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Foreword

In recent decades a large community of scholars has intensively investigated the
theoretical bases of concurrency, driven both by scientific curiosity and by the fact
that concurrent features appear in many different fields, such as biology, economics,
medicine, and the social sciences. Many mathematical models have been devel-
oped for formalizing the behavior of concurrent systems, i.e., systems composed of
agents that not only compute in isolation, but also by exchanging information with
each other. Particularly relevant is therefore the representation of the interactions,
or process, that may occur in these concurrent systems, which are hosted in an open
environment.

Roberto Gorrieri and Cristian Versari have been leading scientists in the field,
and have great experience in teaching the topics covered. The reader of this book is
gently lead through the fascinating area of concurrency from very basic results to
increasingly complex issues, always with great clarity and analytical rigor. A large
number of examples and exercises help in uncovering and understanding the many
subtleties of the presentation.

This monograph is therefore an excellent textbook for introducing undergradu-
ate and graduate students, as well as people developing or using concurrent systems,
to the theories of concurrency. Some aspects of concurrent systems are not consid-
ered here, those typical to more advanced models, like mobility of agents. After a
course based on this book, however, a student will have all the knowledge and the
techniques to face this intriguing and challenging topic, and many others.

The starting point of the intellectual journey proposed by the authors is the se-
mantic structure, namely labelled transition systems, which provides us with the
means and the tools to express processes, to compose them, to prove properties they
enjoy, typically equality of syntactically different systems that behave the same. The
rest of the book relies on the Calculus of Communicating Systems proposed by Mil-
ner. Tailored versions of this calculus are used to study various notions of equality
between systems, and to investigate in detail the expressive power of the models
considered.

Warm thanks are due to the authors of this book, for their successful work in
bringing together the fundamentals of concurrency theory in an accurate, uniform
and enjoyable volume.

Pierpaolo Degano
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Chapter 1

Introduction

Abstract This introductory chapter outlines the main motivations for the study
of concurrency theory and the differences with respect to the theory of sequential
computation. It also reports the structure of the book and how to use it. Finally, some
background material is briefly surveyed.

1.1 Motivation

Computer systems, implemented in hardware or software or as a combination of
both, are supposed to offer certain well-specified services, so that their users can
safely rely on them. However, often a computer system is not equipped with a proof
that the specified service or property is guaranteed. In order to do so, one has first to
define an abstract semantic model of the system (the specification), that can be used
to study whether it satisfies the requested property. If so, then one has to use such
a specification as the reference model to build the actual executable implementa-
tion, and possibly prove that the implementation is compliant with the specification.
We call this production methodology the specification-verification-implementation
methodology.

This kind of production methodology is largely used in more traditional and well-
established engineering disciplines, such as in construction engineering, where a
model of a construction, e.g., a bridge, is always designed, studied and proved cor-
rect, before being constructed. By contrast, in computer science and engineering
this approach has been used extensively only recently, after some astonishing in-
cidents in the 1990s, such as Intel’s Pentium II bug in the floating point division
unit in 1994. It is still common practice today to go directly to implementation: too
often the specification-verification phases are missing (or are only very sketchy and
informal), and correctness of the implementation is checked by testing a posteriori;
however, as Dijkstra [Dij69] observed: “testing can be used to show the presence of
bugs, but never to show their absence”. Therefore, if the formal guarantee of cor-
rectness is a necessary requirement of the system, a formal specification must be

© Springer International Publishing Switzerland 2015 
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2 1 Introduction

provided and used as a basis to prove the correctness of the design first, and then,
possibly, also of the implementation.

An important reason why the specification-verification-implementation method-
ology is not so widespread in computer engineering is the current limitations of the
theoretical tools that can be used in support. On the one hand, semantic theories for
modeling computer systems are often not easy, or are even mathematically difficult,
so that an engineer would certainly not spend time on it, unless the payoff is very
rewarding. In some cases, indeed, the effort is worthwhile: nowadays there is an
increasing number of success stories, mainly related to hardware verification. On
the other hand, there are intrinsic mathematical limitations to verification that are
rooted in classic undecidable problems of computability theory, such as the halting
problem (see Section 1.3.5). Therefore, in some cases, we are forced to live with
partially unverified systems.

This book aims at offering a simple, introductory theory of concurrent, reactive
systems that is mathematically well-defined, rich enough to offer mathematical tools
for verification and expressive enough to model nontrivial, sometimes even complex
systems. It is based on the semantic model of labeled transition systems [Kel76]
and on the language CCS, proposed by Robin Milner [Mil80, Mil89, Mil99]. The
main verification technique is based on equivalence-checking, where an abstract
model of a system, described as a CCS process, is compared with a more detailed
implementation of it, expressed in the same language. We will see that this technique
is useful in some remarkable cases.

Of course, this simple theory does not cover all the possible aspects of the behav-
ior of real-life systems; for instance, we are not dealing with real-time or mobility
issues; nonetheless, extensions of this theory to include such additional features are
possible, already well-investigated and can be profitably studied in more specific
books, such as the second part of [AILS07] for real time or [SW01] for mobility.

The following subsections provide a historical perspective on the problem of the
semantics of concurrency, which has led to the ideas that are at the base of the theory
presented in this textbook.

1.1.1 Sequentiality, Nondeterminism and Concurrency

Classical programming languages, such as Pascal [JW+91], are sometimes denoted
as sequential, to express their distinguished feature that any of their programs runs
in isolation, without any interference by other programs that can run concurrently.
Non-termination is considered a bad feature of such programs, as the goal of a se-
quential program is to compute a result; moreover, in case of termination, the result
is unique because the computation is deterministic: at any time instant, the next
computation step is uniquely determined. Therefore, the semantics of a sequential
program is rather intuitive: it is roughly a (partial) function from the input values
(or initial values of the program variables) to the output values (or final values of
the program variables), if any; the operational behavior of a sequential program
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(i.e., how it computes) can be safely abstracted to a function (what it computes),
with no details about the intermediate states of the computation. Hence, functions
are the correct semantic model for sequential programs and the motto programs-as-
functions well characterizes sequential programming.

Two sequential programs are equivalent if their semantics is the exact same func-
tion, independently of their operational behavior. For instance, let : = denote the
assignment operator and ; the sequential composition operator; then, the following
two program fragments are equivalent

x : = 1 we call p, and x : = 0 ; x : = x+1 we call q

as they both compute the same function f : whatever initial value is attributed to x,
at the end of the computation x holds value 1. A bit more formally, function f is a
function that maps an association of the form (x,n), where x is the unique program
variable and n is its initial value, to an association (x,1), as 1 is its final value. More
generally, a store s is a function from program variables to values, and the semantics
of a sequential program is a function from stores (specifying the initial values of the
program variables) to stores (specifying the final values of the variables). Therefore,
formally, function f can be defined as f (s) = s[1/x], meaning that given any initial
store s, the final store is s where the association for x is updated to (x,1).

This semantic equivalence is also a congruence, i.e., it is preserved by the oper-
ator of the language. For instance, since p and q above are equivalent, we have that
p;p and p;q are equivalent (and they are both equivalent to p); in general, for any
program r, we are sure that both r;p and r;q are equivalent, as well as p;r and q;r.

The semantics of sequential programs is defined in a compositional way, meaning
that for each syntactic operator of the language there is a corresponding semantic
operator over functions. For instance, consider the compound program r;t, where
the execution of program r is followed by the execution of program t, according to
the syntactic operator of sequential composition. Then, if we assume that the seman-
tics of r is function fr and the semantics of t is function ft , then the semantics of r;t
is obtained by combining fr and ft by means of the semantic operator of functional
composition: fr ◦ ft . For instance, considering the program fragments p and q above,
the semantics of p;q is function f ◦ f = f , where f is the function f (s) = s[1/x].

By extending a sequential programming language with an operator of parallel
composition, which we denote by − ‖ −, one has the possibility to define programs
composed of sequential threads that can execute concurrently on a shared memory.
For instance, the program fragment p ‖ q is now expressible:

x : = 1 ‖ (x : = 0 ; x : = x+1)

where p and q are the two sequential programs defined above. We may wonder if
the semantics of a parallel program is a function from initial values of the program
variables (or initial stores) to final values of the program variables (or final stores)
also in this enriched setting.
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First observation: the result of the parallel program p ‖ q is not unique, as the
final value of x can be 1 or 2, depending on the actual execution ordering of the
elementary assignments. In particular, 2 is the final value for x when the assignment
of p is executed in between the two assignments of q. As we cannot make any
assumption on the relative execution speed of p and q, we are to accept any possible
intertwined ordering, so that both final values for x are to be considered admissible.
Hence, the computation is nondeterministic. Nonetheless, it is possible to associate a
function to p ‖ q, but a more complex function that associates to any possible initial
store s (with arbitrary value associated to x) the two possible final stores s[1/x] and
s[2/x]; in general, such a function goes from initial stores to sets of final stores.

Second observation: program equivalence based on the identity of the computed
functions is not a congruence for parallel composition, i.e., it is not preserved by
the operator of parallel composition. As a matter of fact, we have noted that p and
q are semantically equivalent; however, p ‖ p and p ‖ q are not equivalent, as they
compute different functions: on the one hand, for p ‖ p the final value of x can only
be 1, no matter the ordering of the assignments they perform; on the other hand,
for p ‖ q the final value of x can be 1 or 2, depending on the actual ordering of
execution.

Third observation: a consequence of the observation above is that no composi-
tional semantics is definable over functions. As a matter of fact, a compositional
semantics for parallel composition is definable only if a semantic operator −⊗−
exists over functions, corresponding to the syntactic operator − ‖ − on programs.
Therefore, since the semantics of p and q is the same function f , the semantics of
p ‖ q should be f ⊗ f , and the semantics of p ‖ p should be f ⊗ f as well. How-
ever, we have already noted that p ‖ p and p ‖ q compute different functions and so
f ⊗ f is not definable: the correct semantics for p ‖ p and p ‖ q cannot be computed
when abstracting from the intermediate states of the computation, as the function-
based semantics does by associating to p and q the same function f . Summing up, a
compositional semantics for the parallel operator cannot be defined over functions.

Fourth observation: often a concurrent program is not meant to compute a result,
but rather to offer a service, possibly forever; for instance, an operating system is
a concurrent program that is assumed not to terminate. Therefore, a function is not
an appropriate semantic tool for expressing the behavior of concurrent programs, as
all the non-terminating programs would be equated, independently of the different
services they offer.

In conclusion, the semantics of concurrent programs cannot be defined satisfacto-
rily in terms of functions from initial values of the program variables to final values
of the program variables.
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1.1.2 Interaction, Communication and Process Algebra

If the semantics of a concurrent program is not a function, what is it? From the
example above, we have understood that a concurrent program offers a much richer
behavior:

• Interaction among different entities is possible and we should be concerned about
when and how the program interacts with its environment, i.e., the outside world.
For instance, program p and q above are not equivalent in the way they interact
with the memory: contrary to p, program q interacts twice with the memory and
the memory intermediate state (in between the two interactions) offers to the
environment (i.e., to other programs interacting with the memory) the possibility
to interact with x holding value 0; such an interaction capability of the memory
is not possible when executing program p.

• Nondeterminism is often an inevitable effect of different relative speed of execu-
tion of independent threads. For instance, program p ‖ q above is nondetermin-
istic.

• Non-termination is often a desirable property of a concurrent system, as its duty
is to offer a service that, in principle, should be available forever.

Therefore, in general, a concurrent system (or reactive system) is to be seen as
a system that may react to stimuli from its environment and, in turn, influence its
environment by providing feedback. A simple example of a reactive system is any
coffee vending machine, where the environment is a customer interacting with it by
inserting coins, selecting the kind of coffee, and, finally, receiving a cup of coffee
from the machine. Other more complex examples of reactive systems include op-
erating systems, communication protocols, software embedded in mobile phones,
control systems for transportation (such as flight or railway control systems), and so
on.

The key idea of interaction is crucially based on the assumption that all the in-
volved entities should be considered active, i.e., they can compute autonomously
and interact by message-passing (i.e., by synchronizing or communicating values)
with the other entities. According to this intuition, data structures, as well as the
memory variables, are not passive entities used by programs, rather they are to be
considered as autonomous, active interacting entities, willing to communicate the
value they store to any program requiring it, as well as willing to rewrite the value
they store according to a write request by some interacting program.

Hence, the basic building blocks for the model of a reactive system should be
the atomic, indivisible activities, i.e., the actions, the reactive system performs ei-
ther in isolation or by interacting with the environment. The execution of an action
determines a change in the current state of the system. Therefore, the suitable se-
mantic model for a reactive system is a sort of state-transition automaton, called
labeled transition system. (See Section 2.1 for an introductory example of how a
coffee vending machines can be modeled by means of labeled transition systems.)
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A labeled transition system modeling a real system can be enormously large, so
that a manageable description of it is often mandatory. A specification language can
be a good solution to this problem. Such a language:

• should be simple enough to be equipped with a clear, well-defined semantics in
terms of labeled transition systems, so that it can provide linguistic support for
describing succinctly such models, possibly in a compositional manner;

• should be expressive enough to be able to represent a large class of labeled transi-
tion systems, including at least all those with finitely many states and transitions;

• should be executable, so that the specification can be analyzed before being im-
plemented (early prototyping);

• should provide support for a compositional analysis of the model.

Process algebras — such as CCS [Mil89], ACP [BK84a, BW90], CSP [Hoa85,
Ros98], and Lotos [BoBr87, BLV95], just to mention a few — emerged about thirty
years ago as good specification languages for reactive systems (see [Bae05] for a
historical overview). They are composed of a minimal set of linguistic operators,
equipped with simple and intuitive semantics, with the desire to single out a very ba-
sic formalism for concurrency. To partially explain the great variety of the different
proposals, we should be aware that the basic operators of different process algebras
are chosen according to different intuitions on the basic mechanism of computation.
For instance, only considering the communication mechanism, we can recognize at
least the following different features:

• synchronous vs asynchronous: the former when the send action and the receive
one are performed by the interacting partners at the same time; the latter when
the send action is decoupled from the receive one.

• point-to-point vs multi-party: the former when the involved partners are only two,
the latter when several partners interact at the same time.

The possible four combinations may give rise to different process algebras with
different expressive powers. For instance, we will see in Chapter 6 that synchronous
point-to-point communication of CCS (also called handshake communication) and
synchronous multi-party communication of CSP are not equally expressive.

The interesting features that a process algebra may possess can be dramatically
diverse. They may include, besides many different forms of communication, also
the aspects related to:

• forms of sequentialization (e.g., operators of action prefixing for CCS and of
sequential composition for ACP);

• scoping of names (e.g., operators of restriction for CCS and of hiding for CSP),
• mobility (e.g., in the π-calculus [MPW92] channel names are communicable

values, allowing for dynamic reconfiguration of the system),
• priority among actions (e.g., [CLN01, VBG09]),
• security (e.g., [RSG+, FG01, FGM02]),
• real time (e.g., [Yi91, NS94, HR95]),
• performance evaluation (e.g., [Hil96, BG98, H02]),
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and so on. In some of the above cases, in order to equip the process algebra under
investigation with a satisfactory semantics, the model of labeled transition systems
needs to be enriched to include further information, e.g., about time. For an ad-
vanced overview on different aspects of process algebra we refer you to the Hand-
book of Process Algebra [BPS01].

The process algebra presented in this textbook is CCS, proposed by Robin Milner
[Mil80, Mil89, Mil99]. It has been chosen mainly for its deep simplicity, elegance
of its algebraic theory and good expressive power, and also because it has been
extended smoothly to include other features, such as mobility with the π-calculus
[MPW92, Mil99, SW01], security with SPA [FG01] and Crypto-SPA [FGM02],
real time with TCCS [Yi91], and so on; however, such extensions are not discussed
here.

1.2 Why This Book?

This section illustrates the main distinctive features of this book with respect to other
books on process algebra, such as [Mil89, AILS07, BBR10, San12]. The intended
reader of this section is an instructor (a person who already knows a lot about this
theory), who may wish to know the pros (and cons) of this book.

The main motivation for this book is the adoption of a different methodological
approach: this book first presents and discusses the semantic model, i.e., labeled
transition systems, together with a variety of sensible behavioral equivalences over
them; then it proposes suitable linguistic means to define objects of the semantic
model, i.e., it proposes a process algebra able to express all the labeled transition
systems of interest. As a matter of fact, a distinctive feature of this textbook is the
presence of some representability theorems; for instance, one shows that all labeled
transition systems with finitely many states and transitions can be represented, up to
isomorphism, by processes of a subcalculus of CCS called finite-state CCS.

Another distinctive feature of this book is the discussion about the relative ex-
pressive power of subcalculi of CCS (and also of other process algebras in Chapter
5) and their precise relationship w.r.t. the well-known classification of formal lan-
guages (regular, context-free and context-dependent languages), as described in the
Chomsky hierarchy (Section 1.3.3). Indeed, in many parts of the book emphasis is
put on the similarities and differences w.r.t. the classical theory of automata and for-
mal languages (see Sections 1.3.2, 1.3.3 and 1.3.4 for a short overview). Moreover,
a student-level, detailed treatment of Turing-completeness within CCS is provided.

Expressiveness is also the key aspect in the study of encodability of additional
operators in CCS. For instance, hiding and sequential composition are proved deriv-
able in CCS. The proof of these results can be seen as a correctness proof of a
compiler from a source language (typically CCS enriched with some additional op-
erator) to a target language (typically CCS).

Expressiveness limitations of CCS are also investigated: even if CCS is Turing-
complete, it cannot solve all the problems one may wish to solve in concurrency
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theory. We will see that a deterministic, symmetric, fully distributed solution to the
well-known dining philosophers problem [Dij71] cannot be provided in CCS, be-
cause of its limited synchronization discipline: binary, point-to-point (or handshake)
communication. An extension to overcome this inability is presented in Chapter 6,
where Multi-CCS is introduced by extending CCS with atomic behavior and multi-
party synchronization.

1.2.1 Structure of the Book

Chapter 1 contains a brief introduction to concurrency theory, as well as a descrip-
tion of the structure of the book and some background material.

Chapter 2 introduces the semantic model we use throughout the textbook: labeled
transition systems (LTSs for short). They are equipped with a suitable set of different
behavioral equivalences, ranging from isomorphism to trace equivalence, the latter
being very similar to the classic language equivalence over finite automata (see
Section 1.3.4).

Chapter 3 presents the Calculus of Communicating Systems, CCS for short, in
particular its syntax (which slightly differs from [Mil89]) and its operational se-
mantics in terms of LTSs. A large part of this chapter is devoted to studying various
subcalculi of CCS, in order to investigate their relative expressive power and al-
gorithmic properties, and to offer a large collection of case studies of increasing
complexity, ranging from basic examples of vending machines, to more complex
examples of counters, stacks and queues. Of particular interest is regular CCS, as
it corresponds to finite-state LTSs, as well as finitary CCS, whose programs are
finitely representable. This latter calculus is the CCS subcalculus that is mainly
used throughout the book; it is shown to be Turing-complete (see Section 1.3.4 for a
definition of Turing-completeness), even if it cannot represent all the possible LTSs;
moreover, all the behavioral equivalences studied in Chapter 2 turn out to be un-
decidable for finitary CCS, while they are all decidable for regular CCS. Finally,
this chapter introduces a richer variant of CCS, called value-passing CCS, which
explicitly allows for the communication of values; this variant is proved to be as
expressive as CCS.

Chapter 4 discusses the algebraic properties of various behavioral equivalences:
as CCS is built around a set of operators, such as parallel composition, it is natural
to study which properties of such operators hold w.r.t. a given behavioral equiva-
lence. For instance, parallel composition is associative and commutative w.r.t. all
the equivalences. This chapter also investigates whether the equivalences of Chap-
ter 2 are actually congruences w.r.t. the CCS operators. It turns out that most of
the equivalences are indeed respected by the CCS operators. Finally we discuss the
problem of axiomatizing such behavioral congruences, i.e., of finding a suitable set
of axioms that characterize syntactically the behavioral congruence under investiga-
tion.
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Chapter 5 shows that some useful operators, proposed in other process algebras,
are actually derivable in CCS, so that CCS turns out to be a reasonably expressive
language. A large part of this chapter is devoted to studying the ACP sequential
composition operator, whose semantics needs a proper extension of the LTS model.
An encoding of an extension of CCS, enriched with sequential composition, into
CCS is proposed and proved correct.

However, even if Turing-complete, CCS is not able to model some additional use-
ful behavior, such as the atomic execution of sequences of actions as well as multi-
party synchronization. To this aim, Chapter 6 introduces an extension to CCS, called
Multi-CCS, that is able to model these behavioral aspects. Some classical concur-
rency control problems, such as the concurrent readers and writers [CHP71], can
be now solved satisfactorily in Multi-CCS, while they are not solvable in CCS.

1.2.2 How to Use It

Note for the instructor: The book is the result of several years of teaching a mas-
ter’s course in Concurrency Theory at the University of Bologna. The intended au-
dience is composed of advanced undergraduate (or graduate) students.

The core of the book is composed of Chapters 2, 3 and 4, which can be a good ba-
sis for a semester course, possibly complemented with a lab with verification tools,
such as the Concurrency Workbench [CWB]. Chapter 4 could be taught before the
second part of Chapter 3 (about CCS subcalculi and case studies), in case the in-
structor wishes to fully develop the theory of CCS before discussing applications.
Chapter 5 is useful if the instructor thinks it is a good idea to expose the students
to the problem of encoding one language into another; indeed, the chapter offers
some examples of this sort, from very basic to more advanced. Chapter 6 is useful
if the instructor wishes to discuss limitations of the CCS language and a possible
extension to overcome some of them. Technically, this chapter is more involved,
as it presents more advanced techniques, such as working with a structural congru-
ence; moreover, it introduces the reader to non-interleaving semantics, such as step
semantics.

1.3 Background

This textbook is intended for an audience of students who have been already exposed
to some introductory courses in mathematics and theoretical computer science, in
particular, basic courses on discrete mathematics, formal languages and automata
theory, as well as computability. In this case, this section can be skipped.

Nonetheless, this book can also be read by those who have very little knowledge
of these topics, as we have tried to be as self-contained as possible. As a matter of
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fact, this section introduces a few notions — some very basic, some more advanced
— that are referred to in the text. Of course, their presentation is very succinct,
with little explanation and few examples, and in no way is it intended to replace a
thorough exposition that can be found in well-known textbooks completely devoted
to these topics, such as [HMU01, Sip06, Koz97, FB94].

1.3.1 Sets, Relations and Functions

We assume the reader is familiar with the notion of set. Set N denotes the set of
natural numbers, N = {0,1,2, . . .}. Set R is the set of real numbers. Given a set A,
we write x ∈ A to mean that x is an element of A, and x �∈ A to mean that x is not an
element of A. Given two sets A and B:

• their union is A∪B = {x ∣∣ x ∈ A or x ∈ B};
• their intersection is A∩B = {x ∣∣ x ∈ A and x ∈ B};
• A−B = {x ∣∣ x ∈ A and x �∈ B} is the set difference of A and B;
• A = U −A is the complement of A w.r.t. the universe set U , containing all the

elements of interest;
• we write A⊆ B to mean that A is a subset of B, i.e., that each element of A is also

an element of B; if this is not the case, we write A �⊆ B, i.e., there exists at least
one element in A which is not an element of B. Moreover, A ⊂ B if A ⊆ B, but
A �= B.

Note that for any set A, A is a subset of A and also the empty set /0, the set with no
elements, is a subset of A. The set of all the subsets of A, called the powerset of A,
is denoted by ℘(A) = {B ∣∣ B⊆ A}.

Given two sets A and B, the Cartesian product A×B is the set {(x,y) ∣∣ x ∈
A and y ∈ B}. An element (x,y) is called a pair. More generally, when the Cartesian
product is among many sets, e.g., A1×A2× . . .×Ak, an element (x1,x2, . . . ,xk) is
called a tuple.

Given B = A1×A2× . . .×Ak, a relation R is a subset of B, i.e., a set of tuples.
A binary relation on a set A is a subset of A×A. For instance, relation S ⊆ N×N,
defined as S = {(n,m)

∣∣ ∃k∈N such that n×k =m}, relates n and m if n is a divisor
of m. Given a binary relation R, its inverse R−1 is the relation {(y,x) ∣∣ (x,y) ∈ R}.
For instance, S−1 = {(m,n)

∣∣ ∃k ∈ N such that n× k = m}, i.e., m is a multiple of
n. The identity relation I on A is the relation {(x,x) ∣∣ x ∈ A}.

Given two binary relations, R and S, on a set A, we define the relational compo-
sition R◦S as the set {(x,z) ∣∣ ∃y ∈ A such that (x,y) ∈ R and (y,z) ∈ S}.1

A binary relation R⊆ A×A is reflexive if (x,x) ∈ R for all x ∈ A, i.e., if I ⊆ R.
Relation R is symmetric if whenever (x,y) ∈ R then also (y,x) ∈ R, i.e., if R−1 ⊆ R.

1 Our notation for the relational composition R◦S is not standard, as it is more customary to write
the two arguments in reverse order: S ◦R. However, for the aims of our book, we prefer to adopt
this order of arguments: R◦S.
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Relation R is transitive if whenever (x,y) ∈ R and (y,z) ∈ R then also (x,z) ∈ R, i.e.,
if R◦R⊆ R.

A relation R that is reflexive, symmetric and transitive is called an equivalence
relation. Let [a]R denote the equivalence class of a w.r.t. the equivalence relation R,
i.e., [a]R = {b ∈ A

∣∣ (a,b) ∈ R}; the set of its equivalence classes {[a]R
∣∣ a ∈ A}

determines a partition of A, i.e., A =
⋃

a∈A[a]R and [a]R∩ [b]R = /0 if (a,b) �∈ R, while
[a]R∩ [b]R = [a]R if (a,b) ∈ R.

A binary relation R on A is antisymmetric if for all x,y ∈ A, if (x,y) ∈ R and
(y,x) ∈ R then x = y. R is a partial order if R is reflexive, antisymmetric and tran-
sitive. For instance, relation S = {(n,m)

∣∣ ∃k ∈ N such that n× k = m} is a partial
order: if (n,m)∈ S and (m,n)∈ S, then there exist k1 and k2 such that n×k1 =m and
m× k2 = n; thus, (m× k2)× k1 = m, which is possible only if both k1 and k2 are 1,
and so n = m, hence S is antisymmetric; moreover, S is trivially reflexive ((n,n) ∈ S
by choosing k = 1) and transitive (if (n,m) ∈ S, i.e., n×k1 = m, and (m, p) ∈ S, i.e.,
m× k2 = p, then (n, p) ∈ S because n× k1× k2 = m).

A relation R is a preorder if it is reflexive and transitive. For instance, relation T
on a set B of persons, defined as {(x,y) ∣∣ x is not taller than y}, is a preorder; note
that T is not a partial order: if x is as tall as y, then (x,y) ∈ T and (y,x) ∈ T , but x
and y are two different persons, i.e., x �= y; also T is not an equivalence relation: if y
is taller than x, then (x,y) ∈ T but (y,x) �∈ T , hence T is not symmetric.

Given a binary relation R on a set A, the reflexive closure of R is the relation R′
such that: (i) R⊆ R′, (ii) I ⊆ R′, and (iii) R′ is the least relation satisfying (i) and
(ii) above. This can be formalized by saying that R′ is the least relation satisfying
the following inference rules:

(x,y) ∈ R

(x,y) ∈ R′
x ∈ A

(x,x) ∈ R′

Such relation R′ is simply R∪I . Note that any relation R′′ such that R′ ⊂ R′′
satisfies the two rules, but it is not the least one.

Given a binary relation R on a set A, the symmetric closure of R is the relation
R′ such that: (i) R⊆ R′, (ii) R′−1 ⊆ R′, and (iii) R′ is the least relation satisfying (i)
and (ii) above. Such a relation R′ is simply R∪R−1.

Given a binary relation R on a set A, the transitive closure of R is the relation,
denoted by R+, such that: (i) R ⊆ R+, (ii) R+ ◦R+ ⊆ R+, and (iii) R+ is the least
relation satisfying (i) and (ii) above. This can be formalized alternatively by saying
that R+ is the least relation satisfying the following inference rules:

(x,y) ∈ R

(x,y) ∈ R+

(x,y) ∈ R+ (y,z) ∈ R+

(x,z) ∈ R+

For instance, if A = {x,y,z, t} and R = {(x,y),(y,z),(z, t),(y,x)}, then R+ = R∪
{(x,z),(x,x),(y, t),(y,y),(x, t)}. Note that relation R′ = R+ ∪ {(z,z)} satisfies the
two rules, but it is not the least one.
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Given a binary relation R on a set A, the reflexive and transitive closure of R,
denoted by R∗, is R+∪I . This can be equivalently formalized as the least relation
satisfying the following rules:

(x,y) ∈ R

(x,y) ∈ R∗
x ∈ A

(x,x) ∈ R∗
(x,y) ∈ R∗ (y,z) ∈ R∗

(x,z) ∈ R∗

A binary relation R ⊆ A× B is a function if for all x ∈ A there exists exactly
one y ∈ B such that (x,y) ∈ R; in such a case, we use notation R : A → B where
set A is called the domain and set B the codomain of R. We usually use letters
f ,g, . . . (or mnemonic names) to denote functions and we write f (a) = b to express
that (a,b) ∈ f ; in such a case b is called the image of a under f . As an example,
double : N→ N, defined as double(n) = 2× n, is a function associating to each
number n in the domain, the even number 2×n of the codomain. Relation R⊆ A×B
is a partial function if for all x∈ A there exists at most one y∈ B such that (x,y)∈ R.
In such a case, we use notation R : A−◦→B.

As functions are relations, we can define their composition as we did for rela-
tions. Given two functions f : A→ B and g : B→C, their composition f ◦g : A→C
is the function that associates to each a ∈ A the value g( f (a)) ∈C. The definition of
functional composition scales also to partial functions in the obvious way.

A function f : A→ B is injective (or one-to-one) if for all x,y ∈ A, f (x) = f (y)
implies x = y; equivalently, f is injective if ∀x,y ∈ A, x �= y implies f (x) �= f (y).
For instance, function double above is injective. Function f is surjective (or onto)
if for all b ∈ B there exists an a ∈ A such that f (a) = b, i.e., each element of B is
in relation with at least one element of A. For instance, function double above is
not surjective, because odd numbers are not the image of any number. Function f
is bijective if it is both injective and surjective. For a bijective function f : A→ B,
we can define its inverse f−1 : B→ A as follows: f−1(b) = a if and only if f (a) = b.

A set A is finite if there exists n∈N and a bijective function f : A→{1,2, . . . ,n}.
In such a case |A|= n denotes the cardinality of A, i.e., the number of elements in A.
A set A is denumerable if there exists a bijective function f : N→ A. For instance,
the set of even numbers P = {n ∣∣ n = 2× k,k ∈ N} is denumerable: the required
bijective function is function double(n) = 2× n. A set A is countable if it is ei-
ther finite or denumerable. A set A is uncountable if there is no bijective function
f : N→ A. For instance, set R is uncountable; this can be proved by using Cantor’s
diagonalization method (see, e.g., [Sip06] for a detailed account of this method).

A multiset (or bag) M over a set A is an unordered, possibly infinite, list of ele-
ments of A, where no element of A can occur infinitely many times. It can be repre-
sented formally as a function M : A→ N such that M(x) is the number of instances
of element x ∈ A in M. Given two multisets M1 and M2 over the set A, we write
M1 ⊆M2 if M1(x) ≤M2(x) for all x ∈ A. A multiset M over A is finite if M(x) > 0
for only finitely many x ∈ A. Of course, if A is finite, then any multiset over A is a
finite multiset. The set of all finite multisets over a set A is denoted by M f in(A).
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1.3.2 Alphabets, Strings, Languages and Regular Expressions

An alphabet A is a finite, nonempty set, e.g., A = {a,b}. An element a of A is called
a symbol. A string (or word, or trace) over A is any finite length sequence of symbols
of A, e.g., aaa or abbba. The empty string ε is the string composed of no symbols.
We use w,x,y,z, possibly indexed, to represent arbitrary strings.

The length of w, denoted as |w|, is the number of occurrences of symbols in w;
e.g., |aaa| = 3, |ε| = 0 and |abbba| = 5. The power of a symbol, say an, denotes a
string composed of n occurrences of a. This can be defined inductively as follows:

a0 = ε and an+1 = aan.

Set A∗ is the set of all the strings over alphabet A. For instance, if A = {a}, then
A∗ = {ε,a,aa,aaa,aaaa, . . .} = {an

∣∣ n ∈ N}. Given any alphabet A, set A∗ is
countable, as it is possible to define a bijective function f : N→ A∗. Intuitively,
we can list all of its strings by first enumerating all the strings of length 0 (only ε),
then those of length 1 (all the symbols of A, which we can assume to be ordered in
some alphabetical order), followed by those of length 2 (which are ordered in the
lexicographical order induced by the alphabetical order), and so on. We denote by
A+ the set A∗ \{ε}, i.e., the set of all the nonempty strings over A.

The concatenation of strings x and y is the string xy obtained by juxtaposition of
the two. This operation is associative and the empty string is its neutral element:

(xy)z = x(yz) xε = x = εx.

Moreover, |xy|= |x|+ |y| and anam = an+m. The power xn of a string x is the juxta-
position of n copies of x: x0 = ε and xn+1 = xxn.

If a ∈ A and x ∈ A∗, we write �(a,x) for the number of occurrences of a in x; for
instance, �(a,abbba) = 2, �(b,abbba) = 3 and �(c,abbba) = 0.

A prefix of x is any initial substring of x; formally, y is a prefix of x if there exists
z such that yz = x. A sufffix of x is any final substring of x; formally, y is a suffix of
x if there exists z such that zy = x.

A language L is any subset of A∗, L ⊆ A∗. For instance, if A = {a}, any of the
following subsets of A∗ = {an

∣∣ n ∈ N} is a language: {a,aaaa}, A, A∗, {an
∣∣ n =

2× k,k ∈ N}, /0, {ε}. Note that /0 is the empty language, i.e., no string belongs to /0,
while {ε} is a one-string language.

A language L is prefix closed if whenever xy ∈ L, then x ∈ L, for all x,y ∈ A∗.
Hence, if L is prefix-closed, then ε ∈ L or L = /0.

Languages can be concatenated: L1 ·L2 = {xy
∣∣ x∈ L1 and y∈ L2}. For instance,

if L1 = {a,aaa} and L2 = {b,bb}, then L1 ·L2 = {ab,abb,aaab,aaabb}; moreover,
if L3 = {an

∣∣ n = 2× k,k ∈ N}, then L1 ·L3 = {an
∣∣ n = 2× k+1,k ∈ N}.

We can define the power Ln of a language L as follows: L0 = {ε} and Ln+1 =
L ·Ln. The iterate (or Kleene star) L∗ and the positive iterate L+ of a language L are
defined as follows:

L∗ =
⋃
n≥0

Ln L+ =
⋃
n≥1

Ln
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Note that since A is a language, the set A∗ of all strings over A is such that
A∗ =

⋃
n≥0 An, as required by the definition above. Note also that /0∗ = {ε} because

/00 = {ε}.

Regular expressions over an alphabet A, ranged over by e (possibly indexed), are
defined by means of the following syntax in Backus-Naur Form (BNF):

e ::= 0
∣∣ 1

∣∣ a
∣∣ e+ e

∣∣ e · e ∣∣ e∗
∣∣ (e)

where a is any symbol in A. The syntax above is ambiguous: for instance, a+ b · c
can be interpreted as (a+b) · c or a+(b · c). To solve this problem, we assume that
the operators have a different binding strength: the iterate postfix operator ∗ binds
tighter than the binary infix concatenation operator ·, in turn binding tighter than
the binary infix alternative operator +. With this convention, a+ b · c represents
a+(b · c). Moreover, the concatenation operator is often omitted, so that e1 · e2 is
simply denoted as e1e2. Examples of regular expressions are: ab∗, a+ 0, (a+ b)∗
and a(a+b)c∗. Regular expressions are used to denote languages as follows:

L [0] = /0 L [e1 + e2] = L [e1]∪L [e2] L [(e)] = L [e]
L [1] = {ε} L [e1 · e2] = L [e1] ·L [e2] L [e∗] = (L [e])∗
L [a] = {a}
For instance, regular expression a · b∗ denotes the language L [a · b∗] = L [a] ·

L [b∗] = {a} · (L [b])∗ ={a} · ({b})∗ = {a} · {bn
∣∣ n ∈ N}= {abn

∣∣ n ∈ N}.
A language L is regular if there exists a regular expressions e such that L =L [e].

For instance, L = {an
∣∣ n = 2× k+1,k ∈ N} is regular because L = L [a(aa)∗].

1.3.3 Grammars and the Chomsky Hierarchy

Languages can be generated by means of grammars. A general grammar G is a
tuple (N,T,S,P), where N is a finite set of nonterminals (ranged over by capital
letters A,B,C, . . .), T is a finite set of terminals (the symbols of the alphabet), S ∈ N
is the initial nonterminal and P is a finite set of productions of the form γ → δ , with
γ,δ ∈ (T ∪N)∗.

The language generated by a general grammar G, denoted by L(G), is given by
the set of all strings (or words) w ∈ T ∗ derivable by rewriting from S: formally,
L(G) = {w ∈ T ∗

∣∣ S−→∗w}, where S−→∗ γ is the minimal relation induced by the
following axiom and inference rule:

S−→∗ S

S−→∗αγβ γ → δ ∈ P

S−→∗αδβ
where α,β ∈ (T ∪N)∗
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The form of the productions can be restricted in some way, thus yielding a clas-
sification of grammars, called the Chomsky hierarchy.

A grammar G is right-linear if all of its productions are of the form B → a or
B → bC or B → ε , where B,C ∈ N and a,b ∈ T . For instance, grammar G1 =
({S,A},{a,b},S,{S → aA,A → bA,A → ε}) is right-linear and its generated lan-
guage L(G1) = {abn

∣∣ n∈N}=L [ab∗]. It can be proved that the class of languages
generated by right-linear grammars coincides with the class of regular languages,
i.e., the class of languages denoted by regular expressions.

The intersection of two regular languages is a regular language. For instance,
L [ab∗]∩L [a∗b] = {abn

∣∣ n ∈ N}∩{anb
∣∣ n ∈ N} = {ab} = L [ab], which is a

finite language, hence regular.

A grammar G is context-free if all of its productions are of the form B → γ ,
with B ∈ N and γ ∈ (T ∪N)∗. A typical example of a context-free grammar is
G2 = ({S},{a,b},S,{S → aSb,S → ε}), which generates the language L(G2) =
{anbn

∣∣ n ∈N}. A language L is context-free if there exists a context-free grammar
G such that L(G) = L. The class of context-free languages includes the class of reg-
ular languages because a right-linear grammar is also a context-free grammar. Such
inclusion is strict because there are context-free languages that are not regular, e.g.,
language L(G2).

The intersection of a context-free language with a regular language is a context-
free language. For instance, L(G2)∩L [(aa)∗(bb)∗] = {a2nb2n

∣∣ n ∈ N}, which is
context-free.

A context-free grammar G is in Greibach normal form if all of its productions are
of the form B→ aβ , where a ∈ T and β ∈ N∗. In case ε belongs to the language to
be generated by grammar G, it is admitted an ε-production S→ ε for the initial non-
terminal S, provided that S never occurs on the right-hand-side of any production.
It can be proved that for any context-free grammar G, there exists a context-free
grammar G′ in Greibach normal form such that L(G) = L(G′).

A grammar G is context-dependent (or monotone) if all of its productions are of
the form γ → δ , with γ,δ ∈ (T ∪N)+ and |γ| ≤ |δ |. As above, an ε-production S→ ε
for the initial nonterminal S is allowed, provided that S never occurs on the right-
hand side of any production. A typical example of a context-dependent grammar is
G3 = ({S,B},{a,b,c},S,{S→ aSBc,S→ abc,cB→ Bc,bB→ bb}), which gener-
ates the language L(G3) = {anbncn

∣∣ n ≥ 1}. A language L is context-dependent
if there exists a context-dependent grammar G such that L(G) = L. The class of
context-dependent languages includes the class of context-free languages because a
context-free grammar in Greibach normal form is also a context-dependent gram-
mar. Such inclusion is strict because there are context-dependent languages that are
not context-free, e.g., language L(G3).
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1.3.4 Finite Automata and Turing Machines

A nondeterministic finite automaton (NFA, for short) M is a tuple (Q,A,δ ,F,q0)
such that Q is a finite set of states, A is a finite alphabet of input symbols, q0 ∈ Q is
the initial state, F ⊆ Q is the set of final states, and δ is the transition function of
type δ : Q× (A∪{ε})→℘(Q).2

A configuration is a pair (q,w) with q∈Q and w∈ A∗. Configurations can evolve
according to the following rules:

(q,w)−→∗ (q,w)
(q,w)−→∗ (q′,σw′) q′′ ∈ δ (q′,σ),σ ∈ A∪{ε}

(q,w)−→∗ (q′′,w′)
An NFA M = (Q,A,δ ,F,q0) recognizes (or accepts) a string w ∈ A∗ if there exists
a final state q ∈ F such that (q0,w)−→∗ (q,ε), i.e., there is a path starting from the
initial state q0 in the automaton that, by reading w, leads to a final state. The au-
tomaton M recognizes the language L[M] = {w ∈ A∗

∣∣ ∃q ∈ F.(q0,w)−→∗ (q,ε)}.

A deterministic finite automaton (DFA, for short) M is an NFA (Q,A,δ ,F,q0)
such that δ (q,ε) = /0 and |δ (q,a)| = 1 for all q ∈ Q and a ∈ A. In other words, δ
has type δ : Q×A→Q. Therefore, DFAs are a subclass of NFAs. However, from an
expressiveness point of view, they are equivalent: given an NFA M, we can construct
a DFA M′ such that L[M] = L[M′] (by means of the Rabin-Scott subset construction
[RS59]).

The class of languages recognized by finite automata coincides with the class of
regular languages.

Informally, a (deterministic) Turing machine is composed of a finite control,
which can be in any of a finite number of states, and a tape, of unbounded length,
which is divided into cells; each cell can hold one symbol from a given alphabet. A
tape head, which is positioned at one single tape cell, can read the content of that
cell or write onto it. Initially, the input is written on the tape, while all the other cells
hold a special symbol called blank, and the tape head is positioned at the leftmost
symbol of the input. At each stage of the computation, the Turing machine reads the
symbol in the cell pointed to by the tape head and, depending also on the current
state, it writes a symbol in that cell, transits to the next state and moves the tape
head — left or right — to the next cell. If the Turing machine eventually stops in
a final state, then the input is accepted. If it stops in a non-final state, then the in-
put is rejected. But it may also never end its computation for a given input. Hence,
a Turing machine M computes a partial binary function gM : A∗−◦→{0,1}, where
gM(w) = 1 if w is accepted by M, gM(w) = 0 if M stops on w in a non-final state,
but gM(w) may be undefined when M never ends, i.e., it is unable to accept/reject w.

Turing machines can be adapted to compute partial binary functions on any
countable set B, notably N. Turing machines can also be adapted to compute par-

2 Function δ can be equivalently defined as a subset of Q× (A∪{ε})×Q, i.e., as a set of triples
of the form (q,a,q′) for q,q′ ∈ Q and a ∈ A∪{ε}.
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tial functions from N to N. A function f : N−◦→N is Turing-computable if there
exists a Turing machine that computes it. A formalism is Turing-complete if it can
compute all the Turing computable functions. A few examples of Turing complete
formalisms are the lambda calculus [B84], Counter Machines (see Section 3.5.1),
as well as any programming language that includes while, if-then-else, assignments
and sequential composition [BJ66]. Hence, function f is Turing-computable if there
exists an algorithm that computes it.

1.3.5 Decidable and Semi-decidable Sets and Problems

function gB : N−◦→{1} are defined as follows:

fB(x) =

{
1 if x ∈ B,
0 if x �∈ B

gB(x) =

{
1 if x ∈ B,
undefined if x �∈ B

Set B is decidable (or recursive) if its characteristic function fB is Turing-
computable, i.e., there exists an algorithm that can compute such a function. A few
examples of decidable sets are: /0 ( f /0 is the constant function f /0(x) = 0 for all x∈N),
N ( fN is the constant function 1), any finite subset of N, P = {n ∣∣ n = 2×k,k ∈N}.
Set B is undecidable if its characteristic function fB is not Turing-computable.

Set B is semi-decidable (or recursively enumerable) if its semi-characteristic
function gB is Turing-computable, i.e., there exists an algorithm that can compute
such a function. Of course, any decidable set B is also semi-decidable, because the
algorithm computing the characteristic function fB can be easily adapted to com-
pute the semi-characteristic function gB. Examples of semi-decidable sets that are
not decidable are less easy to find. Suppose Z0,Z1,Z2 . . . is an enumeration of Turing
machines. Then, B = {x ∣∣ Zx with input x terminates} is semi-decidable as its semi-
characteristic function gB is Turing-computable. It can be proved that B is undecid-
able, as its characteristic function fB is not Turing-computable: this is related to the
so-called halting problem, discussed below. An example of a non-semi-decidable
set is C = {x ∣∣ Zx with input x does not terminate}.

B is effectively decidable if it is decidable and the algorithm, computing the char-
acteristic function fB, can be explicitly exhibited. An example of a decidable but
not effectively decidable set can be constructed as follows. Take A = {0} and the
non-semi-decidable set C described above; then consider A∩C, which can be either
A itself, in case 0 ∈ C, or the empty set, in case 0 �∈ C. Of course, both A and /0
are effectively decidable with their associated algorithms, so for sure there exists an
algorithm that computes fA∩C (i.e., A∩C is decidable), but we are unable to decide
which of the two algorithms is the right one, because we are unable to test 0 ∈ C,
hence A∩C is not effectively decidable.

Given a set B⊆N, its characteristic function fB :N→{0,1}and its semi-characteristic
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A language L ⊆ A∗ is a countable set, hence we can define characteristic and
semi-characteristic functions for it. It can be proved that context-dependent lan-
guages are all decidable (or recursive), but there exist decidable languages that are
not context-dependent. The class of languages generated by general grammars co-
incides with the class of semi-decidable (or recursively enumerable) languages.

A problem can be usually seen as a particular function, and sometimes such a
problem is decidable (or solvable) if and only if its corresponding function is com-
putable. For instance, the famous halting problem for Turing machines can be for-
mulated as the following function halt. Given an enumeration of Turing machines,
Z0,Z1,Z2, . . ., function halt(x,y) — where x is an index of a Turing Machine and y
is an input — is defined as

halt(x,y) =

{
1 if Zx(y) terminates
0 otherwise.

Solving the halting problem for Turing machines means being able to compute
function halt. Unfortunately, function halt is not computable and so the halting
problem is unsolvable. If halt were computable, then we could compute also func-
tion K(x) = halt(x,x). If function K were computable, we could even compute func-
tion G, defined as

G(x) =

{
1 if K(x) = 0
undefined if K(x) = 1.

But now since G is computable, there should exist a Turing machine that com-
putes G; suppose Z j is this Turing machine. Then, we get a contradiction when
computing G( j): either G( j) = 1, which is possible only if K( j) = 0 and so Z j( j)
must diverge, contradicting the fact that G( j) returns 1; or G( j) is undefined, which
is possible only if K( j) = 1 and so Z j( j) converges (also a contradiction). As the
only assumption we make in our reasoning is that function halt is computable, we
can conclude that halt is not computable, and so the halting problem is undecidable.

Another well-known problem is the membership problem: given an enumeration
G0,G1,G2, . . ., of a class of grammars over an alphabet A and given an enumeration
w0,w1,w2, . . ., of strings in A∗, we want to decide if wi ∈ L(G j) for all i, j ∈ N. The
problem has an obvious associated function Mem, defined as

Mem(x,y) =

{
1 if wx ∈ L(Gy)

0 otherwise.

The computability of function Mem depends on the considered class of gram-
mars: it is computable for context-dependent grammars, while it is not computable
for general grammars. Therefore, the membership problem is solvable for context-
dependent grammars while it is not for general grammars.
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There are also problems whose associated functions are always computable. For
instance, given an enumeration of programs p0, p1, p2, . . ., for a given programming
language, and given a decidable predicate P over such programs, the existential P
problem is solvable if there exists an index i such that P(pi) is true. Formally, given
the computable function fP, defined as

fP(x) =

{
1 if P(px) is true
0 otherwise,

the function existP associated to the existential P problem is defined as

existP(x) =

{
1 if ∃i such that fP(i) = 1
0 otherwise.

Function existP is computable for any programming language because it is either
the constant function 1 or the constant function 0.3 However, we say that the ex-
istential P problem is solvable for a given formalism only if existP is the constant
function 1.

3 To be precise, such a function is computable, but may be not effectively computable, i.e., an
algorithm does exist for sure, but we may be unable to exhibit it explicitly.



Chapter 2

Transition Systems and Behavioral Equivalences

Abstract Transition systems are introduced as a suitable semantic model of reac-
tive systems. Some notions of behavioral equivalence are discussed, such as iso-
morphism equivalence, trace equivalence, simulation equivalence and bisimulation
equivalence. Internal, unobservable actions are also considered and many behavioral
equivalences are suitably adapted for this case.

2.1 Modeling a Reactive System

A reactive system, such as the vending machine in Figure 2.1, is a rather complex
system with many features, some externally visible, such as the buttons, which the
user can interact with, and some internal, such as the supply of water, that may
influence the actual functioning of the machine but that are not under the control
of the user. In particular, the picture shows a slot where coins can be inserted, two
buttons for selecting different kinds of coffee and an opening where the beverage is
removed.

In order to reason about the behavior of this vending machine, we need to create a
model of it, that is, an abstraction where only the pieces of information that are con-
sidered relevant are explicitly represented; such an abstraction should be analyzable
by means of mathematically based techniques.

So, in order to create a model of such a vending machine, what abstractions do
we need? First, we have to single out what actions can take place (e.g., inserting a
coin) and how the internal state of the machine evolves in response to those actions
(e.g., a beverage can now be chosen). Actions are usually assumed to be atomic:
they are either performed completely or not at all, i.e., they enjoy the all-or-nothing
property; actions are also assumed to be instantaneous, so that two actions cannot
occur at the same time.

Second, we have to decide how many internal states are necessary to model cor-
rectly all the possible variations due to the effect of the actions performed. We
assume that the reactive system is discrete, i.e., the number of its states is count-
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Fig. 2.1 A simple vending machine

q1 q2

coin

coffee

Fig. 2.2 The first simple model for the vending machine

able. This assumption may be unrealistic, e.g., when one needs to model real time-
dependent behavior, where some action can occur exactly at some prescribed time
instant or within a predetermined time interval. For instance, in some vending ma-
chines, after selecting the beverage, the user has one second to choose the level
of sugar; each time instant in the interval [0,1] is appropriate for such a selection,
hence there may be the need for uncountably many states to accurately model such a
situation. However, for the purpose of the theories described in this book, countable
sets of states suffice.

Hence, the models we use are very similar to (possibly infinite) edge-labeled
directed graphs, where the nodes are the states and the edges are the transitions, each
one labeled with one action, describing how the system evolves upon the occurrence
of that action. The passing of time is not explicitly represented, as we model only
the temporal ordering of actions, not their actual timing. We can say that, starting
from some state q, some action a can be performed and afterwards another action,
say b, can be performed, but we do not model the precise time instant when a or b
have been performed.

As a first, tiny example, the vending machine of Figure 2.1 can be modeled very
abstractly by the labeled directed graph depicted in Figure 2.2; we have two states q1
and q2, in which the machine can let time pass, and two transitions, describing how
the system evolves when some input or output occurs. For instance, the transition
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q1 q2

ask-esp

ask-am

esp-coffee

q3

q4

am-coffee

coin

Fig. 2.3 The second simple model for the vending machine

q1 q2

coin

q3

coffee

q4

coin coffee

q99 q100

coin coffee

q101

· · ·

Fig. 2.4 The third simple model for the vending machine

q1
coin−→ q2 indicates that when the machine is in state q1, it can react to the input of a

coin and move to the new state q2. Action coffee indicates that the machine outputs
a cup of coffee: for simplicity’s sake, we have abstracted the two kinds of beverages
in one single (abstract) beverage. (We use the convention that output actions are
overlined.) The behavior described by this model is that whenever a coin is inserted,
then a cup of coffee is delivered. Note that many possible behaviors are forbidden by
this model; for instance, it is not possible to insert two coins in a row: the insertion
of the coin and the delivery of the coffee are to be performed alternately.

This model is making one important simplification: as more kinds of coffee are
offered, the user should be able to choose the desired one. So, it is necessary to
include more actions in the model. We can have input action ask-esp to select typical
Italian espresso coffee, and input action ask-am to select American coffee. The new,
more detailed model is shown in Figure 2.3. This model is built according to the
so-called black-box view: only the interaction interface of the vending machine is
relevant (i.e., the slot for coins, the selection buttons and the drinks in the opening,
each one modeled by a specific action), while what the machine performs internally
(e.g., preparation of the ground coffee) is unobservable.

The very abstract model in Figure 2.2 is making another, rather unrealistic simpli-
fication: when the coin is inserted, the beverage is always available. Indeed, when-
ever a coffee is delivered, the level of water and ground coffee inside the machine
diminishes, so that after some time the machine stops working. A more realistic
model, taking into account that after, say, 50 coffees the machine cannot supply
further coffee, is sketched in Figure 2.4, where state q101 is a deadlock: no further
action is possible.

Exercise 2.1. Model a limited coffee machine, according to the description of Fig-
ure 2.3, that cannot offer anything after two beverages have been delivered. �
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q q′

a

a

Fig. 2.5 A graph which is not a model

Exercise 2.2. Consider the model in Figure 2.4. Add one transition, labeled refill,
that models the fact that when service is unavailable, the only action that can be
taken (by an operator) is refilling the machine of water and ground coffee. �

These tiny examples show that the model of a real system is not unique and its
description depends mainly on the level of accuracy one is interested in getting. Of
course, the more abstract the model (i.e., with fewer states and transitions) the less
accurate it is, but the easier it is to analyze; on the contrary, the more concrete the
model (i.e., with more states and transitions) the more accurate the model, but the
more complex its analysis (it may even be impossible when the number of states is
infinite). For instance, the first model of the vending machine is detailed enough for
studying the basic input/output interaction between a user and the machine, while
the third model more accurately takes into account also the special case of unavail-
able service, which can occur in real life.

At first sight, edge-labeled directed graphs may be considered a natural model for
reactive systems. However, they are a bit too concrete, meaning that some graphs
have no interpretation as systems. For instance, consider the graph in Figure 2.5
where we have two edges from state q to state q′, both labeled with action a.1 As
a transition is completely determined by the change of state and the interaction due
to the action performed, there is no observable reason for not identifying the two
edges. In other words, whenever two edges have the same source state, the same
target state and the same label, then the two are to be identified. Hence, the class of
models for reactive systems we are looking for is a slight abstraction of edge-labeled
directed graphs.

Classical automata (see Section 1.3.4 for a short overview, or, e.g., [HMU01]
for more details), which are largely studied in parsing theory, are also very similar
to edge-labeled directed graphs, but with the important abstraction that transitions
are defined by means of a transition relation: a transition is just a triple (q,a,q′),
usually denoted with q a−→q′. Indeed, the model we want to define — called labeled
transition systems and originally introduced by Keller in [Kel76] — are essentially
automata (with possibly infinitely many states); the only difference is that we do not
consider the additional distinction between accepting (or final) and non-accepting
states (as discussed in Section 2.3.2). The graphs in Figures 2.2–2.4 are actually also
labeled transition systems, while the graph in Figure 2.5 is not.

1 A graph which is permitted to have multiple edges, that is, many edges that have the same end
nodes, is sometimes called a multigraph.
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2.2 Labeled Transition Systems

Definition 2.1. (Actions) Let L be a countable set of input actions, ranged over by
a,b, . . .. Let L be the set of co-actions, ranged over by a,b, . . ., usually called the
outputs. The set L ∪L , ranged over by α,β , . . ., is the set of visible actions.

Let Act = L ∪L ∪{τ}, such that τ �∈L ∪L , be the set of actions (or labels),
ranged over by μ . Action τ denotes an invisible, internal activity. �

Definition 2.2. (Labeled transition systems) A labeled transition system (LTS for
short) is a triple TS = (Q,A,→) where

• Q is the nonempty, countable set of states, ranged over by q (possibly indexed);
• A ⊆ Act is the countable set of labels (or actions), ranged over by μ (possibly

indexed);
• →⊆ Q×A×Q is the transition relation.

Given a transition (q,μ,q′) ∈→, q is called the source, q′ the target and μ the label
of the transition. A rooted labeled transition system is a pair (TS,q0) where TS =
(Q,A, →) is an LTS and q0 ∈ Q is the initial state (or root). Sometimes we write
TS = (Q,A,→,q0) for a rooted LTS. �

Given the formal definition of an LTS as above, there is an obvious, associated
graphical representation: each state is represented as a node, labeled with the (name
of the) state, and each transition (q,a,q′) as an edge from the source node/state q
to the target node/state q′, labeled a. Of course, the graphical representation for a
given LTS definition is not unique, because of the obvious freedom in choosing the
actual disposition of states and shape of edges.

Remark 2.1. (Minimal definition of a graphical representation) It is also possible
to do the reverse: given a graphical representation, one can derive the set Q and the
transition relation →. For instance, the labeled transition system depicted in Figure
2.2 gives rise to the triple TS = (Q,A,→), where Q = {q1,q2}, A = {coin,coffee}
and→= {(q1,coin,q2), (q2,coffee,q1)}.

However, also this reverse operation is not unique. Strictly speaking, if we extend
the LTS TS above with an extra action, say a, which is not used in any transition, then
the LTS TS′ = (Q,A∪{a},→) is still represented as in Figure 2.2. When deriving
a formal definition of an LTS from a graphical representation, we usually assume
that the set of labels contains only labels that are used in some transitions, hence
TS is a good definition for the vending machine in Figure 2.2, while TS′ is not.
Under the assumption that in a formal definition an action a is in A only if there is a
transition labeled with such an action a, there is only one minimal formal definition
for a graphical representation of an LTS. �

Exercise 2.3. Provide the minimal definition for the LTS depicted in Figure 2.3. �

Notation: In the following, given an LTS (Q,A, →), we denote (q,μ,q′) ∈→ by
q

μ−→q′. Moreover,
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q
μ→ if and only if ∃q′.q

μ−→q′

q
μ
� if and only if � ∃q′.q

μ−→q′

q→ if and only if ∃μ ∈ A,q
μ→

q � if and only if ∀μ ∈ A,q
μ
�

Definition 2.3. Given an LTS TS = (Q,A,→), and two states q,q′ ∈ Q, a path (or
computation) of length n from q to q′ is a sequence of transitions q1

μ1−→q′1 q2
μ2−→q′2

. . . qn
μn−→q′n such that q = q1, q′ = q′n and q′i = qi+1 for i = 1, . . . ,n, usually denoted

as
q1

μ1−→q2
μ2−→ . . .qn

μn−→qn+1.

When n = 0, the path is empty and q = q′ = q1. If qi �= q j for all i �= j (i, j ∈ {1,
. . . ,n+1}), then the path is acyclic, otherwise it is cyclic. The rooted LTS (TS,q0)
is acyclic if it contains no cyclic path starting from q0. The LTS TS is acyclic if it
contains no cyclic path. We say that q′ is reachable from q if a path exists from q to
q′; we denote by Qq the set of all the states in Q reachable from q. A computation

may also be infinite: the infinite sequence q1,q2,q3, . . ., such that qi
μi−→qi+1 for

each i ∈ N, yields the infinite path q1
μ1−→q2

μ2−→q3 . . .. �

The LTS in Figure 2.2 is not acyclic because a cyclic path is

q1
coin−→ q2

coffee−→ q1

The LTS in Figure 2.6(a) is not acyclic as there is an obvious cyclic path starting
from q3. However, if we consider it as rooted in q0, then it is acyclic, because no
cyclic path is possible from the initial state q0, as q3 is not reachable from q0.

Definition 2.4. (Reachability relation) Let A∗, ranged over by σ , be the set of all
the strings on A, including the empty string ε . The concatenation of strings σ1 and
σ2 yields σ1σ2, with the proviso that εσ = σ = σε . We define the reachability re-
lation→∗⊆Q×A∗ ×Q as the reflexive and transitive closure of→, i.e., as the least
relation induced by the following axiom and rules:

q ε−→∗ q

q1
μ−→q2

q1
μ−→∗ q2

q1
σ1−→∗ q2 q2

σ2−→∗ q3

q1
σ1σ2−→∗ q3

We simply write q1 →∗ q2 to state that q2 is reachable from q1 when there exists
a string σ such that q1

σ−→∗ q2. �

Exercise 2.4. Let σ = μ1 . . .μn with n ≥ 0. Prove, by induction on n, that q σ−→∗ q′
if and only if there exist q1, . . . ,qn+1 such that q = q1, q′ = qn+1 and

q1
μ1−→q2

μ2−→ . . .qn
μn−→qn+1.
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Fig. 2.6 Reachable LTS

This implies that, when n ≥ 1, q σ−→∗ q′ if and only if a state q′′ exists such that

q σ ′−→∗ q′′
μn−→q′, with σ ′ = μ1 . . .μn−1.

This exercise shows that the definition of reachable state in Definition 2.3 is
equivalent to the one based on reachability relation −→∗ of Definition 2.4. �

Definition 2.5. Given an LTS TS = (Q,A,→) and a state q ∈ Q, we define the sort
of q as the set sort(q) = {μ ∈ A

∣∣ ∃q′.q →∗ q′
μ−→}. We define the rooted LTS

TSq = (Qq,sort(q),→q,q), called the reachable LTS from q, where

• Qq is the set of the states reachable from q, i.e., Qq = {q′ ∈ Q
∣∣ q→∗ q′}, and

• →q is the restriction of→ on Qq× sort(q)×Qq. �

Let us consider Figure 2.6. It is not difficult to see that the reachable LTS from
state q0 of the LTS (a) on the left is indeed the LTS (b) on the right.

Definition 2.6. A rooted LTS TS = (Q,A,→,q0) is reduced if TS is exactly the
reachable LTS from q0, i.e., TS = TSq0 . �

The LTS in Figure 2.6(a) is not reduced, while the one in (b) is reduced. Note
that a rooted LTS TS = (Q,A,→,q0) is reduced when all the states are reachable
from the initial state (i.e., when Q = Qq0 ), under the proviso of Remark 2.1, i.e.,
that the formal definition is minimal.

We briefly introduce some classes of LTSs we will use in the following.

Definition 2.7. (Classes of LTSs) An LTS TS = (Q,A,→) is:

• finite if it is acyclic and Q and A are finite sets;
• finite-state if Q and A are finite sets;
• boundedly-branching if ∃k ∈N such that ∀q∈Q the set Tq = {(q,μ,q′)

∣∣ ∃μ ∈ A

∃q′ ∈ Q. q
μ−→q′} has cardinality at most k; the least k satisfying the above

condition is called the branching-degree of the LTS;
• finitely-branching if the set Tq = {(q,μ,q′)

∣∣ ∃μ ∈ A ∃q′ ∈ Q. q
μ−→q′} is finite

for all q ∈ Q; if this is not the case, the LTS is infinitely-branching;
• image-finite if the set Tq,μ = {(q,μ,q′) ∣∣ ∃q′ ∈Q. q

μ−→q′} is finite for all q ∈Q
and for all μ ∈ A;
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Fig. 2.7 Some labeled transition systems

• deterministic if q
μ−→q′ and q

μ−→q′′ imply that q′ = q′′, for all q ∈ Q and for all
μ ∈ A. �

The LTS in Figure 2.4 is finite, as is the LTS in Figure 2.6(b). Note that a finite
LTS may offer only finitely many different paths.

Exercise 2.5. Demonstrate that for any finite LTS TS = (Q,A,→) there exists k ∈N
such that the longest path of TS has length less than k. (Hint: Take k = |Q|) �

Of course, any finite LTS is also finite-state. However, the LTS in Figure 2.2
(as well as the LTS in Figure 2.6(a)) is finite-state but not finite, because it is not
acyclic. Note that a finite-state LTS may offer infinitely many different paths. Note
also that the transitions are necessarily finitely many when both Q and A are finite.

In Figure 2.7(a), an LTS is depicted that has finitely many states but that is not
finite-state because A is infinite; note that this LTS is not even finitely branching.
Formally, this LTS is the triple (Q,A,→), where Q = {q,q′}, A = {ai

∣∣ i ∈ N} and
→= {(q,ai,q′)

∣∣ ai ∈ A}.
Exercise 2.6. (i) Prove that a finite-state LTS is boundedly-branching. Does the con-
verse hold? (ii) Prove that a boundedly-branching LTS is finitely-branching. Does
the converse hold? �

As a hint for Exercise 2.6(i), observe that Figure 2.7(b) depicts a boundedly-
branching LTS (with branching-degree k= 2), which is not finite-state: formally, it is
a triple (Q,A,→), where Q= {qi

∣∣ i∈N}, A= {inc,dec} and→= {(qi, inc,qi+1)
∣∣

i ∈ N}∪ {(qi+1,dec,qi)
∣∣ i ∈ N}. This LTS represents a counter (but without the

ability to test for zero – see Section 3.4.4 and 3.4.6 for a discussion about various
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kinds of counters) that can increment (action inc) or decrement (action dec) the
value n stored in the counter state qn.

As a hint for Exercise 2.6(ii), look at the LTS in Figure 2.7(d). It depicts an LTS
(Q,A, →), where Q = {qi

∣∣ i ∈ N}∪{q j
i+1

∣∣ i ∈ N,1 ≤ j ≤ i+ 1}, A = {a} and
→= {(qi,a,qi+1)

∣∣ i ∈ N}∪{(qi+1,a,q
j
i+1)

∣∣ i ∈ N,1 ≤ j ≤ i+ 1}. Clearly, for
all i ∈N, exactly i+1 a-labeled transitions start from state qi, hence, this LTS is not
boundedly-branching, even if it is finitely-branching.

Exercise 2.7. (i) Prove that a finitely-branching LTS with finitely many states is
boundedly-branching. Might it be not finite-state? (Hint: Consider the set of labels,
that may be infinite.) (ii) Prove that an LTS that is not boundedly-branching but that
it is finitely-branching cannot be finite-state. �

Exercise 2.8. Prove that a finitely-branching LTS is image-finite. Does the converse
hold? (Hint: Just read the following line.) �

The LTS in Figure 2.7(a) is image-finite but not finitely-branching. The LTS in
Figure 2.7(c) is not image-finite.

Exercise 2.9. Define the LTS in Figure 2.7(c). �

Examples of nondeterministic LTSs are shown in Figure 2.7(c) and (d). A finite-
state nondeterministic LTS is depicted in Figure 2.10 (Section 2.3.2).

Exercise 2.10. Show that a deterministic LTS is image-finite. Does the converse
hold? Can you find, among the examples above, a deterministic LTS which is not
finitely-branching? �

2.3 Behavioral Equivalences

It is of paramount importance to develop suitable behavioral equivalence relations
over LTSs. One good reason for developing such equivalences is interchangeability:
if two systems offer the same behavior, we can safely replace one of the two with
the other one. Another very good reason is that a behavioral equivalence relation
supports the verification technique called equivalence-checking: a complex, detailed
model is correct if it is behaviorally equivalent to some simpler model that is self-
evidently correct. In Chapter 3, especially in Sections 3.4.2–3.4.6, we will see many
examples of use of the equivalence-checking technique.

When are two systems to be considered equivalent? There is not an obvious an-
swer to this question: many different notions of behavioral equivalence have been
proposed in the literature over LTSs, some of which are motivated by peculiar tech-
nical reasons. Here we present only the main ones. The reader interested in a com-
prehensive overview may consult [vGl01, vGl93, San12].

In this section, we consider the internal action τ as observable as any other ac-
tion. Equivalences of this kind are called strong to reflect this strict requirement. In
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the next section we will discuss the problem of abstracting from the internal action
τ . Equivalences discussed there are called weak as they turn out to be less discrimi-
nating than the corresponding strong ones, discussed in this section.

We start our investigation from the most discriminating equivalence, i.e. isomor-
phism, inspired by graph theory; then, we consider trace equivalence, inspired by
automata theory; we will argue that both are not convincing as behavioral equiva-
lences in the setting of reactive systems. Then, a radically different definition, called
simulation, is presented, which is a sufficient condition for trace equivalence; finally,
bisimulation equivalence is presented as a further refinement of simulation equiva-
lence.

2.3.1 Isomorphism

As LTSs are basically edge-labeled directed graphs (even if with possibly infinitely
many states), we can consider graph isomorphism as our first choice.

Definition 2.8. Let TS1 = (Q1,A1,→1) and TS2 = (Q2,A2,→2) be two labeled tran-
sition systems. An isomorphism is a bijection f : Q1→Q2 that preserves transitions:

q
μ−→1 q′ if and only if f (q)

μ−→2 f (q′)

for all q,q′ ∈ Q1 and μ ∈ A1∪A2. If there exists an isomorphism between TS1 and
TS2 then we say that TS1 and TS2 are isomorphic, denoted TS1 ∼= TS2.

This definition can be applied to rooted labeled transition systems by requiring
that the isomorphism f preserve also the initial states, i.e., f (q1) = q2, if q1 and q2
are the initial states of TS1 and TS2, respectively. �

Remark 2.2. Observe that if TS1 = (Q1,A1,→1) and TS2 = (Q2,A2,→2) are isomor-
phic, then they are also isomorphic to TS′1 = (Q1,A,→1) and TS′2 = (Q2,A,→2),
where A = A1∩A2. �

Exercise 2.11. Prove that LTSs isomorphism ∼= is an equivalence relation, i.e., re-
flexive, symmetric and transitive. �

Exercise 2.12. Prove that a finitely-branching LTS with finitely many states is (iso-
morphic to) a finite-state LTS. �

Two isomorphic LTSs are of course indistinguishable by any observer: what-
ever is done on the first can be replicated on the second, and vice versa.2 However,
isomorphism equivalence is too discriminating as it distinguishes between systems
that are to be equated intuitively. For instance, consider the two LTSs in Figure 2.8,
which are clearly not isomorphic because there is no bijection between the two sets

2 According to the black-box view, an observer can only observe the actions that a system may
perform, but not its states or internal structure.
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Fig. 2.8 Two equivalent, yet not isomorphic LTSs

of states. Nonetheless, no observer can tell them apart as, after all, both can only
do any sequence of a’s. Hence, isomorphism equivalence is not an appropriate be-
havioral equivalence relation. A more suitable behavioral equivalence, weaker than
isomorphism, that equates these two LTSs may just compare them on the basis of
the sequences of actions they can perform. This is the subject of the next section.

Moreover, checking graph isomorphism over finite-state LTSs is an NP problem
that is not known to be in P, and the best known algorithm is exponential in the num-
ber of states [BKL83]; therefore, verification based on isomorphism equivalence is,
in general, not viable in practice.

2.3.2 Traces

Labeled transition systems are also very similar to automata (see Section 1.3.4), and
so we can take inspiration from the notion of equivalence defined over automata.
An automaton, besides an initial state, has a designated set of accepting (or final)
states. Any directed arc connecting two states is labeled with one symbol of an
alphabet (while for LTSs the transition labels are the actions). A sequence of sym-
bols (a string or word, in automata terminology) is recognized if there is a path in
the automaton starting from the initial state and ending in one of its final states by
reading that string. Two automata are equivalent if they recognize the same strings
(language equivalence).

Intuitively, LTSs differ in one important aspect from automata: while we check
if string σ can drive the automaton to a final state, for LTSs we check if it is able to
perform that string interactively. Hence, if the LTS performs a string σ , necessarily
it is also able to perform any prefix of σ ; this implies that we should consider an
analogous definition of equivalence over LTSs, which implicitly assumes that all the
states are final.

Definition 2.9. (Trace equivalence) Let (Q,A,→) be an LTS and let q∈Q. A trace
of q is a sequence of actions μ1μ2 . . .μn (possibly empty, when n = 0) such that
there exists a path

q
μ1−→q1

μ2−→ . . .qn−1
μn−→qn.

In other words, according to Exercise 2.4, the set of traces of q is

Tr(q) = {σ ∈ A∗
∣∣ ∃q′ ∈ Q. q σ−→∗ q′}.
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Fig. 2.9 Three not trace equivalent LTSs

Two states q1,q2 ∈Q are trace equivalent if Tr(q1) = Tr(q2), and this is denoted as
q1 =tr q2. This definition can be extended to rooted LTSs as follows. The set Tr(TS)
of traces of the rooted LTS TS = (Q,A,→,q0) is Tr(q0). Two rooted LTSs, TS1 and
TS2, are trace equivalent if Tr(TS1) = Tr(TS2). �

Example 2.1. Consider Figure 2.8(a). We want to show that Tr(q) = {an
∣∣ n ∈ N},

where a0 = ε and an+1 = aan. This can be proven by induction on n. The base case
is n = 0 and, since q ε−→∗ q, ε ∈ Tr(q). Now, the inductive case: assume an ∈ Tr(q);

this means that a state q′ exists such that q an−→∗ q′; however, q′ must be q, as this
is the only state of the LTS. It is easy to observe that also q an−→∗ q a−→q, hence

q an+1−→∗ q, i.e., an+1 ∈ Tr(q). It is an easy exercise then to check that the two transition
systems of Figure 2.8 are trace equivalent, i.e., Tr(q) = Tr(q′). �

Exercise 2.13. Compute the set of traces for states q0, q2 and q5 in Figure 2.9 and
observe that they are not trace equivalent. �

Exercise 2.14. A nonempty set L of traces over the alphabet A is prefix closed
if whenever σ1σ2 ∈ L, then σ1 ∈ L for all σ1,σ2 ∈ A∗. Hence, a prefix closed,
nonempty set L is such that ε ∈ L. Prove that, for any rooted LTS TS= (Q,A,→,q0),
the set Tr(TS) of its traces is nonempty and prefix closed. �

Exercise 2.15. (i) Prove that if TS = (Q,A,→) is a finite LTS, then Tr(q) is a finite
set for all q ∈ Q. (Hint: Look at Exercise 2.5.) (ii) Prove also that for any finite,
nonempty, prefix closed L ⊆ A∗, it is possible to define a finite, deterministic LTS
TS′ such that Tr(TS′) = L. �

Exercise 2.16. (Trace preorder) The relation of trace preorder ≤tr⊆ Q×Q is de-
fined as follows: q≤tr q′ if and only if Tr(q)⊆ Tr(q′). Prove that ≤tr is a preorder,
i.e., it is reflexive and transitive. Observe that q =tr q′ if and only if q ≤tr q′ and
q′ ≤tr q. Prove that trace equivalence =tr⊆ Q×Q is an equivalence relation. As an
example, consider Figure 2.9. Observe that q0 ≤tr q2 but that q2 �≤tr q0. Similarly,
q0 ≤tr q5 but q5 �≤tr q0. �

Exercise 2.17. (Nondeterminism vs Determinism for trace equivalence) Given
a nondeterministic, finite-state, rooted LTS TS1 = (Q,A,→1,q0), one can build a
finite-state rooted LTS TS2 = (R,A,→2,{q0}), where R =℘(Q) \ { /0} is the set of
all nonempty subsets of Q and the transition relation →2⊆ R× A× R is defined
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Fig. 2.10 An impolite vending machine

as follows: for any P ∈ R and for any a ∈ A, we have that P a−→ 2P′ if P′ = {q′ ∈
Q

∣∣ ∃q∈ P.q a−→ 1q′} is nonempty.3 Prove that TS2 is deterministic and that the two
LTSs are trace equivalent, i.e., Tr(TS1) = Tr(TS2). Apply the construction to the
nondeterministic LTS of Figure 2.10, rooted in q5, and compare the result with the
deterministic LTS in Figure 2.3.

This construction is a slight variant of the famous Rabin-Scott subset construc-
tion for nondeterministic finite-state automata [RS59] (see, e.g., [Sip06, HMU01]
for a gentle introduction). In principle, it may be extended also to LTSs with in-
finitely many states, but the resulting deterministic LTSs may have uncountably
many states (which is excluded in Definition 2.2), as the powerset of a countable set
may be uncountable.

This exercise proves that, from an expressiveness point of view, nondeterminism
is inessential for trace equivalence, as, given a nondeterministic LTS, it is always
possible to find a deterministic one exhibiting the same set of traces. (Observe that,
on the contrary, it is not possible to find a deterministic LTS isomorphic to a nonde-
terministic LTS.) �

But is trace equivalence useful for reactive systems? Consider the model of an
impolite vending machine in Figure 2.10 and compare it with the model in Figure
2.3. It is not difficult to see that the two are trace equivalent, as both offer the same
traces for interaction with a user. However, we cannot declare them equivalent, as
an observer can really detect some difference in their behavior. Observe that in the
model of Figure 2.3, after inserting a coin, the user can choose between asking for an
espresso or for an American coffee. On the contrary, in Figure 2.10, upon insertion
of the coin, the machine nondeterministically chooses to reach either q6, where only
ask-esp is possible, or q7, where only ask-am is possible; hence, in this case it is
the machine that makes the choice and not the user! This example explains that in
concurrency theory the timing of a choice can be a crucial aspect of the behavior
and cannot be neglected, as in trace equivalence.

3 This simple construction is not optimal, as it may generate states that are unreachable from the
initial state {q0}. It is an easy exercise (try it!) to optimize it in order to get only reachable states.
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Fig. 2.12 Two trace equivalent LTSs with different deadlock behavior

Exercise 2.18. (i) Define a model for a vending machine that differs from the one
in Figure 2.3 because two coins are needed to get an espresso. (ii) Elaborate on
the model to allow the selection of American coffee also after two coins have been
inserted, keeping credit of one coin. (iii) Are the two LTSs trace equivalent? (Hint:
A solution, in CCS, can be found in Example 3.4, Section 3.4.2.) �

Exercise 2.19. Consider the vending machine in Figure 2.11. Argue that it is trace
equivalent to the first model of the previous exercise. Is it reasonable to consider
equivalent these two models? In particular, what may happen to a user with only
one coin (and willing to get American coffee with it)? �

Another good reason for rejecting trace equivalence is that it equates LTSs with
different deadlock behavior.

Definition 2.10. (Deadlock) A state q is a deadlock if there is no transition starting
from it, i.e., � ∃q′ ∈ Q, � ∃μ ∈ A such that q

μ−→q′, usually abbreviated as q �. An
LTS TS = (Q,A,→) is deadlock-free if for all q ∈ Q, q is not a deadlock. �

Indeed, trace equivalence is not sensitive to deadlock. Consider the two LTSs in
Figure 2.12. Both can perform traces {ε,a,ab}, so they are trace equivalent. How-
ever, the LTS on the left is nondeterministic and, after a, it can reach the deadlock
q3, while q5, after a, reaches q6, which is not a deadlock. We can slightly refine trace
equivalence in order to get an equivalence that is sensitive to deadlock.

Definition 2.11. (Completed trace equivalence) Let TS= (Q,A,→) be a transition
system. A completed trace for state q ∈Q is a (possibly empty) sequence of actions
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μ1 . . .μn such that there exists a path q1
μ1−→ . . .qn

μn−→qn+1 such that q1 = q and
qn+1 is a deadlock. Hence, the set of completed traces of a state q ∈ Q is

CTr(q) = {σ ∈ A∗
∣∣ ∃q′ ∈ Q. q σ−→∗ q′ ∧ q′ �}.

Two states, q1,q2 ∈ Q, are completed trace equivalent if Tr(q1) = Tr(q2) and
CTr(q1) =CTr(q2), and this is denoted as q1 =ctr q2. �

The two states q1 and q5 in Figure 2.12 are not completed trace equivalent, as the
set of the completed traces of q1 is {a,ab}, while for q5 it is {ab}. This example
shows that nondeterminism cannot be always removed when considering completed
trace semantics, as the nondeterministic LTS in Figure 2.12(a) is not completed
trace equivalent to its deterministic counterpart in (b), which is isomorphic to the
LTS (reachable from {q1}) obtained by the construction in Exercise 2.17.

Example 2.2. Let us consider the LTSs in Figure 2.13. It is not difficult to observe
that q1 and q4 are trace equivalent. However, they are not completed trace equivalent.
As a matter of fact, the LTS in (a) is clearly deadlock-free, hence CTr(q1) = /0. On
the contrary, the LTS in (b) is such that CTr(q4) = {ab,abcab,abcabcab, ...}, which
can be represented by the regular expression (abc)∗ab. �

Remark 2.3. Observe that two states may have the same set of completed traces
but not be trace equivalent (and so not even completed trace equivalent). For in-
stance, consider the LTS TS = ({q1,q2}, {a,b}, {(q1,a,q1), (q2,b,q2)}). Clearly
CTr(q1) =CTr(q2) = /0, but Tr(q1) �= Tr(q2); hence q1 and q2 are not (completed)
trace equivalent. �

Exercise 2.20. (Any finite language is representable by a finite LTS) Prove that
for any nonempty, finite L ∈ {ε}∪℘(A+), where A+ = A∗ \ {ε}, it is possible to
define a finite rooted LTS (Q,A,→,q0) such that CTr(q0) = L.4 For instance, a finite
LTS for L = {a,ab} is depicted in Figure 2.12(a).

In Remark 2.7 (Section 2.4.1), we will show that all regular languages (and only
regular languages) can be represented by finite-state LTSs.

This exercise is a companion of Exercise 2.15, where we asked to prove that for
any finite, prefix-closed L′ ⊆ A∗, we can define a finite, deterministic rooted LTS

4 Observe that if ε ∈CTr(q), then q is a deadlock, i.e., σ �∈CTr(q) for all σ ∈ A+. On the contrary,
if σ ∈CTr(q) and σ �= ε , then ε �∈CTr(q). Hence, a finite LTS can represent strongly only a finite,
nonempty language in {ε}∪℘(A+).
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(Q′,A, →′, q′0) such that Tr(q′0) = L′. For instance, an LTS for L′ = {ε,a,ab} is
depicted in Figure 2.12(b). �

Even if sensitive to deadlock, is completed trace equivalence satisfactory? Un-
fortunately, this is not the case: the two vending machines of Figures 2.3 and 2.10,
which we expect to be not equivalent, are completed trace equivalent: as these two
LTSs are deadlock-free, it turns out that CTr(q1) =CTr(q5) = /0. So it is necessary
to find some finer notion of equivalence that is able to capture the timing of choices.

Moreover, language equivalence over automata is PSPACE-complete [SM73,
HRS76], and so is also trace equivalence (as well as completed trace equivalence)
for finite-state LTSs. It is therefore advisable to find a finer notion of equivalence
that is more easily checkable. One possibility is the simulation preorder and equiv-
alence (originally proposed in [Park81]) we introduce in the next section.

Nonetheless, trace equivalence is useful for the verification of so-called safety
properties. A safety property is a property that states that “something bad never
happens”. If an LTS TS1 (the specification of the system) satisfies a safety property
and the set of traces of TS2 (the implementation) is included in the set of traces of
TS1, then also TS2 satisfies that safety property. An example of a safety property
for the vending machine may be “coffee must not be deliverable if at least one coin
has not been inserted”. On the contrary, trace equivalence cannot be used for check-
ing so-called liveness properties, which require some progress: “something good
will happen eventually”. In the specific case of Figure 2.12, the liveness property is
“action b will happen eventually”, which holds for q5 but not for q1.

2.3.3 Simulation

Definition 2.12. Let TS = (Q,A,→) be a transition system. A simulation is a rela-
tion R⊆ Q×Q such that if (q1,q2) ∈ R then for all μ ∈ A

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and (q′1,q
′
2) ∈ R.

State q is simulated by q′, denoted q � q′, if there exists a simulation R such that
(q,q′) ∈ R. Two states q and q′ are simulation equivalent, denoted q � q′, if q � q′
and q′ � q. �

Remark 2.4. The definition above comprises also the case of a simulation between
two LTSs, say, TS1 = (Q1,A1,→1) and TS2 = (Q2,A2,→2) with Q1∩Q2 = /0. 5 In
such a case, we may consider just one single LTS TS=(Q1∪Q2,A1∪A2,→1 ∪→2).
A simulation R⊆Q1×Q2 is also a simulation on (Q1∪Q2)×(Q1∪Q2). We say that
the rooted LTS TS1 =(Q1,A1,→1,q1) is simulated by the rooted LTS TS2 =(Q2,A2,
→2, q2) if there exists a simulation R⊆ Q1×Q2 containing the pair (q1,q2). �

5 If this is not the case, we can take an isomorphic LTS such that the intersection of the sets of
states is empty.
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The definition of simulation is such that whatever action q1 performs, reaching
q′1, q2 can respond with the same action reaching a state q′2 that is still able to
simulate q′1. So q2 can do whatever sequence q1 can execute.

Proposition 2.1. Let TS = (Q,A,→) be a transition system. For any q,q′ ∈ Q, if
q � q′ then q≤tr q′, i.e., Tr(q)⊆ Tr(q′).

Proof. If q � q′, then there exists a simulation R ⊆ Q×Q such that (q,q′) ∈ R.
We then prove, by induction on the length of traces, a sligthly stronger result: if
q σ−→∗ q1, then q′ σ−→∗ q′1 with (q1,q′1) ∈ R; this implies the thesis Tr(q) ⊆ Tr(q′).
The base case is when σ = ε and is trivial as q ε−→∗ q and q′ ε−→∗ q′ with (q,q′)∈ R.
Now if q σ−→∗ q1 with |σ |= n+1, then by Exercise 2.4, there exist a state q, a trace

σ ′ and an action μ such that q σ ′−→∗ q
μ−→q1 with σ = σ ′μ . Hence, induction can

be applied to conclude that a state q′ exists such that q′ σ ′−→∗ q′ with (q,q′) ∈ R. As
R is a simulation, a state q′1 exists such that transition q

μ−→q1 is to be matched by

q′
μ−→q′1 with (q1,q′1)∈R, and so q′ σ−→∗ q′1 by Exercise 2.4. Summing up, transition

q σ−→∗ q1 is matched by q′ σ−→∗ q′1 with (q1,q′1) ∈ R, as required. �

As a trivial corollary, we have that if q � q′ then q =tr q′, i.e., Tr(q) = Tr(q′).
However, the inverse implication does not hold. Consider again the two trace equiv-
alent vending machines of Figure 2.3 and Figure 2.10. We have that q5 � q1, but
q1 �� q5. To demonstrate that q5 is simulated by q1 it is enough to exhibit a simula-
tion relation R containing the pair (q5,q1). Relation R is {(q5,q1),(q6,q2), (q7,q2),
(q8,q3), (q9,q4)}. In order to check that R is a simulation, we have to show that,
for any pair (qi,q j) ∈ R, for any action a, for all q′i such that qi

a−→q′i, there exists
q′j such that q j

a−→q′j and (q′i,q′j) ∈ R. For instance, for the first pair (q5,q1), we

have that transition q5
coin−→ q6 can be simulated by q1

coin−→ q2 with (q6,q2) in R, as

well as that transition q5
coin−→ q7 can be simulated by q1

coin−→ q2 with (q7,q2) ∈ R.
Hence, the first pair is OK. Now consider pair (q6,q2). State q6 can perform only

transition q6
ask-esp−→ q8, which is matched by q2

ask-esp−→ q3, with (q8,q3) ∈ R. So,
also the second pair is OK.

Exercise 2.21. Complete the check that R is a simulation, i.e., perform the check
above for all the other pairs in R. �

However, we can prove that it is not possible to find a simulation R′ that contains
the pair (q1,q5). Suppose, towards a contradiction, we have a simulation R′ such

that (q1,q5) ∈ R′. By Definition 2.12, to transition q1
coin−→ q2, q5 has to respond with

either q5
coin−→ q6 or with q5

coin−→ q7; this means that either pair (q2,q6) or pair (q2,q7)
must belong to simulation R′. But this is impossible: if (q2,q6) ∈ R′ then q6 cannot

respond to transition q2
ask-am−→ q4, invalidating the assumption that R′ is a simula-

tion; similarly, if (q2,q7) ∈ R′, then q7 cannot respond to transition q2
ask-esp−→ q3.

