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PREFACE 
 

This book is based on an MIT course that has been offered twice a year since 
2006.  The course is aimed at students with little or no prior programming 
experience who have desire to understand computational approaches to problem 
solving.  Each year, a few of the students in the class use the course as a 
stepping stone to more advanced computer science courses.  But for most of the 
students it will be their only computer science course. 

Because the course will be the only computer science course for most of the 
students, we focus on breadth rather than depth.  The goal is to provide 
students with a brief introduction to many topics, so that they will have an idea 
of what’s possible when the time comes to think about how to use computation 
to accomplish a goal.  That said, it is not a “computation appreciation” course.  
It is a challenging and rigorous course in which the students spend a lot of time 
and effort learning to bend the computer to their will. 

The main goal of this book is to help you, the reader, become skillful at making 
productive use of computational techniques.  You should learn to apply 
computational modes of thoughts to frame problems and to guide the process of 
extracting information from data in a computational manner.  The primary 
knowledge you will take away from this book is the art of computational problem 
solving. 

The book is a bit eccentric.  Part 1 (Chapters 1-8) is an unconventional 
introduction to programming in Python.  We braid together four strands of 
material: 

• The basics of programming, 

• The Python programming language, 

• Concepts central to understanding computation, and 

• Computational problem solving techniques. 

We cover most of Python’s features, but the emphasis is on what one can do 
with a programming language, not on the language itself.  For example, by the 
end of Chapter 3 the book has covered only a small fraction of Python, but it has 
already introduced the notions of exhaustive enumeration, guess-and-check 
algorithms, bisection search, and efficient approximation algorithms.  We 
introduce features of Python throughout the book.  Similarly, we introduce 
aspects of programming methods throughout the book.  The idea is to help you 
learn Python and how to be a good programmer in the context of using 
computation to solve interesting problems. 

Part 2 (Chapters 9-16) is primarily about using computation to solve problems.  
It assumes no knowledge of mathematics beyond high school algebra, but it 
does assume that the reader is comfortable with rigorous thinking and not 
intimidated by mathematical concepts. It covers some of the usual topics found 
in an introductory text, e.g., computational complexity and simple algorithms.  
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But the bulk of this part of the book is devoted to topics not found in most 
introductory texts: data visualization, probabilistic and statistical thinking, 
simulation models, and using computation to understand data. 

Part 3 (Chapters 17-19) looks at three slightly advanced topics—optimization 
problems, dynamic programming, and clustering. 

Part 1 can form the basis of a self-contained course that can be taught in a 
quarter or half a semester.  Experience suggests that it is quite comfortable to fit 
both Parts 1 and 2 of this book into a full-semester course.  When the material 
in Part 3 is included, the course becomes more demanding than is comfortable 
for many students. 

The book has two pervasive themes: systematic problem solving and the power 
of abstraction.  When you have finished this book you should have: 

• Learned a language, Python, for expressing computations, 

• Learned a systematic approach to organizing, writing and debugging 
medium-sized programs, 

• Developed an informal understanding of computational complexity, 

• Developed some insight into the process of moving from an ambiguous 
problem statement to a computational formulation of a method for 
solving the problem, 

• Learned a useful set of algorithmic and problem reduction techniques, 

• Learned how to use randomness and simulations to shed light on 
problems that don’t easily succumb to closed-form solutions, and 

• Learned how to use computational tools, including simple statistical and 
visualization tools, to model and understand data. 

Programming is an intrinsically difficult activity.  Just as “there is no royal road 
to geometry,”1 there is no royal road to programming.  It is possible to deceive 
students into thinking that they have learned how to program by having them 
complete a series of highly constrained “fill in the blank” programming 
problems.  However, this does not prepare students for figuring out how to 
harness computational thinking to solve problems. 

If you really want to learn the material, reading the book will not be enough. At 
the very least you should try running some of the code in the book.  All of the 
code in the book can be found at http://mitpress.mit.edu/ICPPRE.  Various 
versions of the course have been available on MIT’s OpenCourseWare (OCW) 
Web site since 2008.  The site includes video recordings of lectures and a 
complete set of problem sets and exams.  Since the fall of 2012, edX and MITx, 
have offered an online version of this course.  We strongly recommend that you 
do the problem sets associated with one of the OCW or edX offerings. 

                                                

1 This was Euclid’s purported response, circa 300 BC, to King Ptolemy’s request for an 
easier way to learn mathematics. 
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1 GETTING STARTED 

 

A computer does two things, and two things only: it performs calculations and it 
remembers the results of those calculations.  But it does those two things 
extremely well.  The typical computer that sits on a desk or in a briefcase 
performs a billion or so calculations a second.  It’s hard to image how truly fast 
that is.  Think about holding a ball a meter above the floor, and letting it go.  By 
the time it reaches the floor, your computer could have executed over a billion 
instructions. As for memory, a typical computer might have hundreds of 
gigabytes of storage.  How big is that?  If a byte (the number of bits, typically 
eight, required to represent one character) weighed one ounce (which it doesn’t), 
100 gigabytes would weigh more than 3,000,000 tons.  For comparison, that’s 
roughly the weight of all the coal produced in a year in the U.S. 

For most of human history, computation was limited by the speed of calculation 
of the human brain and the ability to record computational results with the 
human hand.  This meant that only the smallest problems could be attacked 
computationally.  Even with the speed of modern computers, there are still 
problems that are beyond modern computational models (e.g., understanding 
climate change), but more and more problems are proving amenable to 
computational solution.  It is our hope that by the time you finish this book, you 
will feel comfortable bringing computational thinking to bear on solving many of 
the problems you encounter during your studies, work, and even everyday life. 

What do we mean by computational thinking? 

All knowledge can be thought of as either declarative or imperative.  Declarative 
knowledge is composed of statements of fact.  For example, “the square root of x 
is a number y such that y*y = x.”  This is a statement of fact.  Unfortunately it 

doesn’t tell us how to find a square root.  

Imperative knowledge is “how to” knowledge, or recipes for deducing 
information.  Heron of Alexandria was the first to document a way to compute 
the square root of a number.2  His method can be summarized as: 

• Start with a guess, g. 

• If g*g is close enough to x, stop and say that g is the answer. 

• Otherwise create a new guess by averaging g and x/g, i.e., (g + x/g)/2. 

• Using this new guess, which we again call g, repeat the process until g*g 
is close enough to x. 

                                                

2 Many believe that Heron was not the inventor of this method, and indeed there is some 
evidence that it was well known to the ancient Babylonians. 
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Consider, for example, finding the square root of 25. 

1. Set g to some arbitrary value, e.g., 3. 

2. We decide that 3*3 = 9 is not close enough to 25. 

3. Set g to (3 + 25/3)/2 = 5.67.3 

4. We decide that 5.67*5.67 = 32.15 is still not close enough to 25. 

5. Set g to (5.67 + 25/5.67)/2 = 5.04 

6. We decide that 5.04*5.04 = 25.4 is close enough, so we stop and declare 5.04 
to be an adequate approximation to the square root of 25. 

Note that the description of the method is a sequence of simple steps, together 
with a flow of control that specifies when each step is to be executed.  Such a 
description is called an algorithm.4  This algorithm is an example of a guess-
and-check algorithm.  It is based on the fact that it is easy to check whether or 
not a guess is a good one. 

A bit more formally, an algorithm is a finite list of instructions that describe a 
computation that when executed on a provided set of inputs will proceed 
through a set of well-defined states and eventually produce an output. 

An algorithm is a bit like a recipe from a cookbook: 

1. Put custard mixture over heat. 

2. Stir. 

3. Dip spoon in custard. 

4. Remove spoon and run finger across back of spoon. 

5. If clear path is left, remove custard from heat and let cool. 

6. Otherwise repeat. 

It includes some tests for deciding when the process is complete, as well as 
instructions about the order in which to execute instructions, sometimes 
jumping to some instruction based on a test. 

So how does one capture this idea of a recipe in a mechanical process?  One way 
would be to design a machine specifically intended to compute square roots.  
Odd as this may sound, the earliest computing machines were, in fact, fixed-
program computers, meaning they were designed to do very specific things, and 
were mostly tools to solve a specific mathematical problem, e.g., to compute the 
trajectory of an artillery shell.  One of the first computers (built in 1941 by 
Atanasoff and Berry) solved systems of linear equations, but could do nothing 
else.  Alan Turing’s bombe machine, developed during World War II, was 
designed strictly for the purpose of breaking German Enigma codes.  Some very 
simple computers still use this approach. For example, a four-function 
calculator is a fixed-program computer. It can do basic arithmetic, but it cannot 
                                                

3 For simplicity, we are rounding results. 

4 The word “algorithm” is derived from the name of the Persian mathematician 
Muhammad ibn Musa al-Khwarizmi. 
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be used as a word processor or to run video games. To change the program of 
such a machine, one has to replace the circuitry.  

The first truly modern computer was the Manchester Mark 1.5  It was 
distinguished from its predecessors by the fact that it was a stored-program 
computer.  Such a computer stores (and manipulates) a sequence of 
instructions, and has a set of elements that will execute any instruction in that 
sequence. By creating an instruction-set architecture and detailing the 
computation as a sequence of instructions (i.e., a program), we make a highly 
flexible machine. By treating those instructions in the same way as data, a 
stored-program machine can easily change the program, and can do so under 
program control.  Indeed, the heart of the computer then becomes a program 
(called an interpreter) that can execute any legal set of instructions, and thus 
can be used to compute anything that one can describe using some basic set of 
instructions. 

Both the program and the data it manipulates reside in memory.  Typically there 
is a program counter that points to a particular location in memory, and 
computation starts by executing the instruction at that point.  Most often, the 
interpreter simply goes to the next instruction in the sequence, but not always.  
In some cases, it performs a test, and on the basis of that test, execution may 
jump to some other point in the sequence of instructions.  This is called flow of 
control, and is essential to allowing us to write programs that perform complex 
tasks. 

Returning to the recipe metaphor, given a fixed set of ingredients a good chef 
can make an unbounded number of tasty dishes by combining them in different 
ways.  Similarly, given a small fixed set of primitive elements a good programmer 
can produce an unbounded number of useful programs.  This is what makes 
programming such an amazing endeavor. 

To create recipes, or sequences of instructions, we need a programming 
language in which to describe these things, a way to give the computer its 
marching orders. 

In 1936, the British mathematician Alan Turing described a hypothetical 
computing device that has come to be called a Universal Turing Machine.  The 
machine had an unbounded memory in the form of tape on which one could 
write zeros and ones, and some very simple primitive instructions for moving, 
reading, and writing to the tape.  The Church-Turing thesis states that if a 
function is computable, a Turing Machine can be programmed to compute it. 

The “if” in the Church-Turing thesis is important.  Not all problems have 
computational solutions.  For example, Turing showed that it is impossible to 
write a program that given an arbitrary program, call it P, prints true if and only 
if P will run forever.  This is known as the halting problem. 

                                                

5 This computer was built at the University of Manchester, and ran its first program in 
1949.  It implemented ideas previously described by John von Neumann and was 
anticipated by the theoretical concept of the Universal Turing Machine described by Alan 
Turing in 1936. 
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The Church-Turing thesis leads directly to the notion of Turing completeness.  
A programming language is said to be Turing complete if it can be used to 
simulate a universal Turing Machine.  All modern programming languages are 
Turing complete.  As a consequence, anything that can be programmed in one 
programming language (e.g., Python) can be programmed in any other 
programming language (e.g., Java).  Of course, some things may be easier to 
program in a particular language, but all languages are fundamentally equal 
with respect to computational power. 

Fortunately, no programmer has to build programs out of Turing’s primitive 
instructions.  Instead, modern programming languages offer a larger, more 
convenient set of primitives.  However, the fundamental idea of programming as 
the process of assembling a sequence of operations remains central.  

Whatever set of primitives one has, and whatever methods one has for using 
them, the best thing and the worst thing about programming are the same: the 
computer will do exactly what you tell it to do. This is a good thing because it 
means that you can make it do all sorts of fun and useful things.  It is a bad 
thing because when it doesn’t do what you want it to do, you usually have 
nobody to blame but yourself. 

There are hundreds of programming languages in the world.  There is no best 
language (though one could nominate some candidates for worst).  Different 
languages are better or worse for different kinds of applications.  MATLAB, for 
example, is an excellent language for manipulating vectors and matrices.  C is a 
good language for writing the programs that control data networks.  PHP is a 
good language for building Web sites.  And Python is a good general-purpose 
language. 

Each programming language has a set of primitive constructs, a syntax, a static 
semantics, and a semantics.  By analogy with a natural language, e.g., English, 
the primitive constructs are words, the syntax describes which strings of words 
constitute well-formed sentences, the static semantics defines which sentences 
are meaningful, and the semantics defines the meaning of those sentences.  The 
primitive constructs in Python include literals (e.g., the number 3.2 and the 
string 'abc') and infix operators (e.g., + and /). 

The syntax of a language defines which strings of characters and symbols are 
well formed.  For example, in English the string “Cat dog boy.” is not a 
syntactically valid sentence, because the syntax of English does not accept 
sentences of the form <noun> <noun> <noun>.  In Python, the sequence of 
primitives 3.2 + 3.2 is syntactically well formed, but the sequence 3.2 3.2 is 
not. 

The static semantics defines which syntactically valid strings have a meaning.  
In English, for example, the string “I are big,” is of the form <pronoun> <linking 
verb> <adjective>, which is a syntactically acceptable sequence.  Nevertheless, it 
is not valid English, because the noun “I” is singular and the verb “are” is plural.  
This is an example of a static semantic error.  In Python, the sequence 
3.2/'abc' is syntactically well formed (<literal> <operator> <literal>), but 



 

 Chapter 1.  Getting Started  5 

produces a static semantic error since it is not meaningful to divide a number by 
a string of characters. 

The semantics of a language associates a meaning with each syntactically 
correct string of symbols that has no static semantic errors.  In natural 
languages, the semantics of a sentence can be ambiguous.  For example, the 
sentence “I cannot praise this student too highly,” can be either flattering or 
damning.  Programming languages are designed so that each legal program has 
exactly one meaning. 

Though syntax errors are the most common kind of error (especially for those 
learning a new programming language), they are the least dangerous kind of 
error.  Every serious programming language does a complete job of detecting 
syntactic errors, and will not allow users to execute a program with even one 
syntactic error.  Furthermore, in most cases the language system gives a 
sufficiently clear indication of the location of the error that it is obvious what 
needs to be done to fix it. 

The situation with respect to static semantic errors is a bit more complex.  Some 
programming languages, e.g., Java, do a lot of static semantic checking before 
allowing a program to be executed.  Others, e.g., C and Python (alas), do 
relatively less static semantic checking.  Python does do a considerable amount 
of static semantic checking while running a program.  However, it does not 
catch all static semantic errors.  When these errors are not detected, the 
behavior of a program is often unpredictable.  We will see examples of this later 
in the book. 

One doesn’t usually speak of a program as having a semantic error.  If a 
program has no syntactic errors and no static semantic errors, it has a meaning, 
i.e., it has semantics.  Of course, that isn’t to say that it has the semantics that 
its creator intended it to have.  When a program means something other than 
what its creator thinks it means, bad things can happen. 

What might happen if the program has an error, and behaves in an unintended 
way? 

• It might crash, i.e., stop running and produce some sort of obvious 
indication that it has done so.  In a properly designed computing system, 
when a program crashes it does not do damage to the overall system.  Of 
course, some very popular computer systems don’t have this nice 
property.  Almost everyone who uses a personal computer has run a 
program that has managed to make it necessary to restart the whole 
computer. 

• Or it might keep running, and running, and running, and never stop.  If 
one has no idea of approximately how long the program is supposed to 
take to do its job, this situation can be hard to recognize. 

• Or it might run to completion and produce an answer that might, or 
might not, be correct.  



 

6  Chapter 1. Getting Started 

Each of these is bad, but the last of them is certainly the worst,  When a 
program appears to be doing the right thing but isn’t, bad things can follow.  
Fortunes can be lost, patients can receive fatal doses of radiation therapy, 
airplanes can crash, etc. 

Whenever possible, programs should be written in such a way that when they 
don’t work properly, it is self-evident.  We will discuss how to do this throughout 
the book. 

 

Finger Exercise: Computers can be annoyingly literal.  If you don’t tell them 
exactly what you want them to do, they are likely to do the wrong thing.  Try 
writing an algorithm for driving between two destinations.  Write it the way you 
would for a person, and then imagine what would happen if that person 
executed the algorithm exactly as written.  For example, how many traffic tickets 
might they get?



 

    

2 INTRODUCTION TO PYTHON 

 

Though each programming language is different (though not as different as their 
designers would have us believe), there are some dimensions along which they 
can be related. 

• Low-level versus high-level refers to whether we program using 
instructions and data objects at the level of the machine (e.g., move 64 
bits of data from this location to that location) or whether we program 
using more abstract operations (e.g., pop up a menu on the screen) that 
have been provided by the language designer. 

• General versus targeted to an application domain refers to whether 
the primitive operations of the programming language are widely 
applicable or are fine-tuned to a domain.  For example Adobe Flash is 
designed to facilitate adding animation and interactivity to Web pages, 
but you wouldn’t want to use it build a stock portfolio analysis program. 

• Interpreted versus compiled refers to whether the sequence of 
instructions written by the programmer, called source code, is executed 
directly (by an interpreter) or whether it is first converted (by a compiler) 
into a sequence of machine-level primitive operations. (In the early days 
of computers, people had to write source code in a language that was 
very close to the machine code that could be directly interpreted by the 
computer hardware.)  There are advantages to both approaches.  It is 
often easier to debug programs written in languages that are designed to 
be interpreted, because the interpreter can produce error messages that 
are easy to correlate with the source code.  Compiled languages usually 
produce programs that run more quickly and use less space. 

In this book, we use Python.  However, this book is not about Python.  It will 
certainly help readers learn Python, and that’s a good thing.  What is much 
more important, however, is that careful readers will learn something about how 
to write programs that solve problems.  This skill can be transferred to any 
programming language. 

Python is a general-purpose programming language that can be used effectively 
to build almost any kind of program that does not need direct access to the 
computer’s hardware.  Python is not optimal for programs that have high 
reliability constraints (because of its weak static semantic checking) or that are 
built and maintained by many people or over a long period of time (again 
because of the weak static semantic checking). 

However, Python does have several advantages over many other languages.  It is 
a relatively simple language that is easy to learn.  Because Python is designed to 
be interpreted, it can provide the kind of runtime feedback that is especially 
helpful to novice programmers.  There are also a large number of freely available 
libraries that interface to Python and provide useful extended functionality.  
Several of those are used in this book. 
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Now we are ready to start learning some of the basic elements of Python.  These 
are common to almost all programming languages in concept, though not 
necessarily in detail. 

The reader should be forewarned that this book is by no means a comprehensive 
introduction to Python.  We use Python as a vehicle to present concepts related 
to computational problem solving and thinking.  The language is presented in 
dribs and drabs, as needed for this ulterior purpose.  Python features that we 
don’t need for that purpose are not presented at all.  We feel comfortable about 
not covering the entire language because there are excellent online resources 
describing almost every aspect of the language.  When we teach the course on 
which this book is based, we suggest to the students that they rely on these free 
online resources for Python reference material. 

Python is a living language.  Since its introduction by Guido von Rossum in 
1990, it has undergone many changes.  For the first decade of its life, Python 
was a little known and little used language.  That changed with the arrival of 
Python 2.0 in 2000.  In addition to incorporating a number of important 
improvements to the language itself, it marked a shift in the evolutionary path of 
the language.  A large number of people began developing libraries that 
interfaced seamlessly with Python, and continuing support and development of 
the Python ecosystem became a community-based activity.  Python 3.0 was 
released at the end of 2008.  This version of Python cleaned up many of the 
inconsistencies in the design of the various releases of Python 2 (often referred 
to as Python 2.x).  However, it was not backward compatible. That meant that 
most programs written for earlier versions of Python could not be run using 
implementations of Python 3.0.   

The backward incompatibility presents a problem for this book.  In our view, 
Python 3.0 is clearly superior to Python 2.x.  However, at the time of this 
writing, some important Python libraries still do not work with Python 3.  We 
will, therefore, use Python 2.7 (into which many of the most important features 
of Python 3 have been “back ported”) throughout this book.  

2.1 The Basic Elements of Python 

A Python program, sometimes called a script, is a sequence of definitions and 
commands.  These definitions are evaluated and the commands are executed by 
the Python interpreter in something called the shell. Typically, a new shell is 
created whenever execution of a program begins.  In most cases, a window is 
associated with the shell. 

We recommend that you start a Python shell now, and use it to try the examples 
contained in the remainder of the chapter.  And, for that matter, later in the 
book as well. 

A command, often called a statement, instructs the interpreter to do 
something.  For example, the statement print 'Yankees rule!' instructs the 
interpreter to output the string Yankees rule! to the window associated with the 
shell. 
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The sequence of commands 

print 'Yankees rule!' 
print 'But not in Boston!' 
print 'Yankees rule,', 'but not in Boston!' 

causes the interpreter to produce the output 

Yankees rule! 
But not in Boston!  
Yankees rule, but not in Boston! 

Notice that two values were passed to print in the third statement.  The print 
command takes a variable number of values and prints them, separated by a 
space character, in the order in which they appear.6 

2.1.1 Objects, Expressions, and Numerical Types 

Objects are the core things that Python programs manipulate.  Every object has 
a type that defines the kinds of things that programs can do with objects of that 
type.   

Types are either scalar or non-scalar.  Scalar objects are indivisible.  Think of 
them as the atoms of the language.7  Non-scalar objects, for example strings, 
have internal structure.  

Python has four types of scalar objects:  

• int is used to represent integers.  Literals of type int are written in the 
way we typically denote integers (e.g., -3 or 5 or  10002). 

• float is used to represent real numbers.  Literals of type float always 
include a decimal point (e.g., 3.0 or 3.17 or -28.72).  (It is also possible 
to write literals of type float using scientific notation.  For example, the 
literal 1.6E3 stands for 1.6*103, i.e., it is the same as 1600.0.)   You might 
wonder why this type is not called real.  Within the computer, values of 
type float are stored in the computer as floating point numbers.  This 
representation, which is used by all modern programming languages, 
has many advantages.  However, under some situations it causes floating 
point arithmetic to behave in ways that are slightly different from 
arithmetic on real numbers.  We discuss this in Section 3.4. 

• bool is used to represent the Boolean values True and False. 

• None is a type with a single value.  We will say more about this when we 
get to variables. 

Objects and operators can be combined to form expressions, each of which 
evaluates to an object of some type. We will refer to this as the value of the 
expression.  For example, the expression 3 + 2 denotes the object 5 of type int, 
and the expression 3.0 + 2.0 denotes the object 5.0 of type float. 

                                                

6 In Python 3, print is a function rather than a command.  One would therefore write 
print('Yankees rule!', 'but not in Boston').   

7 Yes, atoms are not truly indivisible.  However, splitting them is not easy, and doing so 
can have consequences that are not always desirable. 
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The == operator is used to test whether two expressions evaluate to the same 
value, and the != operator is used to test whether two expressions evaluate to 
different values. 

The symbol >>> is a shell prompt indicating that the interpreter is expecting the 
user to type some Python code into the shell.  The line below the line with the 
prompt is produced when the interpreter evaluates the Python code entered at 
the prompt, as illustrated by the following interaction with the interpreter: 

>>> 3 + 2 
5 
>>> 3.0 + 2.0 
5.0 
>>> 3 != 2 
True 

The built-in Python function type can be used to find out the type of an object: 

>>> type(3) 
<type 'int'> 
>>> type(3.0) 
<type 'float'> 

The operators on types int and float are listed in Figure 2.1. 

 

Figure 2.1  Operators on types int and float 

The arithmetic operators have the usual precedence.  For example, * binds more 
tightly than +, so the expression x+y*2 is evaluated by first multiplying y by 2, 
and then adding the result to x.  The order of evaluation can be changed by 

• i+j is the sum of i and j.  If i and j are both of type int, the result is 
an int.  If either of them is a float, the result is a float. 

• i–j is i minus j.  If i and j are both of type int, the result is an int.  
If either of them is a float, the result is a float. 

• i*j is the product of i and j.  If i and j are both of type int, the 
result is an int.  If either of them is a float, the result is a float.  

• i//j is integer division.  For example, the value of 6//2 is the int 3 
and the value of 6//4 is the int 1.  The value is 1 because integer 
division returns the quotient and ignores the remainder. 

• i/j is i divided by j.  In Python 2.7, when i and j are both of type 
int, the result is also an int, otherwise the result is a float.  In this 
book, we will never use / to divide one int by another.  We will use // 
to do that.  (In Python 3, the / operator, thank goodness, always 
returns a float.  For example, in Python 3 the value of 6/4 is 1.5.) 

• i%j is the remainder when the int i is divided by the int j.  It is 
typically pronounced “i mod j,” which is short for “i modulo j.” 

• i**j is i raised to the power j.  If i and j are both of type int, the 
result is an int.  If either of them is a float, the result is a float. 

• The comparison operators are  == (equal), != (not equal), > (greater), 
>= (at least), <, (less) and <= (at most). 
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using parentheses to group subexpressions, e.g., (x+y)*2 first adds x and y, and 
then multiplies the result by 2. 

The operators on type bool are:  

• a and b is True if both a and b are True, and False otherwise. 

• a or b is True if at least one of a or b is True, and False otherwise. 

• not a is True if a is False, and False if a is True. 

2.1.2 Variables and Assignment 

Variables provide a way to associate names with objects.  Consider the code 

pi = 3 
radius = 11 
area = pi * (radius**2) 
radius = 14 

It first binds the names pi8 and radius to different objects of type int.  It then 
binds the name area to a third object of type int.  This is depicted in the left 
panel of Figure 2.2. 

 

Figure 2.2  Binding of variables to objects 

If the program then executes radius = 11, the name radius is rebound to a 
different object of type int, as shown in the right panel of Figure 2.2.  Note that 
this assignment has no effect on the value to which area is bound.  It is still 
bound to the object denoted by the expression 3*(11**2). 

In Python, a variable is just a name, nothing more.  Remember this—it is 
important.  An assignment statement associates the name to the left of the = 
symbol with the object denoted by the expression to the right of the =.  
Remember this too.  An object can have one, more than one, or no name 
associated with it. 

                                                

8 If you believe that the actual value of π is not 3, you’re right.  We even demonstrate that 
fact in Chapter 15. 
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Perhaps we shouldn’t have said, “a variable is just a name.”  Despite what Juliet 
said, 9 names matter.  Programming languages let us describe computations in a 
way that allows machines to execute them.  This does not mean that only 
computers read programs. 

As you will soon discover, it’s not always easy to write programs that work 
correctly. Experienced programmers will confirm that they spend a great deal of 
time reading programs in an attempt to understand why they behave as they do.  
It is therefore of critical importance to write programs in such way that they are 
easy to read.  Apt choice of variable names plays an important role in enhancing 
readability. 

Consider the two code fragments 

a = 3.14159  pi = 3.14159 
b = 11.2   diameter = 11.2 
c = a*(b**2)  area = pi*(diameter**2) 

As far as Python is concerned, they are not different.  When executed, they will 
do the same thing.  To a human reader, however, they are quite different.  When 
we read the fragment on the left, there is no a priori reason to suspect that 
anything is amiss.  However, a quick glance at the code on the right should 
prompt us to be suspicious that something is wrong.  Either the variable should 
have been named radius rather than diameter, or diameter should have been 
divided by 2.0 in the calculation of the area. 

In Python, variable names can contain uppercase and lowercase letters, digits 
(but they cannot start with a digit), and the special character _.  Python variable 
names are case-sensitive e.g., Julie and julie are different names.  Finally, there 
are a small number of reserved words (sometimes called keywords) in Python 
that have built-in meanings and cannot be used as variable names.  Different 
versions of Python have slightly different lists of reserved words.  The reserved 
words in Python 2.7 are and, as, assert, break, class, continue, def, del, elif, 
else, except, exec, finally, for, from, global, if, import, in, is, lambda, not, or, 
pass, print, raise, return, try, with, while, and yield. 

Another good way to enhance the readability of code is to add comments.  Text 
following the symbol # is not interpreted by Python.  For example, one might 
write 

#subtract area of square s from area of circle c 
areaC = pi*radius**2 
areaS = side*side 
difference = areaC-areaS 

Python allows multiple assignment.  The statement 

x, y = 2, 3 

binds x to 2 and y to 3.  All of the expressions on the right-hand side of the 
assignment are evaluated before any bindings are changed.  This is convenient 

                                                

9 “What's in a name? That which we call a rose by any other name would smell as sweet.” 
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since it allows you to use multiple assignment to swap the bindings of two 
variables. 

For example, the code 

x, y = 2, 3 
x, y = y, x 
print 'x =', x 
print 'y =', y 

will print 

x = 3 
y = 2 
 

2.1.3 IDLE 

Typing programs directly into the shell is highly inconvenient.  Most 
programmers prefer to use some sort of text editor that is part of an integrated 
development environment (IDE). 

In this book, we will use IDLE,10 the IDE that comes as part of the standard 
Python installation package.  IDLE is an application, just like any other 
application on your computer.  Start it the same way you would start any other 
application, e.g., by double-clicking on an icon. 

IDLE provides 

• a text editor with syntax highlighting, autocompletion, and smart 
indentation, 

• a shell with syntax highlighting, and 

• an integrated debugger, which you should ignore for now. 

When IDLE starts it will open a shell window into which you can type Python 
commands.  It will also provide you with a file menu and an edit menu (as well 
as some other menus, which you can safely ignore for now). 

The file menu includes commands to 

• create a new editing window into which you can type a Python program, 

• open a file containing an existing Python program, and 

• save the contents of the current editing window into a file (with file 
extension .py). 

The edit menu includes standard text-editing commands (e.g., copy, paste, and 
find) plus some commands specifically designed to make it easy to edit Python 
code (e.g., indent region and comment out region). 

                                                

10 Allegedly, the name Python was chosen as a tribute to the British comedy troupe 
Monty Python.  This leads one to think that the name IDLE is a pun on Eric Idle, a 
member of the troupe. 
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For a complete description of IDLE, see 
http://docs.python.org/library/idle.html. 

2.2 Branching Programs 

The kinds of computations we have been looking at thus far are called straight-
line programs.  They execute one statement after another in the order in which 
they appear, and stop when they run out of statements.  The kinds of 
computations we can describe with straight-line programs are not very 
interesting.  In fact, they are downright boring. 

Branching programs are more interesting.  The simplest branching statement is 
a conditional.  As depicted in Figure 2.3, a conditional statement has three 
parts: 

• a test, i.e., an expression that evaluates to either True or False; 

• a block of code that is executed if the test evaluates to True; and 

• an optional block of code that is executed if the test evaluates to False. 

After a conditional statement is executed, execution resumes at the code 
following the statement.  

 

Figure 2.3  Flow chart for conditional statement 

In Python, a conditional statement has the form 

if Boolean expression: 
    block of code 
else: 
    block of code 

In describing the form of Python statements we use italics to describe the kinds 
of code that could occur at that point in a program.  For example, Boolean 
expression indicates that any expression that evaluates to True or False can 
follow the reserved word if, and block of code indicates that any sequence of 
Python statements can follow else:. 
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Consider the following program that prints “Even” if the value of the variable x is 
even and “Odd” otherwise: 

if x%2 == 0: 
    print 'Even' 
else: 
    print 'Odd' 
print 'Done with conditional' 

The expression x%2 == 0 evaluates to True when the remainder of x divided by 2 
is 0, and False otherwise.  Remember that == is used for comparison, since = is 
reserved for assignment.  

Indentation is semantically meaningful in Python.  For example, if the last 
statement in the above code were indented it would be part of the block of code 
associated with the else, rather than with the block of code following the 
conditional statement. 

Python is unusual in using indentation this way.  Most other programming 
languages use some sort of bracketing symbols to delineate blocks of code, e.g., 
C encloses blocks in braces, { }.  An advantage of the Python approach is that it 
ensures that the visual structure of a program is an accurate representation of 
the semantic structure of that program. 

When either the true block or the false block of a conditional contains another 
conditional, the conditional statements are said to be nested.  In the code 
below, there are nested conditionals in both branches of the top-level if 
statement.  

if x%2 == 0: 
    if x%3 == 0: 
        print 'Divisible by 2 and 3' 
    else: 
        print 'Divisible by 2 and not by 3' 
elif x%3 == 0: 
    print 'Divisible by 3 and not by 2' 

The elif in the above code stands for “else if.” 

It is often convenient to use compound Boolean expressions in the test of a 
conditional, for example, 

if x < y and x < z: 
    print 'x is least' 
elif y < z: 
    print 'y is least' 
else: 
    print 'z is least' 

Conditionals allow us to write programs that are more interesting than straight-
line programs, but the class of branching programs is still quite limited.  One 
way to think about the power of a class of programs is in terms of how long they 
can take to run.  Assume that each line of code takes one unit of time to 
execute.  If a straight-line program has n lines of code, it will take n units of time 
to run.  What about a branching program with n lines of code?  It might take 
less than n units of time to run, but it cannot take more, since each line of code 
is executed at most once. 
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A program for which the maximum running time is bounded by the length of the 
program is said to run in constant time.  This does not mean that each time it 
is run it executes the same number of steps.  It means that there exists a 
constant, k, such that the program is guaranteed to take no more than k steps to 
run.  This implies that the running time does not grow with the size of the input 
to the program. 

Constant-time programs are quite limited in what they can do.  Consider, for 
example, writing a program to tally the votes in an election.  It would be truly 
surprising if one could write a program that could do this in a time that was 
independent of the number of votes cast.  In fact, one can prove that it is 
impossible to do so.  The study of the intrinsic difficulty of problems is the topic 
of computational complexity.  We will return to this topic several times in this 
book. 

Fortunately, we need only one more programming language construct, iteration, 
to be able to write programs of arbitrary complexity.  We get to that in Section 
2.4. 

 

Finger exercise:  Write a program that examines three variables—x, y, and z—
and prints the largest odd number among them.  If none of them are odd, it 
should print a message to that effect. 

2.3 Strings and Input 

Objects of type str are used to represent strings of characters.11  Literals of type 
str can be written using either single or double quotes, e.g., 'abc' or "abc".  

The literal '123' denotes a string of characters, not the number one hundred 
twenty-three. 

Try typing the following expressions in to the Python interpreter (remember that 
the >>> is a prompt, not something that you type): 

>>> 'a' 
>>> 3*4 
>>> 3*'a' 
>>> 3+4 
>>> 'a'+'a' 

The operator + is said to be overloaded: It has different meanings depending 
upon the types of the objects to which it is applied.  For example, it means 
addition when applied to two numbers and concatenation when applied to two 
strings.  The operator * is also overloaded.  It means what you expect it to mean 
when its operands are both numbers.  When applied to an int and a str, it 
duplicates the str.  For example, the expression 2*'John' has the value 

                                                

11 Unlike many programming languages, Python has no type corresponding to a 
character.  Instead, it uses strings of length 1. 
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'JohnJohn'.  There is a logic to this.  Just as the expression 3*2 is equivalent to 
2+2+2, the expression 3*'a' is equivalent to 'a'+'a'+'a'. 

Now try typing 

>>> a 
>>> 'a'*'a' 

Each of these lines generates an error message. 

The first line produces the message 

NameError: name 'a' is not defined 

Because a is not a literal of any type, the interpreter treats it as a name.  
However, since that name is not bound to any object, attempting to use it 
causes a runtime error. 

The code 'a'*'a' produces the error message 

TypeError: can't multiply sequence by non-int of type 'str'  

That type checking exists is a good thing.  It turns careless (and sometimes 
subtle) mistakes into errors that stop execution, rather than errors that lead 
programs to behave in mysterious ways.  The type checking in Python is not as 
strong as in some other programming languages (e.g., Java).  For example, it is 
pretty clear what < should mean when it is used to compare two strings or two 
numbers.  But what should the value of '4' < 3 be?  Rather arbitrarily, the 
designers of Python decided that it should be False, because all numeric values 
should be less than all values of type str.  The designers of some other 
languages decided that since such expressions don’t have an obvious meaning, 
they should generate an error message. 

Strings are one of several sequence types in Python.  They share the following 
operations with all sequence types. 

The length of a string can be found using the len function.  For example, the 
value of len('abc') is 3. 

Indexing can be used to extract individual characters from a string.  In Python, 
all indexing is zero-based.  For example, typing 'abc'[0] into the interpreter will 
cause it to display the string 'a'.  Typing 'abc'[3] will produce the error 
message IndexError: string index out of range.  Since Python uses 0 to 
indicate the first element of a string, the last element of a string of length 3 is 
accessed using the index 2.  Negative numbers are used to index from the end of 
a string.  For example, the value of 'abc'[-1] is 'c'. 

Slicing is used to extract substrings of arbitrary length.  If s is a string, the 
expression s[start:end] denotes the substring of s that starts at index start 
and ends at index end-1. For example, 'abc'[1:3] = 'bc'.  Why does it end at 
index end-1 rather than end?  So that expressions such as 'abc'[0:len('abc')] 
have the value one might expect.  If the value before the colon is omitted, it 
defaults to 0.  If the value after the colon is omitted, it defaults to the length of 
the string.  Consequently, the expression 'abc'[:] is semantically equivalent to 
the more verbose 'abc'[0:len('abc')]. 
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2.3.1 Input 

Python 2.7 has two functions (see Chapter 4 for a discussion of functions in 
Python) that can be used to get input directly from a user, input and 
raw_input.12  Each takes a string as an argument and displays it as a prompt in 
the shell.  It then waits for the user to type something, followed by hitting the 
enter key.  For raw_input, the input line is treated as a string and becomes the 

value returned by the function; input treats the typed line as a Python 
expression and infers a type.  In this book, we use only raw_input, which is less 
likely to lead to programs that behave in unexpected ways. 

Consider the code 

>>> name = raw_input('Enter your name: ') 
Enter your name: George Washington 
>>> print 'Are you really', name, '?'  
Are you really George Washington ? 
>>> print 'Are you really ' + name + '?'  
Are you really George Washington? 

Notice that the first print statement introduces a blank before the “?”  It does 
this because when print is given multiple arguments it places a blank space 
between the values associated with the arguments.  The second print statement 
uses concatenation to produce a string that does not contain the superfluous 
blank and passes this as the only argument to print. 

Now consider, 

>>> n = raw_input('Enter an int: ') 
Enter an int: 3 
>>> print type(n) 
<type 'str'> 

Notice that the variable n is bound to the str '3' not the int 3.  So, for example, 
the value of the expression n*4 is '3333' rather than 12.  The good news is that 
whenever a string is a valid literal of some type, a type conversion can be applied 
to it. 

Type conversions (also called type casts) are used often in Python code.  We 
use the name of a type to convert values to that type.  So, for example, the value 
of int('3')*4 is 12.  When a float is converted to an int, the number is 
truncated (not rounded), e.g., the value of int(3.9) is the int 3. 

2.4 Iteration 

A generic iteration (also called looping) mechanism is depicted in Figure 2.4.  
Like a conditional statement it begins with a test.  If the test evaluates to True, 
the program executes the loop body once, and then goes back to reevaluate the 
test.  This process is repeated until the test evaluates to False, after which 
control passes to the code following the iteration statement. 
                                                

12 Python 3 has only one command, input.  Somewhat confusingly, Python 3’s input has 
the same semantics as raw_input in Python 2.7.  Go figure. 
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Figure 2.4  Flow chart for iteration 

Consider the following example: 

# Square an integer, the hard way 
x = 3 
ans = 0 
itersLeft = x 
while (itersLeft != 0): 
    ans = ans + x 
    itersLeft = itersLeft - 1 
print str(x) + '*' + str(x) + ' = ' + str(ans) 

The code starts by binding the variable x to the integer 3.  It then proceeds to 
square x by using repetitive addition.  The following table shows the value 
associated with each variable each time the test at the start of the loop is 
reached.  We constructed it by hand-simulating the code, i.e., we pretended to 
be a Python interpreter and executed the program using pencil and paper.  
Using pencil and paper might seem kind of quaint, but it is an excellent way to 
understand how a program behaves.13 

test #  x       ans     itersLeft 
1    3       0           3 
2    3       3           2 
3    3       6           1 
4    3       9           0 

The fourth time the test is reached, it evaluates to False and flow of control 
proceeds to the print statement following the loop. 

For what values of x will this program terminate? 

If x == 0, the initial value of itersLeft will also be 0, and the loop body will 
never be executed.  If x > 0, the initial value of itersLeft will be greater than 0, 
and the loop body will be executed. 

                                                

13 It is also possible to hand-simulate a program using pen and paper, or even a text 
editor. 
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Each time the loop body is executed, the value of itersLeft is decreased by 
exactly 1.  This means that if itersLeft started out greater than 0, after some 
finite number of iterations of the loop, itersLeft == 0.  At this point the loop 
test evaluates to False, and control proceeds to the code following the while 
statement. 

What if the value of x is -1?  Something very bad happens.  Control will enter 
the loop, and each iteration will move itersLeft farther from 0 rather than 
closer to it.  The program will therefore continue executing the loop forever (or 
until something else bad, e.g., an overflow error, occurs).  How might we remove 
this flaw in the program?  Initializing itersLeft to the absolute value of x almost 
works.  The loop terminates, but it prints a negative value.  If the assignment 
statement inside the loop is also changed, to ans = ans+abs(x),  the code works 
properly. 

We have now covered pretty much everything about Python that we need to 
know to start writing interesting programs that deal with numbers and strings.  
We now take a short break from learning the language.  In the next chapter, we 
use Python to solve some simple problems. 

 

Finger exercise:  Write a program that asks the user to input 10 integers, and 
then prints the largest odd number that was entered.  If no odd number was 
entered, it should print a message to that effect. 

 



 

    

3  SOME SIMPLE NUMERICAL PROGRAMS 

 

Now that we have covered some basic Python constructs, it is time to start 
thinking about how we can combine those constructs to write some simple 
programs.  Along the way, we’ll sneak in a few more language constructs and 
some algorithmic techniques. 

3.1 Exhaustive Enumeration 

The code in Figure 3.1 prints the integer cube root, if it exists, of an 
integer.  If the input is not a perfect cube, it prints a message to that 
effect.  

 

Figure 3.1  Using exhaustive enumeration to find the cube root 

For what values of x will this program terminate? 

The answer is, “all integers.”  This can be argued quite simply. 

• The value of the expression ans**3 starts at 0, and gets larger each time 
through the loop. 

• When it reaches or exceeds abs(x), the loop terminates. 

• Since abs(x) is always positive there are only a finite number of 
iterations before the loop must terminate. 

Whenever you write a loop, you should think about an appropriate 
decrementing function.  This is a function that has the following properties: 

1. It maps a set of program variables into an integer. 

2. When the loop is entered, its value is nonnegative. 

3. When its value is <=0, the loop terminates. 

4. Its value is decreased every time through the loop. 

What is the decrementing function for the loop in Figure 3.1?  It is 
abs(x) - ans**3. 

#Find the cube root of a perfect cube 
x = int(raw_input('Enter an integer: ')) 
ans = 0 
while ans**3 < abs(x): 
    ans = ans + 1 
if ans**3 != abs(x): 
    print x, 'is not a perfect cube' 
else: 
    if x < 0: 
        ans = -ans 
    print 'Cube root of', x,'is', ans 
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Now, let’s insert some errors and see what happens.  First, try commenting out 
the statement ans = 0.  The Python interpreter prints the error message, 
NameError: name 'ans' is not defined, because the interpreter attempts to 
find the value to which ans is bound before it has been bound to anything.  Now, 
restore the initialization of ans, replace the statement ans = ans + 1 by 
ans = ans, and try finding the cube root of 8.  After you get tired of waiting, enter 
“control c” (hold down the control key and the c key simultaneously).  This will 
return you to the user prompt in the shell. 

Now, add the statement 

print 'Value of the decrementing function abs(x) - ans**3 is',\ 
       abs(x) - ans**3 

at the start of the loop, and try running it again.  (The \ at the end of the first 
line of the print statement is used to indicate that the statement continues on 
the next line.) 

This time it will print 

Value of the decrementing function abs(x) - ans**3 is 8 

over and over again. 

The program would have run forever because the loop body is no longer 
reducing the distance between ans**3 and abs(x).  When confronted with a 
program that seems not to be terminating, experienced programmers often 
insert print statements, such as the one here, to test whether the decrementing 
function is indeed being decremented.  

The algorithmic technique used in this program is a variant of guess and check 
called exhaustive enumeration.  We enumerate all possibilities until we get to 
the right answer or exhaust the space of possibilities.  At first blush, this may 
seem like an incredibly stupid way to solve a problem.  Surprisingly, however, 
exhaustive enumeration algorithms are often the most practical way to solve a 
problem.  They are typically easy to implement and easy to understand.  And, in 
many cases, they run fast enough for all practical purposes.  Make sure to 
remove or comment out the print statement that you inserted and reinsert the 
ans = ans + 1 statement, and then try finding the cube root of 1957816251.  The 
program will seem to finish almost instantaneously.  Now, try 
7406961012236344616. 

As you can see, even if millions of guesses are required, it’s not usually a 
problem.  Modern computers are amazingly fast.  It takes on the order of one 
nanosecond—one billionth of a second—to execute an instruction.  It’s a bit 
hard to appreciate how fast that is.  For perspective, it takes slightly more than 
a nanosecond for light to travel a single foot (0.3 meters).  Another way to think 
about this is that in the time it takes for the sound of your voice to travel a 
hundred feet, a modern computer can execute millions of instructions. 
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Just for fun, try executing the code 

max = int(raw_input('Enter a postive integer: ')) 
i = 0 
while i < max: 
    i = i + 1 
print i 

See how large an integer you need to enter before there is a perceptible pause 
before the result is printed. 

 

Finger exercise: Write a program that asks the user to enter an integer and 
prints two integers, root and pwr, such that 0 < pwr < 6 and root**pwr is equal 
to the integer entered by the user. If no such pair of integers exists, it should 
print a message to that effect. 

3.2 For Loops 

The while loops we have used so far are highly stylized.  Each iterates over a 
sequence of integers.  Python provides a language mechanism, the for loop, 
that can be used to simplify programs containing this kind of iteration.  

The general form of a for statement is (recall that the words in italics are 
descriptions of what can appear, not actual code): 

for variable in sequence: 
     code block 

The variable following for is bound to the first value in the sequence, and the 
code block is executed.  The variable is then assigned the second value in the 
sequence, and the code block is executed again.  The process continues until the 
sequence is exhausted or a break statement is executed within the code block. 

The sequence of values bound to variable is most commonly generated using the 
built-in function range, which returns a sequence containing an arithmetic 
progression.  The range function takes three integer arguments: start, stop, and 
step.  It produces the progression start, start + step, start + 2*step, etc.  
If step is positive, the last element is the largest integer start + i*step less 
than stop.  If step is negative, the last element is the smallest integer 
start + i*step greater than stop.  For example, range(5, 40, 10) produces the 
sequence [5, 15, 25, 35], and range(40, 5, -10) produces the sequence 
[40, 30, 20, 10].  If the first argument is omitted it defaults to 0, and if the last 
argument (the step size) is omitted it defaults to 1.  For example, range(0, 3) 
and range(3) both produce the sequence [0, 1, 2]. 

Less commonly, we specify the sequence to be iterated over in a for loop by 
using a literal, e.g., [0, 1, 2].  In Python 2.7, range generates the entire 
sequence when it is invoked.  Therefore, for example, the expression 
range(1000000) uses quite a lot of memory.  This can be avoided by using the 
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built-in function xrange instead of range, since xrange generates the values only 
as they are needed by the for loop.14 

Consider the code 

x = 4 
for i in range(0, x): 
    print i 

It prints 

0 
1 
2 
3 

Now, think about the code 

x = 4 
for i in range(0, x): 
    print i 
    x = 5 

It raises the question of whether changing the value of x inside the loop affects 
the number of iterations.  It does not.  The range function in the line with for is 
evaluated just before the first iteration of the loop, and not reevaluated for 
subsequent iterations.  To see how this works, consider 

x = 4 
for j in range(x): 
    for i in range(x): 
        print i 
        x = 2 

It prints 

0 
1 
2 
3 
0 
1 
0 
1 
0 
1 

because the range function in the outer loop is evaluated only once, but the 
range function in the inner loop is evaluated each time the inner for statement 
is reached. 

The code in Figure 3.2 reimplements the exhaustive enumeration algorithm for 
finding cube roots.  The break statement in the for loop causes the loop to 
terminate before it has been run on each element in the sequence over which it 
is iterating.  When executed, a break statement exits the innermost loop in 
which it is enclosed. 

                                                

14 In Python 3, range behaves the way xrange behaves in Python 2. 
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Figure 3.2  Using for and break statements 

The for statement can be used to conveniently iterate over characters of a string.  
For example, 

total = 0 
for c in '123456789': 
    total = total + int(c) 
print total 

sums the digits in the string denoted by the literal '123456789' and prints the 
total.  

 

Finger exercise: Let s be a string that contains a sequence of decimal numbers 
separated by commas, e.g., s = '1.23,2.4,3.123'.  Write a program that prints 
the sum of the numbers in s. 

3.3 Approximate Solutions and Bisection Search 

Imagine that someone asks you to write a program that finds the square root of 
any nonnegative number.  What should you do? 

You should probably start by saying that you need a better problem statement.  
For example, what should the program do if asked to find the square root of 2?  
The square root of 2 is not a rational number.  This means that there is no way 
to precisely represent its value as a finite string of digits (or as a float), so the 
problem as initially stated cannot be solved. 

The right thing to have asked for is a program that finds an approximation to 
the square root—i.e., an answer that is close enough to the actual square root to 
be useful.  We will return to this issue in considerable detail later in the book.  
But for now, let’s think of “close enough” as an answer that lies within some 
constant, call it epsilon, of the actual answer.  

The code in Figure 3.3 implements an algorithm that finds an approximation to 
a square root.  It uses an operator, +=, that we have not previously used.  The 
code ans += step is semantically equivalent to the more verbose code 
ans = ans+step.  The operators -= and *= work similarly. 

#Find the cube root of a perfect cube 
x = int(raw_input('Enter an integer: ')) 
for ans in range(0, abs(x)+1): 
    if ans**3 >= abs(x): 
        break 
if ans**3 != abs(x): 
    print x, 'is not a perfect cube' 
else: 
    if x < 0: 
        ans = -ans 
    print 'Cube root of', x,'is', ans 
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Figure 3.3  Approximating the square root using exhaustive enumeration 

Once again, we are using exhaustive enumeration.  Notice that this method for 
finding the square root has nothing in common with the way of finding square 
roots using a pencil that you might have learned in middle school.  It is often the 
case that the best way to solve a problem with a computer is quite different from 
how one would approach the problem by hand. 

When the code is run, it prints 

numGuesses = 49990 
4.999 is close to square root of 25 

Should we be disappointed that the program didn’t figure out that 25 is a perfect 
square and print 5?  No.  The program did what it was intended to do. Though it  
would have been OK to print 5, doing so is no better than printing any value 
close enough to 5. 

What do you think will happen if we set x = 0.25?  Will it find a root close to 
0.5?  Nope.  Exhaustive enumeration is a search technique that works only if 
the set of values being searched includes the answer.  In this case, we are 
enumerating the values between 0 and x.  When x is between 0 and 1, the square 
root of x does not lie in this interval.  One way to fix this is to change the first 
line of the while loop to 

while abs(ans**2 - x) >= epsilon and ans*ans <= x: 

Now, let’s think about how long the program will take to run.  The number of 
iterations depends upon how close the answer is to zero and on the size of the 
steps.  Roughly speaking, the program will execute the while loop at most 
x/step times. 

Let’s try the code on something bigger, e.g., x = 123456.  It will run for a bit, and 
then print 

numGuesses = 3513631 
Failed on square root of 123456 

What do you think happened?  Surely there exists a floating point number that 
approximates the square root of 123456 to within 0.01. Why didn’t our program 
find it?  The problem is that our step size was too large, and the program 
skipped over all the suitable answers.  Try making step equal to epsilon**3 and 

x = 25 
epsilon = 0.01 
step = epsilon**2 
numGuesses = 0 
ans = 0.0 
while abs(ans**2 - x) >= epsilon and ans <= x: 
    ans += step 
    numGuesses += 1 
print 'numGuesses =', numGuesses 
if abs(ans**2 - x) >= epsilon: 
    print 'Failed on square root of', x 
else: 
    print ans, 'is close to square root of', x 
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running the program.  It will eventually find a suitable answer, but you might 
not have the patience to wait for it to do so. 

Roughly how many guesses will it have to make?  The step size will be 0.000001 
and the square root of 123456 is around 351.36.  This means that the program will 
have to make in the neighborhood of 351,000,000 guesses to find a satisfactory 
answer.  We could try to speed it up by starting closer to the answer, but that 
presumes that we know the answer. 

The time has come to look for a different way to attack the problem.  We need to 
choose a better algorithm rather than fine tune the current one.  But before 
doing so, let’s look at a problem that, at first blush, appears to be completely 
different from root finding.  

Consider the problem of discovering whether a word starting with a given 
sequence of letters appears in some hard-copy dictionary of the English 
language.  Exhaustive enumeration would, in principle, work.  You could start at 
the first word and examine each word until either you found a word starting 
with the sequence of letters or you ran out of words to examine.  If the dictionary 
contained n words, it would, on average, take n/2 probes to find the word.  If the 
word were not in the dictionary, it would take n probes.  Of course, those who 
have had the pleasure of actually looking a word up in a physical (rather than 
online) dictionary would never proceed in this way. 

Fortunately, the folks who publish dictionaries go to the trouble of putting the 
words in lexicographical order.  This allows us to open the book to a page where 
we think the word might lie (e.g., near the middle for words starting with the 
letter m).  If the sequence of letters lexicographically precedes the first word on 
the page, we know to go backwards.  If the sequence of letters follows the last 
word on the page, we know to go forwards.  Otherwise, we check whether the 
sequence of letters matches a word on the page. 

Now let’s take the same idea and apply it the problem of finding the square root 
of x.  Suppose we know that a good approximation to the square root of x lies 
somewhere between 0 and max.  We can exploit the fact that numbers are totally 
ordered.  That is to say, for any pair of distinct numbers, n1 and n2, either 
n1 < n2 or n1 > n2.  So, we can think of the square root of x as lying somewhere on 
the line 

0_________________________________________________________max 

and start searching that interval.  Since we don’t necessarily know where to 
start searching, let’s start in the middle.  

0__________________________guess__________________________max  

If that is not the right answer (and it won’t be most of the time), ask whether it is 
too big or too small.  If it is too big, we know that the answer must lie to the left.  
If it is too small, we know that the answer must lie to the right.  We then repeat 
the process on the smaller interval.  Figure 3.4 contains an implementation and 
test of this algorithm. 
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Figure 3.4  Using bisection search to approximate square root 

When run, it prints 

low = 0.0 high = 25 ans = 12.5 
low = 0.0 high = 12.5 ans = 6.25 
low = 0.0 high = 6.25 ans = 3.125 
low = 3.125 high = 6.25 ans = 4.6875 
low = 4.6875 high = 6.25 ans = 5.46875 
low = 4.6875 high = 5.46875 ans = 5.078125 
low = 4.6875 high = 5.078125 ans = 4.8828125 
low = 4.8828125 high = 5.078125 ans = 4.98046875 
low = 4.98046875 high = 5.078125 ans = 5.029296875 
low = 4.98046875 high = 5.029296875 ans = 5.0048828125 
low = 4.98046875 high = 5.0048828125 ans = 4.99267578125 
low = 4.99267578125 high = 5.0048828125 ans = 4.99877929688 
low = 4.99877929688 high = 5.0048828125 ans = 5.00183105469 
numGuesses = 13 
5.00030517578 is close to square root of 25 

Notice that it finds a different answer than our earlier algorithm.  That is 
perfectly fine, since it still meets the problem statement. 

More important, notice that at each iteration the size of the space to be searched 
is cut in half.  Because it divides the search space in half at each step, it is 
called a bisection search. Bisection search is a huge improvement over our 
earlier algorithm, which reduced the search space by only a small amount at 
each iteration. 

Let us try x = 123456 again.  This time the program takes only thirty guesses to 
find an acceptable answer.  How about x = 123456789 ?  It takes only forty-five 
guesses. 

There is nothing special about the fact that we are using this algorithm to find 
square roots.  For example, by changing a couple of 2’s to 3’s, we can use it to 
approximate a cube root of a nonnegative number.  In the next chapter we will 
introduce a language mechanism that allows us to generalize this code to find 
any root.  

Finger exercise:  What would the code in Figure 3.4 do if the statement x = 25 
were replaced by x = -25? 

x = 25 
epsilon = 0.01 
numGuesses = 0 
low = 0.0 
high = max(1.0, x) 
ans = (high + low)/2.0 
while abs(ans**2 - x) >= epsilon: 
    print 'low =', low, 'high =', high, 'ans =', ans 
    numGuesses += 1 
    if ans**2 < x: 
        low = ans 
    else: 
        high = ans 
    ans = (high + low)/2.0 
print 'numGuesses =', numGuesses 
print ans, 'is close to square root of', x 
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Finger exercise:  What would have to be changed to make the code in Figure 
3.4 work for finding an approximation to the cube root of both negative and 
positive numbers? (Hint: think about changing low to ensure that the answer 
lies within the region being searched.) 

3.4 A Few Words About Using Floats 

Most of the time, numbers of type float provide a reasonably good 
approximation to real numbers.  But “most of the time” is not all of the time, 
and when they don’t it can lead to surprising consequences.  For example, try 
running the code 

x = 0.0 
for i in range(10): 
    x = x + 0.1 
if x == 1.0: 
    print x, '= 1.0' 
else: 
    print x, 'is not 1.0' 

Perhaps you, like most people, find it doubly surprising that it prints, 

1.0 is not 1.0 

Why does it get to the else clause in the first place?  And if it somehow does get 
there, why is it printing such a nonsensical phrase? 

To understand why this happens, we need to understand how floating point 
numbers are represented in the computer during a computation.  To understand 
that, we need to understand binary numbers.  

When you first learned about decimal numbers, i.e., numbers base 10, you 
learned that a decimal number is represented by a sequence of the digits 
0123456789.  The rightmost digit is the 100 place, the next digit towards the left 
the 101 place, etc.  For example, the sequence of decimal digits 302 represents 
3*100 + 0*10 + 2*1.  How many different numbers can be represented by a 

sequence of length n?  A sequence of length one can represent any one of ten 
numbers (0 - 9).  A sequence of length two can represent one hundred different 
numbers (0-99).  More generally, with a sequence of length n, one can represent 
10n different numbers. 

Binary numbers—numbers base 2—work similarly.  A binary number is 
represented by a sequence of digits each of which is either 0 or 1.  These digits 
are often called bits.  The rightmost digit is the 20 place, the next digit towards 
the left the 21 place, etc.  For example, the sequence of binary digits 101 
represents 1*4 + 0*2 + 1*1 = 5.  How many different numbers can be represented by 

a sequence of length n?  2n. 

Finger exercise:  What is the decimal equivalent of the binary number 
10011? 
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Perhaps because most people have ten fingers, we seem to like to use decimals 
to represent numbers.  On the other hand, all modern computer systems 
represent numbers in binary.  This is not because computers are born with two 
fingers.  It is because it is easy to build hardware switches, i.e., devices that can 
be in only one of two states, on or off.  That the computer uses a binary 
representation and people a decimal representation can lead to occasional 
cognitive dissonance. 

In almost modern programming languages non-integer numbers are 
implemented using a representation called floating point.  For the moment, 
let’s pretend that the internal representation is in decimal.  We would represent 
a number as a pair of integers—the significant digits of the number and an 
exponent.  For example, the number 1.949 would be represented as the pair 
(1949, -3), which stands for the product 1949 X 10-3.  

The number of significant digits determines the precision with which numbers 
can be represented.  If for example, there were only two significant digits, the 
number 1.949 could not be represented exactly.  It would have to be converted to 
some approximation of 1.949, in this case 1.9.  That approximation is called the 
rounded value. 

Modern computers use binary, not decimal, representations. We represent the 
significant digits and exponents in binary rather than decimal and raise 2 rather 
than 10 to the exponent.  For example, the number 0.625 (5/8) would be 
represented as the pair (101, -11); because 5/8 is 0.101 in binary and -11 is the 
binary representation of -3, the pair (101, -11) stands for 5 X 2-3 = 5/8 = 0.625. 

What about the decimal fraction 1/10, which we write in Python as 0.1?  The best 
we can do with four significant binary digits is (0011, -101).  This is equivalent to 
3/32, i.e., 0.09375.  If we had five significant binary digits, we would represent 0.1 
as (11001, -1000), which is equivalent to 25/256, i.e., 0.09765625.  How many 
significant digits would we need to get an exact floating point representation of 
0.1?  An infinite number of digits!  There do not exist integers sig and exp such 

that sig * 2
-exp equals 0.1. So no matter how many bits Python (or any other 

language) chooses to use to represent floating point numbers, it will be able to 
represent only an approximation to 0.1.  In most Python implementations, there 
are 53 bits of precision available for floating point numbers, so the significant 
digits stored for the decimal number 0.1 will be 

11001100110011001100110011001100110011001100110011001 

This is equivalent to the decimal number 

0.1000000000000000055511151231257827021181583404541015625 

Pretty close to 1/10, but not exactly 1/10. 
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Returning to the original mystery, why does 

x = 0.0 
for i in range(10): 
    x = x + 0.1 
if x == 1.0: 
    print x, '= 1.0' 
else: 
    print x, 'is not 1.0' 

print 

1.0 is not 1.0 

We now see that the test x == 1.0 produces the result False because the value 
to which x is bound is not exactly 1.0.  What gets printed if we add to the end of 
the else clause the code print x == 10.0*0.1?  It prints False because during 
at least one iteration of the loop Python ran out of significant digits and did 
some rounding.  It’s not what our elementary school teachers taught us, but 
adding 0.1 ten times does not produce the same value as multiplying 0.1 by 10. 

Finally, why does the code 

print x 

print 1.0 rather than the actual value of the variable x?  Because the designers 
of Python thought that would be convenient for users if print did some 
automatic rounding.  This is probably an accurate assumption most of the time.  
However, it is important to keep in mind that what is being displayed does not 
necessarily exactly match the value stored in the machine. 

By the way, if you want to explicitly round a floating point number, use the 
round function.  The expression round(x, numDigits) returns the floating point 
number equivalent to rounding the value of x to numDigits decimal digits 
following the decimal point.  For example print round(2**0.5, 3) will print 1.414 
as an approximation to the square root of 2. 

Does the difference between real and floating point numbers really matter?  
Most of the time, mercifully, it does not.  However, one thing that is almost 
always worth worrying about is tests for equality.  As we have seen, using == to 
compare two floating point values can produce a surprising result.  It is almost 
always more appropriate to ask whether two floating point values are close 
enough to each other, not whether they are identical.  So, for example, it is 
better to write abs(x-y) < 0.0001 rather than x == y. 

Another thing to worry about is the accumulation of rounding errors.  Most of 
the time things work out OK because sometimes the number stored in the 
computer is a little bigger than intended, and sometimes it is a little smaller 
than intended.  However, in some programs, the errors will all be in the same 
direction and accumulate over time. 
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3.5 Newton-Raphson 

The most commonly used approximation algorithm is usually attributed to Isaac 
Newton.  It is typically called Newton’s method, but is sometimes referred to as 
the Newton-Raphson method.15  It can be used to find the real roots of many 
functions, but we shall look at it only in the context of finding the real roots of a 
polynomial with one variable.  The generalization to polynomials with multiple 
variables is straightforward both mathematically and algorithmically. 

A polynomial with one variable (by convention, we will write the variable as x) is 
either zero or the sum of a finite number of nonzero terms, e.g., 3x2 + 2x + 3.  
Each term, e.g., 3x2, consists of a constant (the coefficient of the term, 3 in this 
case) multiplied by the variable (x in this case) raised to a nonnegative integer 
exponent (2 in this case). The exponent on a variable in a term is called the 
degree of that term. The degree of a polynomial is the largest degree of any 
single term. Some examples are, 3 (degree 0), 2.5x + 12 (degree 1), and 3x2 

(degree 2).  In contrast, 2/x and x0.5 are not polynomials. 

If p is a polynomial and r a real number, we will write p(r) to stand for the value of 
the polynomial when x = r. A root of the polynomial p is a solution to the 
equation p = 0, i.e., an r such that p(r) = 0.  So, for example, the problem of finding 
an approximation to the square root of 24 can be formulated as finding an x 
such that x2 – 24 ≈ 0. 

Newton proved a theorem that implies that if a value, call it guess, is an 
approximation to a root of a polynomial, then guess – p(guess)/p’(guess), where p’ is 
the first derivative of p, is a better approximation.16 

For any constant k and any coefficient c, the first derivative of cx2 + k is 2cx.  For 
example, the first derivative of x2 – k is 2x.  Therefore, we know that we can 
improve on the current guess, call it y, by choosing as our next guess 
y - (y2 - k)/2y.  This is called successive approximation.  Figure 3.5 contains code 
illustrating how to use this idea to quickly find an approximation to the square 
root. 

 

                                                

15 Joseph Raphson published a similar method about the same time as Newton. 

16 The first derivative of a function f(x) can be thought of as expressing how the value of 
f(x) changes with respect to changes in x.  If you haven’t previously encountered 
derivatives, don’t worry.  You don’t need to understand them, or for that matter 
polynomials, to understand the implementation of Newton’s method. 
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Figure 3.5  Newton-Raphson method 

Finger exercise:  Add some code to the implementation of Newton-Raphson that 
keeps track of the number of iterations used to find the root.  Use that code as 
part of a program that compares the efficiency of Newton-Raphson and bisection 
search.  (You should discover that Newton-Raphson is more efficient.)

#Newton-Raphson for square root 
#Find x such that x**2 - 24 is within epsilon of 0 
epsilon = 0.01 
k = 24.0 
guess = k/2.0 
while abs(guess*guess - k) >= epsilon: 
    guess = guess - (((guess**2) - k)/(2*guess)) 
print 'Square root of', k, 'is about', guess 
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4 FUNCTIONS, SCOPING, AND ABSTRACTION 

 

So far, we have introduced numbers, assignments, input/output, comparisons, 
and looping constructs. How powerful is this subset of Python?  In a theoretical 
sense, it is as powerful as you will ever need.  Such languages are called Turing 
complete.  This means that if a problem can be solved via computation, it can 
be solved using only those statements you have already seen. 

Which isn’t to say that you should use only these statements.  At this point we 
have covered a lot of language mechanisms, but the code has been a single 
sequence of instructions, all merged together.  For example, in the last chapter 
we looked at the code in Figure 4.1. 

 

Figure 4.1  Using bisection search to approximate square root 

This is a reasonable piece of code, but it lacks general utility.  It works only for 
values denoted by the variables x and epsilon.  This means that if we want to 
reuse it, we need to copy the code, possibly edit the variable names, and paste it 
where we want it.  Because of this we cannot easily use this computation inside 
of some other, more complex, computation. 

Furthermore, if we want to compute cube roots rather than square roots, we 
have to edit the code.  If we want a program that computes both square and 
cube roots (or for that matter square roots in two different places), the program 
would contain multiple chunks of almost identical code.  This is a very bad 
thing.  The more code a program contains, the more chance there is for 
something to go wrong, and the harder the code is to maintain.  Imagine, for 
example, that there was an error in the initial implementation of square root, 
and that the error came to light when testing the program.  It would be all too 
easy to fix the implementation of square root in one place and forget that there 
was similar code elsewhere that was also in need of repair. 

Python provides several linguistic features that make it relatively easy to 
generalize and reuse code.  The most important is the function.   

x = 25 
epsilon = 0.01 
numGuesses = 0 
low = 0.0 
high = max(1.0, x) 
ans = (high + low)/2.0 
while abs(ans**2 - x) >= epsilon: 
    numGuesses += 1 
    if ans**2 < x: 
        low = ans 
    else: 
        high = ans 
    ans = (high + low)/2.0 
print 'numGuesses =', numGuesses 
print ans, 'is close to square root of', x 
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4.1 Functions and Scoping 

We’ve already used a number of built-in functions, e.g., max and abs in Figure 
4.1.  The ability for programmers to define and then use their own functions, as 
if they were built-in, is a qualitative leap forward in convenience. 

4.1.1 Function Definitions 

In Python each function definition is of the form17 

def name of function (list of formal parameters): 
    body of function 

For example, we could define the function max18 by the code 

def max(x, y): 
    if x > y: 
        return x 
    else: 
        return y 

def is a reserved word that tells Python that a function is about to be defined.  
The function name (max in this example) is simply a name that is used to refer to 
the function. 

The sequence of names (x,y in this example) within the parentheses following 

the function name are the formal parameters of the function.  When the 
function is used, the formal parameters are bound (as in an assignment 
statement) to the actual parameters (often referred to as arguments) of the 
function invocation (also referred to as a function call).  For example, the 
invocation 

max(3, 4) 

binds x to 3 and y to 4. 

The function body is any piece of Python code.  There is, however, a special 
statement, return, that can be used only within the body of a function. 

