene Categorization and Novelty Detection

The second case study we present here is a wildlife image analysis task. The
goal is to categorize the semantic context of scenes and detect the potential
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novelty, e.g., hunting scenes or artificial scenes (Yong et al., 2010). Possible
application of such a technique can be multimedia content management as
well as wildlife monitoring.

Experiment settings. We took 172 images from the ImageNet dataset
(Deng et al., 2009) and from Google Image Search. These wildlife images
usually feature one animal in scene and contain relatively simple semantic
context, each belonging to one of the following 4 scene types (number of
instances for each type in brackets): dolphin (39), elephant (43), penguin
(45) and zebra (45). Image sizes vary from 200 × 154 to 1024 × 768. Some
sample images are shown in Fig. 6. For block labelling we have therefore
14 classes, including both the background and animals in foreground. After

Fig. 6 Samples of training images from four scene classes: ‘dolphin’, ‘elephant’,
‘penguin’ and ‘zebra’.



238 J.D. Deng

segmentation, there are over 50,000 image blocks extracted. We used an im-
age annotation tool to manually annotate image segments and the blocks
within each segment inherit the segment’s label. We randomly chose 5,000
images for feature analysis experiments.

First, scene images are segmented into homogeneous regions using an im-
age segmentation algorithm. A scene usually contains multiple objects of
different visual characteristics. The segmentation facilitates the detection or
classification of objects. Those segments will then be classified manually as
the ground truth for training the classifiers. Each segment image will be tiled
into blocks of size 32× 32. Image blocks falling out of the segment edges will
be ignored. For semantic analysis of new images, we have found it is more
effective to train classifiers on segment blocks instead of on segment images
directly.

Different from previous studies (Mojsilovic and Gomes, 2002;
Greenspan and Pinhas, 2007), we don’t adopt the bag-of-words ap-
proach to cluster the local image features and build histograms on the
local feature labels. Rather, with the help of limited number of objects and
scene types, the locally extracted block features are directly classified and
assigned a semantic label. The scene category can then be modelled based
on the co-occurrence of the semantic labels. Furthermore, scene novelty can
be detected by examining the one-class distribution of each scene category.
Therefore, this approach not only gives us the capability of handling scene
modelling and novelty detection at the same time, but also it limits the
feature evaluation process within the classification scenario (Yong et al.,
2010). Here, we concentrate on the initial stage of block labelling and
investigate possible feature selection.

Feature Schemes

LUV colour histogram. Visual features are then extracted from image
segment blocks. First we employ the LUV colour histogram to encode the
colour information of image blocks. Colour histograms are found to be ro-
bust to resolution and rotation changes (Ma and Zhang, 2003). Our previous
work (Deng and Zhang, 2005) found that other colour descriptors such as
the Dominant Color Descriptor (Manjunath et al., 2001) are not so effective
for object recognition. The LUV colour space is adopted because it mod-
els humans perception of colour similarity very well, and it is also machine
independent. Each colour channel is quantized with the same interval, thus
we have 20 bins for the L channel, 70 bins for U-channel, and 52 bins for
V-channel respectively. The standard deviation of the LUV histogram val-
ues is also calculated. The LUV histogram feature therefore has taken 143
dimensions.
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Haralick texture features. Texture features extracted from the im-
age blocks are also included as local features. We compared Edge His-
togram Descriptor and Gabor filtering features with the Haralick features
(Haralick et al., 1973), and the latter performed the best in our test and are
therefore adopted in further experiments.

The Haralick texture features consist of a few statistical properties based
on the gray scale co-occurrence matrix. The image block, denoted as B, is
first converted to gray scale. The co-occurrence matrix is a two-dimensional
histogram composed from the pairwise statistics of gray scale co-occurrence
among adjacent pixels. Given two grayscale levels i and j, the co-occurrence
of these two levels over an offset (Δx,Δy) is defined as

CΔx,Δy(i, j) =
∑
x∈B

∑
y∈B

{
1, if p(x, y) = i & p(x+Δx, y +Δy) = j

0, otherwise
. (9)

Four orientations of the offset are considered, each giving a co-occurrence
matrix for the image block. A total of 13 statistical measures, including an-
gular second moment, contrast and correlation etc., can be calculated for
each co-occurrence matrix (Haralick et al., 1973). The mean and deviation
values of each of these 13 measures over the four orientations, form a feature
vector of 26 dimensions. We denote the mean value and the deviation of the
X-th moment value as HARmX and HARdX respectively.

Feature combination. Finally, the colour and texture features are concate-
nated together, giving a feature vector of 169 dimensions to represent an
image block. Through manual labelling of image segments, semantic ground
truth is assigned to the training images. The image blocks inherit semantic
labels from their corresponding segments. Their feature codes along with the
relevant class labels are used to train object classifiers.

Feature analysis. The first top 30 features ranked by their IG values are
listed in Figure 7. As we see the feature list is dominated by the Haralick
features, but there exist also important LUV features. Another notable phe-
nomenon is that after 100 attributes the IG values stop being positive.

For our 14-class classification problem, we remove all LUV and Haralick
features that have zero IG values, resulting in a 100-dimension feature set.
Using a 1-NN classifier the classification accuracy is achieved at 88.6% in 10-
fold cross validation, the same as using the full feature set of 169 attributes
in total.

Can this approach of histogram features selection scale to general object
and scene classification? Probably not. It is unlikely to expect many LUV
histogram elements to be redundant for image patches of all types of back-
ground and foreground. However, a potential workable approach, as revealed
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by our experiments, is that we can use some kind of hierarchical classification
systems (Cesa-Bianchi et al., 2006; Fan et al., 2008) that work in a divide-
and-conquer manner, where each classifier can be trained using dimension-
reduced colour histogram features and texture features.

5 Discussion and Conclusion

With the advances of digital imaging and Internet technologies, the challenge
on effective retrieval and mining of the ever-increasing image data is unprece-
dented. It is highly desirable to develop automatic image annotation systems
that can enable more efficient management and more effective utilization of
these digital resources. There have been many feature schemes proposed for
image scene and object categorization in general, and also for specific do-
mains such as medical image annotation. While most previous authors have
verified the effectiveness of these feature schemes in their empirical studies,
we feel the work on feature analysis and selection is still lacking and there-
fore the potential of these features and their combinations has not been fully
explored.

We argue that by selecting the most useful features that are most relevant
to the image’s categories and less redundant to each other, we can build
more compact classifiers that remain most effective, as shown in the two case
studies presented in this chapter.

Our feature analysis experiments, despite of limited scope, reveal the effec-
tiveness as well as the limitation of different low-level features. There seems
to be a necessity of combining feature schemes. Feature analysis in this re-
gards may give us better ideas in finding feature combinations that are likely
to be successful in solving complicated categorization problems.

On the other hand, since features are usually extracted from different
modalities (e.g., colour and shapes), there is limited room of dimension re-
duction. The dimensionality of the combined datasets, even after feature
selection, can become formidable if we simply concatenate all useful features
into one long vector. Classifier construction would be challenged because of
the potentially very high dimensionality. This puts classifier combination into
a more desirable position (Ko et al., 2007). Ensembles of classifiers, with each
classifier trained on an individual feature scheme and then combined to pro-
duce the classification decision, may be more promising in delivering better
performance. So far we haven’t seen much development on this direction for
scene and object categorization, and our attempts in using existing combi-
nation schemes such as AdaBoost and Random Forest implementations in
Weka (Hall et al., 2009) did not produce promising outcome, but we believe
it remains a relevant research direction for the future.
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Chapter 11
Introduction to Curve and
Edge Parametrization by Moments

Irina Popovici and Wm. Douglas Withers

Abstract. Curve parametrization is the task of determining the parameters
of a general curve equation describing a structure in an image (or a surface in
a higher-dimensional dataset). A common example is the widespread use of
the Hough transform to determine parameters of straight lines in an image.
Moment-based methods offer an attractive alternative to Hough-type meth-
ods for this task, especially as the number of parameters or the dimension
of the space increases. Moment-based methods require no large accumulator
array, are computationally efficient, and robust with respect to pixelization
and high-frequency noise. This paper presents an overview of the state of
the art for moment-based curve parametrization techniques. We discuss both
abstract mathematical results guaranteeing the existence of a unique curve
corresponding to a given set of moment values and allowing determination of
parameter values for specialized quadrature-domain boundary curves, along
with broad practical reconstructive results for a wide class of curves and
hypersurfaces with arbitrarily many parameters and in arbitrarily many di-
mensions. Examples show the methods applied to analytically-defined image
functions, generated images, and real-world images.

Keywords: Edge location, subpixel edge location, edge parametrization, cir-
cle detection, circle location, conic parametrization, curve parametrization,
moments.

1 Background

Many science and engineering applications rely on analysis of images or
higher-dimensional data, and on identifying certain structures within the data
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in particular. A common image-analysis task is edge description, whether
as a set of pixels or parametrically by a curve equation, for further use in
quality enhancement, shape or character detection, image restoration, cali-
bration, or image coding. Higher-dimensional applications include volumetric
3-D imaging, where filaments and tubes are important, and statistical data
analysis where the data cloud concentrates near special low-dimensional sub-
sets. Real-world data applications demand computational techniques that are
noise-resistant, fast, preferably parallelizable, and of reasonable memory re-
quirement. Moment-based methods have long been recognized as befitting
these problems, with an extensive literature on the theoretical and computa-
tional aspects of their use. The purpose of this chapter is two-fold: to present
techniques (new and old) that perform well in the aforementioned contexts,
and to present answers to some more theoretical lines of inquiry, with the
goal of bridging the gap between engineers’ and mathematicians’ bodies of
work.

Historically, edge detection in images came to prominence in the 1970’s,
focused on finding object boundaries as pixel subsets of the original picture
([8]). Although such methods seemed to perform better on near-vertical or
near-horizontal edges, they made no special assumptions about the class of
shapes applied to. At about the same time parametrization methods were
developed for the special classes of straight, and then circular, edges, using
the Hough transform ([2]) and its generalizations. Hough-type transforms
use accumulator arrays, two-dimensional for straight lines, whose size in-
crease exponentially with the number of parameters considered. This issue
does not arise with the moment-based methods described in Section 3, which
entail modest memory requirements essentially independent of the number
of parameters or the dimensionality of the space.

An additional, more fundamental, distinction between moment-based and
Hough-type methods is philosophical in nature. Consider the problem of iden-
tifying a circle or circles in the image shown in Fig. 1a. One possible answer
is to locate the “trees”: the individual small circles, as shown in Fig. 1b. But
another possible answer is to locate the single-circle “forest”, as shown in
Fig. 1c. Which answer is preferable depends on the situation. But the single-
solution “forest” approach offers the possibility of solution by direct compu-
tation, as opposed to accumulating and searching, with associated economy
of computational resources. Hough-transform-type methods are better suited
for parametrizing individual “trees”; the moment approach yields a single
directly-calculated solution representing the “forest.”

The moment-based approach to edge parametrization was pioneered in the
1980s. In this approach, a region assumed to contain an image structure is
integrated against several functions of position (x, y), yielding moment values
from which various edge parameters are calculated. Early work (Machuca and
Gilbert [6], Reeves et al. [7], and Lyvers et al. [9]) used moments of power
functions xαyβ on a circular mask to derive parameters for a straight edge,
namely the edge angle and the distance l from the center of the mask to the
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(a) (b) (c)

Fig. 1 (a) Raw image. (b) A multiple-circle solution, such as might be produced
by a generalized Hough transform. (c) A single-circle solution, such as might be
produced by a moment-based method.

edge. The orientation angle is computed based on first-degree moments alone;
the authors employ this simplicity to show that noise alone induces no bias
in the angle computation, although other factors, such as pixelization and
quantization, may do so. The location l is computed via rotated moments
of degree not exceeding two; empirical analysis of the impact of pixelization
shows a small bias in this computation. Correcting for that bias brings the
accuracy of the location calculation to better than 0.45 %.

Ghosal and Mehrota ([11], [15]) modify the method in [7] by working with
Zernike moments, complex-valued orthogonal moment functions, also with
circular support. They also examine roof edges which are marked by a dis-
continuity in the slope of the brightness function rather than the brightness
itself (see also [22]). Also used for image analysis were Legendre polynomials
([14]), and discrete Chebyshev polynomials ([19]).

The newer method presented in Section 3 generates “custom-built” mo-
ment functions supported on any desired shape—rectangles are particularly
useful in imaging applcations. Tailoring the mask to the region to be repre-
sented enhances both accuracy and efficiency. For example, for the straight-
edge parametrization, a square mask ([21]) entails 4 moment calculation
operations per pixel, whereas the circular mask entails 2π moment calcu-
lations per pixel in the method of Zernicke moments, or 3π moment calcu-
lations per pixel in the method of power moments (which uses six moment
values rather than four).

Additionally, this flexibility makes the method adaptable to structure im-
posed on the image data, either a priori (such as JPEG-format images, which
are coded in terms of cosine functions on 8×8 blocks), or subsequently (such
as a wedgelet representation on a recursively refined square ([17], [20]), tri-
angular, or other grid).

The problem of locating curved edges was motivated by the prevalence
of certain shapes (circles, ellipses, etc) in nature and in man-made objects.
Most studies in the literature focus on the parametrization of conic curves,
although other shapes—such as airplane silhouettes—have been considered.
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Fig. 2 A circle and a parabola may be difficult to differentiate based on local
information.

Edge description in terms of geometric or algebraic parameters rather than
as a set of pixels is important in applications such as biometrics, calibration,
image registration, and multi-scale geometric image coding methods such as
wedgelets and curvelets.

With the exception of the theoretical results related to the reconstruction
of quadrature domains (see the next section), most methods described in the
literature up to [24] employ the special characteristics of a single class of
curves—circles (Xu et al. [10]), ellipses (Heikkilä [16], Yoo and Sethi [12]),
or parabolas (Jafri and Deravi [13])—and are accordingly limited to a single
curve class. For many applications (particularly those involving oblique views,
re-scaling and localization, or occluded curves), this a priori restriction is
unwarranted (Fig. 2). The algebra-based methods presented in Section 3, an
extension of [24], are not limited to specific geometric curve classes.

Related to this issue, another feature of the methods presented in Section 3
is the ability to trade off simplicity of representation versus goodness of fit
(for example, choose a straight line segment over a low-curvature contour, or
a circle over a small-eccentricity ellipse), using techniques illustrated in [24].

2 Mathematical Theory of Solvability

This section reviews the abstract mathematical work pertaining to the ques-
tion of whether determining the equation of a curve in the plane (or hy-
persurface in RK) from moment values is solvable at all, and how many
moment values are required to guarantee uniqueness of the solution. This
section presents nonconstructive existence results, in contrast to the practi-
cal constructive-oriented approach of the next section.

The mathematical problem of recovering information about an object from
indirect measurements can be traced back to Markov and Chebyshev, who
were interested in finding approximations for integrals of various classes of
functions f with respect to a distribution dσ based on the evaluation of a
number of moment values for the distribution.
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This one-dimensional moment problem, nowadays known as the L-problem,
has long been solved. Uniqueness and existence results can be found in
Ahiezer and Krĕın’s comprehensive book [3].

Interest in the multivariable analogue of this problem is more recent,
heightened by its relevance to areas such as image processing, geophysics,
and tomography. Frequently, the object or shape to be identified and located
in these applications has near-constant brightness, and the problem of de-
scribing it essentially reduces to finding a “shape” function G whose support
coincides with the location of the object. If Γ denotes the set of points belong-
ing to the object, then the object boundary ∂Γ consists of points �x satisfying
G(�x) = 0.

The mathematical foundation for the reconstruction problem, formulated
as finding the brightness function I(�x) or the shape function G using mono-
mials as moment functions, can be found in [5]. We use standard multi-index
notation: if α = (α1, α2, . . . αK) is a multi-index with αi non-negative inte-
gers, then the degree of α, denoted |α| is defined as |α| = α1 +α2 + . . .+αK .