Therefore, the two vending machines are not simulation equivalent.
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Example 2.3. (How to build a simulation) We have seen above how to check if a
relation is a simulation; however, given two finite-state LTSs, how do we build a
simulation relation? As a first, extremely simple case, consider the two LTSs in Fig-
ure 2.8 and assume we want to prove that q � q′. The candidate simulation relation
S must contain the pair (q,q′) and such a pair has to satisfy the simulation condi-
tion, i.e., for all a ∈ A and for all q1 such that q a−→q1, there exists a state q2 such
that q′ a−→q2 and (q1,q2) ∈ S. From q we have only one transition, namely q a−→q,
hence q1 = q; this transition can be matched by the only transition from q′, namely
q′ a−→q′′, hence q2 = q′′. This means that for the pair (q,q′) it is necessary that also
the pair (q,q′′) belong to the candidate simulation relation S. But then we have to
check that the pair (q,q′′) satisfies the simulation condition; from q only transition
q a−→q is executable, and similarly only q′′ a−→q′′ is executable from q′′. Therefore,
for the pair (q,q′′) to be justified in the simulation S, it is necessary that . . . (q,q′′)
itself be a part of the simulation relation! Hence, the simulation relation S we were
looking for is just {(q,q′),(q,q′′)}. �

Exercise 2.22. Considering Figure 2.8, check that only one of the following rela-
tions over Q = {q,q′,q′′} is not a simulation:

• S0 = {(q,q)}
• S1 = {(q,q′),(q,q′′),(q′′,q)}
• S2 = {(q,q′),(q,q′′),(q′′,q′)}
• S3 = /0. �

Exercise 2.23. (i) Considering again Figure 2.8, build a simulation relation that
proves that q′ � q. (ii) How many different simulation relations over Q = {q,q′,q′′}
can you build to prove q′ � q? (iii) Is S′ = {(q,q),(q′,q′),(q′′,q′′),(q′,q),(q′′,q),
(q,q′),(q,q′′),(q′,q′′),(q′′,q′)} one of such simulation relations? If so, is it the
largest one? �

Exercise 2.24. Given a simulation S ⊆ Q×Q, argue that, for any pair (q1,q2) ∈ S,
if q2 is a deadlock, then also q1 is a deadlock, i.e., if q2 � then q1 �.

Moreover, argue that if we add to simulation S a pair (q,q′) such that q is a dead-
lock, then S∪{(q,q′)} is still a simulation. In particular, as S = /0 is a simulation,
also {(q,q′)} is a simulation. �

Exercise 2.25. Consider Figure 2.9. Show that q0 � q2 but q2 �� q0. Similarly, show
that q0 � q5 but q5 �� q0. Finally, note that q2 �� q5 and q5 �� q2. �

Example 2.4. (How to build a simulation 2) Continuing Example 2.3, let us con-
sider the less obvious case depicted in Figure 2.14. We would like to build a simu-
lation relation S containing the pair (q0,q4).

For any move of q0, we have to find a match among the transitions of q4 so
that the state reached from q0 is simulated by the state reached from q4. To transi-
tion q0

a−→q1, state q4 can respond with three different transitions, reaching q5,q6
and q7, respectively; it is necessary that at least one of these match the simula-
tion request. Among the three, transition q4

a−→q7 is not OK because the pair we
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should add to S is (q1,q7), but q7 cannot simulate q1 because q7 is a deadlock.
So, we may try to add to S one of the other two pairs, say, (q1,q5), which must
then be checked. But before examining this new pair, let us continue exploring the
conditions for the first pair (q0,q4). To transition q0

a−→q2, state q4 can respond
with three different transitions, reaching q5,q6 and q7, respectively; as q2 is a dead-
lock, any state can simulate it, so we are free to choose, e.g., q7, and so S is now
{(q0,q4),(q1,q5),(q2,q7), . . .}. We have completed the analysis of the first pair: if
the other two pairs satisfy the simulation condition, then (q0,q4) is really a simula-
tion pair.

Let us now examine pair (q1,q5). Transition q1
b−→q2 reaches a deadlock, so any

of the b-labeled transitions from q5 is OK; take, e.g., q5
b−→q8 and add (q2,q8) to

S. The other transition from q1 is q1
b−→q3. This transition cannot be matched by

q5
b−→q8 because q3 is not a deadlock, while q8 is. So the only possibility left is

that q5
b−→q4 and so S is now {(q0,q4),(q1,q5),(q2,q7),(q2,q8),(q3,q4) . . .}. So

the second pair has also been analyzed.
Pairs (q2,q7) and (q2,q8) vacuously satisfy the simulation condition because q2

is a deadlock and so there is no transition to match.
Finally, pair (q3,q4) is OK because transition q3

a−→q1 can be matched by
q4

a−→q5 and (q1,q5) is already in S; and also the other transition q3
a−→q2 can be

matched by q4
a−→q7 and (q2,q7) is already in S. Hence, the simulation S we were

looking for, proving that q0 � q4, is {(q0,q4),(q1,q5),(q2,q7),(q2,q8),(q3,q4)}. �

Exercise 2.26. Continuing Example 2.4, check that the following are simulation re-
lations:

• S1 = {(q0,q4),(q1,q5),(q2,q6),(q2,q4),(q3,q4)}
• S2 = {(q0,q4),(q1,q6),(q2,q6),(q2,q9),(q3,q9)}
• S3 = S∪{(q2,q6)}
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Check also that S4 = {(q0,q4),(q1,q6),(q2,q8),(q0,q9)} is not a simulation, even if
for each pair (q,q′) ∈ S4 it holds that q � q′. �

Exercise 2.27. Continuing Example 2.4 and Exercise 2.26, check that

• S−1 = {(q4,q0),(q5,q1),(q7,q2),(q8,q2),(q4,q3)} is not a simulation,
• None of the S−1

i , for i = 1,2,3, is a simulation.
• R = S−1∪{(q6,q1),(q9,q3)} is a simulation.

Therefore, q0 � q4 because q0 � q4 (due to relation S), and q4 � q0 (due to R). �

We now list some useful properties of simulation relations.

Proposition 2.2. For any LTS TS = (Q,A,→), the following hold:

1. the identity relation I = {(q,q) ∣∣ q ∈ Q} is a simulation;
2. the relational composition R1 ◦R2 = {(q,q′′)

∣∣ ∃q′.(q,q′) ∈ R1 ∧ (q′,q′′) ∈ R2}
of two simulations R1 and R2 is a simulation.

3. the union
⋃

i∈I Ri of simulations Ri is a simulation.

Proof. The proof of (1) is immediate: (q,q) ∈I is a simulation pair because what-
ever transition q performs (say, q

μ−→q′), the other q in the pair does exactly the
same transition q

μ−→q′ with (q′,q′) ∈I .
The proof of (2) is also easy: given a pair (q,q′′) ∈ R1 ◦R2, there exists a state

q′ such that (q,q′) ∈ R1 and (q′,q′′) ∈ R2; as (q,q′) ∈ R1, if q
μ−→q1, there exists

q2 such that q′
μ−→q2 with (q1,q2) ∈ R1. But as (q′,q′′) ∈ R2, we have also that

there exists q3 such that q′′
μ−→q3 with (q2,q3) ∈ R2. Summing up, for any pair

(q,q′′) ∈ R1 ◦R2, if q
μ−→q1, then there exists a state q3 such that q′′

μ−→q3 with
(q1,q3) ∈ R1 ◦R2, as required.

The proof of (3) is trivial, too: assume (q,q′) ∈ ⋃
i∈I Ri; then, there exists j ∈ I

such that (q,q′) belongs to simulation R j. If q
μ−→q1, then there must exist q2 such

that q′
μ−→q2 with (q1,q2)∈R j. Hence, (q1,q2)∈⋃

i∈I Ri as R j ⊆⋃
i∈I Ri. So

⋃
i∈I Ri

is a simulation, too. �

Remember that q � q′ if there exists a simulation containing the pair (q,q′). This
means that � is the union of all simulations, i.e.,

�=
⋃
{R⊆ Q×Q

∣∣ R is a simulation}.

By Proposition 2.2(3), � is also a simulation, hence the largest such relation.

Proposition 2.3. For any LTS TS = (Q,A,→), relation �⊆ Q×Q is the largest
simulation relation. �

Observe that all the simulation relations we have presented so far are neither
reflexive, nor transitive (with the exception of relation S′ in Exercise 2.23(iii)).
Nonetheless, the largest simulation relation � is a preorder.
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Proposition 2.4. For any LTS TS= (Q,A,→), relation � is a preorder, i.e., reflexive
and transitive, while relation � is an equivalence relation.

Proof. By Proposition 2.2.1, the identity relation I = {(q,q) ∣∣ q ∈Q} is a simula-
tion; since � is the union of all simulations, I ⊆� and so � is reflexive.

Transitivity states that if q1 � q2 and q2 � q3 then q1 � q3. If q1 � q2 then there
exists a simulation R1 such that (q1,q2) ∈ R1; similarly, if q2 � q3 then there exists
a simulation R2 such that (q2,q3)∈ R2; by Proposiiton 2.2.2, R1 ◦R2 is a simulation
containing the pair (q1,q3). Since � is the union of all simulations, R1 ◦R2 ⊆ �
and so q1 � q3, i.e. � is transitive.

Remember that q � q′ if q � q′ and q′ � q. So, � is trivially reflexive and tran-
sitive because � is reflexive and transitive. Relation � is also trivially symmetric:
q � q′ and q′ � q implies q � q′, but then also q′ � q because, of course, we can
reorder the two premises of the implication in the logical and. �

Exercise 2.28. (Maximum and minimum elements for the simulation preorder)

(i) Prove that a one-state LTS exists that can be simulated by any other rooted LTS
(i.e., a minimum element in the simulation preorder �). (ii) Prove also that, for
a given set A of labels, a one-state LTS exists that can simulate any other rooted
LTS over A (i.e., a maximum element in the simulation preorder �). (iii) Are these
one-state LTSs minima or maxima also for the trace preorder≤tr defined in Exercise
2.16? (iv) Show that there exist many different maxima (or minima) rooted LTSs for
the simulation preorder, but any two of them are simulation equivalent. (v) Show a
maximum element for the trace preorder which is not a maximum element for the
simulation preorder. �

As pointed out in [vGP08], the simulation preorder is the coarsest preorder in-
cluded in the trace preorder that is known to be decidable in polynomial time and
polynomial space (see, e.g., [GPP03, RT07, vGP08, CRT11] for some performant
algorithms), hence establishing a simulation between two processes is an efficient
way of showing that they are related by trace inclusion.

However, simulation equivalence is not sensitive to deadlock. Consider again
the two LTSs in Figure 2.12. It is easy to see that the two are simulation equivalent.
Relation R1 = {(q5,q1),(q6,q2),(q7,q4)} is a simulation proving that q5 � q1. Sim-
ilarly, R2 = {(q1,q5),(q2,q6),(q3,q6),(q4,q7)} is a simulation proving that q1 � q5.

Exercise 2.29. Consider Figure 2.13. Show that q1 � q4 by providing two suitable
simulation relations. �

One can slightly refine the definition of simulation to obtain such a sensitivity.

Definition 2.13. (Completed simulation) Let TS = (Q,A,→) be a transition sys-
tem. A completed simulation is a simulation relation R⊆Q×Q such that, whenever
(q1,q2) ∈ R, if q1 � then q2 �.6

State q is completely simulated by q′, denoted q �c q′, if there exists a completed
simulation R such that (q,q′) ∈ R. Two states q and q′ are completed simulation
equivalent, denoted q�c q′, if q �c q′ and q′ �c q �

6 Observe that, by Exercise 2.24, this condition can be expressed as q1 � if and only if q2 �.
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Exercise 2.30. Continuing Exercise 2.25, observe that q0 ��c q2 in Figure 2.9, even
if q0 � q2. On the contrary, q0 �c q5 because relation S = {(q0,q5),(q1,q6)} is a
completed simulation. Prove also that the two LTSs in Figure 2.12, as well as those
in Figure 2.13, are not completed simulation equivalent. �

Exercise 2.31. Following the same idea of the proof of Proposition 2.1, demon-
strate that if q and q′ are completed simulation equivalent, then q and q′ are com-
pleted trace equivalent. The reverse implication does not hold: consider the usual
two vending machines of Figures 2.3 and 2.10 that are completed trace equivalent
but not (completed) simulation equivalent. �

Exercise 2.32. Following Exercise 2.28, show that there is no minimum LTS for the
completed simulation preorder, nor a maximum element (Hint: Consider an LTS
composed of a single deadlock state and the LTS of Figure 2.9(a)). �

However, we are not yet completely satisfied because the ability to sense the
timing of choices is not captured in a complete way. Consider the two transition
systems in Figure 2.15. These two systems are completed simulation equivalent
(check this!), but the left one, after reacting to a, can reach a state (namely q2)
where only b is available, while this situation is not possible for the system at the
right: after a, state q8 is reached, which offers both b and c. Is this a good reason
for rejecting (completed) simulation equivalence? It is sometimes argued that this is
a matter of taste. However, we think that these two systems can be observationally
distinguished by an observer who can repeat experiments on the two systems and
can realize that in any case, after a, the system on the right can always react to b and
c, while the system on the left can sometimes refuse to react to c.

Summing up, the main advantages of the simulation preorder are

• a simple proof principle (simply exhibit a relation and check easily that it is a
simulation),

• sufficient condition for trace inclusion, more easily checkable, hence useful when
verifying safety properties;

and the main disadvantage is that it is still too abstract, i.e., it identifies machines
that should be distinguished. An obvious enhancement would be to require that the
simulation game is played step by step not only in one direction but in both direc-
tions, leading to the notion of bisimulation (see below). As a further step towards
bisimulation, consider the following exercise.
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Exercise 2.33. (Ready simulation) Let TS = (Q,A,→) be a labeled transition sys-
tem. A ready simulation7 is a simulation relation R ⊆ Q×Q such that whenever
(q1,q2) ∈ R, if q2

μ−→ then q1
μ−→ . This means that, not only q1 is simulated by q2,

but that q1 and q2 have the same menu of possible initial moves. State q is ready
simulated by q′, denoted q �rs q′, if there exists a ready simulation R such that
(q,q′) ∈ R. Two states q and q′ are ready simulation equivalent, denoted q�rs q′, if
q �rs q′ and q′ �rs q.

• Prove that �rs is a preorder, and that �rs is an equivalence relation.
• Prove also that if q �rs q′, then q �c q′; does the converse implication hold?

(Hint: Consider states q0 and q5 of Figure 2.9)
• Show that the two LTSs in Figure 2.15 are not ready simulation equivalent.
• Show that the two LTSs in Figure 2.16 are ready simulation equivalent; argue

why, according to the discussion above, they should not be considered equivalent.
• Show that there is no rooted LTS that can ready simulate any other rooted LTS,

nor a rooted LTS that can be ready simulated by any other rooted LTS (i.e.,
the ready simulation preorder has no maximum and no minimum elements, cf.
Exercises 2.28 and 2.32). �

2.3.4 Bisimulation

Definition 2.14. Let TS = (Q,A,→) be a transition system. A bisimulation (origi-
nated in [Park81, Mil89]) is a relation R⊆Q×Q such that R and its inverse R−1 are
both simulation relations. More explicitly, a bisimulation is a relation R such that if
(q1,q2) ∈ R then for all μ ∈ A

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and (q′1,q
′
2) ∈ R,

• ∀q′2 such that q2
μ−→q′2, ∃q′1 such that q1

μ−→q′1 and (q′1,q
′
2) ∈ R.

Two states q and q′ are bisimilar (or bisimulation equivalent), denoted q ∼ q′, if
there exists a bisimulation R such that (q,q′) ∈ R. �

7 Ready simulation was originally proposed in [LS91] under the name of 2/3 bisimulation, and
further studied in [BIM95], which gave it its current name.
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In the light of Remark 2.4, the definition above comprises also the case of a
bisimulation between two LTSs, say, TS1 = (Q1,A1,→1) and TS2 = (Q2,A2,→2)
with Q1∩Q2 = /0, because we may consider just one single LTS TS= (Q1∪Q2,A1∪
A2,→1 ∪→2): A bisimulation R ⊆ Q1×Q2 is also a bisimulation on (Q1 ∪Q2)×
(Q1∪Q2). We say that a rooted LTS TS1 = (Q1,A1,→1,q1) is bisimilar to the rooted
LTS TS2 = (Q2,A2,→2,q2) if there exists a bisimulation R ⊆ Q1×Q2 containing
the pair (q1,q2).

Remark 2.5. (Symmetric simulation and bisimulation) A relation R ⊆ Q×Q is
symmetric if for all q,q′ ∈Q, (q,q′)∈ R iff (q′,q)∈ R. Therefore, if R is symmetric,
then R= R−1 = {(q′,q) ∣∣ (q,q′)∈ R}. As a consequence, any symmetric simulation
relation S is also a bisimulation, because if S is a simulation, then also S−1 = S is a
simulation. However, a bisimulation relation need not to be symmetric, as we will
see in the following examples, even if it has to be a simulation. �

Two states q and q′ are bisimilar, q ∼ q′, if there exists a relation R containing
the pair (q,q′) such that both R and its inverse R−1 are simulations. On the contrary,
we have that q and q′ are simulation equivalent, q � q′, if we have two simulation
relations R1 and R2 such that (q,q′) ∈ R1 and (q′,q) ∈ R2, but R2 may be different
from R−1

1 . Moreover, if (q,q′) ∈ R for some bisimulation R, then q and q′ offer the
same menu of initial moves. Therefore, the following implications trivially hold.

Proposition 2.5. q∼ q′ implies q�rs q′ implies q�c q′ implies q� q′. �

All these three implications above are strict. We will see in Figure 2.20 a sum-
mary of the counterexamples for the reverse implications. The following exercise
completes the comparison with other equivalences.

Exercise 2.34. (Isomorphism equivalence implies bisimilarity) Given two la-
beled transition systems TS1 = (Q1,A1,→1) and TS2 = (Q2,A2,→2), prove that if
TS1 and TS2 are isomorphic via bijection f (see Definition 2.8), then R= {(q1,q2)∈
Q1×Q2

∣∣ f (q1) = q2} is a bisimulation. (Moreover, if Q1 ∩Q2 = /0, then R is a
bisimulation over the union of the two transition systems TS=(Q1∪Q2,A1∪A2,→1
∪→2).) �

As for the simulation preorder, proving two states q and q′ bisimilar is of-
ten an easy task: just exhibit a bisimulation R such that (q,q′) ∈ R. For instance,
consider the two LTSs in Figure 2.8; they are bisimulation equivalent because
R = {(q,q′),(q,q′′)} is a bisimulation relation. Checking that R is indeed a bisimu-
lation means checking that each pair (q1,q2)∈ R satisfies the bisimulation condition

∀q′1 such that q1
a−→q′1, ∃q′2 such that q2

a−→q′2 and (q′1,q
′
2) ∈ R

and conversely if q2 moves first. Note that this is not the only bisimulation rela-
tion between these two LTSs: for instance, R′ = {(q,q′′)} is another bisimulation.
However, R′′ = {(q,q′)} is not a bisimulation, because q′ can respond to transition
q a−→q only with q′ a−→q′′, but (q,q′′) �∈ R′′.
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Exercise 2.35. Check that R = {(q,q),(q,q′),(q,q′′),(q′,q′′),(q′′,q′′)} is a bisim-
ulation over the (union of the) LTSs in Figure 2.8. Compute all the bisimulations
over {q,q′,q′′}×{q,q′,q′′}. Is there any difference w.r.t. the set of all simulations
computed in Exercise 2.23? How is the largest (w.r.t. set inclusion) such relation? Is
it reflexive, symmetric and transitive? �

Exercise 2.36. (i) Observe that, for any LTS (Q,A,→), the empty relation R = /0
is a bisimulation. (ii) Single out an LTS TS1 = (Q1,A,→1) such that the universal
relation R′ = Q1×Q1 is a bisimulation, and another LTS TS2 = (Q2,A,→2) such
that the universal relation R′′ = Q2×Q2 is not a bisimulation. �

Observe also that checking bisimilarity between infinite-state systems may be
not more difficult. Consider, for instance, the two LTSs in Figure 2.17. They are
bisimulation equivalent, as R = {(q,qi)

∣∣ i ∈ N} is a bisimulation. To check that R
is a bisimulation, it is enough to observe that, for any i, the pair (q,qi) ∈ R evolves
into the pair (q,qi+1) still in R.

Example 2.5. Consider the two LTSs in Figure 2.18 and take the relation

R = {(q1,q4),(q2,q5),(q3,q5),(q2,q6),(q2,q7)}.

We want to show that R is a bisimulation. Take the first pair (q1,q4). We have to
take all the transitions from q1 and find a suitable match among the transitions from
q4; and symmetrically, for all the transitions from q4, we have to find a suitable
match among the transitions from q1. Let us start with the transitions from q1. We
have q1

a−→q2 and q1
a−→q3. Both transitions can be matched by q4

a−→q5 with
(q2,q5) ∈ R as well as (q3,q5) ∈ R. Now consider the transitions from q4; they
are: q4

a−→q5, q4
a−→q6 and q4

a−→q7. All the three transitions can be matched
by q1

a−→q2 with {(q2,q5),(q2,q6),(q2,q7)} ⊆ R. Hence, the first pair is OK. Now
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consider the pair (q2,q5). The only transition from q2 is q2
b−→q1, which is matched

by q5
b−→q4, with (q1,q4) ∈ R. The only transition from q5 is q5

b−→q4, which is

matched by q2
b−→q1, with (q1,q4) ∈ R. Hence, also the second pair is OK. �

Exercise 2.37. (i) Complete the check that R above is a bisimulation. (ii) How many
different bisimulation relations containing the pair (q1,q4) can you find? (iii) Is it
possible to find a smaller rooted LTS (i.e., with fewer states and transitions) which
is bisimilar to q1 and q4? �

Example 2.6. (How to build a bisimulation) Continuing Example 2.4, let us con-
sider the LTSs in Figure 2.14. We would like to build a bisimulation relation R
containing the pair (q0,q4). For any move of q0, we have to find a match among the
transitions of q4 so that the state reached from q0 is bisimulated by the state reached
from q4 and, conversely, for any move from q4, we have to find a match among the
transitions of q0 so that the state reached from q0 is bisimulated by the state reached
from q4.

To transition q0
a−→q1, state q4 can respond with three different transitions,

reaching q5,q6 and q7, respectively; it is necessary that at least one of these match
the bisimulation request. Among the three, transition q4

a−→q7 is not OK because
the pair we should add to R is (q1,q7), but q7 cannot bisimulate q1 because q7 is
a deadlock. So, we may try to add to R one of the other two pairs, say, (q1,q5),
which must then be checked. But before examining this new pair, let us continue
exploring the conditions for the first pair (q0,q4). To transition q0

a−→q2, state q4
can respond with three different transitions, reaching q5,q6 and q7, respectively; as
q2 is a deadlock, the only suitable match is q4

a−→q7 and (q2,q7) is to be added to
R. In order to complete the analysis of the first pair, we now have to consider all the
moves from q4. The suitable match for transition q4

a−→q7 is transition q0
a−→q2,

and the pair (q2,q7) is already in R. To transition q4
a−→q5, q0 can respond only

with q0
a−→q1, and the pair (q1,q5) is already in R. To transition q4

a−→q6, q0 can
respond only with q0

a−→q1, and the pair (q1,q6) is to be added to R, which is now
{(q0,q4),(q1,q5),(q2,q7),(q1,q6), . . .} We have completed the analysis of the first
pair: if the other three pairs satisfy the bisimulation condition, then (q0,q4) is really
a bisimulation pair.

Let us examine pair (q1,q5) now. Transition q1
b−→q2 reaches a deadlock, so

only transition q5
b−→q8 can match and we add (q2,q8) to R. The other transition

from q1 is q1
b−→q3. This transition cannot be matched by q5

b−→q8 because q3 is
not a deadlock, while q8 is. So the only possibility left is that q5

b−→q4 and so R is
now {(q0,q4),(q1,q5),(q2,q7),(q1,q6),(q2,q8),(q3,q4) . . .}. In order to complete
the analysis of the second pair, we have now to consider all the moves from q5. But
this can be done as above: transition q5

b−→q8 can be matched by q1
b−→q2, and

transition q5
b−→q4 can be matched by q1

b−→q3, and so no new pairs are added to
R. So also the second pair has been analyzed.

Pairs (q2,q7) and (q2,q8) satisfy vacuously the bisimulation condition because
q2, q7 and q8 are deadlocks.
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Fig. 2.19 Are q1 and q6 bisimulation equivalent?

Let us consider pair (q1,q6). Transition q1
b−→q2 reaches a deadlock, so only

transition q6
b−→q8 can match, and the pair (q2,q8) is already in R. The other tran-

sition from q1 is q1
b−→q3. This transition can be matched only by q6

b−→q9, and
(q3,q9) is to be added to R. In order to complete the analysis of the second pair, we
have now to consider all the moves from q6. But this is as above, hence omitted. So,
R is now {(q0,q4),(q1,q5),(q2,q7),(q1,q6),(q2,q8),(q3,q4),(q3,q9), . . .}.

Pair (q3,q4) is OK because transition q3
a−→q1 can be matched by q4

a−→q5 and
(q1,q5) is already in R; and also the other transition q3

a−→q2 can be matched by
q4

a−→q7, and (q2,q7) is already in R.
Finally, we have to examine pair (q3,q9). Transition q3

a−→q1 can be only
matched by q9

s−→q6, and (q1,q6) is already in R. Transition q3
a−→q2 can be only

matched by q9
s−→q8, and (q2,q8) is already in R. Similarly, if q9 moves first.

Hence, the bisimulation R we were looking for, proving that q0 ∼ q4, is {(q0,q4),
(q1,q5),(q2,q7),(q1,q6),(q2,q8),(q3,q4),(q3,q9)}. �

Exercise 2.38. Continuing Example 2.6, check which of the following are bisimu-
lation relations:

• R1 = R∪{(q7,q8),(q1,q1),(q0,q9)}
• R2 = R∪{(q0,q3),(q3,q6))}
• R3 = R∪{(q5,q6),(q4,q9),(q8,q8),(q7,q8)}
• R4 = {(q5,q6),(q4,q9),(q8,q8),(q8,q7)} �

Exercise 2.39. Check that the two states q1 and q6 in Figure 2.19 are bisimulation
equivalent. �

Example 2.7. (How to prove that two states are not bisimilar) Given a finite-state
LTS, a simple-minded strategy to prove that two states, say q and q′, are not bisimilar
would consist of enumerating all the possible binary relations (over the finite set of
states) containing the pair (q,q′), and checking that none of them is a bisimulation:
clearly a very inefficient, exponential algorithm.

A much better way to prove nonbisimilarity of two (initial) states would con-
sist in finding a sequence of moves that inevitably leads to two (final) states that
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are self-evidently not bisimilar. As an example, let us consider the two ready sim-
ilar LTSs in Figure 2.16. We want to prove that q1 �∼ q9. Towards a contradiction,
assume that there exists a bisimulation R containing the pair (q1,q9). Hence, to tran-
sition q1

a−→q2, state q9 can respond only with q9
a−→q10 and so it is required that

also (q2,q10) ∈ R. However, to move q10
b−→q11, state q2 can only respond with

q2
b−→q4, and so it is also required that (q4,q11) ∈ R. Unfortunately, this pair does

not satisfy the bisimulation condition, as q11 is a deadlock, while q4 is not. Hence,
we have singled out a sequence of moves from the (initial) states q1 and q9 that has
inevitably led to inequivalent (final) states q4 and q11. Therefore, we can conclude
that q1 �∼ q9. �

Consider again the two vending machines in Figures 2.3 and 2.10. The argument
we have used after Exercise 2.21 to prove that q1 cannot be simulated by q5 also
proves that q1 �∼ q5.

Exercise 2.40. Prove that q1 and q7 in Figure 2.15 are not bisimilar. �

Exercise 2.41. (String bisimulation) Let TS=(Q,A,→) be an LTS. A string bisim-
ulation is a relation R⊆ Q×Q such that if (q1,q2) ∈ R then for all σ ∈ A∗

• ∀q′1 such that q1
σ−→∗ q′1, ∃q′2 such that q2

σ−→∗ q′2 and (q′1,q
′
2) ∈ R,

• ∀q′2 such that q2
σ−→∗ q′2, ∃q′1 such that q1

σ−→∗ q′1 and (q′1,q
′
2) ∈ R.

Two states q and q′ are string bisimilar, denoted q ∼∗ q′, if there exists a string
bisimulation R such that (q,q′) ∈ R.

(i) Prove that bisimilarity ∼ and string bisimilarity ∼∗ coincide, i.e., q1 ∼ q2 if
and only if q1 ∼∗ q2. (ii) Prove that an easy consequence of the above is that if
q1 ∼ q2 then Tr(q1) = Tr(q2), as well as CTr(q1) =CTr(q2). �

We now list some useful properties of bisimulation relations.

Proposition 2.6. For any LTS TS = (Q,A,→), the following hold:

1. the identity relation I = {(q,q) ∣∣ q ∈ Q} is a bisimulation;
2. the inverse relation R−1 = {(q′,q) ∣∣ (q,q′) ∈ R} of a bisimulation R is a bisim-

ulation;
3. the relational composition R1 ◦R2 = {(q,q′′)

∣∣ ∃q′.(q,q′) ∈ R1 ∧ (q′,q′′) ∈ R2}
of two bisimulations R1 and R2 is a bisimulation.

4. the union
⋃

i∈I Ri of bisimulations Ri is a bisimulation.

Proof. Left as an exercise to the reader (it is very similar to the proof of Proposition
2.2). �

Remember that q ∼ q′ if there exists a bisimulation containing the pair (q,q′).
This means that ∼ is the union of all bisimulations, i.e.,

∼=
⋃
{R⊆ Q×Q

∣∣ R is a bisimulation}.

By Proposition 2.6(4), ∼ is also a bisimulation, hence the largest such relation.
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Proposition 2.7. For any LTS TS = (Q,A,→), relation ∼⊆ Q×Q is the largest
bisimulation relation. �

Observe that most bisimulation relations we have presented so far are not reflex-
ive, not symmetric, and not transitive. Nonetheless, the largest bisimulation relation
∼ is an equivalence relation. As a matter of fact, as the identity relation I is a bisim-
ulation by Proposition 2.6(1), we have that I ⊆∼, and so ∼ is reflexive. Symmetry
derives from the following argument. For any (q,q′) ∈∼, there exists a bisimulation
R such that (q,q′)∈ R; by Proposition 2.6(2), relation R−1 is a bisimulation contain-
ing the pair (q′,q); hence, (q′,q) ∈∼ because R−1 ⊆∼. Transitivity also holds for
∼. Assume (q,q′) ∈∼ and (q′,q′′) ∈∼; hence, there exist two bisimulations R1 and
R2 such that (q,q′) ∈ R1 and (q′,q′′) ∈ R2; by by Proposition 2.6(3), relation R1 ◦R2
is a bisimulation containing the pair (q,q′′); hence, (q,q′′)∈∼, because R1 ◦R2 ⊆∼.
Summing up, we have the following:

Proposition 2.8. For any LTS TS = (Q,A,→), relation∼⊆Q×Q is an equivalence
relation. �

Let us now define recursively a new behavioral relation ∼′⊆ Q×Q as follows:
q1 ∼′ q2 if and only if for all μ ∈ A

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and q′1 ∼′ q′2,
• ∀q′2 such that q2

μ−→q′2, ∃q′1 such that q1
μ−→q′1 and q′1 ∼′ q′2.

We would like to adopt this as the definition of our behavioral equivalence;
but, this does not identify a unique relation, as many different relations satisfy
this recursive definition. As an example, consider the LTS in Figure 2.8(b): then
it is not difficult to check that, e.g., R1 = /0, R2 = {(q′,q′),(q′′,q′′)} and R3 =
{(q′,q′),(q′′,q′′),(q′,q′′),(q′′,q′)} are solutions of this recursive definition. It is im-
portant to observe that a relation R which is a solution of the recursive definition
above must be a bisimulation because the condition “q1 ∼′ q2 if and only if for
all μ ∈ A . . . ” above implies the condition “q1 ∼′ q2 implies for all μ ∈ A . . . ”
of the definition of bisimulation (implication from left to right). However, not all
bisimulations are solutions; consider again Figure 2.8(b): the bisimulation relation
R = {(q′′,q′′)} is not a solution because the implication from right to left requires
that the solution contain also the pair (q′,q′).

Exercise 2.42. Find an LTS such that the empty bisimulation R = /0 is not a so-
lution of the recursive definition above. (Hint: Consider an LTS composed of one
deadlocked state only.) �

Now we want to prove that∼, the largest bisimulation, is a solution of this recur-
sive definition, hence proving that bisimulation equivalence may be seen as a fixed
point of this recursive definition. A more formal study of bisimulation as a fixed
point is postponed to Section 2.5, where we show that ∼ is the largest fixed point of
a suitable relation transformer. Here we give a more elementary account of this fact.
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Proposition 2.9. For any LTS, bisimulation equivalence ∼ is such that q1 ∼ q2 if
and only if for all μ ∈ A

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and q′1 ∼ q′2,

• ∀q′2 such that q2
μ−→q′2, ∃q′1 such that q1

μ−→q′1 and q′1 ∼ q′2.

Proof. Note that in Definition 2.14, we have “implies” instead of “if and only if”.
Hence, the implication from left to right is due to the fact that ∼ is itself a bisimu-
lation. For the implication from right to left, we follow the proof in [Mil89]. First,
define a new relation ∼′′ in terms of ∼ as follows:

q1 ∼′′ q2 if and only if for all μ ∈ A

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and q′1 ∼ q′2,

• ∀q′2 such that q2
μ−→q′2, ∃q′1 such that q1

μ−→q′1 and q′1 ∼ q′2.

Now we want to prove that ∼=∼′′, hence proving the property above.
First, if q1 ∼ q2, then (as ∼ is a bisimulation)

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and q′1 ∼ q′2,

• ∀q′2 such that q2
μ−→q′2, ∃q′1 such that q1

μ−→q′1 and q′1 ∼ q′2
and so (by using the implication from right to left in the definition of ∼′′) we have
that q1 ∼′′ q2. It remains to prove that q1 ∼′′ q2 implies q1 ∼ q2. To obtain this, we
prove that ∼′′ is a bisimulation. Assume that q1

μ−→q′1 (the symmetric case when
q2 moves first is analogous, hence omitted). By definition of ∼′′, we have that there
exists a state q′2 such that q2

μ−→q′2 and q′1 ∼ q′2; but, by what we just proved, we
have also that q′1 ∼′′ q′2, and we are done. �

It is sometimes convenient to write compactly a bisimulation, by removing those
pairs that differ from others only for the use of bisimulation equivalent alternatives.
The resulting relation is not a bisimulation, rather a bisimulation up to∼. We denote
by ∼ R ∼ the relational composition ∼ ◦R◦ ∼; in other words, by q ∼ R ∼ q′ we
mean that there exist two states q1 and q2 such that q∼ q1, (q1,q2) ∈ R and q2 ∼ q′.

Definition 2.15. (Bisimulation up to ∼) A bisimulation up to ∼ is a relation R ⊆
Q×Q such that if (q1,q2) ∈ R then for all μ ∈ A

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and q′1 ∼ R∼ q′2,
• ∀q′2 such that q2

μ−→q′2, ∃q′1 such that q1
μ−→q′1 and q′1 ∼ R∼ q′2. �

Lemma 2.1. If R is a bisimulation up to ∼, then ∼ R∼ is a bisimulation.

Proof. Assume q ∼ R ∼ q′, i.e., there exist q1 and q2 such that q ∼ q1, (q1,q2) ∈ R
and q2 ∼ q′. We have to prove that for any q

μ−→q1 there exists q′
μ−→q2 such that

q1 ∼ R∼ q2 (the symmetric case when q′ moves first is omitted). Since q∼ q1, there
exists q′1 such that q1

μ−→q′1 with q1 ∼ q′1. Since (q1,q2) ∈ R, there exists q′2 such

that q2
μ−→q′2 with q′1 ∼ R ∼ q′2. Since q2 ∼ q′, there exists q2 such that q′

μ−→q2
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with q′2 ∼ q2. Summing up, q1 ∼ q′1 and q′1 ∼ R∼ q′2 and q′2 ∼ q2 can be shortened
to q1 ∼ R∼ q2, because ∼ ◦ ∼=∼ by Proposition 2.6. Hence, we have proved that
if q ∼ R ∼ q′ then for any q1 such that q

μ−→q1 there exists q2 such that q′
μ−→q2

with q1 ∼ R∼ q2, as required by the definition of bisimulation. �

Proposition 2.10. If R is a bisimulation up to ∼, then R⊆∼.

Proof. By Lemma 2.1, ∼ R ∼ is a bisimulation, hence ∼ R ∼⊆∼ by definition of
∼. As the identity relation I ⊆∼ by Proposition 2.6(1), we have that relation R =
I ◦R◦I ⊆∼ R∼, hence R⊆∼ by transitivity. �

The above proposition states the correctness of the proof principle based on the
above up-to technique: the fact that R ⊆∼ ensures that no erroneous equalities are
introduced. Hence, in order to prove that p∼ q, it is enough to exhibit a bisimulation
up to ∼ that contains the pair (p,q).

Exercise 2.43. Consider Figure 2.19. Assume to have already proved that q2 ∼ q3
and q8 ∼ q9. Then, prove that q1 ∼ q6 by showing that relation R = {(q1,q6),
(q2,q7), (q5,q8),(q1,q10)} is a bisimulation up to ∼. Note that R is not a bisim-
ulation: some missing pairs are (q3,q7) and (q4,q10). �

The up-to technique is very useful when we consider LTSs generated by CCS
processes, as we will see in Chapter 3. In that setting, states are CCS processes,
and on CCS processes we will prove in Chapter 4 that many algebraic properties
hold (e.g., associativity and commutativity of parallel composition) for bisimulation
equivalence; hence, we can economize on the number of pairs in R by replacing
one CCS process by some other equivalent one, according to some algebraic laws.
Instances of application of this principle are outlined, e.g., in Example 3.9 (Section
3.4.3) and Example 3.12 (Section 3.4.4).

Bisimulation equivalence over a finite-state LTS with n states and m transitions
can be computed in O(m log n) time [PT87] (see [DPP01] for an upgraded version
of this algorithm and [FV99] for an experimental overview of the merits of various
algorithms for bisimulation equivalence; see also Section 2.5 for an intuitive, non
optimal algorithm). Differently from all the other equivalences, it is even decidable
over some classes of infinite-state systems we will introduce in the next chapters
(notably over BPP in Section 3.4.4 and BPA in Section 5.4.4). The reader interested
in a gentle introduction to decidability of bisimilarity over these classes of infinite-
state systems may consult [AIS12].

We summarize the various equivalence relations we have introduced so far in the
diagram in Figure 2.20. An arrow from an equivalence relation to another means
that the former is finer than the latter; e.g., completed simulation equivalence is
finer than completed trace equivalence. A dashed arrow labeled with an index of a
figure means that such an implication does not hold because of the counterexample
discussed in that figure; for instance, the vending machines in Figures 2.3 and 2.10
are completed trace equivalent, but not completed simulation equivalent.
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Isomorphism ∼=

Bisimulation equivalence ∼

Ready simulation equivalence �rs

Completed simulation equivalence �c

Trace equivalence =tr

Simulation equivalence � Completed trace equivalence =ctr

2.8

2.16

2.15

2.12

2.122.3 - 2.10

2.3 - 2.10

Fig. 2.20 Summary of (strong) behavioral equivalences

Exercise 2.44. (Determinism) Prove that trace equivalence and bisimulation equiv-
alence coincide over deterministic LTSs. (Hint: Given a deterministic LTS (Q,A,
→), show that R = {(q1,q2)

∣∣ q1,q2 ∈ Q and q1 =tr q2} is a strong bisimulation.)
This means that the diagram above collapses to a two-node diagram, one node

for isomorphism and one node for all the other equivalences. Moreover, this obser-
vation offers a simple algorithm to check trace equivalence between two finite-state
rooted LTSs TSi = (Qi,Ai,→i,qi) for i = 1,2: first, transform TS1 and TS2 into trace
equivalent, yet deterministic, rooted LTSs DTS1 and DTS2, respectively, by means
of the procedure described in Exercise 2.17; then, check if the finite-state, rooted,
deterministic LTSs DTS1 and DTS2 are strongly bisimilar. �

2.4 Abstracting from Invisible Actions

All the equivalences and preorders we have discussed so far are sometimes called
strong to denote that all the actions of the LTS are equally observable. In fact, in
real life this is not the case. A lot of activities of a system are completely internal
and cannot be influenced by any interacting user and so, to some extent, are not
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coffee

coin τq2 q4

coffee

coin τq5

τ

(a) (b)

q6

q7

q3

Fig. 2.21 Two models for the vending machine

observable. For instance, the first model in Figure 2.2 of the vending machine is not
representing the internal activity of the preparation of the coffee, an activity that the
machine performs but that the user cannot interact with. It is usually assumed that
all the internal activities are equally represented by the same action τ , to express
that the actual content of what an internal action does is unobservable. A model
that more realistically represents the vending machine is outlined in Figure 2.21(a).
An action τ can also be the result of a synchronization between two compound
subsystems, as we will see in the next chapter. So, when specifying a system, it is
often the case that the resulting LTS is rich of τ-labeled transitions.

Weak behavioral equivalences are those equivalences that compare systems by
considering unobservable the occurrences of action τ . But we have to be precise in
this respect. For instance, consider the LTSs in Figures 2.2 and 2.21(a). One can
easily convince oneself that there is no observable difference between the two, as
both can only perform the same traces of observable actions:

{ε,coin,coin coffee,coin coffeecoin, . . .}

Now, compare the two LTSs in Figure 2.21. If we are only interested in looking
at the observable traces, we should say that the two are equivalent. However, the
two differ for the important aspect of deadlock: the left one cannot deadlock, while
the right one has always the possibility to deadlock after inserting a coin. Hence,
τ transitions are not completely unobservable, because some choices can be taken
internally by the machine and may have an observable effect by preempting other
possible behaviors of the machine.

In the following, we briefly recall the main definitions that are needed to define
weak equivalences suitable for our aims. Also in the case of weak semantics, many
variant equivalences can be defined. The reader may consult the survey [vGl93] or
the book [San12] for a comprehensive discussion on the merits of many of them.

2.4.1 Weak Traces

Definition 2.16. For any LTS TS = (Q,A∪{τ},→), where τ �∈ A, define relation
=⇒ ⊆ Q×A∗ ×Q as the weak reflexive and transitive closure of → (cf. Definition
2.4), i.e., as the least relation induced by the following axiom and rules, where ε is
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the empty trace:

q1
α−→q2

q1
α

=⇒q2

q1
τ−→q2

q1
ε

=⇒q2 q ε
=⇒q

q1
σ1=⇒q2 q2

σ2=⇒q3

q1
σ1σ2=⇒q3

�

Note that a path q1
τ−→q2

τ−→ . . .qn
τ−→qn+1 (with n≥ 0) yields that q1

ε
=⇒qn+1.

Moreover, it can be proved that q α
=⇒q′ if and only if there exist two states q1 and

q2 such that q ε
=⇒q1

α−→q2
ε

=⇒q′. Finally, if σ = α1α2 . . .αn, then q1
σ

=⇒qn+1 if
and only if there exist q2, . . . ,qn such that q1

α1=⇒q2
α2=⇒ . . .qn

αn=⇒qn+1.

Definition 2.17. (Weak trace equivalence) Let (Q,A∪{τ},→) be an LTS, where
τ �∈ A. A weak trace of q ∈ Q is a sequence σ ∈ A∗ such that q σ

=⇒q′ for some q′.
Hence, the set WTr(q) of weak traces of q is

WTr(q) = {σ ∈ A∗
∣∣ ∃q′ ∈ Q. q σ

=⇒q′}.

Two states q1,q2 ∈ Q are weak trace equivalent if WTr(q1) =WTr(q2), and this is
denoted q1 =wtr q2. This definition can be adapted to rooted LTSs: the set WTr(TS)
of weak traces of the rooted LTS TS = (Q,A∪{τ},→,q0) is WTr(q0). Two rooted
LTSs, TS1 and TS2, are weak trace equivalent if WTr(TS1) =WTr(TS2). �

Exercise 2.45. (Weak Trace preorder) The weak trace preorder ≤wtr⊆ Q×Q is
defined as follows: q≤wtr q′ if and only if WTr(q)⊆WTr(q′). Prove that ≤wtr is a
preorder, i.e., reflexive and transitive. Note that q =wtr q′ iff q≤wtr q′ and q′ ≤wtr q.
Prove that weak trace equivalence =wtr is an equivalence relation. �

Exercise 2.46. (Strong traces vs weak traces) Following Definition 2.9, given an
LTS TS = (Q,A∪{τ},→), a (strong) trace is any σ ∈ (A∪{τ})∗ such that q σ−→∗ q′
for some q′ ∈ Q. Prove that two (strong) trace equivalent states are also weak trace
equivalent, i.e., Tr(q1) = Tr(q2) implies WTr(q1) =WTr(q2) for any pair of states

q1 and q2. (Hint: Prove that if q σ−→∗ q′, according to Definition 2.4, then q σ ′
=⇒q′,

according to Definition 2.16, where σ ′ is σ with all occurrences of action τ been
removed.) �

It is easy to see that the LTS in Figure 2.2 and the LTS in Figure 2.21(a) are
weak trace equivalent, but not (strongly) trace equivalent: e.g., coinτ is a strong
trace only for the latter. Moreover, the two vending machines in Figure 2.21 are
(strong and) weak trace equivalent; as discussed above, these two machines should
not be considered equivalent, as they behave differently w.r.t. deadlock; hence, as
expected, also weak trace equivalence is not sensitive to deadlock.

Definition 2.18. (Weak completed traces) Given an LTS TS = (Q,A∪ {τ},→),
where τ �∈ A, and a state q ∈ Q, the set of the weak completed traces of q is

WCTr(q) = {σ ∈ A∗
∣∣ ∃q′ ∈ Q. q σ

=⇒q′ ∧ q′ α
� for all observable α ∈ A}.



2.4 Abstracting from Invisible Actions 55
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Fig. 2.22 An image finite LTS, whose τ-abstracted LTS is not image-finite

Note that state q′ above need not be a deadlock state, as it may still perform silent,
τ-labeled transitions. Two states q1,q2 ∈ Q are weak completed trace equivalent if
WTr(q1) =WTr(q2) and WCTr(q1) =WCTr(q2), denoted as q1 =wctr q2.

This definition can be extended to rooted LTSs: the set WCTr(TS) of weak com-
pleted traces of the rooted LTS TS = (Q,A∪{τ},→,q0) is WCTr(q0). Two rooted
LTSs ,TS1 and TS2, are weak completed trace equivalent if WTr(TS1) =WTr(TS2)
and WCTr(TS1) =WCTr(TS2). �

Exercise 2.47. Show that the two vending machines in Figure 2.21 are not weak
completed trace equivalent. Furthermore, prove that for any pair of states q1 and q2,
CTr(q1) =CTr(q2) implies WCTr(q1) =WCTr(q2). �

Exercise 2.48. (Tau-free LTS) An LTS is τ-free if it is labeled only with observable
actions in A. Show that there is a τ-free LTS weak (completed) trace equivalent to
the LTS in Figure 2.21(b). �

The exercise above can be generalized to show that, given an LTS with τ tran-
sitions, we can always build an associated τ-free LTS which is weak (completed)
trace equivalent.

Exercise 2.49. (Tau-abstracted LTS) For a rooted LTS TS = (Q,A∪{τ},→,q0),
where τ �∈ A, define its associated τ-abstracted rooted LTS τATS = (Q,A,⇒′,q0),
where⇒′= {(q,α,q′)

∣∣ α ∈ A∧ (q,α,q′) ∈⇒}. Prove that:

• TS is finite-state if and only if τATS is finite-state.
• If τATS is finitely branching, then TS is finitely branching; does the converse

implication hold? (Hint: Look at Figure 2.22).
• WTr(TS) = Tr(τATS).
• Either WCTr(TS) = {ε}=CTr(τATS) or WCTr(TS)\{ε}=CTr(τATS).8 �

A consequence of (the last two items of) this exercise is that, for finite-state LTSs,
one can compute (completed) weak trace equivalence by means of strong (com-
pleted) trace equivalence: one has first to derive the τ-abstracted LTS by computing
the (partial) transitive closure⇒′ of the transition relation→ (a procedure, based on
the classic Floyd-Warshall algorithm [Flo62], which takes time at most O(n3) with

8 Observe that, in the or case, we removed ε from WCTr(TS) because τATS is τ-free. For instance,
the LTS TS′ = ({q0,q1,q2},{a,τ}, {(q0,a, q1),(q0,τ,q2)}) is such that WCTr(TS′) = {a,ε},
while CTr(τATS′) = {a}.
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n the number of states), and then to check (completed) trace equivalence, which is
PSPACE-complete.

Remark 2.6. Observe that, by Exercises 2.49 and 2.17, given an LTS TS, we can
construct a deterministic, τ-free LTS TS′ such that WTr(TS) = Tr(TS′). This is
closely related to the well-known result in automata theory (see, e.g., [HMU01,
Sip06]) that a nondeterministic finite automaton (NFA) can be transformed into a
language equivalent, deterministic finite automaton (DFA). �

Exercise 2.50. Compute the τ-abstracted LTSs associated to the LTSs in Figure
2.21(a) and (b), and show that they are (strong) trace equivalent. �

Remark 2.7. (All regular languages – and only these – are representable by finite

state LTSs) In automata theory (see Section 1.3.4), the languages recognized by
finite automata are called regular languages. We want to show that all the regular
languages can be represented by finite-state LTSs.

Let L be a regular language. Then, there exists a DFA M = (Q,A,δ ,F,q0) —
where Q = {q0,q1, . . . ,qn}, and δ has type δ : Q×A→ Q — such that L = L[M].
Starting from M, we can build a rooted LTS TSM = (Q∪F ′,A∪{τ},→,q0), where
F ′ = {q′i

∣∣ qi ∈ F} is a set of copies of the final states of M, and the transition
relation is defined as the minimal relation generated by the following rules:

δ (qi,a) = q j

qi
a−→q j

δ (qi,a) = q j ∧ q j ∈ F

qi
a−→q′j

q0 ∈ F

q0
τ−→q′0

Note that for a transition δ (qi,a) = q j with q j ∈ F in M, we have two transitions
in TSM: qi

a−→q j and qi
a−→q′j. Hence, TSM is a nondeterministic LTS, even if M is

a deterministic automaton. Note that the states in F ′ are deadlocks.
It is not difficult to prove that (q0,w)−→∗ (qk,ε) in M iff q0

w−→∗ qk in TSM ,
for all qk ∈ Q and w ∈ A∗. The proof is by induction on the length of w; the
base case is w = ε; in such a case, (q0,ε)−→∗ (q0,ε) as well as q0

ε−→∗ q0, as re-
quired. Now, assume w = va. In M, (q0,va)−→∗ (qk,ε) is derivable iff there ex-
ists a state qi ∈ Q such that (q0,va)−→∗ (qi,a) and δ (qi,a) = qk. It can be easily
proved that (q0,va)−→∗ (qi,a) in M iff (q0,v)−→∗ (qi,ε); hence, by induction, we
can conclude that q0

v−→∗ qi in TSM and, by definition of the transition relation, also
qi

a−→qk; therefore, q0
va−→∗ qk by Definition 2.4, as required.

As a consequence, we can easily prove that w ∈ WCTr(TSM) if and only if
w ∈ L[M] for all w ∈ A∗. The empty trace ε belongs to WCTr(TSM) iff transi-
tion q0

τ−→q′0 is present in TSM; in turn, this is possible iff q0 ∈ F , and so iff
ε ∈ L[M]. Now, let us assume that va ∈WCTr(TSM). This is possible iff there ex-
ist qi ∈ Q and q′j ∈ F ′ such that q0

v−→∗ qi
a−→q′j. By the argument above, we have

that (q0,v)−→∗ (qi,ε); moreover, by definition of →, we have δ (qi,a) = q j with
q j ∈ F . It can be easily proved that (q0,v)−→∗ (qi,ε) in M iff (q0,va)−→∗ (qi,a);
therefore, (q0,va)−→∗ (q j,ε) in M, i.e., va ∈ L[M].

Conversely, we can also show that only regular languages can be represented by
finite-state LTSs. Let us consider a rooted LTS TS = (Q,A∪{τ},→,q0). Starting
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Fig. 2.23 Two weakly similar systems

from TS, we can build an NFA M = (Q,A,δ ,F,q0), where the set of final states is
F = {q∈Q

∣∣ q is a deadlock}, and δ ⊆Q×(A∪{ε})×Q is defined as the minimal
relation generated by the following rules:

qi
a−→q j

(qi,a,q j) ∈ δ

qi
τ−→q j

(qi,ε,q j) ∈ δ

It is easy to prove, with a reasoning similar to the above, that w ∈WCTr(TS) if
and only if w ∈ L[M] for all w ∈ A∗; this because the two automata-like structures
are essentially isomorphic and a state is final for M iff it is a deadlock for TS.

Summing up, we have shown that a language L is regular if and only if there
exists a finite-state, rooted LTS TS such that L =WCTr(TS). �

2.4.2 Weak Simulation and Weak Bisimulation

Definition 2.19. For any LTS TS= (Q,A∪{τ},→), where τ �∈ A, a weak simulation
is a relation R⊆ Q×Q such that if (q1,q2) ∈ R then for all α ∈ A

• ∀q′1 such that q1
α−→q′1, ∃q′2 such that q2

α
=⇒q′2 and (q′1,q

′
2) ∈ R,

• ∀q′1 such that q1
τ−→q′1, ∃q′2 such that q2

ε
=⇒q′2 and (q′1,q

′
2) ∈ R.

State q is weakly simulated by q′, denoted q � q′, if there exists a weak simulation R
such that (q,q′) ∈ R. Two states q and q′ are weakly simulation equivalent, denoted
q � q′, if q � q′ and q′ � q. �

In other words, the weak simulation preorder � is the union of all the weak
simulations:

�=
⋃
{R⊆ Q×Q

∣∣ R is a weak simulation}.

Example 2.8. Note that in the weak simulation game, to a transition q1
τ−→q′1, q2

can reply also by idling, as, among the possible q′2 such that q2
ε

=⇒q′2, we have
also q2 itself. This is necessary in order to get that the LTS in Figure 2.23(a) is
simulated by the LTS in Figure 2.23(b), as we naturally would expect: both LTSs
can only perform a single action a. The weak simulation relation proving this is S1 =

{(q0,q3),(q1,q3),(q2,q4)}. Note that to transition q0
τ−→q1, q3 responds by idling:
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Fig. 2.24 Two non-weakly similar systems

q3
ε

=⇒q3. It is also possible to prove that the LTS in Figure 2.23(b) is simulated
by the one in Figure 2.23(a), and a possible weak simulation proving this is S2 =

{(q3,q0),(q4,q2)}. Note that to transition q3
a−→q4, q0 responds with q0

a
=⇒q2.

Summing up, these two LTSs are weakly simulation equivalent, i.e., q0 � q3. �

Exercise 2.51. (Strong simulation vs weak simulation) Following Definition 2.12
for any LTS TS = (Q,A∪{τ},→), a (strong) simulation is a relation R ⊆ (Q×Q)
such that if (q1,q2) ∈ R then for all μ ∈ A∪{τ}
• ∀q′1 such that q1

μ−→q′1, ∃q′2 such that q2
μ−→q′2 and (q′1,q

′
2) ∈ R,

and we denote by q � q′ that there exists a strong simulation R containing the pair
(q,q′). Prove that q � q′ implies q � q′ by showing that a strong simulation is also
a weak simulation. Show that the inverse implication does not hold by providing a
suitable counterexample. (Hint: Consider the LTSs in Figure 2.23.) �

Exercise 2.52. Following the proof of Proposition 2.1, prove that weak simulation
equivalence is finer than weak trace equivalence, i.e., q � q′ implies q =wtr q′. �

In order to show that the inverse implication of Exercise 2.52 does not hold, we
can consider the two LTSs in Figure 2.24 as a suitable counterexample. As a matter
of fact, WTr(q0) =WTr(q6) = {ε,a,ab,ac}, while q0 �� q6 because, even if q6 � q0

(check this!), we have that q0 �� q6. The latter holds because to transition q0
a−→q1,

q6 can respond with either q6
a

=⇒q7 or q6
a

=⇒q9 or q6
a

=⇒q10; however, (q1,q7) is
not a simulation pair, as to move q1

τ−→q3, q7 can respond either idling or moving
to q9, but q3

c−→ , while q7 and q9 cannot perform c weakly. This explains that also
(q1,q9) is not a simulation pair. Similarly, (q1,q10) is not a simulation pair, as to

move q1
τ−→q2, q10 can only respond by idling, but q2

b−→ while q10 cannot do b.
Hence, q0 cannot be weakly simulated by q6.

Exercise 2.53. For any LTS TS = (Q,A∪{τ},→), where τ �∈ A, given a weak sim-

ulation R⊆Q×Q, prove that if (q1,q2) ∈ R and q1
δ

=⇒q′1, then there exists q′2 such

that q2
δ

=⇒q′2 with (q′1,q
′
2) ∈ R, for δ ∈ A∪{ε}. (Hint: By induction on the proof

of q1
δ

=⇒q′1, according to Definition 2.16.) �
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Fig. 2.25 Some labeled transition systems

Exercise 2.54. Prove that, for any LTS (Q,A∪ {τ},→), relation � ⊆ Q×Q is a
preorder, while relation � ⊆ Q×Q is an equivalence relation. (Hint: Follow the
same steps of Proposition 2.2 and Proposition 2.4. In proving that the relational
composition of weak simulations is a weak simulation, you need also the result of
Exercise 2.53.) �

Exercise 2.55. Consider the LTSs in Figure 2.25. Prove that relation

R = {(q1,q7),(q2,q8),(q3,q8),(q4,q8),(q5,q9),(q6,q10)}

is a weak simulation proving that the LTS in Figure 2.25(a) is weakly simulated by
the LTS in Figure 2.25(b). Prove also that the LTS in (b) is weakly simulated by the
LTS in (a) by providing a suitable weak simulation relation.

Prove also that the LTS in Figure 2.25(c) is weakly simulation equivalent to the
LTS in Figure 2.25(b), as well as to the LTS in Figure 2.25(d). �

Exercise 2.56. In the light of Exercise 2.55, by continuing Exercise 2.53, show that,
for any LTS TS = (Q,A∪{τ},→), where τ �∈ A, and for any q1,q2 ∈ Q, if q1 � q2

and q1
ε

=⇒q′1, then q′1 � q2. This means that if we consider the largest simulation
�, to a silent τ-move of q1, q2 can respond simply by idling. (Hint: Prove first that
if q1

ε
=⇒q′1, then q′1 � q1; then, the thesis follows by transitivity of �.) �

Exercise 2.57. (Can τ’s be removed safely?) In the light of Exercise 2.55, by con-
tinuing Exercise 2.49 about the construction of the τ-abstracted LTS, show that two
states q and q′ are weak simulation equivalent in TS if and only if they are strong
simulation equivalent in τATS.
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(Hint: Consider Exercises 2.53 and 2.56 and show that the largest weak simula-
tion on TS is a strong simulation on τATS and, conversely, that the largest strong
simulation on τATS is a weak simulation on TS.) �

Exercise 2.58. Continuing Exercise 2.28, discuss if the weak simulation preorder �
has minimum elements and maximum ones. �

Exercise 2.59. Consider again the two LTSs in Figure 2.21. Show that the two are
weakly simulation equivalent, by checking that relations

S1 = {(q1,q4),(q2,q5),(q3,q6)} S2 = {(q4,q1),(q5,q2),(q6,q3),(q7,q3)}

are the required weak simulation relations. �

The example discussed in the exercise above should clarify that weak simulation
equivalence is not an adequate notion of equivalence as it is also unable to sense
deadlock. Of course, one might define completed weak simulation as done for strong
simulation.

Exercise 2.60. (Weak completed simulation) A weak completed simulation R is a
weak simulation such that for all (q1,q2)∈ R if q1 � then q2

α
� for all observable α

(but q2 may still perform silent transitions). State q1 is weakly completed simulated
by q2, denoted q1 �c q2, if there exists a weak completed simulation R such that
(q1,q2) ∈ R. States q1 and q2 are weakly completed simulation equivalent, q1 �c q2,
if q1 �c q2 and q2 �c q1.

Show that the two weakly simulation equivalent vending machines of Figure 2.21
are actually not weakly completed simulation equivalent. �

Even if sensitive to deadlock, such a variant of weak simulation would be unable
to sense the timing of choices in a complete way, as illustrated in Figure 2.15 for
the strong case. As we have seen for the strong behavioral equivalences, a natural
strengthening is obtained by bisimulation.

Definition 2.20. (Weak bisimulation) For any LTS TS = (Q,A∪ {τ},→), where
τ �∈ A, a weak bisimulation is a relation R⊆ (Q×Q) such that both R and its inverse
R−1 are weak simulations. More expicitly, a weak bisimulation is a relation R such
that if (q1,q2) ∈ R then for all α ∈ A

• ∀q′1 such that q1
α−→q′1, ∃q′2 such that q2

α
=⇒q′2 and (q′1,q

′
2) ∈ R,

• ∀q′1 such that q1
τ−→q′1, ∃q′2 such that q2

ε
=⇒q′2 and (q′1,q

′
2) ∈ R,

and, symmetrically,

• ∀q′2 such that q2
α−→q′2, ∃q′1 such that q1

α
=⇒q′1 and (q′1,q

′
2) ∈ R,

• ∀q′2 such that q2
τ−→q′2, ∃q′1 such that q1

ε
=⇒q′1 and (q′1,q

′
2) ∈ R.

States q and q′ are weakly bisimilar (or weak bisimulation equivalent), denoted with
q≈ q′, if there exists a weak bisimulation R such that (q,q′) ∈ R. �
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In other words, weak bisimulation equivalence is the union of all weak bisimula-
tions:

≈=
⋃
{R⊆ Q×Q

∣∣ R is a weak bisimulation}.

Example 2.9. Continuing Example 2.8, the LTS in Figure 2.23(a) is actually weakly
bisimilar to the LTS in Figure 2.23(b). The weak bisimulation relation proving this
is: S1 = {(q0,q3),(q1,q3),(q2,q4)}. Indeed, S1 is a weak simulation, as well as
S−1

1 = {(q3,q0),(q3,q1),(q4,q2)}. Summing up, these two LTSs are weak bisim-
ulation equivalent, i.e., q0 ≈ q3. �

Exercise 2.61. (Strong vs weak bisimulation) Following Definition 2.14, for any
LTS TS = (Q,A∪{τ},→), a (strong) bisimulation is a relation R⊆Q×Q such that
if (q1,q2) ∈ R then for all μ ∈ A∪{τ}
• ∀q′1 such that q1

μ−→q′1, ∃q′2 such that q2
μ−→q′2 and (q′1,q

′
2) ∈ R,

• ∀q′2 such that q2
μ−→q′2, ∃q′1 such that q1

μ−→q′1 and (q′1,q
′
2) ∈ R.

Two states q and q′ are bisimilar, denoted q∼ q′, if there exists a strong bisimulation
R such that (q,q′) ∈ R.

Prove that q ∼ q′ implies q ≈ q′ by showing that a strong bisimulation is also a
weak bisimulation. Show that the reverse implication does not hold by providing a
suitable counterexample. �

Exercise 2.62. Prove that, for any LTS (Q,A∪{τ},→), relation ≈⊆ Q×Q is an
equivalence relation. (Hint: Follow the same steps of Propositions 2.6 and 2.8, in
turn based on the proofs of Propositions 2.2 and 2.4. In proving that the relational
composition of weak bisimulations is a weak bisimulation, you need also the result
of Exercise 2.53.) Prove also that ≈ is the largest weak bisimulation. �

Exercise 2.63. Prove that q ≈ q′ implies q � q′. Show that the inverse implication
does not hold by providing a suitable counterexample. (Hint: If you do not find it,
read below.) �

Consider again Figure 2.25. In Exercise 2.55 we stated that all the four LTSs are
weak simulation equivalent. Now, to show that the LTSs (c) and (d) are weakly
bisimilar, it is enough to exhibit a suitable weak bisimulation, e.g.,

R = {(q11,q16),(q12,q17),(q13,q19),(q13,q18),(q14,q20),(q15,q21),(q15,q22)}.

Observe that when q16
a−→q18 in (d), then q11

a
=⇒q13 in (c) and the reached states

can only react to b.
It is not difficult to see that no weak bisimulation can relate the LTS in Fig-

ure 2.25(b) with the LTS in (c): move q11
a−→q12 in (c) can be matched by move

q7
a−→q8 in (b), but now if in (c) we have move q12

τ−→q13, in (b) we can respond
only by idling q8

ε
=⇒q8, and then q13 and q8 are not bisimilar because the former

cannot execute c while the latter can.
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Fig. 2.26 Are states q1 and q6 weakly bisimilar?

Exercise 2.64. Prove that any other pair of LTSs in Figure 2.25 does not belong to
bisimulation equivalence ≈. In particular, observe that (a) and (b), even if weakly
simulation equivalent (see Exercise 2.55), are not weakly bisimilar. �

Exercise 2.65. Continuing Exercise 2.59, show that the two LTSs in Figure 2.21 are
not weakly bisimilar. This supports our claim that weak bisimilarity is sensitive to
deadlock. �

Exercise 2.66. Show that states q1 and q6 in Figure 2.26 are weakly bisimilar. �

Exercise 2.67. (Tau-free LTS, again) Let us continue Exercise 2.48 about τ-free
LTSs. (i) Prove that no τ-free LTS can be weakly bisimilar to the LTS in Figure
2.25(a). This is in contrast with weak simulation equivalence, as the τ-free LTS in
Figure 2.25(b) is weakly similar to that in Figure 2.25(a). (ii) Prove also that there
exists no τ-free LTS weakly bisimilar to those in Figure 2.26. (Hint: Look at state
q8.) (iii) Show an example of an LTS with τ transitions which is weakly bisimilar
to a τ-free LTS. �

The exercise above shows that it is not possible to abstract completely from τ-
labeled transitions when considering weak bisimulation equivalence. Hence, given
an LTS TS = (Q,A∪{τ},→), the associated τ-abstracted LTS, as outlined in Exer-
cise 2.49, is not preserving all the needed information in this setting.

Exercise 2.68. (Abstract LTS) Continuing Exercise 2.49, given an LTS TS =
(Q,A∪ {τ},→), where τ �∈ A, define its associated abstract LTS ATS = (Q,A∪
{ε},⇒′′), where⇒′′= {(q,δ ,q′) ∣∣ δ ∈ A∪{ε} ∧ (q,δ ,q′) ∈⇒}, Prove that q≈ q′
in TS if and only if q∼ q′ in ATS. �

A consequence of Exercise 2.68 is that it is possible to offer an alternative, yet
equivalent, definition of weak bisimulation as follows: A weak bisimulation is a
relation R such that if (q1,q2) ∈ R then for all δ ∈ A∪{ε}
• ∀q′1 such that q1

δ
=⇒q′1, ∃q′2 such that q2

δ
=⇒q′2 and (q′1,q

′
2) ∈ R,

• ∀q′2 such that q2
δ

=⇒q′2, ∃q′1 such that q1
δ

=⇒q′1 and (q′1,q
′
2) ∈ R,
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Fig. 2.27 Comparing some divergent systems

which is exactly the definition of strong bisimulation on the abstract LTS (cf. also
Exercise 2.53).

Exercise 2.69. As a consequence of the observation above, prove the analogous of
Proposition 2.9 where≈ replaces∼. Hence, also weak bisimulation equivalence can
be seen as the largest fixed point of a suitable recursive definition. �

Another consequence of Exercise 2.68 is that, from a complexity point of view,
computing weak bisimulation equivalence over finite-state LTSs is just a bit harder
than computing (strong) bisimulation equivalence: as mentioned above, one has first
to derive the abstract LTS by computing the (partial) transitive closure ⇒′′ of the
transition relation → (by means of the classic Floyd-Warshall algorithm [Flo62],
which runs in O(n3), where n is the number of states) and then to check (strong)
bisimulation equivalence, which is in O(m log n) time [PT87], where m is the num-
ber of transitions.

Exercise 2.70. Compute the abstract LTSs associated to the LTSs in Figure 2.21(a)
and (b), and show that they are not (strong) bisimulation equivalent. Compare these
abstract LTSs with those τ-abstracted LTSs computed in Exercise 2.50. �

A peculiar aspect of weak bisimulation equivalence, as well as of all the weak
behavioral equivalences we have introduced so far, is that it equates systems with
different divergent behavior.

Definition 2.21. (Divergent state and livelock) A state q is divergent, denoted q ⇑,
if there exist an infinite path q1

τ−→q2
τ−→ . . . of τ-labeled transitions with q1 = q.

An LTS TS = (Q,A∪{τ},→) is divergence-free if no state q ∈ Q is divergent.
A state q is a livelock if for all reachable q′, i.e., for all q′ such that q−→∗ q′,

q′ can do at least one τ-labeled transition and cannot do any observable transitions,
i.e., q′ τ−→ and q′ α

� for all observable α . �

Clearly, a livelock state is also divergent. Consider the LTSs in Figure 2.27. States
q1 and q4 are divergent, even if only q1 is a livelock. Similarly, states q1, q2, q5 and
q6 of Figure 2.28 are divergent, even if only q6 is a livelock. In general, if the LTS
contains infinitely many states, a divergent state (as well as a livelock) need not
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Fig. 2.28 Comparing other divergent systems

belong to a cyclic τ-labeled path; for instance, the states qi, for i ∈N, of Figure 2.22
are all divergent.

Technically, the subset of divergent states can be characterized as the largest fixed
point of the functional F :℘(Q)→℘(Q) defined as:

F(S) = {q1
∣∣ ∃q2 such that q1

τ−→q2 and q2 ∈ S}
This set can be computed iteratively over finite-state LTSs as follows: start ini-

tially by considering all the states in Q as potentially divergent, and then com-
pute F(Q), which is obtained by removing all those states that cannot perform a
τ-labeled transition initially. If Q = F(Q), then halt; otherwise, continue by com-
puting F(F(Q)), which is obtained by removing all those states that cannot per-
form a τ-labeled transition initially, reaching a state in F(Q), i.e., by removing
those states that cannot perform two consecutive τ-labeled transitions initially.
If F(F(Q)) = F(Q), then halt. Otherwise, continue the algorithm by computing
F(F(F(Q))) and proceed until the set stabilizes. Following this algorithm, one can
conclude that the divergent states of the LTS in Figure 2.28(a) are exactly q1 and q2.
(See Section 2.5 for another instance on how to compute the largest fixed point of a
functional).

Exercise 2.71. Characterize the set of livelocks of an LTS TS = (Q,A,→) as the
largest fixed point of a suitable functional G :℘(Q)→℘(Q). �

Now we discuss in what sense weak bisimilarity is not sensitive to divergence.
Consider the two LTSs in Figure 2.27(a). They are weak trace equivalent and also
weak bisimulation equivalent; hence, these weak behavioral equivalences do not
distinguish a divergent state (as well as a livelock) from a deadlock! So, weak be-
havioral equivalences intend to abstract not only from finite amounts of internal
work, but also from infinite amounts (i.e., divergences).

Similarly, the two LTSs in Figure 2.27(b) are equated, despite the fact that the
upper one, in principle, may diverge and never execute b. The intuition behind this
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identification is that τ-cycles cannot be taken forever when an alternative is present,
i.e., weak bisimilarity assumes that any computation is fair: if b is possible infinitely
often, then b will be eventually chosen and executed.

Exercise 2.72. Show that the two LTSs in Figure 2.27(a) are weak completed trace
equivalent, by showing that WCTr(q1) = {ε}=WCTr(q2). �

Exercise 2.73. Consider Figure 2.28. Show that q1 ≈ q2, as well as q1 ≈ q5 and
q1 ≈ q7. Show that q3 ≈ q6 as well as q3 ≈ q8. �

As we have done for strong bisimulation (cf. Definition 2.15), it is sometimes
convenient to write compactly a weak bisimulation, by removing those pairs that
differ from others only for the use of equivalent alternatives. The resulting relation
is not a weak bisimulation, but rather a weak bisimulation up to ≈.

Definition 2.22. (Weak bisimulation up to≈) Given an LTS TS= (Q,A∪{τ},→),
where τ �∈ A, a weak bisimulation up to ≈ is a relation R ⊆ Q×Q such that if
(q1,q2) ∈ R then for all α ∈ A

• ∀q′1 such that q1
α−→q′1, ∃q′2 such that q2

α
=⇒q′2 and q′1 ∼ R≈ q′2,

• ∀q′1 such that q1
τ−→q′1, ∃q′2 such that q2

ε
=⇒q′2 and q′1 ∼ R≈ q′2,

and, symmetrically,

• ∀q′2 such that q2
α−→q′2, ∃q′1 such that q1

α
=⇒q′1 and q′1 ≈ R∼ q′2,

• ∀q′2 such that q2
τ−→q′2, ∃q′1 such that q1

ε
=⇒q′1 and q′1 ≈ R∼ q′2. �

Exercise 2.74. Prove that if R is a weak bisimulation up to ≈, then R ⊆≈. (Hint:
Prove first that∼ R≈ and≈ R∼ are both weak bisimulations, following the similar
proof of Lemma 2.1.) �

The exercise above proves the correctness of this up-to technique: as R ⊆≈, we
are not inducing erroneous equalities. So, in order to prove that p ≈ q, it is enough
to exhibit a weak bisimulation up to ≈ which contains (p,q). This principle will be
useful when considering LTSs generated by CCS processes, because weak bisimilar-
ity enjoys some useful algebraic laws. Instances of application of this proof principle
are outlined, e.g., in Examples 3.17 and 3.25.

Exercise 2.75. Let us relax Definition 2.22 by replacing the occurrences of ∼ with
≈, i.e., by replacing ∼ R ≈ with ≈ R ≈ and, symmetrically, ≈ R ∼ with ≈ R ≈, so
that the new definition is perfectly symmetric. Then check that R may not be a subset
of ≈! That is, this new definition of weak bisimulation up to ≈ is incorrect. (Hint:
Consider the LTS in Figure 2.23(a), performing the strong trace τa and composed
of the states q0,q1 and q2; consider also a deadlock state, called q3. Then, relation
R = {(q0,q3)} satisfies the new definition of weak bisimulation up to ≈, because
q0 ≈ q1; however, q0 is not weakly bisimilar to q3.) �
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In the following chapters, we will see that weak bisimilarity is not a composi-
tional semantics w.r.t. the CCS operator of alternative composition +. In this respect,
a useful weak equivalence is rooted weak bisimilarity, which we will prove to be the
coarsest congruence for CCS contained in weak bisimilarity (Theorem 4.5). In its
definition, we use an auxiliary relation q τ

=⇒q′ defined as q ε
=⇒q1

τ−→q2
ε

=⇒q′.

Definition 2.23. (Rooted weak bisimilarity) Given an LTS (Q,A∪{τ},→), two
states q1 and q2 are rooted weak bisimilar, denoted q1 ≈c q2, if for all μ ∈ A∪{τ}
• ∀q′1 such that q1

μ−→q′1, ∃q′2 such that q2
μ

=⇒q′2 and q′1 ≈ q′2,
• ∀q′2 such that q2

μ−→q′2, ∃q′1 such that q1
μ

=⇒q′1 and q′1 ≈ q′2. �

Observe that, in the definition of≈c, the possible initial silent transition q1
τ−→q′1

is to be matched by a weak transition q2
τ

=⇒q′2 (so, at least one τ transition must
be performed by q2). Afterwards, as only ≈ is required, any subsequent τ-labeled
transition τ−→ performed by q′1 is to be matched by a weak transition ε

=⇒ from q′2,
hence possibly also by idling. (Symmetrically, if q2

τ−→q′2.) The term “rooted weak
bisimilarity” emphasizes this distinction about τ-labeled transitions of the roots.

Exercise 2.76. Prove that q1 ≈c q2 implies q1 ≈ q2. Show that the inverse implica-
tion does not hold. �

As a hint for the solution to the previous exercise, observe that the LTSs in Figure
2.27(b) are rooted weak bisimilar, while the LTSs in Figure 2.27(a) are only weakly
bisimilar. Consider now the LTSs in Figure 2.28: q3 ≈c q6 because q4 ≈ q6; on the
contrary, q3 �≈c q8, even if q3 ≈ q8.

Exercise 2.77. Prove that ≈c is an equivalence relation. �

Exercise 2.78. Show that if p τ
=⇒q and q τ

=⇒ p, then p≈c q. �

2.4.3 Branching Bisimulation

To conclude this overview of weak bisimulation-based equivalences, we present
another one, originally proposed in [vGW96] under the label of branching bisimu-
lation equivalence. The name reflects the argument that weak bisimulation equiva-
lence ≈ is not completely respecting the timing of choices (the so-called branching
structure of systems). For instance, consider the two rooted weakly bisimilar sys-
tems in Figure 2.29. In the LTS on the left, in each computation the choice between
b and c is made after the a-labeled transition, while in the LTS on the right there is
a computation where c is already discarded after a. Hence, it may be argued that the
two LTSs should not be equivalent. A finer notion of equivalence that distinguishes
between these two systems is as follows.
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Fig. 2.30 Graphical representation of branching bisimulation either-or conditions

Definition 2.24. Given an LTS TS = (Q,A∪{τ},→), a branching bisimulation is a
relation R⊆ Q×Q such that if (q1,q2) ∈ R, for all μ ∈ A∪{τ}
• ∀q′1. q1

μ−→q′1,

– either μ = τ and ∃q′2. q2
ε

=⇒q′2 with (q1,q′2) ∈ R and (q′1,q
′
2) ∈ R,

– or ∃q,q′2. q2
ε

=⇒q
μ−→q′2 with (q1,q) ∈ R and (q′1,q

′
2) ∈ R

(such conditions are pictorially represented in Figure 2.30), and symmetrically
• ∀q′2. q2

μ−→q′2,

– either μ = τ and ∃q′1. q1
ε

=⇒q′1 with (q′1,q2) ∈ R and (q′1,q
′
2) ∈ R,

– or ∃q,q′1. q1
ε

=⇒q
μ−→q′1 with (q,q2) ∈ R and (q′1,q

′
2) ∈ R.

States q1 and q2 are branching bisimilar (or branching bisimulation equivalent),
denoted q1 ≈br q2, if there exists a branching bisimulation R that relates them. �

Hence, branching bisimilarity ≈br is the union of all branching bisimulations:

≈br =
⋃
{R⊆ Q×Q

∣∣ R is a branching bisimulation}.

Remark 2.8. (Either-or conditions) In Definition 2.24, to a silent move q1
τ−→q′1,

q2 can reply either with q2
ε

=⇒q′2 so that (q1,q′2) ∈ R and (q′1,q
′
2) ∈ R, or with
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q2
ε

=⇒q τ−→q′2 so that (q1,q) ∈ R and (q′1,q
′
2) ∈ R. The two possibilities are some-

how overlapping; however, while the first option requires that the reached state q′2
be related to the initial state q1, the second option requires an explicit execution of
at least one τ and that the reached state q′2 need not be related to the initial state
q1, but be related to q′1. This second option is crucial for obtaining that the identity
relation I = {(q,q) ∣∣ q ∈ Q} is a branching bisimulation. �

Exercise 2.79. Prove that q1 ≈br q2 implies q1 ≈ q2 by observing that a branching
bisimulation is also a weak bisimulation, but that a weak bisimulation may fail to
satisfy the branching bisimulation conditions. Is it true that if q1 ≈br q2 then also
q1 ≈c q2? (Hint: Consider Figure 2.27(a).) �

Note that the two weakly bisimilar systems in Figure 2.29 are not branching
bisimilar because to transition q6

a−→q8, q1 can respond only with q1
ε

=⇒q1
a−→q2,

but q2 cannot be related to q8, as only q2 can perform c. On the other hand, the two
systems in Figure 2.27(a), as well as those in (b), are branching bisimilar.

Exercise 2.80. Let R be a branching bisimulation and let q1,q2 be two states such
that (q1,q2) ∈ R. Prove the following:

• ∀q′1 such that q1
ε

=⇒q′1, ∃q′2 such that q2
ε

=⇒q′2 with (q′1,q
′
2) ∈ R;

and symmetrically for q2. (Hint: By induction on the proof of q1
ε

=⇒q′1, according
to Definition 2.16.) �

Exercise 2.81. Following Proposition 2.6 and Proposition 2.8 as well as Exercise
2.62, prove that branching bisimilarity ≈br is an equivalence relation. (Hint: In
proving that the relational composition of two branching bisimulations is a branch-
ing bisimulation you need the result of Exercise 2.80.) Prove also that the union of
branching bisimulations is a branching bisimulation, hence deriving that ≈br is the
largest branching bisimulation. �

Exercise 2.82. (Stuttering Lemma)

Prove that, given a τ-labeled path q1
τ−→q2

τ−→ . . .qn
τ−→qn+1, if q1 ≈br qn+1, then

qi ≈br q j for all i, j = 1, . . .n+ 1. This is sometimes called the stuttering property.
Prove that this property holds also for weak bisimilarity ≈. �

Remark 2.9. (Stuttering implies no change of equivalence class) The exercise
above justifies the following observation. As ≈br is a branching bisimulation, it
satisfies the conditions in Definition 2.24. We start by taking q1 ≈br q2. Then, sup-
pose q1

τ−→q′1 and that q2 responds by performing q2
ε

=⇒q′2 with q1 ≈br q′2 and
q′1 ≈br q′2. By transitivity, we have that also q2 ≈br q′2. Hence, by the stuttering
lemma, q1 is branching bisimilar to each state in the path from q2 to q′2. Similarly,
assume q1

μ−→q′1 and that q2 responds by performing q2
ε

=⇒q
μ−→q′2 with q1 ≈br q

and q′1 ≈br q′2. By transitivity, q2 ≈br q, hence, by the stuttering lemma, q1 is branch-
ing bisimilar to each state in the path from q2 to q. (Symmetrically, the requirement
q′1 ≈br q2 in the third item of Definition 2.24 implies that q2 is related to each state
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Fig. 2.31 Two weakly bisimilar LTSs that are not branching bisimilar

in the path from q1 to q′1, while q≈br q2 in the fourth item ensures that q2 is related
to each state in the path from q1 to q.)

These constraints are not required by weak bisimilarity: given q1 ≈ q2, when
matching a transition q1

μ−→q′1 with q2
ε

=⇒q
μ−→q′ ε

=⇒q′2, weak bisimilarity only
requires that q′1 ≈ q′2, but does not impose any condition on the intermediate states;
in particular, it is not required that q1 ≈ q, or that q′1 ≈ q′. On the contrary, given
q1 ≈br q2, when matching a transition q1

μ−→q′1 with q2
ε

=⇒q
μ−→q′2, branching

bisimilarity requires that q1 ≈br q (i.e., while performing initial τ moves from q2 to
q, equivalent states only are traversed), and that q′1 ≈br q′2.

For instance, consider the two LTSs in Figure 2.31. Not surprisingly, we have that
q0 ≈ q4. On the contrary, q0 �≈br q4. Indeed, to move q4

a−→q6, state q0 can respond
only with q0

ε
=⇒q2

a−→q3, but q2 �≈br q4 because only q4 can perform action b. �

As done for strong and weak bisimulations, it is sometimes convenient to write
compactly a branching bisimulation, by removing those pairs that differ from others
only for their use of branching equivalent alternatives. The resulting relation is not
a branching bisimulation, but rather a branching bisimulation up to ≈br.

Definition 2.25. (Branching bisimulation up to≈br) A branching bisimulation up
to ≈br is a relation R⊆ Q×Q such that if (q1,q2) ∈ R then for all μ ∈ A∪{τ}
• ∀q′1. q1

μ−→q′1,

– either μ = τ and ∃q′2. q2
ε

=⇒q′2 with q1 ∼ R≈br q′2 and q′1 ∼ R≈br q′2,
– or ∃q′2,q

′′
2 such that q2

ε
=⇒q′2

μ−→q′′2 with q1 ∼ R≈br q′2 and q′1 ∼ R≈br q′′2;

and, symmetrically
• ∀q′2. q2

μ−→q′2,

– either μ = τ and ∃q′1. q1
ε

=⇒q′1 with q′1 ≈br R∼ q2 and q′1 ≈br R∼ q′2,
– or ∃q′1,q

′′
1. q1

ε
=⇒q′1

μ−→q′′1 with q′1 ≈br R∼ q2 and q′1 ≈br R∼ q′′2 �

Proposition 2.11. If R is a branching bisimulation up to ≈br, then R⊆≈br.

Proof. The proof is based on the fact that both ∼ R≈br and ≈br R∼ are branching
bisimulations (check this!),9 from which it follows that ≈br includes both ∼ R ≈br

9 To prove this fact, one has to use the result of Exercise 2.80.
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Fig. 2.32 Are these rooted branching bisimilar?

and ≈br R∼. The thesis R⊆≈br follows because the identity relation I is a subset
of both ∼ and ≈br, hence R = I RI ⊆∼ R≈br⊆≈br. �

As a consequence of this proposition, in order to prove that p≈br q, it is enough
to exhibit a branching bisimulation up to ≈br containing the pair (p,q).

Exercise 2.83. Continuing Exercise 2.75, show that if in Definition 2.25 we replace
∼ with ≈br in order to get a completely symmetric definition, then it might happen
that a branching bisimulation up to ≈br is not included in ≈br. �

In the next chapters, we will see that branching bisimilarity is not a compositional
semantics w.r.t. the CCS operator of alternative composition +. In this respect, a use-
ful variant of branching bisimulation equivalence is rooted branching bisimilarity,
denoted ≈c

br, which we will prove to be the coarsest congruence for CCS contained
in branching bisimilarity ≈br. The peculiar feature of rooted branching bisimilarity
is that initial moves are matched as in strong bisimulation, while subsequent moves
are matched as for branching bisimilarity.

Definition 2.26. (Rooted branching bisimilarity) Given an LTS (Q,A∪{τ},→),
q1 and q2 are rooted branching bisimilar, denoted q1 ≈c

br q2, if for all μ ∈ A∪{τ}
• ∀q′1 such that q1

μ−→q′1, ∃q′2 such that q2
μ−→q′2 and q′1 ≈br q′2,

• ∀q′2 such that q2
μ−→q′2, ∃q′1 such that q1

μ−→q′1 and q′1 ≈br q′2. �

Exercise 2.84. Prove the following statements:

• ≈c
br is an equivalence relation,

• ≈c
br is finer than ≈br, as well as finer than ≈c,

• ∼ is finer than ≈c
br. �
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Weak bisimilarity ≈

2.25(a) - 2.25(b)

Rooted branching bisimilarity ≈c
br

Rooted weak bisimilarity ≈c

2.27(a)

2.27(a)2.29

2.29

Branching bisimilarity ≈br

Weak completed simulation equivalence �c

Weak completed trace equivalence =wctr

2.21

2.212.24(a) - 2.24(b)

2.24(a) - 2.24(b)

Weak similarity �

Weak trace equivalence =wtr

Fig. 2.33 Summary of weak behavioral equivalences

Exercise 2.85. Check if the pairs of LTSs in Figure 2.32(a) and (b) are branching
bisimilar by providing suitable branching bisimulation relations. Are they rooted
branching bisimilar? �

From a complexity point of view, branching bisimilarity is the easiest weak
equivalence to decide. According to [vGW96], it can be checked on finite-state LTSs
with time complexity O(l + nm) and space complexity O(n+m), where l = |A|, n
the number of states and m the number of transitions.