A function call is an expression, and like all expressions it has a value.  That 
value is the value returned by the invoked function.  For example, the value of 
the expression max(3,4)*max(3,2) is 12, because the first invocation of max 
returns the int 4 and the second returns the int 3.  Note that execution of a 
return statement terminates that invocation of the function. 

To recapitulate, when a function is called 

1. The expressions that make up the actual parameters are evaluated, and 
the formal parameters of the function are bound to the resulting values.  
For example, the invocation max(3+4, z) will bind the formal parameter x 
to 7 and the formal parameter y to whatever value the variable z has 
when the invocation is evaluated. 

                                                

17 Recall that italics is used to describe Python code. 

18 In practice, you would probably use the built-in function max, rather than define your 
own.  
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2. The point of execution (the next instruction to be executed) moves from 
the point of invocation to the first statement in the body of the function. 

3. The code in the body of the function is executed until either a return 
statement is encountered, in which case the value of the expression 
following the return becomes the value of the function invocation, or 
there are no more statements to execute, in which case the function 
returns the value None.  (If no expression follows the return, the value of 
the invocation is None.) 

4. The value of the invocation is the returned value. 

5. The point of execution is transferred back to the code immediately 
following the invocation. 

Parameters provide something called lambda abstraction,19  allowing 
programmers to write code that manipulates not specific objects, but instead 
whatever objects the caller of the function chooses to use as actual parameters. 

Finger exercise:  Write a function isIn that accepts two strings as arguments 
and returns True if either string occurs anywhere in the other, and False 
otherwise.  Hint: you might want to use the built-in str operation in. 

4.1.2 Keyword Arguments and Default Values 

In Python, there are two ways that formal parameters get bound to actual 
parameters.  The most common method, which is the only one we have used 
thus far, is called positional—the first formal parameter is bound to the first 
actual parameter, the second formal to the second actual, etc.  Python also 
supports what it calls keyword arguments, in which formals are bound to 
actuals using the name of the formal parameter.  Consider the function 
definition in Figure 4.2.  The function printName assumes that firstName and 
lastName are strings and that reverse is a Boolean.  If reverse == True, it prints 
lastName, firstName, otherwise it prints firstName lastName. 

 

Figure 4.2  Function that prints a name 

Each of the following is an equivalent invocation of printName: 

printName('Olga', 'Puchmajerova', False) 
printName('Olga', 'Puchmajerova', False) 
printName('Olga', 'Puchmajerova', reverse = False) 
printName('Olga', lastName = 'Puchmajerova', reverse = False) 
printName(lastName='Puchmajerova', firstName='Olga', reverse=False) 

                                                

19 The name “lambda abstraction” is derived from some mathematics developed by Alonzo 
Church in the 1930s and 1940s.  

def printName(firstName, lastName, reverse):  
   if reverse: 
      print lastName + ', ' + firstName 
   else: 
      print firstName, lastName 
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Though the keyword arguments can appear in any order in the list of actual 
parameters, it is not legal to follow a keyword argument with a non-keyword 
argument.  Therefore, an error message would be produced by 

printName('Olga', lastName = 'Puchmajerova', False) 

Keyword arguments are commonly used in conjunction with default parameter 
values.  We can, for example, write 

def printName(firstName, lastName, reverse = False): 
   if reverse: 
      print lastName + ', ' + firstName 
   else: 
      print firstName, lastName 

Default values allow programmers to call a function with fewer than the 
specified number of arguments.  For example, 

printName('Olga', 'Puchmajerova') 
printName('Olga', 'Puchmajerova', True) 
printName('Olga', 'Puchmajerova', reverse = True) 

will print 

Olga Puchmajerova 
Puchmajerova, Olga 
Puchmajerova, Olga 

The last two invocations of printName are semantically equivalent.  The last one 
has the advantage of providing some documentation for the perhaps mysterious 
parameter True. 

4.1.3 Scoping 

Let’s look at another small example, 

def f(x): #name x used as formal parameter 
    y = 1 
    x = x + y 
    print 'x =', x 
    return x 
 
x = 3 
y = 2 
z = f(x) #value of x used as actual parameter 
print 'z =', z 
print 'x =', x 
print 'y =', y 

When run, this code prints, 

x = 4 
z = 4 
x = 3 
y = 2 

What is going on here?  At the call of f, the formal parameter x is locally bound 
to the value of the actual parameter x.  It is important to note that though the 
actual and formal parameters have the same name, they are not the same 
variable.  Each function defines a new name space, also called a scope.  The 
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formal parameter x and the local variable y that are used in f exist only within 
the scope of the definition of f.  The assignment statement x = x + y within the 
function body binds the local name x to the object 4.  The assignments in f have 
no effect at all on the bindings of the names x and y that exist outside the scope 
of f. 

Here’s one way to think about this:  

• At top level, i.e., the level of the shell, a symbol table keeps track of all 
names defined at that level and their current bindings. 

• When a function is called, a new symbol table (sometimes called a stack 
frame) is created.  This table keeps track of all names defined within the 
function (including the formal parameters) and their current bindings.  If 
a function is called from within the function body, yet another stack 
frame is created. 

• When the function completes, its stack frame goes away. 

In Python, one can always determine the scope of a name by looking at the 
program text. This is called static or lexical scoping.  Figure 4.3 contains a 
slightly more elaborate example. 

 

Figure 4.3  Nested scopes 

The history of the stack frames associated with the code in Figure 4.3 is 
depicted in Figure 4.4. 

def f(x): 
   def g(): 
      x = 'abc' 
      print 'x =', x 
   def h(): 
      z = x 
      print 'z =', z 
   x = x + 1 
   print 'x =', x 
   h() 
   g() 
   print 'x =', x 
   return g 
 
x = 3 
z = f(x) 
print 'x =', x 
print 'z =', z 
z() 
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Figure 4.4  Stack frames 

The first column contains the set of names known outside the body of the 
function f, i.e., the variables x and z, and the function name f.  The first 
assignment statement binds x to 3. 

The assignment statement z = f(x) first evaluates the expression f(x) by 
invoking the function f with the value to which x is bound.  When f is entered, a 
stack frame is created, as shown in column 2.  The names in the stack frame are 
x (the formal parameter, not the x in the calling context), g and h.  The variables 
g and h are bound to objects of type function.  The properties of each of these 
functions are given by the function definitions within f. 

When h is invoked from within f, yet another stack frame is created, as shown in 
column 3.  This frame contains only the local variable z.  Why does it not also 
contain x? A name is added to the scope associated with a function only if that 
name is either a formal parameter of the function or a variable that is bound to 
an object within the body of the function. In the body of h, x occurs only on the 
right-hand side of an assignment statement.  The appearance of a name (x in 
this case) that is not bound anywhere in the function body (the body of h) causes 
the interpreter to search the previous stack frame associated with the scope 
within which the function is defined (the stack frame associated with f).  If the 
name is found (which it is in this case) the value to which it is bound (4) is used.  
If it is not found there, an error message is produced. 

When h returns, the stack frame associated with the invocation of h goes away 
(i.e., it is popped off the top of the stack), as depicted in column 4.  Note that we 
never remove frames from the middle of the stack, but only the most recently 
added frame.  It is because it has this “last in first out” behavior that we refer to 
it as a stack (think of a stack of trays waiting to be taken in a cafeteria). 

Next g is invoked, and a stack frame containing g’s local variable x is added 
(column 5).  When g returns, that frame is popped (column 6).  When f returns, 
the stack frame containing the names associated with f is popped, getting us 
back to the original stack frame (column 7). 

Notice that when f returns, even though the variable g no longer exists, the 
object of type function to which that name was once bound still exists.  This is 
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because functions are objects, and can be returned just like any other kind of 
object.  So, z can be bound to the value returned by f, and the function call z() 
can be used to invoke the function that was bound to the name g within f—even 
though the name g is not known outside the context of f. 

So, what does the code in Figure 4.3 print?  It prints 

x = 4 
z = 4 
x = abc 
x = 4 
x = 3 
z = <function g at 0x15b43b0> 
x = abc 

The order in which references to a name occur is not germane.  If an object is 
bound to a name anywhere in the function body (even if it occurs in an 
expression before it appears as the left-hand-side of an assignment), it is treated 
as local to that function.20 

Consider, for example, the code 

def f(): 
   print x 
 
def g(): 
   print x 
   x = 1 
 
x = 3 
f() 
x = 3 
g() 

It prints 3 when f is invoked, but an error message is printed when it 
encounters the print statement in g because the assignment statement following 
the print statement causes x to be local to g.  And because x is local to g, it has 
no value when the print statement is executed. 

Confused yet?  It takes most people a bit of time to get their head around scope 
rules.  Don’t let this bother you.  For now, charge ahead and start using 
functions.  Most of the time you will find that you only want to use variables 
that are local to a function, and the subtleties of scoping will be irrelevant. 

                                                

20 The wisdom of this language design decision is debatable. 
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4.2 Specifications 

Figure 4.5 defines a function, findRoot, that generalizes the bisection search we 
used to find square roots in Figure 4.1.  It also contains a function, 
testFindRoot, that can be used to test whether or not findRoot works as 
intended. 

The function testFindRoot is almost as long as findRoot itself.  To inexperienced 
programmers, writing test functions such as this often seems to be a waste of 
effort.  Experienced programmers know, however, that an investment in writing 
testing code often pays big dividends.  It certainly beats typing test cases into 
the shell over and over again during debugging (the process of finding out why a 
program does not work, and then fixing it).  It also forces us to think about 
which tests are likely to be most illuminating. 

The text between the triple quotation marks is called a docstring in Python.  By 
convention, Python programmers use docstrings to provide specifications of 
functions.  These docstrings can be accessed using the built-in function help. 

If we enter the shell and type help(abs), the system will display 

Help on built-in function abs in module __builtin__: 
abs(...) 
    abs(number) -> number 
        Return the absolute value of the argument. 

If the code in Figure 4.5 (below) has been loaded into IDLE, typing 
help(findRoot) in the shell will display 

Help on function findRoot in module __main__: 
 
findRoot(x, power, epsilon) 
    Assumes x and epsilon int or float, power an int, 
        epsilon > 0 & power >= 1 
    Returns float y such that y**power is within epsilon of x. 
        If such a float does not exist, it returns None 

If we type 

findRoot( 

in either the shell or the editor, the list of formal parameters and the first line of 
the docstring will be displayed. 
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Figure 4.5  Finding an approximation to a root 

A specification of a function defines a contract between the implementer of a 
function and those who will be writing programs that use the function.  We will 
refer to the users of a function as its clients.  This contract can be thought of as 
containing two parts: 

1. Assumptions:  These describe conditions that must be met by clients of 
the function.  Typically, they describe constraints on the actual 
parameters.  Almost always, they specify the acceptable set of types for 
each parameter, and not infrequently some constraints on the value of 
one or more of the parameters.  For example, the first two lines of the 
docstring of findRoot describe the assumptions that must be satisfied by 
clients of findRoot. 

2. Guarantees: These describe conditions that must be met by the function, 
provided that it has been called in a way that satisfies the assumptions.  
The last two lines of the docstring of findRoot describe the guarantees 
that the implementation of the function must meet. 

Functions are a way of creating computational elements that we can think of as 
primitives.  Just as we have the built-in functions max and abs, we would like to 
have the equivalent of a built-in function for finding roots and for many other 
complex operations. Functions facilitate this by providing decomposition and 
abstraction. 

def findRoot(x, power, epsilon): 
    """Assumes x and epsilon int or float, power an int, 
           epsilon > 0 & power >= 1 
       Returns float y such that y**power is within epsilon of x. 
           If such a float does not exist, it returns None""" 
    if x < 0 and power%2 == 0: 
        return None 
    low = min(-1.0, x) 
    high = max(1.0, x) 
    ans = (high + low)/2.0 
    while abs(ans**power - x) >= epsilon: 
        if ans**power < x: 
            low = ans 
        else: 
            high = ans 
        ans = (high + low)/2.0 
    return ans 
 
def testFindRoot(): 
    epsilon = 0.0001 
    for x in (0.25, -0.25, 2, -2, 8, -8): 
        for power in range(1, 4): 
            print 'Testing x = ' + str(x) +\ 
                  ' and power = ' + str(power) 
            result = findRoot(x, power, epsilon) 
            if result == None: 
                print '   No root' 
            else: 
                print '   ', result**power, '~=', x 
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Decomposition creates structure.  It allows us to break a problem into modules 
that are reasonably self-contained, and that may be reused in different settings.   

Abstraction hides detail.  It allows us to use a piece of code as if it were a black 
box—that is, something whose interior details we cannot see, don’t need to see, 
and shouldn’t even want to see.21  The essence of abstraction is preserving 
information that is relevant in a given context, and forgetting information that is 
irrelevant in that context. The key to using abstraction effectively in 
programming is finding a notion of relevance that is appropriate for both the 
builder of an abstraction and the potential clients of the abstraction.  That is the 
true art of programming. 

Abstraction is all about forgetting. There are lots of ways to model this, for 
example, the auditory apparatus of most teenagers. 

Teenager says: May I borrow the car tonight? 

Parent says: Yes, but be back before midnight, and make sure that the gas tank 
is full. 

Teenager hears: Yes. 

The teenager has ignored all of those pesky details that he or she considers 
irrelevant.  Abstraction is a many-to-one process.  Had the parent said Yes, but 
be back before 2:00 a.m., and make sure that the car is clean, it would also have 
been abstracted to Yes. 

By way of analogy, imagine that you were asked to produce an introductory 
computer science course containing twenty-five lectures.  One way to do this 
would be to recruit twenty-five professors, and ask each of them to prepare a 
fifty-minute lecture on their favorite topic.  Though you might get twenty-five 
wonderful hours, the whole thing is likely to feel like a dramatization of 
Pirandello’s “Six Characters in Search of an Author” (or that political science 
course you took with fifteen guest lecturers).  If each professor worked in 
isolation, they would have no idea how to relate the material in their lecture to 
the material covered in other lectures. 

Somehow, one needs to let everyone know what everyone else is doing, without 
generating so much work that nobody is willing to participate.  This is where 
abstraction comes in.  You could write twenty-five specifications, each saying 
what material the students should learn in each lecture, but not giving any 
detail about how that material should be taught.  What you got might not be 
pedagogically wonderful, but at least it might make sense. 

This is the way organizations go about using teams of programmers to get things 
done.  Given a specification of a module, a programmer can work on 
implementing that module without worrying unduly about what the other 
programmers on the team are doing.  Moreover, the other programmers can use 
the specification to start writing code that uses that module without worrying 
unduly about how that module is to be implemented. 

                                                

21 “Where ignorance is bliss, ’tis folly to be wise.”—Thomas Gray 
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The specification of findRoot is an abstraction of all the possible 
implementations that meet the specification.  Clients of findRoot can assume 
that the implementation meets the specification, but they should assume 
nothing more.  For example, clients can assume that the call 
findRoot(4.0, 2, 0.01) returns some value whose square is between 3.99 and 
4.01.  The value returned could be positive or negative, and even though 4.0, is 
a perfect square the value returned might not be 2.0 or -2.0. 

4.3 Recursion 

You may have heard of recursion, and in all likelihood think of it as a rather 
subtle programming technique.  That’s an urban legend spread by computer 
scientists to make people think that we are smarter than we really are.  
Recursion is a very important idea, but it’s not so subtle, and it is more than a 
programming technique. 

As a descriptive method recursion is widely used, even by people who would 
never dream of writing a program. 

Consider part of the legal code of the United States defining the notion of a 
“natural-born” citizen.  Roughly speaking, the definition is as follows    

1. Any child born inside the United States, 

2. Any child born in wedlock outside the United States both of whose 
parents are citizens of the U.S., as long as one parent has lived in the 
U.S. prior to the birth of the child, and 

3. Any child born in wedlock outside the United States one of whose 
parents is a U.S. citizen who has lived at least five years in the U.S. prior 
to the birth of the child, provided that at least two of those years were 
after the citizen’s fourteenth birthday. 

The first part is simple; if you are born in the United States, you are a natural-
born citizen (such as Barack Obama).  If you are not born in the U.S., then one 
has to decide if your parents are U.S. citizens (either natural born or 
naturalized).  To determine if your parents are U.S. citizens, you might have to 
look at your grandparents, and so on. 

In general, a recursive definition is made up of two parts. There is at least one 
base case that directly specifies the result for a special case (case 1 in the 
example above), and there is at least one recursive (inductive) case (cases 2 
and 3 in the example above) that defines the answer in terms of the answer to 
the question on some other input, typically a simpler version of the same 
problem. 
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The world’s simplest recursive definition is probably the factorial function 
(typically written in mathematics using !) on natural numbers.22  The classic 
inductive definition is, 

1! = 1 

(n + 1)! = (n + 1) * n! 

The first equation defines the base case.  The second equation defines factorial 
for all natural numbers, except the base case, in terms of the factorial of the 
previous number. 

Figure 4.6 contains both an iterative (factI) and a recursive (factR) 
implementation of factorial. 

 
Figure 4.6  Iterative and recursive implementations of factorial 

This function is sufficiently simple that neither implementation is hard to follow.  
Still, the second is a more obvious translation of the original recursive definition. 

It almost seems like cheating to implement factR by calling factR from within 
the body of factR.  It works for the same reason that the iterative 
implementation works.  We know that the iteration in factI will terminate 
because n starts out positive and each time around the loop it is reduced by 1.  
This means that it cannot be greater than 1 forever.  Similarly, if factR is called 
with 1, it returns a value without making a recursive call.  When it does make a 
recursive call, it always does so with a value one less than the value with which 
it was called.  Eventually, the recursion terminates with the call factR(1). 

4.3.1 Fibonacci Numbers 

The Fibonacci sequence is another common mathematical function that is 
usually defined recursively.  “They breed like rabbits,” is often used to describe a 
population that the speaker thinks is growing too quickly.  In the year 1202, the 

                                                

22 The exact definition of “natural number” is subject to debate.  Some define it as the 
positive integers and others as the nonnegative integers.  That’s why we were explicit 
about the possible values of n in the docstring in Figure 4.6. 

def factI(n): 
   """Assumes that n is an int > 0 
      Returns n!""" 
   result = 1 
   while n > 1: 
      result = result * n 
      n -= 1 
   return result 
    
def factR(n): 
   """Assumes that n is an int > 0 
      Returns n!""" 
   if n == 1: 
      return n 
   else: 
       return n*factR(n - 1) 
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Italian mathematician Leonardo of Pisa, also known as Fibonacci, developed a 
formula designed to quantify this notion, albeit with some not terribly realistic 
assumptions. 

Suppose a newly born pair of rabbits, one male and one female, are put in a pen 
(or worse, released in the wild).  Suppose further that the rabbits are able to 
mate at the age of one month (which, astonishingly, some breeds can) and have 
a one-month gestation period (which, astonishingly, some breeds do). Finally, 
suppose that these mythical rabbits never die, and that the female always 
produces one new pair (one male, one female) every month from its second 
month on. How many pregnant rabbits will there be at the end of six months? 

On the last day of the first month (call it month 0), there will be one female 
(ready to conceive on the first day of the next month).  On the last day of the 
second month, there will still be only one female (since she will not give birth 
until the first day of the next month).  On the last day of the next month, there 
will be two females (one pregnant and one not).  On the last day of the next 
month, there will be three females (two pregnant and one not).  And so on.  Let’s 
look at this progression in tabular form. 

Notice that in this table, for month n > 1, 
females(n) = females(n-1) + females(n-2).  This is not an accident. 
Each female that was alive in month n-1 will still be alive in 
month n.  In addition, each female that was alive in month 
n-2 will produce one new female in month n.  The new 
females can be added to the females alive in month n-1 to get 
the number of females in month n.   

The growth in population is described naturally by the 
recurrence: 

females(0) = 1 
females(1) = 1 
females(n + 2) = females(n+1) + females(n) 

This definition is a little different from the recursive definition of factorial: 

• It has two base cases, not just one.  In general, you can have as many 
base cases as you need. 

• In the recursive case, there are two recursive calls, not just one. Again, 
there can be as many as you need. 

Figure 4.7 contains a straightforward implementation of the Fibonacci 
recurrence,23 along with a function that can be used to test it. 

                                                

23 While obviously correct, this is a terribly inefficient implementation of the Fibonacci 
function.  There is a simple iterative implemenentation that is much better. 

Month Females 

0 1 

1 1 

2 2 

3 3 

4 5 

5 8 

6 13 
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Figure 4.7  Recursive implementation of Fibonacci sequence 

Writing the code is the easy part of solving this problem.  Once we went from the 
vague statement of a problem about bunnies to a set of recursive equations, the 
code almost wrote itself.  Finding some kind of abstract way to express a 
solution to the problem at hand is very often the hardest step in building a 
useful program.  We will talk much more about this later in the book. 

As you might guess, this is not a perfect model for the growth of rabbit 
populations in the wild. In 1859, Thomas Austin, an Australian farmer, 
imported twenty-four rabbits from England, to be used as targets in hunts.  Ten 
years later, approximately two million rabbits were shot or trapped each year in 
Australia, with no noticeable impact on the population.  That’s a lot of rabbits, 
but not anywhere close to the 120th Fibonacci number.24 

Though the Fibonacci sequence25 does not actually provide a perfect model of 
the growth of rabbit populations, it does have many interesting mathematical 
properties.  Fibonacci numbers are also quite common in nature.26   

 

Finger exercise: When the implementation of fib in Figure 4.7 is used to 
compute fib(5), how many times does it compute the value fib(2)? 

 

                                                

24 The damage done by the descendants of those twenty-four cute bunnies has been 
estimated to be $600 million per year, and they are in the process of eating many native 
plants into extinction. 

25 That we call this a Fibonacci sequence is an example of a Eurocentric interpretation of 
history.  Fibonacci’s great contribution to European mathematics was his book Liber 
Abaci, which introduced to European mathematicians many concepts already well known 
to Indian and Arabic scholars.  These concepts included Hindu-Arabic numerals and the 
decimal system.  What we today call the Fibonacci sequence was taken from the work of 
the Sanskrit mathematician Pingala. 

26 If you are feeling especially geeky, try writing a Fibonacci poem.  This is a form of 
poetry in which the number of syllables in each line is equal to the total number of 
syllables in the previous two lines.  Think of the first line (which has zero syllables) as a 
place to take a deep breath before starting to read your poem. 

def fib(n): 
    """Assumes n an int >= 0 
       Returns Fibonacci of n""" 
    if n == 0 or n == 1: 
        return 1 
    else: 
        return fib(n-1) + fib(n-2) 
 
def testFib(n): 
    for i in range(n+1): 
        print 'fib of', i, '=', fib(i) 
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4.3.2 Palindromes 

Recursion is also useful for many problems that do not involve numbers.  Figure 
4.8 contains a function, isPalindrome, that checks whether a string reads the 
same way backwards and forwards. 

 

Figure 4.8  Palindrome testing 

The function isPalindrome contains two internal helper functions.  This should 
be of no interest to clients of the function, who should care only that 
isPalindrome meets its specification.  But you should care, because there are 
things to learn by examining the implementation. 

The helper function toChars converts all letters to lowercase and removes all 
non-letters.  It starts by using a built-in method on strings to generate a string 
that is identical to s, except that all uppercase letters have been converted to 
lowercase.  We will talk a lot more about method invocation when we get to 
classes.  For now, think of it as a peculiar syntax for a function call.  Instead of 
putting the first (and in this case only) argument inside parentheses following 
the function name, we use dot notation to place that argument before the 
function name. 

The helper function isPal uses recursion to do the real work.  The two base 
cases are strings of length zero or one.  This means that the recursive part of the 
implementation is reached only on strings of length two or more.  The 
conjunction27 in the else clause is evaluated from left to right.  The code first 
checks whether the first and last characters are the same, and if they are goes 
on to check whether the string minus those two characters is a palindrome.  
That the second conjunct is not evaluated unless the first conjunct evaluates to 

                                                

27 When two Boolean-valued expressions are connected by “and,” each expression is 
called a conjunct.  If they are connected by “or,” they are called disjuncts. 

def isPalindrome(s): 
   """Assumes s is a str 
      Returns True if the letters in s form a palindrome; 
        False otherwise. Non-letters and capitalization are ignored.""" 
    
   def toChars(s): 
      s = s.lower() 
      letters = '' 
      for c in s: 
        if c in 'abcdefghijklmnopqrstuvwxyz': 
            letters = letters + c 
      return letters 
 
   def isPal(s): 
      if len(s) <= 1: 
        return True 
      else: 
        return s[0] == s[-1] and isPal(s[1:-1]) 
          
   return isPal(toChars(s)) 



 

 Chapter 4. Functions, Scoping, and Abstraction  49 

True is semantically irrelevant in this example.  However, later in the book we 
will see examples where this kind of short-circuit evaluation of Boolean 
expressions is semantically relevant. 

This implementation of isPalindrome is an example of a problem-solving 
principle known as divide-and-conquer. (This principle is related to but 
different from divide-and-conquer algorithms, which are discussed in Chapter 
10.)  The problem-solving principle is to conquer a hard problem by breaking it 
into a set of subproblems with the properties that 

• the subproblems are easier to solve than the original problem, and 

• solutions of the subproblems can be combined to solve the original 
problem. 

In this case, we solve the problem by breaking the original problem into a 
simpler version of the same problem (checking whether a shorter string is a 
palindrome), plus some simple things we know how to do (comparing single 
characters).  Figure 4.9 contains some code that can be used to visualize how 
this works. 

 

Figure 4.9  Code to visualize palindrome testing 

def isPalindrome(s): 
   """Assumes s is a str 
      Returns True if s is a palindrome; False otherwise. 
        Punctuation marks, blanks, and capitalization are 
        ignored.""" 
    
   def toChars(s): 
      s = s.lower() 
      letters = '' 
      for c in s: 
        if c in 'abcdefghijklmnopqrstuvwxyz': 
            letters = letters + c 
      return letters 
 
   def isPal(s): 
      print '  isPal called with', s 
      if len(s) <= 1: 
         print '  About to return True from base case' 
         return True 
      else: 
         answer = s[0] == s[-1] and isPal(s[1:-1]) 
         print '  About to return', answer, 'for', s 
         return answer 
          
   return isPal(toChars(s)) 
 
def testIsPalindrome(): 
   print 'Try dogGod' 
   print isPalindrome('dogGod') 
   print 'Try doGood' 
   print isPalindrome('doGood') 
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When the code in Figure 4.9 is run, it will print 

Try dogGod 
  isPal called with doggod 
  isPal called with oggo 
  isPal called with gg 
  isPal called with  
  About to return True from base case 
  About to return True for gg 
  About to return True for oggo 
  About to return True for doggod 
True 
Try doGood 
  isPal called with dogood 
  isPal called with ogoo 
  isPal called with go 
  About to return False for go 
  About to return False for ogoo 
  About to return False for dogood 
False 

Divide-and-conquer is a very old idea.  Julius Caesar practiced what the 
Romans referred to as divide et impera (divide and rule).  The British practiced it 
brilliantly to control the Indian subcontinent.  Benjamin Franklin was well 
aware of the British expertise in using this technique, prompting him to say at 
the signing of the U.S. Declaration of Independence, “We must all hang together, 
or assuredly we shall all hang separately.” 

4.4 Global Variables 

If you tried calling fib with a large number, you probably noticed that it took a 
very long time to run.  Suppose we want to know how many recursive calls are 
made?  We could do a careful analysis of the code and figure it out, and in 
Chapter 9 we will talk about how to do that.  Another approach is to add some 
code that counts the number of calls.  One way to do that uses global variables. 

Until now, all of the functions we have written communicate with their 
environment solely through their parameters and return values.  For the most 
part, this is exactly as it should be.  It typically leads to programs that are 
relatively easy to read, test, and debug.  Every once in a while, however, global 
variables come in handy.  Consider the code in Figure 4.10. 
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Figure 4.10  Using a global variable 

In each function, the line of code global numFibCalls tells Python that the name 
numCalls should be defined at the outermost scope of the module (see Section 
4.5) in which the line of code appears rather than within the scope of the 
function in which the line of code appears—despite the fact that numFibCalls 
occurs on the left-hand side of an assignment statement in both fib and 
testFib.  (Had we not included the code global numFibCalls, the name 
numFibCalls would have been local to each of fib and testFib.)  The functions 
fib and testFib both have unfettered access to the object referenced by the 
variable numFibCalls.  The function testFib binds numFibCalls to 0 each time it 
calls fib, and fib increments the value of numFibCalls each time fib is entered. 

It is with some trepidation that we introduce the topic of global variables.  Since 
the 1970s card-carrying computer scientists have inveighed against them.  The 
indiscriminate use of global variables can lead to lots of problems.  The key to 
making programs readable is locality.  One reads a program a piece at a time, 
and the less context needed to understand each piece, the better.  Since global 
variables can be modified or read in a wide variety of places, the sloppy use of 
them can destroy locality.  Nevertheless, there are times when they are just what 
is needed.  

4.5 Modules 

So far, we have operated under the assumption that our entire program is stored 
in one file.  This is perfectly reasonable as long as programs are small.  As 
programs get larger, however, it is typically more convenient to store different 
parts of them in different files.  Imagine, for example, that multiple people are 
working on the same program.  It would be a nightmare if they were all trying to 
update the same file.  Python modules allow us to easily construct a program 
from code in multiple files. 

A module is a .py file containing Python definitions and statements.  We could 
create, for example, a file circle.py containing 

def fib(x): 
    """Assumes x an int >= 0 
       Returns Fibonacci of x""" 
    global numFibCalls 
    numFibCalls += 1 
    if x == 0 or x == 1: 
        return 1 
    else: 
        return fib(x-1) + fib(x-2) 
 
def testFib(n): 
    for i in range(n+1): 
        global numFibCalls 
        numFibCalls = 0 
        print 'fib of', i, '=', fib(i) 
        print 'fib called', numFibCalls, 'times.' 
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pi = 3.14159 
 
def area(radius): 
    return pi*(radius**2) 
 
def circumference(radius): 
    return 2*pi*radius 
 
def sphereSurface(radius): 
    return 4.0*area(radius) 
 
def sphereVolume(radius): 
    return (4.0/3.0)*pi*(radius**3) 

A program gets access to a module through an import statement. So, for 
example, the code 

import circle 
print circle.pi 
print circle.area(3) 
print circle.circumference(3) 
print circle.sphereSurface(3) 

will print 

3.14159 
28.27431 
18.84954 
113.09724 

Modules are typically stored in individual files.  Each module has its own private 
symbol table.  Consequently, within circle.py we access objects (e.g., pi and 
area) in the usual way.  Executing import M creates a binding for module M in 
the scope in which the importation occurs.  Therefore, in the importing context 
we use dot notation to indicate that we are referring to a name defined in the 
imported module.28   For example, outside of circle.py, the references pi and 
circle.pi can (and in this case do) refer to different objects. 

At first glance, the use of dot notation may seem cumbersome.  On the other 
hand, when one imports a module one often has no idea what local names might 
have been used in the implementation of that module.  The use of dot notation 
to fully qualify names avoids the possibility of getting burned by an accidental 
name clash.  For example, the assignment statement pi = 3.0 does not change 
the value of pi used within the circle module. 

There is a variant of the import statement that allows the importing program to 
omit the module name when accessing names defined inside the imported 
module.  Executing the statement from M import * creates bindings in the 
current scope to all objects defined within M, but not to M itself.  For example, the 
code 

from circle import * 
print pi 
print circle.pi 

                                                

28 Superficially, this may seem unrelated to the use of dot notation in method invocation.  
However, as we will see in Chapter 8, there is a deep connection. 
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will first print 3.14159, and then produce the error message 

NameError: name 'circle' is not defined 

Some Python programmers frown upon using this form of import because they 
believe that it makes code more difficult to read.  

As we have seen, a module can contain executable statements as well as 
function definitions. Typically, these statements are used to initialize the 
module. For this reason, the statements in a module are executed only the first 
time a module is imported into a program.  On a related note, a module is 
imported only once per interpreter session.  If you start up IDLE, import a 
module, and then change the contents of that module, the interpreter will still 
be using the original version of the module.  This can lead to puzzling behavior 
when debugging.  You can force the interpreter to reload all imported modules 
by executing reload(). 

There are lots of useful modules that come as part of the standard Python 
library.  For example, it is rarely necessary to write your own implementations of 
common mathematical or string functions.  A description of this library can be 
found at http://docs.python.org/2/library/. 

4.6 Files 

Every computer system uses files to save things from one computation to the 
next.  Python provides many facilities for creating and accessing files.  Here we 
illustrate some of the basic ones. 

Each operating system (e.g., Windows and MAC OS) comes with its own file 
system for creating and accessing files.  Python achieves operating-system 
independence by accessing files through something called a file handle.  The 
code   

nameHandle = open('kids', 'w') 

instructs the operating system to create a file with the name kids, and return a 
file handle for that file.  The argument 'w' to open indicates that the file is to be 
opened for writing.  The following code opens a file, uses the write method to 
write two lines, and then closes the file.  It is important to remember to close the 
file when the program is finished using it.  Otherwise there is a risk that some or 
all of the writes may not be saved. 

nameHandle = open('kids', 'w') 
for i in range(2): 
    name = raw_input('Enter name: ') 
    nameHandle.write(name + '\n') 
nameHandle.close() 

In a string, the character “\” is an escape character used to indicate that the 
next character should be treated in a special way.  In this example, the string 
'\n' indicates a new line character. 

www.allitebooks.com

http://www.allitebooks.org
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We can now open the file for reading (using the argument 'r'), and print its 
contents.  Since Python treats a file as a sequence of lines, we can use a for 
statement to iterate over the file’s contents. 

nameHandle = open('kids', 'r') 
for line in nameHandle: 
    print line 
nameHandle.close() 

If we had typed in the names David and Andrea, this will print 

David 
 
Andrea 

The extra line between David and Andrea is there because print starts a new line 
each time it encounters the '\n' at the end of each line in the file.  We could 
have avoided printing that by writing print line[:-1].  Now consider 

nameHandle = open('kids', 'w') 
nameHandle.write('Michael\n') 
nameHandle.write('Mark\n') 
nameHandle.close() 
nameHandle = open('kids', 'r') 
for line in nameHandle: 
    print line[:-1] 
nameHandle.close() 

It will print 

Michael 
Mark 

Notice that we have overwritten the previous contents of the file kids.  If we don’t 
want to do that we can open the file for appending (instead of writing) by using 
the argument 'a'. 

For example, if we now run the code  

nameHandle = open('kids', 'a') 
nameHandle.write('David\n') 
nameHandle.write('Andrea\n') 
nameHandle.close() 
nameHandle = open('kids', 'r') 
for line in nameHandle: 
    print line[:-1] 
nameHandle.close() 

it will print 

Michael 
Mark 
David 
Andrea 
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Some of the common operations on files are summarized in Figure 4.11. 

 

 

Figure 4.11  Common functions for accessing files 

 

 

open(fn, 'w') fn is a string representing a file name. Creates a file for 
writing and returns a file handle. 

open(fn, 'r') fn is a string representing a file name. Opens an existing 
file for reading and returns a file handle. 

open(fn, 'a') fn is a string representing a file name. Opens an existing 
file for appending and returns a file handle. 

fh.read() returns a string containing the contents of the file associated 
with the file handle fh. 

fh.readline() returns the next line in the file associated with the file 
handle fh.  

fh.readlines() returns a list each element of which is one line of the file 
associated with the file handle fh. 

fh.write(s) write the string s to the end of the file associated with the file 
handle fh. 

fh.writeLines(S) S is a sequence of strings.  Writes each element of S to 
the file associated with the file handle fh. 

fh.close() closes the file associated with the file handle fh. 



 

    

5 STRUCTURED TYPES, MUTABILITY, AND HIGHER-
ORDER FUNCTIONS 

The programs we have looked at thus far have dealt with three types of objects: 
int, float, and str.  The numeric types int and float are scalar types.  That is 
to say, objects without accessible internal structure.  In contrast, str can be 
thought of as a structured, or non-scalar, type.  One can use indexing to extract 
individual characters from a string and slicing to extract substrings. 

In this chapter, we introduce three structured types.  One, tuple, is a rather 
simple generalization of str.  The other two, list and dict, are more 
interesting—in part because they are mutable.  We also return to the topic of 
functions with some examples that illustrate the utility of being able to treat 
functions in the same way as other types of objects.  

5.1 Tuples 

Like strings, tuples are ordered sequences of elements.  The difference is that 
the elements of a tuple need not be characters.  The individual elements can be 
of any type, and need not be of the same type as each other. 

Literals of type tuple are written by enclosing a comma-separated list of 
elements within parentheses.  For example, we can write 

t1 = () 
t2 = (1, 'two', 3) 
print t1 
print t2 

Unsurprisingly, the print statements produce the output 

() 
(1, 'two', 3) 

Looking at this example, you might naturally be led to believe that the tuple 
containing the single value 1 would be written (1).  But, to quote Richard Nixon, 
“that would be wrong.”   Since parentheses are used to group expressions, (1) is 
merely a verbose way to write the integer 1.  To denote the singleton tuple 
containing this value, we write (1,).  Almost everybody who uses Python has at 
one time or another accidentally omitted that annoying comma. 

Like strings, tuples can be concatenated, indexed, and sliced.  Consider 

t1 = (1, 'two', 3) 
t2 = (t1, 3.25) 
print t2 
print (t1 + t2) 
print (t1 + t2)[3] 
print (t1 + t2)[2:5]  

The second assignment statement binds the name t2 to a tuple that contains 
the tuple to which t1 is bound and the floating point number 3.25.  This is 
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possible because a tuple, like everything else in Python, is an object, so tuples 
can contain tuples.  Therefore, the first print statement produces the output, 

((1, 'two', 3), 3.25) 

The second print statement prints the value generated by concatenating the 
values bound to t1 and t2, which is a tuple with five elements.  It produces the 
output 

(1, 'two', 3, (1, 'two', 3), 3.25) 

The next statement selects and prints the fourth element of the concatenated 
tuple (as always in Python, indexing starts at 0), and the statement after that 
creates and prints a slice of that tuple, producing the output 

(1, 'two', 3) 
(3, (1, 'two', 3), 3.25) 

A for statement can be used to iterate over the elements of a tuple.  For 
example, the following code prints the common divisors of 20 and 100 and then 
the sum of all the divisors. 

def findDivisors (n1, n2): 
    """Assumes that n1 and n2 are positive ints 
       Returns a tuple containing all common divisors of n1 & n2""" 
    divisors = () #the empty tuple 
    for i in range(1, min (n1, n2) + 1): 
        if n1%i == 0 and n2%i == 0: 
            divisors = divisors + (i,) 
    return divisors 
 
divisors = findDivisors(20, 100) 
print divisors 
total = 0 
for d in divisors: 
    total += d 
print total 

 

5.1.1 Sequences and Multiple Assignment 

If you know the length of a sequence (e.g., a tuple or a string), it can be 
convenient to use Python’s multiple assignment statement to extract the 
individual elements.  For example, after executing the statement x, y = (3, 4), 
x will be bound to 3 and y to 4.  Similarly, the statement a, b, c = 'xyz' will 
bind a to 'x', b to 'y', and c to 'z'. 

This mechanism is particularly convenient when used in conjunction with 
functions that return fixed-size sequences. 
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Consider, for example the function 

def findExtremeDivisors(n1, n2): 
    """Assumes that n1 and n2 are positive ints 
       Returns a tuple containing the smallest common 
       divisor > 1 and the largest common divisor of n1 
       and n2""" 
    divisors = () #the empty tuple 
    minVal, maxVal = None, None 
    for i in range(2, min(n1, n2) + 1): 
        if n1%i == 0 and n2%i == 0: 
            if minVal == None or i < minVal: 
                minVal = i 
            if maxVal == None or i > maxVal: 
                maxVal = i 
    return (minVal, maxVal) 

The multiple assignment statement 

minDivisor, maxDivisor = findExtremeDivisors(100, 200) 

will bind minDivisor to 2 and maxDivisor to 100. 

5.2 Lists and Mutability 

Like a tuple, a list is an ordered sequence of values, where each value is 
identified by an index.  The syntax for expressing literals of type list is similar 
to that used for tuples; the difference is that we use square brackets rather than 
parentheses.  The empty list is written as [], and singleton lists are written 
without that (oh so easy to forget) comma before the closing bracket.  So, for 
example, the code, 

L = ['I did it all', 4, 'love'] 
for i in range(len(L)): 
    print L[i] 

produces the output,  

I did it all 
4 
love 

Occasionally, the fact that square brackets are used for literals of type list, 
indexing into lists, and slicing lists can lead to some visual confusion.  For 
example, the expression [1,2,3,4][1:3][1], which evaluates to 3, uses the 
square brackets in three different ways.  This is rarely a problem in practice, 
because most of the time lists are built incrementally rather than written as 
literals. 

Lists differ from tuples in one hugely important way: lists are mutable.  In 
contrast, tuples and strings are immutable.  There are many operators that can 
be used to create objects of these immutable types, and variables can be bound 
to objects of these types.  But objects of immutable types cannot be modified.  
On the other hand, objects of type list can be modified after they are created.  

The distinction between mutating an object and assigning an object to a variable 
may, at first, appear subtle.  However, if you keep repeating the mantra, “In 
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Python a variable is merely a name, i.e., a label that can be attached to an 
object,” it will bring you clarity. 

When the statements 

Techs = ['MIT', 'Caltech']  
Ivys = ['Harvard', 'Yale', 'Brown'] 

are executed, the interpreter creates two new lists and binds the appropriate 
variables to them, as pictured below. 

 

 

Figure 5.1  Two lists 

The assignment statements 

Univs = [Techs, Ivys] 
Univs1 = [['MIT', 'Caltech'], ['Harvard', 'Yale', 'Brown']] 

also create new lists and bind variables to them.  The elements of these lists are 
themselves lists.  The three print statements 

print 'Univs =', Univs  
print 'Univs1 =', Univs1 
print Univs == Univs1 

produce the output 

Univs = [['MIT', 'Caltech'], ['Harvard', 'Yale', 'Brown']] 
Univs1 = [['MIT', 'Caltech'], ['Harvard', 'Yale', 'Brown']] 
True 

It appears as if Univs and Univs1 are bound to the same value.  But appearances 
can be deceiving.  As the following picture illustrates, Univs and Univs1 are 
bound to quite different values. 
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Figure 5.2  Two lists that appear to have the same value, but don’t 

That Univs and Univs1 are bound to different objects can be verified using the 
built-in Python function id, which returns a unique integer identifier for an 
object.  This function allows us to test for object equality.  When we run the 
code 

print Univs == Univs1 #test value equality 
print id(Univs) == id(Univs1) #test object equality 
print 'Id of Univs =', id(Univs) 
print 'Id of Univs1 =', id(Univs1) 

it prints 

True 
False 
Id of Univs = 24499264 
Id of Univs1 = 24500504 

(Don’t expect to see the same unique identifiers if you run this code.  The 
semantics of Python says nothing about what identifier is associated with each 
object; it merely requires that no two objects have the same identifier.) 

Notice that in Figure 5.2 the elements of Univs are not copies of the lists to 
which Techs and Ivys are bound, but are rather the lists themselves.  The 
elements of Univs1 are lists that contain the same elements as the lists in Univs, 
but they are not the same lists.  We can see this by running the code 

print 'Ids of Univs[0] and Univs[1]', id(Univs[0]), id(Univs[1]) 
print 'Ids of Univs1[0] and Univs1[1]', id(Univs1[0]), id(Univs1[1]) 

which prints 

Ids of Univs[0] and Univs[1] 22287944 22286464 
Ids of Univs1[0] and Univs1[1] 22184184 22287984 

Why does this matter?  It matters because lists are mutable. 

Consider the code 

Techs.append('RPI') 
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The append method has a side effect.  Rather than create a new list, it mutates 
the existing list Techs by adding a new element, the string 'RPI', to the end of it.   

After append is executed, the state of the computation looks like 

 

Figure 5.3  Demonstration of mutability 

Univs still contains the same two lists, but the contents of one of those lists has 
been changed.  Consequently, the print statements  

print 'Univs =', Univs  
print 'Univs1 =', Univs1 

now produce the output 

Univs = [['MIT', 'Caltech', 'RPI'], ['Harvard', 'Yale', 'Brown']] 
Univs1 = [['MIT', 'Caltech'], ['Harvard', 'Yale', 'Brown']] 

What we have here is something called aliasing.  There are two distinct paths to 
the same list object.  One path is through the variable Techs and the other 
through the first element of the list object to which Univs is bound.  One can 
mutate the object via either path, and the effect of the mutation will be visible 
through both paths.  This can be convenient, but it can also be treacherous.  
Unintentional aliasing leads to programming errors that are often enormously 
hard to track down. 

As with tuples, a for statement can be used to iterate over the elements of a list.  
For example,  

for e in Univs: 
    print 'Univs contains', e 
    print '  which contains' 
    for u in e: 
        print '    ', u 
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will print 

Univs contains ['MIT', 'Caltech', 'RPI'] 
  which contains 
     MIT 
     Caltech 
     RPI 
Univs contains ['Harvard', 'Yale', 'Brown'] 
  which contains 
     Harvard 
     Yale 
     Brown 

When we append one list to another, e.g., Techs.append(Ivys), the original 
structure is maintained.  I.e., the result is a list that contains a list.  Suppose we 
do not want to maintain this structure, but want to add the elements of one list 
into another list.  We can do that by using list concatenation or the extend 
method, e.g., 

L1 = [1,2,3] 
L2 = [4,5,6] 
L3 = L1 + L2 
print 'L3 =', L3 
L1.extend(L2) 
print 'L1 =', L1 
L1.append(L2) 
print 'L1 =', L1 

will print 

L3 = [1, 2, 3, 4, 5, 6] 
L1 = [1, 2, 3, 4, 5, 6] 
L1 = [1, 2, 3, 4, 5, 6, [4, 5, 6]] 

Notice that the operator + does not have a side effect.  It creates a new list and 
returns it.  In contrast, extend and append each mutated L1. 

Figure 5.4 contains short descriptions of some of the methods associated with 
lists.  Note that all of these except count and index mutate the list. 

 

Figure 5.4  Methods associated with lists 

L.append(e) adds the object e to the end of L.  

L.count(e) returns the number of times that e occurs in L. 

L.insert(i, e) inserts the object e into L at index i. 

L.extend(L1) adds the items in list L1 to the end of L.  

L.remove(e) deletes the first occurrence of e from L. 

L.index(e) returns the index of the first occurrence of e in L.  It raises an 
exception (see Chapter 7) if e is not in L. 

L.pop(i) removes and returns the item at index i in L.  If i is omitted, it 
defaults to -1, to remove and return the last element of L. 

L.sort() sorts the elements of L in ascending order. 

L.reverse() reverses the order of the elements in L. 



 

 Chapter 5.  Structured Types, Mutability, and Higher-Order Functions  63 

5.2.1 Cloning 

Though allowed, it is usually prudent to avoid mutating a list over which one is 
iterating.  Consider, for example, the code 

def removeDups(L1, L2): 
    """Assumes that L1 and L2 are lists. 
       Removes any element from L1 that also occurs in L2""" 
    for e1 in L1: 
        if e1 in L2: 
            L1.remove(e1) 
L1 = [1,2,3,4] 
L2 = [1,2,5,6] 
removeDups(L1, L2) 
print 'L1 =', L1 

You might be surprised to discover that the print statement produces the 
output 

L1 = [2, 3, 4] 

During a for loop, the implementation of Python keeps track of where it is in the 
list using an internal counter that is incremented at the end of each iteration.  
When the value of the counter reaches the current length of the list, the loop 
terminates.  This works as one might expect if the list is not mutated within the 
loop, but can have surprising consequences if the list is mutated.  In this case, 
the hidden counter starts out at 0, discovers that L1[0] is in L2, and removes 
it—reducing the length of L1 to 3.  The counter is then incremented to 1, and the 
code proceeds to check if the value of L1[1] is in L2.  Notice that this is not the 
original value of L1[1] (i.e., 2), but rather the current value of L1[1] (i.e., 3).  As 
you can see, it is possible to figure out what happens when the list is modified 
within the loop.  However, it is not easy.  And what happens is likely to be 
unintentional, as in this example. 

One way to avoid this kind of problem is to use slicing to clone (i.e., make a 
copy of) the list and write for e1 in L1[:].  Notice that writing newL1 = L1 
followed by for e1 in newL1 would not have solved the problem.  It would not 
have created a copy of L1, but would merely have introduced a new name for the 
existing list. 

Slicing is not the only way to clone lists in Python.  The expression list(l) 
returns a copy of the list l.  If the list to be copied contains mutable objects that 
you want to copy as well, import the standard library module copy and use the 
function copy.deepcopy. 

5.2.2 List Comprehension 

List comprehension provides a concise way to apply an operation to the values 
in a sequence.  It creates a new list in which each element is the result of 
applying a given operation to a value from a sequence (e.g., the elements in 
another list).  For example, 

L = [x**2 for x in range(1,7)] 
print L 
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will print the list 

[1, 4, 9, 16, 25, 36] 

The for clause in a list comprehension can be followed by one or more if and 
for statements that are applied to the values produced by the for clause.  These 
additional clauses modify the sequence of values generated by the first for 
clause and produce a new sequence of values, to which the operation associated 
with the comprehension is applied. 

For example, the code 

mixed = [1, 2, 'a', 3, 4.0] 
print [x**2 for x in mixed if type(x) == int] 

squares the integers in mixed, and then prints [1, 4, 9]. 

Some Python programmers use list comprehensions in marvelous and subtle 
ways.  That is not always a great idea.  Remember that somebody else may need 
to read your code, and “subtle” is not usually a desirable property. 

5.3 Functions as Objects 

In Python, functions are first-class objects.  That means that they can be 
treated like objects of any other type, e.g., int or list.  They have types, e.g., the 
expression type(fact) has the value <type 'function'>; they can appear in 
expressions, e.g., as the right-hand side of an assignment statement or as an 
argument to a function; they can be elements of lists; etc. 

Using functions as arguments can be particularly convenient in conjunction 
with lists.  It allows a style of coding called higher-order programming.  
Consider the code in Figure 5.5. 

 

Figure 5.5  Applying a function to elements of a list 

def applyToEach(L, f): 
   """Assumes L is a list, f a function 
      Mutates L by replacing each element, e, of L by f(e)""" 
   for i in range(len(L)): 
      L[i] = f(L[i]) 
       
L = [1, -2, 3.33] 
print 'L =', L 
print 'Apply abs to each element of L.' 
applyToEach(L, abs) 
print 'L =', L 
print 'Apply int to each element of', L 
applyToEach(L, int) 
print 'L =', L 
print 'Apply factorial to each element of', L 
applyToEach(L, factR) 
print 'L =', L 
print 'Apply Fibonnaci to each element of', L 
applyToEach(L, fib) 
print 'L =', L 
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The function applyToEach is called higher-order because it has an argument 
that is itself a function.  The first time it is called, it mutates L by applying the 
unary built-in function abs to each element.  The second time it is called, it 
applies a type conversion to each element.  The third time it is called, it replaces 
each element by the result of applying the function factR (defined in Figure 4.6) 
to each element.  And the fourth time it is called, it replaces each element by the 
result of applying the function fib (defined in Figure 4.7) to each element.  It 
prints 

L = [1, -2, 3.3300000000000001] 
Apply abs to each element of L. 
L = [1, 2, 3.3300000000000001] 
Apply int to each element of [1, 2, 3.3300000000000001] 
L = [1, 2, 3] 
Apply factorial to each element of [1, 2, 3] 
L = [1, 2, 6] 
Apply Fibonnaci to each element of [1, 2, 6] 
L = [1, 2, 13] 

Python has a built-in higher-order function, map, that is similar to, but more 
general than, the applyToEach function defined in Figure 5.5.  In its simplest 
form the first argument to map is a unary function (i.e., a function that has only 
one parameter) and the second argument is any ordered collection of values 
suitable as arguments to the first argument.  It returns a list generated by 
applying the first argument to each element of the second argument.  For 
example, the expression map(fact, [1, 2, 3]) has the value [1, 2, 6].  

More generally, the first argument to map can be of function of n arguments, in 
which case it must be followed by n subsequent ordered collections.  For 
example, the code 

L1 = [1, 28, 36] 
L2 = [2, 57, 9] 
print map(min, L1, L2) 

prints the list 

[1, 28, 9] 
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5.4 Strings, Tuples, and Lists  

We have looked at three different sequence types: str, tuple, and list.  They 
are similar in that objects of all of these types can be operated upon as 
described in Figure 5.6.  

 

Figure 5.6  Common operations on sequence types 

Some of their other similarities and differences are summarized in Figure 5.7. 

Type Type of elements Examples of literals Mutable 

str characters '', 'a', 'abc' No 

tuple any type (), (3,), ('abc', 4) No 

list any type [], [3], ['abc', 4] Yes 

Figure 5.7  Comparison of sequence types 

Python programmers tend to use lists far more often than tuples.  Since lists are 
mutable, they can be constructed incrementally during a computation. 

For example, the following code incrementally builds a list containing all of the 
even numbers in another list.  

evenElems = [] 
for e in L: 
    if e%2 == 0: 
        evenElems.append(e) 

One advantage of tuples is that because they are immutable, aliasing is never a 
worry.  Another advantage of their being immutable is that tuples, unlike lists, 
can be used as keys in dictionaries, as we will see in the next section. 

Since strings can contain only characters, they are considerably less versatile 
than tuples or lists.  On the other hand, when you are working with a string of 
characters there are many built-in methods that make life easy.  Figure 5.8 
contains short descriptions of a few of them.  Keep in mind that since strings are 
immutable these all return values and have no side effect. 

seq[i] returns the ith element in the sequence. 

len(seq) returns the length of the sequence. 

seq1 + seq2 returns the concatenation of the two sequences. 

n * seq returns a sequence that repeats seq n times. 

seq[start:end] returns a slice of the sequence.  

e in seq is True if e is contained in the sequence and False otherwise. 

e not in seq is True if e is not in the sequence and False otherwise. 

for e in seq iterates over the elements of the sequence. 
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Figure 5.8  Some methods on strings 

5.5 Dictionaries 

Objects of type dict (short for dictionary) are like lists except that “indices” need 
not be integers—they can be values of any immutable type.  Since they are not 
ordered, we call them keys rather than indices. Think of a dictionary as a set of 
key/value pairs.  Literals of type dict are enclosed in curly braces, and each 
element is written as a key followed by a colon followed by a value. 

For example, the code, 

monthNumbers = {'Jan':1, 'Feb':2, 'Mar':3, 'Apr':4, 'May':5, 
                1:'Jan', 2:'Feb', 3:'Mar', 4:'Apr', 5:'May'} 
print 'The third month is ' + monthNumbers[3] 
dist = monthNumbers['Apr'] - monthNumbers['Jan'] 
print 'Apr and Jan are', dist, 'months apart' 

will print 

The third month is Mar 
Apr and Jan are 3 months apart 

The entries in a dict are unordered and cannot be accessed with an index. That’s 
why monthNumbers[1] unambiguously refers to the entry with the key 1 rather 
than the second entry. 

The method keys returns a list containing the keys of a dictionary.  The order in 
which the keys appear is not defined.  So, for example, the code 
print monthNumbers.keys() might print 

[1, 2, 'Mar', 'Feb', 5, 'Apr', 'Jan', 'May', 3, 4] 

s.count(s1) counts how many times the string s1 occurs in s. 

s.find(s1) returns the index of the first occurrence of the substring s1 in 
s, and -1 if s1 is not in s.  

s.rfind(s1) same as find, but starts from the end of s (the “r” in rfind 
stands for reverse). 

s.index(s1) same as find, but raises an exception (see Chapter 7) if s1 is 
not in s.  

s.rindex(s1) same as index, but starts from the end of s. 

s.lower() converts all uppercase letters in s to lowercase. 

s.replace(old, new) replaces all occurrences of the string old in s with the 
string new. 

s.rstrip() removes trailing white space from s. 

s.split(d) Splits s using d as a delimiter.  Returns a list of substrings of s.  
For example, the value of 'David Guttag plays basketball'.split(' ') is 
['David', 'Guttag', 'plays', 'basketball'].  If d is omitted, the 
substrings are separated by arbitrary strings of whitespace characters 
(space, tab, newline, return, and formfeed). 
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When a for statement is used to iterate over a dictionary, the value assigned to 
the iteration variable is a key, not a key/value pair.  For example, the code  

keys = [] 
for e in monthNumbers: 
    keys.append(e) 
keys.sort() 
print keys 

prints [1, 2, 3, 4, 5, 'Apr', 'Feb', 'Jan', 'Mar', 'May']. 

Dictionaries are one of the great things about Python.  They greatly reduce the 
difficulty of writing a variety of programs.  For example, in Figure 5.9 we use 
dictionaries to write a (pretty horrible) program to translate between languages. 

 

Figure 5.9  Translating text (badly) 

The code in the figure prints,  

Je bois "good" rouge vin, et mange pain.  
I drink of wine red. 

Like lists, dictionaries are mutable.  So, one must be careful about side effects.  
For example, 

EtoF = {'bread':'pain', 'wine':'vin', 'with':'avec', 'I':'Je', 
        'eat':'mange', 'drink':'bois', 'John':'Jean', 
        'friends':'amis', 'and': 'et', 'of':'du','red':'rouge'} 
FtoE = {'pain':'bread', 'vin':'wine', 'avec':'with', 'Je':'I', 
        'mange':'eat', 'bois':'drink', 'Jean':'John', 
        'amis':'friends', 'et':'and', 'du':'of', 'rouge':'red'} 
dicts = {'English to French':EtoF, 'French to English':FtoE} 
 
def translateWord(word, dictionary): 
    if word in dictionary.keys(): 
        return dictionary[word] 
    elif word != '': 
        return '"' + word + '"' 
    return word 
     
def translate(phrase, dicts, direction): 
    UCLetters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 
    LCLetters = 'abcdefghijklmnopqrstuvwxyz' 
    letters = UCLetters + LCLetters 
    dictionary = dicts[direction] 
    translation = '' 
    word = '' 
    for c in phrase: 
        if c in letters: 
            word = word + c 
        else: 
            translation = translation\ 
                          + translateWord(word, dictionary) + c 
            word = '' 
    return translation + ' ' + translateWord(word, dictionary) 
 
print translate('I drink good red wine, and eat bread.', 
                dicts,'English to French') 
print translate('Je bois du vin rouge.', 
                dicts, 'French to English') 
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FtoE['bois'] = 'wood' 
print translate('Je bois du vin rouge.', dicts, 'French to English') 

will print 

I wood of wine red. 

We add elements to a dictionary by assigning a value to an unused key, e.g., 

FtoE['blanc'] = 'white' 

As with lists, there are many useful methods, including some for removing 
elements, associated with dictionaries.  We do not enumerate them here, but will 
use them as convenient in examples later in the book.  Figure 5.10 contains 
some of the more useful operations on dictionaries.  

 

Figure 5.10  Some common operations on dicts 

Objects of any immutable type, e.g., type tuple, may be used as dictionary keys.  
Imagine for example using a tuple of the form (flightNumber, day) to represent 
airline flights.  It would then be easy to use such tuples as keys in a dictionary 
implementing a mapping from flights to arrival times. 

Most programming languages do not contain a built-in type that provides a 
mapping from keys to values.  Instead, programmers use other types to provide 
similar functionality.  It is, for example, relatively easy to implement a dictionary 
using a list in which each element is a key/value pair.  One can then write a 
simple function that does the associative retrieval, e.g., 

def keySearch(L, k): 
    for elem in L: 
        if elem[0] == k: 
            return elem[1] 
    return None 

The problem with such an implementation is that it is computationally 
inefficient.  In the worst case, a program might have to examine each element in 
the list to perform a single retrieval.  In contrast, the built-in implementation is 
quite fast.  It uses a technique called hashing, described in Chapter 10, to do 
the lookup in time that is nearly independent of the size of the dictionary. 

len(d) returns the number of items in d. 

d.keys() returns a list containing the keys in d.  

d.values() returns a list containing the values in d. 

k in d returns True if key k is in d. 

d[k] returns the item in d with key k.  

d.get(k, v) returns d[k] if k is in d, and v otherwise. 

d[k] = v associates the value v with the key k in d.  If there is already a 
value associated with k, that value is replaced. 

del d[k] removes the key k from d.  

for k in d iterates over the keys in d. 



 

    

6 TESTING AND DEBUGGING 

 

We hate to bring this up, but Dr. Pangloss was wrong.  We do not live in “the 
best of all possible worlds.”  There are some places where it rains too little, and 
others where it rains too much.  Some places are too cold, some too hot, and 
some too hot in the summer and too cold in the winter. Sometimes the stock 
market goes down—a lot.  And, perhaps worst of all, our programs don’t always 
function properly the first time we run them. 

Books have been written about how to deal with this last problem, and there is a 
lot to be learned from reading these books.  However, in the interest of providing 
you with some hints that might help you get that next problem set in on time, 
this chapter provides a highly condensed discussion of the topic.  While all of 
the programming examples are in Python, the general principles are applicable 
to getting any complex system to work. 

Testing is the process of running a program to try and ascertain whether or not 
it works as intended.  Debugging is the process of trying to fix a program that 
you already know does not work as intended.  

Testing and debugging are not processes that you should begin to think about 
after a program has been built.  Good programmers design their programs in 
ways that make them easier to test and debug.  The key to doing this is breaking 
the program up into separate components that can be implemented, tested, and 
debugged independently of other components.  At this point in the book, we 
have discussed only one mechanism for modularizing programs, the function.  
So, for now, all of our examples will be based around functions.  When we get to 
other mechanisms, in particular classes, we will return to some of the topics 
covered in this chapter. 

The first step in getting a program to work is getting the language system to 
agree to run it—that is, eliminating syntax errors and static semantic errors that 
can be detected without running the program.  If you haven’t gotten past that 
point in your programming, you’re not ready for this chapter.  Spend a bit more 
time working on small programs, and then come back. 

6.1 Testing 

The most important thing to say about testing is that its purpose is to show that 
bugs exist, not to show that a program is bug-free.  To quote Edsger Dijkstra, 
“Program testing can be used to show the presence of bugs, but never to show 
their absence!”29  Or, as Albert Einstein reputedly once said, “No amount of 
experimentation can ever prove me right; a single experiment can prove me 
wrong.” 

                                                

29 “Notes On Structured Programming,” Technical University Eindhoven, T.H.  Report 70-
WSK-03, April 1970. 
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Why is this so?  Even the simplest of programs has billions of possible inputs.  
Consider, for example, a program that purports to meet the specification: 

def isBigger(x, y): 
     """Assumes x and y are ints 
        Returns True if x is less than y and False otherwise.""" 

Running it on all pairs of integers would be, to say the least, tedious.  The best 
we can do is to run it on pairs of integers that have a reasonable probability of 
producing the wrong answer if there is a bug in the program. 

The key to testing is finding a collection of inputs, called a test suite, that has a 
high likelihood of revealing bugs, yet does not take too long to run.  The key to 
doing this is partitioning the space of all possible inputs into subsets that 
provide equivalent information about the correctness of the program, and then 
constructing a test suite that contains one input from each partition.  (Usually, 
constructing such a test suite is not actually possible.  Think of this as an 
unachievable ideal.) 

A partition of a set divides that set into a collection of subsets such that each 
element of the original set belongs to exactly one of the subsets.  Consider, for 
example, isBigger(x, y).  The set of possible inputs is all pairwise 
combinations of integers.  One way to partition this set is into these seven 
subsets: 

• x positive, y positive 

• x negative, y negative 

• x positive, y negative 

• x negative, y positive 

• x = 0, y = 0 

• x = 0, y ≠ 0 

• x ≠ 0, y = 0 

If one tested the implementation on at least one value from each of these 
subsets, there would be reasonable probability (but no guarantee) of exposing a 
bug if one exists. 

For most programs, finding a good partitioning of the inputs is far easier said 
than done.  Typically, people rely on heuristics based on exploring different 
paths through some combination of the code and the specifications.  Heuristics 
based on exploring paths through the code fall into a class called glass-box 
testing.  Heuristics based on exploring paths through the specification fall into 
a class called black-box testing. 

6.1.1 Black-Box Testing 

In principle, black-box tests are constructed without looking at the code to be 
tested.  Black-box testing allows testers and implementers to be drawn from 
separate populations.  When those of us who teach programming courses 
generate test cases for the problem sets we assign students, we are developing 
black-box test suites.  Developers of commercial software often have quality 
assurance groups that are largely independent of development groups. 
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This independence reduces the likelihood of generating test suites that exhibit 
mistakes that are correlated with mistakes in the code.  Suppose, for example, 
that the author of a program made the implicit, but invalid, assumption that a 
function would never be called with a negative number.  If the same person 
constructed the test suite for the program, he would likely repeat the mistake, 
and not test the function with a negative argument. 

Another positive feature of black-box testing is that it is robust with respect to 
implementation changes.  Since the test data is generated without knowledge of 
the implementation, it need not be changed when the implementation is 
changed. 

As we said earlier, a good way to generate black-box test data is to explore paths 
through a specification.  Consider, the specification 

def sqrt(x, epsilon): 
    """Assumes x, epsilon floats 
               x >= 0 
               epsilon > 0 
       Returns result such that 
               x-epsilon <= result*result <= x+epsilon""" 

There seem to be only two distinct paths through this specification: one 
corresponding to x = 0 and one corresponding to x > 0.  However, common 
sense tells us that while it is necessary to test these two cases, it is hardly 
sufficient. 

Boundary conditions should also be tested.  When looking at lists, this often 
means looking at the empty list, a list with exactly one element, and a list 
containing lists.  When dealing with numbers, it typically means looking at very 
small and very large values as well as “typical” values.  For sqrt, it might make 
sense to try values of x and epsilon similar to those in the following table. 

The first four rows are intended to represent typical 
cases.  Notice that the values for x include a perfect 
square, a number less than one, and a number 
with an irrational square root.  If any of these tests 
fail, there is a bug in the program that needs to be 
fixed. 

The remaining rows test extremely large and small 
values of x and epsilon.  If any of these tests fail, 
something needs to be fixed.  Perhaps there is a 
bug in the code that needs to be fixed, or perhaps 
the specification needs to be changed so that it is 
easier to meet.  It might, for example, be 
unreasonable to expect to find an approximation of 
a square root when epsilon is ridiculously small. 

x epsilon 

0.0 0.0001 

25.0 0.0001 

0.5 0.0001 

2.0 0.0001 

2.0 1.0/2.0**64.0 

1.0/2.0**64 1.0/2.0**64.0 

2.0**64.0 1.0/2.0**64.0 

1.0/2.0**64.0 2.0**64.0 

2.0**64.0 2.0**64.0 
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Another important boundary condition to think about is aliasing.  Consider, for 
example, the code 

def copy(L1, L2): 
    """Assumes L1, L2 are lists 
       Mutates L2 to be a copy of L1""" 
    while len(L2) > 0: #remove all elements from L2 
        L2.pop() #remove last element of L2 
    for e in L1: #append L1's elements to initially empty L2 
        L2.append(e) 

It will work most of the time, but not when L1 and L2 refer to the same list.  Any 
test suite that did not include a call of the form copy(L, L), would not reveal 

the bug. 

6.1.2 Glass-Box Testing  

Black-box testing should never be skipped, but it is rarely sufficient.  Without 
looking at the internal structure of the code, it is impossible to know which test 
cases are likely to provide new information.  Consider the following trivial 
example:  

def isPrime(x): 
    """Assumes x is a nonnegative int 
       Returns True if x is prime; False otherwise""" 
    if x <= 2: 
        return False 
    for i in range(2, x): 
        if x%i == 0: 
            return False 
    return True 

Looking at the code, we can see that because of the test if x <= 2, the values 0, 
1, and 2 are treated as special cases, and therefore need to be tested.  Without 
looking at the code, one might not test isPrime(2), and would therefore not 

discover that the function call isPrime(2) returns False, erroneously indicating 
that 2 is not a prime. 

Glass-box test suites are usually much easier to construct than black-box test 
suites. Specifications are usually incomplete and often pretty sloppy, making it a 
challenge to estimate how thoroughly a black-box test suite explores the space 
of interesting inputs.  In contrast, the notion of a path through code is well 
defined, and it is relatively easy to evaluate how thoroughly one is exploring the 
space.  There are, in fact, commercial tools that can be used to objectively 
measure the completeness of glass-box tests. 

A glass-box test suite is path-complete if it exercises every potential path 
through the program.  This is typically impossible to achieve, because it depends 
upon the number of times each loop is executed and the depth of each 
recursion.  For example, a recursive implementation of factorial follows a 
different path for each possible input (because the number of levels of recursion 
will differ). 
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Furthermore, even a path-complete test suite does not guarantee that all bugs 
will be exposed.  Consider: 

def abs(x): 
    """Assumes x is an int 
       Returns x if x>=0 and –x otherwise""" 
    if x < -1: 
        return -x 
    else: 
        return x 

The specification suggests that there are two possible cases, x is either negative 
or it isn’t.  This suggests that the set of inputs {2, -2} is sufficient to explore all 
paths in the specification.  This test suite has the additional nice property of 
forcing the program through all of its paths, so it looks like a complete glass-box 
suite as well.  The only problem is that this test suite will not expose the fact 
that abs(-1)will return -1. 

Despite the limitations of glass-box testing, there are a few rules of thumb that 
are usually worth following: 

• Exercise both branches of all if statements. 