Herewith are some theoretical results ensuring that the recovery of the
shape function is a well posed problem:

Theorem 1. Let S be a closed cube in RK . Given a fixed degree d and fixed
constants {uα : |α| ≤ d}, then Markov’s problem:

∫
S

I(�x)xα1
1 xα2

2 . . . xαK

K dV = uα for |α| ≤ d

admits a measurable function I : S → [−1, 1] as a solution if and only if for
all polynomials P of degree not exceeding d:

P (�x) =
∑
|α|≤d

cα x
α1
1 xα2

2 . . . xαK

K

the inequality ∑
|α|≤d

cαuα ≤
∫
S

|P (�x)| dV (�x)

holds. Moreover, Markov’s problem has unique solution if and only if there
exists a polynomial G of degree not exceeding d such that

uα =
∫
S

IG(�x)xα1
1 xα2

2 . . . xαK

K dV,

where

IG(�x) =
{

1 if G(�x) ≥ 0
−1 otherwise.

Note that this result guarantees the existence of an appropriate shape
function but provides no reconstructive algorithm for such. For the two-
dimensional problem, reconstruction algorithms have been developed for the
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case where Γ is a quadrature domain satisfying restricted incidence relations
with S. As complex analytic functions play an essential role in these algo-
rithms, our description uses complex representations for functions and mo-
ments. Any function of (x, y) is expressible as a function of variables z = x+iy
and z = x− iy. For example monomials can be represented as:

xmyn =
(z + z)m(z − z)n

2m(2i)n
.

We use the complex representation I(z, z) of the real-valued brightness func-
tion I, along with its complex-valued moments

umn(I) =
∫∫

S

I(z, z) znzm dA(z).

A brief overview of the method ([18]) follows.
Let I be a real-valued function whose support is contained in a fixed ball

S in the complex plane C. Assume I to be integrable with respect to area
on S, and that 0 ≤ I ≤ 1 everywhere. Fix a positive integer d and denote by
�ud(I) the (d+1)2-dimensional complex vector whose entries are the complex
monomial moments of I:

�ud(I) = (umn(I) : m,n = 0, . . . , d).

Denote by Σd the set of all possible moments of such functions:

Σd = {�ud(I) : 0 ≤ I ≤ 1 on S}.

It can then be shown that the admissible set Σd is closed, bounded, and
convex and that the following hold:

Theorem 2. An arbitrary vector �v ∈ Σd has a unique representing function
I such that �v = �ud(I) if and only if �v is an extremal point of Σd.

Theorem 3. A point �v = (vmn) ∈ Σd is extremal if and only if there exists
a real-valued polynomial G(z, z), of degree not exceeding d in each of z and
z, satisfying {z : G(z, z) ≥ 0} ⊂ S and

vmn =
∫∫

{z:G(z,z)≥0}
znzmdA(z)

for all 0 ≤ n,m ≤ d.

In other words, a real-valued function I bounded by 0 and 1 is uniquely
determined by its complex moments of order up to d if and only if a real-
valued polynomial G exists such that {z : G(z, z) ≥ 0} is fully contained in
the set S on which the moments are computed, and I takes the form:
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I(z) =
{

1 if G(z, z) ≥ 0
0 otherwise.

Although I is uniquely determined in this case no algorithm is known for
reconstructing G from �u(I), except in the limited case when the set where
G ≥ 0 is a quadrature domain fully contained in the ball S.

A quadrature domain Ω is a bounded, open, connected set in C with the
property that there exist points γ1, . . . , γm in Ω (called nodes), integer mul-
tiplicity values μ1, . . . , μm, and complex numbers αk,j such that

∫∫
Ω

f(z) dA(z) =
m∑
k=1

μk−1∑
j=0

αk,jf
(j)(γk)

for all complex analytic functions f integrable on Ω. The order d of a quadra-
ture domain is defined to be the sum of the multiplicities of its nodes:
d = μ1 + μ2 + . . .+ μm.

A disk Ω of center c and radius r is the simplest quadrature domain and
the only order-one quadrature domain. It satisfies the quadrature equation

∫∫
Ω

f(z) dA(z) = πR2f(c),

also known as the Mean-Value Theorem for harmonic functions. Other simple
quadrature domains include double-node domains, which are the images of
the unit disk under conformal maps such as z → z2 + bz, where b ≥ 2, and
polygons. For a polygon Ω with vertices γ1 . . . γn counted cyclicly counter-
clockwise, the quadrature identity ([1], [4]) states:

∫∫
Ω

f ′′(z) dA(z) =
n∑
j=0

αkf(γk)

where
αk = sin(φk−1 − φk)e−i(φk−1+φk)

and φk is the angle made by the side γkγk+1 with the positive real axis.
Quadrature domains are a very small subclass of those domains whose

boundaries are defined as zero-sets of real-valued polynomials; for example
the class of ellipses, frequently encountered in applications, is not a quadra-
ture domain.

The reconstruction algorithms for a quadrature domain Ω of order d, as
presented in [18], requires the following transform: given moment values vmn
define the exponential transform to be the formal power series:

exp

[
− 1
π

d∑
m,n=0

vmn

zn+1wm+1

]
= 1 −

∞∑
m,n=0

Vmn

zn+1wm+1
(1)



252 I. Popovici and W.D. Withers

For quadrature domains the matrix V = (Vmn)dm,n=0 is singular, thus it
admits a complex eigenvector �c = (c0, . . . cd), satisfying V �c = 0. Assuming
d to be the minimal order of Ω, normalize �c so that cd = 1. Define the
polynomial F (z) = zd + cd−1z

d−1 + . . . c0 and expand the product

F (z)F (w)

(
1 −

d∑
m,n=0

Vmn

zn+1wm+1

)
= G(z, w) +O(1/z, 1/w). (2)

where G is a polynomial in z and w. The domain Ω is then given by

Ω = {z : G(z, z) < 0}.

To illustrate this method, consider the simple case where Ω is a disk of center
c and radius r entirely contained in the disk S. The brightness function I,
whose moments up to degree one are needed, becomes:

I(z) =
{

1 if |z − c| ≤ r
0 otherwise.

Start with:

v00=u00(I) =
∫∫

S

I(z) dA(z) =
∫∫

Ω

1 dA(z) = πr2,

v01=u01(I) =
∫∫

S

zI(z) dA(z) = πr2c,

v10=u10(I) =
∫∫

S

zI(z) dA(z) = πr2c,

v11=u11(I) =
∫∫

S

zzI(z) dA(z) =
πr4

2
+ πr2cc.

The exponential expansion (1) yields:

V00 =
v00
π
, V01 =

v01
π
, V10 =

v01
π
, V11 =

v11
π

− v2
00

2π2
.

Substituting in the specific moment values vmn for the disk Ω, and construct-
ing the 2 × 2 matrix, we find:

V =
(
r2 r2c
r2c r2cc

)
.

This matrix is singular, with has a one-dimensional eigenspace with eigen-
vector

�c =
(−c

1

)
.

The expansion in (2) becomes:
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(z − c)(w − c)
(

1 − r2

zw
− r2c

z2w
− r2c

zw2 − . . .

)
=

(z − c)(w − c) − r2 +O

(
1
z
,

1
w

)
= G(z, w) +O

(
1
z
,

1
w

)
.

We therefore recover the equation of the boundary circle of Ω as:

G(z, z) = (z − c)(z − c) − r2 = 0.

This equation has degree one in each of z, z, consistent with the disk being a
quadrature domain with d = 1.

Note that the complete containment of Ω within S is critical to the success
of this construction. If Ω is only partially contained within S, then the matrix
V fails to be singular.

The following section describes our methods, which provide for the re-
construction of the functions I and G in cases where the domain partially
overlaps S, and G need not be a polynomial function, while the number of
moments used may exceed d in cases where G is a polynomial.

3 The Constructive Moment-Analysis Method

General framework: We consider a two-valued function I(�x),
�x = (x1, . . . , xK):

I(�x) =
{
q if �x ∈ Γ
r otherwise. (3)

Here Γ is a subset of K-dimensional space whose boundary ∂Γ is a finite
collection of piecewise-smooth hypersurfaces. For example, if K = 2 then
I could represent an image consisting of two solid-color regions; if K = 3
then I might represent a volumetric data set consisting of two homogeneous
regions. Let S be a compact subset of the K-dimensional dataset bounded
by a finite collection of simple closed piecewise-smooth (K − 1)-dimensional
hypersurfaces.

Fig. 3 shows a practical example of the case K = 2, an image. Although
the image as a whole manifests many different values of I(�x) (gray-levels), I
is approximately two-valued on a certain subrectangle S.

We further suppose all points �x ∈ S ∩ ∂Γ satisfy G(�x) = 0, where G is
expressible as an unknown linear combination of known functions zn(�x):

G(�x) =
N∑
n=1

pnzn(�x), (4)
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S

Γ

Fig. 3 In a neighborhood S of a sharp edge, a multi-value image is dominated by
just two values.

with at least one nonzero pn. Since the curve described by (4) is invariant
under multiplication of the coefficients pn by a nonzero constant, the class of
curves described by (4) has (N − 1) parameters.

For example, one such class is that defining the general equation of a two-
dimensional conic (K = 2, N = 6):

G(�x) = p1 + p2x1 + p3x2 + p4x
2
1 + p5x1x2 + p6x

2
2 = 0. (5)

Another is the general equation of a sphere (K = 3, N = 5):

G(�x) = p1 + p2x1 + p3x2 + p4x3 + p5(x2
1 + x2

2 + x2
3) = 0.

And another is a general hyperplane in K dimensions (N = K + 1):

G(�x) = p1x1 + p2x2 + · · · + pKxK + pK+1 = 0. (6)

For an integrable function U(�x) defined on S, we define the moment value
with respect to I:

〈U, I〉 =
∫
S

I(�x)U(�x) dV,

where dV denotes the K-dimensional volume element.

4 Moment-Based Line Parametrization

As an example of the type of result provable in this situation, we present the
following method for recovering the equation of a line, relatively modest in
scope and yet with a wide variety of potential uses.

Theorem 4. Let K = 2 and let Γ be a subset of the plane bounded by a
straight line, with equation

p1x+ p2y + p3 = 0,
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(writing x for x1 and y for x2). Let V be an open set containing S. Choose
a function F (x, y) continuously differentiable on V such that F (x, y) = 0 for
(x, y) 
∈ S. Define

U1 = Fx, U2 = Fy, U3 = −2F − xFx − yFy,

the subscripts denoting partial differentiation. For n = 1, 2, 3, let

un = 〈Un, I〉.

Then all (x, y) ∈ ∂Γ satisfy:

u1x+ u2y + u3 = 0. (7)

We omit the proof of this theorem as it is a special case of both Theorem 8
and Theorem 9 presented below.

As an example of the application of this theorem, consider an image func-
tion I(x, y) defined by:

I(x, y) =
{

9 if (x, y) ∈ Γ ,
4 otherwise,

where Γ is the part of the plane 5x + 3y ≤ 4. We take S to be the square
0 ≤ x, y ≤ 1. Our goal is to recover the equation of the boundary line ∂Γ by
analyzing the values of I within S.

We choose F (x, y) = max(0, xy[1−x][1−y]), so that F (x, y) = 0 outside S.
(Note that F does not strictly satisfy the twice-differentiable hypothesis, but
this condition can be relaxed somewhat.) In practice the shape of S heavily
influences the choice of F . The three moment functions are therefore:

U1(x, y) = Fx(x, y) = (2x− 1)(y2 − y),
U2(x, y) = Fy(x, y) = (2y − 1)(x2 − x),
U3(x, y) = −2F (x, y) − xFx(x, y) − yFy(x, y)

= −xy(6xy − 5y − 5x+ 4).

We can then calculate 〈U1, I〉:
∫ 1

0

(∫ (4−3y)/5

0

9(2x− 1)(y2 − y) dx+
∫ 1

(4−3y)/5

4(2x− 1)(y2 − y) dx

)
dy

= 5 · 29
750

.

Similarly:

〈U2, I〉 = 3 · 29
750

, 〈U3, I〉 = −4 · 29
750

,

so that (7) is equivalent to the equation 5x+ 3y = 4 of ∂Γ .
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One practical application of this technique is for wedgelet or similar image
coding methods which employ successive refinement of local straight-edge
models. Theorem 4 defines a predominant edge by straightforward computa-
tion, in contrast to searching a dictionary of possible edge positions. Fig. 4
shows the effect of decomposing an image into subblocks S of various sizes
and using moments to determine an edge location for each. Each block is fit-
ted with a straight edge, even if the original block content was more complex
in structure.

(a) (b) (c)

Fig. 4 (a) Approximation to Peppers image based on subdivision into 8× 8 blocks
and representing each block by two values separated by a straight-line edge. (b)
Similar approximation with 16× 16 blocks. (c) Similar approximation with 32× 32
blocks.

Alternatively, we could take F (x, y) = sin(πx) sin(πy) within S and F ≡ 0
outside S. The three moment functions are then:

U1(x, y) = Fx(x, y) = π cos(πx) sin(πy),
U2(x, y) = Fy(x, y) = π sin(πx) cos(πy),
U3(x, y) = −2F (x, y) − xFx(x, y) − yFy(x, y)

= −πy sin(πx) cos(πy) − πx cos(πx) sin(πy) − 2 sin(πx) sin(πy).

We can then calculate:

〈U1, I〉 = 5λ, 〈U2, I〉 = 3λ, 〈U3, I〉 = −4λ,

where

λ =
25
√

10 − 2
√

5
32π

=̇ 0.58468,

so that once again (7) recovers the equation 5x + 3y = 4 of ∂Γ . Note that
Theorem 4 provides options. For example, this second alternative is more use-
ful for edge location in a DCT-coded image (JPEG) in transform space—as
the moment calculation is equally simple in transform space. This capability
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is useful, for example, in controlled filtering to suppress compression artifacts
while preserving sharp edges ([23]).

The JPEG image format partitions the image into blocks of 8 × 8 pixels;
for our purposes we consider such a block to correspond to the [0, 1] × [0, 1]
square here discussed, the image values I(x, y) on this square represented by
an 8× 8 grid of pixel values iηξ, for ξ, η = 0, . . . 7. JPEG specifies these pixel
values not directly but rather in terms of their DCT coefficients Cn,m, for
m,n = 0, . . . 7 :

iηξ =
1
4

7∑
m=0

7∑
n=0

km kn Cnm cos
(2m+ 1)πm

16
cos

(2n+ 1)πn
16

(8)

where k0 = 1/
√

2 and km = 1 for m = 1 . . . 7.
Calculating u1, u2, and u3 first requires an approximation of u1 = 〈U1, I〉

by a Riemann sum based on the discrete set of pixel values iηξ :

u1 ≈
7∑
ξ=0

7∑
η=0

∫ (η+1)/8

η/8

∫ (ξ+1)/8

ξ/8

iηξ π cos(πx) sin(πy) dx dy,

each individual integral over the region subtended by a single pixel. Integrat-
ing, we obtain:

u1 ≈
7∑
ξ=0

7∑
η=0

iηξ
π

[
sin

π(ξ + 1)
8

− sin
πξ

8

] [
cos

π(η + 1)
8

− cos
πη

8

]
.

Substituting (8) for iξη yields:

u1 ≈ 1
4π

7∑
m=0

7∑
n=0

⎛
⎝km

7∑
ξ=0

cos
(2m+ 1)πm

16

[
sin

π(ξ + 1)
8

− sin
πξ

8

]⎞
⎠×

(
kn

7∑
η=0

cos
(2n+ 1)πn

16

[
cos

π(η + 1)
8

− cos
πη

8

])
Cnm.

The inside sums above are pre-computable for each given m,n, and zero-
valued for all even values of m and for n 
= 1. We therefore find:

u1 = 0.17564 C1,1 − 0.0806 C1,3 − 0.01447 C1,5 − 0.00444 C1,7.

A similar argument reduces the computations for u2 to

u2 = 0.17564 C1,1 − 0.0806 C3,1 − 0.01447 C5,1 − 0.00444 C7,1

and the integral needed for u3 becomes
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u3 = −u1 + u2

2
+

7∑
m=0

7∑
n=0

1
64
MnmCnm (9)

where the matrix Mnm is precalculable and has 15 nonzero entries, 9 distinct
(Table 1).