We summarize the various weak equivalence relations we have introduced so far
in the diagram in Figure 2.33. An arrow from an equivalence relation to another one
means that the former is finer than the latter; e.g., weak simulation equivalence is
finer than weak trace equivalence. A dashed arrow labeled with an index of a fig-
ure means that such an implication does not hold because of the counterexample
discussed in that figure; for instance, the LTS in Figure 2.24(a) is weak trace equiv-
alent to the LTS in Figure 2.24(b), but the two are not weakly simulation equivalent.

In comparing this summary with the one for strong equivalences in Figure 2.20,
we should recall that all the strong equivalences are finer than their corresponding
weak ones (e.g., strong similarity � is finer than weak similarity �, as discussed in
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Exercise 2.51). Moreover, bisimilarity ∼ is finer than rooted branching bisimilarity
≈c

br (Exercise 2.84), and so finer than weak bisimilarity ≈. Finally, ready similarity
�rs is finer than weak completed similarity �c.

2.5 Bisimilarity as a Fixed Point

Bisimulation equivalence can be characterized nicely as the largest fixed point of
a suitable monotone relation transformer, hence offering an alternative proof of
Proposition 2.9. Moreover, this has the interesting consequence of defining a nat-
ural, even if not optimal, algorithm for computing this equivalence.

Definition 2.27. Given an LTS (Q,A,→), the functional F :℘(Q×Q)→℘(Q×Q)
(i.e., a transformer of binary relations over Q) is defined as follows. If R ⊆ Q×Q,
then (q1,q2) ∈ F(R) if and only if for all μ ∈ A

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and (q′1,q
′
2) ∈ R,

• ∀q′2 such that q2
μ−→q′2, ∃q′1 such that q1

μ−→q′1 and (q′1,q
′
2) ∈ R. �

Proposition 2.12. For any LTS (Q,A,→), we have that:

1. The functional F is monotone, i.e., if R1 ⊆ R2 then F(R1)⊆ F(R2).
2. A relation R⊆ Q×Q is a bisimulation if and only if R⊆ F(R).

Proof. The proof of (1) derives immediately form the definition of F: if (q1,q2) ∈
F(R1) then for all μ ∈ A

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and (q′1,q
′
2) ∈ R1,

• ∀q′2 such that q2
μ−→q′2, ∃q′1 such that q1

μ−→q′1 and (q′1,q
′
2) ∈ R1.

Since R1 ⊆ R2, the above implies that for all μ ∈ A

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and (q′1,q
′
2) ∈ R2,

• ∀q′2 such that q2
μ−→q′2, ∃q′1 such that q1

μ−→q′1 and (q′1,q
′
2) ∈ R2,

which means that (q1,q2) ∈ F(R2).
The proof of (2) is also easy: if R is a bisimulation, then if (q1,q2) ∈ R then for

all μ ∈ A

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and (q′1,q
′
2) ∈ R,

• ∀q′2 such that q2
μ−→q′2, ∃q′1 such that q1

μ−→q′1 and (q′1,q
′
2) ∈ R,

and, by using the reverse implication, this means that (q1,q2)∈F(R), i.e., R⊆F(R).
Similarly, if R ⊆ F(R), then the condition holding for F(R) holds also for all the
elements of R, hence R is a bisimulation. �
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A fixed point for F is a relation R such that R = F(R). Knaster-Tarski’s fixed
point theorem (see, e.g., [DP02]) ensures that the largest fixed point of the monotone
functional F is ⋃

{R⊆ Q×Q
∣∣ R⊆ F(R)}.

We want to show that this largest fixed point is ∼. A post-fixed point of F is a
relation R such that R⊆ F(R). By Proposition 2.12(2), we know that bisimulations
are the post-fixed points of F . Bisimilarity ∼ is the union of all the bisimulations:

∼=
⋃
{R⊆ Q×Q

∣∣ R is a bisimulation}.

Hence, we also conclude that ∼ is the largest fixed point of F , i.e.:

∼=
⋃
{R⊆ Q×Q

∣∣ R⊆ F(R)}.

Here we provide a direct proof of this fact.

Theorem 2.1. Strong bisimilarity ∼ is the largest fixed point of F.

Proof. We first prove that∼ is a fixed point, i.e.,∼=F(∼), by proving that∼⊆F(∼)
and that F(∼)⊆∼. Since ∼ is a bisimulation, ∼⊆ F(∼) by Proposition 2.12(2). As
F is monotonic, by Proposition 2.12(1) we have that F(∼) ⊆ F(F(∼)), i.e., also
F(∼) is a post-fixed point of F i.e., a bisimulation. Since we know that ∼ is the
union of all bisimulation relations (as well as the largest post-fixed point of F),
F(∼)⊆∼ follows.

Now we want to show that ∼ is the largest fixed point. Assume T is another fixed
point of F, i.e. T = F(T ). Then, in particular, we have that T ⊆ F(T ), i.e., T is a
bisimulation by Propostion 2.12(2), hence T ⊆∼. �

Exercise 2.86. (Simulation preorder as a fixed point) Given an LTS (Q,A,→),
functional G : ℘(Q×Q)→℘(Q×Q) is defined as follows. If R ⊆ Q×Q, then
(q1,q2) ∈ G(R) if and only if ∀μ ∈ A

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and (q′1,q
′
2) ∈ R.

Show that:

• functional G is monotone, i.e., if R1 ⊆ R2 then G(R1)⊆ G(R2);
• relation R⊆ Q×Q is a simulation if and only if R⊆ G(R);
• the simulation preorder � is the largest fixed point of G. �

There is a natural iterative way of approximating ∼ (over image-finite LTSs) by
means of a descending (actually, nonincreasing) chain of relations indexed on the
natural numbers. We will see that there is a strict relation between this chain of
relations and the functional F above.

Definition 2.28. Given an LTS TS = (Q,A,→), for each natural i ∈ N, we define
relation ∼i over Q as follows:

• ∼0= Q×Q.
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• q1 ∼i+1 q2 if and only if for all μ ∈ A

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and q′1 ∼i q′2
• ∀q′2 such that q2

μ−→q′2, ∃q′1 such that q1
μ−→q′1 and q′1 ∼i q′2.

We denote by ∼ω the relation
⋂

i∈N ∼i. �

Intuitively, q1 ∼i q2 if and only if the two states are bisimilar up to paths of length
at most i. Hence, all the states are in the relation ∼0. Considering Figure 2.15, it is
easy to see that the q1 ∼1 q7, while q1 �∼2 q7, because there is no state, reachable
from q7, ∼1-equivalent to q2.

Proposition 2.13. For each i ∈ N:

1. relation ∼i is an equivalence relation,
2. ∼i+1⊆∼i,
3. ∼i= Fi(Q×Q)

Moreover, ∼ω=
⋂

i∈N ∼i is an equivalence relation.

Proof. The three proofs are by induction on i.
(1) The base case is obvious: ∼0 is an equivalence relation because so is the

universal relation. Assuming that ∼i is an equivalence relation, we show that also
∼i+1 is an equivalence relation. Reflexivity is trivial: as for all μ ∈ A

• ∀q′ such that q
μ−→q′, ∃q′ such that q

μ−→q′ and q′ ∼i q′

it follows that also q ∼i+1 q. Symmetry is also trivial: we have to prove that if
q1 ∼i+1 q2 then q2 ∼i+1 q1. We know that q1 ∼i+1 q2 if and only if for all μ ∈ A

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and q′1 ∼i q′2
• ∀q′2 such that q2

μ−→q′2, ∃q′1 such that q1
μ−→q′1 and q′1 ∼i q′2.

We also know, by inductive hypothesis, that q′2 ∼i q′1, hence, also that

• ∀q′2 such that q2
μ−→q′2, ∃q′1 such that q1

μ−→q′1 and q′2 ∼i q′1.

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and q′2 ∼i q′1
which means that q2 ∼i+1 q1. Transitivity is similar, hence left to the reader.

(2) and (3) are left as exercises for the reader. We simply explain what we mean
by the ith power of F: F0(R) = R and Fn+1(R) = F(Fn(R)).

Observe that ∼ω=
⋂

i∈N ∼i is an equivalence relation, as ∼i is an equivalence
relation for all i ∈ N. As a matter of fact, the identity relation I is a subset of
all the ∼i’s, hence I ⊂∼ω , i.e., ∼ω is reflexive. Relation ∼ω is also symmetric
because, if (q1,q2)∈∼ω , then (q1,q2)∈∼i for all i∈N. Since each∼i is symmetric,
(q2,q1) ∈∼i for all i ∈ N, so (q2,q1) ∈∼ω , hence ∼ω is symmetric. Transitivity of
∼ω can be proved similarly. �
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Fig. 2.34 Two not image-finite LTSs

Hence, we have a nonincreasing chain of equivalence relations,

∼0= F0(Q×Q)⊇∼1= F1(Q×Q)⊇ . . .⊇∼i= Fi(Q×Q)⊇ . . .⊇∼ω ,

with relation ∼ω as its limit. Interestingly, this limit, for image-finite LTSs, coin-
cides with strong bisimilarity ∼.

Theorem 2.2. If the LTS TS = (Q,A,→) is image-finite, then ∼=∼ω .

Proof. We prove first that ∼⊆∼i for all i by induction on i. Indeed, ∼⊆∼0 (the
universal relation); moreover, assuming ∼⊆∼i, by monotonicity of F and the fact
that ∼ is a fixed point for F, we get ∼= F(∼)⊆ F(∼i) =∼i+1. Hence, ∼⊆∼ω .

Now we prove that∼ω⊆∼, by proving that relation R = {(q1,q2)
∣∣ q1 ∼ω q2} is

a bisimulation. Assume (q1,q2) ∈ R, hence q1 ∼i q2 for all i ∈ N. If q1
μ−→q′1, then

for all i, there exists q2i such that q2
μ−→q2i with q′1 ∼i q2i . Since the LTS is image-

finite, the set K = {q2k

∣∣ q2
μ−→q2k ∧ q′1 ∼k q2k ∧ k ∈ N} is finite; hence, there is

at least one q2n ∈K such that q′1 ∼i q2n for infinitely many i. But since if q∼i q′ then
q∼ j q′ for any j < i, we can conclude that q′1 ∼i q2n for all i, hence q′1 ∼ω q2n , and
so (q′1,q2n) ∈ R. The symmetric case when q2 moves first is analogous, and hence
omitted. So R =∼ω is a bisimulation, therefore ∼ω⊆∼. �

The hypothesis of image-finiteness is crucial for the correctness of the Theorem
above, as the following exercise shows.

Exercise 2.87. Consider the two LTSs in Figure 2.34; these are not image-finite.
Prove, by induction on i, that the two roots q0 and q′0 are related by ∼i for any i, but
they are not related by ∼. �

Exercise 2.88. Show a pair of distinct LTSs such that they are both not image-finite,
but such that the two roots are related by∼i for any i, and also by∼. This shows that
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Fig. 2.35 An LTS with two equivalent states

the reverse implication of Theorem 2.2 is not valid. (Hint: Add a-labeled transitions
qk

k
a−→qk+1

k+1 to the LTS in Figure 2.34(a) and a-labeled transitions q
′k
k

a−→q
′k+1
k+1 to

the LTS in Figure 2.34(b), for all k ≥ 1.) �

The characterization of ∼ as the limit of the nonincreasing chain of relations ∼i
offers an easy algorithm to compute bisimilarity∼ over image-finite LTSs: just start
from the universal relation R0 =Q×Q and then iteratively apply functional F ; when
Ri+1 = F(Ri) = Ri then stop and take Ri as the bisimilarity relation. In other words,
the algorithm can be expressed by the following sequence of instructions:

R := Q×Q ;

S := F(R) ;

while R �= S do {R := S ;S := F(S)};
return R

Of course, this algorithm may not terminate for LTSs with infinitely many states,
but it always terminates for finite-state LTSs.

As an example, take the LTS (actually, the union of the two) in Figure 2.18,
where Q = {q1,q2, . . . ,q7}. Initially, R0 = Q×Q, which is composed by one equiv-
alence class only: all the states are equivalent. Then, we compute F(R0) =R1, which
is given by R ∪ R−1 ∪I , with R = {(q1,q4),(q2,q3),(q2,q5),(q2,q6),(q2,q7),
(q3,q5),(q3,q6),(q3,q7),(q5,q6),(q5,q7),(q6,q7)} and I = {(qi,qi)

∣∣ 1≤ i≤ 7}.
Observe that the only pairs of states that have been removed from R0 are those
whose states do not offer the same menu of possible initial moves, e.g., (q1,q2). Re-
lation R1 defines two equivalence classes only: {q1,q4} and {q2,q3,q5,q6,q7}. As
F(R1) = R1, we can conclude that strong bisimilarity ∼ on such a transition system
is given by relation R1. Hence, we have a minimum (with respect to strong bisimu-
lation) realization of this LTS: just take one state for each equivalence class! In our
example, we can call q the state for the equivalence class {q1,q4} and q′ the state
for {q2,q3,q5,q6,q7}. The resulting minimum LTS is the triple (Q′,A, →), where
Q′ = {q,q′}, A = {a,b} and→= {(q,a,q′),(q′,b,q)}.
Exercise 2.89. Compute relation ∼ for the LTS in Figure 2.35 by applying the
iterative algorithm described above. Check that the resulting relation ∼ is I ∪
{(q0,q1),(q1,q0)}. �

Definition 2.29. (LTS minimization w.r.t. ∼) Given an LTS TS = (Q,A,→), let ∼
be the largest bisimulation relation over Q×Q. Then, we can define the minimum
LTS TS∼ = (Q∼,A,→∼), where:

• Q∼ = {[q]∼
∣∣ q ∈ Q}, where [q]∼ = {q′ ∈ Q

∣∣ q∼ q′},
• →∼= {([q]∼,μ, [q′]∼)

∣∣ (q,μ,q′) ∈→}. �
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Observe that in the definition of the minimum LTS TS∼, any state [q]∼ is an
equivalence class of states of TS: for all q,q′ ∈ Q, q∼ q′ if and only if [q]∼ = [q′]∼.
Moreover, if ([q]∼,μ, [q′]∼) is a transition in TS∼, then for all q1 ∈ Q such that q∼
q1, there exists a q2 ∈ Q such that q1

μ−→q2 and q′ ∼ q2, and so ([q1]∼,μ, [q2]∼) =
([q]∼,μ, [q′]∼). In other words, the definition of TS∼ is independent of the choice of
the representative state q for its equivalence class [q]∼.

Proposition 2.14. Given an LTS TS = (Q,A,→) and its associated minimum LTS
TS∼ = (Q∼,A,→∼), the following hold:

• q∼ [q]∼ for all q ∈ Q and [q]∼ ∈ Q∼, i.e., TS∼ is a correct realization of TS;
• for all [q]∼, [q′]∼ ∈Q∼ we have that if [q]∼ ∼ [q′]∼ then [q]∼ = [q′]∼, i.e., TS∼ is

the minimum (up to isomorphism).

Proof. For the proof of the first item, consider relation R ⊆ Q×Q∼ defined as fol-
lows: R = {(q, [q]∼)

∣∣ q ∈ Q}. It is easy to see that R is a bisimulation.
For the proof of the second item, we have that q ∼ [q]∼ as well as q′ ∼ [q′]∼ by

the previous item. Therefore, if [q]∼ ∼ [q′]∼, then by transitivity we also have that
q∼ q′ and so, by construction of TS∼, we have that [q]∼ = [q′]∼. �

Remark 2.10. (Minimality of the minimum LTS w.r.t. ∼) The fact that TS∼ =
(Q∼,A,→∼) is the minimum LTS (up to isomorphism) directly follows from the fact
that in Q∼ there are no two different states that are bisimilar, as stated by the second
item of Proposition 2.14. As a matter of fact, assume, towards a contradiction, that
there exists an LTS TS′ = (Q′,A,→′), such that |Q′| < |Q∼| and for all [q]∼ ∈ Q∼
there exists (at least) one corresponding bisimilar state q′ ∈Q′. Then, by cardinality,
there must exist two distinct states [q1]∼, [q2]∼ ∈Q∼ and one state q3 ∈Q′ such that
[q1]∼ ∼ q3 and [q2]∼ ∼ q3; hence, by transitivity, [q1]∼ ∼ [q2]∼, which is impossible.

To be precise, one further optimization is possible for rooted LTSs. Given the
rooted LTS TS = (Q,A,→,q0), the associated minimum LTS TS∼ = (Q∼,A, →∼,
[q0]∼) might be further reduced by removing all the states (and relevant transitions)
that are not reachable from the initial state [q0]∼. �

Remark 2.11. (Minimum LTS w.r.t. trace equivalence?) Given a rooted LTS TS =
(Q,A,→,q0), we can obtain the minimum deterministic LTS w.r.t. trace equivalence
=tr (which is unique up to isomorphism) by means of the following three-step algo-
rithm. First, transform TS into a deterministic LTS, which we call dTS, according to
the construction sketched in Exercise 2.17. Then, compute relation ∼ over dTS by
means of the algorithm above (remember that ∼ and =tr coincide on deterministic
LTS, as mentioned in Exercise 2.44). Finally, compute the minimum LTS dTS∼, ac-
cording to Definition 2.29. We are sure that dTS∼ is the minimum deterministic LTS
w.r.t. trace equivalence for TS. However, it is possible that there exists a smaller (i.e.,
with fewer states) nondeterministic LTS ndTS trace equivalent to TS, as illustrated
in Exercise 2.91. We conjecture that finding a general polynomial-time algorithm
to minimize a nondeterministic LTS into a nondeterministic LTS is impossible, as
in automata theory a similar conjecture is expressed in [HMU01] for the analogous
problem of nondeterministic minimization of NFA. �
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Fig. 2.36 An LTS with three pairs of equivalent states
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Fig. 2.37 The minimum LTS w.r.t. ∼ for those in Figure 2.14

Exercise 2.90. Continuing Exercise 2.89, compute the minimum LTS w.r.t. bisim-
ilarity of the LTS in Figure 2.35. Then, compute the minimum deterministic LTS
w.r.t. trace equivalence for the same LTS, assuming q2 as its initial state. �

Exercise 2.91. Compute the minimum LTS w.r.t. bisimulation equivalence of the
LTS in Figure 2.36. Then, compute the minimum deterministic LTS w.r.t. trace
equivalence for the same LTS, assuming q1 as its initial state. Observe that the min-
imum LTS w.r.t. ∼ is nondeterministic and smaller than the minimum deterministic
LTS w.r.t. trace equivalence. �

Exercise 2.92. Check that the minimum LTS w.r.t. ∼ for those outlined in Figure
2.14 is isomorphic to the LTS in Figure 2.37. �

Exercise 2.93. (Approximating the simulation preorder �) Given an LTS TS =
(Q,A,→), for each natural i ∈ N, define the relations �i over Q as follows:

• �0= Q×Q.
• q1 �i+1 q2 if and only if for all μ ∈ A

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ−→q′2 and q′1 �i q′2.

We denote by �ω the relation
⋂

i∈N �i. Prove that, for each i ∈ N:

1. the relation �i is a preorder,
2. �i+1⊆�i,
3. �i= Gi(Q×Q), where G is defined in Exercise 2.86.

Moreover, prove that if TS is image-finite, then �=�ω . �
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Hence, also the simulation preorder � can be computed by the easy iterative algo-
rithm we have proposed for computing bisimulation equivalence, where the occur-
rences of functional F are to be replaced by functional G.

Also, the weak simulation preorder � can be computed for finite-state LTSs with
this iterative algorithm. As a matter of fact, Exercise 2.57 ensures that the weak sim-
ulation preorder on an LTS TS can be computed as the (strong) simulation preorder
� over its associated tau-abstracted LTS τATS (Definition 2.49).

Finally, weak bisimilarity ≈ can also be defined as the largest fixed point of a
suitable relation transformer H, following the same steps as above because, as a
consequence of Exercise 2.68, it is possible to offer an alternative, yet equivalent,
definition of weak bisimulation on an LTS TS (with transition relation→) as a strong
bisimulation on its associated abstract LTS ATS (with transition relation⇒′′). Even
if weak bisimilarity ≈ can be characterized by means of the approximations ≈i
on the natural numbers for finite-state LTSs, such a characterization is sometimes
prevented for LTSs with infinitely many states, because it may happen that an image-
finite LTS may originate a not image-finite⇒′′ relation (see, e.g., Figure 2.22, which
is the relation used in the definition of H.

Exercise 2.94. LTS minimization can be performed also w.r.t. weak bisimilarity ≈.
Consider the LTSs in Figure 2.26. First compute their associated abstract LTSs, ac-
cording to Exercise 2.68, and then minimize these abstract LTSs w.r.t. strong bisim-
ulation. The resulting minimum LTS has three states only. �



Chapter 3

CCS: A Calculus of Communicating Systems

Abstract The process calculus CCS for describing reactive systems is introduced.
Its syntax is defined, as well as its operational semantics in terms of labeled transi-
tion systems. Some subcalculi are singled out that possess some specific interesting
expressiveness properties. It is shown that CCS is Turing-complete by offering an
encoding of Counter Machines into CCS. As a byproduct, all the behavioral equiv-
alences of interest are undecidable over the class of CCS processes, even if they are
decidable over some subcalculi.

3.1 A Language for Describing Reactive Systems

In this chapter we present the process calculus CCS (acronym of Calculus of Com-
municating Systems), proposed by Milner in 1980 in his seminal book [Mil80] and
revisited in [Mil89, Mil99]. Many other process calculi have been proposed in the
literature to describe reactive systems, e.g., ACP [BK84a, BW90, BBR10], CSP
[Hoa85, Ros98], and Lotos [BoBr87, BLV95]. The main reason for choosing CCS
is its deep simplicity, due to a good choice of intuitive operators, and also because
it has been extended smoothly to include other features, such as mobility with the
π-calculus [MPW92, Mil99, SW01] and atomicity with Multi-CCS (see Chapter 6).

Why do we want a language for expressing reactive systems? There are at least
four good reasons for defining a process calculus: linguistic support for describing
succinctly objects of the semantic model, support for compositional modeling and
reasoning, support for equational reasoning, as well as support for early prototyping
of the model.

• Linguistic support: In the previous chapter we have shown models of reac-
tive systems based on a labeled transition system representation. However, these
models are not given very easily, as we have to draw explicitly the whole state
space. Except for relatively small systems, a graphical representation by LTS is
laborious; indeed, real-world systems easily have thousands (sometimes millions
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82 3 CCS: A Calculus of Communicating Systems

or even billions) of states, which makes drawing them practically impossible. In
order to be able to describe a complex system, we would prefer a textual (i.e., lin-
ear), implicit representation as a term in some process language. We would like
to develop a language, and an associated semantics in terms of labeled transition
systems, so that, given a term of the language, the semantics produces automati-
cally an LTS representation of the behavior of the system described by that term.
For instance, the LTS in Figure 2.2 can be represented textually as the following
process definition:

A
de f
= coin.coffee.A

where A is a process constant (i.e., a name for a process),
de f
= is the special symbol

that means “is defined as” and coin.coffee.A is the code meaning that first A can
accept a coin in input, then it can deliver a coffee in output, and in doing so,
it returns to its initial state A. (The operator a.p is called action prefixing, and
determines a sequentialization of action a before process p starts.)
In some cases the state space of a reactive system may be even infinite and so it
cannot be built in a finite amount of time: see, e.g., the semi-counter in Figure
2.7(b). We will see how to model in CCS such a system with a parametric def-
inition that, however, involves an unbounded number of process constants (see
Example 3.1); interestingly, such a process can be proved bisimulation equiva-
lent to a simple CCS process defined by means of just one constant (see Example
3.12 in Section 3.4.4), so that the infinite LTS of a semi-counter is succinctly
represented, up to bisimilarity, by a finite term.

• Compositionality: Another good reason to develop a language for describing re-
active systems is that it opens the way to compositional modeling and reasoning.
When a complex system is to be modeled, it is often convenient to identify the se-
quential subcomponents of the system, to model these subcomponents separately
in order to reason on each of them independently of the other components, and
then, possibly, to generate the complete model by composition of the individual
models in order to analyze global properties of the system.
As an instance of the kind of analyzes that are possible by compositionality,
suppose a system is described by the CCS process term p1 | p2, where p1 and p2
are two processes that are composed in parallel by means of the parallel operator
| . It often happens that the compound system p1 | p2 satisfies a certain property if
this property holds for the constituents p1 and p2. As an instance of a property of
this form, consider “the process always terminates”. Hence, instead of checking
this property against the large state space of the compound system, we can just
check if this holds for the two smaller state spaces of the constituents. In general,
assuming that the state space of each process pi (for 1 ≤ i ≤ n) is composed of
ten states, we will see that the state space of p1 | p2 | . . . | pn is composed of 10n

states: hence, checking the property on the compound system is exponential in
the number of components, while with a compositional reasoning, it reduces to
checking n times, the property on a system with ten states (linear complexity).
For instance, when checking the equivalence between two composite systems,
say p1 | p2 and q1 |q2, it might be more convenient to check separately if p1 is
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a a b
0 a.b.0a.0 0 b.0 0

(a) (b) (c)

Fig. 3.1 The three LTSs for 0, a.0, and a.b.0

equivalent to q1, as well as if p2 is equivalent to q2, instead of considering the two
large global state spaces, because when the equivalence is preserved by parallel
composition (which is indeed the case for most equivalences, as we will see in
Chapter 4), then we are sure that p1 | p2 and q1 |q2 are equivalent, too.

• Equational reasoning: One further good reason for developing a process calcu-
lus to describe reactive systems is that it allows for the definition of equational
theories (usually called axiomatizations) for behavioral equivalences.
So far, two reactive systems can be proved bisimulation equivalent by checking
that there exists a bisimulation over the state spaces of the two LTSs; but now, as
the two LTSs are actually generated by suitable terms, say p1 and p2, of the same
language, this can be also proved with a purely syntactical argument by showing
that the process term p1 can be equated with the process term p2 by means of
some equational deductive proof. This is the subject of Section 4.3.

• Early prototyping: Since CCS is executable, we can perform simple forms of
analysis of the model by “simulating” its behavior. This is the so-called early
prototyping: the specification (i.e., the model) is executable and so it can be ana-
lyzed before being implemented. As a matter of fact, by running the CCS process
representing the model, we can extract useful pieces of information about the
model, e.g., by testing its behavior under specific circumstances. Model testing
is a widespread technique in software engineering and this technique is available
also for CCS-based model descriptions because CCS is executable.

3.1.1 An Informal Overview of CCS Operators

Now we give an informal, intuitive overview of CCS operators, as well as of the
semantics of CCS process terms, by showing examples of LTSs that are associated
by the semantics to such terms. The semantics generates LTSs such that the states
are the terms of the language.

Inaction: The simplest process one can define in CCS is 0 (called nil), the empty
process. Semantically, it is represented by an LTS with one state only: the dead-
locked process term 0 itself (see Figure 3.1(a)).

Action prefixing: If we prefix 0 with an action a, we get a.0, which is a process
that can perform a and then stops. Its associated LTS is depicted in Figure 3.1(b).
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A
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(c)

Fig. 3.2 Three simple recursive LTSs

In general, the action prefixing operator takes one action μ (which can be an input
a, an output ā, or the invisible τ) and a process p to build the process μ.p that
can execute μ first and then continue with the residual p. This is the basic form of
sequentialization of actions available in CCS.

Exercise 3.1. Define a process term generating an LTS isomorphic to the one in
Figure 2.12(b). (Hint: See Figure 3.1(c).) �

With the empty process and the action prefixing operator, one can only build
processes that always terminate. For instance, it is not difficult to see that an LTS
isomorphic to the one in Figure 2.4 can be described by a term built with only these
two operators:

coin.coffee.coin.coffee . . .coin.coffee.0

To describe nonterminating processes we need the following construct.

Process constant: If we want to give a name to some process p, we may use a
process constant (usually denoted by a capital letter such as A,B, . . .) equipped with

its defining equation A
de f
= p. For instance, B

de f
= a.b.0 denotes the finite process B

that can perform the sequence ab, and C
de f
= 0 denotes another empty process. Given

A
de f
= p, we sometimes say that p is the body of the defined constant A.
Process constants are very important because they provide the means for express-

ing nonterminating behavior when the constant to be defined occurs inside its body.
For instance,

A
de f
= a.A

denotes the one-state cyclic LTS in Figure 3.2(a). Of course, one can define mutu-

ally recursive constants such as C1
de f
= coin.C2 and C2

de f
= coffee.C1 (see Figure 3.2(c)

and the original Figure 2.2). More generally, one can define a system of mutually
recursive constants (which may even be infinitely many).

Exercise 3.2. Provide the definition of the process constant B corresponding to the
LTS in Figure 3.2(b). �

Choice: With the empty process, the action prefixing operator and the process con-
stants, we can only build terms whose associated LTSs are such that each state



3.1 A Language for Describing Reactive Systems 85

V M ask-esp.V M1 +ask-am.V M2

ask-esp

ask-am

esp-coffee

V M1

V M2

am-coffee

coin

Fig. 3.3 A polite vending machine

has at most one outgoing transition. When we need to express the choice among
some alternative actions, we use the choice operator +. For instance, the CCS term

a.A+ b.B, where A
de f
= 0 and B

de f
= 0, would generate an LTS isomorphic to the one

in Figure 2.9(c).

Exercise 3.3. Try to figure out what is the LTS associated to a.0+ b.0 (which is
not isomorphic to the one in Figure 2.9(c), as it has only two states), as well as to
a.b.0+b.a.0. �

In general, p1 + p2 is a process that can perform either an action from p1 (and
then continues with the residual of p1), or an action from p2 (and then continues
with the residual of p2): in any case, the other alternative is discarded. As a further
example, let us consider the LTS in Figure 3.3, which is a CCS analogous to the
LTS in Figure 2.3. The CCS process term for it is VM, defined as follows:

VM
de f
= coin.(ask-esp.VM1 + ask-am.VM2)

VM1
de f
= esp-coffee.VM VM2

de f
= am-coffee.VM

Exercise 3.4. Try to figure out what is the LTS corresponding to the vending ma-

chine specified by the term VM′ de f
= coin.(ask-esp.coffee.VM′ + ask-am.coffee.VM′).

(Hint: Note that after the selection of the beverage, the residual coffee.VM′ is the

same.) (Remark: Note that when a constant B is defined as B
de f
= a.(b.B+ c.B), we

cannot factorize as B
de f
= a.(b+ c).B, because b+ c is not an action and so not a

prefix.) �

Exercise 3.5. Define a CCS term corresponding to the LTS in Figure 2.10 (impolite
vending machine). (Hint: Solution is in Exercise 3.9.) �

Exercise 3.6. Discuss whether a CCS term for the LTS in Figure 2.13(b) may be

A
de f
= a.(b.0+b.c.A), with A corresponding to state q4. �

With 0, action prefixing, choice and a finite number of process constants, we
can define any finite-state LTS (i.e., with finitely many states and transitions). To be
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more precise, in Section 3.4.2, we prove that the operational semantics associates a
finite-state LTS to any term built with these operators and, conversely, that for any
finite-state LTS TS we can find a process term p built with these operators only, such
that its semantics is an LTS isomorphic to TS.

If one wants to define more general LTSs (i.e., with infinitely many states), one
has either to introduce an unbounded number of process constants, or to add further
operators to the calculus.

Example 3.1. (Semi-counter) A semi-counter can be represented by means of an
unbounded number of constants SCounti for i = 0,1, . . .:

SCount0
de f
= inc.SCount1

SCountn
de f
= inc.SCountn+1 +dec.SCountn−1 n > 0

The LTS for SCount0 is isomorphic to the one (with infinitely many states) reported
in Figure 2.7(b), where each process constant SCounti is mapped to its correspond-
ing state qi, for any i ∈ N. �

CCS offers two important additional operators: parallel composition and restric-
tion. Parallel composition is a binary, infix operator | that applied to p1 and p2
gives the term p1 | p2. Restriction is an operator that takes an input action, say a, and
a process, say p, and generates the term (νa)p. These operators are called static be-
cause, as opposed to the dynamic ones (namely, action prefixing and choice), they
do not disappear, but rather persist, while computation proceeds. These operators
are particularly useful when modeling a complex system as a suitable composition
of many simpler components.

Parallel composition: Two processes p1 and p2 can run in parallel when we com-
pose them with the operator of parallel composition: p1 | p2. This means that the two
can run asynchronously (at unpredictable relative speed) or interact by performing
complementary input/output actions synchronously (so-called handshake synchro-
nization). For instance, the LTS for a.0 | ā.0 is depicted in Figure 3.4(a), where a
stands for an input and ā for its complementary output. When an interaction takes
place, the visible effect is null, that is no further interaction is possible: we repre-
sent this fact by means of the invisible action τ . Hence, synchronization is strictly
binary in CCS. However, note that synchronization between the two subprocesses
is not mandatory: action a can also be performed asynchronously to represent its
willingness to be an input for some output coming from the external environment.

Exercise 3.7. Guess the expected LTS for a.b.0 | ā.0. Try to draw also the LTS for

(a.b.0+a.c.0) | ā.0 as well as the one for A |B, where A
de f
= a.b.A and B

de f
= ā.B. �

Restriction: Suppose one wants to make action a private for a process p; this can be
obtained by means of the restriction operator: (νa)p declares that action a cannot be
offered for interaction to any process in parallel with p, and that — within p — a can
only be used for internal synchronization. For instance, the LTS for (νa)(a.0 | ā.0)
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(a) (b) (c)

(νa)(a.0 |a.0)
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(νa)(0 |0)
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a.0 |0 (νa)(a.0 |a.0) |0

(νa)(a.0 |a.0) |a.0
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(νa)(0 |0) |0

(νa)(0 |0) |a.0

Fig. 3.4 The three LTSs for a.0 | ā.0, (νa)(a.0 | ā.0) and (νa)(a.0 | ā.0) |a.0

is depicted in Figure 3.4(b), where the only available transition is due to an internal
synchronization on a. Note that actions not under the scope of restriction can be
freely executed: the LTS for process (νa)(a.0 | ā.0) |a.0 is depicted in Figure 3.4(c).
Now action a executed by the rightmost subprocess a.0 is semantically different
from the restricted action a executed by the leftmost a.0! The latter can synchronize
with the restricted action ā, the former cannot.

Exercise 3.8. Continuing Exercise 3.7, draw the expected LTSs for the three CCS

terms (νa)(a.b.0 | ā.0), (νa)((a.b.0+a.c.0) | ā.0) and (νa)(A |B), where A
de f
= a.b.A

and B
de f
= ā.B. �

Remark 3.1. (Static operators and infinite state space) When the operator of par-
allel composition or restriction occurs inside the body q of a recursively defined

constant A, that is A
de f
= q, then the state space for A may contain infinitely many

states. For instance, the LTS for constant A, defined as A
de f
= (νb)(a.A), is isomor-

phic to the one on the right of Figure 2.17, where A corresponds to state q0, (νb)A
to state q1, (νb)((νb)A) to state q2, and so on. On the contrary, note that the LTS for

(νb)B with B
de f
= a.B (i.e., restriction does not occur in the body of B) is isomorphic

to the one on the left of Figure 2.17, where (νb)B corresponds to q. �

Remark 3.2. (Competition) With parallel composition and restriction we can ex-
press competition for the use of some shared resource, hence expressing a form of
choice. For instance, in process (νd)(a.(d.b.0 |d.c.0) | d̄.0) the shared output d̄ can
be synchronized with only one of the two inputs d. The resulting LTS is isomorphic
to the one in Figure 2.25(a), where the system, after a, makes an internal choice
(i.e., not driven by the environment) between b and c. �

Exercise 3.9. As a further example, if we want to model the fact that two users, say
U1 and U2, are competing for the use of the vending machine V M specified as in
Figure 3.3, we can write

Sys
de f
= (νL)((U1 |U2) |V M)
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where L = {coin,ask-esp,ask-am,esp-coffee, am-coffee} and (νL) is a shorthand
notation for the application of the restriction operator over all the actions in L. As-
sume that the two users are defined as follows:

U1
de f
= coin.ask-esp.esp-coffee.milk.U1 and U2

de f
= coin.ask-am.am-coffee.milk.U2.

Argue that, at the beginning, only one of the two users can insert the coin in the
vending machine (synchronization-driven choice), and that, after receiving the se-
lected beverage and milk, the competition between the two users is still possible.
Moreover, argue that Sys cannot deadlock.

Now consider the impolite vending machine of Figure 2.10 which is represented
by the CCS process term:

IVM
de f
= coin.ask-esp.IVM1 + coin.ask-am.IVM2

IVM1
de f
= esp-coffee.IVM IVM2

de f
= am-coffee.IVM.

Argue that the compound system Sys′de f
= (νL)((U1 |U2) | IVM) can deadlock. �

Continuing Exercise 3.9, suppose that now U1 wants to have private access to VM
so that U2 is not allowed to interact with VM. This can be obtained by restricting the
scope of the actions that are used for interaction:

Sys′′de f
= (νL)(U1 |VM) |U2.

Of course, U2 is allowed to interact with any other vending machine in order to
get American coffee. For instance,

Sys′′′de f
= (νL)(U1 |VM) |(νL)(U2 |VM)

represents a system where each user has a private coffee machine.

Remark 3.3. (Flow-graph or interface) The LTS associated to a CCS term denotes
its dynamic bahavior. However, we may be interested also in a representation of
the static interconnection architecture of a CCS term, called flow-graph [Mil89] or
interface. The flow graph for a process term p is completely determined by the static
operators occurring in p.

Each sequential subprocess pi is represented by a circle with the name pi inside,
and its interaction ports are represented by small blobs on its circumference, each
labeled with the name of an action pi can perform. For instance, the interface for the
vending machine VM is represented in Figure 3.5(a).

When composing in parallel two sequential subprocesses, say p1 and p2, we put
together the two interfaces and, additionally, we connect their complementary ports
to represent that a corresponding communication channel has been established. For
instance, when composing VM in parallel with U1, we get the interface in Figure
3.5(b). Similarly, Figure 3.5(c) describes the interface of (U1 |VM) |U2. Note that a
port, e.g., coin, may be connected to several different complementary ports, e.g., all
those ports labeled with coin.

When restricting action a over the parallel composition of p1 and p2 (i.e.,
(νa)(p1 | p2)), we take the interface of p1 | p2 and then hide the ports for a and
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Fig. 3.5 The flow-graphs for the vending machine VM in (a), for U1 |VM in (b), for (U1 |VM) |U2
in (c), and for the private use of the VM by user U1 in (d)

a, to represent these ports as no longer being available for interaction with the ex-
ternal environment; nonetheless, the already established communication channels

are preserved. For instance, the interface for Sys′′de f
= (νL)(U1 |VM) |U2 is depicted

in Figure 3.5(d), where all the channels between U1 and VM are made private by
deleting the names of the ports involved. From the point of view of U2, the only
visible activity of U1 is on the port milk. �

Remark 3.4. (Sequentialization) Restriction and parallel composition can be used
together to express also some form of sequentialization, more general than ac-
tion prefixing. For instance, process (νd)(a.(b.d.0+ c.d.0) | d̄.q) prescribes that q
be activated by means of a synchronization on d only after the left subprocess
a.(b.d.0+ c.d.0) has performed either ab or ac. The example can be adapted to
the case where the process that has to terminate in order to activate q is composed
of some parallel components; e.g., take (νd)(a.(b.d.0 |c.d.0) | d̄.d̄.q), where q is ac-
tivated only after both components have terminated properly by synchronizing on d.
This basic idea can be generalized to define a sequentialization operator p ·q which
states that q can start only after p has properly terminated its execution. Full details
about this additional operator will be given in Section 5.4. �
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3.1.2 Formal Syntax

As in Definition 2.1, let L be a denumerable set of names, ranged over by a,b, . . .,
usually called the input actions. Let L be the set of co-names, ranged over by
a,b, . . ., usually called the output actions. The set L ∪L , ranged over by α,β , . . .,
is the set of visible actions. With α we mean the complement of α , assuming that
α = α . Let Act = L ∪L ∪{τ}, such that τ �∈ L ∪L , be the set of actions (or
labels), ranged over by μ . Action τ denotes an invisible, internal activity.

Let Cons be a denumerable set of process constants, disjoint from Act, ranged
over by A,B,C, . . ., possibly indexed. Sometimes, acronyms or mnemonic names
are used for process constants, such as VM for a vending machine, or SCounti for a
semi-counter holding value of i.

The CCS process terms are generated from actions and constants by the follow-
ing abstract syntax, expressed in Backus-Naur Form (BNF):

p ::= 0
∣∣ μ.q

∣∣ p+ p sequential processes
q ::= p

∣∣ q |q ∣∣ (νa)q
∣∣ C processes

where μ ∈ Act, a ∈L and C ∈ Cons, and where we are using two syntactic cate-
gories: p, ranging over sequential processes (i.e., processes that start sequentially),
and q, ranging over any kind of processes.

Of course, this simple syntactic presentation of CCS process terms — which
is very useful when defining the operational semantics (defined by structural in-
duction on the abstract syntax) — is ambiguous, and so we make use of brackets
whenever necessary. For instance, the derivable term a.b.0+ c.0 is an ambiguous
linear description as it may represent either (a.(b.0))+ (c.0) or a.((b.0)+ (c.0)),
which originate two very different abstract syntax trees.

Remark 3.5. (Notational convention) In order to avoid the use of too many paren-
theses when writing a process in an unambiguous way, we assume that the operators
have a different binding strength, by giving them a different priority in parsing; in
particular, choice has lowest priority, then parallel composition, followed by action
prefixing and finally by restriction:

(νa) > μ. > | > +

Therefore, a.b.0+c.0 denotes the term (a.(b.0))+(c.0); analogously, (νa)b.c.0 |a.0
denotes the term ((νa)(b.(c.0))) |(a.0). Similarly, b.(νa)c.0+ a.b.0 represents the
term (b.((νa)(c.0)))+(a.(b.0)).

As we will prove in Section 4.1.1 that both parallel composition and choice are
associative w.r.t. all the behavioral equivalences we have studied in Chapter 2, we
sometimes use the n-ary version of these operators. So we write p1 + p2 + . . .+ pn,
shortened as Σ n

i=1 pi. Similarly, we write p1 | p2 | . . . | pn, shortened as Π n
i=1 pi. We

also write Σi∈I pi as well as Πi∈I pi, meaning that they denote the empty process 0

when I is empty. We will also prove that 0 is the neutral element for + w.r.t. all
the behavioral equivalences; hence, we often omit occurrences of 0 summands; e.g.,
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(0+ p)+0 is simply denoted as p. Using this alternative n-ary choice operator and
the assumption of absorption of useless 0 summands, the CCS syntax can be more
succinctly denoted as

p ::= Σ j∈J μ j.p j
∣∣ p | p ∣∣ (νa)p

∣∣ C

with the assumption that J is finite and Σ j∈J μ j.p j = 0 when J = /0. The sequential
process terms are those of the form Σ j∈J μ j.p j.

Another syntactic simplification is for restriction: (νa1)(νa2) . . .(νan)p is more
succinctly denoted as (νa1a2 . . .an)p or even as (νL)p where L = {a1,a2, . . . ,an}.
Finally, we sometimes omit trailing 0’s, so that, for instance, a.0 |b.0 is sometimes
denoted as a |b. �

Let us examine in detail the syntax of sequential processes (i.e., processes that
start sequentially).

Process μ.q is sequential because it starts with a unique possible initial action,
even if, after μ , process q can be a parallel one.

Note that p + p′ is the sequential process obtained by the alternative compo-
sition of sequential processes p and p′; hence we are restricting the use of + to
the so-called guarded sum. For instance, a term of the form (a.0 |b.0) + c.0 is
not legal because the first summand is not sequential. Similarly, the illegal term
(a.0 |b.0) + (c.0 |d.0) represents a distributed choice, where the execution of a
should be able, in a single atomic transition, also to kill the two parallel processes
c.0 and d.0, while keeping the sibling b.0. The limitation to guarded sum only is
inessential for expressiveness, as we are able to describe all LTSs anyway.1 More-
over, from a practical point of view, it seems that the distributed choice mechanism
is not physically implementable. Indeed, we consider it much more realistic that a
choice can be performed only by sequential processes, locally.

We have listed a constant C in the category q not only because C can be used as a
component of a parallel system, but also to indicate that the body q′ in the defining

equation for C, C
de f
= q′, is a generic process of type q.

With abuse of notation, in the following, when clear from the context, we will
often use p to denote any kind of process term, not only sequential ones.

Exercise 3.10. Check that none of the following terms is a CCS process term:

a.(A+B) (b.c.0+d.0).a.0 (νa)(b.0)+ c.0 (ντ)(a.τ.0)
(A |c.0)+a.B A+(a.B) 0.a.0 (a.A+ ā.0).B �

We want to compute the set Const(p) of process constants used in a CCS process
term p. This is important as we usually restrict our attention to those process terms
that use only finitely many constants.

1 To be precise, we will see that all finitely-branching LTSs can be defined by CCS terms with
guarded sum, possibly with the help of infinitely many constants (see Theorem 3.2 in Section 3.4.2
and Exercise 3.66 in Section 3.4.6).
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Definition 3.1. (Const(p): Set of constants used by p) With Const(p) we denote
the least set of process constants such that the following equations are satisfied:

Const(0) = /0 Const(p1 + p2) = Const(p1)∪Const(p2)
Const(μ.p) = Const(p) Const(p1 | p2) = Const(p1)∪Const(p2)

Const((νa)p) = Const(p) Const(A) =

{
{A} if A undef.

{A}∪Const(q) if A
de f
= q

A term p such that Const(p) is finite is called finitary, as it uses finitely many
process constants only. �

Example 3.2. Let us consider the simple vending machine specified as follows:

C1
de f
= coin.C2 C2

de f
= coffee.C1

It is not difficult to see that

Const(C1) = {C1} ∪ Const(coin.C2)
= {C1} ∪ Const(C2)
= {C1,C2} ∪ Const(coffee.C1)
= {C1,C2} ∪ Const(C1)

so that the least set Const(C1) satisfying this recursive equation is {C1,C2}.
As a further example, consider process A0, with the family of process constants

Ai
de f
= ai.Ai+1 for i ∈ N; it is easy to observe that

Const(A0) = {A0}∪Const(a0.A1) = {A0}∪Const(A1)
= {A0,A1}∪Const(a1.A2) = {A0,A1}∪Const(A2)
= {A0,A1,A2}∪Const(a2.A3) = {A0,A1,A2}∪Const(A3)
= . . .

so that the limit of this increasing sequence of finite sets is Const(A0) = {Ai
∣∣ i∈N},

which is an infinite set. �

The computation of Const(p) may be much more intricate than in the examples
above; a formal treatment is outside the scope of this introductory text. However,
observe that, when p is finitary, there is an obvious algorithm to compute Const(p):
it is enough to remember all the constants that have been already found while scan-
ning p, in order to avoid applying again function Const over their bodies. This can
be achieved by the following auxiliary function δ , which has, as an additional pa-
rameter, a set I of already known constants:

δ (0, I) = /0 δ (p1 + p2, I) = δ (p1, I)∪δ (p2, I)
δ (μ.p, I) = δ (p, I) δ (p1 | p2, I) = δ (p1, I)∪δ (p2, I)

δ ((νa)p, I) = δ (p, I) δ (A, I) =

⎧⎪⎨
⎪⎩

/0 A ∈ I,
{A} A �∈ I∧A undef.

{A}∪δ (p, I∪{A}) A �∈ I∧A
de f
= p
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Then, for any finitary term p, Const(p) = δ (p, /0), where the additional parameter
is the empty set because so is the set of process constants we assume to know at the
beginning of the scanning of p.

Definition 3.2. (Defined constant and fully defined term) A process constant A is

defined if it possesses a defining equation: A
de f
= p. A process term q is fully defined

if all the constants in Const(q) are defined. �

The request that a term is fully defined is due to the fact that its semantics cannot
be fully given otherwise. For instance, term a.A can execute a, but after that we do
not know what to do if A is not equipped with a defining equation.

Definition 3.3. (Guarded constant) An occurrence of a constant A in a process q
is strongly guarded in q if such occurrence of A occurs within a prefixed subprocess

μ.q′ of q. Constant A, defined as A
de f
= p, is guarded if each occurrence of A in p is

strongly guarded in p and each occurrence of any other constant B occurring in p is
either strongly guarded in p or simply guarded. �

Constant B, defined as B
de f
= b.B, is guarded because B is strongly guarded in its

body b.B; similarly, constant A, defined as A
de f
= a.A |B, is guarded because A oc-

curs strongly guarded in its body a.A |B and B, defined above, is guarded. On the

contrary, constant C
de f
= a.0 |C is not guarded.

A bit of care is needed because the definition of guarded constant is recursive.

For A
de f
= p, it may happen that some of the not strongly guarded occurrences of B in

p may have not strongly guarded occurrences of A in their definition body, so that
we cannot derive that A (as well as B) is guarded. For instance, constants D and F

defined as D
de f
= F,F

de f
= D are not guarded, and a naı̈ve attempt to prove that they are

guarded would loop forever.

Exercise 3.11. Given A
de f
= a.A |B and B

de f
= b.B |A, argue that neither A nor B is

guarded. �

Exercise 3.12. Check which of the following constants is guarded:

A
de f
= (νa)(b.0 |A) B

de f
= b.B+a.A

C
de f
= c.C+d.D D

de f
= 0+ c.C

�

The request that a term is guarded is not always necessary, and is done mainly
for simplicity. Some good reasons for using this restriction are listed in Section 3.3.
In particular, Proposition 3.3 states that a guarded process term generates a finitely-
branching LTS; moreover, Section 3.3.2 shows that guardedness is necessary to get
uniqueness of solutions of process equations modulo bisimulation equivalence. As

an instance of such arguments, we will see in Section 3.3.1 that C
de f
= a.0 |C generates

an infinitely-branching (actually, not even image-finite) LTS, i.e., a form of LTS that
may be considered pathological.
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Definition 3.4. (CCS processes) The set P of CCS processes contains those pro-
cess terms p where each constant A∈ Const(p) is defined and guarded. 2 With abuse
of notation, P will be ranged over by p,q, possibly indexed. A CCS process p is
finitary if Const(p) is finite. �

Consider Exercise 3.12. Observe that B is a guarded constant, but not a CCS
process, because A ∈ Const(B) is not guarded. Consider Example 3.2: VM′′ is a
finitary process, while b.A0 is not. We will usually restrict our attention to finitary
processes, as only these are equipped with a finite syntactic definition.

Exercise 3.13. Check which of the following CCS terms is a CCS process in P ,

assuming that A
de f
= a.A, B

de f
= b.0 |B and C

de f
= a.B:

a.0+0 a.C |0 a.A |b.B
(νa)(ā.0 |A) a.(νa)(b.a.0 | ā.b̄.B) (νa)C �

3.2 Structural Operational Semantics

The next step is to define the labeled transition system for the whole language CCS.
This is, of course, an infinite LTS, for the number of states, the number of labels
and the number of transitions. The states are actually the CCS processes: a state
p performs the transitions corresponding to the actions process p prescribes. A fi-
nite implicit representation of this infinite, countable set is given by means of the
grammar (in Backus-Naur Form) outlined in the previous section. More difficult is
finding a finite implicit representation of the infinite, countable set of transitions.
For this, we resort to Plotkin’s technique called Structural Operational Semantics
(SOS for short) [Plo04a, Plo04b], according to which the transitions are defined by
means of an inference system composed of axioms and rules whose definition is
syntax-driven.

A typical SOS operational rule has the form
premises

conclusion
side condition

where premises is the conjunction of zero (and in such a case the rule is called
an axiom) or more transitions, conclusion is one transition and side condition is a
predicate that must be true for rule applicability.

Definition 3.5. The CCS labeled transition system C is the triple (P,Act, →)
where →⊆ P × Act ×P is the least transition relation generated by the axiom
and rules in Table 3.1. �

Let us comment on the rules in Table 3.1.

2 Note that a guarded constant is also defined, so that we can more simply require that any constant
be guarded.
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(Pref)
μ.p μ−→ p

(Cons)
p

μ−→ p′

C
μ−→ p′

C
de f
= p

(Sum1)
p

μ−→ p′

p+q
μ−→ p′

(Sum2)
q

μ−→q′

p+q
μ−→q′

(Par1)
p

μ−→ p′

p |q μ−→ p′ |q
(Par2)

q
μ−→q′

p |q μ−→ p |q′

(Com)
p α−→ p′ q α−→q′

p |q τ−→ p′ |q′
(Res)

p
μ−→ p′

(νa)p
μ−→ (νa)p′

μ �= a, ā

Table 3.1 Structural Operational Semantics: syntax-driven axiom and inference rules

(Pref) is an axiom, as it has no premises; it declares that for any action μ and for
any process p, state μ.p can perform a transition labeled μ reaching state p. Note
that the occurrence of the prefix disappears in the reached state (it is “consumed”);
for this reason this operator is called dynamic.

Rule (Sum1) clarifies why we say that the rules are defined by induction on the
structure of terms; this rule states that, in order to derive a transition from state p+q,
we have to solve first the simpler problem of finding a transition from p: if p

μ−→ p′,
then p+ q

μ−→ p′. Rule (Sum2) is symmetric. The two rules for choice state that
p+ q can do whatever p or q can do. Note that a summand, say p, can be chosen
only if p can move. For instance, in a.b+0, summand 0 cannot be chosen as it does
not contribute with any behavior. Note that, when a choice is made, the alternative is
disregarded: indeed, the occurrence of the choice operator disappears in the reached
state (it is “consumed”); for this reason this operator is called dynamic.

(Cons) is a rule that states that a constant C can do what is prescribed by the body

of its defining equation: if C
de f
= p and p

μ−→ p′, then C
μ−→ p′. This is the only rule

which is not defined by structural induction.
(Par1) and (Par2) are the rules describing the asynchronous execution of an action

by one of the two subcomponents of a parallel process. Specifically, (Par1) states that
if p

μ−→ p′, then p |q μ−→ p′ |q. Note that q is not discarded by the transition, and for
this reason the operator is called static. (Par2) is symmetric. These two rules together
state that p |q can do whatever p and q can do, possibly interleaving their executions.
Rule (Com) describes how interaction can take place: if the two subcomponents
can execute complementary input/output actions, then a synchronization is possible
and the resulting transition, labeled τ , cannot be used for further interaction with
another parallel component, as the premise of rule (Com) requires that the transition
be labeled with a visible action. Hence, synchronization in CCS is strictly binary
(point-to-point communication).
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Rule (Res) explains that the role of a restriction is to bind a name, so that it is not
freely available for the external environment. Clearly, (νa)p impedes any transition
labeled a or ā that p might produce, while having no effect on the other transitions
of p, in particular on possible synchronizations (labeled τ) along channel a between
parallel subcomponents of p. Restriction is a static operator, too.

Observe that there is no operational rule for the nil process 0, hence no transition
can have 0 as its source. In other words, 0 is a deadlock.

Example 3.3. (How to compute transitions?) How can we compute, by means of
the inference rules, the transitions that can be performed by a process? As a simple
example, consider the CCS process a.b.0+b.a.0. The two possible initial transitions
are a.b.0+b.a.0 a−→b.0 and a.b.0+b.a.0 b−→a.0, which can be proved as follows:

(Pref)
a.b.0 a−→b.0(Sum1)

a.b.0+b.a.0 a−→b.0

(Pref)

b.a.0 b−→a.0(Sum2)

a.b.0+b.a.0 b−→a.0

These are proof-trees, with (instantiations of) axioms as leaves and the theorems
(i.e., the transitions to be proved) as their roots. Observe that the proof is by induc-
tion on the shape of the term: as the top-level operator in a.b.0+b.a.0 is +, we have
to resort to either (Sum1) or (Sum2). Consider the first proof-tree, which makes use
of rule (Sum1). We have first to match the source state in the conclusion of that rule,
namely p+ q, with a.b.0+ b.a.0, hence binding p to a.b.0 and q to b.a.0. Then, in
order to satisfy the premise of that rule, namely p

μ−→ p′, we are asked to find a
transition with source p = a.b.0. Since in a.b.0 the top-level operator is action pre-
fixing, we must use axiom (Pref), stating that μ.p μ−→ p. If we bind μ to a and p
to b.0 (where the new instances of μ and p for this application of the rule are not
to be confused with the previous ones), then, by this instance of axiom (Pref), we
can derive transition a.b.0 a−→b.0. Therefore, the premise of rule (Sum1) we were
looking for is now ready — a.b.0 a−→b.0 — binding not only p to a.b.0, but also μ
to a and p′ to b.0. Finally, the conclusion — a.b.0+b.a.0 a−→b.0 — can be derived
by the application of the rule, because the various p, q, μ and p′ occurring in the
rule have been all suitably instantiated.

As a more complex example, see the following proof tree:

(Pref)
a.c.0 a−→ c.0

(Pref)

ā.0 ā−→0(Sum1)

ā.0+ c.0 ā−→0
(Com)

a.c.0 |(ā.0+ c.0) τ−→ c.0 |0
(Res)

(νa)(a.c.0 |(ā.0+ c.0)) τ−→ (νa)(c.0 |0)
where induction is performed on the structure of the more elaborate process term
(νa)(a.c.0 |(ā.0+c.0)). First, rule (Res) is used, as restriction is the top-level oper-
ator, with the effect of binding the (formal) restricted action a in the rule to the (ac-
tual) restricted action a, and the formal p in the rule to the actual a.c.0 |(ā.0+ c.0).
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Since the premise of rule (Res) requires a transition from p = a.c.0 |(ā.0+ c.0), we
have to single out the top operator of p, which is parallel composition, and use one of
the three SOS rules for it. In this proof, we use rule (Com), hence binding p (the new
one for this application of the rule) to a.c.0 and q to ā.0+ c.0. Rule (Com) requires
two premises: one transition from p = a.c.0 and one from q = ā.0+ c.0. For p, the
top-level operator is action prefixing and so we can apply axiom (Pref), as already
discussed in the previous example, deriving a.c.0 a−→ c.0. For q, the top-level oper-
ator is + and so we can use two different rules; in this proof we use (Sum1), and the
derivation of ā.0+c.0 ā−→0 is similar to the case discussed in the previous example.
Summing up, the two premises of rule (Com) have been derived; the conclusion of
that rule, a.c.0 |(ā.0+c.0) τ−→ c.0 |0, can be derived as well and used as the premise
for rule (Res), thus deriving the “theorem” (νa)(a.c.0 |(ā.0+c.0)) τ−→ (νa)(c.0 |0),
because the side condition of rule (Res) is satisfied (τ is different from the restricted
action a).

Observe that if we had tried with rule (Par1) instead of (Com), we would end
in failure because p = a.c.0 can only execute a, which is then restricted, hence the
mandatory rule (Res) cannot be applied. On the contrary, if we had tried with rule
(Par2), then we may end in failure as above, if (Sum1) is used to select ā.0; or we
can derive another transition, namely (νa)(a.c.0 |(ā.0+ c.0)) c−→ (νa)(a.c.0 |0), if
(Sum2) is used instead. �

Exercise 3.14. Use the operational rules of Table 3.1 to prove that the following
transitions are derivable:

(νa)(a.c.0 |(ā.0+ c.0)) c−→ (νa)(a.c.0 |0) (a.0 | ā.0) |a.0 τ−→ (0 |0) |a.0
(νa)(c.0 |0) c−→ (νa)(0 |0) (a.0 | ā.0) |a.0 τ−→ (a.0 |0) |0 �

Exercise 3.15. Use the operational rules of Table 3.1 to prove that the following
transitions are not derivable:

(νc)(a.c.0 |b.0) τ−→ (νc)(c.0 |0) (νa)(a.0 | ā.0) a−→ (νa)(0 | ā.0)
(νc)(a.c.0 |b.c.0) b−→ (νa)(c.0 |c.0) (νa)(a.b.0 | ā.0) τ−→ (νa)(0 |0) �

Exercise 3.16. Use the operational rules to derive all the possible initial transitions
for the following CCS processes:

(νa)((a.c.0+a.b.0) | ā.0) (a.0 | ā.0) |a.0 (νa)(a.0 | ā.0) |a.0 �

It is clear that the SOS rules of Table 3.1 can be easily implemented in a declar-
ative programming language such as Prolog (see, e.g., [ClMe03]), in order to ob-
tain a simple sequential interpreter for CCS. As CCS is an executable specification
language, one can do early prototyping of CCS specifications in order to perform
simple analyses of the expected behavior. This can be done with the help of some
semi-automated tools, such as the Concurrency Workbench [CPS93, CWB].

We then observe that the operational semantics is well behaved, meaning that if
we move from a CCS process p in one step, reaching p′, then we are sure that also
p′ is a CCS process.
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Proposition 3.1. For any p ∈P , if p
μ−→ p′, then p′ ∈P .

Proof. It is enough to observe, by induction on the proof of p
μ−→ p′, that if p is a

CCS process term, then also p′ is a CCS process term. Additionally, we can prove
that Const(p′)⊆ Const(p), so that if p satisfies the guardedness condition, the same
holds for p′. �

Remark 3.6. (Notation) For any p ∈P , the reachable LTS from p (Definition 2.5)
is Cp = (Pp,sort(p), →p, p), where Pp is the set of states reachable from p,
sort(p) is the set of actions that can be performed by p (formally, sort(p) = {μ ∈
Act

∣∣ ∃p′.p−→∗ p′
μ−→ }) and →p is the restriction of the transition relation to

Pp× sort(p)×Pp. (Note that, by Proposition 3.1, any state q in Pp is a CCS
process.) E.g., the reachable LTS from a.0 |a.0 is depicted in Figure 3.4(a). �

The following obvious fact follows.

Proposition 3.2. For any p ∈ P , the LTS Cp = (Pp,sort(p), →p, p) reachable
from p is a reduced rooted LTS. �

Exercise 3.17. Use the operational rules to derive the portion of the CCS transition
system reachable from (a.0 | ā.0), (νa)(a.0 | ā.0) and (νa)(a.0 | ā.0) |a.0. Compare
the resulting LTSs with those in Figure 3.4. �

Exercise 3.18. Continuing Exercise 3.4, derive the LTS for the vending machine
VM′. Is it strongly bisimilar to the one in Figure 3.3? �

Exercise 3.19. Use the operational rules to derive the part of the CCS transition
system reachable from the following six states:

a.b.0+0 a.(b.0+ c.d.0) A
de f
= a.(b.A+ c.0)

a.(b.0+ c.d.0) | b̄.0 (νb)(a.(b.0+ c.d.0) | b̄.0) (νa)(B |C)

where B
de f
= a.B+ b.0 and C

de f
= ā.C + c.0. Observe that a.b.0+ 0 originates an LTS

isomorphic to the one in Figure 3.1(c). �

Exercise 3.20. Consider again Exercise 3.7. Now that the operational rules have
been provided, draw the LTSs for the CCS terms a.b.0 | ā.0, (a.b.0 + a.c.0) | ā.0,

A |B, where A
de f
= a.b.A and B

de f
= ā.B. Similarly, consider again Exercise 3.8. Draw

the LTSs for (νa)(a.b.0 | ā.0), (νa)((a.b.0+a.c.0) | ā.0) and (νa)(A |B). �

Exercise 3.21. Consider Remark 3.1. Draw the LTS for constant A, defined as
A

de f
= (νb)(a.A), and compare it with the one for (νb)B with B

de f
= a.B. �

Exercise 3.22. (Counting states) Recall that Pp denotes the set of processes reach-
able from p and that |J| is the cardinality of set J. Looking at the SOS rules, argue
that, if |Pp1 | = k1 and |Pp2 | = k2, then |Pp1+p2 | ≤ k1 + k2 + 13 and |Pp1 | p2

| =
k1× k2. Moreover, if q = (νa)p1, conclude that |Pq| ≤ k1. �

3 As an example showing that the bound k1 + k2 +1 can be really reached, consider the processes

p1 = a.A and p2 = b.B where A
de f
= a.a.A and B

de f
= b.b.B.
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Remark 3.7. (State space explosion problem) The exercise above explains that if
we have a compound process p1 | p2 | . . . | pn, where each pi generates an LTS with
ten states, then the LTS for p1 | p2 | . . . | pn has 10n states, i.e., the state space of a
compound system grows exponentially w.r.t. the number of components. This phe-
nomenon is sometimes called the state space explosion problem. �

Exercise 3.23. (Deadlock-freeness) Consider the definition of deadlock-free LTS
in Definition 2.10. (i) Argue that, if Cp1 is deadlock-free, then also Cp1 | p2

is
deadlock-free, for any p2 ∈ P . (ii) Argue also that, for any deadlock-free LTS
Cp, the LTS C(νa)p is deadlock-free if and only if ∀p′, p′′.p−→∗ p′ α−→ p′′ with

α ∈ {a,a}, ∃q ∃β �∈ {a,a}.p′ β−→q. �

Exercise 3.24. (Reachable deadlock) (i) Argue that, for any p1, p2 ∈P , Cp1 | p2

may reach a deadlock if and only if both Cp1 and Cp2 may reach a deadlock. (ii)
Show an example of a process p such that p may reach a deadlock, while C(νa)p
cannot reach a deadlock; show an example of a process q such that q cannot reach a
deadlock, while C(νa)q may reach a deadlock. �

Exercise 3.25. (Divergence) Consider the definition of divergent state in Definition
2.21. (i) Argue that, if Cp1 has a divergent state, then Cp1 | p2

also has a divergent
state, for any p2 ∈P . (ii) Argue that if Cp1 | p2

has a divergent state, then it may
happen that both Cp1 and Cp2 do not have any divergent state. (iii) Argue also that,
for any p, if C(νa)p has a divergent state, then the LTS Cp has a divergent state. Show
an example of a process p such that the LTS Cp has a divergent state while the LTS
C(νa)p has no divergent state. �

Exercise 3.26. (Livelock) Consider the definition of livelock in Definition 2.21. Re-
member that a livelock state is also a divergent state, but not the converse. (i) Argue
that, if Cp1 has a livelock, then Cp1 | p2

may not have a livelock, but has a divergent
state for sure. (ii) Argue also that, for any p, if C(νa)p has a livelock, we can only
conclude that Cp has a divergent state. Show an example of a process p such that
the LTS Cp has a livelock but the LTS C(νa)p has no livelock. �

Remark 3.8. Example 3.1 shows a process p, with an infinite set Const(p), that gen-
erates an LTS with infinitely many states. However, it is not true that if Const(p) is
infinite, then the LTS reachable from p has necessarily infinitely many states. Con-

sider A defined as A
de f
= a.A+ b.(νc)(c.A0), where Ai

de f
= ci.Ai+1 for i ∈ N: Const(A)

is infinite, but A generates a finite-state LTS. This is because set Const(p) gives a
syntactic upper bound to the number of constants that can be unwound during the
execution of p; in the case above, the constant that A can unwind is only A itself,
because restriction on c prevents unveiling A0 (see also Exercise 3.74 in Section
3.5.3). �
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3.3 About Guardedness

By Definition 3.4, a CCS process p is a CCS term such that each A ∈ Const(p) is
guarded. We discuss two good reasons for restricting our attention to guarded terms
only. The first reason is that the SOS rules generate a finitely-branching LTS for
a CCS term with guarded constants. The second one is that guardedness ensures
uniqueness of the solution (up to ∼) of equations defined over processes. These are
the subject of the following subsections.

3.3.1 Guardedness Implies Finite Branching

The operational rules in Table 3.1 can be applied also to unguarded process terms.

Let us consider a typical example of an unguarded constant: C
de f
= a.0 |C. According

to rule (Cons), C can perform any transition derivable by its body a.0 |C. By rule
(Par1), a.0 |C can do what a.0 can do. As a.0 a−→0 by axiom (Pref), we can conclude
the proof that C a−→0 |C.

(Pref)
a.0 a−→0(Par1)

a.0 |C a−→0 |C
(Cons)

C a−→0 |C
However, this is not the only transition derivable by a.0 |C. By rule (Par2), a.0 |C

can do what C can do, hence deriving a circular proof that C can do what C can do,
plus some context. The two proof trees

(Pref)
a.0 a−→0(Par1)

a.0 |C a−→0 |C
(Cons)

C a−→0 |C
(Par2)

a.0 |C a−→a.0 |(0 |C)
(Cons)

C a−→a.0 |(0 |C)

(Pref)
a.0 a−→0(Par1)

a.0 |C a−→0 |C
(Cons)

C a−→0 |C
(Par2)

a.0 |C a−→a.0 |(0 |C)
(Cons)

C a−→a.0 |(0 |C)
(Par2)

a.0 |C a−→a.0 |(a.0 |(0 |C))
(Cons)

C a−→a.0 |(a.0 |(0 |C))

give evidence that C has infinitely many transitions, all labeled a, each one reaching
a different state. Hence C originates an infinitely-branching LTS, which is actually
not even image-finite.

Exercise 3.27. Consider the unguarded constant A
de f
= a.0+A. Show that there are

infinitely many different proofs for its unique transition A a−→0. �
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As a matter of fact, it is not difficult to see that guarded process terms (i.e., CCS
processes) have a finite number of outgoing transitions.

Proposition 3.3. For any q∈P , set Tq = {(q,μ,q′)
∣∣ ∃μ ∈ Act,∃q′ ∈P.q

μ−→q′}
is finite.

Proof. We can define an upper bound γ(q) on the number of transitions leaving a
given state/process q. Function γ : P → N is as follows:

γ(0) = 0 γ(μ.p) = 1

γ(p1 + p2) = γ(p1)+ γ(p2) γ(A) = γ(p) if A
de f
= p

γ((νa)p) = γ(p) γ(p1 | p2) = γ(p1)+ γ(p2)+ γ(p1)× γ(p2)

By guardedness, we are sure that γ(A) will not call itself recursively, and so it is
guaranteed that γ(A) is always a finite number. It is not difficult then to check — by
reasoning on the shape of the SOS inference rules — that indeed γ(p) is an upper
bound on the number of transitions leaving p. �

Corollary 3.1. For any p ∈P , the LTS Cp = (Pp,sort(p),→p) reachable from p
is finitely-branching.

Proof. All the states reachable from p ∈P are CCS processes by Proposition 3.1.
Hence Cp is a finitely-branching LTS by Proposition 3.3. �

Indeed, even the whole LTS C for CCS (see Definition 3.5) is finitely-branching.

Remark 3.9. (Alternative rule for constants) It is possible to define an alternative
operational rule for process constants as follows:

(ACon)
C τ−→ p

C
de f
= p

Observe that with this alternative semantics, there is no need to restrict process
terms to have guarded constants, as a constant would produce exactly one single (τ-
labeled) transition. However, there are good reasons to reject this approach. First, C
and its body p are no longer strongly bisimilar, but only weakly bisimilar. Moreover,
the resulting LTS is much richer of τ-labeled transitions. A further negative aspect of
this alternative operational rule is that it would prevent the possibility to represent,
up to isomorphism, all the (finite-state) LTSs by means of CCS process terms (see
Theorem 3.2 in Section 3.4.2 and Exercise 3.66 in Section 3.4.6). �

3.3.2 Unique Solution of Equations

There is another very good reason for restricting attention to guarded process terms
only: it ensures uniqueness of the solution (up to ∼) of equations defined over pro-
cesses. Consider the following process equation:
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X ∼ E(X)

where X is a process variable and E(X) is some open expression built with the CCS
operators which may contain some occurrences of X itself (for instance, E(X) =
a.0+X or E(X) = a.0+ τ.X).4

This equation defines a set of possible solutions: all the CCS processes p such
that p∼ E{p/X}, where E{p/X} is term E(X) with each occurrence of X replaced
by process p.

If we consider equation X ∼ a.0 + X , it is clear that processes p = a.0 and
q = a.0+ b.0 are both solutions of the equation, even if p �∼ q. Actually it is not
difficult to realize that infinitely many, not bisimilar processes are solutions of the
equation: it is enough that a process possesses a summand a.0 to be a solution. The
distinguishing feature of this equation is that the process variable X does not occur
strongly guarded in the right-hand side component E(X).5

Exercise 3.28. How many not bisimilar solutions does the equation X ∼ a.0 |X pos-

sess? (Hint: Consider first the simple solution A
de f
= a.A.) �

On the contrary, if we consider X ∼ a.0+ τ.X , which is a typical instance of a
process equation where the process variable X occurs strongly guarded in the right-

hand side, we can easily get convinced that A, where A
de f
= a.0+ τ.A, is a solution,

and that any other solution should be very similar to this. In fact, one can prove that
if p and q are two solutions for this process equation, then p ∼ q, i.e., the solution
is unique up to ∼. In the proof of this fact, following [Mil89], we make use of the
following lemma.

Lemma 3.1. Let X be a process variable strongly guarded in E(X). If E{p/X} μ−→ p′,
then p′=E ′{p/X} for some E ′(X), and moreover, for any q, E{q/X} μ−→E ′{q/X}.

Proof. By induction on the proof of E{p/X} μ−→ p′. We examine the possible shapes
of E(X).

• E(X) = X. But X is assumed guarded in E(X), hence this case is impossible.

• E(X) = μ ′.F(X): in such a case E{p/X}= μ ′.(F{p/X}) μ ′−→F{p/X}. Hence,

μ = μ ′ and p′ = F{p/X}. Similarly E{q/X} = μ ′.(F{q/X}) μ ′−→F{q/X};
hence the thesis follows by choosing E ′(X) = F(X).

• E(X) = E1(X) + E2(X): in this case E{p/X} = E1{p/X}+ E2{p/X} μ−→ p′

must be due to either E1{p/X} μ−→ p′ or E2{p/X} μ−→ p′. Without loss of gen-
erality, assume the transition is due to E1{p/X} μ−→ p′. By inductive hypothesis,
p′ = E ′1{p/X} for some E ′1(X), and moreover, for any q, E1{q/X} μ−→E ′1{q/X}.

4 A precise definition of open CCS terms is given in Section 4.2.2.
5 A process variable X is strongly guarded in E(X) if each occurrence of X in E(X) is within a
subterm of the form μ.F . This definition is essentially the same we have given for process constants
in Definition 3.3.
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By rule (Sum1), we can derive E{p/X}= E1{p/X}+E2{p/X} μ−→E ′1{p/X} as

well as E{q/X}= E1{q/X} +E2{q/X} μ−→E ′1{q/X} for any q. Hence, the the-
sis follows by choosing E ′(X) = E ′1(X).

• E(X) = E1(X) |E2(X): in this case E{p/X} = E1{p/X}|E2{p/X} μ−→ p′ must
be due to three different possibilities.
First: E1{p/X} μ−→ p1 and p′ = p1 |E2{p/X}. Hence, by inductive hypothesis,
p1 is of the form E ′1{p/X} for some E ′1(X), and for any q, E1{q/X} μ−→E ′1{q/X}.
By rule (Par1), we have that E1{p/X}|E2{p/X} μ−→E ′1{p/X}|E2{p/X} as

well as E1{q/X}|E2{q/X} μ−→E ′1{q/X}|E2{q/X} for any q. Hence, E{p/X}
= E1{p/X}|E2{p/X} μ−→E ′1{p/X}|E2{p/X} = (E ′1 |E2){p/X}, as well as

E{q/X} = E1{q/X}|E2{q/X} μ−→E ′1{q/X}|E2{q/X} = (E ′1 |E2){q/X} for
any q. Hence, the thesis follows by choosing E ′(X) = E ′1(X) |E2(X).

Second: E2{p/X} μ−→ p2 and p′ = E1{p/X}| p2. This case is symmetric to the
one above, and hence omitted.
Third: μ = τ , E1{p/X} α−→ p1 and E2{p/X} α−→ p2. By inductive hypothesis,
p1 = E ′1{p/X} for some E ′1(X), p2 = E ′2{p/X} for some E ′2(X), as well as,

for any q, E1{q/X} α−→E ′1{q/X} and E2{q/X} ᾱ−→E ′2{q/X}. By rule (Com),
E{p/X} = E1{p/X}|E2{p/X} τ−→E ′1{p/X}|E ′2{p/X} = (E ′1 |E ′2){p/X}, as
well as E{q/X}= E1{q/X}|E2{q/X} τ−→E ′1{q/X}|E ′2{q/X}=(E ′1 |E ′2){q/X}
for any q. The thesis follows by choosing E ′(X) = E ′1(X) |E ′2(X).

• E(X) = (νa)F(X): very similar to the first subcase of the case above, hence left
as an exercise.

• E(X) = C: in this case, since no X occurs in E, E{p/X} = C
μ−→ p′, which is

possible only if C
de f
= p1 and p1

μ−→ p′. Clearly, also E{q/X}=C
μ−→ p′. Hence,

we can simply take E ′(X) = p′. �

Proposition 3.4. Let X be a process variable strongly guarded in E(X). Then, if
p∼ E{p/X} and q∼ E{q/X}, then p∼ q.

Proof. Consider relation

R = {(E ′{p/X},E ′{q/X}) ∣∣ E ′(X) is a CCS term using X }∪I

where E ′(X) is any CCS process term which may use only X as a variable, and
I = {(p, p)

∣∣ p ∈P} is the identity relation. Note that when E ′(X) is X, we get
(p,q) ∈ R. If we prove that R is a strong bisimulation up to ∼ (see Definition 2.15),
then we get the required thesis p∼ q by Proposition 2.10 (stating the correctness of
this proof principle).

By symmetry, it is enough to prove that if E ′{p/X} μ−→ p′, then E ′{q/X} μ−→q′

with p′ ∼ R ∼ q′. The proof proceeds by induction of the proof of E ′{p/X} μ−→ p′.
We examine the possible shapes of E ′(X).
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• E ′(X) = X. Then, we have E ′{p/X} = p and E ′{q/X} = q. We want to prove
that for any transition from E ′{p/X} = p, e.g., E ′{p/X} μ−→ p′, there exists a
process q′ such that E ′{q/X} = q

μ−→q′ with p′ ∼ R ∼ q′. By hypothesis, p ∼
E{p/X}, hence there exists p′′ such that E{p/X} μ−→ p′′ with p′ ∼ p′′. But as X
is guarded in E, Lemma 3.1 ensures that p′′ = E ′′{p/X} for some E ′′, and that
E{q/X} μ−→E ′′{q/X}. But E ′{q/X} = q ∼ E{q/X}, so there exists a q′ such
that E ′{q/X} = q

μ−→q′ ∼ E ′′{q/X}. Hence p′ ∼ R ∼ q′ because (E ′′{p/X},
E ′′{q/X}) ∈ R.

• E ′(X) = μ.F(X). In this case, E ′{p/X} = μ.F{p/X} μ−→F{p/X}. Similarly,
E ′{q/X} = μ.F{q/X} μ−→F{q/X}. Note that (F{p/X},F{q/X}) ∈ R, and so
trivially F{p/X} ∼ R ∼ F{q/X}, as required.

• E ′(X) = E1(X)+E2(X). In this case, E ′{p/X}= E1{p/X}+E2{p/X}. A tran-
sition from E ′{p/X}, namely E1{p/X}+ E2{p/X} μ−→ p′ is derivable only if
Ei{p/X} μ−→ p′ for some i = 1,2. Without loss of generality, assume the tran-
sition is due to E1{p/X} μ−→ p′. We can apply induction (as we are shorten-
ing the proof tree) and conclude that E1{q/X} μ−→q′ with p′ ∼ R ∼ q′. By
rule (Sum1), transition E1{q/X} μ−→q′ ensures that also E ′{q/X}= E1{q/X}+
E2{q/X} μ−→q′, with p′ ∼ R ∼ q′, as required.

• E ′(X) = E1(X) |E2(X) and E ′(X) = (νa)E1(X), left as exercises for the reader.
• E ′(X) = C. Since no instance of X occurs in E ′, E ′{p/X} = C

μ−→ p′, which

is possible only if C
de f
= p1 and p1

μ−→ p′. Clearly, also E ′{q/X} = C
μ−→ p′ and

(p′, p′) ∈ R. �

The proposition above works for a single equation, X ∼ E(X), exploiting CCS
terms of the form E(X), which use at most one single process variable X . However,
the generalization to a system of equations of this form

X1 ∼ E1(X1, . . . ,Xn)
X2 ∼ E2(X1, . . . ,Xn)
. . .
Xn ∼ En(X1, . . . ,Xn)

where each Ei(X1, . . . ,Xn), for i = 1, . . .n, is a CCS term that may use the variables
X1, . . .Xn is quite obvious, even if technically more involved.

More interesting is the case of process equations with respect to weak bisimula-
tion. Consider X ≈ τ.X +a.0: even if X is strongly guarded, we have infinitely many
different non-weakly bisimilar solutions! E.g., p = a.0 and q = a.0+b.0 (as well as
any process with a summand a.0). It can be proved (see [Mil89] pages 157-160) that
the solution of an equation X ≈E(X) is unique (up to≈) only if X is observationally
guarded and sequential in E(X).

A variable X is observationally guarded in E(X) if each occurrence of X is within
a subterm of the form α.F , where α is a visible action. Note that X in E(X) =
τ.X +a.0 is not observationally guarded.
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A variable X is sequential in E(X) if every subexpression of E(X) which contains
X (apart from X itself) is of the form μ.F(X) or E1(X)+E2(X). For instance, X in
E(X) = a.(b.0 |a.X) is not sequential because the subexpression b.0 |a.X containing
X is not of the required form.

As an example, consider the equation X ≈ a.τ.X + b.0. Note that X in E(X) =
a.τ.X+b.0 occurs observationally guarded and sequential. Hence, it admits a unique

solution (up to ≈), e.g., constant B with B
de f
= a.τ.B+b.0.

3.4 Some Subclasses of CCS Processes

In this section we introduce a hierarchy of six subclasses of CCS — of increasing
expressive power — that are important for various theoretical and practical reasons.

The first subclass, called finite CCS, is obtained by forbidding the use of pro-
cess constants; hence, finite CCS processes are, from a practical point of view, of
limited interest as they cannot afford any cyclic behavior: indeed, a finite CCS pro-
cess originates a finite LTS. However, finite CCS is expressive enough to describe
some simple, useful examples, e.g., for discriminating between competing behav-
ioral equivalences (as illustrated in Chapter 2, where some examples of finite LTSs
are presented). Moreover, for didactical reasons, we will restrict ourselves to finite
CCS processes when describing how to prove equationally that two processes are
equivalent (as discussed in Section 4.3).

The second subclass of CCS, called finite-state CCS, is obtained by restricting
the syntax to allow only for the following operators: 0, action prefixing, choice
and process constants. The name well represents the distinguishing feature of this
class of processes. Any syntactical term p belonging to this subcalculus generates
a finite-state LTS Cp, but also we have a representability theorem: for any finite-
state, reduced LTS TS there exists a finite-state CCS process p such that the LTS Cp
generated by p is isomorphic to TS. Since finite-state LTSs are very important for
verification purposes (because all the interesting properties and behavioral equiva-
lences are decidable for them), this subclass of CCS — generating all and only such
finite models — is very important in practice.

The third subclass is called regular CCS, whose processes still generate finite-
state LTSs; nonetheless, regular CCS allows for limited use of parallel composition
and restriction. This class is the most useful from an applicative point of view, as it
allows for the modeling of finite-state systems in a modular way.6

Then we will present Basic Parallel Processes (BPP for short), obtained from
CCS by removing the restriction operator and by ignoring rule (Com) in Table 3.1
(i.e., no communication is possible). The distinguishing feature of BPP is that a

6 In the literature, the sublanguage we have called finite-state CCS is sometimes called regular
CCS, while the processes we have called regular are sometimes called networks of regular pro-
cesses.
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Fig. 3.6 Syntactic and semantic classifications of the six CCS subcalculi

BPP process may generate an infinite-state LTS, but still bisimulation equivalence
is decidable on processes in this class.

The fifth subclass is called finite-net CCS, obtained from CCS by preventing re-
striction from occurring inside the body of recursively defined constants. This class
is interesting because it has been proved in [Gor15, GV10] that a finite-net CCS
process generates a finite P/T Petri net (see, e.g., the textbooks [Pet81, Rei85] or the
survey [DesRei98] for an introduction to this model of distributed computation).7

7 Petri nets were invented by Carl Adam Petri in 1939, at the age of 13, for the purpose of describing
chemical processes, and were made popular by his Ph.D. dissertation [Petri62] in 1962.
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Even if bisimulation equivalence is undecidable over finite-net processes, we might
take advantage of the many decidable properties over finite P/T Petri nets, which
are hence also decidable for these CCS processes. Moreover, in [Gor15, GV10] a
representability theorem is presented: for any finite P/T net N, we can find a finite-
net process p in a proper extension of CCS with multiway synchronization, called
Multi-CCS (described in Chapter 6), such that the Petri net of p is isomorphic to N.
Hence, finite-net Multi-CCS is for Petri nets as fundamental as finite-state CCS is
for LTSs.

Finally, we present finitary CCS, where the only syntactical constraint is that, for
any p ∈P , the set Const(p) is finite. Actually, finitary CCS is the real language
we will use throughout the book, as we consider feasible processes only those that
can be described finitely, i.e., with the help of finitely many constants. Finitary CCS
is proved to be Turing-complete in Section 3.5, where it is outlined how to model
faithfully Counter Machines [Min67], a well-known Turing-complete formalism.

Summing up, the six subclasses of CCS we will discuss in this section can be
classified as in Figure 3.6, where in the upper part the classification is based on
syntactic containment (e.g., regular CCS processes are a proper superclass of finite-
state CCS processes), while in the lower part the classification is based on seman-
tic expressiveness with respect to the class of LTSs that can be generated by such
subcalculi (e.g., regular CCS processes and finite-state CCS processes are equally
expressive, as they both can represent all and only finite-state LTSs). The semantic
classification contains also three distinct processes, namely:

• the semi-counter (discussed in Example 3.12 of Section 3.4.4), which is a typical
example of a BPP process that is not in finite-state CCS;

• the two-phase-semi-counter (discussed in Example 3.15 of Section 3.4.5), which
is a typical example of a finite-net CCS process that is not BPP;

• and the counter (discussed in Example 3.17 of Section 3.4.6), which is a typical
process of a finitary CCS process that is not in finite-net CCS.

3.4.1 Finite CCS

Let P f in be the set of finite CCS processes, i.e. of processes without any occurrence
of any constant. Formally, a finite CCS process is a process generated by the follow-
ing restricted abstract syntax

p ::= 0
∣∣ μ.q

∣∣ p+ p
q ::= p

∣∣ q |q ∣∣ (νa)q

which, under the assumptions of Remark 3.5, can be more succinctly denoted as

p ::= Σ j∈J μ j.p j
∣∣ p | p ∣∣ (νa)p
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with the assumption that J is finite and Σ j∈J μ j.p j = 0 when J = /0. The peculiar
feature of a finite CCS process is that its reachable LTS Cp is finite, i.e., with a finite
number of states and with an acyclic transition relation.

Proposition 3.5. (Finiteness) For any p ∈P f in, the reachable labeled transition
system Cp = (Pp,sort(p),→p, p) is a finite LTS.