• Make sure that each except clause (see Chapter 7) is executed. 

• For each for loop, have test cases in which 

o The loop is not entered (e.g., if the loop is iterating over the 
elements of a list, make sure that it is tested on the empty list), 

o The body of the loop is executed exactly once, and 

o The body of the loop is executed more than once. 

• For each while loop, 

o Look at the same kinds of cases as when dealing with for loops, 
and 

o Include test cases corresponding to all possible ways of exiting 
the loop.  For example, for a loop starting with  
   while len(L) > 0 and not L[i] == e 

find cases where the loop exits because len(L) is greater than 
zero and cases where it exits because L[i] == e. 

• For recursive functions, include test cases that cause the function to 
return with no recursive calls, exactly one recursive call, and more than 
one recursive call. 

  

6.1.3 Conducting Tests 

Testing is often thought of as occurring in two phases.  One should always start 
with unit testing.  During this phase testers construct and run tests designed 
to ascertain whether individual units of code (e.g., functions) work properly.  
This is followed by integration testing, which is designed to ascertain whether 
the program as a whole behaves as intended.  In practice, testers cycle through 



 

 Chapter 6.  Testing and Debugging  75 

these two phases, since failures during integration testing lead to making 
changes to individual units. 

Integration testing is almost always more challenging than unit testing.  One 
reason for this is that the intended behavior of an entire program is often 
considerably harder to characterize than the intended behavior of each of its 
parts.  For example, characterizing the intended behavior of a word processor is 
considerably more challenging than characterizing the behavior of a function 
that counts the number of characters in a document.  Problems of scale can also 
make integration testing difficult.  It is not unusual for integration tests to take 
hours or even days to run. 

Many industrial software development organizations have a software quality 
assurance (SQA) group that is separate from the group charged with 
implementing  the software.  The mission of this group is to insure that before 
the software is released it is suitable for its intended purpose.  In some 
organizations the development group is responsible for unit testing and the QA 
group for integration testing. 

In industry, the testing process is often highly automated.  Testers30 do not sit at 
terminals typing inputs and checking outputs.  Instead, they use test drivers 
that autonomously 

• Set up the environment needed to invoke the program (or unit) to be 
tested, 

• Invoke the program (or unit) to be tested with a predefined or 
automatically generated sequence of inputs, 

• Save the results of these invocations, 

• Check the acceptability of the results of the tests, and 

• Prepare an appropriate report. 

During unit testing, we often need to build stubs as well as drivers.  Drivers 
simulate parts of the program that use the unit being tested, whereas stubs 
simulate parts of the program used by the unit being tested.  Stubs are useful 
because they allow people to test units that depend upon software or sometimes 
even hardware that does not yet exist.  This allows teams of programmers to 
simultaneously develop and test multiple parts of a system. 

Ideally, a stub should 

• Check the reasonableness of the environment and arguments supplied 
by the caller (calling a function with inappropriate arguments is a 
common error), 

• Modify arguments and global variables in a manner consistent with the 
specification, and 

• Return values consistent with the specification. 

                                                

30 Or, for that matter, those who grade problem sets in very large programming courses. 
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Building adequate stubs is often a challenge.  If the unit the stub is replacing is 
intended to perform some complex task, building a stub that performs actions 
consistent with the specification may be tantamount to writing the program that 
the stub is designed to replace.  One way to surmount this problem is to limit 
the set of arguments accepted by the stub, and create a table that contains the 
values to be returned for each combination of arguments to be used in the test 
suite. 

One attraction of automating the testing process is that it facilitates regression 
testing.  As programmers attempt to debug a program, it is all too common to 
install a “fix” that breaks something that used to work.  Whenever any change is 
made, no matter how small, you should check that the program still passes all 
of the tests that it used to pass. 

6.2 Debugging 

There is a charming urban legend about how the process of fixing flaws in 
software came to be known as debugging.  The photo below is of a September 9, 
1947, page in a laboratory book from the group working on the Mark II Aiken 
Relay Calculator at Harvard University.  

  

Some have claimed that the discovery of that unfortunate moth trapped in the 
Mark II led to the use of the phrase debugging.  However the wording, “First 
actual case of a bug being found,” suggests that a less literal interpretation of 
the phrase was already common.  Grace Murray Hopper, a leader of the Mark II 
project, made it clear that the term “bug” was already in wide use to describe 
problems with electronic systems during World War II.  And well prior to that, 
Hawkins’ New Catechism of Electricity, an 1896 electrical handbook, included 
the entry, “The term ‘bug’ is used to a limited extent to designate any fault or 
trouble in the connections or working of electric apparatus.”  In English usage 
the word “bugbear” means “anything causing seemingly needless or excessive 
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fear or anxiety.”31   Shakespeare seems to have shortened this to “bug,” when he 
had Hamlet kvetch about “bugs and goblins in my life.”32 

The use of the word “bug” sometimes leads people to ignore the fundamental fact 
that if you wrote a program and it has a “bug,” you messed up.  Bugs do not 
crawl unbidden into flawless programs. If your program has a bug, it is because 
you put it there.  Bugs do not breed in programs.  If your program has multiple 
bugs, it is because you made multiple mistakes.   

Runtime bugs can be categorized along two dimensions: 

1. Overt → covert: An overt bug has an obvious manifestation, e.g., the 
program crashes or takes far longer (maybe forever) to run than it 
should.  A covert bug has no obvious manifestation.  The program may 
run to conclusion with no problem—other than providing an incorrect 
answer.  Many bugs fall between the two extremes, and whether or not 
the bug is overt can depend upon how carefully one examines the 
behavior of the program. 

2. Persistent → intermittent: A persistent bug occurs every time the 
program is run with the same inputs.  An intermittent bug occurs only 
some of the time, even when the program is run on the same inputs and 
seemingly under the same conditions.  When we get to Chapter 12, we 
will start writing programs of the kind where intermittent bugs are 
common. 

The best kinds of bugs to have are overt and persistent.  Developers can be 
under no illusion about the advisability of deploying the program.  And if 
someone else is foolish enough to attempt to use it, they will quickly discover 
their folly.  Perhaps the program will do something horrible before crashing, e.g., 
delete files, but at least the user will have reason to be worried (if not panicked).  
Good programmers try to write their programs in such a way that programming 
mistakes lead to bugs that are both overt and persistent.  This is often called 
defensive programming. 

The next step into the pit of undesirability is bugs that are overt but 
intermittent.  An air traffic control system that computes the correct location for 
planes almost all of the time would be far more dangerous than one that makes 
obvious mistakes all the time.  One can live in a fool’s paradise for a period of 
time, and maybe get so far are as deploying a system incorporating the flawed 
program, but sooner or later the bug will become manifest.  If the conditions 
prompting the bug to become manifest are easily reproducible, it is often 
relatively easy to track down and repair the problem.  If the conditions provoking 
the bug are not clear, life is much harder.   

Programs that fail in covert ways are often highly dangerous.  Since they are not 
apparently problematical, people use them and trust them to do the right thing.  
Increasingly, society relies on software to perform critical computations that are 
beyond the ability of humans to carry out or even check for correctness. 

                                                

31 Webster’s New World College Dictionary. 
32 Act 5, scene 2. 
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Therefore, a program can provide undetected fallacious answer for long periods 
of time.  Such programs can, and have, caused a lot of damage.33  A program 
that evaluates the risk of a mortgage bond portfolio and confidently spits out the 
wrong answer can get a bank (and perhaps all of society) into a lot of trouble. A 
radiation therapy machine that delivers a little more or a little less radiation 
than intended can be the difference between life and death for a person with 
cancer.  A program that makes a covert error only occasionally may or may not 
wreak less havoc than one that always commits such an error.  Bugs that are 
both covert and intermittent are almost always the hardest to find and fix. 

6.2.1 Learning to Debug 

Debugging is a learned skill.  Nobody does it well instinctively. The good news is 
that it’s not hard to learn, and it is a transferable skill.  The same skills used to 
debug software can be used to find out what is wrong with other complex 
systems, e.g., laboratory experiments or sick humans. 

For at least four decades people have been building tools called debuggers, and 
there are debugging tools built into IDLE.  These are supposed to help people 
find bugs in their programs.  They can help, but only a little.  What’s much more 
important is how you approach the problem.  Many experienced programmers 
don’t even bother with debugging tools.  Most programmers say that the most 
important debugging tool is the print statement. 

Debugging starts when testing has demonstrated that the program behaves in 
undesirable ways.  Debugging is the process of searching for an explanation of 
that behavior.  The key to being consistently good at debugging is being 
systematic in conducting that search. 

Start by studying the available data.  This includes the test results and the 
program text.  Study all of the test results.  Examine not only the tests that 
revealed the presence of a problem, but also those tests that seemed to work 
perfectly.  Trying to understand why one test worked and another did not is 
often illuminating.  When looking at the program text, keep in mind that you 
don’t completely understand it.  If you did, there probably wouldn’t be a bug. 

Next, form a hypothesis that you believe to be consistent with all the data.  The 
hypothesis could be as narrow as “if I change line 403 from x < y to x <= y, the 
problem will go away” or as broad as “my program is not terminating because I 
have the wrong exit condition in some while loop.” 

Next, design and run a repeatable experiment with the potential to refute the 
hypothesis.  For example, you might put a print statement before and after each 
while loop.  If these are always paired, then the hypothesis that a while loop is 
causing nontermination has been refuted.  Decide before running the 
experiment how you would interpret various possible results.  If you wait until 

                                                

33 On August 1, 2012, Knight Capital Group, Inc. deployed a new piece of stock-trading 
software.  Within forty-five minutes a bug in that software lost the company 
$440,000,000.  The next day, the CEO of Knight commented that the bug caused the 
software to enter “a ton of orders, all erroneous.” 
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after you run the experiment, you are more likely to fall prey to wishful thinking. 

Finally, it’s important to keep a record of what experiments you have tried. 
When you’ve spent many hours changing your code trying to track down an 
elusive bug, it’s easy to forget what you have already tried.  If you aren’t careful, 
it is easy to waste way too many hours trying the same experiment (or more 
likely an experiment that looks different but will give you the same information) 
over and over again.  Remember, as many have said, “insanity is doing the same 
thing, over and over again, but expecting different results.”34 

6.2.2 Designing the Experiment 

Think of debugging as a search process, and each experiment as an attempt to 
reduce the size of the search space.  One way to reduce the size of the search 
space is to design an experiment that can be used to decide whether a specific 
region of code is responsible for a problem uncovered during integration testing.  
Another way to reduce the search space is to reduce the amount of test data 
needed to provoke a manifestation of a bug. 

Let’s look at a contrived example to see how one might go about debugging it.  
Imagine that you wrote the palindrome checking code in Figure 6.1 and that you 
are so confident of your programming skills that you put it up on the Web—
without testing it.  Suppose further that you receive an email saying, “I tested 
your !!**! program on the following 1000-string input, and it printed Yes.  Yet any 
fool can see that it is not a palindrome.  Fix it!” 

  

Figure 6.1  Program with bugs 

                                                

34 This line appears in Rita Mae Brown’s, Sudden Death.  However, it has been variously 
attributed to many other sources—including Albert Einstein. 

def isPal(x): 
    """Assumes x is a list 
       Returns True if the list is a palindrome; False otherwise""" 
    temp = x 
    temp.reverse 
    if temp == x: 
        return True 
    else: 
        return False 
 
def silly(n): 
    """Assumes n is an int > 0 
       Gets n inputs from user 
       Prints 'Yes' if the sequence of inputs forms a palindrome; 
           'No' otherwise""" 
    for i in range(n): 
        result = [] 
        elem = raw_input('Enter element: ') 
        result.append(elem) 
    if isPal(result): 
        print 'Yes' 
    else: 
        print 'No' 
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You could try and test it on the supplied 1000-string input.  But it might be more 
sensible to begin by trying it on something smaller.  In fact, it would make sense 
to test it on a minimal non-palindrome, e.g., 

>>> silly(2) 
Enter element: a 
Enter element: b 

The good news is that it fails even this simple test, so you don’t have to type in a 
thousand strings.  The bad news is that you have no idea why it failed.  

In this case, the code is small enough that you can probably stare at it and find 
the bug (or bugs).  However, let’s pretend that it is too large to do this, and start 
to systematically reduce the search space. 

Often the best way to do this is to conduct a binary search.  Find some point 
about halfway through the code, and devise an experiment that will allow you to 
decide if there is a problem before that point that might be related to the 
symptom.  (Of course, there may be problems after that point as well, but it is 
usually best to hunt down one problem at a time.)  In choosing such a point, 
look for a place where there are some easily examined intermediate values that 
provide useful information.  If an intermediate value is not what you expected, 
there is probably a problem that occurred prior to that point in the code.  If the 
intermediate values all look fine, the bug probably lies somewhere later in the 
code.  This process can be repeated until you have narrowed the region in which 
a problem is located to a few lines of code. 

Looking at silly, the halfway point is around the line if isPal(result).  The 
obvious thing to check is whether result has the expected value, ['a', 'b'].  
We check this by inserting the statement print result before the if statement 
in silly. When the experiment is run, the program prints ['b'], suggesting 

that something has already gone wrong.  The next step is to print result roughly 
halfway through the loop.  This quickly reveals that result is never more than 
one element long, suggesting that the initialization of result needs to be moved 
outside the for loop.  The corrected code for silly is 

def silly(n): 
    """Assumes n is an int > 0 
       Gets n inputs from user 
       Prints 'Yes' if the sequence of inputs forms a palindrome; 
           'No' otherwise""" 
    result = [] 
    for i in range(n): 
        elem = raw_input('Enter element: ') 
        result.append(elem) 
    print result 
    if isPal(result): 
        print 'Yes' 
    else: 
        print 'No' 

Let’s try that, and see if result has the correct value after the for loop.  It does, 
but unfortunately the program still prints Yes.  Now, we have reason to believe 
that a second bug lies below the print statement.  So, let’s look at isPal.  The 
line if temp == x: is about halfway through that function.  So, we insert the 
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line print temp, x before that line. When we run the code, we see that temp 
has the expected value, but x does not.  Moving up the code, we insert a print 
statement after the line temp = x, and discover that both temp and x have the 
value ['a', 'b'].  A quick inspection of the code reveals that in isPal we wrote 
temp.reverse rather than temp.reverse()—the evaluation of temp.reverse 
returns the built-in reverse method for lists, but does not invoke it.35 

We run the test again, and now it seems that both temp and x have the value 
['b', 'a'].  We have now narrowed the bug to one line.  It seems that 
temp.reverse() unexpectedly changed the value of x.  An aliasing bug has bitten 
us: temp and x are names for the same list, both before and after the list gets 
reversed.  One way to fix it is to replace the first assignment statement in isPal 
by temp = x[:], which causes a copy of x to be made.  The corrected version of 
isPal is 

def isPal(x): 
    """Assumes x is a list 
       Returns True if the list is a palindrome; False otherwise""" 
    temp = x[:] 
    temp.reverse() 
    if temp == x: 
        return True 
    else: 
        return False 

6.2.3 When the Going Gets Tough 

Joseph P. Kennedy, father of President Kennedy, reputedly instructed his 
children, “When the going gets tough, the tough get going.”36  But he never 
debugged a piece of software.  This subsection contains a few pragmatic hints 
about what do when the debugging gets tough. 

• Look for the usual suspects.  E.g., have you 

o Passed arguments to a function in the wrong order, 

o Misspelled a name, e.g., typed a lowercase letter when you should 
have typed an uppercase one, 

o Failed to reinitialize a variable, 

o Tested that two floating point values are equal (==) instead of 
nearly equal (remember that floating point arithmetic is not the 
same as the arithmetic you learned in school), 

o Tested for value equality (e.g., compared two lists by writing the 
expression L1 == L2) when you meant object equality (e.g., 
id(L1) == id(L2)),  

o Forgotten that some built-in function has a side effect, 

                                                

35 One might well wonder why there isn’t a static checker that detected the fact that the 
line of code temp.reverse doesn’t cause any useful computatation to be done, and is 
therefore likely to be an error. 

36 He also reputedly told JFK, “Don't buy a single vote more than necessary. I'll be 
damned if I'm going to pay for a landslide.” 



 

82  Chapter 6. Testing and Debugging  

o Forgotten the () that turns a reference to an object of type 
function into a function invocation, 

o Created an unintentional alias, or 

o Made any other mistake that is typical for you. 

• Stop asking yourself why the program isn’t doing what you want it to.  
Instead, ask yourself why it is doing what it is.  That should be an easier 
question to answer, and will probably be a good first step in figuring out 
how to fix the program. 

• Keep in mind that the bug is probably not where you think it is.  If it were, 
you would probably have found it long ago.  One practical way to go 
about deciding where to look is asking where the bug cannot be.  As 
Sherlock Holmes said, “Eliminate all other factors, and the one which 
remains must be the truth.”37 

• Try to explain the problem to somebody else.  We all develop blind spots.  
It is often the case that merely attempting to explain the problem to 
someone will lead you to see things you have missed.  A good thing to try 
to explain is why the bug cannot be in certain places. 

• Don’t believe everything you read.  In particular, don’t believe the 
documentation.  The code may not be doing what the comments suggest. 

• Stop debugging and start writing documentation.  This will help you 
approach the problem from a different perspective. 

• Walk away, and try again tomorrow.  This may mean that bug is fixed 
later in time than if you had stuck with it, but you will probably spend a 
lot less of your time looking for it.  That is, it is possible to trade latency 
for efficiency.  (Students, this is an excellent reason to start work on 
programming problem sets earlier rather than later!) 

 

6.2.4 And When You Have Found “The” Bug 

When you think you have found a bug in your code, the temptation to start 
coding and testing a fix is almost irresistible.  It is often better, however, to slow 
down a little.  Remember that the goal is not to fix one bug, but to move rapidly 
and efficiently towards a bug-free program. 

Ask yourself if this bug explains all the observed symptoms, or whether it is just 
the tip of the iceberg.  If the latter, it may be better to think about taking care of 
this bug in concert with other changes.  Suppose, for example, that you have 
discovered that the bug is the result of having accidentally mutated a list.  You 
could circumvent the problem locally (perhaps by making a copy of the list), or 
you could consider using a tuple instead of a list (since tuples are immutable), 
perhaps eliminating similar bugs elsewhere in the code. 

Before making any change, try and understand the ramification of the proposed  
“fix.”  Will it break something else?  Does it introduce excessive complexity?  
Does it offer the opportunity to tidy up other parts of the code? 

                                                

37 Arthur Conan Doyle, “The Sign of the Four.” 
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Always make sure that you can get back to where you are.  There is nothing 
more frustrating than realizing that a long series of changes have left you 
further from the goal than when you started, and having no way to get back to 
where you started.  Disk space is usually plentiful.  Use it to store old versions 
of your program. 

Finally, if there are many unexplained errors, you might consider whether 
finding and fixing bugs one at a time is even the right approach.  Maybe you 
would be better off thinking about whether there is some better way to organize 
your program or some simpler algorithm that will be easier to implement 
correctly.



 

    

7 EXCEPTIONS AND ASSERTIONS 

 

An “exception” is usually defined as “something that does not conform to the 
norm,” and is therefore somewhat rare.  There is nothing rare about exceptions 
in Python.  They are everywhere. Virtually every module in the standard Python 
library uses them, and Python itself will raise them in many different 
circumstances. You've already seen some of them. 

Open a Python shell and enter, 

test = [1,2,3] 
test[3] 

and the interpreter will respond with something like 

Traceback (most recent call last): 
  File "<pyshell#1>", line 1, in <module> 
    test[3] 
IndexError: list index out of range  

IndexError is the type of exception that Python raises when a program tries to 
access an element that is not within the bounds of an indexable type.  The string 
following IndexError provides additional information about what caused the 
exception to occur. 

Most of the built-in exceptions of Python deal with situations in which a 
program has attempted to execute a statement with no appropriate semantics.  
(We will deal with the exceptional exceptions—those that do not deal with 
errors—later in this chapter.)  Those readers (all of you, we hope) who have 
attempted to write and run Python programs will already have encountered 
many of these.  Among the most commonly occurring types of exceptions are 
TypeError, NameError, and ValueError. 

7.1 Handling Exceptions 

Up to now, we have treated exceptions as fatal events.  When an exception is 
raised, the program terminates (crashes might be a more appropriate word in 
this case), and we go back to our code and attempt to figure out what went 
wrong.  When an exception is raised that causes the program to terminate, we 
say that an unhandled exception has been raised. 

An exception does not need to lead to program termination. Exceptions, when 
raised, can and should be handled by the program. Sometimes an exception is 
raised because there is a bug in the program (like accessing a variable that 
doesn't exist), but many times, an exception is something the programmer can 
and should anticipate.  A program might try to open a file that does not exist.  If 
an interactive program asks a user for input, the user might enter something 
inappropriate. 
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If you know that a line of code might raise an exception when executed, you 
should handle the exception. In a well-written program, unhandled exceptions 
should be the exception. 

Consider the code 

successFailureRatio = numSuccesses/float(numFailures) 
print 'The success/failure ratio is', successFailureRatio 
print 'Now here' 

Most of the time, this code will work just fine, but it will fail if numFailures 
happens to be zero.  The attempt to divide by zero will cause the Python runtime 
system to raise a ZeroDivisionError exception, and the print statements will 
never be reached. 

It would have been better to have written something along the lines of 

try: 
    successFailureRatio = numSuccesses/float(numFailures) 
    print 'The success/failure ratio is', successFailureRatio 
except ZeroDivisionError: 
    print 'No failures so the success/failure ratio is undefined.' 
print 'Now here' 

Upon entering the try block, the interpreter attempts to evaluate the expression 
numSuccesses/float(numFailures).  If expression evaluation is successful, the 
program assigns the value of the expression to the variable 
successFailureRatio, executes the print statement at the end of the try block, 
and proceeds to the print statement following the try-except.  If, however, a 
ZeroDivisionError exception is raised during the expression evaluation, control 
immediately jumps to the except block (skipping the assignment and the print 
statement in the try block), the print statement in the except block is executed, 
and then execution continues at the print statement following the try-except 
block. 

 

Finger exercise: Implement a function that meets the specification below.  Use 
a try-except block. 

def sumDigits(s): 
    """Assumes s is a string 
       Returns the sum of the decimal digits in s 
          For example, if s is 'a2b3c' it returns 5""" 

 

Let’s look at another example.  Consider the code 

val = int(raw_input('Enter an integer: ')) 
print 'The square of the number you entered is', val**2 

If the user obligingly types a string that can be converted to an integer, 
everything will be fine.  But suppose the user types abc?  Executing the line of 
code will cause the Python runtime system to raise a ValueError exception, and 
the print statement will never be reached. 
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What the programmer should have written would look something like 

while True: 
    val = raw_input('Enter an integer: ') 
    try: 
        val = int(val) 
        print 'The square of the number you entered is', val**2 
        break #to exit the while loop 
    except ValueError: 
        print val, 'is not an integer' 

After entering the loop, the program will ask the user to enter an integer.  Once 
the user has entered something, the program executes the try—except block.  If 
neither of the first two statements in the try block causes a ValueError 
exception to be raised, the break statement is executed and the while loop is 
exited.  However, if executing the code in the try block raises a ValueError 
exception, control is immediately transferred to the code in the except block.  
Therefore, if the user enters a string that does not represent an integer, the 
program will ask the user to try again.  No matter what text the user enters, it 
will not cause an unhandled exception. 

The downside of this change is that the program text has grown from two lines 
to eight.  If there are many places where the user is asked to enter an integer, 
this can be problematical.  Of course, this problem can be solved by introducing 
a function: 

def readInt(): 
    while True: 
        val = raw_input('Enter an integer: ') 
        try: 
            val = int(val) 
            return val 
        except ValueError: 
            print val, 'is not an integer' 

Better yet, this function can be generalized to ask for any type of input, 

def readVal(valType, requestMsg, errorMsg): 
  while True: 
      val = raw_input(requestMsg + ' ') 
      try: 
          val = valType(val) 
          return val 
      except ValueError: 
          print val, errorMsg 

The function readVal is polymorphic, i.e., it works for arguments of many 
different types.  Such functions are easy to write in Python, since types are first-
class values.  We can now ask for an integer using the code 

val = readVal(int, 'Enter an integer:', 'is not an integer') 

Exceptions may seem unfriendly (after all, if not handled, an exception will 
cause the program to crash), but consider the alternative.  What should the type 
conversion int do, for example, when asked to convert the string 'abc' to an 
object of type int?  It could return an integer corresponding to the bits used to 
encode the string, but this is unlikely to have any relation to the intent of the 
programmer.  Alternatively, it could return the special value None.  If it did that, 
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the programmer would need to insert code to check whether the type conversion 
had returned None.  A programmer who forgot that check would run the risk of 
getting some strange error during program execution. 

With exceptions, the programmer still needs to include code dealing with the 
exception.  However, if the programmer forgets to include such code and the 
exception is raised, the program will halt immediately. This is a good thing.  It 
alerts the user of the program to the fact that something troublesome has 
happened.  (And, as we discussed in the last chapter, overt bugs are much 
better than covert bugs.)  Moreover, it gives someone debugging the program a 
clear indication of where things went awry. 

If it is possible for a block of program code to raise more than one kind of 
exception, the reserved word except can be followed by a tuple of exceptions, 
e.g., 

except (ValueError, TypeError): 

in which case the except block will be entered if any of the listed exceptions is 
raised within the try block.  Alternatively, we can write a separate except block 
for each kind of exception, which allows the program to choose an action based 
upon which exception was raised.  If the programmer writes 

except: 

the except block will be entered if any kind of exception is raised within the try 
block.  These features are shown in Figure 7.1. 

7.2 Exceptions as a Control Flow Mechanism 

Don’t think of exceptions as purely for errors.  They are a convenient flow-of-
control mechanism that can be used to simplify programs. 

In many programming languages, the standard approach to dealing with errors 
is to have functions return a value (often something analogous to Python’s None) 
indicating that something has gone amiss.  Each function invocation has to 
check whether that value has been returned.  In Python, it is more usual to have 
a function raise an exception when it cannot produce a result that is consistent 
with the function’s specification. 

The Python raise statement forces a specified exception to occur. The form of a 
raise statement is 

raise exceptionName(arguments) 

The exceptionName is usually one of the built-in exceptions, e.g., ValueError.  
However, programmers can define new exceptions by creating a subclass (see 
Chapter 8) of the built-in class Exception.  Different types of exceptions can 
have different types of arguments, but most of the time the argument is a single 
string, which is used to describe the reason the exception is being raised.  
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Finger Exercise: Implement a function that satisfies the specification 

def findAnEven(l): 
    """Assumes l is a list of integers 
       Returns the first even number in l 
       Raises ValueError if l does not contain an even number""" 

 

Consider the function definition in Figure 7.1. 

 

Figure 7.1  Using exceptions for control flow 

There are two except blocks associated with the try block.  If an exception is 
raised within the try block, Python first checks to see if it is a 
ZeroDivisionError.  If so, it appends a special value, nan, of type float to 
ratios.  (The value nan stands for “not a number.”  There is no literal for it, but 
it can be denoted by converting the string 'nan' or the string 'NaN' to type 
float.  When nan is used as an operand in an expression of type float, the 
value of that expression is also nan.)  If the exception is anything other than a 
ZeroDivisionError, the code executes the second except block, which raises a 
ValueError exception with an associated string.  

In principle, the second except block should never be entered, because the code 
invoking getRatios should respect the assumptions in the specification of 
getRatios.  However, since checking these assumptions imposes  only an 
insignificant computational burden, it is probably worth practicing defensive 
programming and checking anyway. 

The following code illustrates how a program might use getRatios.  The name 
msg in the line except ValueError, msg: is bound to the argument (a string in 
this case) associated with ValueError when it was raised.  When executed 

def getRatios(vect1, vect2): 
    """Assumes: vect1 and vect2 are lists of equal length of numbers 
       Returns: a list containing the meaningful values of  
             vect1[i]/vect2[i]""" 
    ratios = [] 
    for index in range(len(vect1)): 
        try: 
            ratios.append(vect1[index]/float(vect2[index])) 
        except ZeroDivisionError: 
            ratios.append(float('nan')) #nan = Not a Number 
        except: 
            raise ValueError('getRatios called with bad arguments') 
    return ratios 
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try: 
    print getRatios([1.0,2.0,7.0,6.0], [1.0,2.0,0.0,3.0]) 
    print getRatios([], []) 
    print getRatios([1.0, 2.0], [3.0]) 
except ValueError, msg: 
    print msg 

prints 

[1.0, 1.0, nan, 2.0] 
[] 
getRatios called with bad arguments 

Figure 7.2 contains an implementation of the same specification, but without 
using a try-except.  

 

Figure 7.2  Control flow without a try-except 

The code in Figure 7.2 is longer and more difficult to read than the code in 
Figure 7.1. It is also less efficient.  (The code in Figure 7.2 could be slightly 
shortened by eliminating the local variables vect1Elem and vect2Elem, but only 
at the cost of introducing yet more inefficiency by accessing each element 
repeatedly.) 

Let us look at one more example. 

def getRatios(vect1, vect2):  
    """Assumes: vect1 and vect2 are lists of equal length of numbers 
       Returns: a list containing the meaningful values of  
             vect1[i]/vect2[i]""" 
    ratios = [] 
    if len(vect1) != len(vect2): 
        raise ValueError('getRatios called with bad arguments') 
    for index in range(len(vect1)): 
        vect1Elem = vect1[index] 
        vect2Elem = vect2[index] 
        if (type(vect1Elem) not in (int, float))\ 
           or (type(vect2Elem) not in (int, float)): 
            raise ValueError('getRatios called with bad arguments') 
        if vect2Elem == 0.0: 
            ratios.append(float('NaN')) #NaN = Not a Number 
        else: 
            ratios.append(vect1Elem/vect2Elem) 
    return ratios 
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Figure 7.3  Get grades 

The function getGrades either returns a value or raises an exception with which 
it has associated a value.  It raises a ValueError exception if the call to open 
raises an IOError.  It could have ignored the IOError and let the part of the 
program calling getGrades deal with it, but that would have provided less 
information to the calling code about what went wrong.  The code that uses 
getGrades either uses the returned value to compute another value or handles 
the exception and prints a useful error message.  

7.3 Assertions 

The Python assert statement provides programmers with a simple way to 
confirm that the state of the computation is as expected.  An assert statement 
can take one of two forms: 

assert Boolean expression 

or 

assert Boolean expression, argument 

When an assert statement is encountered, the Boolean expression is evaluated.  
If it evaluates to True, execution proceeds on its merry way.  If it evaluates to 
False, an AssertionError exception is raised. 

Assertions are a useful defensive programming tool.  They can be used to 
confirm that the arguments to a function are of appropriate types.  They are also 
a useful debugging tool.  The can be used, for example, to confirm that 
intermediate values have the expected values or that a function returns an 
acceptable value.

def getGrades(fname): 
    try: 
        gradesFile = open(fname, 'r') #open file for reading 
    except IOError: 
        raise ValueError('getGrades could not open ' + fname) 
    grades = [] 
    for line in gradesFile: 
        try: 
            grades.append(float(line)) 
        except: 
            raise ValueError('Unable to convert line to float') 
    return grades 
    
try: 
   grades = getGrades('quiz1grades.txt') 
   grades.sort() 
   median = grades[len(grades)//2] 
   print 'Median grade is', median 
except ValueError, errorMsg: 
   print 'Whoops.', errorMsg 



 

    

8 CLASSES AND OBJECT-ORIENTED PROGRAMMING 
 

We now turn our attention to our last major topic related to writing programs in 
Python: using classes to organize programs around modules and data 
abstractions. 

Classes can be used in many different ways.  In this book we emphasize using 
them in the context of object-oriented programming. The key to object-
oriented programming is thinking about objects as collections of both data and 
the methods that operate on that data. 

The ideas underlying object-oriented programming are about forty years old, and 
have been widely accepted and practiced over the last twenty years or so.  In the 
mid-1970s people began to write articles explaining the benefits of this approach 
to programming.  About the same time, the programming languages SmallTalk 
(at Xerox PARC) and CLU (at MIT) provided linguistic support for the ideas.  But 
it wasn’t until the arrival of C++ and Java that it really took off in practice. 

We have been implicitly relying on object-oriented programming throughout 
most of this book.  Back in Section 2.1.1 we said “Objects are the core things 
that Python programs manipulate.  Every object has a type that defines the 
kinds of things that programs can do with objects of that type.”  Since Chapter 
5, we have relied heavily upon built-in types such as list and dict and the 
methods associated with those types.  But just as the designers of a 
programming language can build in only a small fraction of the useful functions, 
they can only build in only a small fraction of the useful types.  We have already 
looked at a mechanism that allows programmers to define new functions; we 
now look at a mechanism that allows programmers to define new types.   

8.1 Abstract Data Types and Classes 

The notion of an abstract data type is quite simple.  An abstract data type is a 
set of objects and the operations on those objects.  These are bound together so 
that one can pass an object from one part of a program to another, and in doing 
so provide access not only to the data attributes of the object but also to 
operations that make it easy to manipulate that data. 

The specifications of those operations define an interface between the abstract 
data type and the rest of the program.  The interface defines the behavior of the 
operations—what they do, but not how they do it.  The interface thus provides 
an abstraction barrier that isolates the rest of the program from the data 
structures, algorithms, and code involved in providing a realization of the type 
abstraction. 

Programming is about managing complexity in a way that facilitates change.  
There are two powerful mechanisms available for accomplishing this: 
decomposition and abstraction. Decomposition creates structure in a program, 
and abstraction suppresses detail. The key is to suppress the appropriate 
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details. This is where data abstraction hits the mark.  One can create domain-
specific types that provide a convenient abstraction. Ideally, these types capture 
concepts that will be relevant over the lifetime of a program.  If one starts the 
programming process by devising types that will be relevant months and even 
decades later, one has a great leg up in maintaining that software. 

We have been using abstract data types (without calling them that) throughout 
this book.  We have written programs using integers, lists, floating point 
numbers, strings, and dictionaries without giving any thought to how these 
types might be implemented.  To paraphrase Molière’s Bourgeois Gentilhomme, 
“Par ma foi, il y a plus de quatre-vingt pages que nous avons utilisé ADTs, sans 
que nous le sachions.”38  

In Python, one implements data abstractions using classes.  Figure 8.1 contains 
a class definition that provides a straightforward implementation of a set-of-
integers abstraction called IntSet. 

A class definition creates an object of type type and associates with that object a 
set of objects of type instancemethod.  For example, the expression 
IntSet.insert refers to the method insert defined in the definition of the class 
IntSet.  And the code 

print type(IntSet), type(IntSet.insert) 

will print 

<type 'type'> <type 'instancemethod'> 

Notice that the docstring (the comment enclosed in """) at the top of the class 
definition describes the abstraction provided by the class, not information about 
how the class is implemented.  The comment below the docstring does contain 
information about the implementation.  That information is aimed at 
programmers who might want to modify the implementation or build subclasses 
(see Section 8.2) of the class, not at programmers who might want to use the 
abstraction. 

                                                

38 “Good heavens, for more than eighty pages we have been using ADTs without knowing 
it.” 
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Figure 8.1  Class IntSet 

When a function definition occurs within a class definition, the defined function 
is called a method and is associated with the class.  These methods are 
sometimes referred to as method attributes of the class.  If this seems 
confusing at the moment, don’t worry about it.  We will have lots more to say 
about this topic later in this chapter. 

Classes support two kinds of operations: 

• Instantiation is used to create instances of the class.  For example, the 
statement s = IntSet() creates a new object of type IntSet.  This object 
is called an instance of IntSet. 

• Attribute references use dot notation to access attributes associated 
with the class.  For example, s.member refers to the method member 
associated with the instance s of type IntSet. 

class IntSet(object): 
    """An intSet is a set of integers""" 
    #Information about the implementation (not the abstraction) 
    #The value of the set is represented by a list of ints, self.vals. 
    #Each int in the set occurs in self.vals exactly once. 
     
    def __init__(self): 
        """Create an empty set of integers""" 
        self.vals = [] 
 
    def insert(self, e): 
        """Assumes e is an integer and inserts e into self""" 
        if not e in self.vals: 
            self.vals.append(e) 
 
    def member(self, e): 
        """Assumes e is an integer 
           Returns True if e is in self, and False otherwise""" 
        return e in self.vals 
 
    def remove(self, e): 
        """Assumes e is an integer and removes e from self 
           Raises ValueError if e is not in self""" 
        try: 
            self.vals.remove(e) 
        except: 
            raise ValueError(str(e) + ' not found') 
 
    def getMembers(self): 
        """Returns a list containing the elements of self. 
           Nothing can be assumed about the order of the elements""" 
        return self.vals[:] 
 
    def __str__(self): 
        """Returns a string representation of self""" 
        self.vals.sort() 
        result = '' 
        for e in self.vals: 
            result = result + str(e) + ',' 
        return '{' + result[:-1] + '}' #-1 omits trailing comma 
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Each class definition begins with the reserved word class followed by the name 
of the class and some information about how it relates to other classes.  In this 
case, the first line indicates that IntSet is a subclass of object.  For now, ignore 
what it means to be a subclass.  We will get to that shortly. 

As we will see, Python has a number of special method names that start and end 
with two underscores.  The first of these we will look at is __init__.  Whenever 
a class is instantiated, a call is made to the __init__ method defined in that 
class.  When the line of code 

s = IntSet() 

is executed, the interpreter will create a new instance of type IntSet, and then 

call IntSet.__init__ with the newly created object as the actual parameter that 
is bound to the formal parameter self.  When invoked, IntSet.__init__ creates 
vals, an object of type list, which becomes part of the newly created instance 
of type IntSet.  (The list is created using the by now familiar notation [], which 
is simply an abbreviation for list().)  This list is called a data attribute of the 
instance of IntSet.  Notice that each object of type IntSet will have a different 
vals list, as one would expect. 

As we have seen, methods associated with an instance of a class can be invoked 
using dot notation.  For example, the code,  

s = IntSet() 
s.insert(3) 
print s.member(3) 

creates a new instance of IntSet, inserts the integer 3 into that IntSet, and then 
prints True. 

At first blush there appears to be something inconsistent here.  It looks as if 
each method is being called with one argument too few.  For example, member 
has two formal parameters, but we appear to be calling it with only one actual 
parameter.  This is an artifact of the dot notation.  The object associated with 
the expression preceding the dot is implicitly passed as the first parameter to 
the method.  Throughout this book, we follow the convention of using self as 
the name of the formal parameter to which this actual parameter is bound.  
Python programmers observe this convention almost universally, and we 
strongly suggest that you use it as well. 

A class should not be confused with instances of that class, just as an object of 
type list should not be confused with the list type.  Attributes can be 
associated either with a class itself or with instances of a class: 

• Method attributes are defined in a class definition, for example 
IntSet.member is an attribute of the class IntSet.  When the class is 
instantiated, e.g., by s = IntSet(), instance attributes, e.g., s.member, 
are created.  Keep in mind that IntSet.member and s.member are different 
objects.  While s.member is initially bound to the member method defined 
in the class IntSet, that binding can be changed during the course of a 
computation.  For example, you could (but shouldn’t!) write 
s.member = IntSet.insert. 
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• When data attributes are associated with a class we call them class 
variables.  When they are associated with an instance we call them 
instance variables.  For example, vals is an instance variable because 
for each instance of class IntSet, vals is bound to a different list. So far, 
we haven’t seen a class variable.  We will use one in Figure 8.3. 

Data abstraction achieves representation-independence.  Think of the 
implementation of an abstract type as having several components: 

• Implementations of the methods of the type, 

• Data structures that together encode values of the type, and 

• Conventions about how the implementations of the methods are to use 
the data structures.  A key convention is captured by the representation 
invariant. 

The representation invariant defines which values of the data attributes 
correspond to valid representations of class instances.  The representation 
invariant for IntSet is that vals contains no duplicates. The implementation of 
__init__ is responsible for establishing the invariant (which holds on the empty 
list), and the other methods are responsible for maintaining that invariant.  That 
is why insert appends e only if it is not already in self.vals. 

The implementation of remove exploits the assumption that the representation 
invariant is satisfied when remove is entered.  It calls list.remove only once, 
since the representation invariant guarantees that there is at most one 
occurrence of e in self.vals. 

The last method defined in the class, __str__, is another one of those special __ 
methods.  When the print command is used, the __str__ function associated 
with the object to be printed is automatically invoked.  For example, the code 

s = IntSet() 
s.insert(3) 
s.insert(4) 
print s 

will print, 

{3,4} 

(If no __str__ method were defined, print s would cause something like 
<__main__.IntSet object at 0x1663510> to be printed.)  We could also print the 
value of s by writing print s.__str__() or even print IntSet.__str__(s), but 
using those forms is less convenient.  The __str__ method of a class is also 
invoked when a program converts an instance of that class to a string by calling 
str. 
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8.1.1 Designing Programs Using Abstract Data Types 

Abstract data types are a big deal.  They lead to a different way of thinking about 
organizing large programs.  When we think about the world, we rely on 
abstractions.  In the world of finance people talk about stocks and bonds.  In the 
world of biology people talk about proteins and residues.  When trying to 
understand these concepts, we mentally gather together some of the relevant 
data and features of these kinds of objects into one intellectual package.  For 
example, we think of bonds as having an interest rate and a maturity date as 
data attributes.  We also think of bonds as having operations such as “set price” 
and “calculate yield to maturity.”  Abstract data types allow us to incorporate 
this kind of organization into the design of programs.  

Data abstraction encourages program designers to focus on the centrality of 
data objects rather than functions.  Thinking about a program more as a 
collection of types than as a collection of functions leads to a profoundly 
different organizing principle.  Among other things, it encourages one to think 
about programming as a process of combining relatively large chunks, since 
data abstractions typically encompass more functionality than do individual 
functions.  This, in turn, leads us to think of the essence of programming as a 
process not of writing individual lines of code, but of composing abstractions.  

The availability of reusable abstractions not only reduces development time, but 
also usually leads to more reliable programs, because mature software is usually 
more reliable than new software.  For many years, the only program libraries in 
common use were statistical or scientific.  Today, however, there is a great range 
of available program libraries (especially for Python), often based on a rich set of 
data abstractions, as we shall see later in this book. 

 

8.1.2 Using Classes to Keep Track of Students and Faculty 

As an example use of classes, imagine that you are designing a program to help 
keep track of all the students and faculty at a university.  It is certainly possible 
to write such a program without using data abstraction.  Each student would 
have a family name, a given name, a home address, a year, some grades, etc.  
This could all be kept in some combination of lists and dictionaries.  Keeping 
track of faculty and staff would require some similar data structures and some 
different data structures, e.g., data structures to keep track of things like salary 
history. 

Before rushing in to design a bunch of data structures, let’s think about some 
abstractions that might prove useful.  Is there an abstraction that covers the 
common attributes of students, professors, and staff?  Some would argue that 
they are all human.  Figure 8.2 contains a class that incorporates some of the 
common attributes (name and birthdate) of humans.  It makes use of the 
standard Python library module datetime, which provides many convenient 
methods for creating and manipulating dates. 
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Figure 8.2  Class Person 

The following code makes use of Person.   

me = Person('Michael Guttag') 
him = Person('Barack Hussein Obama') 
her = Person('Madonna') 
print him.getLastName() 
him.setBirthday(datetime.date(1961, 8, 4)) 
her.setBirthday(datetime.date(1958, 8, 16)) 
print him.getName(), 'is', him.getAge(), 'days old' 

Notice that whenever Person is instantiated an argument is supplied to the 
__init__ function.  In general, when instantiating a class we need to look at the 

import datetime 
 
class Person(object): 
 
    def __init__(self, name): 
        """Create a person""" 
        self.name = name 
        try: 
            lastBlank = name.rindex(' ') 
            self.lastName = name[lastBlank+1:] 
        except: 
            self.lastName = name 
        self.birthday = None 
  
    def getName(self): 
        """Returns self's full name""" 
        return self.name 
 
    def getLastName(self): 
        """Returns self's last name""" 
        return self.lastName 
 
    def setBirthday(self, birthdate): 
        """Assumes birthdate is of type datetime.date 
           Sets self's birthday to birthdate""" 
        self.birthday = birthdate 
 
    def getAge(self): 
        """Returns self's current age in days""" 
        if self.birthday == None: 
            raise ValueError 
        return (datetime.date.today() - self.birthday).days 
 
    def __lt__(self, other): 
        """Returns True if self's name is lexicographically 
           less than other's name, and False otherwise""" 
        if self.lastName == other.lastName: 
            return self.name < other.name 
        return self.lastName < other.lastName 
 
    def __str__(self): 
        """Returns self's name""" 
        return self.name 
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specification of the __init__ function for that class to know what arguments to 
supply and what properties those arguments should have. 

After this code is executed, there will be three instances of class Person.  One 
can then access information about these instances using the methods 
associated with them.  For example, him.getLastName() will return 'Obama'.  The 
expression him.lastName will also return 'Obama';  however, for reasons 
discussed later in this chapter, writing expressions that directly access instance 
variables is considered poor form, and should be avoided.  Similarly, there is no 
appropriate way for a user of the Person abstraction to extract a person’s 
birthday, despite the fact that the implementation contains an attribute with 
that value.  There is, however, a way to extract information that depends upon 
the person’s birthday, as illustrated by the last print statement in the above 
code. 

Class Person defines yet another specially named method, __lt__.  This method 
overloads the < operator.  The method Person__lt__ gets called whenever the 
first argument to the < operator is of type Person.  The __lt__ method in class 
Person is implemented using the < operator of type str.  The expression 
self.Name < other.name is shorthand for self.name.__lt__(self.other).  Since 
self.name is of type str, the __lt__ method is the one associated with type str. 

In addition to providing the syntactic convenience of writing infix expressions 
that use <, this overloading provides automatic access to any polymorphic 
method defined using __lt__.  The built-in method sort is one such method.  
So, for example, if pList is a list composed of elements of type Person, the call 
pList.sort() will sort that list using the __lt__ method defined in class 
Person.  The code 

pList = [me, him, her] 
for p in pList: 
    print p 
pList.sort() 
for p in pList: 
    print p 

will first print 

Michael Guttag 
Barack Hussein Obama 
Madonna 

and then print 

Michael Guttag 
Madonna 
Barack Hussein Obama 
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8.2 Inheritance 

Many types have properties in common with other types.  For example, types 
list and str each have len functions that mean the same thing.  Inheritance 
provides a convenient mechanism for building groups of related abstractions.  It 
allows programmers to create a type hierarchy in which each type inherits 
attributes from the types above it in the hierarchy. 

The class object is at the top of the hierarchy.  This makes sense, since in 
Python everything that exists at runtime is an object.  Because Person inherits 
all of the properties of objects, programs can bind a variable to a Person, append 
a Person to a list, etc. 

The class MITPerson in Figure 8.3 inherits attributes from its parent class, 
Person, including all of the attributes that Person inherited from its parent class, 
object. 

 

Figure 8.3  Class MITPerson 

In the jargon of object-oriented programming, MITPerson is a subclass of Person, 
and therefore inherits the attributes of its superclass. In addition to what it 
inherits, the subclass can: 

• Add new attributes.  For example, MITPerson has added the class 
variable nextIdNum, the instance variable idNum, and the method 
getIdNum. 

• Override attributes of the superclass.  For example,  MITPerson has 
overridden __init__ and __lt__. 

The method MITPerson.__init__ first invokes Person.__init__ to initialize the 
inherited instance variable self.name.  It then initializes self.idNum, an instance 
variable that instances of MITPerson have but instances of Person do not. 

The instance variable self.idNum is initialized using a class variable, nextIdNum, 
that belongs to the class MITPerson, rather than to instances of the class.  When 
an instance of MITPerson is created, a new instance of nextIdNum is not created.  
This allows __init__ to ensure that each instance of MITPerson has a unique 
idNum. 

class MITPerson(Person): 
     
    nextIdNum = 0 #identification number 
     
    def __init__(self, name): 
        Person.__init__(self, name) 
        self.idNum = MITPerson.nextIdNum 
        MITPerson.nextIdNum += 1 
         
    def getIdNum(self): 
        return self.idNum 
     
    def __lt__(self, other): 
        return self.idNum < other.idNum 
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Consider the code 

p1 = MITPerson('Barbara Beaver') 
print str(p1) + '\'s id number is ' + str(p1.getIdNum()) 

The first line creates a new MITPerson.  The second line is a bit more 
complicated.  When it attempts to evaluate the expression str(p1), the runtime 
system first checks to see if there is an __str__ method associated with class 
MITPerson.  Since there is not, it next checks to see if there is an __str__ method 
associated with the superclass, Person, of MITPerson.  There is, so it uses that.  
When the runtime system attempts to evaluate the expression p1.getidNum(), it 
first checks to see if there is a getIdNum method associated with class MITPerson.  
There is, so it invokes that method and prints 

Barbara Beaver's id number is 0 

(Recall that in a string, the character “\” is an escape character used to indicate 
that the next character should be treated in a special way.  In the string  

'\'s id number is ' 

the “\” indicates that the apostrophe is part of the string, not a delimiter 
terminating the string.) 

Now consider the code 

p1 = MITPerson('Mark Guttag') 
p2 = MITPerson('Billy Bob Beaver') 
p3 = MITPerson('Billy Bob Beaver') 
p4 = Person('Billy Bob Beaver') 

We have created four virtual people, three of whom are named Billy Bob Beaver.  
Two of the Billy Bobs are of type MITPerson, and one merely a Person.  If we 
execute the lines of code 

print 'p1 < p2 =', p1 < p2 
print 'p3 < p2 =', p3 < p2 
print 'p4 < p1 =', p4 < p1 

the interpreter will print 

p1 < p2 = True 
p3 < p2 = False  
p4 < p1 = True 

Since p1, p2, and p3 are all of type MITPerson, the interpreter will use the __lt__ 
method defined in class MITPerson when evaluating the first two comparisons, so 
the ordering will be based on identification numbers.  In the third comparison, 
the < operator is applied to operands of different types.  Since the first argument 
of the expression is used to determine which __lt__ method to invoke, p4 < p1 
is shorthand for p4.__lt__(p1).  Therefore, the interpreter uses the __lt__ 
method associated with the type of p4, Person, and the “people” will be ordered by 
name. 

What happens if we try 

print 'p1 < p4 =', p1 < p4 
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The interpreter will invoke the __lt__ operator associated with the type of p1, 
i.e., the one defined in class MITPerson.  This will lead to the exception 

AttributeError: 'Person' object has no attribute 'idNum' 

because the object to which p4 is bound does not have an attribute idNum. 

8.2.1 Multiple Levels of Inheritance 

Figure 8.4 adds another couple of levels of inheritance to the class hierarchy. 

 

Figure 8.4  Two kinds of students 

Adding UG seems logical, because we want to associate a year of graduation (or 
perhaps anticipated graduation) with each undergraduate.  But what is going on 
with the classes Student and Grad?  By using the Python reserved word pass as 
the body, we indicate that the class has no attributes other than those inherited 
from its superclass.  Why would one ever want to create a class with no new 
attributes?   

By introducing the class Grad, we gain the ability to create two different kinds of 
students and use their types to distinguish one kind of object from another.  For 
example, the code 

p5 = Grad('Buzz Aldrin') 
p6 = UG('Billy Beaver', 1984) 
print p5, 'is a graduate student is', type(p5) == Grad 
print p5, 'is an undergraduate student is', type(p5) == UG 

will print 

Buzz Aldrin is a graduate student is True 
Buzz Aldrin is an undergraduate student is False 

The utility of the intermediate type Student is a bit subtler.  Consider going back 
to class MITPerson and adding the method 

def isStudent(self): 
    return isinstance(self, Student) 

The function isinstance is built into Python.  The first argument of isinstance 
can be any object, but the second argument must be an object of type type.  The 
function returns True if and only if the first argument is an instance of the 
second argument.  For example the value of isinstance([1,2], list) is True.   

class Student(MITPerson): 
    pass 
 
class UG(Student): 
    def __init__(self, name, classYear): 
        MITPerson.__init__(self, name) 
        self.year = classYear 
    def getClass(self): 
        return self.year 
     
class Grad(Student): 
    pass 
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Returning to our example, the code 
 

print p5, 'is a student is', p5.isStudent() 
print p6, 'is a student is', p6.isStudent() 
print p3, 'is a student is', p3.isStudent() 

prints 

Buzz Aldrin is a student is True 
Billy Beaver is a student is True 
Billy Bob Beaver is a student is False 

Notice that isinstance(p6, Student) is quite different from 
type(p6) == Student.  The object to which p6 is bound is of type UG, not 
student, but since UG is a subclass of Student, the object to which p6 is bound is 
considered to be an instance of class Student (as well as an instance of 
MITPerson and Person). 

Since there are only two kinds of students, we could have implemented 
isStudent as,  

def isStudent(self): 
    return type(self) == Grad or type(self) == UG 

However, if a new type of student were introduced at some later point it would 
be necessary to go back and edit the code implementing isStudent.  By 
introducing the intermediate class Student and using isinstance we avoid this 
problem.  For example, if we were to add 

class TransferStudent(Student): 
 
    def __init__(self, name, fromSchool): 
        MITPerson.__init__(self, name) 
        self.fromSchool = fromSchool 
 
    def getOldSchool(self): 
        return self.fromSchool 

no change needs to be made to isStudent. 

It is not unusual during the creation and later maintenance of a program to go 
back and add new classes or new attributes to old classes.  Good programmers 
design their programs so as to minimize the amount of code that might need to 
be changed when that is done. 

8.2.2 The Substitution Principle 

When subclassing is used to define a type hierarchy, the subclasses should be 
thought of as extending the behavior of their superclasses.  We do this by adding 
new attributes or overriding attributes inherited from a superclass.  For 
example, TransferStudent extends Student by introducing a former school. 

Sometimes, the subclass overrides methods from the superclass, but this must 
be done with care.  In particular, important behaviors of the supertype must be 
supported by each of its subtypes.  If client code works correctly using an 
instance of the supertype, it should also work correctly when an instance of the 
subtype is substituted for the instance of the supertype.  For example, it should 
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be possible to write client code using the specification of Student and have it 
work correctly on a TransferStudent.39 

Conversely, there is no reason to expect that code written to work for 
TransferStudent should work for arbitrary types of Student. 

8.3 Encapsulation and Information Hiding 

As long as we are dealing with students, it would be a shame not to make them 
suffer through taking classes and getting grades. 

 

Figure 8.5 Class Grades 

                                                

39 This substitution principle was first clearly enunciated by Barbara Liskov and 
Jeannette Wing in their 1994 paper, “A behavioral notion of subtyping.”  

class Grades(object): 
    """A mapping from students to a list of grades""" 
    def __init__(self): 
        """Create empty grade book""" 
        self.students = [] 
        self.grades = {} 
        self.isSorted = True 
 
    def addStudent(self, student): 
        """Assumes: student is of type Student 
           Add student to the grade book""" 
        if student in self.students: 
            raise ValueError('Duplicate student') 
        self.students.append(student) 
        self.grades[student.getIdNum()] = [] 
        self.isSorted = False 
 
    def addGrade(self, student, grade): 
        """Assumes: grade is a float 
           Add grade to the list of grades for student""" 
        try: 
            self.grades[student.getIdNum()].append(grade) 
        except: 
            raise ValueError('Student not in mapping') 
 
    def getGrades(self, student): 
        """Return a list of grades for student""" 
        try: #return copy of student's grades 
            return self.grades[student.getIdNum()][:] 
        except: 
            raise ValueError('Student not in mapping') 
 
    def getStudents(self): 
        """Return a list of the students in the grade book""" 
        if not self.isSorted: 
            self.students.sort() 
            self.isSorted = True 
        return self.students[:] #return copy of list of students 



 

104  Chapter 8. Classes and Object-Oriented Programming 

Figure 8.5 contains a class that can be used to keep track of the grades of a 
collection of students.  Instances of class Grades are implemented using a list 
and a dictionary.  The list keeps track of the students in the class.  The 
dictionary maps a student’s identification number to a list of grades. 

Notice that getGrades returns a copy of the list of grades associated with a 
student, and getStudents returns a copy of the list of students.  The 
computational cost of copying the lists could have been avoided by simply 
returning the instance variables themselves.  Doing so, however, is likely to lead 
to problems.  Consider the code 

allStudents = course1.getStudents() 
allStudents.extend(course2.getStudents()) 

If getStudents returned self.students, the second line of code would have the 
(probably unexpected) side effect of changing the set of students in course1. 

The instance variable isSorted is used to keep track of whether or not the list of 
students has been sorted since the last time a student was added to it.  This 
allows the implementation of getStudents to avoid sorting an already sorted list. 

Figure 8.6 contains a function that uses class Grades to produce a grade report 
for some students taking 6.00, the MIT course for which this book was 
developed. 
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Figure 8.6  Generating a grade report 

When run, the code in the figure prints 

Jane Doe's mean grade is 75.0 
John Doe's mean grade is 75.0 
David Henry has no grades 
Billy Buckner's mean grade is 50.0 
Bucky F. Dent's mean grade is 87.5 

There are two important concepts at the heart of object-oriented programming.  
The first is the idea of encapsulation.  By this we mean the bundling together of 
data attributes and the methods for operating on them.  For example, if we write 

Rafael = MITPerson() 

we can use dot notation to access attributes such as Rafael’s age and 
identification number. 

The second important concept is information hiding.  This is one of the keys to 
modularity.  If those parts of the program that use a class (i.e., the clients of the 
class) rely only on the specifications of the methods in the class, a programmer 
implementing the class is free to change the implementation of the class (e.g., to 

def gradeReport(course): 
    """Assumes course is of type Grades""" 
    report = '' 
    for s in course.getStudents(): 
        tot = 0.0 
        numGrades = 0 
        for g in course.getGrades(s): 
            tot += g 
            numGrades += 1 
        try: 
            average = tot/numGrades 
            report = report + '\n'\ 
                     + str(s) + '\'s mean grade is ' + str(average) 
        except ZeroDivisionError: 
            report = report + '\n'\ 
                     + str(s) + ' has no grades' 
    return report 
 
ug1 = UG('Jane Doe', 2014) 
ug2 = UG('John Doe', 2015) 
ug3 = UG('David Henry', 2003) 
g1 = Grad('Billy Buckner') 
g2 = Grad('Bucky F. Dent') 
sixHundred = Grades() 
sixHundred.addStudent(ug1) 
sixHundred.addStudent(ug2) 
sixHundred.addStudent(g1) 
sixHundred.addStudent(g2) 
for s in sixHundred.getStudents(): 
    sixHundred.addGrade(s, 75) 
sixHundred.addGrade(g1, 25) 
sixHundred.addGrade(g2, 100) 
sixHundred.addStudent(ug3) 
print gradeReport(sixHundred) 
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improve efficiency) without worrying that the change will break code that uses 
the class. 

Some programming languages (Java and C++, for example) provide mechanisms 
for enforcing information hiding. Programmers can make the data attributes of a 
class invisible to clients of the class, and thus require that the data be accessed 
only through the object's methods.  So, for example, we could get the idNum 
associated with Rafael by executing Rafael.getIdNum() but not by writing 
Rafael.idNum. 

Unfortunately, Python does not provide mechanisms for enforcing information 
hiding.  There is no way for the implementer of a class to restrict access to the 
attributes of class instances.  For example, a client of a Person can write the 
expression Rafael.lastName rather than Rafael.getLastName(). 

Why is this unfortunate?  Because the client code is relying upon something 
that is not part of the specification of Person, and is therefore subject to change.  
If the implementation of Person were changed, for example to extract the last 
name whenever it is requested rather than store it in an instance variable, then 
the client code would no longer work. 

Not only does Python let programs read instance and class variables from 
outside the class definition, it also lets programs write these variables.  So, for 
example, the code Rafael.birthday = '8/21/50' is perfectly legal.  This would 
lead to a runtime type error, were Rafael.getAge invoked later in the 
computation.  It is even possible to create instance variables from outside the 
class definition.  For example, Python will not complain if the assignment 
statement me.age = Rafael.getAge() occurs outside the class definition. 

While this weak static semantic checking is a flaw in Python, it is not a fatal 
flaw.  A disciplined programmer can simply follow the sensible rule of not 
directly accessing data attributes from outside the class in which they are 
defined, as we do in this book. 

8.3.1 Generators 

A perceived risk of information hiding is that preventing client programs from 
directly accessing critical data structures leads to an unacceptable loss of 
efficiency.  In the early days of data abstraction, many were concerned about the 
cost of introducing extraneous function/method calls.  Modern compilation 
technology makes this concern moot.  A more serious issue is that client 
programs will be forced to use inefficient algorithms. 

Consider the implementation of gradeReport in Figure 8.6.  The invocation of 
course.getStudents creates and returns a list of size n, where n is the number of 
students.  This is probably not a problem for a grade book for a single class, but 
imagine keeping track of the grades of 1.7 million high school students taking 
the SAT’s.  Creating a new list of that size when the list already exists is a 
significant inefficiency.  One solution is to abandon the abstraction and allow 
gradeReport to directly access the instance variable course.students, but that 
would violate information hiding.  Fortunately, there is a better solution. 
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The code in Figure 8.7, replaces the getStudents function in class Grades with a 
function that uses a kind of statement we have not yet used: a yield statement. 

 

Figure 8.7  New version of getStudents 

Any function definition containing a yield statement is treated in a special way.  
The presence of yield tells the Python system that the function is a generator.  
Generators are typically used in conjunction with for statements.40 

At the start of the first iteration of a for loop, the interpreter starts executing the 
code in the body of the generator.  It runs until the first time a yield statement 
is executed, at which point it returns the value of the expression in the yield 
statement.  On the next iteration, the generator resumes execution immediately 
following the yield, with all local variables bound to the objects to which they 
were bound when the yield statement was executed, and again runs until a 
yield statement is executed.  It continues to do this until it runs out of code to 
execute or executes a return statement, at which point the loop is exited. 

The version of getStudents in Figure 8.7 allows programmers to use a for loop 
to iterate over the students in objects of type Grades in the same way they can 
use a for loop to iterate over elements of built-in types such as list.  For 
example, the code 

book = Grades() 
book.addStudent(Grad('Julie')) 
book.addStudent(Grad('Charlie')) 
for s in book.getStudents(): 
    print s 

prints 

Julie 
Charlie 

Thus the loop in Figure 8.6 that starts with 

for s in course.getStudents(): 

does not have to be altered to take advantage of the version of class Grades that 
contains the new implementation of getStudents.  The same for loop can iterate 
over the values provided by getStudents regardless of whether getStudents 
returns a list of values or generates one value at a time.  Generating one value at 

                                                

40 This explanation of generators is a bit simplistic.  To fully understand generators, you 
need to understand the way built-in iterators are implemented in Python, which is not 
covered in this book. 

def getStudents(self): 
    """Return the students in the grade book one at a time""" 
    if not self.isSorted: 
        self.students.sort() 
        self.isSorted = True 
    for s in self.students: 
        yield s 
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a time will be more efficient, because a new list containing the students will not 
be created. 

8.4 Mortgages, an Extended Example 

A collapse in U.S. housing prices helped trigger a severe economic meltdown in 
the fall of 2008.  One of the contributing factors was that many homeowners 
had taken on mortgages that ended up having unexpected consequences.41 

In the beginning, mortgages were relatively simple beasts.  One borrowed money 
from a bank and made a fixed-size payment each month for the life of the 
mortgage, which typically ranged from fifteen to thirty years.  At the end of that 
period, the bank had been paid back the initial loan (the principal) plus interest, 
and the homeowner owned the house “free and clear.” 

Towards the end of the twentieth century, mortgages started getting a lot more 
complicated.  People could get lower interest rates by paying “points” at the time 
they took on the mortgage.  A point is a cash payment of 1% of the value of the 
loan.  People could take mortgages that were “interest-only” for a period of time.  
That is to say, for some number of months at the start of the loan the borrower 
paid only the accrued interest and none of the principal.  Other loans involved 
multiple rates.  Typically the initial rate (called a “teaser rate”) was low, and then 
it went up over time.  Many of these loans were variable-rate—the rate to be paid 
after the initial period would vary depending upon some index intended to reflect 
the cost to the lender of borrowing on the wholesale credit market.42 

In principle, giving consumers a variety of options is a good thing.  However, 
unscrupulous loan purveyors were not always careful to fully explain the 
possible long-term implications of the various options, and some borrowers 
made choices that proved to have dire consequences. 

Let’s build a program that examines the costs of three kinds of loans: 

• A fixed-rate mortgage with no points, 

• A fixed-rate mortgage with points, and 

• A mortgage with an initial teaser rate followed by a higher rate for the 
duration. 

The point of this exercise is to provide some experience in the incremental 
development of a set of related classes, not to make you an expert on mortgages. 

We will structure our code to include a Mortgage class, and subclasses 
corresponding to each of the three kinds of mortgages listed above.  

                                                

41 In this context, it is worth recalling the etymology of the word mortgage.  The American 
Heritage Dictionary of the English Language traces the word back to the old French words 
for dead (mort) and pledge (gage).  (This derivation also explains why the “t” in the middle 
of mortgage is silent.) 

42 The London Interbank Offered Rate (LIBOR) is probably the most commonly used 
index. 
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Figure 8.8 contains the abstract class Mortgage.  This class contains methods 
that are shared by each of the subclasses, but it is not intended to be 
instantiated directly. 

The function findPayment at the top of the figure computes the size of the fixed 
monthly payment needed to pay off the loan, including interest, by the end of its 
term.  It does this using a well-known closed-form expression. This expression is 
not hard to derive, but it is a lot easier to just look it up and more likely to be 
correct than one derived on the spot. 

When your code incorporates formulas you have looked up, make sure that: 

• You have taken the formula from a reputable source.  We looked at 
multiple reputable sources, all of which contained equivalent formulas. 

• You fully understand the meaning of all the variables in the formula. 

• You test your implementation against examples taken from reputable 
sources.  After implementing this function, we tested it by comparing our 
results to the results supplied by a calculator available on the Web. 

 

 

Figure 8.8  Mortgage base class 

Looking at __init__, we see that all Mortgage instances will have instance 
variables corresponding to the initial loan amount, the monthly interest rate, the 
duration of the loan in months, a list of payments that have been made at the 
start of each month (the list starts with 0.0, since no payments have been made 
at the start of the first month), a list with the balance of the loan that is 

def findPayment(loan, r, m): 
    """Assumes: loan and r are floats, m an int 
       Returns the monthly payment for a mortgage of size 
       loan at a monthly rate of r for m months""" 
    return loan*((r*(1+r)**m)/((1+r)**m - 1)) 
     
class Mortgage(object): 
    """Abstract class for building different kinds of mortgages""" 
    def __init__(self, loan, annRate, months): 
        """Create a new mortgage""" 
        self.loan = loan 
        self.rate = annRate/12.0 
        self.months = months 
        self.paid = [0.0] 
        self.owed = [loan] 
        self.payment = findPayment(loan, self.rate, months) 
        self.legend = None #description of mortgage 
    def makePayment(self): 
        """Make a payment""" 
        self.paid.append(self.payment) 
        reduction = self.payment - self.owed[-1]*self.rate 
        self.owed.append(self.owed[-1] - reduction) 
    def getTotalPaid(self): 
        """Return the total amount paid so far""" 
        return sum(self.paid) 
    def __str__(self): 
        return self.legend 
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outstanding at the start of each month, the amount of money to be paid each 
month (initialized using the value returned by the function findPayment), and a 
description of the mortgage (which initially has a value of None).  The __init__ 
operation of each subclass of Mortgage is expected to start by calling 
Mortgage.__init__, and then to initialize self.legend to an appropriate 
description of that subclass. 

The method makePayment is used to record mortgage payments.  Part of each 
payment covers the amount of interest due on the outstanding loan balance, 
and the remainder of the payment is used to reduce the loan balance.  That is 
why makePayment updates both self.paid and self.owed. 

The method getTotalPaid uses the built-in Python function sum, which returns 
the sum of a sequence of numbers.  If the sequence contains a non-number, an 
exception is raised. 

Figure 8.9 contains classes implementing two types of mortgage.  Each of these 
classes overrides __init__ and inherits the other three methods from Mortgage.  

 

Figure 8.9  Fixed-rate mortgage classes 

Figure 8.10 contains a third subclass of Mortgage. The class TwoRate treats the 
mortgage as the concatenation of two loans, each at a different interest rate.  
(Since self.paid is initialized with a 0.0, it contains one more element than the 
number of payments that have been made.  That’s why makePayment compares 
len(self.paid) to self.teaserMonths + 1.). 

class Fixed(Mortgage): 
    def __init__(self, loan, r, months): 
        Mortgage.__init__(self, loan, r, months) 
        self.legend = 'Fixed, ' + str(r*100) + '%' 
         
class FixedWithPts(Mortgage): 
    def __init__(self, loan, r, months, pts): 
        Mortgage.__init__(self, loan, r, months) 
        self.pts = pts 
        self.paid = [loan*(pts/100.0)] 
        self.legend = 'Fixed, ' + str(r*100) + '%, '\ 
                      + str(pts) + ' points' 
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Figure 8.10  Mortgage with teaser rate 

Figure 8.11 contains a function that computes and prints the total cost of each 
kind of mortgage for a sample set of parameters.  It begins by creating one 
mortgage of each kind.  It then makes a monthly payment on each for a given 
number of years.  Finally, it prints the total amount of the payments made for 
each loan. 