Table 1 Coefficient matrix Mnm for calculating moment value u3 directly from
DCT coefficient values. (Omitted columns and rows contain no nonzero entries.)

n\m 0 2 4 6

0 0.000000 3.968077 0.570846 0.169225

2 3.968077 −3.641138 −0.588845 −0.177868

4 0.570846 −0.588845 −0.094067 −0.028361

6 0.169225 −0.177868 −0.028361 −0.008549

For (7) to hold trivially by u1 = u2 = u3 = 0 is of no use in recovering the
line equation. As noted in the discussion of Theorem 9 below, this possibility
can be eliminated by choosing F to be positive on the interior of Γ—provided
of course the line in question intersects the interior of Γ .

5 Parametrizing Higher-Order Curves and Surfaces

The next theorem, proved in [24], treats general two-dimensional boundary
curves:

Theorem 5. Let K = 2 and write x for x1, y for x2. Let V be an open set
containing S. Assume the functions z1, . . . , zN in (4) to be twice continuously
differentiable on V . Choose functions s(x, y) twice continuously differentiable
on V and F (x, y) continuously differentiable on V such that F (x, y) = 0 for
(x, y) 
∈ S. For n = 1, . . . , N , define Un(x, y) = Υ (F, s, zn), where

Υ (F, s, z) = ([szy − zsy]F )x − ([szx − zsx]F )y ,

the x and y subscripts indicating partial differentiation. Define moment values
un = 〈Un, I〉 for n = 1, . . . , N . Then

N∑
n=1

unpn = 0. (10)

Example: Let the class of curves under consideration be the general conic (5),
with equation

p1 + p2x+ p3y + p4x
2 + p5y

2 + p6xy = 0,
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so that
z1 = 1, z2 = x, z3 = y, z4 = x2, z5 = y2, z6 = xy.

Take S to be the square −1 ≤ x, y ≤ 1. Choose

F (x, y) = max
(
0,
[
1 − x2

] [
1 − y2

])
.

Choose s(x, y) ≡ 1. Then we have:

U1(x, y) = Υ (F, s, 1) = 0,
U2(x, y) = Υ (F, s, x) = 2y(1 − x2),
U3(x, y) = Υ (F, s, y) = −2x(1 − y2),
U4(x, y) = Υ (F, s, x2) = 4xy(1 − x2),
U5(x, y) = Υ (F, s, y2) = −4xy(1 − y2),
U6(x, y) = Υ (F, s, xy) = 2y2 − 2x2

for �x ∈ S; all Un are zero-valued for �x 
∈ S.
If we now further suppose that our image function I(x, y) is zero-valued

outside a circle of radius 3/2 centered at (−1/2,−1) and has value 1 inside
the circle, we can calculate the corresponding moment values over S:

u1 = 0, u2 = −1.13136, u3 = 0.561783,

u4 = −0.088179, u5 = 0.095968, u6 = −0.083716.

It is easily verified that (10) holds for the circle equation

−1 + x+ 2y + x2 + y2 = 0.

Note that the quadrature-domain construction of Section 2 fails for this circle,
as it is only partially contained in the domain S of integration.

As a second example, consider the general equation of a circle:

p1 + p2x+ p3y + p4

(
x2 + y2

)
= 0.

Let S be the disk x2 + y2 ≤ 1. Choose

F (x, y) = max
(
0, 1 − x2 − y2

)
.

Choose s(x, y) ≡ x. Then we have:

U1(x, y) = Υ (F, s, 1) = −2y,
U2(x, y) = Υ (F, s, x) = 0,
U3(x, y) = Υ (F, s, y) = 2 − 4x2 − 4y2,

U4(x, y) = Υ
(
F, s, x2 + y2

)
= 4y − 6x2 − 6y2.
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Further supposing I(x, y) to be zero-valued outside a circle of radius 1 cen-
tered at (−2/5,−4/5) and having value 1 inside the circle, we can calculate
the corresponding moment values over S:

u1 = 1.13144,
u2 = 0,
u3 = 0.29712,
u4 = −0.24911.

It is easily verified that (10) holds for the circle equation

−1 + 4x+ 8y + 5
(
x2 + y2

)
= 0.

Once again, the quadrature-domain construction of Section 2 fails for this
circle, as it is only partially contained in the domain S of integration.

Solving for the parameter vector �p: Of course no single equation of the form
(10) suffices to determine p1, . . . , pN (unless N = 2). However, by varying the
choice of s and/or F , one can generate as many such equations as desired.
Together these form a linear system:

A�p = 0 (11)

to be solved for the vector �p of parameter values p1, . . . , pN , A being an
M × N coefficient matrix. Since the curve defined by G(�x) = 0 is invariant
under multiplication of �p by a nonzero scalar, the system (11) is degenerate in
the sense that it has at least a one-dimensional space of solutions. The specific
number of equations and choices of F and s are influenced by the particular
class of curves under consideration. At a minimum (N − 1) equations are
needed.

As a practical matter, in solving (11) for �p, we must deal with two opposing
concerns: First, the matrix A may be hyperdegenerate (having a null space of
dimension greater than one)—or nearly so, leading to numerical instability in
the solution. Second, due to round-off error, pixelization effects, or because
the boundary curve imperfectly satisfies G(�x) = 0, the matrix A may not be
truly degenerate but only nearly so.

A standard approach to solving a linear system which provides an avenue
to addressing both these concerns is to recast the problem as minimizing
||A�p || subject to the constraint || �p || = 1. The solution is obtained by taking
�p to be an eigenvector of ATA (AT denoting the transpose of A) correspond-
ing to the eigenvalue of ATA closest to zero (equalling zero if A is indeed
degenerate). Experiment shows that in general ATA does have an eigenvalue
very close to zero (in comparison to the magnitude of entries of A), and that
the corresponding eigenvector does yield quite a good fit to the given bound-
ary curve. Nonexistence of a near-zero eigenvalue indicates that the boundary
curve is poorly described by the equation G(�x) = 0.
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Fig. 5 It is impossible to distinguish the quadratic equations representing sets of
crossed lines (a) and (b) based on the image content in the set S (the shaded region).

Hyperdegeneracy or near-hyperdegeneracy is indicated by the existence of
two or more near-zero eigenvalues. For example, for the conic described by
five independent parameters, hyperdegeneracy always occurs for a system of
fewer than five equations. Robustness of the method can be enhanced by
overdetermining the system, using more equations (and thus more rows of
A) than the bare minimum necessary. For the conic case ([24]), we elected to
use 18 equations rather than five. The Appendix provides a comprehensive
list of the resulting moment functions.

Hyperdegeneracy is geometrically inevitable in situations where the do-
main S of integration simply does not contain sufficient information to
uniquely determine the image parameters. An obvious case is when the
boundary curve ∂Γ fails to intersect S; a less trivial example is shown in
Fig. 5. Practical consequences of geometric hyperdegeneracy are shown in
Fig. 6a. The eigenvalue problem used to find �p can be perturbed, however,
to drive the solution toward the geometrically simplest among multiple pos-
sibilities, as shown in Fig. 6b. Details of this technique are given in [24].

We follow with a few examples showing the robustness of the moment-
based approach in the face of certain types of image degradation. Figs. 7-9
show edges located using Theorem 5, in images characterized by blurring,
coarse pixelization, and probabilistically defined edges. In all these cases,
the method was applied with no filtering, sharpening, edge detection, or any

(a) (b)

Fig. 6 (a) Result of fitting a nearly-straight boundary curve with a quadratic
equation. (b) Result of applying perturbed technique to the same curve.
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(a) (b)

Fig. 7 (a) Image containing a blurred edge. (b) Boundary curve parametrized by
moments.

(a) (b)

Fig. 8 (a) Image containing a highly pixellated edge. (b) Boundary curve
parametrized by moments.

(a) (b)

Fig. 9 (a) Image containing an edge marked only by change in probability distri-
bution. (b) Boundary curve parametrized by moments.

preprocessing whatsoever. Figure 8 illustrates another characteristic of The-
orem 5: there is no requirement that the entire graph of the equation to be
recovered be manifested—only that the boundary curve be a subset of the
graph of the equation.
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Figure 10 shows the possible application of our method to the problem
of locating the pupil in a red-eye-removal application. In this case simple
preprocessing (paint a pixel white if its red component value exceeds its
green component value by 77 or more, gray otherwise) was used to isolate
the red-flare region. Subsequent application of our method serves to locate
the pupil with subpixel accuracy.

(a) (b) (c)

Fig. 10 Locating pupil in a potential red-eye removal application: (a) grayscale
representation of the (originally color) image; (b) red component of the image,
showing flare in the pupil; (c) pupil located to sub-pixel accuracy.

The preceding theorem is generalizable with little modification to the gen-
eral case of K dimensions:

Theorem 6. Let V be an open set containing S. Assume z1, . . . , zN in (4)
to be twice continuously differentiable on V . Choose functions s(�x) twice con-
tinuously differentiable on V and F (�x) continuously differentiable on V such
that F (�x) = 0 for �x 
∈ S. Choose two coordinates xi, xj, i 
= j, and write x
for xi, y for xj. For n = 1, . . . , N , define Un(�x) = Υ (F, s, zn), where

Υ (F, s, z) = ([szy − zsy]F )x − ([szx − zsx]F )y ,

the x and y subscripts indicating partial differentiation. Define moment values
un = 〈Un, I〉 for n = 1, . . . , N . Then

N∑
n=1

unpn = 0. (12)

Proof: The proof of Theorem 5 as presented in [24] applies also in this case,
except that Green’s Theorem is unavailable in more than two dimensions.
However, we can employ a variation of the same argument as follows. Once
again assuming q = 1, r = 0, and s(x, y) 
= 0, we find by the Divergence
Theorem:

un =
∫
S

I(�x)Un(�x) dV =
∫
S∩Γ

Un(�x) dV
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=
∫
S∩Γ

{
([szn,y − znsy]F )x − ([szn,x − znsx]F )y

}
dV.

=
∫
∂(S∩Γ )

{
([szn,y − znsy]F )�i− ([szn,x − znsx]F )�j

}
· �n dA

=
∫
∂(S∩Γ )

F (x, y)
(
[szn,y − znsy]�i− [szn,x − znsx]�j

)
· �ndA,

where�i and �j denote the unit basis vectors in the x- and y-directions, respec-
tively, and �n and dA are the unit normal vector and area element for ∂Γ ,
respectively. From (4), we then further have:

N∑
n=1

pnun =
∫
∂(S∩Γ )

F (x, y)
(
[sGy −Gsy ]�i− [sGx −Gsx]�j

)
· �n dA

=
∫
∂(S∩Γ )

F (x, y)s2
(
[G/s]y�i− [G/s]x�j

)
· �n dA.

The integrand is zero along all parts of ∂(S ∩ Γ ), as F ≡ 0 on ∂S, whereas
on S ∩ ∂Γ the vector field

(G/s)y�i− (G/s)x�j

is orthogonal to ∇(G/s), which in turn is parallel to �n. The remainder of the
proof plays out exactly as that of Theorem 5. Q.E.D.

Example: Consider the general class of quadric surfaces in three dimensions,
with equation:

p1 + p2x+ p3y + p4z + p5x
2 + p6xy + p7y

2 + p8yz + p9z
2 + p10xz = 0.

Take S to be the tetrahedral region x ≥ 0, y ≥ 0, z ≥ 0, x + y + z ≤ 1.
Choose

F (x, y, z) = max (0, xyz[1− x− y − z]) . (13)

Choose s(�x) ≡ 1. Select also “x” and “y” of the theorem to be the same as
the first two coordinates x and y. Then we have:

U1(�x) = Υ (F, s, 1) = 0,
U2(�x) = Υ (F, s, x) = (x+ 2y + z − 1)xz,
U3(�x) = Υ (F, s, y) = (1 − 2x− y − z)yz,
U4(�x) = Υ (F, s, z) = 0,
U5(�x) = Υ (F, s, x2) = 2(x+ 2y + z − 1)x2z,

U6(�x) = Υ (F, s, xy) = (y − x)xyz,
U7(�x) = Υ (F, s, y2) = 2(1 − 2x− y − z)y2z,

U8(�x) = Υ (F, s, yz) = (1 − 2x− y − z)yz2,



Introduction to Curve and Edge Parametrization by Moments 265

U9(�x) = Υ (F, s, z2) = 0,
U10(�x) = Υ (F, s, xz) = (x+ 2y + z − 1)xz2.

If we now further suppose that our volumetric dataset I(x, y, z) is zero-valued
above the parabolic cylinder with equation −4 + 8z+ 16x2 + 24xy+ 9y2 = 0
and has value 10000 below the cylinder (as shown in Fig. 11), we can calculate
the corresponding moment values over S:

u1 = 0, u2 = −2.79707, u3 = 3.72942
u4 = 0, u5 = 1.06555, u6 = 0.04899,

u7 = 1.76367, u8 = 0.81002, u9 = 0,
u10 = −0.60751.

It is easily verified that (12) holds for the equation of the parabolic cylinder.

x
y

z

S

∂Γ

Fig. 11 Parabolic cylinder intersecting a tetrahedral region of three-dimensional
space.

6 Implicit versus Explicit Solution

Theorems 5 and 6 differ in character from Theorem 4 in that the latter gives
an explicit formula for recovering the parameters of an equation whereas the
former give only implicit information in the form of a linear equation to be
satisfied by the parameters. Solving an appropriate problem requires only
a single application of Theorem 4 versus multiple applications of Theorem
5 or 6 (with various choices of F , s, and possibly the pair of coordinates
involved). Obviously the explicit solution is preferable; however, this may
not be available in all situations, as the following theorem demonstrates.

Theorem 7. Let U1, U2, U3, U4 be integrable functions with bounded support
whose associated moment values recover the equation of a circle; in other
words, if a two-valued image function I(x, y) has circular boundary curve ∂Γ
with equation
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p1 + p2x+ p3y + p4

(
x2 + y2

)
= 0, (14)

then
un = 〈Un, I〉 = cpn, (15)

where c is a constant possibly depending on the particular boundary circle but
independent of n. Then (15) holds trivially by un = c = 0 for all circles.

Proof: The proof hinges on the fact that a straight line is describable by (14)
as a limiting case of a circle. We first establish a relationship between the
Fourier transform of a moment function U :

U(ω1, ω2) = F(U) =
∫ ∞

−∞

∫ ∞

−∞
e−i(ω1x+ω2y)U(x, y) dx dy

and the moment values of U for straight-line images. For given θ, τ define
Iθτ to be an image function with straight-line boundary parametrized by θ
and τ :

Iθτ (x, y) =
{

1 if x cos θ + y sin θ ≤ τ
0 otherwise.

Let
ω =

√
ω2

1 + ω2
2

and fix θ so that ω1 = ω cos θ, ω2 = ω sin θ. Define rotated coordinates (s, t):

s = −x sin θ + y cos θ, t = x cos θ + y sin θ.

Then

U(ω1, ω2) =
∫ ∞

−∞
e−iωt

∫ ∞

−∞
UR(s, t) ds dt,

where UR denotes U as expressed in rotated coordinates.
Consider on the other hand the moment value uθτ of U with respect to Iθτ :

uθτ = 〈U, Iθτ 〉 =
∫ τ

−∞

∫ ∞

−∞
UR(s, t) ds dt.

Then
∂uθτ

∂τ

∣∣∣∣
τ=t

=
∫ ∞

−∞
UR(s, t) ds.

We can now rewrite the Fourier transform of U :

U(ω1, ω2) =
∫ ∞

−∞
e−iωt

∂uθτ

∂τ

∣∣∣∣
τ=t

dt, (16)

To complete the proof, apply (16) to U = U4. Since p4 = 0 for any straight
line and u4 = cp4, it follows that uθτ4 ≡ 0 for any θ and τ . We therefore find



Introduction to Curve and Edge Parametrization by Moments 267

0 ≡ ∂uθτ4
∂τ

≡ U4(ω1, ω2) ≡ U4(x1, x2).

It follows finally that u4 = 0 for any curve described by (14). For any circle,
p4 
= 0 and we therefore have c = 0. Q.E.D.

With a bit more effort one can prove that U1 ≡ U2 ≡ U3 ≡ 0 as well.
An explicit parametrization of the circle in terms of moment values is,

however, achievable by performing the calculation in two stages ([25]). The
first stage effectively reduces the number of free parameters by one, so that
the second stage yields an explicit solution in accordance with Theorem 8
below.