Proof. The fact that Pp is finite, sort(p) is finite and the LTS is acyclic derives
trivially from the fact that the calculus is lacking any form of recursive construct
(i.e., process constants). �

Exercise 3.29. (Size of a finite CCS process) The size of a finite CCS process p,
denoted size(p), is the number of prefixes occurring in p. Formally:

size(0) = 0
size(μ.p) = 1+ size(p)

size(p1 + p2) = size(p1)+ size(p2)

size(p1 | p2) = size(p1)+ size(p2)

size((νa)p) = size(p)

Observe that, for any p∈P f in, size(p) is a natural number and that if size(p)= 0,

then p �. Prove that, for any p ∈P f in, if p
μ−→ p′, then size(p′) < size(p). This

proof can be done by induction on the proof of transition p
μ−→ p′. This observation

offers an alternative proof of Proposition 3.5: the transition relation must be acyclic
because any path

q1
μ1−→q2

μ2−→ . . .qn
μn−→qn+1

determines a descending chain size(q1) > size(q2) > .. . > size(qn) > size(qn+1)
that has 0 as lower bound. Hence, if size(q1) = k, the path cannot be longer than k
(actually, it may be shorter). (See also Exercise 4.9 for the extension of function size
to finitary CCS processes.) �

Exercise 3.30. (i) Observe that 0, (νa)0 and (νa)a.0 are all strongly bisimilar. (ii)
Show that 0, τ.0, τ.τ.0 and τ.0+ τ.(νa)0 are all weakly bisimilar, but not all of
them are rooted weakly bisimilar. (iii) Show that a.0, τ.a.0, a.τ.0 and a.0+ τ.a.0
are all branching bisimilar, but not all of them are rooted branching bisimilar. (iv)
Show that a.0+b.0+ τ.b.0 and a.0+ τ.b.0 are weakly bisimilar but not branching
bisimilar. (v) Show that τ.(a.0+ τ.0)+ τ .(b.0+ τ.0) and τ.(a.0+ τ.0)+ τ .(b.0+
τ.0)+ τ .0 are weakly bisimilar but not branching bisimilar. �

Exercise 3.31. Show that a.(b.0 |c.d.0) is weakly bisimilar, but not strongly bisim-
ilar, to (νe)(a.e.0 | e.(b.c.d.0+ c.(b.d.0+d.b.0))). �

Exercise 3.32. Prove that the finite CCS process a.((νb)0)+a.b.((νa)0) generates
an LTS isomorphic to the one in Figure 2.12(a). Build the LTS for a.0+ a.b.0 and
show that the two are strongly bisimilar. �
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a.b.0+b.a.0(a) (b)

Fig. 3.7 Interleaving law: two isomorphic LTSs

Exercise 3.33. Define two finite CCS processes generating the two LTSs in Figure
2.15. Show that they are not strongly bisimilar. �

Exercise 3.34. Define two finite CCS processes generating the LTSs in Figure 2.29.
Show that they are weakly bisimilar, but not branching bisimilar. �

Exercise 3.35. (Representability) Generalize the exercises above, by showing that,
for any reduced, finite, rooted LTS TS, there exists a finite CCS process p such that
the reachable LTS Cp = (Pp,sort(p),→p, p) is isomorphic to TS.

(Hint: Start from the deadlock states, each one represented by a process of the
form (νd)0 for some new name d, as exemplified in Exercise 3.32, whose semantics
is indeed a (distinct) deadlock state. A state q such that T (q) = {(q,μ,qk)

∣∣ ∃μ ∈
A,∃qk ∈ Q. q

μ−→qk}, which reaches only states qk that are already represented by
suitable CCS terms pk, originates the finite CCS process Σ(q,μ,qk)∈T (q)μ.pk.) �

Remark 3.10. (Graphs vs LTSs) Figure 2.5 depicts a directed graph that is not a
labeled transition system. We want to observe that no finite CCS process can gen-
erate such a graph, indeed. The only natural candidate process is a.0+a.0, because
we have two different branches a.0, and the reached state, after a, is the deadlocked
state 0 for both. However, if we use the SOS operational rules, we discover that the
only derivable transition is a.0+a.0 a−→0, for which we have two different proofs,
so that its associated LTS is isomorphic to the one in Figure 3.1(b) for a.0. �

Exercise 3.36. Prove that the finite processes a.0 |b.0 and a.b.0+b.a.0 are strongly
bisimilar (see Figure 3.7). Check that the required bisimulation relation is actually
an LTS isomorphism. �

Remark 3.11. (Sequentiality vs Concurrency) The exercise above shows that, even
if isomorphism is the most discriminating (i.e., most concrete) equivalence one can
define over LTSs, it is unfortunately already abstract enough to be unable to distin-
guish parallelism (or concurrency) from sequentiality! Indeed, the parallel execu-
tion of two actions a and b, denoted in CCS by the parallel process term a.0 |b.0,
generates an LTS isomorphic to the one for the choice between their two possible
sequential orderings, in CCS denoted by the sequential process term a.b.0+ b.a.0.
This example is an instance of a more general law for CCS, called the interleaving
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law — also called the expansion law – (see also Section 4.1.1, Proposition 4.3),
which roughly states that, given a parallel (finite) CCS process, say q, we can find a
sequential (finite) CCS process, say p, such that the LTSs for q and p are isomorphic.

This surprising observation is a consequence of the fact that LTSs are intrin-
sically a sequential model of computation and cannot truly represent parallelism;
models of this sort are called interleaving models. On the contrary, in models of
concurrency where distribution and parallelism are primitive concepts, such as Petri
nets [Petri62, Pet81, Rei85, DesRei98], the interleaving law does not hold, e.g., the
Petri net for the parallel CCS process a.0 |b.0 and the Petri net for sequential CCS
process a.b.0+b.a.0 are not isomorphic, as shown in [DDM88, Gol90, Old91]. (See
also Section 6.3.2, Example 6.10 in particular, for a discussion about interleaving
models and non-interleaving (or truly concurrent) ones.) �

3.4.2 Finite-State CCS

The finite-state CCS processes are generated from actions and constants as described
by the following abstract syntax:

p ::= 0
∣∣ μ.q

∣∣ p+ p
q ::= p

∣∣ C

where we assume that all constants are defined and guarded8 and, more importantly,
that the set of constants Const(q) used for any finite-state process q is finite. Un-
der the assumptions listed in Remark 3.5, sometimes the syntax of finite-state CCS
processes is more succinctly given as:

p ::= Σ j∈J μ j.p j
∣∣ C

where J is finite and Σ j∈J μ j.p j = 0 when J = /0.
As a simple example of a finite-state CCS process, consider the polite vending

machine V M defined as follows:

VM
de f
= coin.(ask-esp.VM1 + ask-am.VM2)

VM1
de f
= esp-coffee.VM VM2

de f
= am-coffee.VM

whose associated LTS is depicted in Figure 3.3.
We now study the properties of this subcalculus: first we prove that any finite-

state CCS process originates, via the operational semantics, a finite-state LTS, i.e.,
an LTS with finitely many states and labels; then, we provide a representability
theorem, stating that any finite-state LTS can be represented by a finite-state CCS
process.

8 Guardedness is not strictly necessary for this subcalculus: even allowing for unguarded constants,
the generated LTSs would still be finite-state; however, guardedness prevents unwanted phenom-
ena, such as those described in Exercise 3.27.
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Theorem 3.1. (Finite number of reachable states) For any finite-state CCS pro-
cess p, the set Pp of its reachable states is finite.

Proof. We define the number χ(p, /0) as an upper bound on the number of possible
states reachable from p:

χ(0, I) = 1 χ(p1 + p2, I) = χ(p1, I)+χ(p2, I)+1 χ(μ.p, I) = 1+χ(p, I)

χ(A, I) =

{
0 if A ∈ I,

1+χ(p, I∪{A}) if A
de f
= p and A �∈ I

As the set Const(p) of process constants used in p is finite, it follows that the
calculation of χ(p, /0) always terminates (it cannot loop, because of its second ar-
gument recording the constants already found), returning a finite number. �

Corollary 3.2. (Finite-state LTS) For any finite-state CCS process p, the LTS
reachable from p, Cp = (Pp,sort(p),→p, p), is finite-state.

Proof. By Theorem 3.1, the set of reachable states Pp is finite. By Corollary 3.1,
Cp is finitely-branching. Hence, also sort(p) must be finite, as required by Definition
2.7. �

Theorem 3.2. (Representability) For any reduced, finite-state, rooted LTS TS,
there exists a finite-state CCS process p such that the reachable LTS Cp =(Pp,sort(p),
→p, p) is isomorphic to TS.

Proof. Let TS = (Q,A,→1,q0), with Q = {q0,q1, . . . ,qn}. We define a process con-
stant Ci in correspondence with state qi, for i = 0,1, , . . . ,n, defined as follows: if qi

is a deadlock, then Ci
de f
= 0; if T (qi) = {(qi,μ,qk)

∣∣ ∃μ ∈ A,∃qk ∈ Q. qi
μ−→1 qk},

then Ci
de f
= Σ(qi,μ,qk)∈T (qi)μ.Ck. Let us consider CC0 = (PC0 ,sort(C0),→2,C0). It is

not difficult to see that PC0 = {C0,C1 . . . ,Cn} because TS is reduced. Hence, the
bijection we are looking for is f : Q→PC0 , defined as f (qi) =Ci. It is also easy to
observe that the two conditions of isomorphism are satisfied, namely:

• C0 = f (q0), and
• q

μ−→1 q′ iff f (q)
μ−→2 f (q′)

Hence, f is indeed an LTS isomorphism. �

As a simple application of this theorem, the finite-state LTS in Figure 2.2 can be

represented by the two mutually recursive constants C1
de f
= coin.C2 and C2

de f
= coffee.C1;

their associated LTS is depicted in Figure 3.2(c).

Exercise 3.37. Take the finite-state LTS in Figure 2.14(a). Build a finite-state CCS
process p such that the LTS reachable from p is isomorphic to it. �

Definition 3.6. (Finite-state CCS language) A language L⊆ (L ∪L )∗ is a finite-
state CCS language if there exists a finite state CCS process p such that the set of
its weak completed traces is L, i.e., WCTr(p) = L. �
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Proposition 3.6. (Finite-state CCS languages are regular languages) The class
of finite-state CCS languages coincides with the class of regular languages.

Proof. By Remark 2.7, all, and only, the regular languages can be represented by
finite-state LTSs, up to weak completed trace equivalence. By Corollary 3.2 and
Theorem 3.2, finite-state CCS processes generate all, and only, finite-state LTSs.
Hence, the class of finite-state CCS languages coincides with the class of regular
languages. �

Exercise 3.38. (From right-linear grammars to finite-state CCS processes) In
Remark 2.7 we showed that all the regular languages can be represented by finite-
state LTSs by means of finite automata. An alternative proof of this fact can be
obtained by means of right-linear grammars (see Section 1.3.3). Show a simple
translation from a reduced9 right-linear grammar G = (N,T,S,P) to a finite-state
CCS p such that L(G) =WCTr(p), i.e., the language generated by the grammar G
is the same as the set of weak completed traces of p. (Hint: Consider the grammar
nonterminal symbols as process constants, take p = S, and generate for each non-
terminal, say, A with productions, say, A→ bA

∣∣ b
∣∣ ε , the corresponding constant

definition A
de f
= b.A+b.0+ τ.0.) �

Exercise 3.39. (Vending machines) Prove that the vending machines VM — de-
fined at the beginning of this section and whose LTS is depicted in Figure 3.3 —
and IVM — defined in Exercise 3.9 — are not bisimilar. �

Example 3.4. (Vending machines, again) Let us consider the finite-state LTSs for
the two vending-machines discussed in Exercise 2.18. A possible finite-state process
for case (i) is the following:

AVM
de f
= coin.(coin.ask-esp.esp-coffee.AVM + ask-am.am-coffee.AVM)

A possible finite-state process for the case (ii) is the following:

0VM
de f
= coin.1AVM

1VM
de f
= ask-am.am-coffee.0VM + coin.2VM

2VM
de f
= ask-esp.esp-coffee.0VM+ask-am.am-coffee.1VM

where the constants 0VM,1VM,2VM stand for the number of coins collected by the
machine, i.e., if the machine is in state iVM, then its credit is i, for i = 0,1,2. �

Exercise 3.40. Modify the vending machine 0V M of Example 3.4, so that it returns
the coins inserted in case something goes wrong (e.g., no more water available), by
modeling this situation by an internal transition to an erroneous state that handles
the exception by returning the coins and entering a deadlock state. �

9 A grammar G = (N,T,S,P) is reduced if for any nonterminal A ∈ N there is a production in P
with A in its left-hand side, e.g., A→ aB.
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Exercise 3.41. Consider the following vending machine:

0VM′ de f
= coin.1VM′+ coin.0VM′

1VM′ de f
= ask-am.(am-coffee.0VM′ + τ.1VM′) + coin.2VM′

2VM′ de f
= ask-esp.esp-coffee.0VM′+ask-am.(am-coffee.1VM′ + τ.2VM′)

Comment on the expected unfair bahavior of such a machine. �

Exercise 3.42. Define a finite-state CCS process for a vending machine that accepts
in input coins of one or two euros, sells espresso for two euros and american coffee
for one euro, keeps credit up to four euros (it refuses to input coins otherwise), does
not steal money and does not allow a beverage to be dispensed if the previously
delivered one has not been collected. �

We recall that bisimulation equivalence over a finite-state LTS with n states and
m transitions can be computed in O(m log n) time [PT87] — see Section 2.5 for
an intuitive, non-optimal algorithm. On the contrary, as language equivalence over
automata is PSPACE-complete [SM73, HRS76], so is also trace equivalence (as
well as completed trace equivalence) for finite-state LTSs.

3.4.3 Regular CCS

Finite-state CCS is rather powerful, as it may represent any finite-state LTS; also it
is very tractable algorithmically, as all the behavioral equivalences we have defined
in Chapter 2 are decidable for finite-state LTSs. However, from a modeling point
of view, it lacks the basic operators of parallel composition and restriction, that are
very useful when modeling a complex system in a compositional way. Regular CCS
aims at overcoming such a problem, by allowing restricted use of these additional
static operators; however, this is achieved without increasing the expressive power
of the language, so that this subcalculus is as tractable as finite-state CCS. For these
reasons, regular CCS is considered the most appropriate calculus for applications.

The regular CCS processes are generated from actions and constants by the fol-
lowing abstract syntax:

s ::= 0
∣∣ μ.p

∣∣ s+ s

p ::= s
∣∣ C

q ::= p
∣∣ (νa)q

∣∣ q |q

where, as usual, we assume that process constants are always defined and guarded
and, more importantly, that the set of constants Const(q) used for any process q is
finite (see Definition 3.1). Under the assumptions listed in Remark 3.5, sometimes
the syntax of regular CCS processes is more succinctly given as

p ::= Σ j∈J μ j.p j
∣∣ C

q ::= p
∣∣ (νa)q

∣∣ q |q
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which more clearly expresses the fact that a regular process is obtained as the par-
allel composition (or restriction) of a finite number of finite-state CCS processes.
Hence, from a syntactical point of view, regular CCS is a proper superclass of finite-
state CCS.

Remark 3.12. (Notational convention and extension) For simplicity’s sake, in the
following we let p and q denote any regular CCS process term, while in the syn-
tax definition above, p ranges only over finite-state CCS process terms. Addition-
ally, for convenience, in order to give a name to every process, we will some-
times make use of constants that are defined nonrecursively over the general class
of regular processes. For instance, we consider acceptable the constant definition

A
de f
= (νa)(p |q) when A does not belong to Const(p) ∪ Const(q). This convention

is extensively adopted in the following, e.g., for constant 2Sem in Example 3.5 or
constant Protocol in Example 3.6. �

From a semantical point of view, regular CCS is as expressive as finite-state CCS.

Proposition 3.7. (Regular CCS processes originate finite-state LTSs) For any
regular CCS process p, the LTS Cp = (Pp, sort(p), →p, p) reachable from p is
finite-state.

Proof. By the syntactic definition of regular CCS, a regular CCS process is the par-
allel composition (or restriction) of a finite number of finite-state CCS processes. By
Corollary 3.2 each finite-state CCS process generates a finite-state LTS. The thesis
then follows by Exercise 3.22, which proves that the parallel composition of two
CCS processes, generating finite-state LTSs, generates a finite-state LTS,10 as well
as that the restriction of a finite-state process remains finite-state. �

Hence, from an expressiveness point of view, it seems that we gain nothing by the
richer regular CCS syntax. However, from a modeling point of view, we gain a lot,
as it is quite useful to define a complex system by describing its parallel subcompo-
nents separately and how they are connected to one another. Indeed, this allows for
compositional reasoning as discussed in the introduction of this chapter and in the
following example.

Example 3.5. (Semaphore) A binary semaphore is an abstract data type — real-
ized by means of a variable that can hold value 0 or 1 — that is used for control-
ling access, by multiple processes, to a common resource in a parallel environment
[Dij68]: if the stored value is 1, then request operation p is executable by a process
on the semaphore, which has the effect of decrementing the stored value to 0 and
of granting private access to the shared resource; when the process wants to release
the shared resource, it will perform operation v on the semaphore with the effect
of incrementing the stored value to 1. Abstractly, in our process algebra setting,
we can model a binary (or one-position) semaphore by the finite-state CCS process

10 The generalization to an arbitray finite number of parallel components is obvious by induction.
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Sem

v.Sem
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2Sem

v.Sem |Sem Sem |v.Sem

p p

p p

v.Sem |v.Sem
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pp
Sem |Sem

v v

(a) (b)

Fig. 3.8 One-position and two-position semaphores

Sem
de f
= p.v.Sem — whose associated LTS is depicted in Figure 3.8(a) — where ac-

tions p and v are to be synchronized with the process requesting access to the shared
resource.

As a simple, introductory example of a regular CCS process, let us consider a

two-position semaphore, defined as follows: 2Sem
de f
= Sem |Sem, whose associated

LTS is in Figure 3.8(b). We may generalize this process to an n-position semaphore

as follows: nSem
de f
= Π1≤i≤nSem. The number of states of nSem is 2n+1 (by Exercise

3.22), which might make intractable the analysis of the LTS generated by nSem
for large n. In some cases, however, we can take advantage of the compositional
definition of nSem. Suppose we want to demonstrate that CnSem is deadlock-free. It
is not difficult to observe (see Exercise 3.23) that if Cp or Cq is deadlock-free, then
also Cp|q is deadlock-free. Hence, deadlock-freeness of CnSem derives easily from
deadlock-freeness of the LTS CSem for the one-position buffer Sem, so that we need
not generate the huge LTS CnSem. �

Example 3.6. (Simple communication protocol) In order to show the advantage of
the modular definition of a complex system, we describe the following simple com-
munication protocol, originally outlined in [AILS07]. There are three components:
a sender Send takes care of collecting a message from the environment on the port
acc (for accept) and forwards it to a medium Med, which in turn forwards it to a
receiver Rec, which will send it on the port del (for deliver) to the external environ-
ment and then send an ack message to the sender, so that the cycle can be repeated.
The medium Med may be faulty: this is abstracted by an internal transition to some
error state Err; as a consequence Err will ask Send to resend the message. The
specification of the whole system is the regular CCS process

Protocol
de f
= (νsend,error, trans,ack)(Send |Med |Rec),

where the three finite-state CCS components are specified as follows:
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acc
Send Rec

Med

ack ack
del

trans

trans

err

err

send

send

Fig. 3.9 The flow-graph for a simple communication protocol

Send
de f
= acc.Sending Med

de f
= send.Med′

Sending
de f
= send.Wait Med′ de f

= τ.Err + trans.Med

Wait
de f
= ack.Send + error.Sending Err

de f
= error.Med

Rec
de f
= trans.Del

Del
de f
= del.Ack

Ack
de f
= ack.Rec

The flow-graph describing the interconnection architecture of the system is given
in Figure 3.9, where, in order to help the reader, the names of the ports of the private
communication channels have not been hidden (hence they are still visible).

The dynamic behavior of Protocol can be understood by observing the local
behavior of each component. For instance, the sender Send first receives a message
on port acc, then forwards it to Med along port send and, by doing so, enters the state
Wait where it waits for either an ack message of successful delivery of the previous
message from Rec, or for an error message from Med, asking for a retransmission of
the previously lost message. The labeled transition system for Protocol, describing
its dynamic behavior, is in Figure 3.10, where, for simplicity’s sake, the restrictions
have been omitted in the states and, to help the reader, the occurrences of label τ
are indexed by the name of the synchronized action. Observe that three divergent
states are present in the model, because of the possibility of having to retransmit the
message some arbitrary number of times before the delivery is successful.

The observable behavior of this complex system can be described by the more
abstract process

ProtSpec
de f
= acc.del.ProtSpec,

called the specification of the communication protocol, whose associated LTS is
very simple. This specification can be used to prove self-evidently that acc and del
are strictly alternated, or that the system is deadlock-free. These properties are true
also for the implementation, i.e., for Protocol, if we can prove that the implementa-
tion and the specification are bahaviorally equivalent w.r.t. a suitably discriminating
equivalence which preserves such properties. As a matter of fact, it is easy to see
that the two are weakly bisimilar, ProtSpec ≈ Protocol, as relation R below is a
weak bisimulation, where, for simplicity’s sake, we have omitted the restrictions in
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Send
∣∣ Med

∣∣ Rec

Wait
∣∣ Med

∣∣ Del

Wait
∣∣ Med

∣∣ Ack

Wait
∣∣ Med′

∣∣ Rec

Sending
∣∣ Med

∣∣ Rec

Wait
∣∣ Err

∣∣ Rec

Protocol

acc
acc

τack

del

τtrans

τsend

τ

τerr

Fig. 3.10 The bahavior of the simple communication protocol

the state of the implementation, as done in Figure 3.10.

R = {(Protocol,ProtSpec),(Sending |Med |Rec,del.ProtSpec),
(Wait |Med′ |Rec,del.ProtSpec),(Wait |Err |Rec,del.ProtSpec),
(Wait |Med |Del,del.ProtSpec),(Wait |Med |Ack,ProtSpec),
(Send |Med |Rec,ProtSpec)}

Checking that R is a weak bisimulation is a very easy task; for instance, pair
(Wait |Med′ |Rec, del.ProtSpec) is a weak bisimulation pair because to transitions
Wait |Med′ |Rec τ−→Wait |Err |Rec and Wait |Med′ |Rec τ−→Wait |Med |Del, pro-
cess del.ProtSpec can reply simply by idling, del.ProtSpec ε

=⇒del.ProtSpec, and

the reached states are in R; symmetrically, transition del.ProtSpec del−→ProtSpec can

be matched by Wait |Med′ |Rec del
=⇒ Wait |Med |Ack and the reached states are in R.

(As a matter of fact, R is also a branching bisimulation.)
Observe that the specification is divergence-free; hence, by equating the specifi-

cation and the implementation, weak bisimilarity (as well as branching bisimilarity)
assumes fairness on the faulty bahavior of the medium, i.e., it assumes that the di-
vergence in the LTS for the implementation will be eventually escaped (cf. the dis-
cussion about insensitivity of weak bisimilarity to divergence after Definition 2.21
in Section 2.4.2.) �

Exercise 3.43. Continuing Example 3.6, assume that now state Err is defined as

Err
de f
= error.Med + τ.Div Div

de f
= τ.Div

This means that the faulty medium Med, when a message gets lost, can either ask
for a retransmission of the lost message, or enter a livelock. Check if
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ProtSpec′ de f
= acc.(del.ProtSpec′+ τ.0)

is a correct specification for this new version of Protocol w.r.t. weak bisimilarity. �

Example 3.7. (Vending machine, again!) Consider the vending machine AVM of
Example 3.4. We may consider this as the specification of the intended behavior:
upon insertion of a coin, the user can get American coffee or, upon insertion of a
supplementary coin, he can get espresso. Suppose we want to define a distributed
implementation of this machine, composed of two units: Money, which handles the
input of coins, and Drink, which delivers the selected beverage. We can model the
distributed vending machine DVM1 as follows:

DVM1
de f
= (νmc,me,d)(Money |Drink)

Money
de f
= coin.(ask-am.mc.d.Money + coin.ask-esp.me.d.Money)

Drink
de f
= mc.am-coffee.d.Drink + me.esp-coffee.d.Drink,

where action mc stands for make-coffee, action me stands for make-espresso and
action d stands for done. After the insertion of a coin and the selection of the bever-
age, Money sends a request to Drink to prepare the selected beverage; when Drink
has finished, it signals this to Money, so that the whole system can start again. An
intermezzo:

Exercise 3.44. Draw the LTS for DVM1. �

Given the LTS for DVM1, it is not difficult to see that DVM1 is weakly bisimilar
to AVM (DVM1 ≈ AVM); it is crucial that, after coffee delivery, there is a synchro-
nization between the two components on action d, so that a new coin is accepted by
Money only after Drink has delivered the beverage. Hence, we can safely conclude
that DVM1 is a correct implementation of AVM. Second intermezzo:

Exercise 3.45. Build a weak bisimulation containing the pair (DVM1,AVM). �

In the light of Exercise 3.40, one can define a bit more realistic model of the vend-
ing machine in that, if something goes wrong in the preparation of the coffee (e.g.,
water is unavailable), the coin(s) is (are) returned. A possible abstract specification
may be

AVM2
de f
= coin.(coin.ask-esp.(esp-coffee.AVM2 + τ.coin.coin.AVM2)

+ask-am.(am-coffee.AVM2 + τ.coin.AVM2)),

where, after the selection, the vending machine can either deliver the selected bev-
erage or can internally choose to return the coin(s) and restart from the initial state.
Similarly as above, a corresponding distributed vending machine DVM2 may be de-
fined as follows:

DVM2
de f
= (νmc,me,d,err)(Money′ |Drink′)

Money′ de f
= coin.(ask-am.mc.(d.Money′ + err.coin.Money′)

+coin.ask-esp.me.(d.Money′ + err.coin.coin.Money′))
Drink′ de f

= mc.(am-coffee.d.Drink′ + err.Drink′)
+me.(esp-coffee.d.Drink′ + err.Drink′),
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where action err signals that something goes wrong with the preparation of the
beverage and so one or two coins are to be returned by Money′ to the user. It is not
difficult to prove (do it!) that DVM2 is weakly bisimilar to AVM2. �

Exercise 3.46. (Two-position buffers) Draw the LTS associated to the following
sequential, finite-state specification of a two-position buffer:

B0
de f
= in.B1

B1
de f
= in.B2 + out.B0

B2
de f
= out.B1

Consider then a one-position buffer:

B
de f
= in.B′ B′ de f

= out.B.

Draw the LTS for the regular CCS process B |B and show that it is strongly bisimilar
to B0. Process B |B may be considered the parallel (or bag) implementation of B0,
where the order of arrival of data in the buffer may be not respected in delivery.

Now, consider then the following pipeline buffer

Buf
de f
= (νd)(Buf1 |Buf2) Buf1

de f
= in.d.Buf1 Buf2

de f
= d.out.Buf2.

Process Buf is such that the order of arrival of data in the buffer is respected in
delivery. Show that B0 is weakly bisimilar to Buf.

Hence, the parallel implementation and the pipeline one of a two-position buffer
are weakly bisimilar. This result holds only because we are considering buffers that
cannot handle values explicitly. (In Section 3.6 we will discuss an extension to CCS
with explicit handling of data. See Exercise 3.78 for more concrete definitions of
buffers.) �

Example 3.8. (2-producers-consumer) Another simple example of a regular CCS
process is the system 2PC, defined as follows:

2PC
de f
= (νsend)((P1 |P1) |C1) P1

de f
= produce.send.P1 C1

de f
= send.consume.C1,

where P1 and C1 represent a producer and a consumer, respectively. The whole sys-
tem 2PC is composed of the parallel composition of two producers and one con-
sumer; the restriction on action send ensures that the consumer can only consume
products coming from these two producers and, symmetrically, that the goods pro-
duced by the producers can only be consumed by this consumer. It is not difficult to
see that 2PC is deadlock-free, thanks to Exercise 3.23: indeed, both P1 and C1 are
deadlock-free, hence also ((P1 |P1) |C1) is; finally, 2PC is deadlock-free because for
any state p such that ((P1 |P1) |C1)−→∗ p α−→ with α ∈ {send,send}, we have that

p
β−→ for some β ∈ {produce,τ}. �

Exercise 3.47. Continuing Example 3.8, draw the finite-state LTS for 2PC (it is
composed of nine states and 18 transitions). How many occurrences of action
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produce can be performed before an occurrence of consume becomes mandatory?
Generalize the process to three producers and two consumers; namely, consider:

3P2C
de f
= (νsend)((P1 |P1 |P1) |(C1 |C1)).

Can you draw easily its associated LTS? This latter exercise shows the necessity of
tool support when considering examples that cannot be easily managed by hand. To
this aim, a possible tool is the Concurrency Workbench [CWB]. �

Exercise 3.48. (Producer-consumer with one-position buffer) Another example
of a regular CCS process is

PBC
de f
= (ν in, out)((P2 |B) |C2) P2

de f
= produce.in.P2 C2

de f
= out.consume.C2,

where B is the one-position buffer described in Exercise 3.46. (i) Draw the LTS for
PBC. (ii) Prove that PBC and 2PC (see Example 3.8) are not (strong) trace equiva-
lent. (iii) Show also that PBC and 2PC are weakly bisimilar, by providing a suitable
weak bisimulation relation (possibly up to ≈), containing the pair (PBC,2PC). �

Exercise 3.49. (Producer-consumer with two-position buffer) One further exam-
ple of a regular CCS process is

P2BC
de f
= (ν in, out)((P2 |B0) |C2),

where P2 and C2 are defined as in Exercise 3.48 and B0 is the two-position buffer
described in Exercise 3.46.

(i) Draw the LTS for P2BC. (ii) Show that P2BC is not weakly trace equivalent
to 2PC of Example 3.8 (Hint: How many occurrences of action produce can be
performed before consume is mandatory?)

(iii) Consider also the variant system P2BC′ de f
= (ν in, out)((P2 |(B |B)) |C2)

where B is the one-position buffer of Exercise 3.46. Show that P2BC and P2BC′
are strongly bisimilar by building a suitable strong bisimulation relation.11

(iv) Finally, consider the variant P2BC′′ de f
= (ν in, out)((P2 |Bu f ) |C2) where Bu f

is the pipeline two-position buffer of Exercise 3.46. Show that P2BC and P2BC′′ are
weakly bisimilar by building a suitable weak bisimulation relation.12 �

11 An alternative proof for P2BC ∼ P2BC′ may be based on the fact that ∼ is a congruence for the
CCS operators, as we will prove in Theorem 4.1; as a matter of fact, we have that B0 ∼ B |B by Ex-
ercise 3.46, and such equivalence is preserved by the context (ν in, out)((P2 |−)) |C2), hence also
(ν in, out)((P2 |B0)) |C2) ∼ (ν in, out)((P2 |(B |B)) |C2). The thesis then follows by the following

two facts: (i) A ∼ p whenever A
de f
= p, as observed in Remark 4.2; (ii) transitivity of ∼, as proved

in Proposition 2.8.
12 Even for this case, an alternative proof may be based on the fact that ≈ is a congruence for the
CCS operators of parallel composition and restriction, as we will prove in Theorem 4.3; as a matter
of fact, we have that B0 ≈ Bu f by Exercise 3.46, and such equivalence is preserved by the context
(ν in, out)((P2 |−)) |C2), hence also (ν in, out)((P2 |B0)) |C2)≈ (ν in, out)((P2 |Bu f )) |C2).
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Example 3.9. (n-position buffer) For any natural n, an n-position buffer can be
specified as follows:

B0
de f
= in.B1

Bi
de f
= in.Bi+1 + out.Bi−1 for 0 < i < n

Bn
de f
= out.Bn−1

A parallel implementation of this n-position buffer can be provided by means of
multiple copies in parallel of the one-position buffer B of Exercise 3.46. We use Bk

as a shorthand to denote the parallel process term Π k
i=1B (which is 0 when k = 0).

We prove that, for any n, the specification B0 and the parallel implementation Bn

are strongly bisimilar. Let us consider the relation

R = {(Bk,(Π k
i=1out.B) |Bn−k)

∣∣ 0≤ k ≤ n}

It is not too difficult to show that R is a strong bisimulation up to ∼ (see Defini-
tion 2.15 and Proposition 2.10 for correctness of this proof principle), because we
assume that parallel composition is associative13 and commutative (with nil as neu-
tral element), which indeed holds for strong bisimulation, as we will see in Section
4.1.1, Proposition 4.2.14

First, observe that for k = 0, the pair in R is (B0,0 |Bn). If R is a bisimulation up
to ∼, then B0 ∼ 0 |Bn. As 0 |Bn ∼ Bn, by transitivity we get B0 ∼ Bn. Now, we will
prove that R is indeed a strong bisimulation up to ∼, i.e., we will prove that:

1. if Bk
α−→ p for some action α and some process p, then there are some q and

q′ such that (Π k
i=1out.B) |Bn−k α−→q with q′ ∼ q and (p,q′) ∈ R (this is enough

for application of the up-to technique, as ∼ is reflexive, hence p ∼ p). And,
symmetrically,

2. if (Π k
i=1out.B) |Bn−k α−→q for some action α and some process q, then there are

some processes q′ and p such that q∼ q′, Bk
α−→ p and (p,q′) ∈ R.

(Case 1) If k < n, process Bk can do Bk
in−→Bk+1 and (Π k

i=1out.B) |Bn−k can re-
spond with in reaching (Π k

i=1out.B) |out.B |Bn−(k+1), which is strongly bisimilar
to (Π k+1

i=1 out.B) |Bn−(k+1) and the pair (Bk+1,(Π k+1
i=1 out.B) |Bn−(k+1)) is in R.

If k > 0, Bk can also do Bk
out−→Bk−1 and (Π k

i=1out.B) |Bn−k can respond by reach-
ing (Π k−1

i=1 out.B |B) |Bn−k, which is strongly bisimilar to (Π k−1
i=1 out.B) |Bn−(k−1)

and the pair (Bk−1,(Π k−1
i=1 out.B) |Bn−(k−1)) is in R.

(Case 2) Besides the in-labeled transition already considered in the previous
case, (Π k

i=1out.B) |Bn−k has other n− (k− 1) in-labeled transitions, all reach-
ing states that are strongly bisimilar to (Π k+1

i=1 out.B) |Bn−(k+1) by associativity
and commutativity of parallel composition. For instance, one of these states is

13 Actually, when using the notation Π k
i=1B, we are already assuming associativity of parallel

composition implicitly.
14 To be precise, we are also using the fact that ∼ is a congruence for parallel composition, i.e., if
p∼ q, then p |r ∼ q |r for all r. This result is proved in Theorem 4.1.
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Π k
i=1out.B |B j |out.B |Bn−(k+ j+1) for 1 ≤ j,k ≤ n, j + k < n. To any of these

transitions, Bk responds with Bk
in−→Bk+1 and (Bk+1,(Π k+1

i=1 out.B) |Bn−(k+1)) is
in R.
Similarly, if k > 0, besides the out-labeled transition discussed above, process
(Π k

i=1out.B) |Bn−k has other k−1 out-labeled transitions, all reaching states that
are strongly bisimilar to (Π k−1

i=1 out.B) |Bn−(k−1). To any of these, Bk may respond

with Bk
out−→Bk−1 and (Bk−1,(Π k−1

i=1 out.B) |Bn−(k−1)) is in R. And this completes
the proof. �

Example 3.10. (Linking operator) By p�q we denote the process obtained by link-
ing process p with process q. In terms of flow-graph representation, the operation
of linking p with q is similar to the parallel composition of p and q, but with the
side effect that some non-complementary ports of the two are connected together.
Its definition is not completely formal, as the actual choice of such ports depends on
the definition of the two processes p and q. Assuming that the non-complementary
ports to be connected are a in p and b in q, the linking (or pipelining) of p and q is
defined as a derived operator in CCS as follows:

p�q = (νd)(p{d/a}|q{d/b}),
where d is a new name occurring neither in p nor in q, and the application of a
substitution, say {d/a}, to process p (defined formally in Section 4.1.2, Definition
4.4) states that each occurrence of a (a) in p is to be replaced by d (d).

As an example, let us consider again process Buf of Exercise 3.46. We can de-

fine, equivalently, Buf
de f
= B�B, where B

de f
= in.out.B is the one-position buffer of

Exercise 3.46 and the linking operator connects the out port of the left buffer to
the in port the right buffer. As a matter of fact, if we choose d as the new ac-
tion, B�B is the same as (νd)(B{d/out}|B{d/in}), where the effect of apply-
ing the substitution, say {d/out}, to constant B is the definition of a new constant

B{d/out} where the substitution is applied to its body: B{d/out}
de f
= in.d.B{d/out}

and B{d/in}
de f
= d.out.B{d/in}.

The definition of the linking operator can be generalized to vectors (a1, . . . ,an),
(b1, . . . ,bn) and (d1, . . . ,dn) of actions as follows:

p�q = (νd1, . . . ,dn)(p{di/ai}1≤i≤n |q{di/bi}1≤i≤n). �

Example 3.11. (Pipeline implementation of a n-position buffer) As illustrated in
Exercise 3.46, there are two natural implementations of a sequential specification of
a buffer: the parallel implementation and the pipeline one. Example 3.9 discusses
the parallel implementation of a n-position buffer. Here, a description of its pipeline
implementation is given by means of the linking operator.

Some notation first. PB is used to denote either term B or term out.B. Term PB(n,k)
π

is used to denote the term

PB�
1 PB�

2 . . .� PBn
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where the linking operator applied to two terms PBi and PBi+1 (for i = 1, . . .n−1)
connects the out of PBi to the in of PBi+1, and where π is a binary vector of length
n with only k elements set to 1: π(i) = 1 if PBi is out.B, π(i) = 0 if PBi is B.
If π(i) = 1 and π(i + 1) = 0, for 0 ≤ i < n, we denote by π[i + 1/i] the vector
(π(1), . . . ,π(i−1),0,1,π(i+1), . . . ,π(n)). Note that PB(n,0)

0 — where the subscript

0 stands for a vector of 0’s — is composed only of B components, and PB(n,n)
1

— where the subscript 1 stands for a vector of 1’s — is composed only of out.B
components.

We would like to prove that, for any n, the sequential, finite-state specification B0

of Example 3.9 and the regular, pipelined implementation PB(n,0)
0 are weakly bisim-

ilar. We will sketch a proof of this fact, where, for simplicity’s sake, we implicitly
assume associativity of the linking operator (up to strong bisimulation, formally
proved in Example 4.4 of Section 4.1.2), so that we take the liberty of using our
PB(n,k)

π notation, independently of the actual association of the n linking operators.
Let us consider the relation

R = {(Bk,PB(n,k)
π )

∣∣ 0≤ k ≤ n and π is of length n with k elements set to 1}

It is not obvious that R is a weak bisimulation.15 Indeed, we will prove that:

1. if Bk
α−→ p for some action α and some process p, then there is some q such that

PB(n,k)
π

α
=⇒q with (p,q) ∈ R. And, symmetrically,

2. if PB(n,k)
π

μ−→q for some action μ and some process q, then there is some process
p such that Bk

μ−→ p and (p,q) ∈ R, or, if μ = τ , (Bk,q) ∈ R.

Before checking this, we need some auxiliary results.
Observe that out.B�B τ−→B�out.B, because the out transition of the left com-

ponent is synchronized with the in transition of the right component. This means
that, if 0 < k < n,

PB(n,k)
π

τ−→PB(n,k)
π[i+1/i]

assuming that the involved processes are of index i and i+1, respectively. This can
be generalized in two ways:

(R1) if n≥ 1, PB(n,n)
1

�B τ
=⇒B�PB(n,n)

1 ;
(R2) similarly, if n≥ 1, out.B�PB(n,0)

0
τ

=⇒PB(n,0)
0

�out.B.

We are now ready to check that R is a weak bisimulation. Consider (Bk,PB(n,k)
π ).

(Case 1) If k < n, process Bk can do Bk
in−→Bk+1. Let j be the least index such

that π( j) = 0. If j = 1, then PB(n,k)
π

in−→PB(n,k+1)
π ′ where π ′ differs from π only

15 If we were not using the simplification about associativity of the linking operator, we would
prove this relation R to be a weak bisimulation up to ≈ (see Definition 2.22 and Exercise 2.74 for
the correctness of this proof technique). Moreover, in such a case, we would also need the fact that
∼ is a congruence for the linking operator, as discussed in Exercise 4.27.
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for index 1, now set to 1. Otherwise (i.e., if j > 1), PB(n,k)
π can be represented as

PB( j−1, j−1)
1

�B�PB(n− j,k−( j−1))
π2 . By observation (R1)

PB( j−1, j−1)
1

�B�PB(n− j,k−( j−1))
π2

τ
=⇒ B�PB( j−1, j−1)

1
�PB(n− j,k−( j−1))

π2
in−→ PB( j, j)

1
�PB(n− j,k−( j−1))

π2 ,

which can be represented as PB(n,k+1)
π ′ , and the pair (Bk+1,PB(n,k+1)

π ′ ) is in R be-
cause the number of 1’s in π ′ is one more than in π .
If k > 0, Bk can also do Bk

out−→Bk−1. Let j be the greatest index such that π( j) =

1. If j = n, then PB(n,k)
π

out−→PB(n,k−1)
π ′ , where π ′ differs from π only for index n,

now set to 0. Otherwise, PB(n,k)
π can be seen as PB(n− j,k−1)

π1
�out.B�PB( j−1,0)

0 .
By observation (R2),

PB(n− j,k−1)
π1

�out.B�PB( j−1,0)
0

τ
=⇒ PB(n− j,k−1)

π1
�PB( j−1,0)

0
�out.B

out−→ PB(n− j,k−1)
π1

�PB( j,0)
0 ,

which can be represented as PB(n,k−1)
π ′ and the pair (Bk−1,PB(n,k−1)

π ′ ) is in R be-
cause the number of 0’s in π ′ is one more than in π .

(Case 2) If k < n and j = 1 is the least index such that π( j) = 0, then PB(n,k)
π can

do PB(n,k)
π

in−→PB(n,k+1)
π ′ where π ′ differs from π only on the first index, now set

to 1. Bk can respond with Bk
in−→Bk+1 and the pair (Bk+1,PB(n,k+1)

π ′ ) is in R.
If k > 0 and j = n is the greatest index such that π( j) = 1, then we have that

PB(n,k)
π

out−→PB(n,k−1)
π ′ , where π ′ differs from π only on the last index, now set to

0. Bk can respond with Bk
out−→Bk−1 and the pair (Bk−1,PB(n,k−1)

π ′ ) is in R.
Otherwise, let i be any index such that π(i) = 1 and π(i+1) = 0. In such a case,
PB(n,k)

π
τ−→PB(n,k)

π[i+i/i]. Bk can respond by idling and (Bk,PB(n,k)
π[i+1/i]) ∈ R. This

completes the proof, because no further transitions are possible from PB(n,k)
π .

The parallel buffer Bn of Example 3.9 does not respect, in delivery, the order
of arrival. However, it turns out that Bn and the pipeline buffer PB(n,0)

0 are weakly
bisimilar. In this simplified setting where the in/out actions do not carry values, we
cannot observe any difference between the two implementations. However, we will
see in Section 3.6, that the parallel (called also bag) buffer and the pipeline buffer
are not equivalent in general, when data are explicitly handled. �

Exercise 3.50. Prove that the relation R of Example 3.11 is also a branching bisim-
ulation. �

3.4.4 BPP: Basic Parallel Processes

The CCS subcalculus of Basic Parallel Processes (BPP for short) is generated by
the following abstract syntax:
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p ::= 0
∣∣ μ.q

∣∣ p+ p

q ::= p
∣∣ q |q ∣∣ C

where, as usual, we assume that process constants are always defined and guarded,
that Const(q) is finite, and, additionally, that rule (Com) in Table 3.1 is not used (no
synchronization). As the body of a constant is in syntactic category q, it may happen
that parallel composition | occurs inside the body of recursively defined constants;
hence, a BPP process may generate an infinite-state LTS, as illustrated below in
Example 3.12. Under the assumptions listed in Remark 3.5, sometimes the syntax
of BPP processes is more succinctly given as:

p ::= Σ j∈J μ j.p j
∣∣ C

∣∣ p | p

From a syntactical point of view, BPP is not a superclass of regular processes,
because restriction is not allowed (as well as synchronization). However, from a
semantical point of view, BPP is more general. On the one hand, for any regular
process p there exists a BPP process q with associated LTS isomorphic to that of p,
because a regular process generates a finite-state LTS and finite-state CCS processes
are a subclass of BPP. On the other hand, the reverse of this implication does not
hold: there are BPP processes that generate infinite-state LTSs. As a typical instance,
consider the following example of a semi-counter [AILS07, San12], in turn inspired
by the classic example of an unbounded bag buffer [BK84b, Fok00], described in
the subsequent Exercise 3.55.

Example 3.12. (Semi-counter) Recalling Example 3.1, a semi-counter, i.e. a counter
that cannot test for zero (see Section 3.4.6 for a real counter), can be represented by
means of an unbounded number of constants SCounti for i = 0,1, . . .:

SCount0
de f
= inc.SCount1

SCountn
de f
= inc.SCountn+1 +dec.SCountn−1 n > 0

The reader can easily check that the LTS for SCount0 is isomorphic to the one in
Figure 2.7(b), where process SCounti is mapped to state qi, for any i ∈ N. Observe
that, for any i∈N, the longest trace composed only of occurrences of action dec that
SCounti can perform is of length i; such a trace is denoted by deci (where dec0 = ε ,
deci+1 = dec deci). Therefore, SCounti cannot be trace equivalent to any SCount j
for j �= i because if, say, j > i then trace dec j can be executed by SCount j, but not
by SCounti. This means that, for any i ∈ N, SCounti cannot be trace equivalent to
any other constant SCount j with a different index; hence, we can conclude that no
finite-state CCS process q can be trace equivalent to SCount0.

We want to show that there exists a simple BPP process, defined by means of a
single constant

SC
de f
= inc.(SC |dec.0)
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that is bisimulation equivalent to SCount0, hence proving that the class of BPP is
strictly more expressive than the class of finite-state CCS processes. First, an inter-
mezzo:

Exercise 3.51. Draw the initial fragment of the infinite LTS for SC. Argue that the
LTS for SC is not isomorphic to the LTS in Figure 2.7(b). Show that there are in-
finitely many pairs of bisimulation equivalent reachable states (e.g., SC and SC |0 as
well as (SC |0) |dec.0, (SC |dec.0) |0 and SC |dec.0). Argue that the resulting LTS
is not boundedly-branching, even if it is finitely-branching.16 �

Now we prove that SCount0 and SC are strongly bisimilar. Consider the relation

R = {(SCountn,SC |Π n
i=1dec.0)

∣∣ n≥ 0}.
It is not difficult to see that it is a strong bisimulation up to ∼, where we take

advantage of the fact that parallel composition is associative,17 commutative, with
0 as neutral element, with respect to strong bisimilarity ∼. This is proved in Section
4.1.1, Proposition 4.2. Moreover, we are also using the fact that ∼ is a congruence
for parallel composition, i.e., if p ∼ q, then p |r ∼ q |r for all r; this is proved in
Theorem 4.1. (For concrete details, see Example 4.2.)

First, observe that for n = 0, the pair in R is (SCount0,SC |0). If R is a bisim-
ulation up to ∼, then SCount0 ∼ SC |0. As SC |0 ∼ SC, by transitivity we get our
expected result: SCount0 ∼ SC. Now, let us prove that R is indeed a strong bisimu-
lation up to ∼.

Assume that SCountn
α−→q. Then either α = inc and q = SCountn+1, or n > 0,

α = dec and q = SCountn−1. In the former case, the matching transition is

SC |Π n
i=1dec.0 inc−→ (SC |dec.0) |Π n

i=1dec.0,

where the reached state is bisimilar to SC |Π n+1
i=1 dec.0, and the pair (SCountn+1,

SC |Π n+1
i=1 dec.0) ∈ R. In the latter case, (one of) the matching dec transition(s) starts

from SC |Π n
i=1dec.0 and reaches (SC | Π n−1

i=1 dec.0) |0, which is strongly bisimilar to
SC |Π n−1

i=1 dec.0, and the pair (SCountn−1,SC |Π n−1
i=1 dec.0) ∈ R.

Assume now SC |Π n
i=1dec.0 α−→ p. Then, by inspecting the rules for parallel

composition:

1. Either SC inc−→SC |dec.0 and thus α = inc and process p=(SC |dec.0) |Π n
i=1dec.0

(which is bisimilar to SC |Π n+1
i=1 dec.0). In such a case, the matching transition is

SCountn
inc−→SCountn+1, and the pair (SCountn+1,SC |Π n+1

i=1 dec.0) is in R.

16 A BPP process p with infinitely many states is often unboundedly-branching; however, this is

not always the case; for instance, A
de f
= a.(A |0) is such that A has infinitely many states, but A is

boundedly-branching.
17 To be precise, when using the notation Π n

i=1dec.0, we are already assuming associativity of
parallel composition.
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2. Or n > 0, α = dec and p is one of the following three terms: (SC |0) |Π n−1
i=1 dec.0,

(SC |Π n−1
i=1 dec.0) |0 or (((SC |Π n−k

i=1 dec.0) |0) |Π k−1
i=1 dec.0) for some 1 ≤ k < n.

In any case, p is strongly bisimilar to SC |Π n−1
i=1 dec.0. The matching transition is

SCountn
dec−→SCountn−1, and the pair (SCountn−1,SC |Π n−1

i=1 dec.0) is in R.

And this completes the proof. So, we have shown that a semi-counter can be repre-
sented, up to ∼, by a simple BPP process. �

Exercise 3.52. Prove that a sequence σ ∈ {inc,dec}∗ is a trace in Tr(SC) if and
only if, in any prefix σ ′ of σ , the number of occurrences of dec is smaller than, or
equal to, the number of occurrences of inc. If we denote by �(inc,σ) the number
of occurrences of inc in σ , the requirement above can be formulated as follows:
�(dec,σ ′)≤ �(inc,σ ′) for all σ ′ such that there exist γ with σ = σ ′γ . �

Exercise 3.53. (Half- and double-semi-counter) (i) Consider the BPP process
HSC (half-semi-counter)

HSC
de f
= inc.inc.(HSC |dec.0)

Prove that a sequence σ ∈ {inc,dec}∗ is a trace in Tr(HSC) if and only if, in any
prefix σ ′ of σ , �(dec,σ ′)≤ �(inc,σ ′)/2.

(ii) Define a BPP process DSC (double-semi-counter) such that a sequence σ ∈
{inc,dec}∗ is a trace in Tr(DSC) if and only if, in any prefix σ ′ of σ , �(dec,σ ′) ≤
2× �(inc,σ ′). �

Exercise 3.54. (i) Define a BPP process ABC1 such that a sequence σ ∈ {a,b,c}∗
is a trace in Tr(ABC1) if and only if, in any prefix σ ′ of σ , �(c,σ ′) ≤ �(b,σ ′) ≤
�(a,σ ′).

(ii) Define a BPP process ABC2 such that a sequence σ ∈ {a,b,c}∗ is a trace in
Tr(ABC2) iff, in any prefix σ ′ of σ , �(b,σ ′)≤ �(a,σ ′) and �(c,σ ′)≤ �(a,σ ′).

(iii) Define a BPP process ABC3 such that a sequence σ ∈ {a,b,c}∗ is a trace in
Tr(ABC3) if and only if, in any prefix σ ′ of σ , �(b,σ ′)+ �(c,σ ′)≤ �(a,σ ′). �

Exercise 3.55. (Unbounded bag buffer) Consider the specification of the un-
bounded bag buffer UB0:

UB0
de f
= in.UB1

UBi
de f
= in.UBi+1 + out.UBi−1 for 0 < i

Draw (the initial fragment of) the associated LTS. Consider the BPP process

UB
de f
= in.(UB |out.0)

Following the steps in Example 3.12, show that UB0 ∼ UB. Process UB is a bag
buffer because it does not respect in output the order of insertion of the elements
in the buffer, even if in this setting, where channels do not carry values, this as-
pect is not observable. See Section 3.6 for more accurate descriptions of unbounded
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buffers; in particular, Example 3.23 and Example 3.25 for an unbounded fifo buffer
(or queue). �

Definition 3.7. (BPP language) A language L ⊆ (L ∪L )∗ is a BPP language if
there exists a BPP process p such that the set of its weak completed traces is L, i.e.,
WCTr(p) = L. �

As BPP is a superset of finite-state CCS, the class of regular languages is in-
cluded in the class of BPP languages by Proposition 3.6. However, the class of BPP
languages includes also non-regular languages, as the following exercise explains.

Exercise 3.56. (Completed traces may form a non-regular language) Consider

the BPP process A
de f
= a.(A |b.0)+ c.0, discussed in [Ch93, BCMS01]. (i) Show that

a sequence σ ∈ {a,b,c}∗ is a trace in Tr(A) if and only if, in any prefix σ ′ of σ ,
�(b,σ ′) ≤ �(a,σ ′), �(c,σ ′) ≤ 1 and the only occurrence of c, if present, is always
after the last occurrence of a. (ii) Show also that for any completed trace σ , addi-
tionally it holds that �(b,σ) = �(a,σ). Argue that the set of completed traces CTr(A)
is not a regular language (see Section 1.3.2). (Hint: If CTr(A) were regular, then
CTr(A)∩a∗cb∗ should be regular, because the intersection of two regular languages
is a regular language [HMU01]. But the resulting set is L = {akcbk

∣∣ k≥ 0}, which
is a typical example of a non-regular language.) �

Example 3.13. (Completed traces may form a non-context-free language) It is
also possible to show that some BPP language is not a context-free language (i.e., it
cannot be generated by a context-free grammar). For instance, consider the follow-
ing process, originally introduced in [BCMS01]:

B
de f
= a.(B |b.0)+ c.(B |d.0)+ e.0

If CTr(B) were a context-free language, then also CTr(B)∩ a∗c∗b∗d∗e would be
context-free, as the intersection of a context-fee language with a regular language
gives a context-free language [HMU01]. However, such an intersection is the set
{akcnbkdne

∣∣ k,n ≥ 0}, which is a well-known example of a context-dependent
language.

To complete the picture, there exist context-free languages not definable as the
set of completed traces of any BPP process. For instance, in [Ch93, BCMS01] it is
proved that the context-free language L = {akcbk

∣∣ k ≥ 0} is not a BPP language,
i.e., there exists no BPP process p such that WCTr(p) = L. (See Example 3.15 and
Exercise 3.60 for finite-net CCS definitions of variations of this language.) �

The problem of checking bisimulation equivalence over BPP processes is decid-
able [CHM93] and more recently it has been proved PSPACE-complete [Jan03].
Weak bisimilarity has been proved decidable in some restricted cases, e.g., when
one of the two processes is finite-state [JKM01, KM02], but the problem in the gen-
eral case is still open, even if a conjecture about its decidability has been recently
proposed in [CHL11], based on the proof of decidability of branching bisimilarity
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for normed BPP processes18 outlined there. On the contrary, trace equivalence over
BPP is undecidable [Hir93]. For a gentle introduction to this topic, see [AIS12].

Exercise 3.57. Argue that trace equivalence is decidable for deterministic BPP pro-
cesses, i.e., for those BPP processes generating deterministic LTSs. (Hint: Look at
Exercise 2.44.) �

3.4.5 Finite-Net CCS

Finite-net CCS processes are generated by the abstract syntax

s ::= 0
∣∣ μ.t

∣∣ s+ s

t ::= s
∣∣ t | t ∣∣ C

p ::= t
∣∣ (νa)p

where, as usual, we assume that process constants are always defined and guarded
and that Const(p) is finite. It is easy to see that finite-net processes form a superclass
of BPP (because they allow for a limited use of restriction and they model synchro-
nization), and are syntactically incomparable with regular processes because, on the
one hand, finite-net processes allow for the use of parallel composition inside the
body of recursively defined constants, while, on the other hand, regular processes
can mix the operators of restriction and parallel composition. However, semanti-
cally, regular processes are included in BPP, hence also in finite-net processes.

Under the assumptions listed in Remark 3.5, sometimes the syntax of finite-net
CCS processes is more succinctly given as:

t ::= Σ j∈J μ j.t j
∣∣ t | t ∣∣ C

p ::= t
∣∣ (νa)p

Remark 3.13. (Notational extension) Note that the body of a constant C cannot
contain occurrences of the restriction operator. However, for convenience, in order to
give a name to every process, we will sometimes make use of constants that are non-
recursively defined over the general class of finite-net processes. For instance, we

consider acceptable the constant definition A
de f
= (νa)(p |q) when A does not belong

to Const(p) ∪ Const(q). This convention is extensively adopted in the following,
e.g., for constant HSC2 of Exercise 3.58 or constant 2PSC of Example 3.15. �

This class is interesting because it has been shown in [Gor15, GV10] that its pro-
cesses are in close connections with finite P/T Petri nets [Pet81, Rei85, DesRei98]
with the distinguishing feature that net transitions have either one input arc, or two
input arcs (but in such a case the transition is labeled τ). Indeed, in one direction it
can be proved that a finite-net CCS process generates a finite P/T Petri net of that

18 A BPP process is normed if each of its reachable states may terminate, i.e., may reach a deadlock.
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form. Conversely, for any finite P/T net N of that form, we can find a finite-net CCS
process p such that the net of p is isomorphic to N. Moreover, in [Gor15, GV10]
a generalization of this result is presented: for any finite P/T net N, we can find a
finite-net process p in a proper extension of CCS with multiway synchronization,
called Multi-CCS (described in Chapter 6), such that the net of p is isomorphic
to N. Hence, finite-net Multi-CCS processes are for Petri nets as fundamental as
finite-state CCS processes are for LTSs.

Even if bisimulation equivalence is undecidable in general over finite-net CCS
processes (as proved in Section 3.5.4), one might take advantage of the many de-
cidable properties over finite P/T Petri nets that are hence also decidable for finite-
net CCS processes, via the net semantics outlined in [Gor15, GV10]. Among these
properties we mention the following:

• Reachability: given two finite-net processes p and q, we can decide if q is reach-
able from p [May81, May84, Kos82, Ler11]. This is important when checking
some safety condition that is invalid at some erroneous state q.

• Strong bisimilarity with a finite-state system: given a finite-state process p and a
finite-net process q, we can decide if the two are strongly bisimilar [JM95]. This
problem is interesting because it enables us to perform equivalence-checking
between the complex bahavior of an infinite-state implementation and its finite-
state specification.

• Strong regularity: given a finite-net process q, we can decide if there exists a
finite-state process p that is strongly bisimilar to q [JE96].

All these properties are difficult to check in practice, as they are at least exponential.
The interested reader may find more details in [EM94, Esp98, Srba].

Exercise 3.58. (Half-semi-counter, again) Continuing Exercise 3.53, consider this
new variant of the half-semi-counter HSC2 defined as

HSC2
de f
= (νc)B

B
de f
= inc.(B |(c.dec.0+ c.0))

where, instead of two occurrences of inc being explicitly used, one restriction name
is used to force a self-synchronization of two identical instances of c.dec.0+ c.0.

Show that the BPP process HSC and the finite-net process HSC2 are weakly
bisimilar, by checking that the relation

R = {(HSC,HSC2),(HSC,(νc)B)} ∪ {(HSC |Π n
i=1dec.0 ,

(νc)(B |Π 2k
i=1(c.dec.0+ c.0) |Π n−k

j=1 dec.0))
∣∣ 0≤ k ≤ n} ∪

{(inc.(HSC |dec.0) |Π n
i=1dec.0 ,

(νc)(B |Π 2k+1
i=1 (c.dec.0+ c.0) |Π n−k

j=1 dec.0))
∣∣ 0≤ k ≤ n}}

is a weak bisimulation up to ≈. (Hint: Besides the laws for parallel composition
holding for strong bisimulation equivalence ∼ — associativity, commutativity and
nil as a neutral element — proved in Proposition 4.2, you also need to know that ∼
is a congruence for parallel composition and restriction, as proved in Theorem 4.1.
For instance, as B |0∼ B, it also holds that (νc)(B |0)∼ (νc)B by congruence.) �
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Example 3.14. (Unbounded producer-consumer) We can generalize the producer-
consumer system we have discussed in Example 3.8, by defining an unbounded,
BPP producer Pr = produce.(send.0 |Pr), the usual consumer C1 = send.consume.C1

and the whole finite-net system UPC
de f
= (νsend)(Pr |C1). �

Exercise 3.59. Consider process UPC of Example 3.14. (i) Draw the initial portion
of its infinite-state LTS. (ii) Argue that UPC is not weakly bisimilar to 2PC of
Example 3.8. (iii) Consider the unbounded, BPP buffer UB, defined in Exercise
3.55. Then, taking the producer P2 and the consumer C2 as defined in Exercise 3.48,

show that PUBC
de f
= (ν in,out)((P2 |UB) |C2) is weakly bisimilar to UPC. �

Definition 3.8. (Finite-net CCS language) A language L ⊆ (L ∪L )∗ is a finite-
net CCS language if there exists a finite-net CCS process p such that the set of its
weak completed traces is L, i.e., WCTr(p) = L. �

Example 3.15. (Two-phase semi-counter) A two-phase semi-counter is a process
that can execute the increment action inc an unlimited number of times, followed
by an equal number of occurrences of the decrement action dec. The two kinds of
action cannot intertwine, as with the semi-counter SC of Example 3.12, and this
explains why this semi-counter is called two-phase. The specification is as follows:

2PSC
de f
= (νd)INC

INC
de f
= inc.(INC |d.dec.0) + τ.DEC

DEC
de f
= d.DEC

The set WCTr(2PSC) of the weak completed traces of 2PSC is composed of all
the traces of the form incndecn for any n ∈ N (when n = 0, inc0dec0 is meant to be
the empty trace ε). This is a typical example of a context-free language. �

Exercise 3.60. Elaborate on the specification of the two-phase semi-counter above
in order to produce a finite-net CCS process p whose associated language is L =
{ancbn

∣∣ n ≥ 0}. It has been proved in [Ch93, BCMS01] that no BPP process q
is such that WCTr(q) = WCTr(p), hence p (as well as 2PSC above) is a typical
representative of the class of finite-net CCS processes. �

Exercise 3.61. Define a finite-net CCS process whose weak completed traces are
of the form anw for any n ∈ N, where w is a sequence of length 2n composed of
occurrences of b and c such that in any prefix of w the number of b’s is greater or
equal to the number of c’s. �

The class of finite-net CCS languages includes the class of BBP languages, as
BBP is a subset of finite-net CCS. However, it does not include all the context-
free languages. It has been proved in [Pet81] that the typical context-free language
L= {wwR

∣∣ w∈ {a,b}∗}, where wR means the reverse of w,19 cannot be represented
by means of a finite P/T Petri net. Since finite-net CCS processes may originate,

19 The formal definition is as follows: εR = ε and (αw)R = wRα .
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via the semantics in [Gor15, GV10], only finite P/T Petri nets, then they cannot
represent language L. (Exercise 3.64 describes a finitary CCS process whose set
of weak completed traces is L.) Nonetheless, the class of finite-net CCS languages
includes also context-dependent languages, as the following example shows.

Example 3.16. (The language anbmcm with 0 ≤ m ≤ n) A finite-net CCS process
whose weak completed traces are of the form anbmcm, with 0≤ m≤ n, is

ABC
de f
= (νd,e, f )A

A
de f
= a.(A |d.b.e.0) + τ .B

B
de f
= d.e.(B | f .c.0) + τ .C

C
de f
= f .C

Observe that first a certain number of occurrences of action a are generated, as
well as of subprocesses d.b.e.0. Then, when A performs the internal τ-labeled transi-
tion and becomes B, a certain number of activations of action b via a synchronization
on d can be performed; these synchronizations cannot be more than the number of
a’s. When each occurrence of action b is performed, a call-back synchronization on
e is executed, which activates a new instance of B, as well as of f .c.0; hence, the
number of processes f .c.0 in parallel is equal to the number of b executed. Finally,
when B internally moves to C, perhaps before having completed the activations of
all the available occurrences of b, the same number of c can be performed after
activation via synchronization on f . �

Exercise 3.62. (i) Specialize Example 3.16 in order to define a finite-net process
such that its weak completed traces are of the form anbn with n ∈ N.

(ii) Generalize Example 3.16 in order to define a finite-net process such that its
weak completed traces are of the form anbmckdk with 0≤ k ≤ m≤ n. �

To complete the picture, it has been proved [Pet81] that all the languages de-
scribed by finite P/T Petri nets are context-dependent. Hence, also all the finite-net
CCS languages are context-dependent. Figure 3.11 summarizes all the relationships
among the different classes of languages, where the languages delineated in the fig-
ure are as follows:

• L1 is the set CTr(A) for A
de f
= a.(A |b.0)+ c.0, as discussed in Exercise 3.56.

• L2 =CTr(B) for B
de f
= a.(B |b.0)+c.(B |d.0)+e.0, as discussed in Example 3.13.

• L3 = {ancbn
∣∣ n≥ 0}, as discussed in Exercise 3.60 (see also Example 3.15).

• L4 is the language {wwR
∣∣ w ∈ {a,b}∗}, discussed after Exercise 3.61, and real-

ized in finitary CCS in Exercise 3.64.
• L5 is the context-dependent language {anbmcm

∣∣ 0 ≤ m ≤ n} discussed in Ex-
ample 3.16.

In addition, we mention that Section 5.4.4 introduces a process algebra, called BPA,
whose set of representable languages coincides with the class of context-free lan-
guages.
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Fig. 3.11 Classification of language classes

3.4.6 Finitary CCS

The largest subclass of CCS processes is given by finitary CCS: the only constraint
is that, for any p, Const(p) is finite. From a syntactical point of view, this class
is a superclass of finite-net processes, because restriction can occur in the body of
recursively defined constants. Also, from a semantic point of view, there are finitary
CCS processes that cannot be bisimilar to any finite-net process, as the following
example shows.

Example 3.17. (Counter) Let us now consider a real counter, i.e., a semi-counter
that can also test for zero:

Counter0
de f
= zero.Counter0 + inc.Counter1

Countern
de f
= inc.Countern+1 +dec.Countern−1 n > 0

Its definition is not within finitary CCS because it uses infinitely many constants.
Its LTS is very similar to the one for the semi-counter (see Figure 2.7(b)), with
the only difference being that there is a self-loop transition on the first state q0
labeled zero. Indeed, this process can test for zero — a crucial property in models
of computation (as we will see in Section 3.5) — while the semi-counter process
SCount0 of Example 3.12 cannot. This process can be proved equivalent to a finitary
CCS process using only three constants, as proposed in [Tau89]:
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C
de f
= zero.C+ inc.((νa)(C1 |a.C))

C1
de f
= dec.ā.0+ inc.((νb)(C2 |b.C1))

C2
de f
= dec.b̄.0+ inc.((νa)(C1 |a.C2))

Note that this process is not a BPP process, because it uses restriction and com-
munication, and not even a finite-net process, because recursively defined constants
occur in their body inside the scope of restriction. As a matter of fact, C is a term
that dynamically expands as the computation proceeds. E.g.,

C inc−→ (νa)(C1 |a.C)
inc−→ (νa)((νb)(C2 |b.C1)) |a.C)
inc−→ (νa)((νb)(((νa)(C1 |a.C2) |b.C1)) |a.C)
inc−→ (νa)((νb)(((νa)((νb)(C2 |b.C1) |a.C2) |b.C1)) |a.C)
dec−→ (νa)((νb)(((νa)((νb)(b̄.0 |b.C1) |a.C2) |b.C1)) |a.C)
τ−→ (νa)((νb)(((νa)((νb)(0 |C1) |a.C2) |b.C1)) |a.C)

dec−→ (νa)((νb)(((νa)((νb)(0 | ā.0) |a.C2) |b.C1)) |a.C)
τ−→ (νa)((νb)(((νa)((νb)(0 |0) |C2) |b.C1)) |a.C)

inc−→ (νa)((νb)(((νa)((νb)(0 |0) |(νa)(C1 |a.C2) |b.C1)) |a.C)

where the number of restrictions occuring in the term is determined by the number
of executed actions inc, while the actual number represented by a term is determined
by the number of active (alternating) restrictions. It is easy to see that PC — the
set of states reachable from C — is an infinite set. The initial portion of the LTS is
depicted in Figure 3.12, where the dashed lines indicate the two connected states are
weakly bisimilar.

We prove that Counter0 and C are weakly bisimilar. Following [Tau89], first we
need to define some auxiliary notation. Let p0 =C and p1 = (νa)(x |a.C), where x is
a place holder for any term to be filled in. Define also p2n = p2n−1[(νb)(x |b.C1)/x]
(for n > 0), where pn[q/x] stands for naive substitution of q for the (unique) occur-
rence of x in pn. Similarly, define p2n+1 = p2n[(νa)(x |a.C2)/x] for n > 0. Consider
the relation R defined as

R = {(C,Counter0)}
∪ {(p2n[C2/x], Counter2n)

∣∣ n > 0}
∪ {(p2n+1[C1/x], Counter2n+1)

∣∣ n≥ 0}
∪ {(p2n+1[ā.0/x], Counter2n)

∣∣ n≥ 0}
∪ {(p2n[b̄.0/x], Counter2n+1)

∣∣ n > 0}.

We prove that R is a weak bisimulation up to ≈ (see Definition 2.22 and Exercise
2.74 for the correctness of this proof technique). In most cases, the bisimulation
game is played as in the strong case, actually. In a couple of cases only, it needs to
resort to weak transitions and the up-to condition.
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(νa)((νb)(C2
∣∣ b.C1)

∣∣ a.C)
. . .
(νa)((νb)(((νa))(0

∣∣ C2)
∣∣ b.C1)

∣∣ a.C)

(νa)((νb)(((νa))(C1
∣∣ a.C2)

∣∣ b.C1)
∣∣ a.C)

. . .

dec

dec
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τ

τ

...

(νa)(C1
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τ

inc
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. . .

zero

Fig. 3.12 The initial part of the infinite LTS of the counter C. (A dashed line connects weakly
bisimilar states.)

First consider pair (C,Counter0). Transition C zero−→C is matched strongly (hence
also weakly) by transition Counter0

zero−→Counter0, and the pair of reached states
(C,Counter0) is in R. Transition C inc−→ (νa)(C1 |a.C) is matched strongly by tran-
sition Counter0

inc−→Counter1, and the pair of reached states (p1[C1/x],Counter1)
belongs to the third group of R (when n = 0). No other transition is possible from C.
Symmetrically, the two transitions from Counter0 are the two listed above and are
matched by the same transitions from C described above.

Now consider, more generally, a pair (p2n+1[C1/x], Counter2n+1) for n≥ 0. Term
p2n+1[C1/x] can move only according to the inner occurrence of C1, which is replac-
ing the place-holder x. Hence we have transitions

p2n+1[C1/x] inc−→ p2n+1[(νb)(C2 |b.C1)/x] = p2n+2[C2/x] and

p2n+1[C1/x] dec−→ p2n+1[ā.0/x].
In the former case, the matching transition is Counter2n+1

inc−→Counter2n+2, and
(p2n+2[C2/x],Counter2n+2) belongs to the second group in R. In the latter case, the

matching transition is Counter2n+1
dec−→Counter2n, and (p2n+1[ā.0/x],Counter2n)

belongs to the fourth group of R. Symmetrically, if the first move comes from
Counter2n+1.

Consider now a pair of the fourth group (p2n+1[ā.0/x], Counter2n) for n > 0.
State p2n+1[ā.0/x] is in fact (p2n[(νa)(x |a.C2)/x])[ā.0/x] = p2n[(νa)(ā.0 |a.C2)/x].
From such a state there is only one possible move:
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p2n+1[ā.0/x] = p2n[(νa)(ā.0 |a.C2)/x] τ−→ p2n[(νa)(0 |C2)/x].
On the one hand, note that p2n[(νa)(0 |C2)/x] ∼ p2n[C2/x]. On the other hand,
Counter2n

ε
=⇒Counter2n ≈ Counter2n.

Summing up, transition p2n+1[ā.0/x] τ−→p2n[(νa)(0|C2)/x]∼ p2n[C2/x] is matched
by Counter2n

ε
=⇒Counter2n≈Counter2n, and (p2n[C2/x],Counter2n) belongs to the

second group of R.

Exercise 3.63. Complete the proof that R is a weak bisimulation up to ≈, by check-
ing that also the other pairs in R satisfy the bisimulation condition. Consider also
the special case (p1[ā.0/x], Counter0), not considered above. Finally, argue that
relation R is also a branching bisimulation up to ≈br. �

To conclude this example, we remark that there is no finite-net process q such
that q≈C, i.e., the counter C is a proper representative of finitary CCS. As a matter
of fact, in [Gor15, GV10] it is proved that any finite-net CCS process generates a
finite P/T Petri net. Agerwala in [Age75] (see also [Tau89], page 120) proved that
no finite P/T net can faithfully represent a counter; hence, the conclusion is that no
finite-net CCS process can represent a counter. �

Exercise 3.64. (The language wwR) Consider L = {wwR
∣∣ w ∈ {a,b}∗}, where the

reverse wR of w is defined as follows: εR = ε and (αw)R = wRα . We argued in Sec-
tion 3.4.5 that L cannot be a finite-net CCS language, because [Pet81] shows that L
is not a Petri net language. Argue that the finitary CCS process D

D
de f
= a.((νd)(D1 |d.a.0)) + b.((νd)(D1 |d.b.0)) + τ.0

D1
de f
= a.((νe)(D2 |e.a.d.0)) + b.((νe)(D2 |e.b.d.0)) + d.0

D2
de f
= a.((νd)(D1 |d.a.e.0)) + b.((νd)(D1 |d.b.e.0)) + e.0

represents language L, i.e., D is such that WCTr(D) = L. �

Example 3.18. (The language anbncn) As a further example, consider the following
process I: its weak completed traces are of the form anbncn, for n ∈ N.

I
de f
= τ.0+a.((ν l)(((νr)(Endr |B)) | I1))

I1
de f
= τ.l.Endl +a.((νr)(B | I2))

I2
de f
= τ.r.Endr +a.((ν l)(B | I1))

Endl
de f
= l.l.Endl B

de f
= l.b.r.C+ r.b.l.C

Endr
de f
= r.r.Endr C

de f
= l.c.r.D+ r.c.l.D D

de f
= 0

An instance of what can be done by I is reported in Table 3.2. Note that after the
first τ-labeled transition, performed by I2 (second line), the computation is deter-
ministic: the occurrence of B on the right must receive an input r from its right, and
only after that be able to execute its b (fourth line). Then, it should output on l, by
synchronizing with the first B on its left, while turning into C. This chain of left-
activations of B to C, alternating synchronizations on r and l, goes on till the first
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I a−→ ((ν l)(((νr)(Endr |B)) | I1))
a−→ (ν l)(((νr)(Endr |B)) |((νr)(B | I2))))

τ−→ (ν l)(((νr)(Endr |B)) |((νr)(B |r.Endr))))
τr−→ (ν l)(((νr)(Endr |B)) |((νr)(b.l.C |Endr))))

b−→ (ν l)(((νr)(Endr |B)) |((νr)(l.C |Endr))))
τl−→ (ν l)(((νr)(Endr |b.r.C)) |((νr)(C |Endr))))

b−→ (ν l)(((νr)(Endr |r.C)) |((νr)(C |Endr))))
τr−→ (ν l)(((νr)(r.Endr |C)) |((νr)(C |Endr))))
τrc
=⇒ (ν l)(((νr)(Endr | l.D)) |((νr)(C |Endr))))
τl c=⇒ (ν l)(((νr)(Endr |D)) |((νr)(r.D |Endr))))

Table 3.2 An execution of process I

B is encountered. Now a synchronization on r with the inner Endr takes place that
enables c; after that, a synchronization on r with the adjacent C (the C that formerly
was a B) on its right that now enables it; and so on, in a chain of right-activations of
C to D. �

Exercise 3.65. Elaborate on the above example in order to define a process K such
that its weak completed traces are of the form anbncndn. �

Summing up, the six subclasses of CCS processes we have discussed in this sec-
tion can be classified as in Figure 3.6 (Section 3.4). To show the precise inclusions
of CCS subcalculi in the syntactic classification, it may be useful to think about the
following examples.

Example 3.19. (i) Argue that a.(a.0 |b.0) is a finite CCS process that is not a regular
CCS process. (ii) Argue that a.(((νb)b.0 |c.0) is a finite CCS process that is not a
finite-net CCS process. (iii) Argue that a.0 |((νa)a.0) is a regular (and finite) CCS
process that is not a finite-net CCS process. �

Example 3.20. (Non-finitary CCS process) As a possible representative of a full
CCS process with no equivalent finitary CCS process, consider the family of process
constants Ωi = ai.Ωi+1 for i ∈ N. Process Ω0 uses infinitely many constants and,
moreover, sort(Ω0) (see Definition 2.5) is the infinite set {ai

∣∣ i ∈ N}. In Section
4.1.2, Corollary 4.1 states that, for any finitary CCS process p, the set sort(p) is
finite; therefore, it is impossible to find a finitary CCS process equivalent to Ω0. �

Exercise 3.66. (General representability theorem) Generalize the construction
given in the proof of Theorem 3.2 for finite-state LTSs in order to show that any
finitely-branching LTS with infinitely many states can be represented by a (full)
CCS process term p using prefixing, summation and infinitely many constants. �
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3.5 Turing-Completeness

In this section we show how to model faithfully in finitary CCS a well-known
Turing-complete model of computation, namely counter machines (CMs, for short),
so that we can conclude that also finitary CCS is Turing-complete. We then show
that this has the expected consequence that all the behavioral equivalences we have
discussed are undecidable for finitary CCS.20 This is proved by showing that, if
the bahavioral equivalences were decidable for finitary CCS, then we would solve
the halting problem [Tur36, Dav58] for CMs, a well-known unsolvable problem for
Turing-complete formalisms (see Section 1.3.5 for more detail).

3.5.1 Counter Machines

A counter machine (see, e.g., [ER64, Min67]) is a computational model com-
posed of a finite set of registers (i.e., counters) that can hold arbitrarily large
natural numbers, and of a program, which is a finite set of indexed instructions
{(1 : I1), . . . ,(m : Im)} such as operations on the contents of registers or conditional
jumps. To perform a computation, the inputs are provided in registers r1, . . . ,rn; if
no input is provided for a register, then it is supposed to contain the value 0 at the
beginning of the computation. The execution of the program begins with the first
instruction (1 : I1) and continues by executing the other instructions in sequence,
unless a jump instruction is encountered. The execution stops when an instruction
number higher than the length of the program is reached: this happens if the pro-
gram is executing its last instruction and this instruction does not require a jump, or
if the current instruction requires a jump to an instruction number not appearing in
the program. If the program terminates, the result of the computation is the content
of the registers specified as outputs (usually all the registers).

There are several different varieties of counter machines (CMs, for short), de-
pending on the chosen instruction set. A very simple class, which in [Min67] is
shown to be Turing-complete, has a very limited instruction set, composed only of
the following two kinds:

• (i : Inc(r j)): increment by 1 the content of the register r j and execute the next
instruction with index i+1;

• (i : DecJump(r j,s)): if the content of the register r j is not 0, then decrease it by
1 and execute the next instruction with index i+1, otherwise jump to instruction
with index s.

Example 3.21. Assuming that register r3 holds value 0, the following CM program
computes the sum of the values stored in registers r1 and r2 — putting the result
in register r1 — by decrementing register r2 and incrementing register r1 at each

20 However, remember that all the equivalences discussed in Chapter 2 are decidable for finite-state
processes and that bisimulation equivalence is decidable even for BPP.
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iteration, until register r2 holds 0:

{(1 : DecJump(r2,4)),(2 : Inc(r1)),(3 : DecJump(r3,1))}

Note that the third instruction corresponds to an unconditional jump, because reg-
ister r3 contains the value 0 at the beginning of the computation and its content is
never modified by the program. The program halts when the content of r2 is 0, so
that the first instruction is a jump to instruction 4, not present in the program. �

Exercise 3.67. Continuing Example 3.21, what does CM compute when the value
stored in register r3 is not 0? (Hint: Be careful about the initial value of r2.) �

Definition 3.9. (Counter machines) A counter machine (CM) M is defined as a
pair M = (I,n), where

I = {(1 : I1), . . . ,(m : Im)}
is the set of indexed instructions of M, with |I|= m, n is the number of registers of
M and each instruction Ii is of two possible kinds:

• Ii = Inc(r j) (1≤ j ≤ n);
• Ii = DecJump(r j,s)) (1≤ j ≤ n).

An internal state (or configuration) S of M is defined as a state vector

S = (i,v1, . . . ,vn)

with i representing the program counter (i.e., the index of the next instruction to be
executed) and v1, . . . ,vn ∈ N the current values stored in the n registers of M.

The initial internal state (or initial configuration) is (1,v1, . . . ,vn), where 1 sig-
nals that the computation starts from the first instruction, and vi is the input for
register ri, i = 1, . . . ,n.

The (unlabeled) transition relation �M⊆ S×S is defined as follows:

(i,v1, . . . ,vn) �M (i′,v′1, . . . ,v
′
n)

whenever

• Ii = Inc(r j), so that i′ = i+1, v′j = v j +1, v′k = vk for any k �= j; or
• Ii = DecJump(r j,s) and v j > 0, so that i′ = i+ 1, v′j = v j− 1, v′k = vk for any

k �= j; or
• Ii = DecJump(r j,s) and v j = 0, so that i′ = s, v′k = vk for any k = 1, . . . ,n.

As the three cases listed above are mutually exclusive, relation �M is deterministic,
i.e., if (i,v1, . . . ,vn) �M (i′,v′1, . . . ,v

′
n) and (i,v1, . . . ,vn) �M (i′′,v′′1 , . . . ,v

′′
n), then

i′ = i′′ and v′j = v′′j for j = 1, . . .n.
We denote by �∗

M the reflexive and transitive closure of relation �M . Given
the inputs v1, . . . ,vn, a configuration (i,v′1, . . . ,v

′
n) is terminal if (1,v1, . . . ,vn) �

∗
M

(i,v′1, . . . ,v
′
n) with the program counter i > m (i.e., no further transition is possible

from such a configuration); the values v′1, . . . ,v
′
n are the outputs of M. If there is no
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terminal configuration reachable from (1,v1, . . . ,vn) (i.e., the computation diverges),
we write (1,v1, . . . ,vn) ⇑.

The counter machine M computes the partial function fM defined as follows:
fM(v1, . . . ,vn) = (v′1, . . . ,v

′
n) if (1,v1, . . . ,vn) �

∗
M (i,v′1, . . . ,v

′
n) with the program

counter i > m, otherwise fM(v1, . . . ,vn) is undefined. �

Exercise 3.68. Consider the CM M of Example 3.21. Compute the finite set of the
configurations reachable from the initial one (1,3,2,0), i.e., when register r1 holds
value 3 and r2 holds value 2 and r3 is 0. Considering also the cases discussed in
Exercise 3.67, what is the partial function fM(v1,v2,v3) computed by M? �

Exercise 3.69. Consider the CM M = (I,1) defined by the following program I:

{(1 : Inc(r1)),(2 : DecJump(r1,1))),(3 : DecJump(r1,1))}

Compute the finite set of the configurations reachable from the initial one (1,0).
What is the partial function fM(v) computed by M? �

Exercise 3.70. Define a CM M = (I,3) such that the partial function fM(v1,v2,0) it
computes (assuming register r3 holds 0 initially) is

fM(v1,v2,0) =

{
(v1− v2,0,0) if v1 ≥ v2

undefined otherwise
�

Remark 3.14. (Minimal Turing-complete class of counter machines) In [Min67]
(pp. 170-174) it is proved that the three-counter machine model (3CMs, for short),
i.e., the class of counter machines that use three registers only, can simulate any
Turing machine, hence, 3CMs can compute any partial recursive function of one
variable. More precisely, a 3CM M starts with the input argument n in a counter,
and it leaves the answer fM(n) in a possibly different counter, if it halts. The way
inputs and outputs are treated is very important. As a matter of fact, [Min67] (pp.
255-258) proves that even the two-counter machine model (2CMs) can simulate any
Turing machine, but only when the input argument n is appropriately encoded, and
analogously for the output. In the same line, [Sch72] proves that a counter machine
M can be simulated by a 2CM M′, provided that one of the two counters of M′ is
initialized to the encoding, by Gödelization, of the values stored in the counters of
M (and similarly for the outputs). �

3.5.2 Encoding Counter Machines into Finitary CCS

Now we want to define an encoding of any CM into some finitary CCS process. In
the light of Remark 3.14, we may restrict our attention to a minimal Turing-complete
class of counter machines. To avoid unnecessary complications, we assume to treat
inputs and outputs plainly, and so in the following presentation we adopt three-
counter machines (3CMs) as our Turing-complete model of computation.
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Assuming that the tuple (v1,v2,v3) denotes the initial inputs for the three registers
of the CM M = (I,3), with |I|= m, the whole finitary CCS process CMM(v1,v2,v3) is

CMM(v1,v2,v3)
de f
= (νL)(P1 | . . . |Pm |R1 |R2 |R3 |B(v1,v2,v3)),

where each constant Pi defines the CM instruction of index i, each constant R j
defines the CM register r j as a counter, and constant B(v1,v2,v3) is used to per-
form the bootstrapping of the system by initializing the registers and by acti-
vating the first instruction. The set L is {pi

∣∣ index i occurs in some instruction}
∪{inc j,zero j,dec j

∣∣ 1≤ j ≤ 3}, where such actions are used by an instruction Pi:

• to test the state of the register R j, which can be zero (corresponding to an incom-
ing answer on zero j) or nonzero (answer on dec j): in the latter case the register
is decremented;

• to increment the register R j (output on inc j);
• to activate instruction i by executing the output pi.

Each instruction (i : Ii) corresponds to the definition of a recursive process con-
stant Pi, activated by an output on the channel pi.

• An increment operation (i : Inc(r j)) is modeled as:

Pi
de f
= pi.P′i P′i

de f
= inc j.pi+1.Pi

where pi is the instruction activating input (by synchronizing with the output pi
executed by the currently active instruction); inc j is the increment operation on
register R j; pi+1 is the output which activates instruction Pi+1, as it will synchro-
nize with its initial input pi+1. Note that the constant Pi is recursively defined as
it must be always ready to process the required operation (increment of R j) each
time it is invoked.

• A “jump if zero/decrement” operation (i : DecJump(r j,s)) is modeled as:

Pi
de f
= pi.P′i P′i

de f
= zero j.ps.Pi +dec j.pi+1.Pi

where the choice between zero j and dec j is driven the current status of register
R j: if R j holds 0, then only the synchronization on zero j can take place (and the
instruction of index s is activated), while if R j is not 0, then only the synchro-
nization on dec j can take place (with the effect of decrementing the register and
of activating instruction of index i+1).

Each register R j is encoded as a counter (see Section 3.4.6 for details):

R j
de f
= zero j.R j + inc j.((νa)(R j1 |a.R j))

R j1
de f
= dec j.ā.0+ inc j.((νb)(R j2 |b.R j1))

R j2
de f
= dec j.b̄.0+ inc j.((νa)(R j1 |a.R j2))
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Before starting the program I, we have first to introduce every input v j in the
corresponding register r j. This is done by the following agent B(v1,v2,v3) that per-
forms the bootstrapping of the system by initializing the registers before emitting
the initial program counter p1.

B(v1,v2,v3)
de f
= inc1. · · · .inc1.︸ ︷︷ ︸

v1 times

inc2. · · · .inc2.︸ ︷︷ ︸
v2 times

inc3. · · · .inc3︸ ︷︷ ︸
v3 times

.p1.0

Hence, CMM(v1,v2,v3)−→∗ (νL)(P′1 |P2 | . . . |Pm |R′1 |R′2 |R′3 |0), which represents the
CCS process for the CM M ready to execute the first instruction: P′1 derives from

P1
de f
= p1.P′1, while R′j denotes the register which the value v j has been stored in.