 

Figure 8.11  Evaluate mortgages 

Notice that we used keyword rather than positional arguments in the invocation 
of compareMortgages.  We did this because compareMortgages has a large number 
of formal parameters and using keyword arguments makes it easier to ensure 
that we are supplying the intended actual values to each of the formals. 

class TwoRate(Mortgage): 
    def __init__(self, loan, r, months, teaserRate, teaserMonths): 
        Mortgage.__init__(self, loan, teaserRate, months) 
        self.teaserMonths = teaserMonths 
        self.teaserRate = teaserRate 
        self.nextRate = r/12.0 
        self.legend = str(teaserRate*100)\ 
                      + '% for ' + str(self.teaserMonths)\ 
                      + ' months, then ' + str(r*100) + '%' 
    def makePayment(self): 
        if len(self.paid) == self.teaserMonths + 1: 
            self.rate = self.nextRate 
            self.payment = findPayment(self.owed[-1], self.rate, 
                                       self.months - self.teaserMonths) 
        Mortgage.makePayment(self) 

def compareMortgages(amt, years, fixedRate, pts, ptsRate, 
                     varRate1, varRate2, varMonths): 
    totMonths = years*12 
    fixed1 = Fixed(amt, fixedRate, totMonths) 
    fixed2 = FixedWithPts(amt, ptsRate, totMonths, pts) 
    twoRate = TwoRate(amt, varRate2, totMonths, varRate1, varMonths) 
    morts = [fixed1, fixed2, twoRate] 
    for m in range(totMonths): 
        for mort in morts: 
            mort.makePayment() 
    for m in morts: 
        print m 
        print ' Total payments = $' + str(int(m.getTotalPaid())) 
 
compareMortgages(amt=200000, years=30, fixedRate=0.07, 
                 pts = 3.25, ptsRate=0.05, varRate1=0.045, 
                 varRate2=0.095, varMonths=48) 
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When the code in Figure 8.11 is run, it prints 

Fixed, 7.0% 
 Total payments = $479017 
Fixed, 5.0%, 3.25 points 
 Total payments = $393011 
4.5% for 48 months, then 9.5% 
 Total payments = $551444 

At first glance, the results look pretty conclusive.  The variable-rate loan is a bad 
idea (for the borrower, not the bank) and the fixed-rate loan with points costs 
the least.  It’s important to note, however, that total cost is not the only metric 
by which mortgages should be judged.  For example, a borrower who expects to 
have a higher income in the future may be willing to pay more in the later years 
to lessen the burden of payments in the beginning. 

This suggests that rather than looking at a single number, we should look at 
payments over time.  This in turn suggests that our program should be 
producing plots designed to show how the mortgage behaves over time.  We will 
do that in Section 11.2. 



 

    

9 A SIMPLISTIC INTRODUCTION TO ALGORITHMIC 
COMPLEXITY 

 

The most important thing to think about when designing and implementing a 
program is that it should produce results that can be relied upon.  We want our 
bank balances to be calculated correctly. We want the fuel injectors in our 
automobiles to inject appropriate amounts of fuel.  We would prefer that neither 
airplanes nor operating systems crash. 

Sometimes performance is an important aspect of correctness.  This is most 
obvious for programs that need to run in real time.  A program that warns 
airplanes of potential obstructions needs to issue the warning before the 
obstructions are encountered.  Performance can also affect the utility of many 
non-real-time programs.  The number of transactions completed per minute is 
an important metric when evaluating the utility of database systems.  Users care 
about the time required to start an application on their phone.  Biologists care 
about how long their phylogenetic inference calculations take. 

Writing efficient programs is not easy.  The most straightforward solution is 
often not the most efficient.  Computationally efficient algorithms often employ 
subtle tricks that can make them difficult to understand.  Consequently, 
programmers often increase the conceptual complexity of a program in an 
effort to reduce its computational complexity.  To do this in a sensible way, we 
need to understand how to go about estimating the computational complexity of 
a program.  That is the topic of this chapter. 

9.1 Thinking About Computational Complexity 

How should one go about answering the question “How long will the following 
function take to run?” 

def f(i): 
   """Assumes i is an int and i >= 0""" 
   answer = 1 
   while i >= 1: 
      answer *= i 
      i -= 1 
   return answer 

We could run the program on some input and time it.  But that wouldn’t be 
particularly informative because the result would depend upon 

1. the speed of the computer on which it is run, 

2. the efficiency of the Python implementation on that machine, and 

3. the value of the input. 

We get around the first two issues by using a more abstract measure of time.  
Instead of measuring time in milliseconds, we measure time in terms of the 
number of basic steps executed by the program. 



 

114  Chapter 9. A Simplistic Introduction to Algorithmic Complexity 

For simplicity, we will use a random access machine as our model of 
computation.  In a random access machine, steps are executed sequentially, one 
at a time.43 A step is an operation that takes a fixed amount of time, such as 
binding a variable to an object, making a comparison, executing an arithmetic 
operation, or accessing an object in memory. 

Now that we have a more abstract way to think about the meaning of time, we 
turn to the question of dependence on the value of the input.  We deal with that 
by moving away from expressing time complexity as a single number and 
instead relating it to the sizes of the inputs.  This allows us to compare the 
efficiency of two algorithms by talking about how the running time of each grows 
with respect to the sizes of the inputs. 

Of course, the actual running time of an algorithm depends not only upon the 
sizes of the inputs but also upon their values.  Consider, for example, the linear 
search algorithm implemented by 

def linearSearch(L, x): 
   for e in L: 
      if e == x: 
         return True 
   return False 

Suppose that L is a million elements long and consider the call 
linearSearch(L, 3).  If the first element in L is 3, linearSearch will return True 
almost immediately.  On the other hand, if 3 is not in L, linearSearch will have 
to examine all one million elements before returning False. 

In general, there are three broad cases to think about: 

• The best-case running time is the running time of the algorithm when 
the inputs are as favorable as possible.  I.e., the best-case running time 
is the minimum running time over all the possible inputs of a given size.  
For linearSearch, the best-case running time is independent of the size 
of L. 

• Similarly, the worst-case running time is the maximum running time 
over all the possible inputs of a given size.  For linearSearch, the worst-
case running time is linear in the size of the list. 

• By analogy with the definitions of the best-case and worst-case running 
time, the average-case (also called expected-case) running time is the 
average running time over all possible inputs of a given size.  
Alternatively, if one has some a priori information about the distribution 
of input values (e.g., that 90% of the time x is in L), one can take that into 
account. 

People usually focus on the worst case.  All engineers share a common article of 
faith, Murphy’s Law: If something can go wrong, it will go wrong.  The worst-case 
provides an upper bound on the running time.  This is critical in situations 
where there is a time constraint on how long a computation can take.  It is not 

                                                

43 A more accurate model for today’s computers might be a parallel random access 
machine.  However, that adds considerable complexity to the algorithmic analysis, and 
often doesn’t make an important qualitative difference in the answer. 
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good enough to know that “most of the time” the air traffic control system warns 
of impending collisions before they occur. 

Let’s look at the worst-case running time of an iterative implementation of the 
factorial function 

def fact(n): 
   """Assumes n is a natural number 
      Returns n!""" 
   answer = 1 
   while n > 1: 
      answer *=  n 
      n -= 1 
   return answer 

The number of steps required to run this program is something like 2 (1 for the 
initial assignment statement and one for the return) + 5n (counting 1 step for 
the test in the while, 2 steps for the first assignment statement in the while loop 
and 2 steps for the second assignment statement in the loop).  So, for example, if 
n is 1000, the function will execute roughly 5002 steps. 

It should be immediately obvious that as n gets large, worrying about the 
difference between 5n and 5n+2 is kind of silly.  For this reason, we typically 
ignore additive constants when reasoning about running time.  Multiplicative 
constants are more problematical.  Should we care whether the computation 
takes 1000 steps or 5000 steps?  Multiplicative factors can be important.  
Whether a search engine takes a half second or 2.5 seconds to service a query 
can be the difference between whether people use that search engine or go to a 
competitor. 

On the other hand, when one is comparing two different algorithms, it is often 
the case that even multiplicative constants are irrelevant.  Recall that in 
Chapter 3 we looked at two algorithms, exhaustive enumeration and bisection 
search, for finding an approximation to the square root of a floating point 
number.  Functions based on each of these algorithms are shown in Figure 9.1 
and Figure 9.2. 

 

Figure 9.1  Using exhaustive enumeration to approximate square root 

def squareRootExhaustive(x, epsilon): 
   """Assumes x and epsilon are positive floats & epsilon < 1 
      Returns a y such that y*y is within epsilon of x""" 
   step = epsilon**2 
   ans = 0.0 
   while abs(ans**2 - x) >= epsilon and ans*ans <= x: 
       ans += step 
   if ans*ans > x: 
      raise ValueError 
   return ans 
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Figure 9.2  Using bisection search to approximate square root 

We saw that exhaustive enumeration was so slow as to be impractical for many 
combinations of x and epsilon.  For example, evaluating 
squareRootExhaustive(100, 0.0001) requires roughly one billion iterations of 
the loop.  In contrast, evaluating squareRootBi(100, 0.0001) takes roughly 
twenty iterations of a slightly more complex while loop.  When the difference in 
the number of iterations is this large, it doesn’t really matter how many 
instructions are in the loop.  I.e., the multiplicative constants are irrelevant. 

9.2 Asymptotic Notation 

We use something called asymptotic notation to provide a formal way to talk 
about the relationship between the running time of an algorithm and the size of 
its inputs.  The underlying motivation is that almost any algorithm is sufficiently 
efficient when run on small inputs.  What we typically need to worry about is the 
efficiency of the algorithm when run on very large inputs.  As a proxy for “very 
large,” asymptotic notation describes the complexity of an algorithm as the size 
of its inputs approaches infinity. 

Consider, for example, the code 

def f(x): 
   """Assume x is an int > 0""" 
   ans = 0 
   #Loop that takes constant time 
   for i in range(1000): 
      ans += 1 
   print 'Number of additions so far', ans 
   #Loop that takes time x 
   for i in range(x): 
      ans += 1 
   print 'Number of additions so far', ans 
   #Nested loops take time x**2 
   for i in range(x): 
      for j in range(x): 
         ans += 1 
         ans += 1 
   print 'Number of additions so far', ans 
   return ans 

def squareRootBi(x, epsilon): 
   """Assumes x and epsilon are positive floats & epsilon < 1 
      Returns a y such that y*y is within epsilon of x""" 
   low = 0.0 
   high = max(1.0, x) 
   ans = (high + low)/2.0 
   while abs(ans**2 - x) >= epsilon: 
      if ans**2 < x: 
         low = ans 
      else: 
         high = ans 
      ans = (high + low)/2.0 
   return ans 
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If one assumes that each line of code takes one unit of time to execute, the 
running time of this function can be described as 1000 + x + 2x2.  The constant 
1000 corresponds to the number of times the first loop is executed.  The term x 
corresponds to the number of times the second loop is executed.  Finally, the 
term 2x2 corresponds to the time spent executing the two statements in the 
nested for loop.  Consequently, the call f(10) will print 

Number of additions so far 1000 
Number of additions so far 1010 
Number of additions so far 1210 

For small values of x the constant term dominates.  If x is 10, 1000 of the 1210 
steps are accounted for by the first loop.  On the other hand, if x is 1000, each of 
the first two loops accounts for only 0.05% of the steps.  When x is 1,000,000, the 
first loop takes about 0.00000005% of the total time and the second loop about 
0.00005%.  A full  2,000,000,000,000 of the 2,000,001,001,000 steps are in the body of 
the inner for loop. 

Clearly, we can get a meaningful notion of how long this code will take to run on 
very large inputs by considering only the inner loop, i.e., the quadratic 
component.  Should we care about the fact that this loop takes 2x2 steps rather 
than x2 steps?  If your computer executes roughly 100 million steps per second, 
evaluating f will take about 5.5 hours.  If we could reduce the complexity to x2 
steps, it would take about 2.25 hours.  In either case, the moral is the same: we 
should probably look for a more efficient algorithm. 

This kind of analysis leads us to use the following rules of thumb in describing 
the asymptotic complexity of an algorithm: 

• If the running time is the sum of multiple terms, keep the one with the 
largest growth rate, and drop the others. 

• If the remaining term is a product, drop any constants. 

The most commonly used asymptotic notation is called “Big O” notation.44  Big 
O notation is used to give an upper bound on the asymptotic growth (often 
called the order of growth) of a function.  For example, the formula f(x) ∈ O(x2) 
means that the function f grows no faster than the quadratic polynomial x2, in 
an asymptotic sense. 

We, like many computer scientists, will often abuse Big O notation by making 
statements like, “the complexity of f(x) is O(x2).”  By this we mean that in the worst 
case f will take O(x2) steps to run.  The difference between a function being “in 
O(x2)” and “being O(x2)” is subtle but important.  Saying that f(x) ∈ O (x2) does not 
preclude the worst-case running time of f from being considerably less that O(x2).   

                                                

44 The phrase “Big O” was introduced in this context by the computer scientist Donald 
Knuth in the 1970s.  He chose the Greek letter Omicron because number theorists had 
used that letter since the late 19th century to denote a related concept. 



 

118  Chapter 9. A Simplistic Introduction to Algorithmic Complexity 

When we say that f(x) is O(x2), we are implying that x2 is both an upper and a 
lower bound on the asymptotic worst-case running time.  This is called a tight 
bound.45 

9.3 Some Important Complexity Classes 

Some of the most common instances of Big O are listed below.  In each case, n is 
a measure of the size of the inputs to the function. 

• O(1) denotes constant running time.   

• O(log n) denotes logarithmic running time.  

• O(n) denotes linear running time.   

• O(n log n) denotes log-linear running time. 

• O(nk) denotes polynomial running time.  Notice that k is a constant. 

• O(cn) denotes exponential running time.  Here a constant is being raised 
to a power based on the size of the input. 

9.3.1 Constant Complexity 

This indicates that the asymptotic complexity is independent of the inputs.  
There are very few interesting programs in this class, but all programs have 
pieces (for example finding out the length of a Python list or multiplying two 
floating point numbers) that fit into this class.  Constant running time does not 
imply that there are no loops or recursive calls in the code, but it does imply 
that the number of iterations or recursive calls is independent of the size of the 
inputs. 

9.3.2 Logarithmic Complexity 

Such functions have a complexity that grows as the log of at least one of the 
inputs.  Binary search, for example, is logarithmic in the length of the list being 
searched.  (We will look at binary search and analyze its complexity in the next 
chapter.)  By the way, we don’t care about the base of the log, since the 
difference between using one base and another is merely a constant 
multiplicative factor.  For example, O(log2(x)) = O(log2(10)*log10(x)).  There are lots of 

interesting functions with logarithmic complexity.  Consider 

                                                

45 The more pedantic members of the computer science community use Big Theta, Θ, 
rather than Big O for this. 



 

 Chapter 9.  A Simplistic Introduction to Algorithmic Complexity  119 

def intToStr(i): 
   """Assumes i is a nonnegative int 
      Returns a decimal string representation of i""" 
   digits = '0123456789' 
   if i == 0: 
      return '0' 
   result = '' 
   while i > 0: 
      result = digits[i%10] + result 
      i = i//10 
   return result 

Since there are no function or method calls in this code, we know that we only 
have to look at the loops to determine the complexity class.  There is only one 
loop, so the only thing that we need to do is characterize the number of 
iterations.  That boils down to the number of times one can divide i by 10.  So, 
the complexity of intToStr is O(log(i)). 

What about the complexity of 

def addDigits(n): 
   “““Assumes n is a nonnegative int 
      Returns the sum of the digits in n""" 
   stringRep = intToStr(n) 
   val = 0 
   for c in stringRep: 
      val += int(c) 
   return val 

The complexity of converting n to a string is O(log(n)) and intToStr returns a 
string of length O(log(n)).  The for loop will be executed O(len(stringRep)) times, i.e., 
O(log(n)) times.  Putting it all together, and assuming that a character 
representing a digit can be converted to an integer in constant time, the program 
will run in time proportional to O(log(n)) + O(log(n)), which makes it O(log(n)). 

9.3.3 Linear Complexity 

Many algorithms that deal with lists or other kinds of sequences are linear 
because they touch each element of the sequence a constant (greater than 0) 
number of times.  Consider, for example, 

def addDigits(s): 
   """Assumes s is a str each character of which is a 
         decimal digit. 
      Returns an int that is the sum of the digits in s""" 
   val = 0 
   for c in s: 
      val += int(c) 
   return val 

This function is linear in the length of s, i.e., O(len(s))—again assuming that a 
character representing a digit can be converted to an integer in constant time. 

Of course, a program does not need to have a loop to have linear complexity.   
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Consider 

def factorial(x): 
   """Assumes that x is a positive int 
      Returns x!""" 
   if x == 1: 
      return 1 
   else: 
      return x*factorial(x-1) 

There are no loops in this code, so in order to analyze the complexity we need to 
figure out how many recursive calls get made.  The series of calls is simply 

factorial(x), factorial(x-1), factorial(x-2), ... , factorial(1).  The 

length of this series, and thus the complexity of the function, is O(x). 

Thus far in this chapter we have looked only at the time complexity of our code.  
This is fine for algorithms that use a constant amount of space, but this 
implementation of factorial does not have that property.  As we discussed in 
Chapter 4, each recursive call of factorial causes a new stack frame to be 
allocated, and that frame continues to occupy memory until the call returns.  At 
the maximum depth of recursion, this code will have allocated x stack frames, so 
the space complexity is O(x). 

The impact of space complexity is harder to appreciate than the impact of time 
complexity.  Whether a program takes one minute or two minutes to complete is 
quite visible to its user, but whether it uses one megabyte or two megabytes of 
memory is largely invisible to users.  This is why people typically give more 
attention to time complexity than to space complexity.  The exception occurs 
when a program needs more space than is available in the main memory of the 
machine on which it is run. 

9.3.4 Log-Linear Complexity 

This is slightly more complicated than the complexity classes we have looked at 
thus far. It involves the product of two terms, each of which depends upon the 
size of the inputs.  It is an important class, because many practical algorithms 
are log-linear.  The most commonly used log-linear algorithm is probably merge 
sort, which is O(n log(n)), where n is the length of the list being sorted.  We will 
look at that algorithm and analyze its complexity in the next chapter. 

9.3.5 Polynomial Complexity 

The most commonly used polynomial algorithms are quadratic, i.e., their 
complexity grows as the square of the size of their input.  Consider, for example, 
the function in Figure 9.3, which implements a subset test. 
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Figure 9.3  Implementation of subset test 

Each time the inner loop is reached it is executed O(len(L2) times.  The function 
will execute the outer loop O(len(L1)) times, so the inner loop will be reached 
O(len(L1)) times.  Therefore, the complexity of isSubset is O(len(L1)*len(L2)). 

Now consider the function intersect in Figure 9.4. 

 

Figure 9.4  Implementation of list intersection 

The running time for the part building the list that might contain duplicates is 
clearly O(len(L1)*len(L2)).  At first glance, it appears that the part of the code that 

builds the duplicate-free list is linear in the length of tmp, but it is not.  The test 
e not in result potentially involves looking at each element in result, and is 
therefore O(len(result)); consequently the second part of the implementation is 
O(len(tmp)*len(result)).  Since the lengths of result and tmp are bounded by the 

length of the smaller of L1 and L2, and since we ignore additive terms, the 
complexity of intersect is O(len(L1)*len(L2)).  

9.3.6 Exponential Complexity 

As we will see later in this book, many important problems are inherently 
exponential, i.e., solving them completely can require time that is exponential in 
the size of the input.  This is unfortunate, since it rarely pays to write a program 
that has a reasonably high probability of taking exponential time to run. 

def isSubset(L1, L2): 
   """Assumes L1 and L2 are lists. 
      Returns True if each element in L1 is also in L2 
      and False otherwise.""" 
   for e1 in L1: 
      matched = False 
      for e2 in L2: 
         if e1 == e2: 
            matched = True 
            break 
      if not matched: 
         return False 
   return True 

def intersect(L1, L2): 
   """Assumes: L1 and L2 are lists 
      Returns a list that is the intersection of L1 and L2""" 
   #Build a list containing common elements 
   tmp = [] 
   for e1 in L1: 
      for e2 in L2: 
         if e1 == e2: 
            tmp.append(e1) 
   #Build a list without duplicates 
   result = [] 
   for e in tmp: 
      if e not in result: 
         result.append(e) 
   return result 
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Consider, for example, the code in Figure 9.5. 

 

Figure 9.5  Generating the power set 

The function genPowerset(L) returns a list a list of lists that contains all 
possible combinations of the elements of L.  For example, if L is ['a', 'b'], the 
powerset of L will be a list containing the lists [], ['b'], ['a'], and ['a', 'b']. 

The algorithm is a bit subtle.  Consider a list of n elements.  We can represent 
any combination of elements by a string of n 0’s and 1’s, where a 1 represents the 
presence of an element and a 0 its absence.  The combination containing no 
items would be represented by a string of all 0’s, the combination containing all 
of the items would be represented by a string of all 1’s, the combination 
containing only the first and last elements would be represented by 100…001, etc.  
Therefore generating all sublists of a list L of length n can be done as follows: 

1. Generate all n-bit binary numbers.  These are the numbers from 0 to 2n. 

2. For each of these 2n +1 binary numbers, b, generate a list by selecting 
those elements of L that have an index corresponding to a 1 in b.  For 
example, if L is ['a', 'b'] and b is 01, generate the list [‘b’]. 

Try running genPowerset on a list containing the first ten letters of the alphabet.  
It will finish quite quickly and produce a list with 1024 elements.  Next, try 
running genPowerset on the first twenty letters of the alphabet.  It will take more 
than a bit of time to run, and return a list with about a million elements.  If you 
try running genPowerset on all twenty-six letters, you will probably get tired of 

def getBinaryRep(n, numDigits): 
   """Assumes n and numDigits are non-negative ints 
      Returns a numDigits str that is a binary 
      representation of n""" 
   result = '' 
   while n > 0: 
      result = str(n%2) + result 
      n = n//2 
   if len(result) > numDigits: 
      raise ValueError('not enough digits') 
   for i in range(numDigits - len(result)): 
      result = '0' + result 
   return result 
 
def genPowerset(L): 
   """Assumes L is a list 
      Returns a list of lists that contains all possible 
      combinations of the elements of L.  E.g., if 
      L is [1, 2] it will return a list with elements 
      [], [1], [2], and [1,2].""" 
   powerset = [] 
   for i in range(0, 2**len(L)): 
      binStr = getBinaryRep(i, len(L)) 
      subset = [] 
      for j in range(len(L)): 
         if binStr[j] == '1': 
            subset.append(L[j]) 
      powerset.append(subset) 
   return powerset 
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waiting for it to complete, unless your computer runs out of memory trying to 
build a list with tens of millions of elements.  Don’t even think about trying to 
run genPowerset on a list containing all uppercase and lowercase letters.  Step 1 
of the algorithm generates O(2len(L)) binary numbers, so the algorithm is 
exponential in len(L). 

Does this mean that we cannot use computation to tackle exponentially hard 
problems?  Absolutely not.  It means that we have to find algorithms that 
provide approximate solutions to these problems or that find perfect solutions 
on some instances of the problem.  But that is a subject for later chapters. 

9.3.7 Comparisons of Complexity Classes 

The following plots are intended to 
convey an impression of the 
implications of an algorithm being in 
one or another of these complexity 
classes. 

The plot on the right compares the 
growth of a constant-time algorithm 
to that of a logarithmic algorithm.  
Note that the size of the input has to 
reach about a million for the two of 
them to cross, even for the very small 
constant of twenty.  When the size of 
the input is five million, the time required by a logarithmic algorithm is still 

quite small.  The moral is that 
logarithmic algorithms are almost as 
good as constant-time ones.  

The plot on the left illustrates the 
dramatic difference between 
logarithmic algorithms and linear 
algorithms.  Notice that the y-axis 
only goes as high as 1000.  While we 
needed to look at large inputs to 
appreciate the difference between 
constant-time and logarithmic-time 
algorithms, the difference between 

logarithmic-time and linear-time algorithms is apparent even on small inputs.  
The dramatic difference in the relative performance of logarithmic and linear 
algorithms does not mean that linear algorithms are bad.  In fact, most of the 
time a linear algorithm is acceptably efficient. 

The plot below and on the left shows that there is a significant difference 
between O(n) and O(n log(n)).  Given how slowly log(n) grows, this may seem a bit 
surprising, but keep in mind that it is a multiplicative factor.  Also keep in mind 
that in most practical situations, O(n log(n)) is fast enough to be useful. 
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On the other hand, as the plot below and on the right suggests, there are many 
situations in which a quadratic rate of growth is prohibitive.  The quadratic 
curve is rising so quickly that it is hard to see that the log-linear curve is even 
on the plot. 

 

The final two plots are about exponential complexity. 

In the plot on the left, the numbers to the left of the y-axis run from 0.0 to 1.2.  
However, the notation x1e301 on the top left means that each tick on the y-axis 
should be multiplied by 10301.  So, the plotted y-values range from 0 to roughly 
1.1*10301.  It looks, however, almost as if there are no curves in the plot on the 
left.  That’s because an exponential function grows so quickly that relative to the 

y value of the highest point (which determines the scale of the y-axis), the y 

values of earlier points on the exponential curve (and all points on the quadratic 
curve) are almost indistinguishable from 0.  

The plot on the right addresses this issue by using a logarithmic scale on the 

y-axis.  One can readily see that exponential algorithms are impractical for all 

but the smallest of inputs. 

 
Notice, by the way, that when plotted on a logarithmic scale, an exponential 
curve appears as a straight line.  We will have more to say about this in later 
chapters.



 

    

10  SOME SIMPLE ALGORITHMS AND DATA 
STRUCTURES 

 

Though we expend a fair number of pages in this book talking about efficiency, 
the goal is not to make you expert in designing efficient programs.  There are 
many long books (and even some good long books) devoted exclusively to that 
topic.46  In Chapter 9, we introduced some of the basic concepts underlying 
complexity analysis.  In this chapter we use those concepts to look at the 
complexity of a few classic algorithms.  The goal of this chapter is to help you 
develop some general intuitions about how to approach questions of efficiency.  
By the time you get through this chapter you should understand why some 
programs complete in the blink of an eye, why some need to run overnight, and 
why some wouldn’t complete in your lifetime. 

The first algorithms we looked at in this book were based on brute-force 
exhaustive enumeration.  We argued that modern computers are so fast that it 
is often the case that employing clever algorithms is a waste of time.  Program 
something that is simple and obviously correct, and let it rip. 

We then looked at some problems (e.g., finding an approximation to the roots of 
a polynomial) where the search space was too large to make brute force 
practical.  This led us to consider more efficient algorithms such as bisection 
search and Newton-Raphson.  The major point was that the key to efficiency is a 
good algorithm, not clever coding tricks. 

In the sciences (physical, life, and social), programmers often start by quickly 
coding up a simple algorithm to test the plausibility of a hypothesis about a data 
set, and then run it on a small amount of data.  If this yields encouraging 
results, the hard work of producing an implementation that can be run (perhaps 
over and over again) on large data sets begins.  Such implementations need to 
be based on efficient algorithms. 

Efficient algorithms are hard to invent.  Successful professional computer 
scientists might invent maybe one algorithm during their whole career—if they 
are lucky.  Most of us never invent a novel algorithm.  What we do instead is 
learn to reduce the most complex aspects of the problems with which we are 
faced to previously solved problems.  More specifically, we 

• Develop an understanding of the inherent complexity of the problem with 
which we are faced, 

• Think about how to break that problem up into subproblems, and 

• Relate those subproblems to other problems for which efficient 
algorithms already exist. 

                                                

46 Introduction to Algorithms, by Cormen, Leiserson, Rivest, and Stein, is an excellent 
source for those of you not intimidated by a fair amount of mathematics. 
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This chapter contains a few examples intended to give you some intuition about 
algorithm design.  Many other algorithms appear elsewhere in the book. 

Keep in mind that the most efficient algorithm is not always the algorithm of 
choice.  A program that does everything in the most efficient possible way is 
often needlessly difficult to understand.  It is often a good strategy to start by 
solving the problem at hand in the most straightforward manner possible, 
instrument it to find any computational bottlenecks, and then look for ways to 
improve the computational complexity of those parts of the program 
contributing to the bottlenecks. 

10.1 Search Algorithms 

A search algorithm is a method for finding an item or group of items with 
specific properties within a collection of items. We refer to the collection of items 
as a search space.  The search space might be something concrete, such as a 
set of electronic medical records, or something abstract, such as the set of all 
integers.  A large number of problems that occur in practice can be formulated 
as search problems. 

Many of the algorithms presented earlier in this book can be viewed as search 
algorithms.  In Chapter 3, we formulated finding an approximation to the roots 
of a polynomial as a search problem, and looked at three algorithms—exhaustive 
enumeration, bisection search, and Newton-Raphson—for searching the space of 
possible answers. 

In this section, we will examine two algorithms for searching a list.  Each meets 
the specification 

def search(L, e): 
    """Assumes L is a list. 
       Returns True if e is in L and False otherwise""" 

The astute reader might wonder if this is not semantically equivalent to the 
Python expression e in L.  The answer is yes, it is.  And if one is unconcerned 
about the efficiency of discovering whether e is in L, one should simply write 
that expression. 

10.1.1 Linear Search and Using Indirection to Access Elements 

Python uses the following algorithm to determine if an element is in a list: 

def search(L, e): 
    for i in range(len(L)): 
        if L[i] == e: 
            return True 
    return False 

If the element e is not in the list the algorithm will perform O(len(L)) tests, i.e., the 
complexity is at best linear in the length of L.  Why “at best” linear?  It will be 
linear only if each operation inside the loop can be done in constant time.  That 
raises the question of whether Python retrieves the ith element of a list in 
constant time.  Since our model of computation assumes that fetching the 
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contents of an address is a constant-time operation, the question becomes 
whether we can compute the address of the ith element of a list in constant time. 

Let’s start by considering the simple case where each element of the list is an 
integer.  This implies that each element of the list is the same size, e.g., four 
units of memory (four eight-bit bytes47).  In this case the address in memory of 
the ith element of the list is simply start + 4i, where start is the address of the start 
of the list.  Therefore we can assume that Python could compute the address of 
the ith element of a list of integers in constant time. 

Of course, we know that Python lists can contain objects of types other than 
int, and that the same list can contain objects of many different types and sizes.  
You might think that this would present a problem, but it does not. 

In Python, a list is represented as a length (the number of objects in the list) and 
a sequence of fixed-size pointers48 to objects.  Figure 10.1 illustrates the use of 
these pointers.  The shaded region represents a list containing four elements.  
The leftmost shaded box contains a pointer to an integer indicating the length of 
the list.  Each of the other shaded boxes contains a pointer to an object in the 
list. 

 

Figure 10.1  Implementing lists 

If the length field is four units of memory, and each pointer (address) occupies 
four units of memory, the address of the ith element of the list is stored at the 
address start + 4 + 4i.  Again, this address can be found in constant time, and 
then the value stored at that address can be used to access the ith element.  This 
access too is a constant-time operation. 

This example illustrates one of the most important implementation techniques 
used in computing: indirection.49  Generally speaking, indirection involves 
accessing something by first accessing something else that contains a reference 
                                                

47 The number of bits used to store an integer, often called the word size, is typically 
dictated by the hardware of the computer.  

48 Of size 32 bits in some implementations and 64 bits in others. 

49 My dictionary defines “indirection” as “lack of straightforwardness and openness: 
deceitfulness.”  In fact, the word generally had a pejorative implication until about 1950, 
when computer scientists realized that it was the solution to many problems. 
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to the thing initially sought.  This is what happens each time we use a variable 
to refer to the object to which that variable is bound.  When we use a variable to 
access a list and then a reference stored in that list to access another object, we 
are going through two levels of indirection.50 

10.1.2 Binary Search and Exploiting Assumptions 

Getting back to the problem of implementing search(L, e), is O(len(L)) the best 
we can do?  Yes, if we know nothing about the relationship of the values of the 
elements in the list and the order in which they are stored.  In the worst case, 
we have to look at each element in L to determine whether L contains e. 

But suppose we know something about the order in which elements are stored, 
e.g., suppose we know that we have a list of integers stored in ascending order.  
We could change the implementation so that the search stops when it reaches a 
number larger than the number for which it is searching:  

def search(L, e): 
    """Assumes L is a list, the elements of which are in 
          ascending order. 
       Returns True if e is in L and False otherwise""" 
    for i in range(len(L)): 
        if L[i] == e: 
            return True 
        if L[i] > e:  
            return False 
    return False 

This would improve the average running time.  However, it would not change the 
worst-case complexity of the algorithm, since in the worst case each element of L 
is examined. 

We can, however, get a considerable improvement in the worst-case complexity 
by using an algorithm, binary search, that is similar to the bisection search 
algorithm used in Chapter 3 to find an approximation to the square root of a 
floating point number.  There we relied upon the fact that there is an intrinsic 
total ordering on floating point numbers.  Here we rely on the assumption that 
the list is ordered. 

The idea is simple: 

1. Pick an index, i, that divides the list L roughly in half. 

2. Ask if L[i] == e. 

3. If not, ask whether L[i] is larger or smaller than e. 

4. Depending upon the answer, search either the left or right half of L for e. 

                                                

50 It has often been said that “any problem in computing can be solved by adding another 
level of indirection.”   Following three levels of indirection, we attribute this observation to 
David J. Wheeler.  The paper “Authentication in Distributed Systems: Theory and 
Practice,” by  Butler Lampson et al., contains the observation.  It also contains a footnote 
saying that “Roger Needham attributes this observation to David Wheeler of Cambridge 
University.”   
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Given the structure of this algorithm, it is not surprising that the most 
straightforward implementation of binary search uses recursion, as shown in 
Figure 10.2. 

 

Figure 10.2  Recursive binary search 

The outer function in Figure 10.2, search(L, e), has the same arguments as the 
function specified above, but a slightly different specification.  The specification 
says that the implementation may assume that L is sorted in ascending order.  
The burden of making sure that this assumption is satisfied lies with the caller 
of search.  If the assumption is not satisfied, the implementation has no 
obligation to behave well.  It could work, but it could also crash or return an 
incorrect answer.  Should search be modified to check that the assumption is 
satisfied?  This might eliminate a source of errors, but it would defeat the 
purpose of using binary search, since checking the assumption would itself take 
O(len(L)) time. 

Functions such as search are often called wrapper functions.  The function 
provides a nice interface for client code, but is essentially a pass-through that 
does no serious computation.  Instead, it calls the helper function bSearch with 
appropriate arguments.  This raises the question of why not eliminate search 
and have clients call bSearch directly?  The reason is that the parameters low 
and high have nothing to do with the abstraction of searching a list for an 
element.  They are implementation details that should be hidden from those 
writing programs that call search. 

Let us now analyze the complexity of bSearch.  We showed in the last section 
that list access takes constant time.  Therefore, we can see that excluding the 
recursive call, each instance of bSearch is O(1).  Therefore, the complexity of 
bSearch depends only upon the number of recursive calls. 

def search(L, e): 
    """Assumes L is a list, the elements of which are in 
          ascending order. 
       Returns True if e is in L and False otherwise""" 
     
    def bSearch(L, e, low, high): 
        #Decrements high - low 
        if high == low: 
            return L[low] == e 
        mid = (low + high)//2 
        if L[mid] == e: 
            return True 
        elif L[mid] > e: 
            if low == mid: #nothing left to search 
                return False 
            else: 
                return bSearch(L, e, low, mid - 1) 
        else: 
            return bSearch(L, e, mid + 1, high) 
         
    if len(L) == 0: 
        return False 
    else: 
        return bSearch(L, e, 0, len(L) - 1) 
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If this were a book about algorithms, we would now dive into a careful analysis 
using something called a recurrence relation.  But since it isn’t, we will take a 
much less formal approach that starts with the question “How do we know that 
the program terminates?”  Recall that in Chapter 3 we asked the same question 
about a while loop.  We answered the question by providing a decrementing 
function for the loop.  We do the same thing here.  In this context, the 
decrementing function has the properties: 

1. It maps the values to which the formal parameters are bound to a 
nonnegative integer. 

2. When its value is 0, the recursion terminates. 

3. For each recursive call, the value of the decrementing function is less 
than the value of the decrementing function on entry to the instance of 
the function making the call. 

The decrementing function for bSearch is high–low.  The if statement in search 

ensures that the value of this decrementing function is at least 0 the first time 
bSearch is called (decrementing function property 1). 

When bSearch is entered, if high–low is exactly 0, the function makes no 

recursive call—simply returning the value L[low] == e (satisfying decrementing 
function property  2). 

The function bSearch contains two recursive calls.  One call uses arguments that 
cover all of the elements to the left of mid, and the other call uses arguments 
that cover all of the elements to the right of mid.  In either case, the value of 
high–low is cut in half (satisfying decrementing function property 3). 

We now understand why the recursion terminates.  The next question is how 
many times can the value of high–low be cut in half before high–low == 0?  
Recall that logy(x) is the number of times that y has to be multiplied by itself to 
reach x.  Conversely, if x is divided by y logy(x) times, the result is 1.  This implies 
that high–low can be cut in half at most log2(high–low) times before it reaches 0. 

Finally, we can answer the question, what is the algorithmic complexity of 
binary search?  Since when search calls bSearch the value of high–low is equal 

to len(L)-1, the complexity of search is O(log(len(L))).51 

 

Finger exercise: Why does the code use mid+1 rather than mid in the second 
recursive call? 

                                                

51 Recall that when looking at orders of growth the base of the logarithm is irrelevant. 
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10.2 Sorting Algorithms 

We have just seen that if we happen to know that a list is sorted, we can exploit 
that information to greatly reduce the time needed to search a list.  Does this 
mean that when asked to search a list one should first sort it and then perform 
the search? 

Let O(sortComplexity(L)) be the complexity of sorting a list.  Since we know that we 
can always search a list in O(len(L)) time, the question of whether we should first 
sort and then search boils down to the question, is (sortComplexity(L) + log(len(L))) < 

len(L)?  The answer, sadly, is no.  One cannot sort a list without looking at each 
element in the list at least once, so it is not possible to sort a list in sub-linear 
time. 

Does this mean that binary search is an intellectual curiosity of no practical 
import?  Happily, no.  Suppose that one expects to search the same list many 
times.  It might well make sense to pay the overhead of sorting the list once, and 
then amortize the cost of the sort over many searches.  If we expect to search 
the list k times, the relevant question becomes, is (sortComplexity(L) + k*log(len(L))) 

less than k*len(L)?  As k becomes large, the time required to sort the list becomes 

increasingly irrelevant. 

How big k needs to be depends upon how long it takes to sort a list.  If, for 
example, sorting were exponential in the size of the list, k would have to be quite 
large. 

Fortunately, sorting can be done rather efficiently.  For example, the standard 
implementation of sorting in most Python implementations runs in roughly 
O(n*log(n)) time, where n is the length of the list.  In practice, you will rarely need 

to implement your own sort function.  In most cases, the right thing to do is to 
use either Python’s built-in sort method (L.sort() sorts the list L) or its built-in 
function sorted (sorted(L) returns a list with same elements as L, but does not 
mutate L).  We present sorting algorithms here primarily to provide some 
practice in thinking about algorithm design and complexity analysis. 

We begin with a simple but inefficient algorithm, selection sort.  Selection sort, 
Figure 10.3, works by maintaining the loop invariant that, given a partitioning 
of the list into a prefix (L[0:i]) and a suffix (L[i+1:len(L)]), the prefix is sorted 
and no element in the prefix is larger than the smallest element in the suffix. 
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We use induction to reason about loop invariants. 

• Base case: At the start of the first iteration, the prefix is empty, i.e., the 
suffix is the entire list.  The invariant is (trivially) true. 

• Induction step: At each step of the algorithm, we move one element from 
the suffix to the prefix.  We do this by appending a minimum element of 
the suffix to the end of the prefix.  Because the invariant held before we 
moved the element, we know that after we append the element the prefix 
is still sorted.  We also know that since we removed the smallest element 
in the suffix, no element in the prefix is larger than the smallest element 
in the suffix. 

• When the loop is exited, the prefix includes the entire list, and the suffix 
is empty.  Therefore, the entire list is now sorted in ascending order. 

 

Figure 10.3  Selection sort 

It’s hard to imagine a simpler or more obviously correct sorting algorithm.  
Unfortunately, it is rather inefficient.52  The complexity of the inner loop is 
O(len(L)).  The complexity of the outer loop is also O(len(L)).  So, the complexity of 
the entire function is O(len(L)2).  I.e., it is quadratic in the length of L. 

10.2.1 Merge Sort 

Fortunately, we can do a lot better than quadratic time using a divide-and-
conquer algorithm.  The basic idea is to combine solutions of simpler instances 
of the original problem.  In general, a divide-and-conquer algorithm is 
characterized by 

1. A threshold input size, below which the problem is not subdivided,  

2. The size and number of sub-instances into which an instance is split, 
and 

3. The algorithm used to combine sub-solutions.  

The threshold is sometimes called the recursive base.  For item 2 it is usual to 
consider the ratio of initial problem size to sub-instance size. In most of the 
examples we’ve seen so far, the ratio was 2. 

                                                

52 But not the most inefficient of sorting algorithms, as suggested by a successful 
candidate for the U.S. Presidency.  See http://www.youtube.com/watch?v=k4RRi_ntQc8. 

def selSort(L): 
    """Assumes that L is a list of elements that can be 
         compared using >. 
       Sorts L in ascending order""" 
    suffixStart = 0 
    while suffixStart != len(L): 
        #look at each element in suffix 
        for i in range(suffixStart, len(L)): 
            if L[i] < L[suffixStart]: 
                #swap position of elements 
                L[suffixStart], L[i] = L[i], L[suffixStart] 
        suffixStart += 1 
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Merge sort is a prototypical divide-and-conquer algorithm.  It was invented in 
1945, by John von Neumann, and is still widely used.  Like many divide-and-
conquer algorithms it is most easily described recursively. 

1. If the list is of length 0 or 1, it is already sorted. 

2. If the list has more than one element, split the list into two lists, and use 
merge sort to sort each of them. 

3. Merge the results. 

The key observation made by von Neumann is that two sorted lists can be 
efficiently merged into a single sorted list.  The idea is to look at the first element 
of each list, and move the smaller of the two to the end of the result list.  When 
one of the lists is empty, all that remains is to copy the remaining items from the 
other list.  Consider, for example, merging the two lists [1,5,12,18,19,20] and 
[2,3,4,17]: 

Left in list 1    Left in list 2  Result 

[1,5,12,18,19,20]  [2,3,4,17]  [] 
[5,12,18,19,20]  [2,3,4,17]  [1] 
[5,12,18,19,20]  [3,4,17]  [1,2] 
[5,12,18,19,20]  [4,17]   [1,2,3] 
[5,12,18,19,20]  [17]   [1,2,3,4] 
[12,18,19,20]   [17]   [1,2,3,4,5] 
[18,19,20]   [17]   [1,2,3,4,5,12]  
[18,19,20]   []    [1,2,3,4,5,12,17] 
[]     []       [1,2,3,4,5,12,17,18,19,20] 

What is the complexity of the merge process?  It involves two constant-time 
operations, comparing the values of elements and copying elements from one list 
to another.  The number of comparisons is O(len(L)), where L is the longer of the 
two lists.  The number of copy operations is O(len(L1) + len(L2)), because each 
element gets copied exactly once.  Therefore, merging two sorted lists is linear in 
the length of the lists. 

Figure 10.4 contains an implementation of the merge sort algorithm.  Notice that 
we have made the comparison operator a parameter of the mergeSort function.  
The parameter’s default value is the lt operator defined in the standard Python 
module named operator.  This module defines a set of functions corresponding 
to the built-in operators of Python (for example < for numbers).  In Section 
10.2.2, we will exploit this flexibility. 
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Figure 10.4  Merge sort 

Let’s analyze the complexity of mergeSort.  We already know that the time 
complexity of merge is O(len(L)).  At each level of recursion the total number of 
elements to be merged is len(L).  Therefore, the time complexity of mergeSort is 
O(len(L)) multiplied by the number of levels of recursion.  Since mergeSort divides 
the list in half each time, we know that the number of levels of recursion is 
O(log(len(L)).  Therefore, the time complexity of mergeSort is O(n*log(n)), where n is 

len(L). 

This is a lot better than selection sort’s O(len(L)2).  For example, if L has 10,000 

elements, len(L)2 is a hundred million but len(L)*log2(len(L)) is about 130,000. 

This improvement in time complexity comes with a price.  Selection sort is an 
example of an in-place sorting algorithm.  Because it works by swapping the 
place of elements within the list, it uses only a constant amount of extra storage 
(one element in our implementation).  In contrast, the merge sort algorithm 

def merge(left, right, compare): 
    """Assumes left and right are sorted lists and 
         compare defines an ordering on the elements. 
       Returns a new sorted (by compare) list containing the 
         same elements as (left + right) would contain.""" 
     
    result = [] 
    i,j = 0, 0 
    while i < len(left) and j < len(right): 
        if compare(left[i], right[j]): 
            result.append(left[i]) 
            i += 1 
        else: 
            result.append(right[j]) 
            j += 1 
    while (i < len(left)): 
        result.append(left[i]) 
        i += 1 
    while (j < len(right)): 
        result.append(right[j]) 
        j += 1 
    return result 
 
import operator 
 
def mergeSort(L, compare = operator.lt): 
    """Assumes L is a list, compare defines an ordering 
         on elements of L 
       Returns a new sorted list containing the same elements as L""" 
    if len(L) < 2: 
        return L[:] 
    else: 
        middle = len(L)//2 
        left = mergeSort(L[:middle], compare) 
        right = mergeSort(L[middle:], compare) 
        return merge(left, right, compare) 
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involves making copies of the list.  This means that its space complexity is 
O(len(L)).  This can be an issue for large lists.53 

 

10.2.2 Exploiting Functions as Parameters 

Suppose we want to sort a list of names written as firstName lastName, e.g., the 
list ['Chris Terman', 'Tom Brady', 'Eric Grimson', 'Gisele Bundchen'].  
Figure 10.5 defines two ordering functions, and then uses these to sort a list in 
two different ways.  Each function imports the standard Python module string, 
and uses the split function from that module.  The two arguments to split are 
strings.  The second argument specifies a separator (a blank space in the code in   
Figure 10.5) that is used to split the first argument into a sequence of 
substrings.  The second argument is optional.  If that argument is omitted the 
first string is split using arbitrary strings of whitespace characters (space, tab, 
newline, return, and formfeed). 

 

Figure 10.5  Sorting a list of names 

 

                                                

53 Quicksort, invented by C.A.R. Hoare in 1960, is conceptually similar to merge sort, 
but considerably more complex.  It has the advantage of needing only log(n) additional 
space.  Unlike merge sort, its running time depends upon the way the elements in the list 
to be sorted are ordered relative to each other.  Though its worst-case running time is 
O(n2), its expected running time is only O(n*log(n)).  

 

def lastNameFirstName(name1, name2): 
    import string 
    name1 = string.split(name1, ' ') 
    name2 = string.split(name2, ' ') 
    if name1[1] != name2[1]: 
        return name1[1] < name2[1] 
    else: #last names the same, sort by first name 
        return name1[0] < name2[0] 
 
def firstNameLastName(name1, name2): 
    import string 
    name1 = string.split(name1, ' ') 
    name2 = string.split(name2, ' ') 
    if name1[0] != name2[0]: 
        return name1[0] < name2[0] 
    else: #first names the same, sort by last name 
        return name1[1] < name2[1] 
 
L = ['Chris Terman', 'Tom Brady', 'Eric Grimson', 'Gisele Bundchen'] 
newL = mergeSort(L, lastNameFirstName) 
print 'Sorted by last name =', newL 
newL = mergeSort(L, firstNameLastName) 
print 'Sorted by first name =', newL 
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10.2.3 Sorting in Python 

The sorting algorithm used in most Python implementations is called timsort.54 
The key idea is to take advantage of the fact that in a lot of data sets the data is 
already partially sorted.  Timsort’s worst-case performance is the same as merge 
sort’s, but on average it performs considerably better. 

As mentioned earlier, the Python method list.sort takes a list as its first 
argument and modifies that list.  In contrast, the Python function sorted takes 
an iterable object (e.g., a list or a dictionary) as its first argument and returns a 
new sorted list.  For example, the code 

L = [3,5,2] 
D = {'a':12, 'c':5, 'b':'dog'} 
print sorted(L) 
print L 
L.sort() 
print L 
print sorted(D) 
D.sort() 

will print 

[2, 3, 5] 
[3, 5, 2] 
[2, 3, 5] 
['a', 'b', 'c'] 
Traceback (most recent call last): 
  File "/current/mit/Teaching/600/book/10-
AlgorithmsChapter/algorithms.py", line 168, in <module> 
    D.sort() 
AttributeError: 'dict' object has no attribute 'sort' 

Notice that when the sorted function is applied to a dictionary, it returns a 
sorted list of the keys of the dictionary.  In contrast, when the sort method is 
applied to a dictionary, it causes an exception to be raised since there is no 
method dict.sort. 

Both the list.sort method and the sorted function can have two additional 
parameters.  The key parameter plays the same role as compare in our 
implementation of merge sort: it is used to supply the comparison function to be 
used.  The reverse parameter specifies whether the list is to be sorted in 
ascending or descending order.  For example, the code 

 
L = [[1,2,3], (3,2,1,0), 'abc'] 
print sorted(L, key = len, reverse = True) 

sorts the elements of L in reverse order of length and prints 

[(3, 2, 1, 0), [1, 2, 3], 'abc'] 

                                                

54 Timsort was invented by Tim Peters in 2002 because he was unhappy with the 
previous algorithm used in Python. 
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Both the list.sort method and the sorted function provide stable sorts.  This 
means that if two elements are equal with respect to the comparison used in the 
sort, their relative ordering in the original list (or other iterable object) is 
preserved in the final list. 

10.3 Hash Tables 

If we put merge sort together with binary search, we have a nice way to search 
lists.  We use merge sort to preprocess the list in O(n*log(n)) time, and then we use 

binary search to test whether elements are in the list in O(log(n)) time.  If we 
search the list k times, the overall time complexity is O(n*log(n) + k*log(n)). 

This is good, but we can still ask, is logarithmic the best that we can do for 
search when we are willing to do some preprocessing? 

When we introduced the type dict in Chapter 5, we said that dictionaries use a 
technique called hashing to do the lookup in time that is nearly independent of 
the size of the dictionary.  The basic idea behind a hash table is simple.  We 
convert the key to an integer, and then use that integer to index into a list, 
which can be done in constant time.  In principle, values of any immutable type 
can be easily converted to an integer.  After all, we know that the internal 
representation of each object is a sequence of bits, and any sequence of bits can 
be viewed as representing an integer.  For example, the internal representation 
of 'abc' is the string of bits 011000010110001001100011, which can be viewed as a 
representation of the decimal integer 6,382,179.  Of course, if we want to use the 
internal representation of strings as indices into a list, the list is going to have to 
be pretty darn long. 

What about situations where the keys are already integers?  Imagine, for the 
moment, that we are implementing a dictionary all of whose keys are U.S. Social 
Security numbers.55  If we represented the dictionary by a list with 109 elements 
and used Social Security numbers to index into the list, we could do lookups in 
constant time.  Of course, if the dictionary contained entries for only ten 
thousand (104) people, this would waste quite a lot of space. 

Which gets us to the subject of hash functions. A hash function maps a large 
space of inputs (e.g., all natural numbers) to a smaller space of outputs (e.g., the 
natural numbers between 0 and 5000).  Hash functions can be used to convert a 
large space of keys to a smaller space of integer indices. 

Since the space of possible outputs is smaller than the space of possible inputs, 
a hash function is a many-to-one mapping, i.e., multiple different inputs may 
be mapped to the same output.  When two inputs are mapped to the same 
output, it is called a collision—a topic which we will to return shortly.  A good 
hash function produces a uniform distribution, i.e., every output in the range 
is equally probable, which minimizes the probability of collisions. 

                                                

55 A United States Social Security number is a nine-digit integer. 
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Designing good hash functions is surprisingly challenging.  The problem is that 
one wants the outputs to be uniformly distributed given the expected 
distribution of inputs.  Suppose, for example, that one hashed surnames by 
performing some calculation on the first three letters.  In the Netherlands, where 
roughly 5% of surnames begin with “van” and another 5% with “de,” the 
distribution would be far from uniform. 

Figure 10.6 uses a simple hash function (recall that i%j returns the remainder 
when the integer i is divided by the integer j) to implement a dictionary with 
integers as keys.  

The basic idea is to represent an instance of class intDict by a list of hash 
buckets, where each bucket is a list of key/value pairs.  By making each bucket 
a list, we handle collisions by storing all of the values that hash to the same 
bucket in the list. 

The hash table works as follows: The instance variable buckets is initialized to a 
list of numBuckets empty lists.  To store or look up an entry with key dictKey, we 
use the hash function % to convert dictKey into an integer, and use that integer 
to index into buckets to find the hash bucket associated with dictKey.  We then 
search that bucket (which is a list) linearly to see if there is an entry with the 
key dictKey. If we are doing a lookup and there is an entry with the key, we 
simply return the value stored with that key.  If there is no entry with that key, 
we return None.  If a value is to be stored, then we either replace the value in the 
existing entry, if one was found, or append a new entry to the bucket if none was 
found.  

There are many other ways to handle collisions, some considerably more 
efficient than using lists.  But this is probably the simplest mechanism, and it 
works fine if the hash table is big enough and the hash function provides a good 
enough approximation to a uniform distribution. 

Notice that the __str__ method produces a representation of a dictionary that is 
unrelated to the order in which elements were added to it, but is instead ordered 
by the values to which the keys happen to hash.  This explains why we can’t 
predict the order of the keys in an object of type dict. 
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Figure 10.6  Implementing dictionaries using hashing 

The following code first constructs an intDict with twenty entries.  The values of 
the entries are the integers 0 to 19.  The keys are chosen at random from 
integers in the range 0 to 105 - 1. (We discuss the random module in Chapter 12.) 
The code then goes on to print the intDict using the __str__ method defined in 
the class.  Finally it prints the individual hash buckets by iterating over 
D.buckets.  (This is a terrible violation of information hiding, but pedagogically 
useful.) 

import random #a standard library module 
 
D = intDict(29) 
for i in range(20): 
    #choose a random int between 0 and 10**5 
    key = random.randint(0, 10**5) 
    D.addEntry(key, i) 
print 'The value of the intDict is:' 
print D 
print '\n', 'The buckets are:' 
for hashBucket in D.buckets: #violates abstraction barrier 
    print '  ', hashBucket 

class intDict(object): 
    """A dictionary with integer keys""" 
     
    def __init__(self, numBuckets): 
        """Create an empty dictionary""" 
        self.buckets = [] 
        self.numBuckets = numBuckets 
        for i in range(numBuckets): 
            self.buckets.append([]) 
             
    def addEntry(self, dictKey, dictVal): 
        """Assumes dictKey an int.  Adds an entry.""" 
        hashBucket = self.buckets[dictKey%self.numBuckets] 
        for i in range(len(hashBucket)): 
            if hashBucket[i][0] == dictKey: 
                hashBucket[i] = (dictKey, dictVal) 
                return 
        hashBucket.append((dictKey, dictVal)) 
         
    def getValue(self, dictKey): 
        """Assumes dictKey an int.  Returns entry associated 
           with the key dictKey""" 
        hashBucket = self.buckets[dictKey%self.numBuckets] 
        for e in hashBucket: 
            if e[0] == dictKey: 
                return e[1] 
        return None 
     
    def __str__(self): 
        result = '{' 
        for b in self.buckets: 
            for e in b: 
                result = result + str(e[0]) + ':' + str(e[1]) + ',' 
        return result[:-1] + '}' #result[:-1] omits the last comma 
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When we ran this code it printed56 

The value of the intDict is: 
{93467:5,78736:19,90718:4,529:16,12130:1,7173:7,68075:10,15851:0, 
47027:14,45288:8,5819:17,83076:6,55236:13,19481:9,11854:12,29604:11, 
45902:15,14408:18,24965:3,89377:2} 
 
The buckets are: 
   [(93467, 5)] 
   [(78736, 19)] 
   [] 
   [] 
   [] 
   [] 
   [(90718, 4)] 
   [(529, 16)] 
   [(12130, 1)] 
   [] 
   [(7173, 7)] 
   [] 
   [(68075, 10)] 
   [] 
   [] 
   [] 
   [] 
   [(15851, 0)] 
   [(47027, 14)] 
   [(45288, 8), (5819, 17)] 
   [(83076, 6), (55236, 13)] 
   [] 
   [(19481, 9), (11854, 12)] 
   [] 
   [(29604, 11), (45902, 15), (14408, 18)] 
   [(24965, 3)] 
   [] 
   [] 
   [(89377, 2)] 

When we violate the abstraction barrier and peek at the representation of the 
intDict, we see that many of the hash buckets are empty.  Others contain one, 
two, or three tuples—depending upon the number of collisions that occurred. 

What is the complexity of getValue?  If there were no collisions it would be O(1), 

because each hash bucket would be of length 0 or 1.  But, of course, there might 
be collisions.  If everything hashed to the same bucket, it would be O(n) where n 
is the number of entries in the dictionary, because the code would perform a 
linear search on that hash bucket.  By making the hash table large enough, we 
can reduce the number of collisions sufficiently to allow us to treat the 
complexity as O(1).  That is, we can trade space for time.  But what is the 
tradeoff?  To answer this question, one needs to know a tiny bit of probability, so 
we defer the answer to Chapter 12.

                                                

56 Since the integers were chosen at random, you will probably get different results if you 
run it. 



 

    

11  PLOTTING AND MORE ABOUT CLASSES 
 

Often text is the best way to communicate information, but sometimes there is a 

lot of truth to the Chinese proverb, 圖片的意義可以表達近萬字  (“A picture's meaning 
can express ten thousand words”).  Yet most programs rely on textual output to 
communicate with their users.  Why? Because in many programming languages 
presenting visual data is too hard.  Fortunately, it is simple to do in Python. 

11.1 Plotting Using PyLab 

PyLab is a Python standard library module that provides many of the facilities of 
MATLAB, “a high-level technical computing language and interactive environment 
for algorithm development, data visualization, data analysis, and numeric 
computation.”57  Later in the book, we will look at some of the more advanced 
features of PyLab, but in this chapter we focus on some of its facilities for plotting 
data.  A complete user’s guide for PyLab is at the Web site 
matplotlib.sourceforge.net/users/index.html.  There are also a number of Web 
sites that provide excellent tutorials.  We will not try to provide a user’s guide or a 
complete tutorial here.  Instead, in this chapter we will merely provide a few 
example plots and explain the code that generated them.  Other examples appear 
in later chapters. 

Let’s start with a simple example that uses pylab.plot to produce two plots.  
Executing  

import pylab 
 
pylab.figure(1) #create figure 1 
pylab.plot([1,2,3,4], [1,7,3,5]) #draw on figure 1 
pylab.show() #show figure on screen 

will cause a window to appear on your computer monitor.  Its exact appearance 
may depend on the operating system on your machine, but it will look similar to 
the following: 

                                                

57 http://www.mathworks.com/products/matlab/description1.html?s_cid=ML_b1008_desintro 
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The bar at the top contains the name of the window, in this case “Figure 1.” 

The middle section of the window contains the plot generated by the invocation of 
pylab.plot.  The two parameters of pylab.plot must be sequences of the same 
length.  The first specifies the x-coordinates of the points to be plotted, and the 
second specifies the y-coordinates.  Together, they provide a sequence of four 
<x, y> coordinate pairs, [(1,1), (2,7), (3,3), (4,5)].  These are plotted in 
order.  As each point is plotted, a line is drawn connecting it to the previous point. 

The final line of code, pylab.show(), causes the window to appear on the computer 
screen.58  If that line were not present, the figure would still have been produced, 
but it would not have been displayed.  This is not as silly as it at first sounds, 
since one might well choose to write a figure directly to a file, as we will do later, 
rather than display it on the screen.  

The bar at the bottom of the window contains a number of push buttons.  The 
rightmost button is used to write the plot to a file.59  The next button to the left is 
used to adjust the appearance of the plot in the window.  The next four buttons 
are used for panning and zooming.  And the button on the left is used to restore 
the figure to its original appearance after you are done playing with pan and zoom. 

It is possible to produce multiple figures and to write them to files.  These files can 
have any name you like, but they will all have the file extension .png.  The file 
extension .png indicates that the file is in the Portable Networks Graphics format.  
This is a public domain standard for representing images. 

                                                

58 In some operating systems, pylab.show() causes the process running Python to be 
suspended until the figure is closed (by clicking on the round red button at the upper left-
hand corner of the window).  This is unfortunate.  The usual workaround is to ensure that 
pylab.show() is the last line of code to be executed. 

59 For those of you too young to know, the icon represents a “floppy disk.”  Floppy disks 
were first introduced by IBM in 1971.  They were 8 inches in diameter and held all of 
80,000 bytes.  Unlike later floppy disks, they actually were floppy. The original IBM PC had 
a single 160Kbyte 5.5-inch floppy disk drive. For most of the 1970s and 1980s, floppy disks 
were the primary storage device for personal computers.  The transition to rigid enclosures 
(as represented in the icon that launched this digression) started in the mid-1980s (with 
the Macintosh), which didn’t stop people from continuing to call them floppy disks. 
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The code  

pylab.figure(1) #create figure 1 
pylab.plot([1,2,3,4], [1,2,3,4]) #draw on figure 1 
pylab.figure(2) #create figure 2 
pylab.plot([1,4,2,3], [5,6,7,8]) #draw on figure 2 
pylab.savefig('Figure-Addie') #save figure 2 
pylab.figure(1) #go back to working on figure 1 
pylab.plot([5,6,10,3]) #draw again on figure 1 
pylab.savefig('Figure-Jane') #save figure 1 

produces and saves to files named Figure-Jane.png and Figure-Addie.png the two 
plots below. 

Observe that the last call to pylab.plot is passed only one argument.  This 
argument supplies the y values.  The corresponding x values default to 
range(len([5, 6, 10, 3])), which is why they range from 0 to 3 in this case. 

 
           Contents of Figure-Jane.png              Contents of Figure-Addie.png 

PyLab has a notion of “current figure.”  Executing pylab.figure(x) sets the 
current figure to the figure numbered x.  Subsequently executed calls of plotting 
functions implicitly refer to that figure until another invocation of pylab.figure 
occurs.  This explains why the figure written to the file Figure-Addie.png was the 
second figure created. 

Let’s look at another example.  The code 

principal = 10000 #initial investment 
interestRate = 0.05 
years = 20 
values = [] 
for i in range(years + 1): 
    values.append(principal) 
    principal += principal*interestRate 
pylab.plot(values) 

produces the plot on the left below. 
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If we look at the code, we can deduce that this is a plot showing the growth of an 
initial investment of $10,000 at an annually compounded interest rate of 5%.  
However, this cannot be easily inferred by looking only at the plot itself.  That’s a 
bad thing.  All plots should have informative titles, and all axes should be labeled. 

If we add to the end of our the code the lines 

pylab.title('5% Growth, Compounded Annually') 
pylab.xlabel('Years of Compounding') 
pylab.ylabel('Value of Principal ($)') 

we get the plot above and on the right. 

For every plotted curve, there is an 
optional argument that is a format string 
indicating the color and line type of the 
plot.60 The letters and symbols of the 
format string are derived from those used 
in MATLAB, and are composed of a color 
indicator followed by a line-style indicator. 
The default format string is 'b-', which 
produces a solid blue line. To plot the 
above with red circles, one would replace 
the call pylab.plot(values) by 
pylab.plot(values, 'ro'), which 
produces the plot on the right.  For a complete list of color and line-style 
indicators, see 
http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot. 

                                                

60 In order to keep the price down, we chose to publish this book in black and white.  That 
posed a dilemma: should we discuss how to use color in plots or not?  We concluded that 
color is too important to ignore.  If you want to see what the plots look like in color, run the 
code. 
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It’s also possible to change the type size and line width used in plots.  This can be 
done using keyword arguments in individual calls to functions, e.g., the code 

principal = 10000 #initial investment 
interestRate = 0.05 
years = 20 
values = [] 
for i in range(years + 1): 
    values.append(principal) 
    principal += principal*interestRate 
pylab.plot(values, linewidth = 30) 
pylab.title('5% Growth, Compounded Annually', 
            fontsize = 'xx-large') 
pylab.xlabel('Years of Compounding', fontsize = 'x-small') 
pylab.ylabel('Value of Principal ($)') 

produces the intentionally bizarre-looking plot 

 

It is also possible to change the default values, which are known as “rc settings.”  
(The name “rc” is derived from the .rc file extension used for runtime 
configuration files in Unix.)  These values are stored in a dictionary-like variable 
that can be accessed via the name pylab.rcParams.  So, for example, you can set 
the default line width to 6 points61 by executing the code 
pylab.rcParams['lines.linewidth'] = 6. 

                                                

61 The point is a measure used in typography.  It is equal to 1/72 of an inch, which is 
0.3527mm. 
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The default values used in most of the examples in this book were set with the 
code 

#set line width 
pylab.rcParams['lines.linewidth'] = 4 
#set font size for titles  
pylab.rcParams['axes.titlesize'] = 20 
#set font size for labels on axes 
pylab.rcParams['axes.labelsize'] = 20 
#set size of numbers on x-axis 
pylab.rcParams['xtick.labelsize'] = 16 
#set size of numbers on y-axis 
pylab.rcParams['ytick.labelsize'] = 16 
#set size of ticks on x-axis 
pylab.rcParams['xtick.major.size'] = 7 
#set size of ticks on y-axis 
pylab.rcParams['ytick.major.size'] = 7 
#set size of markers 
pylab.rcParams['lines.markersize'] = 10 

If you are viewing plots on a color display, you will have little reason to customize 
these settings.  We customized the settings we used so that it would be easier to 
read the plots when we shrank them and converted them to black and white.  For 
a complete discussion of how to customize settings, see 
http://matplotlib.sourceforge.net/users/customizing.html. 

11.2 Plotting Mortgages, an Extended Example 

In Chapter 8, we worked our way through a hierarchy of mortgages as way of 
illustrating the use of subclassing.  We concluded that chapter by observing that 
“our program should be producing plots designed to show how the mortgage 
behaves over time.”  Figure 11.1 enhances class Mortgage by adding methods that 
make it convenient to produce such plots.  (The function findPayment, which is 
used in Mortgage, is defined in Figure 8.8.) 

The methods plotPayments and plotBalance are simple one-liners, but they do use 
a form of pylab.plot that we have not yet seen.  When a figure contains multiple 
plots, it is useful to produce a key that identifies what each plot is intended to 
represent.  In Figure 11.1, each invocation of pylab.plot uses the label keyword 
argument to associate a string with the plot produced by that invocation.  (This 
and other keyword arguments must follow any format strings.)  A key can then be 
added to the figure by calling the function pylab.legend, as shown in Figure 11.3. 

The nontrivial methods in class Mortgage are plotTotPd and plotNet.  The method 
plotTotPd simply plots the cumulative total of the payments made.  The method 
plotNet plots an approximation to the total cost of the mortgage over time by 
plotting the cash expended minus the equity acquired by paying off part of the 
loan.62 

 

                                                

62 It is an approximation because it does not perform a net present value calculation to take 
into account the time value of cash.   
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Figure 11.1  Class Mortgage with plotting methods 

The expression pylab.array(self.owed) in plotNet performs a type conversion.  
Thus far, we have been calling the plotting functions of PyLab with arguments of 
type list.  Under the covers, PyLab has been converting these lists to a different 

class Mortgage(object): 
    """Abstract class for building different kinds of mortgages""" 
     
    def __init__(self, loan, annRate, months): 
        """Create a new mortgage""" 
        self.loan = loan 
        self.rate = annRate/12.0 
        self.months = months 
        self.paid = [0.0]  
        self.owed = [loan] 
        self.payment = findPayment(loan, self.rate, months) 
        self.legend = None #description of mortgage 
         
    def makePayment(self): 
        """Make a payment""" 
        self.paid.append(self.payment) 
        reduction = self.payment - self.owed[-1]*self.rate 
        self.owed.append(self.owed[-1] - reduction) 
         
    def getTotalPaid(self): 
        """Return the total amount paid so far""" 
        return sum(self.paid) 
     
    def __str__(self): 
        return self.legend 
 
    def plotPayments(self, style): 
        pylab.plot(self.paid[1:], style, label = self.legend) 
     
    def plotBalance(self, style): 
        pylab.plot(self.owed, style, label = self.legend) 
         
    def plotTotPd(self, style): 
        """Plot the cumulative total of the payments made""" 
        totPd = [self.paid[0]] 
        for i in range(1, len(self.paid)): 
            totPd.append(totPd[-1] + self.paid[i]) 
        pylab.plot(totPd, style, label = self.legend) 
     
    def plotNet(self, style): 
        """Plot an approximation to the total cost of the mortgage 
           over time by plotting the cash expended minus the equity 
           acquired by paying off part of the loan""" 
        totPd = [self.paid[0]] 
        for i in range(1, len(self.paid)): 
            totPd.append(totPd[-1] + self.paid[i]) 
        #Equity acquired through payments is amount of original loan 
        #  paid to date, which is amount of loan minus what is still owed 
        equityAcquired = pylab.array([self.loan]*len(self.owed)) 
        equityAcquired = equityAcquired - pylab.array(self.owed) 
        net = pylab.array(totPd) - equityAcquired 
        pylab.plot(net, style, label = self.legend) 
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type, array, which PyLab inherits from NumPy.63   The invocation pylab.array 

makes this explicit.  There are a number of convenient ways to manipulate arrays 
that are not readily available for lists.  In particular, expressions can be formed 
using arrays and arithmetic operators.  Consider, for example, the code 

a1 = pylab.array([1, 2, 4]) 
print 'a1 =', a1 
a2 = a1*2 
print 'a2 =', a2 
print 'a1 + 3 =', a1 + 3 
print '3 - a1 =', 3 - a1 
print 'a1 - a2 =', a1 - a2 
print 'a1*a2 =', a1*a2 

The expression a1*2 multiplies each element of a1 by the constant 2.  The 
expression a1+3 adds the integer 3 to each element of a1.  The expression a1-a2 
subtracts each element of a2 from the corresponding element of a1 (if the arrays 
had been of different length, an error would have occurred).  The expression  
a1*a2 multiplies each element of a1 by the corresponding element of a2.  When the 
above code is run it prints 

a1 = [1 2 4] 
a2 = [2 4 8] 
a1 + 3 = [4 5 7] 
3 - a1 = [ 2  1 -1] 
a1 - a2 = [-1 -2 -4] 
a1*a2 = [ 2  8 32] 

There are a number of ways to create arrays in PyLab, but the most common way 
is to first create a list, and then convert it. 