The existence of an explicit moment-function solution for at least one
curve class (straight lines) together with nonexistence of an explicit moment-
function solution for another class (circles) raises the question of what classes
have explicit solutions. Our remaining theorems present explicit solutions for
particular curve and surface classes.

The first such class is a two-parameter class; i.e. one for which (4) has just
three terms.

Theorem 8. Suppose the equation for boundary curve ∂Γ consists of three
terms:

p1z1(�x) + p2z2(�x) + p3z3(�x) = 0,

at least one of p1, p2, and p3 being nonzero. Let V be an open set containing
S. Assume the functions z1, z2, z3 to be twice continuously differentiable
on V . Choose a function F (�x) continuously differentiable on V such that
F (�x) = 0 for �x 
∈ S. Let 1 ≤ i, j ≤ K be given, i 
= j, and write x for xi, y
for xj. Define:

U1(�x) = Υ (F, z2, z3),
U2(�x) = Υ (F, z3, z1),
U3(�x) = Υ (F, z1, z2),

where
Υ (F, s, z) = ([szy − zsy]F )x − ([szx − zsx]F )y ,

the x and y subscripts indicating partial differentiation. Let

u1 = 〈U1, I〉, u2 = 〈U2, I〉, u3 = 〈U3, I〉.

Then all points in ∂Γ satisfy:

u1z1(�x) + u2z2(�x) + u3z3(�x) = 0.

Proof: Note that Υ (F, s, z) = −Υ (F, z, s) and Υ (F, z, z) = 0. Applying The-
orem 6, we find:

u3p2 − u2p3 = 0,
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−u3p1 + u1p3 = 0,
u2p1 − u1p2 = 0.

Clearly this system is satisfied provided pn = cun for an arbitrary constant
c. It remains to prove no other nontrivial solutions exist. This can be seen by
considering the coefficient matrix of the preceding linear system:

⎛
⎝ 0 u3 −u2

−u3 0 u1

u2 −u1 0

⎞
⎠ .

As an antisymmetric real matrix, this must have even rank: either 0 or 2. If
the rank is 2, then the given solution is unique up to a scalar multiple. If the
rank is 0, then we have u1 = u2 = u3 = 0 and the theorem holds trivially.
Q.E.D.

Note that Theorem 4 follows as a corollary of Theorem 8 if K = 2 and
z1(x, y) = x, z2(x, y) = y, z3(x, y) = 1.

Our next theorem gives a construction of moment functions suitable for
directly recovering the equation of a hyperplane in K dimensions:

Theorem 9. Suppose ∂Γ is a hyperplane, so that all points �x ∈ S ∩ ∂Γ
satisfy (6). Let V be an open set containing S. Choose F (�x) continuously
differentiable on V such that F (�x) = 0 for �x 
∈ S. For n = 1, . . . ,K, define

Un =
∂F

∂xn
.

Further define

UK+1 = −
K∑
n=1

∂

∂xn
(xnF ) .

For n = 1, . . . ,K + 1, let
un = 〈Un, I〉.

Then all points in S ∩ ∂Γ satisfy:

K∑
n=1

unxn + uK+1 = 0. (17)

Proof: First consider the case q = 1, r = 0 in (3), so that for a general
function U , we have:

〈U, I〉 =
∫
S

I(�x)U(�x) dV =
∫
S∩Γ

U(�x) dV.
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Let �U denote the K-dimensional vector with components 〈U1, . . . , UK〉; then
�U = ∇F . Moreover, note UK+1 = −∇ · (�xF ). We can therefore recast our
desired result (17) in coordinate-free form:

〈∇F, I〉 · �x− 〈∇ · (�xF ), I〉 = 0.

We may now without loss of generality assume that our hyperplane ∂Γ is
oriented with unit normal vector �n parallel to the x1-axis, so that it satisfies
equation x1 + c = 0 for some constant c.

Choose Ω to be a closed piecewise-smooth hypersurface contained in V
such that S ∩Ω = S ∩ ∂Γ (as shown in Fig. 12a).

S

V

∂Γ

Ω

(a)

S

∂Γ

L(a1)
→

L(a2)
→

(b)

Fig. 12 (a) Relationships among S, V , ∂Γ , and Ω. Compact set S is contained in
open set V . ∂Γ and Ω coincide where both interesect S. Ω is a closed hypersurface
contained in V . (b) A line orthogonal to the hyperplane ∂Γ may or may not interset
∂Γ at a point within S.

We find then by the Divergence Theorem:

〈UK+1, I〉 = −
∫
Ω

F (�x) �x · �n dA = −
∫
Ω

F (�x)x1 dA,

where dA is the area element for ∂Γ . Since Ω ∩ S = ∂Γ ∩ S and F (�x) = 0
for �x 
∈ S,
∫
Ω

F (�x)x1 dA =
∫
S∩Ω

F (�x)x1 dA =
∫
S∩∂Γ

F (�x)x1 dA =
∫
∂Γ

F (�x)x1 dA.

Further, since x1 = −c on ∂Γ , we find:

〈UK+1, I〉 = −
∫
∂Γ

F (�x)x1 dA = c

∫
∂Γ

F (�x) dA. (18)
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Consider a point �a = (−c, a2, a3, . . . , aK) in ∂Γ . Denote the line through �a
and parallel to �n by L(�a). This line has equation xn = an, n = 2, 3, , . . . ,K.
Since F (�x) = 0 for x ∈ ∂S, we find

∫
S∩L(a)

∂F

∂x1
dx1 =

{
F (�a) if �a ∈ ∂Γ
0 otherwise.

We can write dV = dx1dA, where dx1 is the length element in the direction
of �n and dA is the area element orthogonal to �n. It follows that

〈U1, I〉 =
∫
a∈S∩∂Γ

∫
S∩L(a)

∂F

∂x1
dx1dA =

∫
∂Γ

F (�x) dA. (19)

〈UK+1, I〉 = −
∫
∂Γ

F (�x)x1 dA = c

∫
∂Γ

F (�x) dA, (20)

as illustrated in Fig. 12b.
Similarly, let L⊥ be a line orthogonal to �n. For j 
= 1, we find

∫
L⊥∩S

∂F

∂xj
dxj = 0.

It follows that
〈Uj , I〉 =

∫
S∩Γ

∂F

∂xj
dV = 0. (21)

We can now combine (20), (19), and (21), to yield (17):

K∑
n=1

unxn + uK+1 = 〈U1, I〉x1 +
K∑
n=2

〈Un, I〉xn + 〈UK+1, I〉

=
(∫

∂Γ

F (�x) dA
)

(−c) + 0 + c

∫
∂Γ

F (�x) dA

= 0.

For the general case of arbitrary q and r, consider first the case of a constant
dataset function I ′(�x). Such a function can be considered as the same type as
the foregoing I(�x), except that S lies entirely on one side of the hyperplane,
so that ∂Γ does not intersect S. We then have 〈Un, I ′〉 = 0 for all n =
1, . . . ,K + 1.

A dataset function I ′′(�x) with arbitrary q and r can then be represented
in the form:

I ′′(�x) = (q − r)I(�x) + rI ′(�x),

where I satisfies the previous special condition q = 1, r = 0 and I ′ is constant.
We have then

〈Un, I ′′〉 = (q − r)〈Un, I〉 for n = 1, . . . ,K + 1.
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(a) (b)

Fig. 13 (a) Original image characterized by multiple boundary curves, both conic
and approximately piecewise-conic. (b) Various boundary curve located with mo-
ments controlled by recursive subdivision.

This reduces (17) to the special case q = 1, r = 0. Q.E.D.
Note that it is possible for Theorem 9 to hold vacuously, in the case that

all the specified moment values are zero. However, since, as noted in Formula
(19),

〈U1, I〉 =
∫
∂Γ

F (�x) dA,

this possibility is forestalled provided F is chosen to be nonnegative and the
hyperplane intersects the support of F nontrivially.

Note also that Theorem 4 is the special case K = 2 of Theorem 9.
We conclude this section by returning to the “trees-versus-forest” issue

raised in the introductory section. More sophisicated strategies can improve
the performance of moment-based techniques on images characterized by low-
frequency distortion, obstruction, and clutter. One approach is to attempt to
fit a curve to a large region, and subdivide the region if no good fit is found,
continuing recursively until either a good fit is found or the region is judged
too small to be interesting. Fig. 13 shows an example of this approach. Space
limitations preclude more details here, but more discussion can be found
in [24].

Appendix

This Appendix lists the moment functions used in our examples of
parametrization of conic curves. We use an 18 × 6 matrix of moment val-
ues. The 6 columns are defined by the 6 functions zn in (5) corresponding to
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the general conic equation. The 18 rows are defined by combinations of the
3 functions

FA(x, y) = (1 − x2)(1 − y2), FB(x, y) = xFA(x, y), FC(x, y) = yFA(x, y)

with the 6 functions s1, . . . , s6, where sn = zn, the moment function corre-
sponding to a given matrix entry given by the operator Υ (Fi, sj , zn).

It is convenient to consider the 18 × 6 matrix as a combination of three
6 × 6 matrices A, B, and C, each generated by a particular Fi:

Aj,n = Υ (FA, zj, zn),
Bj,n = Υ (FB , zj, zn),
Cj,n = Υ (FC , zj , zn).

Each of A, B, C is an antisymmetric matrix, since in general

Υ (F, s, z) = −Υ (F, z, s);

It therefore suffices to specify the 15 elements lying above the diagonal of
each:

A1,2 = 2y(1 − x2),
A1,3 = −2x(1 − y2),
A1,4 = 4xy(1 − x2),
A1,5 = −4xy(1 − y2),
A1,6 = 2y2 − 2x2,

A2,3 = 2 − 4x2 − 4y2 + 6x2y2,

A2,4 = 2x2y(1 − x2),
A2,5 = 2y(2 − 4x2 − 3y2 + 5x2y2),
A2,6 = 2x(1 − 2x2)(1 − y2),
A3,4 = −2x(2 − 3x2 − 4y2 + 5x2y2),
A3,5 = −2xy2(1 − y2),
A3,6 = −2y(1 − x2)(1 − 2y2),
A4,5 = 4xy(2 − 3x2 − 3y2 + 4x2y2),
A4,6 = 2x2(2 − 3x2 − 3y2 + 4x2y2),
A5,6 = −2y2(2 − 3x2 − 3y2 + 4x2y2),
B1,2 = 2xy(1 − x2),
B1,3 = (1 − 3x2)(1 − y2),
B1,4 = 4x2y(1 − x2),

B2,6 = x2(3 − 5x2)(1 − y2),
B3,4 = −x2(5 − 7x2 − 9y2 + 11x2y2),
B3,5 = y2(1 − 3x2)(1 − y2),
B3,6 = −2xy(1 − x2)(1 − 2y2),
B4,5 = 2x2y(5 − 7x2 − 7y2 + 9x2y2),
B4,6 = x3(5 − 7x2 − 7y2 + 9x2y2),
B5,6 = −xy2(5 − 7x2 − 7y2 + 9x2y2),
C1,2 = −(1 − x2)(1 − 3y2),
C1,3 = −2xy(1 − y2),
C1,4 = −2x(1 − x2)(1 − 3y2),
C1,5 = −4xy2(1 − y2),
C1,6 = −y(1 + x2 − 3y2 + x2y2),
C2,3 = y(3 − 5x2 − 5y2 + 7x2y2),
C2,4 = −x2(1 − x2)(1 − 3y2),
C2,5 = y2(5 − 9x2 − 7y2 + 11x2y2),
C2,6 = 2xy(1 − 2x2)(1 − y2),
C3,4 = −2xy(3 − 4x2 − 5y2 + 6x2y2),
C3,5 = −2xy3(1 − y2),
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B1,5 = 2y(1 − 3x2)(1 − y2),
B1,6 = x(1 − 3x2 + y2 + x2y2),
B2,3 = x(3 − 5x2 − 5y2 + 7x2y2),
B2,4 = 2x3y(1 − x2),
B2,5 = 2xy(3 − 5x2 − 4y2 + 6x2y2).

C3,6 = −y2(1 − x2)(3 − 5y2),
C4,5 = 2xy2(5 − 7x2 − 7y2 + 9x2y2),
C4,6 = x2y(5 − 7x2 − 7y2 + 9x2y2),
C5,6 = −y3(5 − 7x2 − 7y2 + 9x2y2),

The coefficients pn in (5) are then obtained by solving the system of 18
equations:

6∑
n=1

Amnpn = 0,
6∑

n=1

Bmnpn = 0,
6∑

n=1

Cmnpn = 0,

m = 1, . . . , 6.
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[5] Krĕın, M.G., Nudelman, A.A.: The Markov Moment Problem and Extremal
Problems. American Mathematical Society, Providence (1977)

[6] Machuca, R., Gilbert, A.L.: Finding Edges in Noisy Scenes. IEEE Trans. Pat-
tern Anal. and Machine Intell. 3(1), 103–110 (1981)

[7] Reeves, A.P., Akey, M.L., Mitchell, O.R.: A Moment Based Two-Dimensional
Edge Operator. In: IEEE Comput. Soc. Symp. Computer Vision and Pattern
Recognition, pp. 312–317 (1983)

[8] Canny, J.F.: A Computational Approach to Edge Detection. IEEE Trans.
Pattern Anal. and Machine Intel. 8(6), 679–698 (1986)

[9] Lyvers, E.P., Mitchell, O.R., Akey, M.L., Reeves, A.P.: Subpixel Measurements
Using a Moment-Based Edge Operator. IEEE Trans. Pattern Anal. Machine
Intell. 11(12), 1293–1309 (1989)

[10] Xu, L., Oja, E., Kultanen, P.: A New Curve Detection Method: Randomized
Hough Transform (RHT). Pattern Recognition Letters 11(5), 331–338 (1990)

[11] Ghosal, S., Mehrotra, R.: Orthogonal Moment Operators for Subpixel Edge
Detection. Pattern Recognition 26(2), 295–306 (1993)

[12] Yoo, J.H., Sethi, I.K.: Ellipse Detection Method from the Polar and Pole
Definition of Conics. Pattern Recognition 26(2), 307–315 (1993)



274 References

[13] Mat Jafri, M.Z., Deravi, F.: Efficient Algorithm for Detection of Parabolic
Curves. In: Proc. SPIE. Vision Geometry III, vol. 2356, pp. 53–61 (January
1995)

[14] Liao, S.X., Pawlak, M.: On image analysis by moments. IEEE Trans. Pattern
Anal. Machine Intell. 18(3), 254–266 (1996)

[15] Ghosal, S., Mehrotra, R.: A Moment-Based Unified approach to Image Feature
Detection. IEEE Trans. Image Processing 6(6), 781–793 (1997)
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Chapter 12
Intelligent Approaches to Colour Palette Design

Gerald Schaefer

Abstract. Colour palettes are used for representing image data using a limited num-
ber of colours. As the image quality directly depends on the chosen colours in the
palette, deriving algorithms for colour palette design is a crucial task. In this chap-
ter we show how computational intelligence approaches can be employed for this
task. In particular, we discuss the use of generic optimisation techniques such as
simulated annealing, and of soft computing based clustering algorithms founded
on fuzzy and rough set ideas in the context of colour quantisation. We show that
these methods are capable of deriving good colour palettes and that they outperform
standard colour quantisation techniques in terms of image quality.

Keywords: Colour imaging, colour quantisation, colour palette, optimisation, clus-
tering, simulated annealing, fuzzy c-means, rough c-means.

1 Introduction

Colour quantisation is a common image processing technique that allows the repre-
sentation of true colour images using only a small number of colours. True colour
images typically use 24 bits per pixel resulting overall in 224, i.e. more than 16 mil-
lion different colours. Colour quantisation uses a colour palette that contains only
a small number of distinct colours (usually between 8 and 256) and pixel data are
then stored as indices to this palette. Clearly, the choice of the colours that make up
the palette is of crucial importance for the quality of the quantised image.