Example 3.22. Consider the CM M of Example 3.21 and Exercise 3.68. The process
CMM(3,2,0) is:

CMM(3,2,0)
de f
= (νL)(P1 |P2 |P3 |R1 |R2 |R3 |B(3,2,0))

where:

• P1
de f
= p1.P′1 P′1

de f
= zero2.p4.P1 +dec2.p2.P1

• P2
de f
= p2.P′2 P′2

de f
= inc1.p3.P2

• P3
de f
= p3.P′3 P′3

de f
= zero3.p1.P3 +dec3.p4.P3

• B(3,2,0)
de f
= inc1.inc1.inc1.inc2.inc2.p1.0

• L = {inc j,zero j,dec j
∣∣ 1≤ j ≤ 3}∪{pi

∣∣ 1≤ i≤ 4}.
By performing the bootstrapping, CMM(3,2,0) reaches the state

(νL)(P′1 |P2 |P3 |R′1 |R′2 |R3 |0),
which represents the CCS process for the CM M ready to execute the first instruc-
tion. R′1 stands for (νa)((νb)((νa)(R11 |a.R12) |b.R11) |a.R1), while R′2 stands for
(νa)((νb)(R22 |b.R21) |a.R2). �

For i = 1, . . . ,m, let 〈CM(i,v1,v2,v3)〉 be the set of all the terms of the form

(νL)(P1 | . . . |Pi−1 |P′i |Pi+1 | . . . |Pm |R′1 |R′2 |R′3 |0)
where for j = 1,2,3, R′j ≈Counterv j and R′j cannot perform τ initially, i.e., R′j � τ−→ .
It is not difficult to see that if Q,Q′ ∈ 〈CM(i,v1,v2,v3)〉 then Q∼ Q′.

The initial state (1,v1,v2,v3) of the CM M corresponds to a CCS process
Q ∈ 〈CM(1,v1,v2,v3)〉. Each state change of M, e.g., (i,v1,v2,v3) �M (i′,v′1,v

′
2,v

′
3),

where the reached configuration (i′,v′1,v
′
2,v

′
3) is not terminal, determines a de-

terministic sequence of synchronizations21 from any Q ∈ 〈CM(i,v1,v2,v3)〉 to some
Q′ ∈ 〈CM(i′,v′1,v′2,v′3)〉.
21 To be precise, the number of τs (synchronizations) is two when an increment instruction or a
jump instruction is executed, while it is three when a decrement instruction is executed.
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When (i,v1,v2,v3) �M (i′,v′1,v
′
2,v

′
3) and the reached configuration is terminal

(i.e., i′ > m), from any Q∈ 〈CM(i,v1,v2,v3)〉 it is possible to reach some Q′ of the form

(νL)(P1 | . . . |Pi−1 | pi′ .Pi |Pi+1 | . . . |Pm |R′1 |R′2 |R′3 |0)

for suitable R′j ( j = 1,2,3), where the ith instruction is stuck before the activation of
the nonexisting instruction of index i′. For simplicity, we denote the class of terms
of this form by 〈CM(i′,v′1,v′2,v′3)〉 as well.

Observe that CMM(v1,v2,v3) is deterministic, as in any reachable state only one
synchronization is possible, reflecting the determinism of the CM M. Formally, one
could prove the following proposition, which states that the encoding is correct.

Proposition 3.8. Given a CM M with inputs v1,v2,v3, let CMM(v1,v2,v3) be the CCS
process defined above, such that CMM(v1,v2,v3)−→∗Q ∈ 〈CM(1,v1,v2,v3)〉. Then the
following hold:

• (1,v1,v2,v3) �
∗
M (i,v′1,v

′
2,v

′
3) if and only if for all Q ∈ 〈CM(1,v1,v2,v3)〉 there ex-

ists some Q′ ∈ 〈CM(i′,v′1,v′2,v′3)〉 such that Q−→∗Q′;
• if Q ∈ 〈CM(i,v′1,v′2,v′3)〉 and Q−→∗Q′, Q′ −→Q1 and Q′ −→Q2, then Q1 = Q2;
• if Q ∈ 〈CM(i,v′1,v′2,v′3)〉 and Q−→∗Q′, then there exists Q′′ ∈ 〈CM(i′,v′′1 ,v′′2 ,v′′3)〉 such

that Q′ −→∗Q′′, for suitable i′,v′′1 ,v
′′
2 ,v

′′
3;

• (1,v1,v2,v3) ⇑ if and only if CMM(v1,v2,v3) ⇑. �

As any 3CM can be modeled faithfully in finitary CCS, we have the following
obvious consequence.

Corollary 3.3. Finitary CCS is Turing-complete. �

3.5.3 Undecidability of Behavioral Equivalences for Finitary CCS

We want to show that all the behavioral equivalences we have studied in Chapter 2
are undecidable over finitary CCS. To this aim, we elaborate a bit on the previous
encoding of CMs in CCS in order to make termination observable, by performing
a special termination action

√
. The introduction of this action is necessary because

CMM(v1,v2,v3) — be it terminating or not — is weakly bisimilar, as well as weak
trace equivalent, to 0 in any case. Then we conclude that if the behavioral equiva-
lence under scrutiny were decidable, we would be able to solve the halting problem
[Tur36, Dav58], a well-known unsolvable problem for Turing-complete formalisms
(see Section 1.3.5).

The halting problem for CMs can be formulated as follows. Given an enumer-
ation of CMs, M1,M2,M3, . . ., function halt(x,y) — where x is an index of a CM
and y is an encoding of the inputs v1,v2,v3 — returns 1 if Mx with inputs v1,v2,v3
terminates, and 0 otherwise. The halting problem for CMs is solvable if and only if
function halt is computable. As mentioned above, this problem is not solvable for
Turing-complete formalisms, such as CMs.
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Given a CM M = (I,n), where I = {(1 : I1), . . . ,(m : Im)} and v1,v2,v3 are the
inputs for r1,r2,r3, we define the Termination-observable finitary CCS process

TCMM(v1,v2,v3)
de f
= (νL)(P1 | . . . |Pm |Pm+1 |R1 |R2 |R3 |B(v1,v2,v3))

where L = {inc j,zero j,dec j
∣∣ 1≤ j ≤ 3}∪{pi

∣∣ 1≤ i≤m+1}, and where, w.r.t.
CMM(v1,v2,v3), we have included one further instruction of index m+1

Pm+1
de f
= pm+1.

√
.0

Action
√

is a special termination action, as we require that any terminating compu-
tation will execute instruction of index m+1 as its last instruction. To achieve this,
the encoding of a “jump if zero/decrement” operation (i : DecJump(r j,s)), is now

Pi
de f
= pi.P′i P′i

de f
=

{
zero j.ps.Pi +dec j.pi+1.Pi if s≤ m,
zero j.pm+1.Pi +dec j.pi+1.Pi) otherwise,

so that any terminating computation of the CM ends by activating the new instruc-
tion of index m+1. It is easy to see that the CM M with inputs v1,v2,v3 terminates
if and only if the CCS process TCMM(v1,v2,v3) performs

√
. Hence, TCMM(v1,v2,v3) is

weakly bisimilar to
√
.0 if and only if M with inputs v1,v2,v3 terminates. Assuming

that y is the encoding of v1,v2,v3, the halting problem can be now restated as

halt(x,y) =

{
1 if TCMMx(v1,v2,v3) ≈

√
.0

0 otherwise

So, if weak bisimilarity ≈ were decidable, we could solve the halting problem:
function halt(x,y) can be computed by first extracting from x the code for Mx and
from y the tuple v1,v2,v3, then by generating the CCS process TCMMx(v1,v2,v3), and
finally by checking if TCMMx(v1,v2,v3) is weakly bisimilar to

√
.0. As we know that

the halting problem is undecidable for Turing-complete formalisms, we conclude
that also weak bisimilarity must be undecidable on finitary CCS, as all the other
steps in the algorithm above are trivially computable.

The same argument above can be used in order to prove undecidability of weak
trace equivalence =wtr, weak simulation equivalence �, as well as of branching
bisimilarity ≈br. This argument can also be adapted slightly — it is enough to con-
sider τ.

√
.0 instead of

√
.0 — to prove undecidability of rooted weak bisimilarity

≈c as well as of rooted branching bisimilarity ≈c
br.

We may wonder if undecidability holds also for strong bisimulation equivalence.

Unfortunately, this is the case. We can compare the divergent process Div
de f
= τ.Div

with TCMM(v1,v2,v3): the CM M, with inputs v1,v2,v3, diverges if and only if
TCMM(v1,v2,v3) ∼ Div. Hence, the halting problem can be now restated as follows:
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halt(x,y) =

{
0 if TCMMx(v1,v2,v3) ∼ Div
1 otherwise

Therefore, we can conclude that also strong bisimulation equivalence is undecid-
able for finitary CCS. This argument can be used to prove undecidability of other
strong equivalences because TCMMx(v1,v2,v3) and Div are also trace equivalent =tr as
well as simulation equivalent �.

Exercise 3.71. Argue that (weak as well as strong) bisimulation equivalence is not
even semidecidable (see Section 1.3.5), while (weak and strong) bisimulation in-
equivalence is semidecidable. �

Exercise 3.72. Two CMs M1 and M2 are equivalent if, when given the same inputs
(v1,v2,v3), they end with the same values (v′1,v

′
2,v

′
3) stored in the registers. Elabo-

rate on the construction above in order to make observable not only the termination
of the CM M, via action

√
, but also the actual contents of the registers, via ac-

tions out1,out2,out3 as follows: if the final value in r j is v′j for j = 1,2,3, then
OCMM(v1,v2,v3) produces a sequence of length v′1 of occurrences of action out1, fol-
lowed by a sequence of length v′2 of occurrences of action out2, in turn followed by
a sequence of length v′3 of occurrences of action out3. With this construction, we
can say that two CMs M1 and M2 are equivalent if and only if, for all possible input
tuples (v1,v2,v3), OCMM1(v1,v2,v3) ≈ OCMM2(v1,v2,v3). �

Remark 3.15. (Set sort(p) is not effectively decidable) Given an enumeration of
CCS processes p1, p2, p3, . . ., as well as an enumeration of actions μ1,μ2,μ3, . . .,
function

Srt(x,y) =

{
1 if action μy belongs to sort(px)

0 otherwise

cannot be computable. If Srt were computable, then we would solve the halting
problem. In fact, in the construction above, action

√
belongs to sort(TCMM) if and

only if the CM M terminates. This observation has the consequence that, in general,
for a finitary CCS process p the set sort(p) is not effectively decidable: even if set
sort(p) is finite (hence decidable) by Corollary 4.1, it is not possible to give explicitly
an algorithm that checks when a given action μ belongs to sort(p), even if we know
that such an algorithm must exist. As a matter of fact, if sort(px) were effectively
decidable for all x, then function Srt would be easily effectively computable.22 �

Exercise 3.73. (Reachability is undecidable) With the same intuition as above, one
can conclude that the reachability problem is undecidable for finitary CCS. This can
be formalized by means of the following function Reach : P×P →{0,1} :

22 To be precise, Srt would be computable (but not effectively) even if, for finitely many x only,
set sort(px) is not effectively decidable. Hence, there are infinitely many x such that sort(px) is not
effectively decidable.
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Reach(p,q) =

{
1 if p−→∗ q
0 otherwise

Argue that if Reach were computable, then we would solve the halting prob-
lem for CMs. (Hint: CM M with inputs (v1,v2,v3) terminates if and only if
TCMM(v1,v2,v3) reaches a state where instruction of index m+ 1 has been activated,
i.e., a state/term which contains

√
.0) �

Exercise 3.74. Consider again Remark 3.8. We state that given a process p, a con-
stant C ∈Const(p) is actually unwound by p if there exists a reachable process p′

and a transition p′
μ−→ p′′ whose proof makes use of rule (Cons) with C. Given an

enumeration of CCS processes p1, p2, p3, . . ., as well as an enumeration of constants
C1,C2,C3, . . ., argue that function

Unw(x,y) =

{
1 if constant Cy is unwound by px

0 otherwise

is not computable, by showing that if Unw were computable, then also function
halt becomes computable. (Hint: Consider the constant Pm+1 in the construction of
TCMM above. When is it unwound?) �

3.5.4 Undecidability of Bisimilarity for Finite-Net CCS

Finite-net CCS is not a Turing-complete formalism. This can be proved by means
of the Petri net semantics given to this sublanguage in [GV10]: a finite-net process
generates a finite Petri net. For finite Petri nets, the reachability problem is decidable
[May81, Kos82], hence function Reach of Exercise 3.73 is computable for finite-
net processes. A formalism where the reachability problem is decidable cannot be
Turing-complete because the halting problem is solvable: one can decide if a special
termination state is reachable or, equivalently, if a special action

√
is executable.

Despite this, strong bisimilarity is undecidable also for finite-net processes, be-
cause this is the case for finite Petri nets [Jan95]. Here we sketch, in the CCS setting,
a process algebraic version of that proof.

Given a CM M, we define two finite-net CCS processes WR1
M and WR2

M with
the property that if M, with inputs v1,v2,v3, terminates, then WR1

M(v1,v2,v3)
and

WR2
M(v1,v2,v3)

are not weakly bisimilar; conversely, if M, with inputs v1,v2,v3, di-
verges, then WR1

M(v1,v2,v3)
and WR2

M(v1,v2,v3)
are weakly bisimilar. Hence, if we could

decide weak bisimilarity on finite-net CCS, then we could solve the halting problem
for CMs, which is impossible.

The finite-net CCS processes WR1
M and WR2

M are a sort of weak encoding of the
CM M; such encodings are weak because, even if the CM M is deterministic, the
resulting finite-net CCS processes are nondeterministic and exhibit also incorrect
behavior.
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The only components in the finitary CCS representation TCMM(v1,v2,v3) of the CM
M which are not finite-net CCS processes are the registers R j, j = 1,2,3. We can
replace such components with weak registers, WR j, defined as BPP semi-counters
(see Example 3.12):

WR j
de f
= inc j.(WR j |dec j.0) j = 1,2,3

Note that this modification is important, as for weak registers the zero j action is
unavailable, hence no test-for-zero is possible. As a consequence, the “jump if
zero/decrement” operation (i : DecJump(r j,s)) is to be modeled differently. A first
attempt may be as follows:

Pi
de f
= pi.P′i P′i

de f
= τ.ps.Pi +dec j.pi+1.Pi

where the τ-transition corresponds to an unconditional jump (independently of the
weak-register value), which makes nondeterministic the execution of the operation.
Note that, if the weak register is unable to execute dec j, then the unconditional
jump correctly models this situation, so that the deterministic CM computation is
also one of the computations of the weak CMs we are defining. However, when
dec j is possible, the τ-transition corresponds to a cheat jump.

Moreover, we need further elaboration. First, we need to make observable the
various actions of increment and decrement of the weak counters to help in the
weak bisimulation game. Hence, an increment operation (i : Inc(r j)) is modeled as:

Pi
de f
= pi.P′i P′i

de f
= inc j.up j.pi+1.Pi

where action up j is a visible action showing an increment on the weak register WR j;
moreover, the second attempt of modeling a “jump if zero/decrement” operation
(i : DecJump(r j,s)) is as follows:

Pi
de f
= pi.P′i P′i

de f
= τ.z j.ps.Pi +dec j.down j.pi+1.Pi

where z j is an observable action denoting that a jump (assuming the weak counter
holding 0) has been performed, and down j denotes that a decrement of weak register
WR j has been executed.

Then, we assume to have a trigger process T1
de f
= t1.T2, with T2

de f
= t2.T1, which has

the duty of:

• activating the execution of the termination action
√

, performed by the last, addi-
tional instruction of index m+1, defined as follows:

Pm+1
de f
= pm+1.t1.

√
.0

• or allowing for explicit cheat transitions in the “jump if zero/decrement” opera-
tion (i : DecJump(r j,s)), which is actually modeled as follows:
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Pi
de f
= pi.P′i P′i

de f
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

τ.z j.ps.Pi +dec j.down j.pi+1.Pi+

dec j.(t1.inc j.z j.ps.Pi + t2.inc j.z j.ps.Pi) if s≤ m,
τ.z j.pm+1.Pi +dec j.down j.pi+1.Pi+

dec j.(t1.inc j.z j.pm+1.Pi + t2.inc j.z j.pm+1.Pi) otherwise

Note that, after the activation of the instruction (action pi), an additional option is
available: an explicit cheat jump, implemented by means of a sequence composed
of the decrement action dec j (hence, the weak register value is not 0), followed by
transition t1 or t2 (depending on the current state of the trigger), then by a restore
of the original weak-register value (action inc j), then by the observable jump action
z j, and finally by the activation of the instruction of index s (or m+1).

Given a CM M = (I,3), where I = {(1 : I1), . . . ,(m : Im)} and v1,v2,v3 are the
inputs for r1,r2,r3, we define the two finite-net CCS processes WR1

M(v1,v2,v3)
and

WR2
M(v1,v2,v3)

as follows:

WR1
M(v1,v2,v3)

de f
= (νL)(P1 | . . . |Pm |Pm+1 |T1 |WR1 |WR2 |WR3 |B(v1,v2,v3))

WR2
M(v1,v2,v3)

de f
= (νL)(P1 | . . . |Pm |Pm+1 |T2 |WR1 |WR2 |WR3 |B(v1,v2,v3)),

where L = {inc j,zero j,dec j
∣∣ 1 ≤ j ≤ 3}∪{pi

∣∣ 1 ≤ i ≤ m+ 1}∪{t1, t2}. Note
that the only difference between the two is that the trigger is T1 for the former and
T2 for the latter.

Observe that, if we want to play a bisimulation game between the two, when-
ever WR1

M(v1,v2,v3)
executes an instruction, say Pi, the very same instruction is also

executed by WR2
M(v1,v2,v3)

(and vice versa), because they both start by executing the
same instruction P1 and the following instruction is uniquely determined.

As a matter of fact, in case it is (i : Inc(r j)), the next instruction must be Pi+1
for both; in case it is (i : DecJump(r j,s)), then we have to distinguish between two
cases: if a decrement down j is executed, then, in order to match the same transition
in the bisimulation game, also the other process will perform the same alternative
(from among the three available) and the next instruction will be Pi+1 for both; if
a τ-jump is executed by also making observable action z j, then the other process
can execute either the same τ-jump or the explicit cheat sequence starting with a
dec j, but in any case, the next state is Ps (or Pm+1) for both. Similarly, if an explicit
cheat sequence starting with a dec j is performed by also making observable action
z j, then the other process can execute either the same explicit cheat sequence or the
τ-jump, but in any case, the next state is Ps (or Pm+1) for both. So, if we want to play
a bisimulation game between the two, we are sure that the instructions they execute
step by step are exactly the same at any step of the game.

It is easy to realize that when the CM M with inputs v1,v2,v3 terminates, then the
finite-net CCS process WR1

M(v1,v2,v3)
is able to mimic the same honest computation

(as one of its computations — which never cheats — corresponds to the correct
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behavior of the CM M) by performing a suitable weak trace σ of actions, followed
by
√

, because the trigger T1 is available to activate the execution of the termination
action

√
.

However, WR2
M(v1,v2,v3)

can reply to the honest computation of WR1
M(v1,v2,v3)

,
leading to the execution of

√
, only by executing the very same honest transitions

(with observable weak trace σ ): as the value stored in the weak register is 0 when
an honest τ-jump is executed, the explicit cheat jump sequence is not possible, as
it requires first to decrement the value of the weak register, and so its trigger T2 is
inactive during the execution of σ . Hence, WR2

M(v1,v2,v3)
cannot execute

√
after σ ,

because the trigger T2 cannot execute t1 initially and action t1 is restricted. Hence,
in such a case, the two finite-net processes are not bisimilar (actually, not even weak
trace equivalent, as the trace σ

√
is not a weak trace of WR2

M(v1,v2,v3)
).

On the contrary, if the CM M with inputs v1,v2,v3 diverges, then WR1
M(v1,v2,v3)

and WR2
M(v1,v2,v3)

are weakly bisimilar! Indeed, whatever honest computation is per-
formed by WR1

M(v1,v2,v3)
, the very same sequence of transitions can be performed

also by WR2
M(v1,v2,v3)

and, conversely, whatever non-cheating computation is per-
formed by WR2

M(v1,v2,v3)
, the very same sequence of transitions can be performed

also by WR1
M(v1,v2,v3)

; hence, on honest transitions, the two finite-net CCS processes
are (strongly) bisimilar.

Conversely, assume that at some point WR1
M(v1,v2,v3)

performs a τ-labeled cheat
transition (wrong unconditional jump on a nonzero weak register, say WR3),23 on
the ith instruction, i.e., it reaches a state of the form

(νL)(P1 | . . . |z3.ps.Pi | . . . |Pm+1 |T1 |WR′1 |WR′2 |WR′3 |0)

In such a case, WR2
M(v1,v2,vn)

, after having matched the previous transitions in a strict
way, will respond to this τ-step by executing the explicit cheat transition sequence
that includes t2 (preceded by dec3 and followed by inc3 to restore the correct weak
register value), which has the side effect of transforming its trigger T2 into T1, so
that the state reached is

(νL)(P1 | . . . |z3.ps.Pi | . . . |Pm+1 |T1 |WR′1 |WR′2 |WR′′3 |0),

which is almost the same state as the one reached by WR1
M(v1,v2,vn)

: the only differ-
ence is that WR′′3 contains one additional 0 component w.r.t WR′3. Hence, the two
reached states are strongly bisimilar.

On the other hand, assume that, at some time, WR1
M(v1,v2,v3)

plays, as its ith in-

struction, the dec3 action as the first step of the explicit cheat-transition sequence,
i.e., it reaches a state of the form

23 Without loss of generality, in the following, the weak register involved in a cheat transition is
alway WR3.
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Q = (νL)(P1 | . . . | t1.inc3.z3.ps.Pi + . . . | . . . |Pm+1 |T1 |WR′1 |WR′2 |WR′3 |0).

In such a case, WR2
M(v1,v2,v3)

, after having matched the previous transitions in a strict

way, will respond to this τ-step (as dec3 is synchronized with the corresponding,
complementary action of the weak register WR3) by executing the τ-labeled jump
transition so that the reached state is

R = (νL)(P1 | . . . |z3.ps.Pi | . . . |Pm+1 |T2 |WR′1 |WR′2 |WR′′3 |0),

where WR′′3 differs from WR′3 because one of the dec3.0 components of the former is
actually 0 in the latter, and the two reached states, Q and R, are weakly bisimilar. As
a matter of fact, on the one hand, if Q executes the synchronization on t1, reaching
state

Q′ = (νL)(P1 | . . . | inc3.z3.ps.Pi | . . . |Pm+1 |T2 |WR′1 |WR′2 |WR′3 |0)

then R responds by idling, R ε
=⇒R, and Q′ and R can be proved to be weakly bisimi-

lar (check this! It is useful the following sentence). On the other hand, if R performs
z3, reaching

R′ = (νL)(P1 | . . . | ps.Pi | . . . |Pm+1 |T2 |WR′1 |WR′2 |WR′′3 |0)

then Q
z3=⇒Q′′, where

Q′′ = (νL)(P1 | . . . | ps.Pi | . . . |Pm+1 |T2 |WR′1 |WR′2 |WR′′′3 |0).

Register WR′′′3 differs from WR′′3 only because of the additional presence of a 0 com-
ponent in the former, so that R′ and Q′′ are strongly bisimilar.

Symmetrically, if WR2
M(v1,v2,v3)

plays a cheating τ-labeled jump transition, then
WR1

M(v1,v2,v3)
will respond by executing the explicit cheat transition sequence, in-

cluding t1 (preceded by dec3 and followed by inc3 to restore the correct weak
register value), which has the side effect of transforming its trigger T1 into T2, so
that the two reached states are almost identical, and strongly bisimilar. Similarly, if
WR2

M(v1,v2,v3)
plays the explicit cheat-transition sequence, including t2, transform-

ing the trigger T2 into T1, then WR1
M(v1,v2,vn)

will respond with the τ-labeled jump
transition and the reached states are almost identical, and strongly bisimilar. Hence,
in any case the two finite-net processes WR1

M(v1,v2,v3)
and WR2

M(v1,v2,v3)
are weakly

bisimilar.

Summing up, assuming that x is an index of a CM and y is the encoding of the
input tuple (v1,v2,v3), the halting problem for the Turing-complete formalisms of
CMs can be now restated as follows:
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halt(x,y) =

{
0 if WR1

Mx(v1,v2,v3)
≈WR2

Mx(v1,v2,v3)

1 otherwise

So, if weak bisimilarity ≈ were decidable over finite-net CCS processes, we
could solve the halting problem for a Turing-complete formalism, such as Counter
Machines, which is clearly impossible.

Exercise 3.75. (Also strong bisimulation equivalence is undecidable) Modify
the definition of constant Pi implementing the “jump if zero/decrement” opera-
tion (i : DecJump(r j,s)) so that, when the CM M with inputs v1,v2,v3 diverges,
WR1

M(v1,v2,v3)
and WR2

M(v1,v2,v3)
are strongly bisimilar. This proves that also strong

bisimilarity is undecidable for finite-net CCS. �

3.6 Value-Passing CCS

The calculus we have described so far, namely CCS, is such that no communication
of data is possible, as the interaction between two processes is by pure synchroniza-
tion. In practical cases, it may be useful to be able to model data exchange, even if,
as we will see, from a theoretical point of view, we add nothing to the expressiveness
of CCS by extending it with value-passing communication.

For simplicity, we assume that the set D of transmittable data is simply the set N
of natural numbers, but any other set D of data may work as well.24 On this set of
data, we can build arithmetic expressions, ranged over by e (possibly indexed), by
using arithmetic operators (e.g., +,×, etc.), as well as Boolean expressions, ranged
over by b (possibly indexed), by using relational arithmetic operators (such as =,≤,
etc.) or Boolean operators (e.g., and). The precise nature of these expressions is
inessential for describing the calculus, hence these are not specified further.

Value-passing CCS is the calculus where inputs, as well as constants, may be
parametrized by some variables on D. An example may help illustrate the features
of the calculus. Assume we want to describe a simple one-position buffer B which
inputs some natural number n, if empty, and then outputs n modulo 2 (i.e., the re-
mainder of the division by 2), represented as n mod 2, becoming empty again. It
may be defined as follows:

B
de f
= in(x).B′(x)

B′(x) de f
= out(x mod 2).B

The input prefix in carries the variable x as a parameter, whose scope is the process
that is prefixed by that action (in this case B′(x)). The expected behavior of the

24 It is assumed that D and Act are disjoint, so that a received value cannot be used later as a
channel name. This is an important caution: if action names were transmittable values, the language
would get new interesting features, so called mobility of channels, that are studied in the π-calculus
[MPW92] (for an easy introduction, see [Mil99]; for a more advanced monograph, see [SW01]).
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empty buffer B is that it is ready to accept in input any number n, it binds this value
to the variable x, and in doing so the substitution [n/x] is generated and applied
to B′(x), yielding B′(n), which represents the full buffer holding the datum n. In
order to see what B′(n) can do, we have to match it with the left-hand side of the

second defining equation, namely B′(x)de f
= out(x mod 2).B, hence binding x to n also

in the body (in this case out(n mod 2).B). Therefore, now B′(n) can execute the
output out(n mod 2) and then becomes B again. The intended meaning of the output
out(n mod 2) is that the expression n mod 2 is first evaluated and then the result is
given as output.

In general, a constant A may have many parameters: A(x1, . . . ,xn)
de f
= p, meaning

that all the xi’s (i = 1, . . . ,n) are distinct data variables and that in p the only data
variables that may occur are exactly the parameters of A. A process term p is a
value-passing CCS process if, besides being fully defined and guarded, each occur-
rence of a variable x is bound by either an input prefix or a constant definition. For

instance, the process constant A(x)
de f
= ā(x+y).A(x) is not a process because variable

y is not bound in A; similarly, a(x).c̄(x+ y).0+b(y).c̄(x+ y).0 is not a process.

Value-passing CCS offers a new construct: if b then p else q, where b is a
Boolean expression. This construct is useful whenever some decison is to be taken,
depending on the data tested in the Boolean expression b. For instance, consider a
one-position buffer that outputs the factorial n! of its input n:

Fact
de f
= in(x).F(x,1)

F(x,y)
de f
= if x = 0 then out(y).Fact else τ.F(x−1,x× y)

where the number of the executed τ steps is equal to the value of the input.

Exercise 3.76. Check if the process Fib, defined as

Fib
de f
= in(x).C(x,0,1,1)

C(x,y,w,z)
de f
= if x = y then out(w).Fib else τ.C(x,y+1,z,w+ z),

given in input a natural n, returns in output the nth Fibonacci number. �

Summarizing, the syntax of value-passing CCS is as follows:

p ::= 0
∣∣ a(x).q

∣∣ ā(e).q
∣∣ τ.q

∣∣ p+ p
∣∣ if b then p else p

q ::= p
∣∣ q |q ∣∣ (νa)q

∣∣ C(x1, . . . ,xn)

where a is any input, x is any variable, e is any arithmetic expression, b is any
Boolean expression, the if-then-else construct composes sequential processes only,
the number of parameters x1, . . . ,xn of a constant C is any n≥ 0 and the xi’s are all
distinct.
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(In)
a(x).p

a(v)−→ p[v/x]
for any v ∈ D (Tau)

τ.p τ−→ p

(Out)
ā(e).p

a(v)−→ p
if e has value v

(Cons)
p[v1/x1, . . . ,vn/xn]

μ−→ p′

C(e1, . . . ,en)
μ−→ p′

if C(x1, . . . ,xn)
de f
= p and each ei has value vi

(Then)
p

μ−→ p′

if b then p else q
μ−→ p′

if b has value true

(Else)
q

μ−→q′

if b then p else q
μ−→q′

if b has value f alse

Table 3.3 New inference rules for value-passing

We are now ready to define the SOS rules for value-passing CCS. They are de-
scribed in Table 3.3, where rules (Sum1), (Sum2), (Par1), (Par2), (Com) and (Res)
are omitted because they are identical to those in Table 3.1 for pure CCS. To be
precise, rule (Com) needs a minor extension of the definition of complement of an
action: a(n) = ā(n) and ā(n) = a(n). Similarly, the side condition of rules (Res) is
that μ �= a(n), ā(n) for any n ∈ N.

Let us focus our attention on rule (In). It states that there are as many transi-
tions from a(x).p as the cardinality of the set D of data. For a particular choice of
a value v in D, the label of the transition is a(v) and the reached state is p[v/x],
i.e., p where each occurrence of the variable x in p is replaced by the value v. Rule
(Out) states that the actual observed value v, sent along channel a, is the result of the
evaluation of expression e; how such an evaluation is performed is not specified and
depends on the actual choice of the set of expressions (which should include vari-

ables). The new rule (Cons) states that, given a constant definition C(x1, . . . ,xn)
de f
= p,

a partially instantiated constant C(e1, . . . ,en) can do whatever p can do, where each
occurrence of a variable xi is replaced by the value vi of expression ei: notation
p[v1/x1, . . . ,vn/xn]. Note that ei can be a variable yi, so that the substitution simply
changes the name of the variable xi to yi. Rule (Then) and (Else) are straigthforward.

Let us consider again the value-passing CCS buffer B described at the beginning
of this section. If we assume that the set of values that can be given in input to B
is limited to {0,1}, then the resulting LTS is reported in Figure 3.13. This example
may be used to show that there is a clear correspondence with pure CCS (i.e, CCS
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in(1)
B

in(0)

out(1)out(0)

B′(1)B′(0)

Fig. 3.13 The LTS model for the buffer B when D = {0,1}

with pure synchronization only): if we rename in(0), in(1) with in0, in1, as well as
out(0),out(1) with out0,out1, and replace B′(0),B′(1) with two process constants

B0
de f
= out0.PB and B1

de f
= out1.PB, respectively, then what we get is a pure CCS pro-

cess: PB
de f
= in0.B0 + in1.B1. As a matter of fact, the LTS for PB generated by means

of the rules of Table 3.1 is isomorphic (modulo the renaming of the actions above)
to the LTS for B generated with the rules of Table 3.3, depicted in Figure 3.13.

Exercise 3.77. Consider again the value-passing CCS buffer B described at the be-
ginning of this section. Draw the LTS in case D = {0,1,2,3}. Define a correspond-
ing pure CCS process PB′, generating an LTS isomorphic to the one for B. �

We can be more formal, and define a precise encoding of a value-passing CCS
process p to a pure CCS process �p�, as follows:

�0�= 0 �τ.p� = τ.�p�

�a(x).p�= Σv∈D av.�p[v/x]� �ā(e).p� = av.�p� if e has value v

�p1 + p2�= �p1�+ �p2� �p1 | p2� = �p1� |�p2�

�(νa)p� = (ν{av |v ∈ D})�p� �if b then p else q� =

{
�p� if b has value true
�q� if b has value f alse

In addition, we have �A(e1, . . . ,en)� = Av1,...,vn if each ei has value vi. Further-

more, for each constant definition A(x1, . . . ,xn)
de f
= p, we have a family of definitions

Av1,...,vn
de f
= �p[v1/x1, . . . ,vn/xn]�,

one for each vector (v1, . . . ,vn) ∈ Dn.
Of course, the process �p� is really a pure finitary CCS process if the set D

of data is finite; otherwise, we would need infinite summation in the encoding of
a(x).p; moreover, we would have the unpleasant consequence that the encoding of
any constant A(x1, . . . ,xn) would generate infinitely many (pure) constants; finally,
in the encoding of (νa)p we would get a restriction over the infinite set {av |v ∈D}.
Proposition 3.9. Given a finite set D of values, the LTS for a value-passing CCS
process p, generated with the rules of Table 3.3, is isomorphic (modulo renaming of
a(v) with av) to the LTS for the pure CCS process �p�, generated with the rules of
Table 3.1.
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Proof. One has to prove that p
a(v)−→ p′ implies �p�

av−→ �p′� and, conversely, that

�p�
av−→q implies there exists p′ such that q = �p′� and p

a(v)−→ p′. (Analogously, for
the other labels a(v)/av and τ .) This can be proved by induction on the proof of the
transitions and is left as an exercise to the reader. Then, the isomorphism bijection
f maps a value-passing CCS process p′ reachable from p to its encoding �p′�. �

Exercise 3.78. (Two-position buffers, revisited) Continuing Exercise 3.46, we de-
fine two inequivalent, more concrete definitions of a buffer. The first one, Bfifo, de-
fines a two-position pipeline buffer (or queue), according to the first-in, first-out
(FIFO) discipline:

Bfifo
de f
= in(x).B1(x)

B1(x)
de f
= in(y).B2(y,x) + out(x).Bfifo

B2(x,y)
de f
= out(y).B1(x)

The corresponding pure CCS process is defined by means of |D|2 + |D|+ 1 con-
stants, where |D| denotes the cardinality of the set D.

The second definition, Bbag, describes a two-position buffer as a bag of elements,
so that the order of arrival of data in the buffer may be not respected on delivery:

Bbag
de f
= in(x).B′1(x)

B′1(x)
de f
= in(y).B′2(y,x) + out(x).Bbag

B′2(x,y)
de f
= out(x).B′1(y) + out(y).B′1(x)

Show that Bbag is not trace equivalent to Bfifo (when |D|> 1, while Bbag is bisim-
ulation equivalent to Bfifo if |D|= 1).

Consider then the one-position buffer B
de f
= in(x).B′(x), B′(x)de f

= out(x).B. Draw
the LTS for process B |B, when D = {0,1}. Check that relation

R={(Bbag,B |B)}∪{(B′1(v),B′(v) |B)
∣∣ v∈D}∪{(B′2(u,v),B′(v) |B′(u))

∣∣ u,v∈D}

is a strong bisimulation up to ∼, hence showing that Bbag ∼ B |B. Note that the pure
CCS process corresponding to B |B can be described with only |D|+1 constants.

Consider then the pipeline buffer Buf:

Buf
de f
= (νd)(Buf1 |Buf2)

Buf1
de f
= in(x).Buf′1(x) Buf′1(x)

de f
= d(x).Buf1

Buf2
de f
= d(x).Buf′2(x) Buf′2(x)

de f
= out(x).Buf2

Show that Bfifo is weakly bisimilar to Buf by checking that relation

S = {(Bfifo,Buf)}∪{(Bfifo,(νd)(Buf1 |Buf2))}∪
{(B1(v),(νd)(Buf′1(v) |Buf2))

∣∣ v ∈ D}∪
{(B1(v),(νd)(Buf1 |Buf′2(v)))

∣∣ v ∈ D}∪
{(B2(u,v),(νd)(Buf′1(u) |Buf′2(v)))

∣∣ u,v ∈ D}
is a weak bisimulation. Note that the pure CCS process corresponding to Bu f can
be described with only 2×|D|+3 constants. �
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Exercise 3.79. (Two-phase two-position buffer) Consider the following specifica-
tion of a two-phase two-position buffer, i.e., a process that first fills the two positions
of the buffer and then outputs the two data, respecting the arrival order:

Btp
de f
= in(x).B′tp(x)

B′tp(x)
de f
= in(y).B′′tp(y,x)

B′′tp(x,y)
de f
= out(y).out(x).Btp

Observe that Btp is trace equivalent neither to Bbag nor to Bfifo, not even if |D|=
1. Define a regular value-passing CCS process Buftp that implements (up to weak
bisimilarity) the specification Btp in a parallel way. �

Exercise 3.80. (Producer-consumer with a two-position buffer, revisited) Con-
tinuing Exercise 3.49, consider the more concrete version VP2BC of a producer/consumer
with a two-position buffer:

VP2BC
de f
= (ν in)(νout)((P |Bbag) |C)

where P
de f
= produce(x).in(x).P represents a producer, Bbag is the two-position bag-

buffer described in Exercise 3.78 and C
de f
= out(x).consume(x).C represents a con-

sumer. Draw the LTS for VP2BC, assuming that D = {0,1}.
Consider the variant VP2BC′ de f

= (ν in)(νout)((P |(B |B)) |C), where B is the one-
position bag-buffer described in Exercise 3.78. Show that VP2BC and VP2BC′ are
strongly bisimilar.

Consider also the variant system VP2BC′′ de f
= (ν in)(νout)((P |Buf) |C) where

Buf is the pipeline two-position buffer of Exercise 3.78. Show that VP2BC and
VP2BC′′ are not weak trace equivalent. (This is in contrast with the pure regular
CCS variants of Exercise 3.49, where P2BC and P2BC′′ are weakly bisimilar.) �

Example 3.23. (Unbounded bag buffer) Continuing Exercise 3.55, a sequential
specification of an unbounded bag buffer may be defined by means of a constant
UB(x1, . . . ,xn), parametrized over a tuple of values, as follows:

UB(ε) de f
= in(x).UB(x)

UB(x1, . . .xn)
de f
= Σ n

i=1out(xi).UB(x1, . . . ,xi−1,xi+1, . . .xn) + in(y).UB(y,x1, . . .xn)

The corresponding pure CCS process would generate infinitely many constants
UB(v1,...,vn): even if the set D of data is finite, we get infinitely many tuples
(v1, . . . ,vn), if we do not impose an upper limit on the length of the buffer. Nonethe-
less, we can define a simple value-passing BPP process U , as follows:

U
de f
= in(x).(U |out(x).0)

Note that the corresponding pure CCS process uses one single constant, even if the
set D of data is infinite! �
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Exercise 3.81. Prove that U is strongly bisimilar to UB(ε), by adapting the proof
given in Example 3.12 relating the semi-counters SCounter0 and SC. (Hint: It
may be useful to define a shorthand notation Out(v1, . . . ,vn) to denote the par-
allel process out(v1).0 | . . . |out(vn).0, and then to show that, for any 1 ≤ k ≤ n,

Out(v1, . . . ,vn)
out(vk)−→ p∼ Out(v1, . . . ,vk−1,vk+1, . . . ,vn).) �

Example 3.24. (Stack) A simple description of a stack of elements, following the
usual last-in-first-out (LIFO) discipline, can be easily given by means of a constant
Stack(σ), parametrized over a sequence of values σ :

Stack(ε) de f
= empty.Stack(ε) + push(x).Stack(x)

Stack(σx)
de f
= pop(x).Stack(σ) + push(y).Stack(σxy)

The corresponding pure CCS process would generate infinitely many constants
Stackσ : even if the set D of data is finite, we get infinitely many sequences σ if
we do not impose an upper limit on the length of the stack. Mimicking the counter
process of Section 3.4.6, we can define a stack of elements as follows:

S
de f
= empty.S+ push(x).((νa)(S1(x) |a.S))

S1(x)
de f
= pop(x).ā.0+ push(y).((νb)(S2(y) |b.S1(x)))

S2(y)
de f
= pop(y).b̄.0+ push(x).((νa)(S1(x) |a.S2(y)))

Note that the corresponding pure CCS process uses 2× |D|+ 1 constants, hence
finitely many if the set D of data is finite. �

Exercise 3.82. Rephrase the argument we used in Section 3.4.6 for proving that
Counter0 is weakly bisimilar to C, in order to prove that Stack(ε) and S are weakly
bisimilar too. �

Example 3.25. (Queue or unbounded fifo buffer) A much harder example is the
finitary CCS representation of a queue of elements. Following the usual first-in-first-
out (FIFO) discipline, a queue can be specified as follows:

Queue(ε) de f
= empty.Queue(ε) + in(x).Queue(x)

Queue(xσ)
de f
= out(x).Queue(σ)+ in(y).Queue(xσy)

It is clear that, even if the elements to enqueue are chosen from a finite set D, such
a specification is not finitary in pure CCS, unless we arbitrarily limit the length of
the queue. Nevertheless it is possible to provide a finitary — although, obviously,
not finite-state — implementation of Queue(ε) with unbounded length by a clever
usage of restricted names and parallel composition. This implementation consists
of a list of processes which grows on the right when a new element is added, and
shortens on the left when the last element is picked off. To a first approximation,
after that some elements have been enqueued, the process would look like
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. . . L(v1)
∣∣ . . .

∣∣ M(v2)
∣∣ . . .

∣∣ M(v3)
∣∣ . . .

∣∣ H . . .

where v1 is the first element that has been enqueued (and the first to be dequeued),
process L represents the “last” process of the list that is ready to send v1 upon re-
quest, the processes M(vi)’s are those in the middle of the queue, and H is the head
process in charge of receiving the next element to be enqueued.

At each step of the computation, on the right of the list, the process H is ready
to receive a new element over the channel in and then to spawn a new process M
which keeps track of such an element on top of the queue; symmetrically, the last
(not nil) process L is always ready to dequeue the oldest element of the queue over
the channel out upon request.

Because of CCS semantics, the effect of dequeueing is not a real shortening of
the list of these parallel processes, but the turning of the last non-nil process into
nil. So, for example, after that v1 has been dequeued and v4 has been enqueued, the
previous queue would become

. . . 0
∣∣ . . .

∣∣ L(v2)
∣∣ . . .

∣∣ M(v3)
∣∣ . . .

∣∣ M(v4)
∣∣ . . .

∣∣ H . . .

As we are going to see in the following, in order to get a finitary implementation
we need to use two sets of head, middle and last processes (H,M,L and H ′,M′,L′)
which get alternated according to their even or odd position in the queue and are
distinguished only by the alternate presence of the private names l and l′. These
two names allow for the activation of the process next to the last one (for instance,
in the previous example, this activation corresponds to the state change of M(v2)
to L(v2)); such an activation happens immediately before the last process (in the
previous example, L(v1)) becomes nil, so that the whole system is ready for the next
dequeue event (from L(v2) in the example).

We are now going to fill the dots of the previous example by giving the full
implementation of the finitary queue Q:

Q
de f
= empty.Q+ in(x).((ν l)(L(x)

∣∣ H))

L(x)
de f
= out(x).l H

de f
= l.Q+ in(x).((ν l′)(M′(x)

∣∣ H ′)) M′(x) de f
= l.L′(x)

L′(x) de f
= out(x).l

′
H ′ de f

= l′.Q+ in(x).((ν l)(M(x)
∣∣ H)) M(x)

de f
= l′.L(x)

An example of execution of Q is in Table 3.4. N ote that the corresponding pure
CCS process uses 4×|D|+3 constants.

Now we want to prove that the sequential specification Queue(ε) and the parallel
implementation Q are weakly bisimilar. To this aim, let us consider the following
family of processes, where v,u ∈ D, x,y are place-holders for any term to be filled
in, and σ ∈ D∗:

pv = (ν l)(y |x) p′v = (ν l′)(y |x)
qσu = pσ [(ν l′)(M′(u) |x)/x] q′σu = p′σ [(ν l)(M(u) |x)/x]
pσu = qσ [(ν l)(M(u) |x)/x] p′σu = q′σ [(ν l′)(M′(u) |x)/x]
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Q
in(v1)−→ (ν l)(L(v1)

∣∣ H)
in(v2)−→

(ν l)(L(v1)
∣∣ (ν l′)(M′(v2)

∣∣ H ′))
out(v1)−→ τ−→

(ν l)( 0
∣∣ (ν l′)(L′(v2)

∣∣ H ′))
in(v3)−→

(ν l)( 0
∣∣ (ν l′)(L′(v2)

∣∣ (ν l)(M(v3)
∣∣ H)))

out(v2)−→ τ−→
(ν l)( 0

∣∣ (ν l′)( 0
∣∣ (ν l)(L(v3)

∣∣ H)))
out(v3)−→ τ−→

(ν l)( 0
∣∣ (ν l′)( 0

∣∣ (ν l)( 0
∣∣ Q)))

Table 3.4 An execution of process Q

The notation pσ [t/x] stands for naı̈ve substitution of t for the (unique) occurrence
of x in pσ . Observe that any generated term pσ (p′σ ) is such that the length of σ is
odd, while any generated term qσ (q′σ ) is such that the length of σ is even (and �= 0).
Then, let us consider the relation R, defined as follows:

R = {(Q,Queue(ε))}
∪ {(pvσ [L(v)/y,H/x], Queue(vσ))

∣∣ v ∈ D,σ ∈ D∗}
∪ {(p′vσ [L

′(v)/y,H ′/x], Queue(vσ))
∣∣ v ∈ D,σ ∈ D∗}

∪ {(pvσ [l/y,H/x], Queue(σ))
∣∣ v ∈ D,σ ∈ D∗}

∪ {(p′vσ [l′/y,H ′/x], Queue(σ))
∣∣ v ∈ D,σ ∈ D∗}

∪ {(qvσ [L(v)/y,H ′/x], Queue(vσ))
∣∣ v ∈ D,σ ∈ D+}

∪ {(q′vσ [L
′(v)/y,H/x], Queue(vσ))

∣∣ v ∈ D,σ ∈ D+}
∪ {(qvσ [l/y,H ′/x], Queue(σ))

∣∣ v ∈ D,σ ∈ D+}
∪ {(q′vσ [l′/y,H/x], Queue(σ))

∣∣ v ∈ D,σ ∈ D+}

Now we want to show that R is a weak bisimulation up to ≈ (see Definition 2.22
and Exercise 2.74 for the correctness of this proof technique).

First consider pair (Q,Queue(ε)). Transition Q
empty−→ Q is matched strongly (hence

also weakly) by transition Queue(ε) empty−→ Queue(ε) and the pair of reached states

(Q,Queue(ε)) is in R. Transition Q
in(v)−→ (ν l)(L(v) |H) = pv[L(v)/y,H/x] is matched

by transition Queue(ε)
in(v)−→Queue(v) and the pair (pv[L(v)/y,H/x],Queue(v)) be-

longs to the second group of R. No other transition is possible from Q. Symmetri-
cally, the two transitions from Queue(ε) are the two reported above and are matched
by the same transitions from Q listed above.

Now consider the pair (pvσ [L(v)/y,H/x], Queue(vσ)). Term pvσ [L(v)/y,H/x]
can move according to the inner occurrence of H,

pvσ [L(v)/y,H/x]
in(u)−→qvσu[L(v)/y,H ′/x],

or according to the occurrence of L(v) as follows:
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pvσ [L(v)/y,H/x]
out(v)−→ pvσ [l/y,H/x]

In the former case, Queue(vσ)
in(u)−→Queue(vσu) and the pair (qvσu[L(v)/y,H ′/x],

Queue(vσu)) ∈ R (sixth group). In the latter case, Queue(vσ)
out(v))−→ Queue(σ) and

the pair of reached state (pvσ [l/y,H/x],Queue(σ)) ∈ R (fourth group). Symmetri-
cally, if Queue(vσ) moves first.

Exercise 3.83. As done above, check the pair (p′vσ [L
′(v)/y,H ′/x], Queue(vσ)). �

Now consider the pair (pvσ [l/y,H/x],Queue(σ)) with σ = uσ ′ (and σ ′ �= ε).
Process pvσ [l/y,H/x] can only do pvσ [l/y,H/x] τ−→ (ν l)(0 |q′uσ ′ [L

′(u)/y,H/x]) ∼
q′uσ ′ [L

′(u)/y,H/x]. To this move, process Queue(uσ ′) replies by idling:
Queue(uσ ′) ε

=⇒Queue(uσ ′) and (q′uσ ′ [L
′(u)/y,H/x],Queue(uσ ′))∈R (7th group).

Conversely, if Queue(uσ ′)
in(z)−→Queue(uσ ′z), then

pvσ [l/y,H/x] τ−→ (ν l)(0 |q′uσ ′ [L
′(u)/y,H/x])

in(z)−→ (ν l)(0 | p′uσ ′z[L
′(u)/y,H ′/x])

with (ν l)(0 | p′uσ ′z[L
′(u)/y,H ′/x])∼ p′uσ ′z[L

′(u)/y,H ′/x] and the pair
(p′uσ ′z[L

′(u)/y,H ′/x], Queue(uσ ′z)) ∈ R (third group).

Moreover, if Queue(uσ ′)
out(u)−→ Queue(σ ′), then

pvuσ ′ [l/y,H/x] τ−→ (ν l)(0 |q′uσ ′ [L
′(u)/y,H/x])

out(u)−→ (ν l)(0 |q′uσ ′ [l
′/y,H/x])

with (ν l)(0 |q′uσ ′ [l
′/y,H/x])∼ q′uσ ′ [l

′/y,H/x] and the pair of states (q′uσ ′ [l
′/y,H/x],

Queue(σ ′)) ∈ R (ninth group).

Remark 3.16. Observe that in the special case of the above when σ = ε , process
pv[l/y,H/x] can only do pv[l/y,H/x] τ−→ (ν l)(0 |Q)∼ Q and (Q,Queue(ε)) ∈ R.

Conversely, if Queue(σ)
empty−→ Queue(ε), then pv[l/y,H/x]

empty
=⇒ (ν l)(0 |Q) ∼ Q

and (Q,Queue(ε)) ∈ R. If Queue(ε)
in(v)−→Queue(v), then

pv[l/y,H/x]
in(v)
=⇒ (ν l)(0 |(ν l)(L(x)

∣∣ H))∼ (ν l)(L(x)
∣∣ H)) = pv[L(v)/y,H/x]

and (pv[L(v)/y,H/x],Queue(v)) ∈ R (second group). �

Exercise 3.84. As done above, check the pair (p′vσ [l′/y,H ′/x],Queue(σ)) when
σ = uσ ′ (and σ ′ �= ε), as well as when σ = ε . �

Now consider the pair (q′vσ [L
′(v)/y,H/x], Queue(vσ)). Term q′vσ [L

′(v)/y,H/x]
can move according to the inner occurrence of H,

q′vσ [L
′(v)/y,H/x]

in(u)−→ p′vσu[L
′(v)/y,H ′/x],

or according to the occurrence of L′(v) as follows:

q′vσ [L
′(v)/y,H/x]

out(v)−→ q′vσ [l′/y,H/x]

In the former case, Queue(vσ)
in(u)−→Queue(vσu) and the pair (p′vσu[L

′(v)/y,H ′/x],

Queue(vσu)) ∈ R (third group). In the latter case, Queue(vσ)
out(v))−→ Queue(σ) and
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the pair of reached state (q′vσ [l′/y,H/x],Queue(σ)) ∈ R (ninth group). Symmetri-
cally, if Queue(vσ) moves first.

Exercise 3.85. As done above, check the pair (qvσ [L(v)/y,H ′/x], Queue(vσ)). �

Now consider the pair (q′vσ [l′/y,H/x],Queue(σ)) with σ = uσ ′.
Process q′vσ [l′/y,H/x] can only do q′vσ [l′/y,H/x] τ−→ (ν l′)(0 | puσ ′ [L(u)/y,H/x])∼
puσ ′ [L(u)/y,H/x]. To this move, process Queue(uσ ′) replies by idling:
Queue(uσ ′) ε

=⇒Queue(uσ ′) and (puσ ′ [L(u)/y,H/x],Queue(uσ ′))∈R (2nd group).

Conversely, if Queue(uσ ′)
in(z)−→Queue(uσ ′z), then

q′vσ [l′/y,H/x] τ−→ (ν l′)(0 | puσ ′ [L(u)/y,H/x])
in(z)−→ (ν l′)(0 |quσ ′z[L(u)/y,H ′/x])

with (ν l′)(0 |quσ ′z[L(u)/y,H ′/x])∼ quσ ′z[L(u)/y,H ′/x] and the pair
(quσ ′z[L(u)/y,H ′/x], Queue(uσ ′z)) ∈ R (sixth group).

Moreover, if Queue(uσ ′)
out(u)−→ Queue(σ ′), then

q′vσ [l′/y,H/x] τ−→ (ν l′)(0 | puσ ′ [L(u)/y,H/x])
out(u)−→ (ν l′)(0 | puσ ′ [l/y,H/x])

with (ν l′)(0 | puσ ′ [l/y,H/x])∼ puσ ′ [l/y,H/x] and the pair of states (puσ ′ [l/y,H/x],
Queue(σ ′)) ∈ R (fourth group).

Exercise 3.86. Check the pair (qvσ [l/y,H ′/x],Queue(σ)) with σ = uσ ′. �

And this final exercise completes the proof that R is a weak bisimulation up to
≈, relating Queue(ε) and Q. �



Chapter 4

Algebraic Laws, Congruences and

Axiomatizations

Abstract Behavioral equivalences, in particular those based on bisimulation, are
shown to possess interesting algebraic laws. Moreover, we discuss which of them
are congruences with respect to the CCS operators. Finally, behavioral congruences
are axiomatized over finite CCS, and also finitely with the use of two auxiliary
operators.

4.1 Some Algebraic Laws

In this section we examine the algebraic properties of the behavioral equivalences
we have discussed in Chapter 2, with emphasis on bisimulation-based equivalences.

4.1.1 Laws for Strong Equivalences

Strong bisimulation equivalence ∼ (see Definition 2.14) enjoys some interesting
properties. In particular, the choice operator + satisfies the laws of a commutative
monoid with 0 as neutral element, plus an idempotence law.

Proposition 4.1. (Laws of the choice operator for strong bisimilarity) For any
p,q,r ∈P , the following hold:

p+(q+ r) ∼ (p+q)+ r (associativity)
p+q ∼ q+ p (commutativity)
p+0 ∼ p (identity)
p+ p ∼ p (idempotency)

Proof. The proof is easy. For each law, it is enough to exhibit a suitable bisimulation
relation. For instance, for idempotency, take relation
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R = {(p+ p, p)
∣∣ p ∈P}∪I

where I = {(q,q) ∣∣ q ∈P} is the identity relation. Any transition p+ p
μ−→ p′

must be due to (by rule (Sum1) or (Sum2)) to a transition p
μ−→ p′, hence the thesis

follows as (p′, p′)∈R. Symmetrically, any transition p
μ−→ p′ originates a transition

p+ p
μ−→ p′ (by, e.g., (Sum1)) with (p′, p′) ∈ R. Therefore R is a bisimulation. As a

further instance, for associativity, take relation

R′ = {(p+(q+ r),(p+q)+ r)
∣∣ p,q,r ∈P}∪I

It is easy to observe that for any transition p+(q+ r)
μ−→ p′ there exists an analo-

gous transition (p+q)+ r
μ−→ p′ with (p′, p′) ∈ R′, and symmetrically if (p+q)+ r

moves first. For instance, assume p+ (q+ r)
μ−→ p′ is due to application of rule

(Sum1) with premise p
μ−→ p′. Then, starting by the same premise, by double appli-

cation of rule (Sum1), also (p+q)+ r
μ−→ p′ is derivable. �

Exercise 4.1. Provide suitable bisimulation relations for the laws of commutativity
and identity (i.e., nil as neutral element) of the choice operator +. �

These monoidal laws for the choice operator justify the notational convention,
which we have sometimes adopted, of using an n-ary sum operator, e.g., p1 + p2 +
. . . .+ pn, shortened as Σ n

1=i pi.

Remark 4.1. As these laws of the choice operator hold for strong bisimulation, they
also hold for any coarser behavioral equivalence, e.g., trace equivalence. This is
an obvious instance of the following general fact: if (p,q) ∈ R and R ⊆ R′, then
(p,q) ∈ R′, where R,R′ are behavioral relations. �

Exercise 4.2. Check whether the laws of summation also hold for LTS isomor-
phism. For instance, is Cp+p isomorphic to Cp? �

Example 4.1. (Distributivity of prefixing w.r.t. summation) An important law that
does not hold for bisimulation equivalence is the distributivity of prefixing w.r.t.
summation:

μ.(p+q) �∼ μ.p+μ.q

As a specific instance, consider a.(b+c) and a.b+a.c. This law does not even hold
for simulation equivalence � (see Definition 2.12); nonetheless, it holds for trace
equivalence (see Definition 2.9). �

Exercise 4.3. Check whether μ.(p+q)∼ μ.(p+q)+μ .q. Verify that this law holds
for simulation equivalence �, hence also for trace equivalence =tr. �

Parallel composition satisfies the laws of a commutative monoid, with 0 as neu-
tral element.
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Proposition 4.2. (Laws of the parallel operator for strong bisimilarity) For any
p,q,r ∈P , the following hold:

p |(q |r) ∼ (p |q) |r (associativity)
p |q ∼ q | p (commutativity)
p |0 ∼ p (identity)

Proof. The proof is easy. For each law, it is enough to exhibit a suitable bisimulation
relation. For instance, for identity (i.e., nil absorption), take relation

R = {(p |0, p)
∣∣ p ∈P}

Note that any transition p |0 μ−→q must be due (by rule (Par1)) to a transition
p

μ−→ p′ with q = p′ |0 and (p′ |0, p′) ∈ R. Symmetrically, any transition p
μ−→ p′

originates p |0 μ−→ p′ |0 with (p′ |0, p′) ∈ R. Hence, R is a bisimulation. �

Exercise 4.4. Check that relation S = {(p |q,q | p) ∣∣ p,q ∈P} is a bisimulation,
hence proving commutativity of parallel composition w.r.t. ∼. Provide a suitable
bisimulation relation for the associativity law of parallel composition. �

The following example and subsequent exercise attempt to show the use of these
algebraic laws in the technique of bisimulation up to. They are rather technical and
can be skipped on a first reading.

Example 4.2. In Example 3.12 (Section 3.4.4), the strong bisimulation R (up to ∼)
was using states of the form SC |Π n

i=1dec.0 for n ≥ 0. For simplicity’s sake, let us
assume that n = 3; hence, process Π 3

i=1dec.0 is a shorthand notation for process
((dec.0 |dec.0) |dec.0).

We want to show that for any transition SC |Π 3
i=1dec.0

μ−→ p (for suitable μ and
p), the reached state p is strongly bisimilar to a process SC |Π k

i=1dec.0 for k = 2 or
k = 4 in the form required by relation R, by using the laws of parallel composition.
First, consider SC |Π 3

i=1dec.0 inc−→ (SC |dec.0) |Π 3
i=1dec.0. By using the associativ-

ity law, we get:
(SC |dec.0) |Π 3

i=1dec.0 =
(SC |dec.0) |((dec.0 |dec.0) |dec.0) ∼ SC |(dec.0 |((dec.0 |dec.0) |dec.0))

Since ((dec.0 |dec.0) |dec.0) ∼ (dec.0 |(dec.0 |dec.0)), by congruence of ∼ w.r.t.
parallel composition (see Proposition 4.1), we get:

SC |(dec.0 |((dec.0 |dec.0) |dec.0)) ∼ SC |(dec.0 |(dec.0 |(dec.0 |dec.0)))
Since (dec.0 |(dec.0 |(dec.0 |dec.0)))∼ ((dec.0 |dec.0) |(dec.0 |dec.0), by congru-
ence we get:

SC |(dec.0 |(dec.0 |(dec.0 |dec.0))) ∼ SC |((dec.0 |dec.0) |(dec.0 |dec.0))
Since (((dec.0 |dec.0) |(dec.0 |dec.0)) ∼ (((dec.0 |dec.0) |dec.0) |dec.0), by con-
gruence we get:

SC |((dec.0 |dec.0) |(dec.0 |dec.0)) ∼ SC |(((dec.0 |dec.0) |dec.0) |dec.0)
= SC |Π 4

i=1dec.0
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Summing up, SC |Π 3
i=1dec.0 inc−→ (SC |dec.0) |Π 3

i=1dec.0 ∼ SC |Π 4
i=1dec.0.

Second, SC |Π 3
i=1dec.0 = SC |((dec.0 |dec.0) |dec.0) dec−→SC |((0 |dec.0) |dec.0).

Since 0 |dec.0 ∼ dec.0 |0, by congruence, we get:
SC |((0 |dec.0) |dec.0) ∼ SC |((dec.0 |0) |dec.0)

Since dec.0 |0∼ dec.0, by congruence, we get:
SC |((dec.0 |0) |dec.0) ∼ SC |(dec.0 |dec.0) = SC |Π 2

i=1dec.0

Summing up, SC |Π 3
i=1dec.0 dec−→SC |((0 |dec.0) |dec.0) ∼ SC |Π 2

i=1dec.0.

The case for transition SC |Π 3
i=1dec.0 dec−→SC |((dec.0 |0) |dec.0), as well as for

transition SC |Π 3
i=1dec.0 dec−→SC |((dec.0 |dec.0) |0), is similar, hence left as an ex-

ercise. �

Exercise 4.5. In Example 3.9 (Section 3.4.3), the strong bisimulation R (up to ∼)
was using state of the form (Π k

i=1out.B) |Bn−k, for 0≤ k ≤ n. For simplicity’s sake,

let us assume that n= 4. Show that for any transition ((out.B |out.B) |out.B) |B μ−→ p
(for suitable μ and p), the reached state p is strongly bisimilar to a state of the form
(Π k

i=1out.B) |B4−k for k = 2 or k = 4, by using the parallel composition laws and
the congruence property for parallel composition. �

The idempotence law p | p ∼ p does not hold for bisimulation equivalence (and
not even for trace equivalence). For instance, a |a �∼ a. In some cases, it may hold,

e.g., for A |A∼ A with A
de f
= a.A.

These monoidal laws of | justify the notational convention, which we have some-
times adopted, of using an n-ary parallel operator, e.g., p1 | p2 | . . . . | pn, shortened
as Π n

1=i pi.

Exercise 4.6. Argue that the laws of the parallel operator of Proposition 4.2 hold
also for LTS isomorphism. �

Remark 4.2. (Distingusihing bisimulation equivalence from LTS isomorphism)

As an instance of a law that holds for bisimulation equivalence, but does not hold
for LTS isomorphism, consider the following:

C ∼ p if C
de f
= p

Indeed, this holds for bisimulation equivalence (check this by providing a suitable
bisimulation relation), but the LTS for C is, in general, not isomorphic to that of p.

For instance, for A
de f
= a.A, we have that the LTS for A is reported in Figure 3.2(a),

while the LTS for a.A is isomorphic to the one in Figure 3.2(b). �

As anticipated by Remark 3.11 (Section 3.4.1), an interesting law that holds for
bisimulation equivalence relates parallel composition and summation; it is called
the expansion law (sometimes also called the interleaving law), because it explains
how to expand the parallel composition of two summations into the summation of
sequential processes. This law is sound for LTS isomorphism, too.
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Proposition 4.3. (Expansion Law) Let p = Σ n
i=1μi.pi and q = Σ m

j=1μ ′j.q j. Then

p |q ∼ Σ n
i=1μi.(pi |q) + Σ m

j=1μ ′j.(p |q j) + Σi, j:μi=μ ′j τ.(pi |q j)

Proof. It follows trivially from the following observation: let Tr be the (finite) set
of all transitions outgoing from r, i.e. {(r,μk,rk) ∈→

∣∣ μk ∈ Act,rk ∈P}; then
r ∼ Σ(r,μk,rk)∈Tr μk.rk. �

Exercise 4.7. (Distributivity of parallel composition w.r.t. summation) Show that
the law (p+ q) |r ∼ p |r+ q |r is not valid for bisimulation equivalence. Is it valid
for simulation equivalence? And for trace equivalence? �

Also, for restriction we have some interesting laws. More in the next subsection.

Proposition 4.4. For any process p, the following hold:

(i) (νa)0 ∼ 0

(ii) (νa)((νb)p) ∼ (νb)((νa)p) if a �= b
(iii) (νa)((νa)p) ∼ (νa)p

(iv) (νa)(μ.p) ∼
{

0 if μ = a or μ = a
μ.(νa)p otherwise

Proof. The proofs of the first three laws are left as an exercise for the reader. For the
fourth law, it is easy to check that relation

R = {((νa)(μ.p),μ.(νa)p)
∣∣ μ �= a,a}∪{((νa)(μ .p),0)

∣∣ μ = a∨μ = a}∪I

is a strong bisimulation. �

The second law — which states that the actual order of restricted names is
inessential — together with third law — which states that restricting twice by the
same action has the same effect as restricting once — justifies the notational con-
vention, that we often adopt, of using the restriction operator over a set of names;
e.g., for (νa)((νb)((νa)p)), we can use the notation (νa,b)p.

Remark 4.3. (Distributivity of restriction w.r.t. summation) Another law for re-
striction is usually listed, namely:

(νa)(p+q) ∼ (νa)p+(νa)q

Strictly speaking, the term (νa)p+ (νa)q is not a CCS process. However, if we
consider a more generous syntax for CCS — as is mostly done in other books, e.g.,
[Mil89] (but not in [Mil99]), and as we will do in Section 4.3 — it is easy to see that
this law holds; it is enough to check that relation R below is a strong bisimulation:

R = {((νa)(p+q),(νa)p+(νa)q)
∣∣ p,q ∈P}∪I �
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4.1.2 Syntactic Substitution and Alpha-Conversion

Other interesting laws hold for bisimulation equivalence. In particular the so-called
law of alpha-conversion that allows for the replacement of a restricted name with
another one not in use, hence expressing that the actual name used in a restriction is
inessential:

(νa)p ∼ (νb)(p{b/a}) if b �∈ fn(p)∪bn(p)

In this law we use some auxiliary notations: fn(p) and bn(p) are the sets of free
and bound names of p, respectively, while p{b/a} stands for the term obtained by
replacing the free occurrences of a in p by b. These definitions are formally given
as follows.

Definition 4.1. (Free names) The free names of a process p, denoted fn(p), are de-
fined as the set F(p, /0), where F(p, I), with I a set of process constants, is defined
as follows:

F(0, I) = /0
F(a.p, I) = F(a.p, I) = F(p, I)∪{a}
F(τ.p, I) = F(p, I)

F(p+q, I) = F(p |q, I) = F(p, I)∪F(q, I)
F((νa)p, I) = F(p, I)\{a}

F(C, I) =

{
F(q, I∪{C}) if C

de f
= q and C �∈ I

/0 if C ∈ I
�

According to this definition, f n(p) is effectively computable only for those pro-
cesses p where the set Const(p) of the constants used in p is finite, i.e., for processes
in finitary CCS.

Exercise 4.8. Compute the set of free names of the following CCS processes:

(νa)(a.b |a) |a b.d |(νa)(a.c) (νa)(b |(νa)(b.a))

Compute also the set of free names for the counter process C of Example 3.17. �

Observe that c belongs to fn(b.d |(νa)(a.c)), while c �∈ sort(b.d |(νa)(a.c)), be-
cause c cannot be executed. (For the definition of sort(p), see Definition 2.5.)

Exercise 4.9. (Size of a finitary CCS process) Continuing Exercise 3.29, extend
the definition of function size(p), computing the total number of prefixes occurring
in p, by mimicking the definition of function F(p, I) in Definition 4.1. �

Proposition 4.5. For any finitary CCS process p, the set fn(p) is finite.

Proof. The size of fn(p) is less than the size of the set of all prefixes occurring in p
and in the body of any constant A ∈ Const(p); since Const(p) is finite, fn(p) is finite
as well. �
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Proposition 4.6. For any p, if p
μ−→ p′, then fn(p′)⊆ fn(p), and if μ ∈ {a,a}, then

a ∈ fn(p).

Proof. By induction on the proof of transition p
μ−→ p′. �

Let us denote with fn(p) the set {a ∣∣ a ∈ fn(p)}. Hence, the proposition above
ensures that any executable action μ must belong to set fn(p)∪ fn(p)∪{τ}. This
means that, for any p in finitary CCS, fn(p)∪ fn(p)∪{τ} is an effectively decidable,
finite superset of the finite set sort(p) of the actions that are actually executable:
sort(p) ⊆ fn(p)∪ fn(p)∪ {τ}. (See also Remark 3.15, stating that sort(p) is, in
general, not effectively decidable.)

Corollary 4.1. For any finitary CCS process p, the set sort(p) is finite.

Proof. By Proposition 4.6, we know that any action μ ∈ sort(p) is also an action in
fn(p)∪ fn(p)∪{τ}. The thesis follows by Proposition 4.5, which ensures that fn(p)
is finite for any finitary CCS process p. �

As an instance of a (non-finitary) CCS process such that sort(p) is infinite, con-
sider Example 3.20.

Exercise 4.10. Argue that if p ∼ q, then sort(p) = sort(q). Show two finite CCS
processes p and q such that p∼ q and fn(p) �= fn(q). �

Definition 4.2. (Bound names) The bound names of a process p, denoted bn(p),
are defined as the set B(p, /0), where B(p, I), with I a set of process constants, is
defined as follows:

B(0, I) = /0
B(μ.p, I) = B(p, I)

B(p+q, I) = B(p |q, I) = B(p, I)∪B(q, I)
B((νa)p, I) = B(p, I)∪{a}

B(C, I) =

{
B(q, I∪{C}) if C

de f
= q and C �∈ I

/0 if C ∈ I

Exercise 4.11. Compute the sets of bound and free names of the following CCS
processes:

(νa)(a.b |a) |a b.d |(νa)(a.c) (νa)(b |(νa)(b.a))

Compute also the set of bound names for the counter process C of Example 3.17. �

Remark 4.4. (Free occurrence of a name) By definition, f n(p) ⊆ L , i.e., a free
name is not a co-name. However, for convenience, we say α occurs free in p to
mean that α is a name (or a co-name) syntactically occurring in p that is not bound
(i.e., not occurring in the scope of a restriction operator for that name). For instance,
if p = (νc)(a.c.0 |(νa)(b.a.0)), we have that f n(p) = {a,b} and bn(p) = {a,c};
nonetheless, a occurs free in p while a does not occur free in p. �
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Note that for any p, if p
μ−→ p′, then bn(p′) = bn(p), because restriction is a

static operator, hence it never disappears during the computation.

Exercise 4.12. Show that if p∼ q, then it is not necessary that bn(p) = bn(q). �

Proposition 4.7. For any finitary CCS process p, the set bn(p) is finite.

Proof. Set bn(p) is formed by all the actions occurring in any restriction operator
inside p and inside the body of any constant A ∈ Const(p); since Const(p) is finite,
bn(p) is finite as well. �

Remark 4.5. (Semantic bound names) Even if, from a syntactic point of view, the
set of bound names of any finitary CCS process is finite, the number of differ-
ent names that a finitary process may use semantically may be unbounded. Con-
sider again the counter process C of Example 3.17: clearly, bn(C) = {a,b}, but
the use of nested, alternated occurrences of the restriction operator allows for an
unbounded generation of new names. To explain the issue, consider the reachable
process p = (νa)((νb)(((νa)((νb)(C2 |b.C1) |a.C2) |b.C1)) |a.C). From a semanti-
cal point of view, p is using four different restricted names: the rightmost occurrence
of a prefix a (in a.C) is subject to the leftmost occurrence of the operator (νa), while
the leftmost occurrence of a (in a.C2) is subject to the rightmost occurrence of (νa),
hence the two occurrences of a are denoting two different semantic actions, even if
they are both called a. And similarly for the occurrences of prefixes b and operators
(νb). Indeed, from a semantical point of view, C may generate unboundedly many
different semantic bound names, but these are obtained by means of two syntactic
bound names only, namely a and b, by a clever alternation of their use. �

Definition 4.3. (Substitutions) A substitution is a set {bi/ai}i∈I of associations of
the form bi/ai for i ∈ I, meaning that action ai ∈ L is to be replaced by action
bi ∈L , when applied to some term. A substitution {bi/ai}i∈I is admissible when
ai �= a j for all i �= j and bi �= a j for all i, j. Hence, for instance, the following are not
admissible: {a/a}, {b/a,c/a} and {b/a,a/b}. On the contrary, {b/a}, {b/a,b/c}
and {b/a,d/c} are admissible. We use θ to range over the set of admissible substi-
tutions.

A substitution {bi/ai}i∈I is empty, denoted by ε , if |I|= 0, i.e., there is no asso-
ciation in the set. Of course, the empty substitution ε is admissible. A substitution
{bi/ai}i∈I is unary if |I|= 1, i.e., it is of the form {b/a}. A unary substitution {b/a}
is admissible provided that a �= b.

The composition of an admissible substitution θ = {b1/a1, . . . ,bn/an} with a
unary admissible substitution {b/a}, denoted by θ ◦ {b/a}, is defined — provided
that b �= a j for all j = 1, . . . ,n — as follows:

• {b1/a1, . . . ,bn/an} if there exists an index j such that a = a j;
• {b′1/a1, . . . ,b′n/an,b/a} if a �= a j for all j = 1, . . . ,n, where b′i = bi if a �= bi,

otherwise b′i = b, for i = 1, . . . ,n.
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Note that θ ◦{b/a}, if defined, is an admissible substitution. Examples of substitu-
tion composition are the following: ε ◦{b/a}= {b/a}, {b/a}◦{b/a}= {b/a} and
{b/a,d/c}◦{d/b}= {d/a,d/c,d/b}.

A nonemtpy admissible substitution θ = {b1/a1, . . . ,bn/an} can be represented
as the composition of the unary admissible substitution {b1/a1} and of the admis-
sible substitution θ ′ = {b2/a2, . . . ,bn/an}, i.e., θ = {b1/a1}◦θ ′. �

Remark 4.6. (Parametrized constants) In the following definition of syntactic sub-
stitution, we are applying a unary substitution {b/a} also to any constant A, resulting
in the new constant A{b/a}. In order to get a completely satisfactory definition, we
have to assume that constants are parametrized by admissible substitutions, with the
proviso that a normal constant A is simply parametrized by the empty substitution
Aε . Then, applying a unary substitution {b/a} to Aθ , Aθ{b/a} would generate a
new constant with index θ ◦{b/a}, i.e., Aθ◦{b/a}.

As we usually apply unary substitutions of the form {b/a} to a process p when
b is a fresh name (neither free nor bound in p), we are sure that if in p there is an
occurrence of Aθ , then θ ◦ {b/a} is definable and gives rise to another admissible
substitution. �

Definition 4.4. (Syntactic Substitution) The syntactic substitution p{b/a} of ac-
tion b for a different action a inside a CCS process p is defined as follows:

0{b/a} = 0

(a.p){b/a} = b.(p{b/a})
(a.p){b/a} = b.(p{b/a})
(μ.p){b/a} = μ.(p{b/a}) if μ �= a,a

(p+q){b/a} = p{b/a}+q{b/a}
(p |q){b/a} = p{b/a}|q{b/a}

((νc)p){b/a} = (νc)(p{b/a}) if c �= a,b
((νa)p){b/a} = (νa)p

((νb)p){b/a} =
{
(νb)p if a �∈ f n(p)
(νc)((p{c/b}){b/a}) otherwise, with c �∈ f n(p)∪bn(p)

Cθ{b/a} =
⎧⎨
⎩Cθ if a �∈ f n(Cθ )

Cθ◦{b/a} otherwise, with Cθ◦{b/a}
de f
= q{b/a} if Cθ

de f
= q

The application of an admissible substitution θ = {b/a} ◦θ ′ to a process p can
be computed as follows: pθ = (p{b/a})θ ′, with the proviso that pε = p. �

Example 4.3. Let us consider again Example 3.10, where we have defined a pipelined

buffer Buf
de f
= B�B, where B

de f
= in.out.B is the one-position buffer of Exercise 3.46

and the linking connects the out port of the left buffer to the in port of the right
buffer. As a matter of fact, the explicit definition of Buf is

Buf
de f
= (νd)(B{d/out}|B{d/in})
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and the effect of applying the substitution to B is the definition of a new constant
where the substitution is applied to its body:

B{d/out}
de f
= (in.out.B){d/out} = in.d.B{d/out}

B{d/in}
de f
= (in.out.B){d/in} = d.out.B{d/in}

�

Exercise 4.13. Let us consider constants A
de f
= a.A+ b.B and B

de f
= c.d.A+ a.B. Sup-

pose we want to replace action a with action c. Compute the result of A{c/a}. �

Exercise 4.14. Consider A
de f
= (νa)(a.b.A |a.c.A). Compute A{b/a} and A{a/b}. �

Proposition 4.8. For any p in finitary CCS and for any a,b ∈L ,a �= b, p{b/a} is
a finitary CCS process.

Proof. The proof is by case analysis, following the definition of syntactic substitu-
tion. As Const(p) is finite, the recursive application of the syntactic substitution to
the body of each constant will eventually terminate. �

Note that if p is not in finitary CCS, then the procedure above for computing
p{b/a} may not terminate.

Proposition 4.9. For any process p ∈P , the following hold:
(i) a �∈ fn(p{b/a})
(ii) p{b/a} = p if a �∈ fn(p)
(iii) p{b/a}{d/a} = p{b/a}

Proof. The proofs of (i) and (ii) are left as an exercise. Item (iii) holds because
a �= b by Definition 4.4 and also because of (ii) as a �∈ fn(p{b/a}) by (i). �

Proposition 4.10. For any process p ∈P , let b �∈ fn(p). Then, the following hold:

(i) p{b/a} b−→q iff ∃p′.q = p′{b/a} and p a−→ p′

(ii) p{b/a} b−→q iff ∃p′.q = p′{b/a} and p a−→ p′

(iii) p{b/a} μ−→q iff ∃p′.q = p′{b/a} and p
μ−→ p′ if μ �∈ {a,a,b,b}

(iv) p{b/a} μ−→q implies μ �= a,a

Proof. The proof is by induction on the proof of the involved transitions and is left
as an exercise for the reader. �

Exercise 4.15. Prove that, for any process p ∈P , and for any four actions a,b,c,d
— where only b and d can be the same action — the following holds:

p{b/a}{d/c} ∼ p{d/c}{b/a}. �

Proposition 4.11. (Alpha-conversion and scope-enlargement) For any p,q ∈P ,
the following additional laws of restriction hold:

(i) (νa)p ∼ p if a �∈ fn(p)
(ii) (νa)p |q ∼ (νa)(p |q) if a �∈ fn(q) (scope-enlargement1)
(iii) p |(νa)q ∼ (νa)(p |q) if a �∈ fn(p) (scope-enlargement2)
(iv) (νa)p ∼ (νb)(p{b/a}) if b �∈ fn(p)∪bn(p) (alpha-conversion)
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Proof. The proofs of (i)–(iii) are left as an exercise for the reader. To prove (iv),
consider the relation

R = {((νa)p,(νb)(p{b/a}))) ∣∣ p ∈P ∧b �∈ fn(p)∪bn(p)}.

If (νa)p
μ−→q, then by rule (Res) this is due to p

μ−→ p′ with μ �= a,a, so that
q = (νa)p′. Since b �∈ fn(p), then μ �= b,b; hence, by Proposition 4.10(iii), transi-
tion p{b/a} μ−→ p′{b/a} is derivable, and also (νb)(p{b/a}) μ−→ (νb)(p′{b/a})
is derivable by (Res), with ((νa)p′,(νb)(p′{b/a}) ∈ R.

Symmetrically, if (νb)(p{b/a}) μ−→q, then by (Res) this is due to p{b/a} μ−→q′,
with μ �= b,b, so that q = (νb)q′. Since a �∈ fn(p{b/a}) by Proposition 4.9(i), then
μ �= a,a. Hence, by Proposition 4.10(iii), q′ = p′{b/a} and transition p

μ−→ p′

is derivable; by rule (Res), also transition (νa)p
μ−→ (νa)p′ is derivable, with

((νa)p′,(νb)(p′{b/a}) ∈ R. �

Exercise 4.16. Pinpoint the conditions under which (νa)(p |q) ∼ (νa)p |(νa)q.
Show an example for which this law does not hold. �

Exercise 4.17. By using scope-enlargement and alpha-conversion, show that

a.(νa)b |(νa)a.c ∼ (νa′)(a.(νa)b |a′.c)
(νa)(a.b+ c) |(νa)(a.b+d) ∼ (νa)((νa′)((a.b+ c) |(a′.b+d)))

(νa)((((νb)(a.b.c) |a.d) |(νa)(a.b.c)) ∼ (νa,b′,a′)((a.b′.c |a.d) |a′.b.c))
where (νa,b′,a′)p stands for (νa)((νb′)((νa′)p)). �

The exercise above shows that, by means of scope-enlargement and alpha-
conversion, it is possible, in some cases, to put all the restrictions at the top level,
by giving a different syntactic name to each (semantic) bound name.

Definition 4.5. (Prenex form) A CCS process p is nonrestricted if there is no oc-
currence of any restriction operator in p. Process p is in weak prenex form if either
p is nonrestricted, or p = (νa)q with q in weak prenex form.

A CCS process p is restriction-free if bn(p) = /0. Process p is in strong prenex
form if either p is restriction-free, or p = (νa)q with q in strong prenex form. �

For instance, process (νa)((νa′)((a.b+c) |(a′.b+d))) is in strong prenex form,
while process (νa′)(a.(νa)b |a′.c) is not even in weak prenex form. Moreover, given

the constant definition A
de f
= (νb)(a.A), process c.A is in weak prenex form (as it is

nonrestricted), but not in strong prenex form (because bn(c.A) = {b}). As a short-
hand notation, a process in weak (strong) prenex form is denoted by (νL)p, where
L is a set of actions and p is a non-restricted (restriction-free) process.

Note that, by syntactic definition, a finite-net CCS process is a strong prenex
form, because the possible occurrences of the restriction operator can only appear
at the top level. In general, it is not always possible to turn a finitary CCS process
into an equivalent strong prenex form because of the occurrence of restriction inside
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the body of recursively defined constants. However, with the help of the additional
scope-enlargment laws for the dynamic operators, listed below, it is always possible
to turn a finitary CCS process into a bisimulation equivalent weak prenex form, as
well as a finite CCS process into a bisimulation equivalent strong prenex form.

Proposition 4.12. (Scope-enlargement for dynamic operators) For any p,q∈P ,
the following additional laws of restriction hold:

(i) α.(νa)p ∼ (νb)(α.(p{b/a}))
if α = a∨α = a and b �∈ fn(p)∪bn(p) (prefix-scope-enlargement)

(ii) (νa)p+q ∼ (νa)(p+q) if a �∈ fn(q) (choice-scope-enlargement1)
(iii) p+(νa)q ∼ (νa)(p+q) if a �∈ fn(p) (choice-scope-enlargement2)

Proof. (i) Consider S = {(α.(νa)p,(νb)(α.(p{b/a}))) ∣∣ α = a∨α = a ∧ p ∈
P ∧ b �∈ fn(p)∪ bn(p)}∪R, where R is the bisimulation relation reported in the
proof of Proposition 4.11. It is easy to check that S is a bisimulation, proving the
prefix-scope-enlargement law. (ii) and (iii) are left as an exercise for the reader. �

Note that the complementary law of prefix-scope-enlargement is

μ.(νa)p∼ (νa)(μ.p) if μ �= a,a

which was illustrated in Proposition 4.4. Note also that in the law of choice-scope-
enlargement, process (νa)p+ q is not a CCS process, as discussed in Remark 4.7
about distributivity of restriction w.r.t. summation.

Exercise 4.18. By using the scope-enlargement laws and the alpha-conversion law,
show that the following hold:

a.(νa)(b.a.c) |(νa)(a.c) ∼ (νa1,a2)(a.b.a1.c |a2.c)
b.(νa)(b.a.A)+a.B ∼ (νa1)(b.b.a1.A{a1/a}+a.B) �

Exercise 4.19. (Prenex form for finitary CCS processes) By using the restriction
laws (in particular, the scope-enlargement laws for parallel composition and for the
dynamic operators), prove that, for any finitary CCS process p there exists a finitary
CCS process q in weak prenex form such that p∼ q.

(Hint: By double induction, first by structural induction (base cases: 0 and con-
stant A), and then by induction on the b-size (counting the number of bound names
occurring in a process) of the involved processes, for the cases of the choice opera-
tor and the parallel one. Function b-size(p) is defined as follows:

b-size(0) = 0 b-size(μ.p) = b-size(p)
b-size(p1 + p2) = b-size(p1)+b-size(p2) b-size((νa)p) = 1+b-size(p)

b-size(p1 | p2) = b-size(p1)+b-size(p2) b-size(C) = 0

You need also the congruence property of ∼ w.r.t. CCS operators, proved in
Theorem 4.1.)

This proof can be used to show that for any finite CCS process, there is a bisim-
ulation equivalent finite CCS process in strong prenex form. �
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Example 4.4. (Linking is associative) In Example 3.10 we have introduced the link-
ing operator. We want to prove that the linking operator is associative, up to strong
bisimulation ∼, i.e.,

p�(q�r) ∼ (p�q)�r

by exploiting the fact that parallel composition is associative (Proposition 4.2), the
laws in Proposition 4.4 and Proposition 4.11, the definition of syntactic substitution
in Definition 4.4 together with its properties in Proposition 4.9 and Exercise 4.15
and, finally, the fact that ∼ is a congruence for parallel composition and restriction,
as we will see in Theorem 4.1, Section 4.2.

As a matter of fact, by taking new names d1 and d2, and assuming that action a
of p is linked to b of q, and that action a of q is linked to action b of r, we have:

p�(q�r) = (νd1)(p{d1/a}|(q�r){d1/b})
= (νd1)(p{d1/a}|((νd2)(q{d2/a}|r{d2/b})){d1/b})
= (νd1)(p{d1/a}|(νd2)((q{d2/a}|r{d2/b}){d1/b}))
= (νd1)(p{d1/a}|(νd2)(q{d2/a}{d1/b}|r{d2/b}{d1/b}))
= (νd1)(p{d1/a}|(νd2)(q{d2/a}{d1/b}|r{d2/b}))
∼ (νd1)(p{d1/a}|(νd2)(q{d1/b}{d2/a}|r{d2/b}))
∼ (νd1)(νd2)(p{d1/a}|(q{d1/b}{d2/a}|r{d2/b}))
∼ (νd1)(νd2)((p{d1/a}|q{d1/b}{d2/a}) |r{d2/b})
∼ (νd2)(νd1)((p{d1/a}|q{d1/b}{d2/a}) |r{d2/b})
∼ (νd2)((νd1)(p{d1/a}|q{d1/b}{d2/a}) |r{d2/b})
= (νd2)((νd1)(p{d1/a}{d2/a}|q{d1/b}{d2/a}) |r{d2/b})
= (νd2)((νd1)((p{d1/a}|q{d1/b}){d2/a}) |r{d2/b})
= (νd2)(((νd1)(p{d1/a}|q{d1/b})){d2/a}|r{d2/b})
= (νd2)((p�q){d2/a}|r{d2/b}) = (p�q)�r

�

4.1.3 Laws for Weak Equivalences

For weak bisimulation equivalence ≈ (see Definition 2.20) a very simple law holds:

τ.p≈ p.

This can be easily proved by observing that (i) if τ.p τ−→ p, then p ε
=⇒ p and p≈ p,

and (ii) if p
μ−→ p′, then τ.p μ

=⇒ p′ and p′ ≈ p′. However, such a law does not hold
for rooted weak bisimilarity ≈c (see Definition 2.23), because if τ.p τ−→ p, then p
may be unable to perform τ

=⇒ reaching a state weakly bisimilar to p itself; e.g.,
consider τ.a.0 and a.0. This law holds also for weak trace equivalence, namely
τ.p =wtr p, and for all the weak equivalences in between these two, according to the
classification in Figure 2.33. As we will see, it also holds for branching bisimilarity.
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Exercise 4.20. Prove that p ≈ q if and only if μ.p ≈c μ.q, for any μ ∈ Act. (Hint:
For the implication from right to left, it may be useful to generalize Exercise 2.78
as follows: if q τ

=⇒q′ with q′ ≈ p and p τ
=⇒ p′ with p′ ≈ q, then p≈c q.) �

The following three τ-laws hold for ≈c. Hence, they also hold for weak bisimi-
larity ≈ and for any coarser weak equivalence (e.g., weak trace equivalence).

