
www.allitebooks.com

http://www.allitebooks.org

Introduction to
Computation and

Programming Using Python

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Introduction to
Computation and

Programming Using Python

Revised and Expanded Edition

John V. Guttag

The MIT Press

Cambridge, Massachusetts

London, England

www.allitebooks.com

http://www.allitebooks.org

©	 2013	 Massachusetts Institute of Technology	

All	 rights	 reserved.	 No	 part	 of	 this	 book	 may	 be	 reproduced	 in	 any	 form	 by	 any	

electronic	 or	 mechanical	 means	 (including	 photocopying,	 recording,	 or	 information	

storage	 and	 retrieval)	 without	 permission	 in	 writing	 from	 the	 publisher.	

	

MIT	 Press	 books	 may	 be	 purchased	 at	 special	 quantity	 discounts	 for	 business	 or	

sales	 promotional	 use.	 For	 information,	 please	 email	

special_sales@mitpress.mit.edu	 or	 write	 to	 Special	 Sales	 Department,	 The	 MIT	

Press,	 55	 Hayward	 Street,	 Cambridge,	 MA	 02142.	

	

Printed	 and	 bound	 in	 the	 United	 States	 of	 America.	

Library	 of	 Congress	 Cataloging-‐in-‐Publication	 Data	
	
Guttag,	 John.	

Introduction	 to	 computation	 and	 programming	 using	 Python	 /	 John	 V.	 Guttag.	 —	
Revised	 and	 expanded	 edition.	

	 pages	 cm	

Includes	 index.	

ISBN	 978-‐0-‐262-‐52500-‐8	 (pbk.	 :	 alk.	 paper)	 	

1.	 	 Python	 (Computer	 program	 language)	 2.	 	 Computer	 programming.	 I.	 Title.	 	

QA76.73.P48G88	 2013	

005.13'3—dc23	

10	 9	 8	 7	 6	 5	 4	 3	 2	 1	

www.allitebooks.com

http://www.allitebooks.org

To my family:

Olga

David

Andrea

Michael

Mark

Addie

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

CONTENTS

PREFACE ... xiii	
ACKNOWLEDGMENTS ... xv	
1	 GETTING STARTED .. 1	
2	 INTRODUCTION TO PYTHON .. 7	

2.1	 The Basic Elements of Python ... 8	
2.1.1	 Objects, Expressions, and Numerical Types 9	
2.1.2	 Variables and Assignment .. 11	
2.1.3	 IDLE .. 13	

2.2	 Branching Programs ... 14	
2.3	 Strings and Input ... 16	

2.3.1	 Input .. 18	
2.4	 Iteration .. 18	

3	 SOME SIMPLE NUMERICAL PROGRAMS .. 21	
3.1	 Exhaustive Enumeration .. 21	
3.2	 For Loops .. 23	
3.3	 Approximate Solutions and Bisection Search 25	
3.4	 A Few Words About Using Floats .. 29	
3.5	 Newton-Raphson .. 32	

4	 FUNCTIONS, SCOPING, and ABSTRACTION ... 34	
4.1	 Functions and Scoping ... 35	

4.1.1	 Function Definitions ... 35	
4.1.2	 Keyword Arguments and Default Values 36	
4.1.3	 Scoping .. 37	

4.2	 Specifications ... 41	
4.3	 Recursion ... 44	

4.3.1	 Fibonacci Numbers .. 45	
4.3.2	 Palindromes ... 48	

4.4	 Global Variables ... 50	
4.5	 Modules .. 51	
4.6	 Files ... 53	

www.allitebooks.com

http://www.allitebooks.org

viii

5� STRUCTURED TYPES, MUTABILITY, AND HIGHER-ORDER FUNCTIONS .. 56�

5.1� Tuples .. 56�

5.1.1� Sequences and Multiple Assignment ... 57�

5.2� Lists and Mutability .. 58�

5.2.1� Cloning .. 63�

5.2.2� List Comprehension ... 63�

5.3� Functions as Objects .. 64�

5.4� Strings, Tuples, and Lists ... 66�

5.5� Dictionaries .. 67�

6� TESTING AND DEBUGGING .. 70�

6.1� Testing .. 70�

6.1.1� Black-Box Testing .. 71�

6.1.2� Glass-Box Testing .. 73�

6.1.3� Conducting Tests ... 74�

6.2� Debugging .. 76�

6.2.1� Learning to Debug .. 78�

6.2.2� Designing the Experiment .. 79�

6.2.3� When the Going Gets Tough ... 81�

6.2.4� And When You Have Found “The” Bug .. 82�

7� EXCEPTIONS AND ASSERTIONS .. 84�

7.1� Handling Exceptions ... 84�

7.2� Exceptions as a Control Flow Mechanism ... 87�

7.3� Assertions ... 90�

8� CLASSES AND OBJECT-ORIENTED PROGRAMMING 91�

8.1� Abstract Data Types and Classes .. 91�

8.1.1� Designing Programs Using Abstract Data Types 96�

8.1.2� Using Classes to Keep Track of Students and Faculty 96�

8.2� Inheritance ... 99�

8.2.1� Multiple Levels of Inheritance ... 101�

8.2.2� The Substitution Principle .. 102�

8.3� Encapsulation and Information Hiding .. 103�

8.3.1� Generators ... 106�

8.4� Mortgages, an Extended Example ... 108�

www.allitebooks.com

http://www.allitebooks.org

 ix

9	 A SIMPLISTIC INTRODUCTION TO ALGORITHMIC COMPLEXITY 113	
9.1	 Thinking About Computational Complexity 113	
9.2	 Asymptotic Notation .. 116	
9.3	 Some Important Complexity Classes ... 118	

9.3.1	 Constant Complexity .. 118	
9.3.2	 Logarithmic Complexity .. 118	
9.3.3	 Linear Complexity .. 119	
9.3.4	 Log-Linear Complexity .. 120	
9.3.5	 Polynomial Complexity ... 120	
9.3.6	 Exponential Complexity .. 121	
9.3.7	 Comparisons of Complexity Classes .. 123	

10	 SOME SIMPLE ALGORITHMS AND DATA STRUCTURES 125	
10.1	 Search Algorithms .. 126	

10.1.1	 Linear Search and Using Indirection to Access Elements 126	
10.1.2	 Binary Search and Exploiting Assumptions 128	

10.2	 Sorting Algorithms .. 131	
10.2.1	 Merge Sort .. 132	
10.2.2	 Exploiting Functions as Parameters .. 135	
10.2.3	 Sorting in Python ... 136	

10.3	 Hash Tables .. 137	
11	 PLOTTING AND MORE ABOUT CLASSES .. 141	

11.1	 Plotting Using PyLab ... 141	
11.2	 Plotting Mortgages, an Extended Example 146	

12	 STOCHASTIC PROGRAMS, PROBABILITY, AND STATISTICS 152	
12.1	 Stochastic Programs ... 153	
12.2	 Inferential Statistics and Simulation ... 155	
12.3	 Distributions .. 166	

12.3.1	 Normal Distributions and Confidence Levels 168	
12.3.2	 Uniform Distributions .. 170	
12.3.3	 Exponential and Geometric Distributions 171	
12.3.4	 Benford’s Distribution .. 173	

12.4	 How Often Does the Better Team Win? .. 174	
12.5	 Hashing and Collisions ... 177	

www.allitebooks.com

http://www.allitebooks.org

x

13� RANDOM WALKS AND MORE ABOUT DATA VISUALIZATION 179�

13.1� The Drunkard’s Walk .. 179�

13.2� Biased Random Walks .. 186�

13.3� Treacherous Fields .. 191�

14� MONTE CARLO SIMULATION .. 193�

14.1� Pascal’s Problem ... 194�

14.2� Pass or Don’t Pass? ... 195�

14.3� Using Table Lookup to Improve Performance 199�

14.4� Finding π .. 200�

14.5� Some Closing Remarks About Simulation Models 204�

15� UNDERSTANDING EXPERIMENTAL DATA .. 207�

15.1� The Behavior of Springs .. 207�

15.1.1� Using Linear Regression to Find a Fit 210�

15.2� The Behavior of Projectiles .. 214�

15.2.1� Coefficient of Determination ... 216�

15.2.2� Using a Computational Model ... 217�

15.3� Fitting Exponentially Distributed Data .. 218�

15.4� When Theory Is Missing .. 221�

16� LIES, DAMNED LIES, AND STATISTICS .. 222�

16.1� Garbage In Garbage Out (GIGO) .. 222�

16.2� Pictures Can Be Deceiving .. 223�

16.3� Cum Hoc Ergo Propter Hoc ... 225�

16.4� Statistical Measures Don’t Tell the Whole Story 226�

16.5� Sampling Bias ... 228�

16.6� Context Matters .. 229�

16.7� Beware of Extrapolation .. 229�

16.8� The Texas Sharpshooter Fallacy .. 230�

16.9� Percentages Can Confuse .. 232�

16.10� Just Beware .. 233�

17� KNAPSACK AND GRAPH OPTIMIZATION PROBLEMS 234�

17.1� Knapsack Problems .. 234�

17.1.1� Greedy Algorithms .. 235�

17.1.2� An Optimal Solution to the 0/1 Knapsack Problem 238�

 xi

17.2	 Graph Optimization Problems ... 240	
17.2.1	 Some Classic Graph-Theoretic Problems 244	
17.2.2	 The Spread of Disease and Min Cut .. 245	
17.2.3	 Shortest Path: Depth-First Search and Breadth-First Search 246	

18	 DYNAMIC PROGRAMMING ... 252	
18.1	 Fibonacci Sequences, Revisited ... 252	
18.2	 Dynamic Programming and the 0/1 Knapsack Problem 254	
18.3	 Dynamic Programming and Divide-and-Conquer 261	

19	 A QUICK LOOK AT MACHINE LEARNING .. 262	
19.1	 Feature Vectors .. 264	
19.2	 Distance Metrics ... 266	
19.3	 Clustering ... 270	
19.4	 Types Example and Cluster ... 272	
19.5	 K-means Clustering .. 274	
19.6	 A Contrived Example .. 276	
19.7	 A Less Contrived Example ... 280	
19.8	 Wrapping Up ... 286	

PYTHON 2.7 QUICK REFERENCE ... 287	
INDEX .. 289	

PREFACE

This book is based on an MIT course that has been offered twice a year since
2006. The course is aimed at students with little or no prior programming
experience who have desire to understand computational approaches to problem
solving. Each year, a few of the students in the class use the course as a
stepping stone to more advanced computer science courses. But for most of the
students it will be their only computer science course.

Because the course will be the only computer science course for most of the
students, we focus on breadth rather than depth. The goal is to provide
students with a brief introduction to many topics, so that they will have an idea
of what’s possible when the time comes to think about how to use computation
to accomplish a goal. That said, it is not a “computation appreciation” course.
It is a challenging and rigorous course in which the students spend a lot of time
and effort learning to bend the computer to their will.

The main goal of this book is to help you, the reader, become skillful at making
productive use of computational techniques. You should learn to apply
computational modes of thoughts to frame problems and to guide the process of
extracting information from data in a computational manner. The primary
knowledge you will take away from this book is the art of computational problem
solving.

The book is a bit eccentric. Part 1 (Chapters 1-8) is an unconventional
introduction to programming in Python. We braid together four strands of
material:

• The basics of programming,

• The Python programming language,

• Concepts central to understanding computation, and

• Computational problem solving techniques.

We cover most of Python’s features, but the emphasis is on what one can do
with a programming language, not on the language itself. For example, by the
end of Chapter 3 the book has covered only a small fraction of Python, but it has
already introduced the notions of exhaustive enumeration, guess-and-check
algorithms, bisection search, and efficient approximation algorithms. We
introduce features of Python throughout the book. Similarly, we introduce
aspects of programming methods throughout the book. The idea is to help you
learn Python and how to be a good programmer in the context of using
computation to solve interesting problems.

Part 2 (Chapters 9-16) is primarily about using computation to solve problems.
It assumes no knowledge of mathematics beyond high school algebra, but it
does assume that the reader is comfortable with rigorous thinking and not
intimidated by mathematical concepts. It covers some of the usual topics found
in an introductory text, e.g., computational complexity and simple algorithms.

xiv Preface

But the bulk of this part of the book is devoted to topics not found in most
introductory texts: data visualization, probabilistic and statistical thinking,
simulation models, and using computation to understand data.

Part 3 (Chapters 17-19) looks at three slightly advanced topics—optimization
problems, dynamic programming, and clustering.

Part 1 can form the basis of a self-contained course that can be taught in a
quarter or half a semester. Experience suggests that it is quite comfortable to fit
both Parts 1 and 2 of this book into a full-semester course. When the material
in Part 3 is included, the course becomes more demanding than is comfortable
for many students.

The book has two pervasive themes: systematic problem solving and the power
of abstraction. When you have finished this book you should have:

• Learned a language, Python, for expressing computations,

• Learned a systematic approach to organizing, writing and debugging
medium-sized programs,

• Developed an informal understanding of computational complexity,

• Developed some insight into the process of moving from an ambiguous
problem statement to a computational formulation of a method for
solving the problem,

• Learned a useful set of algorithmic and problem reduction techniques,

• Learned how to use randomness and simulations to shed light on
problems that don’t easily succumb to closed-form solutions, and

• Learned how to use computational tools, including simple statistical and
visualization tools, to model and understand data.

Programming is an intrinsically difficult activity. Just as “there is no royal road
to geometry,”1 there is no royal road to programming. It is possible to deceive
students into thinking that they have learned how to program by having them
complete a series of highly constrained “fill in the blank” programming
problems. However, this does not prepare students for figuring out how to
harness computational thinking to solve problems.

If you really want to learn the material, reading the book will not be enough. At
the very least you should try running some of the code in the book. All of the
code in the book can be found at http://mitpress.mit.edu/ICPPRE. Various
versions of the course have been available on MIT’s OpenCourseWare (OCW)
Web site since 2008. The site includes video recordings of lectures and a
complete set of problem sets and exams. Since the fall of 2012, edX and MITx,
have offered an online version of this course. We strongly recommend that you
do the problem sets associated with one of the OCW or edX offerings.

1 This was Euclid’s purported response, circa 300 BC, to King Ptolemy’s request for an
easier way to learn mathematics.

ACKNOWLEDGMENTS

This book grew out of a set of lecture notes that I prepared while teaching an
undergraduate course at MIT. The course, and therefore this book, benefited
from suggestions from faculty colleagues (especially Eric Grimson, Srinivas
Devadas, and Fredo Durand), teaching assistants, and the students who took
the course.

The process of transforming my lecture notes into a book proved far more
onerous than I had expected. Fortunately, this misguided optimism lasted long
enough to keep me from giving up. The encouragement of colleagues and family
also helped keep me going.

Eric Grimson, Chris Terman, and David Guttag provided vital help. Eric, who is
MIT’s Chancellor, managed to find the time to read almost the entire book with
great care. He found numerous errors (including an embarrassing, to me,
number of technical errors) and pointed out places where necessary
explanations were missing. Chris also read parts of the manuscript and
discovered errors. He also helped me battle Microsoft Word, which we
eventually persuaded to do most of what we wanted. David overcame his
aversion to computer science, and proofread multiple chapters.

Preliminary versions of this book were used in the MIT course 6.00 and the MITx
course 6.00x. A number of students in these courses pointed out errors. One
6.00x student, J.C. Cabrejas, was particularly helpful. He found a large number
of typos, and more than a few technical errors.

Like all successful professors, I owe a great deal to my graduate students. The
photo on the back cover of this book depicts me supporting some of my current
students. In the lab, however, it is they who support me. In addition to doing
great research (and letting me take some of the credit for it), Guha
Balakrishnan, Joel Brooks, Ganeshapillai Gartheeban, Jen Gong, Yun Liu,
Anima Singh, Jenna Wiens, and Amy Zhao all provided useful comments on this
manuscript.

I owe a special debt of gratitude to Julie Sussman, P.P.A. Until I started working
with Julie, I had no idea how much difference an editor could make. I had
worked with capable copy editors on previous books, and thought that was what
I needed for this book. I was wrong. I needed a collaborator who could read the
book with the eyes of a student, and tell me what needed to be done, what
should be done, and what could be done if I had the time and energy to do it.
Julie buried me in “suggestions” that were too good to ignore. Her combined
command of both the English language and programming is quite remarkable.

Finally, thanks to my wife, Olga, for pushing me to finish and for pitching in at
critical times.

1 GETTING STARTED

A computer does two things, and two things only: it performs calculations and it
remembers the results of those calculations. But it does those two things
extremely well. The typical computer that sits on a desk or in a briefcase
performs a billion or so calculations a second. It’s hard to image how truly fast
that is. Think about holding a ball a meter above the floor, and letting it go. By
the time it reaches the floor, your computer could have executed over a billion
instructions. As for memory, a typical computer might have hundreds of
gigabytes of storage. How big is that? If a byte (the number of bits, typically
eight, required to represent one character) weighed one ounce (which it doesn’t),
100 gigabytes would weigh more than 3,000,000 tons. For comparison, that’s
roughly the weight of all the coal produced in a year in the U.S.

For most of human history, computation was limited by the speed of calculation
of the human brain and the ability to record computational results with the
human hand. This meant that only the smallest problems could be attacked
computationally. Even with the speed of modern computers, there are still
problems that are beyond modern computational models (e.g., understanding
climate change), but more and more problems are proving amenable to
computational solution. It is our hope that by the time you finish this book, you
will feel comfortable bringing computational thinking to bear on solving many of
the problems you encounter during your studies, work, and even everyday life.

What do we mean by computational thinking?

All knowledge can be thought of as either declarative or imperative. Declarative
knowledge is composed of statements of fact. For example, “the square root of x
is a number y such that y*y = x.” This is a statement of fact. Unfortunately it

doesn’t tell us how to find a square root.

Imperative knowledge is “how to” knowledge, or recipes for deducing
information. Heron of Alexandria was the first to document a way to compute
the square root of a number.2 His method can be summarized as:

• Start with a guess, g.

• If g*g is close enough to x, stop and say that g is the answer.

• Otherwise create a new guess by averaging g and x/g, i.e., (g + x/g)/2.

• Using this new guess, which we again call g, repeat the process until g*g
is close enough to x.

2 Many believe that Heron was not the inventor of this method, and indeed there is some
evidence that it was well known to the ancient Babylonians.

2 Chapter 1. Getting Started

Consider, for example, finding the square root of 25.

1. Set g to some arbitrary value, e.g., 3.

2. We decide that 3*3 = 9 is not close enough to 25.

3. Set g to (3 + 25/3)/2 = 5.67.3

4. We decide that 5.67*5.67 = 32.15 is still not close enough to 25.

5. Set g to (5.67 + 25/5.67)/2 = 5.04

6. We decide that 5.04*5.04 = 25.4 is close enough, so we stop and declare 5.04
to be an adequate approximation to the square root of 25.

Note that the description of the method is a sequence of simple steps, together
with a flow of control that specifies when each step is to be executed. Such a
description is called an algorithm.4 This algorithm is an example of a guess-
and-check algorithm. It is based on the fact that it is easy to check whether or
not a guess is a good one.

A bit more formally, an algorithm is a finite list of instructions that describe a
computation that when executed on a provided set of inputs will proceed
through a set of well-defined states and eventually produce an output.

An algorithm is a bit like a recipe from a cookbook:

1. Put custard mixture over heat.

2. Stir.

3. Dip spoon in custard.

4. Remove spoon and run finger across back of spoon.

5. If clear path is left, remove custard from heat and let cool.

6. Otherwise repeat.

It includes some tests for deciding when the process is complete, as well as
instructions about the order in which to execute instructions, sometimes
jumping to some instruction based on a test.

So how does one capture this idea of a recipe in a mechanical process? One way
would be to design a machine specifically intended to compute square roots.
Odd as this may sound, the earliest computing machines were, in fact, fixed-
program computers, meaning they were designed to do very specific things, and
were mostly tools to solve a specific mathematical problem, e.g., to compute the
trajectory of an artillery shell. One of the first computers (built in 1941 by
Atanasoff and Berry) solved systems of linear equations, but could do nothing
else. Alan Turing’s bombe machine, developed during World War II, was
designed strictly for the purpose of breaking German Enigma codes. Some very
simple computers still use this approach. For example, a four-function
calculator is a fixed-program computer. It can do basic arithmetic, but it cannot

3 For simplicity, we are rounding results.

4 The word “algorithm” is derived from the name of the Persian mathematician
Muhammad ibn Musa al-Khwarizmi.

 Chapter 1. Getting Started 3

be used as a word processor or to run video games. To change the program of
such a machine, one has to replace the circuitry.

The first truly modern computer was the Manchester Mark 1.5 It was
distinguished from its predecessors by the fact that it was a stored-program
computer. Such a computer stores (and manipulates) a sequence of
instructions, and has a set of elements that will execute any instruction in that
sequence. By creating an instruction-set architecture and detailing the
computation as a sequence of instructions (i.e., a program), we make a highly
flexible machine. By treating those instructions in the same way as data, a
stored-program machine can easily change the program, and can do so under
program control. Indeed, the heart of the computer then becomes a program
(called an interpreter) that can execute any legal set of instructions, and thus
can be used to compute anything that one can describe using some basic set of
instructions.

Both the program and the data it manipulates reside in memory. Typically there
is a program counter that points to a particular location in memory, and
computation starts by executing the instruction at that point. Most often, the
interpreter simply goes to the next instruction in the sequence, but not always.
In some cases, it performs a test, and on the basis of that test, execution may
jump to some other point in the sequence of instructions. This is called flow of
control, and is essential to allowing us to write programs that perform complex
tasks.

Returning to the recipe metaphor, given a fixed set of ingredients a good chef
can make an unbounded number of tasty dishes by combining them in different
ways. Similarly, given a small fixed set of primitive elements a good programmer
can produce an unbounded number of useful programs. This is what makes
programming such an amazing endeavor.

To create recipes, or sequences of instructions, we need a programming
language in which to describe these things, a way to give the computer its
marching orders.

In 1936, the British mathematician Alan Turing described a hypothetical
computing device that has come to be called a Universal Turing Machine. The
machine had an unbounded memory in the form of tape on which one could
write zeros and ones, and some very simple primitive instructions for moving,
reading, and writing to the tape. The Church-Turing thesis states that if a
function is computable, a Turing Machine can be programmed to compute it.

The “if” in the Church-Turing thesis is important. Not all problems have
computational solutions. For example, Turing showed that it is impossible to
write a program that given an arbitrary program, call it P, prints true if and only
if P will run forever. This is known as the halting problem.

5 This computer was built at the University of Manchester, and ran its first program in
1949. It implemented ideas previously described by John von Neumann and was
anticipated by the theoretical concept of the Universal Turing Machine described by Alan
Turing in 1936.

www.allitebooks.com

http://www.allitebooks.org

4 Chapter 1. Getting Started

The Church-Turing thesis leads directly to the notion of Turing completeness.
A programming language is said to be Turing complete if it can be used to
simulate a universal Turing Machine. All modern programming languages are
Turing complete. As a consequence, anything that can be programmed in one
programming language (e.g., Python) can be programmed in any other
programming language (e.g., Java). Of course, some things may be easier to
program in a particular language, but all languages are fundamentally equal
with respect to computational power.

Fortunately, no programmer has to build programs out of Turing’s primitive
instructions. Instead, modern programming languages offer a larger, more
convenient set of primitives. However, the fundamental idea of programming as
the process of assembling a sequence of operations remains central.

Whatever set of primitives one has, and whatever methods one has for using
them, the best thing and the worst thing about programming are the same: the
computer will do exactly what you tell it to do. This is a good thing because it
means that you can make it do all sorts of fun and useful things. It is a bad
thing because when it doesn’t do what you want it to do, you usually have
nobody to blame but yourself.

There are hundreds of programming languages in the world. There is no best
language (though one could nominate some candidates for worst). Different
languages are better or worse for different kinds of applications. MATLAB, for
example, is an excellent language for manipulating vectors and matrices. C is a
good language for writing the programs that control data networks. PHP is a
good language for building Web sites. And Python is a good general-purpose
language.

Each programming language has a set of primitive constructs, a syntax, a static
semantics, and a semantics. By analogy with a natural language, e.g., English,
the primitive constructs are words, the syntax describes which strings of words
constitute well-formed sentences, the static semantics defines which sentences
are meaningful, and the semantics defines the meaning of those sentences. The
primitive constructs in Python include literals (e.g., the number 3.2 and the
string 'abc') and infix operators (e.g., + and /).

The syntax of a language defines which strings of characters and symbols are
well formed. For example, in English the string “Cat dog boy.” is not a
syntactically valid sentence, because the syntax of English does not accept
sentences of the form <noun> <noun> <noun>. In Python, the sequence of
primitives 3.2 + 3.2 is syntactically well formed, but the sequence 3.2 3.2 is
not.

The static semantics defines which syntactically valid strings have a meaning.
In English, for example, the string “I are big,” is of the form <pronoun> <linking
verb> <adjective>, which is a syntactically acceptable sequence. Nevertheless, it
is not valid English, because the noun “I” is singular and the verb “are” is plural.
This is an example of a static semantic error. In Python, the sequence
3.2/'abc' is syntactically well formed (<literal> <operator> <literal>), but

 Chapter 1. Getting Started 5

produces a static semantic error since it is not meaningful to divide a number by
a string of characters.

The semantics of a language associates a meaning with each syntactically
correct string of symbols that has no static semantic errors. In natural
languages, the semantics of a sentence can be ambiguous. For example, the
sentence “I cannot praise this student too highly,” can be either flattering or
damning. Programming languages are designed so that each legal program has
exactly one meaning.

Though syntax errors are the most common kind of error (especially for those
learning a new programming language), they are the least dangerous kind of
error. Every serious programming language does a complete job of detecting
syntactic errors, and will not allow users to execute a program with even one
syntactic error. Furthermore, in most cases the language system gives a
sufficiently clear indication of the location of the error that it is obvious what
needs to be done to fix it.

The situation with respect to static semantic errors is a bit more complex. Some
programming languages, e.g., Java, do a lot of static semantic checking before
allowing a program to be executed. Others, e.g., C and Python (alas), do
relatively less static semantic checking. Python does do a considerable amount
of static semantic checking while running a program. However, it does not
catch all static semantic errors. When these errors are not detected, the
behavior of a program is often unpredictable. We will see examples of this later
in the book.

One doesn’t usually speak of a program as having a semantic error. If a
program has no syntactic errors and no static semantic errors, it has a meaning,
i.e., it has semantics. Of course, that isn’t to say that it has the semantics that
its creator intended it to have. When a program means something other than
what its creator thinks it means, bad things can happen.

What might happen if the program has an error, and behaves in an unintended
way?

• It might crash, i.e., stop running and produce some sort of obvious
indication that it has done so. In a properly designed computing system,
when a program crashes it does not do damage to the overall system. Of
course, some very popular computer systems don’t have this nice
property. Almost everyone who uses a personal computer has run a
program that has managed to make it necessary to restart the whole
computer.

• Or it might keep running, and running, and running, and never stop. If
one has no idea of approximately how long the program is supposed to
take to do its job, this situation can be hard to recognize.

• Or it might run to completion and produce an answer that might, or
might not, be correct.

6 Chapter 1. Getting Started

Each of these is bad, but the last of them is certainly the worst, When a
program appears to be doing the right thing but isn’t, bad things can follow.
Fortunes can be lost, patients can receive fatal doses of radiation therapy,
airplanes can crash, etc.

Whenever possible, programs should be written in such a way that when they
don’t work properly, it is self-evident. We will discuss how to do this throughout
the book.

Finger Exercise: Computers can be annoyingly literal. If you don’t tell them
exactly what you want them to do, they are likely to do the wrong thing. Try
writing an algorithm for driving between two destinations. Write it the way you
would for a person, and then imagine what would happen if that person
executed the algorithm exactly as written. For example, how many traffic tickets
might they get?

2 INTRODUCTION TO PYTHON

Though each programming language is different (though not as different as their
designers would have us believe), there are some dimensions along which they
can be related.

• Low-level versus high-level refers to whether we program using
instructions and data objects at the level of the machine (e.g., move 64
bits of data from this location to that location) or whether we program
using more abstract operations (e.g., pop up a menu on the screen) that
have been provided by the language designer.

• General versus targeted to an application domain refers to whether
the primitive operations of the programming language are widely
applicable or are fine-tuned to a domain. For example Adobe Flash is
designed to facilitate adding animation and interactivity to Web pages,
but you wouldn’t want to use it build a stock portfolio analysis program.

• Interpreted versus compiled refers to whether the sequence of
instructions written by the programmer, called source code, is executed
directly (by an interpreter) or whether it is first converted (by a compiler)
into a sequence of machine-level primitive operations. (In the early days
of computers, people had to write source code in a language that was
very close to the machine code that could be directly interpreted by the
computer hardware.) There are advantages to both approaches. It is
often easier to debug programs written in languages that are designed to
be interpreted, because the interpreter can produce error messages that
are easy to correlate with the source code. Compiled languages usually
produce programs that run more quickly and use less space.

In this book, we use Python. However, this book is not about Python. It will
certainly help readers learn Python, and that’s a good thing. What is much
more important, however, is that careful readers will learn something about how
to write programs that solve problems. This skill can be transferred to any
programming language.

Python is a general-purpose programming language that can be used effectively
to build almost any kind of program that does not need direct access to the
computer’s hardware. Python is not optimal for programs that have high
reliability constraints (because of its weak static semantic checking) or that are
built and maintained by many people or over a long period of time (again
because of the weak static semantic checking).

However, Python does have several advantages over many other languages. It is
a relatively simple language that is easy to learn. Because Python is designed to
be interpreted, it can provide the kind of runtime feedback that is especially
helpful to novice programmers. There are also a large number of freely available
libraries that interface to Python and provide useful extended functionality.
Several of those are used in this book.

8 Chapter 2. Introduction to Python

Now we are ready to start learning some of the basic elements of Python. These
are common to almost all programming languages in concept, though not
necessarily in detail.

The reader should be forewarned that this book is by no means a comprehensive
introduction to Python. We use Python as a vehicle to present concepts related
to computational problem solving and thinking. The language is presented in
dribs and drabs, as needed for this ulterior purpose. Python features that we
don’t need for that purpose are not presented at all. We feel comfortable about
not covering the entire language because there are excellent online resources
describing almost every aspect of the language. When we teach the course on
which this book is based, we suggest to the students that they rely on these free
online resources for Python reference material.

Python is a living language. Since its introduction by Guido von Rossum in
1990, it has undergone many changes. For the first decade of its life, Python
was a little known and little used language. That changed with the arrival of
Python 2.0 in 2000. In addition to incorporating a number of important
improvements to the language itself, it marked a shift in the evolutionary path of
the language. A large number of people began developing libraries that
interfaced seamlessly with Python, and continuing support and development of
the Python ecosystem became a community-based activity. Python 3.0 was
released at the end of 2008. This version of Python cleaned up many of the
inconsistencies in the design of the various releases of Python 2 (often referred
to as Python 2.x). However, it was not backward compatible. That meant that
most programs written for earlier versions of Python could not be run using
implementations of Python 3.0.

The backward incompatibility presents a problem for this book. In our view,
Python 3.0 is clearly superior to Python 2.x. However, at the time of this
writing, some important Python libraries still do not work with Python 3. We
will, therefore, use Python 2.7 (into which many of the most important features
of Python 3 have been “back ported”) throughout this book.

2.1 The Basic Elements of Python

A Python program, sometimes called a script, is a sequence of definitions and
commands. These definitions are evaluated and the commands are executed by
the Python interpreter in something called the shell. Typically, a new shell is
created whenever execution of a program begins. In most cases, a window is
associated with the shell.

We recommend that you start a Python shell now, and use it to try the examples
contained in the remainder of the chapter. And, for that matter, later in the
book as well.

A command, often called a statement, instructs the interpreter to do
something. For example, the statement print 'Yankees rule!' instructs the
interpreter to output the string Yankees rule! to the window associated with the
shell.

 Chapter 2. Introduction to Python 9

The sequence of commands

print 'Yankees rule!'
print 'But not in Boston!'
print 'Yankees rule,', 'but not in Boston!'

causes the interpreter to produce the output

Yankees rule!
But not in Boston!
Yankees rule, but not in Boston!

Notice that two values were passed to print in the third statement. The print
command takes a variable number of values and prints them, separated by a
space character, in the order in which they appear.6

2.1.1 Objects, Expressions, and Numerical Types

Objects are the core things that Python programs manipulate. Every object has
a type that defines the kinds of things that programs can do with objects of that
type.

Types are either scalar or non-scalar. Scalar objects are indivisible. Think of
them as the atoms of the language.7 Non-scalar objects, for example strings,
have internal structure.

Python has four types of scalar objects:

• int is used to represent integers. Literals of type int are written in the
way we typically denote integers (e.g., -3 or 5 or 10002).

• float is used to represent real numbers. Literals of type float always
include a decimal point (e.g., 3.0 or 3.17 or -28.72). (It is also possible
to write literals of type float using scientific notation. For example, the
literal 1.6E3 stands for 1.6*103, i.e., it is the same as 1600.0.) You might
wonder why this type is not called real. Within the computer, values of
type float are stored in the computer as floating point numbers. This
representation, which is used by all modern programming languages,
has many advantages. However, under some situations it causes floating
point arithmetic to behave in ways that are slightly different from
arithmetic on real numbers. We discuss this in Section 3.4.

• bool is used to represent the Boolean values True and False.

• None is a type with a single value. We will say more about this when we
get to variables.

Objects and operators can be combined to form expressions, each of which
evaluates to an object of some type. We will refer to this as the value of the
expression. For example, the expression 3 + 2 denotes the object 5 of type int,
and the expression 3.0 + 2.0 denotes the object 5.0 of type float.

6 In Python 3, print is a function rather than a command. One would therefore write
print('Yankees rule!', 'but not in Boston').

7 Yes, atoms are not truly indivisible. However, splitting them is not easy, and doing so
can have consequences that are not always desirable.

10 Chapter 2. Introduction to Python

The == operator is used to test whether two expressions evaluate to the same
value, and the != operator is used to test whether two expressions evaluate to
different values.

The symbol >>> is a shell prompt indicating that the interpreter is expecting the
user to type some Python code into the shell. The line below the line with the
prompt is produced when the interpreter evaluates the Python code entered at
the prompt, as illustrated by the following interaction with the interpreter:

>>> 3 + 2
5
>>> 3.0 + 2.0
5.0
>>> 3 != 2
True

The built-in Python function type can be used to find out the type of an object:

>>> type(3)
<type 'int'>
>>> type(3.0)
<type 'float'>

The operators on types int and float are listed in Figure 2.1.

Figure 2.1 Operators on types int and float

The arithmetic operators have the usual precedence. For example, * binds more
tightly than +, so the expression x+y*2 is evaluated by first multiplying y by 2,
and then adding the result to x. The order of evaluation can be changed by

• i+j is the sum of i and j. If i and j are both of type int, the result is
an int. If either of them is a float, the result is a float.

• i–j is i minus j. If i and j are both of type int, the result is an int.
If either of them is a float, the result is a float.

• i*j is the product of i and j. If i and j are both of type int, the
result is an int. If either of them is a float, the result is a float.

• i//j is integer division. For example, the value of 6//2 is the int 3
and the value of 6//4 is the int 1. The value is 1 because integer
division returns the quotient and ignores the remainder.

• i/j is i divided by j. In Python 2.7, when i and j are both of type
int, the result is also an int, otherwise the result is a float. In this
book, we will never use / to divide one int by another. We will use //
to do that. (In Python 3, the / operator, thank goodness, always
returns a float. For example, in Python 3 the value of 6/4 is 1.5.)

• i%j is the remainder when the int i is divided by the int j. It is
typically pronounced “i mod j,” which is short for “i modulo j.”

• i**j is i raised to the power j. If i and j are both of type int, the
result is an int. If either of them is a float, the result is a float.

• The comparison operators are == (equal), != (not equal), > (greater),
>= (at least), <, (less) and <= (at most).

 Chapter 2. Introduction to Python 11

using parentheses to group subexpressions, e.g., (x+y)*2 first adds x and y, and
then multiplies the result by 2.

The operators on type bool are:

• a and b is True if both a and b are True, and False otherwise.

• a or b is True if at least one of a or b is True, and False otherwise.

• not a is True if a is False, and False if a is True.

2.1.2 Variables and Assignment

Variables provide a way to associate names with objects. Consider the code

pi = 3
radius = 11
area = pi * (radius**2)
radius = 14

It first binds the names pi8 and radius to different objects of type int. It then
binds the name area to a third object of type int. This is depicted in the left
panel of Figure 2.2.

Figure 2.2 Binding of variables to objects

If the program then executes radius = 11, the name radius is rebound to a
different object of type int, as shown in the right panel of Figure 2.2. Note that
this assignment has no effect on the value to which area is bound. It is still
bound to the object denoted by the expression 3*(11**2).

In Python, a variable is just a name, nothing more. Remember this—it is
important. An assignment statement associates the name to the left of the =
symbol with the object denoted by the expression to the right of the =.
Remember this too. An object can have one, more than one, or no name
associated with it.

8 If you believe that the actual value of π is not 3, you’re right. We even demonstrate that
fact in Chapter 15.

12 Chapter 2. Introduction to Python

Perhaps we shouldn’t have said, “a variable is just a name.” Despite what Juliet
said, 9 names matter. Programming languages let us describe computations in a
way that allows machines to execute them. This does not mean that only
computers read programs.

As you will soon discover, it’s not always easy to write programs that work
correctly. Experienced programmers will confirm that they spend a great deal of
time reading programs in an attempt to understand why they behave as they do.
It is therefore of critical importance to write programs in such way that they are
easy to read. Apt choice of variable names plays an important role in enhancing
readability.

Consider the two code fragments

a = 3.14159 pi = 3.14159
b = 11.2 diameter = 11.2
c = a*(b**2) area = pi*(diameter**2)

As far as Python is concerned, they are not different. When executed, they will
do the same thing. To a human reader, however, they are quite different. When
we read the fragment on the left, there is no a priori reason to suspect that
anything is amiss. However, a quick glance at the code on the right should
prompt us to be suspicious that something is wrong. Either the variable should
have been named radius rather than diameter, or diameter should have been
divided by 2.0 in the calculation of the area.

In Python, variable names can contain uppercase and lowercase letters, digits
(but they cannot start with a digit), and the special character _. Python variable
names are case-sensitive e.g., Julie and julie are different names. Finally, there
are a small number of reserved words (sometimes called keywords) in Python
that have built-in meanings and cannot be used as variable names. Different
versions of Python have slightly different lists of reserved words. The reserved
words in Python 2.7 are and, as, assert, break, class, continue, def, del, elif,
else, except, exec, finally, for, from, global, if, import, in, is, lambda, not, or,
pass, print, raise, return, try, with, while, and yield.

Another good way to enhance the readability of code is to add comments. Text
following the symbol # is not interpreted by Python. For example, one might
write

#subtract area of square s from area of circle c
areaC = pi*radius**2
areaS = side*side
difference = areaC-areaS

Python allows multiple assignment. The statement

x, y = 2, 3

binds x to 2 and y to 3. All of the expressions on the right-hand side of the
assignment are evaluated before any bindings are changed. This is convenient

9 “What's in a name? That which we call a rose by any other name would smell as sweet.”

 Chapter 2. Introduction to Python 13

since it allows you to use multiple assignment to swap the bindings of two
variables.

For example, the code

x, y = 2, 3
x, y = y, x
print 'x =', x
print 'y =', y

will print

x = 3
y = 2

2.1.3 IDLE

Typing programs directly into the shell is highly inconvenient. Most
programmers prefer to use some sort of text editor that is part of an integrated
development environment (IDE).

In this book, we will use IDLE,10 the IDE that comes as part of the standard
Python installation package. IDLE is an application, just like any other
application on your computer. Start it the same way you would start any other
application, e.g., by double-clicking on an icon.

IDLE provides

• a text editor with syntax highlighting, autocompletion, and smart
indentation,

• a shell with syntax highlighting, and

• an integrated debugger, which you should ignore for now.

When IDLE starts it will open a shell window into which you can type Python
commands. It will also provide you with a file menu and an edit menu (as well
as some other menus, which you can safely ignore for now).

The file menu includes commands to

• create a new editing window into which you can type a Python program,

• open a file containing an existing Python program, and

• save the contents of the current editing window into a file (with file
extension .py).

The edit menu includes standard text-editing commands (e.g., copy, paste, and
find) plus some commands specifically designed to make it easy to edit Python
code (e.g., indent region and comment out region).

10 Allegedly, the name Python was chosen as a tribute to the British comedy troupe
Monty Python. This leads one to think that the name IDLE is a pun on Eric Idle, a
member of the troupe.

www.allitebooks.com

http://www.allitebooks.org

14 Chapter 2. Introduction to Python

For a complete description of IDLE, see
http://docs.python.org/library/idle.html.

2.2 Branching Programs

The kinds of computations we have been looking at thus far are called straight-
line programs. They execute one statement after another in the order in which
they appear, and stop when they run out of statements. The kinds of
computations we can describe with straight-line programs are not very
interesting. In fact, they are downright boring.

Branching programs are more interesting. The simplest branching statement is
a conditional. As depicted in Figure 2.3, a conditional statement has three
parts:

• a test, i.e., an expression that evaluates to either True or False;

• a block of code that is executed if the test evaluates to True; and

• an optional block of code that is executed if the test evaluates to False.

After a conditional statement is executed, execution resumes at the code
following the statement.

Figure 2.3 Flow chart for conditional statement

In Python, a conditional statement has the form

if Boolean expression:
 block of code
else:
 block of code

In describing the form of Python statements we use italics to describe the kinds
of code that could occur at that point in a program. For example, Boolean
expression indicates that any expression that evaluates to True or False can
follow the reserved word if, and block of code indicates that any sequence of
Python statements can follow else:.

 Chapter 2. Introduction to Python 15

Consider the following program that prints “Even” if the value of the variable x is
even and “Odd” otherwise:

if x%2 == 0:
 print 'Even'
else:
 print 'Odd'
print 'Done with conditional'

The expression x%2 == 0 evaluates to True when the remainder of x divided by 2
is 0, and False otherwise. Remember that == is used for comparison, since = is
reserved for assignment.

Indentation is semantically meaningful in Python. For example, if the last
statement in the above code were indented it would be part of the block of code
associated with the else, rather than with the block of code following the
conditional statement.

Python is unusual in using indentation this way. Most other programming
languages use some sort of bracketing symbols to delineate blocks of code, e.g.,
C encloses blocks in braces, { }. An advantage of the Python approach is that it
ensures that the visual structure of a program is an accurate representation of
the semantic structure of that program.

When either the true block or the false block of a conditional contains another
conditional, the conditional statements are said to be nested. In the code
below, there are nested conditionals in both branches of the top-level if
statement.

if x%2 == 0:
 if x%3 == 0:
 print 'Divisible by 2 and 3'
 else:
 print 'Divisible by 2 and not by 3'
elif x%3 == 0:
 print 'Divisible by 3 and not by 2'

The elif in the above code stands for “else if.”

It is often convenient to use compound Boolean expressions in the test of a
conditional, for example,

if x < y and x < z:
 print 'x is least'
elif y < z:
 print 'y is least'
else:
 print 'z is least'

Conditionals allow us to write programs that are more interesting than straight-
line programs, but the class of branching programs is still quite limited. One
way to think about the power of a class of programs is in terms of how long they
can take to run. Assume that each line of code takes one unit of time to
execute. If a straight-line program has n lines of code, it will take n units of time
to run. What about a branching program with n lines of code? It might take
less than n units of time to run, but it cannot take more, since each line of code
is executed at most once.

16 Chapter 2. Introduction to Python

A program for which the maximum running time is bounded by the length of the
program is said to run in constant time. This does not mean that each time it
is run it executes the same number of steps. It means that there exists a
constant, k, such that the program is guaranteed to take no more than k steps to
run. This implies that the running time does not grow with the size of the input
to the program.

Constant-time programs are quite limited in what they can do. Consider, for
example, writing a program to tally the votes in an election. It would be truly
surprising if one could write a program that could do this in a time that was
independent of the number of votes cast. In fact, one can prove that it is
impossible to do so. The study of the intrinsic difficulty of problems is the topic
of computational complexity. We will return to this topic several times in this
book.

Fortunately, we need only one more programming language construct, iteration,
to be able to write programs of arbitrary complexity. We get to that in Section
2.4.

Finger exercise: Write a program that examines three variables—x, y, and z—
and prints the largest odd number among them. If none of them are odd, it
should print a message to that effect.

2.3 Strings and Input

Objects of type str are used to represent strings of characters.11 Literals of type
str can be written using either single or double quotes, e.g., 'abc' or "abc".

The literal '123' denotes a string of characters, not the number one hundred
twenty-three.

Try typing the following expressions in to the Python interpreter (remember that
the >>> is a prompt, not something that you type):

>>> 'a'
>>> 3*4
>>> 3*'a'
>>> 3+4
>>> 'a'+'a'

The operator + is said to be overloaded: It has different meanings depending
upon the types of the objects to which it is applied. For example, it means
addition when applied to two numbers and concatenation when applied to two
strings. The operator * is also overloaded. It means what you expect it to mean
when its operands are both numbers. When applied to an int and a str, it
duplicates the str. For example, the expression 2*'John' has the value

11 Unlike many programming languages, Python has no type corresponding to a
character. Instead, it uses strings of length 1.

 Chapter 2. Introduction to Python 17

'JohnJohn'. There is a logic to this. Just as the expression 3*2 is equivalent to
2+2+2, the expression 3*'a' is equivalent to 'a'+'a'+'a'.

Now try typing

>>> a
>>> 'a'*'a'

Each of these lines generates an error message.

The first line produces the message

NameError: name 'a' is not defined

Because a is not a literal of any type, the interpreter treats it as a name.
However, since that name is not bound to any object, attempting to use it
causes a runtime error.

The code 'a'*'a' produces the error message

TypeError: can't multiply sequence by non-int of type 'str'

That type checking exists is a good thing. It turns careless (and sometimes
subtle) mistakes into errors that stop execution, rather than errors that lead
programs to behave in mysterious ways. The type checking in Python is not as
strong as in some other programming languages (e.g., Java). For example, it is
pretty clear what < should mean when it is used to compare two strings or two
numbers. But what should the value of '4' < 3 be? Rather arbitrarily, the
designers of Python decided that it should be False, because all numeric values
should be less than all values of type str. The designers of some other
languages decided that since such expressions don’t have an obvious meaning,
they should generate an error message.

Strings are one of several sequence types in Python. They share the following
operations with all sequence types.

The length of a string can be found using the len function. For example, the
value of len('abc') is 3.

Indexing can be used to extract individual characters from a string. In Python,
all indexing is zero-based. For example, typing 'abc'[0] into the interpreter will
cause it to display the string 'a'. Typing 'abc'[3] will produce the error
message IndexError: string index out of range. Since Python uses 0 to
indicate the first element of a string, the last element of a string of length 3 is
accessed using the index 2. Negative numbers are used to index from the end of
a string. For example, the value of 'abc'[-1] is 'c'.

Slicing is used to extract substrings of arbitrary length. If s is a string, the
expression s[start:end] denotes the substring of s that starts at index start
and ends at index end-1. For example, 'abc'[1:3] = 'bc'. Why does it end at
index end-1 rather than end? So that expressions such as 'abc'[0:len('abc')]
have the value one might expect. If the value before the colon is omitted, it
defaults to 0. If the value after the colon is omitted, it defaults to the length of
the string. Consequently, the expression 'abc'[:] is semantically equivalent to
the more verbose 'abc'[0:len('abc')].

18 Chapter 2. Introduction to Python

2.3.1 Input

Python 2.7 has two functions (see Chapter 4 for a discussion of functions in
Python) that can be used to get input directly from a user, input and
raw_input.12 Each takes a string as an argument and displays it as a prompt in
the shell. It then waits for the user to type something, followed by hitting the
enter key. For raw_input, the input line is treated as a string and becomes the

value returned by the function; input treats the typed line as a Python
expression and infers a type. In this book, we use only raw_input, which is less
likely to lead to programs that behave in unexpected ways.

Consider the code

>>> name = raw_input('Enter your name: ')
Enter your name: George Washington
>>> print 'Are you really', name, '?'
Are you really George Washington ?
>>> print 'Are you really ' + name + '?'
Are you really George Washington?

Notice that the first print statement introduces a blank before the “?” It does
this because when print is given multiple arguments it places a blank space
between the values associated with the arguments. The second print statement
uses concatenation to produce a string that does not contain the superfluous
blank and passes this as the only argument to print.

Now consider,

>>> n = raw_input('Enter an int: ')
Enter an int: 3
>>> print type(n)
<type 'str'>

Notice that the variable n is bound to the str '3' not the int 3. So, for example,
the value of the expression n*4 is '3333' rather than 12. The good news is that
whenever a string is a valid literal of some type, a type conversion can be applied
to it.

Type conversions (also called type casts) are used often in Python code. We
use the name of a type to convert values to that type. So, for example, the value
of int('3')*4 is 12. When a float is converted to an int, the number is
truncated (not rounded), e.g., the value of int(3.9) is the int 3.

2.4 Iteration

A generic iteration (also called looping) mechanism is depicted in Figure 2.4.
Like a conditional statement it begins with a test. If the test evaluates to True,
the program executes the loop body once, and then goes back to reevaluate the
test. This process is repeated until the test evaluates to False, after which
control passes to the code following the iteration statement.

12 Python 3 has only one command, input. Somewhat confusingly, Python 3’s input has
the same semantics as raw_input in Python 2.7. Go figure.

 Chapter 2. Introduction to Python 19

Figure 2.4 Flow chart for iteration

Consider the following example:

Square an integer, the hard way
x = 3
ans = 0
itersLeft = x
while (itersLeft != 0):
 ans = ans + x
 itersLeft = itersLeft - 1
print str(x) + '*' + str(x) + ' = ' + str(ans)

The code starts by binding the variable x to the integer 3. It then proceeds to
square x by using repetitive addition. The following table shows the value
associated with each variable each time the test at the start of the loop is
reached. We constructed it by hand-simulating the code, i.e., we pretended to
be a Python interpreter and executed the program using pencil and paper.
Using pencil and paper might seem kind of quaint, but it is an excellent way to
understand how a program behaves.13

test # x ans itersLeft
1 3 0 3
2 3 3 2
3 3 6 1
4 3 9 0

The fourth time the test is reached, it evaluates to False and flow of control
proceeds to the print statement following the loop.

For what values of x will this program terminate?

If x == 0, the initial value of itersLeft will also be 0, and the loop body will
never be executed. If x > 0, the initial value of itersLeft will be greater than 0,
and the loop body will be executed.

13 It is also possible to hand-simulate a program using pen and paper, or even a text
editor.

20 Chapter 2. Introduction to Python

Each time the loop body is executed, the value of itersLeft is decreased by
exactly 1. This means that if itersLeft started out greater than 0, after some
finite number of iterations of the loop, itersLeft == 0. At this point the loop
test evaluates to False, and control proceeds to the code following the while
statement.

What if the value of x is -1? Something very bad happens. Control will enter
the loop, and each iteration will move itersLeft farther from 0 rather than
closer to it. The program will therefore continue executing the loop forever (or
until something else bad, e.g., an overflow error, occurs). How might we remove
this flaw in the program? Initializing itersLeft to the absolute value of x almost
works. The loop terminates, but it prints a negative value. If the assignment
statement inside the loop is also changed, to ans = ans+abs(x), the code works
properly.

We have now covered pretty much everything about Python that we need to
know to start writing interesting programs that deal with numbers and strings.
We now take a short break from learning the language. In the next chapter, we
use Python to solve some simple problems.

Finger exercise: Write a program that asks the user to input 10 integers, and
then prints the largest odd number that was entered. If no odd number was
entered, it should print a message to that effect.

3 SOME SIMPLE NUMERICAL PROGRAMS

Now that we have covered some basic Python constructs, it is time to start
thinking about how we can combine those constructs to write some simple
programs. Along the way, we’ll sneak in a few more language constructs and
some algorithmic techniques.

3.1 Exhaustive Enumeration

The code in Figure 3.1 prints the integer cube root, if it exists, of an
integer. If the input is not a perfect cube, it prints a message to that
effect.

Figure 3.1 Using exhaustive enumeration to find the cube root

For what values of x will this program terminate?

The answer is, “all integers.” This can be argued quite simply.

• The value of the expression ans**3 starts at 0, and gets larger each time
through the loop.

• When it reaches or exceeds abs(x), the loop terminates.

• Since abs(x) is always positive there are only a finite number of
iterations before the loop must terminate.

Whenever you write a loop, you should think about an appropriate
decrementing function. This is a function that has the following properties:

1. It maps a set of program variables into an integer.

2. When the loop is entered, its value is nonnegative.

3. When its value is <=0, the loop terminates.

4. Its value is decreased every time through the loop.

What is the decrementing function for the loop in Figure 3.1? It is
abs(x) - ans**3.

#Find the cube root of a perfect cube
x = int(raw_input('Enter an integer: '))
ans = 0
while ans**3 < abs(x):
 ans = ans + 1
if ans**3 != abs(x):
 print x, 'is not a perfect cube'
else:
 if x < 0:
 ans = -ans
 print 'Cube root of', x,'is', ans

22 Chapter 3. Some Simple Numerical Programs

Now, let’s insert some errors and see what happens. First, try commenting out
the statement ans = 0. The Python interpreter prints the error message,
NameError: name 'ans' is not defined, because the interpreter attempts to
find the value to which ans is bound before it has been bound to anything. Now,
restore the initialization of ans, replace the statement ans = ans + 1 by
ans = ans, and try finding the cube root of 8. After you get tired of waiting, enter
“control c” (hold down the control key and the c key simultaneously). This will
return you to the user prompt in the shell.

Now, add the statement

print 'Value of the decrementing function abs(x) - ans**3 is',\
 abs(x) - ans**3

at the start of the loop, and try running it again. (The \ at the end of the first
line of the print statement is used to indicate that the statement continues on
the next line.)

This time it will print

Value of the decrementing function abs(x) - ans**3 is 8

over and over again.

The program would have run forever because the loop body is no longer
reducing the distance between ans**3 and abs(x). When confronted with a
program that seems not to be terminating, experienced programmers often
insert print statements, such as the one here, to test whether the decrementing
function is indeed being decremented.

The algorithmic technique used in this program is a variant of guess and check
called exhaustive enumeration. We enumerate all possibilities until we get to
the right answer or exhaust the space of possibilities. At first blush, this may
seem like an incredibly stupid way to solve a problem. Surprisingly, however,
exhaustive enumeration algorithms are often the most practical way to solve a
problem. They are typically easy to implement and easy to understand. And, in
many cases, they run fast enough for all practical purposes. Make sure to
remove or comment out the print statement that you inserted and reinsert the
ans = ans + 1 statement, and then try finding the cube root of 1957816251. The
program will seem to finish almost instantaneously. Now, try
7406961012236344616.

As you can see, even if millions of guesses are required, it’s not usually a
problem. Modern computers are amazingly fast. It takes on the order of one
nanosecond—one billionth of a second—to execute an instruction. It’s a bit
hard to appreciate how fast that is. For perspective, it takes slightly more than
a nanosecond for light to travel a single foot (0.3 meters). Another way to think
about this is that in the time it takes for the sound of your voice to travel a
hundred feet, a modern computer can execute millions of instructions.

 Chapter 3. Some Simple Numerical Programs 23

Just for fun, try executing the code

max = int(raw_input('Enter a postive integer: '))
i = 0
while i < max:
 i = i + 1
print i

See how large an integer you need to enter before there is a perceptible pause
before the result is printed.

Finger exercise: Write a program that asks the user to enter an integer and
prints two integers, root and pwr, such that 0 < pwr < 6 and root**pwr is equal
to the integer entered by the user. If no such pair of integers exists, it should
print a message to that effect.

3.2 For Loops

The while loops we have used so far are highly stylized. Each iterates over a
sequence of integers. Python provides a language mechanism, the for loop,
that can be used to simplify programs containing this kind of iteration.

The general form of a for statement is (recall that the words in italics are
descriptions of what can appear, not actual code):

for variable in sequence:
 code block

The variable following for is bound to the first value in the sequence, and the
code block is executed. The variable is then assigned the second value in the
sequence, and the code block is executed again. The process continues until the
sequence is exhausted or a break statement is executed within the code block.

The sequence of values bound to variable is most commonly generated using the
built-in function range, which returns a sequence containing an arithmetic
progression. The range function takes three integer arguments: start, stop, and
step. It produces the progression start, start + step, start + 2*step, etc.
If step is positive, the last element is the largest integer start + i*step less
than stop. If step is negative, the last element is the smallest integer
start + i*step greater than stop. For example, range(5, 40, 10) produces the
sequence [5, 15, 25, 35], and range(40, 5, -10) produces the sequence
[40, 30, 20, 10]. If the first argument is omitted it defaults to 0, and if the last
argument (the step size) is omitted it defaults to 1. For example, range(0, 3)
and range(3) both produce the sequence [0, 1, 2].

Less commonly, we specify the sequence to be iterated over in a for loop by
using a literal, e.g., [0, 1, 2]. In Python 2.7, range generates the entire
sequence when it is invoked. Therefore, for example, the expression
range(1000000) uses quite a lot of memory. This can be avoided by using the

www.allitebooks.com

http://www.allitebooks.org

24 Chapter 3. Some Simple Numerical Programs

built-in function xrange instead of range, since xrange generates the values only
as they are needed by the for loop.14

Consider the code

x = 4
for i in range(0, x):
 print i

It prints

0
1
2
3

Now, think about the code

x = 4
for i in range(0, x):
 print i
 x = 5

It raises the question of whether changing the value of x inside the loop affects
the number of iterations. It does not. The range function in the line with for is
evaluated just before the first iteration of the loop, and not reevaluated for
subsequent iterations. To see how this works, consider

x = 4
for j in range(x):
 for i in range(x):
 print i
 x = 2

It prints

0
1
2
3
0
1
0
1
0
1

because the range function in the outer loop is evaluated only once, but the
range function in the inner loop is evaluated each time the inner for statement
is reached.

The code in Figure 3.2 reimplements the exhaustive enumeration algorithm for
finding cube roots. The break statement in the for loop causes the loop to
terminate before it has been run on each element in the sequence over which it
is iterating. When executed, a break statement exits the innermost loop in
which it is enclosed.

14 In Python 3, range behaves the way xrange behaves in Python 2.

 Chapter 3. Some Simple Numerical Programs 25

Figure 3.2 Using for and break statements

The for statement can be used to conveniently iterate over characters of a string.
For example,

total = 0
for c in '123456789':
 total = total + int(c)
print total

sums the digits in the string denoted by the literal '123456789' and prints the
total.

Finger exercise: Let s be a string that contains a sequence of decimal numbers
separated by commas, e.g., s = '1.23,2.4,3.123'. Write a program that prints
the sum of the numbers in s.

3.3 Approximate Solutions and Bisection Search

Imagine that someone asks you to write a program that finds the square root of
any nonnegative number. What should you do?

You should probably start by saying that you need a better problem statement.
For example, what should the program do if asked to find the square root of 2?
The square root of 2 is not a rational number. This means that there is no way
to precisely represent its value as a finite string of digits (or as a float), so the
problem as initially stated cannot be solved.

The right thing to have asked for is a program that finds an approximation to
the square root—i.e., an answer that is close enough to the actual square root to
be useful. We will return to this issue in considerable detail later in the book.
But for now, let’s think of “close enough” as an answer that lies within some
constant, call it epsilon, of the actual answer.

The code in Figure 3.3 implements an algorithm that finds an approximation to
a square root. It uses an operator, +=, that we have not previously used. The
code ans += step is semantically equivalent to the more verbose code
ans = ans+step. The operators -= and *= work similarly.

#Find the cube root of a perfect cube
x = int(raw_input('Enter an integer: '))
for ans in range(0, abs(x)+1):
 if ans**3 >= abs(x):
 break
if ans**3 != abs(x):
 print x, 'is not a perfect cube'
else:
 if x < 0:
 ans = -ans
 print 'Cube root of', x,'is', ans

26 Chapter 3. Some Simple Numerical Programs

Figure 3.3 Approximating the square root using exhaustive enumeration

Once again, we are using exhaustive enumeration. Notice that this method for
finding the square root has nothing in common with the way of finding square
roots using a pencil that you might have learned in middle school. It is often the
case that the best way to solve a problem with a computer is quite different from
how one would approach the problem by hand.

When the code is run, it prints

numGuesses = 49990
4.999 is close to square root of 25

Should we be disappointed that the program didn’t figure out that 25 is a perfect
square and print 5? No. The program did what it was intended to do. Though it
would have been OK to print 5, doing so is no better than printing any value
close enough to 5.

What do you think will happen if we set x = 0.25? Will it find a root close to
0.5? Nope. Exhaustive enumeration is a search technique that works only if
the set of values being searched includes the answer. In this case, we are
enumerating the values between 0 and x. When x is between 0 and 1, the square
root of x does not lie in this interval. One way to fix this is to change the first
line of the while loop to

while abs(ans**2 - x) >= epsilon and ans*ans <= x:

Now, let’s think about how long the program will take to run. The number of
iterations depends upon how close the answer is to zero and on the size of the
steps. Roughly speaking, the program will execute the while loop at most
x/step times.

Let’s try the code on something bigger, e.g., x = 123456. It will run for a bit, and
then print

numGuesses = 3513631
Failed on square root of 123456

What do you think happened? Surely there exists a floating point number that
approximates the square root of 123456 to within 0.01. Why didn’t our program
find it? The problem is that our step size was too large, and the program
skipped over all the suitable answers. Try making step equal to epsilon**3 and

x = 25
epsilon = 0.01
step = epsilon**2
numGuesses = 0
ans = 0.0
while abs(ans**2 - x) >= epsilon and ans <= x:
 ans += step
 numGuesses += 1
print 'numGuesses =', numGuesses
if abs(ans**2 - x) >= epsilon:
 print 'Failed on square root of', x
else:
 print ans, 'is close to square root of', x

 Chapter 3. Some Simple Numerical Programs 27

running the program. It will eventually find a suitable answer, but you might
not have the patience to wait for it to do so.

Roughly how many guesses will it have to make? The step size will be 0.000001
and the square root of 123456 is around 351.36. This means that the program will
have to make in the neighborhood of 351,000,000 guesses to find a satisfactory
answer. We could try to speed it up by starting closer to the answer, but that
presumes that we know the answer.

The time has come to look for a different way to attack the problem. We need to
choose a better algorithm rather than fine tune the current one. But before
doing so, let’s look at a problem that, at first blush, appears to be completely
different from root finding.

Consider the problem of discovering whether a word starting with a given
sequence of letters appears in some hard-copy dictionary of the English
language. Exhaustive enumeration would, in principle, work. You could start at
the first word and examine each word until either you found a word starting
with the sequence of letters or you ran out of words to examine. If the dictionary
contained n words, it would, on average, take n/2 probes to find the word. If the
word were not in the dictionary, it would take n probes. Of course, those who
have had the pleasure of actually looking a word up in a physical (rather than
online) dictionary would never proceed in this way.

Fortunately, the folks who publish dictionaries go to the trouble of putting the
words in lexicographical order. This allows us to open the book to a page where
we think the word might lie (e.g., near the middle for words starting with the
letter m). If the sequence of letters lexicographically precedes the first word on
the page, we know to go backwards. If the sequence of letters follows the last
word on the page, we know to go forwards. Otherwise, we check whether the
sequence of letters matches a word on the page.

Now let’s take the same idea and apply it the problem of finding the square root
of x. Suppose we know that a good approximation to the square root of x lies
somewhere between 0 and max. We can exploit the fact that numbers are totally
ordered. That is to say, for any pair of distinct numbers, n1 and n2, either
n1 < n2 or n1 > n2. So, we can think of the square root of x as lying somewhere on
the line

0___max

and start searching that interval. Since we don’t necessarily know where to
start searching, let’s start in the middle.

0__________________________guess__________________________max

If that is not the right answer (and it won’t be most of the time), ask whether it is
too big or too small. If it is too big, we know that the answer must lie to the left.
If it is too small, we know that the answer must lie to the right. We then repeat
the process on the smaller interval. Figure 3.4 contains an implementation and
test of this algorithm.

28 Chapter 3. Some Simple Numerical Programs

Figure 3.4 Using bisection search to approximate square root

When run, it prints

low = 0.0 high = 25 ans = 12.5
low = 0.0 high = 12.5 ans = 6.25
low = 0.0 high = 6.25 ans = 3.125
low = 3.125 high = 6.25 ans = 4.6875
low = 4.6875 high = 6.25 ans = 5.46875
low = 4.6875 high = 5.46875 ans = 5.078125
low = 4.6875 high = 5.078125 ans = 4.8828125
low = 4.8828125 high = 5.078125 ans = 4.98046875
low = 4.98046875 high = 5.078125 ans = 5.029296875
low = 4.98046875 high = 5.029296875 ans = 5.0048828125
low = 4.98046875 high = 5.0048828125 ans = 4.99267578125
low = 4.99267578125 high = 5.0048828125 ans = 4.99877929688
low = 4.99877929688 high = 5.0048828125 ans = 5.00183105469
numGuesses = 13
5.00030517578 is close to square root of 25

Notice that it finds a different answer than our earlier algorithm. That is
perfectly fine, since it still meets the problem statement.

More important, notice that at each iteration the size of the space to be searched
is cut in half. Because it divides the search space in half at each step, it is
called a bisection search. Bisection search is a huge improvement over our
earlier algorithm, which reduced the search space by only a small amount at
each iteration.

Let us try x = 123456 again. This time the program takes only thirty guesses to
find an acceptable answer. How about x = 123456789 ? It takes only forty-five
guesses.

There is nothing special about the fact that we are using this algorithm to find
square roots. For example, by changing a couple of 2’s to 3’s, we can use it to
approximate a cube root of a nonnegative number. In the next chapter we will
introduce a language mechanism that allows us to generalize this code to find
any root.

Finger exercise: What would the code in Figure 3.4 do if the statement x = 25
were replaced by x = -25?

x = 25
epsilon = 0.01
numGuesses = 0
low = 0.0
high = max(1.0, x)
ans = (high + low)/2.0
while abs(ans**2 - x) >= epsilon:
 print 'low =', low, 'high =', high, 'ans =', ans
 numGuesses += 1
 if ans**2 < x:
 low = ans
 else:
 high = ans
 ans = (high + low)/2.0
print 'numGuesses =', numGuesses
print ans, 'is close to square root of', x

 Chapter 3. Some Simple Numerical Programs 29

Finger exercise: What would have to be changed to make the code in Figure
3.4 work for finding an approximation to the cube root of both negative and
positive numbers? (Hint: think about changing low to ensure that the answer
lies within the region being searched.)

3.4 A Few Words About Using Floats

Most of the time, numbers of type float provide a reasonably good
approximation to real numbers. But “most of the time” is not all of the time,
and when they don’t it can lead to surprising consequences. For example, try
running the code

x = 0.0
for i in range(10):
 x = x + 0.1
if x == 1.0:
 print x, '= 1.0'
else:
 print x, 'is not 1.0'

Perhaps you, like most people, find it doubly surprising that it prints,

1.0 is not 1.0

Why does it get to the else clause in the first place? And if it somehow does get
there, why is it printing such a nonsensical phrase?

To understand why this happens, we need to understand how floating point
numbers are represented in the computer during a computation. To understand
that, we need to understand binary numbers.

When you first learned about decimal numbers, i.e., numbers base 10, you
learned that a decimal number is represented by a sequence of the digits
0123456789. The rightmost digit is the 100 place, the next digit towards the left
the 101 place, etc. For example, the sequence of decimal digits 302 represents
3*100 + 0*10 + 2*1. How many different numbers can be represented by a

sequence of length n? A sequence of length one can represent any one of ten
numbers (0 - 9). A sequence of length two can represent one hundred different
numbers (0-99). More generally, with a sequence of length n, one can represent
10n different numbers.

Binary numbers—numbers base 2—work similarly. A binary number is
represented by a sequence of digits each of which is either 0 or 1. These digits
are often called bits. The rightmost digit is the 20 place, the next digit towards
the left the 21 place, etc. For example, the sequence of binary digits 101
represents 1*4 + 0*2 + 1*1 = 5. How many different numbers can be represented by

a sequence of length n? 2n.

Finger exercise: What is the decimal equivalent of the binary number
10011?

30 Chapter 3. Some Simple Numerical Programs

Perhaps because most people have ten fingers, we seem to like to use decimals
to represent numbers. On the other hand, all modern computer systems
represent numbers in binary. This is not because computers are born with two
fingers. It is because it is easy to build hardware switches, i.e., devices that can
be in only one of two states, on or off. That the computer uses a binary
representation and people a decimal representation can lead to occasional
cognitive dissonance.

In almost modern programming languages non-integer numbers are
implemented using a representation called floating point. For the moment,
let’s pretend that the internal representation is in decimal. We would represent
a number as a pair of integers—the significant digits of the number and an
exponent. For example, the number 1.949 would be represented as the pair
(1949, -3), which stands for the product 1949 X 10-3.

The number of significant digits determines the precision with which numbers
can be represented. If for example, there were only two significant digits, the
number 1.949 could not be represented exactly. It would have to be converted to
some approximation of 1.949, in this case 1.9. That approximation is called the
rounded value.

Modern computers use binary, not decimal, representations. We represent the
significant digits and exponents in binary rather than decimal and raise 2 rather
than 10 to the exponent. For example, the number 0.625 (5/8) would be
represented as the pair (101, -11); because 5/8 is 0.101 in binary and -11 is the
binary representation of -3, the pair (101, -11) stands for 5 X 2-3 = 5/8 = 0.625.

What about the decimal fraction 1/10, which we write in Python as 0.1? The best
we can do with four significant binary digits is (0011, -101). This is equivalent to
3/32, i.e., 0.09375. If we had five significant binary digits, we would represent 0.1
as (11001, -1000), which is equivalent to 25/256, i.e., 0.09765625. How many
significant digits would we need to get an exact floating point representation of
0.1? An infinite number of digits! There do not exist integers sig and exp such

that sig * 2
-exp equals 0.1. So no matter how many bits Python (or any other

language) chooses to use to represent floating point numbers, it will be able to
represent only an approximation to 0.1. In most Python implementations, there
are 53 bits of precision available for floating point numbers, so the significant
digits stored for the decimal number 0.1 will be

11001100110011001100110011001100110011001100110011001

This is equivalent to the decimal number

0.1000000000000000055511151231257827021181583404541015625

Pretty close to 1/10, but not exactly 1/10.

 Chapter 3. Some Simple Numerical Programs 31

Returning to the original mystery, why does

x = 0.0
for i in range(10):
 x = x + 0.1
if x == 1.0:
 print x, '= 1.0'
else:
 print x, 'is not 1.0'

print

1.0 is not 1.0

We now see that the test x == 1.0 produces the result False because the value
to which x is bound is not exactly 1.0. What gets printed if we add to the end of
the else clause the code print x == 10.0*0.1? It prints False because during
at least one iteration of the loop Python ran out of significant digits and did
some rounding. It’s not what our elementary school teachers taught us, but
adding 0.1 ten times does not produce the same value as multiplying 0.1 by 10.