A common way of expressing this quality is to calculate the difference between
the original (unquantised) imageO and its colour quantised counterpartQ for which
the mean-squared error (MSE)
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H. Kwaśnicka & L.C. Jain (Eds.): Innovations in Intell. Image Analysis, SCI 339, pp. 275–289.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



276 G. Schaefer

MSE(O,Q) =
1

3nm

n∑
i=1

m∑
j=1

((RO(i, j) −RQ(i, j))2 (1)

+ (GO(i, j) −GQ(i, j))2 + (BO(i, j) −BQ(i, j))2),

where R(i, j), G(i, j), and B(i, j) are the red, green, and blue pixel values at lo-
cation (i, j) and n and m are the dimensions of images, is the most widely used
measure.

However, the selection of the optimal colour palette is known to be an np-hard
problem (Heckbert, 1982). In the image processing literature many different algo-
rithms have been introduced that aim to find a palette that allows for good image
quality of the quantised image. A relatively simple approach is the Popularity al-
gorithm (Heckbert, 1982), which - typically following a uniform quantisation to 5
bits per channel - selects the n colours that are represented most often to form the
colour palette. In Median cut quantisation (Heckbert, 1982), an iterative procedure
repeatedly splits (by a plane through the median point) colour cells into sub-cells.
In Octree quantisation (Gervautz and Purgathofer, 1990), the colour space is repre-
sented as an octree where sub-branches are successively merged to form the palette,
while Neuquant (Dekker, 1994) employs a one-dimensional self-organising Koho-
nen neural network to generate the colour map.

In this chapter, we present some computational intelligence approaches to colour
quantisation. In particular, in Section 2 we show how general purpose optimisa-
tion algorithms such as simulated annealing can be used to arrive at a good colour
palette. Moreover, we demonstrate how a hybrid optimisation scheme can be devel-
oped for colour quantisation. Colour quantisation can also be regarded as a cluster-
ing problem. Consequently, in Section 3 we present several fuzzy-based clustering
algorithms for this task while in Section 4 we introduce a rough set based clustering
approach for colour palette design. In Section 5 we present experimental results that
confirm that the introduced methods are effective approaches for colour quantisation
outperforming several standard algorithms. Finally, Section 6 concludes the chapter.

2 Optimisation for Colour Palette Design

Simulated Annealing

The main advantage of black-box optimisation algorithms is that they do not re-
quire any domain specific knowledge yet are able to provide a near optimal solution.
Simulated annealing (SA) was first introduced as a general optimisation method by
Kirkpatrick et al. (1983). It simulates the annealing of metal, in which the metal
is heated-up to a temperature near its melting point and then slowly cooled down.
This allows the particles to move towards a minimum energy state, with a more
uniform crystalline structure. The process therefore permits some control over the
microstructure.

Simulated annealing is a variation of the hill-climbing algorithm. Both start from
a randomly selected point within the search space of all the possible solutions. Each
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point in the search space has a measurable error value, E, associated with it, which
indicates the quality of the solution. From the current point in search space, new trial
solutions are selected for testing from the neighborhood of the current solution. This
is usually done by moving a small step in a random direction. In this application,
small and equally distributed random numbers from the interval [−smax, smax] are
added to each component of the current solution vector, where smax is called the
maximum step width. The values for smax need to be chosen from the interval
between 0 and the upper limit of the search space dimension. The decrease in error
values is denoted as ΔE. If ΔE is negative, i.e. the error of a trial solution is less
than the error of the current one, the trial solution is accepted as the current solution.

Unlike hill-climbing SA does not automatically reject a new candidate solution if
ΔE is positive. Instead it becomes the current solution with probability p(T ) which
is usually determined using

p(T ) = e−ΔE/T (2)

where T is referred to as “temperature”, an abstract control parameter for the cool-
ing schedule. For a given temperature and positive values of ΔE the probability
function shown in Equation (2) has a defined upper limit of 1, and tends towards 0
for large positive values of ΔE.

The algorithm starts with a high temperature i.e. with a high transition proba-
bility. The temperature is then reduced towards 0, usually in steps, according to a
cooling schedule such as

Tn+1 = αTn (3)

where Tn is the temperature at step n and α is the cooling coefficient (usually be-
tween 0.8 and 0.99).

During each step the temperature must be held constant for an appropriate num-
ber of iterations in order to allow the algorithm to settle into a “thermal equilibrium”,
i.e. a balanced state. If the number of iterations is too small the algorithm is likely
to converge to a local minimum.

Stepwidth Adaptive Simulated Annealing

For both continuous parameter optimisation and discrete parameters with large
search ranges, it is practically impossible to choose direct neighbours of the current
solution as new candidate solutions, simply because of the vast number of points in
the search space. Therefore it is necessary to choose new candidates at some dis-
tance in a random direction of the current solution in order to navigate in an accept-
able time through the search space. This distance could either be a fixed step width
s or it could have an upper limit smax. In the first case, the neighbourhood would be
defined as the surface of a hypersphere around the current solution, whereas in the
second case the neighbourhood would be the volume of the hypersphere. In the lat-
ter, new candidate solutions might be generated by adding small, equally distributed
random numbers from the interval [−smax, smax] to each component of the current
solution vector.
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The maximum step width smax is crucial to the success of SA. If smax is chosen
too small and the start point for a search run is too far away from the global opti-
mum, the algorithm might not be able to get near that optimum before the algorithm
“freezes”, i.e. the temperature becomes so small that p(T ) is virtually zero and the
algorithm starts to perform only hill climbing and will consequently get stuck in
the nearest local optimum rather than finding the global one. If, on the other hand,
the step width has been chosen to be too large and the peak of the optimum is very
narrow, the algorithm might well get near the global optimum before the algorithm
freezes, but never reaches the top because most of the steps are too large so that new
candidate solutions “fall off” the peak. Hence, there is always a trade-off between
accuracy and robustness in selecting an appropriate maximum step width. If smax
is too small, SA has the potential to reach the peak of the “frozen-in” optimum, but
it cannot be guaranteed that this optimum is the global one. On the other hand, if
smax is too large, SA has the potential to get near the global optimum, but it might
never reach the top of it.

Step width adapting simulated annealing (SWASA) (Nolle, 2004) overcomes the
problems associated with constant values for smax by using a scaling function to
adapt the maximum step width to the current iteration by

smax(n) =
2s0

1 + eβn/nmax
(4)

where smax(n) is the maximum step width at iteration n, s0 is the initial maximum
step width, nmax the maximum number of iterations and β is an adaptation constant.

We employ a population based version of the SWASA algorithm with a popula-
tion size of 10. The start temperature T0 was chosen to be 20 and the cooling coef-
ficient α set to 0.9. The parameters s0 and β were set to 100 and 5.3 respectively.
The temperature was kept constant over 20 iterations and the maximum number of
iterations was set to 10000.

For colour quantisation the objective is, as mentioned, to minimise the total error
introduced through the application of a colour palette. The colour palette C for an
image I, a codebook of k colour vectors, is chosen so as to minimise the error
function

error(C, I) =
1∑k
j=1 lj

k∑
i=1

li∑
j=1

||Ci − Ij || + p(C, I) (5)

with

p(C, I) =
k∑
i=1

δai, ai =
{

1 if li = 0
0 otherwise

(6)

where li is the number of pixels Ij represented by colour Ci of the palette, ||.|| is
the Euclidean distance in RGB space, and δ is a constant (δ = 10 in our experi-
ments). The objective function error(C, I) used is hence a combination of the mean
Euclidean distance (and hence the error measure of Equation 1) and a penalty func-
tion. The penalty function p(C, I) was integrated in order to avoid unused palette
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colours by adding a constant penalty value to the error for each entry in the code-
book that is not used in the resulting picture.

As can be seen from Equation (5) the objective function is highly non-linear,
i.e. it has a high degree of epistasis (Davidor, 1990). Past experience (Nolle et al.,
2002) has shown, that for this kind of optimisation problems simulated annealing
outperforms other generic optimisation algorithms like genetic algorithms (Holland,
1975) and therefore justifies the use of simulated annealing as an effective method
for colour palette design (Nolle and Schaefer, 2007). Nevertheless, of course other
optimisation techniques could also be employed to derive a colour palette. For ex-
ample, in (Scheunders, 1997) genetic algorithms were used for colour quantisation,
while in (Omran et al., 2005) particle swarm optimisation (Kennedy and Eberhart,
1995) was utilised.

Hybrid Optimisation

Figure 1 shows a typical run of the SA method applied to colour quantisation. The
solid line represents the average quantisation error over time (iterations) while the
dashed line represents the best solution of each iteration.
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Fig. 1 Typical run of SA optimisation for colour quantisation.

As can be seen from Figure 1 there is always a variation in error values within
the population which indicates that although Simulated annealing is able to find
good solutions, i.e. solutions from within the region around the global optimum,
it rarely exploits that region completely. Therefore, in a second step, we combine
the SA approach with a standard c-means clustering algorithm (Linde et al., 1980)
to provide a stacked hybrid optimisation method. C-means clustering is guaranteed
to converge towards the local clustering minimum by iteratively carrying out the
following two steps:

Each input vector should be mapped to its closest codeword by a nearest neigh-
bour search.
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The input vectors assigned in each class (i.e. for each codeword) are best repre-
sented by the centroid of the vectors in that class.

In this hybridised algorithm the SA component is hence responsible for identi-
fying the region in the search space that will contain the global optimum while
the c-means component will then descend into the minimum present in that re-
gion (Nolle and Schaefer, 2007).

3 Fuzzy Clustering for Colour Palette Design

Fuzzy C-Means

Colour quantisation can also be seen as a clustering problem where the task is to
identify those clusters that best represent the colours in an image. Fuzzy c-means
(FCM) is based on the idea of finding cluster centres by iteratively adjusting their
positions and evaluation of an objective function as in conventional c-means, yet
it allows more flexibility by introducing the possibility of partial memberships to
clusters. The general FCM algorithm is illustrated in Figure 2.

(a) Data to cluster (b) Random centres (c) Converging (d) Final settlement

Fig. 2 Illustration of classical FCM that attempts to find appropriate cluster centres.

For colour quantisation, the error function follows this form:

E =
C∑
j=1

N∑
i=1

μkij ||xi − cj ||2, (7)

where μkij is the fuzzy membership of pixel xi and the colour cluster identified by
its centre cj , and k is a constant that defines the fuzziness of the resulting partitions.
E can reach the global minimum when pixels nearby the centroid of correspond-

ing clusters are assigned higher membership values, while lower membership values
are assigned to pixels far from the centroid (Chuang et al., 2006). Here, the member-
ship is proportional to the probability that a pixel belongs to a specific cluster where
the probability is only dependent on the distance between the image pixel and each
independent cluster centre. The membership functions and the cluster centres are
updated by
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μij =
1∑C

m=1

( ||xj−ci||
||xj−cm||)2/(k−1)

) , (8)

and

ci =

∑N
j=1 μ

k
ijxj∑N

j=1 μ
k
ij

. (9)

The steps involved in fuzzy c-means are (Bezdek, 1980):

1. Initialise the cluster centres ci and let t = 0.
2. Initialise the fuzzy partition memberships functions μij according to Equa-

tion (8).
3. Let t = t+ 1 and compute new cluster centres ci using Equation (9).
4. Repeat Steps 2 to 3 until convergence.

An initial setting for each cluster centre is required and FCM also converges to
a local minimisation solution. The efficiency of FCM has been comprehensively
investigated in (Hu and Hathaway, 2002). To effectively address the inefficiency of
the original FCM algorithm several variants of the fuzzy c-means algorithm will be
introduced in the following.

Random Sampling FCM

To combat the computational complexity of FCM, Cheng et al. (Cheng et al., 1998)
proposed a multistage random sampling strategy. This method has a lower number
of feature vectors and also needs fewer iterations to converge. The basic idea is to
randomly sample and obtain a small subset of the dataset in order to approximate
the cluster centres of the full dataset. This approximation is then used to reduce the
number of iterations. The random sampling FCM algorithm consists of two phases.
First, a multistage iterative process of a modified FCM is performed. Phase 2 is then
a standard FCM with the cluster centres approximated by the final cluster centres
from Phase 1.

Phase 1:
Let XΔ% be a subset whose number of subsamples is Δ% of the N samples con-
tained in the full dataset X and denote the number of stages as n. ε1 and ε2 are
parameters used as stopping criteria. After the following steps the dataset (denoted
as X(ns∗Δ%)) will include N ∗Δ% samples:

Step 1: Select X(Δ%) from the set of the original feature vectors matrix (z = 1).
Step 2: Initialise the fuzzy memberships functions μ using Equation (8) with

X(z∗Δ%).
Step 3: Compute the stopping condition ε = ε1-z∗((ε1-ε2)/ns) and let t = 0
Step 4: Set t = t+ 1
Step 5: Compute the cluster centres c(z∗Δ%) using Equation (9).
Step 6: Compute μ(z∗Δ%) using Equation (8).

Step 7: If ||μj(z∗Δ%) − μj−1
(z∗Δ%)|| ≥ ε, then go to Step 4.
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Step 8: If z ≤ ns then select anotherX(Δ%) and merge it with the currentX(z∗Δ%)

and set z = z + 1, otherwise move to Phase 2 of the algorithm.

Phase 2:

Step 1: Initialise μij using the results from Phase 1, i.e. c(ns∗Δ%) with Equation (9)
for the full data set.

Step 2: Go to Steps 3 of the conventional FCM algorithm and iterate the algorithm
stopping criterion ε2 is met.

Evidence has shown that this improved FCM with random sampling is able to reduce
the computation requested in the classical FCM method.

Fast Generalised FCM / EnFCM

(Ahmed et al., 2002) introduced an alternative to the classical FCM by adding a term
that enables the labelling of a pixel to be associated with its neighbourhood. As a
regulator, the neighbourhood term can change the solution towards piecewise homo-
geneous labelling. As a further extension of this work, in (Szilagyi et al., 2003) the
EnFCM algorithm was presented. In order to reduce the computational complexity,
a linearity-weighted sum image g is formed from the original image, and the local
neighbour average image evaluated as

gm =
1

1 + α

⎛
⎝xm +

α

NR

∑
j∈Nr

xj

⎞
⎠ (10)

where gm denotes the gray value of the m-th pixel of the image g, xj represents
the neighbours of xm, NR is the cardinality of a cluster, Nr represents the set of
neighbours falling into a window around xm.

The objective function used is defined as

J =
C∑
i=1

qc∑
i=1

γlμ
m
ij (gl − ci)2 (11)

where qc denotes the number of colours in the image, and γl is the number of the
pixels of colour l with l = 1, 2, . . . , qc. Thus,

∑qc

l=1 γl = N under the constraint
that

∑C
i=1 μij = 1 for any l.

We can obtain the following expressions for membership functions and cluster
centres (Cai et al., 2007):.

μil =
(gl − ci)−2/m−1∑C
j=1(gl − cj)−2/m−1

(12)

and

si =
∑qc

l=1 γlμ
m
il gl∑qc

l=1 γlμ
m
il

(13)
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EnFCM considers a number of pixels with similar colours as a weight. Thus, this
process may accelerate the convergence of searching for global similarity. On the
other hand, to avoid image blur during the segmentation, which may lead to inac-
curate clustering, in (Cai et al., 2007) a measure Sij , which incorporates the local
spatial relationship Ssij and the local gray-level relationship Sgij is used, which is
defined as

Sij =
{
Ssij × Sgij , j �= i

0, j = i
(14)

with

Ssij = exp
(−max(|pcj − pci|, |qcj − qci|)

λs

)
(15)

and

Sgij = exp
(−||xi − xj ||2

λg × σ2
g

)
(16)

where (pci, qci) describe the co-ordinates of the i-th pixel, σg is a global scale factor
of the spread of Ssij , and λs and λg represent scaling factors. Sij replaces α in
Equation (10).

Hence, the newly generated image g is updated as

gi =

∑
j∈Ni

Sijxj

Sij
(17)

and is restricted to [0, 255] due to the denominator.
Given a pre-defined number of clusters C and a threshold value ε > 0, the fast

generalised FCM algorithm proceeds in the following steps:

Step 1: Initialise the clusters cj .
Step 2: Compute the local similarity measuresSij using Equation (14) for all neigh-

bours and windows over the image.
Step 3: Compute linearly-weighted summed image g using Equation (17).
Step 4: Update the membership partitions using Equation (12).
Step 5: Update the cluster centres ci using Equation (13).
Step 6: If

∑C
i=1 ||ci(old) − ci(new)||2 > ε go to Step 4.