Figure 11.2 repeats the three subclasses of Mortgage from Chapter 8.  Each has a 
distinct __init__ that overrides the __init__ in Mortgage.  The subclass TwoRate 
also overrides the makePayment method of Mortgage. 

                                                

63 NumPy is a Python module that provides tools for scientific computing.  In addition to 
providing multi-dimensional arrays it provides a variety of linear algebra tools. 
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Figure 11.2  Subclasses of Mortgage 

Figure 11.3 contain functions that can be used to generate plots intended to 
provide insight about the different kinds of mortgages. 

The function plotMortgages generates appropriate titles and axis labels for each 
plot, and then uses the methods in MortgagePlots to produce the actual plots.  It 
uses calls to pylab.figure to ensure that the appropriate plots appear in a given 
figure.  It uses the index i to select elements from the lists morts and styles in a 
way that ensures that different kinds of mortgages are represented in a consistent 
way across figures.  For example, since the third element in morts is a variable-
rate mortgage and the third element in styles is 'b:', the variable-rate mortgage 
is always plotted using a blue dotted line.  

The function compareMortgages generates a list of different mortgages, and 
simulates making a series of payments on each, as it did in Chapter 8.  It then 
calls plotMortgages to produce the plots. 

class Fixed(Mortgage): 
    def __init__(self, loan, r, months): 
        Mortgage.__init__(self, loan, r, months) 
        self.legend = 'Fixed, ' + str(r*100) + '%'  
 
class FixedWithPts(Mortgage): 
    def __init__(self, loan, r, months, pts): 
        Mortgage.__init__(self, loan, r, months) 
        self.pts = pts 
        self.paid = [loan*(pts/100.0)] 
        self.legend = 'Fixed, ' + str(r*100) + '%, '\ 
                   + str(pts) + ' points' 
 
class TwoRate(Mortgage): 
    def __init__(self, loan, r, months, teaserRate, teaserMonths): 
        Mortgage.__init__(self, loan, teaserRate, months) 
        self.teaserMonths = teaserMonths 
        self.teaserRate = teaserRate 
        self.nextRate = r/12.0 
        self.legend = str(teaserRate*100)\ 
                      + '% for ' + str(self.teaserMonths)\ 
                      + ' months, then ' + str(r*100) + '%' 
 
    def makePayment(self): 
        if len(self.paid) == self.teaserMonths + 1: 
            self.rate = self.nextRate 
            self.payment = findPayment(self.owed[-1], self.rate, 
                                       self.months - self.teaserMonths) 
        Mortgage.makePayment(self) 
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Figure 11.3 Generate Mortgage Plots 

The call 

compareMortgages(amt=200000, years=30, fixedRate=0.07, 
                 pts = 3.25, ptsRate=0.05, 
                 varRate1=0.045, varRate2=0.095, varMonths=48) 

def plotMortgages(morts, amt): 
    styles = ['b-', 'b-.', 'b:'] 
    #Give names to figure numbers 
    payments = 0 
    cost = 1 
    balance = 2 
    netCost = 3 
    pylab.figure(payments) 
    pylab.title('Monthly Payments of Different $' + str(amt) 
                + ' Mortgages') 
    pylab.xlabel('Months') 
    pylab.ylabel('Monthly Payments') 
    pylab.figure(cost) 
    pylab.title('Cash Outlay of Different $' + str(amt) + ' Mortgages') 
    pylab.xlabel('Months') 
    pylab.ylabel('Total Payments') 
    pylab.figure(balance) 
    pylab.title('Balance Remaining of $' + str(amt) + ' Mortgages') 
    pylab.xlabel('Months') 
    pylab.ylabel('Remaining Loan Balance of $') 
    pylab.figure(netCost) 
    pylab.title('Net Cost of $' + str(amt) + ' Mortgages') 
    pylab.xlabel('Months') 
    pylab.ylabel('Payments - Equity $') 
    for i in range(len(morts)): 
        pylab.figure(payments) 
        morts[i].plotPayments(styles[i]) 
        pylab.figure(cost) 
        morts[i].plotTotPd(styles[i]) 
        pylab.figure(balance) 
        morts[i].plotBalance(styles[i]) 
        pylab.figure(netCost) 
        morts[i].plotNet(styles[i]) 
    pylab.figure(payments) 
    pylab.legend(loc = 'upper center') 
    pylab.figure(cost) 
    pylab.legend(loc = 'best') 
    pylab.figure(balance) 
    pylab.legend(loc = 'best')  
 
def compareMortgages(amt, years, fixedRate, pts, ptsRate, 
                    varRate1, varRate2, varMonths): 
    totMonths = years*12 
    fixed1 = Fixed(amt, fixedRate, totMonths) 
    fixed2 = FixedWithPts(amt, ptsRate, totMonths, pts) 
    twoRate = TwoRate(amt, varRate2, totMonths, varRate1, varMonths) 
    morts = [fixed1, fixed2, twoRate] 
    for m in range(totMonths): 
        for mort in morts: 
            mort.makePayment() 
    plotMortgages(morts, amt) 
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produces plots that shed some light on the mortgages discussed in Chapter 8. 

The first plot, which was produced 
by invocations of plotPayments, 
simply plots each payment of each 
mortgage against time.  The box 
containing the key appears where it 
does because of the value supplied to 
the keyword argument loc used in 
the call to pylab.legend.  When loc 
is bound to 'best' the location is 
chosen automatically.  This plot 
makes it clear how the monthly 
payments vary (or don’t) over time, 
but doesn’t shed much light on the relative costs of each kind of mortgage. 

The next plot was produced by invocations of plotTotPd.  It sheds some light on 
the cost of each kind of mortgage by plotting the cumulative costs that have been 
incurred at the start of each month.  The entire plot is on the left, and an 
enlargement of the left part of the plot is on the right. 

 

The next two plots show the remaining debt (on the left) and the total net cost of 
having the mortgage (on the right). 

  



 

    

12  STOCHASTIC PROGRAMS, PROBABILITY, AND 
STATISTICS 

There is something very comforting about Newtonian mechanics.  You push 
down on one end of a lever, and the other end goes up.  You throw a ball up in 

the air; it travels a parabolic path, and comes down.  ! = !!.  In short, 
everything happens for a reason.  The physical world is a completely predictable 
place—all future states of a physical system can be derived from knowledge 
about its current state. 

For centuries, this was the prevailing scientific wisdom; then along came 
quantum mechanics and the Copenhagen Doctrine. The doctrine’s proponents, 
led by Bohr and Heisenberg, argued that at its most fundamental level the 
behavior of the physical world cannot be predicted.  One can make probabilistic 
statements of the form “x is highly likely to occur,” but not statements of the 
form “x is certain to occur.”  Other distinguished physicists, most notably 
Einstein and Schrödinger, vehemently disagreed. 

This debate roiled the worlds of physics, philosophy, and even religion.  The 
heart of the debate was the validity of causal nondeterminism, i.e., the belief 
that not every event is caused by previous events.  Einstein and Schrödinger 
found this view philosophically unacceptable, as exemplified by Einstein’s often-
repeated comment, “God does not play dice.”  What they could accept was 
predictive nondeterminism, i.e., the concept that our inability to make 
accurate measurements about the physical world makes it impossible to make 
precise predictions about future states.  This distinction was nicely summed up 
by Einstein, who said, “The essentially statistical character of contemporary 
theory is solely to be ascribed to the fact that this theory operates with an 
incomplete description of physical systems.” 

The question of causal nondeterminism is still unsettled.  However, whether the 
reason we cannot predict events is because they are truly unpredictable or is 
because we don't have enough information to predict them is of no practical 
importance.  While the Bohr/Einstein debate was about how to understand the 
lowest levels of the physical world, the same issues arise at the macroscopic 
level.  Perhaps the outcomes of horse races, spins of roulette wheels, and stock 
market investments are causally deterministic.  However, there is ample 
evidence that it is perilous to treat them as predictably deterministic.64  

This book is about using computation to solve problems.  Thus far, we have 
focused our attention on problems that can be solved by a predictably 
deterministic computation.  Such computations are highly useful, but clearly 
not sufficient to tackle some kinds of problems. Many aspects of the world in 

                                                

64 Of course this doesn’t stop people from believing that they are, and losing a lot of 
money based on that belief. 
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which we live can be accurately modeled only as stochastic65 processes.  A 
process is stochastic if its next state depends upon both previous states and 
some random element. 

12.1 Stochastic Programs 

A program is deterministic if whenever it is run on the same input, it produces 
the same output.  Notice that this is not the same as saying that the output is 
completely defined by the specification of the problem.  Consider, for example, 
the specification of squareRoot: 

def squareRoot(x, epsilon): 
    """Assumes x and epsilon are of type float; x >= 0 and epsilon > 0 
       Returns float y such that x-epsilon <= y*y <= x+epsilon""" 

This specification admits many possible return values for the function call 
squareRoot(2, 0.001).  However, the successive approximation algorithm we 

looked at in Chapter 3 will always return the same value.  The specification 
doesn’t require that the implementation be deterministic, but it does allow 
deterministic implementations. 

Not all interesting specifications can be met by deterministic implementations.  
Consider, for example, implementing a program to play a dice game, say 
backgammon or craps.  Somewhere in the program there may be a function that 
simulates a fair roll66 of a single six-sided die.  Suppose it had a specification 
something like 

def rollDie(): 
    """Returns an int between 1 and 6"""  

This would be problematic, since it allows the implementation to return the 
same number each time it is called, which would make for a pretty boring game.  
It would be better to specify that rollDie “returns a randomly chosen int 
between 1 and 6.”  

Most programming languages, including Python, include simple ways to write 
programs that use randomness.  The code in Figure 12.1 uses one of several 
useful functions found in the imported Python standard library module random. 
The function random.choice takes a non-empty sequence as its argument and 
returns a randomly chosen member of that sequence. Almost all of the functions 
in random are built using the function random.random, which generates a random 
floating point number between 0.0 and 1.0.67 

                                                

65 The word stems from the Greek word stokhastikos, which means something like 
“capable of divining.”  A stochastic program, as we shall see, is aimed at getting a good 
result, but the exact results are not guaranteed. 

66 A roll is fair if each of the six possible outcomes is equally likely. 

67 In point of fact, the function is not truly random.  It is what mathematicians call 
pseudorandom.  For almost all practical purposes outside of cryptography, this 
distinction is not relevant and we shall ignore it. 
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Figure 12.1  Roll die 

Now, imagine running rollN(10).  Would you be more surprised to see it print 
1111111111 or 5442462412?  Or, to put it another way, which of these two 
sequences is more random?  It’s a trick question.  Each of these sequences is 
equally likely, because the value of each roll is independent of the values of 
earlier rolls.  In a stochastic process two events are independent if the outcome 
of one event has no influence on the outcome of the other. 

This is a bit easier to see if we simplify the situation by thinking about a two-
sided die (also known as a coin) with the values 0 and 1.  This allows us to think 
of the output of a call of rollN as a binary number (see Chapter 3).  When we 
use a binary die, there are 2n possible sequences that testN might return.  Each 
of these is equally likely; therefore each has a probability of occurring of (1/2)n. 

Let’s go back to our six-sided die.  How many different sequences are there of 
length 10?  610.  So, the probability of rolling ten consecutive 1’s is 1/610.  Less 
than one out of sixty million.  Pretty low, but no lower than the probability of 
any other particular sequence, e.g., 5442462412, of ten rolls. 

In general, when we talk about the probability of a result having some property 
(e.g., all 1’s) we are asking what fraction of all possible results has that property.  
This is why probabilities range from 0 to 1.  Suppose we want to know the 
probability of getting any sequence other than all 1’s when rolling the die?  It is 
simply 1 – (1/610), because the probability of something happening and the 
probability of the same thing not happening must add up to 1. 

Suppose we want to know the probability of rolling the die ten times without 
getting a single 1.  One way to answer this question is to transform it into the 

question of how many of the 610 possible sequences don’t contain a 1. 

import random 
 
def rollDie(): 
    """Returns a random int between 1 and 6""" 
    return random.choice([1,2,3,4,5,6]) 
 
def rollN(n): 
    result = '' 
    for i in range(n): 
        result = result + str(rollDie()) 
    print result 
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This can be computed as follows: 

• The probability of not rolling a 1 on any single roll is 5/6. 

• The probability of not rolling a 1 on either the first or the second roll is 
(5/6)*(5/6), or (5/6)2. 

• So, the probability of not rolling a 1 ten times in a row is (5/6)10, slightly 
more than 0.16. 

We will return to the subject of probability in a bit more detail later. 

12.2 Inferential Statistics and Simulation 

The tiny program in Figure 12.1 is a simulation model.  Rather than asking 
some person to roll a die multiple times, we wrote a program to simulate that 
activity. 

We often use simulations to estimate the value of an unknown quantity by 
making use of the principles of inferential statistics.  In brief (since this is not 
a book about statistics), the guiding principle of inferential statistics is that a 
random sample tends to exhibit the same properties as the population from 
which it is drawn. 

Suppose Harvey Dent (also known as Two-Face) flipped a coin, and it came up 
heads.  You would not infer from this that the next flip would also come up 
heads.  Suppose he flipped it twice, and it came up heads both time.  You might 
reason that the probability of this happening for a fair coin (i.e., a coin where 
heads and tails are equally likely) was 0.25, so there was still no reason to 
assume the next flip would be heads.  Suppose, however, 100 out of 100 flips 
came up heads.  1/2100 is a pretty small number, so you might feel safe in 
inferring that the coin has a head on both sides. 

Your belief in whether the coin is fair is based on the intuition that the behavior 
of a sample of 100 flips is similar to the behavior of the population of all flips of 
your coin.  This belief seems pretty sound when all 100 flips are heads.  
Suppose, that 55 flips came up heads and 45 tails.  Would you feel comfortable 
in predicting that the next 100 flips would have the same ratio of heads to tails?  
For that matter, how comfortable would you feel about even predicting that 
there would be more heads than tails in the next 100 flips?  Take a few minutes 
to think about this, and then try the experiment using the code in Figure 12.2. 

The function flip in Figure 12.2 simulates flipping a fair coin numFlips times, 
and returns the fraction of flips that came up heads.  For each flip, 
random.random() returns a random floating point number between 0.0 and 1.0.  

Numbers less than or greater than 0.5 are treated as heads or tails respectively.  
The value 0.5, is arbitrarily assigned the value tails.  Given the vast number of 
floating point values between 0.0 and 1.0, it is highly unlikely that this will 

affect the result. 
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Figure 12.2  Flipping a coin 

Try executing the function flipSim(100, 1) a couple of times.  Here’s what we 
saw the first two times we tried it: 

>>> flipSim(100, 1) 
0.44 
>>> flipSim(100, 1) 
0.57999999999999996 

It seems that it would be inappropriate to assume much (other than that the 
coin has both heads and tails) from any one trial of 100 flips.  That’s why we 
typically structure our simulations to include multiple trials and compare the 
results.  Let’s try flipSim(100, 100): 

>>> flipSim(100, 100) 
0.4993 
>>> flipSim(100, 100) 
0.4953 

Intuitively, we can feel better about these results.  How about 
flipSim(100, 100000): 

>>> flipSim(100, 1000000) 
0.49999221 
>>> flipSim(100, 100000) 
0.50003922 

This looks really good (especially since we know that the answer should be 0.5, 
but that’s cheating). Now it seems we can safely conclude something about the 
next flip, i.e., that heads and tails are about equally likely.  But why do we think 
that we can conclude that? 

What we are depending upon is the law of large numbers (also known as 
Bernoulli’s theorem68).  This law states that in repeated independent 
experiments (e.g., flipping a fair coin 100 times and counting the fraction of 
heads) with the same expected value (0.5 in this case), the average value of the 

                                                

68 Though the law of large numbers had been discussed in the 16th century by Cardano, 
the first proof was published by Jacob Bernoulli in the early 18th century.  It is unrelated 
to the theorem about fluid dynamics called Bernoulli’s theorem, which was proved by 
Jacob’s nephew Daniel. 

def flip(numFlips): 
    heads = 0.0 
    for i in range(numFlips): 
        if random.random() < 0.5: 
            heads += 1 
    return heads/numFlips 
 
def flipSim(numFlipsPerTrial, numTrials): 
    fracHeads = [] 
    for i in range(numTrials): 
        fracHeads.append(flip(numFlipsPerTrial)) 
    mean = sum(fracHeads)/len(fracHeads) 
    return mean 
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experiments approaches the expected value as the number of experiments goes 
to infinity. 

It is worth noting that the law of large numbers does not imply, as too many 
seem to think, that if deviations from expected behavior occur, these deviations 
are likely to be evened out by opposite deviations in the future. This 
misapplication of the law of large numbers is known as the gambler’s fallacy. 69  

Note that “large” is a relative concept.  For example, if we were to flip a fair coin 
on the order of 101,000,000 times, we should expect to encounter several 
sequences of at least a million consecutive heads.  If we looked only at the 
subset of flips containing these heads, we would inevitably jump to the wrong 
conclusion about the fairness of the coin.  In fact, if every subsequence of a large 
sequence of events appears to be random, it is highly likely that the sequence 
itself is not truly random.  If your iTunes shuffle mode doesn’t play the same 
song first once in a while, you can assume that the shuffle is not really random. 

Finally, notice that in the case of coin flips the law of large numbers does not 
imply that the absolute difference between the number of heads and the number 
of tails decreases as the number of flips increases.  In fact, we can expect that 
number to increase.  What decreases is the ratio of the absolute difference to the 
number of flips. 

Figure 12.3 contains a function, flipPlot, that produces some plots intended to 
show the law of large numbers at work.  The line random.seed(0) near the 
bottom ensures that the pseudo-random number generator used by 
random.random will generate the same sequence of pseudorandom numbers each 
time this code is executed.  This is convenient for debugging. 

 

                                                

69 “On August 18, 1913, at the casino in Monte Carlo, black came up a record twenty-six 
times in succession [in roulette]. … [There] was a near-panicky rush to bet on red, 
beginning about the time black had come up a phenomenal fifteen times.  In application 
of the maturity [of the chances] doctrine, players doubled and tripled their stakes, this 
doctrine leading them to believe after black came up the twentieth time that there was 
not a chance in a million of another repeat. In the end the unusual run enriched the 
Casino by some millions of francs.” Huff and Geis, How to Take a Chance, pp. 28-29. 
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Figure 12.3  Plotting the results of coin flips 

The call flipPlot(4, 20) produces the two plots: 

 

The plot on the left seems to suggest that the absolute difference between the 
number of heads and the number of tails fluctuates in the beginning, crashes 
downwards, and then moves rapidly upwards.  However, we need to keep in 
mind that we have only two data points to the right of x = 300,000.  That 
pylab.plot connected these points with lines may mislead us into seeing trends 
when all we have are isolated points.  This is not an uncommon phenomenon, so 
you should always ask how many points a plot actually contains before jumping 
to any conclusion about what it means. 

def flipPlot(minExp, maxExp): 
    """Assumes minExp and maxExp positive integers; minExp < maxExp 
       Plots results of 2**minExp to 2**maxExp coin flips""" 
    ratios = [] 
    diffs = [] 
    xAxis = [] 
    for exp in range(minExp, maxExp + 1): 
        xAxis.append(2**exp) 
    for numFlips in xAxis: 
        numHeads = 0 
        for n in range(numFlips): 
            if random.random() < 0.5: 
                numHeads += 1 
        numTails = numFlips - numHeads 
        ratios.append(numHeads/float(numTails)) 
        diffs.append(abs(numHeads - numTails)) 
    pylab.title('Difference Between Heads and Tails') 
    pylab.xlabel('Number of Flips') 
    pylab.ylabel('Abs(#Heads - #Tails)') 
    pylab.plot(xAxis, diffs) 
    pylab.figure() 
    pylab.title('Heads/Tails Ratios') 
    pylab.xlabel('Number of Flips') 
    pylab.ylabel('#Heads/#Tails') 
    pylab.plot(xAxis, ratios) 
 
random.seed(0) 
flipPlot(4, 20) 
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It’s hard to see much of anything in the plot on the right, which is mostly a flat 
line.  This too is deceptive.  Even though there are sixteen data points, most of 
them are crowded into a small amount of real estate on the left side of the plot, 

so that the detail is impossible to see.  This occurs because values on the x-axis 

range from 16 to 1,0485,76, and unless instructed otherwise PyLab will space 
these points evenly along the axis.  This is called linear scaling. 

Fortunately, these visualization problems are easy to address in PyLab.  As we 
saw in Chapter 11, we can easily instruct our program to plot unconnected 
points, e.g., by writing pylab.plot(xAxis, diffs, 'bo').   

We can also instruct PyLab to use a logarithmic scale on either or both of the x 
and y axes by calling the functions pylab.semilogx and pylab.semilogy.  These 
functions are always applied to the current figure. 

Both plots use a logarithmic scale on the x-axis.  Since the x-values generated 
by flipPlot are 2minExp, 2minExp+1, .., 2maxExp, using a logarithmic x-axis causes 
the points to be evenly spaced along the x-axis—providing maximum separation 
between points.  The left-hand plot below also uses a logarithmic scale on the y-
axis.  The y values on this plot range from nearly 0 to nearly 1000.  If the y-axis 
were linearly scaled, it would be difficult to see the relatively small differences in 
y values on the left side of the plot.  On the other hand, on the plot on the right 
the y values are fairly tightly grouped, so we use a linear y-axis. 

 

 

Finger exercise:  Modify the code in Figure 12.3 so that it produces plots like 
those shown above. 

 

These plots are easier to interpret than the earlier plots.  The plot on the right 
suggests pretty strongly that the ratio of heads to tails converges to 1.0 as the 
number of flips gets large.  The meaning of the plot on the left is a bit less clear.  
It appears that the absolute difference grows with the number of flips, but it is 
not completely convincing. 

It is never possible to achieve perfect accuracy through sampling without 
sampling the entire population.  No matter how many samples we examine, we 
can never be sure that the sample set is typical until we examine every element 
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of the population (and since we are usually dealing with infinite populations, 
e.g., all possible sequences of coin flips, this is usually impossible). Of course, 
this is not to say that an estimate cannot be precisely correct.  We might flip a 
coin twice, get one heads and one tails, and conclude that the true probability of 
each is 0.5.  We would have reached the right conclusion, but our reasoning 
would have been faulty. 

How many samples do we need to look at before we can have justified confidence 
in our answer?  This depends on the variance in the underlying distribution.  
Roughly speaking, variance is a measure of how much spread there is in the 
possible different outcomes.  

We can formalize this notion relatively simply by using the concept of standard 
deviation.  Informally, the standard deviation tells us what fraction of the 
values are close to the mean.  If many values are relatively close to the mean, 
the standard deviation is relatively small.  If many values are relatively far from 
the mean, the standard deviation is relatively large.  If all values are the same, 
the standard deviation is zero.  

More formally, the standard deviation, σ (sigma), of a collection of values, !, is 

defined as ! ! = !
|!|

(! − !)!!"#
!

, where |!| is the size of the collection and ! 

(mu) its mean.  Figure 12.4 contains a Python implementation of standard 
deviation.70  We apply the type conversion float, because if each of the elements 
of X is an int, the type of the sum will be an int. 

 

 
Figure 12.4  Standard deviation 

We can use the notion of standard deviation to think about the relationship 
between the number of samples we have looked at and how much confidence we 
should have in the answer we have computed.  Figure 12.5 contains a modified 
version of flipPlot.  It runs multiple trials of each number of coin flips, and 
plots the means for abs(heads - tails) and the heads/tails ratio.  It also plots 
the standard deviation of each. 

                                                

70 You’ll probably never need to implement this yourself.  Statistical libraries implement 
this and many other standard statistical functions.  However, we present the code here 
on the off chance that some readers prefer looking at code to looking at equations. 

def stdDev(X): 
    """Assumes that X is a list of numbers. 
       Returns the standard deviation of X""" 
    mean = float(sum(X))/len(X) 
    tot = 0.0 
    for x in X: 
        tot += (x - mean)**2 
    return (tot/len(X))**0.5 #Square root of mean difference 
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The implementation of flipPlot1 uses two helper functions.  The function 
makePlot contains the code used to produce the plots.  The function runTrial 
simulates one trial of numFlips coins. 

 

Figure 12.5  Coin-flipping simulation 

def makePlot(xVals, yVals, title, xLabel, yLabel, style, 
             logX = False, logY = False): 
    """Plots xVals vs. yVals with supplied titles and labels.""" 
    pylab.figure() 
    pylab.title(title) 
    pylab.xlabel(xLabel) 
    pylab.ylabel(yLabel) 
    pylab.plot(xVals, yVals, style) 
    if logX: 
        pylab.semilogx() 
    if logY: 
        pylab.semilogy() 
 
def runTrial(numFlips): 
    numHeads = 0 
    for n in range(numFlips): 
        if random.random() < 0.5: 
            numHeads += 1 
    numTails = numFlips - numHeads 
    return (numHeads, numTails) 
     
def flipPlot1(minExp, maxExp, numTrials): 
    """Assumes minExp and maxExp positive ints; minExp < maxExp 
         numTrials a positive integer 
       Plots summaries of results of numTrials trials of 
         2**minExp to 2**maxExp coin flips""" 
    ratiosMeans, diffsMeans, ratiosSDs, diffsSDs = [], [], [], [] 
    xAxis = [] 
    for exp in range(minExp, maxExp + 1): 
        xAxis.append(2**exp) 
    for numFlips in xAxis: 
        ratios = [] 
        diffs = [] 
        for t in range(numTrials): 
            numHeads, numTails = runTrial(numFlips) 
            ratios.append(numHeads/float(numTails)) 
            diffs.append(abs(numHeads - numTails)) 
        ratiosMeans.append(sum(ratios)/float(numTrials)) 
        diffsMeans.append(sum(diffs)/float(numTrials)) 
        ratiosSDs.append(stdDev(ratios)) 
        diffsSDs.append(stdDev(diffs)) 
    numTrialsString = ' (' + str(numTrials) + ' Trials)' 
    title = 'Mean Heads/Tails Ratios' + numTrialsString 
    makePlot(xAxis, ratiosMeans, title, 
             'Number of flips', 'Mean Heads/Tails', 'bo', logX = True) 
    title = 'SD Heads/Tails Ratios' + numTrialsString 
    makePlot(xAxis, ratiosSDs, title, 
             'Number of Flips', 'Standard Deviation', 'bo', 
             logX = True, logY = True) 
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Let’s try flipPlot1(4, 20, 20).  It generates the plots 

 

This is encouraging.  The ratio heads/tails is converging towards 1 and the log of 
the standard deviation is falling linearly with the log of the number of flips per 
trial.  By the time we get to about 106 coin flips per trial, the standard deviation 
(about 10-3) is roughly three decimal orders of magnitude smaller than the mean 
(about 1), indicating that the variance across the trials was small.  We can, 
therefore, have considerable confidence that the expected heads/tails ratio is 
quite close to 1.0.  As we flip more coins, not only do we have a more precise 
answer, but more important, we also have reason to be more confident that it is 
close to the right answer. 

What about the absolute difference between the number of heads and the 
number of tails?  We can take a look at that by adding to the end of flipPlot1 
the code in Figure 12.6. 

 

 

Figure 12.6  Absolute differences 

title = 'Mean abs(#Heads - #Tails)' + numTrialsString 
makePlot(xAxis, diffsMeans, title, 
     'Number of Flips', 'Mean abs(#Heads - #Tails)', 'bo', 
     logX = True, logY = True) 
title = 'SD abs(#Heads - #Tails)' + numTrialsString 
makePlot(xAxis, diffsSDs, title, 
     'Number of Flips', 'Standard Deviation', 'bo', 
     logX = True, logY = True) 
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This produces the additional plots 

 

As expected, the absolute difference between the numbers of heads and tails 
grows with the number of flips.  Furthermore, since we are averaging the results 
over twenty trials, the plot is considerably smoother than when we plotted the 
results of a single trial.  But what’s up with the last plot?  The standard 
deviation is growing with the number of flips.  Does this mean that as the 
number of flips increases we should have less rather than more confidence in 
the estimate of the expected value of the difference between heads and tails?  

No, it does not.  The standard deviation should always be viewed in the context 
of the mean.  If the mean were a billion and the standard deviation 100, we 
would view the dispersion of the data as small.  But if the mean were 100 and 
the standard deviation 100, we would view the dispersion as quite large. 

The coefficient of variation is the standard deviation divided by the mean.  
When comparing data sets with highly variable means (as here), the coefficient 
of variation is often more informative than the standard deviation. As you can 
see from its implementation in Figure 12.7, the coefficient of variation is not 
defined when the mean is 0. 

 

 

Figure 12.7 Coefficient of variation 

 

def CV(X): 
    mean = sum(X)/float(len(X)) 
    try: 
        return stdDev(X)/mean 
    except ZeroDivisionError: 
        return float('nan') 
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Figure 12.8 contains a version of flipPlot1 that plots coefficients of variation. 

 

 

Figure 12.8  Final version of flipPlot1 

def flipPlot1(minExp, maxExp, numTrials): 
    """Assumes minExp and maxExp positive ints; minExp < maxExp 
         numTrials a positive integer 
       Plots summaries of results of numTrials trials of 
         2**minExp to 2**maxExp coin flips""" 
    ratiosMeans, diffsMeans, ratiosSDs, diffsSDs = [], [], [], [] 
    ratiosCVs, diffsCVs = [], [] 
    xAxis = [] 
    for exp in range(minExp, maxExp + 1): 
        xAxis.append(2**exp) 
    for numFlips in xAxis: 
        ratios = [] 
        diffs = [] 
        for t in range(numTrials): 
            numHeads, numTails = runTrial(numFlips) 
            ratios.append(numHeads/float(numTails)) 
            diffs.append(abs(numHeads - numTails)) 
        ratiosMeans.append(sum(ratios)/float(numTrials)) 
        diffsMeans.append(sum(diffs)/float(numTrials)) 
        ratiosSDs.append(stdDev(ratios)) 
        diffsSDs.append(stdDev(diffs)) 
        ratiosCVs.append(CV(ratios)) 
        diffsCVs.append(CV(diffs)) 
    numTrialsString = ' (' + str(numTrials) + ' Trials)' 
    title = 'Mean Heads/Tails Ratios' + numTrialsString 
    makePlot(xAxis, ratiosMeans, title, 
             'Number of flips', 'Mean Heads/Tails', 'bo', logX = True) 
    title = 'SD Heads/Tails Ratios' + numTrialsString 
    makePlot(xAxis, ratiosSDs, title, 
             'Number of Flips', 'Standard Deviation', 'bo', 
             logX = True, logY = True) 
    title = 'Mean abs(#Heads - #Tails)' + numTrialsString 
    makePlot(xAxis, diffsMeans, title, 
         'Number of Flips', 'Mean abs(#Heads - #Tails)', 'bo', 
         logX = True, logY = True) 
    title = 'SD abs(#Heads - #Tails)' + numTrialsString 
    makePlot(xAxis, diffsSDs, title, 
         'Number of Flips', 'Standard Deviation', 'bo', 
         logX = True, logY = True) 
    title = 'Coeff. of Var. abs(#Heads - #Tails)' + numTrialsString 
    makePlot(xAxis, diffsCVs, title, 'Number of Flips', 
             'Coeff. of Var.', 'bo', logX = True) 
    title = 'Coeff. of Var. Heads/Tails Ratio' + numTrialsString 
    makePlot(xAxis, ratiosCVs, title, 'Number of Flips', 
             'Coeff. of Var.', 'bo', logX = True, logY = True) 
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    It produces the additional plots 

 

In this case we see that the plot of coefficient of variation for the heads/tails 
ratio is not much different from the plot of the standard deviation.  This is not 
surprising, since the only difference between the two is the division by the mean, 
and since the mean is close to 1 that makes little difference. 

On the other hand, the plot of the coefficient of variation for the absolute 
difference between heads and tails is a different story.  It would take a brave 
person to argue that it is trending in any direction.  It seems to be fluctuating 
widely.  This suggests that dispersion in the values of abs(heads – tails) is 
independent of the number of flips.  It’s not growing, as the standard deviation 
might have misled us to believe, but it’s not shrinking either.  Perhaps a trend 
would appear if we tried 1000 trials instead of 20.  Let’s see. 

It looks as if once the number of flips 
reaches somewhere around 1000, the 
coefficient of variation settles in 
somewhere in the neighborhood of 
0.75.  In general, distributions with a 
coefficient of variation of less than 1 
are considered low-variance.  

Beware that if the mean is near zero, 
small changes in the mean lead to 
large (but not necessarily 
meaningful) changes in the 
coefficient of variation, and when the 

mean is zero, the coefficient of variation is undefined.  Also, as we shall see 
shortly, the standard deviation can be used to construct a confidence interval, 
but the coefficient of variation cannot. 
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12.3 Distributions 

A histogram is a plot designed to show the distribution of values in a set of 
data.  The values are first sorted, and then divided into a fixed number of equal-
width bins.  A plot is then drawn that shows the number of elements in each 
bin.  Consider, for example, the code  

vals = [1, 200] #guarantee that values will range from 1 to 200 
for i in range(1000): 
    num1 = random.choice(range(1, 100)) 
    num2 = random.choice(range(1, 100)) 
    vals.append(num1+num2) 
pylab.hist(vals, bins = 10) 

The function call pylab.hist(vals, bins = 10) produces the histogram, with 
ten bins, on the left.  PyLab has 
automatically chosen the width of each 
bin.  Looking at the code, we know that 
the smallest number in vals will be 1 
and the largest number 200.  Therefore, 
the possible values on the x-axis range 
from 1 to 200.  Each bin represents an 
equal fraction of the values on the x-
axis, so the first bin will contain the 
elements 1-20, the next bin the elements 
21-40, etc.  Since the mean values 
chosen for num1 and num2 will be in the 

vicinity of 50, it is not surprising that there are more elements in the middle bins 
than in the bins near the edges. 

By now you must be getting awfully bored with flipping coins.  Nevertheless, we 
are going to ask you to look at yet one more coin-flipping simulation.  The 
simulation in Figure 12.9 illustrates more of PyLab’s plotting capabilities and 
gives us an opportunity to get a visual notion of what standard deviation means. 

The simulation uses the function pylab.xlim to control the extent of the x-axis. 
The function call pylab.xlim() returns a tuple composed of the minimal and 
maximal values of the x-axis of the current figure.  The function call  
pylab.xlim(xmin, xmax) sets the minimal and maximal values of the x-axis of 
the current figure.  The function pylab.ylim works the same way. 
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Figure 12.9  Plot histograms demonstrating normal distributions 

When the code in Figure 12.9 is run, it produces the plots 

def flip(numFlips): 
    heads = 0.0 
    for i in range(numFlips): 
        if random.random() < 0.5: 
            heads += 1 
    return heads/numFlips 
 
def flipSim(numFlipsPerTrial, numTrials): 
    fracHeads = [] 
    for i in range(numTrials): 
        fracHeads.append(flip(numFlipsPerTrial)) 
    mean = sum(fracHeads)/len(fracHeads) 
    sd = stdDev(fracHeads) 
    return (fracHeads, mean, sd) 
 
def labelPlot(numFlips, numTrials, mean, sd): 
    pylab.title(str(numTrials) + ' trials of ' 
                + str(numFlips) + ' flips each') 
    pylab.xlabel('Fraction of Heads') 
    pylab.ylabel('Number of Trials') 
    xmin, xmax = pylab.xlim() 
    ymin, ymax = pylab.ylim() 
    pylab.text(xmin + (xmax-xmin)*0.02, (ymax-ymin)/2, 
               'Mean = ' + str(round(mean, 4)) 
               + '\nSD = ' + str(round(sd, 4)), size='x-large') 
 
def makePlots(numFlips1, numFlips2, numTrials): 
    val1, mean1, sd1 = flipSim(numFlips1, numTrials) 
    pylab.hist(val1, bins = 20) 
    xmin,xmax = pylab.xlim() 
    ymin,ymax = pylab.ylim() 
    labelPlot(numFlips1, numTrials, mean1, sd1) 
    pylab.figure() 
    val2, mean2, sd2 = flipSim(numFlips2, numTrials) 
    pylab.hist(val2, bins = 20) 
    pylab.xlim(xmin, xmax) 
    labelPlot(numFlips2, numTrials, mean2, sd2) 
 
random.seed(0) 
makePlots(100,1000,100000) 
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Notice that while the means in both plots are about the same, the standard 
deviations are quite different.  The spread of outcomes is much tighter when we 
flip the coin 1000 times per trial than when we flip the coin 100 times per trial.  
To make this clear, we have used pylab.xlim to force the bounds of the x-axis in 
the second plot to match those in the first plot, rather than letting PyLab choose 
the bounds.  We have also used pylab.xlim and pylab.ylim to choose a set of 
coordinates for displaying a text box with the mean and standard deviation. 

12.3.1 Normal Distributions and Confidence Levels 

The distribution of results in each of these plots is close to what is called a 
normal distribution.  Technically speaking, a normal distribution is defined by 
the formula 

! ! =
1

! 2!
∗ !!

(!!!)!
!!!  

where μ is the mean, σthe standard deviation, and e Euler’s number (roughly 

2.718).  If you don’t feel like studying this equation, that’s fine.  Just remember 
that normal distributions peak at the mean, fall off symmetrically above and 
below the mean, and asymptotically approach 0.  They have the nice 
mathematical property of being completely specified by two parameters: the 
mean and the standard deviation (the only two parameters in the equation).  
Knowing these is equivalent to knowing the entire distribution.  The shape of the 
normal distribution resembles (in the eyes of some) that of a bell, so it 
sometimes is referred to as a bell curve. 

As we can see by zooming in on the 
center of the plot for 1000 flips/trial, 
the distribution is not perfectly 
symmetrical, and therefore not quite 
normal. However, as we increase the 
number of trials, the distribution 
will converge towards normal. 

Normal distributions are frequently 
used in constructing probabilistic 
models for three reasons: 1) they 
have nice mathematical properties, 
2) many naturally occurring 
distributions are indeed close to normal, and 3) they can be used to produce 
confidence intervals. 

Instead of estimating an unknown parameter by a single value (e.g., the mean of 
a set of trials), a confidence interval provides a range that is likely to contain the 
unknown value and a degree of confidence that the unknown value lies within 
that range.  For example, a political poll might indicate that a candidate is likely 
to get 52% of the vote ±4% (i.e., the confidence interval is of size 8) with a 
confidence level of 95%.  What this means is that the pollster believes that 95% 
of the time the candidate will receive between 48% and 56% of the vote.  Together 
the confidence interval and the confidence level indicate the reliability of the 
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estimate.  Almost always, increasing the confidence level will widen the 
confidence interval. 

The calculation of a confidence interval generally requires assumptions about 
the nature of the space being sampled.  It assumes that the distribution of 
errors of estimation is normal and has a mean of zero.  The empirical rule for 
normal distributions provides a handy way to estimate confidence intervals 
and levels given the mean and standard deviation:  

• 68% of the data will fall within 1 standard deviation of the mean, 

• 95% of the data will fall within 2 standard deviations of the mean, and 

• almost all (99.7%) of the data will fall within 3 standard deviations of the 
mean. 71 

Suppose that we run 100 trials of 100 coin flips each.  Suppose further that the 
mean fraction of heads is 0.4999 and the standard deviation 0.0497.  If we assume 
that the distribution of the means of the trials was normal, we can conclude that 
if we conducted more trials of 100 flips each, 

• 95% of the time the fraction of heads will be 0.4999 ±0.0994 and 

• >99% of the time the fraction of heads will be 0.4999 ±0.1491. 

It is often useful to visualize confidence intervals using error bars.  The code in 
Figure 12.10 calls the version of flipSim in Figure 12.9 and then uses 

pylab.errorbar(xVals, means, yerr = 2*pylab.array(sds)) 

to produce the plot on the right.  The 
first two arguments give the x and y 
values to be plotted.  The third 
argument says that the values in sds 
should be used to create vertical error 
bars.  The call 

showErrorBars(3, 10, 100) 

produces the plot on the right.  
Unsurprisingly, the error bars shrink as 
the number of flips per trial grows. 

                                                

71 These values are approximations. For example, 95% of the data will fall within 1.96 
standard deviations of the mean; 2 standard deviations is a convenient approximation. 
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Figure 12.10  Produce plot with error bars 

Of course, finding a mathematically nice model is of no use if it provides a bad 
model of the actual data.  Fortunately, many random variables have an 
approximately normal distribution.  For example, physical properties of plants 
and animals (e.g., height, weight, body temperature) typically have 
approximately normal distributions.  Importantly, many experimental setups 
have normally distributed measurement errors.  This assumption was used in 
the early 1800s by the German mathematician and physicist Karl Gauss, who 
assumed a normal distribution of measurement errors in his analysis of 
astronomical data (which led to the normal distribution becoming known as the 
Gaussian distribution in much of the scientific community). 

Normal distributions can be easily generated by calling 
random.gauss(mu, sigma), which returns a randomly chosen floating point 
number from a normal distribution with mean mu and standard deviation sigma. 

It is important, however, to remember that not all distributions are normal. 

12.3.2 Uniform Distributions 

Consider rolling a single die.  Each of the six outcomes is equally probable.  If 
one were to roll a single die a million times and create a histogram showing how 
often each number came up, each column would be almost the same height.  If 
one were to plot the probability of each possible lottery number being chosen, it 
would be a flat line (at 1 divided by the range of the lottery numbers).  Such 
distributions are called uniform.  One can fully characterize a uniform 
distribution with a single parameter, its range (i.e., minimum and maximum 
values).  While uniform distributions are quite common in games of chance, they 
rarely occur in nature, nor are they usually useful for modeling complex man-
made systems. 

Uniform distributions can easily be generated by calling 
random.uniform(min, max) which returns a randomly chosen floating point 
number between min and max. 

def showErrorBars(minExp, maxExp, numTrials): 
    """Assumes minExp and maxExp positive ints; minExp < maxExp 
         numTrials a positive integer 
       Plots mean fraction of heads with error bars""" 
    means, sds = [], [] 
    xVals = [] 
    for exp in range(minExp, maxExp + 1): 
        xVals.append(2**exp) 
        fracHeads, mean, sd = flipSim(2**exp, numTrials) 
        means.append(mean) 
        sds.append(sd) 
    pylab.errorbar(xVals, means, 
                   yerr=2*pylab.array(sds)) 
    pylab.semilogx() 
    pylab.title('Mean Fraction of Heads (' + str(numTrials) + ' trials)') 
    pylab.xlabel('Number of flips per trial') 
    pylab.ylabel('Fraction of heads & 95% confidence') 
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12.3.3 Exponential and Geometric Distributions 

Exponential distributions, unlike uniform distributions, occur quite 
commonly.  They are often used to model inter-arrival times, e.g., of cars 
entering a highway or requests for a Web page.  They are especially important 
because they have the memoryless property.  

Consider, for example, the concentration of a drug in the human body.  Assume 
that at each time step each molecule has a probability P of being cleared (i.e., of 
no longer being in the body).  The system is memoryless in the sense that at 
each time step the probability of a molecule being cleared is independent of what 
happened at previous times.  At time t = 0, the probability of an individual 
molecule still being in the body is 1.  At time t = 1, the probability of that 
molecule still being in the body is 1 – P.  At time t = 2, the probability of that 
molecule still being in the body is (1 – P)2.  More generally, at time t the 
probability of an individual molecule having survived is (1 – P)t. 

Suppose that at time t0 there are M0 molecules of the drug. In general, at time t, 
the number of molecules will be M0 multiplied by the probability that an 
individual module has survived to time t. The function implemented in Figure 
12.11 plots the expected number of remaining molecules versus time. 

 
Figure 12.11  Exponential clearance of molecules 

The call clear(1000, 0.01, 1000) produces the plot on the left. 

 

def clear(n, p, steps): 
    """Assumes n & steps positive ints, p a float 
         n: the initial number of molecules 
         p: the probability of a molecule being cleared 
         steps: the length of the simulation""" 
    numRemaining = [n] 
    for t in range(steps): 
        numRemaining.append(n*((1-p)**t)) 
    pylab.plot(numRemaining) 
    pylab.xlabel('Time') 
    pylab.ylabel('Molecules Remaining') 
    pylab.title('Clearance of Drug') 
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This is an example of exponential decay.  In practice, exponential decay is often 
talked about in terms of half-life, i.e., the expected time required for the initial 
value to decay by 50%.  One can also talk about the half-life of a single item.  For 
example, the half-life of a single radioactive atom is the time at which the 
probability of that atom having decayed is 0.5.  Notice that as time increases the 
number of remaining molecules approaches zero.  But it will never quite get 
there.  This should not be interpreted as suggesting that a fraction of a molecule 
remains.  Rather it should be interpreted as saying that since the system is 
probabilistic, one can never guarantee that all of the molecules have been 
cleared.  

What happens if we make the y-axis logarithmic (by using pylab.semilogy)?  We 
get the plot above and on the right.  The values on the y-axis are changing 
exponentially quickly relative to the values on the x-axis.  If we make the y-axis 
itself change exponentially quickly, we get a straight line.  The slope of that line 
is the rate of decay. 

Exponential growth is the inverse of exponential decay.  It too is quite 
commonly seen in nature.  Compound interest, the growth of algae in a 
swimming pool, and the chain reaction in an atomic bomb are all examples of 
exponential growth. 

Exponential distributions can easily be generated by calling random.expovariate. 

The geometric distribution is the discrete analog of the exponential 
distribution.72  It is usually thought of as describing the number of independent 
attempts required to achieve a first success (or a first failure).  Imagine, for 
example, that you have a crummy car 
that starts only half of the time you 
turn the key.  A geometric distribution 
could be used to characterize the 
expected number of times you would 
have to attempt to start the car before 
being successful.  This is illustrated by 
the histogram on the right, which was 
produced by the code in Figure 12.12.  
The histogram implies that most of the 
time you’ll get the car going within a few 
attempts.  On the other hand, the long 
tail suggests that on occasion you may run the risk of draining your battery 
before the car gets going. 

                                                

72 The name “geometric distribution” arises from its similarity to a “geometric 
progression.”  A geometric progression is any sequence of numbers in which each 
number other than the first is derived by multiplying the previous number by a constant 
nonzero number.  Euclid’s Elements proves a number of interesting theorems about 
geometric progressions. 
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Figure 12.12 A geometric distribution 

12.3.4 Benford’s Distribution 

Benford’s law defines a really strange distribution.  Let S be a large set of 
decimal integers.  How frequently would you expect each digit to appear as the 
first digit?  Most of us would probably guess one ninth of the time.  And when 
people are making up sets of numbers (e.g., faking experimental data or 
perpetrating financial fraud) this is typically true.  It is not, however, typically 
true of many naturally occurring data sets.  Instead, they follow a distribution 
predicted by Benford’s law. 

A set of decimal numbers is said to satisfy Benford’s law73 if the probability of 
the first digit being d is consistent with P(d) = log10(1 + 1/d). 

For example, this law predicts that the probability of the first digit being 1 is 
about 30%!  Shockingly, many actual data sets seem to observe this law.  It is 
possible to show that the Fibonacci sequence, for example, satisfies it perfectly.  
That’s kind of plausible, since the sequence is generated by a formula.  It’s less 
easy to understand why such diverse data sets as iPhone pass codes, the 
number of Twitter followers per user, the population of countries, or the 
distance of stars from the earth closely approximate Benford’s law.74 

                                                

73 The law is named after the physicist Frank Benford, who published a paper in 1938 
showing that the law held on over 20,000 observations drawn from twenty different 
domains.  However, it was first postulated in 1881 by the astronomer Simon Newcomb. 

74 http://testingbenfordslaw.com/ 

def successfulStarts(eventProb, numTrials): 
    """Assumes eventProb is a float representing a probability 
          of a single attempt being successful. numTrials a positive int 
       Returns a list of the number of attempts needed before a 
          success for each trial.""" 
    triesBeforeSuccess = [] 
    for t in range(numTrials): 
        consecFailures = 0 
        while random.random() > eventProb: 
            consecFailures += 1 
        triesBeforeSuccess.append(consecFailures) 
    return triesBeforeSuccess 
 
random.seed(0) 
probOfSuccess = 0.5 
numTrials = 5000 
distribution = successfulStarts(probOfSuccess, numTrials) 
pylab.hist(distribution, bins = 14) 
pylab.xlabel('Tries Before Success') 
pylab.ylabel('Number of Occurrences Out of ' + str(numTrials)) 
pylab.title('Probability of Starting Each Try ' + str(probOfSuccess)) 
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12.4 How Often Does the Better Team Win? 

Thus far we have looked at using statistical methods to help understand 
possible outcomes of games in which skill is not intended to play a role.  It is 
also common to apply these methods to situations in which there is, 
presumably, some skill involved.  Setting odds on a football match, choosing a 
political candidate with a chance of winning, investing in the stock market, and 
so on. 

Almost every October two teams from American Major League Baseball meet in 
something called the World Series.  They play each other repeatedly until one of 
the teams has won four games, and that team is called (not entirely 
appropriately) “the world champion.” 

Setting aside the question of whether there is reason to believe that one of the 
participants in the World Series is indeed the best team in the world, how likely 
is it that a contest that can be at most seven games long will determine which of 
the two participants is better? 

Clearly, each year one team will emerge victorious.  So the question is whether 
we should attribute that victory to skill or to luck.  To address that question we 
can use something called a p-value.  P-values are used to determine whether or 
not a result is statistically significant. 

To compute a p-value one needs two things: 

• A null hypothesis.  This hypothesis describes the result that one would 
get if the results were determined entirely by chance.  In this case, the 
null hypothesis would be that the teams are equally talented, so if the 
two teams were to play an infinite number of seven-game series, each 
would win half the time. 

• An observation.  Data gathered either by observing what happens or by 
running a simulation that one believes provides an accurate model of 
what would happen. 

The p-value gives us the likelihood that the observation is consistent with the 
null hypothesis.  The smaller the p-value, the more likely it is that we should 
reject the hypothesis that the observation is due entirely to chance. Usually, we 
insist that p be no larger than 0.05 before we consider a result to be statistically 
significant.  I.e., we insist that there is no more than a 5% chance that the null 
hypothesis holds. 

Getting back to the World Series, should we consider the results of those seven-
game series to be statistically significant?  That is, should we conclude that the 
better team did indeed win? 

Figure 12.13 contains code that can provide us with some insight into that 
question.  The function simSeries has one argument, numSeries, a positive 
integer describing the number of seven-game series to be simulated.  It plots the 
probability of the better team winning the series against the probability of that 
team winning a single game.  It varies the probability of the better team winning 
a single game from 0.5 to 1.0, and produces a plot. 
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Figure 12.13  World Series simulation 

When simSeries is used to simulate 400 
seven-game series, it produces the plot 
on the right.  Notice that for the better 
team to win 95% of the time (0.95 on the 
y-axis), it needs to be more than three 
times better than its opponent.  That is 
to say, the better team needs to win, on 
average, more than three out of four 
games (0.75 on the x-axis).  For 
comparison, in 2009, the two teams in 
the World Series had regular season 
winning percentages of 63.6% (New York 
Yankees) and 57.4% (Philadelphia Phillies).  This suggests that New York should 
win about 52.5% of the games between the two teams.  Our plot tells us that 
even if they were to play each other in 400 seven-game series, the Yankees would 
win less than 60% of the time. 

Suppose we assume that these winning percentages are accurate reflections of 
the relative strengths of these two teams.  How many games long should the 

def playSeries(numGames, teamProb): 
    """Assumes numGames an odd integer, 
         teamProb a float between 0 and 1 
       Returns True if better team wins series""" 
    numWon = 0 
    for game in range(numGames): 
        if random.random() <= teamProb: 
            numWon += 1 
    return (numWon > numGames//2) 
 
def simSeries(numSeries): 
    prob = 0.5 
    fracWon = [] 
    probs = [] 
    while prob <= 1.0: 
        seriesWon = 0.0 
        for i in range(numSeries): 
            if playSeries(7, prob): 
                seriesWon += 1 
        fracWon.append(seriesWon/numSeries) 
        probs.append(prob) 
        prob += 0.01 
    pylab.plot(probs, fracWon, linewidth = 5) 
    pylab.xlabel('Probability of Winning a Game') 
    pylab.ylabel('Probability of Winning a Series')  
    pylab.axhline(0.95)  
    pylab.ylim(0.5, 1.1) 
    pylab.title(str(numSeries) + ' Seven-Game Series') 
 
simSeries(400) 
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World Series be in order for us to get results that would allow us to reject the 
null hypothesis, i.e., the hypothesis that the teams are evenly matched? 

The code in Figure 12.14 simulates 200 instances of series of varying lengths, 
and plots an approximation of the probability of the better team winning. 

 
Figure 12.14  How long should the World Series be? 

 

The output of findSeriesLength 
suggests that under these 
circumstances the World Series 
would have to be approximately 1000 
games long before we could reject the 
null hypothesis and confidently say 
that the better team had almost 
certainly won.  Scheduling a series of 
this length might present some 
practical problems. 

def findSeriesLength(teamProb): 
    numSeries = 200 
    maxLen = 2500 
    step = 10 
     
    def fracWon(teamProb, numSeries, seriesLen): 
        won = 0.0 
        for series in range(numSeries): 
            if playSeries(seriesLen, teamProb): 
                won += 1 
        return won/numSeries 
     
    winFrac = [] 
    xVals = [] 
    for seriesLen in range(1, maxLen, step): 
        xVals.append(seriesLen) 
        winFrac.append(fracWon(teamProb, numSeries, seriesLen)) 
    pylab.plot(xVals, winFrac, linewidth = 5) 
    pylab.xlabel('Length of Series') 
    pylab.ylabel('Probability of Winning Series') 
    pylab.title(str(round(teamProb, 4)) + 
                ' Probability of Better Team Winning a Game') 
    pylab.axhline(0.95) #draw horizontal line at y = 0.95 
 
YanksProb = 0.636 
PhilsProb = 0.574 
findSeriesLength(YanksProb/(YanksProb + PhilsProb)) 
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12.5 Hashing and Collisions 

In Section 10.3 we pointed out that by using a larger hash table one could 
reduce the incidence of collisions, and thus reduce the expected time to retrieve 
a value.  We now have the intellectual tools needed to examine that tradeoff 
more precisely. 

First, let’s get a precise formulation of the problem. 

1. Assume: 

a. The range of the hash function is 1 to n, 

b. The number of insertions is K, and 

c. The hash function produces a perfectly uniform distribution of 
the keys used in insertions, i.e., for all keys, key, and for integers, 
i, in the range 1 to n, the probability that hash(key) is i is 1/n. 

2. What is the probability that at least one collision occurs? 

The question is exactly equivalent to asking “given K randomly generated 
integers in the range 1 to n, what is the probability that at least two of them are 
equal.”  If K ≥ n, the probability is clearly 1. But what about when K < n? 

As is often the case, it is easiest to start by answering the inverse question, 
“given K randomly generated integers in the range 1 to n, what is the probability 
that none of them are equal?” 

When we insert the first element, the probability of not having a collision is 
clearly 1.  How about the second insertion?  Since there are n-1 hash results left 
that are not equal to the result of the first hash, n-1 out of n choices will not yield 
a collision.  So, the probability of not getting a collision on the second insertion 

is 
!!!
!

, and the probability of not getting a collision on either of the first two 

insertions is 1 ∗ !!!
!

.  We can multiply these probabilities because for each 

insertion the value produced by the hash function is independent of anything 
that has preceded it. 

The probability of not having a collision after three insertions is 1 ∗ !!!
!
∗ !!!

!
.  And 

after K insertions it is 1 ∗ !!!
!
∗ !!!

!
∗ … ∗ !! !!!

!
. 

To get the probability of having at least one collision, we subtract this value from 
1, i.e., the probability is 

1 − (
! − 1
!

∗
! − 2
!

∗ … ∗
! − ! − 1

!
) 

Given the size of the hash table and the number of expected insertions, we can 
use this formula to calculate the probability of at least one collision.  If K were 
reasonably large, say 10,000, it would be a bit tedious to compute the probability 
with pencil and paper.  That leaves two choices, mathematics and programming.  
Mathematicians have used some fairly advanced techniques to find a way to 
approximate the value of this series.  But unless K is very large, it is easier to 
run some code to compute the exact value of the series: 
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def collisionProb(n, k): 
    prob = 1.0 
    for i in range(1, k): 
        prob = prob * ((n - i)/float(n)) 
    return 1 - prob 

If we try collisionProb(1000, 50) we get a probability of about 0.71 of there 
being at least one collision. If we consider 200 insertions, the probability of a 
collision is nearly one.  Does that seem a bit high to you?  Let’s write a 
simulation, Figure 12.15, to estimate the probability of at least one collision, and 
see if we get similar results. 

 

Figure 12.15  Simulating a hash table 

If we run the code 

print 'Actual probability of a collision =', collisionProb(1000, 50) 
print 'Est. probability of a collision =', findProb(1000, 50, 10000) 
print 'Actual probability of a collision =', collisionProb(1000, 200) 
print 'Est. probability of a collision =', findProb(1000, 200, 10000) 

it prints 

Actual probability of a collision = 0.71226865688 
Est. probability of a collision = 0.7119 
Actual probability of a collision = 0.999999999478 
Est. probability of a collision = 1.0 

The simulation results are comfortingly similar to what we derived analytically. 

Should the high probability of a collision make us think that hash tables have to 
be enormous to be useful?  No.  The probability of there being at least one 
collision tells us little about the expected lookup time.  The expected time to look 
up a value depends upon the average length of the lists implementing the 
buckets that hold the values that collided.  This is simply the number of 
insertions divided by the number of buckets. 

 

def simInsertions(numIndices, numInsertions): 
    """Assumes numIndices and numInsertions are positive ints. 
       Returns 1 if there is a collision; 0 otherwise""" 
    choices = range(numIndices) #list of possible indices 
    used = [] 
    for i in range(numInsertions): 
        hashVal = random.choice(choices) 
        if hashVal in used: #there is a collision 
            return 1 
        else: 
            used.append(hashVal) 
    return 0 
 
def findProb(numIndices, numInsertions, numTrials): 
    collisions = 0.0 
    for t in range(numTrials): 
        collisions += simInsertions(numIndices, numInsertions) 
    return collisions/numTrials 



 

    

13  RANDOM WALKS AND MORE ABOUT DATA 
VISUALIZATION 

 

In 1827, the Scottish botanist Robert Brown observed that pollen particles 
suspended in water seemed to float around at random.  He had no plausible 
explanation for what came to be known as Brownian motion, and made no 
attempt to model it mathematically.75  A clear mathematical model of the 
phenomenon was first presented in 1900 in Louis Bachelier’s doctoral thesis, 
The Theory of Speculation.  However, since this thesis dealt with the then 
disreputable problem of understanding financial markets, it was largely ignored 
by respectable academics.  Five years later, a young Albert Einstein brought this 
kind of stochastic thinking to the world of physics with a mathematical model 
almost the same as Bachelier’s and a description of how it could be used to 
confirm the existence of atoms.76   For some reason, people seemed to think that 
understanding physics was more important than making money, and the world 
started paying attention.  Times were certainly different. 

Brownian motion is an example of a random walk.  Random walks are widely 
used to model physical processes (e.g., diffusion), biological processes (e.g., the 
kinetics of displacement of RNA from heteroduplexes by DNA), and social 
processes (e.g., movements of the stock market). 

In this chapter we look at random walks for three reasons: 

1. Random walks are intrinsically interesting. 

2. It provides us with a good example of how to use abstract data types and 
inheritance to structure programs in general and simulations in 
particular. 

3. It provides an opportunity to introduce a few more features of Python 
and to demonstrate some additional techniques for producing plots. 

13.1 The Drunkard’s Walk 

Let’s look at a random walk that actually involves walking.  A drunken farmer is 
standing in the middle of a field, and every second the farmer takes one step in a 
random direction.  What is her (or his) expected distance from the origin in 1000 

                                                

75 Nor was he the first to observe it.  As early as 60 BC, the Roman Titus Lucretius, in his 
poem “On the Nature of Things,” described a similar phenomenon, and even implied that 
it was caused by the random movement of atoms. 

76 “On the movement of small particles suspended in a stationary liquid demanded by the 
molecular-kinetic theory of heat,” Annalen der Physik, May 1905. Einstein would come to 
describe 1905 as his “annus mirabilis.”  That year, in addition to his paper on Brownian 
motion, he published papers on the production and transformation of light (pivotal to the 
development of quantum theory), on the electrodynamics of moving bodies (special 
relativity), and on the equivalence of matter and energy (E = mc2).  Not a bad year for a 
newly minted PhD. 



 

180  Chapter 13. Random Walks and More About Data Vizualization  

seconds?  If she takes many steps, is she likely to move ever further from the 
origin, or is she more likely to wander back to the origin over and over, and end 
up not far from where she started?  Let’s write a simulation to find out. 

Before starting to design a program, it is always a good idea to try to develop 
some intuition about the situation the program is intended to model.  Let’s start 
by sketching a simple model of the situation using Cartesian coordinates.  
Assume that the farmer is standing in a field where the grass has, mysteriously, 
been cut to resemble a piece of graph paper.  Assume further that each step the 

farmer takes is of length one and is parallel to either the x-axis or y-axis. 

 

The picture on the left depicts a farmer77 standing in the middle of the field. The 
smiley faces indicate all the places the farmer might be after one step.  Notice 
that after one step she is always exactly one unit away from where she started.  
Let’s assume that she wanders eastward from her initial location on her first 
step.  How far away might she be from her initial location after her second step?  
Looking at the smiley faces in the picture on the right, we see that with a 
probability of 0.25 she will be 0 units away, with a probability of 0.25 she will be 2 

units away, and with a probability of 0.5 she will be 2 units away78.  So, on 
average she will be further away after two steps than after one step.  What about 
the third step?  If the second step is to the top or bottom smiley face, the third 
step will bring the farmer closer to origin half the time and further half the time.  
If the second step is to the left smiley face (the origin), the third step will be away 
from the origin.  If the second step is to the right smiley face, the third step will 
be closer to the origin a quarter of the time, and further away three quarters of 
the time. 

It seems like the more steps the drunk takes, the greater the expected distance 
from the origin.  We could continue this exhaustive enumeration of possibilities 
and perhaps develop a pretty good intuition about how this distance grows with 
respect to the number of steps.  However, it is getting pretty tedious, so it seems 
like a better idea to write a program to do it for us. 

Let’s begin the design process by thinking about some data abstractions that are 
likely to be useful in building this simulation and perhaps simulations of other 
kinds of random walks.  As usual we should try to invent types that correspond 

                                                

77 To be honest, the person pictured here is a professional actor impersonating a farmer.   

78 Why 2?  We are using the Pythagorean theorem. 
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to the kinds of things that appear in the situation we are attempting to model.  
Three obvious types are Location, Field, and Drunk.  As we look at the classes 
providing these types, it is worthwhile to think about what each might imply 
about the kinds of simulation models they will allow us to build. 

Let’s start with Location. 

 

Figure 13.1  Location class 

This is a simple class, but it does embody two important decisions.  It tells us 
that the simulation will involve at most two dimensions.  E.g., the simulation 
will not model changes in altitude.  This is consistent with the pictures above.  
Also, since the values of deltaX and deltaY are floats rather than integers, there 
is no built-in assumption in this class about the set of directions in which a 
drunk might move.  This is a generalization of the informal model in which each 

step was of length one and was parallel to the x-axis or y-axis. 

Class Field is also quite simple, but it too embodies notable decisions.  It simply 
maintains a  mapping of drunks to locations.  It places no constraints on 
locations, so presumably a Field is of unbounded size.  It allows multiple 
drunks to be added into a Field at random locations.  It says nothing about the 
patterns in which drunks move, nor does it prohibit multiple drunks from 
occupying the same location or moving through spaces occupied by other 
drunks. 

class Location(object): 
 
    def __init__(self, x, y): 
        """x and y are floats""" 
        self.x = x 
        self.y = y 
 
    def move(self, deltaX, deltaY): 
        """deltaX and deltaY are floats""" 
        return Location(self.x + deltaX, self.y + deltaY) 
 
    def getX(self): 
        return self.x 
 
    def getY(self): 
        return self.y 
 
    def distFrom(self, other): 
        ox = other.x 
        oy = other.y 
        xDist = self.x - ox 
        yDist = self.y - oy 
        return (xDist**2 + yDist**2)**0.5 
 
    def __str__(self): 
        return '<' + str(self.x) + ', ' + str(self.y) + '>' 
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Figure 13.2  Field class 

The classes Drunk and UsualDrunk define the ways in which a drunk might 
wander through the field.  In particular the value of stepChoices in UsualDrunk 
restores the restriction that each step is of length one and is parallel to either 
the x-axis or y-axis.  It also captures the assumption that each kind of step is 
equally likely and not influenced by previous steps.  A bit later we will look at 
subclasses of Drunk with different kinds of behaviors. 

 

Figure 13.3  Drunk base class 

The next step is to use these classes to build a simulation that answers the 
original question.  Figure 13.4 contains three functions used in this simulation.  
The function walk simulates one walk of numSteps steps.  The function simWalks 
calls walk to simulate numTrials walks of numSteps steps each.  The function 
drunkTest calls simWalks to simulate walks of varying lengths. 

class Field(object): 
     
    def __init__(self): 
        self.drunks = {} 
         
    def addDrunk(self, drunk, loc): 
        if drunk in self.drunks: 
            raise ValueError('Duplicate drunk') 
        else: 
            self.drunks[drunk] = loc 
             
    def moveDrunk(self, drunk): 
        if drunk not in self.drunks: 
            raise ValueError('Drunk not in field') 
        xDist, yDist = drunk.takeStep() 
        currentLocation = self.drunks[drunk] 
        #use move method of Location to get new location 
        self.drunks[drunk] = currentLocation.move(xDist, yDist) 
         
    def getLoc(self, drunk): 
        if drunk not in self.drunks: 
            raise ValueError('Drunk not in field') 
        return self.drunks[drunk] 

class Drunk(object): 
    def __init__(self, name = None): 
        """Assumes name is a str""" 
        self.name = name 
 
    def __str__(self): 
        if self != None: 
            return self.name 
        return 'Anonymous' 
 
class UsualDrunk(Drunk): 
    def takeStep(self): 
        stepChoices = [(0.0,1.0), (0.0,-1.0), (1.0, 0.0), (-1.0, 0.0)] 
        return random.choice(stepChoices) 
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The parameter dClass of simWalks is of type class, and is used in the first line of 
code to create a Drunk of the appropriate subclass.  Later, when drunk.takeStep 
is invoked from Field.moveDrunk, the method from the appropriate subclass is 
automatically selected. 

The function drunkTest also has a parameter, dClass, of type class.  It is used 
twice, once in the call to simWalks and once in the first print statement.  In the 
print statement, the built-in class attribute __name__ is used to get a string 
with the name of the class.  The function drunkTest calculates the coefficient of 
variation of the distance from the origin using the CV function defined in Figure 
12.7. 