Finally, why does the code

print x

print 1.0 rather than the actual value of the variable x? Because the designers
of Python thought that would be convenient for users if print did some
automatic rounding. This is probably an accurate assumption most of the time.
However, it is important to keep in mind that what is being displayed does not
necessarily exactly match the value stored in the machine.

By the way, if you want to explicitly round a floating point number, use the
round function. The expression round(x, numDigits) returns the floating point
number equivalent to rounding the value of x to numDigits decimal digits
following the decimal point. For example print round(2**0.5, 3) will print 1.414
as an approximation to the square root of 2.

Does the difference between real and floating point numbers really matter?
Most of the time, mercifully, it does not. However, one thing that is almost
always worth worrying about is tests for equality. As we have seen, using == to
compare two floating point values can produce a surprising result. It is almost
always more appropriate to ask whether two floating point values are close
enough to each other, not whether they are identical. So, for example, it is
better to write abs(x-y) < 0.0001 rather than x == y.

Another thing to worry about is the accumulation of rounding errors. Most of
the time things work out OK because sometimes the number stored in the
computer is a little bigger than intended, and sometimes it is a little smaller
than intended. However, in some programs, the errors will all be in the same
direction and accumulate over time.

32 Chapter 3. Some Simple Numerical Programs

3.5 Newton-Raphson

The most commonly used approximation algorithm is usually attributed to Isaac
Newton. It is typically called Newton’s method, but is sometimes referred to as
the Newton-Raphson method.15 It can be used to find the real roots of many
functions, but we shall look at it only in the context of finding the real roots of a
polynomial with one variable. The generalization to polynomials with multiple
variables is straightforward both mathematically and algorithmically.

A polynomial with one variable (by convention, we will write the variable as x) is
either zero or the sum of a finite number of nonzero terms, e.g., 3x2 + 2x + 3.
Each term, e.g., 3x2, consists of a constant (the coefficient of the term, 3 in this
case) multiplied by the variable (x in this case) raised to a nonnegative integer
exponent (2 in this case). The exponent on a variable in a term is called the
degree of that term. The degree of a polynomial is the largest degree of any
single term. Some examples are, 3 (degree 0), 2.5x + 12 (degree 1), and 3x2

(degree 2). In contrast, 2/x and x0.5 are not polynomials.

If p is a polynomial and r a real number, we will write p(r) to stand for the value of
the polynomial when x = r. A root of the polynomial p is a solution to the
equation p = 0, i.e., an r such that p(r) = 0. So, for example, the problem of finding
an approximation to the square root of 24 can be formulated as finding an x
such that x2 – 24 ≈ 0.

Newton proved a theorem that implies that if a value, call it guess, is an
approximation to a root of a polynomial, then guess – p(guess)/p’(guess), where p’ is
the first derivative of p, is a better approximation.16

For any constant k and any coefficient c, the first derivative of cx2 + k is 2cx. For
example, the first derivative of x2 – k is 2x. Therefore, we know that we can
improve on the current guess, call it y, by choosing as our next guess
y - (y2 - k)/2y. This is called successive approximation. Figure 3.5 contains code
illustrating how to use this idea to quickly find an approximation to the square
root.

15 Joseph Raphson published a similar method about the same time as Newton.

16 The first derivative of a function f(x) can be thought of as expressing how the value of
f(x) changes with respect to changes in x. If you haven’t previously encountered
derivatives, don’t worry. You don’t need to understand them, or for that matter
polynomials, to understand the implementation of Newton’s method.

 Chapter 3. Some Simple Numerical Programs 33

Figure 3.5 Newton-Raphson method

Finger exercise: Add some code to the implementation of Newton-Raphson that
keeps track of the number of iterations used to find the root. Use that code as
part of a program that compares the efficiency of Newton-Raphson and bisection
search. (You should discover that Newton-Raphson is more efficient.)

#Newton-Raphson for square root
#Find x such that x**2 - 24 is within epsilon of 0
epsilon = 0.01
k = 24.0
guess = k/2.0
while abs(guess*guess - k) >= epsilon:
 guess = guess - (((guess**2) - k)/(2*guess))
print 'Square root of', k, 'is about', guess

www.allitebooks.com

http://www.allitebooks.org

4 FUNCTIONS, SCOPING, AND ABSTRACTION

So far, we have introduced numbers, assignments, input/output, comparisons,
and looping constructs. How powerful is this subset of Python? In a theoretical
sense, it is as powerful as you will ever need. Such languages are called Turing
complete. This means that if a problem can be solved via computation, it can
be solved using only those statements you have already seen.

Which isn’t to say that you should use only these statements. At this point we
have covered a lot of language mechanisms, but the code has been a single
sequence of instructions, all merged together. For example, in the last chapter
we looked at the code in Figure 4.1.

Figure 4.1 Using bisection search to approximate square root

This is a reasonable piece of code, but it lacks general utility. It works only for
values denoted by the variables x and epsilon. This means that if we want to
reuse it, we need to copy the code, possibly edit the variable names, and paste it
where we want it. Because of this we cannot easily use this computation inside
of some other, more complex, computation.

Furthermore, if we want to compute cube roots rather than square roots, we
have to edit the code. If we want a program that computes both square and
cube roots (or for that matter square roots in two different places), the program
would contain multiple chunks of almost identical code. This is a very bad
thing. The more code a program contains, the more chance there is for
something to go wrong, and the harder the code is to maintain. Imagine, for
example, that there was an error in the initial implementation of square root,
and that the error came to light when testing the program. It would be all too
easy to fix the implementation of square root in one place and forget that there
was similar code elsewhere that was also in need of repair.

Python provides several linguistic features that make it relatively easy to
generalize and reuse code. The most important is the function.

x = 25
epsilon = 0.01
numGuesses = 0
low = 0.0
high = max(1.0, x)
ans = (high + low)/2.0
while abs(ans**2 - x) >= epsilon:
 numGuesses += 1
 if ans**2 < x:
 low = ans
 else:
 high = ans
 ans = (high + low)/2.0
print 'numGuesses =', numGuesses
print ans, 'is close to square root of', x

 Chapter 4. Functions, Scoping, and Abstraction 35

4.1 Functions and Scoping

We’ve already used a number of built-in functions, e.g., max and abs in Figure
4.1. The ability for programmers to define and then use their own functions, as
if they were built-in, is a qualitative leap forward in convenience.

4.1.1 Function Definitions

In Python each function definition is of the form17

def name of function (list of formal parameters):
 body of function

For example, we could define the function max18 by the code

def max(x, y):
 if x > y:
 return x
 else:
 return y

def is a reserved word that tells Python that a function is about to be defined.
The function name (max in this example) is simply a name that is used to refer to
the function.

The sequence of names (x,y in this example) within the parentheses following

the function name are the formal parameters of the function. When the
function is used, the formal parameters are bound (as in an assignment
statement) to the actual parameters (often referred to as arguments) of the
function invocation (also referred to as a function call). For example, the
invocation

max(3, 4)

binds x to 3 and y to 4.

The function body is any piece of Python code. There is, however, a special
statement, return, that can be used only within the body of a function.

A function call is an expression, and like all expressions it has a value. That
value is the value returned by the invoked function. For example, the value of
the expression max(3,4)*max(3,2) is 12, because the first invocation of max
returns the int 4 and the second returns the int 3. Note that execution of a
return statement terminates that invocation of the function.

To recapitulate, when a function is called

1. The expressions that make up the actual parameters are evaluated, and
the formal parameters of the function are bound to the resulting values.
For example, the invocation max(3+4, z) will bind the formal parameter x
to 7 and the formal parameter y to whatever value the variable z has
when the invocation is evaluated.

17 Recall that italics is used to describe Python code.

18 In practice, you would probably use the built-in function max, rather than define your
own.

36 Chapter 4. Functions, Scoping, and Abstraction

2. The point of execution (the next instruction to be executed) moves from
the point of invocation to the first statement in the body of the function.

3. The code in the body of the function is executed until either a return
statement is encountered, in which case the value of the expression
following the return becomes the value of the function invocation, or
there are no more statements to execute, in which case the function
returns the value None. (If no expression follows the return, the value of
the invocation is None.)

4. The value of the invocation is the returned value.

5. The point of execution is transferred back to the code immediately
following the invocation.

Parameters provide something called lambda abstraction,19 allowing
programmers to write code that manipulates not specific objects, but instead
whatever objects the caller of the function chooses to use as actual parameters.

Finger exercise: Write a function isIn that accepts two strings as arguments
and returns True if either string occurs anywhere in the other, and False
otherwise. Hint: you might want to use the built-in str operation in.

4.1.2 Keyword Arguments and Default Values

In Python, there are two ways that formal parameters get bound to actual
parameters. The most common method, which is the only one we have used
thus far, is called positional—the first formal parameter is bound to the first
actual parameter, the second formal to the second actual, etc. Python also
supports what it calls keyword arguments, in which formals are bound to
actuals using the name of the formal parameter. Consider the function
definition in Figure 4.2. The function printName assumes that firstName and
lastName are strings and that reverse is a Boolean. If reverse == True, it prints
lastName, firstName, otherwise it prints firstName lastName.

Figure 4.2 Function that prints a name

Each of the following is an equivalent invocation of printName:

printName('Olga', 'Puchmajerova', False)
printName('Olga', 'Puchmajerova', False)
printName('Olga', 'Puchmajerova', reverse = False)
printName('Olga', lastName = 'Puchmajerova', reverse = False)
printName(lastName='Puchmajerova', firstName='Olga', reverse=False)

19 The name “lambda abstraction” is derived from some mathematics developed by Alonzo
Church in the 1930s and 1940s.

def printName(firstName, lastName, reverse):
 if reverse:
 print lastName + ', ' + firstName
 else:
 print firstName, lastName

 Chapter 4. Functions, Scoping, and Abstraction 37

Though the keyword arguments can appear in any order in the list of actual
parameters, it is not legal to follow a keyword argument with a non-keyword
argument. Therefore, an error message would be produced by

printName('Olga', lastName = 'Puchmajerova', False)

Keyword arguments are commonly used in conjunction with default parameter
values. We can, for example, write

def printName(firstName, lastName, reverse = False):
 if reverse:
 print lastName + ', ' + firstName
 else:
 print firstName, lastName

Default values allow programmers to call a function with fewer than the
specified number of arguments. For example,

printName('Olga', 'Puchmajerova')
printName('Olga', 'Puchmajerova', True)
printName('Olga', 'Puchmajerova', reverse = True)

will print

Olga Puchmajerova
Puchmajerova, Olga
Puchmajerova, Olga

The last two invocations of printName are semantically equivalent. The last one
has the advantage of providing some documentation for the perhaps mysterious
parameter True.

4.1.3 Scoping

Let’s look at another small example,

def f(x): #name x used as formal parameter
 y = 1
 x = x + y
 print 'x =', x
 return x

x = 3
y = 2
z = f(x) #value of x used as actual parameter
print 'z =', z
print 'x =', x
print 'y =', y

When run, this code prints,

x = 4
z = 4
x = 3
y = 2

What is going on here? At the call of f, the formal parameter x is locally bound
to the value of the actual parameter x. It is important to note that though the
actual and formal parameters have the same name, they are not the same
variable. Each function defines a new name space, also called a scope. The

38 Chapter 4. Functions, Scoping, and Abstraction

formal parameter x and the local variable y that are used in f exist only within
the scope of the definition of f. The assignment statement x = x + y within the
function body binds the local name x to the object 4. The assignments in f have
no effect at all on the bindings of the names x and y that exist outside the scope
of f.

Here’s one way to think about this:

• At top level, i.e., the level of the shell, a symbol table keeps track of all
names defined at that level and their current bindings.

• When a function is called, a new symbol table (sometimes called a stack
frame) is created. This table keeps track of all names defined within the
function (including the formal parameters) and their current bindings. If
a function is called from within the function body, yet another stack
frame is created.

• When the function completes, its stack frame goes away.

In Python, one can always determine the scope of a name by looking at the
program text. This is called static or lexical scoping. Figure 4.3 contains a
slightly more elaborate example.

Figure 4.3 Nested scopes

The history of the stack frames associated with the code in Figure 4.3 is
depicted in Figure 4.4.

def f(x):
 def g():
 x = 'abc'
 print 'x =', x
 def h():
 z = x
 print 'z =', z
 x = x + 1
 print 'x =', x
 h()
 g()
 print 'x =', x
 return g

x = 3
z = f(x)
print 'x =', x
print 'z =', z
z()

 Chapter 4. Functions, Scoping, and Abstraction 39

Figure 4.4 Stack frames

The first column contains the set of names known outside the body of the
function f, i.e., the variables x and z, and the function name f. The first
assignment statement binds x to 3.

The assignment statement z = f(x) first evaluates the expression f(x) by
invoking the function f with the value to which x is bound. When f is entered, a
stack frame is created, as shown in column 2. The names in the stack frame are
x (the formal parameter, not the x in the calling context), g and h. The variables
g and h are bound to objects of type function. The properties of each of these
functions are given by the function definitions within f.

When h is invoked from within f, yet another stack frame is created, as shown in
column 3. This frame contains only the local variable z. Why does it not also
contain x? A name is added to the scope associated with a function only if that
name is either a formal parameter of the function or a variable that is bound to
an object within the body of the function. In the body of h, x occurs only on the
right-hand side of an assignment statement. The appearance of a name (x in
this case) that is not bound anywhere in the function body (the body of h) causes
the interpreter to search the previous stack frame associated with the scope
within which the function is defined (the stack frame associated with f). If the
name is found (which it is in this case) the value to which it is bound (4) is used.
If it is not found there, an error message is produced.

When h returns, the stack frame associated with the invocation of h goes away
(i.e., it is popped off the top of the stack), as depicted in column 4. Note that we
never remove frames from the middle of the stack, but only the most recently
added frame. It is because it has this “last in first out” behavior that we refer to
it as a stack (think of a stack of trays waiting to be taken in a cafeteria).

Next g is invoked, and a stack frame containing g’s local variable x is added
(column 5). When g returns, that frame is popped (column 6). When f returns,
the stack frame containing the names associated with f is popped, getting us
back to the original stack frame (column 7).

Notice that when f returns, even though the variable g no longer exists, the
object of type function to which that name was once bound still exists. This is

40 Chapter 4. Functions, Scoping, and Abstraction

because functions are objects, and can be returned just like any other kind of
object. So, z can be bound to the value returned by f, and the function call z()
can be used to invoke the function that was bound to the name g within f—even
though the name g is not known outside the context of f.

So, what does the code in Figure 4.3 print? It prints

x = 4
z = 4
x = abc
x = 4
x = 3
z = <function g at 0x15b43b0>
x = abc

The order in which references to a name occur is not germane. If an object is
bound to a name anywhere in the function body (even if it occurs in an
expression before it appears as the left-hand-side of an assignment), it is treated
as local to that function.20

Consider, for example, the code

def f():
 print x

def g():
 print x
 x = 1

x = 3
f()
x = 3
g()

It prints 3 when f is invoked, but an error message is printed when it
encounters the print statement in g because the assignment statement following
the print statement causes x to be local to g. And because x is local to g, it has
no value when the print statement is executed.

Confused yet? It takes most people a bit of time to get their head around scope
rules. Don’t let this bother you. For now, charge ahead and start using
functions. Most of the time you will find that you only want to use variables
that are local to a function, and the subtleties of scoping will be irrelevant.

20 The wisdom of this language design decision is debatable.

 Chapter 4. Functions, Scoping, and Abstraction 41

4.2 Specifications

Figure 4.5 defines a function, findRoot, that generalizes the bisection search we
used to find square roots in Figure 4.1. It also contains a function,
testFindRoot, that can be used to test whether or not findRoot works as
intended.

The function testFindRoot is almost as long as findRoot itself. To inexperienced
programmers, writing test functions such as this often seems to be a waste of
effort. Experienced programmers know, however, that an investment in writing
testing code often pays big dividends. It certainly beats typing test cases into
the shell over and over again during debugging (the process of finding out why a
program does not work, and then fixing it). It also forces us to think about
which tests are likely to be most illuminating.

The text between the triple quotation marks is called a docstring in Python. By
convention, Python programmers use docstrings to provide specifications of
functions. These docstrings can be accessed using the built-in function help.

If we enter the shell and type help(abs), the system will display

Help on built-in function abs in module __builtin__:
abs(...)
 abs(number) -> number
 Return the absolute value of the argument.

If the code in Figure 4.5 (below) has been loaded into IDLE, typing
help(findRoot) in the shell will display

Help on function findRoot in module __main__:

findRoot(x, power, epsilon)
 Assumes x and epsilon int or float, power an int,
 epsilon > 0 & power >= 1
 Returns float y such that y**power is within epsilon of x.
 If such a float does not exist, it returns None

If we type

findRoot(

in either the shell or the editor, the list of formal parameters and the first line of
the docstring will be displayed.

42 Chapter 4. Functions, Scoping, and Abstraction

Figure 4.5 Finding an approximation to a root

A specification of a function defines a contract between the implementer of a
function and those who will be writing programs that use the function. We will
refer to the users of a function as its clients. This contract can be thought of as
containing two parts:

1. Assumptions: These describe conditions that must be met by clients of
the function. Typically, they describe constraints on the actual
parameters. Almost always, they specify the acceptable set of types for
each parameter, and not infrequently some constraints on the value of
one or more of the parameters. For example, the first two lines of the
docstring of findRoot describe the assumptions that must be satisfied by
clients of findRoot.

2. Guarantees: These describe conditions that must be met by the function,
provided that it has been called in a way that satisfies the assumptions.
The last two lines of the docstring of findRoot describe the guarantees
that the implementation of the function must meet.

Functions are a way of creating computational elements that we can think of as
primitives. Just as we have the built-in functions max and abs, we would like to
have the equivalent of a built-in function for finding roots and for many other
complex operations. Functions facilitate this by providing decomposition and
abstraction.

def findRoot(x, power, epsilon):
 """Assumes x and epsilon int or float, power an int,
 epsilon > 0 & power >= 1
 Returns float y such that y**power is within epsilon of x.
 If such a float does not exist, it returns None"""
 if x < 0 and power%2 == 0:
 return None
 low = min(-1.0, x)
 high = max(1.0, x)
 ans = (high + low)/2.0
 while abs(ans**power - x) >= epsilon:
 if ans**power < x:
 low = ans
 else:
 high = ans
 ans = (high + low)/2.0
 return ans

def testFindRoot():
 epsilon = 0.0001
 for x in (0.25, -0.25, 2, -2, 8, -8):
 for power in range(1, 4):
 print 'Testing x = ' + str(x) +\
 ' and power = ' + str(power)
 result = findRoot(x, power, epsilon)
 if result == None:
 print ' No root'
 else:
 print ' ', result**power, '~=', x

 Chapter 4. Functions, Scoping, and Abstraction 43

Decomposition creates structure. It allows us to break a problem into modules
that are reasonably self-contained, and that may be reused in different settings.

Abstraction hides detail. It allows us to use a piece of code as if it were a black
box—that is, something whose interior details we cannot see, don’t need to see,
and shouldn’t even want to see.21 The essence of abstraction is preserving
information that is relevant in a given context, and forgetting information that is
irrelevant in that context. The key to using abstraction effectively in
programming is finding a notion of relevance that is appropriate for both the
builder of an abstraction and the potential clients of the abstraction. That is the
true art of programming.

Abstraction is all about forgetting. There are lots of ways to model this, for
example, the auditory apparatus of most teenagers.

Teenager says: May I borrow the car tonight?

Parent says: Yes, but be back before midnight, and make sure that the gas tank
is full.

Teenager hears: Yes.

The teenager has ignored all of those pesky details that he or she considers
irrelevant. Abstraction is a many-to-one process. Had the parent said Yes, but
be back before 2:00 a.m., and make sure that the car is clean, it would also have
been abstracted to Yes.

By way of analogy, imagine that you were asked to produce an introductory
computer science course containing twenty-five lectures. One way to do this
would be to recruit twenty-five professors, and ask each of them to prepare a
fifty-minute lecture on their favorite topic. Though you might get twenty-five
wonderful hours, the whole thing is likely to feel like a dramatization of
Pirandello’s “Six Characters in Search of an Author” (or that political science
course you took with fifteen guest lecturers). If each professor worked in
isolation, they would have no idea how to relate the material in their lecture to
the material covered in other lectures.

Somehow, one needs to let everyone know what everyone else is doing, without
generating so much work that nobody is willing to participate. This is where
abstraction comes in. You could write twenty-five specifications, each saying
what material the students should learn in each lecture, but not giving any
detail about how that material should be taught. What you got might not be
pedagogically wonderful, but at least it might make sense.

This is the way organizations go about using teams of programmers to get things
done. Given a specification of a module, a programmer can work on
implementing that module without worrying unduly about what the other
programmers on the team are doing. Moreover, the other programmers can use
the specification to start writing code that uses that module without worrying
unduly about how that module is to be implemented.

21 “Where ignorance is bliss, ’tis folly to be wise.”—Thomas Gray

www.allitebooks.com

http://www.allitebooks.org

44 Chapter 4. Functions, Scoping, and Abstraction

The specification of findRoot is an abstraction of all the possible
implementations that meet the specification. Clients of findRoot can assume
that the implementation meets the specification, but they should assume
nothing more. For example, clients can assume that the call
findRoot(4.0, 2, 0.01) returns some value whose square is between 3.99 and
4.01. The value returned could be positive or negative, and even though 4.0, is
a perfect square the value returned might not be 2.0 or -2.0.

4.3 Recursion

You may have heard of recursion, and in all likelihood think of it as a rather
subtle programming technique. That’s an urban legend spread by computer
scientists to make people think that we are smarter than we really are.
Recursion is a very important idea, but it’s not so subtle, and it is more than a
programming technique.

As a descriptive method recursion is widely used, even by people who would
never dream of writing a program.

Consider part of the legal code of the United States defining the notion of a
“natural-born” citizen. Roughly speaking, the definition is as follows

1. Any child born inside the United States,

2. Any child born in wedlock outside the United States both of whose
parents are citizens of the U.S., as long as one parent has lived in the
U.S. prior to the birth of the child, and

3. Any child born in wedlock outside the United States one of whose
parents is a U.S. citizen who has lived at least five years in the U.S. prior
to the birth of the child, provided that at least two of those years were
after the citizen’s fourteenth birthday.

The first part is simple; if you are born in the United States, you are a natural-
born citizen (such as Barack Obama). If you are not born in the U.S., then one
has to decide if your parents are U.S. citizens (either natural born or
naturalized). To determine if your parents are U.S. citizens, you might have to
look at your grandparents, and so on.

In general, a recursive definition is made up of two parts. There is at least one
base case that directly specifies the result for a special case (case 1 in the
example above), and there is at least one recursive (inductive) case (cases 2
and 3 in the example above) that defines the answer in terms of the answer to
the question on some other input, typically a simpler version of the same
problem.

 Chapter 4. Functions, Scoping, and Abstraction 45

The world’s simplest recursive definition is probably the factorial function
(typically written in mathematics using !) on natural numbers.22 The classic
inductive definition is,

1! = 1

(n + 1)! = (n + 1) * n!

The first equation defines the base case. The second equation defines factorial
for all natural numbers, except the base case, in terms of the factorial of the
previous number.

Figure 4.6 contains both an iterative (factI) and a recursive (factR)
implementation of factorial.

Figure 4.6 Iterative and recursive implementations of factorial

This function is sufficiently simple that neither implementation is hard to follow.
Still, the second is a more obvious translation of the original recursive definition.

It almost seems like cheating to implement factR by calling factR from within
the body of factR. It works for the same reason that the iterative
implementation works. We know that the iteration in factI will terminate
because n starts out positive and each time around the loop it is reduced by 1.
This means that it cannot be greater than 1 forever. Similarly, if factR is called
with 1, it returns a value without making a recursive call. When it does make a
recursive call, it always does so with a value one less than the value with which
it was called. Eventually, the recursion terminates with the call factR(1).

4.3.1 Fibonacci Numbers

The Fibonacci sequence is another common mathematical function that is
usually defined recursively. “They breed like rabbits,” is often used to describe a
population that the speaker thinks is growing too quickly. In the year 1202, the

22 The exact definition of “natural number” is subject to debate. Some define it as the
positive integers and others as the nonnegative integers. That’s why we were explicit
about the possible values of n in the docstring in Figure 4.6.

def factI(n):
 """Assumes that n is an int > 0
 Returns n!"""
 result = 1
 while n > 1:
 result = result * n
 n -= 1
 return result

def factR(n):
 """Assumes that n is an int > 0
 Returns n!"""
 if n == 1:
 return n
 else:
 return n*factR(n - 1)

46 Chapter 4. Functions, Scoping, and Abstraction

Italian mathematician Leonardo of Pisa, also known as Fibonacci, developed a
formula designed to quantify this notion, albeit with some not terribly realistic
assumptions.

Suppose a newly born pair of rabbits, one male and one female, are put in a pen
(or worse, released in the wild). Suppose further that the rabbits are able to
mate at the age of one month (which, astonishingly, some breeds can) and have
a one-month gestation period (which, astonishingly, some breeds do). Finally,
suppose that these mythical rabbits never die, and that the female always
produces one new pair (one male, one female) every month from its second
month on. How many pregnant rabbits will there be at the end of six months?

On the last day of the first month (call it month 0), there will be one female
(ready to conceive on the first day of the next month). On the last day of the
second month, there will still be only one female (since she will not give birth
until the first day of the next month). On the last day of the next month, there
will be two females (one pregnant and one not). On the last day of the next
month, there will be three females (two pregnant and one not). And so on. Let’s
look at this progression in tabular form.

Notice that in this table, for month n > 1,
females(n) = females(n-1) + females(n-2). This is not an accident.
Each female that was alive in month n-1 will still be alive in
month n. In addition, each female that was alive in month
n-2 will produce one new female in month n. The new
females can be added to the females alive in month n-1 to get
the number of females in month n.

The growth in population is described naturally by the
recurrence:

females(0) = 1
females(1) = 1
females(n + 2) = females(n+1) + females(n)

This definition is a little different from the recursive definition of factorial:

• It has two base cases, not just one. In general, you can have as many
base cases as you need.

• In the recursive case, there are two recursive calls, not just one. Again,
there can be as many as you need.

Figure 4.7 contains a straightforward implementation of the Fibonacci
recurrence,23 along with a function that can be used to test it.

23 While obviously correct, this is a terribly inefficient implementation of the Fibonacci
function. There is a simple iterative implemenentation that is much better.

Month Females

0 1

1 1

2 2

3 3

4 5

5 8

6 13

 Chapter 4. Functions, Scoping, and Abstraction 47

Figure 4.7 Recursive implementation of Fibonacci sequence

Writing the code is the easy part of solving this problem. Once we went from the
vague statement of a problem about bunnies to a set of recursive equations, the
code almost wrote itself. Finding some kind of abstract way to express a
solution to the problem at hand is very often the hardest step in building a
useful program. We will talk much more about this later in the book.

As you might guess, this is not a perfect model for the growth of rabbit
populations in the wild. In 1859, Thomas Austin, an Australian farmer,
imported twenty-four rabbits from England, to be used as targets in hunts. Ten
years later, approximately two million rabbits were shot or trapped each year in
Australia, with no noticeable impact on the population. That’s a lot of rabbits,
but not anywhere close to the 120th Fibonacci number.24

Though the Fibonacci sequence25 does not actually provide a perfect model of
the growth of rabbit populations, it does have many interesting mathematical
properties. Fibonacci numbers are also quite common in nature.26

Finger exercise: When the implementation of fib in Figure 4.7 is used to
compute fib(5), how many times does it compute the value fib(2)?

24 The damage done by the descendants of those twenty-four cute bunnies has been
estimated to be $600 million per year, and they are in the process of eating many native
plants into extinction.

25 That we call this a Fibonacci sequence is an example of a Eurocentric interpretation of
history. Fibonacci’s great contribution to European mathematics was his book Liber
Abaci, which introduced to European mathematicians many concepts already well known
to Indian and Arabic scholars. These concepts included Hindu-Arabic numerals and the
decimal system. What we today call the Fibonacci sequence was taken from the work of
the Sanskrit mathematician Pingala.

26 If you are feeling especially geeky, try writing a Fibonacci poem. This is a form of
poetry in which the number of syllables in each line is equal to the total number of
syllables in the previous two lines. Think of the first line (which has zero syllables) as a
place to take a deep breath before starting to read your poem.

def fib(n):
 """Assumes n an int >= 0
 Returns Fibonacci of n"""
 if n == 0 or n == 1:
 return 1
 else:
 return fib(n-1) + fib(n-2)

def testFib(n):
 for i in range(n+1):
 print 'fib of', i, '=', fib(i)

48 Chapter 4. Functions, Scoping, and Abstraction

4.3.2 Palindromes

Recursion is also useful for many problems that do not involve numbers. Figure
4.8 contains a function, isPalindrome, that checks whether a string reads the
same way backwards and forwards.

Figure 4.8 Palindrome testing

The function isPalindrome contains two internal helper functions. This should
be of no interest to clients of the function, who should care only that
isPalindrome meets its specification. But you should care, because there are
things to learn by examining the implementation.

The helper function toChars converts all letters to lowercase and removes all
non-letters. It starts by using a built-in method on strings to generate a string
that is identical to s, except that all uppercase letters have been converted to
lowercase. We will talk a lot more about method invocation when we get to
classes. For now, think of it as a peculiar syntax for a function call. Instead of
putting the first (and in this case only) argument inside parentheses following
the function name, we use dot notation to place that argument before the
function name.

The helper function isPal uses recursion to do the real work. The two base
cases are strings of length zero or one. This means that the recursive part of the
implementation is reached only on strings of length two or more. The
conjunction27 in the else clause is evaluated from left to right. The code first
checks whether the first and last characters are the same, and if they are goes
on to check whether the string minus those two characters is a palindrome.
That the second conjunct is not evaluated unless the first conjunct evaluates to

27 When two Boolean-valued expressions are connected by “and,” each expression is
called a conjunct. If they are connected by “or,” they are called disjuncts.

def isPalindrome(s):
 """Assumes s is a str
 Returns True if the letters in s form a palindrome;
 False otherwise. Non-letters and capitalization are ignored."""

 def toChars(s):
 s = s.lower()
 letters = ''
 for c in s:
 if c in 'abcdefghijklmnopqrstuvwxyz':
 letters = letters + c
 return letters

 def isPal(s):
 if len(s) <= 1:
 return True
 else:
 return s[0] == s[-1] and isPal(s[1:-1])

 return isPal(toChars(s))

 Chapter 4. Functions, Scoping, and Abstraction 49

True is semantically irrelevant in this example. However, later in the book we
will see examples where this kind of short-circuit evaluation of Boolean
expressions is semantically relevant.

This implementation of isPalindrome is an example of a problem-solving
principle known as divide-and-conquer. (This principle is related to but
different from divide-and-conquer algorithms, which are discussed in Chapter
10.) The problem-solving principle is to conquer a hard problem by breaking it
into a set of subproblems with the properties that

• the subproblems are easier to solve than the original problem, and

• solutions of the subproblems can be combined to solve the original
problem.

In this case, we solve the problem by breaking the original problem into a
simpler version of the same problem (checking whether a shorter string is a
palindrome), plus some simple things we know how to do (comparing single
characters). Figure 4.9 contains some code that can be used to visualize how
this works.

Figure 4.9 Code to visualize palindrome testing

def isPalindrome(s):
 """Assumes s is a str
 Returns True if s is a palindrome; False otherwise.
 Punctuation marks, blanks, and capitalization are
 ignored."""

 def toChars(s):
 s = s.lower()
 letters = ''
 for c in s:
 if c in 'abcdefghijklmnopqrstuvwxyz':
 letters = letters + c
 return letters

 def isPal(s):
 print ' isPal called with', s
 if len(s) <= 1:
 print ' About to return True from base case'
 return True
 else:
 answer = s[0] == s[-1] and isPal(s[1:-1])
 print ' About to return', answer, 'for', s
 return answer

 return isPal(toChars(s))

def testIsPalindrome():
 print 'Try dogGod'
 print isPalindrome('dogGod')
 print 'Try doGood'
 print isPalindrome('doGood')

50 Chapter 4. Functions, Scoping, and Abstraction

When the code in Figure 4.9 is run, it will print

Try dogGod
 isPal called with doggod
 isPal called with oggo
 isPal called with gg
 isPal called with
 About to return True from base case
 About to return True for gg
 About to return True for oggo
 About to return True for doggod
True
Try doGood
 isPal called with dogood
 isPal called with ogoo
 isPal called with go
 About to return False for go
 About to return False for ogoo
 About to return False for dogood
False

Divide-and-conquer is a very old idea. Julius Caesar practiced what the
Romans referred to as divide et impera (divide and rule). The British practiced it
brilliantly to control the Indian subcontinent. Benjamin Franklin was well
aware of the British expertise in using this technique, prompting him to say at
the signing of the U.S. Declaration of Independence, “We must all hang together,
or assuredly we shall all hang separately.”

4.4 Global Variables

If you tried calling fib with a large number, you probably noticed that it took a
very long time to run. Suppose we want to know how many recursive calls are
made? We could do a careful analysis of the code and figure it out, and in
Chapter 9 we will talk about how to do that. Another approach is to add some
code that counts the number of calls. One way to do that uses global variables.

Until now, all of the functions we have written communicate with their
environment solely through their parameters and return values. For the most
part, this is exactly as it should be. It typically leads to programs that are
relatively easy to read, test, and debug. Every once in a while, however, global
variables come in handy. Consider the code in Figure 4.10.

 Chapter 4. Functions, Scoping, and Abstraction 51

Figure 4.10 Using a global variable

In each function, the line of code global numFibCalls tells Python that the name
numCalls should be defined at the outermost scope of the module (see Section
4.5) in which the line of code appears rather than within the scope of the
function in which the line of code appears—despite the fact that numFibCalls
occurs on the left-hand side of an assignment statement in both fib and
testFib. (Had we not included the code global numFibCalls, the name
numFibCalls would have been local to each of fib and testFib.) The functions
fib and testFib both have unfettered access to the object referenced by the
variable numFibCalls. The function testFib binds numFibCalls to 0 each time it
calls fib, and fib increments the value of numFibCalls each time fib is entered.

It is with some trepidation that we introduce the topic of global variables. Since
the 1970s card-carrying computer scientists have inveighed against them. The
indiscriminate use of global variables can lead to lots of problems. The key to
making programs readable is locality. One reads a program a piece at a time,
and the less context needed to understand each piece, the better. Since global
variables can be modified or read in a wide variety of places, the sloppy use of
them can destroy locality. Nevertheless, there are times when they are just what
is needed.

4.5 Modules

So far, we have operated under the assumption that our entire program is stored
in one file. This is perfectly reasonable as long as programs are small. As
programs get larger, however, it is typically more convenient to store different
parts of them in different files. Imagine, for example, that multiple people are
working on the same program. It would be a nightmare if they were all trying to
update the same file. Python modules allow us to easily construct a program
from code in multiple files.

A module is a .py file containing Python definitions and statements. We could
create, for example, a file circle.py containing

def fib(x):
 """Assumes x an int >= 0
 Returns Fibonacci of x"""
 global numFibCalls
 numFibCalls += 1
 if x == 0 or x == 1:
 return 1
 else:
 return fib(x-1) + fib(x-2)

def testFib(n):
 for i in range(n+1):
 global numFibCalls
 numFibCalls = 0
 print 'fib of', i, '=', fib(i)
 print 'fib called', numFibCalls, 'times.'

52 Chapter 4. Functions, Scoping, and Abstraction

pi = 3.14159

def area(radius):
 return pi*(radius**2)

def circumference(radius):
 return 2*pi*radius

def sphereSurface(radius):
 return 4.0*area(radius)

def sphereVolume(radius):
 return (4.0/3.0)*pi*(radius**3)

A program gets access to a module through an import statement. So, for
example, the code

import circle
print circle.pi
print circle.area(3)
print circle.circumference(3)
print circle.sphereSurface(3)

will print

3.14159
28.27431
18.84954
113.09724

Modules are typically stored in individual files. Each module has its own private
symbol table. Consequently, within circle.py we access objects (e.g., pi and
area) in the usual way. Executing import M creates a binding for module M in
the scope in which the importation occurs. Therefore, in the importing context
we use dot notation to indicate that we are referring to a name defined in the
imported module.28 For example, outside of circle.py, the references pi and
circle.pi can (and in this case do) refer to different objects.

At first glance, the use of dot notation may seem cumbersome. On the other
hand, when one imports a module one often has no idea what local names might
have been used in the implementation of that module. The use of dot notation
to fully qualify names avoids the possibility of getting burned by an accidental
name clash. For example, the assignment statement pi = 3.0 does not change
the value of pi used within the circle module.

There is a variant of the import statement that allows the importing program to
omit the module name when accessing names defined inside the imported
module. Executing the statement from M import * creates bindings in the
current scope to all objects defined within M, but not to M itself. For example, the
code

from circle import *
print pi
print circle.pi

28 Superficially, this may seem unrelated to the use of dot notation in method invocation.
However, as we will see in Chapter 8, there is a deep connection.

 Chapter 4. Functions, Scoping, and Abstraction 53

will first print 3.14159, and then produce the error message

NameError: name 'circle' is not defined

Some Python programmers frown upon using this form of import because they
believe that it makes code more difficult to read.

As we have seen, a module can contain executable statements as well as
function definitions. Typically, these statements are used to initialize the
module. For this reason, the statements in a module are executed only the first
time a module is imported into a program. On a related note, a module is
imported only once per interpreter session. If you start up IDLE, import a
module, and then change the contents of that module, the interpreter will still
be using the original version of the module. This can lead to puzzling behavior
when debugging. You can force the interpreter to reload all imported modules
by executing reload().

There are lots of useful modules that come as part of the standard Python
library. For example, it is rarely necessary to write your own implementations of
common mathematical or string functions. A description of this library can be
found at http://docs.python.org/2/library/.

4.6 Files

Every computer system uses files to save things from one computation to the
next. Python provides many facilities for creating and accessing files. Here we
illustrate some of the basic ones.

Each operating system (e.g., Windows and MAC OS) comes with its own file
system for creating and accessing files. Python achieves operating-system
independence by accessing files through something called a file handle. The
code

nameHandle = open('kids', 'w')

instructs the operating system to create a file with the name kids, and return a
file handle for that file. The argument 'w' to open indicates that the file is to be
opened for writing. The following code opens a file, uses the write method to
write two lines, and then closes the file. It is important to remember to close the
file when the program is finished using it. Otherwise there is a risk that some or
all of the writes may not be saved.

nameHandle = open('kids', 'w')
for i in range(2):
 name = raw_input('Enter name: ')
 nameHandle.write(name + '\n')
nameHandle.close()

In a string, the character “\” is an escape character used to indicate that the
next character should be treated in a special way. In this example, the string
'\n' indicates a new line character.

www.allitebooks.com

http://www.allitebooks.org

54 Chapter 4. Functions, Scoping, and Abstraction

We can now open the file for reading (using the argument 'r'), and print its
contents. Since Python treats a file as a sequence of lines, we can use a for
statement to iterate over the file’s contents.

nameHandle = open('kids', 'r')
for line in nameHandle:
 print line
nameHandle.close()

If we had typed in the names David and Andrea, this will print

David

Andrea

The extra line between David and Andrea is there because print starts a new line
each time it encounters the '\n' at the end of each line in the file. We could
have avoided printing that by writing print line[:-1]. Now consider

nameHandle = open('kids', 'w')
nameHandle.write('Michael\n')
nameHandle.write('Mark\n')
nameHandle.close()
nameHandle = open('kids', 'r')
for line in nameHandle:
 print line[:-1]
nameHandle.close()

It will print

Michael
Mark

Notice that we have overwritten the previous contents of the file kids. If we don’t
want to do that we can open the file for appending (instead of writing) by using
the argument 'a'.

For example, if we now run the code

nameHandle = open('kids', 'a')
nameHandle.write('David\n')
nameHandle.write('Andrea\n')
nameHandle.close()
nameHandle = open('kids', 'r')
for line in nameHandle:
 print line[:-1]
nameHandle.close()

it will print

Michael
Mark
David
Andrea

 Chapter 4. Functions, Scoping, and Abstraction 55

Some of the common operations on files are summarized in Figure 4.11.

Figure 4.11 Common functions for accessing files

open(fn, 'w') fn is a string representing a file name. Creates a file for
writing and returns a file handle.

open(fn, 'r') fn is a string representing a file name. Opens an existing
file for reading and returns a file handle.

open(fn, 'a') fn is a string representing a file name. Opens an existing
file for appending and returns a file handle.

fh.read() returns a string containing the contents of the file associated
with the file handle fh.

fh.readline() returns the next line in the file associated with the file
handle fh.

fh.readlines() returns a list each element of which is one line of the file
associated with the file handle fh.

fh.write(s) write the string s to the end of the file associated with the file
handle fh.

fh.writeLines(S) S is a sequence of strings. Writes each element of S to
the file associated with the file handle fh.

fh.close() closes the file associated with the file handle fh.

5 STRUCTURED TYPES, MUTABILITY, AND HIGHER-
ORDER FUNCTIONS

The programs we have looked at thus far have dealt with three types of objects:
int, float, and str. The numeric types int and float are scalar types. That is
to say, objects without accessible internal structure. In contrast, str can be
thought of as a structured, or non-scalar, type. One can use indexing to extract
individual characters from a string and slicing to extract substrings.

In this chapter, we introduce three structured types. One, tuple, is a rather
simple generalization of str. The other two, list and dict, are more
interesting—in part because they are mutable. We also return to the topic of
functions with some examples that illustrate the utility of being able to treat
functions in the same way as other types of objects.

5.1 Tuples

Like strings, tuples are ordered sequences of elements. The difference is that
the elements of a tuple need not be characters. The individual elements can be
of any type, and need not be of the same type as each other.

Literals of type tuple are written by enclosing a comma-separated list of
elements within parentheses. For example, we can write

t1 = ()
t2 = (1, 'two', 3)
print t1
print t2

Unsurprisingly, the print statements produce the output

()
(1, 'two', 3)

Looking at this example, you might naturally be led to believe that the tuple
containing the single value 1 would be written (1). But, to quote Richard Nixon,
“that would be wrong.” Since parentheses are used to group expressions, (1) is
merely a verbose way to write the integer 1. To denote the singleton tuple
containing this value, we write (1,). Almost everybody who uses Python has at
one time or another accidentally omitted that annoying comma.

Like strings, tuples can be concatenated, indexed, and sliced. Consider

t1 = (1, 'two', 3)
t2 = (t1, 3.25)
print t2
print (t1 + t2)
print (t1 + t2)[3]
print (t1 + t2)[2:5]

The second assignment statement binds the name t2 to a tuple that contains
the tuple to which t1 is bound and the floating point number 3.25. This is

 Chapter 5. Structured Types, Mutability, and Higher-Order Functions 57

possible because a tuple, like everything else in Python, is an object, so tuples
can contain tuples. Therefore, the first print statement produces the output,

((1, 'two', 3), 3.25)

The second print statement prints the value generated by concatenating the
values bound to t1 and t2, which is a tuple with five elements. It produces the
output

(1, 'two', 3, (1, 'two', 3), 3.25)

The next statement selects and prints the fourth element of the concatenated
tuple (as always in Python, indexing starts at 0), and the statement after that
creates and prints a slice of that tuple, producing the output

(1, 'two', 3)
(3, (1, 'two', 3), 3.25)

A for statement can be used to iterate over the elements of a tuple. For
example, the following code prints the common divisors of 20 and 100 and then
the sum of all the divisors.

def findDivisors (n1, n2):
 """Assumes that n1 and n2 are positive ints
 Returns a tuple containing all common divisors of n1 & n2"""
 divisors = () #the empty tuple
 for i in range(1, min (n1, n2) + 1):
 if n1%i == 0 and n2%i == 0:
 divisors = divisors + (i,)
 return divisors

divisors = findDivisors(20, 100)
print divisors
total = 0
for d in divisors:
 total += d
print total

5.1.1 Sequences and Multiple Assignment

If you know the length of a sequence (e.g., a tuple or a string), it can be
convenient to use Python’s multiple assignment statement to extract the
individual elements. For example, after executing the statement x, y = (3, 4),
x will be bound to 3 and y to 4. Similarly, the statement a, b, c = 'xyz' will
bind a to 'x', b to 'y', and c to 'z'.

This mechanism is particularly convenient when used in conjunction with
functions that return fixed-size sequences.

58 Chapter 5. Structured Types, Mutability, and Higher-Order Functions

Consider, for example the function

def findExtremeDivisors(n1, n2):
 """Assumes that n1 and n2 are positive ints
 Returns a tuple containing the smallest common
 divisor > 1 and the largest common divisor of n1
 and n2"""
 divisors = () #the empty tuple
 minVal, maxVal = None, None
 for i in range(2, min(n1, n2) + 1):
 if n1%i == 0 and n2%i == 0:
 if minVal == None or i < minVal:
 minVal = i
 if maxVal == None or i > maxVal:
 maxVal = i
 return (minVal, maxVal)

The multiple assignment statement

minDivisor, maxDivisor = findExtremeDivisors(100, 200)

will bind minDivisor to 2 and maxDivisor to 100.

5.2 Lists and Mutability

Like a tuple, a list is an ordered sequence of values, where each value is
identified by an index. The syntax for expressing literals of type list is similar
to that used for tuples; the difference is that we use square brackets rather than
parentheses. The empty list is written as [], and singleton lists are written
without that (oh so easy to forget) comma before the closing bracket. So, for
example, the code,

L = ['I did it all', 4, 'love']
for i in range(len(L)):
 print L[i]

produces the output,

I did it all
4
love

Occasionally, the fact that square brackets are used for literals of type list,
indexing into lists, and slicing lists can lead to some visual confusion. For
example, the expression [1,2,3,4][1:3][1], which evaluates to 3, uses the
square brackets in three different ways. This is rarely a problem in practice,
because most of the time lists are built incrementally rather than written as
literals.

Lists differ from tuples in one hugely important way: lists are mutable. In
contrast, tuples and strings are immutable. There are many operators that can
be used to create objects of these immutable types, and variables can be bound
to objects of these types. But objects of immutable types cannot be modified.
On the other hand, objects of type list can be modified after they are created.

The distinction between mutating an object and assigning an object to a variable
may, at first, appear subtle. However, if you keep repeating the mantra, “In

 Chapter 5. Structured Types, Mutability, and Higher-Order Functions 59

Python a variable is merely a name, i.e., a label that can be attached to an
object,” it will bring you clarity.

When the statements

Techs = ['MIT', 'Caltech']
Ivys = ['Harvard', 'Yale', 'Brown']

are executed, the interpreter creates two new lists and binds the appropriate
variables to them, as pictured below.

Figure 5.1 Two lists

The assignment statements

Univs = [Techs, Ivys]
Univs1 = [['MIT', 'Caltech'], ['Harvard', 'Yale', 'Brown']]

also create new lists and bind variables to them. The elements of these lists are
themselves lists. The three print statements

print 'Univs =', Univs
print 'Univs1 =', Univs1
print Univs == Univs1

produce the output

Univs = [['MIT', 'Caltech'], ['Harvard', 'Yale', 'Brown']]
Univs1 = [['MIT', 'Caltech'], ['Harvard', 'Yale', 'Brown']]
True

It appears as if Univs and Univs1 are bound to the same value. But appearances
can be deceiving. As the following picture illustrates, Univs and Univs1 are
bound to quite different values.

60 Chapter 5. Structured Types, Mutability, and Higher-Order Functions

Figure 5.2 Two lists that appear to have the same value, but don’t

That Univs and Univs1 are bound to different objects can be verified using the
built-in Python function id, which returns a unique integer identifier for an
object. This function allows us to test for object equality. When we run the
code

print Univs == Univs1 #test value equality
print id(Univs) == id(Univs1) #test object equality
print 'Id of Univs =', id(Univs)
print 'Id of Univs1 =', id(Univs1)

it prints

True
False
Id of Univs = 24499264
Id of Univs1 = 24500504

(Don’t expect to see the same unique identifiers if you run this code. The
semantics of Python says nothing about what identifier is associated with each
object; it merely requires that no two objects have the same identifier.)

Notice that in Figure 5.2 the elements of Univs are not copies of the lists to
which Techs and Ivys are bound, but are rather the lists themselves. The
elements of Univs1 are lists that contain the same elements as the lists in Univs,
but they are not the same lists. We can see this by running the code

print 'Ids of Univs[0] and Univs[1]', id(Univs[0]), id(Univs[1])
print 'Ids of Univs1[0] and Univs1[1]', id(Univs1[0]), id(Univs1[1])

which prints

Ids of Univs[0] and Univs[1] 22287944 22286464
Ids of Univs1[0] and Univs1[1] 22184184 22287984

Why does this matter? It matters because lists are mutable.

Consider the code

Techs.append('RPI')

 Chapter 5. Structured Types, Mutability, and Higher-Order Functions 61

The append method has a side effect. Rather than create a new list, it mutates
the existing list Techs by adding a new element, the string 'RPI', to the end of it.

After append is executed, the state of the computation looks like

Figure 5.3 Demonstration of mutability

Univs still contains the same two lists, but the contents of one of those lists has
been changed. Consequently, the print statements

print 'Univs =', Univs
print 'Univs1 =', Univs1

now produce the output

Univs = [['MIT', 'Caltech', 'RPI'], ['Harvard', 'Yale', 'Brown']]
Univs1 = [['MIT', 'Caltech'], ['Harvard', 'Yale', 'Brown']]

What we have here is something called aliasing. There are two distinct paths to
the same list object. One path is through the variable Techs and the other
through the first element of the list object to which Univs is bound. One can
mutate the object via either path, and the effect of the mutation will be visible
through both paths. This can be convenient, but it can also be treacherous.
Unintentional aliasing leads to programming errors that are often enormously
hard to track down.

As with tuples, a for statement can be used to iterate over the elements of a list.
For example,

for e in Univs:
 print 'Univs contains', e
 print ' which contains'
 for u in e:
 print ' ', u

62 Chapter 5. Structured Types, Mutability, and Higher-Order Functions

will print

Univs contains ['MIT', 'Caltech', 'RPI']
 which contains
 MIT
 Caltech
 RPI
Univs contains ['Harvard', 'Yale', 'Brown']
 which contains
 Harvard
 Yale
 Brown

When we append one list to another, e.g., Techs.append(Ivys), the original
structure is maintained. I.e., the result is a list that contains a list. Suppose we
do not want to maintain this structure, but want to add the elements of one list
into another list. We can do that by using list concatenation or the extend
method, e.g.,

L1 = [1,2,3]
L2 = [4,5,6]
L3 = L1 + L2
print 'L3 =', L3
L1.extend(L2)
print 'L1 =', L1
L1.append(L2)
print 'L1 =', L1

will print

L3 = [1, 2, 3, 4, 5, 6]
L1 = [1, 2, 3, 4, 5, 6]
L1 = [1, 2, 3, 4, 5, 6, [4, 5, 6]]

Notice that the operator + does not have a side effect. It creates a new list and
returns it. In contrast, extend and append each mutated L1.

Figure 5.4 contains short descriptions of some of the methods associated with
lists. Note that all of these except count and index mutate the list.

Figure 5.4 Methods associated with lists

L.append(e) adds the object e to the end of L.

L.count(e) returns the number of times that e occurs in L.

L.insert(i, e) inserts the object e into L at index i.

L.extend(L1) adds the items in list L1 to the end of L.

L.remove(e) deletes the first occurrence of e from L.

L.index(e) returns the index of the first occurrence of e in L. It raises an
exception (see Chapter 7) if e is not in L.

L.pop(i) removes and returns the item at index i in L. If i is omitted, it
defaults to -1, to remove and return the last element of L.

L.sort() sorts the elements of L in ascending order.

L.reverse() reverses the order of the elements in L.

 Chapter 5. Structured Types, Mutability, and Higher-Order Functions 63

5.2.1 Cloning

Though allowed, it is usually prudent to avoid mutating a list over which one is
iterating. Consider, for example, the code

def removeDups(L1, L2):
 """Assumes that L1 and L2 are lists.
 Removes any element from L1 that also occurs in L2"""
 for e1 in L1:
 if e1 in L2:
 L1.remove(e1)
L1 = [1,2,3,4]
L2 = [1,2,5,6]
removeDups(L1, L2)
print 'L1 =', L1

You might be surprised to discover that the print statement produces the
output

L1 = [2, 3, 4]

During a for loop, the implementation of Python keeps track of where it is in the
list using an internal counter that is incremented at the end of each iteration.
When the value of the counter reaches the current length of the list, the loop
terminates. This works as one might expect if the list is not mutated within the
loop, but can have surprising consequences if the list is mutated. In this case,
the hidden counter starts out at 0, discovers that L1[0] is in L2, and removes
it—reducing the length of L1 to 3. The counter is then incremented to 1, and the
code proceeds to check if the value of L1[1] is in L2. Notice that this is not the
original value of L1[1] (i.e., 2), but rather the current value of L1[1] (i.e., 3). As
you can see, it is possible to figure out what happens when the list is modified
within the loop. However, it is not easy. And what happens is likely to be
unintentional, as in this example.

One way to avoid this kind of problem is to use slicing to clone (i.e., make a
copy of) the list and write for e1 in L1[:]. Notice that writing newL1 = L1
followed by for e1 in newL1 would not have solved the problem. It would not
have created a copy of L1, but would merely have introduced a new name for the
existing list.

Slicing is not the only way to clone lists in Python. The expression list(l)
returns a copy of the list l. If the list to be copied contains mutable objects that
you want to copy as well, import the standard library module copy and use the
function copy.deepcopy.

5.2.2 List Comprehension

List comprehension provides a concise way to apply an operation to the values
in a sequence. It creates a new list in which each element is the result of
applying a given operation to a value from a sequence (e.g., the elements in
another list). For example,

L = [x**2 for x in range(1,7)]
print L

64 Chapter 5. Structured Types, Mutability, and Higher-Order Functions

will print the list

[1, 4, 9, 16, 25, 36]

The for clause in a list comprehension can be followed by one or more if and
for statements that are applied to the values produced by the for clause. These
additional clauses modify the sequence of values generated by the first for
clause and produce a new sequence of values, to which the operation associated
with the comprehension is applied.

For example, the code

mixed = [1, 2, 'a', 3, 4.0]
print [x**2 for x in mixed if type(x) == int]

squares the integers in mixed, and then prints [1, 4, 9].

Some Python programmers use list comprehensions in marvelous and subtle
ways. That is not always a great idea. Remember that somebody else may need
to read your code, and “subtle” is not usually a desirable property.

5.3 Functions as Objects

In Python, functions are first-class objects. That means that they can be
treated like objects of any other type, e.g., int or list. They have types, e.g., the
expression type(fact) has the value <type 'function'>; they can appear in
expressions, e.g., as the right-hand side of an assignment statement or as an
argument to a function; they can be elements of lists; etc.

Using functions as arguments can be particularly convenient in conjunction
with lists. It allows a style of coding called higher-order programming.
Consider the code in Figure 5.5.

Figure 5.5 Applying a function to elements of a list

def applyToEach(L, f):
 """Assumes L is a list, f a function
 Mutates L by replacing each element, e, of L by f(e)"""
 for i in range(len(L)):
 L[i] = f(L[i])

L = [1, -2, 3.33]
print 'L =', L
print 'Apply abs to each element of L.'
applyToEach(L, abs)
print 'L =', L
print 'Apply int to each element of', L
applyToEach(L, int)
print 'L =', L
print 'Apply factorial to each element of', L
applyToEach(L, factR)
print 'L =', L
print 'Apply Fibonnaci to each element of', L
applyToEach(L, fib)
print 'L =', L

 Chapter 5. Structured Types, Mutability, and Higher-Order Functions 65

The function applyToEach is called higher-order because it has an argument
that is itself a function. The first time it is called, it mutates L by applying the
unary built-in function abs to each element. The second time it is called, it
applies a type conversion to each element. The third time it is called, it replaces
each element by the result of applying the function factR (defined in Figure 4.6)
to each element. And the fourth time it is called, it replaces each element by the
result of applying the function fib (defined in Figure 4.7) to each element. It
prints

L = [1, -2, 3.3300000000000001]
Apply abs to each element of L.
L = [1, 2, 3.3300000000000001]
Apply int to each element of [1, 2, 3.3300000000000001]
L = [1, 2, 3]
Apply factorial to each element of [1, 2, 3]
L = [1, 2, 6]
Apply Fibonnaci to each element of [1, 2, 6]
L = [1, 2, 13]

Python has a built-in higher-order function, map, that is similar to, but more
general than, the applyToEach function defined in Figure 5.5. In its simplest
form the first argument to map is a unary function (i.e., a function that has only
one parameter) and the second argument is any ordered collection of values
suitable as arguments to the first argument. It returns a list generated by
applying the first argument to each element of the second argument. For
example, the expression map(fact, [1, 2, 3]) has the value [1, 2, 6].

More generally, the first argument to map can be of function of n arguments, in
which case it must be followed by n subsequent ordered collections. For
example, the code

L1 = [1, 28, 36]
L2 = [2, 57, 9]
print map(min, L1, L2)

prints the list

[1, 28, 9]

66 Chapter 5. Structured Types, Mutability, and Higher-Order Functions

5.4 Strings, Tuples, and Lists

We have looked at three different sequence types: str, tuple, and list. They
are similar in that objects of all of these types can be operated upon as
described in Figure 5.6.

Figure 5.6 Common operations on sequence types

Some of their other similarities and differences are summarized in Figure 5.7.

Type Type of elements Examples of literals Mutable

str characters '', 'a', 'abc' No

tuple any type (), (3,), ('abc', 4) No

list any type [], [3], ['abc', 4] Yes

Figure 5.7 Comparison of sequence types

Python programmers tend to use lists far more often than tuples. Since lists are
mutable, they can be constructed incrementally during a computation.

For example, the following code incrementally builds a list containing all of the
even numbers in another list.

evenElems = []
for e in L:
 if e%2 == 0:
 evenElems.append(e)

One advantage of tuples is that because they are immutable, aliasing is never a
worry. Another advantage of their being immutable is that tuples, unlike lists,
can be used as keys in dictionaries, as we will see in the next section.

Since strings can contain only characters, they are considerably less versatile
than tuples or lists. On the other hand, when you are working with a string of
characters there are many built-in methods that make life easy. Figure 5.8
contains short descriptions of a few of them. Keep in mind that since strings are
immutable these all return values and have no side effect.

seq[i] returns the ith element in the sequence.

len(seq) returns the length of the sequence.

seq1 + seq2 returns the concatenation of the two sequences.

n * seq returns a sequence that repeats seq n times.

seq[start:end] returns a slice of the sequence.

e in seq is True if e is contained in the sequence and False otherwise.

e not in seq is True if e is not in the sequence and False otherwise.

for e in seq iterates over the elements of the sequence.

 Chapter 5. Structured Types, Mutability, and Higher-Order Functions 67

Figure 5.8 Some methods on strings

5.5 Dictionaries

Objects of type dict (short for dictionary) are like lists except that “indices” need
not be integers—they can be values of any immutable type. Since they are not
ordered, we call them keys rather than indices. Think of a dictionary as a set of
key/value pairs. Literals of type dict are enclosed in curly braces, and each
element is written as a key followed by a colon followed by a value.

For example, the code,

monthNumbers = {'Jan':1, 'Feb':2, 'Mar':3, 'Apr':4, 'May':5,
 1:'Jan', 2:'Feb', 3:'Mar', 4:'Apr', 5:'May'}
print 'The third month is ' + monthNumbers[3]
dist = monthNumbers['Apr'] - monthNumbers['Jan']
print 'Apr and Jan are', dist, 'months apart'

will print

The third month is Mar
Apr and Jan are 3 months apart

The entries in a dict are unordered and cannot be accessed with an index. That’s
why monthNumbers[1] unambiguously refers to the entry with the key 1 rather
than the second entry.

The method keys returns a list containing the keys of a dictionary. The order in
which the keys appear is not defined. So, for example, the code
print monthNumbers.keys() might print

[1, 2, 'Mar', 'Feb', 5, 'Apr', 'Jan', 'May', 3, 4]

s.count(s1) counts how many times the string s1 occurs in s.

s.find(s1) returns the index of the first occurrence of the substring s1 in
s, and -1 if s1 is not in s.

s.rfind(s1) same as find, but starts from the end of s (the “r” in rfind
stands for reverse).

s.index(s1) same as find, but raises an exception (see Chapter 7) if s1 is
not in s.

s.rindex(s1) same as index, but starts from the end of s.

s.lower() converts all uppercase letters in s to lowercase.

s.replace(old, new) replaces all occurrences of the string old in s with the
string new.

s.rstrip() removes trailing white space from s.

s.split(d) Splits s using d as a delimiter. Returns a list of substrings of s.
For example, the value of 'David Guttag plays basketball'.split(' ') is
['David', 'Guttag', 'plays', 'basketball']. If d is omitted, the
substrings are separated by arbitrary strings of whitespace characters
(space, tab, newline, return, and formfeed).

68 Chapter 5. Structured Types, Mutability, and Higher-Order Functions

When a for statement is used to iterate over a dictionary, the value assigned to
the iteration variable is a key, not a key/value pair. For example, the code

keys = []
for e in monthNumbers:
 keys.append(e)
keys.sort()
print keys

prints [1, 2, 3, 4, 5, 'Apr', 'Feb', 'Jan', 'Mar', 'May'].

Dictionaries are one of the great things about Python. They greatly reduce the
difficulty of writing a variety of programs. For example, in Figure 5.9 we use
dictionaries to write a (pretty horrible) program to translate between languages.

Figure 5.9 Translating text (badly)

The code in the figure prints,

Je bois "good" rouge vin, et mange pain.
I drink of wine red.

Like lists, dictionaries are mutable. So, one must be careful about side effects.
For example,

EtoF = {'bread':'pain', 'wine':'vin', 'with':'avec', 'I':'Je',
 'eat':'mange', 'drink':'bois', 'John':'Jean',
 'friends':'amis', 'and': 'et', 'of':'du','red':'rouge'}
FtoE = {'pain':'bread', 'vin':'wine', 'avec':'with', 'Je':'I',
 'mange':'eat', 'bois':'drink', 'Jean':'John',
 'amis':'friends', 'et':'and', 'du':'of', 'rouge':'red'}
dicts = {'English to French':EtoF, 'French to English':FtoE}

def translateWord(word, dictionary):
 if word in dictionary.keys():
 return dictionary[word]
 elif word != '':
 return '"' + word + '"'
 return word

def translate(phrase, dicts, direction):
 UCLetters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
 LCLetters = 'abcdefghijklmnopqrstuvwxyz'
 letters = UCLetters + LCLetters
 dictionary = dicts[direction]
 translation = ''
 word = ''
 for c in phrase:
 if c in letters:
 word = word + c
 else:
 translation = translation\
 + translateWord(word, dictionary) + c
 word = ''
 return translation + ' ' + translateWord(word, dictionary)

print translate('I drink good red wine, and eat bread.',
 dicts,'English to French')
print translate('Je bois du vin rouge.',
 dicts, 'French to English')

 Chapter 5. Structured Types, Mutability, and Higher-Order Functions 69

FtoE['bois'] = 'wood'
print translate('Je bois du vin rouge.', dicts, 'French to English')

will print

I wood of wine red.

We add elements to a dictionary by assigning a value to an unused key, e.g.,

FtoE['blanc'] = 'white'

As with lists, there are many useful methods, including some for removing
elements, associated with dictionaries. We do not enumerate them here, but will
use them as convenient in examples later in the book. Figure 5.10 contains
some of the more useful operations on dictionaries.

Figure 5.10 Some common operations on dicts

Objects of any immutable type, e.g., type tuple, may be used as dictionary keys.
Imagine for example using a tuple of the form (flightNumber, day) to represent
airline flights. It would then be easy to use such tuples as keys in a dictionary
implementing a mapping from flights to arrival times.

Most programming languages do not contain a built-in type that provides a
mapping from keys to values. Instead, programmers use other types to provide
similar functionality. It is, for example, relatively easy to implement a dictionary
using a list in which each element is a key/value pair. One can then write a
simple function that does the associative retrieval, e.g.,

def keySearch(L, k):
 for elem in L:
 if elem[0] == k:
 return elem[1]
 return None

The problem with such an implementation is that it is computationally
inefficient. In the worst case, a program might have to examine each element in
the list to perform a single retrieval. In contrast, the built-in implementation is
quite fast. It uses a technique called hashing, described in Chapter 10, to do
the lookup in time that is nearly independent of the size of the dictionary.

len(d) returns the number of items in d.

d.keys() returns a list containing the keys in d.

d.values() returns a list containing the values in d.

k in d returns True if key k is in d.

d[k] returns the item in d with key k.

d.get(k, v) returns d[k] if k is in d, and v otherwise.

d[k] = v associates the value v with the key k in d. If there is already a
value associated with k, that value is replaced.

del d[k] removes the key k from d.

for k in d iterates over the keys in d.

6 TESTING AND DEBUGGING

We hate to bring this up, but Dr. Pangloss was wrong. We do not live in “the
best of all possible worlds.” There are some places where it rains too little, and
others where it rains too much. Some places are too cold, some too hot, and
some too hot in the summer and too cold in the winter. Sometimes the stock
market goes down—a lot. And, perhaps worst of all, our programs don’t always
function properly the first time we run them.

Books have been written about how to deal with this last problem, and there is a
lot to be learned from reading these books. However, in the interest of providing
you with some hints that might help you get that next problem set in on time,
this chapter provides a highly condensed discussion of the topic. While all of
the programming examples are in Python, the general principles are applicable
to getting any complex system to work.

Testing is the process of running a program to try and ascertain whether or not
it works as intended. Debugging is the process of trying to fix a program that
you already know does not work as intended.

Testing and debugging are not processes that you should begin to think about
after a program has been built. Good programmers design their programs in
ways that make them easier to test and debug. The key to doing this is breaking
the program up into separate components that can be implemented, tested, and
debugged independently of other components. At this point in the book, we
have discussed only one mechanism for modularizing programs, the function.
So, for now, all of our examples will be based around functions. When we get to
other mechanisms, in particular classes, we will return to some of the topics
covered in this chapter.

The first step in getting a program to work is getting the language system to
agree to run it—that is, eliminating syntax errors and static semantic errors that
can be detected without running the program. If you haven’t gotten past that
point in your programming, you’re not ready for this chapter. Spend a bit more
time working on small programs, and then come back.

6.1 Testing

The most important thing to say about testing is that its purpose is to show that
bugs exist, not to show that a program is bug-free. To quote Edsger Dijkstra,
“Program testing can be used to show the presence of bugs, but never to show
their absence!”29 Or, as Albert Einstein reputedly once said, “No amount of
experimentation can ever prove me right; a single experiment can prove me
wrong.”

29 “Notes On Structured Programming,” Technical University Eindhoven, T.H. Report 70-
WSK-03, April 1970.

 Chapter 6. Testing and Debugging 71

Why is this so? Even the simplest of programs has billions of possible inputs.
Consider, for example, a program that purports to meet the specification:

def isBigger(x, y):
 """Assumes x and y are ints
 Returns True if x is less than y and False otherwise."""

Running it on all pairs of integers would be, to say the least, tedious. The best
we can do is to run it on pairs of integers that have a reasonable probability of
producing the wrong answer if there is a bug in the program.

The key to testing is finding a collection of inputs, called a test suite, that has a
high likelihood of revealing bugs, yet does not take too long to run. The key to
doing this is partitioning the space of all possible inputs into subsets that
provide equivalent information about the correctness of the program, and then
constructing a test suite that contains one input from each partition. (Usually,
constructing such a test suite is not actually possible. Think of this as an
unachievable ideal.)

A partition of a set divides that set into a collection of subsets such that each
element of the original set belongs to exactly one of the subsets. Consider, for
example, isBigger(x, y). The set of possible inputs is all pairwise
combinations of integers. One way to partition this set is into these seven
subsets:

• x positive, y positive

• x negative, y negative

• x positive, y negative

• x negative, y positive

• x = 0, y = 0

• x = 0, y ≠ 0

• x ≠ 0, y = 0

If one tested the implementation on at least one value from each of these
subsets, there would be reasonable probability (but no guarantee) of exposing a
bug if one exists.

For most programs, finding a good partitioning of the inputs is far easier said
than done. Typically, people rely on heuristics based on exploring different
paths through some combination of the code and the specifications. Heuristics
based on exploring paths through the code fall into a class called glass-box
testing. Heuristics based on exploring paths through the specification fall into
a class called black-box testing.

6.1.1 Black-Box Testing

In principle, black-box tests are constructed without looking at the code to be
tested. Black-box testing allows testers and implementers to be drawn from
separate populations. When those of us who teach programming courses
generate test cases for the problem sets we assign students, we are developing
black-box test suites. Developers of commercial software often have quality
assurance groups that are largely independent of development groups.

72 Chapter 6. Testing and Debugging

This independence reduces the likelihood of generating test suites that exhibit
mistakes that are correlated with mistakes in the code. Suppose, for example,
that the author of a program made the implicit, but invalid, assumption that a
function would never be called with a negative number. If the same person
constructed the test suite for the program, he would likely repeat the mistake,
and not test the function with a negative argument.

Another positive feature of black-box testing is that it is robust with respect to
implementation changes. Since the test data is generated without knowledge of
the implementation, it need not be changed when the implementation is
changed.

As we said earlier, a good way to generate black-box test data is to explore paths
through a specification. Consider, the specification

def sqrt(x, epsilon):
 """Assumes x, epsilon floats
 x >= 0
 epsilon > 0
 Returns result such that
 x-epsilon <= result*result <= x+epsilon"""

There seem to be only two distinct paths through this specification: one
corresponding to x = 0 and one corresponding to x > 0. However, common
sense tells us that while it is necessary to test these two cases, it is hardly
sufficient.

Boundary conditions should also be tested. When looking at lists, this often
means looking at the empty list, a list with exactly one element, and a list
containing lists. When dealing with numbers, it typically means looking at very
small and very large values as well as “typical” values. For sqrt, it might make
sense to try values of x and epsilon similar to those in the following table.

The first four rows are intended to represent typical
cases. Notice that the values for x include a perfect
square, a number less than one, and a number
with an irrational square root. If any of these tests
fail, there is a bug in the program that needs to be
fixed.

The remaining rows test extremely large and small
values of x and epsilon. If any of these tests fail,
something needs to be fixed. Perhaps there is a
bug in the code that needs to be fixed, or perhaps
the specification needs to be changed so that it is
easier to meet. It might, for example, be
unreasonable to expect to find an approximation of
a square root when epsilon is ridiculously small.

x epsilon

0.0 0.0001

25.0 0.0001

0.5 0.0001

2.0 0.0001

2.0 1.0/2.0**64.0

1.0/2.0**64 1.0/2.0**64.0

2.0**64.0 1.0/2.0**64.0

1.0/2.0**64.0 2.0**64.0

2.0**64.0 2.0**64.0

 Chapter 6. Testing and Debugging 73

Another important boundary condition to think about is aliasing. Consider, for
example, the code

def copy(L1, L2):
 """Assumes L1, L2 are lists
 Mutates L2 to be a copy of L1"""
 while len(L2) > 0: #remove all elements from L2
 L2.pop() #remove last element of L2
 for e in L1: #append L1's elements to initially empty L2
 L2.append(e)

It will work most of the time, but not when L1 and L2 refer to the same list. Any
test suite that did not include a call of the form copy(L, L), would not reveal

the bug.