Anisotropic Mean Shift Based FCM

Anisotropic mean shift based FCM is an efficient approach to fuzzy c-means clus-
tering which utilises an anisotropic mean shift algorithm coupled with fuzzy clus-
tering (Schaefer and Zhou, 2009). Mean shift based techniques have been shown to
be capable of estimating the local density gradients of similar pixels. These gradient
estimates are iteratively performed so that all pixels can find similar pixels in the
same image (Comaniciu and Meer, 2002). A standard mean shift approach method
uses radially symmetric kernels. Unfortunately, the temporal coherence will be
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reduced in the presence of irregular structures and noise in the image. This reduced
coherence may not be properly detected by radially symmetric kernels and thus, an
improved mean shift approach, namely anisotropic kernel mean shift (Wang et al.,
2004), provides better performance.

In mean shift algorithms the image clusters are iteratively moved along the gradi-
ent of the density function before they become stationary. Those points gathering in
an outlined area are treated as the members of the same segment. A kernel density
estimate is defined by

f̃(x) =
1
N

N∑
i=1

K(x− xi), (18)

with
K(x) = |H|−0.5K(H−0.5x), (19)

where N is the number of samples, and xi stands for a sample from an unknown
density function f .K(·) is the d-variate kernel function with compact support satis-
fying the regularity constraints, and H is a symmetric positive definite d× d band-
width matrix. Usually, we have K(x) = ke(φ), where ke(φ) is a convex decreasing
function, e.g. cte−φ/2 for a Gaussian kernel or ctmax(1−φ, 0) for an Epanechnikov
kernel where ct is a normalising constant.

If a single global spherical bandwidth is applied,H = h2I (I is identity matrix),
then we have

f̃(x) =
1

Nhd

N∑
i=1

K

(
x− xi
h

)
(20)

Since the kernel can be divided into two different radially symmetric kernels, we
have the kernel density estimate as

f̃(x) =
1
N

N∑
i=1

1
hβ(Hα

i )q
kα · (21)

·(d(cαi , xαi , Hα
i ))kβ

(
||(cβi − xβi )/(h

β(Hα
i ))||2

)

where and α and β denote the spatial and temporal components respectively and
d(cαi , x

α
i , H

α
i ) is the Mahalanobis metric, i.e.

d(cαi , x
α
i , H

α
i ) = (xαi − cαi )THα−1

i (xαi − cαi ). (22)

Anisotropic mean shift is intended to modulate the kernels during the mean shift
procedure. The objective is to keep reducing the Mahalanobis distance so as to group
similar samples as much as possible. First, the anisotropic bandwidth matrix Hα

i is
estimated with the following constraints:

{
kαe (d(x, xi, Hα

i )) < 1
kβe
(||(x − xi)/hβ(Hα

i )||2) < 1 (23)
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The bandwidth matrix can be decomposed to

Hα
i = λV AV T (24)

where λ is a scalar, V is a matrix of normalised eigenvectors, and A is a diagonal
matrix of eigenvalues whose diagonal elements ai satisfy

∏p
i=1 ai = 1. The band-

width matrix is updated by adding more and more points to the: if these points are
similar in intensity or colour, then the Mahalanobis distance will be consistently re-
duced. Otherwise, if the Mahalanobis distance is increased, these points will not be
considered in the computation.

Anisotropic mean shift based FCM (AMSFCM) proceeds in the following steps:

Step 1: Initialise the cluster centres ci. Let j = 0.
Step 2: Initialise the fuzzy partitions μij using Equation (8).
Step 3: Set j = j + 1 and compute ci using Equation (9) for all clusters.
Step 4: Update μij using Equation (8).
Step 5: For each pixel xi determine anisotropic kernel and related colour radius us-

ing Equations (22) and (24). Note that mean shift is applied to the outcome
image of FCM.

Step 6: Calculate the mean shift vector and then iterate until the mean shift,
M+(xi) −M−(xi), is less than a pixel considering the previous position
and a normalised position change:

M+(xi) = νM−(xi) + (1− ν)
∑N

j=1(xj−M−(xi))||(M−(xβ
i )−xβ

j )/(hβHα
j )||2∑

N
j=1 ||(M−(xβ

i )−xβ
j )/(hβHα

j )||2
with ν = 0.5.

Step 7: Merge pixels with similar colour.
Step 8: Repeat Steps 3 to 6 until convergence.

4 Rough Clustering for Colour Palette Design

(Lingras and West, 2004) introduced a rough set inspired clustering algorithm based
on the well known c-means algorithm. In their rough c-means approach, each cluster
ck is described not only by its centremk, but also contains additional information, in
particular its lower approximation ck, its upper approximation ck, and its boundary
area cbk = ck − ck. Lingras et al.’s algorithm proceeds in the following steps:

Step 1: Initialisation: Each data sample is randomly assigned to one lower approx-
imation. As the lower approximation of a cluster is a subset of its upper
approximation, this also automatically assigns the sample to the upper ap-
proximation of the same cluster.

Step 2: Cluster centre calculation: The cluster centres are updated as

mk =

{
ωl
∑
xi∈ck

xi

|ck| + ωb
∑
xi∈cb

k

xi

|cb
k|

if cbk �= {}
ωl
∑
xi∈ck

xi

|ck| otherwise
(25)
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The cluster centres are hence determined as a weighted average of the sam-
ples belonging to the lower approximation and the boundary area, where
the weights ωl and ωb define the relative importance of the two sets.

Step 3: Sample assignment: For each data sample the closest cluster centre is deter-
mined and the sample assigned to its upper approximation. Then, all clus-
ters that are at most ε further away than the closest cluster are determined. If
such clusters exist, the sample will also be assigned to their upper approx-
imations. If no such cluster exist, the sample is assigned also to the lower
approximation of the closest cluster.

Step 4: Termination: If the algorithm has converged (i.e., if the cluster centres do
not change any more, or after a pre-set number of iterations), terminate,
otherwise go to Step 2.

Strictly speaking, this algorithm does not implement all properties set out for rough
sets (Pawlak, 1982), and hence belongs to the reduced interpretation of rough sets
as lower and upper approximations of data (Yao et al., 1994).

(Peters, 2006) pointed out some potential pitfalls of the algorithm in terms of
objective function and numerical stability, and suggested some improvements to
overcome these. Equation (25) is revised to

mk = ωl
∑
xi∈ck

xi
|ck| + ωu

∑
xi∈ck

xi
|ck| (26)

with ωl + ωu = 1, i.e. as a convex combination of lower and upper approximation
means. In order to overcome the possibility of situations with empty lower approx-
imations, Peters suggests two possible ways of addressing this, either by modifying
the calculation of cluster centres so that for empty lower approximations the clus-
ter centre is calculated as the average of samples in the upper approximation, or by
ensuring that each lower approximation has at least one member. In our approach
we choose the latter by assigning the data sample closest to the cluster centre to its
lower approximation.

In addition, we perform a different initialisation procedure than Lingras et al.
and Peters. Rather than randomly assigning samples to clusters, we generate ran-
dom cluster centres first and then proceed with Steps 3, 2 and 4 (i.e., steps 2 and 3
reversed) of the algorithm in order to arrive at a good colour palette (Schaefer et al.,
2009).

5 Experimental Results

In order to evaluate the various colour quantisation algorithms, we have taken a set
of six standard images commonly used in the colour quantisation literature (Lenna,
Peppers, Mandrill, Sailboat, Airplane, and Pool) and applied all seven discussed al-
gorithms, that is Simulated annealing, Hybrid simulated annealing, Fuzzy c-means,
RSFCM, EnFCM, AMSFCM, and Rough c-means, to generate quantised images
with a palette of 16 colours.
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To put the results we obtain into context we have also implemented four popular
colour quantisation algorithms (which areoften integrated in typical image processing
software) to generate corresponding quantised images with palette size 16. The
algorithms we have tested were: Popularity algorithm (Heckbert, 1982), Median
cut quantisation (Heckbert, 1982), Octree quantisation (Gervautz and Purgathofer,
1990), and Neuquant (Dekker, 1994). For all algorithms, pixels in the quantised
images were assigned to their nearest neighbours in the colour palette to provide
the best possible image quality.

The results are listed in Table 1, expressed in terms of average (over 10 runs of
the algorithms) peak-signal-to-noise-ratio (PSNR) defined as

PSNR(O,Q) = 10 log10

2552

MSE(I1, I2)
(27)

with MSE(O,Q) calculated as in Equation (1).

Table 1 Quantisation results, given in terms of PSNR [dB].

Lenna Peppers Mandrill Sailboat Pool Airplane average
Popularity algorithm 22.24 18.56 18.00 8.73 19.87 15.91 17.22
Median cut 23.79 24.10 21.52 22.01 24.57 24.32 23.39
Octree 27.45 25.80 24.21 26.04 29.39 28.77 26.94
Neuquant 27.82 26.04 24.59 26.81 27.08 28.24 26.73
SWASA 27.79 26.16 24.46 26.69 29.84 29.43 27.40
Hybrid SWASA 29.70 27.17 25.37 27.95 31.57 32.94 28.97
FCM 28.81 26.77 25.03 27.25 31.03 30.23 28.17
RSFCM 28.70 26.70 24.98 27.32 30.81 30.73 28.20
EnFCM 28.61 26.74 24.87 27.22 31.11 29.92 28.08
AMSFCM 28.63 26.71 24.66 27.24 30.87 29.96 28.01
Rough c-means 28.63 26.67 25.02 27.62 29.40 30.50 27.98

As can be seen from Table 1, all the algorithms presented in this chapter pro-
vide very good results and clearly outperform standard colour quantisation algo-
rithms. The results of the different fuzzy clustering approaches are fairly similar
which suggests that the computationally more efficient versions (RSFCM, EnFCM,
AMSFCM) can be employed without sacrificing image quality. Also, the rough set
approach gives similar performance and the presented rough colour quantisation
approach hence adds to the applications of rough sets in the field of imaging and
vision. The best results are achieved by the hybrid SWASA approach which demon-
strates that generic optimisation algorithms can provide a powerful tool for colour
quantisation and that the further adjustment through application of a subsequent
clustering step does indeed improve image quality significantly.
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6 Conclusions

In this chapter we have presented several successful colour quantisation approaches
based on computational intelligence principles. We have shown that generic optimi-
sation approaches can be used for deriving a good colour palette and that hybridisa-
tion with a clustering algorithm can further improve the performance. We have fur-
thermore demonstrated that several clustering approaches based on fuzzy and rough
set concepts can also be used effectively for colour quantisation. All techniques pre-
sented in this chapter were compared against standard colour quantisation methods
and were shown to clearly outperform these.
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Chapter 13
Mean Shift and Its Application in Image
Segmentation

Huiyu Zhou, Xun Wang, and Gerald Schaefer

Abstract. Mean shift techniques have been demonstrated to be capable of estimat-
ing the local density gradients of similar image pixels. These gradient estimates
are iteratively performed so that for all pixels similar pixels in corresponding im-
ages can be identified. In this chapter, we show how the application of a mean
shift process can lead to improved image segmentation performance. We present
several mean shift-based segmentation algorithms and demonstrate their superior
performance against the classical approaches. Conclusions are drawn with respect
to the effectiveness, efficiency and robustness of image segmentation using these
approaches.

Keywords: Image segmentation, mean shift, fuzzy c-means, Dirichlet process mix-
ture, gradient vector flow snake.

1 Introduction

Image segmentation is the process of categorising the intensity/colour and/or tex-
ture of an image into different regions where each region attains homogeneity, and
is a key stage in many image analysis and pattern recognition applications including
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object tracking and recognition, image retrieval, and volumetric reconstruction. Im-
age segmentation is a long standing problem in computer vision. A major problem
in image segmentation is the appropriate determination of thresholds to be used to
separate various regions or intensity/colour levels.

Established image segmentation algorithms can be generally classified into three
major categories: feature-based clustering, spatial segmentation, and graph-based
approaches (Tao et al., 2007). Feature-based clustering approaches use the char-
acteristics of the image through extraction and selection schemes (Jacobs et al.,
2000). Using a determined distance measure, which intentionally ignores the spa-
tial information in an image, features are shaped as vectors that are then grouped
into various clusters (Duda et al., 2000). Spatial segmentation methods are referred
to as region-based when derived from region entities. For example, watershed
algorithms (e.g. (Vincent and Soille, 1991)) can be considered as an extensive
methodology, which may or may not apply merging algorithms for formation of
quasi-homogeneous regions (Makrogiannis et al., 2005). Graph-based approaches
are usually regarded as image perceptual grouping and organisation methods, based
on the fusion of the feature and spatial information (e.g. (Morris et al., 1986)). In
these approaches, the visual group is based on several key components such as sim-
ilarity, proximity, and continuation (Caselles et al., 1996).

Despite the successes achieved in image segmentation, the developed techniques
can be further improved in terms of segmentation accuracy and automation. For this
purpose, people have considered supervised and unsupervised models according to
human intervention (Pham et al., 2000). The former comes up with manual class
labels for image pixels or regions. These labels are capable of providing a pre-
defined interpretation and hence achieve higher accuracy. Unfortunately, supervised
models sacrifice work efficiency as they require a large amount of labeling practice.
Unsupervised models usually lack a proper map from labelled areas to meaningful
object classes as no semantical annotation information is available.

Supervised models consist of k-nearest-neighbour (kNN), Bayes or other clas-
sifiers. kNN is an approach of classifying image pixels according to the majority
vote of the k closest data items, while Bayes classifiers assign each image pixel to
the class with the highest probability. One of the weaknesses of supervised mod-
els is the lack of spatial modelling (Wells et al., 1995). Another drawback is the
need of manual labelling. Unsupervised models include k-means or ISODATA al-
gorithms (Venkateswarlu and Raju, 1992), fuzzy c-means (Zhou et al., 2009b), and
expectation-maximisation (EM) algorithms (Belongie et al., 1998). k-means ap-
proaches classify each pixel to the class with the closest mean; fuzzy c-means is
a generalised version of k-means by allowing soft segmentation using fuzzy set
principles. EM algorithms assign pixels to the class the pixel shares the closest
mean/covariance with.

Mean shift is a method to cluster an image by associating each pixel with a peak
of the image’s probability density. This peak is computed by first defining a window
in the neighbourhood of the pixel and then calculating the mean of the pixel that
lie within the window. The window is then shifted to the mean, and similar steps
are repeated until convergence. The outcome of mean shift is only controlled by the
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kernel size (bandwidth) and therefore requires less manual intervention compared
to other algorithms. However, determining an appropriate bandwidth is not an easy
task. Too large or small bandwidths may lead to over- or under-segmentation. To
effectively handle this problem, one can integrate different algorithms with mean
shift in order to find an optimal solution.

In this chapter, we present three segmentation algorithms, which incorporate a
mean shift process in some state-of-the-art segmentation techniques. These algo-
rithms are motivated by the fact that these combinations will improve the perfor-
mance of the individual approaches in general circumstances.