 

Figure 13.4  The drunkard’s walk (with a bug) 

def walk(f, d, numSteps): 
    """Assumes: f a Field, d a Drunk in f, and numSteps an int >= 0. 
       Moves d numSteps times, and returns the difference between 
       the final location and the location at the start of the walk.""" 
    start = f.getLoc(d) 
    for s in range(numSteps): 
        f.moveDrunk(d) 
    return start.distFrom(f.getLoc(d)) 
 
def simWalks(numSteps, numTrials, dClass): 
    """Assumes numSteps an int >= 0, numTrials an int > 0, 
         dClass a subclass of Drunk 
       Simulates numTrials walks of numSteps steps each. 
       Returns a list of the final distances for each trial""" 
    Homer = dClass() 
    origin = Location(0.0, 0.0) 
    distances = [] 
    for t in range(numTrials): 
        f = Field() 
        f.addDrunk(Homer, origin) 
        distances.append(walk(f, Homer, numTrials)) 
    return distances 
 
def drunkTest(walkLengths, numTrials, dClass): 
    """Assumes walkLengths a sequence of ints >= 0 
         numTrials an int > 0, dClass a subclass of Drunk 
       For each number of steps in walkLengths, runs simWalks with 
         numTrials walks and prints results""" 
    for numSteps in walkLengths: 
        distances = simWalks(numSteps, numTrials, dClass) 
        print dClass.__name__, 'random walk of', numSteps, 'steps' 
        print ' Mean =', sum(distances)/len(distances),\ 
              'CV =', CV(distances) 
        print ' Max =', max(distances), 'Min =', min(distances) 
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When we executed drunkTest((10, 100, 1000, 10000), 100, UsualDrunk), it 
printed 

UsualDrunk random walk of 10 steps 
 Mean = 9.10300189235 CV = 0.493919383186 
 Max = 23.4093998214 Min = 1.41421356237 
UsualDrunk random walk of 100 steps 
 Mean = 9.72504983765 CV = 0.583886747239 
 Max = 21.5406592285 Min = 0.0 
UsualDrunk random walk of 1000 steps 
 Mean = 9.42444322989 CV = 0.492682758402 
 Max = 21.0237960416 Min = 0.0 
UsualDrunk random walk of 10000 steps 
 Mean = 9.27206514705 CV = 0.540211143752 
 Max = 24.6981780705 Min = 0.0 

This is surprising, given the intuition we developed earlier that the mean 
distance should grow with the number of steps.  It could mean that our intuition 
is wrong, or it could mean that our simulation is buggy, or both. 

The first thing to do at this point is to run the simulation on values for which we 
already think we know the answer, and make sure that what the simulation 
produces matches the expected result.  Let’s try walks of zero steps (for which 
the mean, minimum and maximum distances from the origin should all be 0) 
and one step (for which the mean, minimum and maximum distances from the 
origin should all be 1).   

When we ran drunkTest((0,1), 100, UsualDrunk), we got the highly suspect 
result 

UsualDrunk random walk of 0 steps 
 Mean = 9.10300189235 CV = 0.493919383186 
 Max = 23.4093998214 Min = 1.41421356237 
UsualDrunk random walk of 1 steps 
 Mean = 9.72504983765 CV = 0.583886747239 
 Max = 21.5406592285 Min = 0.0 

How on earth can the mean distance of a walk of zero steps be over 9? 

We must have at least one bug in our simulation.  After some investigation, the 
problem is clear.  In simWalks, the call walk(f, homer, numTrials) should have 
been walk(f, homer, numSteps).  The moral here is an important one: Always 
bring some skepticism to bear when looking at the results of a simulation.  Ask 
if the results are plausible, and “smoke test”79 the simulation on parameters for 
which you have a strong intuition about what the results should be. 

                                                

79 In the 19th century, it became standard practice for plumbers to test closed systems of 
pipes for leaks by filling the system with smoke.  Later, electronic engineers adopted the 
term to cover the very first test of a piece of electronics—turning on the power and 
looking for smoke.  Still later, software developers starting using the term for a quick test 
to see if a program did anything useful. 



 

 Chapter 13.  Random Walks and More About Data Vizualization   185 

When the corrected version of the simulation is run on our two simple cases, it 
yields exactly the expected answers: 

UsualDrunk random walk of 0 steps 
 Mean = 0.0 CV = nan80 
 Max = 0.0 Min = 0.0 
UsualDrunk random walk of 1 steps 
 Mean = 1.0 CV = 0.0 
 Max = 1.0 Min = 1.0 

When run on longer walks it printed 

UsualDrunk random walk of 10 steps 
 Mean = 2.97977767074 CV = 0.497873216438 
 Max = 6.0 Min = 0.0 
UsualDrunk random walk of 100 steps 
 Mean = 9.34012695549 CV = 0.481221153556 
 Max = 23.4093998214 Min = 1.41421356237 
UsualDrunk random walk of 1000 steps 
 Mean = 28.6328252832 CV = 0.510288443239 
 Max = 70.2139587262 Min = 3.16227766017 
UsualDrunk random walk of 10000 steps 
 Mean = 85.9223793386 CV = 0.516182207636 
 Max = 256.007812381 Min = 17.7200451467 

As anticipated, the average distance from the origin grows with the number of 
steps. 

Now let’s look at a plot of the mean distances from the origin.  To give a sense of 
how fast the distance is growing, we have placed on the plot a line showing the 
square root of the number of steps (and increased the number of steps to 
1,000,000).81  

Does this plot provide any 
information about the expected 
final location of a drunk?  It 
does tell us that on average 
the drunk will be somewhere 
on a circle with its center at 
the origin and with a radius 
equal to the expected distance 
from the origin.  However, it 
tells us very little about where 
we might actually find the 
drunk at the end of any 
particular walk.  We return to 
this topic later in this chapter. 

                                                

80 Since the mean was zero, the coefficient of variation is undefined.  Hence our 
implementation of CV returned the special “not a number” floating point value. 

81 The plot showing the square root of the number of steps versus the distance from the 
origin is a straight line because we used a logarithmic scale on both axes. 
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13.2 Biased Random Walks 

Now that we have a working simulation, we can start modifying it to investigate 
other kinds of random walks.  Suppose, for example, that we want to consider 
the behavior of a drunken farmer in the northern hemisphere who hates the 
cold, and even in his drunken stupor is able to move twice as fast when his 
random movements take him in a southward direction.  Or maybe a phototropic 
drunk who always moves towards the sun (east in the morning and west in the 
afternoon).  These are all examples of biased random walks.  The walk is still 
stochastic, but there is a bias in the outcome. 

Figure 13.5 defines two additional subclasses of Drunk.  In each case the 
specialization involves choosing an appropriate value for stepChoices.  The 
function simAll iterates over a sequence of subclasses of Drunk to generate 
information about how each kind behaves. 

 

Figure 13.5  Subclasses of Drunk base class 

When we ran simAll((UsualDrunk, ColdDrunk, EWDrunk), (100, 1000), 10) it 
printed 

UsualDrunk random walk of 100 steps 
 Mean = 8.37073251526 CV = 0.482770539323 
 Max = 14.7648230602 Min = 1.41421356237 
UsualDrunk random walk of 1000 steps 
 Mean = 21.0385788624 CV = 0.5489414497 
 Max = 36.6878726557 Min = 3.16227766017 
ColdDrunk random walk of 100 steps 
 Mean = 23.9034750714 CV = 0.401318542296 
 Max = 37.1214223865 Min = 5.83095189485 
ColdDrunk random walk of 1000 steps 
 Mean = 238.833279891 CV = 0.125076661085 
 Max = 288.140590684 Min = 182.024723595 
EWDrunk random walk of 100 steps 
 Mean = 8.6 CV = 0.58879018145 
 Max = 18.0 Min = 0.0 
EWDrunk random walk of 1000 steps 
 Mean = 27.0 CV = 0.726719143346 
 Max = 74.0 Min = 2.0 

class ColdDrunk(Drunk): 
    def takeStep(self): 
        stepChoices = [(0.0,1.0), (0.0,-2.0), (1.0, 0.0), (-1.0, 0.0)] 
        return random.choice(stepChoices) 
 
class EWDrunk(Drunk): 
    def takeStep(self): 
        stepChoices = [(1.0, 0.0), (-1.0, 0.0)] 
        return random.choice(stepChoices)  
 
def simAll(drunkKinds, walkLengths, numTrials): 
    for dClass in drunkKinds: 
        drunkTest(walkLengths, numTrials, dClass) 



 

 Chapter 13.  Random Walks and More About Data Vizualization   187 

This is quite a bit of output to digest.  It does appear that our heat-seeking 
drunk moves away from the origin faster than the other two kinds of drunk.  
However, it is not easy to digest all of the information in this output. 

It is once again time to move away from textual output and start using plots.   

Since we are showing a number of different kinds of drunks on the same plot, 
we will associate a distinct style with each type of drunk so that it is easy to 
differentiate among them.  The style will have three aspects:  

• The color of the line and points, 

• The shape of the marker used to indicate a point, and 

• The style of a line, e.g., solid or dotted. 

The class styleIterator, in Figure 13.6, rotates through a sequence of styles 
defined by the argument to styleIterator.__init__. 

 

Figure 13.6  Iterating over styles 

The code in Figure 13.7 is similar in structure to that in Figure 13.4.  The print 
statements in simDrunk and simAll contribute nothing to the result of the 
simulation.  They are there because this simulation can take a rather long time 
to complete,  and printing an occasional message indicating that progress is 
being made can be quite reassuring to a user who might be wondering if the 
program is actually making progress.  (Recall that stdDev was defined in Figure 
12.4.) 

class styleIterator(object): 
    def __init__(self, styles): 
        self.index = 0 
        self.styles = styles 
 
    def nextStyle(self): 
        result = self.styles[self.index] 
        if self.index == len(self.styles) - 1: 
            self.index = 0 
        else: 
            self.index += 1 
        return result 
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Figure 13.7  Plotting the walks of different drunks 

The code in Figure 13.7 produces the 
plot on the right. The usual drunk 
and the phototropic drunk (EWDrunk) 
seem to be moving away from the 
origin at approximately the same 
pace, but the heat-seeking drunk 
(ColdDrunk) seems to be moving away 
orders of magnitude faster.  This is 
interesting given that on average he 
is only moving 25% faster (he takes, 
on average, five steps for every four 
taken by the others).  Also, the 
coefficients of variation show quite a 
spread, but the plot doesn’t shed any 
light on why.  

Let’s construct a different plot, that may help us get more insight into the 
behavior of these three classes.  Instead of plotting the change in distance over 
time for an increasing number of steps, the code in Figure 13.8 plots the 
distribution of final locations for a single number of steps. 

def simDrunk(numTrials, dClass, walkLengths): 
    meanDistances = [] 
    cvDistances = [] 
    for numSteps in walkLengths: 
        print 'Starting simulation of', numSteps, 'steps' 
        trials = simWalks(numSteps, numTrials, dClass) 
        mean = sum(trials)/float(len(trials)) 
        meanDistances.append(mean) 
        cvDistances.append(stdDev(trials)/mean) 
    return (meanDistances, cvDistances) 
 
def simAll(drunkKinds, walkLengths, numTrials): 
    styleChoice = styleIterator(('b-', 'r:', 'm-.')) 
    for dClass in drunkKinds: 
        curStyle = styleChoice.nextStyle() 
        print 'Starting simulation of', dClass.__name__ 
        means, cvs = simDrunk(numTrials, dClass, walkLengths) 
        cvMean = sum(cvs)/float(len(cvs)) 
        pylab.plot(walkLengths, means, curStyle, 
                   label = dClass.__name__ + 
                          '(CV = ' + str(round(cvMean, 4)) + ')') 
    pylab.title('Mean Distance from Origin (' 
                + str(numTrials) + ' trials)') 
    pylab.xlabel('Number of Steps') 
    pylab.ylabel('Distance from Origin') 
    pylab.legend(loc = 'best') 
    pylab.semilogx() 
    pylab.semilogy() 
 
simAll((UsualDrunk, ColdDrunk, EWDrunk), (10,100,1000,10000,100000), 100) 
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Figure 13.8  Plotting final locations 

The first thing plotLocs does is initialize styleChoice with three different styles 
of markers.  It then uses pylab.plot to place a marker at a location 
corresponding to the end of each 
trial.  The call to pylab.plot sets 
the color and shape of the marker 
to be plotted using the values 
returned by the iterator 
styleIterator.  The call 
plotLocs((UsualDrunk, ColdDrunk, 

EWDrunk), 100, 200) produces the 
plot on the right.  The first thing to 
say is that our drunks seem to be 
behaving as advertised.  The 
EWDrunk ends up on the x-axis, the 
ColdDrunk seem to make progress 
southwards, and the UsualDrunk 
seem to have wandered aimlessly. 

def getFinalLocs(numSteps, numTrials, dClass): 
    locs = [] 
    d = dClass() 
    origin = Location(0, 0) 
    for t in range(numTrials): 
        f = Field() 
        f.addDrunk(d, origin) 
        for s in range(numSteps): 
            f.moveDrunk(d) 
        locs.append(f.getLoc(d)) 
    return locs 
 
def plotLocs(drunkKinds, numSteps, numTrials): 
    styleChoice = styleIterator(('b+', 'r^', 'mo')) 
    for dClass in drunkKinds: 
        locs = getFinalLocs(numSteps, numTrials, dClass) 
        xVals, yVals = [], [] 
        for l in locs: 
            xVals.append(l.getX()) 
            yVals.append(l.getY()) 
        meanX = sum(xVals)/float(len(xVals)) 
        meanY = sum(yVals)/float(len(yVals)) 
        curStyle = styleChoice.nextStyle() 
        pylab.plot(xVals, yVals, curStyle, 
                      label = dClass.__name__ + ' Mean loc. = <' 
                      + str(meanX) + ', ' + str(meanY) + '>') 
    pylab.title('Location at End of Walks (' 
                + str(numSteps) + ' steps)') 
    pylab.xlabel('Steps East/West of Origin') 
    pylab.ylabel('Steps North/South of Origin') 
    pylab.legend(loc = 'lower left', numpoints = 1) 
 
plotLocs((UsualDrunk, ColdDrunk, EWDrunk), 100, 200) 
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But why do there appear to be far fewer circle markers than triangle or + 
markers?   Because many of the EWDrunk’s walks ended up at the same place.  
This is not surprising, given the 
small number of possible endpoints 
(200) for the EWDrunk.  Also the circle 
markers seem to be fairly uniformly 

spaced across the x-axis, which is 

consistent with the relatively high 
coefficient of variation that we 
noticed earlier. 

It is still not obvious, at least to us, 
why the ColdDrunk manages, on 
average, to get so much further 
from the origin than the other kinds 
of drunks.  Perhaps it’s time to look 
not at the average endpoint of many walks, but at the path followed by a single 
walk.  The code in Figure 13.9 produces the plot on the right. 

 

 

Figure 13.9  Tracing walks 

Since the walk is 200 steps long and the EWDrunk’s walk visits fewer than 30 
different locations, it’s clear that  he is spending a lot of time retracing his steps.  
The same kind of observation holds for the UsualDrunk.  In contrast, while the 
ColdDrunk is not exactly making a beeline for Florida,  he is managing to spend 
relatively less time visiting places he has already been. 

def traceWalk(drunkKinds, numSteps): 
    styleChoice = styleIterator(('b+', 'r^', 'mo')) 
    f = Field() 
    for dClass in drunkKinds: 
        d = dClass() 
        f.addDrunk(d, Location(0, 0)) 
        locs = [] 
        for s in range(numSteps): 
            f.moveDrunk(d) 
            locs.append(f.getLoc(d)) 
        xVals = [] 
        yVals = [] 
        for l in locs: 
            xVals.append(l.getX()) 
            yVals.append(l.getY()) 
        curStyle = styleChoice.nextStyle() 
        pylab.plot(xVals, yVals, curStyle, 
                   label = dClass.__name__) 
    pylab.title('Spots Visited on Walk (' 
                + str(numSteps) + ' steps)') 
    pylab.xlabel('Steps East/West of Origin') 
    pylab.ylabel('Steps North/South of Origin') 
    pylab.legend(loc = 'best') 
 
traceWalk((UsualDrunk, ColdDrunk, EWDrunk), 200) 
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None of these simulations is interesting in its own right.  (In the next chapter, 
we will look at more intrinsically interesting simulations.) But there are some 
points worth taking away: 

• Initially we divided our simulation code into four separate chunks.  Three 
of them were classes (Location, Field, and Drunk) corresponding to 
abstract data types that appeared in the informal description of the 
problem.  The fourth chunk was a group of functions that used these 
classes to perform a simple simulation. 

• We then elaborated Drunk into a hierarchy of classes so that we could 
observe different kinds of biased random walks.  The code for Location 
and Field remained untouched, but the simulation code was changed to 
iterate through the different subclasses of Drunk.  In doing this, we took 
advantage of the fact that a class is itself an object, and therefore can be 
passed as an argument. 

• Finally, we made a series of incremental changes to the simulation that 
did not involve any changes to the classes representing the abstract 
types.  These changes mostly involved introducing plots designed to 
provide insight into the different walks.  This is very typical of the way in 
which simulations are developed.  One gets the basic simulation working 
first, and then starts adding features. 

13.3 Treacherous Fields 

Did you ever play the board game known as Chutes and Ladders in the U.S. and 
Snakes and Ladders in the UK?   This children’s game originated in India 
(perhaps in the 2nd century BC), where it was called Moksha-patamu.  Landing 
on a square representing virtue (e.g., generosity) sent a player up a ladder to a 
higher tier of life.  Landing on a square representing evil (e.g., lust), sent a player 
back to a lower tier of life. 

We can easily add this kind of feature to our random walks by creating a Field 
with wormholes,82 as shown in Figure 13.10, and replacing the second line of 
code in the function traceWalk by the line of code 
f = oddField(1000, 100, 200). 

                                                

82 This kind of wormhole is a hypothetical concept invented by theoretical physicists.  It 
provides shortcuts through the time/space continuum. 



 

192  Chapter 13. Random Walks and More About Data Vizualization  

 

Figure 13.10  Fields with strange properties 

When we ran traceWalk((UsualDrunk, ColdDrunk, EWDrunk), 500), we got the 
rather odd-looking plot 

 

Clearly changing the properties of the field has had a dramatic effect.  However, 
that is not the point of this example. The main points are: 

• Because of the way we structured our code, it was easy to accommodate 
a significant change to the situation being modeled.  Just as we could 
add different kinds of drunks without touching Field, we can add a new 
kind of Field without touching Drunk or any of its subclasses.  (Had we 
been sufficiently prescient to make the field a parameter of traceWalk, we 
wouldn’t have had to change traceWalk either.) 

• While it would have been feasible to analytically derive different kinds of 
information about the expected behavior of the simple random walk and 
even the biased random walks, it would have been challenging to do so 
once the wormholes were introduced.  Yet it was exceedingly simple to 
change the simulation to model the new situation.  Simulation models 
often enjoy this advantage relative to analytic models. 

class oddField(Field): 
    def __init__(self, numHoles, xRange, yRange): 
        Field.__init__(self) 
        self.wormholes = {} 
        for w in range(numHoles): 
            x = random.randint(-xRange, xRange) 
            y = random.randint(-yRange, yRange) 
            newX = random.randint(-xRange, xRange) 
            newY = random.randint(-yRange, yRange) 
            newLoc = Location(newX, newY) 
            self.wormholes[(x, y)] = newLoc 
 
    def moveDrunk(self, drunk): 
        Field.moveDrunk(self, drunk) 
        x = self.drunks[drunk].getX() 
        y = self.drunks[drunk].getY() 
        if (x, y) in self.wormholes: 
            self.drunks[drunk] = self.wormholes[(x, y)] 



 

    

14  MONTE CARLO SIMULATION 
 

In the previous two chapters we looked at different ways of using randomness in 
computations.  Many of the examples we presented fall into the class of 
computation known as Monte Carlo simulation. 

Stanislaw Ulam and Nicholas Metropolis coined the term Monte Carlo 
simulation in 1949 in homage to the games of chance played in the casino in the 
Principality of Monaco.  Ulam, who is best known for designing the hydrogen 
bomb with Edward Teller, described the invention of the model as follows: 

The first thoughts and attempts I made to practice [the Monte Carlo 
Method] were suggested by a question which occurred to me in 1946 as I 
was convalescing from an illness and playing solitaires. The question was 
what are the chances that a Canfield solitaire laid out with 52 cards will 
come out successfully? After spending a lot of time trying to estimate them 
by pure combinatorial calculations, I wondered whether a more practical 
method than “abstract thinking” might not be to lay it out say one hundred 
times and simply observe and count the number of successful plays. This 
was already possible to envisage with the beginning of the new era of fast 
computers,83 and I immediately thought of problems of neutron diffusion 
and other questions of mathematical physics, and more generally how to 
change processes described by certain differential equations into an 
equivalent form interpretable as a succession of random operations. Later 
… [in 1946, I] described the idea to John von Neumann, and we began to 
plan actual calculations.84 

The technique was effectively used during the Manhattan Project to predict what 
would happen during a nuclear fission reaction, but did not really take off until 
the 1950s when computers became both more common and more powerful. 

Ulam was not the first mathematician to think about using the tools of 
probability to understand a game of chance.  The history of probability is 
intimately connected to the history of gambling.  It is the existence of 
uncertainty that makes gambling possible.  And the existence of gambling 
provoked the development of much of the mathematics needed to reason about 
uncertainty.  Contributions to the foundations of probability theory by Cardano, 
Pascal, Fermat, Bernoulli, de Moivre, and Laplace were all motivated by a desire 
to better understand (and perhaps profit from) games of chance. 

                                                

83 “Fast” is a relative term.  Ulam was probably referring to the ENIAC, which could 
perform about 103 additions a second (and weighed more than 25 tons).  Today’s 
computers perform about 109 additions a second (and weigh maybe 10-3 tons). 

84 Eckhardt, Roger (1987). “Stan Ulam, John von Neumann, and the Monte Carlo 
method,” Los Alamos Science, Special Issue (15), 131-137. 
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14.1 Pascal’s Problem 

Most of the early work on probability theory revolved around games using dice.85  
Reputedly, Pascal’s interest in the field that came to be known as probability 
theory began when a friend asked him whether or not it would be profitable to 
bet that within twenty-four rolls of a pair of dice he would roll a double six.  This 
was considered a hard problem in the mid-17th century.  Pascal and Fermat, two 
pretty smart guys, exchanged a number of letters about how to resolve the 
issue, but it now seems like an easy question to answer: 

• On the first roll the probability of rolling a six on each die is 1/6, so the 
probability of rolling a six with both dice is 1/36. 

• Therefore, the probability of not rolling a double six on the first roll is 
1 - 1/36 = 35/36. 

• Therefore the probability of not rolling a double six twenty-four 
consecutive times is (35/36)24, nearly 0.51, and therefore the probability of 
rolling a double six is 1 - (35/36)24, about 0.49.  In the long run it would not 
be profitable to bet on rolling a double six within twenty-four rolls. 86 

Just to be safe, let’s write a little program to simulate Pascal’s friend’s game and 
confirm that we get the same answer as Pascal. 

 

Figure 14.1  Checking Pascal's analysis 

                                                

85 Archeological excavations suggest that dice are the human race’s oldest gambling 
implement.  The oldest known “modern” six-sided die dates to about 600 BC, but 
Egyptian tombs dating to two millennia before the birth of Christ contain artifacts 
resembling dice.  Typically, these early dice were made from animal bones; in gambling 
circles people still use the phrase “rolling the bones.” 

86 As with our earlier analyses, this is true only under the assumption that each die is 
fair, i.e., the outcome of a roll is truly random and each of the six outcomes is equally 
probable.  This is not always to be taken for granted.  Excavations of Pompeii discovered 
“loaded” dice in which small lead weights had been inserted to bias the outcome of a roll.  
More recently, an online vendor’s site said, “Are you unusually unlucky when it comes to 
rolling dice? Investing in a pair of dice that's more, uh, reliable might be just what you 
need.” 

def rollDie(): 
    return random.choice([1,2,3,4,5,6]) 
 
def checkPascal(numTrials): 
    """Assumes numTrials an int > 0 
       Prints an estimate of the probability of winning""" 
    numWins = 0.0 
    for i in range(numTrials): 
        for j in range(24): 
            d1 = rollDie() 
            d2 = rollDie() 
            if d1 == 6 and d2 == 6: 
                numWins += 1 
                break 
    print 'Probability of winning =', numWins/numTrials 
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When run the first time, the call checkPascal(1000000) printed 

Probability of winning = 0.491204 

This is indeed quite close to 1 - (35/36)24; typing 1 - (35.0/36.0)**24 into the 
Python shell produces 0.49140387613090342. 

14.2 Pass or Don’t Pass? 

Not all questions about games of chance are so easily answered.  In the game 
craps, the shooter (the person who rolls the dice) chooses between making a 
“pass line” or a “don’t pass line” bet. 

• Pass Line: Shooter wins if the first roll (called coming out) is a “natural” 
(7 or 11) and loses if it is “craps” (2, 3, or 12). If some other number is 
rolled, that number becomes the “point” and the shooter keeps rolling.  If 
the shooter rolls the point before rolling a 7, the shooter wins.  Otherwise 
the shooter loses. 

• Don’t Pass Line: Shooter loses if the first roll is 7 or 11, wins if it is 2 or 3, 
and ties (a “push” in gambling jargon) if it is 12. If some other number is 
rolled, that number becomes the point and shooter keeps rolling.  If the 
shooter rolls a 7 before rolling the point, the shooter wins.  Otherwise the 
shooter loses. 

Is one of these a better bet than the other?  Is either a good bet?  It is possible to 
analytically derive the answer to these questions, but it seems easier (at least to 
us) to write a program that simulates a craps game, and see what happens. 

Figure 14.2 contains the heart of such a simulation.  The values of the instance 
variables of an instance of class CrapsGame records the performance of the pass 
and don’t pass lines since the start of the game.  The observer methods 
passResults and dpResults return these values.  The method playHand 
simulates one “hand”87 of a game.  The bulk of the code in playHand is merely an 
algorithmic description of the rules stated above.  Notice that there is a loop in 
the else clause corresponding to what happens after a point is established.  It is 
exited using a break statement when either a seven or the point is rolled.   

                                                

87 A hand starts when the shooter is “coming out,” the term used in craps for a roll before 
a point is established.  A hand ends when the shooter has won or lost his or her initial 
bet. 
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Figure 14.2  CrapsGame class 

Figure 14.3 contains a function that uses class CrapsGame.  Its structure is 
typical of many simulation programs: 

1. It runs multiple games (think of each game as analogous to a trial in our 
earlier simulations) and accumulates the results.  Each game includes 
multiple hands, so there is a nested loop. 

2. It then produces and stores statistics for each game. 

3. Finally it produces and outputs summary statistics.  In this case, it 
prints the expected return on investment (ROI) or each kind of betting 
line and the standard deviation of that ROI. 

Return on investment is defined by the equation 

!"# =   
!"#$  !"#$  !"#$%&'$"& − !"#$  !"  !"#$%&'$"&

!"#$  !"  !"#$%&'$"&
 

Since the pass and don’t pass lines pay even money (if you bet $1 and win, you 
gain is $1), the ROI is  

!"# =   
!"#$%&  !"  !"#$ − !"#$%&  !"  !"##$#

!"#$%&  !"  !"#$
 

class CrapsGame(object): 
    def __init__(self): 
        self.passWins, self.passLosses = (0,0) 
        self.dpWins, self.dpLosses, self.dpPushes = (0,0,0) 
 
    def playHand(self): 
        throw = rollDie() + rollDie() 
        if throw == 7 or throw == 11: 
            self.passWins += 1 
            self.dpLosses += 1 
        elif throw == 2 or throw == 3 or throw == 12: 
            self.passLosses += 1 
            if throw == 12: 
                self.dpPushes += 1 
            else: 
                self.dpWins += 1 
        else: 
            point = throw 
            while True: 
                throw = rollDie() + rollDie() 
                if throw == point: 
                    self.passWins += 1 
                    self.dpLosses += 1 
                    break 
                elif throw == 7: 
                    self.passLosses += 1 
                    self.dpWins += 1 
                    break 
 
    def passResults(self): 
        return (self.passWins, self.passLosses) 
 
    def dpResults(self): 
        return (self.dpWins, self.dpLosses, self.dpPushes) 
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For example, if you made 100 pass line bets and won half of them, your ROI 
would be 

50 − 50
100

= 0 

If you bet the don’t pass line 100 times and had 25 wins and 5 pushes the ROI  
would be 

25 − 70
100

=
−45
100

= −4.5 

Note that in crapsSim we use xrange rather than range in the for loops in 
anticipation of running large simulations.  Recall that in Python 2.7 range(n) 
creates a sequence with n elements whereas xrange(n) generates the values only 
as they are needed by the for loop. 

 

Figure 14.3  Simulating a craps game 

 Let’s run our craps simulation and see what happens:88 

>>> crapsSim(20, 10) 
Pass: Mean ROI = -7.0% Std. Dev. = 23.6854% 
Don't pass: Mean ROI = 4.0% Std Dev = 23.5372% 

                                                

88 Keep in mind that since these programs incorporate randomness, you should not 
expect to get identical results if you run the code yourself.  More importantly, do not 
make any bets until you have read the entire section. 

def crapsSim(handsPerGame, numGames): 
    """Assumes handsPerGame and numGames are ints > 0 
       Play numGames games of handsPerGame hands, and print results""" 
    games = [] 
 
    #Play numGames games 
    for t in xrange(numGames): 
        c = CrapsGame() 
        for i in xrange(handsPerGame): 
            c.playHand() 
        games.append(c) 
         
    #Produce statistics for each game 
    pROIPerGame, dpROIPerGame = [], [] 
    for g in games: 
        wins, losses = g.passResults() 
        pROIPerGame.append((wins - losses)/float(handsPerGame)) 
        wins, losses, pushes = g.dpResults() 
        dpROIPerGame.append((wins - losses)/float(handsPerGame)) 
         
    #Produce and print summary statistics 
    meanROI = str(round((100.0*sum(pROIPerGame)/numGames), 4)) + '%' 
    sigma = str(round(100.0*stdDev(pROIPerGame), 4)) + '%' 
    print 'Pass:', 'Mean ROI =', meanROI, 'Std. Dev. =', sigma 
    meanROI = str(round((100.0*sum(dpROIPerGame)/numGames), 4)) + '%' 
    sigma = str(round(100.0*stdDev(dpROIPerGame), 4)) + '%' 
    print 'Don\'t pass:','Mean ROI =', meanROI, 'Std Dev =', sigma 
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It looks as if it would be a good idea to avoid the pass line—where the expected 
return on investment is a 7% loss.  But the don’t pass line looks like a pretty 
good bet.  Or does it? 

Looking at the standard deviations, it seems that perhaps the don’t pass line is 
not such a good bet after all.  Recall that under the assumption that the 
distribution is normal, the 95% confidence interval is encompassed by two 
standard deviations on either side of the mean.  For the don’t pass line, the 95% 
confidence interval is [4.0 – 2*23.5372, 4.0 + 2*23.5372]—roughly [-43%, +51%]. That 

certainly doesn’t suggest that betting the don’t pass line is a sure thing. 

Time to put the law of large numbers to work.   

>>> crapsSim(10000000, 10) 
Pass: Mean ROI = -1.4216% Std. Dev. = 0.0322% 
Don't pass: Mean ROI = -1.3579% Std Dev = 0.0334% 

We can now be pretty safe in assuming that neither of these is a good bet.  It 
looks as if the don’t pass line may be slightly less bad.  However, because the 
95% confidence interval [-1.486, -1.3572]  for the pass line overlaps with that for the 
don’t pass line [-1.4247, -1.2911], we cannot say with 95% confidence that the don’t 
pass line is a better bet. 

Suppose that instead of increasing the number of hands per game, we increased 
the number of games, e.g., by making the call crapsSim(20, 1000000).  As 
shown below, the mean of the estimated ROIs are close to the actual ROIs.  
However, the standard deviations are still be high—indicating that the outcome 
of a single game of 20 hands is highly uncertain. 

>>>crapsSim(20, 10000000) 
Pass: Mean ROI = -1.4133% Std. Dev. = 22.3571% 
Don't pass: Mean ROI = -1.3649% Std Dev = 22.0446% 

One of the nice things about simulations is that they make it easy to perform 
“what if” experiments.  For example, what if a player could sneak in a pair of 
cheater’s dice that favored 5 over 2 (5 and 2 are on the opposite sides of a die)?  
To test this out, all we have to do is replace the implementation of rollDie by 
something like 

def rollDie(): 
    return random.choice([1,1,2,3,3,4,4,5,5,5,6,6]) 

This relatively small change in the die makes a dramatic difference in the odds, 

>>> crapsSim(1000000, 10) 
Pass: Mean ROI = 6.7066% Std. Dev. = 0.0208% 
Don't pass: Mean ROI = -9.4824% Std Dev = 0.02% 

No wonder casinos go to a lot of trouble to make sure that players don’t 
introduce their own dice into the game! 
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14.3 Using Table Lookup to Improve Performance 

You might not want to try running crapsSim(100000000, 10) at home.  It takes a 
long time to complete on most computers.  That raises the question of whether 
there is a simple way to speed up the simulation. 

The complexity of crapsSim is O(playHand)*handsPerGame*numGames.  The running 

time of playHand depends upon the number of times the loop in it is executed.  
In principle, the loop could be executed an unbounded number of times since 
there is no bound on how long it could take to roll either a seven or the point.  In 
practice, of course, we have every reason to believe it will always terminate.  

Notice, however, that the result of a call to playHand does not depend on how 
many times the loop is executed, but only on which exit condition is reached.  
For each possible point, one can easily calculate the probability of rolling that 
point before rolling a seven.  For example, using a pair of dice one can roll a 4 in 
three different ways: <1, 3>, <3, 1>, and <2, 2>; and one can roll a 7 in six different 
ways: <1, 6>, <6, 1>, <2, 5>, <5, 2>,  <3, 4>, and <4, 3>.  Therefore, exiting the loop by 
rolling a 7 is twice as likely as exiting the loop by rolling a 4. 

Figure 14.4 contains an implementation of playHand that exploits this thinking.  
We have pre-computed the probability of making the point before rolling a 7 for 
each possible value of the point, and stored those values in a dictionary.  
Suppose, for example, that the point is 8.  The shooter continues to roll until he 
either rolls the point or rolls craps.  There are five ways of rolling an 8 (<6,2>, 
<2,6>, <5,3>, <3,5>, and <4,4>) and six ways of rolling a 7.  So, the value for the 
dictionary key 8 is the value of the expression 5/11.0.  Having this table allows 
us to replace the inner loop, which contained an unbounded number of rolls, 
with a test against one call to random.random.  The asymptotic complexity of this 
version of playHand is O(1).  

The idea of replacing computation by table lookup has broad applicability and 
is frequently used when speed is an issue.  Table lookup is an example of the 
general idea of trading time for space.  We saw another example of this 
technique in our analysis of hashing: the larger the table, the fewer the 
collisions, and the faster the average lookup.  In this case, the table is small, so 
the space cost is negligible.  
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Figure 14.4  Using table lookup to improve performance 

14.4 Finding π 

It is easy to see how Monte Carlo simulation is useful for tackling problems in 
which nondeterminism plays a role.  Interestingly, however, Monte Carlo 
simulation (and randomized algorithms in general) can be used to solve 
problems that are not inherently stochastic, i.e., for which there is no 
uncertainty about outcomes. 

Consider π.  

For thousands of years, people have known that there is a constant, called π (pi) 
since the 18th century, such that the circumference of a circle is equal to 
π*diameter and the area of the circle equal to π*radius2.  What they did not know 

was the value of this constant. 

One of the earliest estimates, 4*(8/9)2 = 3.16, can found in the Egyptian Rhind 

Papyrus, circa 1650 BC.  More than a thousand years later, the Old Testament 
implied a different value for π when giving the specifications of one of King 
Solomon’s construction projects, 

And he made a molten sea, ten cubits from the one brim to the other: it was 
round all about, and his height was five cubits: and a line of thirty cubits did 
compass it round about.89 

Solving for π, 10π = 30, so π = 3.  Perhaps the Bible is simply wrong, or perhaps 
the molten sea wasn’t perfectly circular, or perhaps the circumference was 

                                                

89King James Bible, 1 Kings 7.23. 

def playHand(self): 
    #An alternative, faster, implementation of playHand 
    pointsDict = {4:1/3.0, 5:2/5.0, 6:5/11.0, 8:5/11.0, 
                  9:2/5.0, 10:1/3.0} 
    throw = rollDie() + rollDie() 
    if throw == 7 or throw == 11: 
        self.passWins += 1 
        self.dpLosses += 1 
    elif throw == 2 or throw == 3 or throw == 12: 
        self.passLosses += 1 
        if throw == 12: 
            self.dpPushes += 1 
        else: 
            self.dpWins += 1 
    else: 
        if random.random() <= pointsDict[throw]: # point before 7 
            self.passWins += 1 
            self.dpLosses += 1 
        else:                                    # 7 before point 
            self.passLosses += 1 
            self.dpWins += 1 
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measured from the outside of the wall and the diameter from the inside, or 
perhaps it’s just poetic license.  We leave it to the reader to decide. 

Archimedes of Syracuse (287-212 BC) derived upper and lower bounds on the 
value of π by using a high-degree polygon to approximate a circular shape.  
Using a polygon with 96 sides, he concluded that 223/71 < π < 22/7.  Giving upper 
and lower bounds was a rather sophisticated approach for the time.  Also, if we 
take his best estimate as the average of his two bounds we obtain 3.1418, an 
error of about 0.0002.  Not bad! 

Long before computers were invented, the French mathematicians Buffon (1707-
1788) and Laplace (1749-1827) proposed using a stochastic simulation to 
estimate the value of π.90 Think about inscribing a circle in a square with sides 
of length 2, so that the radius, r, of the circle is of length 1. 

  
By the definition of π, area = πr2.  Since r is 1, π = area. But what’s the area of the 
circle?  Buffon suggested that he could estimate the area of a circle by a 
dropping a large number of needles (which he argued would follow a random 
path as they fell) in the vicinity of the square.  The ratio of the number of 
needles with tips lying within the square to the number of needles with tips lying 
within the circle could then be used to estimate the area of the circle. 

If the locations of the needles are truly random, we know that, 

!""#$"%  !"  !"#!$%
!""#$"%  !"  !"#$%&

=   
!"#!  !"  !"#!$%
!"#!  !"  !"#$%&

 

solving for the area of the circle, 

!"#!  !"  !"#!$% =   
!"#!  !"  !"#$%& ∗ !""#$"%  !"  !"#!$%

!""#$"%  !"  !"#$%&
 

Recall that the area of a 2 by 2 square is 4, so, 

!"#!  !"  !"#!$% =   
4 ∗ !""#$"%  !"  !"#!$%
!""#$"%  !"  !"#$%&

 

In general, to estimate the area of some region R 

1. Pick an enclosing region, E, such that the area of E is easy to calculate 
and R lies completely within E. 

2. Pick a set of random points that lie within E. 

3. Let F be the fraction of the points that fall within R. 

4. Multiply the area of E by F. 

                                                

90 Buffon proposed the idea first, but there was an error in his formulation that was later 
corrected by Laplace. 
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If you try Buffon’s experiment, you’ll soon realize that the places where the 
needles land are not truly random.  Moreover, even if you could drop them 
randomly, it would take a very large number of needles to get an approximation 
of π as good as even the Bible’s.  Fortunately, computers can randomly drop 
simulated needles at a ferocious rate. 

Figure 14.5 contains a program that estimates π using the Buffon-Laplace 
method.  For simplicity, it considers only those needles that fall in the upper 
right-hand quadrant of the square. 

The function throwNeedles simulates dropping a needle by first using 
random.random to get a pair of positive Cartesian coordinates (x and y values).  It 
then uses the Pythagorean theorem to compute the hypotenuse of the right 
triangle with base x and height y.  This is the distance of the tip of the needle 
from the origin (the center of the square).  Since the radius of the circle is 1, we 
know that the needle lies within the circle if and only if the distance from the 
origin is no greater than 1.  We use this fact to count the number of needles in 
the circle. 

The function getEst uses throwNeedles to find an estimate of π by dropping 
numNeedles needles and averaging the result over numTrials trials. 

The function estPi calls getEst with an ever-growing number of needles until 
getEst returns an estimate that, with a confidence of 95%, is within precision of 
the actual value.  It does this by calling throwNeedles with an ever-larger 
number of needles, until the standard deviation of the results of numTrials trials 
is no larger than precision/2.0.  Under the assumption that the errors are 
normally distributed, this ensures that 95% of the values lie within precision of 
the mean. 
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Figure 14.5  Estimating π 

When we ran estPi(0.01, 100) it printed 

Est. = 3.14844, Std. dev. = 0.04789, Needles = 1000 
Est. = 3.13918, Std. dev. = 0.0355, Needles = 2000 
Est. = 3.14108, Std. dev. = 0.02713, Needles = 4000 
Est. = 3.14143, Std. dev. = 0.0168, Needles = 8000 
Est. = 3.14135, Std. dev. = 0.0137, Needles = 16000 
Est. = 3.14131, Std. dev. = 0.00848, Needles = 32000 
Est. = 3.14117, Std. dev. = 0.00703, Needles = 64000 
Est. = 3.14159, Std. dev. = 0.00403, Needles = 128000 

As one would expect, the standard deviations decreased monotonically as we 
increased the number of samples.  In the beginning the estimates of the value of 
π also improved steadily.  Some were above the true value and some below, but 
each increase in numNeedles led to an improved estimate.  With 1000 samples per 
trial, the simulation’s estimate was already better than those of the Bible and 
the Rhind Papyrus. 

Curiously, the estimate got worse when the number of needles went from 8,000 
to 16,000, since 3.14135 is further from the true value of π than is 3.14143.  
However, if we look at the ranges defined by one standard deviation around each 
of the means, both ranges contain the true value of π, and the range associated 
with the larger sample size is considerably smaller.  Even though the estimate 
generated with 16,000 samples happens to be further from the actual value of π, 
we should have more confidence in its accuracy.  This is an extremely important 

def throwNeedles(numNeedles): 
    inCircle = 0 
    for Needles in xrange(1, numNeedles + 1): 
        x = random.random() 
        y = random.random() 
        if (x*x + y*y)**0.5 <= 1.0: 
            inCircle += 1 
    #Counting needles in one quadrant only, so multiply by 4 
    return 4*(inCircle/float(numNeedles)) 
 
def getEst(numNeedles, numTrials): 
    estimates = [] 
    for t in range(numTrials): 
        piGuess = throwNeedles(numNeedles) 
        estimates.append(piGuess) 
    sDev = stdDev(estimates) 
    curEst = sum(estimates)/len(estimates) 
    print 'Est. = ' + str(round(curEst, 5)) +\ 
          ', Std. dev. = ' + str(round(sDev, 5))\ 
          + ', Needles = ' + str(numNeedles) 
    return (curEst, sDev) 
 
def estPi(precision, numTrials): 
    numNeedles = 1000 
    sDev = precision 
    while sDev >= precision/2.0: 
        curEst, sDev = getEst(numNeedles, numTrials) 
        numNeedles *= 2 
    return curEst 
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notion.  It is not sufficient to produce a good answer.  We have to have a valid 
reason to be confident that it is in fact a good answer.  And when we drop a 
large enough number of needles, the small standard deviation gives us reason to 
be confident that we have a correct answer.  Right? 

Not exactly.  Having a small standard deviation is a necessary condition for 
having confidence in the validity of the result.  It is not a sufficient condition.  
The notion of a statistically valid conclusion should never be confused with the 
notion of a correct conclusion. 

Each statistical analysis starts with a set of assumptions.  The key assumption 
here is that our simulation is an accurate model of reality.  Recall that the 
design of our Buffon-Laplace simulation started with a little algebra 
demonstrating how we could use the ratio of two areas to find the value of π.  We 
then translated this idea into code that depended upon a little geometry and the 
randomness of random.random. 

Let’s see what happens if we get any of this wrong.  Suppose, for example, we 
replace the 4 in the last line of throwNeedles by a 2, and again run 
estPi(0.01, 100).  This time it prints 

Est. = 1.57422, Std. dev. = 0.02394, Needles = 1000 
Est. = 1.56959, Std. dev. = 0.01775, Needles = 2000 
Est. = 1.57054, Std. dev. = 0.01356, Needles = 4000 
Est. = 1.57072, Std. dev. = 0.0084, Needles = 8000 
Est. = 1.57068, Std. dev. = 0.00685, Needles = 16000 
Est. = 1.57066, Std. dev. = 0.00424, Needles = 32000 

The standard deviation for a mere 32,000 needles suggests that we should have a 
fair amount of confidence in the estimate.  But what does that really mean?  It 
means that we can be reasonably confident that if we were to draw more 
samples from the same distribution, we would get a similar value.  It says 
nothing about whether or not this value is close to the actual value of π.  A 
statistically valid conclusion should not be confused with a correct conclusion. 

Before believing the results of a simulation, we need to have confidence both 
that our conceptual model is correct and that we have correctly implemented 
that model.  Whenever possible, one should attempt to validate results against 
reality.  In this case, one could use some other means to compute an 
approximation to the area of a circle (e.g., physical measurement) and check 
that the computed value of π is at least in the right neighborhood. 

14.5 Some Closing Remarks About Simulation Models 

For most of the history of science, theorists used mathematical techniques to 
construct purely analytical models that could be used to predict the behavior of 
a system from a set of parameters and initial conditions.  This led to the 
development of important mathematical tools ranging from calculus to 
probability theory.  These tools helped scientists develop a reasonably accurate 
understanding of the macroscopic physical world. 
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As the 20th century progressed, the limitations of this approach became 
increasingly clear.  Reasons for this include: 

• An increased interest in the social sciences, e.g., economics, led to a 
desire to construct good models of systems that were not 
mathematically tractable. 

• As the systems to be modeled grew increasingly complex, it seemed 
easier to successively refine a series of simulation models than to 
construct accurate analytic models. 

• It is often easier to extract useful intermediate results from a 
simulation than from an analytical model, e.g., to play “what if” games. 

• The availability of computers made it feasible to run large-scale 
simulations.  Until the advent of the modern computer in the middle of 
the 20th century the utility of simulation was limited by the time 
required to perform calculations by hand. 

Simulation attempts to build an experimental device, called a model, that will 
provide useful information about the possible behaviors of the system being 
modeled.  It is important to remember that these models, like all models, are 
only an approximation of reality.  One can never be sure that the actual system 
will behave in the way predicted by the model.  In fact, one can usually be pretty 
confident that the actual system will not behave exactly as predicted by the 
model.  It is a commonly quoted truism that “all models are wrong, but some are 
useful.”91 

Simulation models are descriptive, not prescriptive. They tell how a system 
works under given conditions; not how to arrange the conditions to make the 
system work best.  A simulation does not optimize, it merely describes.  That is 
not to say that simulation cannot be used as part of an optimization process.  
For example, simulation is often used as part of a search process in finding an 
optimal set of parameter settings.   

Simulation models can be classified along three dimensions: 

• Deterministic versus stochastic, 

• Static versus dynamic, and 

• Discrete versus continuous. 

The behavior of a deterministic simulation is completely defined by the model. 
Rerunning a simulation will not change the outcome.  Deterministic simulations 
are typically used when the system being modeled is too complex to analyze 
analytically, e.g., the performance of a processor chip.  Stochastic simulations 
incorporate randomness in the model. Multiple runs of the same model may 
generate different values. This random element forces us to generate many 
outcomes to see the range of possibilities. The question of whether to generate 10 
or 1000 or 100,000 outcomes is a statistical question, as discussed earlier.   

                                                

91 Usually attributed to the statistician George E.P. Box. 
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In a static model, time plays no essential role.  The needle-dropping simulation 
used to estimate π in this chapter is an example of a static simulation.  In a 
dynamic model, time, or some analog, plays an essential role.  In the series of 
random walks simulated in Chapter 13, the number of steps taken was used as 
a surrogate for time.  

In a discrete model, the values of pertinent variables are enumerable, e.g., they 
are integers.  In a continuous model, the values of pertinent variables range 
over non-enumerable sets, e.g., the real numbers. Imagine analyzing the flow of 
traffic along a highway. We might choose to model each individual car, in which 
case we have a discrete model. Alternatively, we might choose to treat traffic as a 
flow, where changes in the flow can be described by differential equations. This 
leads to a continuous model.  In this example, the discrete model more closely 
resembles the physical situation (nobody drives half a car, though some cars are 
half the size of others), but is more computationally complex than a continuous 
one.  In practice, models often have both discrete and continuous components.  
For example, one might choose to model the flow of blood through the human 
body using a discrete model for blood (i.e., modeling individual corpuscles) and a 
continuous model for blood pressure.



 

    

15  UNDERSTANDING EXPERIMENTAL DATA 
 

This chapter is all about understanding experimental data.  We will make 
extensive use of plotting to visualize the data, and will return to the topic of 
what is and what is not a valid statistical conclusion.  We will also talk about 
the interplay between physical and computational experiments. 

15.1 The Behavior of Springs 

Springs are wonderful things.  When they are compressed or stretched by some 
force, they store energy.  When that force is no longer applied they release the 
stored energy.  This property allows them to smooth the ride in cars, help 
mattresses conform to our bodies, retract seat belts, and launch projectiles. 

In 1676 the British physicist Robert Hooke formulated Hooke’s law of elasticity: 
Ut tensio, sic vis, in English, F = -kx.  In other words, the force, F, stored in a 
spring is linearly related to the distance, x, the spring has been compressed (or 
stretched).  (The minus sign indicates that the force exerted by the spring is in 
the opposite direction of the displacement.)  Hooke’s law holds for a wide variety 
of materials and systems, including many biological systems.  Of course, it does 
not hold for an arbitrarily large force.  All springs have an elastic limit, beyond 
which the law fails.  Those of you who have stretched a Slinky too far know this 
all too well. 

The constant of proportionality, k, is called the spring constant. If the spring is 
stiff (like the ones in the suspension of a car or the limbs of an archer’s bow), k 
is large.  If the spring is weak, like the spring in a ballpoint pen, k is small.  

Knowing the spring constant of a particular spring can be a matter of some 
import.  The calibrations of both simple scales and atomic force microscopes 
depend upon knowing the spring constants of components.  The mechanical 
behavior of a strand of DNA is related to the force required to compress it.  The 
force with which a bow launches an arrow is determined by the spring constant 
of its limbs.  And so on. 
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Generations of physics students have learned to estimate spring constants using 
an experimental apparatus similar to that pictured here.  The basic idea is to 
estimate the force stored in the spring by measuring the displacement caused by 
exerting a known force on the spring.  

 

We start with a spring with no weight on it, and measure the distance to the 
bottom of the spring from the top of the stand.  We then hang a known mass on 
the spring, wait for it to stop moving, and again measure the distance from the 
bottom of the spring to the top of the stand.  The difference between the two 
distances then becomes the value of x in Hooke’s law. 

We know that the force, F, being exerted on the spring is equal to the mass, m, 
multiplied by the acceleration due to gravity, g (9.81 m/s2 is a pretty good 
approximation of g on this planet), so we substitute m*g for F.  By simple algebra 

we know that k = -(m*g)/x. 

Suppose, for example, that m = 1kg and x = 0.1m, then 

! =
1!" ∗ 9.81!/!!

0.1!
= −

9.81!
0.1!

= −98.1!/! 

According to this calculation, it will take 98.1 Newtons92 of force to stretch the 
spring one meter. 

This would all be well and good if 

• We had complete confidence in our ability to conduct this experiment 
perfectly.  In that case, we could take one measurement, perform the 
calculation, and know that we had found k.  Unfortunately, experimental 
science hardly ever works this way, and 

• We could be sure that we were operating below the elastic limit of the 
spring. 

A more robust experiment is to hang a series of increasingly heavier weights on 
the spring, measure the stretch of the spring each time, and plot the results. 

                                                

92 The Newton, written N, is the standard international unit for measuring force.  It is the 
amount of force needed to accelerate a mass of one kilogram at a rate of one meter per 
second per second.  A Slinky, by the way, has a spring constant of approximately 1N/m. 
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We ran such an experiment, and typed the results into a file named 
springData.txt: 

Distance (m) Mass (kg) 
0.0865 0.1 
0.1015 0.15 
… 
0.4416 0.9 
0.4304 0.95 
0.437 1.0 

The function in Figure 15.1 reads data from a file such as the one we saved, and 
returns lists containing the distances and masses. 

 

Figure 15.1  Extracting the data from a file 

The function in Figure 15.2 uses getData to extract the experimental data from 
the file and then plots it.  

 

Figure 15.2  Plotting the data 

def getData(fileName): 
    dataFile = open(fileName, 'r') 
    distances = [] 
    masses = [] 
    discardHeader = dataFile.readline() 
    for line in dataFile: 
        d, m = line.split(' ') 
        distances.append(float(d)) 
        masses.append(float(m)) 
    dataFile.close() 
    return (masses, distances) 

def plotData(inputFile): 
    masses, distances = getData(inputFile) 
    masses = pylab.array(masses) 
    distances = pylab.array(distances) 
    forces = masses*9.81 
    pylab.plot(forces, distances, 'bo', 
               label = 'Measured displacements') 
    pylab.title('Measured Displacement of Spring') 
    pylab.xlabel('|Force| (Newtons)') 
    pylab.ylabel('Distance (meters)') 
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When plotData('springData.txt') 
is run, it produces the plot on the 
left. 

This is not what Hooke’s law 
predicts.  Hooke’s law tells us that 
the distance should increase linearly 
with the mass, i.e., the points should 
lie on a straight line the slope of 
which is determined by the spring 
constant.  Of course, we know that 
when we take real measurements the 

experimental data are rarely a perfect match for the theory.  Measurement error 
is to be expected, so we should expect the points to lie around a line rather than 
on it. 

Still, it would be nice to see a line that represents our best guess of where the 
points would have been if we had no measurement error.  The usual way to do 
this is to fit a line to the data. 

15.1.1 Using Linear Regression to Find a Fit 

Whenever we fit any curve (including a line) to data we need some way to decide 
which curve is the best fit for the data.  This means that we need to define an 
objective function that provides a quantitative assessment of how well the 
curve fits the data.  Once we have such a function, finding the best fit can be 
formulated as finding a curve that minimizes (or maximizes) the value of that 
function, i.e., as an optimization problem (see Chapters 17 and 18). 

The most commonly used objective function is called least squares.  Let observed 
and predicted be vectors of equal length, where observed contains the measured 
points and predicted the corresponding data points on the proposed fit. 

The objective function is then defined as: 

(!"#$%&$' ! − !"#$%&'#$ ! )!
!"# !"#$%&$' !!

!!!

 

Squaring the difference between observed and predicted points makes large 
differences between observed and predicted points relatively more important 
than small differences. Squaring the difference also discards information about 
whether the difference is positive or negative. 

How might we go about finding the best least-squares fit?  One way to do this 
would be to use a successive approximation algorithm similar to the Newton-
Raphson algorithm in Chapter 3.  Alternatively, there is an analytic solution that 
is usually applicable.  But we don’t have to use either, because PyLab provides a 
built-in function, polyfit, that finds the best least-squares fit.  
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The call 

pylab.polyfit(observedXVals, observedYVals, n) 

finds the coefficients of a polynomial of degree n that provides a best least-
squares fit for the set of points defined by the arrays observedXVals and 
observedYVals.  For example, the call 

pylab.polyfit(observedXVals, observedYVals, 1) 

will find a line described by the polynomial y = ax + b, where a is the slope of the 
line and b the y-intercept.  In this case, the call returns an array with two 
floating point values.  Similarly, a parabola is described by the quadratic 
equation y = ax2 + bx + c.  Therefore, the call 

pylab.polyfit(observedXVals, observedYVals, 2) 

returns an array with three floating point values. 

The algorithm used by polyfit is called linear regression.  This may seem a bit 
confusing, since we can use it to fit curves other than lines.  The method is 
linear in the sense that the value of the dependent variable is a linear function of 
the independent variables and the coefficients found by the regression.  For 
example, when we fit a quadratic, we get a model of the form y = ax2 + bx + c.  In 
such a model, the value of the dependent variable y is linear in the independent 
variables x2, x1, and x0 and the coefficients a, b, and c. 93 

The function fitData in Figure 15.3 extends the plotData function in Figure 
15.2 by adding a line that represents the best fit for the data.  It uses polyfit to 
find the coefficients a and b, and then uses those coefficients to generate the 
predicted spring displacement for each force.  Notice that there is an asymmetry 
in the way forces and distance are treated.  The values in forces (which are 
derived from the mass suspended from the spring) are treated as independent, 
and used to produce the values in the dependent variable predictedDistances (a 
prediction of the displacements produced by suspending the mass). 

The function also computes the spring constant, k.  The slope of the line, a, is 
∆distance/∆force.  The spring constant, on the other hand, is ∆force/∆distance.  
Consequently k is the inverse of a. 

                                                

93 A function is linear if the variables appear only in the first degree, are multiplied by 
constants, and are combined by addition and subtraction.   
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Figure 15.3  Fitting a curve to data 

The call 
fitData('springData.txt') 
produces the plot on the right.  It 
is interesting to observe that very 
few points actually lie on the 
least-squares fit.  This is 
plausible because we are trying 
to minimize the sum of the 
squared errors, rather than 
maximize the number of points 
that lie on the line.  Still, it 
doesn’t look like a great fit.  Let’s 
try a cubic fit by adding to 
fitData 

#find cubic fit 
a,b,c,d = pylab.polyfit(forces, distances, 3) 
predictedDistances = a*(forces**3) + b*forces**2 + c*forces + d 
pylab.plot(forces, predictedDistances, 'b:', label = 'cubic fit') 

 

This produces the plot on 
the left.  The cubic fit looks 
like a much better model of 
the data, but is it?  
Probably not. 

In the technical literature, 
one frequently sees plots 
like this that include both 
raw data and a curve fit to 
the data.  All too often, 
however, the authors then 

def fitData(inputFile): 
    masses, distances = getData(inputFile) 
    distances = pylab.array(distances) 
    masses = pylab.array(masses) 
    forces = masses*9.81 
    pylab.plot(forces, distances, 'bo', 
               label = 'Measured displacements') 
    pylab.title('Measured Displacement of Spring') 
    pylab.xlabel('|Force| (Newtons)') 
    pylab.ylabel('Distance (meters)') 
    #find linear fit 
    a,b = pylab.polyfit(forces, distances, 1) 
    predictedDistances = a*pylab.array(forces) + b 
    k = 1.0/a 
    pylab.plot(forces, predictedDistances, 
               label = 'Displacements predicted by\nlinear fit, k = ' 
               + str(round(k, 5))) 
    pylab.legend(loc = 'best') 
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go on to assume that the fitted curve is the description of the real situation, and 
the raw data merely an indication of experimental error.  This can be dangerous. 

Recall that we started with a theory that there should be a linear relationship 
between the x and y values, not 
a cubic one.  Let’s see what 
happens if we use our cubic fit 
to predict where the point 
corresponding to 1.5kg would 
lie.  The result is shown in the 
plot on the left. 

Now the cubic fit doesn’t look 
so good.  In particular, it seems 
highly unlikely that by hanging 
a large weight on the spring we 
can cause the spring to rise 
above (the y-value is negative) 

the bar from which it is suspended.  What we have is an example of overfitting.  
Overfitting typically occurs when a model is excessively complex, e.g., it has too 
many parameters relative to the amount of data.  When this happens, the fit can 
capture noise in the data rather than meaningful relationships.  A model that 
has been overfit usually has poor predictive power, as seen in this example. 

Finger exercise:  Modify the code in Figure 15.3 so that it produces the above 
plot. 

Let’s go back to the linear fit.  For the moment, forget the line and study the raw 
data.  Does anything about it seem 
odd?  If we were to fit a line to the 
rightmost six points it would be 
nearly parallel to the x-axis.  This 
seems to contradict Hooke’s law—
until we recall that Hooke’s law 
holds only up to some elastic limit.  
Perhaps that limit is reached for this 
spring somewhere around 7N 
(approximately 0.7kg).  Let’s see what 
happens if we eliminate the last six 
points by replacing the second and 
third lines of fitData by 

distances = pylab.array(distances[:-6]) 
masses = pylab.array(masses[:-6]) 

Eliminating those points certainly makes a difference, e.g., k has dropped 
dramatically and the linear and cubic fits are almost indistinguishable.  But how 
do we know which of the two linear fits is a better representation of how our 
spring performs up to its elastic limit?  We could use some statistical test to 
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determine which line is a better fit for the data, but that would be beside the 
point. This is not a question that can be answered by statistics.  After all we 
could throw out all the data except any two points and know that polyfit would 
find a line that would be a perfect fit for those two points.  One should never 
throw out experimental results merely to get a better fit.94  Here we justified 
throwing out the rightmost points by appealing to the theory underlying Hooke’s 
law, i.e., that springs have an elastic limit.  That justification could not have 
been appropriately used to eliminate points elsewhere in the data. 

15.2 The Behavior of Projectiles 

Growing bored with merely stretching springs, we decided to use one of our 
springs to build a device capable of launching a projectile.95  We used the device 
four times to fire a projectile at a target 30 yards (1080 inches) from the launching 
point.  Each time, we measured the height of the projectile at various distances 
from the launch point.  The launching point and the target were at the same 
height, which we treated as 0.0 in our measurements.  The data was stored in a 
file with the contents 

Distance trial1 trial2 trial3 trial4 
1080   0.0  0.0  0.0  0.0 
1044  2.25 3.25 4.5  6.5 
1008  5.25 6.5  6.5  8.75 
972  7.5  7.75 8.25 9.25 
936  8.75 9.25 9.5  10.5 
900  12.0 12.25 12.5 14.75 
864  13.75 16.0 16.0 16.5 
828  14.75 15.25 15.5 17.5 
792  15.5 16.0 16.6 16.75 
756  17.0 17.0 17.5 19.25 
720  17.5 18.5 18.5 19.0 
540  19.5 20.0 20.25 20.5 
360  18.5 18.5 19.0 19.0 
180  13.0 13.0 13.0 13.0 
0   0.0  0.0  0.0  0.0 

The first column contains distances of the projectile from the target.  The other 
columns contain the height of the projectile at that distance for each of the four 
trials.  All of the measurements are in inches. 

The code in Figure 15.4 was used to plot the mean altitude of the projectile 
against the distance from the point of launch.  It also plots the best linear and 
quadratic fits to the points. (In case you have forgotten the meaning of 
multiplying a list by an integer, the expression [0]*len(distances) produces a 
list of len(distances) 0’s.) 

                                                

94 Which isn’t to say that people never do. 

95 A projectile is an object that is propelled through space by the exertion of a force that 
stops after the projectile is launched.  In the interest of public safety, we will not describe 
the launching device used in this experiment.  Suffice it to say that it was awesome. 
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Figure 15.4 Plotting the Trajectory of a Projectile 

A quick look at the plot96 on the right 
makes it quite clear that a quadratic fit 
is far better than a linear one. (The 
reason that the quadratic fit is not 
smooth is that we are only plotting the 
predicted heights that correspond to the 
measured heights.)  But just how bad a 
fit is the line and how good is the 
quadratic fit? 

                                                

96 Don’t be misled by this plot into thinking that the projectile had a steep angle of 
ascent.  It only looks that way because of the difference in scale between the vertical and 
horizontal axes on the plot. 

def getTrajectoryData(fileName): 
    dataFile = open(fileName, 'r') 
    distances = [] 
    heights1, heights2, heights3, heights4 = [],[],[],[] 
    discardHeader = dataFile.readline() 
    for line in dataFile: 
        d, h1, h2, h3, h4 = line.split() 
        distances.append(float(d)) 
        heights1.append(float(h1)) 
        heights2.append(float(h2)) 
        heights3.append(float(h3)) 
        heights4.append(float(h4)) 
    dataFile.close() 
    return (distances, [heights1, heights2, heights3, heights4]) 
 
def processTrajectories(fileName): 
    distances, heights = getTrajectoryData(fileName) 
    numTrials = len(heights) 
    distances = pylab.array(distances) 
    #Get array containing mean height at each distance 
    totHeights = pylab.array([0]*len(distances)) 
    for h in heights: 
        totHeights = totHeights + pylab.array(h) 
    meanHeights = totHeights/len(heights) 
    pylab.title('Trajectory of Projectile (Mean of '\ 
                + str(numTrials) + ' Trials)') 
    pylab.xlabel('Inches from Launch Point') 
    pylab.ylabel('Inches Above Launch Point') 
    pylab.plot(distances, meanHeights, 'bo') 
    a,b = pylab.polyfit(distances, meanHeights, 1) 
    altitudes = a*distances + b 
    pylab.plot(distances, altitudes, 'b', label = 'Linear Fit') 
    a,b,c = pylab.polyfit(distances, meanHeights, 2) 
    altitudes = a*(distances**2) +  b*distances + c 
    pylab.plot(distances, altitudes, 'b:', label = 'Quadratic Fit') 
    pylab.legend() 
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15.2.1 Coefficient of Determination 

When we fit a curve to a set of data, we are finding a function that relates an 
independent variable (inches horizontally from the launch point in this example) 
to a predicted value of a dependent variable (inches above the launch point in 
this example).  Asking about the goodness of a fit is equivalent to asking about 
the accuracy of these predictions.  Recall that the fits were found by minimizing 
the mean square error.  This suggests that one could evaluate the goodness of a 
fit by looking at the mean square error.  The problem with that approach is that 
while there is a lower bound for the mean square error (zero), there is no upper 
bound.  This means that while the mean square error is useful for comparing 
the relative goodness of two fits to the same data, it is not particularly useful for 
getting a sense of the absolute goodness of a fit. 

We can calculate the absolute goodness of a fit using the coefficient of 
determination, often written as R2.97  Let !! be the !!!  observed value, !! be the 
corresponding value predicted by model, and ! be the mean of the observed 
values. 

!! = 1 −
(!! − !!)!!

(!! − !)!!
 

By comparing the estimation errors (the numerator) with the variability of the 
original values (the denominator), R2 is intended to capture the proportion of 
variability in a data set that is accounted for by the statistical model provided by 
the fit.  When the model being evaluated is produced by a linear regression, the 
value of R2 always lies between 0 and 1. If R2 = 1, the model explains all of the 

variability in the data.  If R2 = 0, there is no relationship between the values 
predicted by the model and the actual data. 

The code in Figure 15.5 provides a straightforward implementation of this 
statistical measure.  Its compactness stems from the expressiveness of the 
operations on arrays.  The expression (predicted - measured)**2 subtracts the 
elements of one array from the elements of another, and then squares each 
element in the result.  The expression (measured - meanOfMeasured)**2 
subtracts the scalar value meanOfMeasured from each element of the array 
measured, and then squares each element of the results. 

 

Figure 15.5  Computing R2 

                                                

97 There are several different definitions of the coefficient of determination.  The definition 
supplied here is used to evaluate the quality of a fit produced by a linear regression. 

def rSquared(measured, predicted): 
    """Assumes measured a one-dimensional array of measured values 
               predicted a one-dimensional array of predicted values 
       Returns coefficient of determination""" 
    estimateError = ((predicted - measured)**2).sum() 
    meanOfMeasured = measured.sum()/float(len(measured)) 
    variability = ((measured - meanOfMeasured)**2).sum() 
    return 1 - estimateError/variability 
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When the lines of code 

print 'RSquare of linear fit =', rSquared(meanHeights, altitudes) 

and 

print 'RSquare of quadratic fit =', rSquared(meanHeights, altitudes) 

are inserted after the appropriate calls to pylab.plot in processTrajectories, 
they print 

RSquared of linear fit = 0.0177433205441 
RSquared of quadratic fit = 0.985765369287 

Roughly speaking, this tells us that less than 2% of the variation in the 
measured data can be explained by the linear model, but more than 98% of the 
variation can be explained by the quadratic model. 

15.2.2 Using a Computational Model 

Now that we have what seems to be a good model of our data, we can use this 
model to help answer questions about our original data.  One interesting 
question is the horizontal speed at which the projectile is traveling when it hits 
the target.  We might use the following train of thought to design a computation 
that answers this question: 

1. We know that the trajectory of the projectile is given by a formula of the 
form y  =  ax2  +  bx  +  c, i.e., it is a parabola.  Since every parabola is 
symmetrical around its vertex, we know that its peak occurs halfway 
between the launch point and the target; call this value xMid.  The peak 
height, !"#$%, is therefore given by !"#$% = ! ∗ !"#$! + ! ∗ !"#$ + !. 

2. If we ignore air resistance (remember that no model is perfect), we can 
compute the amount of time it takes for the projectile to fall from yPeak to 
the height of the target, because that is purely a function of gravity.  It is 
given by the equation ! =    (2 ∗ !"#$%)/!.98 This is also the amount of time 
it takes for the projectile to travel the horizontal distance from xMid to the 
target, because once it reaches the target it stops moving. 

3. Given the time to go from xMid to the target, we can easily compute the 
average horizontal speed of the projectile over that interval.  If we assume 
that the projectile was neither accelerating nor decelerating in the 
horizontal direction during that interval, we can use the average 
horizontal speed as an estimate of the horizontal speed when the 
projectile hits the target.99 

Figure 15.6 implements this technique for estimating the horizontal velocity of 
the projectile.  

                                                

98 This equation can be derived from first principles, but it is easier to just look it up.  We 
found it at http://en.wikipedia.org/wiki/Equations_for_a_falling_body. 

99 The vertical component of the velocity is also easily estimated, since it is merely the 
product of the g and t in Figure 15.6. 
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Figure 15.6  Computing the horizontal speed of a projectile 

When the line getHorizontalSpeed(a, b, c, distances[-1], distances[0]) is 
inserted at the end of processTrajectories, it prints 

Horizontal speed = 136 feet/sec 

The sequence of steps we have just worked through follows a common pattern.  