6.1.2 Glass-Box Testing

Black-box testing should never be skipped, but it is rarely sufficient. Without
looking at the internal structure of the code, it is impossible to know which test
cases are likely to provide new information. Consider the following trivial
example:

def isPrime(x):
 """Assumes x is a nonnegative int
 Returns True if x is prime; False otherwise"""
 if x <= 2:
 return False
 for i in range(2, x):
 if x%i == 0:
 return False
 return True

Looking at the code, we can see that because of the test if x <= 2, the values 0,
1, and 2 are treated as special cases, and therefore need to be tested. Without
looking at the code, one might not test isPrime(2), and would therefore not

discover that the function call isPrime(2) returns False, erroneously indicating
that 2 is not a prime.

Glass-box test suites are usually much easier to construct than black-box test
suites. Specifications are usually incomplete and often pretty sloppy, making it a
challenge to estimate how thoroughly a black-box test suite explores the space
of interesting inputs. In contrast, the notion of a path through code is well
defined, and it is relatively easy to evaluate how thoroughly one is exploring the
space. There are, in fact, commercial tools that can be used to objectively
measure the completeness of glass-box tests.

A glass-box test suite is path-complete if it exercises every potential path
through the program. This is typically impossible to achieve, because it depends
upon the number of times each loop is executed and the depth of each
recursion. For example, a recursive implementation of factorial follows a
different path for each possible input (because the number of levels of recursion
will differ).

74 Chapter 6. Testing and Debugging

Furthermore, even a path-complete test suite does not guarantee that all bugs
will be exposed. Consider:

def abs(x):
 """Assumes x is an int
 Returns x if x>=0 and –x otherwise"""
 if x < -1:
 return -x
 else:
 return x

The specification suggests that there are two possible cases, x is either negative
or it isn’t. This suggests that the set of inputs {2, -2} is sufficient to explore all
paths in the specification. This test suite has the additional nice property of
forcing the program through all of its paths, so it looks like a complete glass-box
suite as well. The only problem is that this test suite will not expose the fact
that abs(-1)will return -1.

Despite the limitations of glass-box testing, there are a few rules of thumb that
are usually worth following:

• Exercise both branches of all if statements.

• Make sure that each except clause (see Chapter 7) is executed.

• For each for loop, have test cases in which

o The loop is not entered (e.g., if the loop is iterating over the
elements of a list, make sure that it is tested on the empty list),

o The body of the loop is executed exactly once, and

o The body of the loop is executed more than once.

• For each while loop,

o Look at the same kinds of cases as when dealing with for loops,
and

o Include test cases corresponding to all possible ways of exiting
the loop. For example, for a loop starting with
 while len(L) > 0 and not L[i] == e

find cases where the loop exits because len(L) is greater than
zero and cases where it exits because L[i] == e.

• For recursive functions, include test cases that cause the function to
return with no recursive calls, exactly one recursive call, and more than
one recursive call.

6.1.3 Conducting Tests

Testing is often thought of as occurring in two phases. One should always start
with unit testing. During this phase testers construct and run tests designed
to ascertain whether individual units of code (e.g., functions) work properly.
This is followed by integration testing, which is designed to ascertain whether
the program as a whole behaves as intended. In practice, testers cycle through

 Chapter 6. Testing and Debugging 75

these two phases, since failures during integration testing lead to making
changes to individual units.

Integration testing is almost always more challenging than unit testing. One
reason for this is that the intended behavior of an entire program is often
considerably harder to characterize than the intended behavior of each of its
parts. For example, characterizing the intended behavior of a word processor is
considerably more challenging than characterizing the behavior of a function
that counts the number of characters in a document. Problems of scale can also
make integration testing difficult. It is not unusual for integration tests to take
hours or even days to run.

Many industrial software development organizations have a software quality
assurance (SQA) group that is separate from the group charged with
implementing the software. The mission of this group is to insure that before
the software is released it is suitable for its intended purpose. In some
organizations the development group is responsible for unit testing and the QA
group for integration testing.

In industry, the testing process is often highly automated. Testers30 do not sit at
terminals typing inputs and checking outputs. Instead, they use test drivers
that autonomously

• Set up the environment needed to invoke the program (or unit) to be
tested,

• Invoke the program (or unit) to be tested with a predefined or
automatically generated sequence of inputs,

• Save the results of these invocations,

• Check the acceptability of the results of the tests, and

• Prepare an appropriate report.

During unit testing, we often need to build stubs as well as drivers. Drivers
simulate parts of the program that use the unit being tested, whereas stubs
simulate parts of the program used by the unit being tested. Stubs are useful
because they allow people to test units that depend upon software or sometimes
even hardware that does not yet exist. This allows teams of programmers to
simultaneously develop and test multiple parts of a system.

Ideally, a stub should

• Check the reasonableness of the environment and arguments supplied
by the caller (calling a function with inappropriate arguments is a
common error),

• Modify arguments and global variables in a manner consistent with the
specification, and

• Return values consistent with the specification.

30 Or, for that matter, those who grade problem sets in very large programming courses.

76 Chapter 6. Testing and Debugging

Building adequate stubs is often a challenge. If the unit the stub is replacing is
intended to perform some complex task, building a stub that performs actions
consistent with the specification may be tantamount to writing the program that
the stub is designed to replace. One way to surmount this problem is to limit
the set of arguments accepted by the stub, and create a table that contains the
values to be returned for each combination of arguments to be used in the test
suite.

One attraction of automating the testing process is that it facilitates regression
testing. As programmers attempt to debug a program, it is all too common to
install a “fix” that breaks something that used to work. Whenever any change is
made, no matter how small, you should check that the program still passes all
of the tests that it used to pass.

6.2 Debugging

There is a charming urban legend about how the process of fixing flaws in
software came to be known as debugging. The photo below is of a September 9,
1947, page in a laboratory book from the group working on the Mark II Aiken
Relay Calculator at Harvard University.

Some have claimed that the discovery of that unfortunate moth trapped in the
Mark II led to the use of the phrase debugging. However the wording, “First
actual case of a bug being found,” suggests that a less literal interpretation of
the phrase was already common. Grace Murray Hopper, a leader of the Mark II
project, made it clear that the term “bug” was already in wide use to describe
problems with electronic systems during World War II. And well prior to that,
Hawkins’ New Catechism of Electricity, an 1896 electrical handbook, included
the entry, “The term ‘bug’ is used to a limited extent to designate any fault or
trouble in the connections or working of electric apparatus.” In English usage
the word “bugbear” means “anything causing seemingly needless or excessive

 Chapter 6. Testing and Debugging 77

fear or anxiety.”31 Shakespeare seems to have shortened this to “bug,” when he
had Hamlet kvetch about “bugs and goblins in my life.”32

The use of the word “bug” sometimes leads people to ignore the fundamental fact
that if you wrote a program and it has a “bug,” you messed up. Bugs do not
crawl unbidden into flawless programs. If your program has a bug, it is because
you put it there. Bugs do not breed in programs. If your program has multiple
bugs, it is because you made multiple mistakes.

Runtime bugs can be categorized along two dimensions:

1. Overt → covert: An overt bug has an obvious manifestation, e.g., the
program crashes or takes far longer (maybe forever) to run than it
should. A covert bug has no obvious manifestation. The program may
run to conclusion with no problem—other than providing an incorrect
answer. Many bugs fall between the two extremes, and whether or not
the bug is overt can depend upon how carefully one examines the
behavior of the program.

2. Persistent → intermittent: A persistent bug occurs every time the
program is run with the same inputs. An intermittent bug occurs only
some of the time, even when the program is run on the same inputs and
seemingly under the same conditions. When we get to Chapter 12, we
will start writing programs of the kind where intermittent bugs are
common.

The best kinds of bugs to have are overt and persistent. Developers can be
under no illusion about the advisability of deploying the program. And if
someone else is foolish enough to attempt to use it, they will quickly discover
their folly. Perhaps the program will do something horrible before crashing, e.g.,
delete files, but at least the user will have reason to be worried (if not panicked).
Good programmers try to write their programs in such a way that programming
mistakes lead to bugs that are both overt and persistent. This is often called
defensive programming.

The next step into the pit of undesirability is bugs that are overt but
intermittent. An air traffic control system that computes the correct location for
planes almost all of the time would be far more dangerous than one that makes
obvious mistakes all the time. One can live in a fool’s paradise for a period of
time, and maybe get so far are as deploying a system incorporating the flawed
program, but sooner or later the bug will become manifest. If the conditions
prompting the bug to become manifest are easily reproducible, it is often
relatively easy to track down and repair the problem. If the conditions provoking
the bug are not clear, life is much harder.

Programs that fail in covert ways are often highly dangerous. Since they are not
apparently problematical, people use them and trust them to do the right thing.
Increasingly, society relies on software to perform critical computations that are
beyond the ability of humans to carry out or even check for correctness.

31 Webster’s New World College Dictionary.
32 Act 5, scene 2.

78 Chapter 6. Testing and Debugging

Therefore, a program can provide undetected fallacious answer for long periods
of time. Such programs can, and have, caused a lot of damage.33 A program
that evaluates the risk of a mortgage bond portfolio and confidently spits out the
wrong answer can get a bank (and perhaps all of society) into a lot of trouble. A
radiation therapy machine that delivers a little more or a little less radiation
than intended can be the difference between life and death for a person with
cancer. A program that makes a covert error only occasionally may or may not
wreak less havoc than one that always commits such an error. Bugs that are
both covert and intermittent are almost always the hardest to find and fix.

6.2.1 Learning to Debug

Debugging is a learned skill. Nobody does it well instinctively. The good news is
that it’s not hard to learn, and it is a transferable skill. The same skills used to
debug software can be used to find out what is wrong with other complex
systems, e.g., laboratory experiments or sick humans.

For at least four decades people have been building tools called debuggers, and
there are debugging tools built into IDLE. These are supposed to help people
find bugs in their programs. They can help, but only a little. What’s much more
important is how you approach the problem. Many experienced programmers
don’t even bother with debugging tools. Most programmers say that the most
important debugging tool is the print statement.

Debugging starts when testing has demonstrated that the program behaves in
undesirable ways. Debugging is the process of searching for an explanation of
that behavior. The key to being consistently good at debugging is being
systematic in conducting that search.

Start by studying the available data. This includes the test results and the
program text. Study all of the test results. Examine not only the tests that
revealed the presence of a problem, but also those tests that seemed to work
perfectly. Trying to understand why one test worked and another did not is
often illuminating. When looking at the program text, keep in mind that you
don’t completely understand it. If you did, there probably wouldn’t be a bug.

Next, form a hypothesis that you believe to be consistent with all the data. The
hypothesis could be as narrow as “if I change line 403 from x < y to x <= y, the
problem will go away” or as broad as “my program is not terminating because I
have the wrong exit condition in some while loop.”

Next, design and run a repeatable experiment with the potential to refute the
hypothesis. For example, you might put a print statement before and after each
while loop. If these are always paired, then the hypothesis that a while loop is
causing nontermination has been refuted. Decide before running the
experiment how you would interpret various possible results. If you wait until

33 On August 1, 2012, Knight Capital Group, Inc. deployed a new piece of stock-trading
software. Within forty-five minutes a bug in that software lost the company
$440,000,000. The next day, the CEO of Knight commented that the bug caused the
software to enter “a ton of orders, all erroneous.”

 Chapter 6. Testing and Debugging 79

after you run the experiment, you are more likely to fall prey to wishful thinking.

Finally, it’s important to keep a record of what experiments you have tried.
When you’ve spent many hours changing your code trying to track down an
elusive bug, it’s easy to forget what you have already tried. If you aren’t careful,
it is easy to waste way too many hours trying the same experiment (or more
likely an experiment that looks different but will give you the same information)
over and over again. Remember, as many have said, “insanity is doing the same
thing, over and over again, but expecting different results.”34

6.2.2 Designing the Experiment

Think of debugging as a search process, and each experiment as an attempt to
reduce the size of the search space. One way to reduce the size of the search
space is to design an experiment that can be used to decide whether a specific
region of code is responsible for a problem uncovered during integration testing.
Another way to reduce the search space is to reduce the amount of test data
needed to provoke a manifestation of a bug.

Let’s look at a contrived example to see how one might go about debugging it.
Imagine that you wrote the palindrome checking code in Figure 6.1 and that you
are so confident of your programming skills that you put it up on the Web—
without testing it. Suppose further that you receive an email saying, “I tested
your !!**! program on the following 1000-string input, and it printed Yes. Yet any
fool can see that it is not a palindrome. Fix it!”

Figure 6.1 Program with bugs

34 This line appears in Rita Mae Brown’s, Sudden Death. However, it has been variously
attributed to many other sources—including Albert Einstein.

def isPal(x):
 """Assumes x is a list
 Returns True if the list is a palindrome; False otherwise"""
 temp = x
 temp.reverse
 if temp == x:
 return True
 else:
 return False

def silly(n):
 """Assumes n is an int > 0
 Gets n inputs from user
 Prints 'Yes' if the sequence of inputs forms a palindrome;
 'No' otherwise"""
 for i in range(n):
 result = []
 elem = raw_input('Enter element: ')
 result.append(elem)
 if isPal(result):
 print 'Yes'
 else:
 print 'No'

80 Chapter 6. Testing and Debugging

You could try and test it on the supplied 1000-string input. But it might be more
sensible to begin by trying it on something smaller. In fact, it would make sense
to test it on a minimal non-palindrome, e.g.,

>>> silly(2)
Enter element: a
Enter element: b

The good news is that it fails even this simple test, so you don’t have to type in a
thousand strings. The bad news is that you have no idea why it failed.

In this case, the code is small enough that you can probably stare at it and find
the bug (or bugs). However, let’s pretend that it is too large to do this, and start
to systematically reduce the search space.

Often the best way to do this is to conduct a binary search. Find some point
about halfway through the code, and devise an experiment that will allow you to
decide if there is a problem before that point that might be related to the
symptom. (Of course, there may be problems after that point as well, but it is
usually best to hunt down one problem at a time.) In choosing such a point,
look for a place where there are some easily examined intermediate values that
provide useful information. If an intermediate value is not what you expected,
there is probably a problem that occurred prior to that point in the code. If the
intermediate values all look fine, the bug probably lies somewhere later in the
code. This process can be repeated until you have narrowed the region in which
a problem is located to a few lines of code.

Looking at silly, the halfway point is around the line if isPal(result). The
obvious thing to check is whether result has the expected value, ['a', 'b'].
We check this by inserting the statement print result before the if statement
in silly. When the experiment is run, the program prints ['b'], suggesting

that something has already gone wrong. The next step is to print result roughly
halfway through the loop. This quickly reveals that result is never more than
one element long, suggesting that the initialization of result needs to be moved
outside the for loop. The corrected code for silly is

def silly(n):
 """Assumes n is an int > 0
 Gets n inputs from user
 Prints 'Yes' if the sequence of inputs forms a palindrome;
 'No' otherwise"""
 result = []
 for i in range(n):
 elem = raw_input('Enter element: ')
 result.append(elem)
 print result
 if isPal(result):
 print 'Yes'
 else:
 print 'No'

Let’s try that, and see if result has the correct value after the for loop. It does,
but unfortunately the program still prints Yes. Now, we have reason to believe
that a second bug lies below the print statement. So, let’s look at isPal. The
line if temp == x: is about halfway through that function. So, we insert the

 Chapter 6. Testing and Debugging 81

line print temp, x before that line. When we run the code, we see that temp
has the expected value, but x does not. Moving up the code, we insert a print
statement after the line temp = x, and discover that both temp and x have the
value ['a', 'b']. A quick inspection of the code reveals that in isPal we wrote
temp.reverse rather than temp.reverse()—the evaluation of temp.reverse
returns the built-in reverse method for lists, but does not invoke it.35

We run the test again, and now it seems that both temp and x have the value
['b', 'a']. We have now narrowed the bug to one line. It seems that
temp.reverse() unexpectedly changed the value of x. An aliasing bug has bitten
us: temp and x are names for the same list, both before and after the list gets
reversed. One way to fix it is to replace the first assignment statement in isPal
by temp = x[:], which causes a copy of x to be made. The corrected version of
isPal is

def isPal(x):
 """Assumes x is a list
 Returns True if the list is a palindrome; False otherwise"""
 temp = x[:]
 temp.reverse()
 if temp == x:
 return True
 else:
 return False

6.2.3 When the Going Gets Tough

Joseph P. Kennedy, father of President Kennedy, reputedly instructed his
children, “When the going gets tough, the tough get going.”36 But he never
debugged a piece of software. This subsection contains a few pragmatic hints
about what do when the debugging gets tough.

• Look for the usual suspects. E.g., have you

o Passed arguments to a function in the wrong order,

o Misspelled a name, e.g., typed a lowercase letter when you should
have typed an uppercase one,

o Failed to reinitialize a variable,

o Tested that two floating point values are equal (==) instead of
nearly equal (remember that floating point arithmetic is not the
same as the arithmetic you learned in school),

o Tested for value equality (e.g., compared two lists by writing the
expression L1 == L2) when you meant object equality (e.g.,
id(L1) == id(L2)),

o Forgotten that some built-in function has a side effect,

35 One might well wonder why there isn’t a static checker that detected the fact that the
line of code temp.reverse doesn’t cause any useful computatation to be done, and is
therefore likely to be an error.

36 He also reputedly told JFK, “Don't buy a single vote more than necessary. I'll be
damned if I'm going to pay for a landslide.”

82 Chapter 6. Testing and Debugging

o Forgotten the () that turns a reference to an object of type
function into a function invocation,

o Created an unintentional alias, or

o Made any other mistake that is typical for you.

• Stop asking yourself why the program isn’t doing what you want it to.
Instead, ask yourself why it is doing what it is. That should be an easier
question to answer, and will probably be a good first step in figuring out
how to fix the program.

• Keep in mind that the bug is probably not where you think it is. If it were,
you would probably have found it long ago. One practical way to go
about deciding where to look is asking where the bug cannot be. As
Sherlock Holmes said, “Eliminate all other factors, and the one which
remains must be the truth.”37

• Try to explain the problem to somebody else. We all develop blind spots.
It is often the case that merely attempting to explain the problem to
someone will lead you to see things you have missed. A good thing to try
to explain is why the bug cannot be in certain places.

• Don’t believe everything you read. In particular, don’t believe the
documentation. The code may not be doing what the comments suggest.

• Stop debugging and start writing documentation. This will help you
approach the problem from a different perspective.

• Walk away, and try again tomorrow. This may mean that bug is fixed
later in time than if you had stuck with it, but you will probably spend a
lot less of your time looking for it. That is, it is possible to trade latency
for efficiency. (Students, this is an excellent reason to start work on
programming problem sets earlier rather than later!)

6.2.4 And When You Have Found “The” Bug

When you think you have found a bug in your code, the temptation to start
coding and testing a fix is almost irresistible. It is often better, however, to slow
down a little. Remember that the goal is not to fix one bug, but to move rapidly
and efficiently towards a bug-free program.

Ask yourself if this bug explains all the observed symptoms, or whether it is just
the tip of the iceberg. If the latter, it may be better to think about taking care of
this bug in concert with other changes. Suppose, for example, that you have
discovered that the bug is the result of having accidentally mutated a list. You
could circumvent the problem locally (perhaps by making a copy of the list), or
you could consider using a tuple instead of a list (since tuples are immutable),
perhaps eliminating similar bugs elsewhere in the code.

Before making any change, try and understand the ramification of the proposed
“fix.” Will it break something else? Does it introduce excessive complexity?
Does it offer the opportunity to tidy up other parts of the code?

37 Arthur Conan Doyle, “The Sign of the Four.”

 Chapter 6. Testing and Debugging 83

Always make sure that you can get back to where you are. There is nothing
more frustrating than realizing that a long series of changes have left you
further from the goal than when you started, and having no way to get back to
where you started. Disk space is usually plentiful. Use it to store old versions
of your program.

Finally, if there are many unexplained errors, you might consider whether
finding and fixing bugs one at a time is even the right approach. Maybe you
would be better off thinking about whether there is some better way to organize
your program or some simpler algorithm that will be easier to implement
correctly.

7 EXCEPTIONS AND ASSERTIONS

An “exception” is usually defined as “something that does not conform to the
norm,” and is therefore somewhat rare. There is nothing rare about exceptions
in Python. They are everywhere. Virtually every module in the standard Python
library uses them, and Python itself will raise them in many different
circumstances. You've already seen some of them.

Open a Python shell and enter,

test = [1,2,3]
test[3]

and the interpreter will respond with something like

Traceback (most recent call last):
 File "<pyshell#1>", line 1, in <module>
 test[3]
IndexError: list index out of range

IndexError is the type of exception that Python raises when a program tries to
access an element that is not within the bounds of an indexable type. The string
following IndexError provides additional information about what caused the
exception to occur.

Most of the built-in exceptions of Python deal with situations in which a
program has attempted to execute a statement with no appropriate semantics.
(We will deal with the exceptional exceptions—those that do not deal with
errors—later in this chapter.) Those readers (all of you, we hope) who have
attempted to write and run Python programs will already have encountered
many of these. Among the most commonly occurring types of exceptions are
TypeError, NameError, and ValueError.

7.1 Handling Exceptions

Up to now, we have treated exceptions as fatal events. When an exception is
raised, the program terminates (crashes might be a more appropriate word in
this case), and we go back to our code and attempt to figure out what went
wrong. When an exception is raised that causes the program to terminate, we
say that an unhandled exception has been raised.

An exception does not need to lead to program termination. Exceptions, when
raised, can and should be handled by the program. Sometimes an exception is
raised because there is a bug in the program (like accessing a variable that
doesn't exist), but many times, an exception is something the programmer can
and should anticipate. A program might try to open a file that does not exist. If
an interactive program asks a user for input, the user might enter something
inappropriate.

 Chapter 7. Exceptions and Assertions 85

If you know that a line of code might raise an exception when executed, you
should handle the exception. In a well-written program, unhandled exceptions
should be the exception.

Consider the code

successFailureRatio = numSuccesses/float(numFailures)
print 'The success/failure ratio is', successFailureRatio
print 'Now here'

Most of the time, this code will work just fine, but it will fail if numFailures
happens to be zero. The attempt to divide by zero will cause the Python runtime
system to raise a ZeroDivisionError exception, and the print statements will
never be reached.

It would have been better to have written something along the lines of

try:
 successFailureRatio = numSuccesses/float(numFailures)
 print 'The success/failure ratio is', successFailureRatio
except ZeroDivisionError:
 print 'No failures so the success/failure ratio is undefined.'
print 'Now here'

Upon entering the try block, the interpreter attempts to evaluate the expression
numSuccesses/float(numFailures). If expression evaluation is successful, the
program assigns the value of the expression to the variable
successFailureRatio, executes the print statement at the end of the try block,
and proceeds to the print statement following the try-except. If, however, a
ZeroDivisionError exception is raised during the expression evaluation, control
immediately jumps to the except block (skipping the assignment and the print
statement in the try block), the print statement in the except block is executed,
and then execution continues at the print statement following the try-except
block.

Finger exercise: Implement a function that meets the specification below. Use
a try-except block.

def sumDigits(s):
 """Assumes s is a string
 Returns the sum of the decimal digits in s
 For example, if s is 'a2b3c' it returns 5"""

Let’s look at another example. Consider the code

val = int(raw_input('Enter an integer: '))
print 'The square of the number you entered is', val**2

If the user obligingly types a string that can be converted to an integer,
everything will be fine. But suppose the user types abc? Executing the line of
code will cause the Python runtime system to raise a ValueError exception, and
the print statement will never be reached.

86 Chapter 7. Exceptions and Assertions

What the programmer should have written would look something like

while True:
 val = raw_input('Enter an integer: ')
 try:
 val = int(val)
 print 'The square of the number you entered is', val**2
 break #to exit the while loop
 except ValueError:
 print val, 'is not an integer'

After entering the loop, the program will ask the user to enter an integer. Once
the user has entered something, the program executes the try—except block. If
neither of the first two statements in the try block causes a ValueError
exception to be raised, the break statement is executed and the while loop is
exited. However, if executing the code in the try block raises a ValueError
exception, control is immediately transferred to the code in the except block.
Therefore, if the user enters a string that does not represent an integer, the
program will ask the user to try again. No matter what text the user enters, it
will not cause an unhandled exception.

The downside of this change is that the program text has grown from two lines
to eight. If there are many places where the user is asked to enter an integer,
this can be problematical. Of course, this problem can be solved by introducing
a function:

def readInt():
 while True:
 val = raw_input('Enter an integer: ')
 try:
 val = int(val)
 return val
 except ValueError:
 print val, 'is not an integer'

Better yet, this function can be generalized to ask for any type of input,

def readVal(valType, requestMsg, errorMsg):
 while True:
 val = raw_input(requestMsg + ' ')
 try:
 val = valType(val)
 return val
 except ValueError:
 print val, errorMsg

The function readVal is polymorphic, i.e., it works for arguments of many
different types. Such functions are easy to write in Python, since types are first-
class values. We can now ask for an integer using the code

val = readVal(int, 'Enter an integer:', 'is not an integer')

Exceptions may seem unfriendly (after all, if not handled, an exception will
cause the program to crash), but consider the alternative. What should the type
conversion int do, for example, when asked to convert the string 'abc' to an
object of type int? It could return an integer corresponding to the bits used to
encode the string, but this is unlikely to have any relation to the intent of the
programmer. Alternatively, it could return the special value None. If it did that,

 Chapter 7. Exceptions and Assertions 87

the programmer would need to insert code to check whether the type conversion
had returned None. A programmer who forgot that check would run the risk of
getting some strange error during program execution.

With exceptions, the programmer still needs to include code dealing with the
exception. However, if the programmer forgets to include such code and the
exception is raised, the program will halt immediately. This is a good thing. It
alerts the user of the program to the fact that something troublesome has
happened. (And, as we discussed in the last chapter, overt bugs are much
better than covert bugs.) Moreover, it gives someone debugging the program a
clear indication of where things went awry.

If it is possible for a block of program code to raise more than one kind of
exception, the reserved word except can be followed by a tuple of exceptions,
e.g.,

except (ValueError, TypeError):

in which case the except block will be entered if any of the listed exceptions is
raised within the try block. Alternatively, we can write a separate except block
for each kind of exception, which allows the program to choose an action based
upon which exception was raised. If the programmer writes

except:

the except block will be entered if any kind of exception is raised within the try
block. These features are shown in Figure 7.1.

7.2 Exceptions as a Control Flow Mechanism

Don’t think of exceptions as purely for errors. They are a convenient flow-of-
control mechanism that can be used to simplify programs.

In many programming languages, the standard approach to dealing with errors
is to have functions return a value (often something analogous to Python’s None)
indicating that something has gone amiss. Each function invocation has to
check whether that value has been returned. In Python, it is more usual to have
a function raise an exception when it cannot produce a result that is consistent
with the function’s specification.

The Python raise statement forces a specified exception to occur. The form of a
raise statement is

raise exceptionName(arguments)

The exceptionName is usually one of the built-in exceptions, e.g., ValueError.
However, programmers can define new exceptions by creating a subclass (see
Chapter 8) of the built-in class Exception. Different types of exceptions can
have different types of arguments, but most of the time the argument is a single
string, which is used to describe the reason the exception is being raised.

88 Chapter 7. Exceptions and Assertions

Finger Exercise: Implement a function that satisfies the specification

def findAnEven(l):
 """Assumes l is a list of integers
 Returns the first even number in l
 Raises ValueError if l does not contain an even number"""

Consider the function definition in Figure 7.1.

Figure 7.1 Using exceptions for control flow

There are two except blocks associated with the try block. If an exception is
raised within the try block, Python first checks to see if it is a
ZeroDivisionError. If so, it appends a special value, nan, of type float to
ratios. (The value nan stands for “not a number.” There is no literal for it, but
it can be denoted by converting the string 'nan' or the string 'NaN' to type
float. When nan is used as an operand in an expression of type float, the
value of that expression is also nan.) If the exception is anything other than a
ZeroDivisionError, the code executes the second except block, which raises a
ValueError exception with an associated string.

In principle, the second except block should never be entered, because the code
invoking getRatios should respect the assumptions in the specification of
getRatios. However, since checking these assumptions imposes only an
insignificant computational burden, it is probably worth practicing defensive
programming and checking anyway.

The following code illustrates how a program might use getRatios. The name
msg in the line except ValueError, msg: is bound to the argument (a string in
this case) associated with ValueError when it was raised. When executed

def getRatios(vect1, vect2):
 """Assumes: vect1 and vect2 are lists of equal length of numbers
 Returns: a list containing the meaningful values of
 vect1[i]/vect2[i]"""
 ratios = []
 for index in range(len(vect1)):
 try:
 ratios.append(vect1[index]/float(vect2[index]))
 except ZeroDivisionError:
 ratios.append(float('nan')) #nan = Not a Number
 except:
 raise ValueError('getRatios called with bad arguments')
 return ratios

 Chapter 7. Exceptions and Assertions 89

try:
 print getRatios([1.0,2.0,7.0,6.0], [1.0,2.0,0.0,3.0])
 print getRatios([], [])
 print getRatios([1.0, 2.0], [3.0])
except ValueError, msg:
 print msg

prints

[1.0, 1.0, nan, 2.0]
[]
getRatios called with bad arguments

Figure 7.2 contains an implementation of the same specification, but without
using a try-except.

Figure 7.2 Control flow without a try-except

The code in Figure 7.2 is longer and more difficult to read than the code in
Figure 7.1. It is also less efficient. (The code in Figure 7.2 could be slightly
shortened by eliminating the local variables vect1Elem and vect2Elem, but only
at the cost of introducing yet more inefficiency by accessing each element
repeatedly.)

Let us look at one more example.

def getRatios(vect1, vect2):
 """Assumes: vect1 and vect2 are lists of equal length of numbers
 Returns: a list containing the meaningful values of
 vect1[i]/vect2[i]"""
 ratios = []
 if len(vect1) != len(vect2):
 raise ValueError('getRatios called with bad arguments')
 for index in range(len(vect1)):
 vect1Elem = vect1[index]
 vect2Elem = vect2[index]
 if (type(vect1Elem) not in (int, float))\
 or (type(vect2Elem) not in (int, float)):
 raise ValueError('getRatios called with bad arguments')
 if vect2Elem == 0.0:
 ratios.append(float('NaN')) #NaN = Not a Number
 else:
 ratios.append(vect1Elem/vect2Elem)
 return ratios

90 Chapter 7. Exceptions and Assertions

Figure 7.3 Get grades

The function getGrades either returns a value or raises an exception with which
it has associated a value. It raises a ValueError exception if the call to open
raises an IOError. It could have ignored the IOError and let the part of the
program calling getGrades deal with it, but that would have provided less
information to the calling code about what went wrong. The code that uses
getGrades either uses the returned value to compute another value or handles
the exception and prints a useful error message.

7.3 Assertions

The Python assert statement provides programmers with a simple way to
confirm that the state of the computation is as expected. An assert statement
can take one of two forms:

assert Boolean expression

or

assert Boolean expression, argument

When an assert statement is encountered, the Boolean expression is evaluated.
If it evaluates to True, execution proceeds on its merry way. If it evaluates to
False, an AssertionError exception is raised.

Assertions are a useful defensive programming tool. They can be used to
confirm that the arguments to a function are of appropriate types. They are also
a useful debugging tool. The can be used, for example, to confirm that
intermediate values have the expected values or that a function returns an
acceptable value.

def getGrades(fname):
 try:
 gradesFile = open(fname, 'r') #open file for reading
 except IOError:
 raise ValueError('getGrades could not open ' + fname)
 grades = []
 for line in gradesFile:
 try:
 grades.append(float(line))
 except:
 raise ValueError('Unable to convert line to float')
 return grades

try:
 grades = getGrades('quiz1grades.txt')
 grades.sort()
 median = grades[len(grades)//2]
 print 'Median grade is', median
except ValueError, errorMsg:
 print 'Whoops.', errorMsg

8 CLASSES AND OBJECT-ORIENTED PROGRAMMING

We now turn our attention to our last major topic related to writing programs in
Python: using classes to organize programs around modules and data
abstractions.

Classes can be used in many different ways. In this book we emphasize using
them in the context of object-oriented programming. The key to object-
oriented programming is thinking about objects as collections of both data and
the methods that operate on that data.

The ideas underlying object-oriented programming are about forty years old, and
have been widely accepted and practiced over the last twenty years or so. In the
mid-1970s people began to write articles explaining the benefits of this approach
to programming. About the same time, the programming languages SmallTalk
(at Xerox PARC) and CLU (at MIT) provided linguistic support for the ideas. But
it wasn’t until the arrival of C++ and Java that it really took off in practice.

We have been implicitly relying on object-oriented programming throughout
most of this book. Back in Section 2.1.1 we said “Objects are the core things
that Python programs manipulate. Every object has a type that defines the
kinds of things that programs can do with objects of that type.” Since Chapter
5, we have relied heavily upon built-in types such as list and dict and the
methods associated with those types. But just as the designers of a
programming language can build in only a small fraction of the useful functions,
they can only build in only a small fraction of the useful types. We have already
looked at a mechanism that allows programmers to define new functions; we
now look at a mechanism that allows programmers to define new types.

8.1 Abstract Data Types and Classes

The notion of an abstract data type is quite simple. An abstract data type is a
set of objects and the operations on those objects. These are bound together so
that one can pass an object from one part of a program to another, and in doing
so provide access not only to the data attributes of the object but also to
operations that make it easy to manipulate that data.

The specifications of those operations define an interface between the abstract
data type and the rest of the program. The interface defines the behavior of the
operations—what they do, but not how they do it. The interface thus provides
an abstraction barrier that isolates the rest of the program from the data
structures, algorithms, and code involved in providing a realization of the type
abstraction.

Programming is about managing complexity in a way that facilitates change.
There are two powerful mechanisms available for accomplishing this:
decomposition and abstraction. Decomposition creates structure in a program,
and abstraction suppresses detail. The key is to suppress the appropriate

92 Chapter 8. Classes and Object-Oriented Programming

details. This is where data abstraction hits the mark. One can create domain-
specific types that provide a convenient abstraction. Ideally, these types capture
concepts that will be relevant over the lifetime of a program. If one starts the
programming process by devising types that will be relevant months and even
decades later, one has a great leg up in maintaining that software.

We have been using abstract data types (without calling them that) throughout
this book. We have written programs using integers, lists, floating point
numbers, strings, and dictionaries without giving any thought to how these
types might be implemented. To paraphrase Molière’s Bourgeois Gentilhomme,
“Par ma foi, il y a plus de quatre-vingt pages que nous avons utilisé ADTs, sans
que nous le sachions.”38

In Python, one implements data abstractions using classes. Figure 8.1 contains
a class definition that provides a straightforward implementation of a set-of-
integers abstraction called IntSet.

A class definition creates an object of type type and associates with that object a
set of objects of type instancemethod. For example, the expression
IntSet.insert refers to the method insert defined in the definition of the class
IntSet. And the code

print type(IntSet), type(IntSet.insert)

will print

<type 'type'> <type 'instancemethod'>

Notice that the docstring (the comment enclosed in """) at the top of the class
definition describes the abstraction provided by the class, not information about
how the class is implemented. The comment below the docstring does contain
information about the implementation. That information is aimed at
programmers who might want to modify the implementation or build subclasses
(see Section 8.2) of the class, not at programmers who might want to use the
abstraction.

38 “Good heavens, for more than eighty pages we have been using ADTs without knowing
it.”

 Chapter 8. Classes and Object-Oriented Programming 93

Figure 8.1 Class IntSet

When a function definition occurs within a class definition, the defined function
is called a method and is associated with the class. These methods are
sometimes referred to as method attributes of the class. If this seems
confusing at the moment, don’t worry about it. We will have lots more to say
about this topic later in this chapter.

Classes support two kinds of operations:

• Instantiation is used to create instances of the class. For example, the
statement s = IntSet() creates a new object of type IntSet. This object
is called an instance of IntSet.

• Attribute references use dot notation to access attributes associated
with the class. For example, s.member refers to the method member
associated with the instance s of type IntSet.

class IntSet(object):
 """An intSet is a set of integers"""
 #Information about the implementation (not the abstraction)
 #The value of the set is represented by a list of ints, self.vals.
 #Each int in the set occurs in self.vals exactly once.

 def __init__(self):
 """Create an empty set of integers"""
 self.vals = []

 def insert(self, e):
 """Assumes e is an integer and inserts e into self"""
 if not e in self.vals:
 self.vals.append(e)

 def member(self, e):
 """Assumes e is an integer
 Returns True if e is in self, and False otherwise"""
 return e in self.vals

 def remove(self, e):
 """Assumes e is an integer and removes e from self
 Raises ValueError if e is not in self"""
 try:
 self.vals.remove(e)
 except:
 raise ValueError(str(e) + ' not found')

 def getMembers(self):
 """Returns a list containing the elements of self.
 Nothing can be assumed about the order of the elements"""
 return self.vals[:]

 def __str__(self):
 """Returns a string representation of self"""
 self.vals.sort()
 result = ''
 for e in self.vals:
 result = result + str(e) + ','
 return '{' + result[:-1] + '}' #-1 omits trailing comma

94 Chapter 8. Classes and Object-Oriented Programming

Each class definition begins with the reserved word class followed by the name
of the class and some information about how it relates to other classes. In this
case, the first line indicates that IntSet is a subclass of object. For now, ignore
what it means to be a subclass. We will get to that shortly.

As we will see, Python has a number of special method names that start and end
with two underscores. The first of these we will look at is __init__. Whenever
a class is instantiated, a call is made to the __init__ method defined in that
class. When the line of code

s = IntSet()

is executed, the interpreter will create a new instance of type IntSet, and then

call IntSet.__init__ with the newly created object as the actual parameter that
is bound to the formal parameter self. When invoked, IntSet.__init__ creates
vals, an object of type list, which becomes part of the newly created instance
of type IntSet. (The list is created using the by now familiar notation [], which
is simply an abbreviation for list().) This list is called a data attribute of the
instance of IntSet. Notice that each object of type IntSet will have a different
vals list, as one would expect.

As we have seen, methods associated with an instance of a class can be invoked
using dot notation. For example, the code,

s = IntSet()
s.insert(3)
print s.member(3)

creates a new instance of IntSet, inserts the integer 3 into that IntSet, and then
prints True.

At first blush there appears to be something inconsistent here. It looks as if
each method is being called with one argument too few. For example, member
has two formal parameters, but we appear to be calling it with only one actual
parameter. This is an artifact of the dot notation. The object associated with
the expression preceding the dot is implicitly passed as the first parameter to
the method. Throughout this book, we follow the convention of using self as
the name of the formal parameter to which this actual parameter is bound.
Python programmers observe this convention almost universally, and we
strongly suggest that you use it as well.

A class should not be confused with instances of that class, just as an object of
type list should not be confused with the list type. Attributes can be
associated either with a class itself or with instances of a class:

• Method attributes are defined in a class definition, for example
IntSet.member is an attribute of the class IntSet. When the class is
instantiated, e.g., by s = IntSet(), instance attributes, e.g., s.member,
are created. Keep in mind that IntSet.member and s.member are different
objects. While s.member is initially bound to the member method defined
in the class IntSet, that binding can be changed during the course of a
computation. For example, you could (but shouldn’t!) write
s.member = IntSet.insert.

 Chapter 8. Classes and Object-Oriented Programming 95

• When data attributes are associated with a class we call them class
variables. When they are associated with an instance we call them
instance variables. For example, vals is an instance variable because
for each instance of class IntSet, vals is bound to a different list. So far,
we haven’t seen a class variable. We will use one in Figure 8.3.

Data abstraction achieves representation-independence. Think of the
implementation of an abstract type as having several components:

• Implementations of the methods of the type,

• Data structures that together encode values of the type, and

• Conventions about how the implementations of the methods are to use
the data structures. A key convention is captured by the representation
invariant.

The representation invariant defines which values of the data attributes
correspond to valid representations of class instances. The representation
invariant for IntSet is that vals contains no duplicates. The implementation of
__init__ is responsible for establishing the invariant (which holds on the empty
list), and the other methods are responsible for maintaining that invariant. That
is why insert appends e only if it is not already in self.vals.

The implementation of remove exploits the assumption that the representation
invariant is satisfied when remove is entered. It calls list.remove only once,
since the representation invariant guarantees that there is at most one
occurrence of e in self.vals.

The last method defined in the class, __str__, is another one of those special __
methods. When the print command is used, the __str__ function associated
with the object to be printed is automatically invoked. For example, the code

s = IntSet()
s.insert(3)
s.insert(4)
print s

will print,

{3,4}

(If no __str__ method were defined, print s would cause something like
<__main__.IntSet object at 0x1663510> to be printed.) We could also print the
value of s by writing print s.__str__() or even print IntSet.__str__(s), but
using those forms is less convenient. The __str__ method of a class is also
invoked when a program converts an instance of that class to a string by calling
str.

96 Chapter 8. Classes and Object-Oriented Programming

8.1.1 Designing Programs Using Abstract Data Types

Abstract data types are a big deal. They lead to a different way of thinking about
organizing large programs. When we think about the world, we rely on
abstractions. In the world of finance people talk about stocks and bonds. In the
world of biology people talk about proteins and residues. When trying to
understand these concepts, we mentally gather together some of the relevant
data and features of these kinds of objects into one intellectual package. For
example, we think of bonds as having an interest rate and a maturity date as
data attributes. We also think of bonds as having operations such as “set price”
and “calculate yield to maturity.” Abstract data types allow us to incorporate
this kind of organization into the design of programs.

Data abstraction encourages program designers to focus on the centrality of
data objects rather than functions. Thinking about a program more as a
collection of types than as a collection of functions leads to a profoundly
different organizing principle. Among other things, it encourages one to think
about programming as a process of combining relatively large chunks, since
data abstractions typically encompass more functionality than do individual
functions. This, in turn, leads us to think of the essence of programming as a
process not of writing individual lines of code, but of composing abstractions.

The availability of reusable abstractions not only reduces development time, but
also usually leads to more reliable programs, because mature software is usually
more reliable than new software. For many years, the only program libraries in
common use were statistical or scientific. Today, however, there is a great range
of available program libraries (especially for Python), often based on a rich set of
data abstractions, as we shall see later in this book.

8.1.2 Using Classes to Keep Track of Students and Faculty

As an example use of classes, imagine that you are designing a program to help
keep track of all the students and faculty at a university. It is certainly possible
to write such a program without using data abstraction. Each student would
have a family name, a given name, a home address, a year, some grades, etc.
This could all be kept in some combination of lists and dictionaries. Keeping
track of faculty and staff would require some similar data structures and some
different data structures, e.g., data structures to keep track of things like salary
history.

Before rushing in to design a bunch of data structures, let’s think about some
abstractions that might prove useful. Is there an abstraction that covers the
common attributes of students, professors, and staff? Some would argue that
they are all human. Figure 8.2 contains a class that incorporates some of the
common attributes (name and birthdate) of humans. It makes use of the
standard Python library module datetime, which provides many convenient
methods for creating and manipulating dates.

 Chapter 8. Classes and Object-Oriented Programming 97

Figure 8.2 Class Person

The following code makes use of Person.

me = Person('Michael Guttag')
him = Person('Barack Hussein Obama')
her = Person('Madonna')
print him.getLastName()
him.setBirthday(datetime.date(1961, 8, 4))
her.setBirthday(datetime.date(1958, 8, 16))
print him.getName(), 'is', him.getAge(), 'days old'

Notice that whenever Person is instantiated an argument is supplied to the
__init__ function. In general, when instantiating a class we need to look at the

import datetime

class Person(object):

 def __init__(self, name):
 """Create a person"""
 self.name = name
 try:
 lastBlank = name.rindex(' ')
 self.lastName = name[lastBlank+1:]
 except:
 self.lastName = name
 self.birthday = None

 def getName(self):
 """Returns self's full name"""
 return self.name

 def getLastName(self):
 """Returns self's last name"""
 return self.lastName

 def setBirthday(self, birthdate):
 """Assumes birthdate is of type datetime.date
 Sets self's birthday to birthdate"""
 self.birthday = birthdate

 def getAge(self):
 """Returns self's current age in days"""
 if self.birthday == None:
 raise ValueError
 return (datetime.date.today() - self.birthday).days

 def __lt__(self, other):
 """Returns True if self's name is lexicographically
 less than other's name, and False otherwise"""
 if self.lastName == other.lastName:
 return self.name < other.name
 return self.lastName < other.lastName

 def __str__(self):
 """Returns self's name"""
 return self.name

98 Chapter 8. Classes and Object-Oriented Programming

specification of the __init__ function for that class to know what arguments to
supply and what properties those arguments should have.

After this code is executed, there will be three instances of class Person. One
can then access information about these instances using the methods
associated with them. For example, him.getLastName() will return 'Obama'. The
expression him.lastName will also return 'Obama'; however, for reasons
discussed later in this chapter, writing expressions that directly access instance
variables is considered poor form, and should be avoided. Similarly, there is no
appropriate way for a user of the Person abstraction to extract a person’s
birthday, despite the fact that the implementation contains an attribute with
that value. There is, however, a way to extract information that depends upon
the person’s birthday, as illustrated by the last print statement in the above
code.

Class Person defines yet another specially named method, __lt__. This method
overloads the < operator. The method Person__lt__ gets called whenever the
first argument to the < operator is of type Person. The __lt__ method in class
Person is implemented using the < operator of type str. The expression
self.Name < other.name is shorthand for self.name.__lt__(self.other). Since
self.name is of type str, the __lt__ method is the one associated with type str.

In addition to providing the syntactic convenience of writing infix expressions
that use <, this overloading provides automatic access to any polymorphic
method defined using __lt__. The built-in method sort is one such method.
So, for example, if pList is a list composed of elements of type Person, the call
pList.sort() will sort that list using the __lt__ method defined in class
Person. The code

pList = [me, him, her]
for p in pList:
 print p
pList.sort()
for p in pList:
 print p

will first print

Michael Guttag
Barack Hussein Obama
Madonna

and then print

Michael Guttag
Madonna
Barack Hussein Obama

 Chapter 8. Classes and Object-Oriented Programming 99

8.2 Inheritance

Many types have properties in common with other types. For example, types
list and str each have len functions that mean the same thing. Inheritance
provides a convenient mechanism for building groups of related abstractions. It
allows programmers to create a type hierarchy in which each type inherits
attributes from the types above it in the hierarchy.

The class object is at the top of the hierarchy. This makes sense, since in
Python everything that exists at runtime is an object. Because Person inherits
all of the properties of objects, programs can bind a variable to a Person, append
a Person to a list, etc.

The class MITPerson in Figure 8.3 inherits attributes from its parent class,
Person, including all of the attributes that Person inherited from its parent class,
object.

Figure 8.3 Class MITPerson

In the jargon of object-oriented programming, MITPerson is a subclass of Person,
and therefore inherits the attributes of its superclass. In addition to what it
inherits, the subclass can:

• Add new attributes. For example, MITPerson has added the class
variable nextIdNum, the instance variable idNum, and the method
getIdNum.

• Override attributes of the superclass. For example, MITPerson has
overridden __init__ and __lt__.

The method MITPerson.__init__ first invokes Person.__init__ to initialize the
inherited instance variable self.name. It then initializes self.idNum, an instance
variable that instances of MITPerson have but instances of Person do not.

The instance variable self.idNum is initialized using a class variable, nextIdNum,
that belongs to the class MITPerson, rather than to instances of the class. When
an instance of MITPerson is created, a new instance of nextIdNum is not created.
This allows __init__ to ensure that each instance of MITPerson has a unique
idNum.

class MITPerson(Person):

 nextIdNum = 0 #identification number

 def __init__(self, name):
 Person.__init__(self, name)
 self.idNum = MITPerson.nextIdNum
 MITPerson.nextIdNum += 1

 def getIdNum(self):
 return self.idNum

 def __lt__(self, other):
 return self.idNum < other.idNum

100 Chapter 8. Classes and Object-Oriented Programming

Consider the code

p1 = MITPerson('Barbara Beaver')
print str(p1) + '\'s id number is ' + str(p1.getIdNum())

The first line creates a new MITPerson. The second line is a bit more
complicated. When it attempts to evaluate the expression str(p1), the runtime
system first checks to see if there is an __str__ method associated with class
MITPerson. Since there is not, it next checks to see if there is an __str__ method
associated with the superclass, Person, of MITPerson. There is, so it uses that.
When the runtime system attempts to evaluate the expression p1.getidNum(), it
first checks to see if there is a getIdNum method associated with class MITPerson.
There is, so it invokes that method and prints

Barbara Beaver's id number is 0

(Recall that in a string, the character “\” is an escape character used to indicate
that the next character should be treated in a special way. In the string

'\'s id number is '

the “\” indicates that the apostrophe is part of the string, not a delimiter
terminating the string.)

Now consider the code

p1 = MITPerson('Mark Guttag')
p2 = MITPerson('Billy Bob Beaver')
p3 = MITPerson('Billy Bob Beaver')
p4 = Person('Billy Bob Beaver')

We have created four virtual people, three of whom are named Billy Bob Beaver.
Two of the Billy Bobs are of type MITPerson, and one merely a Person. If we
execute the lines of code

print 'p1 < p2 =', p1 < p2
print 'p3 < p2 =', p3 < p2
print 'p4 < p1 =', p4 < p1

the interpreter will print

p1 < p2 = True
p3 < p2 = False
p4 < p1 = True

Since p1, p2, and p3 are all of type MITPerson, the interpreter will use the __lt__
method defined in class MITPerson when evaluating the first two comparisons, so
the ordering will be based on identification numbers. In the third comparison,
the < operator is applied to operands of different types. Since the first argument
of the expression is used to determine which __lt__ method to invoke, p4 < p1
is shorthand for p4.__lt__(p1). Therefore, the interpreter uses the __lt__
method associated with the type of p4, Person, and the “people” will be ordered by
name.

What happens if we try

print 'p1 < p4 =', p1 < p4

 Chapter 8. Classes and Object-Oriented Programming 101

The interpreter will invoke the __lt__ operator associated with the type of p1,
i.e., the one defined in class MITPerson. This will lead to the exception

AttributeError: 'Person' object has no attribute 'idNum'

because the object to which p4 is bound does not have an attribute idNum.

8.2.1 Multiple Levels of Inheritance

Figure 8.4 adds another couple of levels of inheritance to the class hierarchy.

Figure 8.4 Two kinds of students

Adding UG seems logical, because we want to associate a year of graduation (or
perhaps anticipated graduation) with each undergraduate. But what is going on
with the classes Student and Grad? By using the Python reserved word pass as
the body, we indicate that the class has no attributes other than those inherited
from its superclass. Why would one ever want to create a class with no new
attributes?

By introducing the class Grad, we gain the ability to create two different kinds of
students and use their types to distinguish one kind of object from another. For
example, the code

p5 = Grad('Buzz Aldrin')
p6 = UG('Billy Beaver', 1984)
print p5, 'is a graduate student is', type(p5) == Grad
print p5, 'is an undergraduate student is', type(p5) == UG

will print

Buzz Aldrin is a graduate student is True
Buzz Aldrin is an undergraduate student is False

The utility of the intermediate type Student is a bit subtler. Consider going back
to class MITPerson and adding the method

def isStudent(self):
 return isinstance(self, Student)

The function isinstance is built into Python. The first argument of isinstance
can be any object, but the second argument must be an object of type type. The
function returns True if and only if the first argument is an instance of the
second argument. For example the value of isinstance([1,2], list) is True.

class Student(MITPerson):
 pass

class UG(Student):
 def __init__(self, name, classYear):
 MITPerson.__init__(self, name)
 self.year = classYear
 def getClass(self):
 return self.year

class Grad(Student):
 pass

102 Chapter 8. Classes and Object-Oriented Programming

Returning to our example, the code

print p5, 'is a student is', p5.isStudent()
print p6, 'is a student is', p6.isStudent()
print p3, 'is a student is', p3.isStudent()

prints

Buzz Aldrin is a student is True
Billy Beaver is a student is True
Billy Bob Beaver is a student is False

Notice that isinstance(p6, Student) is quite different from
type(p6) == Student. The object to which p6 is bound is of type UG, not
student, but since UG is a subclass of Student, the object to which p6 is bound is
considered to be an instance of class Student (as well as an instance of
MITPerson and Person).

Since there are only two kinds of students, we could have implemented
isStudent as,

def isStudent(self):
 return type(self) == Grad or type(self) == UG

However, if a new type of student were introduced at some later point it would
be necessary to go back and edit the code implementing isStudent. By
introducing the intermediate class Student and using isinstance we avoid this
problem. For example, if we were to add

class TransferStudent(Student):

 def __init__(self, name, fromSchool):
 MITPerson.__init__(self, name)
 self.fromSchool = fromSchool

 def getOldSchool(self):
 return self.fromSchool

no change needs to be made to isStudent.

It is not unusual during the creation and later maintenance of a program to go
back and add new classes or new attributes to old classes. Good programmers
design their programs so as to minimize the amount of code that might need to
be changed when that is done.

8.2.2 The Substitution Principle

When subclassing is used to define a type hierarchy, the subclasses should be
thought of as extending the behavior of their superclasses. We do this by adding
new attributes or overriding attributes inherited from a superclass. For
example, TransferStudent extends Student by introducing a former school.

Sometimes, the subclass overrides methods from the superclass, but this must
be done with care. In particular, important behaviors of the supertype must be
supported by each of its subtypes. If client code works correctly using an
instance of the supertype, it should also work correctly when an instance of the
subtype is substituted for the instance of the supertype. For example, it should

 Chapter 8. Classes and Object-Oriented Programming 103

be possible to write client code using the specification of Student and have it
work correctly on a TransferStudent.39

Conversely, there is no reason to expect that code written to work for
TransferStudent should work for arbitrary types of Student.

8.3 Encapsulation and Information Hiding

As long as we are dealing with students, it would be a shame not to make them
suffer through taking classes and getting grades.

Figure 8.5 Class Grades

39 This substitution principle was first clearly enunciated by Barbara Liskov and
Jeannette Wing in their 1994 paper, “A behavioral notion of subtyping.”

class Grades(object):
 """A mapping from students to a list of grades"""
 def __init__(self):
 """Create empty grade book"""
 self.students = []
 self.grades = {}
 self.isSorted = True

 def addStudent(self, student):
 """Assumes: student is of type Student
 Add student to the grade book"""
 if student in self.students:
 raise ValueError('Duplicate student')
 self.students.append(student)
 self.grades[student.getIdNum()] = []
 self.isSorted = False

 def addGrade(self, student, grade):
 """Assumes: grade is a float
 Add grade to the list of grades for student"""
 try:
 self.grades[student.getIdNum()].append(grade)
 except:
 raise ValueError('Student not in mapping')

 def getGrades(self, student):
 """Return a list of grades for student"""
 try: #return copy of student's grades
 return self.grades[student.getIdNum()][:]
 except:
 raise ValueError('Student not in mapping')

 def getStudents(self):
 """Return a list of the students in the grade book"""
 if not self.isSorted:
 self.students.sort()
 self.isSorted = True
 return self.students[:] #return copy of list of students

104 Chapter 8. Classes and Object-Oriented Programming

Figure 8.5 contains a class that can be used to keep track of the grades of a
collection of students. Instances of class Grades are implemented using a list
and a dictionary. The list keeps track of the students in the class. The
dictionary maps a student’s identification number to a list of grades.

Notice that getGrades returns a copy of the list of grades associated with a
student, and getStudents returns a copy of the list of students. The
computational cost of copying the lists could have been avoided by simply
returning the instance variables themselves. Doing so, however, is likely to lead
to problems. Consider the code

allStudents = course1.getStudents()
allStudents.extend(course2.getStudents())

If getStudents returned self.students, the second line of code would have the
(probably unexpected) side effect of changing the set of students in course1.

The instance variable isSorted is used to keep track of whether or not the list of
students has been sorted since the last time a student was added to it. This
allows the implementation of getStudents to avoid sorting an already sorted list.

Figure 8.6 contains a function that uses class Grades to produce a grade report
for some students taking 6.00, the MIT course for which this book was
developed.

 Chapter 8. Classes and Object-Oriented Programming 105

Figure 8.6 Generating a grade report

When run, the code in the figure prints

Jane Doe's mean grade is 75.0
John Doe's mean grade is 75.0
David Henry has no grades
Billy Buckner's mean grade is 50.0
Bucky F. Dent's mean grade is 87.5

There are two important concepts at the heart of object-oriented programming.
The first is the idea of encapsulation. By this we mean the bundling together of
data attributes and the methods for operating on them. For example, if we write

Rafael = MITPerson()

we can use dot notation to access attributes such as Rafael’s age and
identification number.

The second important concept is information hiding. This is one of the keys to
modularity. If those parts of the program that use a class (i.e., the clients of the
class) rely only on the specifications of the methods in the class, a programmer
implementing the class is free to change the implementation of the class (e.g., to

def gradeReport(course):
 """Assumes course is of type Grades"""
 report = ''
 for s in course.getStudents():
 tot = 0.0
 numGrades = 0
 for g in course.getGrades(s):
 tot += g
 numGrades += 1
 try:
 average = tot/numGrades
 report = report + '\n'\
 + str(s) + '\'s mean grade is ' + str(average)
 except ZeroDivisionError:
 report = report + '\n'\
 + str(s) + ' has no grades'
 return report

ug1 = UG('Jane Doe', 2014)
ug2 = UG('John Doe', 2015)
ug3 = UG('David Henry', 2003)
g1 = Grad('Billy Buckner')
g2 = Grad('Bucky F. Dent')
sixHundred = Grades()
sixHundred.addStudent(ug1)
sixHundred.addStudent(ug2)
sixHundred.addStudent(g1)
sixHundred.addStudent(g2)
for s in sixHundred.getStudents():
 sixHundred.addGrade(s, 75)
sixHundred.addGrade(g1, 25)
sixHundred.addGrade(g2, 100)
sixHundred.addStudent(ug3)
print gradeReport(sixHundred)

106 Chapter 8. Classes and Object-Oriented Programming

improve efficiency) without worrying that the change will break code that uses
the class.

Some programming languages (Java and C++, for example) provide mechanisms
for enforcing information hiding. Programmers can make the data attributes of a
class invisible to clients of the class, and thus require that the data be accessed
only through the object's methods. So, for example, we could get the idNum
associated with Rafael by executing Rafael.getIdNum() but not by writing
Rafael.idNum.

Unfortunately, Python does not provide mechanisms for enforcing information
hiding. There is no way for the implementer of a class to restrict access to the
attributes of class instances. For example, a client of a Person can write the
expression Rafael.lastName rather than Rafael.getLastName().

Why is this unfortunate? Because the client code is relying upon something
that is not part of the specification of Person, and is therefore subject to change.
If the implementation of Person were changed, for example to extract the last
name whenever it is requested rather than store it in an instance variable, then
the client code would no longer work.

Not only does Python let programs read instance and class variables from
outside the class definition, it also lets programs write these variables. So, for
example, the code Rafael.birthday = '8/21/50' is perfectly legal. This would
lead to a runtime type error, were Rafael.getAge invoked later in the
computation. It is even possible to create instance variables from outside the
class definition. For example, Python will not complain if the assignment
statement me.age = Rafael.getAge() occurs outside the class definition.

While this weak static semantic checking is a flaw in Python, it is not a fatal
flaw. A disciplined programmer can simply follow the sensible rule of not
directly accessing data attributes from outside the class in which they are
defined, as we do in this book.

8.3.1 Generators

A perceived risk of information hiding is that preventing client programs from
directly accessing critical data structures leads to an unacceptable loss of
efficiency. In the early days of data abstraction, many were concerned about the
cost of introducing extraneous function/method calls. Modern compilation
technology makes this concern moot. A more serious issue is that client
programs will be forced to use inefficient algorithms.

Consider the implementation of gradeReport in Figure 8.6. The invocation of
course.getStudents creates and returns a list of size n, where n is the number of
students. This is probably not a problem for a grade book for a single class, but
imagine keeping track of the grades of 1.7 million high school students taking
the SAT’s. Creating a new list of that size when the list already exists is a
significant inefficiency. One solution is to abandon the abstraction and allow
gradeReport to directly access the instance variable course.students, but that
would violate information hiding. Fortunately, there is a better solution.

 Chapter 8. Classes and Object-Oriented Programming 107

The code in Figure 8.7, replaces the getStudents function in class Grades with a
function that uses a kind of statement we have not yet used: a yield statement.

Figure 8.7 New version of getStudents

Any function definition containing a yield statement is treated in a special way.
The presence of yield tells the Python system that the function is a generator.
Generators are typically used in conjunction with for statements.40

At the start of the first iteration of a for loop, the interpreter starts executing the
code in the body of the generator. It runs until the first time a yield statement
is executed, at which point it returns the value of the expression in the yield
statement. On the next iteration, the generator resumes execution immediately
following the yield, with all local variables bound to the objects to which they
were bound when the yield statement was executed, and again runs until a
yield statement is executed. It continues to do this until it runs out of code to
execute or executes a return statement, at which point the loop is exited.

The version of getStudents in Figure 8.7 allows programmers to use a for loop
to iterate over the students in objects of type Grades in the same way they can
use a for loop to iterate over elements of built-in types such as list. For
example, the code

book = Grades()
book.addStudent(Grad('Julie'))
book.addStudent(Grad('Charlie'))
for s in book.getStudents():
 print s

prints

Julie
Charlie

Thus the loop in Figure 8.6 that starts with

for s in course.getStudents():

does not have to be altered to take advantage of the version of class Grades that
contains the new implementation of getStudents. The same for loop can iterate
over the values provided by getStudents regardless of whether getStudents
returns a list of values or generates one value at a time. Generating one value at

40 This explanation of generators is a bit simplistic. To fully understand generators, you
need to understand the way built-in iterators are implemented in Python, which is not
covered in this book.

def getStudents(self):
 """Return the students in the grade book one at a time"""
 if not self.isSorted:
 self.students.sort()
 self.isSorted = True
 for s in self.students:
 yield s

108 Chapter 8. Classes and Object-Oriented Programming

a time will be more efficient, because a new list containing the students will not
be created.

8.4 Mortgages, an Extended Example

A collapse in U.S. housing prices helped trigger a severe economic meltdown in
the fall of 2008. One of the contributing factors was that many homeowners
had taken on mortgages that ended up having unexpected consequences.41

In the beginning, mortgages were relatively simple beasts. One borrowed money
from a bank and made a fixed-size payment each month for the life of the
mortgage, which typically ranged from fifteen to thirty years. At the end of that
period, the bank had been paid back the initial loan (the principal) plus interest,
and the homeowner owned the house “free and clear.”

Towards the end of the twentieth century, mortgages started getting a lot more
complicated. People could get lower interest rates by paying “points” at the time
they took on the mortgage. A point is a cash payment of 1% of the value of the
loan. People could take mortgages that were “interest-only” for a period of time.
That is to say, for some number of months at the start of the loan the borrower
paid only the accrued interest and none of the principal. Other loans involved
multiple rates. Typically the initial rate (called a “teaser rate”) was low, and then
it went up over time. Many of these loans were variable-rate—the rate to be paid
after the initial period would vary depending upon some index intended to reflect
the cost to the lender of borrowing on the wholesale credit market.42

In principle, giving consumers a variety of options is a good thing. However,
unscrupulous loan purveyors were not always careful to fully explain the
possible long-term implications of the various options, and some borrowers
made choices that proved to have dire consequences.

Let’s build a program that examines the costs of three kinds of loans:

• A fixed-rate mortgage with no points,

• A fixed-rate mortgage with points, and

• A mortgage with an initial teaser rate followed by a higher rate for the
duration.

The point of this exercise is to provide some experience in the incremental
development of a set of related classes, not to make you an expert on mortgages.

We will structure our code to include a Mortgage class, and subclasses
corresponding to each of the three kinds of mortgages listed above.

41 In this context, it is worth recalling the etymology of the word mortgage. The American
Heritage Dictionary of the English Language traces the word back to the old French words
for dead (mort) and pledge (gage). (This derivation also explains why the “t” in the middle
of mortgage is silent.)

42 The London Interbank Offered Rate (LIBOR) is probably the most commonly used
index.

 Chapter 8. Classes and Object-Oriented Programming 109

Figure 8.8 contains the abstract class Mortgage. This class contains methods
that are shared by each of the subclasses, but it is not intended to be
instantiated directly.

The function findPayment at the top of the figure computes the size of the fixed
monthly payment needed to pay off the loan, including interest, by the end of its
term. It does this using a well-known closed-form expression. This expression is
not hard to derive, but it is a lot easier to just look it up and more likely to be
correct than one derived on the spot.

When your code incorporates formulas you have looked up, make sure that:

• You have taken the formula from a reputable source. We looked at
multiple reputable sources, all of which contained equivalent formulas.

• You fully understand the meaning of all the variables in the formula.

• You test your implementation against examples taken from reputable
sources. After implementing this function, we tested it by comparing our
results to the results supplied by a calculator available on the Web.

Figure 8.8 Mortgage base class

Looking at __init__, we see that all Mortgage instances will have instance
variables corresponding to the initial loan amount, the monthly interest rate, the
duration of the loan in months, a list of payments that have been made at the
start of each month (the list starts with 0.0, since no payments have been made
at the start of the first month), a list with the balance of the loan that is

def findPayment(loan, r, m):
 """Assumes: loan and r are floats, m an int
 Returns the monthly payment for a mortgage of size
 loan at a monthly rate of r for m months"""
 return loan*((r*(1+r)**m)/((1+r)**m - 1))

class Mortgage(object):
 """Abstract class for building different kinds of mortgages"""
 def __init__(self, loan, annRate, months):
 """Create a new mortgage"""
 self.loan = loan
 self.rate = annRate/12.0
 self.months = months
 self.paid = [0.0]
 self.owed = [loan]
 self.payment = findPayment(loan, self.rate, months)
 self.legend = None #description of mortgage
 def makePayment(self):
 """Make a payment"""
 self.paid.append(self.payment)
 reduction = self.payment - self.owed[-1]*self.rate
 self.owed.append(self.owed[-1] - reduction)
 def getTotalPaid(self):
 """Return the total amount paid so far"""
 return sum(self.paid)
 def __str__(self):
 return self.legend

110 Chapter 8. Classes and Object-Oriented Programming

outstanding at the start of each month, the amount of money to be paid each
month (initialized using the value returned by the function findPayment), and a
description of the mortgage (which initially has a value of None). The __init__
operation of each subclass of Mortgage is expected to start by calling
Mortgage.__init__, and then to initialize self.legend to an appropriate
description of that subclass.

The method makePayment is used to record mortgage payments. Part of each
payment covers the amount of interest due on the outstanding loan balance,
and the remainder of the payment is used to reduce the loan balance. That is
why makePayment updates both self.paid and self.owed.

The method getTotalPaid uses the built-in Python function sum, which returns
the sum of a sequence of numbers. If the sequence contains a non-number, an
exception is raised.

Figure 8.9 contains classes implementing two types of mortgage. Each of these
classes overrides __init__ and inherits the other three methods from Mortgage.

Figure 8.9 Fixed-rate mortgage classes

Figure 8.10 contains a third subclass of Mortgage. The class TwoRate treats the
mortgage as the concatenation of two loans, each at a different interest rate.
(Since self.paid is initialized with a 0.0, it contains one more element than the
number of payments that have been made. That’s why makePayment compares
len(self.paid) to self.teaserMonths + 1.).

class Fixed(Mortgage):
 def __init__(self, loan, r, months):
 Mortgage.__init__(self, loan, r, months)
 self.legend = 'Fixed, ' + str(r*100) + '%'

class FixedWithPts(Mortgage):
 def __init__(self, loan, r, months, pts):
 Mortgage.__init__(self, loan, r, months)
 self.pts = pts
 self.paid = [loan*(pts/100.0)]
 self.legend = 'Fixed, ' + str(r*100) + '%, '\
 + str(pts) + ' points'

 Chapter 8. Classes and Object-Oriented Programming 111

Figure 8.10 Mortgage with teaser rate

Figure 8.11 contains a function that computes and prints the total cost of each
kind of mortgage for a sample set of parameters. It begins by creating one
mortgage of each kind. It then makes a monthly payment on each for a given
number of years. Finally, it prints the total amount of the payments made for
each loan.

Figure 8.11 Evaluate mortgages

Notice that we used keyword rather than positional arguments in the invocation
of compareMortgages. We did this because compareMortgages has a large number
of formal parameters and using keyword arguments makes it easier to ensure
that we are supplying the intended actual values to each of the formals.

class TwoRate(Mortgage):
 def __init__(self, loan, r, months, teaserRate, teaserMonths):
 Mortgage.__init__(self, loan, teaserRate, months)
 self.teaserMonths = teaserMonths
 self.teaserRate = teaserRate
 self.nextRate = r/12.0
 self.legend = str(teaserRate*100)\
 + '% for ' + str(self.teaserMonths)\
 + ' months, then ' + str(r*100) + '%'
 def makePayment(self):
 if len(self.paid) == self.teaserMonths + 1:
 self.rate = self.nextRate
 self.payment = findPayment(self.owed[-1], self.rate,
 self.months - self.teaserMonths)
 Mortgage.makePayment(self)

def compareMortgages(amt, years, fixedRate, pts, ptsRate,
 varRate1, varRate2, varMonths):
 totMonths = years*12
 fixed1 = Fixed(amt, fixedRate, totMonths)
 fixed2 = FixedWithPts(amt, ptsRate, totMonths, pts)
 twoRate = TwoRate(amt, varRate2, totMonths, varRate1, varMonths)
 morts = [fixed1, fixed2, twoRate]
 for m in range(totMonths):
 for mort in morts:
 mort.makePayment()
 for m in morts:
 print m
 print ' Total payments = $' + str(int(m.getTotalPaid()))

compareMortgages(amt=200000, years=30, fixedRate=0.07,
 pts = 3.25, ptsRate=0.05, varRate1=0.045,
 varRate2=0.095, varMonths=48)

112 Chapter 8. Classes and Object-Oriented Programming

When the code in Figure 8.11 is run, it prints

Fixed, 7.0%
 Total payments = $479017
Fixed, 5.0%, 3.25 points
 Total payments = $393011
4.5% for 48 months, then 9.5%
 Total payments = $551444

At first glance, the results look pretty conclusive. The variable-rate loan is a bad
idea (for the borrower, not the bank) and the fixed-rate loan with points costs
the least. It’s important to note, however, that total cost is not the only metric
by which mortgages should be judged. For example, a borrower who expects to
have a higher income in the future may be willing to pay more in the later years
to lessen the burden of payments in the beginning.

This suggests that rather than looking at a single number, we should look at
payments over time. This in turn suggests that our program should be
producing plots designed to show how the mortgage behaves over time. We will
do that in Section 11.2.

9 A SIMPLISTIC INTRODUCTION TO ALGORITHMIC
COMPLEXITY

The most important thing to think about when designing and implementing a
program is that it should produce results that can be relied upon. We want our
bank balances to be calculated correctly. We want the fuel injectors in our
automobiles to inject appropriate amounts of fuel. We would prefer that neither
airplanes nor operating systems crash.