Proposition 4.13. (τ-laws for rooted weak bisimilarity) For any processes p,q
and for any μ ∈ Act, the following hold:

(i) μ.τ.p ≈c μ.p
(ii) p+ τ.p ≈c τ.p
(iii) μ.(p+ τ.q) ≈c μ.(p+ τ.q)+μ.q

Proof. The first law follows directly by the fact that τ.p≈ p and by Exercise 4.20.
For the second law, observe that the only move from τ.p, namely τ.p τ−→ p, can

be easily matched by p+ τ.p, with p+ τ.p τ−→ p and p ≈ p. Conversely, if p+
τ.p μ−→ p′, then τ.p μ

=⇒ p′ with p′ ≈ p′. Indeed, p+τ.p μ−→ p′ is derivable if either
p

μ−→ p′ or τ.p τ−→ p (and μ = τ and p′ = p). In the former case τ.p τ−→ p
μ−→ p′

and p′ ≈ p′; in the latter case, τ.p τ−→ p and p≈ p.
For the third law, the only nontrivial case is when μ.(p+ τ.q)+ μ.q μ−→q; in

such a case μ.(p+ τ.q) μ
=⇒q with q≈ q. �

Exercise 4.21. (i) Argue that μ.(p+ τ.q) ≈c μ.(p+ q)+ μ.q is not valid. Find a
suitable weak equivalence for which it holds. (ii) Argue that also μ.(p + q) ≈c

μ.(τ.p+ τ.q) is not valid as well. �

Lemma 4.1. (Hennessy Lemma) [Mil89]
For any processes p and q, p≈ q if and only if (p≈c q or p≈c τ.q or τ.p≈c q).

Proof. ⇐) We have three cases: (i) If p ≈c q, then p ≈ q by Exercise 2.76. (ii) If
p≈c τ.q, then p≈ τ.q≈ q. (iii) Symmetric to the previous one.
⇒) We assume that p ≈ q. We consider three cases: (i) If there exists p′ such

that p τ−→ p′ ≈ q, then it is easy to observe that p ≈c τ.q. As a matter of fact,
in one direction, if τ.q τ−→q, then p τ−→ p′ with p′ ≈ q, as required. In the other
direction, if p τ−→ p′ with p′ ≈ q, then τ.q τ−→q, as required; if p τ−→ p′′ with
p′′ �≈ q, then τ.q τ−→q ε

=⇒q′′ with p′′ ≈ q′′, because p ≈ q; finally, if p α−→ p′′,
then τ.q τ−→q α

=⇒q′′ with p′′ ≈ q′′, because p ≈ q; hence the rooted weak bisimu-
lation condition is respected also in this direction. (ii) Symmetrically to the above
case, if q τ−→q′ ≈ p, then τ.p ≈c q. (iii) If neither of the above two holds, then we
can show that p ≈c q as follows. If p α−→ p′, then q α

=⇒q′, with p′ ≈ q′, and the
definition of rooted weak bisimilarity≈c is respected. If p τ−→ p′, then q ε

=⇒q′, with
p′ ≈ q′; note that q′ cannot be q itself, otherwise we would be in case (i) above, This
means that q τ

=⇒q′ and the definition of rooted weak bisimilarity ≈c is respected.
Symmetrically, if q moves first. �
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Exercise 4.22. (i) Prove that p |τ.q ≈ p |q for any p,q. (ii) Show that p |τ.q �≈c p |q
for some p,q. (iii) Prove also that p |τ.q ≈c τ.(p |q) for any p,q. �

For branching bisimulation equivalence ≈br (see Definition 2.24), we have that
τ.p ≈br p. Indeed, relation R = {(τ.p, p)}∪I is a branching bisimulation, where
I = {(p, p)

∣∣ p ∈ P}: to transition τ.p τ−→ p, p can reply with p ε
=⇒ p and

the branching conditions (p, p) ∈ R and (τ.p, p) ∈ R are satisfied; symmetrically,
if p

μ−→ p′, then τ.p τ−→ p
μ−→ p′ and the branching conditions (p, p) ∈ R and

(p′, p′) ∈ R are satisfied.
This law, however, does not hold for rooted branching bisimulation equivalence

≈c
br (see Definition 2.26). As an example, consider τ.a and a: transition τ.a τ−→a

cannot be matched by a in a strong way, as required by the definition of rooted
branching bisimilarity.

Exercise 4.23. Prove that p≈br q if and only if μ.p≈c
br μ.q, for any μ ∈ Act. �

As rooted branching bisimilarity ≈c
br is strictly finer than rooted weak bisimu-

lation equivalence ≈c, it may be not a surprise that some of the τ-laws in Proposi-
tion 4.13 do not hold for it. Even if the first τ-law μ.τ.p ≈c

br μ.p is valid (because
τ.p≈br p holds and by Exercise 4.23), the other two τ-laws are invalid.

In particular, to get convinced that the third τ-law μ.(p+τ.q)≈c
br μ.(p+τ.q)+

μ.q is invalid, assume that μ = a, p = c.0 and q = b.0 (this is illustrated in Figure
2.29). Then, move a.(c.0+ τ.b.0)+ a.b.0 a−→b.0 is matched (strongly, as required
by the definition of rooted branching bisimilarity) by a.(c.0+τ.b.0) a−→ c.0+τ.b.0,
but of course b.0 �≈br c.0+ τ.b.0.

Similarly, the second τ-law p+τ.p≈c
br τ.p is invalid. E.g., take p = τ.a.0+b.0;

then, to transition p+ τ.p τ−→a.0 (which is due to transition p τ−→a.0), τ.p can
react only with τ.p τ−→ p, but a.0 �≈br p. Hence, also the second τ-law is invalid.

The typical law for rooted branching bisimulation is described below. A specific
instance of this law is depicted in Figure 2.32(a).

Proposition 4.14. (τ-law for rooted branching bisimilarity) For any processes
p,q and for any μ ∈ Act, the following holds:

μ.(τ.(p+q)+ p) ≈c
br μ.(p+q)

Proof. Observe that the two terms match their initial μ-labeled transition as in
strong bisimulation, as required, and so it remains to prove that τ.(p+ q)+ p ≈br
p+q. To achieve this, we will prove that the relation

R = {(τ.(p+q)+ p, p+q)}∪I

is a branching bisimulation.
If τ.(p+q)+ p τ−→ p+q, then p+q ε

=⇒ p+q and (τ.(p+q)+ p, p+q) ∈ R as
well as (p+ q, p+ q) ∈ R. Instead, if τ.(p+ q)+ p

μ−→ p′, because p
μ−→ p′, then

p+q ε
=⇒ p+q

μ−→ p′ and (p′, p′) ∈ R as well as (τ.(p+q)+ p, p+q) ∈ R.
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Conversely, if p+q moves first, we have the following two cases: (i) p+q
μ−→q′

because q
μ−→q′; in such a case, τ.(p+q)+ p τ−→ p+q

μ−→q′, with (q′,q′)∈ R and
(p+q, p+q) ∈ R; (ii) p+q

μ−→ p′ because p
μ−→ p′; in such a case, we have that

τ.(p+q)+ p τ−→ p+q
μ−→ p′, with (p+q, p+q) ∈ R and (p′, p′) ∈ R.

In any case, the branching bisimulation conditions are respected, hence R is
a branching bisimulation proving that τ.(p+ q)+ p ≈br p+ q, and consequently,
μ.(τ.(p+q)+ p)≈c

br μ.(p+q) holds. �

Exercise 4.24. Prove that the Hennessy Lemma (see Lemma 4.1) does not hold for
branching bisimilarity ≈br, i.e., it is not true that p ≈br q if and only if (p ≈c

br q or
p≈c

br τ.q or τ.p≈c
br q). (Hint: Consider the processes τ.(a+b)+a and a+b.) �

We prove that the following weakening of the Hennessy Lemma, called the Deng
Lemma [Den07], holds for branching bisimulation.

Lemma 4.2. (Deng Lemma)

If p≈br q, then one of the following three cases holds:

(i) ∃p′ such that p τ−→ p′ and p′ ≈br q, or
(ii) ∃q′ such that q τ−→q′ and p≈br q′, or
(iii) p≈c

br q.

Proof. Let us examine how p and q match each other’s transitions. We distinguish
four possible cases.

1. p τ−→ p′ and the first option of the branching bisimulation game is satisfied,
namely there exists q′ such that q ε

=⇒q′ with p ≈br q′ and p′ ≈br q′; by tran-
sitivity, p′ ≈br q. This is exactly what Clause (i) says.

2. p
μ−→ p′, and there exist q′,q′′,q′′′ such that q τ−→q′ ε

=⇒q′′
μ−→q′′′ with p≈br q′′,

p′ ≈br q′′′. Hence, by transitivity, q ≈br q′′, and so by Exercise 2.82 (Stuttering
Lemma), we derive q≈br q′, and also that p≈br q′ by transitivity. Hence Clause
(ii) above is satisfied.

3. The symmetric cases of 1 and 2 by exchanging the roles of p and q.
4. None of the first three cases holds, i.e., either both p and q have no transitions at

all or each strong transition p
μ−→ p′ is matched by a strong transition q

μ−→q′
from q with p′ ≈br q′ and vice versa. In this case it holds that p≈c

br q. �

Exercise 4.25. Prove that the Deng Lemma holds also for weak bisimilarity, i.e, if
p≈ q, then one of the following three cases holds:

(i) ∃p′ such that p τ−→ p′ and p′ ≈ q, or
(ii) ∃q′ such that q τ−→q′ and p≈ q′, or
(iii) p≈c q. �

Exercise 4.26. Prove that if τ.p + q ≈br p then p + q ≈br p. Does this hold for
weak bisimilarity? (Hint: Show that relation R = {(p+ q, p)

∣∣ τ.p+ q ≈br p} ∪
{(p, p)

∣∣ p ∈P} is a branching bisimulation up to ≈br.) �



4.2 Congruence 179

4.2 Congruence

When we compare the behavior of different systems, we expect to use a behavioral
relation that is not only an equivalence, but rather a congruence. An equivalence
relation is a congruence if it is preserved by the operators of the process calculus. In
our setting, we expect to be able to prove that if p∼ q, then μ.p∼ μ.q for any μ ∈
Act, p |r ∼ q |r for any process r, and similarly for the other operators. The reason
why we require that our chosen behavioral equivalence be a congruence is that it
will support substitution of equals for equals in any context: if a subcomponent p in
a complex system C [p] becomes faulty, we can safely replace it with a congruent
process q, so that the whole system C [q] behaves as C [p] (where a context C [−] is a
process expression with a single occurrence of a hole [−] in it, as a subexpression).

This idea is at the base of compositional reasoning: if we want to check if p1 | p2
is equivalent to q1 |q2, we can decompose the problem into two smaller subprob-
lems, namely checking if pi is equivalent to qi, for i = 1,2; if this is the case, then
we can conclude — by congruence — that p1 | p2 is equivalent to q1 |q2. When
a compositional reasoning is not allowed, we may anyway take advantage of the
behavioral congruence for building smaller state spaces. For instance, if we want
to analyze, with the help of a verification tool (e.g., the Concurrency Workbench
[CWB]), the large state space of p1 | p2 | . . . | pn — so large that it cannot be gen-
erated by the tool — we can first minimize the state space of the n processes pi
w.r.t. the chosen behavioral congruence, obtaining the smaller state spaces for p′i,
and then generate the state space for p′1 | p′2 | . . . | p′n (possibly minimizing it too),
which is often considerably smaller than the state space for p1 | p2 | . . . | pn; such a
procedure is sound if the chosen behavioral equivalence is a congruence for parallel
composition.

Not all the equivalences we have discussed in Chapter 2 are congruences. For
instance, it is not difficult to see that LTS ismorphism ∼= (see Definition 2.8) is
not a congruence for +. As an instance, consider a.0 and a.(0+ 0), which gener-
ate isomorphic LTSs; however, when put in a context C [−] = −+ a.0, we get the
two processes C [a.0] = a.0+ a.0 and C [a.(0+ 0)] = a.(0+ 0)+ a.0 that generate
non-isomorphic LTSs: the former is composed of two states only, while the latter
of three. Similarly, it is not difficult to prove that completed trace equivalence (see
Definition 2.11) is not a congruence for restriction: take processes p = a.(b+c) and
q = a.b+a.c, which are completed trace equivalent; however, (νb)p and (νb)q are
not completed trace equivalent, as trace a is completed only for the latter. Nonethe-
less, the most fundamental behavioral equivalences for our aims are actually con-
gruences, as the following sections show.

4.2.1 Strong Bisimulation Equivalence Is a Congruence

Theorem 4.1. If p∼ q, then the following hold:
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1) μ.p ∼ μ.q for all μ ∈ Act,
2) p+ r ∼ q+ r for all r ∈P ,
3) p |r ∼ q |r for all r ∈P ,
4) (νa)p ∼ (νa)q for all a ∈L .

Proof. Assume R is a bisimulation such that (p,q) ∈ R.
For case 1, consider relation R1 = {(μ.p,μ.q)

∣∣ μ ∈ Act}∪R. It is very easy to
check that R1 is a bisimulation.

For case 2, we show that R2 = {(p+r,q+r)
∣∣ r ∈P}∪R∪I is a bisimulation,

where I = {(r,r) ∣∣ r ∈P}. If p+ r
μ−→ p′, this may be due to either p

μ−→ p′ (due

to rule (Sum1)) or r
μ−→ p′ (due to rule (Sum2)). In the first case, as (p,q) ∈ R,

there exists a transition q
μ−→q′ with (p′,q′) ∈ R; by rule (Sum1) also transition

q+ r
μ−→q′ is derivable with (p′,q′) ∈ R2. In the other case, q+ r can do exactly

the same transition from r: q+ r
μ−→ p′ with (p′, p′) ∈ R2. The symmetric case when

q+ r moves first is analogous, hence omitted.
For case 3, we show that relation R3 = {(p′ |r′,q′ |r′) ∣∣ (p′,q′) ∈ R,r′ ∈P} is

a bisimulation. As (p,q) ∈ R, the thesis follows. Let us consider (p′ |r′,q′ |r′) ∈ R3,
so that (p′,q′) ∈ R. If p′ |r′ μ−→ s, then this is due to either p′

μ−→ p′′ and s = p′′ |r′
(rule (Par1)), or r′

μ−→ r′′ and s= p′ |r′′ (rule (Par2)), or p′ α−→ p′′, r′ α−→ r′′ and s=
p′′ |r′′ (rule (Com)). In the first case, since (p′,q′) ∈ R, we have that q′

μ−→q′′ with
(p′′,q′′)∈ R, and by rule (Par1) also that q′ |r′ μ−→q′′ |r′ with (p′′ |r′,q′′ |r′)∈ R3. In
the second case, by rule (Par2) we have that q′ |r′ μ−→q′ |r′′ with (p′ |r′′,q′ |r′′)∈R3.
In the third case, since (p′,q′) ∈ R, we have q′ α−→q′′ with (p′′,q′′) ∈ R. By rule
(Com), also transition q′ |r′ τ−→q′′ |r′′ with (p′′ |r′′,q′′ |r′′)∈R3. The symmetric case
when q′ |r′ moves first is analogous, and hence omitted.

For case 4, the reader may show that R4 = {((νa)p′,(νa)q′)
∣∣ a ∈ L and

(p′,q′) ∈ R} is a strong bisimulation. �

Note that the symmetric cases r+ p∼ r+q and r | p∼ r |q are implied by the fact
that the operators of choice and parallelism are commutative w.r.t. ∼ (see Proposi-
tion 4.1 and 4.2).

Exercise 4.27. (Linking, again) Continuing Example 3.10, show that strong bisim-
ulation equivalence is a congruence also for the linking operator, i.e., if p∼ q, then
p�r ∼ q�r and r�p∼ r�q for all r ∈P .1 �

Exercise 4.28. Prove that trace equivalence (see Definition 2.9) is a congruence for
the CCS operators: if Tr(p) = Tr(q), then

1) Tr(μ.p) = Tr(μ.q) for any μ ∈ Act,
2) Tr(p+ r) = Tr(q+ r) for any r ∈P ,
3) Tr(p |r) = Tr(q |r) for any r ∈P ,
4) Tr((νa)p) = Tr((νa)q) for any a ∈L .

1 Both statements are to be proved because the linking operator is not commutative, i.e., p�q is
not bisimilar to q�p, in general.
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(Hint: First define auxiliary operators on sets of traces: μ.L = {μσ
∣∣ σ ∈ L};

L1⊗L2 as the set of all the possible interleavings among each trace from L1 and each
trace from L2; and L \ a as the set composed of the traces in L with no occurrence
of a or a. Then, show that Tr(μ.p) = {ε}∪ μ.Tr(p), Tr(p+ r) = Tr(p)∪ Tr(r),
Tr(p |r) = Tr(p)⊗Tr(r), and, finally, that Tr((νa)p) = Tr(p)\a. For simplicity’s
sake, you may restrict yourself to finite CCS only.) �

Exercise 4.29. Is simulation equivalence (see Definition 2.12) a congruence for
CCS operators? And what about ready simulation equivalence (see Exercise 2.33)?

�

Exercise 4.30. We have already shown that completed trace equivalence is not a
congruence for restriction. Show that completed simulation equivalence (see Defi-
nition 2.13) is not a congruence for restriction as well. �

4.2.2 Recursion

In the previous section, we have proved that ∼ is a congruence for all the static and
dynamic CCS operators. Still there is one construct missing, namely recursion. Here
we simply sketch the issue, following [Mil89].

Let us consider an extension of CCS which includes variables X ,Y, . . . from a
set Var, as sketched also in Section 3.3.2. Formally, open CCS terms are defined by
means of the abstract syntax

p ::= 0
∣∣ X

∣∣ μ.q
∣∣ p+ p

q ::= p
∣∣ X

∣∣ q |q ∣∣ (νa)q
∣∣ C

where X ∈ Var. For instance, p1 = a.(b.0 |X) + c.0, p2 = c.0 + a.(Y |b.0) and
p3 = a.X +b.(c.Y |X)+Y are open CCS terms, while a.X .0 is not. We often write
p(X1, . . . ,Xn) to denote an open term p such that all the variables occurring in it
are in the set {X1, . . . ,Xn}; for instance, the three terms above can be denoted by
p1(X), p2(Y ), p3(X ,Y ). An open term p with no occurrence of any variable is called
closed and corresponds to a CCS term, as defined in Section 3.1.2.

An open term p(X1, . . . ,Xn) can be closed by means of a substitution as follows:

p(X1, . . . ,Xn){r1/X1, . . . ,rn/Xn}
with the effect that each occurrence of variable Xi is replaced by the closed CCS
process ri, for i = 1, . . . ,n. For instance, p1(X){d.0/X}= a.(b.0 |d.0)+ c.0.

A natural extension of bisimulation equivalence∼ over open terms is as follows:

p(X1, . . . ,Xn)∼ q(Y1, . . . ,Yn) if for all tuples of (closed) CCS processes (r1, . . . ,rn),
p(X1, . . . ,Xn){r1/X1, . . . ,rn/Xn} ∼ q(Y1, . . . ,Yn){r1/Y1, . . . ,rn/Yn}.
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For instance, it is easy to see that p1(X) ∼ p2(Y ). As a matter of fact, for all r,
p1(X){r/X}= a.(b.0 |r)+c.0∼ c.0+a.(r |b.0)= p2(Y ){r/Y}, which can be easily
proved by means of the algebraic properties (and the congruence ones) of ∼ for the
operators of parallel composition and choice.

For simplicity’s sake, let us now restrict our attention to open terms using a single
variable.

We can recursively close an open term p(X) by means of a recursively defined

constant. For instance, A
de f
= p(X){A/X}. The resulting process constant A is a CCS

process. By saying that strong bisimilarity is a congruence for recursion we mean the

following: If p(X) ∼ q(Y ) and A
de f
= p(X){A/X} and B

de f
= q(Y ){B/Y}, then A ∼ B.

For instance, if C1
de f
= p1(X){C1/X} and C2

de f
= p2(Y ){C2/Y}, then C1 ∼C2 because

p1(X)∼ p2(Y ). The following theorem proves this fact for terms using at most one
variable.

Theorem 4.2. Let p and q be two open terms containing variable X at most. Let

A
de f
= p{A/X}, B

de f
= q{B/X} and p∼ q. Then A∼ B.

Proof. Consider relation

R = {(G{A/X},G{B/X}) ∣∣ G contains at most variable X }.

Note that when G is X, we get (A,B) ∈ R. If we prove that R is a strong bisimulation
up to ∼, then we get the required thesis A ∼ B by Proposition 2.10 (stating the
correctness of this proof principle).

By symmetry, it is enough to prove that if G{A/X} μ−→ p′, then G{B/X} μ−→q′

with p′ ∼ R ∼ q′. The proof proceeds by induction of the proof of G{A/X} μ−→ p′.
We examine the possible shapes of G.

• G = X. Then, we have G{A/X} = A and G{B/X} = B. We want to prove that
for any transition from A, e.g., A

μ−→ p′, there exists a process q′ such that

B
μ−→q′ with p′ ∼ R ∼ q′. By hypothesis, A

de f
= p{A/X}, hence by rule (Cons),

also p{A/X} μ−→ p′ (by a shorter inference); hence, induction can be applied to
conclude that p{B/X} μ−→q′′′ with p′ ∼ p′′Rq′′ ∼ q′′′ for some suitable p′′,q′′.
But we also have that p∼ q, so q{B/X} μ−→q′ with q′′′ ∼ q′. Since B

de f
= q{B/X},

by rule (Cons), also B
μ−→q′ with p′ ∼ p′′Rq′′ ∼ q′, as required.

• G= μ.G′. In this case, G{A/X}= μ.G′{A/X} μ−→G′{A/X}. Similarly, G{B/X}=
μ.G′{B/X} μ−→G′{B/X}, and (G′{A/X},G′{B/X}) ∈ R.

• G = G1 +G2. In this case, G{A/X}= G1{A/X}+G2{A/X}. A transition from
G{A/X}, e.g., G1{A/X}+G2{A/X} μ−→ p′, is derivable only if Gi{A/X} μ−→ p′
for some i = 1,2. Without loss of generality, assume the transition is due to
G1{A/X} μ−→ p′. We can apply induction (as we are shortening the proof tree)
and conclude that G1{B/X} μ−→q′ with p′ ∼ R ∼ q′. By rule (Sum1), transition
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G1{B/X} μ−→q′ ensures that also G{B/X}= G1{B/X}+G2{B/X} μ−→q′, with
p′ ∼ R ∼ q′, as required.

• G = G1 |G2. In this case, G{A/X} = G1{A/X}|G2{A/X}. A transition from
G{A/X}, e.g., G1{A/X}|G2{A/X} μ−→ p′, is derivable if G1{A/X} μ−→ p′1 with

p′ = p′1 |G2{A/X}; or G2{A/X} μ−→ p′2 with p′ = G1{A/X}| p′2; or μ = τ ,

G1{A/X} α−→ p′1, G2{A/X} α−→ p′2 with p′ = p′1 | p′2. The first two cases are triv-
ial, hence omitted. We shall treat only the last case. By induction, as both tran-
sitions G1{A/X} α−→ p′1 and G2{A/X} α−→ p′2 have a shorter proof, we have
G1{B/X} α−→q′1 with p′1 ∼ p′′1 Rq′′1 ∼ q′1 for suitable p′′1 and q′′1 , as well as

G2{B/X} α−→q′2 with p′2 ∼ p′′2 Rq′′2 ∼ q′2 for suitable p′′2 and q′′2 . Hence, setting
q′ = q′1 |q′2, we have by rule (Com) that G{B/X}= G1{B/X}|G2{B/X} τ−→q′.
So it remains to prove that p′ ∼ R ∼ q′. We know that p′1∼ p′′1 Rq′′1 ∼ q′1 as well as
p′2 ∼ p′′2 Rq′′2 ∼ q′2. By congruence, we have p′ = p′1 | p′2 ∼ p′′1 | p′′2 = p′′ and q′′ =
q′′1 |q′′2 ∼ q′1 |q′2 = q′. So, it remains to prove that p′′Rq′′. Since p′′1 Rq′′1 , there exists
a term H1 such that p′′1 = H1{A/X} and q′′1 = H1{B/X}. Similarly, since p′′2 Rq′′2 ,
there exists a term H2 such that p′′2 = H2{A/X} and q′′2 = H2{B/X}. Therefore, if
we set H = H1 |H2, we have that p′′ = p′′1 | p′′2 = H1{A/X}|H2{A/X}= H{A/X}
as well as q′′ = q′′1 |q′′2 = H1{B/X}|H2{B/X}= H{B/X}; summing up, p′′Rq′′,
as required.

• G = (νa)G′, left as an exercise for the reader.
• G=C. Since no instance of X occurs in G, G{A/X}=C

μ−→ p′, which is possible

only if C
de f
= p1 and p1

μ−→ p′. Clearly, also G{B/X} = C
μ−→ p′ and (p′, p′) =

(p′{A/X}, p′{B/X}) ∈ R. �

The generalization to open terms over a set {X1, . . . ,Xn} of variables is more
complex, but obvious. Consider a set of pairs of equivalent open terms of this form:

p1(X1, . . . ,Xn) ∼ q1(X1, . . . ,Xn)
p2(X1, . . . ,Xn) ∼ q2(X1, . . . ,Xn)
. . .
pn(X1, . . . ,Xn) ∼ qn(X1, . . . ,Xn)

Then, we can recursively close these terms as follows:

A1
de f
= p1{A1/X1, . . . ,An/Xn} B1

de f
= q1{B1/X1, . . . ,Bn/Xn}

A2
de f
= p2{A1/X1, . . . ,An/Xn} B2

de f
= q2{B1/X1, . . . ,Bn/Xn}

. . .

An
de f
= pn{A1/X1, . . . ,An/Xn} Bn

de f
= qn{B1/X1, . . . ,Bn/Xn}

Then, the thesis is that Ai ∼ Bi for all i = 1,2, . . . ,n.
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4.2.3 Weak Equivalences Are Congruences

Weak bisimulation equivalence ≈ (see Definition 2.20) is a congruence for the op-
erators of action prefixing, parallelism and restriction.

Theorem 4.3. If p≈ q, then the following hold:
1) μ.p ≈ μ.q for all μ ∈ Act,
2) p |r ≈ q |r for all r ∈P ,
3) (νa)p ≈ (νa)q for all a ∈L .

Proof. Assume R is a weak bisimulation such that (p,q) ∈ R.
For case 1, consider relation R1 = {(μ.p,μ.q)

∣∣ μ ∈ Act}∪R. It is very easy to
check that R1 is a weak bisimulation.

For case 2, we show that relation R2 = {(p′ |r′, q′ |r′) ∣∣ (p′,q′) ∈ R,r′ ∈P}
is a weak bisimulation. As (p,q) ∈ R, the thesis follows. Let us consider pair
(p′ |r′,q′ |r′) ∈ R2, hence with (p′,q′) ∈ R. If p′ |r′ μ−→ s, then this is due to one
of the following three cases: p′

μ−→ p′′ and s = p′′ |r′ (rule (Par1)), or r′
μ−→ r′′ and

s = p′ |r′′ (rule (Par2)), or p′ α−→ p′′, r′ α−→ r′′, with μ = τ and s = p′′ |r′′ (rule
(Com)).

In the first case, since (p′,q′) ∈ R, we have that either q′ α
=⇒q′′ (if μ = α) or

q′ ε
=⇒q′′ (if μ = τ) with (p′′,q′′) ∈ R. By (possibly repeated applications of) rule

(Par1) also q′ |r′ α
=⇒q′′ |r′ or q′ |r′ ε

=⇒q′′ |r′ with (p′′ |r′,q′′ |r′) ∈ R2.
In the second case, by rule (Par2) we have that q′ |r′ μ−→q′ |r′′, hence also

q′ |r′ μ
=⇒q′ |r′′, with (p′ |r′′,q′ |r′′) ∈ R2.

In the third case, since (p′,q′) ∈ R, we have that q′ α
=⇒q′′ with (p′′,q′′) ∈ R. By

possibly repeated applications of rule (Par1) and one application of rule (Com),
q′ |r′ τ

=⇒q′′ |r′′ with (p′′ |r′′,q′′ |r′′) ∈ R2 is also derivable.
The symmetric cases when q′ |r′ moves first are analogous, hence omitted.
For case 3, the reader may show that R3 = {((νa)p′,(νa)q′)

∣∣ (p′,q′) ∈ R
and a ∈L } is a weak bisimulation. �

Unfortunately, ≈ is not a congruence for +. As a matter of fact, τ.a ≈ a, but
τ.a+ b �≈ a+ b, because τ.a+ b τ−→a and the only silent step that can be taken
from a+b is a+b ε

=⇒a+b, but a and a+b are not weakly bisimilar.

Exercise 4.31. Find suitable constraints on CCS syntax so that ≈ is a congruence
also w.r.t. to the + operator. (Hint: Avoid τ prefixes as guards of summands.) �

However, rooted weak bisimulation equivalence ≈c (see Definition 2.23) is a
congruence for all the CCS operators.

Theorem 4.4. If p≈c q, then the following hold:
1) μ.p ≈c μ.q for all μ ∈ Act,
2) p+ r ≈c q+ r for all r ∈P ,
3) p |r ≈c q |r for all r ∈P ,
4) (νa)p ≈c (νa)q for all a ∈L .
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Proof. Case 1 follows by direct application of Exercises 2.76 and 4.20.
For case 2, if p+r

μ−→ s, this can be due to either p
μ−→ s or r

μ−→ s. In the former
case, since p ≈c q, we have that q

μ
=⇒q′, with s ≈ q′. Hence, by induction on the

length of the path associated to q
μ

=⇒q′ and by applying rule (Sum1) on the first
transition on that path, we can derive q+ r

μ
=⇒q′ with s≈ q′. In the latter case, by

rule (Sum2) we can derive q+ r
μ−→ s, hence q+ r

μ
=⇒ s with s ≈ s. The symmetric

case when q+ r moves first is omitted.
For case 3, if p |r μ−→ s, then this is due to one of the following three cases:

p
μ−→ p′ and s = p′ |r (rule (Par1)), or r

μ−→ r′ and s = p |r′ (rule (Par2)), or

p α−→ p′, r α−→ r′, with μ = τ and s = p′ |r′ (rule (Com)). In the first case, as
p ≈c q, we have that q

μ
=⇒q′ with p′ ≈ q′. By (possibly repeated applications of)

rule (Par1) also q |r μ
=⇒q′ |r. As p′ ≈ q′ and ≈ is a congruence for parallel com-

position (as proved in Theorem 4.3(2)), we have that p′ |r ≈ q′ |r, as required. In
the second case, by rule (Par2) we have that q |r μ−→q |r′, hence also q |r μ

=⇒q |r′,
with p |r′ ≈ q |r′, as required, because p ≈c q, hence p ≈ q, and ≈ is a congru-
ence for parallel composition. In the third case, since p≈c q, we have q α

=⇒q′ with
p′ ≈ q′. By possibly repeated applications of rule (Par1) and one application of rule
(Com), q |r τ

=⇒q′ |r′ is also derivable, with p′ |r′ ≈ q′ |r′ as required, because ≈ is
a congruence for parallel composition. The symmetric case when q |r moves first is
omitted.

Case 4 is left as an exercise for the reader. (Hint: One has to take advantage of
the fact that ≈ is a congruence for restriction, as proved in Theorem 4.3(3).) �

Actually, one can prove that ≈c is the coarsest congruence (i.e., the congruence
that identifies as much as possible) contained in weak bisimulation equivalence. This
is made precise by the following theorem that justifies rooted weak bisimilarity as
the compositional refinement of weak bisimilarity.

Theorem 4.5. (Coarsest congruence contained in≈) Assume that f n(p)∪ f n(q) �=
L . Then p≈c q if and only if p+ r ≈ q+ r for all r ∈P .

Proof. The implication from left to right follows by Theorem 4.4(2) and Exercise
2.76. For the implication from right to left, suppose that p+ r ≈ q+ r for all r ∈P .
Take any action a∈L such that a �∈ f n(p)∪ f n(q)2 and assume p

μ−→ p′. Then also
p+a

μ−→ p′ (by rule (Sum1)). As p+a≈ q+a, then also q+a must respond to this
transition. We have to examine two different cases: either μ = τ and q+a ε

=⇒q+a,
or the transition truly originates from q, i.e., q+a

μ
=⇒q′ (μ can be τ). The former

case is impossible: p′ cannot be weakly bisimilar to q+ a, as p′ cannot execute a.
Hence, the second case must be true; but this is indeed what is requested by rooted

2 The assumption that L is not covered by the free names of p and q is not strictly necessary
[vGl05], but makes the proof easier. Such an assumption is satisfied when p and q are finitary CCS
processes (see Proposition 4.5).
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weak bisimulation: if p
μ−→ p′, then q

μ
=⇒q′ with p′ ≈ q′. The symmetric case when

q moves first is omitted. �

Also branching bisimilarity ≈br (see Definition 2.24) is a congruence for action
prefixing, parallel composition and restriction, but not for +: it is easy to see that
τ.a≈br a but τ.a+b �≈br a+b.

Theorem 4.6. If p≈br q, then the following hold:
1) μ.p ≈br μ.q for all μ ∈ Act,
2) p |r ≈br q |r for all r ∈P ,
3) (νa)p ≈br (νa)q for all a ∈L .

Proof. Assume R is a branching bisimulation such that (p,q) ∈ R.
For case 1, consider the relation R1 = {(μ.p,μ.q)

∣∣ μ ∈ Act}∪R. It is very easy
to check that R1 is a branching bisimulation.

For case 2, we show that relation R2 = {(p′ |r′, q′ |r′) ∣∣ (p′,q′) ∈ R,r′ ∈P}
is a branching bisimulation. As (p,q) ∈ R, the thesis follows. Let us consider pair
(p′ |r′,q′ |r′) ∈ R2, hence with (p′,q′) ∈ R. If p′ |r′ μ−→ s, then this is due to one of
the following three cases: p′

μ−→ p′′ and s = p′′ |r′ (rule (Par1)), or r′
μ−→ r′′ and

s = p′ |r′′ (rule (Par2)), or p′ α−→ p′′, r′ α−→ r′′ and s = p′′ |r′′ (rule (Com)).
In the first case, since (p′,q′) ∈ R, if μ = α we have that q′ ε

=⇒q0
α−→q′′ with

(p′,q0) ∈ R as well as (p′′,q′′) ∈ R. By (possibly repeated applications of) rule
(Par1) also q′ |r′ ε

=⇒q0 |r′ α−→q′′ |r′ with (p′ |r′,q0 |r′) ∈ R2 and (p′′ |r′,q′′ |r′) ∈
R2. Instead, if μ = τ , we have two subcases: either q′ ε

=⇒q0
τ−→q′′ with (p′,q0)∈ R

as well as (p′′,q′′) ∈ R, or q′ ε
=⇒q′′ with (p′,q′′) ∈ R as well as (p′′,q′′) ∈ R. The

former subcase is analogous to the case above for μ = α , hence omitted. For the
latter subcase, by (possibly repeated applications of) rule (Par1) also q′ |r′ ε

=⇒q′′ |r′
with (p′ |r′,q′′ |r′) ∈ R2 as well as (p′′ |r′,q′′ |r′) ∈ R2.

In the second case, i.e., when r′
μ−→ r′′, by rule (Par2) we have that q′ |r′ μ−→q′ |r′′,

with (p′ |r′′,q′ |r′′) ∈ R2, hence the branching bisimulation condition is satisfied.
In the third case, since (p′,q′)∈R, we have that q′ ε

=⇒q0
α−→q′′ with (p′,q0)∈R

as well as (p′′,q′′) ∈ R. By possibly repeated applications of rule (Par1) and one
final application of rule (Com), we can derive transition q′ |r′ ε

=⇒qo |r′ τ−→q′′ |r′′
with (p′ |r′,q0 |r′) ∈ R2 as well as (p′′ |r′′,q′′ |r′′) ∈ R2.

The symmetric cases when q′ |r′ moves first are analogous, hence omitted.
For case 3, the reader may show that R3 = {((νa)p′,(νa)q′)

∣∣ (p′,q′) ∈ R
and a ∈L } is a branching bisimulation. �

Similarly to the case of rooted weak bisimilarity, the rooted version of branching
bisimilarity ≈c

br (Definition 2.26) is a congruence for all CCS operators.

Theorem 4.7. If p≈c
br q, then the following hold:

1) μ.p ≈c
br μ.q for all μ ∈ Act,

2) p+ r ≈c
br q+ r for all r ∈P ,

3) p |r ≈c
br q |r for all r ∈P ,

4) (νa)p ≈c
br (νa)q for all a ∈L .
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Proof. For case 1, transition μ.p μ−→ p is matched by transition μ.q μ−→q, with
p≈br q (due to Exercise 2.84), as required.

For case 2, if p+r
μ−→ s, this can be due to either p

μ−→ s or r
μ−→ s. In the former

case, since p≈c
br q, we have that q

μ−→q′, with s≈br q′. Hence, by rule (Sum1), we

can derive q+ r
μ−→q′ with s ≈br q′, as required. In the latter case, by rule (Sum2)

we can derive q+ r
μ−→ s, with s ≈br s. The symmetric case when q+ r moves first

is omitted.
For case 3, if p |r μ−→ s, this can be due to one of the following three cases:

p
μ−→ p′ and s = p′ |r, or r

μ−→ r′ and s = p |r′, or p α−→ p′, r α−→ r′ and s = p′ |r′.
In the first case, since p ≈c

br q, we have q
μ−→q′, with p′ ≈br q′. By rule (Par1),

we can derive q |r μ−→q′ |r, with p′ |r ≈br q′ |r, by Theorem 4.6(2), as required.
In the second case, by rule (Par2), q |r μ−→q |r′. As p≈br q by Exercise 2.84, by

Theorem 4.6(2), we have that p |r′ ≈br q |r′, as required.
In the third case, since p ≈c

br q, we have that q α−→q′, with p′ ≈br q′. By rule
(Com), q |r τ−→q′ |r′, with p′ |r′ ≈br q′ |r′ by Theorem 4.6(2), as required.

Case 4 is left as an exercise for the reader. �

Exercise 4.32. Prove that rooted branching bisimilarity ≈c
br is the coarsest congru-

ence contained in branching bisimulation equivalence ≈br. (Hint: Follow the steps
of the proof of Theorem 4.5.) �

Example 4.5. (Predictive operator) We may wonder if there exists an operator that
preserves (rooted) branching bisimilarity but not rooted weak bisimilarity, hence
supporting the need for (rooted) branching bisimilarity. The answer is positive. One
of these operators is the predictive operator, originally introduced in [vGW96]. Its
informal definition is as follows: pred(p) can do whatever p can do, but it can also
predict initial observable moves of p without actually executing them and without
changing state. Formally, the operational rules are as follows:

(P1)
p

μ−→ p′

pred(p)
μ−→ pred(p′)

(P2)
p α−→ p′

pred(p) can do α−→ pred(p)

It is easy to see that b+τ.a ≈c b+τ.a+a (see also Figure 2.31 in Section 2.4.3,
where we discuss that these two systems are not branching bisimilar). However,
pred(b+ τ.a) is not rooted weak bisimilar to pred(b+ τ.a+ a), because the latter

can do pred(b+ τ.a+ a) can do a−→ pred(b+ τ.a+ a) and the former can only reply

with pred(b+ τ.a) can do a
=⇒ pred(a) and the reached states are clearly not equivalent

as only pred(b+ τ.a+a) can execute action b.
Now we prove that branching bisimilarity ≈br is preserved by the predictive op-

erator, i.e., if p≈br q then pred(p)≈br pred(q). Let R be a branching bisimulation
such that (p,q) ∈ R. Then we prove that S = {(pred(p′), pred(q′))

∣∣ (p′,q′) ∈ R}
is a branching bisimulation.

If pred(p′) can do α−→ pred(p′), then p′ α−→ p′′ for some p′′. Since (p′,q′) ∈ R, then
q′ can reply with q′ ε

=⇒q′′ α−→q′′′, with (p′,q′′) ∈ R and (p′′,q′′′) ∈ R. Hence, by
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means of the operational rules above, pred(q′) ε
=⇒ pred(q′′) can do α−→ pred(q′′) with

(pred(p′), pred(q′′)) ∈ S, as required.
If pred(p′) α−→ pred(p′′), then p′ α−→ p′′ for some p′′. Since (p′,q′) ∈ R then

q′ can reply with q′ ε
=⇒q′′ α−→q′′′ with (p′,q′′) ∈ R and (p′′,q′′′) ∈ R. Hence, by

means of the operational rules above, pred(q′) ε
=⇒ pred(q′′) α−→ pred(q′′′) with

(pred(p′), pred(q′′)) ∈ S, as well as (pred(p′′), pred(q′′′)) ∈ S, as required.
If pred(p′) τ−→ pred(p′′), then p′ τ−→ p′′ for some p′′. Since (p′,q′) ∈ R then q′

can reply either with q′ ε
=⇒q′′, such that (p′,q′′) ∈ R, as well as (p′′,q′′) ∈ R, or

with q′ ε
=⇒q′′ τ−→q′′′, with (p′,q′′) ∈ R and (p′′,q′′′) ∈ R. Hence, by means of the

operational rules above, we can derive: in the former case, pred(q′) ε
=⇒ pred(q′′)

with (pred(p′), pred(q′′)) ∈ S, as well as (pred(p′′), pred(q′′)) ∈ S, as required; in
the latter case, pred(q′) ε

=⇒ pred(q′′) τ−→ pred(q′′′) with (pred(p′), pred(q′′)) ∈ S
as well as (pred(p′′), pred(q′′′)) ∈ S, as required.

The symmetric case when pred(q′) moves first is analogous, hence omitted.
Summing up, S is a branching bisimulation and so pred(p)≈br pred(q). �

Exercise 4.33. Continuing Exercise 4.28, prove that also weak trace equivalence
(see Definition 2.17) is a congruence for the CCS operators. �

Exercise 4.34. Is weak simulation equivalence (see Definition 2.19) a congruence
for the CCS operators? �

Exercise 4.35. Continuing Exercise 4.30, show that weak completed trace equiv-
alence (see Definition 2.18), as well as weak completed simulation (see Exercise
2.60), is not a congruence not only for restriction, but also for choice. (Hint: Con-
sider τ.0 and 0, which are weakly completed trace (as well as weakly completed
simulation) equivalent.) �

The recursion congruence proof in Section 4.2.2 can be extended also to the case
of weak bisimilarity and branching bisimilarity.

Exercise 4.36. (Weak bisimilarity is a congruence for recursion) Let p and q be
two open terms containing variable X at most. We say that p≈ q if for every (closed)

CCS process r, p{r/X} ≈ q{r/X}. Let A
de f
= p{A/X}, B

de f
= q{B/X} and p≈ q. Then

prove that A≈ B by adapting the proof of Theorem 4.2. Redo the same for ≈br. �

4.3 Axiomatization of Finite Processes

Behavioral equivalences for full CCS are undecidable, as we have discussed in Sec-
tion 3.5.3. However, for certain subclasses decidability holds. In these cases it may
be possible to give algebraic characterizations of bisimilarity, in the form of ax-
iomatizations. An axiomatization of a behavioral congruence is an elegant way of
pinpointing what are the basic features of such a behavioral congruence: different
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congruences are characterized by different axioms. For instance, the basic difference
between bisimulation congruence and trace congruence is the axiom of distributiv-
ity of action prefixing w.r.t. summation μ.(x+ y) = μ.x+ μ.y, which is an axiom
for the latter but not for the former. Moreover, an axiomatization may offer an al-
ternative proof method which, in some cases, is more efficient than checking the
behavioral congruence on the associated LTSs of the two processes: once we have
proved that the axiomatization is sound and complete w.r.t. the behavioral congru-
ence, we can ignore the latter (i.e., we do not need to generate the LTSs associated
to the two processes and check that the two are congruent) and we can reason on the
former in purely algebraic terms. For instance, proving that (p+q)+ r is bisimilar
to p+(q+ r) (for processes p,q,r) can be easily achieved by instantiation of the
axiom of associativity of the choice operator: (x+ y)+ z = x+(y+ z).

For the sake of simplicity, we restrict our attention to P f in, the class of finite CCS
processes (no occurrence of constants). See [Mil89] for an axiomatization of strong
and rooted weak bisimulation equivalences over the class of finite-state processes
(originally presented in [Mil84, Mil89b]) and [BB08] for an axiomatization of such
equivalences over regular processes.

In the following, we briefly recall the basic definitions about axiomatizations
(usually called equational theories) and equational deduction, then we present a
couple of axiomatizations for strong equivalences, and finally some axiomatizations
for weak equivalences. A more advanced presentation of these topics can be found
in [BBR10], where a variety of process algebras are axiomatized.

4.3.1 Equational Deduction

In general, given a (one-sorted) signature Σ (i.e., a set of constants and function
symbols with their arities), we can define the set of terms over Σ and over a set of
variables V (notation T (Σ ,V )) as the smallest set that satisfies the following:

(i) each variable x in V is a term in T (Σ ,V )
(ii) each constant c in Σ is a term of T (Σ ,V )
(iii) if f is a n-ary function symbol and t1, . . . , tn are terms in T (Σ ,V ), then also

f (t1, . . . , tn) is a term in T (Σ ,V )

Usually, we write T (Σ) to denote the set of closed (or ground) terms (i.e., terms
with no occurrence of variables).

Example 4.6. (Signature for finite CCS) We can define a signature ΣCCS for finite
CCS as follows: we have one constant 0, a set of unary operators of prefixing μ.
(one for each μ ∈ Act, which is assumed to be finite), another set of unary operators
of restriction (νa) (one for each a ∈ L , assumed finite as well) and the binary
operators of choice + and parallelism | , which are used in infix form (while f
above was defined in prefix form).

The set T (ΣCCS,V ) includes, for instance, the (open) term (a.x+0) |b.0, where
x is a variable. The set T (ΣCCS) of closed terms is slightly more general than the set
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1. Reflexivity
t = t

2. Symmetry
t1 = t2

t2 = t1

3. Transitivity
t1 = t2 t2 = t3

t1 = t3

4. Substitutivity
ti = t ′i

f (t1, . . . ti, . . . tk) = f (t1, . . . t ′i , . . . tk)
for any f and 1≤ i≤ n

5. Instantiation
t1 = t2

t1[ρ] = t2[ρ]
for any substitution ρ

6. Axioms
t1 = t2

for all axioms t1 = t2 in E

Table 4.1 Rules of equational deduction

P f in of Section 3.4.1 because now we admit unguarded sums. As a matter of fact,
P f in is a two-sorted signature (one sort p for sequential processes and one sort q for
general processes), but in this section, for simplicity’s sake, we prefer to consider
only one-sorted signatures. �

A substitution ρ is a mapping from V to T (Σ ,V ). For any term t, by t[ρ] we
denote the term obtained as follows:

(i) for each variable x in V , x[ρ] = ρ(x),
(ii) for each constant c in Σ , c[ρ] = c,
(iii) for any n-ary function symbol f and terms t1, . . . , tn, f (t1, . . . , tn)[ρ ] is the term

f (t1[ρ], . . . , tn[ρ]).

A substitution ρ is closed if ρ(x) ∈ T (Σ) for each variable x ∈ V . Hence, the ap-
plication of a closed substitution to an open term yields a closed term.

An equational theory is a tuple (Σ ,E), where Σ is a signature and E is a set of
equations of the form t1 = t2, where t1 and t2 are terms in T (Σ ,V ). The equations
in E are usually called axioms and the equational theory (Σ ,E) is often called an
axiomatization.

For any equational theory (Σ ,E), there is a standard set of proof rules for deriving
equalities on T (Σ ,V ). This set of proof rules forms an equational deductive proof
system D(E), composed of the rules in Table 4.1.

A proof is a finite sequence of equalities t1 = t ′1, t2 = t ′2, . . . tk = t ′k such that each
ti = t ′i is either an axiom (rule 1 or 6) or can be derived by using one of the rules
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A1 Associativity x+(y+ z) = (x+ y)+ z
A2 Commutativity x+ y = y+ x
A3 Identity x+0 = x
A4 Idempotence x+ x = x

T Distributivity μ.(x+ y) = μ.x+μ.y

Table 4.2 Axioms for choice

2−5 with premises some of the previous equalities t1 = t ′1, t2 = t ′2, . . . ti−1 = t ′i−1.
This linear representation of a proof can be more conveniently expressed in the form
of a tree (proof tree).

We use the notation E � t1 = t2 if there exists a proof with t1 = t2 as its last equal-
ity, using only the axioms in E (plus rule 1). This directly determines a congruence
over the set of terms: t1 =E t2 if and only if E � t1 = t2. Indeed, note that rules 1−3
ensure that the relation =E that D(E) is inducing on T (Σ ,V ) is an equivalence
relation; similarly, rule 4 ensures substitutivity of equals for equals in any context,
i.e., that the relation =E that D(E) is inducing is a congruence.

Example 4.7. Let us consider the axioms for the choice operator in Table 4.2. The
proof that {A1,A2,A4} � a.0+(b.w+a.0) = a.0+b.w is as follows:

1. x+ y = y+ x Axiom A2

2. b.w+a.0 = a.0+b.w Rule 5: Instantiation of line 1
3. a.0+(b.w+a.0) = a.0+(a.0+b.w) Rule 4: Substitutivity on line 2
4. x+(y+ z) = (x+ y)+ z Axiom A1

5. a.0+(a.0+b.w) = (a.0+a.0)+b.w Rule 5: Instantiation of line 4
6. x+ x = x Axiom A4

7. a.0+a.0 = a.0 Rule 5: Instantiation of line 6
8. (a.0+a.0)+b.w = a.0+b.w Rule 4: Substitutivity on line 7
9. a.0+(b.w+a.0) = (a.0+a.0)+b.w Rule 3: Transitivity on lines 3 and 5
10. a.0+(b.w+a.0) = a.0+b.w Rule 3: Transitivity on lines 9 and 8

This linear representation of the proof may be more conveniently represented as the
proof tree

x+ y = y+ x
b.w+a.0 =
a.0+b.w

a.0+(b.w+a.0) =
a.0+(a.0+b.w)

x+(y+ z) =
(x+ y)+ z

a.0+(a.0+b.w) =
(a.0+a.0)+b.w

a.0+(b.w+a.0) = (a.0+a.0)+b.w

x+ x = x
a.0+a.0 = a.0

(a.0+a.0)+b.w =
a.0+b.w

a.0+(b.w+a.0) = a.0+b.w
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R1 (νa)0 = 0

R2 if μ �∈ {a,a} (νa)μ.x = μ.(νa)x
R3 if μ ∈ {a,a} (νa)μ.x = 0

R4 (νa)(x+ y) = (νa)x+(νa)y

Exp if x = Σ n
i=1μi.xi and y = Σ m

j=1μ ′j.y j

x |y = Σiμi.(xi |y) + Σ jμ ′j.(x |y j) + Σi, j:μi=μ ′j τ.(xi |y j)

Table 4.3 Axioms for restriction and expansion law

where, for lack of space, we have omitted the names of the axioms and rules we
have used; note that the leaves of the tree are the three axioms and that the root is
the equality being proved. �

Let R ⊆ T (Σ)×T (Σ) be a relation on closed terms. The equational deductive
proof system D(E) for the equational theory (Σ ,E) is (ground) sound w.r.t. R if

E � t1 = t2 implies (t1, t2) ∈ R

If R is a behavioral congruence, this means that the axiomatization is sound when-
ever D(E) proves equalities only between two behaviorally congruent terms, i.e., it
never equates two terms that are not behaviorally congruent.

D(E) is (ground) complete w.r.t. R if

(t1, t2) ∈ R implies E � t1 = t2

So, D(E) is complete if it can prove that each pair of behaviorally congruent terms
is equated by the axioms, i.e., it never misses to prove equality of two behaviorally
congruent terms.

In other words, a sound and complete axiomatization (Σ ,E) of a congruence R
on T (Σ) is such that the congruence t1 =E t2 induced by D(E) is exactly the same
congruence defined by R.

4.3.2 Axiomatizing Strong Equivalences

As our first behavioral congruence over finite CCS, we consider strong bisimulation
equivalence ∼. Let S B be the set of axioms A1–A4 of Table 4.2, and R1–R4 and
Exp of Table 4.3. We want to show that the equational theory (ΣCCS,S B) is a
sound and complete axiomatization of ∼.

Remark 4.7. (Axiom vs axiom schematon) To be precise, the four axioms R1–R4

are not axioms, but rather axiom schemata, i.e., there is an instance of these axioms
for any possible action a ∈L and prefix μ ∈ Act. Hence, under the assumption that
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Act (hence also L ) is finite, we still have a finite number of axioms for restriction.
Similarly, Exp is not an axiom, but an axiom schematon, which stands for an infinite
collection of axioms, each one for the fixed choice of n, m and for the choice of the
initial prefixes μi and μ ′j. This means that S B is not a finite axiomatization of ∼
over finite CCS. A finite axiomatization can be obtained with the use of the auxiliary
operators of left merge and communication merge of ACP [BK84a, BK85], as we
will show in Section 4.3.4. Moller in [Mol90a, Mol90b] proved that∼ is not finitely
axiomatizable without introducing some auxiliary operators. �

For soundness, we have to prove that for any pair of closed terms p and q, if
S B � p = q, then p ∼ q. This must be done by induction on the proof tree for
S B � p = q. The base cases are the two axioms: rule 1 and rule 6 in Table 4.1.
Reflexivity (rule 1) is sound because p ∼ p for any p ∈ P . Rule 6 (Axioms) is
sound if for each axiom in E, each ground instantiation (rule 5) of the axiom holds
when = is replaced by ∼. For instance, A2 is sound if for all possible finite CCS
processes p and q, we have that p+ q ∼ q+ p. For the axioms for choice, this has
already been proved in Proposition 4.1. Axiom Exp is sound because of Proposition
4.3, while the axioms of restriction are sound for Proposition 4.4 (and Remark 4.3).
The other rules in Table 4.1 (rules 2–4) are obviously sound, because assuming that
the thesis holds for the premise of the rule, it trivially holds also for the conclusion
of the premise, as∼ is an equivalence relation, actually a congruence. Summing up,
we have the following:

Theorem 4.8. (Soundness) For any pair of closed terms p and q, if S B � p = q,
then p∼ q.

Proof. It follows by Proposition 4.1 (for the axioms for +), by Proposition 4.3 (for
the expansion law), and by Proposition 4.4 (for the axioms for restriction). �

For completeness, we have to resort to some normal form and to prove first the
completeness result for normal forms only. Then, we extend the result to all pro-
cesses by proving that any process can be reduced to a normal form.

Definition 4.6. A process of the form Σi∈I μi.pi is in head standard form. A process
p is in normal form if p and all its subterms are in head standard form. �

In other words, a normal form is a term built only with 0, action prefixing and
(n-ary) summation, where the order and grouping of summands may be ignored in
virtue of axioms A1 of associativity, A2 of commutativity and A3 of identity. Note
that 0 is a normal form Σi∈I μi.Pi when I = /0. The proofs we will present are mainly
based on induction on a suitable measure of a normal form, called depth. The depth
of a normal form is the maximal number of nested prefixes in its syntax; formally,
it is defined as

depth(Σi∈I μi.pi) = max{depth(μi.pi)
∣∣ i ∈ I}

depth(μ.p) = 1+depth(p)

with the proviso that max /0 = 0; hence depth(Σi∈I μi.pi) = 0 if and only if I = /0. The
following obvious fact holds for normal forms.
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Proposition 4.15. For any normal form p, if p
μ−→ p′, then μ.p′ is a summand of p,

p′ is a normal form and depth(p′)< depth(p). �

Exercise 4.37. Show that, for p and q normal forms, if p ∼ q, then depth(p) =
depth(q). �

Proposition 4.16. (Completeness for normal forms) If p and q are normal forms
such that p∼ q, then S B � p = q.

Proof. By induction on the sum of depths of p and q. If the sum is 0, then p = q = 0

and the thesis follows by rule 1 (reflexivity) in Table 4.1.
Otherwise, suppose μ.p′ is a summand of p, and so p

μ−→ p′. As p ∼ q, also
q

μ−→q′ with p′ ∼ q′. Since q is a normal form, μ.q′ must be a summand of q, by
Proposition 4.15. Observe that the sum of depths of p′ and q′ is strictly decreased,
hence induction can be applied in order to get S B � p′ = q′. By rule 4 (substitutiv-
ity) of Table 4.1, then also S B � μ.p′ = μ.q′ is derivable. Hence for any summand
μ.p′ of p, we have found a summand μ.q′ of q so that the two are equated by the
axioms. Symmetrically, we can prove that for any summand μ.q′ of q, there exists a
summand μ.p′ of p such that S B � μ.p′ = μ.q′ is derivable.

Hence, putting all the summands together (via substitutivity w.r.t. +), we have
S B � p = q, by using the axioms A4 (for removing possible duplicates) and A1–
A2 (for rearranging the remaining summands). �

Now we want to prove that for any process p there exists a normal form q such
that S B � p = q. We need two auxiliary lemmata.

Lemma 4.3. If p and q are normal forms, then there exists a normal form r such
that S B � p |q = r.

Proof. By induction on the sum of depths of p and q. If the sum is 0, then p = q = 0

and Exp � 0 |0 = 0 (when n and m are 0). Otherwise, by Exp we get

p |q = Σiμi.(pi |q) + Σ jμ ′j.(p |q j) + Σμi=μ ′j τ.(pi |q j),

where each term of the form pi |q, p |q j and pi |q j (for i = 1, . . .n and j = 1, . . .m)
has strictly decreased sum of depths, hence induction applies: there exist normal
forms ri, t j and si j for i = 1, . . .n and j = 1, . . .m, such that S B � pi |q = ri, S B �
p |q j = t j, and S B � pi |q j = si j. By rule 4 (substitutivity) of Table 4.1,

p |q = Σiμi.ri + Σ jμ ′j.t j + Σμi=μ ′j τ.si j,

which is a normal form. �

Lemma 4.4. If p is a normal form, then there exists a normal form r such that
S B � (νa)p = r.
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Proof. By induction on the depth of p. If it is 0, then p = 0, and the thesis follows by
axiom R1. Otherwise, if p = Σi∈I μi.pi (with I �= /0), then

S B � (νa)p = (νa)(Σi∈I μi.pi)
= Σi∈I(νa)(μi.pi) Axiom R4

= Σμi �∈{a,a}μi.(νa)(pi) Axioms R2 and R3

= Σμi �∈{a,a}μi.ri by induction, for ri in normal form
Hence S B � (νa)p = Σμi �∈{a,a}μi.ri, which is a normal form. �

Proposition 4.17. (Reduction to normal form) For any process p there exists a
normal form q such that S B � p = q.

Proof. By structural induction on p. If p = 0, then p is already a normal form. If
p = μ.p′, then by induction we know that there exists a normal form q′ such that
S B � p′ = q′. Hence, by substitutivity, S B � μ.p′ = μ.q′, where μ.q′ is in normal
form. If p= p1+ p2, then by induction we know that S B � pi = qi with qi in normal
form for i = 1,2. Hence, by substitutivity, S B � p1 + p2 = q1 +q2, where q1 +q2
is in normal form. If p = p1 | p2, then by induction we know that S B � pi = qi with
qi in normal form for i = 1,2. Hence, by substitutivity, S B � p1 | p2 = q1 |q2. By
Lemma 4.3, there exists a normal form r such that S B � q1 |q2 = r, hence the thesis
by transitivity. If p = (νa)p′, then by induction we know that there exists a normal
form q′ such that S B � p′ = q′. Hence, by substitutivity, S B � (νa)p′ = (νa)q′.
By Lemma 4.4, there exists a normal form r such that S B � (νa)q′ = r, hence the
thesis by transitivity. �

Theorem 4.9. (Completeness) If p∼ q, then S B � p = q.

Proof. By Proposition 4.17, there exist two normal forms s and t such that S B �
p = s and S B � q = t. By soundness, we know that p∼ s and q ∼ t. Since p∼ q,
by transitivity also s ∼ t. By Proposition 4.16 (completeness on normal forms), we
have that S B � s = t. Hence, the thesis S B � p = q follows by transitivity. �

Corollary 4.2. For any processes p and q, p∼ q if and only if S B � p = q.

Proof. Soundness (i.e., the implication for right to left) is due to Theorem 4.8, and
completeness (i.e., the implication from left to right) is due to Theorem 4.9. �

Exercise 4.38. (Simulation equivalence) Prove that the equational theory (ΣCCS,S ),
with S = S B∪{S}, where the additional axiom (schema) S is

S μ.(x+ y) = μ.(x+ y)+μ.y
is sound and complete for simulation equivalence over finite CCS. �

Exercise 4.39. (Trace equivalence) Prove that the equational theory (ΣCCS,T ),
with T = S B∪{T}, where the additional axiom (schema) T of distributivity of
prefixing w.r.t. summation is in Table 4.2, is a sound and complete axiomatization
for trace equivalence over finite CCS. �
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P1 0 |x = x
P2 x |y = y |x
P3 (x+ y) |z = x |z+ y |z
P4 μ.x |μ ′.y = μ.(x |μ ′.y)+μ ′.(μ.x |y) if μ ′ �= μ
P5 α.x |α.y = α.(x |α.y)+α.(α.x |y)+ τ .(x |y)

Table 4.4 Axioms for trace equivalence in place of Exp

Remark 4.8. (Finite axiomatization for trace equivalence) It is possible to prove
that the equational theory (ΣCCS,FT ), with FT composed of the axioms A1–

A4 and T of Table 4.2, R1–R4 of Table 4.3, together with the axioms P1–P5 in
Table 4.4 is a sound and complete finite axiomatization for trace equivalence over
finite CCS. Following Remark 4.7, note that the infinitary axiom schematon Exp is
removed in favor of the axioms (or finitary axiom schemata) in Table 4.4.3

Such a finite axiomatization cannot be adapted to the case of (bi)simulation
equivalence, as axiom P3 of distributivity of parallel composition w.r.t. summation
is not sound for such an equivalence, as discussed in Exercise 4.7. �

4.3.3 Axiomatizing Weak Equivalences

Consider first weak trace equivalence (Definition 2.17). It is not difficult to prove
that it is a congruence for the operators of finite CCS. Also the axiomatization W T
is rather intuitive: it is enough to add to set T of axioms for trace equivalence (Exer-
cise 4.39) also axiom WT of Table 4.5, which essentially states that all occurrences
of τ’s can be canceled. If you have solved Exercise 4.39, then it will not be difficult
to see that W T is a sound and complete axiomatization for weak trace equivalence
over finite CCS.4

Similarly, weak simulation equivalence is a congruence for finite CCS. Continu-
ing Exercise 4.38, it is not difficult to see that a sound and complete axiomatization
for weak simulation equivalence can be obtained by adding axiom WT of Table 4.5
to the set S = S B∪{S}. The interested reader can find more details in [AF+14].

More complex is the case of rooted weak bisimilarity ≈c. The axiomatization
W B is obtained by adding to the axiomatization S B of strong bisimulation the
three axioms W1, W2, W3 of Table 4.5, the so-called τ-laws.5

3 Note that an equivalent set of axioms can be obtained by removing the commutativity axiom P2

and by duplicating axioms P1 and P3 in their symmetric form.
4 It is also possible to define a finite sound and complete axiomatization FW T for weak trace
equivalence by adding axiom WT to the axiomatization FT of Remark 4.8.
5 Note that axioms W1 and W3 are actually axiom schemata, i.e., there is an instance of these
axioms for any possible action prefix μ ∈ Act.
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WT τ.x = x

W1 μ.τ.x = μ.x
W2 x+ τ.x = τ.x
W3 μ.(x+ τ.y) = μ.(x+ τ.y)+μ.y

B μ.(τ.(x+ y)+ y) = μ.(x+ y)

Table 4.5 Axioms for the silent action τ

For soundness, we have to prove that, for any pair of closed terms p and q, if
W B � p= q, then p≈c q. This derives from the soundness of all the axioms in S B
— proven in Theorem 4.8 w.r.t. strong bisimulation equivalence∼, hence valid also
w.r.t. rooted weak bisimilarity ≈c — and from the soundness of the three axioms
W1–W3, proven in Proposition 4.13: indeed, any of these axioms, say μ.τ.x = μ.x,
is sound if for any process p we have that μ.τ.p≈c μ.p.

Theorem 4.10. (Soundness) For any pair of closed terms p and q, if W B � p = q,
then p≈c q.

Proof. It follows by Theorem 4.8 and Proposition 4.13. �

For completeness, we have to resort to a new normal form, called saturated nor-
mal form, and to prove first the completeness result for saturated normal forms only.
Then, we extend the result to all processes by proving that any process can be re-
duced to a saturated normal form. The details of the proofs are based on [Mil89].

Definition 4.7. A normal form p= Σi∈I μi.pi is a saturated normal form if whenever
p

μ
=⇒ p′, then there exists an index i such that μ = μi and p′ = pi and, additionally,

each pi is a saturated normal form. �

A saturated normal form p is a normal form such that for any weak move p
μ

=⇒ p′

there is also a corresponding strong move p
μ−→ p′, i.e., μ.p′ is a summand of p.

Note that any process p can be reduced to a normal form p′ due to Proposition 4.17.
Therefore, if we prove that any normal form p′ can be reduced to a saturated normal
form p′′, we can conclude that any process p can be reduced to a saturated normal
form p′′.

Lemma 4.5. (Saturation Lemma)

Given a normal form p, if p
μ

=⇒ p′, then W B � p = p+μ.p′.

Proof. By induction on the length of p ε
=⇒ μ−→ ε

=⇒ p′. The base case is when
p

μ−→ p′; this means that μ.p′ is a summand of p. Then, by axiom A4 the thesis
follows.
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Inductively, we have two cases: either p
μ−→q τ

=⇒ p′ or p τ−→q
μ

=⇒ p′. In the
former case, we have that μ.q is a summand of p. Moreover, by induction (as the
computation is shorter) we know that W B � q = q+τ.p′. Hence, we conclude that

W B � p = p+μ.q axiom A4

= p+μ.(q+ τ.p′) by induction and substitutivity
= p+μ.(q+ τ.p′)+μ.p′ axioms W3

= p+μ.p′ by previous steps reversed
In the latter case, we have that τ.q is a summand of p. Moreover, by induction,

we know that W B � q = q+μ.p′. Hence, we conclude that
W B � p = p+ τ.q axiom A4

= p+ τ.q+q axioms W2

= p+ τ.q+q+μ.p′ by induction and substitutivity
= p+μ.p′ by previous steps reversed

and this concludes the proof. �

Proposition 4.18. (Saturation of normal forms) For any normal form p, there
exists a saturated normal form q of equal depth such that W B � p = q.

Proof. By induction on the depth of p. If it is 0, then p = 0, which is a saturated nor-
mal form. Otherwise, assume by induction that for any summand μi.pi of p, W B �
pi = qi where qi is a saturated normal form such that depth(pi) = depth(qi). By
substitutivity, we have W B � μi.pi = μi.qi. Let q′ = Σiμi.qi. Then, by substitutivity,
W B � p = q′. Process q′ is a normal form of equal depth but not saturated yet be-

cause for some i, μi can be τ . Now we consider the set I = {(μ ′k, p′k)
∣∣ q′

μ ′k=⇒ p′k but

not q′
μ ′k−→ p′k}. Then, by Lemma 4.5, if |I|=m, W B � q′= q′+μ ′1.p

′
1+ . . .+μ ′m.p′m,

which is a saturated normal form. Note that this saturated normal form has the same
depth as q′ because any summand μ ′k.p

′
k has smaller depth (the maximal paths are

shorter). �

Theorem 4.11. (Reduction to saturated normal form) For any process p, there
exists a saturated normal form q such that W B � p = q.

Proof. By Proposition 4.17, any process can be reduced to a normal form, and by
Proposition 4.18, any normal form can be reduced to a saturated normal form. �

Proposition 4.19. (Completeness for saturated normal forms) If p and q are sat-
urated normal forms such that p≈c q, then W B � p = q.

Proof. By induction on the sum of the depths of p and q. If the sum is 0, then p =
q = 0 and the thesis follows by rule 1 (reflexivity) in Table 4.1.

Otherwise, suppose μ.p′ is a summand of p, hence p
μ−→ p′. As p≈c q, we have

that q
μ

=⇒q′ with p′ ≈ q′. Since q is a saturated normal form, we have q
μ−→q′,

i.e., μ.q′ is a summand of q. Summing up, for each summand μ.p′ of p, we have a
summand μ.q′ of q such that p′ ≈ q′. Now, by Lemma 4.1 (Hennessy Lemma), we
know that

p′ ≈ q′ iff (p′ ≈c q′ or p′ ≈c τ.q′ or τ.p′ ≈c q′).
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We have three cases.
(1) If p′ ≈c q′ then, as p′ and q′ are saturated normal forms, by induction (the

sum of the depths is strictly decreased), W B � p′ = q′, hence W B � μ.p′ = μ.q′
by substitutivity.

(2) If p′ ≈c τ.q′, we have first of all to reduce τ.q′ to a saturated normal form.
By Proposition 4.18 we have that there exists a saturated normal form q′′ of equal
depth such that W B � τ.q′ = q′′. By Theorem 4.10, we have that τ.q′ ≈c q′′, hence
p′ ≈c q′′ by transitivity. Since p′ ≈c q′′ and the sum of depth of p′ and q′′ is one
less than that of p and q, we can apply induction and derive that W B � p′ = q′′,
hence W B � p′ = τ.q′ by transitivity, and W B � μ.p′ = μ.τ.q′ by substitutivity,
and W B � μ.p′ = μ.q′ by axiom W1 and transitivity.

(3) If τ.p′ ≈c q′, then we can proceed as for case (2) above.
In all the three cases above, for each summand μ.p′ of p, we have a summand

μ.q′ of q such that W B � μ.p′ = μ.q′. Symmetrically, it can be proved that for each
summand μ.q′ of q, we have a summand μ.p′ of p such that W B � μ.p′ = μ.q′.

Therefore, W B � p = q by substitutivity and possible applications of axioms
A4 (for removing possible duplicates) and A1–A2 (for rearranging the remaining
summands). �

Exercise 4.40. Prove completeness for arbitrary processes, following analogous
steps as in the proof of Theorem 4.9. �

Corollary 4.3. For any processes p and q, p≈c q if and only if W B � p = q.

Proof. Soundness (i.e., the implication from right to left) is due to Theorem 4.10, and
completeness (i.e., the implication from left to right) is due to the exercise above. �

Let us now consider rooted branching bisimulation congruence≈c
br. The axioma-

tization RB is obtained by adding to the axiomatization S B of strong bisimulation
the single axiom B of Table 4.5.

Soundness of RB is obtained by soundness (Theorem 4.8) of S B w.r.t. strong
bisimulation ∼ (hence also w.r.t. ≈c

br), and for axiom B, by Proposition 4.14.

Theorem 4.12. (Soundness) For any pair of closed terms p and q, if RB � p = q,
then p≈c

br q. �

As already discussed in Section 4.1.3, of the three τ-laws for rooted weak bisim-
ulation congruence, only W1 is sound for ≈c

br.

Exercise 4.41. Prove that axiom B (together with A3) subsumes W1, and can be
derived from W1 and W2 (together with A4). �

As a consequence of the exercise above, in the following proofs, we sometimes
take the liberty to use also W1 as an axiom for ≈c

br.
For completeness, we resort to a technique in [Den07], based on the so-called

Promotion Lemma, which plays the same role as the Hennessy Lemma (Lemma
4.1) in the completeness of W B. Indeed, we cannot resort to the Hennessy Lemma,
as it is invalid for branching bisimilarity (Exercise 4.24). The proof is based on
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induction on a different measure of a normal form, called size. The size of a normal
form is the total number of prefixes in its syntax; formally, it is defined as follows:

size(Σi∈I μi.pi) = Σi∈Isize(μi.pi)

size(μ.p) = 1+ size(p)

with the proviso that size(Σi∈I μi.pi) = 0 if and only if I = /0.

Lemma 4.6. (Promotion Lemma) If p≈br q, then RB � τ.p = τ.q.

Proof. By Proposition 4.17 we can assume that p and q are in normal form. The
proof is by induction on the sum of sizes of p and q. If it is 0, then p = q = 0 and the
thesis trivially follows RB � τ.p = τ.q by reflexivity. Otherwise, as p≈br q, by the
Deng Lemma (Lemma 4.2), one of the following three cases holds:

(1) p τ−→ p′ and p′ ≈br q. Hence, τ.p′ is a summand of p, i.e., p = τ.p′+ r for
some r. Since τ.p′+ r ≈br q ≈br p′, it follows that p′+ r ≈br p′ ≈br q, by Exercise
4.26. As size(p′)+ size(q)< size(p)+ size(q), we can apply induction and conclude
that RB � τ.p′ = τ.q. Analogously, as size(p′+r)+ size(q)< size(p)+ size(q), we
can apply induction and conclude that RB � τ.(p′+ r) = τ.q, hence also RB �
τ.(p′+ r) = τ.p′ by transitivity. So, we can derive the thesis as follows:

RB � τ.p = τ.(τ.p′+ r)
= τ.(τ.(p′+ r)+ r) by induction and substitutivity
= τ.(p′+ r) axioms B

= τ.q by induction
(2) q τ−→q′ and p≈br q′. This case is symmetric to the above, hence omitted.
(3) p≈c

br q. We aim at proving that each summand of p can be absorbed by q. Let

μ.p′ be one such summand; hence p
μ−→ p′. As for rooted branching bisimulation,

the first move is to be matched as in strong bisimulation, we have q
μ−→q′ with

p′ ≈br q′; hence also μ.q′ is a summand of q. Since the sum of sizes of p′ and q′ is
decreased, we can apply induction and derive that RB � τ.p′ = τ.q′. So, we can
derive the following:

RB � q+μ.p′ = q+μ.τ.p′ axiom W1 and substitutivity
= q+μ.τ.q′ by induction and substitutivity
= q+μ.q′ axioms W1 and substitutivity
= q axiom A4

that is, any summand of p is absorbed by q. This means that RB � q+ p = q.
Symmetrically, we can prove in the same way that RB � p+ q = p. Therefore,
RB � τ.p = τ.(p+q) = τ.(q+ p) = τ.q, as required. �

Exercise 4.42. Show that the Promotion Lemma holds also for weak bisimilarity,
i.e., if p ≈ q, then W B � τ.p = τ.q, by exploiting the fact that the Deng Lemma
holds also for weak bisimilarity (Exercise 4.25). �

Proposition 4.20. (Completeness for normal forms) If p and q are normal forms
such that p≈c

br q, then RB � p = q.
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Proof. By induction on the sum of the sizes of p and q. If the sum is 0, then p = q = 0

and the thesis follows by rule 1 (reflexivity) in Table 4.1.
Otherwise, let μ.p′ be a summand of p; then, p

μ−→ p′, which is (strongly)
matched by q

μ−→q′ with p′ ≈br q′, because p ≈c
br q. Hence, also μ.q′ is a sum-

mand of q and, by the Promotion Lemma, we have RB � τ.p′ = τ.q′. So, we can
derive the following:

RB � q+μ.p′ = q+μ.τ.p′ axiom W1 and substitutivity
= q+μ.τ.q′ by substitutivity
= q+μ.q′ axioms W1 and substitutivity
= q axiom A4

that is, any summand of p is absorbed by q. This means that RB � q+ p = q.
Symmetrically, we can prove in the same way that RB � p+ q = p. Therefore,
RB � p = q, as required. �

It is interesting to note that this proof technique for completeness can be also used
as an alternative completeness proof for rooted weak bisimilarity given in Proposi-
tion 4.19. As a matter of fact, Exercise 4.42 ensures that the analogous of the Pro-
motion Lemma holds for weak bisimilarity; then, it is enough to follow the proof
of Proposition 4.20 considering saturated normal forms p and q (instead of generic
normal forms).

Exercise 4.43. Prove completeness for arbitrary processes, following steps analo-
gous to those in the proof of Theorem 4.9. �

Corollary 4.4. For any processes p and q, p≈c
br q if and only if RB � p = q.

Proof. Soundness (i.e., the implication from right to left) is due to Theorem 4.12 and
completeness (i.e., the implication from left to right) is due to the exercise above. �

4.3.4 Left Merge and Communication Merge

Axiom Exp in Table 4.3 is not an axiom, but an axiom schema, which stands for an
infinite collection of axioms, each one for the fixed choice of n, m and for the choice
of the initial prefixes μi and μ ′j. This means that S B is not a finite axiomatization
of strong bisimilarity ∼ over finite CCS.6 However, a finite axiomatization for ∼
over finite CCS can be obtained with the use of the auxiliary operators of left merge
and communication merge of ACP [BK84a, BK85], hence extending the syntax of
CCS. Moller in [Mol90a, Mol90b] proved that ∼ is not finitely axiomatizable with-
out introducing such auxiliary operators. The technical presentation outlined here
follows [Ace94], where the interested reader can find more details.

The left merge operator � takes two processes p and q and generates a new pro-
cess p�q which is similar to the parallel composition p |q, but with the distinguishing

6 Remember that a finite axiomatization for trace equivalence can be produced by removing axiom
Exp in favor of the axioms P1–P5 of Table 4.4, as discussed in Remark 4.8.
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feature that the first transition is to be taken from p. Operationally, the only SOS rule
describing the behavior of p�q is

(Left)
p

μ−→ p′

p�q μ−→ p′ |q

Observe that the reached state is p′ |q, i.e., left merge is turned into parallel com-
position in one step.

The communication merge operator ‖ takes two processes p and q and generates
a new process p‖q which is similar to the parallel composition p |q, but with the
distinguishing feature that the first transition is to be a synchronization between p
and q. Operationally, the only SOS rule describing the behavior of p‖q is

(Merge)
p α−→ p′ q α−→q′

p‖q τ−→ p′ |q′

Observe that the reached state is p′ |q′, i.e., communication merge is turned into
parallel composition in one step.

Exercise 4.44. Prove that, if p∼ q, then the following hold for all r ∈P:

1. p�r ∼ q�r
2. r�p∼ r�q
3. p‖r ∼ q‖r
4. r‖p∼ r‖q. �

The exercise above states that ∼ is preserved by the left merge and the commu-
nication merge. So, it is a congruence not only for the operators of finite CCS, but
also for these auxiliary operators. Hence, it can be axiomatized. The axiomatization
of the parallel composition operator is given by axiom Par of Table 4.6, together
with the axioms L1–L3 for left merge and C1–C5 for communication merge. Let
A S B be the set of axioms A1–A4 of Table 4.2, R1–R4 of Table 4.3, together
with the nine axioms of Table 4.6. It is possible to prove that the equational the-
ory (ΣCCS,A S B) is a sound and complete finite axiomatization of ∼. This result
derives from the fact that with this finite set of axioms it is possible to prove the
analogue of Proposition 4.17, ensuring that any process can be reduced to a normal
form (see Definition 4.6). The crucial property that holds for these auxiliary opera-
tors is distributivity w.r.t. sum (axioms L3 and C5), which does not hold for parallel
composition (see Exercise 4.7 and Remark 4.8).

Exercise 4.45. Prove that, if p and q are normal forms then there exist normal forms
r,r′,r′′ such that A S B � p�q = r, A S B � p‖q = r′ and A S B � p |q = r′′.
(Hint: By induction on the sum of the depths of p and q; one has to prove all the
three statements at the same time.) �
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Par x |y = x�y + y�x + x‖y

L1 0�y = 0

L2 (μ.x)�y = μ.(x |y)
L3 (x+ y)�z = x�z + y�z

C1 x‖y = y‖x
C2 0‖y = 0

C3 if μ1 = μ2 (μ1.x)‖(μ2.y) = τ .(x |y)
C4 if μ1 �= μ2 (μ1.x)‖(μ2.y) = 0

C5 (x+ y)‖z = x‖z + y‖z

Table 4.6 Axioms for the auxiliary operators

Exercise 4.46. Prove, by structural induction (following the same idea of the proof
of Proposition 4.17), that for any process p there exists a normal form r such that
A S B � p = r. �

Let us now consider rooted branching bisimulation ≈c
br. The axiomatization

A RB is obtained by adding to the axiomatization A S B of strong bisimulation
the single axiom B of Table 4.5. It can be proved that A RB is a sound and com-
plete finite axiomatization for ≈c

br over finite CCS.

Exercise 4.47. Prove that ≈c
br is a congruence for both left merge and communica-

tion merge. Prove also that all the axioms in A RB are sound for ≈c
br. �

A similar result does not hold for rooted weak bisimilarity≈c. In fact, it happens
that ≈c is not even preserved by ‖. The equality τ.α.0+α.0 ≈c τ.α.0 is not pre-
served by the context C [−] = −‖α.0: we have that τ.0 ≈c (τ.α.0+α.0)‖α.0 �≈c

τ.α.0‖α.0 ≈c 0. Hence, rooted weak bisimilarity ≈c is not a congruence for com-
munication merge.

Exercise 4.48. Prove that weak bisimilarity ≈ is not a congruence for left merge as
well. (Hint: Consider τ.0≈ 0 and the left merge context a.0.) �

Exercise 4.49. Prove that rooted weak bisimilarity ≈c is a congruence for left
merge. (This means that, by closing ≈ w.r.t. summation (obtaining ≈c), we get a
congruence also w.r.t. left merge!) �

Therefore, it is necessary to look for an alternative auxiliary communication
merge operator that can be anyway useful for reducing any process p into a nor-
mal form p′, but such that rooted weak bisimilarity ≈c is a congruence also for it.
With abuse of notation, we call this new operator communication merge as well, and
denote it by the same symbol −‖−; but now the new SOS rule is
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(WMerge)
p ε
=⇒ p′ α−→ p′′ q ε

=⇒q′ α−→q′

p‖q τ−→ p′′ |q′′

where, in the premise, we make use of the weak transition relation ε
=⇒ , hence al-

lowing for the execution of initial τ transitions. Hence, a single-step synchronization
can be derived if p and q can perform weakly complementary actions. With this new
rule, (τ.α.0+α.0)‖α.0≈c τ.α.0‖α.0≈c τ.0.

Exercise 4.50. Prove that ≈c is a congruence for the communication merge defined
by rule (WMerge). �

A sound (and complete) finite axiomatization AW B of≈c can be now obtained
by adding to the axiomatization A S B of strong bisimulation the three axioms
W1, W2, W3 of Table 4.5, but with the proviso of replacing axiom C4 with the
following two:

C4.1 if τ �= μ1 �= μ2 �= τ (μ1.x)‖(μ2.y) = 0

C4.2 (τ.x)‖y = x‖y



Chapter 5

Additional Operators

Abstract Some additional operators are investigated: the internal choice operator
and the hiding one of CSP, the relabeling operator occurring in early versions of
CCS, the sequential composition operator and the iteration operator of ACP, the
replication operator of the π-calculus, and, finally, CSP parallel composition with
multiway synchronization. The main aim of this chapter is to show that most of
them are encodable into CCS, hence proving that CCS is reasonably expressive.

5.1 Internal Choice

The binary, infix operator −⊕− of internal choice, originally introduced in TCSP
[Hoa85], can be added to the syntax of CCS, to get CCS⊕, as follows:1

p ::= 0
∣∣ p+ p

∣∣ p | p ∣∣ p⊕ p
∣∣ (νa)p

∣∣ C

with the intuition that p⊕ q can perform the actions prescribed by the following
SOS operational rules:

(IntChoice1)
p⊕q τ−→ p

(IntChoice2)
p⊕q τ−→q

where the choice between p and q is taken internally, without any intervention of
the environment. PCCS⊕ denotes the set of CCS⊕ processes.

Example 5.1. Consider process Coin
de f
= head.Coin⊕ tail.Coin, i.e., a process offer-

ing the purely nondeterministic behavior of coin flipping. We can define:

GoodLuck
de f
= (νhead, tail)(Coin |Lucky) Lucky

de f
= head.win.Lucky

1 Here, and in the rest of this section, we often consider the richer version of CCS which allows
for unguarded sum, for simplicity’s sake.
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GoodLuck2

τ

Coin2 |win.Lucky

Coin2 |Lucky

winτ

head.Coin |win.Lucky

GoodLuck

head.Coin |Lucky tail.Coin |Lucky

τ τ

Coin |win.Lucky

τ

Coin |Lucky

τ

tail.Coin |win.Lucky

τ

win

win

τ τ
win

(a) (b)

Fig. 5.1 The LTS for the GoodLuck process and for GoodLuck2 (restrictions omitted)

Note that the synchronization between Coin and Lucky may occur only after the
flipping of the coin has been executed. Process GoodLuck may perform a sequence
of lucky flippings and will possibly end in deadlock, just after the flipping result is
tail. Figure 5.1(a) illustrates the resulting labeled transition system, where, for sim-
plicity’s sake, we have omitted the restriction operator (νhead, tail) in the labeling
of the states.

To clarify the difference between internal choice and the CCS choice operator,
consider processes

Coin2
de f
= head.Coin2+ tail.Coin2 GoodLuck2

de f
= (νhead, tail)(Coin2 |Lucky)

whose LTS is depicted in Figure 5.1(b). Since Lucky never offers the output tail,
GoodLuck2 will always synchronize Coin2 and Lucky on action head, resulting in
a cycling system where win is always executable. Of course, Coin2 is not a good
model for coin flipping. �

Exercise 5.1. Show that a.0+b.0 and a.0⊕b.0 are not weakly bisimilar, while they
are weakly simulation equivalent. �

Exercise 5.2. (Algebraic properties) Prove that the following algebraic properties
hold for internal choice: for all p,q,r ∈PCCS⊕

• p⊕q ∼ q⊕ p, i.e., commutativity holds for strong bisimilarity;
• p⊕ (q⊕ r) � (p⊕q)⊕ r, i.e., associativity holds for weak similarity;
• p⊕ p ≈ p, i.e., idempotence holds for weak bisimilarity;
• p⊕0 � p, i.e., identity (0-absorption) holds for weak similarity.



5.2 Hiding 207

Show also that p⊕ p ≈c τ.p as well as (νa)(p⊕ q) ∼ (νa)p⊕ (νa)q. Prove also
that p⊕ (q⊕ r) �≈ (p⊕q)⊕ r and that p⊕0 �≈ p. Finally, chech that (a.p⊕a.q)⊕
a.(p⊕q)� a.(p⊕q). �

Exercise 5.3. (Congruence) Show that if p∼ q, then p⊕ r ∼ q⊕ r for all p,q,r ∈
PCCS⊕ , i.e., strong bisimilarity is a congruence for internal choice. Show also that
weak bisimilarity ≈ is a congruence for internal choice. �

Internal choice is a derived operator in CCS: given a CCS⊕ process p, we can
find a CCS process q such that p ∼ q. This result is obtained by an encoding � �
from CCS⊕ into CCS, defined as

�0� = 0

�μ.p� = μ.�p�
�p1 + p2� = �p1�+ �p2� �p1⊕ p2� = τ.�p1�+ τ.�p2�
�p1 | p2� = �p1� |�p2�
�(νa)p� = (νa)�p�

�A� = A′ where A′de f
= �q� if A

de f
= q

where we assume that for each constant A used in CCS⊕ there exists a new con-
stant A′ for CCS. Observe that � � is homomorphic w.r.t. all the CCS operators (left
column), and it is not only for internal choice (right column).