1. We started by performing an experiment to get some data about the 
behavior of a physical system. 

2. We then used computation to find and evaluate the quality of a model of 
the behavior of the system. 

3. Finally, we used some theory and analysis to design a simple 
computation to derive an interesting consequence of the model. 

15.3 Fitting Exponentially Distributed Data 

Polyfit uses linear regression to find a polynomial of a given degree that is the 
best least-squares fit for some data.  It works well if the data can be directly 
approximated by a polynomial. But this is not always possible. Consider, for 
example, the simple exponential growth function y = 2x.  The code in Figure 15.7 
fits a 4th-degree polynomial to the first ten points and plots the results.  It uses 
the function call pylab.arange(10), which returns an array containing the 
integers 0-9. 

 

Figure 15.7  Fitting a polynomial curve to an exponential distribution 

def getHorizontalSpeed(a, b, c, minX, maxX): 
    """Assumes minX and maxX are distances in inches 
       Returns horizontal speed in feet per second""" 
    inchesPerFoot = 12.0 
    xMid = (maxX - minX)/2.0 
    yPeak = a*xMid**2 + b*xMid + c 
    g = 32.16*inchesPerFoot #accel. of gravity in inches/sec/sec 
    t = (2*yPeak/g)**0.5 
    print 'Horizontal speed =', int(xMid/(t*inchesPerFoot)), 'feet/sec' 

vals = [] 
for i in range(10): 
    vals.append(2**i) 
pylab.plot(vals,'bo', label = 'Actual points') 
xVals = pylab.arange(10) 
a,b,c,d,e = pylab.polyfit(xVals, vals, 4) 
yVals = a*(xVals**4) + b*(xVals**3) + c*(xVals**2)+ d*xVals + e 
pylab.plot(yVals, 'bx', label = 'Predicted points', markersize = 20) 
pylab.title('Fitting y = 2**x') 
pylab.legend() 
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The code in Figure 15.7 produces the plot 

 

The fit is clearly a good one, for these data points.  However, let’s look at what 
the model predicts for 220.  When we add the code  

pred2to20 = a*(20**4) + b*(20**3) + c*(20**2)+ d*20 + e 
print 'Model predicts that 2**20 is roughly', round(pred2to20) 
print 'Actual value of 2**20 is', 2**20 

to the end of Figure 15.7, it prints, 

Model predicts that 2**20 is roughly 29796.0 
Actual value of 2**20 is 1048576 

Oh dear, despite fitting the data, the model produced by polyfit is apparently 
not a good one.  Is it because four was not the right degree?  No.  It is because 
no polynomial is a good fit for an exponential distribution. Does this mean that 
we cannot use polyfit to build a model of an exponential distribution?  
Fortunately, it does not, because we can use polyfit to find a curve that fits the 
original independent values and the log of the dependent values. 

Consider the sequence [1, 2, 4, 8, 16, 32, 64, 128, 256, 512].  If we take the log base 2 
of each value. we get the sequence [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], i.e., a sequence that 
grows linearly.  In fact, if a function y = f(x), exhibits exponential growth, the log 
(to any base) of f(x) grows linearly.  This can be visualized by plotting an 
exponential function with a 
logarithmic y-axis.  The code 

xVals, yVals = [], [] 
for i in range(10): 
    xVals.append(i) 
    yVals.append(2**i) 
pylab.plot(xVals, yVals) 
pylab.semilogy() 

produces the plot on the right.  

The fact that taking the log of an 
exponential function produces a linear 
function can be used to construct a 
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model for an exponentially distributed set of data points, as illustrated by the 
code in Figure 15.8.  We use polyfit to find a curve that fits the x values and 
log of the y values.  Notice that we use yet another Python standard library 
module, math, which supplies a log function. 

 

Figure 15.8  Using polyfit to fit an exponential distribution 

When run, this code produces the 
plot on the right, in which the 
actual values and the predicted 
values coincide.  Moreover, when 
the model is tested on a value (20) 
that was not used to produce the 
fit, it prints 

f(20) = 50331648.0 
Predicted f(20) = 50331648.0 

import math 
 
#define an arbitrary exponential function 
def f(x): 
    return 3*(2**(1.2*x)) 
 
def createExpData(f, xVals): 
    """Asssumes f is an exponential function of one argument 
                xVals is an array of suitable arguments for f 
       Returns array containing results of applying f to the 
               elements of xVals""" 
    yVals = [] 
    for i in range(len(xVals)): 
        yVals.append(f(xVals[i])) 
    return pylab.array(xVals), pylab.array(yVals) 
 
def fitExpData(xVals, yVals): 
    """Assumes xVals and yVals arrays of numbers such that 
         yVals[i] == f(xVals[i]) 
       Returns a, b, base such that log(f(x), base) == ax + b""" 
    logVals = [] 
    for y in yVals: 
        logVals.append(math.log(y, 2.0)) #get log base 2 
    a,b = pylab.polyfit(xVals, logVals, 1) 
    return a, b, 2.0 
 
xVals, yVals = createExpData(f, range(10)) 
pylab.plot(xVals, yVals, 'ro', label = 'Actual values') 
a, b, base = fitExpData(xVals, yVals) 
predictedYVals = [] 
for x in xVals: 
    predictedYVals.append(base**(a*x + b)) 
pylab.plot(xVals, predictedYVals, label = 'Predicted values') 
pylab.title('Fitting an Exponential Function') 
pylab.legend() 
#Look at a value for x not in original data 
print 'f(20) =', f(20) 
print 'Predicted f(20) =', base**(a*20 + b) 
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This method of using polyfit to find a model for data works when the 
relationship can be described by an equation of the form y = baseax+b.  If used on 
data that cannot be described this way, it will yield erroneous results.  To see 
this, let’s try replacing the body of the function f by, 

return 3*(2**(1.2*x)) + x 

It now prints, 

f(20) = 50331668.0 
Predicted f(20) = 44846543.4909 

15.4 When Theory Is Missing 

In this chapter we have emphasized the interplay between theoretical, 
experimental, and computational science.  Sometimes, however, we find 
ourselves with lots of interesting data, but little or no theory.  In such cases, we 
often resort to using computational techniques to develop a theory by building a 
model that seems to fit the data. 

In an ideal world, we would run a controlled experiment (e.g., hang weights from 
a spring), study the results, and retrospectively formulate a model consistent 
with those results.  We would then run a different prospective experiment 
(e.g., hang different weights from the same spring) and compare the results of 
that experiment to what the model predicted. 

Unfortunately, in many cases it is impossible to run even one controlled 
experiment.  Imagine, for example, building a model designed to shed light on 
how interest rates affect stock prices.  Very few of us are in a position to set 
interest rates and see what happens.  On the other hand there is no shortage of 
relevant historical data. 

In such situations, one can simulate a set of experiments by dividing the 
existing data into a training set and a holdout set.  Without looking at the 
holdout set, we build a model that seems to explain the training set.  For 
example, we find a curve that has a reasonable R2 for the training set.  We then 
test that model on the holdout set.  Most of the time the model will fit the 
training set more closely than it fits the holdout set.  But if the model is a good 
one, it should fit the holdout set reasonably well.  If it doesn’t, the model should 
probably be discarded.  

How does one choose the training set?  We want it to be representative of the 
data set as a whole.  One way to do this is to randomly choose the samples for 
the training set.  If the data set is sufficiently large this often works pretty well. 

A related but slightly different way to check a model is to train on many 
randomly selected subsets of the original data, and see how similar the models 
are to one another.  If they are quite similar, than we can feel pretty good.  This 
approach is known as cross validation.



 

    

16  LIES, DAMNED LIES, AND STATISTICS 
 

“If you can't prove what you want to prove, demonstrate something else 
and pretend they are the same thing. In the daze that follows the collision 
of statistics with the human mind, hardly anyone will notice the 
difference.”100 

Statistical thinking is a relatively new invention.  For most of recorded history 
things were assessed qualitatively rather than quantitatively.  People must have 
had an intuitive sense of some statistical facts (e.g., that women are usually 
shorter than men), but they had no mathematical tools that would allow them to 
proceed from anecdotal evidence to statistical conclusions.  This started to 
change in the middle of the 17th century, most notably with the publication of 
John Graunt’s Natural and Political Observations Made Upon the Bills of Mortality.  
This pioneering work used statistical analysis to estimate the population of 
London from death rolls, and attempted to provide a model that could be used to 
predict the spread of plague. 

Since that time people have used statistics as much to mislead as to inform.  
Some have willfully used statistics to mislead; others have merely been 
incompetent.  In this chapter we discuss a few ways in which people can be 
fooled into drawing inappropriate inferences from statistical data.  We trust that 
you will use this information only for good, i.e., to become a better consumer 
and a more honest purveyor of statistical information. 

16.1 Garbage In Garbage Out (GIGO) 

“On two occasions I have been asked [by members of Parliament], ‘Pray, 
Mr. Babbage, if you put into the machine wrong figures, will the right 
answers come out?’ I am not able rightly to apprehend the kind of 
confusion of ideas that could provoke such a question.” – Charles 
Babbage. 

The message here is a simple one.  If the input data is seriously flawed, no 
amount of statistical massaging will produce a meaningful result. 

The 1840 United States census showed that insanity among free blacks and 
mulattoes was roughly ten times more common than among enslaved blacks 
and mulattoes. The conclusion was obvious.  As U.S. Senator (and former Vice 
President and future Secretary of State) John C. Calhoun put it, “The data on 
insanity revealed in this census is unimpeachable.  From it our nation must 
conclude that the abolition of slavery would be to the African a curse.”  Never 
mind that it was soon clear that the census was riddled with errors.  As Calhoun 
reportedly explained to John Quincy Adams, “there were so many errors they 

                                                

100 Darrell Huff, How to Lie with Statistics, 1954. 
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balanced one another, and led to the same conclusion as if they were all 
correct.”  

Calhoun’s (perhaps willfully) spurious response to Adams was based on a 
classical error, the assumption of independence.  Were he more sophisticated 
mathematically, he might have said something like, “I believe that the 
measurement errors are unbiased and independent of each of other, and 
therefore evenly distributed on either side of the mean.”  In fact, later analysis 
showed that the errors were so heavily biased that no statistically valid 
conclusions could be drawn.101 

16.2 Pictures Can Be Deceiving 

There can be no doubt about the utility of graphics for quickly conveying 
information.  However, when used carelessly (or maliciously) a plot can be highly 
misleading.   Consider, for example, the following charts depicting housing 
prices in the U.S. Midwestern states. 

 

Looking at the chart on the left, it seems as if housing prices were pretty stable 
from 2006-2009.  But wait a minute, wasn’t there a collapse of U.S. residential 
real estate followed by a global financial crisis in late 2008?  There was indeed, 
as shown in the chart on the right. 

These two charts show exactly the same data, but convey very different 
impressions. 

The first chart was designed to give the impression that housing prices had been 
stable.  On the y-axis, the designer used a logarithmic scale ranging from the 
absurdly low average price for a house of $10,000 to the improbably high average 
price of $1 million.  This minimized the amount of space devoted to the area 
where prices are changing, giving the impression that the changes were 
relatively small.  The chart above and on the right was designed to give the 
impression that housing prices moved erratically, and then crashed.  The 

                                                

101 We should note that Calhoun was in office over 150 years ago.  It goes without saying 
that no contemporary politician would find ways to abuse statistics to support a position. 
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designer used a linear scale and a narrow range of prices, so the sizes of the 
changes were exaggerated. 

The code in Figure 16.1 produces the two plots we looked at above and a plot 
intended to give an accurate impression of the movement of housing prices. 

It uses two plotting facilities that we have not yet seen.  The call 
pylab.bar(quarters, prices, width) produces a bar chart with width wide 
bars.  The left edges of the bars are the values of the elements of quarters and 
the heights of the bars are the values of the corresponding elements of prices.  
The call pylab.xticks(quarters+width/2.0, labels) describes the labels 
associated with the bars.  The first argument specifies where each label is to be 
placed and the second argument the text of the labels.  The function yticks 
behaves analogously. 

  

Figure 16.1 Plotting housing prices 

 

def plotHousing(impression): 
    """Assumes impression a str.  Must be one of 'flat', 
         'volatile,' and 'fair' 
       Produce bar chart of housing prices over time""" 
    f = open('midWestHousingPrices.txt', 'r') 
    #Each line of file contains year quarter price 
    #for Midwest region of U.S. 
    labels, prices = ([], []) 
    for line in f: 
        year, quarter, price = line.split() 
        label = year[2:4] + '\n Q' + quarter[1] 
        labels.append(label) 
        prices.append(float(price)/1000) 
    quarters = pylab.arange(len(labels)) #x coords of bars 
    width = 0.8 #Width of bars 
    if impression == 'flat': 
        pylab.semilogy() 
    pylab.bar(quarters, prices, width) 
    pylab.xticks(quarters+width/2.0, labels) 
    pylab.title('Housing Prices in U.S. Midwest') 
    pylab.xlabel('Quarter') 
    pylab.ylabel('Average Price ($1,000\'s)') 
    if impression == 'flat': 
        pylab.ylim(10, 10**3) 
    elif impression == 'volatile': 
        pylab.ylim(180, 220) 
    elif impression == 'fair': 
        pylab.ylim(150, 250) 
    else: 
        raise ValueError 
 
plotHousing('flat') 
pylab.figure() 
plotHousing('volatile') 
pylab.figure() 
plotHousing('fair') 
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The call plotHousing(‘fair’) produces the plot 

  

16.3 Cum Hoc Ergo Propter Hoc102 

It has been shown that college students who regularly attend class have higher 
average grades than students who attend class only sporadically.  Those of us 
who teach these classes would like to believe that this is because the students 
learn something from the lectures.  Of course, it is at least equally likely that 
those students get better grades because students who are more likely to attend 
classes are also more likely to study hard. 

When two things are correlated,103 there is a temptation to assume that one has 
caused the other.  Consider the incidence of flu in North America.  The number 
of cases rises and falls in a predictable pattern.  There are almost no cases in 
the summer, the number of cases starts to rise in the early fall, and then starts 
dropping as summer approaches.  Now consider the number of children 
attending school.  There are very few children in school in the summer, 
enrollment starts to rise in the early fall, and then drops as summer 
approaches. 

The correlation between the opening of schools and the rise in the incidence of 
flu is inarguable.  This has led many to conclude that that going to school is an 
important causative factor in the spread of flu.  That might be true, but one 
cannot conclude it based simply on the correlation.  Correlation does not imply 
causation!  After all, the correlation could be used just as easily to justify the 
belief that flu outbreaks cause schools to be in session.  Or perhaps there is no 
causal relationship in either direction, and there is some lurking variable that 

                                                

102Statisticians, like attorneys and physicians, sometimes use Latin for no obvious reason 
other than to seem erudite.  This phrase means, “with this, therefore because of this.” 

103 Correlation is a measure of the degree to which two variables move in the same 
direction.  If when x goes up y goes up, the variables are positively correlated.  If they 
move in opposite directions they are negatively correlated.  If there is no relationship, the 
correlation is 0.  People’s heights are positively correlated with the heights of their 
parents.  The correlation between hours spent playing video games and grade point 
average is negative. 
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we have not considered that causes each.  In fact, as it happens, the flu virus 
survives considerably longer in cool dry air than it does in warm wet air, and in 
North America both the flu season and school sessions are correlated with cooler 
and dryer weather. 

Given enough retrospective 
data, it is always possible to 
find two variables that are 
correlated, as illustrated by 
the chart on the right.104  
When such correlations are 
found, the first thing to do is 
to ask whether there is a 
plausible theory explaining the 
correlation.  

Falling prey to the cum hoc 
ergo propter hoc fallacy can be 
quite dangerous. At the start of 2002, roughly six million American women were 
being prescribed hormone replacement therapy (HRT) in the belief that it would 
substantially lower their risk of cardiovascular disease.  That belief was 
supported by several highly reputable published studies that demonstrated a 
reduced incidence of cardiovascular death among women using HRT.  Many 
women, and their physicians, were taken by surprise when the Journal of the 
American Medical Society published an article asserting that HRT in fact 
increased the risk of cardiovascular disease.105  How could this have happened? 

Re-analysis of some of the earlier studies showed that women undertaking HRT 
were likely to be from groups with better than average diet and exercise regimes.  
Perhaps the women undertaking HRT were on average more health conscious 
than the other women in the study, so that taking HRT and improved cardiac 
health were coincident effects of a common cause. 

16.4 Statistical Measures Don’t Tell the Whole Story 

There are an enormous number of different statistics that can be extracted from 
a data set.  By carefully choosing among these, it is possible to convey a variety 
of different impressions about the same data.  A good antidote is to look at the 
data set itself. 

In 1973, the statistician F.J. Anscombe published a paper containing the table 
below.  It contains the <x, y> coordinates of the points in each of four data sets. 

                                                

104 Stephen R. Johnson, “The Trouble with QSAR (or How I Learned to Stop Worrying and 
Embrace Fallacy),” J. Chem. Inf. Model., 2008. 

105 Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD. Postmenopausal hormone 
replacement therapy: scientific review. JAMA. 2002;288:872-881. 
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x  y  x  y  x  y  x  y 

10.0  8.04  10.0  9.14  10.0  7.46  8.0  6.58 

8.0  6.95  8.0  8.14  8.0  6.77  8.0  5.76 

13.0  7.58  13.0  8.74  13.0  12.74  8.0  7.71 

9.0  8.81  9.0  8.77  9.0  7.11  8.0  8.84 

11.0  8.33  11.0  9.26  11.0  7.81  8.0  8.47 

14.0  9.96  14.0  8.10  14.0  8.84  8.0  7.04 

6.0  7.24  6.0  6.13  6.0  6.08  8.0  5.25 

4.0  4.26  4.0  3.10  4.0  5.39  19.0  12.50 

12.0  10.84  12.0  9.13  12.0  8.15  8.0  5.56 

7.0  4.82  7.0  7.26  7.0  6.42  8.0  7.91 

5.0  5.68  5.0  4.74  5.0  5.73  8.0  6.89 

These four data sets are statistically similar.  They have the same mean value 
for x (9.0), the same mean value for y (7.5), the same variance for x (10.0), the same 
variance for y (3.75), and the same correlation between x and y (0.816).  
Furthermore, if we use linear regression to fit a line to each, we get the same 
result for each, y = 0.5x + 3. 

Does this mean that there is no obvious way to distinguish these data sets from 
each other?  No, one simply needs to plot the data to see that the data sets are 
not at all alike. 

 

The moral is simple: if possible, always take a look at some representation of the 
raw data. 
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16.5 Sampling Bias 

During World War II, whenever an Allied plane would return from a mission over 
Europe the plane would be inspected to see where the flak had impacted.  Based 
upon this data, mechanics reinforced those areas of the planes that seemed 
most likely to be hit by flak. 

What’s wrong with this?  They did not inspect the planes that failed to return 
from missions because they had been downed by flak.  Perhaps these 
unexamined planes failed to return precisely because they were hit in the places 
where the flak would do the most damage.  This particular error is called non-
response bias.  It is quite common in surveys.  At many universities, for 
examples, students are asked during one of the lectures late in the term to fill 
out a form rating the quality of the professor’s lectures.  Though the results of 
such surveys are often unflattering, they could be worse.  Those students who 
think that the lectures are so bad that they aren’t worth attending are not 
included in the survey.106 

As we said earlier, all statistical techniques are based upon the assumption that 
by sampling a subset of a population we can infer things about the population 
as a whole.  If random sampling is used, we can make precise mathematical 
statements about the expected relationship of the sample to the entire 
population.  Unfortunately, many studies, particularly in the social sciences, are 
based on what has been called convenience (or accidental) sampling.  This 
involves choosing samples based on how easy they are to procure.  Why do so 
many psychological studies use populations of undergraduates?  Because they 
are easy to find on college campuses.  A convenience sample might be 
representative, but there is no way of knowing whether it actually is 
representative. 

The Family Research Institute’s Web site contains a table with the following 
information: 

	  
Table 1: How Long Do Homosexuals Live? 107 

                                                

106 The move to online surveys, which allows students who do not attend class to 
participate in the survey, does not augur well for the egos of professors. 

107 http://www.familyresearchinst.org/2012/01/how-long-do-homosexuals-live/ 
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Pretty scary stuff if your sexual preference is other than heterosexual—until one 
looks at how the data was compiled.  According to the Web site it was based on 
“6,737 obituaries from 18 U.S. homosexual journals, compared to obituaries from 
2 mainstream newspapers.” 

This method produces a sample that could be non-representative of either the 
homosexual or non-homosexual population (or both) for a large number of 
reasons.  For example, it seems to infer that someone is gay or lesbian if and 
only if their obituary appears in a “homosexual journal,” and that someone is 
not gay if their obituary appears in a “mainstream newspaper.”  It also seems to 
assume that the deaths for which obituaries appear are representative of all 
deaths.  How does one go about evaluating such a sample?  One technique is to 
compare data compiled from the sample against data compiled elsewhere.  For 
example, one could compare the ratio of gay men to straight men in the obituary 
study to other studies reporting the relative sizes of those two populations. 

16.6 Context Matters 

It is easy to read more into the data than it actually implies, especially when 
viewing the data out of context.  On April 29, 2009, CNN reported that, “Mexican 
health officials suspect that the swine flu outbreak has caused more than 159 
deaths and roughly 2,500 illnesses.”  Pretty scary stuff—until one compares it to 
the 36,000 deaths attributable annually to the seasonal flu in the U.S. 

An often quoted, and accurate, statistic is that most auto accidents happen 
within 10 miles of home. So what—most driving is done within 10 miles of home.  
And besides, what does “home” mean in this context?  The statistic is computed 
using the address at which the automobile is registered as “home.”   Might one 
reduce the probability of getting into an accident by merely registering one’s car 
in some distant place? 

Opponents of government initiatives to reduce the prevalence of guns in the U.S. 
are fond of quoting the statistic that roughly 99.8% of the firearms in the U.S. 
will not be used to commit a violent crime in any given year.  Does this mean 
that there is not much gun violence in the U.S?  The National Rifle Association 
reports that that there are roughly 300 million privately owned firearms in the 
U.S.—0.2% of 300 million is 600,000. 

16.7 Beware of Extrapolation 

It is all too easy to extrapolate from data.  We did that in Chapter 15 when we 
extended fits derived from linear regression beyond the data upon which the 
regression was done. Extrapolation should be done only when one has a sound 
theoretical justification for doing so.  One should be especially wary of straight-
line extrapolations. 



 

230  Chapter 16. Lies, Damned Lies, and Statistics  

Consider the plot on the left.  It 
shows the growth of Internet usage 
in the United States from 1994 to 
2000.  As you can see, a straight line 
provides a pretty good fit. 

The plot on the right uses this fit to project 
the percentage of the U.S. population 
using the Internet in following years.  The 
projection is a bit hard to believe.  It seems 
unlikely that by 2009 everybody in the 
U.S. was using the Internet, and even less 
likely that by 2012 more than 120% of the U.S. population was using the 
Internet.  

16.8 The Texas Sharpshooter Fallacy 

Imagine that you are driving down a country road in Texas.  You see a barn that 
has six targets painted on it, and a bullet hole at the very center of each target.  
“Yes sir,” says the owner of the barn, “I never miss.”  “That’s right,” says his 
spouse, “there ain’t a man in the state of Texas who’s more accurate with a paint 
brush.”  Got it?  He fired the six shots, and then painted the targets around 
them. 

	  
Professor Puzzles Over Students’ Chalk Throwing Ability 

A classic of the genre appeared in 2001.108  It reported that a research team at 
the Royal Cornhill hospital in Aberdeen had discovered that “anorexic women 
are most likely to have been born in the spring or early summer… Between 

                                                

108 Eagles, John, et al., “Season of birth in females with anorexia nervosa in Northeast 
Scotland,” International Journal of Eating Disorders, 30, 2, September 2001. 



 

 Chapter 16.  Lies, Damned Lies, and Statistics 231 

March and June there were 13% more anorexics born than average, and 30% 
more in June itself.” 

Let’s look at that worrisome statistic for those women born in June.  The team 
studied 446 women who had been diagnosed as anorexic, so the mean number of 
births per month was slightly more than 37.  This suggests that the number 
born in June was 48 (37*1.3).  Let’s write a short program to see if we can reject 

the null hypothesis that this occurred purely by chance. 

 
Figure 16.2  Probability of 48 anorexics being born in June 

When we ran juneProb(10000) it printed 

Probability of at least 48 births in June = 0.044 

It looks as if the probability of at least 48 babies being born in June purely by 
chance is around 4.5%.  So perhaps those researchers in Aberdeen are on to 
something.  Well, they might have been on to something had they started with 
the hypothesis that more babies who will become anorexic are born in June, and 
then run a study designed to check that hypothesis. 

But that is not what they did.  Instead, they looked at the data and then, 
imitating the Texas sharpshooter, drew a circle around June.  The right 
statistical question to have asked is what is the probability that there was at 
least one month (out of 12) in which at least 48 babies were born.  The program 
in Figure 16.3 answers that question.  

 
Figure 16.3  Probability of 48 anorexics being born in some month 

def juneProb(numTrials): 
    june48 = 0 
    for trial in range(numTrials): 
      june = 0 
      for i in range(446): 
          if random.randint(1,12) == 6: 
              june += 1 
      if june >= 48: 
          june48 += 1 
    jProb = june48/float(numTrials) 
    print 'Probability of at least 48 births in June =', jProb 

def anyProb(numTrials): 
    anyMonth48 = 0 
    for trial in range(numTrials): 
      months = [0]*12 
      for i in range(446): 
          months[random.randint(0,11)] += 1 
      if max(months) >= 48: 
          anyMonth48 += 1 
    aProb = anyMonth48/float(numTrials) 
    print 'Probability of at least 48 births in some month =', aProb 
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The call anyProb(10000) printed  

Probability of at least 48 births in some month = 0.446  

It appears that it is not so unlikely after all that the results reported in the study 
reflect a chance occurrence rather a real association between birth month and 
anorexia.  One doesn’t have to come from Texas to fall victim to the Texas 
Sharpshooter Fallacy. 

What we see here is that the statistical significance of a result depends upon the 
way the experiment was conducted.  If the Aberdeen group had started out with 
the hypothesis that more anorexics are born in June, their result would be 
worth considering.  But if they started off with the hypothesis that there exists a 
month in which an unusually large proportion of anorexics are born, their result 
is not very compelling. 

What next steps might the Aberdeen group have taken to test their newfound 
hypothesis?  One possibility is to conduct a prospective study. In a prospective 
study, one starts with a set of hypotheses and then gathers data with the 
potential to either refute or confirm the hypothesis.  If the group conducted a 
new study and got similar results, one might be convinced. 

Prospective studies can be expensive and time consuming to perform.  In a 
retrospective study, one has to examine existing data in ways that reduce the 
likelihood of getting misleading results.  One common technique, as discussed in 
Chapter 15, is to split the data into a training set and a holdout set.  For 
example, they could have chosen 446/2 women at random from their data (the 
training set), and tallied the number of births for each month.  They could have 
then compared that to the number of births each month for the remaining 
women (the holdout set). 

16.9 Percentages Can Confuse 

An investment advisor called a client to report that the value of his stock 
portfolio had risen 16% over the last month.  He admitted that there had been 
some ups and downs over the year, but was pleased to report that the average 
monthly change was +0.5%.  Image the client’s surprise when he got his 
statement for the year, and observed that the value of his portfolio had declined 
over the year. 

He called his advisor, and accused him of being a liar.  “It looks to me,” he said, 
“like my portfolio declined by 0.67%, and you told me that it went up by 0.5% a 
month.”  “I did not,” the financial advisor replied, “I told you that the average 
monthly change was +0.5%.”  When he examined his monthly statements, the 
investor realized that he had not been lied to, just misled.  His portfolio went 
down by 15% in each month during the first half of the year, and then went up 
by 16% in each month during the second half of the year. 

When thinking about percentages, we always need to pay attention to the basis 
on which the percentage is computed.  In this case, the 15% declines were on a 
higher average basis than the 16% increases. 
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Percentages can be particularly misleading when applied to a small basis.  You 
might read about a drug that has a side effect of increasing the incidence of 
some illness by 200%.  But if the base incidence of the disease is very low, say 
one in 1,000,000, you might well decide that the risk of taking the drug was more 
than counterbalanced by the drug’s positive effects. 

16.10  Just Beware 

It would be easy, and fun, to fill a few hundred pages with a history of statistical 
abuses.  But by now you probably got the message:  It’s just as easy to lie with 
numbers as it is to lie with words.  Make sure that you understand what is 
actually being measured and how those “statistically significant” results were 
computed before you jump to conclusions.  



 

    

17  KNAPSACK AND GRAPH OPTIMIZATION PROBLEMS 
 

The notion of an optimization problem provides a structured way to think about 
solving lots of computational problems.  Whenever you set about solving a 
problem that involves finding the biggest, the smallest, the most, the fewest, the 
fastest, the least expensive, etc., there is a good chance that you can map the 
problem onto a classic optimization problem for which there is a known 
computational solution. 

In general, an optimization problem has two parts: 

1. An objective function that is to be maximized or minimized.  For 
example, the airfare between Boston and Istanbul. 

2. A set of constraints (possibly empty) that must be honored.  For 
example, an upper bound on the travel time. 

In this chapter, we introduce the notion of an optimization problem and give a 
few examples.  We also provide some simple algorithms that solve them.  In the 
next chapter, we discuss more efficient ways of solving an important class of 
optimization problems. 

The main things to take away from this chapter are: 

• Many problems of real importance can be simply formulated in a way 
that leads naturally to a computational solution. 

• Reducing a seemingly new problem to an instance of a well-known 
problem allows one to use preexisting solutions. 

• Exhaustive enumeration algorithms provide a simple, but often 
computationally intractable, way to search for optimal solutions.  

• A greedy algorithm is often a practical approach to finding a pretty good, 
but not always optimal, solution to an optimization problem. 

• Knapsack problems and graph problems are classes of problems to 
which other problems can often be reduced. 

As usual we will supplement the material on computational thinking with a few 
bits of Python and some tips about programming. 

17.1 Knapsack Problems 

It’s not easy being a burglar.  In addition to the obvious problems (making sure 
that a home is empty, picking locks, circumventing alarms, dealing with ethical 
quandaries, etc.), a burglar has to decide what to steal.  The problem is that 
most homes contain more things of value than the average burglar can carry 
away.  What’s a poor burglar to do?  He needs to find the set of things that 
provides the most value without exceeding his carrying capacity. 
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Suppose for example, a burglar who has a knapsack109 that can hold at most 20 
pounds of loot breaks into a house and finds the items in Figure 17.1.  Clearly, 
he will not be able to fit it all in his knapsack, so he needs to decide what to take 
and what to leave behind. 

 Value Weight Value/Weight 

Clock 175 10 17.5 

Painting 90 9 10 

Radio 20 4 5 

Vase 50 2 25 

Book 10 1 10 

Computer 200 20 10 

Figure 17.1  Table of items 

17.1.1 Greedy Algorithms 

The simplest way to find an approximate solution to this problem is to use a 
greedy algorithm.  The thief would choose the best item first, then the next 
best, and continue until he reached his limit.  Of course, before doing this, the 
thief would have to decide what “best” should mean.  Is the best item the most 
valuable, the least heavy, or maybe the item with the highest value-to-weight 
ratio?  If he chose highest value, he would leave with just the computer, which 
he could fence for $200.  If he chose lowest weight, he would take, in order, the 
book, the radio, the vase, and the painting—which would be worth a total of 
$170.  Finally, if he decided that best meant highest value-to-weight ratio, he 
would start by taking the vase and the clock.  That would leave three items with 
a value-to-weight ratio of 10, but of those only the book would still fit in the 
knapsack. After taking the book, he would take the remaining item that still fit, 
the radio.  The total value of his loot would be $255. 

Though greedy-by-density (value-to-weight ratio) happens to yield the best result 
for this data set, there is no guarantee that a greedy-by-density algorithm 
always finds a better solution than greedy by weight or value.  More generally, 
there is no guarantee that any solution to this kind of knapsack problem that is 
found by a greedy algorithm will be optimal.110  We will discuss this issue in 
more detail a bit later. 

The code in Figure 17.2 and Figure 17.3 implements all three of these greedy 
algorithms.  In Figure 17.2, we first define class Item.  Each Item has a name, 
value, and weight attribute. 
                                                

109 For those of you too young to remember, a “knapsack” is a simple bag that people 
used to carry on their back—long before “backpacks” became fashionable.  If you happen 
to have been in scouting you might remember the words of the “Happy Wanderer,” “I love 
to go a-wandering, Along the mountain track, And as I go, I love to sing, My knapsack on 
my back.” 

110 There is probably some deep moral lesson to be extracted from this fact, and it is 
probably not “greed is good.” 
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The only interesting code is the implementation of the function greedy.  By 
introducing the parameter keyFunction, we make greedy independent of the 
order in which the elements of the list are to be considered.  All that is required 
is that keyFunction defines an ordering on the elements in items.  We then use 
this ordering to produce a sorted list containing the same elements as items.  
We use the built-in Python function sorted to do this. (We use sorted rather 
than sort because we want to generate a new list rather than mutate the list 
passed to the function.)  We use the reverse parameter to indicate that we want 
the list sorted from largest (with respect to keyFunction) to smallest. 

 

Figure 17.2  Building a set of items with orderings 

 

class Item(object): 
    def __init__(self, n, v, w): 
        self.name = n 
        self.value = float(v) 
        self.weight = float(w) 
    def getName(self): 
        return self.name 
    def getValue(self): 
        return self.value 
    def getWeight(self): 
        return self.weight 
    def __str__(self): 
        result = '<' + self.name + ', ' + str(self.value)\ 
                 + ', ' + str(self.weight) + '>' 
        return result 
 
def value(item): 
    return item.getValue() 
 
def weightInverse(item): 
    return 1.0/item.getWeight() 
 
def density(item): 
    return item.getValue()/item.getWeight() 
 
def buildItems(): 
    names = ['clock', 'painting', 'radio', 'vase', 'book', 'computer'] 
    values = [175,90,20,50,10,200] 
    weights = [10,9,4,2,1,20] 
    Items = [] 
    for i in range(len(values)): 
        Items.append(Item(names[i], values[i], weights[i])) 
    return Items 
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Figure 17.3  Using a greedy algorithm to choose items 

When testGreedys() is executed it prints 

Use greedy by value to fill knapsack of size 20 
Total value of items taken =  200.0 
    <computer, 200.0, 20.0> 
 
Use greedy by weight to fill knapsack of size 20 
Total value of items taken =  170.0 
    <book, 10.0, 1.0> 
    <vase, 50.0, 2.0> 
    <radio, 20.0, 4.0> 
    <painting, 90.0, 9.0> 
 
Use greedy by density to fill knapsack of size 20 
Total value of items taken =  255.0 
    <vase, 50.0, 2.0> 
    <clock, 175.0, 10.0> 
    <book, 10.0, 1.0> 
    <radio, 20.0, 4.0> 

What is the algorithmic efficiency of greedy?  There are two things to consider:  
the time complexity of the built-in function sorted, and the number of times 
through the for loop in the body of greedy.  The number of iterations of the loop 
is bounded by the number of elements in items, i.e., it is O(n), where n is the 

length of items.  However, the worst-case time for Python’s built-in sorting 

def greedy(items, maxWeight, keyFunction): 
    """Assumes Items a list, maxWeight >= 0, 
         keyFunction maps elements of Items to floats""" 
    itemsCopy = sorted(items, key=keyFunction, reverse = True) 
    result = [] 
    totalValue = 0.0 
    totalWeight = 0.0 
    for i in range(len(itemsCopy)): 
        if (totalWeight + itemsCopy[i].getWeight()) <= maxWeight: 
            result.append(itemsCopy[i]) 
            totalWeight += itemsCopy[i].getWeight() 
            totalValue += itemsCopy[i].getValue() 
    return (result, totalValue) 
 
def testGreedy(items, constraint, keyFunction): 
    taken, val = greedy(items, constraint, keyFunction) 
    print 'Total value of items taken = ', val 
    for item in taken: 
        print '   ', item 
 
def testGreedys(maxWeight = 20): 
    items = buildItems() 
    print 'Use greedy by value to fill knapsack of size', maxWeight 
    testGreedy(items, maxWeight, value) 
    print '\nUse greedy by weight to fill knapsack of size', maxWeight 
    testGreedy(items, maxWeight, weightInverse) 
    print '\nUse greedy by density to fill knapsack of size', maxWeight 
    testGreedy(items, maxWeight, density) 
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function is roughly O(n log n), where n is the length of the list to be sorted111.  
Therefore the running time of greedy is O(n log n). 

17.1.2 An Optimal Solution to the 0/1 Knapsack Problem 

Suppose we decide that an approximation is not good enough, i.e., we want the 
best possible solution to this problem.  Such a solution is called optimal, not 
surprising since we are solving an optimization problem.  As it happens, this is 
an instance of a classic optimization problem, called the 0/1 knapsack 
problem.  

The 0/1 knapsack problem can be formalized as follows: 

1. Each item is represented by a pair, <value, weight>. 

2. The knapsack can accommodate items with a total weight of no more than w. 

3. A vector, I, of length n, represents the set of available items.  Each element of 
the vector is an item. 

4. A vector, V, of length n, is used to indicate whether or not each item is taken 
by the burglar.  If V[i] = 1, item I[i] is taken.  If V[i] = 0, item I[i] is not taken. 

5. Find a V that maximizes 

 

      subject to the constraint that 

       

Let’s see what happens if we try to implement this formulation of the 
problem in a straightforward way: 

1. Enumerate all possible combinations of items.  That is to say, generate all 
subsets112 of the set of items.  This is called the power set, and was 
discussed in Chapter 9. 

2. Remove all of the combinations whose weight exceeds the allowed weight. 

3. From the remaining combinations choose any one whose value is the largest. 

This approach will certainly find an optimal answer.  However, if the original set 
of items is large, it will take a very long time to run, because, as we saw in 
Chapter 9, the number of subsets grows exceedingly quickly with the number of 
items. 

Figure 17.4 contains a straightforward implementation of this brute-force 
approach to solving the 0/1 knapsack problem.  It uses the classes and 
functions defined in Figure 17.2 and Figure 17.3, and the function genPowerset 
defined in Figure 9.5. 

                                                

111 As we discussed in Chapter 10, the time complexity of the sorting algorithm, timsort,  
used in most Python implementations is O(n log n). 

112 Recall that every set is a subset of itself and the empty set is a subset of every set. 
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Figure 17.4  Brute-force optimal solution to the 0/1 knapsack problem 

The complexity of this implementation is O(n*2
n), where n is the length of items.  

The function genPowerset returns a list of lists of Items.  This list is of length 2n, 
and the longest list in it is of length n.  Therefore the outer loop in chooseBest 
will be executed O(2n)) times, and the number of times the inner loop will be 
executed is bounded by n. 

Many small optimizations can be applied to speed this program up.  For 
example, genPowerset could have had the header 

def genPowerset(items, constraint, getVal, getWeight) 

and returned only those combinations that meet the weight constraint.  
Alternatively, chooseBest could exit the inner loop as soon as the weight 
constraint is exceeded.  While these kinds of optimizations are often worth 
doing, they don’t address the fundamental issue.  The complexity of chooseBest 
will still be O(n*2

n), where n is the length of items, and chooseBest will therefore 

still take a very long time to run when items is large. 

In a theoretical sense, the problem is hopeless.  The 0/1 knapsack problem is 
inherently exponential in the number of items.  In a practical sense, however, 
the problem is far from hopeless, as we will discuss in Chapter 18. 

When testBest is run, it prints, 
Total value of items taken = 275.0 
<clock, 175.0, 10.0> 
<painting, 90.0, 9.0> 
<book, 10.0, 1.0> 

Notice that this solution is better than any of the solutions found by the greedy 
algorithms.  The essence of a greedy algorithm is making the best (as defined by  

def chooseBest(pset, maxWeight, getVal, getWeight): 
    bestVal = 0.0 
    bestSet = None 
    for items in pset: 
        itemsVal = 0.0 
        itemsWeight = 0.0 
        for item in items: 
            itemsVal += getVal(item) 
            itemsWeight += getWeight(item) 
        if itemsWeight <= maxWeight and itemsVal > bestVal: 
            bestVal = itemsVal 
            bestSet = items 
    return (bestSet, bestVal) 
 
def testBest(maxWeight = 20): 
    items = buildItems() 
    pset = genPowerset(items) 
    taken, val = chooseBest(pset, maxWeight, Item.getValue, 
                            Item.getWeight) 
    print 'Total value of items taken =', val 
    for item in taken: 
        print item 
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some metric) local choice at each step.  It makes a choice that is locally 
optimal.  However, as this example illustrates, a series of locally optimal 
decisions does not always lead to a solution that is globally optimal. 

Despite the fact that they do not always find the best solution, greedy algorithms 
are often used in practice.  They are usually easier to implement and more 
efficient to run than algorithms guaranteed to find optimal solutions.  As Ivan 
Boesky once said, “I think greed is healthy. You can be greedy and still feel good 
about yourself.” 113 

There is a variant of the knapsack problem, called the fractional (or 
continuous) knapsack problem, for which a greedy algorithm is guaranteed to 
find an optimal solution.  Since the items are infinitely divisible, it always makes 
sense to take as much as possible of the item with the highest remaining value-
to-weight ratio.  Suppose, for example, that our burglar found only three things 
of value in the house: a sack of gold dust, a sack of silver dust, and a sack of 
raisins.  In this case, a greedy-by-density algorithm will always find the optimal 
solution.  

17.2 Graph Optimization Problems 

Let’s think about another kind of optimization problem.  Suppose you had a list 
of the prices of all of the airline flights between each pair of cities in the United 
States.  Suppose also that for all cities, A, B, and C, the cost of flying from A to C 
by way of B was the cost of flying from A to B plus the cost of flying from B to C.  
A few questions you might like to ask are: 

• What is the smallest number of stops between some pair of cities? 

• What is the least expensive airfare between some pair of cities? 

• What is the least expensive airfare between some pair of cities involving 
no more than two stops? 

• What is the least expensive way to visit some collection of cities? 

All of these problems (and many others) can be easily formalized as graph 
problems. 

A graph114 is a set of objects called nodes (or vertices) connected by a set of 
edges (or arcs).  If the edges are unidirectional the graph is called a directed 
graph or digraph.  In a directed graph, if there is an edge from n1 to n2, we refer 
to n1 as the source or parent node and n2 as the destination or child node.   

                                                

113 He said this, to enthusiastic applause, in a 1986 commencement address at the 
University of California at Berkeley Business School.  A few months later he was indicted 
for insider trading, a charge that led to two years in prison and a $100,000,000 fine. 

114 Computer scientists and mathematicians use the word “graph” in the sense used in 
this book.  They typically use the word “plot” to denote the kind of graphs we saw in 
Chapters 11-16. 
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Graphs are typically used to represent situations in which there are interesting 
relations among the parts.  The first documented use of graphs in mathematics 
was in 1735 when the Swiss mathematician Leonhard Euler used what has 
come to be known as graph theory to formulate and solve the Königsberg 
bridges problem. 

Königsberg, then the capital of East Prussia, was built at the intersection of two 
rivers that contained a number of islands.  The islands were connected to each 
other and to the mainland by seven bridges, as shown on the map below.  For 
some reason, the residents of the city were obsessed with the question of 
whether it was possible to take a walk that crossed each bridge exactly once. 

Euler’s great insight was that the problem could be vastly simplified by viewing 
each separate landmass as a point (think “node”) and each bridge as a line 
(think “edge”) connecting two of these points.  The map of the town could then 
be represented by the graph to the right of the map.  Euler then reasoned that if 
a walk were to traverse each edge exactly once, it must be the case that each 
node in the middle of the walk (i.e., any node except the first and last node 
visited) must have an even number of edges to which it is connected.  Since 
none of the nodes in this graph has an even number of edges, Euler concluded 
that it is impossible to traverse each bridge exactly once. 

 

                 Map of Königsberg                                   Euler’s Simplified Map 
            Arrows point to Bridges 

Of greater interest than the Königsberg bridges problem, or even Euler’s theorem 
(which generalizes his solution to the Königsberg bridges problem), is the whole 
idea of using graph theory to help understand problems. 

For example, only one small extension to the kind of graph used by Euler is 
needed to model a country’s highway system.  If a weight is associated with each 
edge in a graph (or digraph) it is called a weighted graph.  Using weighted 
graphs, the highway system can be represented as a graph in which cities are 
represented by nodes and the highways connecting them as edges, where each 
edge is labeled with the distance between the two nodes.  More generally, one 



 

242  Chapter 17. Knapscak and Graph Optimization Problems  

can represent any road map (including those with one-way streets) by a 
weighted digraph. 

Similarly, the structure of the World Wide Web can be represented as a digraph 
in which the nodes are Web pages and there is an edge from node A to node B if 
and only if there is a link to page B on page A.  Traffic patterns could be modeled 
by adding a weight to each edge indicating how often is it used. 

There are also many less obvious uses of graphs.  Biologists use graphs to model 
things ranging from the way proteins interact with each other to gene expression 
networks.  Physicists use graphs to describe phase transitions.  Epidemiologists 
use graphs to model disease trajectories. And so on. 

Figure 17.5 contains classes implementing abstract types corresponding to 
nodes, weighted edges, and edges. 

Having a class for nodes may seem like overkill.  After all, none of the methods 
in class Node perform any interesting computation.  We introduced the class 
merely to give us the flexibility of deciding, perhaps at some later point, to 
introduce a subclass of Node with additional properties. 

 
Figure 17.5  Nodes and edges 

class Node(object): 
    def __init__(self, name): 
        """Assumes name is a string""" 
        self.name = name 
    def getName(self): 
        return self.name 
    def __str__(self): 
        return self.name 
 
class Edge(object): 
    def __init__(self, src, dest): 
        """Assumes src and dest are nodes""" 
        self.src = src 
        self.dest = dest 
    def getSource(self): 
        return self.src 
    def getDestination(self): 
        return self.dest 
    def __str__(self): 
        return self.src.getName() + '->' + self.dest.getName() 
 
class WeightedEdge(Edge): 
    def __init__(self, src, dest, weight = 1.0): 
        """Assumes src and dest are nodes, weight a float""" 
        self.src = src 
        self.dest = dest 
        self.weight = weight 
    def getWeight(self): 
        return self.weight 
    def __str__(self): 
        return self.src.getName() + '->(' + str(self.weight) + ')'\ 
               + self.dest.getName() 
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Figure 17.6 contains implementations of the classes Digraph and Graph.  One 
important decision is the choice of data structure used to represent a Digraph.  
One common representation is an n × n adjacency matrix, where n is the 
number of nodes in the graph.  Each cell of the matrix contains information 
(e.g., weights) about the edges connecting the pair of nodes <i, j>.  If the edges 

are unweighted, each entry is True if and only if there is an edge from i to j. 

Another common representation is an adjacency list, which we use here.  Class 
Digraph has two instance variables.  The variable nodes is a Python list 
containing the names of the nodes in the Digraph.  The connectivity of the nodes 
is represented using an adjacency list implemented as a dictionary.  The variable 
edges is a dictionary that maps each Node in the Digraph to a list of the children 
of that Node.  

Class Graph is a subclass of Digraph.  It inherits all of the methods of Digraph 
except addEdge, which it overrides.  (This is not the most space-efficient way to 
implement Graph, since it stores each edge twice, once for each direction in the 
Digraph.  But it has the virtue of simplicity.) 

 
Figure 17.6  Classes Graph and Digraph 

class Digraph(object): 
    #nodes is a list of the nodes in the graph 
    #edges is a dict mapping each node to a list of its children 
    def __init__(self): 
        self.nodes = [] 
        self.edges = {} 
    def addNode(self, node): 
        if node in self.nodes: 
            raise ValueError('Duplicate node') 
        else: 
            self.nodes.append(node) 
            self.edges[node] = [] 
    def addEdge(self, edge): 
        src = edge.getSource() 
        dest = edge.getDestination() 
        if not(src in self.nodes and dest in self.nodes): 
            raise ValueError('Node not in graph') 
        self.edges[src].append(dest) 
    def childrenOf(self, node): 
        return self.edges[node] 
    def hasNode(self, node): 
        return node in self.nodes 
    def __str__(self): 
        result = '' 
        for src in self.nodes: 
            for dest in self.edges[src]: 
                result = result + src.getName() + '->'\ 
                         + dest.getName() + '\n' 
        return result[:-1] #omit final newline 
 
class Graph(Digraph): 
    def addEdge(self, edge): 
        Digraph.addEdge(self, edge) 
        rev = Edge(edge.getDestination(), edge.getSource()) 
        Digraph.addEdge(self, rev) 
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You might want to stop for a minute and think about why Graph is a subclass of 
Digraph, rather than the other way around.  In many of the examples of 
subclassing we have looked at, the subclass adds attributes to the superclass.  
For example, class WeightedEdge added a weight attribute to class Edge. 

Here, Digraph and Graph have the same attributes.  The only difference is the 
implementation of the addEdge method.  Either could have been easily 
implemented by inheriting methods from the other, but the choice of which to 
make the superclass was not arbitrary. In Chapter 8 we stressed the importance 
of obeying the substitution principle: If client code works correctly using an 
instance of the supertype, it should also work correctly when an instance of the 
subtype is substituted for the instance of the supertype. 

And indeed if client code works correctly using an instance of Digraph, it will 
work correctly if an instance of Graph is substituted for the instance of Digraph.  
The converse is not true.  There are many algorithms that work on graphs (by 
exploiting the symmetry of edges) that do not work on directed graphs. 

17.2.1 Some Classic Graph-Theoretic Problems 

One of the nice things about formulating a problem using graph theory is that 
there are well-known algorithms for solving many optimization problems on 
graphs.  Some of the best-known graph optimization problems are: 

• Shortest path. For some pair of nodes, N1 and N2, find the shortest 
sequence of edges <s

n
, d

n
> (source node and destination node), such that 

o The source node in the first edge is N1 

o The destination node of the last edge is N2 

o For all edges e1 and e2 in the sequence, if e2 follows e1 in the 
sequence, the source node of e2 is the destination node of e1

 i
. 

• Shortest weighted path.  This is like the shortest path, except instead 
of choosing the shortest sequence of edges that connects two nodes, we 
define some function on the weights of the edges in the sequence (e.g., 
their sum) and minimize that value.  This is the kind of problem solved 
by Mapquest and Google Maps when asked to compute driving directions 
between two points. 

• Cliques.  Find a set of nodes such that there is a path (or often a path 
not exceeding a maximum length) in the graph between each pair of 
nodes in the set.115 

• Min cut.  Given two sets of nodes in a graph, a cut is a set of edges 
whose removal eliminates all paths from each node in one set to each 
node in the other.  The minimum cut is the smallest set of edges whose 
removal accomplishes this. 

                                                

115 This notion is quite similar to the notion of a social clique, i.e., a group of people who 
feel closely connected to each other and are inclined to exclude those not in the clique.  
See, for example, the movie Heathers. 
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17.2.2 The Spread of Disease and Min Cut 

Figure 17.7 contains a pictorial representation of a weighted graph generated by 
the U.S. Centers for Disease Control (CDC) in the course of studying an 
outbreak of tuberculosis in the United States.  Each node represents a person, 
and each node is labeled by a color116 indicating whether the person has active 
TB, tested positive for exposure to TB (i.e., high TST reaction rate), tested 
negative for exposure to TB, or had not been tested.  The edges represent 
contact between pairs of people.  The weights, which are not visible in the 
picture, indicate whether the contact between people was “close” or “casual.” 

 
Figure 17.7  Spread of tuberculosis 

There are many interesting questions that can be formalized using this graph.  
For example, 

• Is it possible that all cases stemmed from a single “index” patient?  More 
formally, is there a node, n, such that there is a path from n to every 
other node in the graph with an active TB label?117  The answer is 
“almost.”  There is path from the node in the middle of the graph to each 
active TB node except those nodes in the black circle on the right.  
Interestingly, subsequent investigation revealed that the person in the 
center of the black circle had previously been a neighbor of the putative 
index patient, and therefore there should have been a casual contact 
edge linking the two. 

                                                

116 To see a color version of this graph, go to page 23 of 
http://www.orgnet.com/TB_web.ppt 

117 The edges of the graph do not capture anything related to time.  Therefore, the 
existence of such a node does not mean that the node represents an index patient.  
However, the absence of such a node would indicate the absence of an index patient.  We 
have a necessary, but not sufficient, condition. 
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• In order to best limit the continued spread, which uninfected people 
should be vaccinated?  This can be formalized as solving a min cut 
problem.  Let NA be the set of active TB nodes and NO be the set of all the 
other nodes.  Each edge in the minimum cut between these two sets will 
contain one person with known active TB and one person without.  The 
people without known active TB are candidates for vaccination. 

  

17.2.3 Shortest Path: Depth-First Search and Breadth-First Search 

Social networks are made up of individuals and relationships between 
individuals.  These are typically modeled as graphs in which the individuals are 
nodes and the edges relationships.  If the relationships are symmetric, the edges 
are undirected; if the relationships are asymmetric the edges are directed.  Some 
social networks model multiple kinds of relationships, in which case labels on 
the edges indicate the kind of relationship. 

In 1990118 the playwright John Guare wrote Six Degrees of Separation. The 
slightly dubious premise underlying the play is that “everybody on this planet is 
separated by only six other people.”  By this he meant that if one built a social 
network including every person on the earth using the relation “knows,” the 
shortest path between any two individuals would pass through at most six other 
nodes. 

A less hypothetical question is the distance using the “friend” relation between 
pairs of people on Facebook.  For example, you might wonder if you have a 
friend who has a friend who has a friend who is a friend of Mick Jagger.  Let’s 
think about designing a program to answer such questions. 

The friend relation (at least on Facebook) is symmetric, e.g., if Stephanie is a 
friend of Andrea, Andrea is a friend of Stephanie.  We will, therefore, implement 
the social network using type Graph.  We can then define the problem of finding 
the shortest connection between you and Mick Jagger as: 

• For the graph G, find the shortest sequence of nodes, 
path = [You,…,Mick Jagger], such that 

• If ni and ni+1 are consecutive nodes in path, there is an edge in G 
connecting ni and ni+1. 

Figure 17.8 contains a recursive function that finds the shortest path between 
two nodes, start and end, in a Digraph.  Since Graph is a subclass of Digraph, it 
will work for our Facebook problem.  

The algorithm implemented by DFS is an example of a recursive depth-first-
search (DFS)  algorithm.  In general, a depth-first-search algorithm begins by 
choosing one child of the start node.  It then chooses one child of that node and 
so on, going deeper and deeper until it either reaches the goal node or a node 
with no children.  The search then backtracks, returning to the most recent 
node with children that it has not yet visited.  When all paths have been 

                                                

118 When Mark Zuckerberg was six years old. 
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explored, it chooses the shortest path (assuming that there is one) from the start 
to the goal. 

The code is a bit more complicated than the algorithm we just described because 
it has to deal with the possibility of the graph containing cycles.  It also avoids 
exploring paths longer than the shortest path that it has already found. 

• The function search calls DFS with path = [] (to indicate that the current 
path being explored is empty) and shortest = None (to indicate that no 
path from start to end has yet been found). 

• DFS begins by choosing one child of start.  It then chooses one child of 
that node and so on, until either it reaches the node end or a node with 
no unvisited children.  

o The check 
if node not in path 

prevents the program from getting caught in a cycle. 

o The check 
if shortest == None or len(path) < len(shortest): 

is used to decide if it is possible that continuing to search this 
path might yield a shorter path than the best path found so far. 

o If so, DFS is called recursively.  If it finds a path to end that is no 
longer than the best found so far, shortest is updated. 

o When the last node on path has no children left to visit, the 
program backtracks to the previously visited node and visits the 
next child of that node. 

• The function returns when all possibly shortest paths from start to end 
have been explored. 

 

Figure 17.9 contains some code that runs the 
code in Figure.  The function testSP in Figure 
17.9 first builds a directed graph like the one 
pictured on the right, and then searches for a 
shortest path between node 0 and node 5. 

 



 

248  Chapter 17. Knapscak and Graph Optimization Problems  

 

 
Figure 17.8  Depth-first-search shortest-path algorithm 

 

 

Figure 17.9  Test depth-first-search code 

def printPath(path): 
    """Assumes path is a list of nodes""" 
    result = '' 
    for i in range(len(path)): 
        result = result + str(path[i]) 
        if i != len(path) - 1: 
            result = result + '->' 
    return result  
 
def DFS(graph, start, end, path, shortest): 
    """Assumes graph is a Digraph; start and end are nodes; 
          path and shortest are lists of nodes 
       Returns a shortest path from start to end in graph""" 
    path = path + [start] 
    print 'Current DFS path:', printPath(path) 
    if start == end: 
        return path 
    for node in graph.childrenOf(start): 
        if node not in path: #avoid cycles 
            if shortest == None or len(path) < len(shortest): 
                newPath = DFS(graph, node, end, path, shortest) 
                if newPath != None: 
                    shortest = newPath 
    return shortest 
 
def search(graph, start, end): 
    """Assumes graph is a Digraph; start and end are nodes 
       Returns a shortest path from start to end in graph""" 
    return DFS(graph, start, end, [], None) 

def testSP(): 
    nodes = [] 
    for name in range(6): #Create 6 nodes 
        nodes.append(Node(str(name))) 
    g = Digraph() 
    for n in nodes: 
        g.addNode(n) 
    g.addEdge(Edge(nodes[0],nodes[1])) 
    g.addEdge(Edge(nodes[1],nodes[2])) 
    g.addEdge(Edge(nodes[2],nodes[3])) 
    g.addEdge(Edge(nodes[2],nodes[4])) 
    g.addEdge(Edge(nodes[3],nodes[4])) 
    g.addEdge(Edge(nodes[3],nodes[5])) 
    g.addEdge(Edge(nodes[0],nodes[2])) 
    g.addEdge(Edge(nodes[1],nodes[0])) 
    g.addEdge(Edge(nodes[3],nodes[1])) 
    g.addEdge(Edge(nodes[4],nodes[0])) 
    sp = search(g, nodes[0], nodes[5]) 
    print 'Shortest path found by DFS:', printPath(sp) 
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When executed, testSP produces the output 

Current DFS path: 0 
Current DFS path: 0->1 
Current DFS path: 0->1->2 
Current DFS path: 0->1->2->3 
Current DFS path: 0->1->2->3->4 
Current DFS path: 0->1->2->3->5 
Current DFS path: 0->1->2->4 
Current DFS path: 0->2 
Current DFS path: 0->2->3 
Current DFS path: 0->2->3->4 
Current DFS path: 0->2->3->5 
Current DFS path: 0->2->3->1 
Current DFS path: 0->2->4 
Shortest path found by DFS: 0->2->3->5 

Notice that after exploring the path 0->1->2->3->4, it backs up to node 3 and 
explores the path 0->1->2->3->5.  After saving that as the shortest successful 
path so far, it backs up to node 2 and explores the path 0->1->2->4.  When it 
reaches the end of that path (node 4), it backs up all the way to node 0 and 
investigates the path starting with the edge from 0 to 2.  And so on. 

The DFS algorithm implemented above finds the path with the minimum 
number of edges.  If the edges have weights, it will not necessarily find the path 
that minimizes the sum of the weights of the edges.  However, it is easily 
modified to do so. 

Of course, there are other ways to traverse a graph than depth-first.  Another 
common approach is breadth-first search (BFS).  In a breadth-first traversal 
one first visits all children of the start node. If none of those is the end node, one 
visits all children of each of those nodes.  And so on.  Unlike depth-first search, 
which is usually implemented recursively, breadth-first search is usually 
implemented iteratively.  BFS explores many paths simultaneously, adding one 
node to each path on each iteration.  Since it generates the paths in ascending 
order of length, the first path found with the goal as its last node is guaranteed 
to have a minimum number of edges. 

Figure 17.10 contains code that uses a breadth-first search to find the shortest 
path in a directed graph.  The variable pathQueue is used to store all of the paths 
currently being explored.  Each iteration starts by removing a path from 
pathQueue and assigning that path to tmpPath.  If the last node in tmpPath is end, 
tmpPath is returned.  Otherwise, a set of new paths is created, each of which 
extends tmpPath by adding one of its children.  Each of these new paths is then 
added to pathQueue. 
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Figure 17.10  Breadth-first-search shortest path 

When the lines 

    sp = BFS(g, nodes[0], nodes[5]) 
    print 'Shortest path found by BFS:', printPath(sp) 

are added at the end of testSP and the function is executed it prints 

Current DFS path: 0 
Current DFS path: 0->1 
Current DFS path: 0->1->2 
Current DFS path: 0->1->2->3 
Current DFS path: 0->1->2->3->4 
Current DFS path: 0->1->2->3->5 
Current DFS path: 0->1->2->4 
Current DFS path: 0->2 
Current DFS path: 0->2->3 
Current DFS path: 0->2->3->4 
Current DFS path: 0->2->3->5 
Current DFS path: 0->2->3->1 
Current DFS path: 0->2->4 
Shortest path found by DFS: 0->2->3->5 
Current BFS path: 0 
Current BFS path: 0->1 
Current BFS path: 0->2 
Current BFS path: 0->1->2 
Current BFS path: 0->2->3 
Current BFS path: 0->2->4 
Current BFS path: 0->1->2->3 
Current BFS path: 0->1->2->4 
Current BFS path: 0->2->3->4 
Current BFS path: 0->2->3->5 
Shortest path found by BFS: 0->2->3->5 

def BFS(graph, start, end): 
    """Assumes graph is a Digraph; start and end are nodes 
       Returns a shortest path from start to end in graph""" 
    initPath = [start] 
    pathQueue = [initPath] 
    while len(pathQueue) != 0: 
        #Get and remove oldest element in pathQueue 
        tmpPath = pathQueue.pop(0) 
        print 'Current BFS path:', printPath(tmpPath) 
        lastNode = tmpPath[-1] 
        if lastNode == end: 
            return tmpPath 
        for nextNode in graph.childrenOf(lastNode): 
            if nextNode not in tmpPath: 
                newPath = tmpPath + [nextNode] 
                pathQueue.append(newPath) 
    return None 
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Comfortingly, each algorithm found a path of the same length.  In this case, they 
found the same path.  However, if a graph contains more than one shortest path 
between a pair of nodes, DFS and BFS will not necessarily find the same 
shortest path. 

As mentioned above, BFS is a convenient way to search for a path with the 
fewest edges because the first time a path is found, it is guaranteed to be such a 
path. 

 

Finger exercise:  Consider a digraph with weighted edges.  Is the first path 
found by BFS guaranteed to minimize the sum of the weights of the edges? 

 



 

    

18  DYNAMIC PROGRAMMING 
 

Dynamic programming was invented by Richard Bellman in the early 1950s.  
Don’t try to infer anything about the technique from its name.  As Bellman 
described it, the name “dynamic programming” was chosen to hide from 
governmental sponsors “the fact that I was really doing mathematics… [the 
phrase dynamic programming] was something not even a Congressman could 
object to.”119 

Dynamic programming is a method for efficiently solving problems that exhibit 
the characteristics of overlapping subproblems and optimal substructure.  
Fortunately, many optimization problems exhibit these characteristics. 

A problem has optimal substructure if a globally optimal solution can be found 
by combining optimal solutions to local subproblems.  We’ve already looked at a 
number of such problems.  Merge sort, for example, exploits the fact that a list 
can be sorted by first sorting sublists and then merging the solutions. 

A problem has overlapping subproblems if an optimal solution involves solving 
the same problem multiple times.  Merge sort does not exhibit this property.  
Even though we are performing a merge many times, we are merging different 
lists each time. 

It’s not immediately obvious, but the 0/1 knapsack problem exhibits both of 
these properties.  Before looking at that, however, we will digress to look at a 
problem where the optimal substructure and overlapping subproblems are more 
obvious. 

18.1 Fibonacci Sequences, Revisited 

In Chapter 4, we looked at a straightforward recursive implementation of the 
Fibonacci function, shown here in Figure 18.1. 

 

Figure 18.1 Recursive implementation of Fibonacci function 

 

                                                

119 As quoted in Stuart Dreyfus “Richard Bellman on the Birth of Dynamic Programming,” 
Operations Research, vol. 50, no. 1 (2002). 

def fib(n): 
    """Assumes n is an int >= 0 
       Returns Fibonacci of n""" 
    if n == 0 or n == 1: 
        return 1 
    else: 
        return fib(n-1) + fib(n-2) 
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While this implementation of the recurrence is obviously correct, it is terribly 
inefficient. Try, for example, running fib(120), but don’t wait for it to complete.  
The complexity of the implementation is a bit hard to derive, but it is roughly 
O(fib(n)).  That is, its growth is proportional to the growth in the value of the 
result, and the growth rate of the Fibonacci sequence is substantial.  For 
example, fib(120) is 8,670,007,398,507,948,658,051,921.  If each recursive call took a 
nanosecond, fib(120) would take about 250,000 years to finish. 

Let’s try and figure out why this implementation takes so long.  Given the tiny 
amount of code in the body of fib, it’s clear that the problem must be the 
number of times that fib calls itself.  As an example, look at the tree of calls 
associated with the invocation fib(6). 

 
Figure 18.2  Tree of calls for recursive Fibonacci 

Notice that we are computing the same values over and over again.  For example 
fib gets called with 3 three times, and each of these calls provokes four 
additional calls of fib.  It doesn’t require a genius to think that it might be a 
good idea to record the value returned by the first call, and then look it up 
rather than compute it each time it is needed.  This is called memoization, and 
is the key idea behind dynamic programming. 

Figure 18.3 contains an implementation of Fibonacci based on this idea.  The 
function fastFib has a parameter, memo, that it uses to keep track of the 
numbers it has already evaluated.  The parameter has a default value, the 
empty dictionary, so that clients of fastFib don’t have to worry about supplying 
an initial value for memo.  When fastFib is called with an n > 1, it attempts to 
look up n in memo.  If it is not there (because this is the first time fastFib has 
been called with that value), an exception is raised.  When this happens, 
fastFib uses the normal Fibonacci recurrence, and then stores the result in 
memo. 

cib(6)	  

cib(5)	  

cib(4)	  

cib(3)	  

cib(2)	  

cib(1)	   cib(0)	  

cib(1)	  

cib(2)	  

cib(1)	   cib(0)	  

cib(3)	  

cib(2)	  

cib(1)	   cib(0)	  

cib(1)	  

cib(4)	  

cib(3)	  

cib(2)	  

cib(1)	   cib(0)	  

cib(1)	  

cib(2)	  

cib(1)	   cib(0)	  
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Figure 18.3  Implementing Fibonacci using a memo 

If you try running fastFib, you will see that it is indeed quite fast: fib(120) 
returns almost instantly.  What is the complexity of fastFib?  It calls fib 
exactly once for each value from 0 to n.  Therefore, under the assumption that 
dictionary lookup can be done in constant time, the time complexity of 
fastFib(n) is O(n).120  

18.2 Dynamic Programming and the 0/1 Knapsack Problem 

One of the optimization problems we looked at in Chapter 17 was the 0/1 
knapsack problem.  Recall that we looked at a greedy algorithm that ran in 
n log n time, but was not guaranteed to find an optimal solution.  We also looked 
at a brute-force algorithm that was guaranteed to find an optimal solution, but 
ran in exponential time.  Finally, we discussed the fact that the problem is 
inherently exponential in the size of the input.  In the worst case, one cannot 
find an optimal solution without looking at all possible answers. 

Fortunately, the situation is not as bad as it seems.  Dynamic programming 
provides a practical method for solving most 0/1 knapsack problems in a 
reasonable amount of time.  As a first step in deriving such a solution, we begin 
with an exponential solution based on exhaustive enumeration.  The key idea is 
to think about exploring the space of possible solutions by constructing a rooted 
binary tree that enumerates all states that satisfy the weight constraint. 

A rooted binary tree is an acyclic directed graph in which 

• There is exactly one node with no parents.  This is called the root. 

• Each non-root node has exactly one parent. 

• Each node has at most two children.  A childless node is called a leaf. 

Each node in the search tree for the 0/1 knapsack problem is labeled with a 
quadruple that denotes a partial solution to the knapsack problem. 

                                                

120 Though cute and pedagogically interesting, this is not the best way to implement 
Fibonacci.  There is a simple linear-time iterative implementation. 

def fastFib(n, memo = {}): 
    """Assumes n is an int >= 0, memo used only by recursive calls 
       Returns Fibonacci of n""" 
    if n == 0 or n == 1: 
        return 1 
    try: 
        return memo[n] 
    except KeyError: 
        result = fastFib(n-1, memo) + fastFib(n-2, memo) 
        memo[n] = result 
        return result 



 

 Chapter 18. Dynamic Programming  255 

The elements of the quadruple are: 

• A set of items to be taken, 

• The list of items for which a decision has not been made, 

• The total value of the items in the set of items to be taken (this is merely 
an optimization, since the value could be computed from the set), and 

• The remaining space in the knapsack.  (Again, this is an optimization 
since it is merely the difference between the weight allowed and the 
weight of all the items taken so far.) 