Sometimes performance is an important aspect of correctness. This is most
obvious for programs that need to run in real time. A program that warns
airplanes of potential obstructions needs to issue the warning before the
obstructions are encountered. Performance can also affect the utility of many
non-real-time programs. The number of transactions completed per minute is
an important metric when evaluating the utility of database systems. Users care
about the time required to start an application on their phone. Biologists care
about how long their phylogenetic inference calculations take.

Writing efficient programs is not easy. The most straightforward solution is
often not the most efficient. Computationally efficient algorithms often employ
subtle tricks that can make them difficult to understand. Consequently,
programmers often increase the conceptual complexity of a program in an
effort to reduce its computational complexity. To do this in a sensible way, we
need to understand how to go about estimating the computational complexity of
a program. That is the topic of this chapter.

9.1 Thinking About Computational Complexity

How should one go about answering the question “How long will the following
function take to run?”

def f(i):
 """Assumes i is an int and i >= 0"""
 answer = 1
 while i >= 1:
 answer *= i
 i -= 1
 return answer

We could run the program on some input and time it. But that wouldn’t be
particularly informative because the result would depend upon

1. the speed of the computer on which it is run,

2. the efficiency of the Python implementation on that machine, and

3. the value of the input.

We get around the first two issues by using a more abstract measure of time.
Instead of measuring time in milliseconds, we measure time in terms of the
number of basic steps executed by the program.

114 Chapter 9. A Simplistic Introduction to Algorithmic Complexity

For simplicity, we will use a random access machine as our model of
computation. In a random access machine, steps are executed sequentially, one
at a time.43 A step is an operation that takes a fixed amount of time, such as
binding a variable to an object, making a comparison, executing an arithmetic
operation, or accessing an object in memory.

Now that we have a more abstract way to think about the meaning of time, we
turn to the question of dependence on the value of the input. We deal with that
by moving away from expressing time complexity as a single number and
instead relating it to the sizes of the inputs. This allows us to compare the
efficiency of two algorithms by talking about how the running time of each grows
with respect to the sizes of the inputs.

Of course, the actual running time of an algorithm depends not only upon the
sizes of the inputs but also upon their values. Consider, for example, the linear
search algorithm implemented by

def linearSearch(L, x):
 for e in L:
 if e == x:
 return True
 return False

Suppose that L is a million elements long and consider the call
linearSearch(L, 3). If the first element in L is 3, linearSearch will return True
almost immediately. On the other hand, if 3 is not in L, linearSearch will have
to examine all one million elements before returning False.

In general, there are three broad cases to think about:

• The best-case running time is the running time of the algorithm when
the inputs are as favorable as possible. I.e., the best-case running time
is the minimum running time over all the possible inputs of a given size.
For linearSearch, the best-case running time is independent of the size
of L.

• Similarly, the worst-case running time is the maximum running time
over all the possible inputs of a given size. For linearSearch, the worst-
case running time is linear in the size of the list.

• By analogy with the definitions of the best-case and worst-case running
time, the average-case (also called expected-case) running time is the
average running time over all possible inputs of a given size.
Alternatively, if one has some a priori information about the distribution
of input values (e.g., that 90% of the time x is in L), one can take that into
account.

People usually focus on the worst case. All engineers share a common article of
faith, Murphy’s Law: If something can go wrong, it will go wrong. The worst-case
provides an upper bound on the running time. This is critical in situations
where there is a time constraint on how long a computation can take. It is not

43 A more accurate model for today’s computers might be a parallel random access
machine. However, that adds considerable complexity to the algorithmic analysis, and
often doesn’t make an important qualitative difference in the answer.

 Chapter 9. A Simplistic Introduction to Algorithmic Complexity 115

good enough to know that “most of the time” the air traffic control system warns
of impending collisions before they occur.

Let’s look at the worst-case running time of an iterative implementation of the
factorial function

def fact(n):
 """Assumes n is a natural number
 Returns n!"""
 answer = 1
 while n > 1:
 answer *= n
 n -= 1
 return answer

The number of steps required to run this program is something like 2 (1 for the
initial assignment statement and one for the return) + 5n (counting 1 step for
the test in the while, 2 steps for the first assignment statement in the while loop
and 2 steps for the second assignment statement in the loop). So, for example, if
n is 1000, the function will execute roughly 5002 steps.

It should be immediately obvious that as n gets large, worrying about the
difference between 5n and 5n+2 is kind of silly. For this reason, we typically
ignore additive constants when reasoning about running time. Multiplicative
constants are more problematical. Should we care whether the computation
takes 1000 steps or 5000 steps? Multiplicative factors can be important.
Whether a search engine takes a half second or 2.5 seconds to service a query
can be the difference between whether people use that search engine or go to a
competitor.

On the other hand, when one is comparing two different algorithms, it is often
the case that even multiplicative constants are irrelevant. Recall that in
Chapter 3 we looked at two algorithms, exhaustive enumeration and bisection
search, for finding an approximation to the square root of a floating point
number. Functions based on each of these algorithms are shown in Figure 9.1
and Figure 9.2.

Figure 9.1 Using exhaustive enumeration to approximate square root

def squareRootExhaustive(x, epsilon):
 """Assumes x and epsilon are positive floats & epsilon < 1
 Returns a y such that y*y is within epsilon of x"""
 step = epsilon**2
 ans = 0.0
 while abs(ans**2 - x) >= epsilon and ans*ans <= x:
 ans += step
 if ans*ans > x:
 raise ValueError
 return ans

116 Chapter 9. A Simplistic Introduction to Algorithmic Complexity

Figure 9.2 Using bisection search to approximate square root

We saw that exhaustive enumeration was so slow as to be impractical for many
combinations of x and epsilon. For example, evaluating
squareRootExhaustive(100, 0.0001) requires roughly one billion iterations of
the loop. In contrast, evaluating squareRootBi(100, 0.0001) takes roughly
twenty iterations of a slightly more complex while loop. When the difference in
the number of iterations is this large, it doesn’t really matter how many
instructions are in the loop. I.e., the multiplicative constants are irrelevant.

9.2 Asymptotic Notation

We use something called asymptotic notation to provide a formal way to talk
about the relationship between the running time of an algorithm and the size of
its inputs. The underlying motivation is that almost any algorithm is sufficiently
efficient when run on small inputs. What we typically need to worry about is the
efficiency of the algorithm when run on very large inputs. As a proxy for “very
large,” asymptotic notation describes the complexity of an algorithm as the size
of its inputs approaches infinity.

Consider, for example, the code

def f(x):
 """Assume x is an int > 0"""
 ans = 0
 #Loop that takes constant time
 for i in range(1000):
 ans += 1
 print 'Number of additions so far', ans
 #Loop that takes time x
 for i in range(x):
 ans += 1
 print 'Number of additions so far', ans
 #Nested loops take time x**2
 for i in range(x):
 for j in range(x):
 ans += 1
 ans += 1
 print 'Number of additions so far', ans
 return ans

def squareRootBi(x, epsilon):
 """Assumes x and epsilon are positive floats & epsilon < 1
 Returns a y such that y*y is within epsilon of x"""
 low = 0.0
 high = max(1.0, x)
 ans = (high + low)/2.0
 while abs(ans**2 - x) >= epsilon:
 if ans**2 < x:
 low = ans
 else:
 high = ans
 ans = (high + low)/2.0
 return ans

 Chapter 9. A Simplistic Introduction to Algorithmic Complexity 117

If one assumes that each line of code takes one unit of time to execute, the
running time of this function can be described as 1000 + x + 2x2. The constant
1000 corresponds to the number of times the first loop is executed. The term x
corresponds to the number of times the second loop is executed. Finally, the
term 2x2 corresponds to the time spent executing the two statements in the
nested for loop. Consequently, the call f(10) will print

Number of additions so far 1000
Number of additions so far 1010
Number of additions so far 1210

For small values of x the constant term dominates. If x is 10, 1000 of the 1210
steps are accounted for by the first loop. On the other hand, if x is 1000, each of
the first two loops accounts for only 0.05% of the steps. When x is 1,000,000, the
first loop takes about 0.00000005% of the total time and the second loop about
0.00005%. A full 2,000,000,000,000 of the 2,000,001,001,000 steps are in the body of
the inner for loop.

Clearly, we can get a meaningful notion of how long this code will take to run on
very large inputs by considering only the inner loop, i.e., the quadratic
component. Should we care about the fact that this loop takes 2x2 steps rather
than x2 steps? If your computer executes roughly 100 million steps per second,
evaluating f will take about 5.5 hours. If we could reduce the complexity to x2
steps, it would take about 2.25 hours. In either case, the moral is the same: we
should probably look for a more efficient algorithm.

This kind of analysis leads us to use the following rules of thumb in describing
the asymptotic complexity of an algorithm:

• If the running time is the sum of multiple terms, keep the one with the
largest growth rate, and drop the others.

• If the remaining term is a product, drop any constants.

The most commonly used asymptotic notation is called “Big O” notation.44 Big
O notation is used to give an upper bound on the asymptotic growth (often
called the order of growth) of a function. For example, the formula f(x) ∈ O(x2)
means that the function f grows no faster than the quadratic polynomial x2, in
an asymptotic sense.

We, like many computer scientists, will often abuse Big O notation by making
statements like, “the complexity of f(x) is O(x2).” By this we mean that in the worst
case f will take O(x2) steps to run. The difference between a function being “in
O(x2)” and “being O(x2)” is subtle but important. Saying that f(x) ∈ O (x2) does not
preclude the worst-case running time of f from being considerably less that O(x2).

44 The phrase “Big O” was introduced in this context by the computer scientist Donald
Knuth in the 1970s. He chose the Greek letter Omicron because number theorists had
used that letter since the late 19th century to denote a related concept.

118 Chapter 9. A Simplistic Introduction to Algorithmic Complexity

When we say that f(x) is O(x2), we are implying that x2 is both an upper and a
lower bound on the asymptotic worst-case running time. This is called a tight
bound.45

9.3 Some Important Complexity Classes

Some of the most common instances of Big O are listed below. In each case, n is
a measure of the size of the inputs to the function.

• O(1) denotes constant running time.

• O(log n) denotes logarithmic running time.

• O(n) denotes linear running time.

• O(n log n) denotes log-linear running time.

• O(nk) denotes polynomial running time. Notice that k is a constant.

• O(cn) denotes exponential running time. Here a constant is being raised
to a power based on the size of the input.

9.3.1 Constant Complexity

This indicates that the asymptotic complexity is independent of the inputs.
There are very few interesting programs in this class, but all programs have
pieces (for example finding out the length of a Python list or multiplying two
floating point numbers) that fit into this class. Constant running time does not
imply that there are no loops or recursive calls in the code, but it does imply
that the number of iterations or recursive calls is independent of the size of the
inputs.

9.3.2 Logarithmic Complexity

Such functions have a complexity that grows as the log of at least one of the
inputs. Binary search, for example, is logarithmic in the length of the list being
searched. (We will look at binary search and analyze its complexity in the next
chapter.) By the way, we don’t care about the base of the log, since the
difference between using one base and another is merely a constant
multiplicative factor. For example, O(log2(x)) = O(log2(10)*log10(x)). There are lots of

interesting functions with logarithmic complexity. Consider

45 The more pedantic members of the computer science community use Big Theta, Θ,
rather than Big O for this.

 Chapter 9. A Simplistic Introduction to Algorithmic Complexity 119

def intToStr(i):
 """Assumes i is a nonnegative int
 Returns a decimal string representation of i"""
 digits = '0123456789'
 if i == 0:
 return '0'
 result = ''
 while i > 0:
 result = digits[i%10] + result
 i = i//10
 return result

Since there are no function or method calls in this code, we know that we only
have to look at the loops to determine the complexity class. There is only one
loop, so the only thing that we need to do is characterize the number of
iterations. That boils down to the number of times one can divide i by 10. So,
the complexity of intToStr is O(log(i)).

What about the complexity of

def addDigits(n):
 “““Assumes n is a nonnegative int
 Returns the sum of the digits in n"""
 stringRep = intToStr(n)
 val = 0
 for c in stringRep:
 val += int(c)
 return val

The complexity of converting n to a string is O(log(n)) and intToStr returns a
string of length O(log(n)). The for loop will be executed O(len(stringRep)) times, i.e.,
O(log(n)) times. Putting it all together, and assuming that a character
representing a digit can be converted to an integer in constant time, the program
will run in time proportional to O(log(n)) + O(log(n)), which makes it O(log(n)).

9.3.3 Linear Complexity

Many algorithms that deal with lists or other kinds of sequences are linear
because they touch each element of the sequence a constant (greater than 0)
number of times. Consider, for example,

def addDigits(s):
 """Assumes s is a str each character of which is a
 decimal digit.
 Returns an int that is the sum of the digits in s"""
 val = 0
 for c in s:
 val += int(c)
 return val

This function is linear in the length of s, i.e., O(len(s))—again assuming that a
character representing a digit can be converted to an integer in constant time.

Of course, a program does not need to have a loop to have linear complexity.

120 Chapter 9. A Simplistic Introduction to Algorithmic Complexity

Consider

def factorial(x):
 """Assumes that x is a positive int
 Returns x!"""
 if x == 1:
 return 1
 else:
 return x*factorial(x-1)

There are no loops in this code, so in order to analyze the complexity we need to
figure out how many recursive calls get made. The series of calls is simply

factorial(x), factorial(x-1), factorial(x-2), ... , factorial(1). The

length of this series, and thus the complexity of the function, is O(x).

Thus far in this chapter we have looked only at the time complexity of our code.
This is fine for algorithms that use a constant amount of space, but this
implementation of factorial does not have that property. As we discussed in
Chapter 4, each recursive call of factorial causes a new stack frame to be
allocated, and that frame continues to occupy memory until the call returns. At
the maximum depth of recursion, this code will have allocated x stack frames, so
the space complexity is O(x).

The impact of space complexity is harder to appreciate than the impact of time
complexity. Whether a program takes one minute or two minutes to complete is
quite visible to its user, but whether it uses one megabyte or two megabytes of
memory is largely invisible to users. This is why people typically give more
attention to time complexity than to space complexity. The exception occurs
when a program needs more space than is available in the main memory of the
machine on which it is run.

9.3.4 Log-Linear Complexity

This is slightly more complicated than the complexity classes we have looked at
thus far. It involves the product of two terms, each of which depends upon the
size of the inputs. It is an important class, because many practical algorithms
are log-linear. The most commonly used log-linear algorithm is probably merge
sort, which is O(n log(n)), where n is the length of the list being sorted. We will
look at that algorithm and analyze its complexity in the next chapter.

9.3.5 Polynomial Complexity

The most commonly used polynomial algorithms are quadratic, i.e., their
complexity grows as the square of the size of their input. Consider, for example,
the function in Figure 9.3, which implements a subset test.

 Chapter 9. A Simplistic Introduction to Algorithmic Complexity 121

Figure 9.3 Implementation of subset test

Each time the inner loop is reached it is executed O(len(L2) times. The function
will execute the outer loop O(len(L1)) times, so the inner loop will be reached
O(len(L1)) times. Therefore, the complexity of isSubset is O(len(L1)*len(L2)).

Now consider the function intersect in Figure 9.4.

Figure 9.4 Implementation of list intersection

The running time for the part building the list that might contain duplicates is
clearly O(len(L1)*len(L2)). At first glance, it appears that the part of the code that

builds the duplicate-free list is linear in the length of tmp, but it is not. The test
e not in result potentially involves looking at each element in result, and is
therefore O(len(result)); consequently the second part of the implementation is
O(len(tmp)*len(result)). Since the lengths of result and tmp are bounded by the

length of the smaller of L1 and L2, and since we ignore additive terms, the
complexity of intersect is O(len(L1)*len(L2)).

9.3.6 Exponential Complexity

As we will see later in this book, many important problems are inherently
exponential, i.e., solving them completely can require time that is exponential in
the size of the input. This is unfortunate, since it rarely pays to write a program
that has a reasonably high probability of taking exponential time to run.

def isSubset(L1, L2):
 """Assumes L1 and L2 are lists.
 Returns True if each element in L1 is also in L2
 and False otherwise."""
 for e1 in L1:
 matched = False
 for e2 in L2:
 if e1 == e2:
 matched = True
 break
 if not matched:
 return False
 return True

def intersect(L1, L2):
 """Assumes: L1 and L2 are lists
 Returns a list that is the intersection of L1 and L2"""
 #Build a list containing common elements
 tmp = []
 for e1 in L1:
 for e2 in L2:
 if e1 == e2:
 tmp.append(e1)
 #Build a list without duplicates
 result = []
 for e in tmp:
 if e not in result:
 result.append(e)
 return result

122 Chapter 9. A Simplistic Introduction to Algorithmic Complexity

Consider, for example, the code in Figure 9.5.

Figure 9.5 Generating the power set

The function genPowerset(L) returns a list a list of lists that contains all
possible combinations of the elements of L. For example, if L is ['a', 'b'], the
powerset of L will be a list containing the lists [], ['b'], ['a'], and ['a', 'b'].

The algorithm is a bit subtle. Consider a list of n elements. We can represent
any combination of elements by a string of n 0’s and 1’s, where a 1 represents the
presence of an element and a 0 its absence. The combination containing no
items would be represented by a string of all 0’s, the combination containing all
of the items would be represented by a string of all 1’s, the combination
containing only the first and last elements would be represented by 100…001, etc.
Therefore generating all sublists of a list L of length n can be done as follows:

1. Generate all n-bit binary numbers. These are the numbers from 0 to 2n.

2. For each of these 2n +1 binary numbers, b, generate a list by selecting
those elements of L that have an index corresponding to a 1 in b. For
example, if L is ['a', 'b'] and b is 01, generate the list [‘b’].

Try running genPowerset on a list containing the first ten letters of the alphabet.
It will finish quite quickly and produce a list with 1024 elements. Next, try
running genPowerset on the first twenty letters of the alphabet. It will take more
than a bit of time to run, and return a list with about a million elements. If you
try running genPowerset on all twenty-six letters, you will probably get tired of

def getBinaryRep(n, numDigits):
 """Assumes n and numDigits are non-negative ints
 Returns a numDigits str that is a binary
 representation of n"""
 result = ''
 while n > 0:
 result = str(n%2) + result
 n = n//2
 if len(result) > numDigits:
 raise ValueError('not enough digits')
 for i in range(numDigits - len(result)):
 result = '0' + result
 return result

def genPowerset(L):
 """Assumes L is a list
 Returns a list of lists that contains all possible
 combinations of the elements of L. E.g., if
 L is [1, 2] it will return a list with elements
 [], [1], [2], and [1,2]."""
 powerset = []
 for i in range(0, 2**len(L)):
 binStr = getBinaryRep(i, len(L))
 subset = []
 for j in range(len(L)):
 if binStr[j] == '1':
 subset.append(L[j])
 powerset.append(subset)
 return powerset

 Chapter 9. A Simplistic Introduction to Algorithmic Complexity 123

waiting for it to complete, unless your computer runs out of memory trying to
build a list with tens of millions of elements. Don’t even think about trying to
run genPowerset on a list containing all uppercase and lowercase letters. Step 1
of the algorithm generates O(2len(L)) binary numbers, so the algorithm is
exponential in len(L).

Does this mean that we cannot use computation to tackle exponentially hard
problems? Absolutely not. It means that we have to find algorithms that
provide approximate solutions to these problems or that find perfect solutions
on some instances of the problem. But that is a subject for later chapters.

9.3.7 Comparisons of Complexity Classes

The following plots are intended to
convey an impression of the
implications of an algorithm being in
one or another of these complexity
classes.

The plot on the right compares the
growth of a constant-time algorithm
to that of a logarithmic algorithm.
Note that the size of the input has to
reach about a million for the two of
them to cross, even for the very small
constant of twenty. When the size of
the input is five million, the time required by a logarithmic algorithm is still

quite small. The moral is that
logarithmic algorithms are almost as
good as constant-time ones.

The plot on the left illustrates the
dramatic difference between
logarithmic algorithms and linear
algorithms. Notice that the y-axis
only goes as high as 1000. While we
needed to look at large inputs to
appreciate the difference between
constant-time and logarithmic-time
algorithms, the difference between

logarithmic-time and linear-time algorithms is apparent even on small inputs.
The dramatic difference in the relative performance of logarithmic and linear
algorithms does not mean that linear algorithms are bad. In fact, most of the
time a linear algorithm is acceptably efficient.

The plot below and on the left shows that there is a significant difference
between O(n) and O(n log(n)). Given how slowly log(n) grows, this may seem a bit
surprising, but keep in mind that it is a multiplicative factor. Also keep in mind
that in most practical situations, O(n log(n)) is fast enough to be useful.

124 Chapter 9. A Simplistic Introduction to Algorithmic Complexity

On the other hand, as the plot below and on the right suggests, there are many
situations in which a quadratic rate of growth is prohibitive. The quadratic
curve is rising so quickly that it is hard to see that the log-linear curve is even
on the plot.

The final two plots are about exponential complexity.

In the plot on the left, the numbers to the left of the y-axis run from 0.0 to 1.2.
However, the notation x1e301 on the top left means that each tick on the y-axis
should be multiplied by 10301. So, the plotted y-values range from 0 to roughly
1.1*10301. It looks, however, almost as if there are no curves in the plot on the
left. That’s because an exponential function grows so quickly that relative to the

y value of the highest point (which determines the scale of the y-axis), the y

values of earlier points on the exponential curve (and all points on the quadratic
curve) are almost indistinguishable from 0.

The plot on the right addresses this issue by using a logarithmic scale on the

y-axis. One can readily see that exponential algorithms are impractical for all

but the smallest of inputs.

Notice, by the way, that when plotted on a logarithmic scale, an exponential
curve appears as a straight line. We will have more to say about this in later
chapters.

10 SOME SIMPLE ALGORITHMS AND DATA
STRUCTURES

Though we expend a fair number of pages in this book talking about efficiency,
the goal is not to make you expert in designing efficient programs. There are
many long books (and even some good long books) devoted exclusively to that
topic.46 In Chapter 9, we introduced some of the basic concepts underlying
complexity analysis. In this chapter we use those concepts to look at the
complexity of a few classic algorithms. The goal of this chapter is to help you
develop some general intuitions about how to approach questions of efficiency.
By the time you get through this chapter you should understand why some
programs complete in the blink of an eye, why some need to run overnight, and
why some wouldn’t complete in your lifetime.

The first algorithms we looked at in this book were based on brute-force
exhaustive enumeration. We argued that modern computers are so fast that it
is often the case that employing clever algorithms is a waste of time. Program
something that is simple and obviously correct, and let it rip.

We then looked at some problems (e.g., finding an approximation to the roots of
a polynomial) where the search space was too large to make brute force
practical. This led us to consider more efficient algorithms such as bisection
search and Newton-Raphson. The major point was that the key to efficiency is a
good algorithm, not clever coding tricks.

In the sciences (physical, life, and social), programmers often start by quickly
coding up a simple algorithm to test the plausibility of a hypothesis about a data
set, and then run it on a small amount of data. If this yields encouraging
results, the hard work of producing an implementation that can be run (perhaps
over and over again) on large data sets begins. Such implementations need to
be based on efficient algorithms.

Efficient algorithms are hard to invent. Successful professional computer
scientists might invent maybe one algorithm during their whole career—if they
are lucky. Most of us never invent a novel algorithm. What we do instead is
learn to reduce the most complex aspects of the problems with which we are
faced to previously solved problems. More specifically, we

• Develop an understanding of the inherent complexity of the problem with
which we are faced,

• Think about how to break that problem up into subproblems, and

• Relate those subproblems to other problems for which efficient
algorithms already exist.

46 Introduction to Algorithms, by Cormen, Leiserson, Rivest, and Stein, is an excellent
source for those of you not intimidated by a fair amount of mathematics.

126 Chapter 10. Some Simple Algorithms and Data Structures

This chapter contains a few examples intended to give you some intuition about
algorithm design. Many other algorithms appear elsewhere in the book.

Keep in mind that the most efficient algorithm is not always the algorithm of
choice. A program that does everything in the most efficient possible way is
often needlessly difficult to understand. It is often a good strategy to start by
solving the problem at hand in the most straightforward manner possible,
instrument it to find any computational bottlenecks, and then look for ways to
improve the computational complexity of those parts of the program
contributing to the bottlenecks.

10.1 Search Algorithms

A search algorithm is a method for finding an item or group of items with
specific properties within a collection of items. We refer to the collection of items
as a search space. The search space might be something concrete, such as a
set of electronic medical records, or something abstract, such as the set of all
integers. A large number of problems that occur in practice can be formulated
as search problems.

Many of the algorithms presented earlier in this book can be viewed as search
algorithms. In Chapter 3, we formulated finding an approximation to the roots
of a polynomial as a search problem, and looked at three algorithms—exhaustive
enumeration, bisection search, and Newton-Raphson—for searching the space of
possible answers.

In this section, we will examine two algorithms for searching a list. Each meets
the specification

def search(L, e):
 """Assumes L is a list.
 Returns True if e is in L and False otherwise"""

The astute reader might wonder if this is not semantically equivalent to the
Python expression e in L. The answer is yes, it is. And if one is unconcerned
about the efficiency of discovering whether e is in L, one should simply write
that expression.

10.1.1 Linear Search and Using Indirection to Access Elements

Python uses the following algorithm to determine if an element is in a list:

def search(L, e):
 for i in range(len(L)):
 if L[i] == e:
 return True
 return False

If the element e is not in the list the algorithm will perform O(len(L)) tests, i.e., the
complexity is at best linear in the length of L. Why “at best” linear? It will be
linear only if each operation inside the loop can be done in constant time. That
raises the question of whether Python retrieves the ith element of a list in
constant time. Since our model of computation assumes that fetching the

 Chapter 10. Some Simple Algorithms and Data Structures 127

contents of an address is a constant-time operation, the question becomes
whether we can compute the address of the ith element of a list in constant time.

Let’s start by considering the simple case where each element of the list is an
integer. This implies that each element of the list is the same size, e.g., four
units of memory (four eight-bit bytes47). In this case the address in memory of
the ith element of the list is simply start + 4i, where start is the address of the start
of the list. Therefore we can assume that Python could compute the address of
the ith element of a list of integers in constant time.

Of course, we know that Python lists can contain objects of types other than
int, and that the same list can contain objects of many different types and sizes.
You might think that this would present a problem, but it does not.

In Python, a list is represented as a length (the number of objects in the list) and
a sequence of fixed-size pointers48 to objects. Figure 10.1 illustrates the use of
these pointers. The shaded region represents a list containing four elements.
The leftmost shaded box contains a pointer to an integer indicating the length of
the list. Each of the other shaded boxes contains a pointer to an object in the
list.

Figure 10.1 Implementing lists

If the length field is four units of memory, and each pointer (address) occupies
four units of memory, the address of the ith element of the list is stored at the
address start + 4 + 4i. Again, this address can be found in constant time, and
then the value stored at that address can be used to access the ith element. This
access too is a constant-time operation.

This example illustrates one of the most important implementation techniques
used in computing: indirection.49 Generally speaking, indirection involves
accessing something by first accessing something else that contains a reference

47 The number of bits used to store an integer, often called the word size, is typically
dictated by the hardware of the computer.

48 Of size 32 bits in some implementations and 64 bits in others.

49 My dictionary defines “indirection” as “lack of straightforwardness and openness:
deceitfulness.” In fact, the word generally had a pejorative implication until about 1950,
when computer scientists realized that it was the solution to many problems.

128 Chapter 10. Some Simple Algorithms and Data Structures

to the thing initially sought. This is what happens each time we use a variable
to refer to the object to which that variable is bound. When we use a variable to
access a list and then a reference stored in that list to access another object, we
are going through two levels of indirection.50

10.1.2 Binary Search and Exploiting Assumptions

Getting back to the problem of implementing search(L, e), is O(len(L)) the best
we can do? Yes, if we know nothing about the relationship of the values of the
elements in the list and the order in which they are stored. In the worst case,
we have to look at each element in L to determine whether L contains e.

But suppose we know something about the order in which elements are stored,
e.g., suppose we know that we have a list of integers stored in ascending order.
We could change the implementation so that the search stops when it reaches a
number larger than the number for which it is searching:

def search(L, e):
 """Assumes L is a list, the elements of which are in
 ascending order.
 Returns True if e is in L and False otherwise"""
 for i in range(len(L)):
 if L[i] == e:
 return True
 if L[i] > e:
 return False
 return False

This would improve the average running time. However, it would not change the
worst-case complexity of the algorithm, since in the worst case each element of L
is examined.

We can, however, get a considerable improvement in the worst-case complexity
by using an algorithm, binary search, that is similar to the bisection search
algorithm used in Chapter 3 to find an approximation to the square root of a
floating point number. There we relied upon the fact that there is an intrinsic
total ordering on floating point numbers. Here we rely on the assumption that
the list is ordered.

The idea is simple:

1. Pick an index, i, that divides the list L roughly in half.

2. Ask if L[i] == e.

3. If not, ask whether L[i] is larger or smaller than e.

4. Depending upon the answer, search either the left or right half of L for e.

50 It has often been said that “any problem in computing can be solved by adding another
level of indirection.” Following three levels of indirection, we attribute this observation to
David J. Wheeler. The paper “Authentication in Distributed Systems: Theory and
Practice,” by Butler Lampson et al., contains the observation. It also contains a footnote
saying that “Roger Needham attributes this observation to David Wheeler of Cambridge
University.”

 Chapter 10. Some Simple Algorithms and Data Structures 129

Given the structure of this algorithm, it is not surprising that the most
straightforward implementation of binary search uses recursion, as shown in
Figure 10.2.

Figure 10.2 Recursive binary search

The outer function in Figure 10.2, search(L, e), has the same arguments as the
function specified above, but a slightly different specification. The specification
says that the implementation may assume that L is sorted in ascending order.
The burden of making sure that this assumption is satisfied lies with the caller
of search. If the assumption is not satisfied, the implementation has no
obligation to behave well. It could work, but it could also crash or return an
incorrect answer. Should search be modified to check that the assumption is
satisfied? This might eliminate a source of errors, but it would defeat the
purpose of using binary search, since checking the assumption would itself take
O(len(L)) time.

Functions such as search are often called wrapper functions. The function
provides a nice interface for client code, but is essentially a pass-through that
does no serious computation. Instead, it calls the helper function bSearch with
appropriate arguments. This raises the question of why not eliminate search
and have clients call bSearch directly? The reason is that the parameters low
and high have nothing to do with the abstraction of searching a list for an
element. They are implementation details that should be hidden from those
writing programs that call search.

Let us now analyze the complexity of bSearch. We showed in the last section
that list access takes constant time. Therefore, we can see that excluding the
recursive call, each instance of bSearch is O(1). Therefore, the complexity of
bSearch depends only upon the number of recursive calls.

def search(L, e):
 """Assumes L is a list, the elements of which are in
 ascending order.
 Returns True if e is in L and False otherwise"""

 def bSearch(L, e, low, high):
 #Decrements high - low
 if high == low:
 return L[low] == e
 mid = (low + high)//2
 if L[mid] == e:
 return True
 elif L[mid] > e:
 if low == mid: #nothing left to search
 return False
 else:
 return bSearch(L, e, low, mid - 1)
 else:
 return bSearch(L, e, mid + 1, high)

 if len(L) == 0:
 return False
 else:
 return bSearch(L, e, 0, len(L) - 1)

130 Chapter 10. Some Simple Algorithms and Data Structures

If this were a book about algorithms, we would now dive into a careful analysis
using something called a recurrence relation. But since it isn’t, we will take a
much less formal approach that starts with the question “How do we know that
the program terminates?” Recall that in Chapter 3 we asked the same question
about a while loop. We answered the question by providing a decrementing
function for the loop. We do the same thing here. In this context, the
decrementing function has the properties:

1. It maps the values to which the formal parameters are bound to a
nonnegative integer.

2. When its value is 0, the recursion terminates.

3. For each recursive call, the value of the decrementing function is less
than the value of the decrementing function on entry to the instance of
the function making the call.

The decrementing function for bSearch is high–low. The if statement in search

ensures that the value of this decrementing function is at least 0 the first time
bSearch is called (decrementing function property 1).

When bSearch is entered, if high–low is exactly 0, the function makes no

recursive call—simply returning the value L[low] == e (satisfying decrementing
function property 2).

The function bSearch contains two recursive calls. One call uses arguments that
cover all of the elements to the left of mid, and the other call uses arguments
that cover all of the elements to the right of mid. In either case, the value of
high–low is cut in half (satisfying decrementing function property 3).

We now understand why the recursion terminates. The next question is how
many times can the value of high–low be cut in half before high–low == 0?
Recall that logy(x) is the number of times that y has to be multiplied by itself to
reach x. Conversely, if x is divided by y logy(x) times, the result is 1. This implies
that high–low can be cut in half at most log2(high–low) times before it reaches 0.

Finally, we can answer the question, what is the algorithmic complexity of
binary search? Since when search calls bSearch the value of high–low is equal

to len(L)-1, the complexity of search is O(log(len(L))).51

Finger exercise: Why does the code use mid+1 rather than mid in the second
recursive call?

51 Recall that when looking at orders of growth the base of the logarithm is irrelevant.

 Chapter 10. Some Simple Algorithms and Data Structures 131

10.2 Sorting Algorithms

We have just seen that if we happen to know that a list is sorted, we can exploit
that information to greatly reduce the time needed to search a list. Does this
mean that when asked to search a list one should first sort it and then perform
the search?

Let O(sortComplexity(L)) be the complexity of sorting a list. Since we know that we
can always search a list in O(len(L)) time, the question of whether we should first
sort and then search boils down to the question, is (sortComplexity(L) + log(len(L))) <

len(L)? The answer, sadly, is no. One cannot sort a list without looking at each
element in the list at least once, so it is not possible to sort a list in sub-linear
time.

Does this mean that binary search is an intellectual curiosity of no practical
import? Happily, no. Suppose that one expects to search the same list many
times. It might well make sense to pay the overhead of sorting the list once, and
then amortize the cost of the sort over many searches. If we expect to search
the list k times, the relevant question becomes, is (sortComplexity(L) + k*log(len(L)))

less than k*len(L)? As k becomes large, the time required to sort the list becomes

increasingly irrelevant.

How big k needs to be depends upon how long it takes to sort a list. If, for
example, sorting were exponential in the size of the list, k would have to be quite
large.

Fortunately, sorting can be done rather efficiently. For example, the standard
implementation of sorting in most Python implementations runs in roughly
O(n*log(n)) time, where n is the length of the list. In practice, you will rarely need

to implement your own sort function. In most cases, the right thing to do is to
use either Python’s built-in sort method (L.sort() sorts the list L) or its built-in
function sorted (sorted(L) returns a list with same elements as L, but does not
mutate L). We present sorting algorithms here primarily to provide some
practice in thinking about algorithm design and complexity analysis.

We begin with a simple but inefficient algorithm, selection sort. Selection sort,
Figure 10.3, works by maintaining the loop invariant that, given a partitioning
of the list into a prefix (L[0:i]) and a suffix (L[i+1:len(L)]), the prefix is sorted
and no element in the prefix is larger than the smallest element in the suffix.

132 Chapter 10. Some Simple Algorithms and Data Structures

We use induction to reason about loop invariants.

• Base case: At the start of the first iteration, the prefix is empty, i.e., the
suffix is the entire list. The invariant is (trivially) true.

• Induction step: At each step of the algorithm, we move one element from
the suffix to the prefix. We do this by appending a minimum element of
the suffix to the end of the prefix. Because the invariant held before we
moved the element, we know that after we append the element the prefix
is still sorted. We also know that since we removed the smallest element
in the suffix, no element in the prefix is larger than the smallest element
in the suffix.

• When the loop is exited, the prefix includes the entire list, and the suffix
is empty. Therefore, the entire list is now sorted in ascending order.

Figure 10.3 Selection sort

It’s hard to imagine a simpler or more obviously correct sorting algorithm.
Unfortunately, it is rather inefficient.52 The complexity of the inner loop is
O(len(L)). The complexity of the outer loop is also O(len(L)). So, the complexity of
the entire function is O(len(L)2). I.e., it is quadratic in the length of L.

10.2.1 Merge Sort

Fortunately, we can do a lot better than quadratic time using a divide-and-
conquer algorithm. The basic idea is to combine solutions of simpler instances
of the original problem. In general, a divide-and-conquer algorithm is
characterized by

1. A threshold input size, below which the problem is not subdivided,

2. The size and number of sub-instances into which an instance is split,
and

3. The algorithm used to combine sub-solutions.

The threshold is sometimes called the recursive base. For item 2 it is usual to
consider the ratio of initial problem size to sub-instance size. In most of the
examples we’ve seen so far, the ratio was 2.

52 But not the most inefficient of sorting algorithms, as suggested by a successful
candidate for the U.S. Presidency. See http://www.youtube.com/watch?v=k4RRi_ntQc8.

def selSort(L):
 """Assumes that L is a list of elements that can be
 compared using >.
 Sorts L in ascending order"""
 suffixStart = 0
 while suffixStart != len(L):
 #look at each element in suffix
 for i in range(suffixStart, len(L)):
 if L[i] < L[suffixStart]:
 #swap position of elements
 L[suffixStart], L[i] = L[i], L[suffixStart]
 suffixStart += 1

 Chapter 10. Some Simple Algorithms and Data Structures 133

Merge sort is a prototypical divide-and-conquer algorithm. It was invented in
1945, by John von Neumann, and is still widely used. Like many divide-and-
conquer algorithms it is most easily described recursively.

1. If the list is of length 0 or 1, it is already sorted.

2. If the list has more than one element, split the list into two lists, and use
merge sort to sort each of them.

3. Merge the results.

The key observation made by von Neumann is that two sorted lists can be
efficiently merged into a single sorted list. The idea is to look at the first element
of each list, and move the smaller of the two to the end of the result list. When
one of the lists is empty, all that remains is to copy the remaining items from the
other list. Consider, for example, merging the two lists [1,5,12,18,19,20] and
[2,3,4,17]:

Left in list 1 Left in list 2 Result

[1,5,12,18,19,20] [2,3,4,17] []
[5,12,18,19,20] [2,3,4,17] [1]
[5,12,18,19,20] [3,4,17] [1,2]
[5,12,18,19,20] [4,17] [1,2,3]
[5,12,18,19,20] [17] [1,2,3,4]
[12,18,19,20] [17] [1,2,3,4,5]
[18,19,20] [17] [1,2,3,4,5,12]
[18,19,20] [] [1,2,3,4,5,12,17]
[] [] [1,2,3,4,5,12,17,18,19,20]

What is the complexity of the merge process? It involves two constant-time
operations, comparing the values of elements and copying elements from one list
to another. The number of comparisons is O(len(L)), where L is the longer of the
two lists. The number of copy operations is O(len(L1) + len(L2)), because each
element gets copied exactly once. Therefore, merging two sorted lists is linear in
the length of the lists.

Figure 10.4 contains an implementation of the merge sort algorithm. Notice that
we have made the comparison operator a parameter of the mergeSort function.
The parameter’s default value is the lt operator defined in the standard Python
module named operator. This module defines a set of functions corresponding
to the built-in operators of Python (for example < for numbers). In Section
10.2.2, we will exploit this flexibility.

134 Chapter 10. Some Simple Algorithms and Data Structures

Figure 10.4 Merge sort

Let’s analyze the complexity of mergeSort. We already know that the time
complexity of merge is O(len(L)). At each level of recursion the total number of
elements to be merged is len(L). Therefore, the time complexity of mergeSort is
O(len(L)) multiplied by the number of levels of recursion. Since mergeSort divides
the list in half each time, we know that the number of levels of recursion is
O(log(len(L)). Therefore, the time complexity of mergeSort is O(n*log(n)), where n is

len(L).

This is a lot better than selection sort’s O(len(L)2). For example, if L has 10,000

elements, len(L)2 is a hundred million but len(L)*log2(len(L)) is about 130,000.

This improvement in time complexity comes with a price. Selection sort is an
example of an in-place sorting algorithm. Because it works by swapping the
place of elements within the list, it uses only a constant amount of extra storage
(one element in our implementation). In contrast, the merge sort algorithm

def merge(left, right, compare):
 """Assumes left and right are sorted lists and
 compare defines an ordering on the elements.
 Returns a new sorted (by compare) list containing the
 same elements as (left + right) would contain."""

 result = []
 i,j = 0, 0
 while i < len(left) and j < len(right):
 if compare(left[i], right[j]):
 result.append(left[i])
 i += 1
 else:
 result.append(right[j])
 j += 1
 while (i < len(left)):
 result.append(left[i])
 i += 1
 while (j < len(right)):
 result.append(right[j])
 j += 1
 return result

import operator

def mergeSort(L, compare = operator.lt):
 """Assumes L is a list, compare defines an ordering
 on elements of L
 Returns a new sorted list containing the same elements as L"""
 if len(L) < 2:
 return L[:]
 else:
 middle = len(L)//2
 left = mergeSort(L[:middle], compare)
 right = mergeSort(L[middle:], compare)
 return merge(left, right, compare)

 Chapter 10. Some Simple Algorithms and Data Structures 135

involves making copies of the list. This means that its space complexity is
O(len(L)). This can be an issue for large lists.53

10.2.2 Exploiting Functions as Parameters

Suppose we want to sort a list of names written as firstName lastName, e.g., the
list ['Chris Terman', 'Tom Brady', 'Eric Grimson', 'Gisele Bundchen'].
Figure 10.5 defines two ordering functions, and then uses these to sort a list in
two different ways. Each function imports the standard Python module string,
and uses the split function from that module. The two arguments to split are
strings. The second argument specifies a separator (a blank space in the code in
Figure 10.5) that is used to split the first argument into a sequence of
substrings. The second argument is optional. If that argument is omitted the
first string is split using arbitrary strings of whitespace characters (space, tab,
newline, return, and formfeed).

Figure 10.5 Sorting a list of names

53 Quicksort, invented by C.A.R. Hoare in 1960, is conceptually similar to merge sort,
but considerably more complex. It has the advantage of needing only log(n) additional
space. Unlike merge sort, its running time depends upon the way the elements in the list
to be sorted are ordered relative to each other. Though its worst-case running time is
O(n2), its expected running time is only O(n*log(n)).

def lastNameFirstName(name1, name2):
 import string
 name1 = string.split(name1, ' ')
 name2 = string.split(name2, ' ')
 if name1[1] != name2[1]:
 return name1[1] < name2[1]
 else: #last names the same, sort by first name
 return name1[0] < name2[0]

def firstNameLastName(name1, name2):
 import string
 name1 = string.split(name1, ' ')
 name2 = string.split(name2, ' ')
 if name1[0] != name2[0]:
 return name1[0] < name2[0]
 else: #first names the same, sort by last name
 return name1[1] < name2[1]

L = ['Chris Terman', 'Tom Brady', 'Eric Grimson', 'Gisele Bundchen']
newL = mergeSort(L, lastNameFirstName)
print 'Sorted by last name =', newL
newL = mergeSort(L, firstNameLastName)
print 'Sorted by first name =', newL

136 Chapter 10. Some Simple Algorithms and Data Structures

10.2.3 Sorting in Python

The sorting algorithm used in most Python implementations is called timsort.54
The key idea is to take advantage of the fact that in a lot of data sets the data is
already partially sorted. Timsort’s worst-case performance is the same as merge
sort’s, but on average it performs considerably better.

As mentioned earlier, the Python method list.sort takes a list as its first
argument and modifies that list. In contrast, the Python function sorted takes
an iterable object (e.g., a list or a dictionary) as its first argument and returns a
new sorted list. For example, the code

L = [3,5,2]
D = {'a':12, 'c':5, 'b':'dog'}
print sorted(L)
print L
L.sort()
print L
print sorted(D)
D.sort()

will print

[2, 3, 5]
[3, 5, 2]
[2, 3, 5]
['a', 'b', 'c']
Traceback (most recent call last):
 File "/current/mit/Teaching/600/book/10-
AlgorithmsChapter/algorithms.py", line 168, in <module>
 D.sort()
AttributeError: 'dict' object has no attribute 'sort'

Notice that when the sorted function is applied to a dictionary, it returns a
sorted list of the keys of the dictionary. In contrast, when the sort method is
applied to a dictionary, it causes an exception to be raised since there is no
method dict.sort.

Both the list.sort method and the sorted function can have two additional
parameters. The key parameter plays the same role as compare in our
implementation of merge sort: it is used to supply the comparison function to be
used. The reverse parameter specifies whether the list is to be sorted in
ascending or descending order. For example, the code

L = [[1,2,3], (3,2,1,0), 'abc']
print sorted(L, key = len, reverse = True)

sorts the elements of L in reverse order of length and prints

[(3, 2, 1, 0), [1, 2, 3], 'abc']

54 Timsort was invented by Tim Peters in 2002 because he was unhappy with the
previous algorithm used in Python.

 Chapter 10. Some Simple Algorithms and Data Structures 137

Both the list.sort method and the sorted function provide stable sorts. This
means that if two elements are equal with respect to the comparison used in the
sort, their relative ordering in the original list (or other iterable object) is
preserved in the final list.

10.3 Hash Tables

If we put merge sort together with binary search, we have a nice way to search
lists. We use merge sort to preprocess the list in O(n*log(n)) time, and then we use

binary search to test whether elements are in the list in O(log(n)) time. If we
search the list k times, the overall time complexity is O(n*log(n) + k*log(n)).

This is good, but we can still ask, is logarithmic the best that we can do for
search when we are willing to do some preprocessing?

When we introduced the type dict in Chapter 5, we said that dictionaries use a
technique called hashing to do the lookup in time that is nearly independent of
the size of the dictionary. The basic idea behind a hash table is simple. We
convert the key to an integer, and then use that integer to index into a list,
which can be done in constant time. In principle, values of any immutable type
can be easily converted to an integer. After all, we know that the internal
representation of each object is a sequence of bits, and any sequence of bits can
be viewed as representing an integer. For example, the internal representation
of 'abc' is the string of bits 011000010110001001100011, which can be viewed as a
representation of the decimal integer 6,382,179. Of course, if we want to use the
internal representation of strings as indices into a list, the list is going to have to
be pretty darn long.

What about situations where the keys are already integers? Imagine, for the
moment, that we are implementing a dictionary all of whose keys are U.S. Social
Security numbers.55 If we represented the dictionary by a list with 109 elements
and used Social Security numbers to index into the list, we could do lookups in
constant time. Of course, if the dictionary contained entries for only ten
thousand (104) people, this would waste quite a lot of space.

Which gets us to the subject of hash functions. A hash function maps a large
space of inputs (e.g., all natural numbers) to a smaller space of outputs (e.g., the
natural numbers between 0 and 5000). Hash functions can be used to convert a
large space of keys to a smaller space of integer indices.

Since the space of possible outputs is smaller than the space of possible inputs,
a hash function is a many-to-one mapping, i.e., multiple different inputs may
be mapped to the same output. When two inputs are mapped to the same
output, it is called a collision—a topic which we will to return shortly. A good
hash function produces a uniform distribution, i.e., every output in the range
is equally probable, which minimizes the probability of collisions.

55 A United States Social Security number is a nine-digit integer.

138 Chapter 10. Some Simple Algorithms and Data Structures

Designing good hash functions is surprisingly challenging. The problem is that
one wants the outputs to be uniformly distributed given the expected
distribution of inputs. Suppose, for example, that one hashed surnames by
performing some calculation on the first three letters. In the Netherlands, where
roughly 5% of surnames begin with “van” and another 5% with “de,” the
distribution would be far from uniform.

Figure 10.6 uses a simple hash function (recall that i%j returns the remainder
when the integer i is divided by the integer j) to implement a dictionary with
integers as keys.

The basic idea is to represent an instance of class intDict by a list of hash
buckets, where each bucket is a list of key/value pairs. By making each bucket
a list, we handle collisions by storing all of the values that hash to the same
bucket in the list.

The hash table works as follows: The instance variable buckets is initialized to a
list of numBuckets empty lists. To store or look up an entry with key dictKey, we
use the hash function % to convert dictKey into an integer, and use that integer
to index into buckets to find the hash bucket associated with dictKey. We then
search that bucket (which is a list) linearly to see if there is an entry with the
key dictKey. If we are doing a lookup and there is an entry with the key, we
simply return the value stored with that key. If there is no entry with that key,
we return None. If a value is to be stored, then we either replace the value in the
existing entry, if one was found, or append a new entry to the bucket if none was
found.

There are many other ways to handle collisions, some considerably more
efficient than using lists. But this is probably the simplest mechanism, and it
works fine if the hash table is big enough and the hash function provides a good
enough approximation to a uniform distribution.

Notice that the __str__ method produces a representation of a dictionary that is
unrelated to the order in which elements were added to it, but is instead ordered
by the values to which the keys happen to hash. This explains why we can’t
predict the order of the keys in an object of type dict.

 Chapter 10. Some Simple Algorithms and Data Structures 139

Figure 10.6 Implementing dictionaries using hashing

The following code first constructs an intDict with twenty entries. The values of
the entries are the integers 0 to 19. The keys are chosen at random from
integers in the range 0 to 105 - 1. (We discuss the random module in Chapter 12.)
The code then goes on to print the intDict using the __str__ method defined in
the class. Finally it prints the individual hash buckets by iterating over
D.buckets. (This is a terrible violation of information hiding, but pedagogically
useful.)

import random #a standard library module

D = intDict(29)
for i in range(20):
 #choose a random int between 0 and 10**5
 key = random.randint(0, 10**5)
 D.addEntry(key, i)
print 'The value of the intDict is:'
print D
print '\n', 'The buckets are:'
for hashBucket in D.buckets: #violates abstraction barrier
 print ' ', hashBucket

class intDict(object):
 """A dictionary with integer keys"""

 def __init__(self, numBuckets):
 """Create an empty dictionary"""
 self.buckets = []
 self.numBuckets = numBuckets
 for i in range(numBuckets):
 self.buckets.append([])

 def addEntry(self, dictKey, dictVal):
 """Assumes dictKey an int. Adds an entry."""
 hashBucket = self.buckets[dictKey%self.numBuckets]
 for i in range(len(hashBucket)):
 if hashBucket[i][0] == dictKey:
 hashBucket[i] = (dictKey, dictVal)
 return
 hashBucket.append((dictKey, dictVal))

 def getValue(self, dictKey):
 """Assumes dictKey an int. Returns entry associated
 with the key dictKey"""
 hashBucket = self.buckets[dictKey%self.numBuckets]
 for e in hashBucket:
 if e[0] == dictKey:
 return e[1]
 return None

 def __str__(self):
 result = '{'
 for b in self.buckets:
 for e in b:
 result = result + str(e[0]) + ':' + str(e[1]) + ','
 return result[:-1] + '}' #result[:-1] omits the last comma

140 Chapter 10. Some Simple Algorithms and Data Structures

When we ran this code it printed56

The value of the intDict is:
{93467:5,78736:19,90718:4,529:16,12130:1,7173:7,68075:10,15851:0,
47027:14,45288:8,5819:17,83076:6,55236:13,19481:9,11854:12,29604:11,
45902:15,14408:18,24965:3,89377:2}

The buckets are:
 [(93467, 5)]
 [(78736, 19)]
 []
 []
 []
 []
 [(90718, 4)]
 [(529, 16)]
 [(12130, 1)]
 []
 [(7173, 7)]
 []
 [(68075, 10)]
 []
 []
 []
 []
 [(15851, 0)]
 [(47027, 14)]
 [(45288, 8), (5819, 17)]
 [(83076, 6), (55236, 13)]
 []
 [(19481, 9), (11854, 12)]
 []
 [(29604, 11), (45902, 15), (14408, 18)]
 [(24965, 3)]
 []
 []
 [(89377, 2)]

When we violate the abstraction barrier and peek at the representation of the
intDict, we see that many of the hash buckets are empty. Others contain one,
two, or three tuples—depending upon the number of collisions that occurred.

What is the complexity of getValue? If there were no collisions it would be O(1),

because each hash bucket would be of length 0 or 1. But, of course, there might
be collisions. If everything hashed to the same bucket, it would be O(n) where n
is the number of entries in the dictionary, because the code would perform a
linear search on that hash bucket. By making the hash table large enough, we
can reduce the number of collisions sufficiently to allow us to treat the
complexity as O(1). That is, we can trade space for time. But what is the
tradeoff? To answer this question, one needs to know a tiny bit of probability, so
we defer the answer to Chapter 12.

56 Since the integers were chosen at random, you will probably get different results if you
run it.

11 PLOTTING AND MORE ABOUT CLASSES

Often text is the best way to communicate information, but sometimes there is a

lot of truth to the Chinese proverb, 圖片的意義可以表達近萬字 (“A picture's meaning
can express ten thousand words”). Yet most programs rely on textual output to
communicate with their users. Why? Because in many programming languages
presenting visual data is too hard. Fortunately, it is simple to do in Python.

11.1 Plotting Using PyLab

PyLab is a Python standard library module that provides many of the facilities of
MATLAB, “a high-level technical computing language and interactive environment
for algorithm development, data visualization, data analysis, and numeric
computation.”57 Later in the book, we will look at some of the more advanced
features of PyLab, but in this chapter we focus on some of its facilities for plotting
data. A complete user’s guide for PyLab is at the Web site
matplotlib.sourceforge.net/users/index.html. There are also a number of Web
sites that provide excellent tutorials. We will not try to provide a user’s guide or a
complete tutorial here. Instead, in this chapter we will merely provide a few
example plots and explain the code that generated them. Other examples appear
in later chapters.

Let’s start with a simple example that uses pylab.plot to produce two plots.
Executing

import pylab

pylab.figure(1) #create figure 1
pylab.plot([1,2,3,4], [1,7,3,5]) #draw on figure 1
pylab.show() #show figure on screen

will cause a window to appear on your computer monitor. Its exact appearance
may depend on the operating system on your machine, but it will look similar to
the following:

57 http://www.mathworks.com/products/matlab/description1.html?s_cid=ML_b1008_desintro

142 Chapter 11. Plotting and More About Classes

The bar at the top contains the name of the window, in this case “Figure 1.”

The middle section of the window contains the plot generated by the invocation of
pylab.plot. The two parameters of pylab.plot must be sequences of the same
length. The first specifies the x-coordinates of the points to be plotted, and the
second specifies the y-coordinates. Together, they provide a sequence of four
<x, y> coordinate pairs, [(1,1), (2,7), (3,3), (4,5)]. These are plotted in
order. As each point is plotted, a line is drawn connecting it to the previous point.

The final line of code, pylab.show(), causes the window to appear on the computer
screen.58 If that line were not present, the figure would still have been produced,
but it would not have been displayed. This is not as silly as it at first sounds,
since one might well choose to write a figure directly to a file, as we will do later,
rather than display it on the screen.

The bar at the bottom of the window contains a number of push buttons. The
rightmost button is used to write the plot to a file.59 The next button to the left is
used to adjust the appearance of the plot in the window. The next four buttons
are used for panning and zooming. And the button on the left is used to restore
the figure to its original appearance after you are done playing with pan and zoom.

It is possible to produce multiple figures and to write them to files. These files can
have any name you like, but they will all have the file extension .png. The file
extension .png indicates that the file is in the Portable Networks Graphics format.
This is a public domain standard for representing images.

58 In some operating systems, pylab.show() causes the process running Python to be
suspended until the figure is closed (by clicking on the round red button at the upper left-
hand corner of the window). This is unfortunate. The usual workaround is to ensure that
pylab.show() is the last line of code to be executed.

59 For those of you too young to know, the icon represents a “floppy disk.” Floppy disks
were first introduced by IBM in 1971. They were 8 inches in diameter and held all of
80,000 bytes. Unlike later floppy disks, they actually were floppy. The original IBM PC had
a single 160Kbyte 5.5-inch floppy disk drive. For most of the 1970s and 1980s, floppy disks
were the primary storage device for personal computers. The transition to rigid enclosures
(as represented in the icon that launched this digression) started in the mid-1980s (with
the Macintosh), which didn’t stop people from continuing to call them floppy disks.

 Chapter 11. Plotting and More About Classes 143

The code

pylab.figure(1) #create figure 1
pylab.plot([1,2,3,4], [1,2,3,4]) #draw on figure 1
pylab.figure(2) #create figure 2
pylab.plot([1,4,2,3], [5,6,7,8]) #draw on figure 2
pylab.savefig('Figure-Addie') #save figure 2
pylab.figure(1) #go back to working on figure 1
pylab.plot([5,6,10,3]) #draw again on figure 1
pylab.savefig('Figure-Jane') #save figure 1

produces and saves to files named Figure-Jane.png and Figure-Addie.png the two
plots below.

Observe that the last call to pylab.plot is passed only one argument. This
argument supplies the y values. The corresponding x values default to
range(len([5, 6, 10, 3])), which is why they range from 0 to 3 in this case.

 Contents of Figure-Jane.png Contents of Figure-Addie.png

PyLab has a notion of “current figure.” Executing pylab.figure(x) sets the
current figure to the figure numbered x. Subsequently executed calls of plotting
functions implicitly refer to that figure until another invocation of pylab.figure
occurs. This explains why the figure written to the file Figure-Addie.png was the
second figure created.

Let’s look at another example. The code

principal = 10000 #initial investment
interestRate = 0.05
years = 20
values = []
for i in range(years + 1):
 values.append(principal)
 principal += principal*interestRate
pylab.plot(values)

produces the plot on the left below.

144 Chapter 11. Plotting and More About Classes

If we look at the code, we can deduce that this is a plot showing the growth of an
initial investment of $10,000 at an annually compounded interest rate of 5%.
However, this cannot be easily inferred by looking only at the plot itself. That’s a
bad thing. All plots should have informative titles, and all axes should be labeled.

If we add to the end of our the code the lines

pylab.title('5% Growth, Compounded Annually')
pylab.xlabel('Years of Compounding')
pylab.ylabel('Value of Principal ($)')

we get the plot above and on the right.

For every plotted curve, there is an
optional argument that is a format string
indicating the color and line type of the
plot.60 The letters and symbols of the
format string are derived from those used
in MATLAB, and are composed of a color
indicator followed by a line-style indicator.
The default format string is 'b-', which
produces a solid blue line. To plot the
above with red circles, one would replace
the call pylab.plot(values) by
pylab.plot(values, 'ro'), which
produces the plot on the right. For a complete list of color and line-style
indicators, see
http://matplotlib.sourceforge.net/api/pyplot_api.html#matplotlib.pyplot.plot.

60 In order to keep the price down, we chose to publish this book in black and white. That
posed a dilemma: should we discuss how to use color in plots or not? We concluded that
color is too important to ignore. If you want to see what the plots look like in color, run the
code.

 Chapter 11. Plotting and More About Classes 145

It’s also possible to change the type size and line width used in plots. This can be
done using keyword arguments in individual calls to functions, e.g., the code

principal = 10000 #initial investment
interestRate = 0.05
years = 20
values = []
for i in range(years + 1):
 values.append(principal)
 principal += principal*interestRate
pylab.plot(values, linewidth = 30)
pylab.title('5% Growth, Compounded Annually',
 fontsize = 'xx-large')
pylab.xlabel('Years of Compounding', fontsize = 'x-small')
pylab.ylabel('Value of Principal ($)')

produces the intentionally bizarre-looking plot

It is also possible to change the default values, which are known as “rc settings.”
(The name “rc” is derived from the .rc file extension used for runtime
configuration files in Unix.) These values are stored in a dictionary-like variable
that can be accessed via the name pylab.rcParams. So, for example, you can set
the default line width to 6 points61 by executing the code
pylab.rcParams['lines.linewidth'] = 6.

61 The point is a measure used in typography. It is equal to 1/72 of an inch, which is
0.3527mm.

146 Chapter 11. Plotting and More About Classes

The default values used in most of the examples in this book were set with the
code

#set line width
pylab.rcParams['lines.linewidth'] = 4
#set font size for titles
pylab.rcParams['axes.titlesize'] = 20
#set font size for labels on axes
pylab.rcParams['axes.labelsize'] = 20
#set size of numbers on x-axis
pylab.rcParams['xtick.labelsize'] = 16
#set size of numbers on y-axis
pylab.rcParams['ytick.labelsize'] = 16
#set size of ticks on x-axis
pylab.rcParams['xtick.major.size'] = 7
#set size of ticks on y-axis
pylab.rcParams['ytick.major.size'] = 7
#set size of markers
pylab.rcParams['lines.markersize'] = 10

If you are viewing plots on a color display, you will have little reason to customize
these settings. We customized the settings we used so that it would be easier to
read the plots when we shrank them and converted them to black and white. For
a complete discussion of how to customize settings, see
http://matplotlib.sourceforge.net/users/customizing.html.

11.2 Plotting Mortgages, an Extended Example

In Chapter 8, we worked our way through a hierarchy of mortgages as way of
illustrating the use of subclassing. We concluded that chapter by observing that
“our program should be producing plots designed to show how the mortgage
behaves over time.” Figure 11.1 enhances class Mortgage by adding methods that
make it convenient to produce such plots. (The function findPayment, which is
used in Mortgage, is defined in Figure 8.8.)

The methods plotPayments and plotBalance are simple one-liners, but they do use
a form of pylab.plot that we have not yet seen. When a figure contains multiple
plots, it is useful to produce a key that identifies what each plot is intended to
represent. In Figure 11.1, each invocation of pylab.plot uses the label keyword
argument to associate a string with the plot produced by that invocation. (This
and other keyword arguments must follow any format strings.) A key can then be
added to the figure by calling the function pylab.legend, as shown in Figure 11.3.

The nontrivial methods in class Mortgage are plotTotPd and plotNet. The method
plotTotPd simply plots the cumulative total of the payments made. The method
plotNet plots an approximation to the total cost of the mortgage over time by
plotting the cash expended minus the equity acquired by paying off part of the
loan.62

62 It is an approximation because it does not perform a net present value calculation to take
into account the time value of cash.

 Chapter 11. Plotting and More About Classes 147

Figure 11.1 Class Mortgage with plotting methods

The expression pylab.array(self.owed) in plotNet performs a type conversion.
Thus far, we have been calling the plotting functions of PyLab with arguments of
type list. Under the covers, PyLab has been converting these lists to a different

class Mortgage(object):
 """Abstract class for building different kinds of mortgages"""

 def __init__(self, loan, annRate, months):
 """Create a new mortgage"""
 self.loan = loan
 self.rate = annRate/12.0
 self.months = months
 self.paid = [0.0]
 self.owed = [loan]
 self.payment = findPayment(loan, self.rate, months)
 self.legend = None #description of mortgage

 def makePayment(self):
 """Make a payment"""
 self.paid.append(self.payment)
 reduction = self.payment - self.owed[-1]*self.rate
 self.owed.append(self.owed[-1] - reduction)

 def getTotalPaid(self):
 """Return the total amount paid so far"""
 return sum(self.paid)

 def __str__(self):
 return self.legend

 def plotPayments(self, style):
 pylab.plot(self.paid[1:], style, label = self.legend)

 def plotBalance(self, style):
 pylab.plot(self.owed, style, label = self.legend)

 def plotTotPd(self, style):
 """Plot the cumulative total of the payments made"""
 totPd = [self.paid[0]]
 for i in range(1, len(self.paid)):
 totPd.append(totPd[-1] + self.paid[i])
 pylab.plot(totPd, style, label = self.legend)

 def plotNet(self, style):
 """Plot an approximation to the total cost of the mortgage
 over time by plotting the cash expended minus the equity
 acquired by paying off part of the loan"""
 totPd = [self.paid[0]]
 for i in range(1, len(self.paid)):
 totPd.append(totPd[-1] + self.paid[i])
 #Equity acquired through payments is amount of original loan
 # paid to date, which is amount of loan minus what is still owed
 equityAcquired = pylab.array([self.loan]*len(self.owed))
 equityAcquired = equityAcquired - pylab.array(self.owed)
 net = pylab.array(totPd) - equityAcquired
 pylab.plot(net, style, label = self.legend)

148 Chapter 11. Plotting and More About Classes

type, array, which PyLab inherits from NumPy.63 The invocation pylab.array

makes this explicit. There are a number of convenient ways to manipulate arrays
that are not readily available for lists. In particular, expressions can be formed
using arrays and arithmetic operators. Consider, for example, the code

a1 = pylab.array([1, 2, 4])
print 'a1 =', a1
a2 = a1*2
print 'a2 =', a2
print 'a1 + 3 =', a1 + 3
print '3 - a1 =', 3 - a1
print 'a1 - a2 =', a1 - a2
print 'a1*a2 =', a1*a2

The expression a1*2 multiplies each element of a1 by the constant 2. The
expression a1+3 adds the integer 3 to each element of a1. The expression a1-a2
subtracts each element of a2 from the corresponding element of a1 (if the arrays
had been of different length, an error would have occurred). The expression
a1*a2 multiplies each element of a1 by the corresponding element of a2. When the
above code is run it prints

a1 = [1 2 4]
a2 = [2 4 8]
a1 + 3 = [4 5 7]
3 - a1 = [2 1 -1]
a1 - a2 = [-1 -2 -4]
a1*a2 = [2 8 32]

There are a number of ways to create arrays in PyLab, but the most common way
is to first create a list, and then convert it.

Figure 11.2 repeats the three subclasses of Mortgage from Chapter 8. Each has a
distinct __init__ that overrides the __init__ in Mortgage. The subclass TwoRate
also overrides the makePayment method of Mortgage.

63 NumPy is a Python module that provides tools for scientific computing. In addition to
providing multi-dimensional arrays it provides a variety of linear algebra tools.

 Chapter 11. Plotting and More About Classes 149

Figure 11.2 Subclasses of Mortgage

Figure 11.3 contain functions that can be used to generate plots intended to
provide insight about the different kinds of mortgages.

The function plotMortgages generates appropriate titles and axis labels for each
plot, and then uses the methods in MortgagePlots to produce the actual plots. It
uses calls to pylab.figure to ensure that the appropriate plots appear in a given
figure. It uses the index i to select elements from the lists morts and styles in a
way that ensures that different kinds of mortgages are represented in a consistent
way across figures. For example, since the third element in morts is a variable-
rate mortgage and the third element in styles is 'b:', the variable-rate mortgage
is always plotted using a blue dotted line.

The function compareMortgages generates a list of different mortgages, and
simulates making a series of payments on each, as it did in Chapter 8. It then
calls plotMortgages to produce the plots.

class Fixed(Mortgage):
 def __init__(self, loan, r, months):
 Mortgage.__init__(self, loan, r, months)
 self.legend = 'Fixed, ' + str(r*100) + '%'

class FixedWithPts(Mortgage):
 def __init__(self, loan, r, months, pts):
 Mortgage.__init__(self, loan, r, months)
 self.pts = pts
 self.paid = [loan*(pts/100.0)]
 self.legend = 'Fixed, ' + str(r*100) + '%, '\
 + str(pts) + ' points'

class TwoRate(Mortgage):
 def __init__(self, loan, r, months, teaserRate, teaserMonths):
 Mortgage.__init__(self, loan, teaserRate, months)
 self.teaserMonths = teaserMonths
 self.teaserRate = teaserRate
 self.nextRate = r/12.0
 self.legend = str(teaserRate*100)\
 + '% for ' + str(self.teaserMonths)\
 + ' months, then ' + str(r*100) + '%'

 def makePayment(self):
 if len(self.paid) == self.teaserMonths + 1:
 self.rate = self.nextRate
 self.payment = findPayment(self.owed[-1], self.rate,
 self.months - self.teaserMonths)
 Mortgage.makePayment(self)

150 Chapter 11. Plotting and More About Classes

Figure 11.3 Generate Mortgage Plots

The call

compareMortgages(amt=200000, years=30, fixedRate=0.07,
 pts = 3.25, ptsRate=0.05,
 varRate1=0.045, varRate2=0.095, varMonths=48)

def plotMortgages(morts, amt):
 styles = ['b-', 'b-.', 'b:']
 #Give names to figure numbers
 payments = 0
 cost = 1
 balance = 2
 netCost = 3
 pylab.figure(payments)
 pylab.title('Monthly Payments of Different $' + str(amt)
 + ' Mortgages')
 pylab.xlabel('Months')
 pylab.ylabel('Monthly Payments')
 pylab.figure(cost)
 pylab.title('Cash Outlay of Different $' + str(amt) + ' Mortgages')
 pylab.xlabel('Months')
 pylab.ylabel('Total Payments')
 pylab.figure(balance)
 pylab.title('Balance Remaining of $' + str(amt) + ' Mortgages')
 pylab.xlabel('Months')
 pylab.ylabel('Remaining Loan Balance of $')
 pylab.figure(netCost)
 pylab.title('Net Cost of $' + str(amt) + ' Mortgages')
 pylab.xlabel('Months')
 pylab.ylabel('Payments - Equity $')
 for i in range(len(morts)):
 pylab.figure(payments)
 morts[i].plotPayments(styles[i])
 pylab.figure(cost)
 morts[i].plotTotPd(styles[i])
 pylab.figure(balance)
 morts[i].plotBalance(styles[i])
 pylab.figure(netCost)
 morts[i].plotNet(styles[i])
 pylab.figure(payments)
 pylab.legend(loc = 'upper center')
 pylab.figure(cost)
 pylab.legend(loc = 'best')
 pylab.figure(balance)
 pylab.legend(loc = 'best')

def compareMortgages(amt, years, fixedRate, pts, ptsRate,
 varRate1, varRate2, varMonths):
 totMonths = years*12
 fixed1 = Fixed(amt, fixedRate, totMonths)
 fixed2 = FixedWithPts(amt, ptsRate, totMonths, pts)
 twoRate = TwoRate(amt, varRate2, totMonths, varRate1, varMonths)
 morts = [fixed1, fixed2, twoRate]
 for m in range(totMonths):
 for mort in morts:
 mort.makePayment()
 plotMortgages(morts, amt)

 Chapter 11. Plotting and More About Classes 151

produces plots that shed some light on the mortgages discussed in Chapter 8.

The first plot, which was produced
by invocations of plotPayments,
simply plots each payment of each
mortgage against time. The box
containing the key appears where it
does because of the value supplied to
the keyword argument loc used in
the call to pylab.legend. When loc
is bound to 'best' the location is
chosen automatically. This plot
makes it clear how the monthly
payments vary (or don’t) over time,
but doesn’t shed much light on the relative costs of each kind of mortgage.

The next plot was produced by invocations of plotTotPd. It sheds some light on
the cost of each kind of mortgage by plotting the cumulative costs that have been
incurred at the start of each month. The entire plot is on the left, and an
enlargement of the left part of the plot is on the right.

The next two plots show the remaining debt (on the left) and the total net cost of
having the mortgage (on the right).

12 STOCHASTIC PROGRAMS, PROBABILITY, AND
STATISTICS

There is something very comforting about Newtonian mechanics. You push
down on one end of a lever, and the other end goes up. You throw a ball up in

the air; it travels a parabolic path, and comes down. ! = !!. In short,
everything happens for a reason. The physical world is a completely predictable
place—all future states of a physical system can be derived from knowledge
about its current state.

For centuries, this was the prevailing scientific wisdom; then along came
quantum mechanics and the Copenhagen Doctrine. The doctrine’s proponents,
led by Bohr and Heisenberg, argued that at its most fundamental level the
behavior of the physical world cannot be predicted. One can make probabilistic
statements of the form “x is highly likely to occur,” but not statements of the
form “x is certain to occur.” Other distinguished physicists, most notably
Einstein and Schrödinger, vehemently disagreed.