2 Mean Shift

First, we briefly review the principle of mean shift. Given an image point sequence
si (i = 1, 2, ..., n) in the m-dimensional space Rm, the multivariate kernel density
estimate with kernelK(s) and window radius r is given as

F (s) =
1

nrm

n∑
i=1

K
(s− si

r

)
. (1)

The multivariate Epanechnikov kernel can be estimated by

KE(s) =

{
(m+2)(1−‖s‖2)

2cm
, ‖ s ‖< 1

0, otherwise
(2)

where cm is the volume of the unit m-dimensional sphere.
Assuming a kernel Ψ(s) = c0ψ(‖ s ‖2), where c0 is a normalisation constant,

the mean shift vector is expressed as

MS(s) ≡
∑n
i=1 siψ(‖ (s− si)/r ‖2)∑n
i=1 ψ(‖ (s − si)/r ‖2)

− s, (3)

where ψ(·) is an intermediate function (Comaniciu et al., 2000). The mean shift
procedure is a recursive evolution by computing the mean shift vector MS(s) and
adjusting the centroid of kernel Ψ by MS(s). In theory, the Euclidean distance
between the centroids d is proportional to the mean of the mean shift:

d ∝MS(s)m. (4)

3 Fuzzy C-Means with Mean Shift

Fuzzy c-means (FCM) is based on the idea of finding cluster centres by iteratively
adjusting their positions and the evaluation of an objective function is similar to the
original hard c-means, yet it allows more flexibility by introducing the possibility of
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partial memberships to clusters (Bezdek, 1980). The objective function usually
follows the form

E =
C∑
j=1

N∑
i=1

μkij ||xi − cj ||2, (5)

where μkij is the fuzzy membership of sample (or pixel) xi and the cluster identi-
fied by its centre cj , and k is a constant that defines the fuzziness of the resulting
partitions.
E can reach the global minimum when pixels nearby the centroid of correspond-

ing clusters are assigned higher membership values, while lower membership values
are assigned to pixels far from the centroid (Chuang et al., 2006). Here, the member-
ship is proportional to the probability that a pixel belongs to a specific cluster where
the probability is only dependent on the distance between the image pixel and each
independent cluster centre. The membership functions and the cluster centres are
updated by

μij =
1∑C

m=1

( ||xj−ci||
||xj−cm||)2/(k−1)

) , (6)

and

ci =

∑N
j=1 μ

k
ijxj∑N

j=1 μ
k
ij

. (7)

3.1 Anisotropic Mean Shift

To further enhance the performance of classical FCM algorithms, it is possible
to derive an anisotropic mean shift algorithm coupled with fuzzy segmentation
(Zhou et al., 2009b). In mean shift algorithms the image clusters are continuously
moved along the gradient of the density function before they become stationary.
Those points gathering in an outlined area are treated as the members of the same
segment. To determine the membership of an image point, a density estimate at
the point needs to be conducted. In other words, similarity computation must be
achieved between this point and the centre of the segment. Furthermore, the coher-
ence between this point and its surrounding image points needs to be discovered
(e.g. colour or intensity consistency), as this coherence can be used to remove any
inconsistency such as image artefacts or noise. In this section, we mainly discuss the
estimation of the density function of an image point (this kernel density estimation
is also known as the Parzen window technique).

The motivation for introducing density estimation based segmentation is that the
image space can be represented by empirical probability density functions (PDFs)
of certain parameters (e.g. colour or intensity). Dense or sparse regions of similar
image points correspond to local maxima or minima of the PDF (or the modes of the
unknown density) (Comaniciu and Meer, 2002). After the modes have been located
in the image, the membership of an image point to a particular segment will be
determined.



Mean Shift and Its Application in Image Segmentation 295

A kernel density estimate on an image point is defined by

f̃(x) =
1
N

N∑
i=1

K(x− xi), (8)

with
K(x) = |H|−1/2K(H−1/2x), (9)

where N is the number of samples, and xi stands for a sample from an unknown
density function f .K(·) is the d-variate kernel function with compact support satis-
fying the regularity constraints, and H is a symmetric positive definite d× d band-
width matrix. Usually, we have K(x) = ke(x), where ke(x) is a convex decreasing
function, e.g. for a Gaussian kernel

ke(x) = cte
−x/2, (10)

or for an Epanechnikov kernel,

ke(x) = ct max(1 − x, 0), (11)

where ct is a normalising constant.
If a single global spherical bandwidth is applied,H = h2I (where I is the identity

matrix), then we have the classical form as

f̃(x) =
1

Nhd

N∑
i=1

K

(
x− xi
h

)
. (12)

Since the kernel can be divided into two different radially symmetric kernels, we
have the kernel density estimate as

f̃(x; c) =
N∑
i=1

1
N(hα)p(hβ)q

kα
(
||(cα − xαi )/hα||2

)

kβ
(
||(cβ − xβi )/hβ||2

)
, (13)

where c represents a vector of cluster centres, p and q are two ratios, and α and β de-
note the spatial and temporal components respectively (Wang et al., 2004). Classical
mean shift utilises symmetric kernels that may experience a lack of temporal coher-
ence in regions where intensity gradients exist with a slope relative to the evolving
segment. In contrast, anisotropic kernel mean shift links with every data point by
an anisotropic kernel. This kernel associated with a pixel can update its shape, scale
and orientation. The density estimator is represented by
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f̃(x; c) =
1
N

N∑
i=1

1
hβ(Hα

i )q
kα(d(cα, xαi , H

α
i ))

kβ
(
||(cβ − xβi )/(h

βHα
i )||2

)
, (14)

where d(cαi , x
α
i , H

α
i ) is the Mahalanobis distance

d(cα, xαi , H
α
i ) = (xαi − cα)THα−1

i (xαi − cα). (15)

Anisotropic mean shift is intended to modulate the kernels during the mean shift
procedure. The objective is to keep reducing the Mahalanobis distance so as to
group similar samples as much as possible. First, the anisotropic bandwidth ma-
trix Hα

i is estimated using a standard radially symmetric diagonal Hα
i and hβ . The

neighbourhood of pixels around c has the following constraints:
{
kαe (d(c, xi, Hα

i )) < 1
kβe

(||(c − xi)/(hβHα
i )||2) < 1 (16)

A new full matrix H̄α
i will use the variance of (c − xi) as its components. To show

how the modulation of H̄α
i happens we first decompose the required bandwidth

matrix to
H̄α
i = λV AV T , (17)

where λ is a scalar, V is a matrix of normalised eigenvectors, and A is a diagonal
matrix of eigenvalues whose diagonal elements ai satisfy (Wang et al., 2004)

p∏
i=1

ai = 1. (18)

The bandwidth matrix is updated by adding more and more points to the computa-
tional list: the more image points with similar colour or intensity gather in the same
segments, the smaller the total Mahalanobis distance between the image points and
the centres of individual segments.

3.2 Anisotropic Mean Shift Based FCM

In the combined algorithm, fuzzy c-means and anisotropic mean shift segmentation
are integrated into one framework. A significant difference between this approach
and other similar methods is that our algorithm continuously inherits and updates
the states, based on the interaction of FCM and mean shift. Stemming from the
algorithm reported in (Wang et al., 2004), this anisotropic mean shift based FCM
(AMSFCM) (Zhou et al., 2009b) proceeds in the following steps:

Step 1: Initialise the cluster centres cj . Let the iteration count t = 0.
Step 2: Initialise the fuzzy partitions μij using Eq. (6).
Step 3: Increment t = t+ 1 and compute cj using Eq. (7) for all clusters.
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Step 4: Update μij using Eq. (6). This is an FCM process.
Step 5: For each pixel xi one needs to estimate the density with anisotropic kernels

and related colour radius using Eqs. (14)-(18). For simplicity, H̄α
i can apply

variances at the diagonal items with other zero components. Note that mean
shift is employed after the FCM stage.

Step 6: Calculate the mean shift vector and then iterate until the mean shift,
M+(xi)−M−(xi), is less than 0.01 considering the previous position and
a normalised position change:

M+(xi) = νM−(xi) + (1 − ν)
∑ N

j=1(xj−M−(xi))||(M−(xβ
i )−xβ

j )/(hβHα
j )||2∑ N

j=1 ||(M−(xβ
i )−xβ

j )/(hβHα
j )||2

with ν = 0.5.
Step 7: Merge pixels with Mahalanobis distances below the pre-defined threshold.
Step 8: Repeat Steps 3 to 7 until |μtij − μt−1

ij | < ε0 (ε0 is a pre-set threshold).

Note, that the number of clusters has been assigned before the optimisation. An
alternative would be to apply mean shift clustering to find out the number of clusters,
and afterwards deploy the above algorithm.

Figure 1 illustrates how the segmentation evolves using the proposed AMSFCM
algorithm. In this example, the segmentation optimally converges after 6 iterations.

(a) original image (b) 3 iterations (c) 4 iterations (d) 6 iterations

Fig. 1 Examples of AMSFCM iterative segmentation.

4 Dirichlet Process Mixture Models with Mean Shift

Assume that image segmentation aims to group a set x1, ..., xi of inputs (local image
features) into individual classes. Let’s denote the number of classes byNC , then the
class assignment of input xi is represented by an indicator Si (i = 1,...,NC). A class
in image clustering will be of a form with finite mixture models

p(x) =
NC∑
j=1

cjpj(x), (19)

where cj = Pr{S = j} for an input drawn randomly from the entire model, and∑
j cj = 1, and pj indicates a single probability distribution. This model may have

a two-stage generative process for the input x: x ∼ pS , and S ∼ (c1, ..., cNC ).
If the distribution pj(x) can be parameterised as pj(x) = pj(x|θj), then we can
parameterise the distribution shown in Eq. (19) with c1, ..., cNC and θ1, ..., θNC (θ
is a parameter value of the clusters).



298 H. Zhou, X. Wang, and G. Schaefer

MDP models draw a random prior G from a Dirichlet Process (DP). Combining
it with a parametric likelihood F (x|θ), this results in the following form:

xi ∼ F (x|θi),
θi ∼ G,

G ∼ DP (αG0), (20)

where α is a scalar and G0 is the base measure of the process. In a Bayesian frame-
work, F (·|·) is considered to be the posterior estimation of the data. Prior and pos-
terior in Eq. (20) refer to the same model class and the posterior parameters are
dynamically updated during the process. A conditional distribution for property 3
of Eq. (20) can be computed as (Orbanz and Buhmann, 2008)

p(θn+1|θ1, ..., θn) =
1

n+ α

n∑
i=1

Δθi(θn+1) +
α

n+ α
G0(θn+1), (21)

where Δθi is the Dirac measure centered at θi.

4.1 Dirichlet Process Mixtures with Markov Random Fields

Markov random fields (MRFs) are stochastic models that characterise local spatial
interactions in data. MRFs are used with MDP in order to enforce spatial constraints
during the segmentation process. An MRF consists of random variables defining an
undirected and weighted graph with sites, edges, and weights.

Let an MRF distribution Ξ be decomposed into a site-wise term S and the re-
maining interaction term R. The MRF distribution can be written as follows to
generate MRF of xi

Ξ ∝ S(θ1, ..., θn)R(θ1, ..., θn), (22)

with the site S(θ1, ..., θn) := 1
ZS

exp(−∑
iHi(θi)) and the remaining term

R(θ1, ..., θn) := 1
ZR

exp(−∑
C∈C2

HC(θC)), where ZR indicates the partition
function, singleton cliques C = {i} and C2 := {C ∈ C||C| ≥ 2} (C is the
set of all cliques), and H(∼) is a cost function that defines a distribution by
Ξ(θ1, ..., θn) := 1

ZH
exp(−H(θ1, ..., θn)) with a normalisation term ZH .

Omitting intermediate steps, we arrive at the following form for the posterior
estimation (Orbanz and Buhmann, 2008):

Ξ(θi|θ−i) ∝
NC∑
k=1

R(θi|θ−1)n−i
k δθ�

k
(θi) +

α

ZH
G0(θi), (23)

where θ−i := {θ1, ..., θi−1, θi+1, ..., θn}, n−i
k is the number of values accumulated

in group k, δ is the Kronecker symbol, and θ�k denotes the parameters in class k.
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4.2 MDP/MRF with Mean Shift

A Gibbs sampler can be used for implementing MDP models (see Eq. (20)). There
are two steps in this sampling algorithm: an assignment step and a parameter update
step. The assignment of inputs xi to cluster k relies only on the current state of the
model. If xi falls in the known classes, then xi is assigned to cluster k. Otherwise, a
new cluster will be created. Image segmentation is a clustering problem where two
class labels can only be identical or different. We have

H(θi|θ−i) =
1
n

n∑
j=1

KH(θi − θj), (24)

where KH(θ) = |H|−1/2K(H−1/2θ) and K is the d-variate kernel function. As-
suming H = h2I (h2 refers to variance estimates and I is identity matrix), we have

H(θi|θ−i) =
1
nhd

n∑
j=1

KH

(θi − θj
h

)
, (25)

which indicates that image segmentation can be reached subject to the measure-
ments by the mean of the square error between the density and the estimate. Using
the established mean shift algorithm (Comaniciu and Meer, 2002), we iteratively
calculate the difference between the mean of the cluster centres and image pixels
until this difference is less than a pre-defined threshold:

m(θi) =

∑n
j=1 θjg

(
‖ θi−θj

h
‖2

)
∑n
j=1 g

(
‖ θi−θj

h
‖2

) − θi. (26)

Given an image, we extract features by formulating histogram bins from the image.
Each histogram is described by a vector ri = (ri1,...,riN ), whereN is the number of
the bins.

The initial class probability qi0 can be represented as (Orbanz and Buhmann,
2008)

qi0 ∝
∫
Ωθ

F (ri|θi)G0(θi)dθi =
DG(ri + βπ)
DF (ri)DG(βπ)

, (27)

where DF is the multinomial partition function and DG is a normalisation term.
Let k = 1,...,NC, then we have the class probability

qik ∝ n−i
k exp(−H(θ�k|θ−i))F (ri|θ�k)

=
n−i
k

DF (ri)
exp

( 1
nhd

n∑
j=1

KH

(θi − θj
h

)
+

∑
j

hij log(θ�kj)
)
. (28)

Therefore, a mean shift based MDP/MRF segmentation algorithm (Zhou et al.,
2009a) and can be implemented as follows:
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Step 1: Initiate the algorithm with a single cluster θ�1 .
Step 2: Generate random samples from data indices.
Step 3: Compute cluster probabilities qi0 and qik using Eqs. (27) and (28).
Step 4: Assign observations xi to cluster k based on the value of k.
Step 5: Update cluster parameters θ�k by sampling θ�k ∼ G0(θ�k)

∏
i F (xi|θ�k).

5 Gradient Vector Flow Snakes with Mean Shift

Snake (active contour) algorithms are used to detect object boundaries or edges
given an initial guess of the evolving contours. The classical snake model considers
a combination of internal and external energy, where the boundary will stop evolv-
ing based on a compromise of the two energies. In general, the internal energy term
maintains smoothness and compactness of the curve shape, while the external en-
ergy term tunes the curve in order to be consistent with the intrinsic image gradients.
Often, the negative of the image gradient magnitude is used as the external energy.
Hence, larger gradient magnitudes will drive the evolution of the contour towards
the real object boundary (Witkin et al., 1987).

The external energy force in the snake model is restricted to a small area next to
the real boundary. If it is far from the real boundary, the snake will be less likely
to converge to the correct position. (Xu and Prince, 1998) proposed a GVF map to
represent the external energy force in the snake model. This GVF term is sensitive
to object boundaries or edges appearing in the image and hence effectively pulls the
snake towards the real edges.

Let a snake be a curve x(s) = [x(s), y(s)], s ∈ [0, 1], which evolves in an image
domain to reach a minimisation of the energy function

E(x) =
∫ 1

0

[1
2

(
α
∣∣∣∂x
∂s

∣∣∣2 + β
∣∣∣∂2x

∂s2

∣∣∣2) + Eext(x)
]
ds, (29)

where α and β are weights that dominate the tension and rigidity of the snake re-
spectively. The first order derivative ∂x

∂s encourages stretching while the second or-

der derivative ∂2x
∂s2

leads to bending. The first two terms on the right-hand side of
Eq. (29) describe the internal energy of the snake, while the third term is the exter-
nal energy. In the presence of high gradients at image boundaries (e.g. step edges)
the external energy is represented by − � (Gσ(x, y) ∗ I(x, y))2. In the case of
line drawings, ±Gσ(x, y) ∗ I(x, y) is used instead, where Gσ is a two-dimensional
Gaussian function with standard deviation σ.

When the GVF contour (Xu and Prince, 1998) has converged, i.e. when internal
and external forces are balanced, one can have the Euler equation, expressed as

αC ′′(s) − βC′′′′(s) + γV = 0, (30)

where α and β are the weighting parameters that are used to control the strength
of the snake’s tension and rigidity respectively, γ is a proportional coefficient and
V is the external force. Practically, these three parameters are set to be constants
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within the equation. C(s) is the contour that delineates the desired boundaries, and
s ∈[0,1].