Example 5.2. Consider process constant B
de f
= a.A⊕b.B, with A

de f
= c.A⊕d.B. The en-

coding of B, �B�, gives rise to a new constant B′ de f
= �a.A⊕ b.B� = τ.a.A′+ τ.b.B′,

with A′ de f
= τ .c.A′+ τ.d.B′. �

It is an easy task to prove that R = {(p,�p�)
∣∣ p is a CCS⊕ process} is a strong

bisimulation. One has to prove that p
μ−→ p′ implies �p�

μ−→ �p′� and, conversely,
that �p�

μ−→q implies there exists p′ such that q = �p′� and p
μ−→ p′. This can be

proved by induction on the proof of the transitions — starting from the SOS axioms
(Pref), (IntChoice1) and (IntChoice2) — and is left as an exercise for the reader.

5.2 Hiding

The hiding operator (ι ) , originally introduced in TCSP [Hoa85] and widely used
in ACP [BK85, BBR10], takes an observable (input) action a and a process p to
build a new process (ιa)p, whose semantics is that of p, where actions a and a are
internalized, i.e., transformed into τ . Hence, like the restriction operator, also the
hiding operator is a scoping operator, but much weaker, as the actions the former
prevents are simply internalized by the latter. The language CCShide is defined thus:

p ::= 0
∣∣ μ.p

∣∣ p+ p
∣∣ p | p ∣∣ (ιa)p

∣∣ (νa)p
∣∣ C
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with the intuition that (ιa)p can execute the actions prescribed by the following
SOS operational rules:

(H1)
p

μ−→ p′

(ιa)p
μ−→ (ιa)p′

μ,μ �= a (H2)
p

μ−→ p′

(ιa)p τ−→ (ιa)p′
μ = a or μ = a

PCCShide denotes the set of CCShide processes.

Exercise 5.4. (Algebraic properties for ∼) Prove that the following algebraic
properties of the hiding operator hold for strong bisimilarity,2 where f n((ιa)p) =
f n(p)\{a}. For all p,q ∈PCCShide

(i) (ιa)p ∼ p if a �∈ f n(p)
(ii) (ιa)((ιb)p) ∼ (ιb)((ιa)p)
(iii) (ιa)((ιa)p) ∼ (ιa)p

(iv) (ιa)(μ.p) ∼
{

τ.(ιa)p if μ = a or μ = a
μ.(ιa)p otherwise

(v) (ιa)(p+q) ∼ (ιa)p+(ιa)q
(vi) (ιa)p |q ∼ (ιa)(p |q) if a �∈ f n(q)
(vii) p |(ιa)q ∼ (ιa)(p |q) if a �∈ f n(p)
(viii) (ιa)p ∼ (ιb)(p{b/a}) if b �∈ f n(p)∪bn(p)
(ix) (ιa)p+q ∼ (ιa)(p+q) if a �∈ f n(q)
(x) p+(ιa)q ∼ (ιa)(p+q) if a �∈ f n(p)
(xi) (ιa)((νa)p) ∼ (νa)p
(xii) (νa)((ιa)p) ∼ (ιa)p
(xiii) (ιa)((νb)p) ∼ (νb)((ιa)p) if a �= b

(xiv) (ιa)A ∼
{

A if a �∈ f n(A)

Aa otherwise, where Aade f
= (ιa)q if A

de f
= q

�

The second law above states that the actual order of hidden names is inessential.
Therefore, we can generalize the hiding operator over a set of names; e.g., for the
case of this law, we can use the notation (ιa,b)p.

Exercise 5.5. (Algebraic property for≈c) Prove that the following algebraic prop-
erty holds for (rooted) weak bisimilarity: for all p,q ∈PCCShide

(ιa)(p |q) ≈c (ιa)p |(ιa)q �

Exercise 5.6. (Congruence) Prove that, for all p,q ∈ PCCShide , if p ∼ q, then
(ιa)p ∼ (ιa)q for all a ∈ L , i.e., strong bisimilarity is a congruence for the hid-
ing operator.

Prove also that if p≈ q, then (ιa)p≈ (ιa)q for all a ∈L , i.e., also weak bisimi-
larity is a congruence for the hiding operator. Finally, prove that rooted weak bisim-
ilarity is a congruence for the hiding operator. �

2 Some of these laws appeared originally, in the form of conditional axioms, in [BBK87].
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The hiding operator is a derived operator in CCS. This means that we can encode
any process p in CCShide into a CCS process q (with no occurrence of the hiding
operator) such that p∼ q, hence showing that the extension is inessential as it adds
no expressive power to CCS. The formal encoding �−�1 is defined homomorphically
for all the CCS operators (as done in the previous section) and for the hiding operator
as follows:

�(ιa)p�1 = (νa)(�p�1 |Aa) where Aa
de f
= a.Aa +a.Aa

Example 5.3. For instance, if B
de f
= a.(ιa)(b.a.0 |a.B), then the corresponding CCS

process is �B�1 = B′ where B′ de f
= �a.(ιa)(b.a.0 |a.B)�1 = a.�(ιa)(b.a.0 |a.B)�1 =

a.(νa)(�b.a.0 |a.B�1 |Aa) = a.(νa)(b.a.0 |a.B′ |Aa). �

It is not difficult to prove that relation

R1 = {(p, �p�1)
∣∣ p is a CCShide process}

is a strong bisimulation by induction on the proof of transitions from p and �p�1. In
particular, take the pair ((ιa)p, �(ιa)p�1) ∈ R1. If (ιa)p

μ−→q with μ �= a,a, then
this can be due only to SOS rule (H1), with q = (ιa)p′ and p

μ−→ p′. By induction,
we have that �p�1

μ−→ �p′�1 and so �(ιa)p�1 =(νa)(�p�1 |Aa)
μ−→ (νa)(�p′�1 |Aa)=

�(ιa)p′�1, by SOS rules (Par1) and (Res), and the reached states form a pair in R1.
If (ιa)p τ−→q, then this is due either to SOS rule (H1), and this case is as above,
or to SOS rule (H2), with q = (ιa)p′ and p α−→ p′, α = a or α = a. By induction,
�p�1

α−→ �p′�1 and so �(ιa)p�1 = (νa)(�p�1 |Aa)
τ−→ (νa)(�p′�1 |Aa) = �(ιa)p′�1,

by SOS rules (Com) and (Res), and the reached states form a pair in R1. Symmetri-
cally, if �(ιa)p�1 moves first.

In case the hiding operator is applied to a set L = {a1, . . . ,an} of actions, the
encoding can be generalized as follows: �(ιL)p�1 = (νL)(�p�1 |AL) where constant
AL (not in use by p) is the one-state process

AL
de f
= Σ1≤i≤n(ai.AL +ai.AL).

An alternative way of encoding CCShide into CCS, up to rooted weak bisimilarity
≈c, is to exploit syntactic substitution (see Definition 4.4). The formal encoding
�−�2 is defined homomorphically for all CCS operators, with the new rule for hiding
defined as follows:

�(ιa)p�2 = �p�2{τ/a}
To be precise, we are a bit more liberal, as in Definition 4.4 we require that also
the replacement be a visible action, but it is clear that such a definition of syntactic
substitution can be trivially extended to the case of action τ (see below for details).
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Example 5.4. Continuing Example 5.3, consider again B
de f
= a.(ιa)(b.a.0 |a.B). Ac-

cording to this second encoding, the corresponding CCS process is �B�2 = B′

where B′ de f
= �a.(ιa)(b.a.0 |a.B)�2 = a.�(ιa)(b.a.0 |a.B)�2 = a.(�b.a.0 |a.B�2){τ/a}

= a.(b.a.0 |a.B′){τ/a} = a.(b.τ.0 |τ.(B′{τ/a})) = a.(b.τ.0 |τ.B′{τ/a}), where

B′{τ/a}
de f
= (a.(b.τ.0 |τ.B′{τ/a})){τ/a} = (τ.(b.τ.0 |τ.B′{τ/a}). �

It is not difficult to see that relation

R2 = {(p, �p�2)
∣∣ p is a CCShide process}

is a rooted weak bisimulation by induction on the proofs of transitions from p and
�p�2. An alternative proof is by inspecting the definition of syntactic substitution
and the algebraic properties of hiding. In fact, the definition of syntactic substitu-
tion (left column below) parallels these algebraic properties (right column), up to
rooted weak bisimilarity:

0{τ/a} = 0 (ιa)0 ∼ 0

(a.p){τ/a} = τ.(p{τ/a}) (ιa)((a.p)) ∼ τ.((ιa)p)
(a.p){τ/a} = τ.(p{τ/a}) (ιa)((a.p)) ∼ τ.((ιa)p)
(μ.p){τ/a} = μ.(p{τ/a}) (ιa)((μ.p)) ∼ μ.((ιa)p) if μ �= a,a

(p+ p′){τ/a} = p{τ/a}+ p′{τ/a} (ιa)(p+ p′) ∼ (ιa)p+(ιa)p′
(p | p′){τ/a} = p{τ/a}| p′{τ/a} (ιa)(p | p′) ≈c (ιa)p |(ιa)p′

((νb)p){τ/a} = (νb)(p{τ/a}) (ιa)((νb)p) ∼ (νb)((ιa)p) if b �= a
((νa)p){τ/a} = (νa)p (ιa)((νa)p) ∼ (νa)p

and for constants,

A{τ/a} =
⎧⎨
⎩A if a �∈ f n(A)

A{τ/a} otherwise, where A{τ/a}
de f
= q{τ/a} if A

de f
= q

(ιa)A ∼
{

A if a �∈ f n(A)

Aa otherwise, where Aade f
= (ιa)q if A

de f
= q

The two different encodings differ not only for the equivalence they respect —∼
for � �1 and≈c for � �2 — but may differ also for the size of generated CCS process,
as the following exercise shows.

Exercise 5.7. Consider process constant C
de f
= (ιa)(a.C). (i) Show that C generates

an LTS with infinitely many states. (ii) Compute �C�1 and show that its LTS is
infinite as well. (iii) Compute �C�2 and show that its LTS is finite-state. �

5.3 Relabeling

The relabeling operator [b/a] takes a unary substitution b/a (hence, a �= b), and a
process p to construct a new process p[b/a], whose semantics is that of p, where
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action a (a) is turned into b (b). The language CCSrel is defined as

p ::= 0
∣∣ μ.p

∣∣ p+ p
∣∣ p | p ∣∣ p[b/a]

∣∣ (νa)p
∣∣ C

with the intuition that p[b/a] can execute the actions prescribed by the following
SOS operational rules:

(Rel1)
p

μ−→ p′

p[b/a]
μ−→ p′[b/a]

μ �= a∧μ �= a

(Rel2)
p α−→ p′

p[b/a]
β−→ p′[b/a]

(α = a∧β = b)∨ (α = a∧β = b)

PCCSrel denotes the set of CCSrel processes.
The relabeling operator may be useful when simple variants of a given pattern

are to be defined, hence economizing on the number of definitions. For instance,
consider the counter C, studied in Example 3.17. In Section 3.5.2, we had to define
three registers R1, R2 and R3, as a slight variation on the counter. These can be more
conveniently defined as follows, with the help of the relabeling operator:

R j
de f
= ((C[zero j/zero])[inc j/inc])[dec j/dec] for j = 1,2,3

Exercise 5.8. (Congruence) Prove that, for all p,q ∈PCCSrel and for all unary sub-
stitutions b/a, if p∼ q, then p[b/a]∼ q[b/a], i.e.,∼ is a congruence for the relabel-
ing operator. �

Exercise 5.9. (Algebraic properties for ∼) Prove that the following properties of
the relabeling operator hold for strong bisimilarity, where f n(p[b/a]) = f n(p) if
a �∈ f n(p), f n(p[b/a]) = ( f n(p)\{a})∪{b} otherwise. For all p,q ∈PCCSrel

(i) p[b/a] ∼ p if a �∈ f n(p)
(ii) (p[b/a])[c/a] ∼ p[b/a]
(iii) (p[b/a])[d/c] ∼ (p[d/c])[b/a] if a �= d, c �= b and a �= c

(iv) (μ.p)[b/a] ∼

⎧⎪⎨
⎪⎩

b.(p[b/a]) if μ = a
b.(p[b/a]) if μ = a
μ.(p[b/a]) otherwise

(v) (p+q)[b/a] ∼ p[b/a]+q[b/a]
(vi) p |(q[b/a]) ∼ (p |q)[b/a] if a �∈ f n(p)
(vii) (p[b/a]) |q ∼ (p |q)[b/a] if a �∈ f n(q)
(viii) p[b/a]+q ∼ (p+q)[b/a] if a �∈ f n(q)
(ix) p+q[b/a] ∼ (p+q)[b/a] if a �∈ f n(p)
(x) ((νa)p)[b/a] ∼ (νa)p
(xi) ((νc)p)[b/a] ∼ (νc)(p[b/a]) if c �= a,b

(xii) ((νb)p)[b/a] ∼
{
(νb)p if a �∈ f n(p)
(νc)((p{c/b})[b/a]) o.w., with c �∈ f n(p)∪bn(p)
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(xiii) A[b/a] ∼
{

A if a �∈ f n(A)

A[b/a] otherwise, where A[b/a]
de f
= q[b/a] if A

de f
= q

�

Note that one important law is missing: (p |q)[b/a] ∼ p[b/a] |q[b/a]. Unfortu-
nately, this law is invalid in general. For instance, consider p = a.0 and q = b.0.
Of course, the set of completed traces of (p |q)[b/a] is {bb,bb}, while the set of
completed traces for p[b/a] |q[b/a] includes additionally trace τ .

Exercise 5.10. Take inspiration from the example above to study sufficient condi-
tions on the sorts of p and q so that (p |q)[b/a]∼ p[b/a] |q[b/a] is valid. �

As a consequence, we cannot use an encoding �−�3 based on the same idea of
the encoding �−�2 for hiding, i.e., homomorphically defined for all CCS operators,
with the new rule for relabeling defined as

�p[b/a]�3 = �p�3{b/a}

However, such an encoding is correct, up to∼, for CCS subcalculi that are not using
parallel composition, as the following example illustrates. Moreover, it may be even
used for processes of CCS, including parallel composition, when the conditions to
be studied in Exercise 5.10 are satisfied.

Example 5.5. The language FS-CCSrel is defined as

p ::= 0
∣∣ μ.p

∣∣ p+ p
∣∣ p[b/a]

∣∣ C,

essentially extending finite-state CCS with the relabeling operator. We can use � �3
to map FS-CCSrel onto finite-state CCS, up to ∼. Observe that a process in FS-

CCSrel may be infinite-state; for instance, A
de f
= (a.A)[b/a] generates the LTS

A b−→A[b/a] b−→ (A[b/a])[b/a] b−→ ((A[b/a])[b/a])[b/a] b−→ . . . .

However, �A�3 gives rise to the following finite-state CCS constants A′ de f
= b.A{b/a}

and A{b/a}
de f
= b.A{b/a}. It can be easily proved that

R3 = {(p, �p�3)
∣∣ p is a FS-CCSrel process}

is a bisimulation by induction on the proofs of transitions from p and �p�3. �

Exercise 5.11. The language FS-CCSrel,res is defined as

p ::= 0
∣∣ μ.p

∣∣ p+ p
∣∣ p[b/a]

∣∣ (νa)p
∣∣ C,

essentially extending finite-state CCS (FS-CCS) with the relabeling operator and the
restriction one. Define a suitable encoding � �4, up to strong bisimilarity ∼, to map
FS-CCSrel,res onto FS-CCS, (Hint: You may articulate the encoding as the composi-
tion of two encodings: the former, from FS-CCSrel,res onto FS-CCSres, is essentially
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� �3; the latter, from FS-CCSres onto FS-CCS, is �−�, defined homomorphically,
except for restriction: �(νa)p� = �p�{a,a}, where �p�A is homomorphic on all the
operators except prefixing, as it prunes all the prefixes, and the terms they guard,
starting with an action in A.) �

CCS was equipped in [Mil80, Mil89] with a more general form of relabel-
ing p[ f ], taking as a parameter a function f : L → L — extended to Act =
L ∪L ∪ {τ} in such a way that f (α) = f (α) and f (τ) = τ — which has the
effect of renaming the actions of p according to f . (However, note that the relabel-
ing operator was removed altogether in subsequent versions of CCS [Mil99] and its
mobile evolution, the π-calculus [MPW92].) Its operational rule is

(Rel)
p

μ−→ p′

p[ f ]
f (μ)−→ p′[ f ]

This new relabeling operator is more powerful than the basic version we have
described above, as it may be used to generate a process that is not bisimulation
equivalent to any finitary CCS process. Indeed, let us assume that Act = {ai

∣∣ i∈N}
and consider f defined thus: f (ai) = ai+1 for all i ∈ N. The constant A

de f
= a0.(A[ f ])

gives rise to an LTS with infinitely many states:

A
a0−→A[ f ]

a1−→ (A[ f ])[ f ]
a2−→ ((A[ f ])[ f ])[ f ]

a3−→ . . . .

Note that A is not equivalent to any finitary CCS process p, as sort(A) = Act, while
sort(p) is always a finite set (see Corollary 4.1). Hence, finitary CCS with the (full)
relabeling operator is more powerful than finitary CCS.

5.4 Sequential Composition

The binary, infix operator · of sequential composition, largely studied by the ACP
community (see, e.g., [BK84a, BW90, Fok00, BBR10]), takes two processes, p
and q, to build a new process p · q, whose behavior, intuitively, is composed of the
behavior of p first, followed by that of q, if and when p terminates successfully.

This intuition can be formalized only if we allow for a semantic model more gen-
erous than LTSs, namely LTSs with two types of states: the final states, which can
immediately terminate successfully their execution, and the nonfinal states, which
cannot immediately terminate successfully. The behavioral equivalences, studied in
Chapter 2, are to be adapted accordingly in order to take into account also the state
type. This extended model, called LTSF, is the subject of the next subsection.

We then discuss five calculi of increasing expressive power, based on sequential
composition. The first is finite BPA, where BPA stands for Basic Process Algebra,
which includes, besides sequential composition, also the CCS choice operator as
well as two distinct constants: 0 for unsuccessful termination, and 1 for successful
termination (on the contrary CCS has one single constant 0 that denotes successful
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termination). Finite BPA can represent any finite LTSF, up to strong bisimilarity.
The second language is BPA∗ which extends finite BPA with the iteration opera-
tor p∗. BPA∗ is essentially the language of regular expressions (see Section 1.3.2).
Not surprisingly, any regular language can be represented by a suitable BPA∗ pro-
cess; surprisingly, there exist finite-state LTSFs that are not bisimilar to any BPA∗
process [Mil84]; hence, BPA∗ is unsatisfactory in this respect. The problem can be
overcome by replacing iteration with the more powerful recursion construct, such as
the one in CCS implemented by means of process constants. The resulting calculus
is called BPA, which can represent any finite-state LTSF, as well as a large class of
infinite state systems. In particular, we will show that any context-free language can
be represented by a suitable BPA process, as context-free grammars (see Section
1.3.3) can be easily represented as BPA processes. Bisimulation equivalence is de-
cidable for BPA [BBK93], even if a real counter that tests for 0 can be represented in
BPA. Then, we will present PA, an extension of BPA with the BPP parallel operator
(i.e., the CCS parallel operator without communication). To prove or disprove that
bisimulation equivalence is decidable for PA is a long-lasting open problem. Then,
we introduce a slight extension of PA, called PAER, for PA with External Restric-
tion (and communication). PAER is Turing complete because the CCS modeling of
counter machines we have presented in Section 3.5.2 can be easily adapted to PAER:
the only critical component is the finitary CCS process for the counter, which uses
restriction inside the body of three recursively defined constants; however, it can
be safely replaced in PAER by the simple BPA process for the counter, not using
any restriction at all. As a consequence, bisimulation equivalence is undecidable for
PAER. This section ends with a possible implementation of sequential composition
within CCS, so that it turns out to be a derived operator. Interestingly enough, this
implementation is obtained by means of parallel composition and restriction, by
using two bound names only.

5.4.1 Transition Systems with Final States

Definition 5.1. (Lts’s with final states) A labeled transition system with final states
(LTSF for short) is a tuple T S = (Q,A,→,F) where (Q,A,→) is an LTS and F ⊆Q
is the set of final states. A rooted LTSF is a pair (T S,q0) where T S = (Q,A,→,F)
is an LTSF and q0 ∈Q is the initial state. Sometimes we write T S = (Q,A,→,F,q0)
for a rooted LTSF. �

Graphically, a final state is represented by a circle around the state, as is custom-
ary in automata theory. Figure 5.2 shows some LTSFs. For instance, q1 and q2 are
final states, while q0 is not.

Behavioral semantics over this enriched model can be given by adapting the defi-
nitions of Chapter 2. To start, besides traces (Definition 2.9), we can define f-traces,
i.e., traces that end in a final state. Similarly, for weak f-traces.
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Fig. 5.2 Some LTSs with final states

Definition 5.2. (F-trace equivalence) Let (Q,A,→,F) be a LTSF and let q ∈ Q. A
f-trace of q is a sequence σ ∈ A∗ such that q σ−→∗ q′ for some q′ ∈ F . Hence, the set
of f-traces of q is

Tr f (q) = {σ ∈ A∗
∣∣ ∃q′ ∈ F. q σ−→∗ q′}.

Two states q1,q2 ∈Q are f-trace equivalent if Tr f (q1) = Tr f (q2). This is sometimes
denoted with q1 =tr f q2.

The set Tr f (T S) of f-traces of the rooted LTSF T S = (Q,A,→,F,q0) is Tr f (q0).
Two rooted LTSFs, T S1 and T S2, are f-trace equivalent if Tr f (T S1) = Tr f (T S2). �

Definition 5.3. (Completed f-trace equivalence) A completed f-trace for q is a
sequence σ ∈ A∗ such that q σ−→∗ q′ for some deadlock state q′ ∈ F . Hence, the set
of completed f-traces of q is

CTr(q) = {σ ∈ A∗
∣∣ ∃q′ ∈ F. q σ−→∗ q′ ∧ q′ �}.

Two states q1,q2 ∈ Q are completed f-trace equivalent if Tr f (q1) = Tr f (q2) and
CTr f (q1) =CTr f (q2). �

Example 5.6. Consider the LTSFs in Figure 5.2. Observe that Tr(q0) = {ε,a,ab},
while Tr f (q0) = {a,ab}; hence, Tr f (q0) is not prefix-closed. In general, while the
set of traces of a TS (with final states) is prefix-closed, this may be not the case
for the set of its f-traces. Note that Tr f (q3) = {ε,a,ab}, hence, in this case, the set
of f-traces is prefix-closed. Of course, q0 and q3 are not f-trace equivalent. On the
contrary, q0 and q7 are f-trace equivalent: q0 =tr f q7. Note that also q11 =tr f q0.

Observe that CTr f (q0) = {ab} = CTr f (q11). Hence, q0 and q11 are completed
f-trace equivalent. On the contrary, CTr f (q3) = {a,ab} = CTr f (q7), but q3 and q7
are not completed f-trace equivalent because they are not f-trace equivalent. �
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Definition 5.4. (Weak f-trace equivalence) Let T S = (Q,A ∪ {τ},→,F) be an
LTSF, where τ �∈ A. A weak f-trace of q ∈Q is a sequence σ ∈ A∗ such that q σ

=⇒q′
for some q′ ∈ F . Hence, the set WTr f (q) of weak f-traces of q is

WTr f (q) = {σ ∈ A∗
∣∣ ∃q′ ∈ F. q σ

=⇒q′}.

Two states q1,q2 ∈ Q are weak f-trace equivalent if WTr f (q1) = WTr f (q2). The
set WTr f (T S) of weak f-traces of the rooted LTSF T S = (Q,A∪ {τ},→,F,q0)
is WTr f (q0). Two rooted LTSFs, T S1 and T S2, are weak f-trace equivalent if
WTr(T S1) =WTr(T S2). �

Definition 5.5. (Weak completed f-traces) Let T S = (Q,A ∪ {τ},→,F) be an
LTSF, where τ �∈ A. The set of the weak completed f-traces of a state q ∈ Q is

WCTr f (q) = {σ ∈ A∗
∣∣ ∃q′ ∈ F. q σ

=⇒q′ ∧ q′ α
� for all observable α ∈ A}.

Two states q1,q2∈Q are weak completed f-trace equivalent if WTr f (q1)=WTr f (q2)
and WCTr f (q1) =WCTr f (q2). The set WCTr f (T S) of weak completed f-traces of
the rooted LTSF T S = (Q,A∪{τ},→,F,q0) is WCTr f (q0). T S1 and T S2 are weak
completed f-trace equivalent if WTr f (T S1) = WTr f (T S2) and WCTr f (T S1) =
WCTr f (T S2). �

Of course, if Tr f (q1)= Tr f (q2) then also WTr f (q1)=WTr f (q2). Similarly, if q1
and q2 are completed f-trace equivalent, then they are also weak completed f-trace
equivalent.

Remark 5.1. (NFAs and finite-state LTSFs) Note that rooted, finite-state LTSFs are
exactly finite automata (NFAs), as defined in Section 1.3.4, with the only proviso
that ε-labeled transitions of an NFA are τ-labeled transitions in an LTSF. Once a
rooted LTSF T S = (Q,A,→,F,q0) is interpreted as an NFA (Q,A,δ ,F,q0), 3 we
can easily observe that the definition of WTr f (T S) = {σ ∈ A∗

∣∣ ∃q′ ∈ F. q σ
=⇒q′}

coincides with the definition of recognized language L[T S] = {w ∈ A∗
∣∣ ∃q ∈

F.(q0,w)−→∗ (q,ε)}, with relation −→∗ as defined in Section 1.3.4.
As NFAs recognize the class of regular languages, hence also (rooted) finite-

state LTSFs recognize the same class. Note that in Remark 2.7 we proved that also
lts’s (without final states) can represent the class of regular languages; however, that
characterization is based on weak completed traces, while the one proposed here is
based on the notion of weak f-trace. �

Also, bisimulation-based semantics are to be adapted properly to take into ac-
count the state type. As a matter of fact, if two states q and q′ are related by an
f-bisimulation relation, then they not only satisfy the bisimulation conditions but
also are of the same type.

3 A transition relation→⊆Q× (A∪{τ})×Q can be equivalently represented as a transition func-
tion δ : Q× (A∪{τ})→℘(Q), and vice versa.
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Fig. 5.3 Two f-bisimilar LTSs with final states

Definition 5.6. (F-bisimulation) Let TS=(Q,A,→,F) be an LTSF. An f-bisimulation
is a relation R⊆ Q×Q such that:

• R is a bisimulation on the underlying LTS (Q,A,→), and
• if (q,q′) ∈ R then q ∈ F iff q′ ∈ F .

Two states q and q′ are f-bisimilar, denoted q∼ f q′, if there exists an f-bisimulation
R such that (q,q′) ∈ R. �

Example 5.7. Consider the two LTSFs in Figure 5.3. It is easy to check that relation
R = {(q0,q5),(q1,q6),(q3,q6), (q2,q7),(q2,q8),(q4,q9)} is an f-bisimulation. Note
that these two LTSFs are also f-bisimilar to the LTSF in Figure 5.2(c). However, it is
never the case that two of the LTSFs in Figure 5.2 are f-bisimilar. In particular, the
LTSF in (a) is not f-bisimilar to the LTSF in (b) because the two are not bisimilar
(consider the pair (q1,q6)); differently, the LTSF in (a) is bisimilar to the LTSF in
(d), but the two are not f-bisimilar: to transition q11

a−→q12, state q0 can only reply
with q0

a−→q1, but q12 and q1 are of different type. Similarly, the LTSF in (b) is
not f-bisimilar to the one in (c) because, even if the two are bisimilar, the two roots,
namely q3 and q7, are not of the same type. �

Exercise 5.12. Prove that for any LTSF T S = (Q,A,→,F), the following hold:

1. the identity relation I = {(q,q) ∣∣ q ∈ Q} is an f-bisimulation;
2. the inverse relation R−1 = {(q′,q) ∣∣ (q,q′) ∈ R} of an f-bisimulation R is an

f-bisimulation;
3. the relational composition R1 ◦R2 = {(q,q′′)

∣∣ ∃q′.(q,q′) ∈ R1 ∧ (q′,q′′) ∈ R2}
of two f-bisimulations R1 and R2 is an f-bisimulation.

4. the union
⋃

i∈I Ri of f-bisimulations Ri is an f-bisimulation.

These properties justify the fact that ∼ f , defined as

∼ f=
⋃
{R⊆ Q×Q

∣∣ R is a f-bisimulation,},
is the largest f-bisimulation and an equivalence relation. �

Exercise 5.13. Let T S = (Q,A,→,F) be an LTSF. Prove that, if p ∼ f q, then
Tr f (p) = Tr f (q), for all p,q ∈Q. (Hint: Follow the idea in the proof of Proposition
2.1, or adapt Exercise 2.41 to this setting.) �
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Also weak bisimulation can be adapted accordingly: if two states q and q′ are
related by a weak f-bisimulation, they not only satisfy the weak bisimulation condi-
tions, but also, if one of the two, say q, is final, then the other one, say q′, can silently
reach a final state q′′ such that the pair (q,q′′) is in the relation. Hence, contrary to
strong f-bisimulation, the two states in a weak f-bisimulation pair need not be of the
same type.

Definition 5.7. (Weak f-bisimulation) For any LTSF T S = (Q,A∪ {τ},→,F), a
weak f-bisimulation is a relation R⊆ (Q×Q) such that:

• R is a weak bisimulation over the underlying LTS (Q,A∪{τ},→);
• if (q,q′) ∈ R and q ∈ F , then ∃q′′ ∈ F such that q′ ε

=⇒q′′ and (q,q′′) ∈ R;
• if (q,q′) ∈ R and q′ ∈ F , then ∃q′′ ∈ F such that q ε

=⇒q′′ and (q′′,q′) ∈ R.

State q is weakly f-bisimilar to q′, denoted q ≈ f q′, if there exists a weak f-
bisimulation R such that (q,q′) ∈ R. �

Exercise 5.14. Show that

≈ f=
⋃
{R⊆ Q×Q

∣∣ R is a weak f-bisimulation}
is the largest weak f-bisimulation and an equivalence relation. (Hint: Be careful
in proving that the relational composition of two weak f-bisimulations is a weak
f-bisimulation.) �

Of course, if q1 ∼ f q2, then also q1 ≈ f q2.

Exercise 5.15. Following the same idea behind the definition of weak f-bisimulation,
define also branching f-bisimulation. �

A bit of care is needed for the definition of rooted weak f-bisimilarity. As its
definition is driven by the need of finding the coarsest congruence for the choice
operator, we should require a stricter requirement: q1 ≈c

f q2 is true not only if to
an initial τ-move of q1, q2 replies by performing at least one τ (as for rooted weak
bisimilarity), but also q1 and q2 are of the same type. The need for this requirement
will be clearer in the next subsection (Theorem 5.4).

Definition 5.8. (Rooted weak f-bisimilarity) Given an LTSF (Q,A∪ {τ},→,F),
q1 and q2 are rooted weak f-bisimilar, denoted q1 ≈c

f q2, if for all μ ∈ A∪{τ}

• ∀q′1 such that q1
μ−→q′1, ∃q′2 such that q2

μ
=⇒q′2 and q′1 ≈ f q′2

• ∀q′2 such that q2
μ−→q′2, ∃q′1 such that q1

μ
=⇒q′1 and q′1 ≈ f q′2

• q1 ∈ F iff q2 ∈ F . �

Exercise 5.16. Argue that if q1 ≈c
f q2, then q1 ≈ f q2. �

Exercise 5.17. Following the same idea behind the definition of rooted weak f-
bisimilarity, define also rooted branching f-bisimilarity. �
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1 ↓
p ↓

(p+q) ↓
q ↓

(p+q) ↓
p ↓ q ↓
(p ·q) ↓

Table 5.1 Final states: processes that can terminate properly

Definition 5.9. (F-isomorphism) Let T S1 = (Q1,A1,→1,F1) and T S2 = (Q2,A2,
→2,F2) be two labeled transition systems with final states. An f-isomorphism is a
bijection f : Q1 →Q2 such that it is an isomorphism on the underlying lts’s and that,
additionally, it preserves the type states, i.e., q∈ F1 iff f (q)∈ F2. If there exists an f-
isomorphism between T S1 and T S2 then we say that T S1 and T S2 are f-isomorphic,
denoted T S1 ∼= f T S2.

This definition can be lifted to rooted LTSFs by requiring that the f-isomorphism
f preserves also the initial states, i.e., f (q1) = q2 if q1 and q2 are the initial states of
T S1 and T S2, respectively. �

5.4.2 Finite BPA

In this section we start the presentation of five calculi, based on sequential compo-
sition · and on the presence of special constants 1 and 0 denoting, respectively, a
properly terminated process and an improperly terminated one. Some aspects of the
technical development are inspired by [BBR10].

The language finite BPA is defined as

p ::= 0
∣∣ 1

∣∣ μ
∣∣ p+ p

∣∣ p · p

where μ is any action in Act, + is the CCS choice operator and · is the se-
quential composition operator. We assume that · binds tighter than + , so that
a ·b+c denotes (a ·b)+c. We will use brackets wherever necessary to disambiguate.
P f inBPA is the set of finite BPA processes.

In order to define the operational semantics for finite BPA, we need first to iden-
tify which states are final, i.e., which states represent a process that may terminate
properly. We use notation p ↓ to state that p is a final state. Formally, ↓ is the mini-
mal predicate on processes satisfying the axiom and rules of Table 5.1. For example,
the following are final states: 1, 0+ 1, 1 · 1, b · c+ 1, (a+ 1) · (b · c+ 1). While the
following are not final: 0, a, 1 ·0, a+b · c.

Finite BPA operational semantics is defined by the SOS rules in Table 5.2. Axiom
(Act) states that process μ reaches the properly terminated state 1 by executing
action μ . Rule (Seq1) states that p · q can execute any initial action p can perform,
and then the computation will continue with the residual of p followed by q. Rule
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(Act)
μ μ−→1

(Seq1)
p

μ−→ p′

p ·q μ−→ p′ ·q
(Seq2)

p ↓ q
μ−→q′

p ·q μ−→q′

(Sum1)
p

μ−→ p′

p+q
μ−→ p′

(Sum2)
q

μ−→q′

p+q
μ−→q′

Table 5.2 SOS rules for finite BPA

(Seq2) states that if p may properly terminate, then p ·q can execute any initial action
q can perform and p is discarded. As an example, consider process (a+ 1) · b. Its
associated LTSF is composed of the three transitions below.

(Act)
a a−→1(Sum1)

a+1
a−→1

(Seq1)
(a+1) ·b a−→1 ·b

1 ↓
(Act)

b b−→1
(Seq2)

1 ·b b−→1

1 ↓
a+1 ↓

(Act)

b b−→1
(Seq2)

(a+1) ·b b−→1

Note that Tr f ((a+1) ·b) = {ab,b}, because only state 1 is final.

Exercise 5.18. Compute the LTSF associated to the following finite BPA processes:
a ·(1+b), a ·b+a+1, a+a ·b and a ·b+a ·(b ·0+1). Compare the resulting LTSFs
with those in Figure 5.2. �

Remark 5.2. (Representability up to ∼ f ) Exercise 5.18 is an instance of a more
general result: any finite LTSF can be represented, up to∼ f , by a finite BPA process.
As a matter of fact, given a rooted LTSF (Q,A,→,F,q0), we can define a finite BPA
process p0 such that q0 ∼ f p0. The procedure is very simple: start from the deadlock
states, each one represented either by an instance of 0 if it is not final, or by an
instance of 1 if it is final; then, a state q such that T (q) = {(q,μ,qk)

∣∣ ∃μ ∈ A,

∃qk ∈ Q. q
μ−→qk}, which reaches only states qk that are already represented by

suitable finite BPA terms pk, originates the finite BPA process Σ(q,μ,qk)∈T (q)μ · pk,
if q is not final, or (Σ(q,μ,qk)∈T (q)μ · pk) + 1 if q is final. It is then quite obvious
to observe that if q is not final then q ∼ f Σ(q,μ,qk)∈T (q)μ · pk, or if q is final then
q∼ f (Σ(q,μ,qk)∈T (q)μ · pk) + 1. �
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Exercise 5.19. (Algebraic properties of choice) Prove that, for any p,q,r∈P f inBPA,
the following hold:

p+(q+ r) ∼ f (p+q)+ r
p+q ∼ f q+ p
p+0 ∼ f p
p+ p ∼ f p

Note that 0 ∼ 1, but 0 �∼ f 1. Similarly, p+ 1 ∼ p, but p+ 1 �∼ f p in general, e.g.,
a+1 �∼ f a, because only a+1 is final. �

Exercise 5.20. (Algebraic properties of sequential composition for ∼ f ) Prove
that, for any p,q,r ∈P f inBPA, the following hold:

(i) p · (q · r) ∼ f (p ·q) · r
(ii) 0 · p ∼ f 0

(iii) 1 · p ∼ f p
(iv) p ·1 ∼ f p
(v) (p+q) · r ∼ f p · r + q · r
(Hint: For (i), relation R = {(p ·(q ·r),(p ·q) ·r) ∣∣ p,q,r ∈P f inBPA}∪I is an f-

bisimulation. As a matter of fact, if p · (q · r) μ−→ s, then, by rules (Seq1) and (Seq2),
this can be due to one of the following three cases: p

μ−→ p′ and s = p′ · (q · r), or
to p ↓, q

μ−→q′ and s = q′ · r, or to p ↓, q ↓, r
μ−→ r′ and s = r′. In any case, one can

prove by means of (Seq1) and (Seq2) that (p ·q) · r μ−→ s′, with (s,s′) ∈ R.) �

Note that p · 0 �∼ f 0, i.e., 0 does not act as a zero on the right (while (ii) above
states that 0 acts as a zero on the left). E.g., a ·0 �∼ f 0 because only a ·0 can execute
a. Moreover, even if p ·0 ∼ p, it may hold that p ·0 �∼ f p: E.g., a ·0 �∼ f a because,
after performing a, we have that 1 ·0 �∼ f 1. On the contrary, for f-trace equivalence,
we have that Tr f (p ·0) = Tr f (0), because each process p′ ·0 is not final, for any p′
reachable from p. This is the subject of the following exercise.

Exercise 5.21. (Algebraic properties of sequential composition for =tr f ) Prove
that, for any p,q,r ∈P f inBPA, the following additional properties hold for f-trace
equivalence:

(i) p ·0 =tr f 0

(ii) r · (p+q) =tr f r · p + r ·q
Show an example proving that law (ii) is invalid for f-bisimulation equivalence. �

Theorem 5.1. (Congruence of ∼ f ) If p∼ f q, then the following hold:
1) p+ r ∼ f q+ r for all r ∈P f inBPA,
2) p · r ∼ f q · r for all r ∈P f inBPA,
3) r · p ∼ f r ·q for all r ∈P f inBPA,

Proof. Assume R is an f-bisimulation such that (p,q) ∈ R.
For case 1, it is easy to see that R1 = {(p+ r, q+ r)

∣∣ r ∈P f inBPA}∪R∪I
is an f-bisimulation, where I = {(r,r) ∣∣ r ∈P f inBPA}. We simply observe that,
since p is final iff q is final because (p,q) ∈ R and R is an f-bisimulation, it is also
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the case that p+ r is final iff q+ r is final, for any r ∈P f inBPA. Hence, relation R1
satisfies the type condition on related states. Checking the bisimulation condition
for the pair (p+ r,q+ r) is as usual (see Theorem 4.1), hence omitted.

For case 2, we show that R2 = {(p′ · r, q′ · r) ∣∣ (p′,q′) ∈ R∧ r ∈P f inBPA}∪I
is an f-bisimulation. First of all, for any (p′,q′) ∈ R, we have that p′ is final iff q′ is
final; hence, it is also the case that p′ · r is final iff q′ · r is final, for any r ∈P f inBPA.

Therefore, relation R2 satisfies the type condition on related states. If p′ ·r μ−→ s, then
this is due either to p′

μ−→ p′′ and s = p′′ · r (by rule (Seq1)), or to p′ ↓, r
μ−→ r′ and

s = r′ (by rule (Seq2)). In the former case, since (p′,q′) ∈ R, we have that q′
μ−→q′′

with (p′′,q′′) ∈ R, and by rule (Seq1) also that q′ · r μ−→q′′ · r with (p′′ · r,q′′ · r) ∈ R2.
In the latter case, since (p′,q′) ∈ R, also q′ must be final, and so by rule (Seq2) we
have that q′ · r μ−→ r′ with (r′,r′) ∈ R2. The symmetric case, when q′ · r moves first,
is analogous, hence omitted.

For case 3, the reader may check that R3 = {(r′ · p,r′ ·q)
∣∣ r′ ∈P f inBPA}∪R is

an f-bisimulation �

Proposition 5.1. (τ-laws for rooted weak f-bisimilarity) For any processes p,q
and for any μ ∈ Act, the following hold:

(i) μ · τ · p ≈c
f μ · p

(ii) p+ τ · p ≈c
f

{
τ · p+1 if p ↓
τ · p otherwise

(iii) μ · (p+ τ ·q) ≈c
f μ · (p+ τ ·q)+μ ·q

Proof. The proof is very similar to that for Proposition 4.13. Note that property (ii)
is slightly different to take into account the state type. �

Theorem 5.2. If p≈ f q, then the following hold:
1) p · r ≈ f q · r for all r ∈P f inBPA,
2) r · p ≈ f r ·q for all r ∈P f inBPA.

Proof. Assume R is a weak f-bisimulation such that (p,q) ∈ R.
For case 1, relation R1 = {(p′ · r, q′ · r) ∣∣ (p′, q′) ∈ R∧ r ∈P f inBPA}∪I is a

weak f-bisimulation. If p′ · r ↓, then both p′ ↓ and r ↓. As (p′, q′) ∈ R, then q′ ε
=⇒q′′

with q′′ ↓ and (p′, q′′)∈R. Hence, by (possibly repeated applications of) rule (Seq1),
also q′ · r ε

=⇒q′′ · r, with q′′ · r ↓ and (p′ · r,q′′ · r) ∈ R1. Hence, the type condition is
satisfied. If p′ · r μ−→ s, then this can be due either to p′

μ−→ p′′ and s = p′′ · r, or to
p′ ↓, r

μ−→ r′ and s = r′. In the former case, we have that either q′ α
=⇒q′′ (if μ = α)

or q′ ε
=⇒q′′ (if μ = τ) with (p′′,q′′) ∈ R. By (possibly repeated applications of) rule

(Seq1), also q′ · r α
=⇒q′′ · r or q′ · r ε

=⇒q′′ · r with (p′′ · r,q′′ · r) ∈ R1. In the latter
case, as (p′, q′) ∈ R and p′ ↓, we have that q′ ε

=⇒q′′, with q′′ ↓. Hence, to move
p′ · r μ−→ r′, process q′ · r can respond with q′ · r ε

=⇒q′′ · r μ−→ r′, with (r′,r′) ∈ R1,
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as required. The symmetric cases when q′ · r is final and moves first are analogous,
hence omitted.

For case 2, the reader may check that R2 = {(r′ · p, r′ ·q) ∣∣ r′ ∈P f inBPA}∪R is
a weak f-bisimulation. �

As expected, ≈ f is not a congruence for +. As a matter of fact, τ · a ≈ f a, but
τ · a+ b �≈ f a+ b, because τ · a+ b τ−→a and the only silent step that can be taken
from a+b is a+b ε

=⇒a+b, but a and a+b are not weakly f-bisimilar. As a further
example, τ ≈ f 1; however, τ + a �≈ f 1+ a, because τ + a τ−→1 and the only silent
reply can be 1+a ε

=⇒1+a, but 1 and 1+a are not weakly f-bisimilar.
Nonetheless, rooted weak f-bisimulation equivalence≈c

f is a congruence for both
finite BPA operators.

Theorem 5.3. If p≈c
f q, then the following hold:

1) p · r ≈c
f q · r for all r ∈P f inBPA,

2) r · p ≈c
f r ·q for all r ∈P f inBPA,

3) p+ r ≈c
f q+ r for all r ∈P f inBPA.

Proof. For case 1, if p · r ↓, then both p ↓ and r ↓; since p ≈c
f q, then also q ↓,

and therefore q · r ↓, as required. If p · r μ−→ s, this can be due either to p
μ−→ p′ and

s = p′ ·r, or to p ↓, r
μ−→ r′ and s = r′. In the former case, since p≈c

f q, we have that

q
μ

=⇒q′, with p′ ≈ f q′. Hence, by (possibly repeated applications of) rule (Seq1), we

can derive q · r μ
=⇒q′ · r with p′ · r≈ f q′ · r by congruence of sequential composition

w.r.t. ≈ f (Theorem 5.2(1)). In the latter case, since p≈c
f q, then also q ↓. Hence, by

rule (Seq2) we can derive q · r μ−→ r′, with r′ ≈ f r′. The symmetric cases when q · r
is final or moves first are analogous, hence omitted.

For case 2, if r · p ↓, then both r ↓ and p ↓; since p ≈c
f q, then also q ↓, and

therefore r · q ↓, as required. If r · p
μ−→ s, this can be due either to r

μ−→ r′ and
s = r′ · p, or to r ↓, p

μ−→ p′ and s = p′. In the former case, by rule (Seq1), we can
derive r ·q μ−→ r′ ·q and r′ · p≈ f r′ ·q by congruence of sequential composition w.r.t.
≈ f (Theorem 5.2(2)), as by Exercise 5.16 we know that p ≈ f q. In the latter case,

since p ≈c
f q, we have q

μ
=⇒q′ with p′ ≈ f q′. Hence, by induction on the length of

the path associated to q
μ

=⇒q′ and by applying rule (Seq2) on the first transition on
that path, also r ·q μ

=⇒q′ with p′ ≈ f q′, as required. The symmetric cases when r ·q
is final or moves first are analogous, hence omitted.

For case 3, if p+r ↓, then either p ↓ or r ↓. In the former case, since p≈c
f q, then

also q ↓, and therefore q+ r ↓, as required. In the latter case, trivially also q+ r ↓.
If p+ r

μ−→ s, then this is due to either p
μ−→ p′ and s = p′ (rule (Sum1)), or r

μ−→ r′

and s= r′ (rule (Sum2)). In the former case, since p≈c
f q, we have that q

μ
=⇒q′, with

p′ ≈ f q′. Hence, by induction on the length of the path associated to q
μ

=⇒q′ and by

applying rule (Sum1) on the first transition on that path, we can derive q+ r
μ

=⇒q′
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with p′ ≈ f q′. In the latter case, by rule (Sum2) we can derive q+ r
μ−→ r′, hence

q+ r
μ

=⇒ r′ with r′ ≈ f r′. The symmetric cases when q+ r is final or moves first are
analogous, hence omitted. �

Actually, one can prove that ≈c
f is the coarsest congruence (i.e., the congru-

ence that identifies as much as possible) contained in weak f-bisimulation equiv-
alence. This is made precise by the following theorem that justifies rooted weak
f-bisimilarity as the compositional refinement of weak f-bisimilarity.

Theorem 5.4. Assume that f n(p)∪ f n(q) �= L . Then p ≈c
f q if and only if, for all

r ∈P f inBPA, p+ r ≈ f q+ r.

Proof. The implication from left to right follows by Theorem 5.3(3) and Exercise
5.16.

For the implication from right to left, let p+ r ≈ f q+ r for all r ∈P f inBPA. Take
any action a ∈ L such that a �∈ f n(p)∪ f n(q)4 and consider p+ a. If p ↓, then
also p+ a ↓. As p+ a ≈ f q+ a, then q+ a ε

=⇒ s such that s ↓ and p+ a ≈ f s. Of
course, if q+ a τ

=⇒ s truly originates from q, i.e., q τ
=⇒ s, then s cannot be weak

f-bisimilar to p+ a, because s cannot execute a. Hence, the only possibility left is
that q+ a ε

=⇒q+ a with q+ a ↓; this is possible only if q ↓ as a �↓. Summing up,
under the condition that for all r ∈P f inBPA, p+ r ≈ f q+ r, if p ↓ then also q ↓, as
required by the definition of rooted weak f-bisimilarity.

Now assume p
μ−→ p′. Then also p+a

μ−→ p′ (by rule (Sum1)). As p+a≈ f q+a,
then also q+ a must respond to this transition. We have to examine two different
cases: either μ = τ and q+ a ε

=⇒q+ a with p′ ≈ f q+ a, or the transition truly

originates from q, i.e., q+ a
μ

=⇒q′ (μ can be τ), because q
μ

=⇒q′, with p′ ≈ f q′.
The former case is impossible: p′ cannot be weakly f-bisimilar to q+a, as p′ cannot
perform a. Hence, the second case must be true; but this is indeed what is requested
by rooted weak f-bisimulation: if p

μ−→ p′, then q
μ

=⇒q′ with p′ ≈ f q′.
The symmetric cases when q ↓ or q moves first are analogous, hence omitted. �

5.4.3 BPA∗: Finite BPA with Iteration

Finite BPA can be extended with one additional, unary, postfix operator, ∗, called
the iteration operator, that takes a process p to build its iterate p∗, with the intuition
that p∗ can repeat the behavior of p any number of times. The resulting language is
called BPA∗ and is exactly the language of regular expressions (see Section 1.3.2),

p ::= 0
∣∣ 1

∣∣ μ
∣∣ p+ p

∣∣ p · p ∣∣ p∗

4 The assumption that L is not covered by the free names of p and q is obviously satisfied when
p and q are finite BPA processes, and such a constraint holds for all the calculi discussed in this
section, too.
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whose operational semantics is defined by means of the rules in Tables 5.1 and 5.2,
complemented by the following:

p ∈PBPA∗

p∗ ↓
(Star)

p
μ−→ p′

p∗
μ−→ p′ · p∗

where PBPA∗ denotes the set of BPA∗ processes. The iteration construct allows for
the definition of infinite behavior, yet only cyclic, hence finite-state. As an example
of SOS derivations, consider process (a · b)∗. Its LTSF is composed of three states
and of the following three transitions only:

(a ·b)∗ a−→ (1 ·b) · (a ·b)∗ b−→1 · (a ·b)∗ a−→ (1 ·b) · (a ·b)∗
where only (1 ·b) ·(a ·b)∗ is not final. Similarly, the LTSF for a ·(b ·a)∗ is determined
by the following three transitions:

a · (b ·a)∗ a−→1 · (b ·a)∗ b−→ (1 ·a) · (b ·a)∗ a−→1 · (b ·a)∗
where only 1 · (b ·a)∗ is final.

Exercise 5.22. Build the LTSF for (a · b)∗ + a · (b · a)∗ and check that it is f-
isomorphic to the LTSF in Figure 5.4(b). �

Exercise 5.23. (i) Prove that if q is reachable from p∗, then q = p′ · p∗ for some
p′ reachable from p. (ii) Given r reachable from p, prove that if r · p∗ −→∗ q, then
q = p′ · p∗ for some p′ reachable from p. (Hint: The proof is by induction on the
length of the reachability path.) �

Proposition 5.2. (Congruence of ∼ f for iteration) If p∼ f q, then p∗ ∼ f q∗.

Proof. Assume R is an f-bisimulation such that (p,q) ∈ R. It is not difficult to check
that R1 = {(p∗, q∗)}∪{(p′ · p∗, q′ ·q∗) ∣∣ (p′, q′) ∈ R} is an f-bisimulation.

First, consider pair (p∗, q∗); observe that both are final, hence the type condition
is satisfied. Then, by rule (Star), p∗

μ−→ p′ · p∗ if p
μ−→ p′. Since (p,q) ∈ R, then

also q
μ−→q′ with (p′,q′) ∈ R. By rule (Star), also q∗

μ−→q′ · q∗ is derivable, with
(p′ · p∗, q′ ·q∗) ∈ R1. Symmetrically, if q∗ moves first.

Now, consider a generic pair of the form (p′ · p∗, q′ · q∗) such that (p′, q′) ∈ R.
If p′ · p∗ ↓, then p′ ↓; since (p′, q′) ∈ R, also q′ ↓ and so q′ · q∗ ↓; hence the type
condition is satisfied. If p′ · p∗

μ−→ s, this can be due either to p′
μ−→ p′′ and s =

p′′ · p∗, or to p′ ↓, p∗
μ−→ p1 · p∗ and s= p1 · p∗. In the former case, since (p′, q′)∈R,

also q′
μ−→q′′ with (p′′, q′′) ∈ R. By rule (Seq1), also q′ ·q∗ μ−→q′′ ·q∗ is derivable,

with (p′′ · p∗, q′′ ·q∗) ∈ R1. In the latter case, since (p′, q′) ∈ R, also q′ ↓; moreover,
as (p∗, q∗) ∈ R1, we can conclude that q∗

μ−→q1 ·q∗ is derivable, with (p1 · p∗, q1 ·
q∗) ∈ R1. Hence, q′ ·q∗ μ−→q1 ·q∗, with the reached states forming a pair in R1. �

Exercise 5.24. (Algebraic properties of iteration) Prove that, for any p,q,r ∈
PBPA∗ , the following hold:
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q6

q0 q1

a

b

q2 q3
a

q5 q4

a a b

a b

(a) (b)

Fig. 5.4 An LTSF not representable in BPA∗, up to ∼ f , in (a); and one of its f-trace equivalent
LTSFs in (b)

(i) p∗ ∼ f p · p∗+1

(ii) p∗ ∼ f (p+1)∗
(iii) (p+q)∗ ∼ f p∗ · (q · (p+q)∗+1)

Note that by (i) we have that 0∗ ∼ f 0 · 0∗+ 1. By the law (ii) in Exercise 5.20,
0 · 0∗ ∼ f 0, and by the laws in Exercise 5.19, 0+ 1 ∼ f 1. Hence, by congruence
(Proposition 5.1), 0 ·0∗+1 ∼ f 0+1 ∼ f 1: summing up, 0∗ ∼ f 1. Then, prove, by
using (ii) with p = 0, that 1∗ ∼ f 1. �

In order to prove that any BPA∗ process generates a finite-state LTSF, we first
introduce function s-size on BPA∗ processes, which gives un upper bound on the
number of reachable states. Formally:

s-size(0) = 1 s-size(1) = 1
s-size(μ) = 2 s-size(p1 + p2) = s-size(p1)+ s-size(p2)+1

s-size(p∗) = s-size(p)+1 s-size(p1 · p2) = s-size(p1)+ s-size(p2)

Function s-size, applied to p, gives an intuitively correct upper bound on the
number of states reachable from p. For the only nontrivial case of iteration, one can
get convinced by Exercise 5.23.

Proposition 5.3. (BPA∗ processes are finite-state LTSFs) For any BPA∗ process
p, its associated LTSF is finite-state.

Proof. It is readily observed, by structural induction on p, that s-size(p) is a finite
number for any p. �

Now a natural question is whether any finite-state LTSF can be represented, up
to ∼ f , by a suitable BPA∗ process. Unfortunately, the answer is negative. Milner
in [Mil84] observed that iteration is not expressive enough to represent all finite-
state LTSFs, up to ∼ f . As an instance, it can be proved, by using techniques in
[Mil84, BFP01, BCG07], that no BPA∗ process is f-bisimilar to the LTSF in Figure
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5.4(a). In the next section, we will see that by replacing iteration with recursion, as
in CCS, we will be able to represent all finite-state LTSFs, up to f-isomorphism.

Nonetheless, BPA∗ can represent any regular language. Any BPA∗ process p can
be seen both as a process, with an associated LTSF, and as a regular expression; we
will prove that the set of f-traces of process p, Tr f (p), equals the language associ-
ated to the regular expression p, L [p], as defined in Section 1.3.2. For instance, a
BPA∗ process f-trace equivalent to the one in Figure 5.4(a) is (a · b)∗+ a · (b · a)∗,
whose associated LTSF is f-isomorphic to the LTSF in Figure 5.4(b).

Lemma 5.1. For any p,q,r ∈PBPA∗ , the following hold:
(i) Tr f (0) = /0
(ii) Tr f (1) = {ε}
(iii) Tr f (μ) = {μ}
(iv) Tr f (p+q) = Tr f (p)∪Tr f (q)
(v) Tr f (p ·q) = Tr f (p) ·Tr f (q)
(vi) Tr f (p∗) = (Tr f (p))∗

where the operators on the right-hand-side of the equations are the semantic oper-
ations over languages defined in Section 1.3.2.

Proof. By Definition 5.2, Tr f (q) = {σ ∈ A∗
∣∣ ∃q′ ∈ F. q σ−→∗ q′}, where relation

−→∗ is reported in Definition 2.4.
Case (i): since 0 is a deadlock and 0 is not final, Tr f (0) = /0.
Case (ii): similarly, since 1 is a deadlock, but 1 is final, then 1

ε−→∗ 1, hence
Tr f (1) = {ε}.

Case (iii): since μ μ−→1, 1 ↓ and μ �↓, then Tr f (μ) = {μ}.
Case (iv): note that p+q ↓ iff p ↓ or q ↓. Hence, ε ∈ Tr f (p+q) iff ε ∈ Tr f (p)∪

Tr f (q). Derivation p+ q
μ−→ s σ−→∗ s′ with s′ ↓ is possible iff either p

μ−→ s σ−→∗ s′

or q
μ−→ s σ−→∗ s′; therefore, μσ ∈ Tr f (p+q) iff μσ ∈ Tr f (p)∪Tr f (q).

Case (v): note that p · q ↓ iff p ↓ and q ↓. Hence, ε ∈ Tr f (p · q) iff ε ∈ Tr f (p) ·
Tr f (q). Any derivation p · q σ−→∗ q′ with q′ ↓ is due to a derivation p · q σ1−→∗ p′ · q
with p′ ↓, where all the transitions involved in its proof are proved by rule (Seq1) at
the top level, followed by a derivation p′ ·q σ2−→∗ q′ with q′ ↓, where the first transi-
tion involved (if present) is derived by rule (Seq2) at the top level, with σ = σ1σ2.
Derivation p · q σ1−→∗ p′ · q is possible iff p

σ1−→∗ p′; similarly, p′ · q σ2−→∗ q′ is possi-
ble iff q

σ2−→∗ q′; therefore, σ1σ2 ∈ Tr f (p · q) iff σ1 ∈ Tr f (p) and σ2 ∈ Tr f (q) iff
σ1σ2 ∈ Tr f (p) ·Tr f (q).

Case (vi): By law (i) of Exercise 5.24, p∗ ∼ f p · p∗+ 1, hence also Tr f (p∗) =
Tr f (p · p∗+1) = Tr f (p) ·Tr f (p∗)∪{ε}, by the properties (ii), (iv) and (v) above.
Note that {ε} = (Tr f (p))0. If we then replace again Tr f (p∗), we get Tr f (p∗) =
Tr f (p) · [Tr f (p) ·Tr f (p∗)∪{ε}]∪{ε} = (Tr f (p))2 ·Tr f (p∗)∪Tr f (p)∪{ε}. This
is a clearly a recursive equation whose (minimal) solution is exactly (Tr f (p))∗ =⋃

n∈N(Tr f (p))n. �

Theorem 5.5. For any any p ∈PBPA∗ , Tr f (p) = L [p].
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p ↓
C ↓

C
de f
= p (Cons)

p
μ−→ p′

C
μ−→ p′

C
de f
= p

Table 5.3 SOS rules for recursion

Proof. By structural induction on p, by using Lemma 5.1. The base cases are trivial:

• Tr f (0) = /0 = L [0]
• Tr f (1) = {ε}= L [1]
• Tr f (μ) = {μ}= L [μ]

For a compound process, say p · q, the inductive hypothesis ensures that the thesis
holds for the constituents p and q.

• Tr f (p+q) = Tr f (p)∪Tr f (q) = L [p]∪L [q] = L [p+q]
• Tr f (p ·q) = Tr f (p) ·Tr f (q) = L [p] ·L [q] = L [p ·q]
• Tr f (p∗) = (Tr f (p))∗ = (L [p])∗ = L [p∗]

Therefore, we can conclude that, for any p ∈PBPA∗ , Tr f (p) = L [p]. �

5.4.4 BPA: Finite BPA with Recursion

Finite BPA can be extended with recursively defined constants, as we did for CCS.
The resulting language is called BPA:

p ::= 0
∣∣ 1

∣∣ μ
∣∣ p+ p

∣∣ p · p ∣∣ C

where C is any process constant in the set Cons. A BPA term p is a BPA process if
the set Const(p)5 of the constants it uses is finite and, for each C∈Const(p), C is de-

fined (i.e., equipped with a defining equation C
de f
= p) and guarded. The definition of

guarded constant is a bit more involved than in Section 3.1.2, because of sequential
composition: e.g., constant C is guarded in a ·C, but not in 1 ·C. More specifically,

we say that a constant C
de f
= p is guarded if p can be adapted, by applications of the al-

gebraic laws in Exercises 5.19 and 5.20, to the form q = α1 · p1 + . . .+αn · pn{+1}
(optional presence of a summand 1), with the proviso that q = 0 if n = 0 and the
optional summand 1 is missing. PBPA denotes the set of BPA processes.

BPA operational semantics is defined by means of the rules in Tables 5.1 and 5.2,
complemented by those listed in Table 5.3.

It can be proved that f-bisimilarity ∼ f is a congruence for recursion, by adapting
the idea in Section 4.2.2.

5 The extension of function Const(−) as in Definition 3.1 to terms of the form p ·q is as follows:
Const(p ·q) = Const(p) ∪ Const(q).
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The recursive construct allows for the definition of never-ending behavior, not
only cyclic (hence finite-state), but even infinite-state.

Example 5.8. (Unboundedly-branching processes) Of course, by guardedness of
process constants, any BPA process generates a finitely-branching LTSF: this can
be proved by following an argument similar to the one in Section 3.3.1. However,
because of the presence of 1, it may be the case that a BPA process p generates an
unboundedly-branching LTSF; by Exercise 2.7(ii), it follows that such a p cannot
be finite-state. For instance, let us consider the following BPA process [BLT12]:

C
de f
= a ·C · (1+ c)+b

It is interesting to observe that the repeated execution of a’s generates a number of
sequentialized subterms (1+ c) guarded by C:

C a−→C · (1+ c) a−→C · (1+ c) · (1+ c) a−→C · (1+ c) · (1+ c) · (1+ c) . . .

When C then executes b, the reached state is of the form 1 · (1+ c) · . . . · (1+ c).
From such a state, we have a number of distinct c-labeled transitions that equals
the number of executed a’s. For instance, from state 1 · (1+ c) · (1+ c) · (1+ c),
reachable by executing trace aaab starting from C, we have three distinct c-labeled
transitions to states 1 · (1+ c) · (1+ c), 1 · (1+ c) and 1, respectively. Hence, C is
unboundedly-branching because unbounded is the number of occurrences of action
a that C can perform initially. �

Exercise 5.25. Let BPA− denote BPA without 1. Prove that for any BPA− process
p, its associated LTS is boundedly-branching. �

Example 5.9. (The language wwR) In Exercise 3.64, we described how to model
the language L = {wwR

∣∣ w ∈ {a,b}∗} in finitary CCS. L is a context-free language
because it may be generated by the context-free grammar G = ({S},{a,b},S,{S→
aSa,S→ bSb,S→ ε}). It is an easy exercise to check that L = L(G). By mimicking
grammar G, it is not difficult to produce a BPA process constant S such that its
f-traces are exactly the strings in L:

S
de f
= a ·S ·a + b ·S ·b + 1

where each right-hand side of a production for S, say aSa, gives rise to a process
term a ·S ·a, and the various terms are then composed with the choice operator. The
following is the derivation of the f-trace abba:

S a−→1 ·S ·a b−→1 ·S ·b ·a b−→1 ·a a−→1 �

Exercise 5.26. (The language anbn) In Example 3.15, we presented a system whose
weak completed traces are of the form anbn, where a = inc and b = dec. Define a
BPA process constant S such that Tr f (S) = {anbn

∣∣ n ∈ N}. (Hint: Consider the
context-free grammar G2 outlined in Section 1.3.3.) �
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Remark 5.3. (Context-free languages are in BPA languages) Example 5.9 and Ex-
ercise 5.26 are instances of a more general result [BCT08]: for any context-free
grammar G, one can build a BPA process p such that L(G) = Tr f (p). Since BPA
processes are guarded, we may restrict our attention to context-free grammars in
Greibach normal form (see Section 1.3.3), as the right-hand side of their produc-
tions starts with an action. Since for any context-free grammar G, there exists a
context-free grammar G′ in Greibach normal form such that L(G) = L(G′), we lose
nothing by restricting our attention to this subclass of context-free grammars.

Given a Greibach normal form grammar G = (N,T,S,P), it is enough to define a
BPA constant V in correspondence with each nonterminal V ∈ N; if nonterminal V
has productions V → a1γ1 . . .V → akγk, then constant V has k summands, each one
corresponding to the obvious translation of a sequence aiγi = aiX1 . . .Xni into the
BPA process ai ·X1 · . . . ·Xni (if V → ε , then the corresponding BPA process constant
V has a summand 1 in its body). The process p such that L(G) = Tr f (p) is simply
constant S, as S is the initial nonterminal symbol of G.

It is interesting to observe that the resulting BPA constant S is mimicking only the
left-most derivations (i.e., those derivations where only the left-most nonterminal
symbol is rewritten), starting from the initial nonterminal symbol S, as described by
the following left-most derivation rule:

S−→∗αV β V → δ ∈ P

S−→∗αδβ
where β ∈ (T ∪N)∗ and α ∈ T ∗

However, this does not change the equality L(G) = Tr f (p) because for any
generic derivation S−→∗w (as defined in Section 1.3.3), there is another derivation
for w from S which is left-most, according to the left-most rule above [HMU01].

Since for any context-free grammar G = (N,T,S,P) in Greibach normal form,
the BPA process constant S is such that L(G) = Tr f (S), we can conclude that BPA
can express all context-free languages. �

Example 5.10. (Extracting a context-free grammar from a BPA process) We can
do also the reverse: a context-free grammar G can be extracted from a BPA process p
in such a way that L(G) = Tr f (p). For instance, consider the BPA process constants
C and D defined as follows:

C
de f
= (a+b) ·D · c+0

D
de f
= a · (0+1) ·C+1

By resorting to the algebraic laws discussed in Exercises 5.19, 5.20 and 5.21, we
are able to define f-trace equivalent process constants C′ and D′, respectively. Of
particular interest are the two distributivity laws: (p+q) · r ∼ f p · r+q · r that holds
for f-bisimilarity, and r · (p+ q) =tr f r · p+ r · q that holds for f-trace equivalence.
By using these laws, we can equivalently write:

C′ de f
= a ·D′ · c+b ·D′ · c+0

D′ de f
= a ·0 ·C′+a ·1 ·C′+1
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By using the law p ·0 =tr f 0, 0 · p ∼ f 0, p ·1 ∼ f p and p+0 ∼ f p, we can then
obtain the f-trace equivalent forms:

C′′ de f
= a ·D′′ · c+b ·D′′ · c

D′′ de f
= a ·C′′+1

Now, any summand in the body of C′′ as well as of D′′ is without any occurrence
of the choice operator, or 0 or 1 (except for the summand 1 itself). Hence, we can
define a grammar G = (N,T,S,P), where N = {S,A}, T = {a,b,c} and P is given
by the following productions:

S→ aAc S→ bAc
A→ aS A→ ε
It is easy to observe that the context-free grammar G is such that L(G) =

Tr f (C′′) = Tr f (C). �

Exercise 5.27. Consider the constant C of Example 5.8. As done in the example
above, define a constant D, such that Tr f (C) = Tr f (D) and each summand in the
body of D does not contain occurrences of the choice operator or 1. Then extract
from the definition of D a context-free grammar G such that L(G) = Tr f (D). �

Remark 5.4. (BPA languages are in context-free languages) Example 5.10 is an
instance of a more general result: for any BPA process p, its set of f-traces Tr f (p) is
a context-free language. The proof of this fact is actually based on the algebraic laws
in Exercises 5.19, 5.20 and 5.21. In conjunction with Remark 5.3, we can conclude
then that BPA languages are exactly context-free languages. �

Example 5.11. (Counter) In Example 3.17, we defined a real counter that tests for
zero in finitary CCS by a clever use of restrictions inside three recursively defined
constants. Here, we show that a counter can be defined in BPA very simply by means
of two constants only, as follows:

BC
de f
= zero ·BC+ inc · (S ·BC)

S
de f
= dec+ inc · (S ·S)

It is not too difficult to prove that BC ∼ f Counter0, where Counter0 is defined in
Example 3.17. (Note that it is enough to prove bisimilarity ∼, as no reachable state
from BC or from Counter0 is properly terminated.) As a consequence, we have that
BC ≈ f C, where C is defined in Example 3.17, too. �

Trace equivalence is undecidable for BPA, as the problem of language equiva-
lence for context-free grammars is so [BPS61]. On the contrary, bisimulation equiv-
alence (as well as f-bisimulation equivalence) is decidable for BPA processes. This
was first proved in [BBK93], for normed BPA processes, i.e., for those BPA pro-
cesses that can always terminate successfully (e.g., constant C in Example 5.8),
and then extended for the whole BPA in [CHS95]. Unfortunately, the best known
algorithm is doubly exponential [Jan13] for the general case, even if efficient, poly-
nomial algorithms are available for the normed case [HJM96]. The problem of de-
ciding weak bisimilarity for BPA is open.
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Remark 5.5. (Representability of all finite-state LTSFs, up to f-isomorphism)

The following subcalculus of BPA, called finite-state BPA, is expressive enough
to represent all finite-state LTSFs,

p ::= 0
∣∣ 1

∣∣ C
∣∣ Σ j∈J μ j · p j

where we assume that the set of constants Const(p) used for any finite-state BPA
process p is finite and that each constant is defined (guardedness is ensured by syn-
tactic construction). The main syntactic restriction is that the first argument of the
sequential composition operator must be an action, as for action prefixing; indeed,
finite-state BPA is very similar to finite-state CCS, except for the presence of the
additional termination state 1.

Analogously to Theorem 3.2, it is not difficult to prove the following Repre-
sentability Theorem: for any reduced finite-state rooted LTSF T S = (Q,A, →1,
q0,F), there exists a finite-state BPA process p such that the reachable LTSF
Cp = (Pp,sort(p), →p, p,Fp) — where Fp contains the final states in Pp —
is f-isomorphic to T S. The proof is as follows. Let Q = {q0,q1, . . . ,qn}. We take
a constant Ci in correspondence of each state qi, for i = 0,1, , . . . ,n, defined as fol-

lows: if qi is a deadlock, then Ci
de f
= 1 in case qi ∈ F , and Ci

de f
= 0 otherwise; if T (qi) =

{(qi,μ,qk)
∣∣ ∃μ ∈ A,∃qk ∈ Q. qi

μ−→1 qk}, then Ci = Σ(qi,μ,qk)∈T (qi)μ ·Ck {+1},
where the optional summand 1 is present only in case qi ∈ F . Let us consider
CC0 = (PC0 ,sort(C0),→2,1 ·C0,FC0), where PC0 = {1 ·C0,1 ·C1 . . . ,1 ·Cn} (be-
cause T S is reduced) and 1 ·Ci ∈FC0 iff the body of Ci contains the summand 1.
Hence, the bijection we are looking for is f : Q→PC0 , defined as f (qi) = 1 ·Ci. It
is also readily observed that the three conditions of f-isomorphism are satisfied:

• 1 ·C0 = f (q0),
• qi

μ−→1 qk iff f (qi)
μ−→2 f (qk), and

• qi ∈ F iff f (qi) = 1 ·Ci ∈FC0 .

Hence, f is indeed an f-isomorphism.
As an instance, consider the LTSF depicted in Figure 5.4(a). We argued that no

BPA∗ process p is f-bisimilar to q0. But, following the construction above, we can
build a finite-state BPA process, with associated LTSF f-isomorphic to it, as follows:

C0
de f
= a ·C1 + 1

C1
de f
= b ·C0 + 1

It is indeed readily seen that, by using the SOS operational rules, 1 ·C0 generates
a LTSF f-isomorphic to Figure 5.4(a). �

Exercise 5.28. Build the finite-state BPA process whose associated LTSF is f-
isomorphic to Figure 5.4(b). �

Exercise 5.29. (Encoding the iteration operator) Let BPA+∗ denote the language
BPA enriched with the iteration construct. Show that BPA+∗ can be implemented
into BPA by showing a simple encoding �−� of p∗ by means of a recursively defined
constant. (Hint: Look at the algebraic property p∗ ∼ f p · p∗+1.) �
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p ↓ q ↓
(p |q) ↓

(Par1)
p

μ−→ p′

p |q μ−→ p′ |q
(Par2)

q
μ−→q′

p |q μ−→ p |q′

Table 5.4 SOS rules for asynchronous parallel composition

5.4.5 PA and PAER

PA is the language obtained by extending BPA with the operator of asynchronous
parallel composition (i.e., without synchronization) of BPP. Its syntax is

p ::= 0
∣∣ 1

∣∣ μ
∣∣ p+ p

∣∣ p · p ∣∣ p | p ∣∣ C

A PA term p is a PA process if the set Const(p) of the constants it uses is finite

and, for each C ∈ Const(p), C is defined and guarded. We say that a constant C
de f
= p

is guarded if p can be adapted, by applications of the algebraic laws in Exercises
5.19 and 5.20, to a process term q such that each occurrence of C occurs within
a subprocess μ · q′ of q and any other constant D occurring in p is guarded. PPA
denotes the set of PA processes.

PA operational semantics is defined by means of the rules in Tables 5.1, 5.2, and
5.3, complemented by those described in Table 5.4.

Exercise 5.30. (Algebraic properties of parallel composition) Prove that, for any
p,q,r ∈PPA, the following hold:

p |(q |r) ∼ f (p |q) |r
p |q ∼ f q | p
p |1 ∼ f p
p |0 ∼ f p ·0

Note that p |0∼ p, but p |0 �∼ f p in general (why?). �

Of course, also the analogous of the Expansion Law (Proposition 4.3) holds:
given p = Σ n

i=1μi · pi{+1} and q = Σ m
j=1μ ′j ·q j{+1},

p |q ∼ f Σ n
i=1μi · (pi |q) + Σ m

j=1μ ′j · (p |q j) {+1},

where the optional summand {+1} on the right-hand side is present iff it is present
in both p and q. Similarly, distributivity of choice w.r.t. parallel composition holds
for f-trace equivalence: (p+q) |r =tr f p |r+q |r.

PA is a syntactic extension of BPA, because asynchronous parallel composition
is added to PA, and also of BPP, as sequential composition is a generalization of
action prefixing. Not surprisingly, PA is strictly more expressive than both BPA and
BPP. On the one hand, there are context-free languages, such as L = {ancbn

∣∣ n≥
0} — discussed in Exercise 3.60 — that are not BPP languages, even if they are
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P
de f
= (να,β )(X |A |B)

X
de f
= g.(X |A |B) + c.Y + α.d.Z + β .d.Z

Y
de f
= α.a.Y + α.d.Z + β .b.Y + β .d.Z Z

de f
= 0

A
de f
= α.0 B

de f
= β .0

Table 5.5 A finite-net CCS process whose set of weak completed traces is not a PA language

BPA languages (by Remark 5.3), and hence also PA languages. On the other hand,
PA languages include also context-dependent languages, such as the BPP language

L′ = Tr f (B) for B
de f
= a · (B |b) + c · (B |d) + e — discussed in Example 3.13 —

which are not BPA languages (by Remark 5.4).
PA is incomparable with respect to finite-net CCS, not only syntactically (as

finite-net CCS allows for a limited use of restriction as well as of communication,
while PA allows for the use of sequential composition in place of action prefixing),
but also semantically. On the one hand, language L′′= {wwR

∣∣ w∈{a,b}∗} is easily
representable by a PA process (see Example 5.9), but, as we discussed after Exercise
3.61, such a language is not representable in finite-net CCS. On the other hand, the
following example, adapted from [May00], shows a finite-net CCS process P whose
set of weak completed traces is a language not representable by any PA process.

Example 5.12. (A finite-net CCS language, which is not a PA language) In
[May00], Mayr presented a marked Petri net [Rei85] N with the following features:

(i) its set L[N] of completed traces is
{gmcσ

∣∣ m≥ 0∧σ ∈ (a+b)∗ ∧ �(a,σ) = m+1∧ �(b,σ) = m+1} ∪
{gmd

∣∣ m≥ 0}∪
{gmcσd

∣∣ m≥ 0∧σ ∈ (a+b)∗ ∧ �(a,σ)≤ m+1∧ �(b,σ)≤ m+1∧ �(a,σ)+
�(b,σ)≤ 2m+1}.

(ii) L[N]∩g∗ca∗b∗ = {gmcam+1bm+1
∣∣ m≥ 0} is a context-dependent language,

hence also L[N] is context-dependent. (Remember that the intersection of a
context-free language with a regular language produces a context-free language.)

(iii) a proof that if N were bisimilar to a process in a proper extension of PA,
called PAD, then N would also be bisimilar (thus also completed trace equivalent)
to a process in the language PDA, a syntactic extension of BPA which does not
increase the class of representable languages (i.e., the PDA languages are the
context-free languages).

As a conclusion, Mayr states that no PAD process (hence no PA process) can repre-
sent language L[N] because, if this were the case, then L[N] would be context-free,
which is a contradiction with (ii) above. To conclude the example, Table 5.5 shows
a finite-net CCS representation of net N. It is not too difficult to get convinced that
the set of weak completed traces for P is exactly L[N] in (i). �
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(Com)
p α−→ p′ q α−→q′

p |q τ−→ p′ | ′q
p ↓

(νa)p ↓
(Res)

p
μ−→ p′

(νa)p
μ−→ (νa)p′

μ �= a,a

Table 5.6 Rules for communication and restriction

PA is not a Turing-complete language: in [May00] it is proved that the reachabil-
ity problem is still decidable for PA.

The problem of deciding bisimilarity for PA is open, though for normed PA pro-
cesses a positive decidability result already exists [HJ99]. Checking weak bisimilar-
ity for PA is undecidable [Sr02].

A natural extension of PA is PAER, obtained by adding the communication capa-
bility to the parallel operator and an external operator of restriction, as we did when
extending BPP to finite-net CCS. PAER is defined by the abstract syntax

p ::= 0
∣∣ 1

∣∣ μ
∣∣ p+ p

∣∣ p · p ∣∣ p | p ∣∣ C

q ::= p
∣∣ (νa)q

where, as usual, we assume that process constants are always defined and guarded
and that Const(p) is finite.6 PPAER denotes the set of PAER processes.

PAER operational semantics is defined by means of the rules in Tables 5.1, 5.2,
5.3 and 5.4, complemented by those listed in Table 5.6.

PAER is a Turing-complete formalism, as any counter machine M can be encoded
in PAER. It is enough to adapt the construction described in Section 3.5.2 for finitary
CCS: each instruction (i : Ii) gives rise to a recursive process constant Pi, whose body
is a (finite-state) BPA process. For instance, (i : Inc(r j)) is modeled as:

Pi
de f
= pi ·P′i P′i

de f
= inc j · pi+1 ·Pi

The bootstrapping process B(v1,v2,v3) is described as a (finite-state) BPA process, too:

B(v1,v2,v3)
de f
= inc1 · . . . · inc1·︸ ︷︷ ︸

v1 times

inc2 · . . . · inc2·︸ ︷︷ ︸
v2 times

inc3 · . . . · inc3︸ ︷︷ ︸
v3 times

·p1 ·1

Each counter R j, for j = 1,2,3, can be described as an instantiation of the BPA
counter of Example 5.11:

R j
de f
= zero j ·R j + inc j · (S j ·R j)

S j
de f
= dec j + inc j · (S j ·S j)

6 Note that the body of a constant C cannot contain occurrences of the restriction operator. How-
ever, for convenience, we will sometimes make use of constants that are non-recursively defined
over the general class of PAER processes, as we did for finite-net CCS, see Remark 3.13.
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FS

PAER

BPPBPA

PA FN

sequential
composition

asynchronous

parallel composition

communication

+ external restriction

Fig. 5.5 Syntactic and semantic classification of some calculi (FS stands for finite-state CCS, FN
for finite-net CCS)

Hence, process CMM(v1,v2,v3) modeling the counter machine M is:

CMM(v1,v2,v3)
de f
= (νL)(P1 | . . . |Pm |R1 |R2 |R3 |B(v1,v2,v3))

where the set L of restricted action is {pi
∣∣ index i occurs in some instruction}∪

{inc j,zero j,dec j
∣∣ 1≤ j≤ 3}. As a matter of fact, such a process is a PAER process,

and so counter machines can be modeled faithfully in PAER. As a consequence, the
reachability problem and all the behavioral equivalences are undecidable for PAER,
following similar arguments reported in Section 3.5.3 for the case of finitary CCS.

Figure 5.5 summarizes the relationships among most of the calculi we have dis-
cussed in this section. Finite-state CCS (FS in the picture), which is essentially
finite-state BPA of Remark 5.5, can be extended by replacing action prefixing with
the more general sequential composition operator; the resulting calculus is BPA.
Orthogonally, finite-state CCS can be extended by adding asynchronous parallel
composition, hence obtaining BPP. The join of these two calculi is PA. BPP can be
extended with communication and external restriction, obtaining finite-net CCS (FN
in the picture). A similar extension to PA yields PAER, which is the only Turing-
complete formalism in this picture. All the six calculi have different expressive
power, so that the classification by syntactic containment is also a semantic clas-
sification. Bisimulation equivalence is decidable for FS, BPA and BPP, but it is not
for FN and PAER, while its decidability is an open problem for PA. To complete the
picture, recall that BPA∗ is less expressive than finite-state BPA, as only the latter
can represent any finite-state LTSF up to ∼ f (actually, up to f-isomorphism).
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0 ↓
p ↓ q ↓
(p ·q) ↓

p ↓ q ↓
(p |q) ↓

p ↓
(νa)p ↓

p ↓
C ↓

C
de f
= p

Table 5.7 CCSseq final states: processes that can terminate properly

5.4.6 Derived Operator

We have already seen some derived operators in CCS: the internal choice operator
p⊕q (Section 5.1), the hiding operator ιa(p) (Section 5.2) and, to some extent, also
the relabeling operator p[a/b] (Section 5.3). Here we present a more substantial
example of derived operator: sequential composition p ·q.

CCSseq is the calculus obtained by enriching CCS — as specified by the syntax
in Remark 3.5 — with sequential composition. Its abstract syntax is

p ::= Σ j∈J μ j.p j
∣∣ p | p ∣∣ p · p ∣∣ (νa)p

∣∣ C

with the assumption that J is finite and Σ j∈J μ j.p j = 0 when J = /0. Note that it is not
permissible to write terms of the form a.0+0, i.e., 0 is not allowed as a summand.
As usual, for any p, set Const(p) is finite, and each constant is defined and guarded.
PCCSseq is the set of CCSseq processes.

Contrary to BPA, 0 denotes proper termination, i.e., 0 is a final state. There is no
basic process denoting unsuccessful termination. A typical example of a deadlock,
non-final state is (νa)(a.0). As usual, notation p ↓ is used to state that p is a final
state. Formally, ↓ is the minimal predicate on processes satisfying the axiom and
rules of Table 5.7. Note that a term of the form p+ q cannot be final: by syntactic
construction, both p and q must start with a prefix, hence they are not final.

The operational semantics for CCSseq is given by the set of rules outlined in Ta-
ble 3.1, complemented by the following rules for sequential composition:

(Seq1)
p

μ−→ p′

p ·q μ−→ p′ ·q
(Seq2)

p ↓ q
μ−→q′

p ·q μ−→q′

Exercise 5.31. Prove that, for any p∈PCCSseq , if p ↓, then p�. (Hint: By induction
on the proof of p ↓.) Note that this fact is not true for BPA and related languages;
e.g., the BPA process p = a+1 is such that p ↓ and p a−→ . �

Observe that ordinary bisimilarity ∼ is not a congruence for sequential com-
position: even if a.0 ∼ (νc)(a.c.0), it is not the case that a.0 · b.0 is bisimilar

to (νc)(a.c.0) · b.0. On the one hand, a.0 · b.0 a−→0 · b.0 b−→0, hence trace ab is
executable. On the other hand, the latter can only execute a reaching the state
(νc)(c.0) · b.0, which is a deadlock as (νc)(c.0) is not final, and so rule (Seq2)
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is not applicable. However, f-bisimilarity ∼ f (Definition 5.6), as well as weak f-
bisimilarity ≈ f (Definition 5.7), is a congruence for sequential composition.

Exercise 5.32. (Congruence of sequential composition) By looking at the proofs
of Theorems 5.1 and 5.2, prove the following:

1) If p∼ f q, then p · r ∼ f q · r and r · p∼ f r ·q, for all r ∈PCCSseq ,
2) If p≈ f q, then p · r ≈ f q · r and r · p≈ f r ·q, for all r ∈PCCSseq . �

Exercise 5.33. (Congruence of parallel composition and restriction) Prove that
the following hold:

1) If p∼ f q, then p |r ∼ f q |r for all r ∈PCCSseq ,
2) If p≈ f q, then p |r ≈ f q |r for all r ∈PCCSseq ,
3) If p∼ f q, then (νa)p∼ f (νa)q for all a ∈L ,
4) If p≈ f q, then (νa)p≈ f (νa)q for all a ∈L . �

Exercise 5.34. (Algebraic properties for ∼ f ) Prove that, for any p,q,r ∈PCCSseq ,
the following hold:

(i) p · (q · r) ∼ f (p ·q) · r
(ii) p ·q ∼ f q if p ↓
(iii) q · p ∼ f q if p ↓
(iv) (p+q) · r ∼ f p · r + q · r
(v) p |q ∼ f q if p ↓
(vi) (νa)p ∼ f p if a �∈ fn(p)
(Hint: For (i), look at the solution to Exercise 5.20.) �

We are now ready to show that sequential composition is a derived operator for
CCS, by showing an encoding �−� of CCSseq into CCS, up to weak f-bisimilarity
≈ f . More explicitly, the encoding is a function �−� : PCCSseq →PCCS such that
p≈ f �p�. The formal encoding, following ideas in [Mil89, Tau89, San12], is given
in Table 5.8; it is essentially homomorphic on all the CCS operators, while for se-
quential composition, it is defined thus:

�p ·q� = (νd)(�p�e
d |d.�q�) d,e /∈ fn(p ·q)∪bn(p ·q)7

This encoding uses an auxiliary encoding �p�e
d , parametrized on two new, distinct

names d and e, such that d is a free name and e a bound name. The intuition is that
whenever p reaches a final state p′, then �p′�e

d can perform d as its last action and
then deadlocks; this is made clear by the rule �0�e

d = d.0. Such a d-labeled transition
from �p′�e

d is to be synchronized with d.�q�, because of the presence of restriction
on d, hence activating the continuation �q�.

The auxiliary encoding of parallel composition reveals the need for the additional
new bound name e:

7 Free names and bound names for sequential composition are defined as follows: fn(p · q) =
fn(p)∪ fn(q) and bn(p ·q) = bn(p)∪bn(q).
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�0� = 0 �μ.p� = μ.�p� �p1 + p2� = �p1�+ �p2� �p1 | p2� = �p1� |�p2�

�(νa)p� = (νa)�p� �A� = A′ where A′de f
= �p� if A

de f
= p

�p ·q� = (νd)(�p�e
d |d.�q�) d,e /∈ fn(p ·q)∪bn(p ·q)

�0�e
d = d.0 �μ.p�e

d = μ.�p�e
d �p1 + p2�

e
d = �p1�

e
d + �p2�

e
d

�p1 | p2�
e
d = (νe)((�p1�

d
e |�p2�

d
e ) |e.e.d.0)

�(νa)p�e
d = (νa)�p�e

d �A�e
d = Aed where Aed

de f
= �p�e

d if A
de f
= p

�p ·q�e
d = (νe)(�p�d

e |e.�q�e
d)

Table 5.8 Encoding CCSseq into CCS

�p1 | p2�
e
d = (νe)((�p1�

d
e |�p2�

d
e ) |e.e.d.0)

On the one hand, �p1�
d
e will possibly terminate its execution by performing e

(using d as an auxiliary bound name) if p1 terminates successfully; similarly, �p2�
d
e .