This debate roiled the worlds of physics, philosophy, and even religion. The
heart of the debate was the validity of causal nondeterminism, i.e., the belief
that not every event is caused by previous events. Einstein and Schrödinger
found this view philosophically unacceptable, as exemplified by Einstein’s often-
repeated comment, “God does not play dice.” What they could accept was
predictive nondeterminism, i.e., the concept that our inability to make
accurate measurements about the physical world makes it impossible to make
precise predictions about future states. This distinction was nicely summed up
by Einstein, who said, “The essentially statistical character of contemporary
theory is solely to be ascribed to the fact that this theory operates with an
incomplete description of physical systems.”

The question of causal nondeterminism is still unsettled. However, whether the
reason we cannot predict events is because they are truly unpredictable or is
because we don't have enough information to predict them is of no practical
importance. While the Bohr/Einstein debate was about how to understand the
lowest levels of the physical world, the same issues arise at the macroscopic
level. Perhaps the outcomes of horse races, spins of roulette wheels, and stock
market investments are causally deterministic. However, there is ample
evidence that it is perilous to treat them as predictably deterministic.64

This book is about using computation to solve problems. Thus far, we have
focused our attention on problems that can be solved by a predictably
deterministic computation. Such computations are highly useful, but clearly
not sufficient to tackle some kinds of problems. Many aspects of the world in

64 Of course this doesn’t stop people from believing that they are, and losing a lot of
money based on that belief.

 Chapter 12. Stochastic Programs, Probability, and Statistics 153

which we live can be accurately modeled only as stochastic65 processes. A
process is stochastic if its next state depends upon both previous states and
some random element.

12.1 Stochastic Programs

A program is deterministic if whenever it is run on the same input, it produces
the same output. Notice that this is not the same as saying that the output is
completely defined by the specification of the problem. Consider, for example,
the specification of squareRoot:

def squareRoot(x, epsilon):
 """Assumes x and epsilon are of type float; x >= 0 and epsilon > 0
 Returns float y such that x-epsilon <= y*y <= x+epsilon"""

This specification admits many possible return values for the function call
squareRoot(2, 0.001). However, the successive approximation algorithm we

looked at in Chapter 3 will always return the same value. The specification
doesn’t require that the implementation be deterministic, but it does allow
deterministic implementations.

Not all interesting specifications can be met by deterministic implementations.
Consider, for example, implementing a program to play a dice game, say
backgammon or craps. Somewhere in the program there may be a function that
simulates a fair roll66 of a single six-sided die. Suppose it had a specification
something like

def rollDie():
 """Returns an int between 1 and 6"""

This would be problematic, since it allows the implementation to return the
same number each time it is called, which would make for a pretty boring game.
It would be better to specify that rollDie “returns a randomly chosen int
between 1 and 6.”

Most programming languages, including Python, include simple ways to write
programs that use randomness. The code in Figure 12.1 uses one of several
useful functions found in the imported Python standard library module random.
The function random.choice takes a non-empty sequence as its argument and
returns a randomly chosen member of that sequence. Almost all of the functions
in random are built using the function random.random, which generates a random
floating point number between 0.0 and 1.0.67

65 The word stems from the Greek word stokhastikos, which means something like
“capable of divining.” A stochastic program, as we shall see, is aimed at getting a good
result, but the exact results are not guaranteed.

66 A roll is fair if each of the six possible outcomes is equally likely.

67 In point of fact, the function is not truly random. It is what mathematicians call
pseudorandom. For almost all practical purposes outside of cryptography, this
distinction is not relevant and we shall ignore it.

154 Chapter 12. Stochastic Programs, Probability, and Statistics

Figure 12.1 Roll die

Now, imagine running rollN(10). Would you be more surprised to see it print
1111111111 or 5442462412? Or, to put it another way, which of these two
sequences is more random? It’s a trick question. Each of these sequences is
equally likely, because the value of each roll is independent of the values of
earlier rolls. In a stochastic process two events are independent if the outcome
of one event has no influence on the outcome of the other.

This is a bit easier to see if we simplify the situation by thinking about a two-
sided die (also known as a coin) with the values 0 and 1. This allows us to think
of the output of a call of rollN as a binary number (see Chapter 3). When we
use a binary die, there are 2n possible sequences that testN might return. Each
of these is equally likely; therefore each has a probability of occurring of (1/2)n.

Let’s go back to our six-sided die. How many different sequences are there of
length 10? 610. So, the probability of rolling ten consecutive 1’s is 1/610. Less
than one out of sixty million. Pretty low, but no lower than the probability of
any other particular sequence, e.g., 5442462412, of ten rolls.

In general, when we talk about the probability of a result having some property
(e.g., all 1’s) we are asking what fraction of all possible results has that property.
This is why probabilities range from 0 to 1. Suppose we want to know the
probability of getting any sequence other than all 1’s when rolling the die? It is
simply 1 – (1/610), because the probability of something happening and the
probability of the same thing not happening must add up to 1.

Suppose we want to know the probability of rolling the die ten times without
getting a single 1. One way to answer this question is to transform it into the

question of how many of the 610 possible sequences don’t contain a 1.

import random

def rollDie():
 """Returns a random int between 1 and 6"""
 return random.choice([1,2,3,4,5,6])

def rollN(n):
 result = ''
 for i in range(n):
 result = result + str(rollDie())
 print result

 Chapter 12. Stochastic Programs, Probability, and Statistics 155

This can be computed as follows:

• The probability of not rolling a 1 on any single roll is 5/6.

• The probability of not rolling a 1 on either the first or the second roll is
(5/6)*(5/6), or (5/6)2.

• So, the probability of not rolling a 1 ten times in a row is (5/6)10, slightly
more than 0.16.

We will return to the subject of probability in a bit more detail later.

12.2 Inferential Statistics and Simulation

The tiny program in Figure 12.1 is a simulation model. Rather than asking
some person to roll a die multiple times, we wrote a program to simulate that
activity.

We often use simulations to estimate the value of an unknown quantity by
making use of the principles of inferential statistics. In brief (since this is not
a book about statistics), the guiding principle of inferential statistics is that a
random sample tends to exhibit the same properties as the population from
which it is drawn.

Suppose Harvey Dent (also known as Two-Face) flipped a coin, and it came up
heads. You would not infer from this that the next flip would also come up
heads. Suppose he flipped it twice, and it came up heads both time. You might
reason that the probability of this happening for a fair coin (i.e., a coin where
heads and tails are equally likely) was 0.25, so there was still no reason to
assume the next flip would be heads. Suppose, however, 100 out of 100 flips
came up heads. 1/2100 is a pretty small number, so you might feel safe in
inferring that the coin has a head on both sides.

Your belief in whether the coin is fair is based on the intuition that the behavior
of a sample of 100 flips is similar to the behavior of the population of all flips of
your coin. This belief seems pretty sound when all 100 flips are heads.
Suppose, that 55 flips came up heads and 45 tails. Would you feel comfortable
in predicting that the next 100 flips would have the same ratio of heads to tails?
For that matter, how comfortable would you feel about even predicting that
there would be more heads than tails in the next 100 flips? Take a few minutes
to think about this, and then try the experiment using the code in Figure 12.2.

The function flip in Figure 12.2 simulates flipping a fair coin numFlips times,
and returns the fraction of flips that came up heads. For each flip,
random.random() returns a random floating point number between 0.0 and 1.0.

Numbers less than or greater than 0.5 are treated as heads or tails respectively.
The value 0.5, is arbitrarily assigned the value tails. Given the vast number of
floating point values between 0.0 and 1.0, it is highly unlikely that this will

affect the result.

156 Chapter 12. Stochastic Programs, Probability, and Statistics

Figure 12.2 Flipping a coin

Try executing the function flipSim(100, 1) a couple of times. Here’s what we
saw the first two times we tried it:

>>> flipSim(100, 1)
0.44
>>> flipSim(100, 1)
0.57999999999999996

It seems that it would be inappropriate to assume much (other than that the
coin has both heads and tails) from any one trial of 100 flips. That’s why we
typically structure our simulations to include multiple trials and compare the
results. Let’s try flipSim(100, 100):

>>> flipSim(100, 100)
0.4993
>>> flipSim(100, 100)
0.4953

Intuitively, we can feel better about these results. How about
flipSim(100, 100000):

>>> flipSim(100, 1000000)
0.49999221
>>> flipSim(100, 100000)
0.50003922

This looks really good (especially since we know that the answer should be 0.5,
but that’s cheating). Now it seems we can safely conclude something about the
next flip, i.e., that heads and tails are about equally likely. But why do we think
that we can conclude that?

What we are depending upon is the law of large numbers (also known as
Bernoulli’s theorem68). This law states that in repeated independent
experiments (e.g., flipping a fair coin 100 times and counting the fraction of
heads) with the same expected value (0.5 in this case), the average value of the

68 Though the law of large numbers had been discussed in the 16th century by Cardano,
the first proof was published by Jacob Bernoulli in the early 18th century. It is unrelated
to the theorem about fluid dynamics called Bernoulli’s theorem, which was proved by
Jacob’s nephew Daniel.

def flip(numFlips):
 heads = 0.0
 for i in range(numFlips):
 if random.random() < 0.5:
 heads += 1
 return heads/numFlips

def flipSim(numFlipsPerTrial, numTrials):
 fracHeads = []
 for i in range(numTrials):
 fracHeads.append(flip(numFlipsPerTrial))
 mean = sum(fracHeads)/len(fracHeads)
 return mean

 Chapter 12. Stochastic Programs, Probability, and Statistics 157

experiments approaches the expected value as the number of experiments goes
to infinity.

It is worth noting that the law of large numbers does not imply, as too many
seem to think, that if deviations from expected behavior occur, these deviations
are likely to be evened out by opposite deviations in the future. This
misapplication of the law of large numbers is known as the gambler’s fallacy. 69

Note that “large” is a relative concept. For example, if we were to flip a fair coin
on the order of 101,000,000 times, we should expect to encounter several
sequences of at least a million consecutive heads. If we looked only at the
subset of flips containing these heads, we would inevitably jump to the wrong
conclusion about the fairness of the coin. In fact, if every subsequence of a large
sequence of events appears to be random, it is highly likely that the sequence
itself is not truly random. If your iTunes shuffle mode doesn’t play the same
song first once in a while, you can assume that the shuffle is not really random.

Finally, notice that in the case of coin flips the law of large numbers does not
imply that the absolute difference between the number of heads and the number
of tails decreases as the number of flips increases. In fact, we can expect that
number to increase. What decreases is the ratio of the absolute difference to the
number of flips.

Figure 12.3 contains a function, flipPlot, that produces some plots intended to
show the law of large numbers at work. The line random.seed(0) near the
bottom ensures that the pseudo-random number generator used by
random.random will generate the same sequence of pseudorandom numbers each
time this code is executed. This is convenient for debugging.

69 “On August 18, 1913, at the casino in Monte Carlo, black came up a record twenty-six
times in succession [in roulette]. … [There] was a near-panicky rush to bet on red,
beginning about the time black had come up a phenomenal fifteen times. In application
of the maturity [of the chances] doctrine, players doubled and tripled their stakes, this
doctrine leading them to believe after black came up the twentieth time that there was
not a chance in a million of another repeat. In the end the unusual run enriched the
Casino by some millions of francs.” Huff and Geis, How to Take a Chance, pp. 28-29.

158 Chapter 12. Stochastic Programs, Probability, and Statistics

Figure 12.3 Plotting the results of coin flips

The call flipPlot(4, 20) produces the two plots:

The plot on the left seems to suggest that the absolute difference between the
number of heads and the number of tails fluctuates in the beginning, crashes
downwards, and then moves rapidly upwards. However, we need to keep in
mind that we have only two data points to the right of x = 300,000. That
pylab.plot connected these points with lines may mislead us into seeing trends
when all we have are isolated points. This is not an uncommon phenomenon, so
you should always ask how many points a plot actually contains before jumping
to any conclusion about what it means.

def flipPlot(minExp, maxExp):
 """Assumes minExp and maxExp positive integers; minExp < maxExp
 Plots results of 2**minExp to 2**maxExp coin flips"""
 ratios = []
 diffs = []
 xAxis = []
 for exp in range(minExp, maxExp + 1):
 xAxis.append(2**exp)
 for numFlips in xAxis:
 numHeads = 0
 for n in range(numFlips):
 if random.random() < 0.5:
 numHeads += 1
 numTails = numFlips - numHeads
 ratios.append(numHeads/float(numTails))
 diffs.append(abs(numHeads - numTails))
 pylab.title('Difference Between Heads and Tails')
 pylab.xlabel('Number of Flips')
 pylab.ylabel('Abs(#Heads - #Tails)')
 pylab.plot(xAxis, diffs)
 pylab.figure()
 pylab.title('Heads/Tails Ratios')
 pylab.xlabel('Number of Flips')
 pylab.ylabel('#Heads/#Tails')
 pylab.plot(xAxis, ratios)

random.seed(0)
flipPlot(4, 20)

 Chapter 12. Stochastic Programs, Probability, and Statistics 159

It’s hard to see much of anything in the plot on the right, which is mostly a flat
line. This too is deceptive. Even though there are sixteen data points, most of
them are crowded into a small amount of real estate on the left side of the plot,

so that the detail is impossible to see. This occurs because values on the x-axis

range from 16 to 1,0485,76, and unless instructed otherwise PyLab will space
these points evenly along the axis. This is called linear scaling.

Fortunately, these visualization problems are easy to address in PyLab. As we
saw in Chapter 11, we can easily instruct our program to plot unconnected
points, e.g., by writing pylab.plot(xAxis, diffs, 'bo').

We can also instruct PyLab to use a logarithmic scale on either or both of the x
and y axes by calling the functions pylab.semilogx and pylab.semilogy. These
functions are always applied to the current figure.

Both plots use a logarithmic scale on the x-axis. Since the x-values generated
by flipPlot are 2minExp, 2minExp+1, .., 2maxExp, using a logarithmic x-axis causes
the points to be evenly spaced along the x-axis—providing maximum separation
between points. The left-hand plot below also uses a logarithmic scale on the y-
axis. The y values on this plot range from nearly 0 to nearly 1000. If the y-axis
were linearly scaled, it would be difficult to see the relatively small differences in
y values on the left side of the plot. On the other hand, on the plot on the right
the y values are fairly tightly grouped, so we use a linear y-axis.

Finger exercise: Modify the code in Figure 12.3 so that it produces plots like
those shown above.

These plots are easier to interpret than the earlier plots. The plot on the right
suggests pretty strongly that the ratio of heads to tails converges to 1.0 as the
number of flips gets large. The meaning of the plot on the left is a bit less clear.
It appears that the absolute difference grows with the number of flips, but it is
not completely convincing.

It is never possible to achieve perfect accuracy through sampling without
sampling the entire population. No matter how many samples we examine, we
can never be sure that the sample set is typical until we examine every element

160 Chapter 12. Stochastic Programs, Probability, and Statistics

of the population (and since we are usually dealing with infinite populations,
e.g., all possible sequences of coin flips, this is usually impossible). Of course,
this is not to say that an estimate cannot be precisely correct. We might flip a
coin twice, get one heads and one tails, and conclude that the true probability of
each is 0.5. We would have reached the right conclusion, but our reasoning
would have been faulty.

How many samples do we need to look at before we can have justified confidence
in our answer? This depends on the variance in the underlying distribution.
Roughly speaking, variance is a measure of how much spread there is in the
possible different outcomes.

We can formalize this notion relatively simply by using the concept of standard
deviation. Informally, the standard deviation tells us what fraction of the
values are close to the mean. If many values are relatively close to the mean,
the standard deviation is relatively small. If many values are relatively far from
the mean, the standard deviation is relatively large. If all values are the same,
the standard deviation is zero.

More formally, the standard deviation, σ (sigma), of a collection of values, !, is

defined as ! ! = !
|!|

(! − !)!!"#
!

, where |!| is the size of the collection and !

(mu) its mean. Figure 12.4 contains a Python implementation of standard
deviation.70 We apply the type conversion float, because if each of the elements
of X is an int, the type of the sum will be an int.

Figure 12.4 Standard deviation

We can use the notion of standard deviation to think about the relationship
between the number of samples we have looked at and how much confidence we
should have in the answer we have computed. Figure 12.5 contains a modified
version of flipPlot. It runs multiple trials of each number of coin flips, and
plots the means for abs(heads - tails) and the heads/tails ratio. It also plots
the standard deviation of each.

70 You’ll probably never need to implement this yourself. Statistical libraries implement
this and many other standard statistical functions. However, we present the code here
on the off chance that some readers prefer looking at code to looking at equations.

def stdDev(X):
 """Assumes that X is a list of numbers.
 Returns the standard deviation of X"""
 mean = float(sum(X))/len(X)
 tot = 0.0
 for x in X:
 tot += (x - mean)**2
 return (tot/len(X))**0.5 #Square root of mean difference

 Chapter 12. Stochastic Programs, Probability, and Statistics 161

The implementation of flipPlot1 uses two helper functions. The function
makePlot contains the code used to produce the plots. The function runTrial
simulates one trial of numFlips coins.

Figure 12.5 Coin-flipping simulation

def makePlot(xVals, yVals, title, xLabel, yLabel, style,
 logX = False, logY = False):
 """Plots xVals vs. yVals with supplied titles and labels."""
 pylab.figure()
 pylab.title(title)
 pylab.xlabel(xLabel)
 pylab.ylabel(yLabel)
 pylab.plot(xVals, yVals, style)
 if logX:
 pylab.semilogx()
 if logY:
 pylab.semilogy()

def runTrial(numFlips):
 numHeads = 0
 for n in range(numFlips):
 if random.random() < 0.5:
 numHeads += 1
 numTails = numFlips - numHeads
 return (numHeads, numTails)

def flipPlot1(minExp, maxExp, numTrials):
 """Assumes minExp and maxExp positive ints; minExp < maxExp
 numTrials a positive integer
 Plots summaries of results of numTrials trials of
 2**minExp to 2**maxExp coin flips"""
 ratiosMeans, diffsMeans, ratiosSDs, diffsSDs = [], [], [], []
 xAxis = []
 for exp in range(minExp, maxExp + 1):
 xAxis.append(2**exp)
 for numFlips in xAxis:
 ratios = []
 diffs = []
 for t in range(numTrials):
 numHeads, numTails = runTrial(numFlips)
 ratios.append(numHeads/float(numTails))
 diffs.append(abs(numHeads - numTails))
 ratiosMeans.append(sum(ratios)/float(numTrials))
 diffsMeans.append(sum(diffs)/float(numTrials))
 ratiosSDs.append(stdDev(ratios))
 diffsSDs.append(stdDev(diffs))
 numTrialsString = ' (' + str(numTrials) + ' Trials)'
 title = 'Mean Heads/Tails Ratios' + numTrialsString
 makePlot(xAxis, ratiosMeans, title,
 'Number of flips', 'Mean Heads/Tails', 'bo', logX = True)
 title = 'SD Heads/Tails Ratios' + numTrialsString
 makePlot(xAxis, ratiosSDs, title,
 'Number of Flips', 'Standard Deviation', 'bo',
 logX = True, logY = True)

162 Chapter 12. Stochastic Programs, Probability, and Statistics

Let’s try flipPlot1(4, 20, 20). It generates the plots

This is encouraging. The ratio heads/tails is converging towards 1 and the log of
the standard deviation is falling linearly with the log of the number of flips per
trial. By the time we get to about 106 coin flips per trial, the standard deviation
(about 10-3) is roughly three decimal orders of magnitude smaller than the mean
(about 1), indicating that the variance across the trials was small. We can,
therefore, have considerable confidence that the expected heads/tails ratio is
quite close to 1.0. As we flip more coins, not only do we have a more precise
answer, but more important, we also have reason to be more confident that it is
close to the right answer.

What about the absolute difference between the number of heads and the
number of tails? We can take a look at that by adding to the end of flipPlot1
the code in Figure 12.6.

Figure 12.6 Absolute differences

title = 'Mean abs(#Heads - #Tails)' + numTrialsString
makePlot(xAxis, diffsMeans, title,
 'Number of Flips', 'Mean abs(#Heads - #Tails)', 'bo',
 logX = True, logY = True)
title = 'SD abs(#Heads - #Tails)' + numTrialsString
makePlot(xAxis, diffsSDs, title,
 'Number of Flips', 'Standard Deviation', 'bo',
 logX = True, logY = True)

 Chapter 12. Stochastic Programs, Probability, and Statistics 163

This produces the additional plots

As expected, the absolute difference between the numbers of heads and tails
grows with the number of flips. Furthermore, since we are averaging the results
over twenty trials, the plot is considerably smoother than when we plotted the
results of a single trial. But what’s up with the last plot? The standard
deviation is growing with the number of flips. Does this mean that as the
number of flips increases we should have less rather than more confidence in
the estimate of the expected value of the difference between heads and tails?

No, it does not. The standard deviation should always be viewed in the context
of the mean. If the mean were a billion and the standard deviation 100, we
would view the dispersion of the data as small. But if the mean were 100 and
the standard deviation 100, we would view the dispersion as quite large.

The coefficient of variation is the standard deviation divided by the mean.
When comparing data sets with highly variable means (as here), the coefficient
of variation is often more informative than the standard deviation. As you can
see from its implementation in Figure 12.7, the coefficient of variation is not
defined when the mean is 0.

Figure 12.7 Coefficient of variation

def CV(X):
 mean = sum(X)/float(len(X))
 try:
 return stdDev(X)/mean
 except ZeroDivisionError:
 return float('nan')

164 Chapter 12. Stochastic Programs, Probability, and Statistics

Figure 12.8 contains a version of flipPlot1 that plots coefficients of variation.

Figure 12.8 Final version of flipPlot1

def flipPlot1(minExp, maxExp, numTrials):
 """Assumes minExp and maxExp positive ints; minExp < maxExp
 numTrials a positive integer
 Plots summaries of results of numTrials trials of
 2**minExp to 2**maxExp coin flips"""
 ratiosMeans, diffsMeans, ratiosSDs, diffsSDs = [], [], [], []
 ratiosCVs, diffsCVs = [], []
 xAxis = []
 for exp in range(minExp, maxExp + 1):
 xAxis.append(2**exp)
 for numFlips in xAxis:
 ratios = []
 diffs = []
 for t in range(numTrials):
 numHeads, numTails = runTrial(numFlips)
 ratios.append(numHeads/float(numTails))
 diffs.append(abs(numHeads - numTails))
 ratiosMeans.append(sum(ratios)/float(numTrials))
 diffsMeans.append(sum(diffs)/float(numTrials))
 ratiosSDs.append(stdDev(ratios))
 diffsSDs.append(stdDev(diffs))
 ratiosCVs.append(CV(ratios))
 diffsCVs.append(CV(diffs))
 numTrialsString = ' (' + str(numTrials) + ' Trials)'
 title = 'Mean Heads/Tails Ratios' + numTrialsString
 makePlot(xAxis, ratiosMeans, title,
 'Number of flips', 'Mean Heads/Tails', 'bo', logX = True)
 title = 'SD Heads/Tails Ratios' + numTrialsString
 makePlot(xAxis, ratiosSDs, title,
 'Number of Flips', 'Standard Deviation', 'bo',
 logX = True, logY = True)
 title = 'Mean abs(#Heads - #Tails)' + numTrialsString
 makePlot(xAxis, diffsMeans, title,
 'Number of Flips', 'Mean abs(#Heads - #Tails)', 'bo',
 logX = True, logY = True)
 title = 'SD abs(#Heads - #Tails)' + numTrialsString
 makePlot(xAxis, diffsSDs, title,
 'Number of Flips', 'Standard Deviation', 'bo',
 logX = True, logY = True)
 title = 'Coeff. of Var. abs(#Heads - #Tails)' + numTrialsString
 makePlot(xAxis, diffsCVs, title, 'Number of Flips',
 'Coeff. of Var.', 'bo', logX = True)
 title = 'Coeff. of Var. Heads/Tails Ratio' + numTrialsString
 makePlot(xAxis, ratiosCVs, title, 'Number of Flips',
 'Coeff. of Var.', 'bo', logX = True, logY = True)

 Chapter 12. Stochastic Programs, Probability, and Statistics 165

 It produces the additional plots

In this case we see that the plot of coefficient of variation for the heads/tails
ratio is not much different from the plot of the standard deviation. This is not
surprising, since the only difference between the two is the division by the mean,
and since the mean is close to 1 that makes little difference.

On the other hand, the plot of the coefficient of variation for the absolute
difference between heads and tails is a different story. It would take a brave
person to argue that it is trending in any direction. It seems to be fluctuating
widely. This suggests that dispersion in the values of abs(heads – tails) is
independent of the number of flips. It’s not growing, as the standard deviation
might have misled us to believe, but it’s not shrinking either. Perhaps a trend
would appear if we tried 1000 trials instead of 20. Let’s see.

It looks as if once the number of flips
reaches somewhere around 1000, the
coefficient of variation settles in
somewhere in the neighborhood of
0.75. In general, distributions with a
coefficient of variation of less than 1
are considered low-variance.

Beware that if the mean is near zero,
small changes in the mean lead to
large (but not necessarily
meaningful) changes in the
coefficient of variation, and when the

mean is zero, the coefficient of variation is undefined. Also, as we shall see
shortly, the standard deviation can be used to construct a confidence interval,
but the coefficient of variation cannot.

166 Chapter 12. Stochastic Programs, Probability, and Statistics

12.3 Distributions

A histogram is a plot designed to show the distribution of values in a set of
data. The values are first sorted, and then divided into a fixed number of equal-
width bins. A plot is then drawn that shows the number of elements in each
bin. Consider, for example, the code

vals = [1, 200] #guarantee that values will range from 1 to 200
for i in range(1000):
 num1 = random.choice(range(1, 100))
 num2 = random.choice(range(1, 100))
 vals.append(num1+num2)
pylab.hist(vals, bins = 10)

The function call pylab.hist(vals, bins = 10) produces the histogram, with
ten bins, on the left. PyLab has
automatically chosen the width of each
bin. Looking at the code, we know that
the smallest number in vals will be 1
and the largest number 200. Therefore,
the possible values on the x-axis range
from 1 to 200. Each bin represents an
equal fraction of the values on the x-
axis, so the first bin will contain the
elements 1-20, the next bin the elements
21-40, etc. Since the mean values
chosen for num1 and num2 will be in the

vicinity of 50, it is not surprising that there are more elements in the middle bins
than in the bins near the edges.

By now you must be getting awfully bored with flipping coins. Nevertheless, we
are going to ask you to look at yet one more coin-flipping simulation. The
simulation in Figure 12.9 illustrates more of PyLab’s plotting capabilities and
gives us an opportunity to get a visual notion of what standard deviation means.

The simulation uses the function pylab.xlim to control the extent of the x-axis.
The function call pylab.xlim() returns a tuple composed of the minimal and
maximal values of the x-axis of the current figure. The function call
pylab.xlim(xmin, xmax) sets the minimal and maximal values of the x-axis of
the current figure. The function pylab.ylim works the same way.

 Chapter 12. Stochastic Programs, Probability, and Statistics 167

Figure 12.9 Plot histograms demonstrating normal distributions

When the code in Figure 12.9 is run, it produces the plots

def flip(numFlips):
 heads = 0.0
 for i in range(numFlips):
 if random.random() < 0.5:
 heads += 1
 return heads/numFlips

def flipSim(numFlipsPerTrial, numTrials):
 fracHeads = []
 for i in range(numTrials):
 fracHeads.append(flip(numFlipsPerTrial))
 mean = sum(fracHeads)/len(fracHeads)
 sd = stdDev(fracHeads)
 return (fracHeads, mean, sd)

def labelPlot(numFlips, numTrials, mean, sd):
 pylab.title(str(numTrials) + ' trials of '
 + str(numFlips) + ' flips each')
 pylab.xlabel('Fraction of Heads')
 pylab.ylabel('Number of Trials')
 xmin, xmax = pylab.xlim()
 ymin, ymax = pylab.ylim()
 pylab.text(xmin + (xmax-xmin)*0.02, (ymax-ymin)/2,
 'Mean = ' + str(round(mean, 4))
 + '\nSD = ' + str(round(sd, 4)), size='x-large')

def makePlots(numFlips1, numFlips2, numTrials):
 val1, mean1, sd1 = flipSim(numFlips1, numTrials)
 pylab.hist(val1, bins = 20)
 xmin,xmax = pylab.xlim()
 ymin,ymax = pylab.ylim()
 labelPlot(numFlips1, numTrials, mean1, sd1)
 pylab.figure()
 val2, mean2, sd2 = flipSim(numFlips2, numTrials)
 pylab.hist(val2, bins = 20)
 pylab.xlim(xmin, xmax)
 labelPlot(numFlips2, numTrials, mean2, sd2)

random.seed(0)
makePlots(100,1000,100000)

168 Chapter 12. Stochastic Programs, Probability, and Statistics

Notice that while the means in both plots are about the same, the standard
deviations are quite different. The spread of outcomes is much tighter when we
flip the coin 1000 times per trial than when we flip the coin 100 times per trial.
To make this clear, we have used pylab.xlim to force the bounds of the x-axis in
the second plot to match those in the first plot, rather than letting PyLab choose
the bounds. We have also used pylab.xlim and pylab.ylim to choose a set of
coordinates for displaying a text box with the mean and standard deviation.

12.3.1 Normal Distributions and Confidence Levels

The distribution of results in each of these plots is close to what is called a
normal distribution. Technically speaking, a normal distribution is defined by
the formula

! ! =
1

! 2!
∗ !!

(!!!)!
!!!

where μ is the mean, σthe standard deviation, and e Euler’s number (roughly

2.718). If you don’t feel like studying this equation, that’s fine. Just remember
that normal distributions peak at the mean, fall off symmetrically above and
below the mean, and asymptotically approach 0. They have the nice
mathematical property of being completely specified by two parameters: the
mean and the standard deviation (the only two parameters in the equation).
Knowing these is equivalent to knowing the entire distribution. The shape of the
normal distribution resembles (in the eyes of some) that of a bell, so it
sometimes is referred to as a bell curve.

As we can see by zooming in on the
center of the plot for 1000 flips/trial,
the distribution is not perfectly
symmetrical, and therefore not quite
normal. However, as we increase the
number of trials, the distribution
will converge towards normal.

Normal distributions are frequently
used in constructing probabilistic
models for three reasons: 1) they
have nice mathematical properties,
2) many naturally occurring
distributions are indeed close to normal, and 3) they can be used to produce
confidence intervals.

Instead of estimating an unknown parameter by a single value (e.g., the mean of
a set of trials), a confidence interval provides a range that is likely to contain the
unknown value and a degree of confidence that the unknown value lies within
that range. For example, a political poll might indicate that a candidate is likely
to get 52% of the vote ±4% (i.e., the confidence interval is of size 8) with a
confidence level of 95%. What this means is that the pollster believes that 95%
of the time the candidate will receive between 48% and 56% of the vote. Together
the confidence interval and the confidence level indicate the reliability of the

 Chapter 12. Stochastic Programs, Probability, and Statistics 169

estimate. Almost always, increasing the confidence level will widen the
confidence interval.

The calculation of a confidence interval generally requires assumptions about
the nature of the space being sampled. It assumes that the distribution of
errors of estimation is normal and has a mean of zero. The empirical rule for
normal distributions provides a handy way to estimate confidence intervals
and levels given the mean and standard deviation:

• 68% of the data will fall within 1 standard deviation of the mean,

• 95% of the data will fall within 2 standard deviations of the mean, and

• almost all (99.7%) of the data will fall within 3 standard deviations of the
mean. 71

Suppose that we run 100 trials of 100 coin flips each. Suppose further that the
mean fraction of heads is 0.4999 and the standard deviation 0.0497. If we assume
that the distribution of the means of the trials was normal, we can conclude that
if we conducted more trials of 100 flips each,

• 95% of the time the fraction of heads will be 0.4999 ±0.0994 and

• >99% of the time the fraction of heads will be 0.4999 ±0.1491.

It is often useful to visualize confidence intervals using error bars. The code in
Figure 12.10 calls the version of flipSim in Figure 12.9 and then uses

pylab.errorbar(xVals, means, yerr = 2*pylab.array(sds))

to produce the plot on the right. The
first two arguments give the x and y
values to be plotted. The third
argument says that the values in sds
should be used to create vertical error
bars. The call

showErrorBars(3, 10, 100)

produces the plot on the right.
Unsurprisingly, the error bars shrink as
the number of flips per trial grows.

71 These values are approximations. For example, 95% of the data will fall within 1.96
standard deviations of the mean; 2 standard deviations is a convenient approximation.

170 Chapter 12. Stochastic Programs, Probability, and Statistics

Figure 12.10 Produce plot with error bars

Of course, finding a mathematically nice model is of no use if it provides a bad
model of the actual data. Fortunately, many random variables have an
approximately normal distribution. For example, physical properties of plants
and animals (e.g., height, weight, body temperature) typically have
approximately normal distributions. Importantly, many experimental setups
have normally distributed measurement errors. This assumption was used in
the early 1800s by the German mathematician and physicist Karl Gauss, who
assumed a normal distribution of measurement errors in his analysis of
astronomical data (which led to the normal distribution becoming known as the
Gaussian distribution in much of the scientific community).

Normal distributions can be easily generated by calling
random.gauss(mu, sigma), which returns a randomly chosen floating point
number from a normal distribution with mean mu and standard deviation sigma.

It is important, however, to remember that not all distributions are normal.

12.3.2 Uniform Distributions

Consider rolling a single die. Each of the six outcomes is equally probable. If
one were to roll a single die a million times and create a histogram showing how
often each number came up, each column would be almost the same height. If
one were to plot the probability of each possible lottery number being chosen, it
would be a flat line (at 1 divided by the range of the lottery numbers). Such
distributions are called uniform. One can fully characterize a uniform
distribution with a single parameter, its range (i.e., minimum and maximum
values). While uniform distributions are quite common in games of chance, they
rarely occur in nature, nor are they usually useful for modeling complex man-
made systems.

Uniform distributions can easily be generated by calling
random.uniform(min, max) which returns a randomly chosen floating point
number between min and max.

def showErrorBars(minExp, maxExp, numTrials):
 """Assumes minExp and maxExp positive ints; minExp < maxExp
 numTrials a positive integer
 Plots mean fraction of heads with error bars"""
 means, sds = [], []
 xVals = []
 for exp in range(minExp, maxExp + 1):
 xVals.append(2**exp)
 fracHeads, mean, sd = flipSim(2**exp, numTrials)
 means.append(mean)
 sds.append(sd)
 pylab.errorbar(xVals, means,
 yerr=2*pylab.array(sds))
 pylab.semilogx()
 pylab.title('Mean Fraction of Heads (' + str(numTrials) + ' trials)')
 pylab.xlabel('Number of flips per trial')
 pylab.ylabel('Fraction of heads & 95% confidence')

 Chapter 12. Stochastic Programs, Probability, and Statistics 171

12.3.3 Exponential and Geometric Distributions

Exponential distributions, unlike uniform distributions, occur quite
commonly. They are often used to model inter-arrival times, e.g., of cars
entering a highway or requests for a Web page. They are especially important
because they have the memoryless property.

Consider, for example, the concentration of a drug in the human body. Assume
that at each time step each molecule has a probability P of being cleared (i.e., of
no longer being in the body). The system is memoryless in the sense that at
each time step the probability of a molecule being cleared is independent of what
happened at previous times. At time t = 0, the probability of an individual
molecule still being in the body is 1. At time t = 1, the probability of that
molecule still being in the body is 1 – P. At time t = 2, the probability of that
molecule still being in the body is (1 – P)2. More generally, at time t the
probability of an individual molecule having survived is (1 – P)t.

Suppose that at time t0 there are M0 molecules of the drug. In general, at time t,
the number of molecules will be M0 multiplied by the probability that an
individual module has survived to time t. The function implemented in Figure
12.11 plots the expected number of remaining molecules versus time.

Figure 12.11 Exponential clearance of molecules

The call clear(1000, 0.01, 1000) produces the plot on the left.

def clear(n, p, steps):
 """Assumes n & steps positive ints, p a float
 n: the initial number of molecules
 p: the probability of a molecule being cleared
 steps: the length of the simulation"""
 numRemaining = [n]
 for t in range(steps):
 numRemaining.append(n*((1-p)**t))
 pylab.plot(numRemaining)
 pylab.xlabel('Time')
 pylab.ylabel('Molecules Remaining')
 pylab.title('Clearance of Drug')

172 Chapter 12. Stochastic Programs, Probability, and Statistics

This is an example of exponential decay. In practice, exponential decay is often
talked about in terms of half-life, i.e., the expected time required for the initial
value to decay by 50%. One can also talk about the half-life of a single item. For
example, the half-life of a single radioactive atom is the time at which the
probability of that atom having decayed is 0.5. Notice that as time increases the
number of remaining molecules approaches zero. But it will never quite get
there. This should not be interpreted as suggesting that a fraction of a molecule
remains. Rather it should be interpreted as saying that since the system is
probabilistic, one can never guarantee that all of the molecules have been
cleared.

What happens if we make the y-axis logarithmic (by using pylab.semilogy)? We
get the plot above and on the right. The values on the y-axis are changing
exponentially quickly relative to the values on the x-axis. If we make the y-axis
itself change exponentially quickly, we get a straight line. The slope of that line
is the rate of decay.

Exponential growth is the inverse of exponential decay. It too is quite
commonly seen in nature. Compound interest, the growth of algae in a
swimming pool, and the chain reaction in an atomic bomb are all examples of
exponential growth.

Exponential distributions can easily be generated by calling random.expovariate.

The geometric distribution is the discrete analog of the exponential
distribution.72 It is usually thought of as describing the number of independent
attempts required to achieve a first success (or a first failure). Imagine, for
example, that you have a crummy car
that starts only half of the time you
turn the key. A geometric distribution
could be used to characterize the
expected number of times you would
have to attempt to start the car before
being successful. This is illustrated by
the histogram on the right, which was
produced by the code in Figure 12.12.
The histogram implies that most of the
time you’ll get the car going within a few
attempts. On the other hand, the long
tail suggests that on occasion you may run the risk of draining your battery
before the car gets going.

72 The name “geometric distribution” arises from its similarity to a “geometric
progression.” A geometric progression is any sequence of numbers in which each
number other than the first is derived by multiplying the previous number by a constant
nonzero number. Euclid’s Elements proves a number of interesting theorems about
geometric progressions.

 Chapter 12. Stochastic Programs, Probability, and Statistics 173

Figure 12.12 A geometric distribution

12.3.4 Benford’s Distribution

Benford’s law defines a really strange distribution. Let S be a large set of
decimal integers. How frequently would you expect each digit to appear as the
first digit? Most of us would probably guess one ninth of the time. And when
people are making up sets of numbers (e.g., faking experimental data or
perpetrating financial fraud) this is typically true. It is not, however, typically
true of many naturally occurring data sets. Instead, they follow a distribution
predicted by Benford’s law.

A set of decimal numbers is said to satisfy Benford’s law73 if the probability of
the first digit being d is consistent with P(d) = log10(1 + 1/d).

For example, this law predicts that the probability of the first digit being 1 is
about 30%! Shockingly, many actual data sets seem to observe this law. It is
possible to show that the Fibonacci sequence, for example, satisfies it perfectly.
That’s kind of plausible, since the sequence is generated by a formula. It’s less
easy to understand why such diverse data sets as iPhone pass codes, the
number of Twitter followers per user, the population of countries, or the
distance of stars from the earth closely approximate Benford’s law.74

73 The law is named after the physicist Frank Benford, who published a paper in 1938
showing that the law held on over 20,000 observations drawn from twenty different
domains. However, it was first postulated in 1881 by the astronomer Simon Newcomb.

74 http://testingbenfordslaw.com/

def successfulStarts(eventProb, numTrials):
 """Assumes eventProb is a float representing a probability
 of a single attempt being successful. numTrials a positive int
 Returns a list of the number of attempts needed before a
 success for each trial."""
 triesBeforeSuccess = []
 for t in range(numTrials):
 consecFailures = 0
 while random.random() > eventProb:
 consecFailures += 1
 triesBeforeSuccess.append(consecFailures)
 return triesBeforeSuccess

random.seed(0)
probOfSuccess = 0.5
numTrials = 5000
distribution = successfulStarts(probOfSuccess, numTrials)
pylab.hist(distribution, bins = 14)
pylab.xlabel('Tries Before Success')
pylab.ylabel('Number of Occurrences Out of ' + str(numTrials))
pylab.title('Probability of Starting Each Try ' + str(probOfSuccess))

174 Chapter 12. Stochastic Programs, Probability, and Statistics

12.4 How Often Does the Better Team Win?

Thus far we have looked at using statistical methods to help understand
possible outcomes of games in which skill is not intended to play a role. It is
also common to apply these methods to situations in which there is,
presumably, some skill involved. Setting odds on a football match, choosing a
political candidate with a chance of winning, investing in the stock market, and
so on.

Almost every October two teams from American Major League Baseball meet in
something called the World Series. They play each other repeatedly until one of
the teams has won four games, and that team is called (not entirely
appropriately) “the world champion.”

Setting aside the question of whether there is reason to believe that one of the
participants in the World Series is indeed the best team in the world, how likely
is it that a contest that can be at most seven games long will determine which of
the two participants is better?

Clearly, each year one team will emerge victorious. So the question is whether
we should attribute that victory to skill or to luck. To address that question we
can use something called a p-value. P-values are used to determine whether or
not a result is statistically significant.

To compute a p-value one needs two things:

• A null hypothesis. This hypothesis describes the result that one would
get if the results were determined entirely by chance. In this case, the
null hypothesis would be that the teams are equally talented, so if the
two teams were to play an infinite number of seven-game series, each
would win half the time.

• An observation. Data gathered either by observing what happens or by
running a simulation that one believes provides an accurate model of
what would happen.

The p-value gives us the likelihood that the observation is consistent with the
null hypothesis. The smaller the p-value, the more likely it is that we should
reject the hypothesis that the observation is due entirely to chance. Usually, we
insist that p be no larger than 0.05 before we consider a result to be statistically
significant. I.e., we insist that there is no more than a 5% chance that the null
hypothesis holds.

Getting back to the World Series, should we consider the results of those seven-
game series to be statistically significant? That is, should we conclude that the
better team did indeed win?

Figure 12.13 contains code that can provide us with some insight into that
question. The function simSeries has one argument, numSeries, a positive
integer describing the number of seven-game series to be simulated. It plots the
probability of the better team winning the series against the probability of that
team winning a single game. It varies the probability of the better team winning
a single game from 0.5 to 1.0, and produces a plot.

 Chapter 12. Stochastic Programs, Probability, and Statistics 175

Figure 12.13 World Series simulation

When simSeries is used to simulate 400
seven-game series, it produces the plot
on the right. Notice that for the better
team to win 95% of the time (0.95 on the
y-axis), it needs to be more than three
times better than its opponent. That is
to say, the better team needs to win, on
average, more than three out of four
games (0.75 on the x-axis). For
comparison, in 2009, the two teams in
the World Series had regular season
winning percentages of 63.6% (New York
Yankees) and 57.4% (Philadelphia Phillies). This suggests that New York should
win about 52.5% of the games between the two teams. Our plot tells us that
even if they were to play each other in 400 seven-game series, the Yankees would
win less than 60% of the time.

Suppose we assume that these winning percentages are accurate reflections of
the relative strengths of these two teams. How many games long should the

def playSeries(numGames, teamProb):
 """Assumes numGames an odd integer,
 teamProb a float between 0 and 1
 Returns True if better team wins series"""
 numWon = 0
 for game in range(numGames):
 if random.random() <= teamProb:
 numWon += 1
 return (numWon > numGames//2)

def simSeries(numSeries):
 prob = 0.5
 fracWon = []
 probs = []
 while prob <= 1.0:
 seriesWon = 0.0
 for i in range(numSeries):
 if playSeries(7, prob):
 seriesWon += 1
 fracWon.append(seriesWon/numSeries)
 probs.append(prob)
 prob += 0.01
 pylab.plot(probs, fracWon, linewidth = 5)
 pylab.xlabel('Probability of Winning a Game')
 pylab.ylabel('Probability of Winning a Series')
 pylab.axhline(0.95)
 pylab.ylim(0.5, 1.1)
 pylab.title(str(numSeries) + ' Seven-Game Series')

simSeries(400)

176 Chapter 12. Stochastic Programs, Probability, and Statistics

World Series be in order for us to get results that would allow us to reject the
null hypothesis, i.e., the hypothesis that the teams are evenly matched?

The code in Figure 12.14 simulates 200 instances of series of varying lengths,
and plots an approximation of the probability of the better team winning.

Figure 12.14 How long should the World Series be?

The output of findSeriesLength
suggests that under these
circumstances the World Series
would have to be approximately 1000
games long before we could reject the
null hypothesis and confidently say
that the better team had almost
certainly won. Scheduling a series of
this length might present some
practical problems.

def findSeriesLength(teamProb):
 numSeries = 200
 maxLen = 2500
 step = 10

 def fracWon(teamProb, numSeries, seriesLen):
 won = 0.0
 for series in range(numSeries):
 if playSeries(seriesLen, teamProb):
 won += 1
 return won/numSeries

 winFrac = []
 xVals = []
 for seriesLen in range(1, maxLen, step):
 xVals.append(seriesLen)
 winFrac.append(fracWon(teamProb, numSeries, seriesLen))
 pylab.plot(xVals, winFrac, linewidth = 5)
 pylab.xlabel('Length of Series')
 pylab.ylabel('Probability of Winning Series')
 pylab.title(str(round(teamProb, 4)) +
 ' Probability of Better Team Winning a Game')
 pylab.axhline(0.95) #draw horizontal line at y = 0.95

YanksProb = 0.636
PhilsProb = 0.574
findSeriesLength(YanksProb/(YanksProb + PhilsProb))

 Chapter 12. Stochastic Programs, Probability, and Statistics 177

12.5 Hashing and Collisions

In Section 10.3 we pointed out that by using a larger hash table one could
reduce the incidence of collisions, and thus reduce the expected time to retrieve
a value. We now have the intellectual tools needed to examine that tradeoff
more precisely.

First, let’s get a precise formulation of the problem.

1. Assume:

a. The range of the hash function is 1 to n,

b. The number of insertions is K, and

c. The hash function produces a perfectly uniform distribution of
the keys used in insertions, i.e., for all keys, key, and for integers,
i, in the range 1 to n, the probability that hash(key) is i is 1/n.

2. What is the probability that at least one collision occurs?

The question is exactly equivalent to asking “given K randomly generated
integers in the range 1 to n, what is the probability that at least two of them are
equal.” If K ≥ n, the probability is clearly 1. But what about when K < n?

As is often the case, it is easiest to start by answering the inverse question,
“given K randomly generated integers in the range 1 to n, what is the probability
that none of them are equal?”

When we insert the first element, the probability of not having a collision is
clearly 1. How about the second insertion? Since there are n-1 hash results left
that are not equal to the result of the first hash, n-1 out of n choices will not yield
a collision. So, the probability of not getting a collision on the second insertion

is
!!!
!

, and the probability of not getting a collision on either of the first two

insertions is 1 ∗ !!!
!

. We can multiply these probabilities because for each

insertion the value produced by the hash function is independent of anything
that has preceded it.

The probability of not having a collision after three insertions is 1 ∗ !!!
!
∗ !!!

!
. And

after K insertions it is 1 ∗ !!!
!
∗ !!!

!
∗ … ∗ !! !!!

!
.

To get the probability of having at least one collision, we subtract this value from
1, i.e., the probability is

1 − (
! − 1
!

∗
! − 2
!

∗ … ∗
! − ! − 1

!
)

Given the size of the hash table and the number of expected insertions, we can
use this formula to calculate the probability of at least one collision. If K were
reasonably large, say 10,000, it would be a bit tedious to compute the probability
with pencil and paper. That leaves two choices, mathematics and programming.
Mathematicians have used some fairly advanced techniques to find a way to
approximate the value of this series. But unless K is very large, it is easier to
run some code to compute the exact value of the series:

178 Chapter 12. Stochastic Programs, Probability, and Statistics

def collisionProb(n, k):
 prob = 1.0
 for i in range(1, k):
 prob = prob * ((n - i)/float(n))
 return 1 - prob

If we try collisionProb(1000, 50) we get a probability of about 0.71 of there
being at least one collision. If we consider 200 insertions, the probability of a
collision is nearly one. Does that seem a bit high to you? Let’s write a
simulation, Figure 12.15, to estimate the probability of at least one collision, and
see if we get similar results.

Figure 12.15 Simulating a hash table

If we run the code

print 'Actual probability of a collision =', collisionProb(1000, 50)
print 'Est. probability of a collision =', findProb(1000, 50, 10000)
print 'Actual probability of a collision =', collisionProb(1000, 200)
print 'Est. probability of a collision =', findProb(1000, 200, 10000)

it prints

Actual probability of a collision = 0.71226865688
Est. probability of a collision = 0.7119
Actual probability of a collision = 0.999999999478
Est. probability of a collision = 1.0

The simulation results are comfortingly similar to what we derived analytically.

Should the high probability of a collision make us think that hash tables have to
be enormous to be useful? No. The probability of there being at least one
collision tells us little about the expected lookup time. The expected time to look
up a value depends upon the average length of the lists implementing the
buckets that hold the values that collided. This is simply the number of
insertions divided by the number of buckets.

def simInsertions(numIndices, numInsertions):
 """Assumes numIndices and numInsertions are positive ints.
 Returns 1 if there is a collision; 0 otherwise"""
 choices = range(numIndices) #list of possible indices
 used = []
 for i in range(numInsertions):
 hashVal = random.choice(choices)
 if hashVal in used: #there is a collision
 return 1
 else:
 used.append(hashVal)
 return 0

def findProb(numIndices, numInsertions, numTrials):
 collisions = 0.0
 for t in range(numTrials):
 collisions += simInsertions(numIndices, numInsertions)
 return collisions/numTrials

13 RANDOM WALKS AND MORE ABOUT DATA
VISUALIZATION

In 1827, the Scottish botanist Robert Brown observed that pollen particles
suspended in water seemed to float around at random. He had no plausible
explanation for what came to be known as Brownian motion, and made no
attempt to model it mathematically.75 A clear mathematical model of the
phenomenon was first presented in 1900 in Louis Bachelier’s doctoral thesis,
The Theory of Speculation. However, since this thesis dealt with the then
disreputable problem of understanding financial markets, it was largely ignored
by respectable academics. Five years later, a young Albert Einstein brought this
kind of stochastic thinking to the world of physics with a mathematical model
almost the same as Bachelier’s and a description of how it could be used to
confirm the existence of atoms.76 For some reason, people seemed to think that
understanding physics was more important than making money, and the world
started paying attention. Times were certainly different.

Brownian motion is an example of a random walk. Random walks are widely
used to model physical processes (e.g., diffusion), biological processes (e.g., the
kinetics of displacement of RNA from heteroduplexes by DNA), and social
processes (e.g., movements of the stock market).

In this chapter we look at random walks for three reasons:

1. Random walks are intrinsically interesting.

2. It provides us with a good example of how to use abstract data types and
inheritance to structure programs in general and simulations in
particular.

3. It provides an opportunity to introduce a few more features of Python
and to demonstrate some additional techniques for producing plots.

13.1 The Drunkard’s Walk

Let’s look at a random walk that actually involves walking. A drunken farmer is
standing in the middle of a field, and every second the farmer takes one step in a
random direction. What is her (or his) expected distance from the origin in 1000

75 Nor was he the first to observe it. As early as 60 BC, the Roman Titus Lucretius, in his
poem “On the Nature of Things,” described a similar phenomenon, and even implied that
it was caused by the random movement of atoms.

76 “On the movement of small particles suspended in a stationary liquid demanded by the
molecular-kinetic theory of heat,” Annalen der Physik, May 1905. Einstein would come to
describe 1905 as his “annus mirabilis.” That year, in addition to his paper on Brownian
motion, he published papers on the production and transformation of light (pivotal to the
development of quantum theory), on the electrodynamics of moving bodies (special
relativity), and on the equivalence of matter and energy (E = mc2). Not a bad year for a
newly minted PhD.

180 Chapter 13. Random Walks and More About Data Vizualization

seconds? If she takes many steps, is she likely to move ever further from the
origin, or is she more likely to wander back to the origin over and over, and end
up not far from where she started? Let’s write a simulation to find out.

Before starting to design a program, it is always a good idea to try to develop
some intuition about the situation the program is intended to model. Let’s start
by sketching a simple model of the situation using Cartesian coordinates.
Assume that the farmer is standing in a field where the grass has, mysteriously,
been cut to resemble a piece of graph paper. Assume further that each step the

farmer takes is of length one and is parallel to either the x-axis or y-axis.

The picture on the left depicts a farmer77 standing in the middle of the field. The
smiley faces indicate all the places the farmer might be after one step. Notice
that after one step she is always exactly one unit away from where she started.
Let’s assume that she wanders eastward from her initial location on her first
step. How far away might she be from her initial location after her second step?
Looking at the smiley faces in the picture on the right, we see that with a
probability of 0.25 she will be 0 units away, with a probability of 0.25 she will be 2

units away, and with a probability of 0.5 she will be 2 units away78. So, on
average she will be further away after two steps than after one step. What about
the third step? If the second step is to the top or bottom smiley face, the third
step will bring the farmer closer to origin half the time and further half the time.
If the second step is to the left smiley face (the origin), the third step will be away
from the origin. If the second step is to the right smiley face, the third step will
be closer to the origin a quarter of the time, and further away three quarters of
the time.

It seems like the more steps the drunk takes, the greater the expected distance
from the origin. We could continue this exhaustive enumeration of possibilities
and perhaps develop a pretty good intuition about how this distance grows with
respect to the number of steps. However, it is getting pretty tedious, so it seems
like a better idea to write a program to do it for us.

Let’s begin the design process by thinking about some data abstractions that are
likely to be useful in building this simulation and perhaps simulations of other
kinds of random walks. As usual we should try to invent types that correspond

77 To be honest, the person pictured here is a professional actor impersonating a farmer.

78 Why 2? We are using the Pythagorean theorem.

 Chapter 13. Random Walks and More About Data Vizualization 181

to the kinds of things that appear in the situation we are attempting to model.
Three obvious types are Location, Field, and Drunk. As we look at the classes
providing these types, it is worthwhile to think about what each might imply
about the kinds of simulation models they will allow us to build.

Let’s start with Location.

Figure 13.1 Location class

This is a simple class, but it does embody two important decisions. It tells us
that the simulation will involve at most two dimensions. E.g., the simulation
will not model changes in altitude. This is consistent with the pictures above.
Also, since the values of deltaX and deltaY are floats rather than integers, there
is no built-in assumption in this class about the set of directions in which a
drunk might move. This is a generalization of the informal model in which each

step was of length one and was parallel to the x-axis or y-axis.

Class Field is also quite simple, but it too embodies notable decisions. It simply
maintains a mapping of drunks to locations. It places no constraints on
locations, so presumably a Field is of unbounded size. It allows multiple
drunks to be added into a Field at random locations. It says nothing about the
patterns in which drunks move, nor does it prohibit multiple drunks from
occupying the same location or moving through spaces occupied by other
drunks.

class Location(object):

 def __init__(self, x, y):
 """x and y are floats"""
 self.x = x
 self.y = y

 def move(self, deltaX, deltaY):
 """deltaX and deltaY are floats"""
 return Location(self.x + deltaX, self.y + deltaY)

 def getX(self):
 return self.x

 def getY(self):
 return self.y

 def distFrom(self, other):
 ox = other.x
 oy = other.y
 xDist = self.x - ox
 yDist = self.y - oy
 return (xDist**2 + yDist**2)**0.5

 def __str__(self):
 return '<' + str(self.x) + ', ' + str(self.y) + '>'

182 Chapter 13. Random Walks and More About Data Vizualization

Figure 13.2 Field class

The classes Drunk and UsualDrunk define the ways in which a drunk might
wander through the field. In particular the value of stepChoices in UsualDrunk
restores the restriction that each step is of length one and is parallel to either
the x-axis or y-axis. It also captures the assumption that each kind of step is
equally likely and not influenced by previous steps. A bit later we will look at
subclasses of Drunk with different kinds of behaviors.

Figure 13.3 Drunk base class

The next step is to use these classes to build a simulation that answers the
original question. Figure 13.4 contains three functions used in this simulation.
The function walk simulates one walk of numSteps steps. The function simWalks
calls walk to simulate numTrials walks of numSteps steps each. The function
drunkTest calls simWalks to simulate walks of varying lengths.

class Field(object):

 def __init__(self):
 self.drunks = {}

 def addDrunk(self, drunk, loc):
 if drunk in self.drunks:
 raise ValueError('Duplicate drunk')
 else:
 self.drunks[drunk] = loc

 def moveDrunk(self, drunk):
 if drunk not in self.drunks:
 raise ValueError('Drunk not in field')
 xDist, yDist = drunk.takeStep()
 currentLocation = self.drunks[drunk]
 #use move method of Location to get new location
 self.drunks[drunk] = currentLocation.move(xDist, yDist)

 def getLoc(self, drunk):
 if drunk not in self.drunks:
 raise ValueError('Drunk not in field')
 return self.drunks[drunk]

class Drunk(object):
 def __init__(self, name = None):
 """Assumes name is a str"""
 self.name = name

 def __str__(self):
 if self != None:
 return self.name
 return 'Anonymous'

class UsualDrunk(Drunk):
 def takeStep(self):
 stepChoices = [(0.0,1.0), (0.0,-1.0), (1.0, 0.0), (-1.0, 0.0)]
 return random.choice(stepChoices)

 Chapter 13. Random Walks and More About Data Vizualization 183

The parameter dClass of simWalks is of type class, and is used in the first line of
code to create a Drunk of the appropriate subclass. Later, when drunk.takeStep
is invoked from Field.moveDrunk, the method from the appropriate subclass is
automatically selected.

The function drunkTest also has a parameter, dClass, of type class. It is used
twice, once in the call to simWalks and once in the first print statement. In the
print statement, the built-in class attribute __name__ is used to get a string
with the name of the class. The function drunkTest calculates the coefficient of
variation of the distance from the origin using the CV function defined in Figure
12.7.

Figure 13.4 The drunkard’s walk (with a bug)

def walk(f, d, numSteps):
 """Assumes: f a Field, d a Drunk in f, and numSteps an int >= 0.
 Moves d numSteps times, and returns the difference between
 the final location and the location at the start of the walk."""
 start = f.getLoc(d)
 for s in range(numSteps):
 f.moveDrunk(d)
 return start.distFrom(f.getLoc(d))

def simWalks(numSteps, numTrials, dClass):
 """Assumes numSteps an int >= 0, numTrials an int > 0,
 dClass a subclass of Drunk
 Simulates numTrials walks of numSteps steps each.
 Returns a list of the final distances for each trial"""
 Homer = dClass()
 origin = Location(0.0, 0.0)
 distances = []
 for t in range(numTrials):
 f = Field()
 f.addDrunk(Homer, origin)
 distances.append(walk(f, Homer, numTrials))
 return distances

def drunkTest(walkLengths, numTrials, dClass):
 """Assumes walkLengths a sequence of ints >= 0
 numTrials an int > 0, dClass a subclass of Drunk
 For each number of steps in walkLengths, runs simWalks with
 numTrials walks and prints results"""
 for numSteps in walkLengths:
 distances = simWalks(numSteps, numTrials, dClass)
 print dClass.__name__, 'random walk of', numSteps, 'steps'
 print ' Mean =', sum(distances)/len(distances),\
 'CV =', CV(distances)
 print ' Max =', max(distances), 'Min =', min(distances)

184 Chapter 13. Random Walks and More About Data Vizualization

When we executed drunkTest((10, 100, 1000, 10000), 100, UsualDrunk), it
printed

UsualDrunk random walk of 10 steps
 Mean = 9.10300189235 CV = 0.493919383186
 Max = 23.4093998214 Min = 1.41421356237
UsualDrunk random walk of 100 steps
 Mean = 9.72504983765 CV = 0.583886747239
 Max = 21.5406592285 Min = 0.0
UsualDrunk random walk of 1000 steps
 Mean = 9.42444322989 CV = 0.492682758402
 Max = 21.0237960416 Min = 0.0
UsualDrunk random walk of 10000 steps
 Mean = 9.27206514705 CV = 0.540211143752
 Max = 24.6981780705 Min = 0.0

This is surprising, given the intuition we developed earlier that the mean
distance should grow with the number of steps. It could mean that our intuition
is wrong, or it could mean that our simulation is buggy, or both.

The first thing to do at this point is to run the simulation on values for which we
already think we know the answer, and make sure that what the simulation
produces matches the expected result. Let’s try walks of zero steps (for which
the mean, minimum and maximum distances from the origin should all be 0)
and one step (for which the mean, minimum and maximum distances from the
origin should all be 1).

When we ran drunkTest((0,1), 100, UsualDrunk), we got the highly suspect
result

UsualDrunk random walk of 0 steps
 Mean = 9.10300189235 CV = 0.493919383186
 Max = 23.4093998214 Min = 1.41421356237
UsualDrunk random walk of 1 steps
 Mean = 9.72504983765 CV = 0.583886747239
 Max = 21.5406592285 Min = 0.0

How on earth can the mean distance of a walk of zero steps be over 9?

We must have at least one bug in our simulation. After some investigation, the
problem is clear. In simWalks, the call walk(f, homer, numTrials) should have
been walk(f, homer, numSteps). The moral here is an important one: Always
bring some skepticism to bear when looking at the results of a simulation. Ask
if the results are plausible, and “smoke test”79 the simulation on parameters for
which you have a strong intuition about what the results should be.

79 In the 19th century, it became standard practice for plumbers to test closed systems of
pipes for leaks by filling the system with smoke. Later, electronic engineers adopted the
term to cover the very first test of a piece of electronics—turning on the power and
looking for smoke. Still later, software developers starting using the term for a quick test
to see if a program did anything useful.

 Chapter 13. Random Walks and More About Data Vizualization 185

When the corrected version of the simulation is run on our two simple cases, it
yields exactly the expected answers:

UsualDrunk random walk of 0 steps
 Mean = 0.0 CV = nan80
 Max = 0.0 Min = 0.0
UsualDrunk random walk of 1 steps
 Mean = 1.0 CV = 0.0
 Max = 1.0 Min = 1.0

When run on longer walks it printed

UsualDrunk random walk of 10 steps
 Mean = 2.97977767074 CV = 0.497873216438
 Max = 6.0 Min = 0.0
UsualDrunk random walk of 100 steps
 Mean = 9.34012695549 CV = 0.481221153556
 Max = 23.4093998214 Min = 1.41421356237
UsualDrunk random walk of 1000 steps
 Mean = 28.6328252832 CV = 0.510288443239
 Max = 70.2139587262 Min = 3.16227766017
UsualDrunk random walk of 10000 steps
 Mean = 85.9223793386 CV = 0.516182207636
 Max = 256.007812381 Min = 17.7200451467

As anticipated, the average distance from the origin grows with the number of
steps.

Now let’s look at a plot of the mean distances from the origin. To give a sense of
how fast the distance is growing, we have placed on the plot a line showing the
square root of the number of steps (and increased the number of steps to
1,000,000).81

Does this plot provide any
information about the expected
final location of a drunk? It
does tell us that on average
the drunk will be somewhere
on a circle with its center at
the origin and with a radius
equal to the expected distance
from the origin. However, it
tells us very little about where
we might actually find the
drunk at the end of any
particular walk. We return to
this topic later in this chapter.

80 Since the mean was zero, the coefficient of variation is undefined. Hence our
implementation of CV returned the special “not a number” floating point value.

81 The plot showing the square root of the number of steps versus the distance from the
origin is a straight line because we used a logarithmic scale on both axes.

186 Chapter 13. Random Walks and More About Data Vizualization

13.2 Biased Random Walks

Now that we have a working simulation, we can start modifying it to investigate
other kinds of random walks. Suppose, for example, that we want to consider
the behavior of a drunken farmer in the northern hemisphere who hates the
cold, and even in his drunken stupor is able to move twice as fast when his
random movements take him in a southward direction. Or maybe a phototropic
drunk who always moves towards the sun (east in the morning and west in the
afternoon). These are all examples of biased random walks. The walk is still
stochastic, but there is a bias in the outcome.

Figure 13.5 defines two additional subclasses of Drunk. In each case the
specialization involves choosing an appropriate value for stepChoices. The
function simAll iterates over a sequence of subclasses of Drunk to generate
information about how each kind behaves.

Figure 13.5 Subclasses of Drunk base class

When we ran simAll((UsualDrunk, ColdDrunk, EWDrunk), (100, 1000), 10) it
printed

UsualDrunk random walk of 100 steps
 Mean = 8.37073251526 CV = 0.482770539323
 Max = 14.7648230602 Min = 1.41421356237
UsualDrunk random walk of 1000 steps
 Mean = 21.0385788624 CV = 0.5489414497
 Max = 36.6878726557 Min = 3.16227766017
ColdDrunk random walk of 100 steps
 Mean = 23.9034750714 CV = 0.401318542296
 Max = 37.1214223865 Min = 5.83095189485
ColdDrunk random walk of 1000 steps
 Mean = 238.833279891 CV = 0.125076661085
 Max = 288.140590684 Min = 182.024723595
EWDrunk random walk of 100 steps
 Mean = 8.6 CV = 0.58879018145
 Max = 18.0 Min = 0.0
EWDrunk random walk of 1000 steps
 Mean = 27.0 CV = 0.726719143346
 Max = 74.0 Min = 2.0

class ColdDrunk(Drunk):
 def takeStep(self):
 stepChoices = [(0.0,1.0), (0.0,-2.0), (1.0, 0.0), (-1.0, 0.0)]
 return random.choice(stepChoices)

class EWDrunk(Drunk):
 def takeStep(self):
 stepChoices = [(1.0, 0.0), (-1.0, 0.0)]
 return random.choice(stepChoices)

def simAll(drunkKinds, walkLengths, numTrials):
 for dClass in drunkKinds:
 drunkTest(walkLengths, numTrials, dClass)

 Chapter 13. Random Walks and More About Data Vizualization 187

This is quite a bit of output to digest. It does appear that our heat-seeking
drunk moves away from the origin faster than the other two kinds of drunk.
However, it is not easy to digest all of the information in this output.

It is once again time to move away from textual output and start using plots.

Since we are showing a number of different kinds of drunks on the same plot,
we will associate a distinct style with each type of drunk so that it is easy to
differentiate among them. The style will have three aspects:

• The color of the line and points,

• The shape of the marker used to indicate a point, and

• The style of a line, e.g., solid or dotted.

The class styleIterator, in Figure 13.6, rotates through a sequence of styles
defined by the argument to styleIterator.__init__.

Figure 13.6 Iterating over styles

The code in Figure 13.7 is similar in structure to that in Figure 13.4. The print
statements in simDrunk and simAll contribute nothing to the result of the
simulation. They are there because this simulation can take a rather long time
to complete, and printing an occasional message indicating that progress is
being made can be quite reassuring to a user who might be wondering if the
program is actually making progress. (Recall that stdDev was defined in Figure
12.4.)

class styleIterator(object):
 def __init__(self, styles):
 self.index = 0
 self.styles = styles

 def nextStyle(self):
 result = self.styles[self.index]
 if self.index == len(self.styles) - 1:
 self.index = 0
 else:
 self.index += 1
 return result

188 Chapter 13. Random Walks and More About Data Vizualization

Figure 13.7 Plotting the walks of different drunks

The code in Figure 13.7 produces the
plot on the right. The usual drunk
and the phototropic drunk (EWDrunk)
seem to be moving away from the
origin at approximately the same
pace, but the heat-seeking drunk
(ColdDrunk) seems to be moving away
orders of magnitude faster. This is
interesting given that on average he
is only moving 25% faster (he takes,
on average, five steps for every four
taken by the others). Also, the
coefficients of variation show quite a
spread, but the plot doesn’t shed any
light on why.

Let’s construct a different plot, that may help us get more insight into the
behavior of these three classes. Instead of plotting the change in distance over
time for an increasing number of steps, the code in Figure 13.8 plots the
distribution of final locations for a single number of steps.

def simDrunk(numTrials, dClass, walkLengths):
 meanDistances = []
 cvDistances = []
 for numSteps in walkLengths:
 print 'Starting simulation of', numSteps, 'steps'
 trials = simWalks(numSteps, numTrials, dClass)
 mean = sum(trials)/float(len(trials))
 meanDistances.append(mean)
 cvDistances.append(stdDev(trials)/mean)
 return (meanDistances, cvDistances)

def simAll(drunkKinds, walkLengths, numTrials):
 styleChoice = styleIterator(('b-', 'r:', 'm-.'))
 for dClass in drunkKinds:
 curStyle = styleChoice.nextStyle()
 print 'Starting simulation of', dClass.__name__
 means, cvs = simDrunk(numTrials, dClass, walkLengths)
 cvMean = sum(cvs)/float(len(cvs))
 pylab.plot(walkLengths, means, curStyle,
 label = dClass.__name__ +
 '(CV = ' + str(round(cvMean, 4)) + ')')
 pylab.title('Mean Distance from Origin ('
 + str(numTrials) + ' trials)')
 pylab.xlabel('Number of Steps')
 pylab.ylabel('Distance from Origin')
 pylab.legend(loc = 'best')
 pylab.semilogx()
 pylab.semilogy()

simAll((UsualDrunk, ColdDrunk, EWDrunk), (10,100,1000,10000,100000), 100)

 Chapter 13. Random Walks and More About Data Vizualization 189

Figure 13.8 Plotting final locations

The first thing plotLocs does is initialize styleChoice with three different styles
of markers. It then uses pylab.plot to place a marker at a location
corresponding to the end of each
trial. The call to pylab.plot sets
the color and shape of the marker
to be plotted using the values
returned by the iterator
styleIterator. The call
plotLocs((UsualDrunk, ColdDrunk,

EWDrunk), 100, 200) produces the
plot on the right. The first thing to
say is that our drunks seem to be
behaving as advertised. The
EWDrunk ends up on the x-axis, the
ColdDrunk seem to make progress
southwards, and the UsualDrunk
seem to have wandered aimlessly.

def getFinalLocs(numSteps, numTrials, dClass):
 locs = []
 d = dClass()
 origin = Location(0, 0)
 for t in range(numTrials):
 f = Field()
 f.addDrunk(d, origin)
 for s in range(numSteps):
 f.moveDrunk(d)
 locs.append(f.getLoc(d))
 return locs

def plotLocs(drunkKinds, numSteps, numTrials):
 styleChoice = styleIterator(('b+', 'r^', 'mo'))
 for dClass in drunkKinds:
 locs = getFinalLocs(numSteps, numTrials, dClass)
 xVals, yVals = [], []
 for l in locs:
 xVals.append(l.getX())
 yVals.append(l.getY())
 meanX = sum(xVals)/float(len(xVals))
 meanY = sum(yVals)/float(len(yVals))
 curStyle = styleChoice.nextStyle()
 pylab.plot(xVals, yVals, curStyle,
 label = dClass.__name__ + ' Mean loc. = <'
 + str(meanX) + ', ' + str(meanY) + '>')
 pylab.title('Location at End of Walks ('
 + str(numSteps) + ' steps)')
 pylab.xlabel('Steps East/West of Origin')
 pylab.ylabel('Steps North/South of Origin')
 pylab.legend(loc = 'lower left', numpoints = 1)

plotLocs((UsualDrunk, ColdDrunk, EWDrunk), 100, 200)

190 Chapter 13. Random Walks and More About Data Vizualization

But why do there appear to be far fewer circle markers than triangle or +
markers? Because many of the EWDrunk’s walks ended up at the same place.
This is not surprising, given the
small number of possible endpoints
(200) for the EWDrunk. Also the circle
markers seem to be fairly uniformly

spaced across the x-axis, which is

consistent with the relatively high
coefficient of variation that we
noticed earlier.