The tree is built top-down starting with the root.121  One element is selected from 
the still-to-be-considered items.  If there is room for that item in the knapsack, a 
node is constructed that reflects the consequence of choosing to take that item.  
By convention, we draw that node as the left child.  The right child shows the 
consequences of choosing not to take that item.  The process is then applied 
recursively until either the knapsack is full or there are no more items to 
consider.  Because each edge represents a decision (to take or not to take an 
item), such trees are called decision trees.122 

Figure 18.4 is a table describing a set of items. Figure 18.5 is a decision tree for 
deciding which of those items to take under the assumption that the knapsack 
has a maximum weight of 5. 

 

Name Value Weight 

a 6 3 

b 7 3 

c 8 2 

d 9 5 

Figure 18.4  Table of items with values and weights 

                                                

121 It may seem odd to put the root of a tree at the top, but that is the way that 
mathematicians and computer scientists usually draw them.  Perhaps it is evidence that 
those folks do not spend enough time contemplating nature. 

122 Decision trees, which need not be binary, provide a structured way to explore the 
consequences of making a series of sequential decisions.  They are used extensively in 
many fields. 
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Figure 18.5  Decision tree for knapsack problem 

The root of the tree (node 0) has a label <{}, [a,b,c,d], 0, 5>, indicating that no items 
have been taken, all items remain to be considered, the value of the items taken 
is 0, and a weight of 5 is still available. Node 1 indicates that a has been taken, 
[b,c,d] remain to be considered, the value of the items taken is 6, and the 
knapsack can hold another 2 pounds.  There is no node to the left of node 1, 
since item b, which weighs 3 pounds, would not fit in the knapsack. 

In Figure 18.5, the numbers that precede the colon in each node indicate one 
order in which the nodes could be generated.  This particular ordering is called 
left-first depth-first.  At each node we attempt to generate a left node.  If that is 
impossible, we attempt to generate a right node.  If that too is impossible, we 
back up one node (to the parent) and repeat the process.  Eventually, we find 
ourselves having generated all descendants of the root, and the process halts.  
When the process halts, each combination of items that could fit in the 
knapsack has been generated, and any leaf node with the greatest value 
represents an optimal solution.  Notice that for each leaf node, either the second 
element is the empty list (indicating that there are no more items to consider 
taking) or the fourth element is 0 (indicating that there is no room left in the 
knapsack). 

Unsurprisingly (especially if you read the previous chapter), the natural 
implementation of a depth-first tree search is recursive.  Figure 18.6 contains 
such an implementation.  It uses class Item from Figure 17.2.  The function 
maxVal returns two values, the set of items chosen and the total value of those 
items.  It is called with two arguments, corresponding to the second and fourth 
elements of the labels of the nodes in the tree: 

• toConsider.  Those items that nodes higher up in the tree (corresponding 
to earlier calls in the recursive call stack) have not yet considered. 

• avail.  The amount of space still available. 



 

 Chapter 18. Dynamic Programming  257 

Notice that the implementation of maxVal does not build the decision tree and 
then look for an optimal node.  Instead, it uses the local variable result to 
record the best solution found so far. 

 

 
Figure 18.6  Using a decision tree to solve a knapsack problem 

When smallTest (which uses the values in Figure 18.4) is run it prints a result 
indicating that node 8 in Figure 18.5 is an optimal solution: 

<c, 8.0, 3.0> 
<b, 7.0, 2.0> 
Total value of items taken = 15.0 

If you run this code on any of the examples we have looked at, you will find that 
it produces an optimal answer.  In fact, it will always produce an optimal 
answer, if it gets around to producing any answer at all. 

The code in Figure 18.7 makes it convenient to test maxVal.  It randomly 
generates a list of Items of a specified size.  Try bigTest(10).  Now try 

def maxVal(toConsider, avail): 
    """Assumes toConsider a list of items, avail a weight 
       Returns a tuple of the total weight of a solution to the 
         0/1 knapsack problem and the items of that solution""" 
    if toConsider == [] or avail == 0: 
        result = (0, ()) 
    elif toConsider[0].getWeight() > avail: 
        #Explore right branch only 
        result = maxVal(toConsider[1:], avail) 
    else: 
        nextItem = toConsider[0] 
        #Explore left branch 
        withVal, withToTake = maxVal(toConsider[1:], 
                                     avail - nextItem.getWeight()) 
        withVal += nextItem.getValue() 
        #Explore right branch 
        withoutVal, withoutToTake = maxVal(toConsider[1:], 
                                           avail) 
        #Choose better branch 
        if withVal > withoutVal: 
            result = (withVal, withToTake + (nextItem,)) 
        else: 
            result = (withoutVal, withoutToTake) 
    return result 
 
def smallTest(): 
    names = ['a', 'b', 'c', 'd'] 
    vals = [6, 7, 8, 9] 
    weights = [3, 3, 2, 5] 
    Items = [] 
    for i in range(len(vals)): 
        Items.append(Item(names[i], vals[i], weights[i])) 
    val, taken = maxVal(Items, 5) 
    for item in taken: 
        print item 
    print 'Total value of items taken =', val 
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bigTest(40).  After you get tired of waiting for it to return, stop it and ask 
yourself what is going on. 

 
Figure 18.7  Testing the decision tree-based implementation 

Let’s think about the size of the tree we are exploring.  Since at each level of the 
tree we are deciding to keep or not keep one item, the maximum depth of the 
tree is len(items).  At level 0 we have only one node, at level 1 up to two nodes, 
at level 2 up to four nodes, at level 3 up to eight nodes.  At level 39 we have up to 
239 nodes.  No wonder it takes a long time to run! 

What should we do about this?  Let’s start by asking whether this program has 
anything in common with our first implementation of Fibonacci.  In particular, is 
there optimal substructure and are there overlapping subproblems? 

Optimal substructure is visible both in Figure 18.5 and in Figure 18.6.  Each 
parent node combines the solutions reached by its children to derive an optimal 
solution for the subtree rooted at that parent.  This is reflected in Figure 18.6 by 
the code following the comment #Choose better branch. 

Are there also overlapping subproblems?  At first glance, the answer seems to be 
“no.”  At each level of the tree we have a different set of available items to 
consider.  This implies that if common subproblems do exist, they must be at 
the same level of the tree.  And indeed at each level of the tree each node has the 
same set of items to consider taking.  However, we can see by looking at the 
labels in Figure 18.5 that each node at a level represents a different set of 
choices about the items considered higher in the tree. 

Think about what problem is being solved at each node.  The problem being 
solved is finding the optimal items to take from those left to consider, given the 
remaining available weight.  The available weight depends upon the total weight 
of the items taken, but not on which items are taken or the total value of the 
items taken.  So, for example, in Figure 18.5, nodes 2 and 7 are actually solving 
the same problem: deciding which elements of [c,d] should be taken, given that 
the available weight is 2. 

def buildManyItems(numItems, maxVal, maxWeight): 
    items = [] 
    for i in range(numItems): 
        items.append(Item(str(i), 
                          random.randint(1, maxVal), 
                          random.randint(1, maxWeight))) 
    return items 
 
def bigTest(numItems): 
    items = buildManyItems(numItems, 10, 10) 
    val, taken = maxVal(items, 40) 
    print 'Items Taken' 
    for item in taken: 
        print item 
    print 'Total value of items taken =', val 
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The code in Figure 18.8 exploits the optimal substructure and overlapping 
subproblems to provide a dynamic programming solution to the 0/1 knapsack 
problem.  An extra parameter, memo, has been added to keep track of solutions to 
subproblems that have already been solved.  It is implemented using a 
dictionary with a key constructed from the length of toConsider and the 
available weight.  The expression len(toConsider) is a compact way of 
representing the items still to be considered.  This works because items are 
always removed from the same end (the front) of the list toConsider. 

 

 
Figure 18.8  Dynamic programming solution to knapsack problem 

Figure 18.9 shows the number of calls made when we ran the code on problems 
of various sizes. 

def fastMaxVal(toConsider, avail, memo = {}): 
    """Assumes toConsider a list of items, avail a weight 
         memo used only by recursive calls 
       Returns a tuple of the total weight of a solution to the 
         0/1 knapsack problem and the items of that solution""" 
    if (len(toConsider), avail) in memo: 
        result = memo[(len(toConsider), avail)] 
    elif toConsider == [] or avail == 0: 
        result = (0, ()) 
    elif toConsider[0].getWeight() > avail: 
        #Explore right branch only 
        result = fastMaxVal(toConsider[1:], avail, memo) 
    else: 
        nextItem = toConsider[0] 
        #Explore left branch 
        withVal, withToTake =\ 
                 fastMaxVal(toConsider[1:], 
                            avail - nextItem.getWeight(), memo) 
        withVal += nextItem.getValue() 
        #Explore right branch 
        withoutVal, withoutToTake = fastMaxVal(toConsider[1:], 
                                                avail, memo) 
        #Choose better branch 
        if withVal > withoutVal: 
            result = (withVal, withToTake + (nextItem,)) 
        else: 
            result = (withoutVal, withoutToTake) 
    memo[(len(toConsider), avail)] = result 
    return result 
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len(Items) Number of items 
selected 

Number of calls 

4 4 31 

8 6 337 

16 9 1,493 

32 12 3,650 

64 19 8,707 

128 27 18.306 

256 40 36,675 

Figure 18.9  Performance of dynamic programming solution 

The growth is hard to quantify, but it is clearly far less than exponential.123  But 
how can this be, since we know that the 0/1 knapsack problem is inherently 
exponential in the number of items?  Have we found a way to overturn 
fundamental laws of the universe?  No, but we have discovered that 
computational complexity can be a subtle notion.124 

The running time of fastMaxVal is governed by the number of distinct 
<toConsider, avail> pairs generated.  This is because the decision about what 
to do next depends only upon the items still available and the total weight of the 
items already taken. 

The number of possible values of toConsider is bounded by len(items). 

The number of possible values of avail is more difficult to characterize.  It is 
bounded from above by the maximum number of distinct totals of weights of the 
items that the knapsack can hold. If the knapsack can hold at most n items 
(based on the capacity of the knapsack and the weights of the available items), 
avail can take on at most 2n different values.  In principle, this could be a 
rather large number.  However, in practice, it is not usually so large.  Even if the 
knapsack has a large capacity, if the weights of the items are chosen from a 
reasonably small set of possible weights, many sets of items will have the same 
total weight, greatly reducing the running time.  

This algorithm falls into a complexity class called pseudo polynomial. A careful 
explanation of this concept is beyond the scope of this book.  Roughly speaking, 
fastMaxVal is exponential in the number of bits needed to represent the 
possible values of avail. 

                                                

123 Since 2128 = 340,282,366,920,938,463,463,374,607,431,768,211,456 

124 OK, “discovered” may be too strong a word.  People have known this for a long time.  
You probably figured it out around Chapter 9. 
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To see what happens when the the values of avail are chosen from a 
considerably larger space, change the call to fastMaxVal in Figure 18.7 to 

val, taken = fastMaxVal(items, 1000) 

Finding a solution now takes 1,802,817 calls of fastMaxVal when the number of 
items is 256. 

To see what happens when the weights are chosen from an enormous space, we 
can choose the possible weights from the positive reals rather than the positive 
integers.  To do this, replace the line, 

items.append(Item(str(i), 
                  random.randint(1, maxVal), 
                  random.randint(1, maxWeight))) 

in buildManyItems by the line 

items.append(Item(str(i), 
                  random.randint(1, maxVal), 
                  random.randint(1, maxWeight)*random.random())) 

Don’t hold your breath waiting for this last test to finish.  Dynamic programming 
may be a miraculous technique in the common sense of the word,125 but it is not 
capable of performing miracles in the liturgical sense.  

 

18.3 Dynamic Programming and Divide-and-Conquer 

Like divide-and-conquer algorithms, dynamic programming is based upon 
solving independent subproblems and then combining those solutions.  There 
are, however, some important differences. 

Divide-and-conquer algorithms are based upon finding subproblems that are 
substantially smaller than the original problem.  For example, merge sort works 
by dividing the problem size in half at each step.  In contrast, dynamic 
programming involves solving problems that are only slightly smaller than the 
original problem.  For example, computing the 19th Fibonacci number is not a 
substantially smaller problem than computing the 20th Fibonacci number.  

Another important distinction is that the efficiency of divide-and-conquer 
algorithms does not depend upon structuring the algorithm so that the same 
problems are solved repeatedly.  In contrast, dynamic programming is efficient 
only when the number of distinct subproblems is significantly smaller than the 
total number of subproblems.  

 

 

                                                

125 Extraordinary and bringing welcome consequences. 



 

    

19  A QUICK LOOK AT MACHINE LEARNING 
 

The amount of digital data in the world has been growing at a rate that defies 
human comprehension.  The world’s data storage capacity has doubled about 
every three years since the 1980s.  During the time it will take you to read this 
chapter, approximately 1018 bits of data will be added to the world’s store.  It’s 
not easy to relate to a number that large.  One way to think about it is that 1018 
Canadian pennies would have a surface area roughly twice that of the earth.  

Of course, more data does not always lead to more useful information.  
Evolution is a slow process, and the ability of the human mind to assimilate 
data has, alas, not doubled every three years.  One approach that the world is 
using to attempt to exploit what has come to be known as “big data” is 
statistical machine learning.   

Machine learning is hard to define.  One of the earliest definitions was proposed 
by the American electrical engineer and computer scientist Arthur Samuel,126 
who defined it as a “Field of study that gives computers the ability to learn 
without being explicitly programmed.”  Of course, in some sense, every useful 
program learns something.  For example, an implementation of Newton’s method 
learns the roots of a polynomial. 

Humans learn things in two ways—memorization and generalization.  We use 
memorization to accumulate individual facts.  In England, for example, primary 
school students might learn a list of English monarchs.  Humans use 
generalization to deduce new facts from old facts.  A student of political science, 
for example, might observe the behavior of a large number of politicians and 
generalize to conclude that all politicians are likely to make decisions intended 
to enhance their chances of staying in office. 

When computer scientists speak about machine learning, they most often mean 
the field of writing programs that automatically learn to make useful inferences 
from implicit patterns in data.  For example, linear regression (see Chapter 15) 
learns a curve that is a model of a collection of examples.  That model can then 
be used to make predictions about previously unseen examples. 

In general, machine learning involves observing a set of examples that represent 
incomplete information about some statistical phenomenon, and then 
attempting to infer something about the process that generated those examples.  
The examples are frequently called training data. 

                                                

126 Samuel is probably best known as the author of program that played checkers.  The 
program, which he started working on in the 1950s and continued to work on into the 
1970s, was impressive for its time, though not particularly good by modern standards.  
However, while working on it Samuel invented several techniques that are still used 
today.  Among other things, Samuel’s checker-playing program was quite possibly the 
first program ever written that improved based upon “experience.” 
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Suppose, for example, you were given the following two sets of people: 

A: {Abraham Lincoln, George Washington, Charles de Gaulle} 
B: {Benjamin Harrison, James Madison, Louis Napoleon} 

Now, suppose that you were provided with the following partial descriptions of 
each of them: 

Abraham Lincoln: American, President, 193 cm tall 
George Washington: American, President, 189 cm tall 
Benjamin Harrison: American, President, 168 cm tall 
James Madison: American, President, 163 cm tall 
Louis Napoleon: French, President, 169 cm tall 
Charles de Gaulle: French, President, 196 cm tall 

Based on this incomplete information about these historical figures, you might 
infer that the process that assigned these examples to the set labeled A or the 
set labeled B involved separating tall presidents from shorter ones.  

The incomplete information is typically called a feature vector.  Each element of 
the vector describes some aspect (i.e., feature) of the example. 

There are a large number of different approaches to machine learning, but all try 
to learn a model that is a generalization of the provided examples.  All have three 
components: 

• A representation of the model, 

• An objective function for assessing the goodness of the model, and 

• An optimization method for learning a model that minimizes or 
maximizes the value of the objective function. 

Broadly speaking, machine learning algorithms can be thought of as either 
supervised or unsupervised. 

In supervised learning, we start with a set of feature vector/label pairs.127  The 
goal is to derive from these examples a rule that predicts the label associated 
with a previously unseen feature vector.  For example, given the sets A and B, a 
learning algorithm might infer that all tall presidents should be labeled A and all 
short presidents labeled B.  When asked to assign a label to  

Thomas Jefferson: American, President, 189 cm. 

it would then choose label A. 

Supervised machine learning is broadly used in practice for such tasks as 
detecting fraudulent use of credit cards and recommending movies to people.  
The best algorithms are quite sophisticated, and understanding them requires a 
level of mathematical sophistication well beyond that assumed for this book.  
Consequently, we will not cover them here.  

                                                

127 Much of the machine learning literature uses the word “class” rather than “label.”  
Since we use the word “class” for something else in this book, we will stick to using 
“label” for this concept. 



 

264  Chapter 19. A Quick Look at Machine Learning 

In unsupervised learning, we are given a set of feature vectors but no labels.  
The goal of unsupervised learning is to uncover latent structure in the set of 
feature vectors.  For example, given the set of presidential feature vectors, an 
unsupervised learning algorithm might separate the presidents into tall and 
short, or perhaps into American and French. 

The most popular unsupervised learning techniques are designed to find 
clusters of similar feature vectors.  Geneticists, for example, use clustering to 
find groups of related genes.  Many popular clustering methods are surprisingly 
simple.  We will present the most widely used algorithm later in this chapter.  
First, however, we want to say a few words about feature extraction. 

19.1 Feature Vectors 

The concept of signal-to-noise ratio (SNR) is used in many branches of 
engineering and science.  The precise definition varies across applications, but 
the basic idea is simple.  Think of it as the ratio of useful input to irrelevant 
input.  In a restaurant, the signal might be the voice of your dinner date, and 
the noise the voices of the other diners.128  If we were trying to predict which 
students would do well in a programming course, previous programming 
experience and mathematical aptitude would be part of the signal, but gender 
merely noise.  Separating the signal from the noise is not always easy.  And 
when it is done poorly, the noise can be a distraction that obscures the truth in 
the signal.  

The purpose of feature extraction is to separate those features in the available 
data that contribute to the signal from those that are merely noise.  Failure to do 
an adequate job of this introduces two kinds of problems: 

1. Irrelevant features can lead to a bad model.  The danger of this is 
particularly high when the dimensionality of the data (i.e., the number of 
different features) is large relative to the number of samples. 

2. Irrelevant features can greatly slow the learning process.  Machine 
learning algorithms are often computationally intensive, and complexity 
grows with both the number of examples and the number of features. 

The goal of feature extraction is to reduce the vast amount of information that 
might be available in examples to information from which it will be productive to 
generalize.  Imagine, for example, that your goal is to learn a model that will 
predict whether a person likes to drink wine.  Some attributes, e.g., age and the 
nation in which they live, are likely to be relevant.  Other attributes, e.g., 
whether they are left-handed, are less likely to be relevant. 

Feature extraction is difficult.  In the context of supervised learning, one can try 
to select those features that are correlated with the labels of the examples.  In 

                                                

128 Unless your dinner date is exceedingly boring.  In which case, your dinner date’s 
conversation becomes the noise, and the conversation at the next table the signal. 
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unsupervised learning, the problem is harder.  Typically, we choose features 
based upon our intuition about which features might be relevant to the kinds of 
structure we would like to find. 

Consider Figure 19.1, which contains a table of feature vectors and the label 
(reptile or not) with which each vector is associated. 

Name Egg-
laying 

Scales Poisonous Cold-
blooded 

# 
Legs 

Reptile 

Cobra True True True True 0 Yes 

Rattlesnake True True True True 0 Yes 

Boa constrictor False True False True 0 Yes 

Alligator True True False True 4 Yes 

Dart frog True False True False 4 No 

Salmon True True False True 0 No 

Python True True False True 0 Yes 

Figure 19.1 Name, features and labels for assorted animals 

A supervised machine learning algorithm (or a human) given only the 
information about cobras cannot do much more than to remember the fact that 
a cobra is a reptile.  Now, let’s add the information about rattlesnakes.  We can 
begin to generalize, and might infer the rule that an animal is a reptile if it lays 
eggs, has scales, is poisonous, is cold-blooded, and has no legs. 

Now, suppose we are asked to decide if a boa constrictor is a reptile.  We might 
answer “no,” because a boa constrictor is neither poisonous nor egg-laying.  But 
this would be the wrong answer.  Of course, it is hardly surprising that 
attempting to generalize from two examples might lead us astray.  Once we 
include the boa constrictor in our training data, we might formulate the new 
rule that an animal is a reptile if it is has scales, is cold-blooded, and is legless.  
In doing so, we are discarding the features egg-laying and poisonous as 
irrelevant to the classification problem. 

If we use the new rule to classify the alligator, we conclude incorrectly that since 
it has legs it is not a reptile.  Once we include the alligator in the training data 
we reformulate the rule to allow reptiles to have either none or four legs.  When 
we look at the dart frog, we correctly conclude that it is not a reptile, since it is 
not cold-blooded.  However, when we use our current rule to classify the 
salmon, we incorrectly conclude that a salmon is a reptile.  We can add yet more 
complexity to our rule, to separate salmon from alligators, but it’s a losing 
battle.  There is no way to modify our rule so that it will correctly classify both 
salmon and pythons—since the feature vectors of these two species are 
identical. 

This kind of problem is more common than not in machine learning.  It is quite 
rare to have feature vectors that contain enough information to classify things 
perfectly.  In this case, the problem is that we don’t have enough features.  If we 
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had included the fact that reptile eggs have amnios,129 we could devise a rule 
that separates reptiles from fish.  Unfortunately, in most practical applications 
of machine learning it is not possible to construct feature vectors that allow for 
perfect discrimination. 

Does this mean that we should give up because all of the available features are 
mere noise?  No.  In this case the features scales and cold-blooded are 
necessary conditions for being a reptile, but not sufficient conditions.  The rule 
has scales and is cold-blooded will not yield any false negatives, i.e., any 
animal classified as a non-reptile will indeed not be a reptile.  However, it will 
yield some false positives, i.e., some of the animals classified as reptiles will not 
be reptiles. 

19.2 Distance Metrics 

In Figure 19.1 we described animals using four binary features and one integer 
feature.  Suppose we want to use these features to evaluate the similarity of two 
animals, e.g., to ask, is a boa constrictor more similar to a rattlesnake or to a 
dart frog?130 

The first step in doing this kind of comparison is converting the features for each 
animal into a sequence of numbers.  If we say True = 1 and False = 0, we get 
the following feature vectors: 

Rattlesnake: [1,1,1,1,0] 
Boa constrictor: [0,1,0,1,0] 
Dart frog: [1,0,1,0,4] 

There are many different ways to compare the similarity of vectors of numbers.  
The most commonly used metrics for comparing equal-length vectors are based 
on the Minkowski distance: 

!"#$%&'( !1,!2, ! = ( !"# !1! − !2! !
!"#

!!!

)! ! 

The parameter p defines the kinds of paths that can be followed in traversing the 
distance between the vectors !1 and !2.  This can be 
mostly easily visualized if the vectors are of length two, 
and represent Cartesian coordinates.  Consider the picture 
on the left.  Is the circle in the bottom left corner closer to 
the cross or to the star?  It depends.  If we can travel in a 
straight line, the cross is closer.  The Pythagorean 
Theorem tells us that the cross is the square root of 8 
units from the circle, about 2.8 units, whereas we can 

                                                

129 Amnios are protective outer layers that allow eggs to be laid on land rather than in the 
water. 

130 This question is not quite as silly as it sounds.  A naturalist and a toxicologist (or 
someone looking to enhance the effectiveness of a blow dart) might give different answers 
to this question. 
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easily see that the star is 3 units from the circle.  These distances are called 
Euclidean distances, and correspond to using the Minkowski distance with p = 2.  
But imagine that the lines in the picture correspond to streets, and that one has 
to stay on the streets to get from one place to another.  In that case, the star 
remains 3 units from the circle, but the cross is now 4 units away.  These 
distances are called Manhattan distances,131 and correspond to using the 
Minkowski distance with p = 1. 

Figure 19.2 contains an implementation of the Minkowski distance. 

 

Figure 19.2 Minkowski distance 

Figure 19.3 contains class Animal.  It defines the distance between two animals 
as the Euclidean distance between the feature vectors associated with the 
animals.  

 

Figure 19.3 Class Animal 

Figure 19.4 contains a function that compares a list of animals to each other, 
and produces a table showing the pairwise distances. 

                                                

131 Manhattan Island is the most densely populated borough of New York City.  On most 
of the island, the streets are laid out in a grid, so using the Minkowski distance with p = 1 
provides a good approximation of the distance one has to travel to walk from one place 
(say the Museum of Modern Art at 53rd Street and 6th Avenue) to another (say the 
American Folk Art Museum at 66th Street and 9th, also called Columbus Avenue).  Driving 
in Manhattan is a totally different story. 

def minkowskiDist(v1, v2, p): 
    """Assumes v1 and v2 are equal-length arrays of numbers 
       Returns Minkowski distance of order p between v1 and v2""" 
    dist = 0.0 
    for i in range(len(v1)): 
        dist += abs(v1[i] - v2[i])**p 
    return dist**(1.0/p) 

class Animal(object): 
    def __init__(self, name, features): 
        """Assumes name a string; features a list of numbers""" 
        self.name = name 
        self.features = pylab.array(features) 
         
    def getName(self): 
        return self.name 
     
    def getFeatures(self): 
        return self.features 
     
    def distance(self, other): 
        """Assumes other an animal 
           Returns the Euclidean distance between feature vectors 
              of self and other""" 
        return minkowskiDist(self.getFeatures(), 
                             other.getFeatures(), 2) 
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Figure 19.4 Build table of distances between pairs of animals 

The code uses a PyLab plotting facility that we have not previously used: table. 

The table function produces a plot that (surprise!) looks like a table.  The 
keyword arguments rowLabels and colLabels are used to supply the labels (in 
this example the names of the animals) for the rows and columns.  The keyword 
argument cellText is used to supply the values appearing in the cells of the 
table.  In the example, cellText is bound to tableVals, which is a list of lists of 
strings.  Each element in tableVals is a list of the values for the cells in one row 
of the table.  The keyword argument cellLoc is used to specify where in each 
cell the text should appear, and the keyword argument loc is used to specify 
where in the figure the table itself should appear.  The last keyword parameter 
used in the example is colWidths.  It is bound to a list of floats giving the width 
(in inches) of each column in the table.  The code table.scale(1, 2.5) instructs 
PyLab to leave the horizontal width of the cells unchanged, but to increase the 
height of the cells by a factor of 2.5 (so the tables look prettier). 

def compareAnimals(animals, precision): 
    """Assumes animals is a list of animals, precision an int >= 0 
       Builds a table of Euclidean distance between each animal""" 
    #Get labels for columns and rows 
    columnLabels = [] 
    for a in animals: 
        columnLabels.append(a.getName()) 
    rowLabels = columnLabels[:] 
    tableVals = [] 
    #Get distances between pairs of animals 
    #For each row 
    for a1 in animals: 
        row = [] 
        #For each column 
        for a2 in animals: 
            if a1 == a2: 
                row.append('--') 
            else: 
                distance = a1.distance(a2) 
                row.append(str(round(distance, precision))) 
        tableVals.append(row) 
    #Produce table 
    table = pylab.table(rowLabels = rowLabels, 
                        colLabels = columnLabels, 
                        cellText = tableVals, 
                        cellLoc = 'center', 
                        loc = 'center', 
                        colWidths = [0.2]*len(animals)) 
    table.scale(1, 2.5) 
    pylab.axis('off') #Don't display x and y-axes 
    pylab.savefig('distances') 
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If we run the code 

rattlesnake = Animal('rattlesnake', [1,1,1,1,0]) 
boa = Animal('boa\nconstrictor', [0,1,0,1,0]) 
dartFrog = Animal('dart frog', [1,0,1,0,4]) 
animals = [rattlesnake, boa, dartFrog] 
compareAnimals(animals, 3) 

it produces a figure containing the table 

 

As you probably expected, the distance between the rattlesnake and the boa 
constrictor is less than that between either of the snakes and the dart frog.  
Notice, by the way, that the dart frog does seem to be a bit closer to the 
rattlesnake than to the boa. 

Now, let’s add to the bottom of the above code the lines 

alligator = Animal('alligator', [1,1,0,1,4]) 
animals.append(alligator) 
compareAnimals(animals, 3) 

It produces the table 

 

Perhaps you’re surprised that the alligator is considerably closer to the dart frog 
than to either the rattlesnake or the boa constrictor.  Take a minute to think 
about why. 

The feature vector for the alligator differs from that of the rattlesnake in two 
places: whether it is poisonous and the number of legs.  The feature vector for 
the alligator differs from that of the dart frog in three places: whether it is 
poisonous, whether it has scales, and whether it is cold-blooded.  Yet according 
to our distance metric the alligator is more like the dart frog than like the 
rattlesnake.  What’s going on? 

The root of the problem is that the different features have different ranges of 
values.  All but one of the features range between 0 and 1, but the number of 
legs ranges from 0 to 4.  This means that when we calculate the Euclidean 
distance the number of legs gets disproportionate weight.  Let’s see what 
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happens if we turn the feature into a binary feature, with a value of 0 if the 
animal is legless and 1 otherwise. 

 

This looks a lot more plausible. 

Of course, it is not always convenient to use only binary features.  In Section 
19.7 we will present a more general approach to dealing with differences in scale 
among features. 

19.3 Clustering 

Clustering can be defined as the process of organizing objects into groups 
whose members are similar in some way.  A key issue is defining the meaning of 
“similar.” 

Consider the plot on the right, which shows the 
height, weight, and whether or not they are 
wearing a striped shirt for 13 people.  

If we want to cluster people by height, there are 
two obvious clusters—delimited by the dotted 
horizontal line. If we want to cluster people by 
weight there are two different obvious 
clusters—delimited by the solid vertical line. If 
we want to cluster people based on their shirt, 
there is yet a third clustering—delimited by the angled dotted arrows.  Notice, by 
the way, that this last division is not linear, i.e., we cannot separate the people 
wearing striped shirts from the others using a single straight line. 

Clustering is an optimization problem.  The goal is to find a set of clusters that 
optimizes an objective function, subject to some set of constraints.  Given a 
distance metric that can be used to decide how close two examples are to each 
other, we need to define an objective function that 

• Minimizes the distance between examples in the same clusters, i.e., 
minimizes the dissimilarity of the examples within a cluster. 

As we will see later, the exact definition of the objective function can greatly 
influence the outcome. 

A good measure of how close the examples within a single cluster, c,  are to each 
other is variance.  To compute the variance of the examples within a cluster, we 
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first compute the mean of the feature vectors of all the examples in the cluster.  
If V is a list of feature vectors each of which is an array of numbers, the mean 
(more precisely the Euclidean mean) is the value of the expression 
sum(V)/float(len(V)).  Given the mean and a metric for computing the distance 
between feature vectors, the variance of a cluster is 

!"#$"%&' ! = !"#$%&'((!"#$ ! , !)!
!∈!

!   

Notice that the variance is not normalized by the size of the cluster, so clusters 
with more points are likely to look less cohesive according to this measure.  If 
one wants to compare the coherence of two clusters of different sizes, one needs 
to divide the variance of each by the size of the cluster.  

The definition of variance within a single cluster, c,  can be extended to define a 
dissimilarity metric for a set of clusters, C: 

!"##"$"%&'"() ! = !"#$"%&'(!)
!∈!

 

Notice that since we don’t divide the variance by the size of the cluster, a large 
incoherent cluster increases the value of dissimilarity(C) more than a small 
incoherent cluster does. 

So, is the optimization problem to find a set of clusters, C, such that 
dissimilarity(C) is minimized?  Not exactly.  It can easily be minimized by putting 
each example in its own cluster.  We need to add some constraint.  For example, 
we could put a constraint on the distance between clusters or require that the 
maximum number of clusters is k. 

In general, solving this optimization problem is computationally prohibitive for 
most interesting problems.  Consequently, people rely on greedy algorithms that 
provide approximate solutions.  Later in this chapter, we present one such 
algorithm, k-means clustering.  But first we will introduce some abstractions 
that are useful for implementing that algorithm (and other clustering algorithms 
as well).  
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19.4 Types Example and Cluster 

Class Example will be used to build the samples to be clustered.  Associated with 
each example is a name, a feature vector, and an optional label.  The distance 
method returns the Euclidean distance between two examples. 

 

Figure 19.5 Class Example 

Class Cluster, Figure 19.6, is slightly more complex.  Think of a cluster as a set 
of examples.  The two interesting methods in Cluster are computeCentroid and 
variance.  Think of the centroid of a cluster as its center of mass.  The method 
computeCentroid returns an example with a feature vector equal to the 
Euclidean mean of the feature vectors of the examples in the cluster.  The 
method variance provides a measure of the coherence of the cluster. 

class Example(object): 
     
    def __init__(self, name, features, label = None): 
        #Assumes features is an array of numbers 
        self.name = name 
        self.features = features 
        self.label = label 
         
    def dimensionality(self): 
        return len(self.features) 
     
    def getFeatures(self): 
        return self.features[:] 
     
    def getLabel(self): 
        return self.label 
     
    def getName(self): 
        return self.name 
     
    def distance(self, other): 
        return minkowskiDist(self.features, other.getFeatures(), 2) 
     
    def __str__(self): 
        return self.name +':'+ str(self.features) + ':' + str(self.label) 
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Figure 19.6 Class Cluster 

  

class Cluster(object): 
     
    def __init__(self, examples, exampleType): 
        """Assumes examples is a list of example of type exampleType""" 
        self.examples = examples 
        self.exampleType = exampleType 
        self.centroid = self.computeCentroid() 
         
    def update(self, examples): 
        """Replace the examples in the cluster by new examples 
           Return how much the centroid has changed""" 
        oldCentroid = self.centroid 
        self.examples = examples 
        if len(examples) > 0: 
            self.centroid = self.computeCentroid() 
            return oldCentroid.distance(self.centroid) 
        else: 
            return 0.0 
         
    def members(self): 
        for e in self.examples: 
            yield e 
         
    def size(self): 
        return len(self.examples) 
     
    def getCentroid(self): 
        return self.centroid 
     
    def computeCentroid(self): 
        dim = self.examples[0].dimensionality() 
        totVals = pylab.array([0.0]*dim) 
        for e in self.examples: 
            totVals += e.getFeatures() 
        centroid = self.exampleType('centroid', 
                              totVals/float(len(self.examples))) 
        return centroid 
     
    def variance(self): 
        totDist = 0.0 
        for e in self.examples: 
            totDist += (e.distance(self.centroid))**2 
        return totDist**0.5 
     
    def __str__(self): 
        names = [] 
        for e in self.examples: 
            names.append(e.getName()) 
        names.sort() 
        result = 'Cluster with centroid '\ 
                 + str(self.centroid.getFeatures()) + ' contains:\n  ' 
        for e in names: 
            result = result + e + ', ' 
        return result[:-2] 
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19.5 K-means Clustering 

K-means clustering is probably the most widely used clustering method.132  Its 
goal is to partition a set of examples into k clusters such that 

1. Each example is in the cluster whose centroid is the closest centroid to 
that example, and 

2. The dissimilarity of the set of clusters is minimized. 

Unfortunately, finding an optimal solution to this problem on a large dataset is 
computationally intractable.  Fortunately, there is an efficient greedy 
algorithm133 that can be used to find a useful approximation.  It is described by 
the pseudocode 

randomly choose k examples as initial centroids 
while true: 
  1) create k clusters by assigning each example to closest centroid 
  2) compute k new centroids by averaging the examples in each cluster 
  3) if none of the centroids differ from the previous iteration: 
      return the current set of clusters 

The complexity of step 1 is O(k*n*d), where k is the number of clusters, n is the 
number of examples, and d the time required to compute the distance between a 
pair of examples.  The complexity of step 2 is O(n), and the complexity of step 3 is 
O(k).  Hence, the complexity of a single iteration is O(k*n*d).  If the examples are 
compared using the Minkowski distance, d is linear in the length of the feature 
vector.134  Of course, the complexity of the entire algorithm depends upon the 
number of iterations.  That is not easy to characterize, but suffice it to say that 
it is usually small. 

One problem with the k-means algorithm is that it is nondeterministic—the 
value returned depends upon the initial set of randomly chosen centroids.  If a 
particularly unfortunate set of initial centroids is chosen, the algorithm might 
settle into a local optimum that is far from the global optimum.  In practice, this 
problem is typically addressed by running k-means multiple times with 
randomly chosen initial centroids.  We then choose the solution with the 
minimum dissimilarity of clusters.  

Figure 19.7 contains a straightforward translation of the pseudocode describing 
k-means into Python.  It uses random.sample(examples, k) to get the initial 
centroids.  This invocation returns a list of k randomly chosen distinct elements 
from the list examples. 

                                                

132 Though k-means clustering is probably the most commonly used clustering method, it 
is not the most appropriate method in all situations.  Two other widely used methods, not 
coverd in this book, are hierarchical clustering and EM-clustering. 

133 The most widely used k-means algorithm is attributed to James McQueen, and was 
first published in 1967.  However, other approaches to k-means clustering were used as 
early as the 1950s. 

134 Unfortunately, in many applications we need to use a distance metric, e.g., earth-
movers distance or dynamic-time-warping distance, that have a higher computational 
complexity. 
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Figure 19.7 K-means clustering 

Figure 19.8 contains a function, trykmeans, that calls kmeans multiple times and 
selects the result with the lowest dissimilarity. 

 

def kmeans(examples, exampleType, k, verbose): 
    """Assumes examples is a list of examples of type exampleType, 
         k is a positive int, verbose is a Boolean 
       Returns a list containing k clusters. If verbose is 
         True it prints result of each iteration of k-means""" 
    #Get k randomly chosen initial centroids 
    initialCentroids = random.sample(examples, k) 
     
    #Create a singleton cluster for each centroid 
    clusters = [] 
    for e in initialCentroids: 
        clusters.append(Cluster([e], exampleType)) 
         
    #Iterate until centroids do not change 
    converged = False 
    numIterations = 0 
    while not converged: 
        numIterations += 1 
        #Create a list containing k distinct empty lists 
        newClusters = [] 
        for i in range(k): 
            newClusters.append([]) 
 
        #Associate each example with closest centroid 
        for e in examples: 
            #Find the centroid closest to e 
            smallestDistance = e.distance(clusters[0].getCentroid()) 
            index = 0 
            for i in range(1, k): 
                distance = e.distance(clusters[i].getCentroid()) 
                if distance < smallestDistance: 
                    smallestDistance = distance 
                    index = i 
            #Add e to the list of examples for the appropriate cluster 
            newClusters[index].append(e) 
             
        #Upate each cluster; check if a centroid has changed 
        converged = True 
        for i in range(len(clusters)): 
            if clusters[i].update(newClusters[i]) > 0.0: 
                converged = False 
        if verbose: 
            print 'Iteration #' + str(numIterations) 
            for c in clusters: 
                print c 
            print '' #add blank line 
    return clusters 
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Figure 19.8 Finding the best k-means clustering 

19.6 A Contrived Example 

Figure 19.9 contains code that generates, plots, and clusters examples drawn 
from two distributions. 

The function genDistributions generates a list of n examples with two-
dimensional feature vectors.  The values of the elements of these feature vectors 
are drawn from normal distributions. 

The function plotSamples plots the feature vectors of a set of examples.  It uses 
another PyLab plotting feature that we have not yet seen:  the function annotate 
is used to place text next to points on the plot.  The first argument is the text, 
the second argument the point with which the text is associated, and the third 
argument the location of the text relative to the point with which it is associated. 

The function contrivedTest uses genDistributions to create two distributions of 
ten examples each with the same standard deviation but different means, plots 
the examples using plotSamples, and then clusters them using trykmeans. 

 

def dissimilarity(clusters): 
    totDist = 0.0 
    for c in clusters: 
        totDist += c.variance() 
    return totDist 
     
def trykmeans(examples, exampleType, numClusters, numTrials, 
              verbose = False): 
    """Calls kmeans numTrials times and returns the result with the 
          lowest dissimilarity""" 
    best = kmeans(examples, exampleType, numClusters, verbose) 
    minDissimilarity = dissimilarity(best) 
    for trial in range(1, numTrials): 
        clusters = kmeans(examples, exampleType, numClusters, verbose) 
        currDissimilarity = dissimilarity(clusters) 
        if currDissimilarity < minDissimilarity: 
            best = clusters 
            minDissimilarity = currDissimilarity 
    return best 
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Figure 19.9 A test of k-means 

When executed, the call contrivedTest(1, 2, True) produced the plot in Figure 
19.10. 

 

Figure 19.10 Examples from two distributions 

def genDistribution(xMean, xSD, yMean, ySD, n, namePrefix): 
    samples = [] 
    for s in range(n): 
        x = random.gauss(xMean, xSD) 
        y = random.gauss(yMean, ySD) 
        samples.append(Example(namePrefix+str(s), [x, y])) 
    return samples 
 
def plotSamples(samples, marker): 
    xVals, yVals = [], [] 
    for s in samples: 
        x = s.getFeatures()[0] 
        y = s.getFeatures()[1] 
        pylab.annotate(s.getName(), xy = (x, y), 
                       xytext = (x+0.13, y-0.07), 
                       fontsize = 'x-large') 
        xVals.append(x) 
        yVals.append(y) 
    pylab.plot(xVals, yVals, marker) 
 
def contrivedTest(numTrials, k, verbose): 
    random.seed(0) 
    xMean = 3 
    xSD = 1 
    yMean = 5 
    ySD = 1 
    n = 10 
    d1Samples = genDistribution(xMean, xSD, yMean, ySD, n, '1.') 
    plotSamples(d1Samples, 'b^') 
    d2Samples = genDistribution(xMean+3, xSD, yMean+1, ySD, n, '2.') 
    plotSamples(d2Samples, 'ro') 
    clusters = trykmeans(d1Samples + d2Samples, Example, k, 
                         numTrials, verbose) 
    print 'Final result' 
    for c in clusters: 
        print '', c 
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and printed 

Iteration 1 
 Cluster with centroid [ 4.57800047  5.35921276] contains: 
  1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 2.0, 2.1, 2.2, 2.3, 
2.4, 2.5, 2.6, 2.7, 2.8, 2.9 
 Cluster with centroid [ 3.79646584  2.99635148] contains: 
  1.9 
 
Iteration 2 
 Cluster with centroid [ 4.80105783  5.73986393] contains: 
  1.1, 1.2, 1.4, 1.5, 1.6, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,  
2.8, 2.9 
 Cluster with centroid [ 3.75252146  3.74468698] contains: 
  1.0, 1.3, 1.7, 1.8, 1.9 
 
Iteration 3 
 Cluster with centroid [ 5.6388835   6.02296994] contains: 
  1.6, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 
 Cluster with centroid [ 3.19452848  4.28541384] contains: 
  1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 1.8, 1.9 
 
Iteration 4 
 Cluster with centroid [ 5.93613865  5.96069975] contains: 
  2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 
 Cluster with centroid [ 3.14170883  4.52143963] contains: 
  1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 
 
Iteration 5 
 Cluster with centroid [ 5.93613865  5.96069975] contains: 
  2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 
 Cluster with centroid [ 3.14170883  4.52143963] contains: 
  1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 
 
Final result 
 Cluster with centroid [ 5.93613865  5.96069975] contains: 
  2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 
 Cluster with centroid [ 3.14170883  4.52143963] contains: 
  1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 

Notice that the initial (randomly chosen) centroids led to a highly skewed 
clustering in which a single cluster contained all but one of the points.  By the 
fifth iteration, however, the centroids had moved to places such that the points 
from the two distributions were cleanly separated into two clusters.  Given that 
a straight line can be used to separate the points generated from the first 
distribution from those generated by from the second distribution, it is not 
terribly surprising that k-means converged on this clustering. 

When we tried 40 trials rather than 1, by calling contrivedTest(40, 2, False), it 
printed 

Final result 
 Cluster with centroid [ 6.07470389  5.67876712] contains: 
  1.8, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 
 Cluster with centroid [ 3.00314359  4.80337227] contains: 
  1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.9 

This indicates that the solution found using 1 trial, despite perfectly separating 
the examples by the distribution from which they were chosen, was not as good 
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(with respect to minimizing the objective function) as one of the solutions found 
using 40 trials. 

 

Finger exercise: Draw lines on Figure 19.10 to show the separations found by 
our two attempts to cluster the points.  Do you agree that the solution found 
using 40 trials is better than the one found using 1 trial? 

 

 

One of the key issues in using k-means 
clustering is choosing k.  Consider the 
points in the plot on the right, which 
were generated using contrivedTest2, 
Figure 19.11.  This function generates 
and clusters points from three 
overlapping Gaussian distributions. 

 

 

 

Figure 19.11 Generating points from three distributions 

The invocation contrivedTest2(40, 2, False) prints 

Final result 
 Cluster with centroid [ 7.66239972  3.55222681] contains: 
  2.0, 2.1, 2.3, 2.6 
 Cluster with centroid [ 3.36736761  6.35376823] contains: 
  1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 2.2, 2.4, 2.5, 2.7, 3.0, 
3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 

def contrivedTest2(numTrials, k, verbose): 
    random.seed(0) 
    xMean = 3 
    xSD = 1 
    yMean = 5 
    ySD = 1 
    n = 8 
    d1Samples = genDistribution(xMean,xSD, yMean, ySD, n, '1.') 
    plotSamples(d1Samples, 'b^') 
    d2Samples = genDistribution(xMean+3,xSD,yMean, ySD, n, '2.') 
    plotSamples(d2Samples, 'ro') 
    d3Samples = genDistribution(xMean, xSD, yMean+3, ySD, n, '3.') 
    plotSamples(d3Samples, 'gd') 
    clusters = trykmeans(d1Samples + d2Samples + d3Samples, 
                         Example, k, numTrials, verbose) 
    print 'Final result' 
    for c in clusters: 
        print '', c 
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The invocation contrivedTest2(40, 3, False) prints 

Final result 
 Cluster with centroid [ 7.66239972  3.55222681] contains: 
  2.0, 2.1, 2.3, 2.6 
 Cluster with centroid [ 3.10687385  8.46084886] contains: 
  3.0, 3.1, 3.2, 3.4, 3.5, 3.6, 3.7 
 Cluster with centroid [ 3.50763348  5.21918636] contains: 
  1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 2.2, 2.4, 2.5, 2.7, 3.3 

And the invocation contrivedTest2(40, 6, False) prints 

Final result 
 Cluster with centroid [ 7.66239972  3.55222681] contains: 
  2.0, 2.1, 2.3, 2.6 
 Cluster with centroid [ 2.80974427  9.60386549] contains: 
  3.0, 3.6, 3.7 
 Cluster with centroid [ 3.70472053  4.04178035] contains: 
  1.0, 1.3, 1.5 
 Cluster with centroid [ 2.10900238  4.99452866] contains: 
  1.1, 1.2, 1.4, 1.7 
 Cluster with centroid [ 4.92742554  5.60609442] contains: 
  2.2, 2.4, 2.5, 2.7 
 Cluster with centroid [ 3.27637435  7.28932247] contains: 
  1.6, 3.1, 3.2, 3.3, 3.4, 3.5 

The last clustering is the tightest fit, i.e., the clustering has the lowest 
dissimilarity.  Does this mean that it is the “best” fit?  Recall that when we 
looked at linear regression in Section 15.1.1, we observed that by increasing the 
degree of the polynomial we got a more complex model that provided a tighter fit 
to the data.  We also observed that when we increased the degree of the 
polynomial we ran the risk of finding a model with poor predictive value—
because it overfit the data. 

Choosing the right value for k is exactly analogous to choosing the right degree 
polynomial for a linear regression.  By increasing k, we can decrease 
dissimilarity, at the risk of overfitting.  (When k is equal to the number of 
examples to be clustered, the dissimilarity is zero!)  If we have some information 
about how the examples to be clustered were generated, e.g., chosen from m 
distributions, we can use that information to choose k.  Absent such 
information, there are a variety of heuristic procedures for choosing k.  Going 
into them is beyond the scope of this book. 

19.7 A Less Contrived Example 

Different species of mammals have different eating habits.  Some species (e.g., 
elephants and beavers) eat only plants, others (e.g., lions and tigers) eat only 
meat, and some (e.g., pigs and humans) eat anything they can get into their 
mouths.  The vegetarian species are called herbivores, the meat eaters are called 
carnivores, and those species that eat both are called omnivores. 

Over the millennia, evolution (or some other mysterious process) has equipped 
species with teeth suitable for consumption of their preferred foods.  That raises 
the question of whether clustering mammals based on their dentition produces 
clusters that have some relation to their diets. 
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#Name 
#top incisors 
#top canines 
#top premolars 
#top molars 
#bottom incisors 
#bottom canines 
#bottom premolars 
#bottom molars 
#weight 
#Label: 0=herbivore, 1=carnivore, 2=omnivore 
Badger,3,1,3,1,3,1,3,2,10,1 
Bear,3,1,4,2,3,1,4,3,278,2 
Beaver,1,0,2,3,1,0,1,3,20,0 
Brown bat,2,1,1,3,3,1,2,3,0.5,1 
Cat,3,1,3,1,3,1,2,1,4,1 
Cougar,3,1,3,1,3,1,2,1,63,1 
Cow,0,0,3,3,3,1,2,1,400,0 
Deer,0,0,3,3,4,0,3,3,200,0 
Dog,3,1,4,2,3,1,4,3,20,1 
Fox,3,1,4,2,3,1,4,3,5,1 
Fur seal,3,1,4,1,2,1,4,1,200,1 
Grey seal,3,1,3,2,2,1,3,2,268,1 
Guinea pig,1,0,1,3,1,0,1,3,1,0 
Elk,0,1,3,3,3,1,3,3,500,0 
Human,2,1,2,3,2,1,2,3,150,2 
Jaguar,3,1,3,1,3,1,2,1,81,1 
Kangaroo,3,1,2,4,1,0,2,4,55,0 
Lion,3,1,3,1,3,1,2,1,175,1 
Mink,3,1,3,1,3,1,3,2,1,1 
Mole,3,1,4,3,3,1,4,3,0.75,1 
Moose,0,0,3,3,4,0,3,3,900,0 
Mouse,1,0,0,3,1,0,0,3,0.3,2 
Porcupine,1,0,1,3,1,0,1,3,3,0 
Pig,3,1,4,3,3,1,4,3,50,2 
Rabbit,2,0,3,3,1,0,2,3,1,0 
Raccoon,3,1,4,2,3,1,4,2,40,2 
Rat,1,0,0,3,1,0,0,3,.75,2 
Red bat,1,1,2,3,3,1,2,3,1,1 
Sea lion,3,1,4,1,2,1,4,1,415,1 
Skunk,3,1,3,1,3,1,3,2,2,2 
Squirrel,1,0,2,3,1,0,1,3,2,2 
Woodchuck,1,0,2,3,1,0,1,3,4,2 
Wolf,3,1,4,2,3,1,4,3,27,1 

The table on the right 
shows the contents of a file 
listing some species of 
mammals, their dental 
formulas (the first 8 
numbers), their average 
adult weight in pounds,135 
and a code indicating their 
preferred diet.  The 
comments at the top 
describe the items 
associated with each 
mammal, e.g., the first 
item following the name is 
the number of top incisors. 

Figure 19.12 contains a 
function, readMammalData, 
for reading a file formatted 
in this way and processing 
the contents of the file to 
produce a set of examples 
representing the 
information in the file. It 
first processes the header 
information at the start of 
the file to get a count of 
the number of features to 
be associated with each 
example.  It then uses the 
lines corresponding to 
each species to build three 
lists: 

• speciesNames is a 
list of the names of 
the mammals. 

• labelList is a list of the labels associated with the mammals. 

• featureVals is a list of lists.  Each element of featureVals contains the 
list of values, one for each mammal, for a single feature.  The value of the 
expression featureVals[i][j] is the ith feature of the jth mammal. 

                                                

135 We included the information about weight because the author has been told on more 
than one occasion that there is a relationship between his weight and his eating habits. 
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The last part of readMammalData uses the values in featureVals to create a list of 
feature vectors, one for each mammal.  (The code could be simplified by not 
constructing featureVals and instead directly constructing the feature vectors 
for each mammal.  We chose not to do that in anticipation of an enhancement to 
readMammalData that we make later in this section.) 

 

Figure 19.12 Read and process file  

The function testTeeth in Figure 19.13 uses trykmeans to cluster the examples 
built by the other function, buildMammalExamples, in Figure 19.13.  It then 
reports the number of herbivores, carnivores, and omnivores in each cluster. 

def readMammalData(fName): 
    dataFile = open(fName, 'r') 
    numFeatures = 0 
    #Process lines at top of file 
    for line in dataFile: #Find number of features 
        if line[0:6] == '#Label': #indicates end of features 
            break 
        if line[0:5] != '#Name': 
            numFeatures += 1 
    featureVals = [] 
     
    #Produce featureVals, speciesNames, and labelList 
    featureVals, speciesNames, labelList = [], [], [] 
    for i in range(numFeatures): 
        featureVals.append([]) 
         
    #Continue processing lines in file, starting after comments 
    for line in dataFile: 
        dataLine = string.split(line[:-1], ',') #remove newline; then split 
        speciesNames.append(dataLine[0]) 
        classLabel = float(dataLine[-1]) 
        labelList.append(classLabel) 
        for i in range(numFeatures): 
            featureVals[i].append(float(dataLine[i+1])) 
             
    #Use featureVals to build list containing the feature vectors 
    #for each mammal 
    featureVectorList = [] 
    for mammal in range(len(speciesNames)): 
        featureVector = [] 
        for feature in range(numFeatures): 
            featureVector.append(featureVals[feature][mammal]) 
        featureVectorList.append(featureVector) 
    return featureVectorList, labelList, speciesNames 



 

 Chapter 19. A Quick Look at Machine Learning  283 

 

Figure 19.13 Clustering animals 

When we executed the code testTeeth(3, 20) it printed 

Cow, Elk, Moose, Sea lion 
3 herbivores, 1 carnivores, 0 omnivores 
 
Badger, Cougar, Dog, Fox, Guinea pig, Jaguar, Kangaroo, Mink, Mole, 
Mouse, Porcupine, Pig, Rabbit, Raccoon, Rat, Red bat, Skunk, Squirrel, 
Woodchuck, Wolf 
4 herbivores, 9 carnivores, 7 omnivores 
 
Bear, Deer, Fur seal, Grey seal, Human, Lion 
1 herbivores, 3 carnivores, 2 omnivores 

So much for our conjecture that the clustering would be related to the eating 
habits of the various species.  A cursory inspection suggests that we have a 
clustering totally dominated by the weights of the animals.  The problem is that 
the range of weights is much larger than the range of any of the other features.  
Therefore, when the Euclidean distance between examples is computed, the only 
feature that truly matters is weight. 

We encountered a similar problem in Section 19.2 when we found that the 
distance between animals was dominated by the number of legs.  We solved the 
problem there by turning the number of legs into a binary feature (legged or 
legless).  That was fine for that data set, because all of the animals happened to 
have either zero or four legs.  Here, however, there is no way to binarize weight 
without losing a great deal of information. 

def buildMammalExamples(featureList, labelList, speciesNames): 
    examples = [] 
    for i in range(len(speciesNames)): 
        features = pylab.array(featureList[i]) 
        example = Example(speciesNames[i], features, labelList[i]) 
        examples.append(example) 
    return examples 
 
def testTeeth(numClusters, numTrials): 
    features, labels, species = readMammalData('dentalFormulas.txt') 
    examples = buildMammalExamples(features, labels, species) 
    bestClustering =\ 
                   trykmeans(examples, Example, numClusters, numTrials) 
    for c in bestClustering: 
        names = '' 
        for p in c.members(): 
            names += p.getName() + ', ' 
        print '\n', names[:-2] #remove trailing comma and space 
        herbivores, carnivores, omnivores = 0, 0, 0 
        for p in c.members(): 
            if p.getLabel() == 0: 
                herbivores += 1 
            elif p.getLabel() == 1: 
                carnivores += 1 
            else: 
                omnivores += 1 
        print herbivores, 'herbivores,', carnivores, 'carnivores,',\ 
              omnivores, 'omnivores' 
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This is a common problem, which is often addressed by scaling the features so 
that each feature has a mean of 0 and a standard deviation of 1, as done by the 
function scaleFeatures in Figure 19.14. 

 

Figure 19.14 Scaling attributes 

To see the effect of scaleFeatures, let’s look at the code below. 

v1, v2 = [], [] 
for i in range(1000): 
    v1.append(random.gauss(100, 5)) 
    v2.append(random.gauss(50, 10)) 
v1 = scaleFeatures(v1) 
v2 = scaleFeatures(v2) 
print 'v1 mean =', round(sum(v1)/len(v1), 4),\ 
      'v1 standard deviation', round(stdDev(v1), 4) 
print 'v2 mean =', round(sum(v2)/len(v2), 4),\ 
      'v1 standard deviation', round(stdDev(v2), 4) 

The code generates two normal distributions with different means (100 and 50) 
and different standard deviations (5 and 10).  It then scales each and prints the 
means and standard deviations of the results.  When run, it prints 

v1 mean = -0.0 v1 standard deviation 1.0 
v2 mean = 0.0 v1 standard deviation 1.0136 

It’s easy to see why the statement result = result - mean ensures that the 
mean of the returned array will always be close to 0137.  That the standard 
deviation will always be 1 is not obvious.  It can be shown by a long and tedious 
chain of algebraic manipulations, which we will not bore you with. 

Figure 19.15 contains a version of readMammalData that allows scaling of 
features.  The new version of the function testTeeth in the same figure shows 
the result of clustering with and without scaling. 

                                                

136 A normal distribution with a mean of 0 and a standard deviation of 1 is called a 
standard normal distribution. 

137 We say “close,” because floating point numbers are only an approximation to the reals 
and the result will not always be exactly 0.  

def scaleFeatures(vals): 
    """Assumes vals is a sequence of numbers""" 
    result = pylab.array(vals) 
    mean = sum(result)/float(len(result)) 
    result = result - mean 
    sd = stdDev(result) 
    result = result/sd 
    return result 
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Figure 19.15 Code that allows scaling of features 

When we execute the code 

print 'Cluster without scaling' 
testTeeth(3, 20, False) 
print '\nCluster with scaling' 
testTeeth(3, 20, True) 

it prints 

Cluster without scaling 
 
Cow, Elk, Moose, Sea lion 
3 herbivores, 1 carnivores, 0 omnivores 
 
Badger, Cougar, Dog, Fox, Guinea pig, Jaguar, Kangaroo, Mink, Mole, 
Mouse, Porcupine, Pig, Rabbit, Raccoon, Rat, Red bat, Skunk, Squirrel, 
Woodchuck, Wolf 
4 herbivores, 9 carnivores, 7 omnivores 
 
Bear, Deer, Fur seal, Grey seal, Human, Lion 
1 herbivores, 3 carnivores, 2 omnivores 
 
Cluster with scaling 
 
Cow, Deer, Elk, Moose 
4 herbivores, 0 carnivores, 0 omnivores 
 
Guinea pig, Kangaroo, Mouse, Porcupine, Rabbit, Rat, Squirrel, 
Woodchuck 
4 herbivores, 0 carnivores, 4 omnivores 
 
Badger, Bear, Cougar, Dog, Fox, Fur seal, Grey seal, Human, Jaguar, 
Lion, Mink, Mole, Pig, Raccoon, Red bat, Sea lion, Skunk, Wolf 
0 herbivores, 13 carnivores, 5 omnivores 

def readMammalData(fName, scale): 
    """Assumes scale is a Boolean.  If True, features are scaled""" 
 
    #start of code is same as in previous version 
 
    #Use featureVals to build list containing the feature vectors 
    #for each mammal scale features, if needed 
    if scale: 
        for i in range(numFeatures): 
            featureVals[i] = scaleFeatures(featureVals[i]) 
 
    #remainder of code is the same as in previous version 
 
def testTeeth(numClusters, numTrials, scale): 
    features, labels, species =\ 
              readMammalData('dentalFormulas.txt', scale) 
    examples = buildMammalExamples(features, labels, species) 
 
    #remainder of code is the same as in the previous version 
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The clustering with scaling does not perfectly partition the animals based upon 
their eating habits, but it is certainly correlated with what the animals eat.  It 
does a good job of separating the carnivores from the herbivores, but there is no 
obvious pattern in where the omnivores appear.  This suggests that perhaps 
features other than dentition and weight might be needed to separate omnivores 
from herbivores and carnivores.138 

19.8 Wrapping Up 

In this chapter, we’ve barely scratched the surface of machine learning.  We’ve 
tried to give you a taste of the kind of thinking involved in using machine 
learning—in the hope that you will find ways to pursue the topic on your own. 

The same could be said about many of the other topics presented in this book.  
We’ve covered a lot more ground than is typical of introductory computer science 
courses.  You probably found some topics less interesting than others.  But we 
do hope that you encountered at least a few topics you are looking forward to 
learning more about.

                                                

138 Eye position might be a useful feature, since both omnivores and carnivores typically 
have eyes in the front of their head, whereas the eyes of herbivores are typically located 
more towards the side.  Among the mammals, only mothers of humans have eyes in the 
back of their head. 



 

    

PYTHON 2.7 QUICK REFERENCE 

Common operations on numerical types 

i+j is the sum of i and j. 

i–j is i minus j.   

i*j is the product of i and j.  

i//j is integer division.  

i/j is i divided by j.  In Python 2.7, when i and j are both of type int, the 
result is also an int, otherwise the result is a float.  

i%j is the remainder when the int i is divided by the int j. 

i**j is i raised to the power j. 

x += y is equivalent to x = x + y.  *= and -= work the same way. 

Comparison and Boolean operators 

x == y returns True if x and y are equal. 

x != y returns True if x and y are not equal. 

<, >, <=, >= have their usual meanings. 

a and b is True if both a and b are True, and False otherwise. 

a or b is True if at least one of a or b is True, and False otherwise. 

not a is True if a is False, and False if a is True. 

Common operations on sequence types 

seq[i] returns the ith element in the sequence. 

len(seq) returns the length of the sequence. 

seq1 + seq2 concatenates the two sequences. 

n*seq returns a sequence that repeats seq n times. 

seq[start:end] returns a slice of the sequence.  

e in seq tests whether e is contained in the sequence.  

e not in seq tests whether e is not contained in the sequence. 

for e in seq iterates over the elements of the sequence. 

Common string methods 

s.count(s1) counts how many times the string s1 occurs in s. 

s.find(s1) returns the index of the first occurrence of the substring s1 in s; -1 
if s1 is not in s.  

s.rfind(s1) same as find, but starts from the end of s. 

s.index(s1) same as find, but raises an exception if s1 is not in s.  

s.rindex(s1) same as index, but starts from the end of s. 

s.lower() converts all uppercase letters to lowercase. 

s.replace(old, new) replaces all occurrences of string old with string new. 

s.rstrip() removes trailing white space. 

s.split(d) Splits s using d as a delimiter.  Returns a list of substrings of s.  
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Common list methods 

L.append(e) adds the object e to the end of L.  

L.count(e) returns the number of times that e occurs in L. 

L.insert(i, e) inserts the object e into L at index i. 

L.extend(L1) appends the items in list L1 to the end of L.  

L.remove(e) deletes the first occurrence of e from L. 

L.index(e) returns the index of the first occurrence of e in L. 

L.pop(i) removes and returns the item at index i.  Defaults to -1. 

L.sort() has the side effect of sorting the elements of L. 

L.reverse() has the side effect of reversing the order of the elements in L. 

Common operations on dictionaries 

len(d) returns the number of items in d. 

d.keys() returns a list containing the keys in d.  

d.values() returns a list containing the values in d. 

k in d returns True if key k is in d. 

d[k] returns the item in d with key k.  Raises KeyError if k is not in d. 

d.get(k, v) returns d[k] if k in d, and v otherwise. 

d[k] = v associates the value v with the key k.  If there is already a value 
associated with k, that value is replaced. 

del d[k] removes element with key k from d. Raises KeyError if k is not in d. 

for k in d iterates over the keys in d.  

Comparison of common non-scalar types 

Type 
Type of 
Index 

Type of element Examples of literals Mutable 

str int characters '', 'a', 'abc' No 

tuple int any type (), (3,), ('abc', 4) No 

list int any type [], [3], ['abc', 4] Yes 

dict Hashable 
objects 

any type {}, {‘a’:1}, 
{'a':1, 'b':2.0} 

Yes 

Common input/output mechanisms 

raw_input(msg) prints msg and then returns value entered as a string. 
print s1, …, sn prints strings s1, …, sn with a space between each. 
open('fileName', 'w') creates a file for writing. 
open('fileName', 'r') opens an existing file for reading. 
open('fileName', 'a') opens an existing file for appending. 
fileHandle.read() returns a string containing contents of the file. 
fileHandle.readline() returns the next line in the file. 
fileHandle.readlines() returns a list containing lines of the file. 
fileHandle.write(s) write the string s to the end of the file. 
fileHandle.writelines(L) Writes each element of L to the file. 
fileHandle.close() closes the file. 
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linear	  regression,	  211	  
objective	  function,,	  210	  
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Holmes,	  Sherlock,	  82	  
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logarithmic	  scaling,	  159	  
loop,	  18	  
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constraints,	  234	  
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order	  of	  growth,	  117	  
overfitting,	  213,	  280	  
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rc	  settings,	  145	  
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fitting	  an	  exponential,	  218	  
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continuous,	  206	  
discrete,	  206	  
dynamic,	  206	  
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specification,	  41–44	  
assumptions,	  42,	  129	  
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statistics	  
coefficient	  of	  variation,	  165	  
confidence	  interval,	  165,	  168,	  169	  
confidence	  level,	  168	  
correctness	  vs.,	  204	  
correlation,	  225	  
error	  bars,	  169	  
null	  hypothesis,	  174	  
p-‐value,	  174	  
testing	  for,	  174	  

step	  (of	  a	  computation),	  114	  
stochastic	  process,	  153	  
stored-‐program	  computer,	  3	  
str	  
* operator,	  16
+	  operator,	  16	  
built-‐in	  methods,	  66	  
concatenation	  (+),	  16	  
escape	  character,	  53,	  100	  
indexing,	  17	  
len,	  17	  
newline	  character,	  53	  
slicing,	  17	  
substring,	  17	  

straight-‐line	  programs,	  14	  
string	  standard	  library	  module,	  135	  
string	  type.	  See	  str	  
stubs,	  75	  
substitution	  principle,	  103,	  244	  
substring,	  17	  
successive	  approximation,	  32,	  210	  
sum	  built-‐in	  function,	  110	  
supervised	  learning,	  263	  
symbol	  table,	  38,	  52	  
syntax,	  4	  

table	  lookup,	  199–200,	  253	  
tables,	  in	  PyLab,	  268	  
termination	  
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of	  loop,	  19,	  21	  
of	  recursion,	  130	  

testing,	  70–76	  
black-‐box,	  71,	  73	  
boundary	  conditions,	  72	  
glass-‐box,	  71,	  73–74	  
integration	  testing,	  74	  
partitioning	  inputs,	  71	  
path-‐complete,	  73	  
regression	  testing,	  76	  
test	  functions,	  41	  
test	  suite,	  71	  
unit	  testing,	  74	  

Texas	  sharpshooter	  fallacy,	  230	  
total	  ordering,	  27	  
training	  data,	  262	  
training	  set,	  221,	  232	  
translating	  text,	  68	  
tree,	  254	  
decision	  tree,	  254–56	  
leaf	  node,	  254	  
left-‐first	  depth-‐first	  enumeration,	  256	  
root,	  of	  tree,	  254	  
rooted	  binary	  tree,	  254	  

try	  block,	  85	  
try-‐except	  statement,	  85	  
tuple,	  56–58	  
Turing	  Completeness,	  4	  
Turing	  machine,	  universal,	  3	  
Turing-‐complete	  programming	  language,	  
34	  

type,	  9,	  91	  
cast,	  18	  
conversion,	  18,	  147	  

type	  built-‐in	  function,	  10	  
type	  checking,	  17	  
type	  type,	  92	  
types	  
bool,	  9	  
dict.	  See	  dict	  type	  
float,	  9	  

instancemethod,	  92	  
int,	  9	  
list.	  See	  list	  type	  
None,	  9	  
str.	  See	  str	  
tuple,	  56	  
type,	  92	  

U.S.	  citizen,	  definition	  of	  natural-‐born,	  44	  
Ulam,	  Stanislaw,	  193	  
unary	  function,	  65	  
uniform	  distribution.	  See	  distributions,	  
uniform	  

unsupervised	  learning,	  264	  

value,	  9	  
value	  equality	  vs.	  object	  equality,	  81	  
variable,	  11	  
choosing	  a	  name,	  12	  

variance,	  160,	  271	  
versions,	  8	  
vertex	  of	  a	  graph,	  240	  
von	  Neumann,	  John,	  133	  
von	  Rossum,	  Guido,	  8	  

while	  loop,	  19	  
whitespace	  characters,	  135	  
Wing,	  Jeannette,	  103	  
word	  size,	  127	  
World	  Series,	  174	  
wrapper	  functions,	  129	  
write	  method	  for	  files,	  53	  

xrange	  built-‐in	  function,	  24,	  197	  
xticks,	  224	  

yield	  statement,	  107	  
yticks,	  224	  

zero-‐based	  indexing,	  17	  
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