Before exploring any improvement based on the original GVF platform, we
rewrite Eq. (30) as

g1(d)C′′(s) − g2(d−1)C′′′′(s) + g3(d)V = 0, (31)

where g1(d), g2(d−1) and g3(d) are the weighting functionals of the internal and ex-
ternal energy terms, respectively; d is the Euclidean distance between the presumed
centroid of the real boundary and the estimated one of the snake. In fact, if the snake
is ideally located on the real boundary, then they both most likely share a common
centroid in addition to the merging of the contours. As a result, we consider the
Euclidean distance between the centroids as an index of proximity. Note, that there
exists a significant difference between the functional g1(d) and g2(d−1) in terms of
the variables. This is due to the opposite behaviours of d in the elatisity and rigidity
terms, where the former is dominant in the energy function when d is large and the
latter plays a key role when d is small (Zhou et al., 2005; Liu et al., 2008).

Alternatively, we can use a simplified version of Eq. (31) as

g̃1(d)C′′(s) − g̃2(d−1)C′′′′(s) + γV = 0, (32)

which is dependent on the assumption that as the snake evolves, the GVF field keeps
stationary (this assumption may lead to lower computation in the optimisation). Ev-
idence shows that this assumption strictly holds in static images but might fail in
dynamically variable images, e.g. motion artefacts, occluded images, etc.

Suppose that g̃1(d) and g̃2(d−1) have continuous derivatives. Then, one has a
Taylor series, which can be defined as

{
g̃1(d) = g̃1(d1) + g̃′1(d1)(d − d1) + g̃′′1 (d1)(d−d1)2

2
+ · · ·,

g̃2( 1
d ) = g̃2(d2) + g̃′2(d2)( 1

d − d2) + g̃′′2 (d2)(
1
d−d2)2

2 + · · ·,
(33)

where d1 and d2 are two constants. The snake normally approaches the real bound-
ary consistently and dynamically, indicating that the evolution of the snake can be
linearised. Thus, the higher order terms (≥ 2) in the Taylor series can be ignored.

Assuming that the snake starts from an initial contour, then the terms not related
to d (in Eq. (33)) will be replaced by 0. It should be noticed that during the itera-
tion these terms may, or may not, be 0. However, setting them to 0 will avoid the
side-effects of these constant terms during the evolution (e.g., slow convergence),
and hence improve the efficiency of convergence towards the ideal contour. Conse-
quently, Eq. (32) has a different form, defined by

α̃dC′′(s) − β̃

d
C′′′′(s) + γV = 0, (34)

where α̃ = g̃1(d1), β̃ = g̃2(d2), which both are constants in practice.
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5.1 Segmentation Constrained by Mean Shift

As mentioned before, when matched, the snake and the real contour will share a
common centroid. Alternatively, having a common centroid is a necessary condi-
tion for registration of the two contours. We are therefore interested in driving the
centroids of the two contours towards the same settlement whilst performing an
appropriate segmentation. To do so, we again exploit the mean shift algorithm. In
particular, CAMSHIFT (Bradski, 1998) is used due to its advantage of accounting
for dynamically changing distributions during the contour evolution.

The application of mean shift for improved GVF segmentation works as follows.
The mean shift algorithm is employed to find the contour candidate that is similar
to the real boundary, where the similarity is measured by the Euclidean distance
between the centroid of the area outlined by the deformable snake and that of the
region surrounded by the real boundary, while satisfying the object energy function
as well.

The following steps are conducted: The centroid (xc, yc) of a contour is calcu-
lated by

{
xc = M10

M00
,

yc = M01
M00

,
(35)

where we have the initial (0-th) moment M00, the moment M10 for x-coordinates,
and the moment M01 for y-coordinates of image points within the contour. The
initial centroid of the real boundary is set to be the centre of the image. Then, the
centroid of the region surrounded by the deforming snake is calculated. Once the
centroids have been obtained, the Euclidean distance d between these two centroids
then becomes defined, which is used in Eq. (34) for energy minimisation in the
revised GVF domain. This is followed by executing the standard CAMSHIFT algo-
rithm (Bradski, 1998), (Wang et al., 2004), where Eq. (3) is deployed. Afterwards,
we again compute the Euclidean distance between the centroids. We then subse-
quently apply the enhanced GVF and CAMSHIFT schemes. This process is iterated
until the Euclidean distance of the centroids falls below a threshold (< 0.1 pixels in
our experiments).

5.2 GVF-Means Shift Segmentation

The combined gradient vector flow/mean shift algorithm (Zhou et al., 2010) pro-
ceeds in the following steps:

Step 1: Initialisation of a contour and the corresponding parameters.
Step 2: Employment of the standard GVF scheme for evolving the contour.
Step 3: Computation of the individual means of the two image regions.
Step 4: Computation of the Euclidean distance between the two centroids.
Step 5: Applying the revised GVF strategy.
Step 6: Conducting the standard CAMSHIFT process.
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Step 7: If the Euclidean distance between the centroids< 0.1 pixel stop; otherwise
repeat Steps 2-7.

Fig. 2 illustrates the contour evolution using this extended GVF algorithm, where
the initial and final contours are demonstrated in Fig. 2(d).

(a) (b) (c) (d)

Fig. 2 Illustration of contour evolution using the extended GVF performance: (a) Original
gray image, (b) blurred image using Gaussian filtering, (c) GVF field map and (d) contour
evolution (red colour indicates the deformation).

6 Evaluation and Discussion

In this section, we evaluate the presented mean shift based segmentation algorithms.
For fairness, we compare each method against similar approaches.

6.1 Anisotropic Mean Shift Based FCM

The presented AMSFCM segmentation algorithm was evaluated on a set of 100
dermoscopy images (30 invasive malignant melanoma and 70 benign) obtained
from the EDRA Interactive Atlas of Dermoscopy (Argenziano et al., 2002) and the
dermatology practises of Dr. Ashfaq Marghoob (New York, NY), Dr. Harold Ra-
binovitz (Plantation, FL) and Dr. Scott Meznies (Sydney, Australia). The benign
lesions included nevocellular nevi and dysplastic nevi. Three sets of manual bor-
ders were determined by expert dermatologists, and serve as a ground truth for the
experiments.

The algorithms that we compared are conventional FCM (Bezdek, 1980), En-
FCM (Szilagyi et al., 2003), RSFCM (Cheng et al., 1998) and AMSFCM. In a final
stage, morphological processing is employed for smoothing the segmentation out-
comes, especially image borders, and removing small isolated areas.

An example of the segmentations obtained by the various algorithms is given in
Figure 3 which shows one of the ground truth segmentations together with the re-
sults by all four methods. It can be observed that the segmentations produced by
classical FCM and RSFCM are less smooth than those by EnFCM and AMSFCM.
This is due to (1) RSFCM uses FCM in the second phase so they both have approxi-
mate convergence characteristics, and (2) EnFCM and AMSFCM take into account
weighted image pixels so their outcomes are smoothed in the FCM stage. Clearly,
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smoother borders are more realistic and also conform better to the manual segmenta-
tions derived by the dermatologists. The second observation is also reflected in Fig-
ure 4, where original images are segmented using different FCM algorithms and the
lesion borders are then extracted. It is also noticed that different algorithms generate
similar results for Figure 4, while the proposed AMSFCM algorithm has clearly the
best border result for the third example.

Fig. 3 Segmentation comparison of original image (upper left), ground truth (upper right),
FCM (middle left), RSFCM (middle right), EnFCM (bottom left) and AMSFCM (bottom
right) for image 15.

For each image segmentation we record the number of True Positives TP (the
number of pixels that were classified both by the algorithm and the expert as lesion
pixels), True Negatives TN (the number of pixels that were classified both by the
algorithm and the experts as non-lesion pixels), False Positives FP (the number
of instances where a non-lesion pixel was falsely classified as part of a lesion by
an algorithm) and False Negatives FN (the number of instances where an lesion
pixels was falsely classified as non-lesion by an algorithm). From this we can then
calculate the sensitivity SE (or true positive rate) as

SE =
TP

TP + FN
(36)

and the specificity SP (or true negative rate) as
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Fig. 4 Border detection of exemplar segmented images (row 1: original images; row 2 - FCM
results; row 3 - RSFCM results; row 4 - EnFCM results and row 5 - AMSFCM results).

SP =
TN

TN + FP
(37)

In Table 1 we list the sensitivity and specificity obtained by all algorithms over the
entire database and compared to all three ground truth segmentations (average SE
and SP based on all three manual segmentations are reported). It can be seen that
the proposed AMSFCM performs significantly better with an average sensitivity of
about 78% while the other algorithms achieve only a sensitivity of about 74%. In
addition, our algorithm provides more consistent results as indicated by the lower
variance of SE. As specificity is fairly similar for all algorithms, we can conclude
that AMSFCM provides the best segmentation on the given dataset.

Computational efficiency is a crucial issue when considering FCM based seg-
mentation. We record the number of iteration required in each FCM approach for
evaluation, which in turn enables us to make a comparison regarding the relative ef-
ficiency of the different approaches. We normalised them so that the classical FCM
algorithm is assigned 1.00 while the other ones represent the relative fractions they
take compared to this. The results are also presented in Table 1 from which it can be
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Table 1 Segmentation performance on the dermoscopy dataset. For each algorithm the av-
erage sensitivity and specificity and the relative efficiency are given. The values in brackets
indicate the standard deviations of the measures.

Algorithm Sensitivity Specificity computational cost
FCM 0.739 (0.120) 0.99 (0.056) 1.00 (0.00)
RSFCM 0.738 (0.118) 0.99 (0.052) 0.67 (0.11)
EnFCM 0.740 (0.118) 0.99 (0.061) 0.80 (0.09)
AMSFCM 0.776 (0.113) 0.99 (0.065) 0.63 (0.09)

seen that the proposed AMSFCM takes computation efforts of 37%, 4% and 17%
less than compared to FCM, RSFCM and EnFCM respectively.

Overall, it is evident that AMSFCM provides a very useful tool for the analysis of
dermoscopic images. Not only does it provide the best segmentation results among
the algorithms investigated, it also is the most efficient method.

6.2 Dirichlet Process Mixture Models with Mean Shift

We evaluated the combined Dirichlet process mixture/mean shift algorithm on a
subset (50 images in total) of the Berkeley Segmentation dataset (Martin et al.,
2001). The algorithms that we compared are the conventional MDP/MRF algo-
rithm from (Orbanz and Buhmann, 2008) and the presented MDP/MRF with mean
shift algorithm. In the final stage of both algorithms, morphological processing is

(a) (b) (c) (d) (e)

Fig. 5 Performance comparison of image segmentation using the classical MDP/MRF and
the proposed MDP/MRF with mean shift algorithms respectively: images (a) 5, (b) 7, (c) 10,
(d) 18 and (e) 22 (1st row - original images, 2nd row - MDP/MRF, 3rd row - MDP/MRF with
mean shift, 4th - ground truth segmentation).
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employed for smoothing the segmentation outcomes and removing small isolated
areas.

Examples of the segmentations obtained by both algorithms are given in Fig. 5
which shows the original images together with the results of the two methods and
the ground truth segmentation. It can be observed that while the algorithms produce
similar results, the segmentations produced by the classical MDP/MRF algorithm
subjectively are less smooth than those by the proposed mean shift based MDP/MRF
approach. This is due to the fact that the latter takes into account mean values in the
sampling. Clearly, smoother borders are more realistic and also conform better to
the manual segmentations.

Table 2 Statistics of image segmentation performance.

Algorithm Recall Fall-out Accuracy
Classical 0.4105 0.2116 0.7547
Proposed 0.4117 0.1588 0.8020

To obtain quantitative results, we calculate recall and fall-out, defined as

recall =
TP

TP + FN
, (38)

and

fall-out =
FP

FP + TN
. (39)

as measures for segmentation quality as is suggested in (Bowyer et al., 2001). We
also calculate the overal accuracy, defined as

accuracy =
TP + TN

TP + FN + TN + FP
. (40)

In Table 2 we list recall, fall-out and accuracy values for both algorithms averaged
over all test images. It can be seen that both algorithms have similar recall values but
that the proposed MDP/MRF with mean shift algorithm outperforms the classical
MDP/MRF algorithm in terms of fall-out and accuracy by about 5%.

6.3 Gradient Vector Flow with Mean Shift

The gradient vector flow/mean shift segmentation algorithm was evaluated on a set
of 40 retinal images obtained from the DRIVE database (Staal et al., 2004). These
images have been randomly selected from a screening database of 400 diabetic sub-
jects aged 25-90. 33 of the images do not show any sign of diabetic retinopathy
while in 7 signs of mild diabetic retinopathy are apparent. Each image is a true
colour image of 768 by 584 pixels. The field of view of each image is circular with
a diameter of approximately 540 pixels. No ground truth for the delineation of the
optic disc is available, therefore subjective evaluation will be used in the following.
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(a) (b) (c) (d)

Fig. 6 Performance comparison of different algorithms when the optic disk clearly appears,
where (a) the original image superimposed by the initial contour, (b) GVF, (c) level set, and
(d) proposed (image index from top to bottom: 15, 16, 27 and 31).

The algorithms we compare are the classical GVF algorithm (Xu and Prince, 1998),
level set segmentation (Li et al., 2005), and the proposed improved GVF algorithm.
For the two GVF based methods, the parameters have been set to: α (tension of the
snake) = 0.05, β (rigidity of the snake) = 0.0, γ (step size in one iteration) = 1.0, and
κ (external force weight) = 0.6.

The entire evaluation consists of three major parts. Firstly, the three algorithms
are evaluated using retinal images where the OD is clearly visible. This is the
simplest case in our evaluation. Image examples of the experimental results are il-
lustrated in Fig. 6. As can be seen, for image 15, level set segmentation and the
proposed algorithm are superior to the classical GVF scheme. The results of images
16, 27 and 31 clearly show that the proposed algorithm has the best performance in
terms of segmentation accuracy. This can be attributes to the computation of mean
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(a) (b) (c) (d)

Fig. 7 Performance comparison of different algorithms when the optic disk is vague, where
(a) the original image superimposed by the initial contour, (b) GVF, (c) level set, and (d)
proposed (image index from top to bottom: 1, 3, 19, 23 and 35).

fields in the domain of the proposed approach, which dynamically balances internal
and external energy forces during the contour evolution.

In the second test group, the optic disc is less clearly defined and correct segmen-
tation is hence more challenging. Results for this group of images are presented in
Fig. 7. For image 23 it can be observed that its segmentation results by the classical
GVF and our proposed algorithms are somehow similar, although the former leads
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(a) (b) (c)

Fig. 8 Performance evaluation after the positions of the initial contours change, where upper
row indicates the original images superimposed by the different initial contours, and lower
row shows the segmentation results by the proposed algorithm (image index from left to right:
1, 15, and 35).

to slightly lower accuracy on the OD edge. On the other hand, level set segmenta-
tion and the proposed approaches achieve comparable results in image 35. For the
remainder of the images in this group, our proposed algorithm clearly outperforms
the other two methods.

One of the challenges in image segmentation is whether or not the performance
of a segmentation system can be consistently kept in different initialisation circum-
stances. To validate this, we randomly specify the starting contours for the involved
images. This is followed by the regular routine of the proposed algorithm. Fig. 8
confirms that despite varied initial contours, the segmentation borders are virtually
indistinguishable from those presented in Figs. 6 and 7. This confirms that the pro-
posed algorithm is indeed strongly initialisation-invariant.

7 Summary

Image segmentation is frequently used in image analysis and pattern recognition.
In this chapter, we have presented three mean shift based image segmentation al-
gorithm. These methods incorporate a mean field term within individual standard
fuzzy c-means, Dirichlet process mixture models and gradient vector flows segmen-
tation frameworks. Based on a large set of dermoscopic images, we have shown
that the AMSFCM algorithm is not only more efficient than other fuzzy c-means
approaches but that it is also capable of providing superior segmentation. Similarly,
it has been shown that the mean shift-based MDP/MRF image segmentation outper-
forms the classical MDP/MRF algorithm. Experimental results on a large dataset
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of retinal images have also demonstrated that the mean shift-based GVF method
optimally detects the border of the optic disc.
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