It is still not obvious, at least to us,
why the ColdDrunk manages, on
average, to get so much further
from the origin than the other kinds
of drunks. Perhaps it’s time to look
not at the average endpoint of many walks, but at the path followed by a single
walk. The code in Figure 13.9 produces the plot on the right.

Figure 13.9 Tracing walks

Since the walk is 200 steps long and the EWDrunk’s walk visits fewer than 30
different locations, it’s clear that he is spending a lot of time retracing his steps.
The same kind of observation holds for the UsualDrunk. In contrast, while the
ColdDrunk is not exactly making a beeline for Florida, he is managing to spend
relatively less time visiting places he has already been.

def traceWalk(drunkKinds, numSteps):
 styleChoice = styleIterator(('b+', 'r^', 'mo'))
 f = Field()
 for dClass in drunkKinds:
 d = dClass()
 f.addDrunk(d, Location(0, 0))
 locs = []
 for s in range(numSteps):
 f.moveDrunk(d)
 locs.append(f.getLoc(d))
 xVals = []
 yVals = []
 for l in locs:
 xVals.append(l.getX())
 yVals.append(l.getY())
 curStyle = styleChoice.nextStyle()
 pylab.plot(xVals, yVals, curStyle,
 label = dClass.__name__)
 pylab.title('Spots Visited on Walk ('
 + str(numSteps) + ' steps)')
 pylab.xlabel('Steps East/West of Origin')
 pylab.ylabel('Steps North/South of Origin')
 pylab.legend(loc = 'best')

traceWalk((UsualDrunk, ColdDrunk, EWDrunk), 200)

 Chapter 13. Random Walks and More About Data Vizualization 191

None of these simulations is interesting in its own right. (In the next chapter,
we will look at more intrinsically interesting simulations.) But there are some
points worth taking away:

• Initially we divided our simulation code into four separate chunks. Three
of them were classes (Location, Field, and Drunk) corresponding to
abstract data types that appeared in the informal description of the
problem. The fourth chunk was a group of functions that used these
classes to perform a simple simulation.

• We then elaborated Drunk into a hierarchy of classes so that we could
observe different kinds of biased random walks. The code for Location
and Field remained untouched, but the simulation code was changed to
iterate through the different subclasses of Drunk. In doing this, we took
advantage of the fact that a class is itself an object, and therefore can be
passed as an argument.

• Finally, we made a series of incremental changes to the simulation that
did not involve any changes to the classes representing the abstract
types. These changes mostly involved introducing plots designed to
provide insight into the different walks. This is very typical of the way in
which simulations are developed. One gets the basic simulation working
first, and then starts adding features.

13.3 Treacherous Fields

Did you ever play the board game known as Chutes and Ladders in the U.S. and
Snakes and Ladders in the UK? This children’s game originated in India
(perhaps in the 2nd century BC), where it was called Moksha-patamu. Landing
on a square representing virtue (e.g., generosity) sent a player up a ladder to a
higher tier of life. Landing on a square representing evil (e.g., lust), sent a player
back to a lower tier of life.

We can easily add this kind of feature to our random walks by creating a Field
with wormholes,82 as shown in Figure 13.10, and replacing the second line of
code in the function traceWalk by the line of code
f = oddField(1000, 100, 200).

82 This kind of wormhole is a hypothetical concept invented by theoretical physicists. It
provides shortcuts through the time/space continuum.

192 Chapter 13. Random Walks and More About Data Vizualization

Figure 13.10 Fields with strange properties

When we ran traceWalk((UsualDrunk, ColdDrunk, EWDrunk), 500), we got the
rather odd-looking plot

Clearly changing the properties of the field has had a dramatic effect. However,
that is not the point of this example. The main points are:

• Because of the way we structured our code, it was easy to accommodate
a significant change to the situation being modeled. Just as we could
add different kinds of drunks without touching Field, we can add a new
kind of Field without touching Drunk or any of its subclasses. (Had we
been sufficiently prescient to make the field a parameter of traceWalk, we
wouldn’t have had to change traceWalk either.)

• While it would have been feasible to analytically derive different kinds of
information about the expected behavior of the simple random walk and
even the biased random walks, it would have been challenging to do so
once the wormholes were introduced. Yet it was exceedingly simple to
change the simulation to model the new situation. Simulation models
often enjoy this advantage relative to analytic models.

class oddField(Field):
 def __init__(self, numHoles, xRange, yRange):
 Field.__init__(self)
 self.wormholes = {}
 for w in range(numHoles):
 x = random.randint(-xRange, xRange)
 y = random.randint(-yRange, yRange)
 newX = random.randint(-xRange, xRange)
 newY = random.randint(-yRange, yRange)
 newLoc = Location(newX, newY)
 self.wormholes[(x, y)] = newLoc

 def moveDrunk(self, drunk):
 Field.moveDrunk(self, drunk)
 x = self.drunks[drunk].getX()
 y = self.drunks[drunk].getY()
 if (x, y) in self.wormholes:
 self.drunks[drunk] = self.wormholes[(x, y)]

14 MONTE CARLO SIMULATION

In the previous two chapters we looked at different ways of using randomness in
computations. Many of the examples we presented fall into the class of
computation known as Monte Carlo simulation.

Stanislaw Ulam and Nicholas Metropolis coined the term Monte Carlo
simulation in 1949 in homage to the games of chance played in the casino in the
Principality of Monaco. Ulam, who is best known for designing the hydrogen
bomb with Edward Teller, described the invention of the model as follows:

The first thoughts and attempts I made to practice [the Monte Carlo
Method] were suggested by a question which occurred to me in 1946 as I
was convalescing from an illness and playing solitaires. The question was
what are the chances that a Canfield solitaire laid out with 52 cards will
come out successfully? After spending a lot of time trying to estimate them
by pure combinatorial calculations, I wondered whether a more practical
method than “abstract thinking” might not be to lay it out say one hundred
times and simply observe and count the number of successful plays. This
was already possible to envisage with the beginning of the new era of fast
computers,83 and I immediately thought of problems of neutron diffusion
and other questions of mathematical physics, and more generally how to
change processes described by certain differential equations into an
equivalent form interpretable as a succession of random operations. Later
… [in 1946, I] described the idea to John von Neumann, and we began to
plan actual calculations.84

The technique was effectively used during the Manhattan Project to predict what
would happen during a nuclear fission reaction, but did not really take off until
the 1950s when computers became both more common and more powerful.

Ulam was not the first mathematician to think about using the tools of
probability to understand a game of chance. The history of probability is
intimately connected to the history of gambling. It is the existence of
uncertainty that makes gambling possible. And the existence of gambling
provoked the development of much of the mathematics needed to reason about
uncertainty. Contributions to the foundations of probability theory by Cardano,
Pascal, Fermat, Bernoulli, de Moivre, and Laplace were all motivated by a desire
to better understand (and perhaps profit from) games of chance.

83 “Fast” is a relative term. Ulam was probably referring to the ENIAC, which could
perform about 103 additions a second (and weighed more than 25 tons). Today’s
computers perform about 109 additions a second (and weigh maybe 10-3 tons).

84 Eckhardt, Roger (1987). “Stan Ulam, John von Neumann, and the Monte Carlo
method,” Los Alamos Science, Special Issue (15), 131-137.

194 Chapter 14. Monte Carlo Simulation

14.1 Pascal’s Problem

Most of the early work on probability theory revolved around games using dice.85
Reputedly, Pascal’s interest in the field that came to be known as probability
theory began when a friend asked him whether or not it would be profitable to
bet that within twenty-four rolls of a pair of dice he would roll a double six. This
was considered a hard problem in the mid-17th century. Pascal and Fermat, two
pretty smart guys, exchanged a number of letters about how to resolve the
issue, but it now seems like an easy question to answer:

• On the first roll the probability of rolling a six on each die is 1/6, so the
probability of rolling a six with both dice is 1/36.

• Therefore, the probability of not rolling a double six on the first roll is
1 - 1/36 = 35/36.

• Therefore the probability of not rolling a double six twenty-four
consecutive times is (35/36)24, nearly 0.51, and therefore the probability of
rolling a double six is 1 - (35/36)24, about 0.49. In the long run it would not
be profitable to bet on rolling a double six within twenty-four rolls. 86

Just to be safe, let’s write a little program to simulate Pascal’s friend’s game and
confirm that we get the same answer as Pascal.

Figure 14.1 Checking Pascal's analysis

85 Archeological excavations suggest that dice are the human race’s oldest gambling
implement. The oldest known “modern” six-sided die dates to about 600 BC, but
Egyptian tombs dating to two millennia before the birth of Christ contain artifacts
resembling dice. Typically, these early dice were made from animal bones; in gambling
circles people still use the phrase “rolling the bones.”

86 As with our earlier analyses, this is true only under the assumption that each die is
fair, i.e., the outcome of a roll is truly random and each of the six outcomes is equally
probable. This is not always to be taken for granted. Excavations of Pompeii discovered
“loaded” dice in which small lead weights had been inserted to bias the outcome of a roll.
More recently, an online vendor’s site said, “Are you unusually unlucky when it comes to
rolling dice? Investing in a pair of dice that's more, uh, reliable might be just what you
need.”

def rollDie():
 return random.choice([1,2,3,4,5,6])

def checkPascal(numTrials):
 """Assumes numTrials an int > 0
 Prints an estimate of the probability of winning"""
 numWins = 0.0
 for i in range(numTrials):
 for j in range(24):
 d1 = rollDie()
 d2 = rollDie()
 if d1 == 6 and d2 == 6:
 numWins += 1
 break
 print 'Probability of winning =', numWins/numTrials

 Chapter 14. Monte Carlo Simulation 195

When run the first time, the call checkPascal(1000000) printed

Probability of winning = 0.491204

This is indeed quite close to 1 - (35/36)24; typing 1 - (35.0/36.0)**24 into the
Python shell produces 0.49140387613090342.

14.2 Pass or Don’t Pass?

Not all questions about games of chance are so easily answered. In the game
craps, the shooter (the person who rolls the dice) chooses between making a
“pass line” or a “don’t pass line” bet.

• Pass Line: Shooter wins if the first roll (called coming out) is a “natural”
(7 or 11) and loses if it is “craps” (2, 3, or 12). If some other number is
rolled, that number becomes the “point” and the shooter keeps rolling. If
the shooter rolls the point before rolling a 7, the shooter wins. Otherwise
the shooter loses.

• Don’t Pass Line: Shooter loses if the first roll is 7 or 11, wins if it is 2 or 3,
and ties (a “push” in gambling jargon) if it is 12. If some other number is
rolled, that number becomes the point and shooter keeps rolling. If the
shooter rolls a 7 before rolling the point, the shooter wins. Otherwise the
shooter loses.

Is one of these a better bet than the other? Is either a good bet? It is possible to
analytically derive the answer to these questions, but it seems easier (at least to
us) to write a program that simulates a craps game, and see what happens.

Figure 14.2 contains the heart of such a simulation. The values of the instance
variables of an instance of class CrapsGame records the performance of the pass
and don’t pass lines since the start of the game. The observer methods
passResults and dpResults return these values. The method playHand
simulates one “hand”87 of a game. The bulk of the code in playHand is merely an
algorithmic description of the rules stated above. Notice that there is a loop in
the else clause corresponding to what happens after a point is established. It is
exited using a break statement when either a seven or the point is rolled.

87 A hand starts when the shooter is “coming out,” the term used in craps for a roll before
a point is established. A hand ends when the shooter has won or lost his or her initial
bet.

196 Chapter 14. Monte Carlo Simulation

Figure 14.2 CrapsGame class

Figure 14.3 contains a function that uses class CrapsGame. Its structure is
typical of many simulation programs:

1. It runs multiple games (think of each game as analogous to a trial in our
earlier simulations) and accumulates the results. Each game includes
multiple hands, so there is a nested loop.

2. It then produces and stores statistics for each game.

3. Finally it produces and outputs summary statistics. In this case, it
prints the expected return on investment (ROI) or each kind of betting
line and the standard deviation of that ROI.

Return on investment is defined by the equation

!"# =
!"#$!"#$!"#$%&'$"& − !"#$!" !"#$%&'$"&

!"#$!" !"#$%&'$"&

Since the pass and don’t pass lines pay even money (if you bet $1 and win, you
gain is $1), the ROI is

!"# =
!"#$%& !" !"#$ − !"#$%& !" !"##$#

!"#$%& !" !"#$

class CrapsGame(object):
 def __init__(self):
 self.passWins, self.passLosses = (0,0)
 self.dpWins, self.dpLosses, self.dpPushes = (0,0,0)

 def playHand(self):
 throw = rollDie() + rollDie()
 if throw == 7 or throw == 11:
 self.passWins += 1
 self.dpLosses += 1
 elif throw == 2 or throw == 3 or throw == 12:
 self.passLosses += 1
 if throw == 12:
 self.dpPushes += 1
 else:
 self.dpWins += 1
 else:
 point = throw
 while True:
 throw = rollDie() + rollDie()
 if throw == point:
 self.passWins += 1
 self.dpLosses += 1
 break
 elif throw == 7:
 self.passLosses += 1
 self.dpWins += 1
 break

 def passResults(self):
 return (self.passWins, self.passLosses)

 def dpResults(self):
 return (self.dpWins, self.dpLosses, self.dpPushes)

 Chapter 14. Monte Carlo Simulation 197

For example, if you made 100 pass line bets and won half of them, your ROI
would be

50 − 50
100

= 0

If you bet the don’t pass line 100 times and had 25 wins and 5 pushes the ROI
would be

25 − 70
100

=
−45
100

= −4.5

Note that in crapsSim we use xrange rather than range in the for loops in
anticipation of running large simulations. Recall that in Python 2.7 range(n)
creates a sequence with n elements whereas xrange(n) generates the values only
as they are needed by the for loop.

Figure 14.3 Simulating a craps game

 Let’s run our craps simulation and see what happens:88

>>> crapsSim(20, 10)
Pass: Mean ROI = -7.0% Std. Dev. = 23.6854%
Don't pass: Mean ROI = 4.0% Std Dev = 23.5372%

88 Keep in mind that since these programs incorporate randomness, you should not
expect to get identical results if you run the code yourself. More importantly, do not
make any bets until you have read the entire section.

def crapsSim(handsPerGame, numGames):
 """Assumes handsPerGame and numGames are ints > 0
 Play numGames games of handsPerGame hands, and print results"""
 games = []

 #Play numGames games
 for t in xrange(numGames):
 c = CrapsGame()
 for i in xrange(handsPerGame):
 c.playHand()
 games.append(c)

 #Produce statistics for each game
 pROIPerGame, dpROIPerGame = [], []
 for g in games:
 wins, losses = g.passResults()
 pROIPerGame.append((wins - losses)/float(handsPerGame))
 wins, losses, pushes = g.dpResults()
 dpROIPerGame.append((wins - losses)/float(handsPerGame))

 #Produce and print summary statistics
 meanROI = str(round((100.0*sum(pROIPerGame)/numGames), 4)) + '%'
 sigma = str(round(100.0*stdDev(pROIPerGame), 4)) + '%'
 print 'Pass:', 'Mean ROI =', meanROI, 'Std. Dev. =', sigma
 meanROI = str(round((100.0*sum(dpROIPerGame)/numGames), 4)) + '%'
 sigma = str(round(100.0*stdDev(dpROIPerGame), 4)) + '%'
 print 'Don\'t pass:','Mean ROI =', meanROI, 'Std Dev =', sigma

198 Chapter 14. Monte Carlo Simulation

It looks as if it would be a good idea to avoid the pass line—where the expected
return on investment is a 7% loss. But the don’t pass line looks like a pretty
good bet. Or does it?

Looking at the standard deviations, it seems that perhaps the don’t pass line is
not such a good bet after all. Recall that under the assumption that the
distribution is normal, the 95% confidence interval is encompassed by two
standard deviations on either side of the mean. For the don’t pass line, the 95%
confidence interval is [4.0 – 2*23.5372, 4.0 + 2*23.5372]—roughly [-43%, +51%]. That

certainly doesn’t suggest that betting the don’t pass line is a sure thing.

Time to put the law of large numbers to work.

>>> crapsSim(10000000, 10)
Pass: Mean ROI = -1.4216% Std. Dev. = 0.0322%
Don't pass: Mean ROI = -1.3579% Std Dev = 0.0334%

We can now be pretty safe in assuming that neither of these is a good bet. It
looks as if the don’t pass line may be slightly less bad. However, because the
95% confidence interval [-1.486, -1.3572] for the pass line overlaps with that for the
don’t pass line [-1.4247, -1.2911], we cannot say with 95% confidence that the don’t
pass line is a better bet.

Suppose that instead of increasing the number of hands per game, we increased
the number of games, e.g., by making the call crapsSim(20, 1000000). As
shown below, the mean of the estimated ROIs are close to the actual ROIs.
However, the standard deviations are still be high—indicating that the outcome
of a single game of 20 hands is highly uncertain.

>>>crapsSim(20, 10000000)
Pass: Mean ROI = -1.4133% Std. Dev. = 22.3571%
Don't pass: Mean ROI = -1.3649% Std Dev = 22.0446%

One of the nice things about simulations is that they make it easy to perform
“what if” experiments. For example, what if a player could sneak in a pair of
cheater’s dice that favored 5 over 2 (5 and 2 are on the opposite sides of a die)?
To test this out, all we have to do is replace the implementation of rollDie by
something like

def rollDie():
 return random.choice([1,1,2,3,3,4,4,5,5,5,6,6])

This relatively small change in the die makes a dramatic difference in the odds,

>>> crapsSim(1000000, 10)
Pass: Mean ROI = 6.7066% Std. Dev. = 0.0208%
Don't pass: Mean ROI = -9.4824% Std Dev = 0.02%

No wonder casinos go to a lot of trouble to make sure that players don’t
introduce their own dice into the game!

 Chapter 14. Monte Carlo Simulation 199

14.3 Using Table Lookup to Improve Performance

You might not want to try running crapsSim(100000000, 10) at home. It takes a
long time to complete on most computers. That raises the question of whether
there is a simple way to speed up the simulation.

The complexity of crapsSim is O(playHand)*handsPerGame*numGames. The running

time of playHand depends upon the number of times the loop in it is executed.
In principle, the loop could be executed an unbounded number of times since
there is no bound on how long it could take to roll either a seven or the point. In
practice, of course, we have every reason to believe it will always terminate.

Notice, however, that the result of a call to playHand does not depend on how
many times the loop is executed, but only on which exit condition is reached.
For each possible point, one can easily calculate the probability of rolling that
point before rolling a seven. For example, using a pair of dice one can roll a 4 in
three different ways: <1, 3>, <3, 1>, and <2, 2>; and one can roll a 7 in six different
ways: <1, 6>, <6, 1>, <2, 5>, <5, 2>, <3, 4>, and <4, 3>. Therefore, exiting the loop by
rolling a 7 is twice as likely as exiting the loop by rolling a 4.

Figure 14.4 contains an implementation of playHand that exploits this thinking.
We have pre-computed the probability of making the point before rolling a 7 for
each possible value of the point, and stored those values in a dictionary.
Suppose, for example, that the point is 8. The shooter continues to roll until he
either rolls the point or rolls craps. There are five ways of rolling an 8 (<6,2>,
<2,6>, <5,3>, <3,5>, and <4,4>) and six ways of rolling a 7. So, the value for the
dictionary key 8 is the value of the expression 5/11.0. Having this table allows
us to replace the inner loop, which contained an unbounded number of rolls,
with a test against one call to random.random. The asymptotic complexity of this
version of playHand is O(1).

The idea of replacing computation by table lookup has broad applicability and
is frequently used when speed is an issue. Table lookup is an example of the
general idea of trading time for space. We saw another example of this
technique in our analysis of hashing: the larger the table, the fewer the
collisions, and the faster the average lookup. In this case, the table is small, so
the space cost is negligible.

200 Chapter 14. Monte Carlo Simulation

Figure 14.4 Using table lookup to improve performance

14.4 Finding π

It is easy to see how Monte Carlo simulation is useful for tackling problems in
which nondeterminism plays a role. Interestingly, however, Monte Carlo
simulation (and randomized algorithms in general) can be used to solve
problems that are not inherently stochastic, i.e., for which there is no
uncertainty about outcomes.

Consider π.

For thousands of years, people have known that there is a constant, called π (pi)
since the 18th century, such that the circumference of a circle is equal to
π*diameter and the area of the circle equal to π*radius2. What they did not know

was the value of this constant.

One of the earliest estimates, 4*(8/9)2 = 3.16, can found in the Egyptian Rhind

Papyrus, circa 1650 BC. More than a thousand years later, the Old Testament
implied a different value for π when giving the specifications of one of King
Solomon’s construction projects,

And he made a molten sea, ten cubits from the one brim to the other: it was
round all about, and his height was five cubits: and a line of thirty cubits did
compass it round about.89

Solving for π, 10π = 30, so π = 3. Perhaps the Bible is simply wrong, or perhaps
the molten sea wasn’t perfectly circular, or perhaps the circumference was

89King James Bible, 1 Kings 7.23.

def playHand(self):
 #An alternative, faster, implementation of playHand
 pointsDict = {4:1/3.0, 5:2/5.0, 6:5/11.0, 8:5/11.0,
 9:2/5.0, 10:1/3.0}
 throw = rollDie() + rollDie()
 if throw == 7 or throw == 11:
 self.passWins += 1
 self.dpLosses += 1
 elif throw == 2 or throw == 3 or throw == 12:
 self.passLosses += 1
 if throw == 12:
 self.dpPushes += 1
 else:
 self.dpWins += 1
 else:
 if random.random() <= pointsDict[throw]: # point before 7
 self.passWins += 1
 self.dpLosses += 1
 else: # 7 before point
 self.passLosses += 1
 self.dpWins += 1

 Chapter 14. Monte Carlo Simulation 201

measured from the outside of the wall and the diameter from the inside, or
perhaps it’s just poetic license. We leave it to the reader to decide.

Archimedes of Syracuse (287-212 BC) derived upper and lower bounds on the
value of π by using a high-degree polygon to approximate a circular shape.
Using a polygon with 96 sides, he concluded that 223/71 < π < 22/7. Giving upper
and lower bounds was a rather sophisticated approach for the time. Also, if we
take his best estimate as the average of his two bounds we obtain 3.1418, an
error of about 0.0002. Not bad!

Long before computers were invented, the French mathematicians Buffon (1707-
1788) and Laplace (1749-1827) proposed using a stochastic simulation to
estimate the value of π.90 Think about inscribing a circle in a square with sides
of length 2, so that the radius, r, of the circle is of length 1.

By the definition of π, area = πr2. Since r is 1, π = area. But what’s the area of the
circle? Buffon suggested that he could estimate the area of a circle by a
dropping a large number of needles (which he argued would follow a random
path as they fell) in the vicinity of the square. The ratio of the number of
needles with tips lying within the square to the number of needles with tips lying
within the circle could then be used to estimate the area of the circle.

If the locations of the needles are truly random, we know that,

!""#$"% !" !"#!$%
!""#$"% !" !"#$%&

=
!"#! !" !"#!$%
!"#! !" !"#$%&

solving for the area of the circle,

!"#! !" !"#!$% =
!"#! !" !"#$%& ∗ !""#$"% !" !"#!$%

!""#$"% !" !"#$%&

Recall that the area of a 2 by 2 square is 4, so,

!"#! !" !"#!$% =
4 ∗ !""#$"% !" !"#!$%
!""#$"% !" !"#$%&

In general, to estimate the area of some region R

1. Pick an enclosing region, E, such that the area of E is easy to calculate
and R lies completely within E.

2. Pick a set of random points that lie within E.

3. Let F be the fraction of the points that fall within R.

4. Multiply the area of E by F.

90 Buffon proposed the idea first, but there was an error in his formulation that was later
corrected by Laplace.

202 Chapter 14. Monte Carlo Simulation

If you try Buffon’s experiment, you’ll soon realize that the places where the
needles land are not truly random. Moreover, even if you could drop them
randomly, it would take a very large number of needles to get an approximation
of π as good as even the Bible’s. Fortunately, computers can randomly drop
simulated needles at a ferocious rate.

Figure 14.5 contains a program that estimates π using the Buffon-Laplace
method. For simplicity, it considers only those needles that fall in the upper
right-hand quadrant of the square.

The function throwNeedles simulates dropping a needle by first using
random.random to get a pair of positive Cartesian coordinates (x and y values). It
then uses the Pythagorean theorem to compute the hypotenuse of the right
triangle with base x and height y. This is the distance of the tip of the needle
from the origin (the center of the square). Since the radius of the circle is 1, we
know that the needle lies within the circle if and only if the distance from the
origin is no greater than 1. We use this fact to count the number of needles in
the circle.

The function getEst uses throwNeedles to find an estimate of π by dropping
numNeedles needles and averaging the result over numTrials trials.

The function estPi calls getEst with an ever-growing number of needles until
getEst returns an estimate that, with a confidence of 95%, is within precision of
the actual value. It does this by calling throwNeedles with an ever-larger
number of needles, until the standard deviation of the results of numTrials trials
is no larger than precision/2.0. Under the assumption that the errors are
normally distributed, this ensures that 95% of the values lie within precision of
the mean.

 Chapter 14. Monte Carlo Simulation 203

Figure 14.5 Estimating π

When we ran estPi(0.01, 100) it printed

Est. = 3.14844, Std. dev. = 0.04789, Needles = 1000
Est. = 3.13918, Std. dev. = 0.0355, Needles = 2000
Est. = 3.14108, Std. dev. = 0.02713, Needles = 4000
Est. = 3.14143, Std. dev. = 0.0168, Needles = 8000
Est. = 3.14135, Std. dev. = 0.0137, Needles = 16000
Est. = 3.14131, Std. dev. = 0.00848, Needles = 32000
Est. = 3.14117, Std. dev. = 0.00703, Needles = 64000
Est. = 3.14159, Std. dev. = 0.00403, Needles = 128000

As one would expect, the standard deviations decreased monotonically as we
increased the number of samples. In the beginning the estimates of the value of
π also improved steadily. Some were above the true value and some below, but
each increase in numNeedles led to an improved estimate. With 1000 samples per
trial, the simulation’s estimate was already better than those of the Bible and
the Rhind Papyrus.

Curiously, the estimate got worse when the number of needles went from 8,000
to 16,000, since 3.14135 is further from the true value of π than is 3.14143.
However, if we look at the ranges defined by one standard deviation around each
of the means, both ranges contain the true value of π, and the range associated
with the larger sample size is considerably smaller. Even though the estimate
generated with 16,000 samples happens to be further from the actual value of π,
we should have more confidence in its accuracy. This is an extremely important

def throwNeedles(numNeedles):
 inCircle = 0
 for Needles in xrange(1, numNeedles + 1):
 x = random.random()
 y = random.random()
 if (x*x + y*y)**0.5 <= 1.0:
 inCircle += 1
 #Counting needles in one quadrant only, so multiply by 4
 return 4*(inCircle/float(numNeedles))

def getEst(numNeedles, numTrials):
 estimates = []
 for t in range(numTrials):
 piGuess = throwNeedles(numNeedles)
 estimates.append(piGuess)
 sDev = stdDev(estimates)
 curEst = sum(estimates)/len(estimates)
 print 'Est. = ' + str(round(curEst, 5)) +\
 ', Std. dev. = ' + str(round(sDev, 5))\
 + ', Needles = ' + str(numNeedles)
 return (curEst, sDev)

def estPi(precision, numTrials):
 numNeedles = 1000
 sDev = precision
 while sDev >= precision/2.0:
 curEst, sDev = getEst(numNeedles, numTrials)
 numNeedles *= 2
 return curEst

204 Chapter 14. Monte Carlo Simulation

notion. It is not sufficient to produce a good answer. We have to have a valid
reason to be confident that it is in fact a good answer. And when we drop a
large enough number of needles, the small standard deviation gives us reason to
be confident that we have a correct answer. Right?

Not exactly. Having a small standard deviation is a necessary condition for
having confidence in the validity of the result. It is not a sufficient condition.
The notion of a statistically valid conclusion should never be confused with the
notion of a correct conclusion.

Each statistical analysis starts with a set of assumptions. The key assumption
here is that our simulation is an accurate model of reality. Recall that the
design of our Buffon-Laplace simulation started with a little algebra
demonstrating how we could use the ratio of two areas to find the value of π. We
then translated this idea into code that depended upon a little geometry and the
randomness of random.random.

Let’s see what happens if we get any of this wrong. Suppose, for example, we
replace the 4 in the last line of throwNeedles by a 2, and again run
estPi(0.01, 100). This time it prints

Est. = 1.57422, Std. dev. = 0.02394, Needles = 1000
Est. = 1.56959, Std. dev. = 0.01775, Needles = 2000
Est. = 1.57054, Std. dev. = 0.01356, Needles = 4000
Est. = 1.57072, Std. dev. = 0.0084, Needles = 8000
Est. = 1.57068, Std. dev. = 0.00685, Needles = 16000
Est. = 1.57066, Std. dev. = 0.00424, Needles = 32000

The standard deviation for a mere 32,000 needles suggests that we should have a
fair amount of confidence in the estimate. But what does that really mean? It
means that we can be reasonably confident that if we were to draw more
samples from the same distribution, we would get a similar value. It says
nothing about whether or not this value is close to the actual value of π. A
statistically valid conclusion should not be confused with a correct conclusion.

Before believing the results of a simulation, we need to have confidence both
that our conceptual model is correct and that we have correctly implemented
that model. Whenever possible, one should attempt to validate results against
reality. In this case, one could use some other means to compute an
approximation to the area of a circle (e.g., physical measurement) and check
that the computed value of π is at least in the right neighborhood.

14.5 Some Closing Remarks About Simulation Models

For most of the history of science, theorists used mathematical techniques to
construct purely analytical models that could be used to predict the behavior of
a system from a set of parameters and initial conditions. This led to the
development of important mathematical tools ranging from calculus to
probability theory. These tools helped scientists develop a reasonably accurate
understanding of the macroscopic physical world.

 Chapter 14. Monte Carlo Simulation 205

As the 20th century progressed, the limitations of this approach became
increasingly clear. Reasons for this include:

• An increased interest in the social sciences, e.g., economics, led to a
desire to construct good models of systems that were not
mathematically tractable.

• As the systems to be modeled grew increasingly complex, it seemed
easier to successively refine a series of simulation models than to
construct accurate analytic models.

• It is often easier to extract useful intermediate results from a
simulation than from an analytical model, e.g., to play “what if” games.

• The availability of computers made it feasible to run large-scale
simulations. Until the advent of the modern computer in the middle of
the 20th century the utility of simulation was limited by the time
required to perform calculations by hand.

Simulation attempts to build an experimental device, called a model, that will
provide useful information about the possible behaviors of the system being
modeled. It is important to remember that these models, like all models, are
only an approximation of reality. One can never be sure that the actual system
will behave in the way predicted by the model. In fact, one can usually be pretty
confident that the actual system will not behave exactly as predicted by the
model. It is a commonly quoted truism that “all models are wrong, but some are
useful.”91

Simulation models are descriptive, not prescriptive. They tell how a system
works under given conditions; not how to arrange the conditions to make the
system work best. A simulation does not optimize, it merely describes. That is
not to say that simulation cannot be used as part of an optimization process.
For example, simulation is often used as part of a search process in finding an
optimal set of parameter settings.

Simulation models can be classified along three dimensions:

• Deterministic versus stochastic,

• Static versus dynamic, and

• Discrete versus continuous.

The behavior of a deterministic simulation is completely defined by the model.
Rerunning a simulation will not change the outcome. Deterministic simulations
are typically used when the system being modeled is too complex to analyze
analytically, e.g., the performance of a processor chip. Stochastic simulations
incorporate randomness in the model. Multiple runs of the same model may
generate different values. This random element forces us to generate many
outcomes to see the range of possibilities. The question of whether to generate 10
or 1000 or 100,000 outcomes is a statistical question, as discussed earlier.

91 Usually attributed to the statistician George E.P. Box.

206 Chapter 14. Monte Carlo Simulation

In a static model, time plays no essential role. The needle-dropping simulation
used to estimate π in this chapter is an example of a static simulation. In a
dynamic model, time, or some analog, plays an essential role. In the series of
random walks simulated in Chapter 13, the number of steps taken was used as
a surrogate for time.

In a discrete model, the values of pertinent variables are enumerable, e.g., they
are integers. In a continuous model, the values of pertinent variables range
over non-enumerable sets, e.g., the real numbers. Imagine analyzing the flow of
traffic along a highway. We might choose to model each individual car, in which
case we have a discrete model. Alternatively, we might choose to treat traffic as a
flow, where changes in the flow can be described by differential equations. This
leads to a continuous model. In this example, the discrete model more closely
resembles the physical situation (nobody drives half a car, though some cars are
half the size of others), but is more computationally complex than a continuous
one. In practice, models often have both discrete and continuous components.
For example, one might choose to model the flow of blood through the human
body using a discrete model for blood (i.e., modeling individual corpuscles) and a
continuous model for blood pressure.

15 UNDERSTANDING EXPERIMENTAL DATA

This chapter is all about understanding experimental data. We will make
extensive use of plotting to visualize the data, and will return to the topic of
what is and what is not a valid statistical conclusion. We will also talk about
the interplay between physical and computational experiments.

15.1 The Behavior of Springs

Springs are wonderful things. When they are compressed or stretched by some
force, they store energy. When that force is no longer applied they release the
stored energy. This property allows them to smooth the ride in cars, help
mattresses conform to our bodies, retract seat belts, and launch projectiles.

In 1676 the British physicist Robert Hooke formulated Hooke’s law of elasticity:
Ut tensio, sic vis, in English, F = -kx. In other words, the force, F, stored in a
spring is linearly related to the distance, x, the spring has been compressed (or
stretched). (The minus sign indicates that the force exerted by the spring is in
the opposite direction of the displacement.) Hooke’s law holds for a wide variety
of materials and systems, including many biological systems. Of course, it does
not hold for an arbitrarily large force. All springs have an elastic limit, beyond
which the law fails. Those of you who have stretched a Slinky too far know this
all too well.

The constant of proportionality, k, is called the spring constant. If the spring is
stiff (like the ones in the suspension of a car or the limbs of an archer’s bow), k
is large. If the spring is weak, like the spring in a ballpoint pen, k is small.

Knowing the spring constant of a particular spring can be a matter of some
import. The calibrations of both simple scales and atomic force microscopes
depend upon knowing the spring constants of components. The mechanical
behavior of a strand of DNA is related to the force required to compress it. The
force with which a bow launches an arrow is determined by the spring constant
of its limbs. And so on.

208 Chapter 15. Understanding Experimental Data

Generations of physics students have learned to estimate spring constants using
an experimental apparatus similar to that pictured here. The basic idea is to
estimate the force stored in the spring by measuring the displacement caused by
exerting a known force on the spring.

We start with a spring with no weight on it, and measure the distance to the
bottom of the spring from the top of the stand. We then hang a known mass on
the spring, wait for it to stop moving, and again measure the distance from the
bottom of the spring to the top of the stand. The difference between the two
distances then becomes the value of x in Hooke’s law.

We know that the force, F, being exerted on the spring is equal to the mass, m,
multiplied by the acceleration due to gravity, g (9.81 m/s2 is a pretty good
approximation of g on this planet), so we substitute m*g for F. By simple algebra

we know that k = -(m*g)/x.

Suppose, for example, that m = 1kg and x = 0.1m, then

! =
1!" ∗ 9.81!/!!

0.1!
= −

9.81!
0.1!

= −98.1!/!

According to this calculation, it will take 98.1 Newtons92 of force to stretch the
spring one meter.

This would all be well and good if

• We had complete confidence in our ability to conduct this experiment
perfectly. In that case, we could take one measurement, perform the
calculation, and know that we had found k. Unfortunately, experimental
science hardly ever works this way, and

• We could be sure that we were operating below the elastic limit of the
spring.

A more robust experiment is to hang a series of increasingly heavier weights on
the spring, measure the stretch of the spring each time, and plot the results.

92 The Newton, written N, is the standard international unit for measuring force. It is the
amount of force needed to accelerate a mass of one kilogram at a rate of one meter per
second per second. A Slinky, by the way, has a spring constant of approximately 1N/m.

 Chapter 15. Understanding Experimental Data 209

We ran such an experiment, and typed the results into a file named
springData.txt:

Distance (m) Mass (kg)
0.0865 0.1
0.1015 0.15
…
0.4416 0.9
0.4304 0.95
0.437 1.0

The function in Figure 15.1 reads data from a file such as the one we saved, and
returns lists containing the distances and masses.

Figure 15.1 Extracting the data from a file

The function in Figure 15.2 uses getData to extract the experimental data from
the file and then plots it.

Figure 15.2 Plotting the data

def getData(fileName):
 dataFile = open(fileName, 'r')
 distances = []
 masses = []
 discardHeader = dataFile.readline()
 for line in dataFile:
 d, m = line.split(' ')
 distances.append(float(d))
 masses.append(float(m))
 dataFile.close()
 return (masses, distances)

def plotData(inputFile):
 masses, distances = getData(inputFile)
 masses = pylab.array(masses)
 distances = pylab.array(distances)
 forces = masses*9.81
 pylab.plot(forces, distances, 'bo',
 label = 'Measured displacements')
 pylab.title('Measured Displacement of Spring')
 pylab.xlabel('|Force| (Newtons)')
 pylab.ylabel('Distance (meters)')

210 Chapter 15. Understanding Experimental Data

When plotData('springData.txt')
is run, it produces the plot on the
left.

This is not what Hooke’s law
predicts. Hooke’s law tells us that
the distance should increase linearly
with the mass, i.e., the points should
lie on a straight line the slope of
which is determined by the spring
constant. Of course, we know that
when we take real measurements the

experimental data are rarely a perfect match for the theory. Measurement error
is to be expected, so we should expect the points to lie around a line rather than
on it.

Still, it would be nice to see a line that represents our best guess of where the
points would have been if we had no measurement error. The usual way to do
this is to fit a line to the data.

15.1.1 Using Linear Regression to Find a Fit

Whenever we fit any curve (including a line) to data we need some way to decide
which curve is the best fit for the data. This means that we need to define an
objective function that provides a quantitative assessment of how well the
curve fits the data. Once we have such a function, finding the best fit can be
formulated as finding a curve that minimizes (or maximizes) the value of that
function, i.e., as an optimization problem (see Chapters 17 and 18).

The most commonly used objective function is called least squares. Let observed
and predicted be vectors of equal length, where observed contains the measured
points and predicted the corresponding data points on the proposed fit.

The objective function is then defined as:

(!"#$%&$' ! − !"#$%&'#$!)!
!"# !"#$%&$' !!

!!!

Squaring the difference between observed and predicted points makes large
differences between observed and predicted points relatively more important
than small differences. Squaring the difference also discards information about
whether the difference is positive or negative.

How might we go about finding the best least-squares fit? One way to do this
would be to use a successive approximation algorithm similar to the Newton-
Raphson algorithm in Chapter 3. Alternatively, there is an analytic solution that
is usually applicable. But we don’t have to use either, because PyLab provides a
built-in function, polyfit, that finds the best least-squares fit.

 Chapter 15. Understanding Experimental Data 211

The call

pylab.polyfit(observedXVals, observedYVals, n)

finds the coefficients of a polynomial of degree n that provides a best least-
squares fit for the set of points defined by the arrays observedXVals and
observedYVals. For example, the call

pylab.polyfit(observedXVals, observedYVals, 1)

will find a line described by the polynomial y = ax + b, where a is the slope of the
line and b the y-intercept. In this case, the call returns an array with two
floating point values. Similarly, a parabola is described by the quadratic
equation y = ax2 + bx + c. Therefore, the call

pylab.polyfit(observedXVals, observedYVals, 2)

returns an array with three floating point values.

The algorithm used by polyfit is called linear regression. This may seem a bit
confusing, since we can use it to fit curves other than lines. The method is
linear in the sense that the value of the dependent variable is a linear function of
the independent variables and the coefficients found by the regression. For
example, when we fit a quadratic, we get a model of the form y = ax2 + bx + c. In
such a model, the value of the dependent variable y is linear in the independent
variables x2, x1, and x0 and the coefficients a, b, and c. 93

The function fitData in Figure 15.3 extends the plotData function in Figure
15.2 by adding a line that represents the best fit for the data. It uses polyfit to
find the coefficients a and b, and then uses those coefficients to generate the
predicted spring displacement for each force. Notice that there is an asymmetry
in the way forces and distance are treated. The values in forces (which are
derived from the mass suspended from the spring) are treated as independent,
and used to produce the values in the dependent variable predictedDistances (a
prediction of the displacements produced by suspending the mass).

The function also computes the spring constant, k. The slope of the line, a, is
∆distance/∆force. The spring constant, on the other hand, is ∆force/∆distance.
Consequently k is the inverse of a.

93 A function is linear if the variables appear only in the first degree, are multiplied by
constants, and are combined by addition and subtraction.

212 Chapter 15. Understanding Experimental Data

Figure 15.3 Fitting a curve to data

The call
fitData('springData.txt')
produces the plot on the right. It
is interesting to observe that very
few points actually lie on the
least-squares fit. This is
plausible because we are trying
to minimize the sum of the
squared errors, rather than
maximize the number of points
that lie on the line. Still, it
doesn’t look like a great fit. Let’s
try a cubic fit by adding to
fitData

#find cubic fit
a,b,c,d = pylab.polyfit(forces, distances, 3)
predictedDistances = a*(forces**3) + b*forces**2 + c*forces + d
pylab.plot(forces, predictedDistances, 'b:', label = 'cubic fit')

This produces the plot on
the left. The cubic fit looks
like a much better model of
the data, but is it?
Probably not.

In the technical literature,
one frequently sees plots
like this that include both
raw data and a curve fit to
the data. All too often,
however, the authors then

def fitData(inputFile):
 masses, distances = getData(inputFile)
 distances = pylab.array(distances)
 masses = pylab.array(masses)
 forces = masses*9.81
 pylab.plot(forces, distances, 'bo',
 label = 'Measured displacements')
 pylab.title('Measured Displacement of Spring')
 pylab.xlabel('|Force| (Newtons)')
 pylab.ylabel('Distance (meters)')
 #find linear fit
 a,b = pylab.polyfit(forces, distances, 1)
 predictedDistances = a*pylab.array(forces) + b
 k = 1.0/a
 pylab.plot(forces, predictedDistances,
 label = 'Displacements predicted by\nlinear fit, k = '
 + str(round(k, 5)))
 pylab.legend(loc = 'best')

 Chapter 15. Understanding Experimental Data 213

go on to assume that the fitted curve is the description of the real situation, and
the raw data merely an indication of experimental error. This can be dangerous.

Recall that we started with a theory that there should be a linear relationship
between the x and y values, not
a cubic one. Let’s see what
happens if we use our cubic fit
to predict where the point
corresponding to 1.5kg would
lie. The result is shown in the
plot on the left.

Now the cubic fit doesn’t look
so good. In particular, it seems
highly unlikely that by hanging
a large weight on the spring we
can cause the spring to rise
above (the y-value is negative)

the bar from which it is suspended. What we have is an example of overfitting.
Overfitting typically occurs when a model is excessively complex, e.g., it has too
many parameters relative to the amount of data. When this happens, the fit can
capture noise in the data rather than meaningful relationships. A model that
has been overfit usually has poor predictive power, as seen in this example.

Finger exercise: Modify the code in Figure 15.3 so that it produces the above
plot.

Let’s go back to the linear fit. For the moment, forget the line and study the raw
data. Does anything about it seem
odd? If we were to fit a line to the
rightmost six points it would be
nearly parallel to the x-axis. This
seems to contradict Hooke’s law—
until we recall that Hooke’s law
holds only up to some elastic limit.
Perhaps that limit is reached for this
spring somewhere around 7N
(approximately 0.7kg). Let’s see what
happens if we eliminate the last six
points by replacing the second and
third lines of fitData by

distances = pylab.array(distances[:-6])
masses = pylab.array(masses[:-6])

Eliminating those points certainly makes a difference, e.g., k has dropped
dramatically and the linear and cubic fits are almost indistinguishable. But how
do we know which of the two linear fits is a better representation of how our
spring performs up to its elastic limit? We could use some statistical test to

214 Chapter 15. Understanding Experimental Data

determine which line is a better fit for the data, but that would be beside the
point. This is not a question that can be answered by statistics. After all we
could throw out all the data except any two points and know that polyfit would
find a line that would be a perfect fit for those two points. One should never
throw out experimental results merely to get a better fit.94 Here we justified
throwing out the rightmost points by appealing to the theory underlying Hooke’s
law, i.e., that springs have an elastic limit. That justification could not have
been appropriately used to eliminate points elsewhere in the data.

15.2 The Behavior of Projectiles

Growing bored with merely stretching springs, we decided to use one of our
springs to build a device capable of launching a projectile.95 We used the device
four times to fire a projectile at a target 30 yards (1080 inches) from the launching
point. Each time, we measured the height of the projectile at various distances
from the launch point. The launching point and the target were at the same
height, which we treated as 0.0 in our measurements. The data was stored in a
file with the contents

Distance trial1 trial2 trial3 trial4
1080 0.0 0.0 0.0 0.0
1044 2.25 3.25 4.5 6.5
1008 5.25 6.5 6.5 8.75
972 7.5 7.75 8.25 9.25
936 8.75 9.25 9.5 10.5
900 12.0 12.25 12.5 14.75
864 13.75 16.0 16.0 16.5
828 14.75 15.25 15.5 17.5
792 15.5 16.0 16.6 16.75
756 17.0 17.0 17.5 19.25
720 17.5 18.5 18.5 19.0
540 19.5 20.0 20.25 20.5
360 18.5 18.5 19.0 19.0
180 13.0 13.0 13.0 13.0
0 0.0 0.0 0.0 0.0

The first column contains distances of the projectile from the target. The other
columns contain the height of the projectile at that distance for each of the four
trials. All of the measurements are in inches.

The code in Figure 15.4 was used to plot the mean altitude of the projectile
against the distance from the point of launch. It also plots the best linear and
quadratic fits to the points. (In case you have forgotten the meaning of
multiplying a list by an integer, the expression [0]*len(distances) produces a
list of len(distances) 0’s.)

94 Which isn’t to say that people never do.

95 A projectile is an object that is propelled through space by the exertion of a force that
stops after the projectile is launched. In the interest of public safety, we will not describe
the launching device used in this experiment. Suffice it to say that it was awesome.

 Chapter 15. Understanding Experimental Data 215

Figure 15.4 Plotting the Trajectory of a Projectile

A quick look at the plot96 on the right
makes it quite clear that a quadratic fit
is far better than a linear one. (The
reason that the quadratic fit is not
smooth is that we are only plotting the
predicted heights that correspond to the
measured heights.) But just how bad a
fit is the line and how good is the
quadratic fit?

96 Don’t be misled by this plot into thinking that the projectile had a steep angle of
ascent. It only looks that way because of the difference in scale between the vertical and
horizontal axes on the plot.

def getTrajectoryData(fileName):
 dataFile = open(fileName, 'r')
 distances = []
 heights1, heights2, heights3, heights4 = [],[],[],[]
 discardHeader = dataFile.readline()
 for line in dataFile:
 d, h1, h2, h3, h4 = line.split()
 distances.append(float(d))
 heights1.append(float(h1))
 heights2.append(float(h2))
 heights3.append(float(h3))
 heights4.append(float(h4))
 dataFile.close()
 return (distances, [heights1, heights2, heights3, heights4])

def processTrajectories(fileName):
 distances, heights = getTrajectoryData(fileName)
 numTrials = len(heights)
 distances = pylab.array(distances)
 #Get array containing mean height at each distance
 totHeights = pylab.array([0]*len(distances))
 for h in heights:
 totHeights = totHeights + pylab.array(h)
 meanHeights = totHeights/len(heights)
 pylab.title('Trajectory of Projectile (Mean of '\
 + str(numTrials) + ' Trials)')
 pylab.xlabel('Inches from Launch Point')
 pylab.ylabel('Inches Above Launch Point')
 pylab.plot(distances, meanHeights, 'bo')
 a,b = pylab.polyfit(distances, meanHeights, 1)
 altitudes = a*distances + b
 pylab.plot(distances, altitudes, 'b', label = 'Linear Fit')
 a,b,c = pylab.polyfit(distances, meanHeights, 2)
 altitudes = a*(distances**2) + b*distances + c
 pylab.plot(distances, altitudes, 'b:', label = 'Quadratic Fit')
 pylab.legend()

216 Chapter 15. Understanding Experimental Data

15.2.1 Coefficient of Determination

When we fit a curve to a set of data, we are finding a function that relates an
independent variable (inches horizontally from the launch point in this example)
to a predicted value of a dependent variable (inches above the launch point in
this example). Asking about the goodness of a fit is equivalent to asking about
the accuracy of these predictions. Recall that the fits were found by minimizing
the mean square error. This suggests that one could evaluate the goodness of a
fit by looking at the mean square error. The problem with that approach is that
while there is a lower bound for the mean square error (zero), there is no upper
bound. This means that while the mean square error is useful for comparing
the relative goodness of two fits to the same data, it is not particularly useful for
getting a sense of the absolute goodness of a fit.

We can calculate the absolute goodness of a fit using the coefficient of
determination, often written as R2.97 Let !! be the !!! observed value, !! be the
corresponding value predicted by model, and ! be the mean of the observed
values.

!! = 1 −
(!! − !!)!!

(!! − !)!!

By comparing the estimation errors (the numerator) with the variability of the
original values (the denominator), R2 is intended to capture the proportion of
variability in a data set that is accounted for by the statistical model provided by
the fit. When the model being evaluated is produced by a linear regression, the
value of R2 always lies between 0 and 1. If R2 = 1, the model explains all of the

variability in the data. If R2 = 0, there is no relationship between the values
predicted by the model and the actual data.

The code in Figure 15.5 provides a straightforward implementation of this
statistical measure. Its compactness stems from the expressiveness of the
operations on arrays. The expression (predicted - measured)**2 subtracts the
elements of one array from the elements of another, and then squares each
element in the result. The expression (measured - meanOfMeasured)**2
subtracts the scalar value meanOfMeasured from each element of the array
measured, and then squares each element of the results.

Figure 15.5 Computing R2

97 There are several different definitions of the coefficient of determination. The definition
supplied here is used to evaluate the quality of a fit produced by a linear regression.

def rSquared(measured, predicted):
 """Assumes measured a one-dimensional array of measured values
 predicted a one-dimensional array of predicted values
 Returns coefficient of determination"""
 estimateError = ((predicted - measured)**2).sum()
 meanOfMeasured = measured.sum()/float(len(measured))
 variability = ((measured - meanOfMeasured)**2).sum()
 return 1 - estimateError/variability

 Chapter 15. Understanding Experimental Data 217

When the lines of code

print 'RSquare of linear fit =', rSquared(meanHeights, altitudes)

and

print 'RSquare of quadratic fit =', rSquared(meanHeights, altitudes)

are inserted after the appropriate calls to pylab.plot in processTrajectories,
they print

RSquared of linear fit = 0.0177433205441
RSquared of quadratic fit = 0.985765369287

Roughly speaking, this tells us that less than 2% of the variation in the
measured data can be explained by the linear model, but more than 98% of the
variation can be explained by the quadratic model.

15.2.2 Using a Computational Model

Now that we have what seems to be a good model of our data, we can use this
model to help answer questions about our original data. One interesting
question is the horizontal speed at which the projectile is traveling when it hits
the target. We might use the following train of thought to design a computation
that answers this question:

1. We know that the trajectory of the projectile is given by a formula of the
form y = ax2 + bx + c, i.e., it is a parabola. Since every parabola is
symmetrical around its vertex, we know that its peak occurs halfway
between the launch point and the target; call this value xMid. The peak
height, !"#$%, is therefore given by !"#$% = ! ∗ !"#$! + ! ∗ !"#$ + !.

2. If we ignore air resistance (remember that no model is perfect), we can
compute the amount of time it takes for the projectile to fall from yPeak to
the height of the target, because that is purely a function of gravity. It is
given by the equation ! = (2 ∗ !"#$%)/!.98 This is also the amount of time
it takes for the projectile to travel the horizontal distance from xMid to the
target, because once it reaches the target it stops moving.

3. Given the time to go from xMid to the target, we can easily compute the
average horizontal speed of the projectile over that interval. If we assume
that the projectile was neither accelerating nor decelerating in the
horizontal direction during that interval, we can use the average
horizontal speed as an estimate of the horizontal speed when the
projectile hits the target.99

Figure 15.6 implements this technique for estimating the horizontal velocity of
the projectile.

98 This equation can be derived from first principles, but it is easier to just look it up. We
found it at http://en.wikipedia.org/wiki/Equations_for_a_falling_body.

99 The vertical component of the velocity is also easily estimated, since it is merely the
product of the g and t in Figure 15.6.

218 Chapter 15. Understanding Experimental Data

Figure 15.6 Computing the horizontal speed of a projectile

When the line getHorizontalSpeed(a, b, c, distances[-1], distances[0]) is
inserted at the end of processTrajectories, it prints

Horizontal speed = 136 feet/sec

The sequence of steps we have just worked through follows a common pattern.

1. We started by performing an experiment to get some data about the
behavior of a physical system.

2. We then used computation to find and evaluate the quality of a model of
the behavior of the system.

3. Finally, we used some theory and analysis to design a simple
computation to derive an interesting consequence of the model.

15.3 Fitting Exponentially Distributed Data

Polyfit uses linear regression to find a polynomial of a given degree that is the
best least-squares fit for some data. It works well if the data can be directly
approximated by a polynomial. But this is not always possible. Consider, for
example, the simple exponential growth function y = 2x. The code in Figure 15.7
fits a 4th-degree polynomial to the first ten points and plots the results. It uses
the function call pylab.arange(10), which returns an array containing the
integers 0-9.

Figure 15.7 Fitting a polynomial curve to an exponential distribution

def getHorizontalSpeed(a, b, c, minX, maxX):
 """Assumes minX and maxX are distances in inches
 Returns horizontal speed in feet per second"""
 inchesPerFoot = 12.0
 xMid = (maxX - minX)/2.0
 yPeak = a*xMid**2 + b*xMid + c
 g = 32.16*inchesPerFoot #accel. of gravity in inches/sec/sec
 t = (2*yPeak/g)**0.5
 print 'Horizontal speed =', int(xMid/(t*inchesPerFoot)), 'feet/sec'

vals = []
for i in range(10):
 vals.append(2**i)
pylab.plot(vals,'bo', label = 'Actual points')
xVals = pylab.arange(10)
a,b,c,d,e = pylab.polyfit(xVals, vals, 4)
yVals = a*(xVals**4) + b*(xVals**3) + c*(xVals**2)+ d*xVals + e
pylab.plot(yVals, 'bx', label = 'Predicted points', markersize = 20)
pylab.title('Fitting y = 2**x')
pylab.legend()

 Chapter 15. Understanding Experimental Data 219

The code in Figure 15.7 produces the plot

The fit is clearly a good one, for these data points. However, let’s look at what
the model predicts for 220. When we add the code

pred2to20 = a*(20**4) + b*(20**3) + c*(20**2)+ d*20 + e
print 'Model predicts that 2**20 is roughly', round(pred2to20)
print 'Actual value of 2**20 is', 2**20

to the end of Figure 15.7, it prints,

Model predicts that 2**20 is roughly 29796.0
Actual value of 2**20 is 1048576

Oh dear, despite fitting the data, the model produced by polyfit is apparently
not a good one. Is it because four was not the right degree? No. It is because
no polynomial is a good fit for an exponential distribution. Does this mean that
we cannot use polyfit to build a model of an exponential distribution?
Fortunately, it does not, because we can use polyfit to find a curve that fits the
original independent values and the log of the dependent values.

Consider the sequence [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]. If we take the log base 2
of each value. we get the sequence [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], i.e., a sequence that
grows linearly. In fact, if a function y = f(x), exhibits exponential growth, the log
(to any base) of f(x) grows linearly. This can be visualized by plotting an
exponential function with a
logarithmic y-axis. The code

xVals, yVals = [], []
for i in range(10):
 xVals.append(i)
 yVals.append(2**i)
pylab.plot(xVals, yVals)
pylab.semilogy()

produces the plot on the right.

The fact that taking the log of an
exponential function produces a linear
function can be used to construct a

220 Chapter 15. Understanding Experimental Data

model for an exponentially distributed set of data points, as illustrated by the
code in Figure 15.8. We use polyfit to find a curve that fits the x values and
log of the y values. Notice that we use yet another Python standard library
module, math, which supplies a log function.

Figure 15.8 Using polyfit to fit an exponential distribution

When run, this code produces the
plot on the right, in which the
actual values and the predicted
values coincide. Moreover, when
the model is tested on a value (20)
that was not used to produce the
fit, it prints

f(20) = 50331648.0
Predicted f(20) = 50331648.0

import math

#define an arbitrary exponential function
def f(x):
 return 3*(2**(1.2*x))

def createExpData(f, xVals):
 """Asssumes f is an exponential function of one argument
 xVals is an array of suitable arguments for f
 Returns array containing results of applying f to the
 elements of xVals"""
 yVals = []
 for i in range(len(xVals)):
 yVals.append(f(xVals[i]))
 return pylab.array(xVals), pylab.array(yVals)

def fitExpData(xVals, yVals):
 """Assumes xVals and yVals arrays of numbers such that
 yVals[i] == f(xVals[i])
 Returns a, b, base such that log(f(x), base) == ax + b"""
 logVals = []
 for y in yVals:
 logVals.append(math.log(y, 2.0)) #get log base 2
 a,b = pylab.polyfit(xVals, logVals, 1)
 return a, b, 2.0

xVals, yVals = createExpData(f, range(10))
pylab.plot(xVals, yVals, 'ro', label = 'Actual values')
a, b, base = fitExpData(xVals, yVals)
predictedYVals = []
for x in xVals:
 predictedYVals.append(base**(a*x + b))
pylab.plot(xVals, predictedYVals, label = 'Predicted values')
pylab.title('Fitting an Exponential Function')
pylab.legend()
#Look at a value for x not in original data
print 'f(20) =', f(20)
print 'Predicted f(20) =', base**(a*20 + b)

 Chapter 15. Understanding Experimental Data 221

This method of using polyfit to find a model for data works when the
relationship can be described by an equation of the form y = baseax+b. If used on
data that cannot be described this way, it will yield erroneous results. To see
this, let’s try replacing the body of the function f by,

return 3*(2**(1.2*x)) + x

It now prints,

f(20) = 50331668.0
Predicted f(20) = 44846543.4909

15.4 When Theory Is Missing

In this chapter we have emphasized the interplay between theoretical,
experimental, and computational science. Sometimes, however, we find
ourselves with lots of interesting data, but little or no theory. In such cases, we
often resort to using computational techniques to develop a theory by building a
model that seems to fit the data.

In an ideal world, we would run a controlled experiment (e.g., hang weights from
a spring), study the results, and retrospectively formulate a model consistent
with those results. We would then run a different prospective experiment
(e.g., hang different weights from the same spring) and compare the results of
that experiment to what the model predicted.

Unfortunately, in many cases it is impossible to run even one controlled
experiment. Imagine, for example, building a model designed to shed light on
how interest rates affect stock prices. Very few of us are in a position to set
interest rates and see what happens. On the other hand there is no shortage of
relevant historical data.

In such situations, one can simulate a set of experiments by dividing the
existing data into a training set and a holdout set. Without looking at the
holdout set, we build a model that seems to explain the training set. For
example, we find a curve that has a reasonable R2 for the training set. We then
test that model on the holdout set. Most of the time the model will fit the
training set more closely than it fits the holdout set. But if the model is a good
one, it should fit the holdout set reasonably well. If it doesn’t, the model should
probably be discarded.

How does one choose the training set? We want it to be representative of the
data set as a whole. One way to do this is to randomly choose the samples for
the training set. If the data set is sufficiently large this often works pretty well.

A related but slightly different way to check a model is to train on many
randomly selected subsets of the original data, and see how similar the models
are to one another. If they are quite similar, than we can feel pretty good. This
approach is known as cross validation.

16 LIES, DAMNED LIES, AND STATISTICS

“If you can't prove what you want to prove, demonstrate something else
and pretend they are the same thing. In the daze that follows the collision
of statistics with the human mind, hardly anyone will notice the
difference.”100

Statistical thinking is a relatively new invention. For most of recorded history
things were assessed qualitatively rather than quantitatively. People must have
had an intuitive sense of some statistical facts (e.g., that women are usually
shorter than men), but they had no mathematical tools that would allow them to
proceed from anecdotal evidence to statistical conclusions. This started to
change in the middle of the 17th century, most notably with the publication of
John Graunt’s Natural and Political Observations Made Upon the Bills of Mortality.
This pioneering work used statistical analysis to estimate the population of
London from death rolls, and attempted to provide a model that could be used to
predict the spread of plague.

Since that time people have used statistics as much to mislead as to inform.
Some have willfully used statistics to mislead; others have merely been
incompetent. In this chapter we discuss a few ways in which people can be
fooled into drawing inappropriate inferences from statistical data. We trust that
you will use this information only for good, i.e., to become a better consumer
and a more honest purveyor of statistical information.

16.1 Garbage In Garbage Out (GIGO)

“On two occasions I have been asked [by members of Parliament], ‘Pray,
Mr. Babbage, if you put into the machine wrong figures, will the right
answers come out?’ I am not able rightly to apprehend the kind of
confusion of ideas that could provoke such a question.” – Charles
Babbage.

The message here is a simple one. If the input data is seriously flawed, no
amount of statistical massaging will produce a meaningful result.

The 1840 United States census showed that insanity among free blacks and
mulattoes was roughly ten times more common than among enslaved blacks
and mulattoes. The conclusion was obvious. As U.S. Senator (and former Vice
President and future Secretary of State) John C. Calhoun put it, “The data on
insanity revealed in this census is unimpeachable. From it our nation must
conclude that the abolition of slavery would be to the African a curse.” Never
mind that it was soon clear that the census was riddled with errors. As Calhoun
reportedly explained to John Quincy Adams, “there were so many errors they

100 Darrell Huff, How to Lie with Statistics, 1954.

 Chapter 16. Lies, Damned Lies, and Statistics 223

balanced one another, and led to the same conclusion as if they were all
correct.”

Calhoun’s (perhaps willfully) spurious response to Adams was based on a
classical error, the assumption of independence. Were he more sophisticated
mathematically, he might have said something like, “I believe that the
measurement errors are unbiased and independent of each of other, and
therefore evenly distributed on either side of the mean.” In fact, later analysis
showed that the errors were so heavily biased that no statistically valid
conclusions could be drawn.101

16.2 Pictures Can Be Deceiving

There can be no doubt about the utility of graphics for quickly conveying
information. However, when used carelessly (or maliciously) a plot can be highly
misleading. Consider, for example, the following charts depicting housing
prices in the U.S. Midwestern states.

Looking at the chart on the left, it seems as if housing prices were pretty stable
from 2006-2009. But wait a minute, wasn’t there a collapse of U.S. residential
real estate followed by a global financial crisis in late 2008? There was indeed,
as shown in the chart on the right.

These two charts show exactly the same data, but convey very different
impressions.

The first chart was designed to give the impression that housing prices had been
stable. On the y-axis, the designer used a logarithmic scale ranging from the
absurdly low average price for a house of $10,000 to the improbably high average
price of $1 million. This minimized the amount of space devoted to the area
where prices are changing, giving the impression that the changes were
relatively small. The chart above and on the right was designed to give the
impression that housing prices moved erratically, and then crashed. The

101 We should note that Calhoun was in office over 150 years ago. It goes without saying
that no contemporary politician would find ways to abuse statistics to support a position.

224 Chapter 16. Lies, Damned Lies, and Statistics

designer used a linear scale and a narrow range of prices, so the sizes of the
changes were exaggerated.

The code in Figure 16.1 produces the two plots we looked at above and a plot
intended to give an accurate impression of the movement of housing prices.

It uses two plotting facilities that we have not yet seen. The call
pylab.bar(quarters, prices, width) produces a bar chart with width wide
bars. The left edges of the bars are the values of the elements of quarters and
the heights of the bars are the values of the corresponding elements of prices.
The call pylab.xticks(quarters+width/2.0, labels) describes the labels
associated with the bars. The first argument specifies where each label is to be
placed and the second argument the text of the labels. The function yticks
behaves analogously.

Figure 16.1 Plotting housing prices

def plotHousing(impression):
 """Assumes impression a str. Must be one of 'flat',
 'volatile,' and 'fair'
 Produce bar chart of housing prices over time"""
 f = open('midWestHousingPrices.txt', 'r')
 #Each line of file contains year quarter price
 #for Midwest region of U.S.
 labels, prices = ([], [])
 for line in f:
 year, quarter, price = line.split()
 label = year[2:4] + '\n Q' + quarter[1]
 labels.append(label)
 prices.append(float(price)/1000)
 quarters = pylab.arange(len(labels)) #x coords of bars
 width = 0.8 #Width of bars
 if impression == 'flat':
 pylab.semilogy()
 pylab.bar(quarters, prices, width)
 pylab.xticks(quarters+width/2.0, labels)
 pylab.title('Housing Prices in U.S. Midwest')
 pylab.xlabel('Quarter')
 pylab.ylabel('Average Price ($1,000\'s)')
 if impression == 'flat':
 pylab.ylim(10, 10**3)
 elif impression == 'volatile':
 pylab.ylim(180, 220)
 elif impression == 'fair':
 pylab.ylim(150, 250)
 else:
 raise ValueError

plotHousing('flat')
pylab.figure()
plotHousing('volatile')
pylab.figure()
plotHousing('fair')

 Chapter 16. Lies, Damned Lies, and Statistics 225

The call plotHousing(‘fair’) produces the plot

16.3 Cum Hoc Ergo Propter Hoc102

It has been shown that college students who regularly attend class have higher
average grades than students who attend class only sporadically. Those of us
who teach these classes would like to believe that this is because the students
learn something from the lectures. Of course, it is at least equally likely that
those students get better grades because students who are more likely to attend
classes are also more likely to study hard.

When two things are correlated,103 there is a temptation to assume that one has
caused the other. Consider the incidence of flu in North America. The number
of cases rises and falls in a predictable pattern. There are almost no cases in
the summer, the number of cases starts to rise in the early fall, and then starts
dropping as summer approaches. Now consider the number of children
attending school. There are very few children in school in the summer,
enrollment starts to rise in the early fall, and then drops as summer
approaches.

The correlation between the opening of schools and the rise in the incidence of
flu is inarguable. This has led many to conclude that that going to school is an
important causative factor in the spread of flu. That might be true, but one
cannot conclude it based simply on the correlation. Correlation does not imply
causation! After all, the correlation could be used just as easily to justify the
belief that flu outbreaks cause schools to be in session. Or perhaps there is no
causal relationship in either direction, and there is some lurking variable that

102Statisticians, like attorneys and physicians, sometimes use Latin for no obvious reason
other than to seem erudite. This phrase means, “with this, therefore because of this.”

103 Correlation is a measure of the degree to which two variables move in the same
direction. If when x goes up y goes up, the variables are positively correlated. If they
move in opposite directions they are negatively correlated. If there is no relationship, the
correlation is 0. People’s heights are positively correlated with the heights of their
parents. The correlation between hours spent playing video games and grade point
average is negative.

226 Chapter 16. Lies, Damned Lies, and Statistics

we have not considered that causes each. In fact, as it happens, the flu virus
survives considerably longer in cool dry air than it does in warm wet air, and in
North America both the flu season and school sessions are correlated with cooler
and dryer weather.

Given enough retrospective
data, it is always possible to
find two variables that are
correlated, as illustrated by
the chart on the right.104
When such correlations are
found, the first thing to do is
to ask whether there is a
plausible theory explaining the
correlation.

Falling prey to the cum hoc
ergo propter hoc fallacy can be
quite dangerous. At the start of 2002, roughly six million American women were
being prescribed hormone replacement therapy (HRT) in the belief that it would
substantially lower their risk of cardiovascular disease. That belief was
supported by several highly reputable published studies that demonstrated a
reduced incidence of cardiovascular death among women using HRT. Many
women, and their physicians, were taken by surprise when the Journal of the
American Medical Society published an article asserting that HRT in fact
increased the risk of cardiovascular disease.105 How could this have happened?

Re-analysis of some of the earlier studies showed that women undertaking HRT
were likely to be from groups with better than average diet and exercise regimes.
Perhaps the women undertaking HRT were on average more health conscious
than the other women in the study, so that taking HRT and improved cardiac
health were coincident effects of a common cause.

16.4 Statistical Measures Don’t Tell the Whole Story

There are an enormous number of different statistics that can be extracted from
a data set. By carefully choosing among these, it is possible to convey a variety
of different impressions about the same data. A good antidote is to look at the
data set itself.

In 1973, the statistician F.J. Anscombe published a paper containing the table
below. It contains the <x, y> coordinates of the points in each of four data sets.

104 Stephen R. Johnson, “The Trouble with QSAR (or How I Learned to Stop Worrying and
Embrace Fallacy),” J. Chem. Inf. Model., 2008.

105 Nelson HD, Humphrey LL, Nygren P, Teutsch SM, Allan JD. Postmenopausal hormone
replacement therapy: scientific review. JAMA. 2002;288:872-881.

 Chapter 16. Lies, Damned Lies, and Statistics 227

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

These four data sets are statistically similar. They have the same mean value
for x (9.0), the same mean value for y (7.5), the same variance for x (10.0), the same
variance for y (3.75), and the same correlation between x and y (0.816).
Furthermore, if we use linear regression to fit a line to each, we get the same
result for each, y = 0.5x + 3.

Does this mean that there is no obvious way to distinguish these data sets from
each other? No, one simply needs to plot the data to see that the data sets are
not at all alike.

The moral is simple: if possible, always take a look at some representation of the
raw data.

228 Chapter 16. Lies, Damned Lies, and Statistics

16.5 Sampling Bias

During World War II, whenever an Allied plane would return from a mission over
Europe the plane would be inspected to see where the flak had impacted. Based
upon this data, mechanics reinforced those areas of the planes that seemed
most likely to be hit by flak.

What’s wrong with this? They did not inspect the planes that failed to return
from missions because they had been downed by flak. Perhaps these
unexamined planes failed to return precisely because they were hit in the places
where the flak would do the most damage. This particular error is called non-
response bias. It is quite common in surveys. At many universities, for
examples, students are asked during one of the lectures late in the term to fill
out a form rating the quality of the professor’s lectures. Though the results of
such surveys are often unflattering, they could be worse. Those students who
think that the lectures are so bad that they aren’t worth attending are not
included in the survey.106

As we said earlier, all statistical techniques are based upon the assumption that
by sampling a subset of a population we can infer things about the population
as a whole. If random sampling is used, we can make precise mathematical
statements about the expected relationship of the sample to the entire
population. Unfortunately, many studies, particularly in the social sciences, are
based on what has been called convenience (or accidental) sampling. This
involves choosing samples based on how easy they are to procure. Why do so
many psychological studies use populations of undergraduates? Because they
are easy to find on college campuses. A convenience sample might be
representative, but there is no way of knowing whether it actually is
representative.

The Family Research Institute’s Web site contains a table with the following
information:

	
Table 1: How Long Do Homosexuals Live? 107

106 The move to online surveys, which allows students who do not attend class to
participate in the survey, does not augur well for the egos of professors.

107 http://www.familyresearchinst.org/2012/01/how-long-do-homosexuals-live/

 Chapter 16. Lies, Damned Lies, and Statistics 229

Pretty scary stuff if your sexual preference is other than heterosexual—until one
looks at how the data was compiled. According to the Web site it was based on
“6,737 obituaries from 18 U.S. homosexual journals, compared to obituaries from
2 mainstream newspapers.”

This method produces a sample that could be non-representative of either the
homosexual or non-homosexual population (or both) for a large number of
reasons. For example, it seems to infer that someone is gay or lesbian if and
only if their obituary appears in a “homosexual journal,” and that someone is
not gay if their obituary appears in a “mainstream newspaper.” It also seems to
assume that the deaths for which obituaries appear are representative of all
deaths. How does one go about evaluating such a sample? One technique is to
compare data compiled from the sample against data compiled elsewhere. For
example, one could compare the ratio of gay men to straight men in the obituary
study to other studies reporting the relative sizes of those two populations.

16.6 Context Matters

It is easy to read more into the data than it actually implies, especially when
viewing the data out of context. On April 29, 2009, CNN reported that, “Mexican
health officials suspect that the swine flu outbreak has caused more than 159
deaths and roughly 2,500 illnesses.” Pretty scary stuff—until one compares it to
the 36,000 deaths attributable annually to the seasonal flu in the U.S.

An often quoted, and accurate, statistic is that most auto accidents happen
within 10 miles of home. So what—most driving is done within 10 miles of home.
And besides, what does “home” mean in this context? The statistic is computed
using the address at which the automobile is registered as “home.” Might one
reduce the probability of getting into an accident by merely registering one’s car
in some distant place?

Opponents of government initiatives to reduce the prevalence of guns in the U.S.
are fond of quoting the statistic that roughly 99.8% of the firearms in the U.S.
will not be used to commit a violent crime in any given year. Does this mean
that there is not much gun violence in the U.S? The National Rifle Association
reports that that there are roughly 300 million privately owned firearms in the
U.S.—0.2% of 300 million is 600,000.

16.7 Beware of Extrapolation

It is all too easy to extrapolate from data. We did that in Chapter 15 when we
extended fits derived from linear regression beyond the data upon which the
regression was done. Extrapolation should be done only when one has a sound
theoretical justification for doing so. One should be especially wary of straight-
line extrapolations.

230 Chapter 16. Lies, Damned Lies, and Statistics

Consider the plot on the left. It
shows the growth of Internet usage
in the United States from 1994 to
2000. As you can see, a straight line
provides a pretty good fit.

The plot on the right uses this fit to project
the percentage of the U.S. population
using the Internet in following years. The
projection is a bit hard to believe. It seems
unlikely that by 2009 everybody in the
U.S. was using the Internet, and even less
likely that by 2012 more than 120% of the U.S. population was using the
Internet.

16.8 The Texas Sharpshooter Fallacy

Imagine that you are driving down a country road in Texas. You see a barn that
has six targets painted on it, and a bullet hole at the very center of each target.
“Yes sir,” says the owner of the barn, “I never miss.” “That’s right,” says his
spouse, “there ain’t a man in the state of Texas who’s more accurate with a paint
brush.” Got it? He fired the six shots, and then painted the targets around
them.

	
Professor Puzzles Over Students’ Chalk Throwing Ability

A classic of the genre appeared in 2001.108 It reported that a research team at
the Royal Cornhill hospital in Aberdeen had discovered that “anorexic women
are most likely to have been born in the spring or early summer… Between

108 Eagles, John, et al., “Season of birth in females with anorexia nervosa in Northeast
Scotland,” International Journal of Eating Disorders, 30, 2, September 2001.

 Chapter 16. Lies, Damned Lies, and Statistics 231

March and June there were 13% more anorexics born than average, and 30%
more in June itself.”

Let’s look at that worrisome statistic for those women born in June. The team
studied 446 women who had been diagnosed as anorexic, so the mean number of
births per month was slightly more than 37. This suggests that the number
born in June was 48 (37*1.3). Let’s write a short program to see if we can reject

the null hypothesis that this occurred purely by chance.

Figure 16.2 Probability of 48 anorexics being born in June

When we ran juneProb(10000) it printed

Probability of at least 48 births in June = 0.044

It looks as if the probability of at least 48 babies being born in June purely by
chance is around 4.5%. So perhaps those researchers in Aberdeen are on to
something. Well, they might have been on to something had they started with
the hypothesis that more babies who will become anorexic are born in June, and
then run a study designed to check that hypothesis.

But that is not what they did. Instead, they looked at the data and then,
imitating the Texas sharpshooter, drew a circle around June. The right
statistical question to have asked is what is the probability that there was at
least one month (out of 12) in which at least 48 babies were born. The program
in Figure 16.3 answers that question.

Figure 16.3 Probability of 48 anorexics being born in some month

def juneProb(numTrials):
 june48 = 0
 for trial in range(numTrials):
 june = 0
 for i in range(446):
 if random.randint(1,12) == 6:
 june += 1
 if june >= 48:
 june48 += 1
 jProb = june48/float(numTrials)
 print 'Probability of at least 48 births in June =', jProb

def anyProb(numTrials):
 anyMonth48 = 0
 for trial in range(numTrials):
 months = [0]*12
 for i in range(446):
 months[random.randint(0,11)] += 1
 if max(months) >= 48:
 anyMonth48 += 1
 aProb = anyMonth48/float(numTrials)
 print 'Probability of at least 48 births in some month =', aProb

232 Chapter 16. Lies, Damned Lies, and Statistics

The call anyProb(10000) printed

Probability of at least 48 births in some month = 0.446

It appears that it is not so unlikely after all that the results reported in the study
reflect a chance occurrence rather a real association between birth month and
anorexia. One doesn’t have to come from Texas to fall victim to the Texas
Sharpshooter Fallacy.

What we see here is that the statistical significance of a result depends upon the
way the experiment was conducted. If the Aberdeen group had started out with
the hypothesis that more anorexics are born in June, their result would be
worth considering. But if they started off with the hypothesis that there exists a
month in which an unusually large proportion of anorexics are born, their result
is not very compelling.

What next steps might the Aberdeen group have taken to test their newfound
hypothesis? One possibility is to conduct a prospective study. In a prospective
study, one starts with a set of hypotheses and then gathers data with the
potential to either refute or confirm the hypothesis. If the group conducted a
new study and got similar results, one might be convinced.

Prospective studies can be expensive and time consuming to perform. In a
retrospective study, one has to examine existing data in ways that reduce the
likelihood of getting misleading results. One common technique, as discussed in
Chapter 15, is to split the data into a training set and a holdout set. For
example, they could have chosen 446/2 women at random from their data (the
training set), and tallied the number of births for each month. They could have
then compared that to the number of births each month for the remaining
women (the holdout set).

16.9 Percentages Can Confuse

An investment advisor called a client to report that the value of his stock
portfolio had risen 16% over the last month. He admitted that there had been
some ups and downs over the year, but was pleased to report that the average
monthly change was +0.5%. Image the client’s surprise when he got his
statement for the year, and observed that the value of his portfolio had declined
over the year.

He called his advisor, and accused him of being a liar. “It looks to me,” he said,
“like my portfolio declined by 0.67%, and you told me that it went up by 0.5% a
month.” “I did not,” the financial advisor replied, “I told you that the average
monthly change was +0.5%.” When he examined his monthly statements, the
investor realized that he had not been lied to, just misled. His portfolio went
down by 15% in each month during the first half of the year, and then went up
by 16% in each month during the second half of the year.

When thinking about percentages, we always need to pay attention to the basis
on which the percentage is computed. In this case, the 15% declines were on a
higher average basis than the 16% increases.

 Chapter 16. Lies, Damned Lies, and Statistics 233

Percentages can be particularly misleading when applied to a small basis. You
might read about a drug that has a side effect of increasing the incidence of
some illness by 200%. But if the base incidence of the disease is very low, say
one in 1,000,000, you might well decide that the risk of taking the drug was more
than counterbalanced by the drug’s positive effects.

16.10 Just Beware

It would be easy, and fun, to fill a few hundred pages with a history of statistical
abuses. But by now you probably got the message: It’s just as easy to lie with
numbers as it is to lie with words. Make sure that you understand what is
actually being measured and how those “statistically significant” results were
computed before you jump to conclusions.

17 KNAPSACK AND GRAPH OPTIMIZATION PROBLEMS

The notion of an optimization problem provides a structured way to think about
solving lots of computational problems. Whenever you set about solving a
problem that involves finding the biggest, the smallest, the most, the fewest, the
fastest, the least expensive, etc., there is a good chance that you can map the
problem onto a classic optimization problem for which there is a known
computational solution.

In general, an optimization problem has two parts:

1. An objective function that is to be maximized or minimized. For
example, the airfare between Boston and Istanbul.

2. A set of constraints (possibly empty) that must be honored. For
example, an upper bound on the travel time.

In this chapter, we introduce the notion of an optimization problem and give a
few examples. We also provide some simple algorithms that solve them. In the
next chapter, we discuss more efficient ways of solving an important class of
optimization problems.

The main things to take away from this chapter are:

• Many problems of real importance can be simply formulated in a way
that leads naturally to a computational solution.

• Reducing a seemingly new problem to an instance of a well-known
problem allows one to use preexisting solutions.

• Exhaustive enumeration algorithms provide a simple, but often
computationally intractable, way to search for optimal solutions.

• A greedy algorithm is often a practical approach to finding a pretty good,
but not always optimal, solution to an optimization problem.

• Knapsack problems and graph problems are classes of problems to
which other problems can often be reduced.

As usual we will supplement the material on computational thinking with a few
bits of Python and some tips about programming.

17.1 Knapsack Problems

It’s not easy being a burglar. In addition to the obvious problems (making sure
that a home is empty, picking locks, circumventing alarms, dealing with ethical
quandaries, etc.), a burglar has to decide what to steal. The problem is that
most homes contain more things of value than the average burglar can carry
away. What’s a poor burglar to do? He needs to find the set of things that
provides the most value without exceeding his carrying capacity.

 Chapter 17. Knapsack and Graph Optimization Problems 235

Suppose for example, a burglar who has a knapsack109 that can hold at most 20
pounds of loot breaks into a house and finds the items in Figure 17.1. Clearly,
he will not be able to fit it all in his knapsack, so he needs to decide what to take
and what to leave behind.

 Value Weight Value/Weight

Clock 175 10 17.5

Painting 90 9 10

Radio 20 4 5

Vase 50 2 25

Book 10 1 10

Computer 200 20 10

Figure 17.1 Table of items

17.1.1 Greedy Algorithms

The simplest way to find an approximate solution to this problem is to use a
greedy algorithm. The thief would choose the best item first, then the next
best, and continue until he reached his limit. Of course, before doing this, the
thief would have to decide what “best” should mean. Is the best item the most
valuable, the least heavy, or maybe the item with the highest value-to-weight
ratio? If he chose highest value, he would leave with just the computer, which
he could fence for $200. If he chose lowest weight, he would take, in order, the
book, the radio, the vase, and the painting—which would be worth a total of
$170. Finally, if he decided that best meant highest value-to-weight ratio, he
would start by taking the vase and the clock. That would leave three items with
a value-to-weight ratio of 10, but of those only the book would still fit in the
knapsack. After taking the book, he would take the remaining item that still fit,
the radio. The total value of his loot would be $255.

Though greedy-by-density (value-to-weight ratio) happens to yield the best result
for this data set, there is no guarantee that a greedy-by-density algorithm
always finds a better solution than greedy by weight or value. More generally,
there is no guarantee that any solution to this kind of knapsack problem that is
found by a greedy algorithm will be optimal.110 We will discuss this issue in
more detail a bit later.

The code in Figure 17.2 and Figure 17.3 implements all three of these greedy
algorithms. In Figure 17.2, we first define class Item. Each Item has a name,
value, and weight attribute.

109 For those of you too young to remember, a “knapsack” is a simple bag that people
used to carry on their back—long before “backpacks” became fashionable. If you happen
to have been in scouting you might remember the words of the “Happy Wanderer,” “I love
to go a-wandering, Along the mountain track, And as I go, I love to sing, My knapsack on
my back.”

110 There is probably some deep moral lesson to be extracted from this fact, and it is
probably not “greed is good.”

236 Chapter 17. Knapscak and Graph Optimization Problems

The only interesting code is the implementation of the function greedy. By
introducing the parameter keyFunction, we make greedy independent of the
order in which the elements of the list are to be considered. All that is required
is that keyFunction defines an ordering on the elements in items. We then use
this ordering to produce a sorted list containing the same elements as items.
We use the built-in Python function sorted to do this. (We use sorted rather
than sort because we want to generate a new list rather than mutate the list
passed to the function.) We use the reverse parameter to indicate that we want
the list sorted from largest (with respect to keyFunction) to smallest.

Figure 17.2 Building a set of items with orderings

class Item(object):
 def __init__(self, n, v, w):
 self.name = n
 self.value = float(v)
 self.weight = float(w)
 def getName(self):
 return self.name
 def getValue(self):
 return self.value
 def getWeight(self):
 return self.weight
 def __str__(self):
 result = '<' + self.name + ', ' + str(self.value)\
 + ', ' + str(self.weight) + '>'
 return result

def value(item):
 return item.getValue()

def weightInverse(item):
 return 1.0/item.getWeight()

def density(item):
 return item.getValue()/item.getWeight()

def buildItems():
 names = ['clock', 'painting', 'radio', 'vase', 'book', 'computer']
 values = [175,90,20,50,10,200]
 weights = [10,9,4,2,1,20]
 Items = []
 for i in range(len(values)):
 Items.append(Item(names[i], values[i], weights[i]))
 return Items

 Chapter 17. Knapsack and Graph Optimization Problems 237

Figure 17.3 Using a greedy algorithm to choose items

When testGreedys() is executed it prints

Use greedy by value to fill knapsack of size 20
Total value of items taken = 200.0
 <computer, 200.0, 20.0>

Use greedy by weight to fill knapsack of size 20
Total value of items taken = 170.0
 <book, 10.0, 1.0>
 <vase, 50.0, 2.0>
 <radio, 20.0, 4.0>
 <painting, 90.0, 9.0>

Use greedy by density to fill knapsack of size 20
Total value of items taken = 255.0
 <vase, 50.0, 2.0>
 <clock, 175.0, 10.0>
 <book, 10.0, 1.0>
 <radio, 20.0, 4.0>

What is the algorithmic efficiency of greedy? There are two things to consider:
the time complexity of the built-in function sorted, and the number of times
through the for loop in the body of greedy. The number of iterations of the loop
is bounded by the number of elements in items, i.e., it is O(n), where n is the

length of items. However, the worst-case time for Python’s built-in sorting

def greedy(items, maxWeight, keyFunction):
 """Assumes Items a list, maxWeight >= 0,
 keyFunction maps elements of Items to floats"""
 itemsCopy = sorted(items, key=keyFunction, reverse = True)
 result = []
 totalValue = 0.0
 totalWeight = 0.0
 for i in range(len(itemsCopy)):
 if (totalWeight + itemsCopy[i].getWeight()) <= maxWeight:
 result.append(itemsCopy[i])
 totalWeight += itemsCopy[i].getWeight()
 totalValue += itemsCopy[i].getValue()
 return (result, totalValue)

def testGreedy(items, constraint, keyFunction):
 taken, val = greedy(items, constraint, keyFunction)
 print 'Total value of items taken = ', val
 for item in taken:
 print ' ', item

def testGreedys(maxWeight = 20):
 items = buildItems()
 print 'Use greedy by value to fill knapsack of size', maxWeight
 testGreedy(items, maxWeight, value)
 print '\nUse greedy by weight to fill knapsack of size', maxWeight
 testGreedy(items, maxWeight, weightInverse)
 print '\nUse greedy by density to fill knapsack of size', maxWeight
 testGreedy(items, maxWeight, density)

238 Chapter 17. Knapscak and Graph Optimization Problems

function is roughly O(n log n), where n is the length of the list to be sorted111.
Therefore the running time of greedy is O(n log n).

17.1.2 An Optimal Solution to the 0/1 Knapsack Problem

Suppose we decide that an approximation is not good enough, i.e., we want the
best possible solution to this problem. Such a solution is called optimal, not
surprising since we are solving an optimization problem. As it happens, this is
an instance of a classic optimization problem, called the 0/1 knapsack
problem.

The 0/1 knapsack problem can be formalized as follows:

1. Each item is represented by a pair, <value, weight>.

2. The knapsack can accommodate items with a total weight of no more than w.

3. A vector, I, of length n, represents the set of available items. Each element of
the vector is an item.

4. A vector, V, of length n, is used to indicate whether or not each item is taken
by the burglar. If V[i] = 1, item I[i] is taken. If V[i] = 0, item I[i] is not taken.

5. Find a V that maximizes

 subject to the constraint that

Let’s see what happens if we try to implement this formulation of the
problem in a straightforward way:

1. Enumerate all possible combinations of items. That is to say, generate all
subsets112 of the set of items. This is called the power set, and was
discussed in Chapter 9.

2. Remove all of the combinations whose weight exceeds the allowed weight.

3. From the remaining combinations choose any one whose value is the largest.

This approach will certainly find an optimal answer. However, if the original set
of items is large, it will take a very long time to run, because, as we saw in
Chapter 9, the number of subsets grows exceedingly quickly with the number of
items.

Figure 17.4 contains a straightforward implementation of this brute-force
approach to solving the 0/1 knapsack problem. It uses the classes and
functions defined in Figure 17.2 and Figure 17.3, and the function genPowerset
defined in Figure 9.5.

111 As we discussed in Chapter 10, the time complexity of the sorting algorithm, timsort,
used in most Python implementations is O(n log n).

112 Recall that every set is a subset of itself and the empty set is a subset of every set.

!

V[i]* I[i].value

i= 0

n"1

#

!

V[i]* I[i].weight " w
i= 0

n#1

$

 Chapter 17. Knapsack and Graph Optimization Problems 239

Figure 17.4 Brute-force optimal solution to the 0/1 knapsack problem

The complexity of this implementation is O(n*2
n), where n is the length of items.

The function genPowerset returns a list of lists of Items. This list is of length 2n,
and the longest list in it is of length n. Therefore the outer loop in chooseBest
will be executed O(2n)) times, and the number of times the inner loop will be
executed is bounded by n.

Many small optimizations can be applied to speed this program up. For
example, genPowerset could have had the header

def genPowerset(items, constraint, getVal, getWeight)

and returned only those combinations that meet the weight constraint.
Alternatively, chooseBest could exit the inner loop as soon as the weight
constraint is exceeded. While these kinds of optimizations are often worth
doing, they don’t address the fundamental issue. The complexity of chooseBest
will still be O(n*2

n), where n is the length of items, and chooseBest will therefore

still take a very long time to run when items is large.

In a theoretical sense, the problem is hopeless. The 0/1 knapsack problem is
inherently exponential in the number of items. In a practical sense, however,
the problem is far from hopeless, as we will discuss in Chapter 18.

When testBest is run, it prints,
Total value of items taken = 275.0
<clock, 175.0, 10.0>
<painting, 90.0, 9.0>
<book, 10.0, 1.0>

Notice that this solution is better than any of the solutions found by the greedy
algorithms. The essence of a greedy algorithm is making the best (as defined by

def chooseBest(pset, maxWeight, getVal, getWeight):
 bestVal = 0.0
 bestSet = None
 for items in pset:
 itemsVal = 0.0
 itemsWeight = 0.0
 for item in items:
 itemsVal += getVal(item)
 itemsWeight += getWeight(item)
 if itemsWeight <= maxWeight and itemsVal > bestVal:
 bestVal = itemsVal
 bestSet = items
 return (bestSet, bestVal)

def testBest(maxWeight = 20):
 items = buildItems()
 pset = genPowerset(items)
 taken, val = chooseBest(pset, maxWeight, Item.getValue,
 Item.getWeight)
 print 'Total value of items taken =', val
 for item in taken:
 print item

240 Chapter 17. Knapscak and Graph Optimization Problems

some metric) local choice at each step. It makes a choice that is locally
optimal. However, as this example illustrates, a series of locally optimal
decisions does not always lead to a solution that is globally optimal.

Despite the fact that they do not always find the best solution, greedy algorithms
are often used in practice. They are usually easier to implement and more
efficient to run than algorithms guaranteed to find optimal solutions. As Ivan
Boesky once said, “I think greed is healthy. You can be greedy and still feel good
about yourself.” 113

There is a variant of the knapsack problem, called the fractional (or
continuous) knapsack problem, for which a greedy algorithm is guaranteed to
find an optimal solution. Since the items are infinitely divisible, it always makes
sense to take as much as possible of the item with the highest remaining value-
to-weight ratio. Suppose, for example, that our burglar found only three things
of value in the house: a sack of gold dust, a sack of silver dust, and a sack of
raisins. In this case, a greedy-by-density algorithm will always find the optimal
solution.

17.2 Graph Optimization Problems

Let’s think about another kind of optimization problem. Suppose you had a list
of the prices of all of the airline flights between each pair of cities in the United
States. Suppose also that for all cities, A, B, and C, the cost of flying from A to C
by way of B was the cost of flying from A to B plus the cost of flying from B to C.
A few questions you might like to ask are:

• What is the smallest number of stops between some pair of cities?

• What is the least expensive airfare between some pair of cities?

• What is the least expensive airfare between some pair of cities involving
no more than two stops?

• What is the least expensive way to visit some collection of cities?

All of these problems (and many others) can be easily formalized as graph
problems.

A graph114 is a set of objects called nodes (or vertices) connected by a set of
edges (or arcs). If the edges are unidirectional the graph is called a directed
graph or digraph. In a directed graph, if there is an edge from n1 to n2, we refer
to n1 as the source or parent node and n2 as the destination or child node.

113 He said this, to enthusiastic applause, in a 1986 commencement address at the
University of California at Berkeley Business School. A few months later he was indicted
for insider trading, a charge that led to two years in prison and a $100,000,000 fine.

114 Computer scientists and mathematicians use the word “graph” in the sense used in
this book. They typically use the word “plot” to denote the kind of graphs we saw in
Chapters 11-16.

 Chapter 17. Knapsack and Graph Optimization Problems 241

Graphs are typically used to represent situations in which there are interesting
relations among the parts. The first documented use of graphs in mathematics
was in 1735 when the Swiss mathematician Leonhard Euler used what has
come to be known as graph theory to formulate and solve the Königsberg
bridges problem.

Königsberg, then the capital of East Prussia, was built at the intersection of two
rivers that contained a number of islands. The islands were connected to each
other and to the mainland by seven bridges, as shown on the map below. For
some reason, the residents of the city were obsessed with the question of
whether it was possible to take a walk that crossed each bridge exactly once.

Euler’s great insight was that the problem could be vastly simplified by viewing
each separate landmass as a point (think “node”) and each bridge as a line
(think “edge”) connecting two of these points. The map of the town could then
be represented by the graph to the right of the map. Euler then reasoned that if
a walk were to traverse each edge exactly once, it must be the case that each
node in the middle of the walk (i.e., any node except the first and last node
visited) must have an even number of edges to which it is connected. Since
none of the nodes in this graph has an even number of edges, Euler concluded
that it is impossible to traverse each bridge exactly once.

 Map of Königsberg Euler’s Simplified Map
 Arrows point to Bridges

Of greater interest than the Königsberg bridges problem, or even Euler’s theorem
(which generalizes his solution to the Königsberg bridges problem), is the whole
idea of using graph theory to help understand problems.

For example, only one small extension to the kind of graph used by Euler is
needed to model a country’s highway system. If a weight is associated with each
edge in a graph (or digraph) it is called a weighted graph. Using weighted
graphs, the highway system can be represented as a graph in which cities are
represented by nodes and the highways connecting them as edges, where each
edge is labeled with the distance between the two nodes. More generally, one

242 Chapter 17. Knapscak and Graph Optimization Problems

can represent any road map (including those with one-way streets) by a
weighted digraph.

Similarly, the structure of the World Wide Web can be represented as a digraph
in which the nodes are Web pages and there is an edge from node A to node B if
and only if there is a link to page B on page A. Traffic patterns could be modeled
by adding a weight to each edge indicating how often is it used.

There are also many less obvious uses of graphs. Biologists use graphs to model
things ranging from the way proteins interact with each other to gene expression
networks. Physicists use graphs to describe phase transitions. Epidemiologists
use graphs to model disease trajectories. And so on.

Figure 17.5 contains classes implementing abstract types corresponding to
nodes, weighted edges, and edges.

Having a class for nodes may seem like overkill. After all, none of the methods
in class Node perform any interesting computation. We introduced the class
merely to give us the flexibility of deciding, perhaps at some later point, to
introduce a subclass of Node with additional properties.

Figure 17.5 Nodes and edges

class Node(object):
 def __init__(self, name):
 """Assumes name is a string"""
 self.name = name
 def getName(self):
 return self.name
 def __str__(self):
 return self.name

class Edge(object):
 def __init__(self, src, dest):
 """Assumes src and dest are nodes"""
 self.src = src
 self.dest = dest
 def getSource(self):
 return self.src
 def getDestination(self):
 return self.dest
 def __str__(self):
 return self.src.getName() + '->' + self.dest.getName()

class WeightedEdge(Edge):
 def __init__(self, src, dest, weight = 1.0):
 """Assumes src and dest are nodes, weight a float"""
 self.src = src
 self.dest = dest
 self.weight = weight
 def getWeight(self):
 return self.weight
 def __str__(self):
 return self.src.getName() + '->(' + str(self.weight) + ')'\
 + self.dest.getName()

 Chapter 17. Knapsack and Graph Optimization Problems 243

Figure 17.6 contains implementations of the classes Digraph and Graph. One
important decision is the choice of data structure used to represent a Digraph.
One common representation is an n × n adjacency matrix, where n is the
number of nodes in the graph. Each cell of the matrix contains information
(e.g., weights) about the edges connecting the pair of nodes <i, j>. If the edges

are unweighted, each entry is True if and only if there is an edge from i to j.

Another common representation is an adjacency list, which we use here. Class
Digraph has two instance variables. The variable nodes is a Python list
containing the names of the nodes in the Digraph. The connectivity of the nodes
is represented using an adjacency list implemented as a dictionary. The variable
edges is a dictionary that maps each Node in the Digraph to a list of the children
of that Node.

Class Graph is a subclass of Digraph. It inherits all of the methods of Digraph
except addEdge, which it overrides. (This is not the most space-efficient way to
implement Graph, since it stores each edge twice, once for each direction in the
Digraph. But it has the virtue of simplicity.)

Figure 17.6 Classes Graph and Digraph

class Digraph(object):
 #nodes is a list of the nodes in the graph
 #edges is a dict mapping each node to a list of its children
 def __init__(self):
 self.nodes = []
 self.edges = {}
 def addNode(self, node):
 if node in self.nodes:
 raise ValueError('Duplicate node')
 else:
 self.nodes.append(node)
 self.edges[node] = []
 def addEdge(self, edge):
 src = edge.getSource()
 dest = edge.getDestination()
 if not(src in self.nodes and dest in self.nodes):
 raise ValueError('Node not in graph')
 self.edges[src].append(dest)
 def childrenOf(self, node):
 return self.edges[node]
 def hasNode(self, node):
 return node in self.nodes
 def __str__(self):
 result = ''
 for src in self.nodes:
 for dest in self.edges[src]:
 result = result + src.getName() + '->'\
 + dest.getName() + '\n'
 return result[:-1] #omit final newline

class Graph(Digraph):
 def addEdge(self, edge):
 Digraph.addEdge(self, edge)
 rev = Edge(edge.getDestination(), edge.getSource())
 Digraph.addEdge(self, rev)

244 Chapter 17. Knapscak and Graph Optimization Problems

You might want to stop for a minute and think about why Graph is a subclass of
Digraph, rather than the other way around. In many of the examples of
subclassing we have looked at, the subclass adds attributes to the superclass.
For example, class WeightedEdge added a weight attribute to class Edge.

Here, Digraph and Graph have the same attributes. The only difference is the
implementation of the addEdge method. Either could have been easily
implemented by inheriting methods from the other, but the choice of which to
make the superclass was not arbitrary. In Chapter 8 we stressed the importance
of obeying the substitution principle: If client code works correctly using an
instance of the supertype, it should also work correctly when an instance of the
subtype is substituted for the instance of the supertype.

And indeed if client code works correctly using an instance of Digraph, it will
work correctly if an instance of Graph is substituted for the instance of Digraph.
The converse is not true. There are many algorithms that work on graphs (by
exploiting the symmetry of edges) that do not work on directed graphs.

17.2.1 Some Classic Graph-Theoretic Problems

One of the nice things about formulating a problem using graph theory is that
there are well-known algorithms for solving many optimization problems on
graphs. Some of the best-known graph optimization problems are:

• Shortest path. For some pair of nodes, N1 and N2, find the shortest
sequence of edges <s

n
, d

n
> (source node and destination node), such that

o The source node in the first edge is N1

o The destination node of the last edge is N2

o For all edges e1 and e2 in the sequence, if e2 follows e1 in the
sequence, the source node of e2 is the destination node of e1

 i
.

• Shortest weighted path. This is like the shortest path, except instead
of choosing the shortest sequence of edges that connects two nodes, we
define some function on the weights of the edges in the sequence (e.g.,
their sum) and minimize that value. This is the kind of problem solved
by Mapquest and Google Maps when asked to compute driving directions
between two points.

• Cliques. Find a set of nodes such that there is a path (or often a path
not exceeding a maximum length) in the graph between each pair of
nodes in the set.115

• Min cut. Given two sets of nodes in a graph, a cut is a set of edges
whose removal eliminates all paths from each node in one set to each
node in the other. The minimum cut is the smallest set of edges whose
removal accomplishes this.

115 This notion is quite similar to the notion of a social clique, i.e., a group of people who
feel closely connected to each other and are inclined to exclude those not in the clique.
See, for example, the movie Heathers.

 Chapter 17. Knapsack and Graph Optimization Problems 245

17.2.2 The Spread of Disease and Min Cut

Figure 17.7 contains a pictorial representation of a weighted graph generated by
the U.S. Centers for Disease Control (CDC) in the course of studying an
outbreak of tuberculosis in the United States. Each node represents a person,
and each node is labeled by a color116 indicating whether the person has active
TB, tested positive for exposure to TB (i.e., high TST reaction rate), tested
negative for exposure to TB, or had not been tested. The edges represent
contact between pairs of people. The weights, which are not visible in the
picture, indicate whether the contact between people was “close” or “casual.”

Figure 17.7 Spread of tuberculosis

There are many interesting questions that can be formalized using this graph.
For example,

• Is it possible that all cases stemmed from a single “index” patient? More
formally, is there a node, n, such that there is a path from n to every
other node in the graph with an active TB label?117 The answer is
“almost.” There is path from the node in the middle of the graph to each
active TB node except those nodes in the black circle on the right.
Interestingly, subsequent investigation revealed that the person in the
center of the black circle had previously been a neighbor of the putative
index patient, and therefore there should have been a casual contact
edge linking the two.

116 To see a color version of this graph, go to page 23 of
http://www.orgnet.com/TB_web.ppt

117 The edges of the graph do not capture anything related to time. Therefore, the
existence of such a node does not mean that the node represents an index patient.
However, the absence of such a node would indicate the absence of an index patient. We
have a necessary, but not sufficient, condition.

246 Chapter 17. Knapscak and Graph Optimization Problems

• In order to best limit the continued spread, which uninfected people
should be vaccinated? This can be formalized as solving a min cut
problem. Let NA be the set of active TB nodes and NO be the set of all the
other nodes. Each edge in the minimum cut between these two sets will
contain one person with known active TB and one person without. The
people without known active TB are candidates for vaccination.

17.2.3 Shortest Path: Depth-First Search and Breadth-First Search

Social networks are made up of individuals and relationships between
individuals. These are typically modeled as graphs in which the individuals are
nodes and the edges relationships. If the relationships are symmetric, the edges
are undirected; if the relationships are asymmetric the edges are directed. Some
social networks model multiple kinds of relationships, in which case labels on
the edges indicate the kind of relationship.

In 1990118 the playwright John Guare wrote Six Degrees of Separation. The
slightly dubious premise underlying the play is that “everybody on this planet is
separated by only six other people.” By this he meant that if one built a social
network including every person on the earth using the relation “knows,” the
shortest path between any two individuals would pass through at most six other
nodes.

A less hypothetical question is the distance using the “friend” relation between
pairs of people on Facebook. For example, you might wonder if you have a
friend who has a friend who has a friend who is a friend of Mick Jagger. Let’s
think about designing a program to answer such questions.

The friend relation (at least on Facebook) is symmetric, e.g., if Stephanie is a
friend of Andrea, Andrea is a friend of Stephanie. We will, therefore, implement
the social network using type Graph. We can then define the problem of finding
the shortest connection between you and Mick Jagger as:

• For the graph G, find the shortest sequence of nodes,
path = [You,…,Mick Jagger], such that

• If ni and ni+1 are consecutive nodes in path, there is an edge in G
connecting ni and ni+1.

Figure 17.8 contains a recursive function that finds the shortest path between
two nodes, start and end, in a Digraph. Since Graph is a subclass of Digraph, it
will work for our Facebook problem.

The algorithm implemented by DFS is an example of a recursive depth-first-
search (DFS) algorithm. In general, a depth-first-search algorithm begins by
choosing one child of the start node. It then chooses one child of that node and
so on, going deeper and deeper until it either reaches the goal node or a node
with no children. The search then backtracks, returning to the most recent
node with children that it has not yet visited. When all paths have been

118 When Mark Zuckerberg was six years old.

 Chapter 17. Knapsack and Graph Optimization Problems 247

explored, it chooses the shortest path (assuming that there is one) from the start
to the goal.

The code is a bit more complicated than the algorithm we just described because
it has to deal with the possibility of the graph containing cycles. It also avoids
exploring paths longer than the shortest path that it has already found.

• The function search calls DFS with path = [] (to indicate that the current
path being explored is empty) and shortest = None (to indicate that no
path from start to end has yet been found).

• DFS begins by choosing one child of start. It then chooses one child of
that node and so on, until either it reaches the node end or a node with
no unvisited children.

o The check
if node not in path

prevents the program from getting caught in a cycle.

o The check
if shortest == None or len(path) < len(shortest):

is used to decide if it is possible that continuing to search this
path might yield a shorter path than the best path found so far.

o If so, DFS is called recursively. If it finds a path to end that is no
longer than the best found so far, shortest is updated.

o When the last node on path has no children left to visit, the
program backtracks to the previously visited node and visits the
next child of that node.

• The function returns when all possibly shortest paths from start to end
have been explored.

Figure 17.9 contains some code that runs the
code in Figure. The function testSP in Figure
17.9 first builds a directed graph like the one
pictured on the right, and then searches for a
shortest path between node 0 and node 5.

248 Chapter 17. Knapscak and Graph Optimization Problems

Figure 17.8 Depth-first-search shortest-path algorithm

Figure 17.9 Test depth-first-search code

def printPath(path):
 """Assumes path is a list of nodes"""
 result = ''
 for i in range(len(path)):
 result = result + str(path[i])
 if i != len(path) - 1:
 result = result + '->'
 return result

def DFS(graph, start, end, path, shortest):
 """Assumes graph is a Digraph; start and end are nodes;
 path and shortest are lists of nodes
 Returns a shortest path from start to end in graph"""
 path = path + [start]
 print 'Current DFS path:', printPath(path)
 if start == end:
 return path
 for node in graph.childrenOf(start):
 if node not in path: #avoid cycles
 if shortest == None or len(path) < len(shortest):
 newPath = DFS(graph, node, end, path, shortest)
 if newPath != None:
 shortest = newPath
 return shortest

def search(graph, start, end):
 """Assumes graph is a Digraph; start and end are nodes
 Returns a shortest path from start to end in graph"""
 return DFS(graph, start, end, [], None)

def testSP():
 nodes = []
 for name in range(6): #Create 6 nodes
 nodes.append(Node(str(name)))
 g = Digraph()
 for n in nodes:
 g.addNode(n)
 g.addEdge(Edge(nodes[0],nodes[1]))
 g.addEdge(Edge(nodes[1],nodes[2]))
 g.addEdge(Edge(nodes[2],nodes[3]))
 g.addEdge(Edge(nodes[2],nodes[4]))
 g.addEdge(Edge(nodes[3],nodes[4]))
 g.addEdge(Edge(nodes[3],nodes[5]))
 g.addEdge(Edge(nodes[0],nodes[2]))
 g.addEdge(Edge(nodes[1],nodes[0]))
 g.addEdge(Edge(nodes[3],nodes[1]))
 g.addEdge(Edge(nodes[4],nodes[0]))
 sp = search(g, nodes[0], nodes[5])
 print 'Shortest path found by DFS:', printPath(sp)

 Chapter 17. Knapsack and Graph Optimization Problems 249

When executed, testSP produces the output

Current DFS path: 0
Current DFS path: 0->1
Current DFS path: 0->1->2
Current DFS path: 0->1->2->3
Current DFS path: 0->1->2->3->4
Current DFS path: 0->1->2->3->5
Current DFS path: 0->1->2->4
Current DFS path: 0->2
Current DFS path: 0->2->3
Current DFS path: 0->2->3->4
Current DFS path: 0->2->3->5
Current DFS path: 0->2->3->1
Current DFS path: 0->2->4
Shortest path found by DFS: 0->2->3->5

Notice that after exploring the path 0->1->2->3->4, it backs up to node 3 and
explores the path 0->1->2->3->5. After saving that as the shortest successful
path so far, it backs up to node 2 and explores the path 0->1->2->4. When it
reaches the end of that path (node 4), it backs up all the way to node 0 and
investigates the path starting with the edge from 0 to 2. And so on.

The DFS algorithm implemented above finds the path with the minimum
number of edges. If the edges have weights, it will not necessarily find the path
that minimizes the sum of the weights of the edges. However, it is easily
modified to do so.

Of course, there are other ways to traverse a graph than depth-first. Another
common approach is breadth-first search (BFS). In a breadth-first traversal
one first visits all children of the start node. If none of those is the end node, one
visits all children of each of those nodes. And so on. Unlike depth-first search,
which is usually implemented recursively, breadth-first search is usually
implemented iteratively. BFS explores many paths simultaneously, adding one
node to each path on each iteration. Since it generates the paths in ascending
order of length, the first path found with the goal as its last node is guaranteed
to have a minimum number of edges.

Figure 17.10 contains code that uses a breadth-first search to find the shortest
path in a directed graph. The variable pathQueue is used to store all of the paths
currently being explored. Each iteration starts by removing a path from
pathQueue and assigning that path to tmpPath. If the last node in tmpPath is end,
tmpPath is returned. Otherwise, a set of new paths is created, each of which
extends tmpPath by adding one of its children. Each of these new paths is then
added to pathQueue.

250 Chapter 17. Knapscak and Graph Optimization Problems

Figure 17.10 Breadth-first-search shortest path

When the lines

 sp = BFS(g, nodes[0], nodes[5])
 print 'Shortest path found by BFS:', printPath(sp)

are added at the end of testSP and the function is executed it prints

Current DFS path: 0
Current DFS path: 0->1
Current DFS path: 0->1->2
Current DFS path: 0->1->2->3
Current DFS path: 0->1->2->3->4
Current DFS path: 0->1->2->3->5
Current DFS path: 0->1->2->4
Current DFS path: 0->2
Current DFS path: 0->2->3
Current DFS path: 0->2->3->4
Current DFS path: 0->2->3->5
Current DFS path: 0->2->3->1
Current DFS path: 0->2->4
Shortest path found by DFS: 0->2->3->5
Current BFS path: 0
Current BFS path: 0->1
Current BFS path: 0->2
Current BFS path: 0->1->2
Current BFS path: 0->2->3
Current BFS path: 0->2->4
Current BFS path: 0->1->2->3
Current BFS path: 0->1->2->4
Current BFS path: 0->2->3->4
Current BFS path: 0->2->3->5
Shortest path found by BFS: 0->2->3->5

def BFS(graph, start, end):
 """Assumes graph is a Digraph; start and end are nodes
 Returns a shortest path from start to end in graph"""
 initPath = [start]
 pathQueue = [initPath]
 while len(pathQueue) != 0:
 #Get and remove oldest element in pathQueue
 tmpPath = pathQueue.pop(0)
 print 'Current BFS path:', printPath(tmpPath)
 lastNode = tmpPath[-1]
 if lastNode == end:
 return tmpPath
 for nextNode in graph.childrenOf(lastNode):
 if nextNode not in tmpPath:
 newPath = tmpPath + [nextNode]
 pathQueue.append(newPath)
 return None

 Chapter 17. Knapsack and Graph Optimization Problems 251

Comfortingly, each algorithm found a path of the same length. In this case, they
found the same path. However, if a graph contains more than one shortest path
between a pair of nodes, DFS and BFS will not necessarily find the same
shortest path.

As mentioned above, BFS is a convenient way to search for a path with the
fewest edges because the first time a path is found, it is guaranteed to be such a
path.

Finger exercise: Consider a digraph with weighted edges. Is the first path
found by BFS guaranteed to minimize the sum of the weights of the edges?

18 DYNAMIC PROGRAMMING

Dynamic programming was invented by Richard Bellman in the early 1950s.
Don’t try to infer anything about the technique from its name. As Bellman
described it, the name “dynamic programming” was chosen to hide from
governmental sponsors “the fact that I was really doing mathematics… [the
phrase dynamic programming] was something not even a Congressman could
object to.”119

Dynamic programming is a method for efficiently solving problems that exhibit
the characteristics of overlapping subproblems and optimal substructure.
Fortunately, many optimization problems exhibit these characteristics.

A problem has optimal substructure if a globally optimal solution can be found
by combining optimal solutions to local subproblems. We’ve already looked at a
number of such problems. Merge sort, for example, exploits the fact that a list
can be sorted by first sorting sublists and then merging the solutions.

A problem has overlapping subproblems if an optimal solution involves solving
the same problem multiple times. Merge sort does not exhibit this property.
Even though we are performing a merge many times, we are merging different
lists each time.

It’s not immediately obvious, but the 0/1 knapsack problem exhibits both of
these properties. Before looking at that, however, we will digress to look at a
problem where the optimal substructure and overlapping subproblems are more
obvious.

18.1 Fibonacci Sequences, Revisited

In Chapter 4, we looked at a straightforward recursive implementation of the
Fibonacci function, shown here in Figure 18.1.

Figure 18.1 Recursive implementation of Fibonacci function

119 As quoted in Stuart Dreyfus “Richard Bellman on the Birth of Dynamic Programming,”
Operations Research, vol. 50, no. 1 (2002).

def fib(n):
 """Assumes n is an int >= 0
 Returns Fibonacci of n"""
 if n == 0 or n == 1:
 return 1
 else:
 return fib(n-1) + fib(n-2)

 Chapter 18. Dynamic Programming 253

While this implementation of the recurrence is obviously correct, it is terribly
inefficient. Try, for example, running fib(120), but don’t wait for it to complete.
The complexity of the implementation is a bit hard to derive, but it is roughly
O(fib(n)). That is, its growth is proportional to the growth in the value of the
result, and the growth rate of the Fibonacci sequence is substantial. For
example, fib(120) is 8,670,007,398,507,948,658,051,921. If each recursive call took a
nanosecond, fib(120) would take about 250,000 years to finish.

Let’s try and figure out why this implementation takes so long. Given the tiny
amount of code in the body of fib, it’s clear that the problem must be the
number of times that fib calls itself. As an example, look at the tree of calls
associated with the invocation fib(6).

Figure 18.2 Tree of calls for recursive Fibonacci

Notice that we are computing the same values over and over again. For example
fib gets called with 3 three times, and each of these calls provokes four
additional calls of fib. It doesn’t require a genius to think that it might be a
good idea to record the value returned by the first call, and then look it up
rather than compute it each time it is needed. This is called memoization, and
is the key idea behind dynamic programming.

Figure 18.3 contains an implementation of Fibonacci based on this idea. The
function fastFib has a parameter, memo, that it uses to keep track of the
numbers it has already evaluated. The parameter has a default value, the
empty dictionary, so that clients of fastFib don’t have to worry about supplying
an initial value for memo. When fastFib is called with an n > 1, it attempts to
look up n in memo. If it is not there (because this is the first time fastFib has
been called with that value), an exception is raised. When this happens,
fastFib uses the normal Fibonacci recurrence, and then stores the result in
memo.

cib(6)	

cib(5)	

cib(4)	

cib(3)	

cib(2)	

cib(1)	 cib(0)	

cib(1)	

cib(2)	

cib(1)	 cib(0)	

cib(3)	

cib(2)	

cib(1)	 cib(0)	

cib(1)	

cib(4)	

cib(3)	

cib(2)	

cib(1)	 cib(0)	

cib(1)	

cib(2)	

cib(1)	 cib(0)	

254 Chapter 18. Dynamic Programming

Figure 18.3 Implementing Fibonacci using a memo

If you try running fastFib, you will see that it is indeed quite fast: fib(120)
returns almost instantly. What is the complexity of fastFib? It calls fib
exactly once for each value from 0 to n. Therefore, under the assumption that
dictionary lookup can be done in constant time, the time complexity of
fastFib(n) is O(n).120

18.2 Dynamic Programming and the 0/1 Knapsack Problem

One of the optimization problems we looked at in Chapter 17 was the 0/1
knapsack problem. Recall that we looked at a greedy algorithm that ran in
n log n time, but was not guaranteed to find an optimal solution. We also looked
at a brute-force algorithm that was guaranteed to find an optimal solution, but
ran in exponential time. Finally, we discussed the fact that the problem is
inherently exponential in the size of the input. In the worst case, one cannot
find an optimal solution without looking at all possible answers.

Fortunately, the situation is not as bad as it seems. Dynamic programming
provides a practical method for solving most 0/1 knapsack problems in a
reasonable amount of time. As a first step in deriving such a solution, we begin
with an exponential solution based on exhaustive enumeration. The key idea is
to think about exploring the space of possible solutions by constructing a rooted
binary tree that enumerates all states that satisfy the weight constraint.

A rooted binary tree is an acyclic directed graph in which

• There is exactly one node with no parents. This is called the root.

• Each non-root node has exactly one parent.

• Each node has at most two children. A childless node is called a leaf.

Each node in the search tree for the 0/1 knapsack problem is labeled with a
quadruple that denotes a partial solution to the knapsack problem.

120 Though cute and pedagogically interesting, this is not the best way to implement
Fibonacci. There is a simple linear-time iterative implementation.

def fastFib(n, memo = {}):
 """Assumes n is an int >= 0, memo used only by recursive calls
 Returns Fibonacci of n"""
 if n == 0 or n == 1:
 return 1
 try:
 return memo[n]
 except KeyError:
 result = fastFib(n-1, memo) + fastFib(n-2, memo)
 memo[n] = result
 return result

 Chapter 18. Dynamic Programming 255

The elements of the quadruple are:

• A set of items to be taken,

• The list of items for which a decision has not been made,

• The total value of the items in the set of items to be taken (this is merely
an optimization, since the value could be computed from the set), and

• The remaining space in the knapsack. (Again, this is an optimization
since it is merely the difference between the weight allowed and the
weight of all the items taken so far.)

The tree is built top-down starting with the root.121 One element is selected from
the still-to-be-considered items. If there is room for that item in the knapsack, a
node is constructed that reflects the consequence of choosing to take that item.
By convention, we draw that node as the left child. The right child shows the
consequences of choosing not to take that item. The process is then applied
recursively until either the knapsack is full or there are no more items to
consider. Because each edge represents a decision (to take or not to take an
item), such trees are called decision trees.122

Figure 18.4 is a table describing a set of items. Figure 18.5 is a decision tree for
deciding which of those items to take under the assumption that the knapsack
has a maximum weight of 5.

Name Value Weight

a 6 3

b 7 3

c 8 2

d 9 5

Figure 18.4 Table of items with values and weights

121 It may seem odd to put the root of a tree at the top, but that is the way that
mathematicians and computer scientists usually draw them. Perhaps it is evidence that
those folks do not spend enough time contemplating nature.

122 Decision trees, which need not be binary, provide a structured way to explore the
consequences of making a series of sequential decisions. They are used extensively in
many fields.

256 Chapter 18. Dynamic Programming

Figure 18.5 Decision tree for knapsack problem

The root of the tree (node 0) has a label <{}, [a,b,c,d], 0, 5>, indicating that no items
have been taken, all items remain to be considered, the value of the items taken
is 0, and a weight of 5 is still available. Node 1 indicates that a has been taken,
[b,c,d] remain to be considered, the value of the items taken is 6, and the
knapsack can hold another 2 pounds. There is no node to the left of node 1,
since item b, which weighs 3 pounds, would not fit in the knapsack.

In Figure 18.5, the numbers that precede the colon in each node indicate one
order in which the nodes could be generated. This particular ordering is called
left-first depth-first. At each node we attempt to generate a left node. If that is
impossible, we attempt to generate a right node. If that too is impossible, we
back up one node (to the parent) and repeat the process. Eventually, we find
ourselves having generated all descendants of the root, and the process halts.
When the process halts, each combination of items that could fit in the
knapsack has been generated, and any leaf node with the greatest value
represents an optimal solution. Notice that for each leaf node, either the second
element is the empty list (indicating that there are no more items to consider
taking) or the fourth element is 0 (indicating that there is no room left in the
knapsack).

Unsurprisingly (especially if you read the previous chapter), the natural
implementation of a depth-first tree search is recursive. Figure 18.6 contains
such an implementation. It uses class Item from Figure 17.2. The function
maxVal returns two values, the set of items chosen and the total value of those
items. It is called with two arguments, corresponding to the second and fourth
elements of the labels of the nodes in the tree:

• toConsider. Those items that nodes higher up in the tree (corresponding
to earlier calls in the recursive call stack) have not yet considered.

• avail. The amount of space still available.

 Chapter 18. Dynamic Programming 257

Notice that the implementation of maxVal does not build the decision tree and
then look for an optimal node. Instead, it uses the local variable result to
record the best solution found so far.

Figure 18.6 Using a decision tree to solve a knapsack problem

When smallTest (which uses the values in Figure 18.4) is run it prints a result
indicating that node 8 in Figure 18.5 is an optimal solution:

<c, 8.0, 3.0>
<b, 7.0, 2.0>
Total value of items taken = 15.0

If you run this code on any of the examples we have looked at, you will find that
it produces an optimal answer. In fact, it will always produce an optimal
answer, if it gets around to producing any answer at all.

The code in Figure 18.7 makes it convenient to test maxVal. It randomly
generates a list of Items of a specified size. Try bigTest(10). Now try

def maxVal(toConsider, avail):
 """Assumes toConsider a list of items, avail a weight
 Returns a tuple of the total weight of a solution to the
 0/1 knapsack problem and the items of that solution"""
 if toConsider == [] or avail == 0:
 result = (0, ())
 elif toConsider[0].getWeight() > avail:
 #Explore right branch only
 result = maxVal(toConsider[1:], avail)
 else:
 nextItem = toConsider[0]
 #Explore left branch
 withVal, withToTake = maxVal(toConsider[1:],
 avail - nextItem.getWeight())
 withVal += nextItem.getValue()
 #Explore right branch
 withoutVal, withoutToTake = maxVal(toConsider[1:],
 avail)
 #Choose better branch
 if withVal > withoutVal:
 result = (withVal, withToTake + (nextItem,))
 else:
 result = (withoutVal, withoutToTake)
 return result

def smallTest():
 names = ['a', 'b', 'c', 'd']
 vals = [6, 7, 8, 9]
 weights = [3, 3, 2, 5]
 Items = []
 for i in range(len(vals)):
 Items.append(Item(names[i], vals[i], weights[i]))
 val, taken = maxVal(Items, 5)
 for item in taken:
 print item
 print 'Total value of items taken =', val

258 Chapter 18. Dynamic Programming

bigTest(40). After you get tired of waiting for it to return, stop it and ask
yourself what is going on.

Figure 18.7 Testing the decision tree-based implementation

Let’s think about the size of the tree we are exploring. Since at each level of the
tree we are deciding to keep or not keep one item, the maximum depth of the
tree is len(items). At level 0 we have only one node, at level 1 up to two nodes,
at level 2 up to four nodes, at level 3 up to eight nodes. At level 39 we have up to
239 nodes. No wonder it takes a long time to run!

What should we do about this? Let’s start by asking whether this program has
anything in common with our first implementation of Fibonacci. In particular, is
there optimal substructure and are there overlapping subproblems?

Optimal substructure is visible both in Figure 18.5 and in Figure 18.6. Each
parent node combines the solutions reached by its children to derive an optimal
solution for the subtree rooted at that parent. This is reflected in Figure 18.6 by
the code following the comment #Choose better branch.

Are there also overlapping subproblems? At first glance, the answer seems to be
“no.” At each level of the tree we have a different set of available items to
consider. This implies that if common subproblems do exist, they must be at
the same level of the tree. And indeed at each level of the tree each node has the
same set of items to consider taking. However, we can see by looking at the
labels in Figure 18.5 that each node at a level represents a different set of
choices about the items considered higher in the tree.

Think about what problem is being solved at each node. The problem being
solved is finding the optimal items to take from those left to consider, given the
remaining available weight. The available weight depends upon the total weight
of the items taken, but not on which items are taken or the total value of the
items taken. So, for example, in Figure 18.5, nodes 2 and 7 are actually solving
the same problem: deciding which elements of [c,d] should be taken, given that
the available weight is 2.

def buildManyItems(numItems, maxVal, maxWeight):
 items = []
 for i in range(numItems):
 items.append(Item(str(i),
 random.randint(1, maxVal),
 random.randint(1, maxWeight)))
 return items

def bigTest(numItems):
 items = buildManyItems(numItems, 10, 10)
 val, taken = maxVal(items, 40)
 print 'Items Taken'
 for item in taken:
 print item
 print 'Total value of items taken =', val

 Chapter 18. Dynamic Programming 259

The code in Figure 18.8 exploits the optimal substructure and overlapping
subproblems to provide a dynamic programming solution to the 0/1 knapsack
problem. An extra parameter, memo, has been added to keep track of solutions to
subproblems that have already been solved. It is implemented using a
dictionary with a key constructed from the length of toConsider and the
available weight. The expression len(toConsider) is a compact way of
representing the items still to be considered. This works because items are
always removed from the same end (the front) of the list toConsider.

Figure 18.8 Dynamic programming solution to knapsack problem

Figure 18.9 shows the number of calls made when we ran the code on problems
of various sizes.

def fastMaxVal(toConsider, avail, memo = {}):
 """Assumes toConsider a list of items, avail a weight
 memo used only by recursive calls
 Returns a tuple of the total weight of a solution to the
 0/1 knapsack problem and the items of that solution"""
 if (len(toConsider), avail) in memo:
 result = memo[(len(toConsider), avail)]
 elif toConsider == [] or avail == 0:
 result = (0, ())
 elif toConsider[0].getWeight() > avail:
 #Explore right branch only
 result = fastMaxVal(toConsider[1:], avail, memo)
 else:
 nextItem = toConsider[0]
 #Explore left branch
 withVal, withToTake =\
 fastMaxVal(toConsider[1:],
 avail - nextItem.getWeight(), memo)
 withVal += nextItem.getValue()
 #Explore right branch
 withoutVal, withoutToTake = fastMaxVal(toConsider[1:],
 avail, memo)
 #Choose better branch
 if withVal > withoutVal:
 result = (withVal, withToTake + (nextItem,))
 else:
 result = (withoutVal, withoutToTake)
 memo[(len(toConsider), avail)] = result
 return result

260 Chapter 18. Dynamic Programming

len(Items) Number of items
selected

Number of calls

4 4 31

8 6 337

16 9 1,493

32 12 3,650

64 19 8,707

128 27 18.306

256 40 36,675

Figure 18.9 Performance of dynamic programming solution

The growth is hard to quantify, but it is clearly far less than exponential.123 But
how can this be, since we know that the 0/1 knapsack problem is inherently
exponential in the number of items? Have we found a way to overturn
fundamental laws of the universe? No, but we have discovered that
computational complexity can be a subtle notion.124

The running time of fastMaxVal is governed by the number of distinct
<toConsider, avail> pairs generated. This is because the decision about what
to do next depends only upon the items still available and the total weight of the
items already taken.

The number of possible values of toConsider is bounded by len(items).

The number of possible values of avail is more difficult to characterize. It is
bounded from above by the maximum number of distinct totals of weights of the
items that the knapsack can hold. If the knapsack can hold at most n items
(based on the capacity of the knapsack and the weights of the available items),
avail can take on at most 2n different values. In principle, this could be a
rather large number. However, in practice, it is not usually so large. Even if the
knapsack has a large capacity, if the weights of the items are chosen from a
reasonably small set of possible weights, many sets of items will have the same
total weight, greatly reducing the running time.

This algorithm falls into a complexity class called pseudo polynomial. A careful
explanation of this concept is beyond the scope of this book. Roughly speaking,
fastMaxVal is exponential in the number of bits needed to represent the
possible values of avail.

123 Since 2128 = 340,282,366,920,938,463,463,374,607,431,768,211,456

124 OK, “discovered” may be too strong a word. People have known this for a long time.
You probably figured it out around Chapter 9.

 Chapter 18. Dynamic Programming 261

To see what happens when the the values of avail are chosen from a
considerably larger space, change the call to fastMaxVal in Figure 18.7 to

val, taken = fastMaxVal(items, 1000)

Finding a solution now takes 1,802,817 calls of fastMaxVal when the number of
items is 256.

To see what happens when the weights are chosen from an enormous space, we
can choose the possible weights from the positive reals rather than the positive
integers. To do this, replace the line,

items.append(Item(str(i),
 random.randint(1, maxVal),
 random.randint(1, maxWeight)))

in buildManyItems by the line

items.append(Item(str(i),
 random.randint(1, maxVal),
 random.randint(1, maxWeight)*random.random()))

Don’t hold your breath waiting for this last test to finish. Dynamic programming
may be a miraculous technique in the common sense of the word,125 but it is not
capable of performing miracles in the liturgical sense.

18.3 Dynamic Programming and Divide-and-Conquer

Like divide-and-conquer algorithms, dynamic programming is based upon
solving independent subproblems and then combining those solutions. There
are, however, some important differences.

Divide-and-conquer algorithms are based upon finding subproblems that are
substantially smaller than the original problem. For example, merge sort works
by dividing the problem size in half at each step. In contrast, dynamic
programming involves solving problems that are only slightly smaller than the
original problem. For example, computing the 19th Fibonacci number is not a
substantially smaller problem than computing the 20th Fibonacci number.

Another important distinction is that the efficiency of divide-and-conquer
algorithms does not depend upon structuring the algorithm so that the same
problems are solved repeatedly. In contrast, dynamic programming is efficient
only when the number of distinct subproblems is significantly smaller than the
total number of subproblems.

125 Extraordinary and bringing welcome consequences.

19 A QUICK LOOK AT MACHINE LEARNING

The amount of digital data in the world has been growing at a rate that defies
human comprehension. The world’s data storage capacity has doubled about
every three years since the 1980s. During the time it will take you to read this
chapter, approximately 1018 bits of data will be added to the world’s store. It’s
not easy to relate to a number that large. One way to think about it is that 1018
Canadian pennies would have a surface area roughly twice that of the earth.

Of course, more data does not always lead to more useful information.
Evolution is a slow process, and the ability of the human mind to assimilate
data has, alas, not doubled every three years. One approach that the world is
using to attempt to exploit what has come to be known as “big data” is
statistical machine learning.

Machine learning is hard to define. One of the earliest definitions was proposed
by the American electrical engineer and computer scientist Arthur Samuel,126
who defined it as a “Field of study that gives computers the ability to learn
without being explicitly programmed.” Of course, in some sense, every useful
program learns something. For example, an implementation of Newton’s method
learns the roots of a polynomial.

Humans learn things in two ways—memorization and generalization. We use
memorization to accumulate individual facts. In England, for example, primary
school students might learn a list of English monarchs. Humans use
generalization to deduce new facts from old facts. A student of political science,
for example, might observe the behavior of a large number of politicians and
generalize to conclude that all politicians are likely to make decisions intended
to enhance their chances of staying in office.

When computer scientists speak about machine learning, they most often mean
the field of writing programs that automatically learn to make useful inferences
from implicit patterns in data. For example, linear regression (see Chapter 15)
learns a curve that is a model of a collection of examples. That model can then
be used to make predictions about previously unseen examples.

In general, machine learning involves observing a set of examples that represent
incomplete information about some statistical phenomenon, and then
attempting to infer something about the process that generated those examples.
The examples are frequently called training data.

126 Samuel is probably best known as the author of program that played checkers. The
program, which he started working on in the 1950s and continued to work on into the
1970s, was impressive for its time, though not particularly good by modern standards.
However, while working on it Samuel invented several techniques that are still used
today. Among other things, Samuel’s checker-playing program was quite possibly the
first program ever written that improved based upon “experience.”

 Chapter 19. A Quick Look at Machine Learning 263

Suppose, for example, you were given the following two sets of people:

A: {Abraham Lincoln, George Washington, Charles de Gaulle}
B: {Benjamin Harrison, James Madison, Louis Napoleon}

Now, suppose that you were provided with the following partial descriptions of
each of them:

Abraham Lincoln: American, President, 193 cm tall
George Washington: American, President, 189 cm tall
Benjamin Harrison: American, President, 168 cm tall
James Madison: American, President, 163 cm tall
Louis Napoleon: French, President, 169 cm tall
Charles de Gaulle: French, President, 196 cm tall

Based on this incomplete information about these historical figures, you might
infer that the process that assigned these examples to the set labeled A or the
set labeled B involved separating tall presidents from shorter ones.

The incomplete information is typically called a feature vector. Each element of
the vector describes some aspect (i.e., feature) of the example.

There are a large number of different approaches to machine learning, but all try
to learn a model that is a generalization of the provided examples. All have three
components:

• A representation of the model,

• An objective function for assessing the goodness of the model, and

• An optimization method for learning a model that minimizes or
maximizes the value of the objective function.

Broadly speaking, machine learning algorithms can be thought of as either
supervised or unsupervised.

In supervised learning, we start with a set of feature vector/label pairs.127 The
goal is to derive from these examples a rule that predicts the label associated
with a previously unseen feature vector. For example, given the sets A and B, a
learning algorithm might infer that all tall presidents should be labeled A and all
short presidents labeled B. When asked to assign a label to

Thomas Jefferson: American, President, 189 cm.

it would then choose label A.

Supervised machine learning is broadly used in practice for such tasks as
detecting fraudulent use of credit cards and recommending movies to people.
The best algorithms are quite sophisticated, and understanding them requires a
level of mathematical sophistication well beyond that assumed for this book.
Consequently, we will not cover them here.

127 Much of the machine learning literature uses the word “class” rather than “label.”
Since we use the word “class” for something else in this book, we will stick to using
“label” for this concept.

264 Chapter 19. A Quick Look at Machine Learning

In unsupervised learning, we are given a set of feature vectors but no labels.
The goal of unsupervised learning is to uncover latent structure in the set of
feature vectors. For example, given the set of presidential feature vectors, an
unsupervised learning algorithm might separate the presidents into tall and
short, or perhaps into American and French.

The most popular unsupervised learning techniques are designed to find
clusters of similar feature vectors. Geneticists, for example, use clustering to
find groups of related genes. Many popular clustering methods are surprisingly
simple. We will present the most widely used algorithm later in this chapter.
First, however, we want to say a few words about feature extraction.

19.1 Feature Vectors

The concept of signal-to-noise ratio (SNR) is used in many branches of
engineering and science. The precise definition varies across applications, but
the basic idea is simple. Think of it as the ratio of useful input to irrelevant
input. In a restaurant, the signal might be the voice of your dinner date, and
the noise the voices of the other diners.128 If we were trying to predict which
students would do well in a programming course, previous programming
experience and mathematical aptitude would be part of the signal, but gender
merely noise. Separating the signal from the noise is not always easy. And
when it is done poorly, the noise can be a distraction that obscures the truth in
the signal.

The purpose of feature extraction is to separate those features in the available
data that contribute to the signal from those that are merely noise. Failure to do
an adequate job of this introduces two kinds of problems:

1. Irrelevant features can lead to a bad model. The danger of this is
particularly high when the dimensionality of the data (i.e., the number of
different features) is large relative to the number of samples.

2. Irrelevant features can greatly slow the learning process. Machine
learning algorithms are often computationally intensive, and complexity
grows with both the number of examples and the number of features.

The goal of feature extraction is to reduce the vast amount of information that
might be available in examples to information from which it will be productive to
generalize. Imagine, for example, that your goal is to learn a model that will
predict whether a person likes to drink wine. Some attributes, e.g., age and the
nation in which they live, are likely to be relevant. Other attributes, e.g.,
whether they are left-handed, are less likely to be relevant.

Feature extraction is difficult. In the context of supervised learning, one can try
to select those features that are correlated with the labels of the examples. In

128 Unless your dinner date is exceedingly boring. In which case, your dinner date’s
conversation becomes the noise, and the conversation at the next table the signal.

 Chapter 19. A Quick Look at Machine Learning 265

unsupervised learning, the problem is harder. Typically, we choose features
based upon our intuition about which features might be relevant to the kinds of
structure we would like to find.

Consider Figure 19.1, which contains a table of feature vectors and the label
(reptile or not) with which each vector is associated.

Name Egg-
laying

Scales Poisonous Cold-
blooded

Legs

Reptile

Cobra True True True True 0 Yes

Rattlesnake True True True True 0 Yes

Boa constrictor False True False True 0 Yes

Alligator True True False True 4 Yes

Dart frog True False True False 4 No

Salmon True True False True 0 No

Python True True False True 0 Yes

Figure 19.1 Name, features and labels for assorted animals

A supervised machine learning algorithm (or a human) given only the
information about cobras cannot do much more than to remember the fact that
a cobra is a reptile. Now, let’s add the information about rattlesnakes. We can
begin to generalize, and might infer the rule that an animal is a reptile if it lays
eggs, has scales, is poisonous, is cold-blooded, and has no legs.

Now, suppose we are asked to decide if a boa constrictor is a reptile. We might
answer “no,” because a boa constrictor is neither poisonous nor egg-laying. But
this would be the wrong answer. Of course, it is hardly surprising that
attempting to generalize from two examples might lead us astray. Once we
include the boa constrictor in our training data, we might formulate the new
rule that an animal is a reptile if it is has scales, is cold-blooded, and is legless.
In doing so, we are discarding the features egg-laying and poisonous as
irrelevant to the classification problem.

If we use the new rule to classify the alligator, we conclude incorrectly that since
it has legs it is not a reptile. Once we include the alligator in the training data
we reformulate the rule to allow reptiles to have either none or four legs. When
we look at the dart frog, we correctly conclude that it is not a reptile, since it is
not cold-blooded. However, when we use our current rule to classify the
salmon, we incorrectly conclude that a salmon is a reptile. We can add yet more
complexity to our rule, to separate salmon from alligators, but it’s a losing
battle. There is no way to modify our rule so that it will correctly classify both
salmon and pythons—since the feature vectors of these two species are
identical.

This kind of problem is more common than not in machine learning. It is quite
rare to have feature vectors that contain enough information to classify things
perfectly. In this case, the problem is that we don’t have enough features. If we

266 Chapter 19. A Quick Look at Machine Learning

had included the fact that reptile eggs have amnios,129 we could devise a rule
that separates reptiles from fish. Unfortunately, in most practical applications
of machine learning it is not possible to construct feature vectors that allow for
perfect discrimination.

Does this mean that we should give up because all of the available features are
mere noise? No. In this case the features scales and cold-blooded are
necessary conditions for being a reptile, but not sufficient conditions. The rule
has scales and is cold-blooded will not yield any false negatives, i.e., any
animal classified as a non-reptile will indeed not be a reptile. However, it will
yield some false positives, i.e., some of the animals classified as reptiles will not
be reptiles.

19.2 Distance Metrics

In Figure 19.1 we described animals using four binary features and one integer
feature. Suppose we want to use these features to evaluate the similarity of two
animals, e.g., to ask, is a boa constrictor more similar to a rattlesnake or to a
dart frog?130

The first step in doing this kind of comparison is converting the features for each
animal into a sequence of numbers. If we say True = 1 and False = 0, we get
the following feature vectors:

Rattlesnake: [1,1,1,1,0]
Boa constrictor: [0,1,0,1,0]
Dart frog: [1,0,1,0,4]

There are many different ways to compare the similarity of vectors of numbers.
The most commonly used metrics for comparing equal-length vectors are based
on the Minkowski distance:

!"#$%&'(!1,!2, ! = (!"# !1! − !2! !
!"#

!!!

)! !

The parameter p defines the kinds of paths that can be followed in traversing the
distance between the vectors !1 and !2. This can be
mostly easily visualized if the vectors are of length two,
and represent Cartesian coordinates. Consider the picture
on the left. Is the circle in the bottom left corner closer to
the cross or to the star? It depends. If we can travel in a
straight line, the cross is closer. The Pythagorean
Theorem tells us that the cross is the square root of 8
units from the circle, about 2.8 units, whereas we can

129 Amnios are protective outer layers that allow eggs to be laid on land rather than in the
water.

130 This question is not quite as silly as it sounds. A naturalist and a toxicologist (or
someone looking to enhance the effectiveness of a blow dart) might give different answers
to this question.

 Chapter 19. A Quick Look at Machine Learning 267

easily see that the star is 3 units from the circle. These distances are called
Euclidean distances, and correspond to using the Minkowski distance with p = 2.
But imagine that the lines in the picture correspond to streets, and that one has
to stay on the streets to get from one place to another. In that case, the star
remains 3 units from the circle, but the cross is now 4 units away. These
distances are called Manhattan distances,131 and correspond to using the
Minkowski distance with p = 1.

Figure 19.2 contains an implementation of the Minkowski distance.

Figure 19.2 Minkowski distance

Figure 19.3 contains class Animal. It defines the distance between two animals
as the Euclidean distance between the feature vectors associated with the
animals.

Figure 19.3 Class Animal

Figure 19.4 contains a function that compares a list of animals to each other,
and produces a table showing the pairwise distances.

131 Manhattan Island is the most densely populated borough of New York City. On most
of the island, the streets are laid out in a grid, so using the Minkowski distance with p = 1
provides a good approximation of the distance one has to travel to walk from one place
(say the Museum of Modern Art at 53rd Street and 6th Avenue) to another (say the
American Folk Art Museum at 66th Street and 9th, also called Columbus Avenue). Driving
in Manhattan is a totally different story.

def minkowskiDist(v1, v2, p):
 """Assumes v1 and v2 are equal-length arrays of numbers
 Returns Minkowski distance of order p between v1 and v2"""
 dist = 0.0
 for i in range(len(v1)):
 dist += abs(v1[i] - v2[i])**p
 return dist**(1.0/p)

class Animal(object):
 def __init__(self, name, features):
 """Assumes name a string; features a list of numbers"""
 self.name = name
 self.features = pylab.array(features)

 def getName(self):
 return self.name

 def getFeatures(self):
 return self.features

 def distance(self, other):
 """Assumes other an animal
 Returns the Euclidean distance between feature vectors
 of self and other"""
 return minkowskiDist(self.getFeatures(),
 other.getFeatures(), 2)

268 Chapter 19. A Quick Look at Machine Learning

Figure 19.4 Build table of distances between pairs of animals

The code uses a PyLab plotting facility that we have not previously used: table.

The table function produces a plot that (surprise!) looks like a table. The
keyword arguments rowLabels and colLabels are used to supply the labels (in
this example the names of the animals) for the rows and columns. The keyword
argument cellText is used to supply the values appearing in the cells of the
table. In the example, cellText is bound to tableVals, which is a list of lists of
strings. Each element in tableVals is a list of the values for the cells in one row
of the table. The keyword argument cellLoc is used to specify where in each
cell the text should appear, and the keyword argument loc is used to specify
where in the figure the table itself should appear. The last keyword parameter
used in the example is colWidths. It is bound to a list of floats giving the width
(in inches) of each column in the table. The code table.scale(1, 2.5) instructs
PyLab to leave the horizontal width of the cells unchanged, but to increase the
height of the cells by a factor of 2.5 (so the tables look prettier).

def compareAnimals(animals, precision):
 """Assumes animals is a list of animals, precision an int >= 0
 Builds a table of Euclidean distance between each animal"""
 #Get labels for columns and rows
 columnLabels = []
 for a in animals:
 columnLabels.append(a.getName())
 rowLabels = columnLabels[:]
 tableVals = []
 #Get distances between pairs of animals
 #For each row
 for a1 in animals:
 row = []
 #For each column
 for a2 in animals:
 if a1 == a2:
 row.append('--')
 else:
 distance = a1.distance(a2)
 row.append(str(round(distance, precision)))
 tableVals.append(row)
 #Produce table
 table = pylab.table(rowLabels = rowLabels,
 colLabels = columnLabels,
 cellText = tableVals,
 cellLoc = 'center',
 loc = 'center',
 colWidths = [0.2]*len(animals))
 table.scale(1, 2.5)
 pylab.axis('off') #Don't display x and y-axes
 pylab.savefig('distances')

 Chapter 19. A Quick Look at Machine Learning 269

If we run the code

rattlesnake = Animal('rattlesnake', [1,1,1,1,0])
boa = Animal('boa\nconstrictor', [0,1,0,1,0])
dartFrog = Animal('dart frog', [1,0,1,0,4])
animals = [rattlesnake, boa, dartFrog]
compareAnimals(animals, 3)

it produces a figure containing the table

As you probably expected, the distance between the rattlesnake and the boa
constrictor is less than that between either of the snakes and the dart frog.
Notice, by the way, that the dart frog does seem to be a bit closer to the
rattlesnake than to the boa.

Now, let’s add to the bottom of the above code the lines

alligator = Animal('alligator', [1,1,0,1,4])
animals.append(alligator)
compareAnimals(animals, 3)

It produces the table

Perhaps you’re surprised that the alligator is considerably closer to the dart frog
than to either the rattlesnake or the boa constrictor. Take a minute to think
about why.

The feature vector for the alligator differs from that of the rattlesnake in two
places: whether it is poisonous and the number of legs. The feature vector for
the alligator differs from that of the dart frog in three places: whether it is
poisonous, whether it has scales, and whether it is cold-blooded. Yet according
to our distance metric the alligator is more like the dart frog than like the
rattlesnake. What’s going on?

The root of the problem is that the different features have different ranges of
values. All but one of the features range between 0 and 1, but the number of
legs ranges from 0 to 4. This means that when we calculate the Euclidean
distance the number of legs gets disproportionate weight. Let’s see what

270 Chapter 19. A Quick Look at Machine Learning

happens if we turn the feature into a binary feature, with a value of 0 if the
animal is legless and 1 otherwise.

This looks a lot more plausible.

Of course, it is not always convenient to use only binary features. In Section
19.7 we will present a more general approach to dealing with differences in scale
among features.

19.3 Clustering

Clustering can be defined as the process of organizing objects into groups
whose members are similar in some way. A key issue is defining the meaning of
“similar.”

Consider the plot on the right, which shows the
height, weight, and whether or not they are
wearing a striped shirt for 13 people.

If we want to cluster people by height, there are
two obvious clusters—delimited by the dotted
horizontal line. If we want to cluster people by
weight there are two different obvious
clusters—delimited by the solid vertical line. If
we want to cluster people based on their shirt,
there is yet a third clustering—delimited by the angled dotted arrows. Notice, by
the way, that this last division is not linear, i.e., we cannot separate the people
wearing striped shirts from the others using a single straight line.

Clustering is an optimization problem. The goal is to find a set of clusters that
optimizes an objective function, subject to some set of constraints. Given a
distance metric that can be used to decide how close two examples are to each
other, we need to define an objective function that

• Minimizes the distance between examples in the same clusters, i.e.,
minimizes the dissimilarity of the examples within a cluster.

As we will see later, the exact definition of the objective function can greatly
influence the outcome.

A good measure of how close the examples within a single cluster, c, are to each
other is variance. To compute the variance of the examples within a cluster, we

 Chapter 19. A Quick Look at Machine Learning 271

first compute the mean of the feature vectors of all the examples in the cluster.
If V is a list of feature vectors each of which is an array of numbers, the mean
(more precisely the Euclidean mean) is the value of the expression
sum(V)/float(len(V)). Given the mean and a metric for computing the distance
between feature vectors, the variance of a cluster is

!"#$"%&' ! = !"#$%&'((!"#$! , !)!
!∈!

!

Notice that the variance is not normalized by the size of the cluster, so clusters
with more points are likely to look less cohesive according to this measure. If
one wants to compare the coherence of two clusters of different sizes, one needs
to divide the variance of each by the size of the cluster.

The definition of variance within a single cluster, c, can be extended to define a
dissimilarity metric for a set of clusters, C:

!"##"$"%&'"() ! = !"#$"%&'(!)
!∈!

Notice that since we don’t divide the variance by the size of the cluster, a large
incoherent cluster increases the value of dissimilarity(C) more than a small
incoherent cluster does.

So, is the optimization problem to find a set of clusters, C, such that
dissimilarity(C) is minimized? Not exactly. It can easily be minimized by putting
each example in its own cluster. We need to add some constraint. For example,
we could put a constraint on the distance between clusters or require that the
maximum number of clusters is k.

In general, solving this optimization problem is computationally prohibitive for
most interesting problems. Consequently, people rely on greedy algorithms that
provide approximate solutions. Later in this chapter, we present one such
algorithm, k-means clustering. But first we will introduce some abstractions
that are useful for implementing that algorithm (and other clustering algorithms
as well).

272 Chapter 19. A Quick Look at Machine Learning

19.4 Types Example and Cluster

Class Example will be used to build the samples to be clustered. Associated with
each example is a name, a feature vector, and an optional label. The distance
method returns the Euclidean distance between two examples.

Figure 19.5 Class Example

Class Cluster, Figure 19.6, is slightly more complex. Think of a cluster as a set
of examples. The two interesting methods in Cluster are computeCentroid and
variance. Think of the centroid of a cluster as its center of mass. The method
computeCentroid returns an example with a feature vector equal to the
Euclidean mean of the feature vectors of the examples in the cluster. The
method variance provides a measure of the coherence of the cluster.

class Example(object):

 def __init__(self, name, features, label = None):
 #Assumes features is an array of numbers
 self.name = name
 self.features = features
 self.label = label

 def dimensionality(self):
 return len(self.features)

 def getFeatures(self):
 return self.features[:]

 def getLabel(self):
 return self.label

 def getName(self):
 return self.name

 def distance(self, other):
 return minkowskiDist(self.features, other.getFeatures(), 2)

 def __str__(self):
 return self.name +':'+ str(self.features) + ':' + str(self.label)

 Chapter 19. A Quick Look at Machine Learning 273

Figure 19.6 Class Cluster

class Cluster(object):

 def __init__(self, examples, exampleType):
 """Assumes examples is a list of example of type exampleType"""
 self.examples = examples
 self.exampleType = exampleType
 self.centroid = self.computeCentroid()

 def update(self, examples):
 """Replace the examples in the cluster by new examples
 Return how much the centroid has changed"""
 oldCentroid = self.centroid
 self.examples = examples
 if len(examples) > 0:
 self.centroid = self.computeCentroid()
 return oldCentroid.distance(self.centroid)
 else:
 return 0.0

 def members(self):
 for e in self.examples:
 yield e

 def size(self):
 return len(self.examples)

 def getCentroid(self):
 return self.centroid

 def computeCentroid(self):
 dim = self.examples[0].dimensionality()
 totVals = pylab.array([0.0]*dim)
 for e in self.examples:
 totVals += e.getFeatures()
 centroid = self.exampleType('centroid',
 totVals/float(len(self.examples)))
 return centroid

 def variance(self):
 totDist = 0.0
 for e in self.examples:
 totDist += (e.distance(self.centroid))**2
 return totDist**0.5

 def __str__(self):
 names = []
 for e in self.examples:
 names.append(e.getName())
 names.sort()
 result = 'Cluster with centroid '\
 + str(self.centroid.getFeatures()) + ' contains:\n '
 for e in names:
 result = result + e + ', '
 return result[:-2]

274 Chapter 19. A Quick Look at Machine Learning

19.5 K-means Clustering

K-means clustering is probably the most widely used clustering method.132 Its
goal is to partition a set of examples into k clusters such that

1. Each example is in the cluster whose centroid is the closest centroid to
that example, and

2. The dissimilarity of the set of clusters is minimized.

Unfortunately, finding an optimal solution to this problem on a large dataset is
computationally intractable. Fortunately, there is an efficient greedy
algorithm133 that can be used to find a useful approximation. It is described by
the pseudocode

randomly choose k examples as initial centroids
while true:
 1) create k clusters by assigning each example to closest centroid
 2) compute k new centroids by averaging the examples in each cluster
 3) if none of the centroids differ from the previous iteration:
 return the current set of clusters

The complexity of step 1 is O(k*n*d), where k is the number of clusters, n is the
number of examples, and d the time required to compute the distance between a
pair of examples. The complexity of step 2 is O(n), and the complexity of step 3 is
O(k). Hence, the complexity of a single iteration is O(k*n*d). If the examples are
compared using the Minkowski distance, d is linear in the length of the feature
vector.134 Of course, the complexity of the entire algorithm depends upon the
number of iterations. That is not easy to characterize, but suffice it to say that
it is usually small.

One problem with the k-means algorithm is that it is nondeterministic—the
value returned depends upon the initial set of randomly chosen centroids. If a
particularly unfortunate set of initial centroids is chosen, the algorithm might
settle into a local optimum that is far from the global optimum. In practice, this
problem is typically addressed by running k-means multiple times with
randomly chosen initial centroids. We then choose the solution with the
minimum dissimilarity of clusters.

Figure 19.7 contains a straightforward translation of the pseudocode describing
k-means into Python. It uses random.sample(examples, k) to get the initial
centroids. This invocation returns a list of k randomly chosen distinct elements
from the list examples.

132 Though k-means clustering is probably the most commonly used clustering method, it
is not the most appropriate method in all situations. Two other widely used methods, not
coverd in this book, are hierarchical clustering and EM-clustering.

133 The most widely used k-means algorithm is attributed to James McQueen, and was
first published in 1967. However, other approaches to k-means clustering were used as
early as the 1950s.

134 Unfortunately, in many applications we need to use a distance metric, e.g., earth-
movers distance or dynamic-time-warping distance, that have a higher computational
complexity.

 Chapter 19. A Quick Look at Machine Learning 275

Figure 19.7 K-means clustering

Figure 19.8 contains a function, trykmeans, that calls kmeans multiple times and
selects the result with the lowest dissimilarity.

def kmeans(examples, exampleType, k, verbose):
 """Assumes examples is a list of examples of type exampleType,
 k is a positive int, verbose is a Boolean
 Returns a list containing k clusters. If verbose is
 True it prints result of each iteration of k-means"""
 #Get k randomly chosen initial centroids
 initialCentroids = random.sample(examples, k)

 #Create a singleton cluster for each centroid
 clusters = []
 for e in initialCentroids:
 clusters.append(Cluster([e], exampleType))

 #Iterate until centroids do not change
 converged = False
 numIterations = 0
 while not converged:
 numIterations += 1
 #Create a list containing k distinct empty lists
 newClusters = []
 for i in range(k):
 newClusters.append([])

 #Associate each example with closest centroid
 for e in examples:
 #Find the centroid closest to e
 smallestDistance = e.distance(clusters[0].getCentroid())
 index = 0
 for i in range(1, k):
 distance = e.distance(clusters[i].getCentroid())
 if distance < smallestDistance:
 smallestDistance = distance
 index = i
 #Add e to the list of examples for the appropriate cluster
 newClusters[index].append(e)

 #Upate each cluster; check if a centroid has changed
 converged = True
 for i in range(len(clusters)):
 if clusters[i].update(newClusters[i]) > 0.0:
 converged = False
 if verbose:
 print 'Iteration #' + str(numIterations)
 for c in clusters:
 print c
 print '' #add blank line
 return clusters

276 Chapter 19. A Quick Look at Machine Learning

Figure 19.8 Finding the best k-means clustering

19.6 A Contrived Example

Figure 19.9 contains code that generates, plots, and clusters examples drawn
from two distributions.

The function genDistributions generates a list of n examples with two-
dimensional feature vectors. The values of the elements of these feature vectors
are drawn from normal distributions.

The function plotSamples plots the feature vectors of a set of examples. It uses
another PyLab plotting feature that we have not yet seen: the function annotate
is used to place text next to points on the plot. The first argument is the text,
the second argument the point with which the text is associated, and the third
argument the location of the text relative to the point with which it is associated.

The function contrivedTest uses genDistributions to create two distributions of
ten examples each with the same standard deviation but different means, plots
the examples using plotSamples, and then clusters them using trykmeans.

def dissimilarity(clusters):
 totDist = 0.0
 for c in clusters:
 totDist += c.variance()
 return totDist

def trykmeans(examples, exampleType, numClusters, numTrials,
 verbose = False):
 """Calls kmeans numTrials times and returns the result with the
 lowest dissimilarity"""
 best = kmeans(examples, exampleType, numClusters, verbose)
 minDissimilarity = dissimilarity(best)
 for trial in range(1, numTrials):
 clusters = kmeans(examples, exampleType, numClusters, verbose)
 currDissimilarity = dissimilarity(clusters)
 if currDissimilarity < minDissimilarity:
 best = clusters
 minDissimilarity = currDissimilarity
 return best

 Chapter 19. A Quick Look at Machine Learning 277

Figure 19.9 A test of k-means

When executed, the call contrivedTest(1, 2, True) produced the plot in Figure
19.10.

Figure 19.10 Examples from two distributions

def genDistribution(xMean, xSD, yMean, ySD, n, namePrefix):
 samples = []
 for s in range(n):
 x = random.gauss(xMean, xSD)
 y = random.gauss(yMean, ySD)
 samples.append(Example(namePrefix+str(s), [x, y]))
 return samples

def plotSamples(samples, marker):
 xVals, yVals = [], []
 for s in samples:
 x = s.getFeatures()[0]
 y = s.getFeatures()[1]
 pylab.annotate(s.getName(), xy = (x, y),
 xytext = (x+0.13, y-0.07),
 fontsize = 'x-large')
 xVals.append(x)
 yVals.append(y)
 pylab.plot(xVals, yVals, marker)

def contrivedTest(numTrials, k, verbose):
 random.seed(0)
 xMean = 3
 xSD = 1
 yMean = 5
 ySD = 1
 n = 10
 d1Samples = genDistribution(xMean, xSD, yMean, ySD, n, '1.')
 plotSamples(d1Samples, 'b^')
 d2Samples = genDistribution(xMean+3, xSD, yMean+1, ySD, n, '2.')
 plotSamples(d2Samples, 'ro')
 clusters = trykmeans(d1Samples + d2Samples, Example, k,
 numTrials, verbose)
 print 'Final result'
 for c in clusters:
 print '', c

278 Chapter 19. A Quick Look at Machine Learning

and printed

Iteration 1
 Cluster with centroid [4.57800047 5.35921276] contains:
 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 2.0, 2.1, 2.2, 2.3,
2.4, 2.5, 2.6, 2.7, 2.8, 2.9
 Cluster with centroid [3.79646584 2.99635148] contains:
 1.9

Iteration 2
 Cluster with centroid [4.80105783 5.73986393] contains:
 1.1, 1.2, 1.4, 1.5, 1.6, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,
2.8, 2.9
 Cluster with centroid [3.75252146 3.74468698] contains:
 1.0, 1.3, 1.7, 1.8, 1.9

Iteration 3
 Cluster with centroid [5.6388835 6.02296994] contains:
 1.6, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
 Cluster with centroid [3.19452848 4.28541384] contains:
 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.7, 1.8, 1.9

Iteration 4
 Cluster with centroid [5.93613865 5.96069975] contains:
 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
 Cluster with centroid [3.14170883 4.52143963] contains:
 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

Iteration 5
 Cluster with centroid [5.93613865 5.96069975] contains:
 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
 Cluster with centroid [3.14170883 4.52143963] contains:
 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

Final result
 Cluster with centroid [5.93613865 5.96069975] contains:
 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
 Cluster with centroid [3.14170883 4.52143963] contains:
 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9

Notice that the initial (randomly chosen) centroids led to a highly skewed
clustering in which a single cluster contained all but one of the points. By the
fifth iteration, however, the centroids had moved to places such that the points
from the two distributions were cleanly separated into two clusters. Given that
a straight line can be used to separate the points generated from the first
distribution from those generated by from the second distribution, it is not
terribly surprising that k-means converged on this clustering.

When we tried 40 trials rather than 1, by calling contrivedTest(40, 2, False), it
printed

Final result
 Cluster with centroid [6.07470389 5.67876712] contains:
 1.8, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
 Cluster with centroid [3.00314359 4.80337227] contains:
 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.9

This indicates that the solution found using 1 trial, despite perfectly separating
the examples by the distribution from which they were chosen, was not as good

 Chapter 19. A Quick Look at Machine Learning 279

(with respect to minimizing the objective function) as one of the solutions found
using 40 trials.

Finger exercise: Draw lines on Figure 19.10 to show the separations found by
our two attempts to cluster the points. Do you agree that the solution found
using 40 trials is better than the one found using 1 trial?

One of the key issues in using k-means
clustering is choosing k. Consider the
points in the plot on the right, which
were generated using contrivedTest2,
Figure 19.11. This function generates
and clusters points from three
overlapping Gaussian distributions.

Figure 19.11 Generating points from three distributions

The invocation contrivedTest2(40, 2, False) prints

Final result
 Cluster with centroid [7.66239972 3.55222681] contains:
 2.0, 2.1, 2.3, 2.6
 Cluster with centroid [3.36736761 6.35376823] contains:
 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 2.2, 2.4, 2.5, 2.7, 3.0,
3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7

def contrivedTest2(numTrials, k, verbose):
 random.seed(0)
 xMean = 3
 xSD = 1
 yMean = 5
 ySD = 1
 n = 8
 d1Samples = genDistribution(xMean,xSD, yMean, ySD, n, '1.')
 plotSamples(d1Samples, 'b^')
 d2Samples = genDistribution(xMean+3,xSD,yMean, ySD, n, '2.')
 plotSamples(d2Samples, 'ro')
 d3Samples = genDistribution(xMean, xSD, yMean+3, ySD, n, '3.')
 plotSamples(d3Samples, 'gd')
 clusters = trykmeans(d1Samples + d2Samples + d3Samples,
 Example, k, numTrials, verbose)
 print 'Final result'
 for c in clusters:
 print '', c

280 Chapter 19. A Quick Look at Machine Learning

The invocation contrivedTest2(40, 3, False) prints

Final result
 Cluster with centroid [7.66239972 3.55222681] contains:
 2.0, 2.1, 2.3, 2.6
 Cluster with centroid [3.10687385 8.46084886] contains:
 3.0, 3.1, 3.2, 3.4, 3.5, 3.6, 3.7
 Cluster with centroid [3.50763348 5.21918636] contains:
 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 2.2, 2.4, 2.5, 2.7, 3.3

And the invocation contrivedTest2(40, 6, False) prints

Final result
 Cluster with centroid [7.66239972 3.55222681] contains:
 2.0, 2.1, 2.3, 2.6
 Cluster with centroid [2.80974427 9.60386549] contains:
 3.0, 3.6, 3.7
 Cluster with centroid [3.70472053 4.04178035] contains:
 1.0, 1.3, 1.5
 Cluster with centroid [2.10900238 4.99452866] contains:
 1.1, 1.2, 1.4, 1.7
 Cluster with centroid [4.92742554 5.60609442] contains:
 2.2, 2.4, 2.5, 2.7
 Cluster with centroid [3.27637435 7.28932247] contains:
 1.6, 3.1, 3.2, 3.3, 3.4, 3.5

The last clustering is the tightest fit, i.e., the clustering has the lowest
dissimilarity. Does this mean that it is the “best” fit? Recall that when we
looked at linear regression in Section 15.1.1, we observed that by increasing the
degree of the polynomial we got a more complex model that provided a tighter fit
to the data. We also observed that when we increased the degree of the
polynomial we ran the risk of finding a model with poor predictive value—
because it overfit the data.

Choosing the right value for k is exactly analogous to choosing the right degree
polynomial for a linear regression. By increasing k, we can decrease
dissimilarity, at the risk of overfitting. (When k is equal to the number of
examples to be clustered, the dissimilarity is zero!) If we have some information
about how the examples to be clustered were generated, e.g., chosen from m
distributions, we can use that information to choose k. Absent such
information, there are a variety of heuristic procedures for choosing k. Going
into them is beyond the scope of this book.

19.7 A Less Contrived Example

Different species of mammals have different eating habits. Some species (e.g.,
elephants and beavers) eat only plants, others (e.g., lions and tigers) eat only
meat, and some (e.g., pigs and humans) eat anything they can get into their
mouths. The vegetarian species are called herbivores, the meat eaters are called
carnivores, and those species that eat both are called omnivores.

Over the millennia, evolution (or some other mysterious process) has equipped
species with teeth suitable for consumption of their preferred foods. That raises
the question of whether clustering mammals based on their dentition produces
clusters that have some relation to their diets.

 Chapter 19. A Quick Look at Machine Learning 281

#Name
#top incisors
#top canines
#top premolars
#top molars
#bottom incisors
#bottom canines
#bottom premolars
#bottom molars
#weight
#Label: 0=herbivore, 1=carnivore, 2=omnivore
Badger,3,1,3,1,3,1,3,2,10,1
Bear,3,1,4,2,3,1,4,3,278,2
Beaver,1,0,2,3,1,0,1,3,20,0
Brown bat,2,1,1,3,3,1,2,3,0.5,1
Cat,3,1,3,1,3,1,2,1,4,1
Cougar,3,1,3,1,3,1,2,1,63,1
Cow,0,0,3,3,3,1,2,1,400,0
Deer,0,0,3,3,4,0,3,3,200,0
Dog,3,1,4,2,3,1,4,3,20,1
Fox,3,1,4,2,3,1,4,3,5,1
Fur seal,3,1,4,1,2,1,4,1,200,1
Grey seal,3,1,3,2,2,1,3,2,268,1
Guinea pig,1,0,1,3,1,0,1,3,1,0
Elk,0,1,3,3,3,1,3,3,500,0
Human,2,1,2,3,2,1,2,3,150,2
Jaguar,3,1,3,1,3,1,2,1,81,1
Kangaroo,3,1,2,4,1,0,2,4,55,0
Lion,3,1,3,1,3,1,2,1,175,1
Mink,3,1,3,1,3,1,3,2,1,1
Mole,3,1,4,3,3,1,4,3,0.75,1
Moose,0,0,3,3,4,0,3,3,900,0
Mouse,1,0,0,3,1,0,0,3,0.3,2
Porcupine,1,0,1,3,1,0,1,3,3,0
Pig,3,1,4,3,3,1,4,3,50,2
Rabbit,2,0,3,3,1,0,2,3,1,0
Raccoon,3,1,4,2,3,1,4,2,40,2
Rat,1,0,0,3,1,0,0,3,.75,2
Red bat,1,1,2,3,3,1,2,3,1,1
Sea lion,3,1,4,1,2,1,4,1,415,1
Skunk,3,1,3,1,3,1,3,2,2,2
Squirrel,1,0,2,3,1,0,1,3,2,2
Woodchuck,1,0,2,3,1,0,1,3,4,2
Wolf,3,1,4,2,3,1,4,3,27,1

The table on the right
shows the contents of a file
listing some species of
mammals, their dental
formulas (the first 8
numbers), their average
adult weight in pounds,135
and a code indicating their
preferred diet. The
comments at the top
describe the items
associated with each
mammal, e.g., the first
item following the name is
the number of top incisors.

Figure 19.12 contains a
function, readMammalData,
for reading a file formatted
in this way and processing
the contents of the file to
produce a set of examples
representing the
information in the file. It
first processes the header
information at the start of
the file to get a count of
the number of features to
be associated with each
example. It then uses the
lines corresponding to
each species to build three
lists:

• speciesNames is a
list of the names of
the mammals.

• labelList is a list of the labels associated with the mammals.

• featureVals is a list of lists. Each element of featureVals contains the
list of values, one for each mammal, for a single feature. The value of the
expression featureVals[i][j] is the ith feature of the jth mammal.

135 We included the information about weight because the author has been told on more
than one occasion that there is a relationship between his weight and his eating habits.

282 Chapter 19. A Quick Look at Machine Learning

The last part of readMammalData uses the values in featureVals to create a list of
feature vectors, one for each mammal. (The code could be simplified by not
constructing featureVals and instead directly constructing the feature vectors
for each mammal. We chose not to do that in anticipation of an enhancement to
readMammalData that we make later in this section.)

Figure 19.12 Read and process file

The function testTeeth in Figure 19.13 uses trykmeans to cluster the examples
built by the other function, buildMammalExamples, in Figure 19.13. It then
reports the number of herbivores, carnivores, and omnivores in each cluster.

def readMammalData(fName):
 dataFile = open(fName, 'r')
 numFeatures = 0
 #Process lines at top of file
 for line in dataFile: #Find number of features
 if line[0:6] == '#Label': #indicates end of features
 break
 if line[0:5] != '#Name':
 numFeatures += 1
 featureVals = []

 #Produce featureVals, speciesNames, and labelList
 featureVals, speciesNames, labelList = [], [], []
 for i in range(numFeatures):
 featureVals.append([])

 #Continue processing lines in file, starting after comments
 for line in dataFile:
 dataLine = string.split(line[:-1], ',') #remove newline; then split
 speciesNames.append(dataLine[0])
 classLabel = float(dataLine[-1])
 labelList.append(classLabel)
 for i in range(numFeatures):
 featureVals[i].append(float(dataLine[i+1]))

 #Use featureVals to build list containing the feature vectors
 #for each mammal
 featureVectorList = []
 for mammal in range(len(speciesNames)):
 featureVector = []
 for feature in range(numFeatures):
 featureVector.append(featureVals[feature][mammal])
 featureVectorList.append(featureVector)
 return featureVectorList, labelList, speciesNames

 Chapter 19. A Quick Look at Machine Learning 283

Figure 19.13 Clustering animals

When we executed the code testTeeth(3, 20) it printed

Cow, Elk, Moose, Sea lion
3 herbivores, 1 carnivores, 0 omnivores

Badger, Cougar, Dog, Fox, Guinea pig, Jaguar, Kangaroo, Mink, Mole,
Mouse, Porcupine, Pig, Rabbit, Raccoon, Rat, Red bat, Skunk, Squirrel,
Woodchuck, Wolf
4 herbivores, 9 carnivores, 7 omnivores

Bear, Deer, Fur seal, Grey seal, Human, Lion
1 herbivores, 3 carnivores, 2 omnivores

So much for our conjecture that the clustering would be related to the eating
habits of the various species. A cursory inspection suggests that we have a
clustering totally dominated by the weights of the animals. The problem is that
the range of weights is much larger than the range of any of the other features.
Therefore, when the Euclidean distance between examples is computed, the only
feature that truly matters is weight.

We encountered a similar problem in Section 19.2 when we found that the
distance between animals was dominated by the number of legs. We solved the
problem there by turning the number of legs into a binary feature (legged or
legless). That was fine for that data set, because all of the animals happened to
have either zero or four legs. Here, however, there is no way to binarize weight
without losing a great deal of information.

def buildMammalExamples(featureList, labelList, speciesNames):
 examples = []
 for i in range(len(speciesNames)):
 features = pylab.array(featureList[i])
 example = Example(speciesNames[i], features, labelList[i])
 examples.append(example)
 return examples

def testTeeth(numClusters, numTrials):
 features, labels, species = readMammalData('dentalFormulas.txt')
 examples = buildMammalExamples(features, labels, species)
 bestClustering =\
 trykmeans(examples, Example, numClusters, numTrials)
 for c in bestClustering:
 names = ''
 for p in c.members():
 names += p.getName() + ', '
 print '\n', names[:-2] #remove trailing comma and space
 herbivores, carnivores, omnivores = 0, 0, 0
 for p in c.members():
 if p.getLabel() == 0:
 herbivores += 1
 elif p.getLabel() == 1:
 carnivores += 1
 else:
 omnivores += 1
 print herbivores, 'herbivores,', carnivores, 'carnivores,',\
 omnivores, 'omnivores'

284 Chapter 19. A Quick Look at Machine Learning

This is a common problem, which is often addressed by scaling the features so
that each feature has a mean of 0 and a standard deviation of 1, as done by the
function scaleFeatures in Figure 19.14.

Figure 19.14 Scaling attributes

To see the effect of scaleFeatures, let’s look at the code below.

v1, v2 = [], []
for i in range(1000):
 v1.append(random.gauss(100, 5))
 v2.append(random.gauss(50, 10))
v1 = scaleFeatures(v1)
v2 = scaleFeatures(v2)
print 'v1 mean =', round(sum(v1)/len(v1), 4),\
 'v1 standard deviation', round(stdDev(v1), 4)
print 'v2 mean =', round(sum(v2)/len(v2), 4),\
 'v1 standard deviation', round(stdDev(v2), 4)

The code generates two normal distributions with different means (100 and 50)
and different standard deviations (5 and 10). It then scales each and prints the
means and standard deviations of the results. When run, it prints

v1 mean = -0.0 v1 standard deviation 1.0
v2 mean = 0.0 v1 standard deviation 1.0136

It’s easy to see why the statement result = result - mean ensures that the
mean of the returned array will always be close to 0137. That the standard
deviation will always be 1 is not obvious. It can be shown by a long and tedious
chain of algebraic manipulations, which we will not bore you with.

Figure 19.15 contains a version of readMammalData that allows scaling of
features. The new version of the function testTeeth in the same figure shows
the result of clustering with and without scaling.

136 A normal distribution with a mean of 0 and a standard deviation of 1 is called a
standard normal distribution.

137 We say “close,” because floating point numbers are only an approximation to the reals
and the result will not always be exactly 0.

def scaleFeatures(vals):
 """Assumes vals is a sequence of numbers"""
 result = pylab.array(vals)
 mean = sum(result)/float(len(result))
 result = result - mean
 sd = stdDev(result)
 result = result/sd
 return result

 Chapter 19. A Quick Look at Machine Learning 285

Figure 19.15 Code that allows scaling of features

When we execute the code

print 'Cluster without scaling'
testTeeth(3, 20, False)
print '\nCluster with scaling'
testTeeth(3, 20, True)

it prints

Cluster without scaling

Cow, Elk, Moose, Sea lion
3 herbivores, 1 carnivores, 0 omnivores

Badger, Cougar, Dog, Fox, Guinea pig, Jaguar, Kangaroo, Mink, Mole,
Mouse, Porcupine, Pig, Rabbit, Raccoon, Rat, Red bat, Skunk, Squirrel,
Woodchuck, Wolf
4 herbivores, 9 carnivores, 7 omnivores

Bear, Deer, Fur seal, Grey seal, Human, Lion
1 herbivores, 3 carnivores, 2 omnivores

Cluster with scaling

Cow, Deer, Elk, Moose
4 herbivores, 0 carnivores, 0 omnivores

Guinea pig, Kangaroo, Mouse, Porcupine, Rabbit, Rat, Squirrel,
Woodchuck
4 herbivores, 0 carnivores, 4 omnivores

Badger, Bear, Cougar, Dog, Fox, Fur seal, Grey seal, Human, Jaguar,
Lion, Mink, Mole, Pig, Raccoon, Red bat, Sea lion, Skunk, Wolf
0 herbivores, 13 carnivores, 5 omnivores

def readMammalData(fName, scale):
 """Assumes scale is a Boolean. If True, features are scaled"""

 #start of code is same as in previous version

 #Use featureVals to build list containing the feature vectors
 #for each mammal scale features, if needed
 if scale:
 for i in range(numFeatures):
 featureVals[i] = scaleFeatures(featureVals[i])

 #remainder of code is the same as in previous version

def testTeeth(numClusters, numTrials, scale):
 features, labels, species =\
 readMammalData('dentalFormulas.txt', scale)
 examples = buildMammalExamples(features, labels, species)

 #remainder of code is the same as in the previous version

286 Chapter 19. A Quick Look at Machine Learning

The clustering with scaling does not perfectly partition the animals based upon
their eating habits, but it is certainly correlated with what the animals eat. It
does a good job of separating the carnivores from the herbivores, but there is no
obvious pattern in where the omnivores appear. This suggests that perhaps
features other than dentition and weight might be needed to separate omnivores
from herbivores and carnivores.138

19.8 Wrapping Up

In this chapter, we’ve barely scratched the surface of machine learning. We’ve
tried to give you a taste of the kind of thinking involved in using machine
learning—in the hope that you will find ways to pursue the topic on your own.

The same could be said about many of the other topics presented in this book.
We’ve covered a lot more ground than is typical of introductory computer science
courses. You probably found some topics less interesting than others. But we
do hope that you encountered at least a few topics you are looking forward to
learning more about.

138 Eye position might be a useful feature, since both omnivores and carnivores typically
have eyes in the front of their head, whereas the eyes of herbivores are typically located
more towards the side. Among the mammals, only mothers of humans have eyes in the
back of their head.

PYTHON 2.7 QUICK REFERENCE

Common operations on numerical types

i+j is the sum of i and j.

i–j is i minus j.

i*j is the product of i and j.

i//j is integer division.

i/j is i divided by j. In Python 2.7, when i and j are both of type int, the
result is also an int, otherwise the result is a float.

i%j is the remainder when the int i is divided by the int j.

i**j is i raised to the power j.

x += y is equivalent to x = x + y. *= and -= work the same way.

Comparison and Boolean operators

x == y returns True if x and y are equal.

x != y returns True if x and y are not equal.

<, >, <=, >= have their usual meanings.

a and b is True if both a and b are True, and False otherwise.

a or b is True if at least one of a or b is True, and False otherwise.

not a is True if a is False, and False if a is True.

Common operations on sequence types

seq[i] returns the ith element in the sequence.

len(seq) returns the length of the sequence.

seq1 + seq2 concatenates the two sequences.

n*seq returns a sequence that repeats seq n times.

seq[start:end] returns a slice of the sequence.

e in seq tests whether e is contained in the sequence.

e not in seq tests whether e is not contained in the sequence.

for e in seq iterates over the elements of the sequence.

Common string methods

s.count(s1) counts how many times the string s1 occurs in s.

s.find(s1) returns the index of the first occurrence of the substring s1 in s; -1
if s1 is not in s.

s.rfind(s1) same as find, but starts from the end of s.

s.index(s1) same as find, but raises an exception if s1 is not in s.

s.rindex(s1) same as index, but starts from the end of s.

s.lower() converts all uppercase letters to lowercase.

s.replace(old, new) replaces all occurrences of string old with string new.

s.rstrip() removes trailing white space.

s.split(d) Splits s using d as a delimiter. Returns a list of substrings of s.

288 Python Quick Reference

Common list methods

L.append(e) adds the object e to the end of L.

L.count(e) returns the number of times that e occurs in L.

L.insert(i, e) inserts the object e into L at index i.

L.extend(L1) appends the items in list L1 to the end of L.

L.remove(e) deletes the first occurrence of e from L.

L.index(e) returns the index of the first occurrence of e in L.

L.pop(i) removes and returns the item at index i. Defaults to -1.

L.sort() has the side effect of sorting the elements of L.

L.reverse() has the side effect of reversing the order of the elements in L.

Common operations on dictionaries

len(d) returns the number of items in d.

d.keys() returns a list containing the keys in d.

d.values() returns a list containing the values in d.

k in d returns True if key k is in d.

d[k] returns the item in d with key k. Raises KeyError if k is not in d.

d.get(k, v) returns d[k] if k in d, and v otherwise.

d[k] = v associates the value v with the key k. If there is already a value
associated with k, that value is replaced.

del d[k] removes element with key k from d. Raises KeyError if k is not in d.

for k in d iterates over the keys in d.

Comparison of common non-scalar types

Type
Type of
Index

Type of element Examples of literals Mutable

str int characters '', 'a', 'abc' No

tuple int any type (), (3,), ('abc', 4) No

list int any type [], [3], ['abc', 4] Yes

dict Hashable
objects

any type {}, {‘a’:1},
{'a':1, 'b':2.0}

Yes

Common input/output mechanisms

raw_input(msg) prints msg and then returns value entered as a string.
print s1, …, sn prints strings s1, …, sn with a space between each.
open('fileName', 'w') creates a file for writing.
open('fileName', 'r') opens an existing file for reading.
open('fileName', 'a') opens an existing file for appending.
fileHandle.read() returns a string containing contents of the file.
fileHandle.readline() returns the next line in the file.
fileHandle.readlines() returns a list containing lines of the file.
fileHandle.write(s) write the string s to the end of the file.
fileHandle.writelines(L) Writes each element of L to the file.
fileHandle.close() closes the file.

INDEX

__init__,	 94	
__lt__	 built-‐in	 method,	 98	
__name__ built-‐in	 method,	 183	
__str__,	 95	

abs	 built-‐in	 function,	 20	
abstract	 data	 type.	 See	 data	 abstraction	
abstraction,	 43	
abstraction	 barrier,	 91,	 140	
acceleration	 due	 to	 gravity,	 208	
algorithm,	 2	
aliasing,	 61,	 66	
testing	 for,	 73	

al-‐Khwarizmi,	 Muhammad	 ibn	 Musa,	 2	
American	 Folk	 Art	 Museum,	 267	
annotate,	 PyLab	 plotting,	 276	
Anscombe,	 F.J.,	 226	
append	 method,	 61	
approximate	 solutions,	 25	
arange	 function,	 218	
arc	 of	 graph,	 240	
Archimedes,	 201	
arguments,	 35	
array	 type,	 148	
operators,	 216	

assert	 statement,	 90	
assertions,	 90	
assignment	 statement,	 11	
multiple,	 13,	 57	
mutation	 versus,	 58	
unpacking	 multiple	 returned	 values,	 57	

Babbage,	 Charles,	 222	
Bachelier,	 Louis,	 179	
backtracking,	 246,	 247	
bar	 chart,	 224	
baseball,	 174	
Bellman,	 Richard,	 252	
Benford’s	 law,	 173	
Bernoulli,	 Jacob,	 156	
Bernoulli’s	 theorem,	 156	
Bible,	 200	
big	 O	 notation.	 See	 computational	
complexity	

binary	 feature,	 270	
binary	 number,	 122,	 154	
binary	 search,	 128	
binary	 search	 debugging	 technique,	 80	
binary	 tree,	 254	
binding,	 of	 names,	 11	
bisection	 search,	 27,	 28	
bit,	 29	
bizarre	 looking	 plot,	 145	
black-‐box	 testing.	 See	 testing,	 black-‐box	
blocks	 of	 code,	 15	
Boesky,	 Ivan,	 240	
Boolean	 expression,	 11	
compound,	 15	
short-‐circuit	 evaluation,	 49	

Box,	 George	 E.P.,	 205	
branching	 programs,	 14	
breadth-‐first	 search	 (BFS),	 249	
break	 statement,	 23	
Brown,	 Rita	 Mae,	 79	
Brown,	 Robert,	 179	
Brownian	 motion,	 179	
Buffon,	 201	
bug,	 76	
covert,	 77	
intermittent,	 77	
origin	 of	 word,	 76	
overt,	 77	
persistent,	 77	

built-‐in	 functions	
abs,	 20	
help,	 41	
id,	 60	
input,	 18	
isinstance,	 101	
len,	 17	
list,	 63	
map,	 65	
max,	 35	
min,	 57	
range,	 23	
raw_input,	 18	
round,	 31	
sorted,	 131,	 136,	 236	
sum,	 110	

290 Index

type,	 10	
xrange,	 24,	 197	

byte,	 1	

C++,	 91	
Cartesian	 coordinates,	 180,	 266	
case-‐sensitivity,	 12	
causal	 nondeterminism,	 152	
centroid,	 272	
child	 node,	 240	
Church,	 Alonzo,	 36	
Church-‐Turing	 thesis,	 3	
Chutes	 and	 Ladders,	 191	
class	 variable,	 95,	 99	
classes,	 91–112	
__init__	 method,	 94	
__name__	 method,	 183	
__str__	 method,	 95	
abstract,	 109	
attribute,	 94	
attribute	 reference,	 93	
class	 variable,	 95,	 99	
data	 attribute,	 94,	 95	
defining,	 94	
definition,	 92	
dot	 notation,	 94	
inheritance,	 99	
instance,	 94	
instance	 variable,	 95	
instantiation,	 93,	 94	
isinstance	 function,	 101	
isinstance	 vs.	 type,	 102	
method	 attribute,	 93	
overriding	 attributes,	 99	
printing	 instances,	 95	
self,	 94	
subclass,	 99	
superclass,	 99	
type	 hierarchy,	 99	
type	 vs.	 isinstance,	 102	

client,	 42,	 105	
close	 method	 for	 files,	 53	
CLU,	 91	
clustering,	 270	
coefficient	 of	 variation,	 163,	 165	
command.	 See	 statement	
comment	 in	 programs,	 12	
compiler,	 7	

complexity	 classes,	 118,	 123–24	
computation,	 2	
computational	 complexity,	 16,	 113–24	
amortized	 analysis,	 131	
asymptotic	 notation,	 116	
average-‐case,	 114	
best-‐case,	 114	
big	 O	 notation,	 117	
Big	 Theta	 notation,	 118	
constant,	 16,	 118	
expected-‐case,	 114	
exponential,	 118,	 121	
inherently	 exponential,	 239	
linear,	 118,	 119	
logarithmic,	 118	
log-‐linear,	 118,	 120	
lower	 bound,	 118	
polynomial,	 118,	 120	
pseudo	 polynomial,	 260	
quadratic,	 120	
rules	 of	 thumb	 for	 expressing,	 117	
tight	 bound,	 118	
time-‐space	 tradeoff,	 140,	 199	
upper	 bound,	 114,	 117	
worst-‐case,	 114	

concatenation	 (+)	
append,	 vs.,	 62	
lists,	 62	
sequence	 types,	 16	
tuples,	 56	

conceptual	 complexity,	 113	
conjunct,	 48	
Copenhagen	 Doctrine,	 152	
copy	 standard	 library	 module,	 63	
correlation,	 225	
craps,	 195	
cross	 validation,	 221	

data	 abstraction,	 92,	 95–96,	 179	
datetime	 standard	 library	 module,	 96	
debugging,	 41,	 53,	 70,	 76–83,	 90	
stochastic	 programs,	 157	

decimal	 numbers,	 29	
decision	 tree,	 254–56	
decomposition,	 43	
decrementing	 function,	 21,	 130	
deepcopy	 function,	 63	
default	 parameter	 values,	 37	

 Index 291

defensive	 programming,	 77,	 88,	 90	
dental	 formula,	 281	
depth-‐first	 search	 (DFS),	 246	
destination	 node,	 240	
deterministic	 program,	 153	
dict	 type,	 67–69	
adding	 an	 element,	 69	
allowable	 keys,	 69	
deleting	 an	 element,	 69	
keys,	 67	
keys	 method,	 67,	 69	
values	 method,	 69	

dictionary.	 See	 dict	 type	
Dijkstra,	 Edsger,	 70	
dimensionality,	 of	 data,	 264	
disjunct,	 48	
dispersion,	 165	
dissimilarity	 metric,	 271	
distributions,	 160	
bell	 curve.	 See	 distributions,	 normal	
Benford’s,	 173	
empirical	 rule	 for	 normal,	 169	
Gaussian.	 See	 distributions,	 normal	
memoryless	 property,	 171	
normal,	 169,	 168–70,	 202	
uniform,	 137,	 170	

divide-‐and-‐conquer	 algorithms,	 132,	 261	
divide-‐and-‐conquer	 problem	 solving,	 49	
docstring,	 41	
don’t	 pass	 line,	 195	
dot	 notation,	 48,	 52,	 94	
Dr.	 Pangloss,	 70	
dynamic	 programming,	 252–61	
dynamic-‐time-‐warping,	 274	
	
earth-‐movers	 distance,	 274	
edge	 of	 a	 graph,	 240	
efficient	 programs,	 125	
Einstein,	 Albert,	 70,	 179	
elastic	 limit	 of	 springs,	 213	
elif,	 15	
else,	 14,	 15	
encapsulation,	 105	
ENIAC,	 193	
error	 bars,	 169	
escape	 character,	 53	

Euclid,	 172	
Euclidean	 distance,	 267	
Euclidean	 mean,	 271	
Euler,	 Leonhard,	 241	
except	 block,	 85	
exceptions,	 84–90	
built-‐in	
AssertionError,	 90	
IndexError,	 84	
NameError,	 84	
TypeError,	 84	
ValueError,	 84	

built-‐in	 class,	 87	
handling,	 84–87	
raising,	 84	
try–except,	 85	
unhandled,	 84	

exhaustive	 enumeration	 algorithms,	 21,	
22,	 26,	 234,	 254	
square	 root	 algorithm,	 26,	 116	

exponential	 decay,	 172	
exponential	 growth,	 172	
expression,	 9	
extend	 method,	 62	
extending	 a	 list,	 62	
	
factorial,	 45,	 115,	 120	
iterative	 implementation,	 45,	 115	
recursive	 implementation,	 45	

false	 negative,	 266	
false	 positive,	 266	
feature	 extraction,	 264	
feature	 vector,	 263	
Fibonacci	 poem,	 47	
Fibonacci	 sequence,	 45,	 252–54	
dynamic	 programming	
implementation,	 253	

recursive	 implementation,	 46	
file	 system,	 53	
files,	 53–55,	 54	
appending,	 54	
close	 method,	 53	
file	 handle,	 53	
open	 function,	 53	
reading,	 54	
write	 method,	 53	

292 Index

writing,	 53	
first-‐class	 values,	 64,	 86	
fitting	 a	 curve	 to	 data,	 210–14	
coefficient	 of	 determination	 (R2),	 216	
exponential	 with	 polyfit,	 218	
least-‐squares	 objective	 function,	 210	
linear	 regression,	 211	
objective	 function,,	 210	
overfitting,	 213	
polyfit,	 211	

fixed-‐program	 computers,	 2	
float	 type.	 See	 floating	 point	
floating	 point,	 9,	 30,	 29–31	
exponent,	 30	
precision,	 30	
reals	 vs.,	 29	
rounded	 value,	 30	
rounding	 errors,	 31	
significant	 digits,	 30	

floppy	 disk,	 142	
flow	 of	 control,	 3	
for	 loop,	 54	
for	 statement	
generators,	 107	

Franklin,	 Benjamin,	 50	
function,	 35	
actual	 parameter,	 35	
arguments,	 35	
as	 object,	 64–65	
as	 parameter,	 135	
call,	 35	
class	 as	 parameter,	 183	
default	 parameter	 values,	 37	
defining,	 35	
invocation,	 35	
keyword	 argument,	 36,	 37	
positional	 parameter	 	 binding,	 36	

gambler’s	 fallacy,	 157	
Gaussian	 distribution.	 See	 distributions,	
normal	

generalization,	 262	
generator,	 107	
geometric	 distribution,	 172	
geometric	 progression,	 172	
glass-‐box	 testing.	 See	 testing,	 glass-‐box	
global	 optimum,	 240	
global	 statement,	 51	

global	 variable,	 50,	 75	
graph,	 240–51	
adjacency	 list	 representation,	 243	
adjacency	 matrix	 representation,	 243	
breadth-‐first	 search	 (BFS),	 249	
depth-‐first	 search	 (DFS),	 246	
digraph,	 240	
directed	 graph,	 240	
edge,	 240	
graph	 theory,	 241	
node,	 240	
problems	
cliques,	 244	
min	 cut,	 244,	 246	
shortest	 path,	 244,	 246–51	
shortest	 weighted	 path,	 244	

weighted,	 241	
Graunt,	 John,	 222	
gravity,	 acceleration	 due	 to,	 208	
greedy	 algorithm,	 235	
guess-‐and-‐check	 algorithms,	 2,	 22	

halting	 problem,	 3	
Hamlet,	 77	
hand	 simulation,	 19	
hashing,	 69,	 137–40	
collision,	 137,	 138	
hash	 buckets,	 138	
hash	 function,	 137	
hash	 tables,	 137	
probability	 of	 collisions,	 177	

help	 built-‐in	 function,	 41	
helper	 functions,	 48,	 129	
Heron	 of	 Alexandria,	 1	
higher-‐order	 functions,	 65	
higher-‐order	 programming,	 64	
histogram,	 166	
Hoare,	 C.A.R.,	 135	
holdout	 set,	 221,	 232	
Holmes,	 Sherlock,	 82	
Hooke’s	 law,	 207,	 213	
Hopper,	 Grace	 Murray,	 76	
hormone	 replacement	 therapy,	 226	
housing	 prices,	 223	
Huff,	 Darrell,	 222	

id	 built-‐in	 function,	 60	
IDLE,	 13	

Index 293

edit	 menu,	 13	
file	 menu,	 13	

if	 statement,	 15	
immutable	 type,	 58	
import	 statement,	 52	
in	 operator,	 66	
indentation	 of	 code,	 15	
independent	 events,	 154	
indexing	 for	 sequence	 types,	 17	
indirection,	 127	
induction,	 132	
inductive	 definition,	 45	
inferential	 statistics,	 155	
information	 hiding,	 105,	 106	
input,	 18	
input	 built-‐in	 function,	 18	
raw_input	 vs.,	 18	

instance,	 of	 a	 class,	 93	
integrated	 development	 environment	
(IDE),	 13	

interface,	 91	
interpreter,	 3,	 7	
Introduction	 to	 Algorithms,	 125	
isinstance	 built-‐in	 function,	 101	
iteration,	 18	
for	 loop,	 23	
over	 integers,	 23	
over	 lists,	 61	

Java,	 91	
Juliet,	 12	
Julius	 Caesar,	 50	

Kennedy,	 Joseph,	 81	
key,	 on	 a	 plot.	 See	 plotting	 in	 PyLab,	
legend	 function	

keyword	 argument,	 36	
keywords,	 12	
k-‐means	 clustering,	 274–86	
knapsack	 problem,	 234–40	
0/1,	 238	
brute-‐force	 solution,	 238	
dynamic	 programming	 solution,	 254–
61	

fractional	 (or	 continuous),	 240	
Knight	 Capital	 Group,	 78	

knowledge,	 declarative	 vs.	 imperative,	 1	
Knuth,	 Donald,	 117	
Königsberg	 bridges	 problem,	 241	

label	 keyword	 argument,	 146	
lambda	 abstraction,	 36	
Lampson,	 Butler,	 128	
Laplace,	 Pierre-‐Simon,	 201	
law	 of	 large	 numbers,	 156,	 157	
leaf,	 of	 tree,	 254	
least	 squares	 fit,	 210,	 212	
len	 built-‐in	 function,	 17	
length,	 for	 sequence	 types,	 17	
Leonardo	 of	 Pisa,	 46	
lexical	 scoping,	 38	
library,	 standard	 Python,	 see	 also	
standard	 libarbary	 modules,	 53	

linear	 regression,	 211,	 262	
Liskov,	 Barbara,	 103	
list	 built-‐in	 function,	 63	
list	 comprehension,	 63	
list	 type,	 58–62	
+	 (concatenation)	 operator,	 62	
cloning,	 63	
comprehension,	 63	
copying,	 63	
indexing,	 126	
internal	 representation,	 127	

literals,	 4,	 288	
local	 optimum,	 240	
local	 variable,	 38	
log	 function,	 220	
logarithm,	 base	 of,	 118	
logarithmic	 axis,	 124	
logarithmic	 scaling,	 159	
loop,	 18	
loop	 invariant,	 131	
lt	 operator,	 133	
lurking	 variable,	 225	

machine	 code,	 7	
machine	 learning	
supervised,	 263	
unsupervised,	 264	

Manhattan	 distance,	 267	
Manhattan	 Project,	 193	

294 Index

many-‐to-‐one	 mapping,	 137	
map	 built-‐in	 function,	 65	
MATLAB,	 141	
max	 built-‐in	 function,	 35	
memoization,	 253	
memoryless	 property,	 171	
method	 invocation,	 48,	 94	
min	 built-‐in	 function,	 57	
Minkowski	 distance,	 266,	 269,	 274	
modules,	 51–53,	 51,	 74,	 91	
Moksha-‐patamu,	 191	
Molière,	 92	
Monte	 Carlo	 simulation,	 193–204	
Monty	 Python,	 13	
mortgages,	 108,	 146	
multi-‐line	 statements,	 22	
multiple	 assignment,	 12,	 13,	 57	
return	 values	 from	 functions,	 58	

mutable	 type,	 58	
mutation	 versus	 assignment,	 58	
	
name	 space,	 37	
names,	 12	
nan	 (not	 a	 number),	 88	
nanosecond,	 22	
National	 Rifle	 Association,	 229	
natural	 number,	 45	
nested	 statements,	 15	
newline	 character,	 53	
Newton’s	 method.	 See	 Newton-‐Raphson	
method	

Newtonian	 mechanics,	 152	
Newton-‐Raphson	 method,	 32,	 33,	 126,	
210	

Nixon,	 Richard,	 56	
node	 of	 a	 graph,	 240	
nondeterminism,	 causal	 vs.	 predictive,	
152	

None,	 9,	 110	
non-‐scalar	 type,	 56	
normal	 distribution.	 See	 distributions,	
normal	
standard,	 xiii,	 284	

not	 in	 operator,	 66	
null	 hypothesis,	 174,	 231	
numeric	 operators,	 10	
numeric	 types,	 9	
NumPy,	 148	

	
O	 notation.	 See	 computational	 complexity	
O(1).	 See	 computational	 complexity,	
constant	

Obama,	 Barack,	 44	
object,	 9–11	
class,	 99	
first-‐class,	 64	
mutable,	 58	

object	 equality,	 60	
value	 equality	 vs.,	 81	

objective	 function,	 210,	 263,	 270	
object-‐oriented	 programming,	 91	
open	 function	 for	 files,	 53	
operator	 precedence,	 10	
operator	 standard	 library	 module,	 133	
operators,	 9	
-‐,	 on	 arrays,	 148	
-‐,	 on	 numbers,	 10	
*,	 on	 arrays,	 148	
*,	 on	 numbers,	 10	
*,	 on	 sequences,	 66	
**,	 on	 numbers,	 10	
*=,	 25	
/,	 on	 numbers,	 10	
//,	 on	 numbers,	 10	
%,	 on	 numbers,	 10	
+,	 on	 numbers,	 10	
+,	 on	 sequences,	 66	
+=,	 25	
-‐=,	 25	
Boolean,	 11	
floating	 point,	 10	
in,	 on	 sequences,	 66	
infix,	 4	
integer,	 10	
not	 in,	 on	 sequences,	 66	
overloading,	 16	

optimal	 solution,	 238	
optimal	 substructure,	 252,	 258	
optimization	 problem,	 210,	 234,	 263,	 270	
constraints,	 234	
objective	 function,	 234	

order	 of	 growth,	 117	
overfitting,	 213,	 280	
overlapping	 subproblems,	 252,	 258	
overloading	 of	 operators,	 16	
	

Index 295

palindrome,	 48	
parallel	 random	 access	 machine,	 114	
parent	 node,	 240	
Pascal,	 Blaise,	 194	
pass	 line,	 195	
pass	 statement,	 101	
paths	 through	 specification,	 72	
Peters,	 Tim,	 136	
pi	 (π),	 estimating	 by	 simulation,	 200–204	
Pingala,	 47	
Pirandello,	 43	
plotting	 in	 PyLab,	 141–46,	 166–68,	 190	
annotate,	 276	
bar	 chart,	 224	
current	 figure,	 143	
default	 settings,	 146	
figure	 function,	 141	
format	 string,	 144	
histogram,	 166	
keyword	 arguments,	 145	
label	 keyword	 argument,	 146	
labels	 for	 plots,	 146	
legend	 function,	 146	
markers,	 189	
plot	 function,	 141	
rc	 settings,	 145	
savefig	 function,	 143	
semilogx	 function,	 159	
semilogy	 function,	 159	
show	 function,	 142	
style,	 187	
tables,	 268	
title	 function,	 144	
windows,	 141	
xlabel	 function,	 144	
xticks,	 224	
ylabel	 function,	 144	
yticks,	 224	

png	 file	 extension,	 142	
point	 of	 execution,	 36	
point,	 in	 typography,	 145	
pointer,	 127	
polyfit,	 210	
fitting	 an	 exponential,	 218	

polymorphic	 function,	 86	
polynomial,	 32	

coefficient,	 32	
degree,	 32	

polynomial	 fit,	 211	
pop	 method,	 62	
popping	 a	 stack,	 39	
portable	 network	 graphics	 format,	 142	
power	 set,	 122,	 238	
predictive	 nondeterminism,	 152	
print	 statement,	 18	
probabilities,	 154	
program,	 8	
programming	 language,	 3,	 7	
compiled,	 7	
high-‐level,	 7	
interpreted,	 7	
low-‐level,	 7	
semantics,	 5	
static	 semantics,	 4	
syntax,	 4	

prompt,	 shell,	 10	
prospective	 experiment,	 221	
prospective	 study,	 232	
PyLab,	 see	 also	 plotting,	 141	
arange	 function,	 218	
array,	 148	
polyfit,	 211	
user's	 guide,	 141	

Pythagorean	 theorem,	 180,	 202	
Python,	 7,	 35	
Python	 3,	 versus	 2.7,	 8,	 9,	 18,	 24	
Python	 statement,	 8	

quantum	 mechanics,	 152	

rabbits,	 46	
raise	 statement,	 87	
random	 access	 machine,	 114	
random	 module,	 153,	 172	
choice,	 153	
gauss,	 170	
random,	 153	
sample,	 274	
seed,	 157	
uniform,	 170	

random	 walk,	 179–92	
biased,	 186	

296 Index

range	 built-‐in	 function,	 23	
Python	 2	 vs.	 3,	 24	

raw_input	 built-‐in	 function,	 18	
input	 vs.,	 18	

recurrence,	 46	
recursion,	 44	
base	 case,	 44	
recursive	 (inductive)	 case,	 44	

regression	 testing,	 76	
regression	 to	 the	 mean,	 157	
reload	 statement,	 53	
remove	 method,	 62	
representation	 invariant,	 95	
representation-‐independence,	 95	
reserved	 words	 in	 Python,	 12	
retrospective	 study,	 232	
return	 on	 investment	 (ROI),	 196	
return	 statement,	 35	
reverse	 method,	 62	
reverse	 parameter,	 236	
Rhind	 Papyrus,	 200	
root,	 254	
root	 of	 polynomial,	 32	
round	 built-‐in	 function,	 31	
R-‐squared,	 216	

sample	 function,	 274	
sampling	
accuracy,	 159	
bias,	 228	
confidence,	 160,	 162	

Samuel,	 Arthur,	 262	
scalar	 type,	 9	
scaling	 features,	 284	
scoping,	 37	
lexical,	 38	
static,	 38	

script,	 8	
search	 algorithms,	 126–30	
binary	 Search,	 128,	 129	
bisection	 search,	 28	
breadth-‐first	 search	 (BFS),	 249	
depth-‐first	 search	 (DFS),	 246	
linear	 search,	 114,	 126	

search	 space,	 126	
self,	 94	
semantics,	 5	
sequence	 types,	 17,	 See	 str,	 tuple,	 list	

shell,	 8	
shell	 prompt,	 10	
short-‐circuit	 evaluation	 of	 Boolean	
expressions,	 49	

side	 effect,	 61,	 62	
signal-‐to-‐noise	 ratio,	 264	
significant	 digits,	 30	
simulation	
coin	 flipping,	 155–65	
deterministic,	 205	
Monte	 Carlo,	 193–204	
multiple	 trials,	 156	
random	 walks,	 179–92	
smoke	 test,	 184	
stochastic,	 205	
typical	 structure,	 196	

simulation	 model,	 155,	 205	
continuous,	 206	
discrete,	 206	
dynamic,	 206	
static,	 206	
summary	 of,	 204–6	

slicing,	 for	 sequence	 types,	 17	
SmallTalk,	 91	
smoke	 test,	 184	
Snakes	 and	 Ladders,	 191	
SNR,	 264	
social	 networks,	 246	
software	 quality	 assurance,	 75	
sort	 built-‐in	 method,	 98,	 131	
sort	 method,	 62,	 136	
key	 parameter,	 136	
reverse	 parameter,	 136	

sorted	 built-‐in	 function,	 131,	 136,	 236	
sorting	 algorithms,	 131–37	
in-‐place,	 134	
merge	 sort,	 120,	 134,	 252	
quicksort,	 135	
stable	 sort,	 137	
timsort,	 136	

source	 code,	 7	
source	 node,	 240	
space	 complexity,	 120,	 135	
specification,	 41–44	
assumptions,	 42,	 129	
docstring,	 41	
guarantees,	 42	

split	 function	 for	 strings,	 135	

Index 297

spring	 constant,	 207	
SQA,	 75	
square	 root,	 25,	 26,	 27,	 32	
stable	 sort,	 137	
stack,	 39	
stack	 frame,	 38	
standard	 deviation,	 160,	 169,	 198	
relative	 to	 mean,	 163	

standard	 library	 modules	
copy,	 63	
datetime,	 96	
math,	 220	
operator,	 133	
random,	 153	
string,	 135	

standard	 normal	 distribution,	 284	
statement,	 8	
statements	
assert,	 90	
assignment	 (=),	 11	
break,	 23,	 24	
conditional,	 14	
for	 loop,	 23,	 54	
global,	 51	
if,	 15	
import,	 52	
import	 *,	 52	
pass,	 101	
print	 statement,	 18	
raise,	 87	
reload,	 53	
return,	 35	
try–except,	 85	
while	 loop,	 19	
yield,	 107	

static	 scoping,	 38	
static	 semantic	 checking,	 5,	 106	
static	 semantics,	 4	
statistical	 machine	 learning,	 262	
statistical	 sin,	 222–33	
assuming	 independence,	 223	
confusing	 correlation	 and	 causation,	
225	

convenience	 (accidental)	 sampling,	 228	
Cum	 Hoc	 Ergo	 Propter	 Hoc,	 225	
deceiving	 with	 pictures,	 223	

extrapolation,	 229	
Garbage	 In	 Garbage	 Out	 (GIGO),	 222	
ignoring	 context,	 229	
non-‐response	 bias,	 228	
reliance	 on	 measures,	 226	
Texas	 sharpshooter	 fallacy,	 230	

statistically	 valid	 conclusion,	 204	
statistics	
coefficient	 of	 variation,	 165	
confidence	 interval,	 165,	 168,	 169	
confidence	 level,	 168	
correctness	 vs.,	 204	
correlation,	 225	
error	 bars,	 169	
null	 hypothesis,	 174	
p-‐value,	 174	
testing	 for,	 174	

step	 (of	 a	 computation),	 114	
stochastic	 process,	 153	
stored-‐program	 computer,	 3	
str	
* operator,	 16
+	 operator,	 16	
built-‐in	 methods,	 66	
concatenation	 (+),	 16	
escape	 character,	 53,	 100	
indexing,	 17	
len,	 17	
newline	 character,	 53	
slicing,	 17	
substring,	 17	

straight-‐line	 programs,	 14	
string	 standard	 library	 module,	 135	
string	 type.	 See	 str	
stubs,	 75	
substitution	 principle,	 103,	 244	
substring,	 17	
successive	 approximation,	 32,	 210	
sum	 built-‐in	 function,	 110	
supervised	 learning,	 263	
symbol	 table,	 38,	 52	
syntax,	 4	

table	 lookup,	 199–200,	 253	
tables,	 in	 PyLab,	 268	
termination	

298 Index

of	 loop,	 19,	 21	
of	 recursion,	 130	

testing,	 70–76	
black-‐box,	 71,	 73	
boundary	 conditions,	 72	
glass-‐box,	 71,	 73–74	
integration	 testing,	 74	
partitioning	 inputs,	 71	
path-‐complete,	 73	
regression	 testing,	 76	
test	 functions,	 41	
test	 suite,	 71	
unit	 testing,	 74	

Texas	 sharpshooter	 fallacy,	 230	
total	 ordering,	 27	
training	 data,	 262	
training	 set,	 221,	 232	
translating	 text,	 68	
tree,	 254	
decision	 tree,	 254–56	
leaf	 node,	 254	
left-‐first	 depth-‐first	 enumeration,	 256	
root,	 of	 tree,	 254	
rooted	 binary	 tree,	 254	

try	 block,	 85	
try-‐except	 statement,	 85	
tuple,	 56–58	
Turing	 Completeness,	 4	
Turing	 machine,	 universal,	 3	
Turing-‐complete	 programming	 language,	
34	

type,	 9,	 91	
cast,	 18	
conversion,	 18,	 147	

type	 built-‐in	 function,	 10	
type	 checking,	 17	
type	 type,	 92	
types	
bool,	 9	
dict.	 See	 dict	 type	
float,	 9	

instancemethod,	 92	
int,	 9	
list.	 See	 list	 type	
None,	 9	
str.	 See	 str	
tuple,	 56	
type,	 92	

U.S.	 citizen,	 definition	 of	 natural-‐born,	 44	
Ulam,	 Stanislaw,	 193	
unary	 function,	 65	
uniform	 distribution.	 See	 distributions,	
uniform	

unsupervised	 learning,	 264	

value,	 9	
value	 equality	 vs.	 object	 equality,	 81	
variable,	 11	
choosing	 a	 name,	 12	

variance,	 160,	 271	
versions,	 8	
vertex	 of	 a	 graph,	 240	
von	 Neumann,	 John,	 133	
von	 Rossum,	 Guido,	 8	

while	 loop,	 19	
whitespace	 characters,	 135	
Wing,	 Jeannette,	 103	
word	 size,	 127	
World	 Series,	 174	
wrapper	 functions,	 129	
write	 method	 for	 files,	 53	

xrange	 built-‐in	 function,	 24,	 197	
xticks,	 224	

yield	 statement,	 107	
yticks,	 224	

zero-‐based	 indexing,	 17	

uploaded by [stormrg]

	Contents
	Preface
	Acknowledgments
	1 Getting Started
	2 Introduction to Python
	2.1 The Basic Elements of Python
	2.2 Branching Programs
	2.3 Strings and Input
	2.4 Iteration

	3 Some Simple Numerical Programs
	3.1 Exhaustive Enumeration
	3.2 For Loops
	3.3 Approximate Solutions and Bisection Search
	3.4 A Few Words About Using Floats
	3.5 Newton-Raphson

	4 Functions, Scoping, and Abstraction
	4.1 Functions and Scoping
	4.2 Specifications
	4.3 Recursion
	4.4 Global Variables
	4.5 Modules
	4.6 Files

	5 Structured Types, Mutability, and Higher-Order Functions
	5.1 Tuples
	5.2 Lists and Mutability
	5.3 Functions as Objects
	5.4 Strings, Tuples, and Lists
	5.5 Dictionaries

	6 Testing and Debugging
	6.1 Testing
	6.2 Debugging

	7 Exceptions and Assertions
	7.1 Handling Exceptions
	7.2 Exceptions as a Control Flow Mechanism
	7.3 Assertions

	8 Classes and Object-Oriented Programming
	8.1 Abstract Data Types and Classes
	8.2 Inheritance
	8.3 Encapsulation and Information Hiding
	8.4 Mortgages, an Extended Example

	9 A Simplistic Introduction to Algorithmic Complexity
	9.1 Thinking About Computational Complexity
	9.2 Asymptotic Notation
	9.3 Some Important Complexity Classes

	10 Some Simple Algorithms and Data Structures
	10.1 Search Algorithms
	10.2 Sorting Algorithms
	10.3 Hash Tables

	11 Plotting and More About Classes
	11.1 Plotting Using PyLab
	11.2 Plotting Mortgages, an Extended Example

	12 Stochastic Programs, Probability, and Statistics
	12.1 Stochastic Programs
	12.2 Inferential Statistics and Simulation
	12.3 Distributions
	12.4 How Often Does the Better Team Win?
	12.5 Hashing and Collisions

	13 Random Walks and More About Data Visualization
	13.1 The Drunkard’s Walk
	13.2 Biased Random Walks
	13.3 Treacherous Fields

	14 Monte Carlo Simulation
	14.1 Pascal’s Problem
	14.2 Pass or Don’t Pass?
	14.3 Using Table Lookup to Improve Performance
	14.4 Finding π
	14.5 Some Closing Remarks About Simulation Models

	15 Understanding Experimental Data
	15.1 The Behavior of Springs
	15.2 The Behavior of Projectiles
	15.3 Fitting Exponentially Distributed Data
	15.4 When Theory Is Missing

	16 Lies, Damned Lies, and Statistics
	16.1 Garbage In Garbage Out (GIGO)
	16.2 Pictures Can Be Deceiving
	16.3 Cum Hoc Ergo Propter Hoc
	16.4 Statistical Measures Don’t Tell the Whole Story
	16.5 Sampling Bias
	16.6 Context Matters
	16.7 Beware of Extrapolation
	16.8 The Texas Sharpshooter Fallacy
	16.9 Percentages Can Confuse
	16.10 Just Beware

	17 Knapsack and Graph Optimization Problems
	17.1 Knapsack Problems
	17.2 Graph Optimization Problems

	18 Dynamic Programming
	18.1 Fibonacci Sequences, Revisited
	18.2 Dynamic Programming and the 0/1 Knapsack Problem
	18.3 Dynamic Programming and Divide-and-Conquer

	19 A Quick Look at Machine Learning
	19.1 Feature Vectors
	19.2 Distance Metrics
	19.3 Clustering
	19.4 Types Example and Cluster
	19.5 K-means Clustering
	19.6 A Contrived Example
	19.7 A Less Contrived Example
	19.8 Wrapping Up

	Python 2.7 Quick Reference
	Index
	Uploaded by [StormRG]