On the other hand, by restricting on action e, two synchronizations with the two
occurrences of action e in the third component are to be executed, with the effect of
activating subprocess d.0: hence, the last action performed by �p1 | p2�

e
d is indeed d,

provided that both components p1 and p2 terminate successfully.
A similar inversion of the roles between d and e is present also in the auxiliary

encoding of sequential composition:

�p ·q�e
d = (νe)(�p�d

e |e.�q�e
d)

where in �p · q�e
d action d is free and e is bound, while in �p�d

e action e is free and
d is bound. Process �p�d

e will possibly end its execution by performing e, to be
synchronized with e.�q�e

d because of the restriction on the auxiliary e. Then �q�e
d

will possibly end by performing d, as required by �p ·q�e
d .

Note that two new names, d and e, are enough: the two names are used in alter-
nated restrictions in such a way that there is no unwanted capture of free names.

Remark 5.6. (Alpha-conversion and substitution) With the help of the algebraic
law of alpha-conversion (see Section 4.1.2), one can be convinced that the follow-
ing laws hold for any choice of distinct actions d,e, f new in p:

(1) �p�e
d ∼ f �p� f

d
(2) �p�e

d{ f/d} ∼ f �p�e
f

(3) �p�d
e ∼ f �p�e

d{e/d}
As a matter of fact, law (1) holds because �p�e

d and �p� f
d differ only for the ac-

tual choice of bound names, hence it is possible to rename by alpha-conversion the
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bound names, up to∼ f , to rewrite both of them to the same syntactic term (up to the
actual names of constants). Also (2) holds because �p�e

d and �p�e
f differ only in the

possible termination action (d in the former, f in the latter), which is renamed in the
former accordingly by means of the substitution { f/d}. Law (3) holds because the
substitution {e/d} applied to �p�e

d has the effect of renaming the free name d to e,
by possibly alpha-converting bound names (the superscript name e for sure), hence
the result is a term f-bisimilar to �p�d

e by (1).
The formal proof of these obvious facts should be based on the explicit construc-

tion of three f-bisimulations Ri (for i = 1, . . . ,3), each Ri containing the correspond-
ing pair in law (i) (e.g., Rp(e,d, f ,d)

1 contains the pair (�p�e
d ,�p� f

d)). This construction
is not easy because of the treatment of constants. However, if we restrict our at-
tention to finite CCSseq processes, then a slightly simpler construction of the three
bisimulations is possible, by structural induction.

For instance, R0(e,d, f ,d)
1 = {(d.0,d.0)}, Rμ.p(d,e,e,d)

3 = {(μ.�p�d
e ,μ.�p�e

d{e/d})}∪
Rp(d,e,e,d)

3 , where Rp(d,e,e,d)
3 is the (inductive) f-bisimulation for the subterm p. The

cases are not always that easy. As an instance of a more elaborate case, consider
Rp1·p2(e,d, f ,d)

1 . On the one hand, �p1 · p2�
e
d = (νe)(�p1�

d
e |e.�p2�

e
d); on the other

hand �p1 · p2�
f
d = (ν f )(�p1�

d
f | f .�p2�

f
d). Inductively, we can assume the existence

of a f-bisimulation Rp1(d,e,d, f )
2 proving that �p1�

d
e{ f/e} ∼ f �p1�

d
f , as well as a f-

bisimulation Rp2(e,d, f ,d)
1 proving that �p2�

e
d ∼ f �p2�

f
d . Hence, Rp1·p2(e,d, f ,d)

1 = S1∪S2
where:

S1 = {((νe)(q1 |e.�p2�
e
d),(ν f )(q′1 | f .�p2�

f
d))

∣∣ (q1{ f/e},q′1) ∈ Rp1(d,e,d, f )
2 }

S2 = {((νe)(q1 |q2),(ν f )(q′1 |q′2))
∣∣ q1 ↓,q′1 ↓,(q2,q′2) ∈ Rp2(e,d, f ,d)

1 }.
And similarly for the other cases. �

Exercise 5.35. (Counters, again) Consider the BPA counter BC of Example 5.11.
It can be rephrased in CCSseq as follows:

CC
de f
= zero.CC+ inc.(S ·CC)

S
de f
= dec.0+ inc.(S ·S)

Compute �CC� and compare the resulting process with the finitary CCS counter C,
defined in Example 3.17. �

The rest of this section is devoted to proving the correctness of the encoding. The
proof is rather technical and so, on the one hand, it can be safely skipped if one is
not interested in the technical detail. On the other hand, it is instructive on how to
prove the correctness of a compiler from a language (in this case CCSseq) into its
kernel (in this case CCS).

We want to prove that p ≈ f �p� for all p ∈PCCSseq . This fact has the immedi-
ate consequence that the encoding preserves the (weak f-bisimilarity) equivalence
classes: for all p1, p2 ∈PCCSseq we have that p1 ≈ f p2 if and only if �p1� ≈ f �p2�,
by transitivity.
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To prove that p ≈ f �p� for all p ∈ PCCSseq , one has to provide a weak f-
bisimulation R⊆PCCSseq×PCCS containing all the pairs of the form (p,�p�). This
is a hard work that may be alleviated if we could use the proof technique provided
by weak bisimilarity up to≈ (Definition 2.22), suitably adapted to take into account
the state type. The candidate weak f-bisimilarity up to ≈ f relation could be

R = {(p,�p�)
∣∣ p ∈PCCSseq}

Unfortunately, the up-to proof technique is not flexible enough to be used prof-
itably in this setting. Indeed, we would need the unsound version of this proof tech-
nique that uses≈ f on both sides (see Exercise 2.75): if �p�

τ−→q, by executing some
internal synchronization on the auxiliary names e (or d), then p can idle, p ε

=⇒ p,
and the reached states are related: p ≈ f pR�p� ≈ f q. As this version of the proof
technique is unsound, we have to follow a different approach.

[AH92] introduces an efficiency preorder, called expansion and denoted �, that
lies in between strong bisimilarity and weak bisimilarity: p ∼ q implies p � q im-
plies p ≈ q. Similarly to strong bisimilarity ∼, expansion � enjoys a nice mathe-
matical theory and in [SM92] it is shown that it also enjoys a nice, flexible up-to
technique. Here we adapt the definitions outlined there to our setting with the state

type distinction. We use notation q
μ̂−→q′ to state that q

μ−→q′ if μ �= τ , while when
μ = τ , it states that q = q′ (no move) or q τ−→q′. We also use notation q ↓ to mean
q is a final state in F .

Definition 5.10. (Expansion and f-expansion) For any LTSF (Q,A∪{τ},→,F),
where τ �∈ A, an expansion is a relation R such that if (q1,q2) ∈ R then for all μ ∈
A∪{τ}
• ∀q′1 such that q1

μ−→q′1, ∃q′2 such that q2
μ

=⇒q′2 and (q′1,q
′
2) ∈ R,

• ∀q′2 such that q2
μ−→q′2, ∃q′1 such that q1

μ̂−→q′1 and (q′1,q
′
2) ∈ R,

State q′ is an expansion of q, denoted q � q′, if there exists an expansion R such that
(q,q′) ∈ R. Hence, �=

⋃{R⊆ Q×Q
∣∣ R is an expansion}.

An f-expansion R is an expansion such that, additionally, whenever (q1,q2) ∈ R:

• if q1 ↓, then ∃q′2 such that q2
ε

=⇒q′2, q′2 ↓ and (q1,q′2) ∈ R,
• if q2 ↓, then q1 ↓.
State q′ is an f-expansion of q, denoted q � f q′, if there exists an f-expansion R such
that (q,q′) ∈ R. Hence, � f=

⋃{R⊆ Q×Q
∣∣ R is an f-expansion}. �

Exercise 5.36. (i) Prove that the identity relation I is an f-expansion. (ii) Prove
that the composition R1 ◦R2 of two f-expansions R1 and R2 is an f-expansion. (iii)
Prove that the union

⋃
j∈J R j of f-expansions R j is an f-expansion. �

By means of the results in Exercise 5.36, it is easy to see that � f is a preorder (re-
flexive and transitive) and the largest f-expansion. To see that � f is not symmetric,
consider a.0 and τ.a.0; it is easy to see that a.0 � f τ.a.0, but τ.a.0 �� f a.0.
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Another easy observation is that any strong f-bisimulation is also an f-expansion,
hence ∼ f⊆� f . Similarly, any f-expansion is also a weak f-bisimulation, hence
� f⊆≈ f . So if we prove that p � f �p�, then we also get that p≈ f �p�.

The f-expansion preorder � f enjoys also many algebraic properties. For instance,
all those valid for ∼ f (e.g., (νa)p∼ f p if a �∈ fn(p)) are also valid for � f . Also � f
is a congruence for all CCSseq operators, except +.

Exercise 5.37. (Congruence) Prove that � f is a congruence for all the operators of
CCSseq but +. In particular, prove that if p1 � f p2, then

• p1 |q � f p2 |q, for all q, and
• (νa)p1 � f (νa)p2. �

We are now ready to introduce the up-to technique for f-expansions, which will
be very useful in the following.

Definition 5.11. (F-expansion up to � f ) For any LTSF (Q,A∪{τ},→,F), an f-
expansion up to � f is a relation R such that if (q1,q2) ∈ R then for all μ ∈ A∪{τ}
• ∀q′1 such that q1

μ−→q′1, ∃q′2 such that q2
μ

=⇒q′2 and q′1 ∼ f R � f q′2,

• ∀q′2 such that q2
μ−→q′2, ∃q′1 such that q1

μ̂−→q′1 and q′1 � f R � f q′2,

and additionally

• if q1 ↓, then ∃q′2 such that q2
ε

=⇒q′2, q′2 ↓ and q1 ∼ f R � f q′2,
• if q2 ↓, then q1 ↓. �

Exercise 5.38. Prove that if R is an f-expansion up to � f , then R⊆� f . (Hint: Prove
first that ∼ f R � f and � f R � f are both f-expansions, following the similar proof
of Lemma 2.1. Hence, ∼ f R � f ⊆� f , as well as � f R � f ⊆� f by definition of
� f . As the identity relation I is a subset of both ∼ f and � f , we have that relation
R = I ◦R◦I ⊆∼ f R � f , hence R⊆� f by transitivity.) �

The exercise above states the correctness of the proof principle based on expan-
sion up to: if (q1,q2) ∈ R and R is an f-expansion up to � f , then q1 � f q2. So, if we
prove that relation

R = {(p,�p�)
∣∣ p ∈PCCSseq}

is an f-expansion up to � f , we get the expected result that p � f �p�, hence also that
p ≈ f �p�. The correctness proof is based on some auxiliary lemmata and proposi-
tions we are going to list. To simplify the approach, we use a notational convention:

τ ′ is an additional unobservable action that we use to label transitions q1
τ ′−→q2 due

to a synchronization on the auxiliary new names e and d; hence, when we write
q1

τ−→q2, we are assuming that the executed τ is either a prefix in q1 or the result
of a synchronization not on e or d. We also use μ to range over observable actions

and τ , but often not τ ′. Finally, ε ′
=⇒ is used to denote a sequence of zero or more

τ ′-labeled transitions.
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Lemma 5.2. For any p ∈PCCSseq , �p�e
d � f (νe)(�p�e

d{e/d}|e.d.0), for any choice
of d,e new in p.

Proof. Consider relation Rp = S1∪S2∪S3, where
S1 = {(q,(νe)(q{e/d}|e.d.0)) ∣∣ �p�e

d−→∗ q and d has not been performed},
S2 = {(q,(νe)(q{e/d}|d.0)) ∣∣ �p�e

d−→∗ q d−→q}, and

S3 = {(q,(νe)(q{e/d}|0)) ∣∣ �p�e
d−→∗ q d−→q}.

Note that (�p�e
d ,(νe)(�p�e

d{e/d}|e.d.0)) ∈ S1 and so, if we prove that Rp is an
expansion, we are done.

Let us consider a generic pair (q,(νe)(q{e/d}|e.d.0)) in S1.
If q

μ−→q′ (where μ is not d, but can also be τ ′), then q{e/d} μ−→q′{e/d}
because μ �= d, and so also (νe)(q{e/d}|e.d.0) μ−→ (νe)(q′{e/d}|e.d.0) with

(q′,(νe)(q′{e/d}|e.d.0)) ∈ S1. If q d−→q′, then q{e/d} e−→q′{e/d} and so also

(νe)(q{e/d}|e.d.0) d
=⇒ (νe)(q′{e/d}|0) with (q′,(νe)(q′{e/d}|0)) ∈ S3.

If (νe)(q{e/d}|e.d.0) μ−→ r, then either q{e/d} μ−→q′{e/d} with the reached
state r = (νe)(q′{e/d}|e.d.0), or q{e/d} e−→q′{e/d} with μ = τ ′ and the reached
state r = (νe)(q′{e/d}|d.0). In the former case, q{e/d} μ−→q′{e/d} is possible
only if q

μ−→q′ and the pair (q′,(νe)(q′{e/d}|e.d.0)) belongs to S1. In the latter

case, q{e/d} e−→q′{e/d} is possible only if q d−→q′; in this case, q can idle, and
the pair (q,(νe)(q′{e/d}|d.0)) belongs to S2.

The check of the pairs in S2 or S3 is analogous and so left as an exercise. �

Proposition 5.4. Prove that for any p∈PCCSseq , �p�e
d � f (νe)(�p�d

e |e.d.0), for any
choice of d,e new in p.

Proof. By Lemma 5.2, we have that �p�e
d � f (νe)(�p�e

d{e/d}|e.d.0). By Remark
5.6, we have that �p�e

d{e/d} ∼ f �p�d
e , and so also �p�e

d{e/d} � f �p�d
e . By con-

gruence w.r.t. parallel composition and restriciton (Exercise 5.37), the thesis then
follows by transitivity. �

Lemma 5.3. For any p∈PCCSseq , and for any choice of d,e new in p, if �p�e
d

d−→q,
then p ↓ and q ↓.

Proof. By induction on the proof of �p�e
d

d−→q. We proceed by case analysis.

If p = 0, then �p�e
d = d.0 d−→0, and the thesis follows trivially.

If p = μ.p′, then �p�e
d = μ.�p′�e

d �
d−→ , and so this case is empty. Similarly, the

case p = Σ j∈J μ j.p j.

If p = p1 | p2, then �p�e
d = (νe)(�p1�

d
e |�p2�

d
e |e.e.d.0) � d−→ and so this case is

empty, as well as the case for p = p1 · p2.
If p = (νa)p1, then �p�e

d = (νa)�p1�
e
d, which can execute d, reaching q, only if

�p1�
e
d

d−→q1 with q = (νa)q1. By induction, we have p1 ↓ and q1 ↓. Hence, p ↓ and
q ↓ by definition of relation ↓.
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If p = C, where C
de f
= q, then �p�e

d = Ced with Ced
de f
= �q�e

d. Transition Ced
d−→ r is

possible (by rule (Cons)) only if �q�e
d

d−→ r; hence, by induction, we have q ↓ and
r ↓. By definition of relation ↓, also C ↓. �

Lemma 5.4. For any p ∈ PCCSseq , for any choice of d,e new in p, if �p�e
d

τ ′−→q,
then there exists p′ such that (i) p∼ f p′ and (ii) �p′�e

d � f q.

Proof. By induction on the proof of �p�e
d

τ ′−→q. We proceed by cases.

If p = 0, then �p�e
d �

τ ′−→ , and so this case is empty, as well as the cases for p =
μ.p′ and p = Σ j∈J μ j.p j.

If p = p1 · p2, then �p1 · p2�
e
d = (νe)(�p1�

d
e |e.�p2�

e
d)

τ ′−→q is possible only if

either (a) �p1�
d
e

e−→q1 and q = (νe)(q1 |�p2�
e
d), or (b) �p1�

d
e

τ ′−→q1 and q =
(νe)(q1 |e.�p2�

e
d).

Case (a): by Lemma 5.3, p1 ↓ and q1 ↓. In this case, we choose p′ = p2. So (i)
p1 · p2 ∼ f p2, and (ii) �p2�

e
d � f (νe)(q1 |�p2�

e
d) = q, because this holds for ∼ f .

Case (b): by induction, there exists p′1 such that (i) p1 ∼ f p′1, and (ii) �p′1�
e
d � f

q1. Hence, in this case we choose p′= p′1 · p2. So (i) by congruence p1 · p2∼ f p′1 · p2,
and (ii) �p′1 · p2�

e
d = (νe)(�p′1�

d
e |e.�p2�

e
d)� f (νe)(q1 |e.�p2�

e
d) = q by congruence,

as well.
If p = p1 | p2, then �p1 | p2�

e
d = (νe)(�p1�

d
e |�p2�

d
e |e.e.d.0) τ ′−→q is possible only

if either (a) �p1�
d
e

e−→q1 and q = (νe)(q1 |�p2�
d
e |e.d.0), or (b) �p1�

d
e

τ ′−→q1 and
q = (νe)(q1 |�p2�

e
d |e.e.d.0) (plus the two cases for the corresponding moves from

�p2�
d
e , which are symmetric and so omitted).

Case (a): by Lemma 5.3, p1 ↓ and q1 ↓. In this case, we choose p′ = p2. So
(i) p1 | p2 ∼ f p2, and (ii) by Proposition 5.4, �p2�

e
d � f (νe)(�p2�

d
e |e.d.0), and

(νe)(�p2�
d
e |e.d.0)∼ f (νe)(q1 |�p2�

d
e |e.d.0) = q, by algebraic properties.

Case (b): by induction, there exists p′1 such that (i) p1 ∼ f p′1, and (ii) �p′1�
e
d � f

q1. Hence, here we choose p′ = p′1 | p2. So (i) p1 | p2 ∼ f p′1 | p2 by congruence,
and (ii) �p′1 | p2�

e
d = (νe)(�p′1�

d
e |�p2�

d
e |e.e.d.0)� f (νe)(q1 |�p2�

d
e |e.e.d.0) = q, by

congruence as well.

If p = (νa)p1, then �p�e
d = (νa)�p1�

e
d

τ ′−→q is possible only if �p1�
e
d

τ ′−→q1 with
q = (νa)q1. By induction, there exists a process p′1 such that (i) p1 ∼ f p′1, and
(ii) �p′1�

e
d � f q1. Hence, here we choose p′ = (νa)p′1. So, (i) (νa)p1 ∼ f (νa)p′1 by

congruence, and (ii) �p′�e
d = (νa)�p′1�

e
d � f (νa)q1 = q, by congruence as well.

If p = C with C
de f
= r, then �p�e

d = Ced with Ced
de f
= �r�e

d. If Ced
τ ′−→q, then this is

possible only if �r�e
d

τ ′−→q. By induction, there exists p′ such that (i) r ∼ f p′, and
(ii) �p′�e

d � f q. Since C ∼ f r, we get p′ ∼ f C, and so the two theses hold. �

Proposition 5.5. For any p ∈PCCSseq , if �p�
τ ′−→q, then there exists p′ such that (i)

p∼ f p′, and (ii) �p′� � f q.
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Proof. By induction on the proof of �p�
τ ′−→q. We proceed by cases. The proof is

very similar to that for Lemma 5.4 and so we discuss a few cases only.

If p = p1 · p2, then �p1 · p2� = (νd)(�p1�
e
d |d.�p2�)

τ ′−→q is possible only if

either (a) �p1�
e
d

d−→q1 and q = (νd)(q1 |�p2�), or (b) �p1�
e
d

τ ′−→q1 and q =

(νe)(q1 |d.�p2�).
Case (a): by Lemma 5.3, p1 ↓ and q1 ↓. In this case, we choose p′ = p2. So (i)

p1 · p2 ∼ f p2, and (ii) �p2� � f (νe)(q1 |�p2�) = q, because this holds for ∼ f .
Case (b): by Lemma 5.4, there exists p′1 such that (i) p1 ∼ f p′1 and (ii) �p′1�

e
d � f

q1. Hence, in this case we choose p′= p′1 · p2. So (i) p1 · p2∼ f p′1 · p2 by congruence,
and (ii) �p′1 · p2� = (νe)(�p′1�

d
e |e.�p2�)� f (νe)(q1 |e.�p2�) = q by congruence as

well.
If p = p1 | p2, then �p1 | p2� = �p1� |�p2�

τ ′−→q is possible only if either (a)

�p1�
τ ′−→q1 and q = q1 |�p2�, or (b) �p2�

τ ′−→q2 and q = �p1� |q2.
Case (a): by induction, there exists p′1 such that (i) p1 ∼ f p′1 and (ii) �p′1� � f q1.

Hence, in this case we choose p′ = p′1 | p2. So, (i) p1 | p2 ∼ f p′1 | p2 by congruence,
and (ii) �p′1 | p2� = �p′1� |�p2� � f q1 |�p2� = q by congruence as well.

Case (b) is symmetric to case (a) above, hence omitted. �

Proposition 5.6. For any p ∈PCCSseq , if �p� ↓, then p ↓.
Proof. By induction on the proof of �p� ↓. We proceed by cases.

If p = 0, then �p� = 0 and the thesis trivially holds.
If p = μ.p′, then �p� = μ.�p′�, which is not a final state, hence this case is empty.

Similarly for p = Σ j∈J μ j.p j.
If p = p1 · p2, then �p1 · p2� = (νd)(�p1�

e
d |d.�p2�), which is not final as well,

hence also this case is empty.
If p = p1 | p2, then �p1 | p2� = �p1� |�p2� is final only if both �p1� and �p2� are

final. By induction, we have that p1 ↓ and p2 ↓, so that p1 | p2 ↓.
If p = (νa)p1, then �p� = (νa)�p1�, which may be final only if �p1� ↓. By induc-

tion, we have that p1 ↓, and so the thesis p = (νa)p1 ↓ follows trivially.

If p = C with C
de f
= q, then �p� = C′ with C′de f

= �q�. C′ may be final only if �q� ↓.
By induction, we have then that q ↓ and so the thesis C ↓. �

Lemma 5.5. For any p ∈PCCSseq , if p ↓ then �p�e
d

d
=⇒ p′ with p′ ↓, for any choice

of d,e new in p.

Proof. By induction on the proof of p ↓, according to the rules in Table 5.7. The base
case is when p = 0. In such a case, for any choice of d and e, �0�e

d = d.0 and the

thesis trivially holds: d.0 d
=⇒0 with 0 ↓. The inductive cases are as follows.

If p = p1 | p2 and p ↓, then necessarily p1 ↓ and p2 ↓. By induction, we have
that �p1�

d
e

e
=⇒ p′1

8 with p′1 ↓, as well as �p2�
d
e

e
=⇒ p′2 with p′2 ↓. Hence by using the

operational rules it is possible to prove that

8 Note the inversion of d and e; induction is applicable because the thesis is is true for any choice
of e and d, hence also when they are exchanged.
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�p1 | p2�
e
d = (νe)((�p1�

d
e |�p2�

d
e ) |e.e.d.0) ε

=⇒ (νe)((p′1 |�p2�
d
e ) |e.d.0)

ε
=⇒ (νe)((p′1 | p′2) |d.0) d−→ (νe)((p′1 | p′2) |0), with p′ = (νe)((p′1 | p′2) |0) ↓.

If p= p1 · p2 and p ↓, then p1 ↓ and p2 ↓. By induction, we have that �p1�
d
e

e
=⇒ p′1

with p′1 ↓, as well as �p2�
e
d

d
=⇒ p′2 with p′2 ↓. Hence by using the operational rules it

is possible to prove that
�p1 · p2�

e
d = (νe)(�p1�

d
e |e.�p2�

e
d)

ε
=⇒ (νe)(p′1 |�p2�

e
d)

d
=⇒ (νe)(p′1 | p′2)

with (νe)(p′1 | p′2) ↓, as required.

If p = (νa)p1 and p ↓, then p1 ↓. By induction we have �p1�
e
d

d
=⇒ p′1 with

p′1 ↓. Hence by using the operational rule (Res) we can prove that �(νa)p1�
e
d =

(νa)�p1�
e
d

d
=⇒ (νa)p′1 with (νa)p1 ↓, as required.

If p = C (with C
de f
= q) and C ↓, then also q ↓. By induction we have �q�e

d
d

=⇒q′

with q′ ↓. As �C�e
d = Ced with Ced

de f
= �q�e

d, by operation rule (Cons) we also have

Ced
d

=⇒q′, with q′ ↓, as required. �

Proposition 5.7. For any p ∈PCCSseq , if p ↓ then �p�
ε

=⇒ p′ with p′ ↓.
Proof. By induction on the proof of p ↓, according to the rules in Table 5.7. The
proof follows the line of Lemma 5.5 above. Hence, we focus on a few cases only.

The base case is when p= 0 and the thesis trivially holds, as �0� = 0, by choosing
p′ = 0.

Of the inductive cases we consider only parallel and sequential compositions.
If p = p1 | p2 and p ↓, then necessarily p1 ↓ and p2 ↓. By induction, we have

that �p1�
ε

=⇒ p′1 with p′1 ↓, as well as �p2�
ε

=⇒ p′2 with p′2 ↓. Hence by using the
operational rules it is possible to prove that

�p1 | p2� = �p1� |�p2�
ε

=⇒ p′1 |�p2�
ε

=⇒ p′1 | p′2 with p′1 | p′2 ↓.
If p = p1 · p2 and p ↓, then p1 ↓ and p2 ↓. By induction we have that �p2�

ε
=⇒ p′2

with p′2 ↓. By Lemma 5.5, we also have that �p1�
e
d

d
=⇒ p′1 with p′1 ↓. Hence,

�p1 · p2� = (νd)(�p1�
e
d |d.�p2�)

ε
=⇒ (νd)(p′1 |�p2�)

ε
=⇒ (νd)(p′1 | p′2)

with (νd)(p′1 | p′2) ↓. �

Lemma 5.6. For any p∈PCCSseq , if p
μ−→ p′, then there exists q such that �p�e

d
μ

=⇒q
with q∼ f �p′�e

d.

Proof. By induction on the proof of p
μ−→ p′.

If p = μ.p′, then μ.p′ μ−→ p′. Then �μ.p′�e
d = μ.�p′�e

d
μ−→ �p′�e

d, and the thesis
follows trivially, as q = �p′�e

d.

If p = Σ j∈J μ j.p j, then Σ j∈J μ j.p j
μk−→ pk for any k ∈ J. Also this case is trivial:

�Σ j∈J μ j.p j�
e
d = Σ j∈J μ j.�p j�

e
d

μk−→ �pk�
e
d for any k ∈ J.

If p= p1 | p2, and p1 | p2
μ−→ p′, then we have three subcases: p1

μ−→ p′1 and p′=
p′1 | p2; or p2

μ−→ p′2 and p′= p1 | p′2; or μ = τ , p1
α−→ p′1, p2

α−→ p′2 and p′= p′1 | p′2.
We consider only the last subcase, as the other two are simpler. By induction, we
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have that �p1�
e
d

α
=⇒q1 with q1 ∼ f �p′1�

e
d, as well as �p2�

e
d

α
=⇒q2 with q2 ∼ f �p′2�

e
d.

It is possible to prove by operational rules that
�p1 | p2�

e
d = (νe)((�p1�

d
e |�p2�

d
e ) |e.e.d.0) τ

=⇒ (νe)((q1 |q2) |e.e.d.0)
with (νe)((q1 |q2) |e.e.d.0)∼ f (νe)((�p′1�

d
e |�p′2�

d
e ) |e.e.d.0) = �p′1 | p′2�e

d by con-
gruence, as required.

If p = p1 · p2 and p1 · p2
μ−→ p′, then we have two subcases: either p1

μ−→ p′1 and

p′ = p′1 · p2; or p1 ↓, p2
μ−→ p′2 and p′ = p′2. In the former case, by induction, we

have that �p1�
e
d

μ
=⇒q1 with q1 ∼ f �p′1�

e
d. We can prove by operational rules that

�p1 · p2�
e
d = (νe)(�p1�

d
e |e.�p2�

e
d)

μ
=⇒ (νe)(q1 |e.�p2�

e
d)

with (νe)(q1 |e.�p2�
e
d) ∼ f (νe)(�p′1�

d
e |e.�p2�

e
d) = �p′1 · p2�

e
d by congruence, as re-

quired. In the latter case, as p1 ↓, we have that �p1�
d
e

e
=⇒q1 with q1 ↓ by Lemma 5.5.

Moreover, as p2
μ−→ p′2, by induction we have that �p2�

e
d

μ
=⇒q2 with q2 ∼ f �p′2�

e
d.

It is possible to prove by operational rules that
�p1 · p2�

e
d = (νe)(�p1�

d
e |e.�p2�

e
d)

τ
=⇒ (νe)(q1 |�p2�

e
d)

μ
=⇒ (νe)(q1 |q2)

with (νe)(q1 |q2)∼ f (νe)(q1 |�p′2�
e
d) by congruence, and (νe)(q1 |�p′2�

e
d)∼ f �p′2�

e
d

by algebraic properties (see Exercise 5.34), as required.
If p = (νa)p1 and (νa)p1

μ−→ p′, then this is possible only if p1
μ−→ p′1 and

p′ = (νa)p′1. By induction, we have that �p1�
e
d

μ
=⇒q1 with q1 ∼ f �p′1�

e
d. Hence, by

operational rules, �(νa)p1�
e
d = (νa)�p1�

e
d

μ
=⇒ (νa)q1 with (νa)q1 ∼ f (νa)�p′1�

e
d =

�(νa)p′1�
e
d, by congruence, as required.

If p =C with C
de f
= p1 and C

μ−→ p′, then this is possible only if p1
μ−→ p′. By in-

duction, �p1�
e
d

μ
=⇒q1 with q1 ∼ f �p′�e

d. Observe that �C�e
d =Ced, with Ced

de f
= �p1�

e
d.

Hence, by operational rules, we have Ced
μ

=⇒q1 with q1 ∼ f �p′�e
d, as required. �

Proposition 5.8. For any p ∈ PCCSseq , if p
μ−→ p′, then there exists q such that

�p�
μ

=⇒q with q∼ f �p′�.

Proof. By induction on the proof of p
μ−→ p′. The proof is very similar to the previous

lemma. We focus on a few cases, only.
If p = Σ j∈J μ j.p j, then Σ j∈J μ j.p j

μk−→ pk for any k ∈ J. This case is trivial:

�Σ j∈J μ j.p j� = Σ j∈J μ j.�p j�
μk−→ �pk� for any k ∈ J.

If p = p1 | p2 and p1 | p2
μ−→ p′, then we have three subcases: p1

μ−→ p′1 and p′ =
p′1 | p2; or p2

μ−→ p′2 and p′= p1 | p′2; or μ = τ , p1
α−→ p′1, p2

α−→ p′2 and p′= p′1 | p′2.
We consider only the last one, as the other two are simpler. By induction, we have
that �p1�

α
=⇒q1 with q1 ∼ f �p′1�, as well as �p2�

α
=⇒q2 with q2 ∼ f �p′2�. Hence,

�p1 | p2� = �p1� |�p2�
ε

=⇒q1 |q2, with q1 |q2 ∼ f �p′1� |�p′2� = �p′1 | p′2�, as required.

If p = p1 · p2 and p1 · p2
μ−→ p′, then we have two subcases: either p1

μ−→ p′1 and

p′ = p′1 · p2, or p1 ↓, p2
μ−→ p′2 and p′ = p′2. In the former case, by Lemma 5.6, we

have that �p1�
e
d

μ
=⇒q1 with q1 ∼ f �p′1�

e
d. We can prove by operational rules that
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�p1 · p2� = (νd)(�p1�
e
d |d.�p2�)

μ
=⇒ (νd)(q1 |d.�p2�)

with (νd)(q1 |d.�p2�) ∼ f (νd)(�p′1�
e
d |d.�p2�) = �p′1 · p2� by congruence, as re-

quired. In the latter case, as p1 ↓, we have that �p1�
e
d

d
=⇒q1 with q1 ↓ by Lemma

5.5. Moreover, as p2
μ−→ p′2, by induction we have that �p2�

μ
=⇒q2 with q2 ∼ f �p′2�.

It is possible to prove by operational rules that
�p1 · p2� = (νd)(�p1�

e
d |d.�p2�)

τ
=⇒ (νd)(q1 |�p2�)

μ
=⇒ (νd)(q1 |q2)

with (νd)(q1 |q2) ∼ f (νd)(q1 |�p′2�) by congruence, and (νd)(q1 |�p′2�) ∼ f �p′2�
by algebraic properties (see Exercise 5.34), as required. �

Lemma 5.7. For any p ∈ PCCSseq , for any choice of d,e new in p, if �p�e
d

μ−→q

(where μ �= τ ′), then there exists p′ such that p
μ−→ p′, with q∼ f �p′�e

d.

Proof. By induction on the proof of �p�e
d

μ−→q, where μ is not τ ′. We proceed by
case analysis.

p = μ.p1. In such a case, �μ.p1�
e
d = μ.�p1�

e
d

μ−→ �p1�
e
d, as well as μ.p1

μ−→ p1,
and �p1�

e
d ∼ f �p1�

e
d, as required.

p = Σ j∈J μ j.p j. Also this case is trivial. On the one hand, �Σ j∈J μ j.p j�
e
d =

Σ j∈J μ j.�p j�
e
d

μk−→ �pk�
e
d for any k ∈ J. On the other hand, Σ j∈J μ j.p j

μk−→ pk for any
k ∈ J. And �pk�

e
d ∼ f �pk�

e
d, as required.

p = p1 | p2. In this case, �p1 | p2�
e
d = (νe)((�p1�

d
e |�p2�

d
e ) |e.e.d.0)

μ−→q. There

are three subcases: �p1�
d
e

μ−→q1 and q=(νe)((q1 |�p2�
d
e ) |e.e.d.0); or �p2�

d
e

μ−→q2

and q = (νe)((�p1�
d
e |q2) |e.e.d.0); or μ = τ , �p1�

d
e

α−→q1, �p2�
d
e

α−→q2 and q =

(νe)((q1 |q2) |e.e.d.0). In the first case, by induction, we have that p1
μ−→ p′1, with

q1 ∼ f �p′1�
d
e . Hence, we also have p1 | p2

μ−→ p′1 | p2 by rule (Par1); moreover,
by congruence, q = (νe)((q1 |�p2�

d
e ) |e.e.d.0) ∼ f (νe)((�p′1�

d
e |�p2�

d
e ) |e.e.d.0) =

�p′1 | p2�
e
d, as required. The second case is symmetric, hence omitted. The third case

is left as an exercise.
p= p1 · p2. In this case, we have �p1 · p2�

e
d =(νe)(�p1�

d
e |e.�p2�

e
d)

μ−→q. We have

only one possibility: �p1�
d
e

μ−→q1 and q = (νe)(q1 |e.�p2�
e
d). By induction, we have

that p1
μ−→ p′1, with q1 ∼ f �p′1�

d
e . Hence, we also have p1 · p2

μ−→ p′1 · p2 by rule
(Seq1); moreover, by congruence, q = (νe)(q1 |e.�p2�

e
d) ∼ f (νe)(�p′1�

d
e |e.�p2�

e
d)

= �p′1 · p2�
e
d, as required.

p = (νa)p1. In this case, we have �(νa)p1�
e
d = (νa)�p1�

e
d

μ−→q, which is possi-

ble only if �p1�
e
d

μ−→q1 and q = (νa)q1. By induction, we have that p1
μ−→ p′1, with

q1 ∼ f �p′1�
e
d. Hence, we also have (νa)p1

μ−→ (νa)p′1 by rule (Res); moreover, by
congruence, q = (νa)q1 ∼ f (νa)�p′1�

e
d = �(νa)p′1�

e
d, as required.

p=C with C
de f
= p1. In this case, we have �C�e

d =Ced
α−→q, which is possible only

if �p1�
e
d

α−→q, as Ced
de f
= �p1�

e
d. By induction, we have p1

α−→ p′1, with q ∼ f �p′1�
e
d.

Hence, we have C α−→ p′1 by rule (Cons); moreover, we already have q∼ f �p′1�
e
d, as

required. �
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Proposition 5.9. For any p ∈PCCSseq , if �p�
μ−→q (with μ �= τ ′), then there exists

p′ such that p
μ−→ p′, with q∼ f �p′�.

Proof. By induction on the proof of �p�
α−→q. The proof is very similar to that of

Lemma 5.7. So we focus on a few cases only.
p = p1 | p2. In this case, �p1 | p2� = �p1� |�p2�

μ−→q. Three subcases are possi-
ble: �p1�

μ−→q1 and q = q1 |�p2�; or �p2�
μ−→q2 and q = �p1� |q2; or �p1�

α−→q1,

�p2�
α−→q2, μ = τ and q = q1 |q2. We consider only the third case, as the other

two are simpler. By induction, we have that p1
α−→ p′1, with q1 ∼ f �p′1�, as well as

p2
α−→ p′2, with q2 ∼ f �p′2�. Hence, we also have p1 | p2

τ−→ p′1 | p′2 by rule (Com);
moreover, by congruence, we have q= q1 |q2 ∼ f �p′1� |�p′2� = �p′1 | p′2�, as required.

p = p1 · p2. In this case, we have �p1 · p2� = (νe)(�p1�
d
e |e.�p2�)

μ−→q. We have
only one possibility: �p1�

d
e

μ−→q1 and q= (νe)(q1 |e.�p2�). By Lemma 5.7, we have
that p1

α−→ p′1, with q1 ∼ f �p′1�
d
e . Hence, we also have p1 · p2

α−→ p′1 · p2 by rule
(Seq1); moreover, by congruence, q = (νe)(q1 |e.�p2�) ∼ f (νe)(�p′1�

d
e |e.�p2�) =

�p′1 · p2�, as required. �

Theorem 5.6. (Correctness of the implementation) For any p∈PCCSseq , we have
that p � f �p�.

Proof. Let us consider relation R⊆PCCSseq ×PCCS defined as follows:

R = {(p,�p�)
∣∣ p ∈PCCSseq}

If we prove that R is an f-expansion up to � f (Definition 5.11), we get the thesis
p � f �p� because (p,�p�) ∈ R and R ⊆� f (Exercise 5.38). We proceed by cases,
according to Definition 5.11.

1) If p
μ−→ p′, then by Proposition 5.8, we have that there exists q such that

�p�
μ

=⇒q with q ∼ f �p′�; hence, also �p′� � f q. Summing up, to move p
μ−→ p′,

�p� replies with �p�
μ

=⇒q so that p′ ∼ f p′R�p′� � f q, as required.

2.a) If �p�
μ−→q, with μ �= τ ′, then by Proposition 5.9, there exists p′ such that

p
μ−→ p′ with q ∼ f �p′�; hence, also �p′� � f q. Summing up, to move �p�

μ−→q, p

replies with p
μ−→ p′ so that p′ � f p′R�p′� � f q, as required.

2.b) If �p�
τ ′−→q, then by Proposition 5.5 there exists p′ such that (i) p ∼ f p′

(and so also p � f p′), and (ii) �p′� � f q. Summing up, to move �p�
τ ′−→q, p replies

by idling (no move) so that p � f p′R�p′� � f q, as required.
3) If p ↓, then by Proposition 5.7, there exists q ↓ such that �p�

ε
=⇒q. The thesis

then follows as p∼ f 0R0 � f q.
4) If �p� ↓, then by Proposition 5.6, also p ↓, as required. �

Corollary 5.1. For any p ∈PCCSseq , we have that p≈ f �p�.

Proof. Since � f⊆≈ f , the thesis follows directly from Theorem 5.6. �
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Corollary 5.2. For any p1, p2 ∈ PCCSseq , we have that p1 ≈ f p2 if and only if
�p1� ≈ f �p2�. �

Exercise 5.39. Let CCSseq∗ be language extending CCSseq with the iteration con-
struct, discussed in Section 5.4.3. Prove that CCSseq∗ can be compiled into CCS,
up to ≈ f , by showing an encoding �−� from the former language into the latter.
(Hint: Define the encoding �−� as the composition of two encodings, the former
from CCSseq∗ into CCSseq, based on Exercise 5.29 (where the summand 1 should be
τ.0), the latter from CCSseq into CCS.) �

5.5 Replication

Replication is an elegant operator that allows for the definition of infinite-state be-
havior: with !p we denote a process that, intuitively, can spawn an unbounded num-
ber of copies of process p at each step. Contrary to recursion, it allows for a struc-
tural induction-based proof technique: in proving a property for !p, one can assume
that, by structural induction, that property holds for p. However, there are also cons
for the use of replication, e.g., the fact that !p generates a not-image-finite lts, in
general, as illustrated in Example 5.13. Moreover, replication is less expressive than
recursion, as we will see in the following.

Let CCS! be finite CCS enriched with the additional replication operator

p ::= 0
∣∣ μ.p

∣∣ p+ p
∣∣ p | p ∣∣ (νa)p

∣∣ !p

where !p can perform the actions prescribed by the SOS operational rule

(Rep)
p | !p

μ−→ p′

!p
μ−→ p′

which is not defined by structural induction, as the premise considers a source state,
p | !p, which is more complex than the source state, !p, of the conclusion. Let PCCS!
denote the set of CCS! processes.

Example 5.13. (Replication determines not image-finite lts’s) Consider the simple
CCS! process !p, where p = a.0. According to the SOS rules, !p a−→0 | !p as well
as !p a−→ ∏n

1 p |0 | !p for any n≥ 1. �

Note the similarities between process !(a.0) above and the unguarded process

constant C
de f
= a.0 |C discussed in Section 3.3.1. Indeed, replication can be imple-

mented in CCS by means of unguarded recursion. We can define a simple encoding
�−�1 from CCS! to CCS with unguarded recursion that is homomorphic on all the
finite CCS operators and defined for replication as follows:
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�!p�1 = Ap where Ap
de f
= �p�1 |Ap

It is a trivial exercise to show that relation R = {(p,�p�1)
∣∣ p ∈PCCS!} is a strong

bisimulation, hence proving the correctness of the implementation up to ∼. How-
ever, this solution is not very satisfactory, as we would like to implement CCS!
into finitary CCS, hence by means of guarded recursion only, up to ∼. But before
approaching this problem, let us describe some properties of replication.

Exercise 5.40. Prove that, for any p ∈PCCS! , the following property holds:

!p ∼ p | !p

(Hint: Check that relation R = {(!p, p | !p)}∪I is a bisimulation.) �

Proposition 5.10. If !p
μ−→ p′, then p′= p′′ | !p, where either p′ ∼ q | !p with p

μ−→q,

or μ = τ and p′ ∼ q |q′ | !p with p α−→q and p α−→q′.

Proof. By induction on the proof of !p
μ−→ p′ and using, whenever necessary, the

algebraic law !p ∼ p | !p and the congruence of ∼ w.r.t. parallel composition. By
rule (Rep), such a transition is derivable only if p | !p

μ−→ p′. Then, we have three
cases, corresponding to the three operational rules that can be used for parallel
composition.

First, by rule (Par1), if p
μ−→q, then p | !p

μ−→q | !p, with p′ = q | !p; the thesis
holds: p′ ∼ q | !p. This is the base case.

Second, by rule (Par2), if !p
μ−→ r, then p | !p

μ−→ p |r, with p′ = p |r. By in-
duction, we can assume that r = r′ | !p, where r is bisimilar either to q | !p with

p
μ−→q, or to q |q′ | !p with p α−→q and p α−→q′ and μ = τ . Summing up, transition

p | !p
μ−→ p′ = p |r is such that the reached state is p′ = p |r = p |r′ | !p∼ r′ | p | !p∼

r′ | !p = r, and so p′ ∼ r. Then, the thesis follows by transitivity: either p′ ∼ q | !p

with p
μ−→q, or p′ ∼ q |q′ | !p with p α−→ t and p α−→ t ′, as required.

Finally, the third case: by rule (Com), if p α−→q and !p α−→ r, then p | !p τ−→ p′,
with p′ = q |r. By induction, we can assume that r = r′ | !p, where r is bisimilar

to q′ | !p with p α−→q′. Summing up, transition p | !p τ−→ p′ = q |r is such that the
reached state is p′ = q |r = q |r′ | !p and p′ = q |r ∼ q |q′ | !p, with p α−→q and

p α−→q′, as required. �

Exercise 5.41. Prove that if !p−→∗ p′, then ∃n∈N such that p′ ∼∏n
i=1 pi | !p, where

for each i = 1, . . . ,n, p−→∗ pi.
(Hint: By induction on the definition of the reachability relation −→∗ : (i) for

each p, p−→∗ p, and (ii) if p−→∗ p′ and p′
μ−→ p′′, then p−→∗ p′′.) �

Exercise 5.42. (Congruence) Prove that for any p1, p2 ∈PCCS! , if p1 ∼ p2 then
!p1 ∼!p2. �
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Let us now introduce a different, more restrictive, replication operator ?p, that
we call duplication. CCS? denotes the language obtained by enriching finite CCS
with the additional duplication operator

p ::= 0
∣∣ μ.p

∣∣ p+ p
∣∣ p | p ∣∣ (νa)p

∣∣ ?p

where ?p can perform the actions prescribed by the following SOS operational rules,
defined by structural induction:

(Dup1)
p

μ−→ p′

?p
μ−→ p′ |?p

(Dup2)
p α−→ p′ p α−→ p′′

?p τ−→ p′ | p′′ |?p

Let PCCS? denote the set of CCS? processes. The main distinguishing feature of
CCS? is that its associated lts is finitely-branching. Indeed, the operational rules
for duplication ensure that the number of transitions leaving state ?p is given
by the number of transitions leaving p (by (Dup1)), plus all the possible self-
synchronizations of p with itself (by (Dup2)).

Exercise 5.43. (CCS? is finitely-branching) Prove that, for any p ∈PCCS? , the set

Tp = {p′
∣∣ ∃μ ∈ Act.p

μ−→ p′} is finite. (Hint: By structural induction on p.) �

Now we want to show that CCS! and CCS? are equally expressive. This is
achieved by providing two encodings in the two directions; the former �−�! :
PCCS! →PCCS? such that p ∼ �p�! for all p ∈PCCS! ; the latter �−�? : PCCS? →
PCCS! such that q∼ �q�? for all q ∈PCCS? .

The first encoding is homomorphic on all finite CCS operators and for repli-
cation is defined as follows: �!p�! =?�p�!. It is not difficult to check that R1 =
{(p,�p�!)

∣∣ p ∈ PCCS!} is a strong bisimulation up to ∼. In particular, the pair
(!p,?�p�!) is a bisimulation pair, thanks to Proposition 5.10. If !p performs μ by
reaching a state p′, then p′ is bisimilar either to q | !p with p

μ−→q, or to q |q′ | !p

with p α−→q and p α−→q′ and μ = τ .
In the former case, since p

μ−→q, then by induction we can assume that �p�! μ−→ r
with q∼ q R1 �q�! ∼ r. Therefore, by rule (Dup1), ?�p�! μ−→ r |?�p�! with r |?�p�! ∼
�q�! |?�p�! by congruence, and �q�! |?�p�! = �q | !p�!; summing up, to move !p

μ−→ p′

with p′ ∼ q | !p, process ?�p�! replies with ?�p�! μ−→ r |?�p�! so that p′ ∼ q | !p ∼
q | !p R1 �q | !p�! = �q�! |�!p�! ∼ r |?�p�!, as required.

In the latter case, since p α−→q and p α−→q′, by induction, we can assume that
�p�! α−→ r with q ∼ q R1 �q�! ∼ r as well as �p�! α−→ r′ with q′ ∼ q′ R1 �q′�! ∼ r′.
Therefore, by rule (Dup2), we derive that ?�p�! τ−→ r |r′ |?�p�!, with r |r′ |?�p�! ∼
�q�! |�q′�! |?�p�!, by congruence, and �q�! |�q′�! |?�p�! = �q |q′ | !p�!; summing up,
to move !p τ−→ p′ with p′ ∼ q |q′ | !p, process ?�p�! replies with ?�p�! τ−→ r |r′ |?�p�!

so that
p′ ∼ q |q′ | !p∼ q |q′ | !p R1 �q |q′ | !p�! = �q�! |�q′�! |?�p�! ∼ r |r′ |?�p�!

as required. The case when ?�p�! moves first is not more difficult, and so left as an
exercise for the reader.
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Similarly, the encoding in the opposite direction, �−�? : PCCS? →PCCS! , is de-
fined homomorphically on finite CCS operators, while for duplication is �?p�? =
!�p�?. Checking that R2 = {(p,�p�?)

∣∣ p ∈PCCS?} is a strong bisimulation up to∼
can be done similarly to the proof that R1 is a strong bisimulation up to∼. Therefore,
we can conclude that CCS! and CCS? are equally expressive. Note that ��p�!�? = p
as well as ��q�?�! = q, i.e., the two encodings are one the inverse of the other.

Now we want to show that CCS? can be implemented into finitary CCS, by pro-
viding an encoding �−�2 : PCCS? →PCCS defined homomorphically for all finite
CCS operators, while for ?p it is defined as follows:

�?p�2 = Bp with Bp
de f
= ∑(μi,pi)∈T (�p�2)

μi.(pi |Bp)+∑(pi,p′i)∈S(�p�2)
τ.(pi | p′i |Bp),

where T (�p�2)= {(μi, pi)
∣∣ �p�2

μi−→ pi} and S(�p�2)= {(pi, p′i)
∣∣ ∃α .�p�2

α−→ pi∧
�p�2

α−→ p′i}. It is not difficult to prove that R3 = {(p,�p�2)
∣∣ p ∈ PCCS?} is a

strong bisimulation. In particular, pair (?p,Bp) is a bisimulation pair. If ?p
μ−→ p′,

then p′ can be either q |?p in case p
μ−→q (rule (Dup1)), or q |q′ |?p in case μ = τ ,

p α−→q and p α−→q′ (rule (Dup2). In the former case, by induction we can as-
sume that �p�2

μ−→ �q�2, hence (μ,�q�2) ∈ T (�p�2). Therefore, by rule (Cons),
Bp

μ−→ �q�2 |Bp = �q |?p�2, as required. Similarly, for the latter case, we can as-

sume by induction that �p�2
α−→ �q�2 as well as �p�2

α−→ �q′�2, hence (�q�2,�q′�2)∈
S(�p�2). Therefore, by rule (Cons), Bp

μ−→ �q�2 |�q′�2 |Bp = �q |q′ |?p�2, as re-
quired. The case when Bp moves first is analogous, hence omitted.

Summing up, we can define an encoding �−� from CCS! to finitary CCS by com-
posing the encodings �−�! and �−�2, up to ∼, hence proving that CCS! is not more
expressive than finitary CCS.

As a matter of fact, it can be proven that finitary CCS is strictly more expressive
than CCS!, as the latter is not Turing-complete, so that no reasonable encoding of
finitary CCS into CCS! is possible. A process p satisfies the termination property if
all of its computations terminate. Formally, we can define the termination predicate
−‡ as the least subset of processes generated by the rule

∀q′ ∀μ.(q μ−→q′ implies q′‡)

q‡
,

stating that if all the states q′ reachable in one step are terminated, then also q is.
Note that this rule subsumes the fact that if q is a deadlock, then the implication in
the premise is vacuously true, and so q‡.

In finitary CCS the termination predicate−‡ is undecidable: if we could decide it,
then we would solve the halting problem for counter machines, which is not possible
for a Turing-complete formalism. As a matter of fact, following the presentation in
Section 3.5.3, TCMMx(v1,v2,v3) represents a deterministic finitary CCS process mod-
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eling faithfully the three-counter machine Mx with inputs v1, v2 and v3 for the three
counters, respectively. Of course, TCMMx(v1,v2,v3)‡, i.e., it will terminate its unique,
deterministic computation, if and only if Mx(v1,v2,v3) will terminate. Therefore, we
could redefine the halting problem for counter machines as follows (where y stands
for an encoding of the triple (v1,v2,v3)):

halt(x,y) =

{
1 if TCMMx(v1,v2,v3)‡
0 otherwise

On the contrary, [BGZ09] proves that the termination property −‡ is decidable
for CCS?, and so also for the equally expressive CCS!. This means that CCS! cannot
be Turing-complete: if such a language were expressive enough to model counter
machines faithfully,9 then we could solve the halting problem for them. In conclu-
sion, no termination-preserving encoding of finitary CCS into CCS! is possible.

By the argument above, we may be induced to think that replication, albeit
elegant and amenable for structural inductive reasoning, is a useless operator.
This is not the case. Replication was introduced in the context of the π-calculus
[MPW92, Par01, SW01], a calculus that originated from value-passing CCS, with
the distinguishing capability that the transmittable values can be used as channel
names. With this extra feature, it can be shown that recursion can be encoded into
replication. For an explanation of this fact, we refer you to [Par01, SW01].

5.5.1 Guarded Replication

Replication enjoys some interesting properties that are at the base of a possible sim-
plification of its definition which we will discuss in the following. The first propo-
sition states that replication is an idempotent operator, i.e., if applied twice to p, it
acts as if applied once: !(!p) ∼!p. Moreover, !p is invariant by composition with
copies of itself, i.e., !p | !p∼!p.

Proposition 5.11. (Idempotence of replication) Prove that for any p ∈PCCS! , the
following hold:

(i) !p ∼ !p | !p
(ii) !p ∼ !(!p)

Proof. For case (i), check that R1 = {(!p, !p | !p)}∪{(∏n
i=1 pi | !p,∏n

i=1 pi | !p | !p)
∣∣

n≥ 1 and for each i = 1, . . . ,n, p−→∗ pi} is a strong bisimulation up to ∼.
For case (ii), check that R2 = {(!p, !(!p))}∪{(∏n

i=1 pi | !p,∏n
i=1 pi | !p | !(!p))

∣∣
n≥ 1 and for each i = 1, . . . ,n, p−→∗ pi} is a strong bisimulation up to∼ (by using
also the law in (i)). �

9 By faithfully, we mean that the implementation of CMs is to be done in a deterministic manner.
However, [BGZ09] shows that a nondeterministic, weak encoding of counter machines in CCS? is
possible, with the feature that it does not preserve the termination property.
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The following propositions state that the replication operator can be distributed
over all the operators of finite CCS, except prefixing.

Proposition 5.12. (Distributivity of replication w.r.t. parallel composition) Prove
that for any p,q ∈PCCS! , the following hold:

(i) !(p |q) ∼ p | !(p |q)
(ii) !(p |q) ∼ q | !(p |q)
(iii) !(p |q) ∼ !p | !q

Proof. For case (i), check that relation
R1 = {(∏n

i=1 pi |∏m
j=1 q j | !(p |q), p |∏n

i=1 pi |∏m
j=1 q j | !(p |q)) ∣∣

n,m≥ 0, p−→∗ pi∀i,q−→∗ q j∀ j} ∪
{(∏n

i=1 pi |∏m
j=1 q j |q | !(p |q),∏n

i=1 pi |∏m
j=1 q j | !(p |q)) ∣∣

n,m≥ 0, p−→∗ pi∀i,q−→∗ q j∀ j}
is a strong bisimulation up to ∼. Note that when n,m = 0, we get the thesis as

follows: !(p |q)∼ 0 |0 | !(p |q) R1 p |0 |0 | !(p |q)∼ p | !(p |q).
For case (ii), a simple adaptation of R1 gives the required relation R2 (left as an

exercise).
For case (iii), by using the laws (i) and (ii) above, one can prove that relation
R3 = {(∏n

i=1 pi |∏m
j=1 q j | !(p |q),∏n

i=1 pi |∏m
j=1 q j | !p | !q) ∣∣

n,m≥ 0, p−→∗ pi∀i,q−→∗ q j∀ j}
is a strong bisimulation up to ∼. Note that when n,m = 0, we get the thesis as

follows: !(p |q)∼ 0 |0 | !(p |q) R3 0 |0 | !p | !q∼!p | !q. �

Exercise 5.44. (Sum and parallel composition are interchangeable under repli-

cation) Prove that, for any p,q ∈PCCS! , !(p+ q) ∼!(p |q). (Hint: Adapt relation
R3 in the proof of Proposition 5.12, and make use of the laws (i) and (ii) in that
proposition.) �

Proposition 5.13. (Distributivity of replication w.r.t. choice) Prove that for any
p,q ∈PCCS! , !(p+q)∼!p | !q.

Proof. By Exercise 5.44, !(p+q)∼!(p |q), and by Proposition 5.12, !(p |q)∼!p | !q;
hence the thesis by transitivity. �

Proposition 5.14. (Distributivity of replication w.r.t. restriction) Prove that for
any p ∈PCCS! , !((νa)p)∼ (νa)(!p) if ∏n

i=1 (νa)p∼ (νa)(∏n
i=1 p) for any n≥ 2.

Proof. It is enough to check that relation
R= {(∏n

i=1 (νa)pi | !((νa)p),(νa)(∏n
i=1 pi | !p))

∣∣ n≥ 0, p−→∗ pi∀i} is a bisim-
ulation up to∼ under the assumption that ∏n

i=1 (νa)p∼ (νa)(∏n
i= p) for any n≥ 2.

Note that when n = 0, we get the thesis as follows:
!((νa)p)∼ (νa)0 | !((νa)p) R (νa)(0 | !p)∼ (νa)(!p). �

Note that the premise ∏n
i=1 (νa)p ∼ (νa)(∏n

i=1 p) for any n ≥ 2 is necessary: if
we consider p = b.a.c.0+ a.0 (which does not satisfy the premise for n = 2), then
(νa)(!p) can perform the weak trace bc, while !((νa)p) cannot. Nonetheless, this
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premise is not too restrictive, i.e., there are many nontrivial processes that satisfy it,
e.g., p = b.a.c.0 |b.a.0.

By Proposition 5.11, 5.12, 5.13 and 5.14, it is clear that replication can be dis-
tributed over all the operators (with some limitations for restriction) till reaching
prefixed subprocesses only. For instance,

!((νb)(c.0+b.0) | !(a.0+ c.0)) ∼ !(νb)(c.0+b.0) | !(!(a.0+ c.0))
∼ (νb)!(c.0+b.0) | !(a.0+ c.0) ∼ (νb)(!c.0 | !b.0) |(!a.0 | !c.0)

Therefore, we can safely consider a sublanguage of CCS!, called CCSg!, for finite
CCS with guarded replication, defined as

p ::= 0
∣∣ μ.p

∣∣ !μ.p
∣∣ p+ p

∣∣ p | p ∣∣ (νa)p

which has essentially the same expressive power of CCS!. Following the discussion
about the merits of duplication over replication, the operational rule for guarded
replication can be defined as a variation of rule (Dupl1):

(G-rep)
!μ.p μ−→ p | !μ.p

This version of replication is sometimes used in the π-calculus [SW01].

5.6 Multi-party Synchronization

Another, quite interesting, operator is parallel composition for multi-party synchro-
nization, originally introduced in CSP [Hoa85, Ros98]. While in CCS synchroniza-
tion is point-to-point (strictly binary), in CSP it is multi-party, i.e., one single syn-
chronization step may involve many different sequential processes. In CSP the set
Act of actions is not partitioned into the subsets of input actions and output actions
(co-actions), as in CCS; so actions have no type. The parallel composition of two
processes, say p and q, is parametrized by a set of actions A⊆ Act \{τ}, called syn-
chronization set, and take the following syntactic form: p ‖A q. A synchronization
between p and q can occur only if both are able to perform the very same action
a ∈ A; the effect is that p ‖A q also performs action a; thus, contrary to CCS, the re-
sult of a synchronization is observable and it can be used for further synchronization
with other parallel subprocesses. Within p ‖A q, processes p and q cannot perform
asynchronously any action belonging to the synchronization set A; on the contrary,
p and q cannot synchronize on actions not belonging to A. Here are the operational
rules prescribing the behavior of the parametrized CSP parallel operator:
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(Csp1)
p

μ−→ p′

p ‖A q
μ−→ p′ ‖A q

μ �∈ A (Csp2)
q

μ−→q′

p ‖A q
μ−→ p ‖A q′

μ �∈ A

(Csp3)
p a−→ p′ q a−→q′

p ‖A q a−→ p′ ‖A q′
a ∈ A

A simple example may help clarify how multi-party synchronization can take
place in CSP. Let us consider process (a.0 ‖{a} a.0) ‖{a} a.0. The following proof
tree shows how to derive transition (a.0 ‖{a} a.0) ‖{a} a.0 a−→ (0 ‖{a} 0) ‖{a} 0:

(Pref)
a.0 a−→0

(Pref)
a.0 a−→0(Csp3)

a.0 ‖{a} a.0 a−→0 ‖{a} 0
(Pref)

a.0 a−→0
(Csp3)

(a.0 ‖{a} a.0) ‖{a} a.0 a−→ (0 ‖{a} 0) ‖{a} 0

Of course, as the result of a synchronization is observable, it is necessary to con-
fine the visibility of names by means of the hiding operator (ιa)p, discussed in
Section 5.2. A process (ιa)(p1 ‖{a} p2) ‖{a} q is such that p1 and p2 can synchro-
nize over action a, which is then turned into τ by hiding, so that q cannot interact
with them over action a. For instance, if p1 = p2 = q = a.0, the only possible transi-
tion is (ιa)(p1 ‖{a} p2) ‖{a} q τ−→ ((ιa)(0 ‖{a} 0)) ‖{a} q, while q is stuck: it cannot
execute a asynchronously (the side condition of rule (Csp2) is not satisfied), nor
synchronously by rule (Csp3) because (ιa)(p1 ‖{a} p2) cannot offer any a-labeled
transition. Note that a similar effect of scoping is provided in CCS by restriction.

CSP parallel composition enjoys a few algebraic properties. It is commutative:
p ‖A q∼ q ‖A p. It is associative when the indexing synchronization set is the same
for both occurrences of the parallel operator — p ‖A (q ‖A r)∼ (p ‖A q) ‖A r — but
it is not associative in general; for instance, (a.b.0 ‖{b} b.0) ‖{a} a.b.0 can perform
trace abb, while this is not possible for a.b.0 ‖{b} (b.0 ‖{a} a.b.0). Moreover, the
neutral element for parallel composition is not 0, but rather a recursive process con-

stant parametrized on A: p ‖A CA ∼ p, where CA
de f
= ∑a∈A a.CA. It is also easy to see

that p ‖A 0∼ (νA)p.
A natural question arises about whether it is possible to encode CSP parallel

composition into finitary CCS in a compositional way, up to any sensible notion
of equivalence. The answer to this question is negative, as we will see in the next
chapter. If we want to encode CSP parallel composition into CCS, we have to ex-
tend CCS’s capabilities somehow. As a matter of fact, the next chapter introduces
an extension to CCS, called Multi-CCS. Its main feature is that it includes one addi-
tional operator, called strong prefixing, that allows for the implementation of atomic
sequences. In this setting, a multi-party synchronization can be implemented as an
atomic sequence of binary CCS synchronizations. See Section 6.5.3 for more details
about (a variant of) CSP and for an encoding of CSP parallel composition operator
into Multi-CCS.



Chapter 6

Multi-CCS

Abstract We present Multi-CCS, an extension to CCS obtained by introducing one
additional operator of prefixing, α.p, called strong prefixing (as opposed to normal
prefixing, μ.p), with the capability of expressing atomic sequences of actions and,
together with parallel composition, also multi-party synchronization.

6.1 Lack of Expressiveness of CCS

As we have seen in Section 3.5, CCS is a Turing-complete formalism, i.e., it has
the ability to compute all the computable functions. Therefore, one may think that
it is able to solve any kind of problem. Unfortunately this is not the case: Turing-
completeness is not enough to ensure the solvability of all the problems in concur-
rency theory. For instance, it is well known that a classic solution to the famous din-
ing philosophers problem [Dij71] (see below for details) that assumes atomicity in
the acquisition of forks (or, equivalently, that requires a three-way synchronization
among one philosopher and the two forks), cannot be given in CCS. An extension
to CCS able to solve this problem, among others, is the subject of this chapter.

6.1.1 Dining Philosophers Problem

This famous problem, proposed by Dijkstra in [Dij71] and then elaborated on by
Hoare [Hoa85] in its current formulation, is defined as follows. Five philosophers
sit at a round table, with a bowl of spaghetti in the middle; each philosopher is
equipped with a private plate; there are only five forks, each one placed between
two adjacent neighbors. Philosophers can think and eat; in order to eat spaghetti, a
philosopher has to acquire both forks that he shares with his neighbors; of course,
one fork (or even both) may be unavailable and so the philosopher can only think
in the meanwhile. As a matter of fact, if a philosopher eats, then his two neighbors
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260 6 Multi-CCS

cannot eat: eating can happen in mutual exclusion w.r.t. the neighbors, so that at
most two philosophers can eat at the same time. After a philosopher finishes eating,
he has to put down both forks, so that they become available to his neighbors. The
problem is to conceive a suitable algorithm that satisfies at least one of the following
properties:

• deadlock-freeness: no reachable state is a deadlock; this ensures that all the com-
putations can be extended ad infinitum;

• weak non-starvation: not only can all the computations be extended ad infinitum,
but also for any never-ending computation there is at least one philosopher who
eats infinitely often; this means that not all hungry philosophers starve;

• strong non-starvation: as above, with the additional constraint that for any com-
putation each time a philosopher wants to eat, he will eat eventually; this means
that no hungry philosopher will starve.

Of course, if an algorithm ensures strong non-starvation, then it also ensures weak
non-starvation; analogously, weak non-starvation implies deadlock-freeness.

We are interested in a solution to this problem that satisfies the following con-
straints:

• fully distributed: there is no central memory to which all the philosophers can
have access, nor a global scheduler that coordinates the activities of the philoso-
phers;

• symmetric: all philosophers are identical.

A first tentative solution in CCS to this problem can be given as follows, where
for simplicity’s sake we consider the subproblem with two philosophers only. The
two forks can be defined by the constants Fi,

Fi
de f
= upi.dni.Fi for i = 0,1,

where the complementary action upi (pick forki up) and dni (put forki down) are to
be performed by the philosopher willing to use that fork. The two philosophers can
be described as

Pi
de f
= think.Pi +upi.upi+1.eat.dni.dni+1.Pi for i = 0,1,

where i+1 is computed modulo 2 (i.e., up2mod 2 is up0). A philosopher can think or
can begin the procedure for the acquisition of both forks, starting from the one with
his index (we may assume it is the one on his right); when he has got both forks,
then he can eat, and when he has finished eating, he has to put down both forks in
the same order in which they have been grabbed. The whole system is

DP
de f
= (νL)(((P0 |P1) |F0) |F1),

where L = {up0,up1,dn0,dn1}.
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Fig. 6.1 The two dining philosophers in CCS, with deadlock
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Fig. 6.2 The deadlock-free asymmetric solution of the two dining philosophers problem

Clearly this naı̈ve solution would cause a deadlock when the two philosophers
take the fork at their right at the same time and are waiting for the fork at their left.
This is illustrated in Figure 6.1, where the state DPd is a deadlock:

DPd
de f
= (νL)(((P′0 |P′1) |F ′0) |F ′1)

P′i
de f
= upi+1.eat.dni.dni+1.Pi for i = 0,1

F ′i
de f
= dni.Fi for i = 0,1

A well-known solution to this problem is breaking the symmetry by inverting the
order of acquisition of the forks for the last philosopher. In our restricted case with
two philosophers only, we have that

P′′0
de f
= think.P′′0 +up0.up1.eat.dn0.dn1.P′′0

P′′1
de f
= think.P′′1 +up0.up1.eat.dn1.dn0.P′′1

and the whole system is now

DP′ de f
= (νL)(((P′′0 |P′′1 ) |F0) |F1),
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Fig. 6.3 The symmetric solution of the two dining philosophers problem, with divergence

whose LTS is depicted in Figure 6.2. This solution works correctly (i.e., it satisfies
deadlock-freeness), but it is not compliant with the specification that requires that
all philosophers be defined in the same way.

A simple, well-known solution is to forcing atomicity on the acquisition of the
two forks so that either both are taken or none. This requirement can be satisified
approximately in CCS by defining a philosopher as

P′′′i
de f
= think.P′′′i +upi.(dni.P′′′i +upi+1.eat.dni.dni+1.P′′′i ) for i = 0,1,

where, in case the second fork is unavailable, the philosopher may put down the first
fork and return to his initial state. However, the new system

DP′′ de f
= (νL)(((P′′′0 |P′′′1 ) |F0) |F1),

whose LTS is depicted in Figure 6.3, even if deadlock-free, may now diverge: the
two philosophers may be engaged in a never-ending divergent computation because
the long operation of acquisition of the two forks may always fail.

Remark 6.1. (Is DP′′ a sensible solution?) It is not difficult to prove that the
deadlock-free, asymmetric solution DP′ and the divergent, symmetric solution DP′′
are weakly bisimilar, so that, to some extent, we could consider DP′′ a reasonable so-
lution as well. According to the discussion after Exercise 2.71, this equality makes
sense under an assumption of fairness: if a philosopher has the possibility of ac-
quiring his second fork infinitely often (i.e., he reaches state DP′′0 or DP′′4 infinitely
often), then he will eventually grab it. This is indeed what the model in Figure 6.3
shows: any never-ending internal computation must pass through state DP′′0 or DP′′4
infinitely often so that, by fairness, we can assume that the other fork will be even-
tually grabbed. Nonetheless, divergence is a possible behavior and it is unrealistic
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in this setting to ignore it, as weak bisimilarity does. Moreover, in practice a deeper
form of divergence is indeed possible when the two philosophers work somehow
synchronously: both acquire the fork on their right at the same time and then, since
the other fork is unavailable, both put down their fork at the same time, reaching
the initial state and so possibly repeating this cycle forever: a sort of livelock due to
synchronous timing of the philosophers’ activities. This kind of behavior is not ex-
plicitly represented in the interleaving model of Figure 6.3: it could be represented
by an additional internal transition from DP′′ to DP′′d and by its reverse internal
transition. Such a richer model may be obtained by the so-called step semantics we
will discuss in Section 6.3.2. In this enriched model, the never-ending computation
that alternates between states DP′′ and DP′′d is such that both philosophers never
have the possibility of grabbing the other fork: it is a sort of resource starvation. In
conclusion, even though DP′′ and DP′ are weakly bisimilar, we argue that solution
DP′′ should not be considered feasible as divergence is an important aspect of its
behavior. �

Unfortunately, a deadlock-free, divergence-free solution that implements cor-
rectly the atomic acquisition of the two forks cannot be programmed in CCS be-
cause it lacks any construct for atomicity that would also enable a multi-party syn-
chronization between one philosopher and the two forks. Indeed, on the one hand,
Francez and Rodeh proposed in [FR80] a symmetric, fully distributed, deterministic,
deadlock-free solution to the dining philosophers problem in (the original version
of) CSP [Hoa78] by exploiting its ability to test (and set) atomically many con-
ditions in a guarded command, which has the same effect as allowing for multi-
party synchronization (see also Section 6.5.3 for a simple CSP solution, which
is also divergence-free, to this problem). On the other hand, Lehmann and Rabin
demonstrated that a symmetric, fully distributed, deterministic, deadlock-free (and
divergence-free) solution does not exist in a language with only binary synchroniza-
tion such as CCS [LR81, RL94].1 Hence, if we want to solve this problem, we have
to extend the capabilities of CCS.

6.1.2 Strong Prefixing: An Operator for Atomicity

We enrich CCS with an additional operator, α.p, called strong prefixing (originally
introduced in [GMM90]), where α is the first visible action of a transaction (i.e.,
an atomic sequence of visible actions) that continues with the sequential process p,
provided that p can complete the transaction. Its operational SOS rule is

(S-Pref)
p σ−→ p′

α.p α"σ−→ p′
where α "σ =

{
α if σ = τ ,
ασ otherwise,

1 The divergence-free condition is not explicitly stated in their proof, but their argument can be
adapted easily to take also this constraint into account.
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eat.dni.dni+1.Pidni.dni+1.Pi
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think

upiupi+1dnidni+1

eat

Fig. 6.4 The labeled transition system for philosopher Pi

where σ is either a single action, or a nonempty sequence of visible actions; more
precisely, σ ranges over A = {τ}∪(L ∪L )+, and so α "σ ranges over (L ∪L )+.

Rule (S-Pref) allows for the creation of transitions labeled with a nonempty se-
quence of observable actions. For instance, a.(b.0+c.0) can perform two transitions
reaching state 0: one labeled with sequence ab, the other one with ac, as illustrated
by the following proof trees:

(Pref)

b.0 b−→0(Sum1)

b.0+ c.0 b−→0
(S-Pref)

a.(b.0+ c.0) ab−→0

(Pref)
c.0 c−→0(Sum2)

b.0+ c.0 c−→0
(S-Pref)

a.(b.0+ c.0) ac−→0

In order for α.p to make a move, it is necessary that p be able to perform a
transition, i.e., the rest of the transaction. Hence, if p σ−→ p′ then α.p α"σ−→ p′. Note
that α .0 cannot execute any action, as 0 is deadlocked. If a transition is labeled with
σ = α1 . . .αn−1αn, then all the actions α1 . . .αn−1 are due to strong prefixes, while
αn is due to a normal prefix (or αn is a strong prefix followed by a normal prefix τ).

Exercise 6.1. Show that α.0∼ 0 and also that a.τ.p∼ a.p. Draw the LTS for a.b.0 +
a.c.0 and show that it is bisimilar to a.(b.0+ c.0). �

Example 6.1. (Philosopher with atomic acquisition of forks) With the help of
strong prefixing, we can now describe the two philosophers as

Pi
de f
= think.Pi +upi.upi+1.eat.dni.dni+1.Pi for i = 0,1,

where i+ 1 is computed modulo 2 and the atomic sequence upiupi+1 models the
atomic acquisition of the two forks. For simplicity, we assume also that the release
of the two forks is atomic, but this is not necessary for correctness. The LTS for Pi
is depicted in Figure 6.4. �

Is strong prefixing a good operator for atomicity? To answer this question we
should first answer the following: what do we really mean by atomicity? The exe-
cution of a sequence of actions is atomic if such execution is
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Fig. 6.5 Two labeled transition systems

• all-or-nothing: the sequence is either executed completely, or not at all; this im-
plies that the process is not observable during the execution of such a sequence,
but only before and after that; and

• non-interruptible: no other process can interrupt its execution; this implies that
the atomic sequence is never interleaved with others.

Of course, strong prefixing ensures the all-or-nothing property: by rule (S-Pref),
a.b.0 can only perform a transition to 0 labeled ab and its execution is either com-
pleted or not done at all; the semantic model does not represent the intermediate
state of the execution where action a has been performed but b not yet. Moreover,
the situation when the atomic execution may fail in the middle and needs recovery
is not modeled at all.

And what about non-interruptibility? What happens when we put a process α.p
in parallel with another process? For instance, if we take q = a.b.0 |c.0, then the
obvious generalization of the CCS operational rules (Par1) and (Par2) of Table 3.1
ensure that the LTS for q is the one shown on the left of Figure 6.5. If we compare
this LTS with the one on the right of Figure 6.5 for the CCS process q′ = a.b.0 |c.0,
we note that the sequence acb is a trace for q′ but not for q: indeed, the atomic
sequence ab cannot be interleaved with the action c of the other parallel component,
hence non-interruptibility is ensured.

Summing up, strong prefixing is a good operator for atomicity, even if it allows
for the execution of atomic sequences only. More general operators for atomicity
are described in the literature: for instance, 〈p〉 means that process p as a whole is
executed atomically (see, e.g., [DG91, GR01] and the references therein).
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Sync(α,α,τ)

σ �= ε

Sync(ασ ,α,σ)

σ �= ε

Sync(α,ασ ,σ)

Sync(σ ,α,τ)

Sync(βσ ,α,β )

Sync(α,σ ,τ)

Sync(α,βσ ,β )

Sync(σ ,α,σ1)

Sync(βσ ,α,βσ1)

Sync(α,σ ,σ1)

Sync(α,βσ ,βσ1)

Table 6.1 Synchronization relation Sync, where β �= α

6.1.3 Multi-party Synchronization

Rule (Com) of Table 3.1 must be extended, as now transitions are labeled on se-
quences of actions. The new rule is

(S-Com)
p

σ1−→ p′ q
σ2−→q′

p |q σ−→ p′ |q′
Sync(σ1,σ2,σ),

which has a side condition on the possible synchronizability of sequences σ1 and
σ2, whose result is σ . When should Sync(σ1,σ2,σ) hold? As (S-Com) is a general-
ization of the CCS rule (Com), we should require that the basic condition expressed
in rule (Com) be feasible: Sync(α,α,τ). We can generalize this idea by permitting
a synchronization between an atomic sequence ασ (with σ �= ε) and a single ac-
tion α , as expressed by Sync(ασ ,α,σ) and Sync(α,ασ ,σ). Note that since the
resulting σ is not τ , it can be used for a possible synchronization with an additional

process r: since p |q σ−→ p′ |q′, if r σ ′−→ r′, then (p |q) |r σ ′′−→ (p′ |q′) |r′, provided that
Sync(σ ,σ ′,σ ′′), hence representing a form of ternary synchronization, realized by
means of an atomic sequence of binary synchronizations. Moreover, it is convenient
to permit a synchronization of a sequence σ with an action α even if action α occurs
in σ , but not at the beginning; so, other rules are needed.

Relation Sync is formally defined by the axioms and the rules of Table 6.1.
Sync(σ1,σ2,σ) holds if at least one of the two sequences is a single action, say
σ1 = α , to be synchronized with the first occurrence of its complementary co-
action α within the sequence σ2. Note that it is not possible to synchronize two se-
quences. This means that, usually, a multi-party synchronization takes place among
one leader, i.e., the process performing an atomic sequence σ , and a number of
components (the servants) less than or equal to the length of σ , where each servant
contributes one visible action only. This is strictly the case for so-called well-formed
processes, i.e., processes that do not allow for the synchronization of two sequences,
not even indirectly (see Section 6.2.2). However, more elaborate forms of synchro-
nization are possible, as illustrated in Example 6.6, for non-well-formed processes.
While the three axioms of Table 6.1 enable a synchronization at the beginning of
a sequence, the four rules enable a synchronization in the middle of a sequence, as
clarified by the following example.
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Example 6.2. By using the rules in Table 6.1, we prove that Sync(abac,a,bac) and
Sync(abac,c,aba) as follows:

bac �= ε
Sync(abac,a,bac)

Sync(c,c,τ)
Sync(ac,c,a)

Sync(bac,c,ba)
Sync(abac,c,aba)

Note that Sync(abac,a,abc) is not derivable because the synchronization may
take place with the first occurrence of a only, as shown above; indeed, the four rules
of the second row of Table 6.1 are applicable only if β �= α .

This example also shows that Sync is a (partial) function of its first two argu-
ments, as the result of the synchronization of a sequence with an action, if defined,
is unique. �

We list some useful properties of the synchronization relation Sync.

Proposition 6.1. (Sync is deterministic) For any σ ′ ∈ A which contains at least
one occurrence of action α , there exists exactly one sequence σ ′′ ∈ A such that
Sync(σ ′,α,σ ′′) and Sync(α,σ ′,σ ′′).

Proof. By induction on the length of σ ′. �

Exercise 6.2. (Commutativity of Sync) Prove that for any σ1,σ2,σ ∈A such that
Sync(σ1,σ2,σ), also Sync(σ2,σ1,σ) holds. �

Proposition 6.2. (Swap of synchronizations) For any σ1,σ2,σ3 ∈ A , if we have
Sync(σ1,σ2,σ ′) and Sync(σ ′,σ3,σ), then there exists a sequence σ ′′ such that ei-
ther Sync(σ1,σ3,σ ′′) and Sync(σ2,σ ′′,σ), or Sync(σ2,σ3,σ ′′) and Sync(σ1,σ ′′,σ).

Proof. By definition of Sync, σ ′ must be a sequence (possibly of length one) of visi-
ble actions; so, either σ1 or σ2 (but not both) is an atomic sequence (of length two
or more) , while the other is a single action. W.l.o.g., assume σ1 = σ and σ2 = α2;
since the two can synchronize, σ must contain an occurrence of α2; by Proposition
6.1, there is only one σ ′ such that Sync(σ1,σ2,σ ′), the one obtained from σ1 by can-
celing the first occurrence of α2. Since Sync(σ ′,σ3,σ), σ3 must be a single action,
say α3, and σ ′ must contain an occurrence of α3. By Proposition 6.1, the resulting
σ is obtained from σ ′ by canceling the first occurrence of α3. Of course, also σ1
must contain an occurrence of α3. As a consequence, Sync(σ1,σ3,σ ′′), where σ ′′ is
obtained from σ1 by canceling the first occurrence of α3; hence, σ ′′ must contain
an occurrence of α2, so that Sync(σ2,σ ′′,σ). �

Example 6.3. (Dining Philosophers with multi-party synchronization) Continu-
ing Example 6.1, we define the complete two dining philosophers system DP as

DP
de f
= (νL)(((P0 |P1) |F0) |F1),



268 6 Multi-CCS

DP

think

τ τeat eat

τ τ

think think thinkthink

Fig. 6.6 The solution with atomic acquisition (and atomic release) of the two forks

up1.P′0
up1−→P′0

up0.up1.P′0
up0up1−→ P′0

think.P0 +up0.up1.P′0
up0up1−→ P′0

P0
up0up1−→ P′0

P0 |P1
up0up1−→ P′0 |P1

up0.F ′0
up0−→F ′0

F0
up0−→F ′0

(P0 |P1) |F0
up1−→ (P′0 |P1) |F ′0

up1.F ′1
up1−→F ′1

F1
up1−→F ′1

((P0 |P1) |F0) |F1
τ−→ ((P′0 |P1) |F ′0) |F ′1

(νL)(((P0 |P1) |F0) |F1)
τ−→ (νL)(((P′0 |P1) |F ′0) |F ′1)

DP τ−→ (νL)(((P′0 |P1) |F ′0) |F ′1)

Table 6.2 Multi-party synchronization among dining philosopher P0 and the two forks

where L = {up0,up1,dn0,dn1} and F0,F1 are described as in Section 6.1.1. The
operational semantics generates a finite-state LTS for DP, depicted in Figure 6.6.
Here we want to show how the multi-party synchronization of a philosopher with
the two forks takes place. The transition

DP τ−→ (νL)(((P′0 |P1) |F ′0) |F ′1),

where P′i = eat.dni.dni+1.Pi and F ′i = dni.Fi, is proved in Table 6.2. �

Remark 6.2. (Is DP a fully distributed solution?) It may debatable if this solution,
based on multi-party synchronization, is to be considered fully distributed. On the
one hand, the Multi-CCS specification DP, presented in Example 6.3, is not using
any shared memory or global coordinator, so we can say that the specification DP is
distributed at this abstract level of description. On the other hand, a truly distributed,
deterministic implementation of the multi-party synchronization mechanism seems
not to exist [LR81, RL94, FR80]. �

Remark 6.3. (Is DP a correct solution?) Looking at Figure 6.6, one may imme-
diately note that DP is deadlock-free and divergence-free. However, this solution
does not ensure weak non-starvation because there are never-ending computations
in which no philosopher eats infinitely often: e.g., one philosopher, after having
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(νL)(((AP0 |AP1) |F0) |F1)

(νL)(((AP0 |U1) |F0) |F1) (νL)(((U0 |AP1) |F0) |F1)

(νL)(((U0 |U1) |F0) |F1)

(νL)(((E0 |AP1) |T0) |T1) (νL)(((AP0 |E1) |T0) |T1)

(νL)(((E0 |U1) |T0) |T1) (νL)(((U0 |E1) |T0) |T1)

(νL)(((D0 |AP1) |T0) |T1) (νL)(((AP0 |D1) |T0) |T1)

(νL)(((D0 |U1) |T0) |T1) (νL)(((U0 |D1) |T0) |T1)

think think

think think

τ τ

τ τ

eat eat
think think

eat
eat

think think

τ τ

τ τ

Fig. 6.7 The LTS for ADP

eaten, never releases the forks and the other thinks forever. In order to overcome
this problem, one can define a more realistic version of the philosopher which alter-
nates between the two phases of thinking and eating. The alternating philosopher
APi is defined as

APi
de f
= think.Ui Ui

de f
= upi.upi+1.Ei

Ei
de f
= eat.Di Di

de f
= dni.dni+1.APi

where he first thinks, then acquires the forks, then eats, then releases the forks in
a cyclic, never-ending behavior. Contrary to what happens for Pi, progress is not
always ensured: if the forks are unavailable, the alternating philosopher is stuck.
The whole system ADP can be defined as

ADP
de f
= (νL)(((AP0 |AP1) |F0) |F1),

where L = {up0,up1,dn0,dn1} and the fork Fi is defined as usual

Fi
de f
= upi.Ti Ti

de f
= dni.Fi

The operational semantics generates the finite-state, deadlock-free LTS, without
self-loop transitions, of Figure 6.7. It is not difficult to see that ADP satisfies the
weak non-starvation property: in any never-ending computation at least one philoso-
pher eats infinitely often. However, it does not satisfy the strong non-starvation
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property because there is no fairness guarantee in the behavior: the race for the ac-
quisition of the two forks may be always won by the same philosopher. See Section
6.4.2 for a solution ensuring strong non-starvation. �

Exercise 6.3. Consider the Multi-CCS process (a.b.p |b.q) |a.r. Give the proof of
transition (a.b.p |b.q) |a.r τ−→ (p |q) |r, showing how the ternary synchronization
takes place. (Hint: Solution in Example 6.4.) �

Exercise 6.4. (n-ary synchronization) Consider the leader process

p0 = a1.a2. . . .an−2.an−1.p′0

and the servant processes pi = ai.p′i, for i = 1, . . . ,n−1 with n≥ 3.
Argue that transition

(. . .((p0 | p1) | p2) | . . .) | pn−1
τ−→ (. . .((p′0 | p′1) | p′2) | . . .) | p′n−1

is derivable, i.e., the n processes have synchronized in one atomic transaction. �

6.2 Syntax and Operational Semantics

As for CCS, assume we have a denumerable set L of channel names (inputs),
its complementary set L of co-names (outputs), the set L ∪L (ranged over by
α,β , . . .) of visible actions and the set of all actions Act = L ∪L ∪{τ}, such that
τ �∈L ∪L , ranged over by μ . The Multi-CCS process terms are generated by the
following abstract syntax, where we are using two syntactic categories: p, to range
over sequential processes (i.e., processes that start sequentially), and q, to range over
any kind of processes,

p ::= 0
∣∣ μ.q

∣∣ α.p
∣∣ p+ p sequential processes

q ::= p
∣∣ q |q ∣∣ (νa)q

∣∣ C processes,

where the only new operator is strong prefixing, which takes a visible action α
and a sequential process p to produce process α.p. We denote with PM the set
of Multi-CCS processes, containing any Multi-CCS term p such that each process
constant in the set Const(p) is defined and guarded. To be precise, the definition
of guardedness for Multi-CCS constants is the same as for CCS, given in Defi-
nition 3.3, in that it considers only normal prefixes, and not strong prefixes; see
also Remark 6.5 in Section 6.2.3. Note that Multi-CCS is a proper syntactic ex-
tension to CCS, i.e., any CCS process is also a Multi-CCS process: P ⊆PM . In
the following, we will restrict our attention to finitary Multi-CCS, i.e., to the set
{p ∈PM

∣∣ Const(p) is finite}, where function Const(−) is extended to strong pre-
fixing in the obvious way, Const(α.p) = Const(p).
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(Pref)
μ.p μ−→ p

(Cong)
p≡ p′ σ−→q′ ≡ q

p σ−→q

(Sum1)
p σ−→ p′

p+q σ−→ p′
(Sum2)

q σ−→q′

p+q σ−→q′

(Par1)
p σ−→ p′

p |q σ−→ p′ |q
(Par2)

q σ−→q′

p |q σ−→ p |q′

(S-Pref)
p σ−→ p′

α.p α"σ−→ p′
α "σ =

{
α if σ = τ ,
ασ otherwise

(S-Res)
p σ−→ p′

(νa)p σ−→ (νa)p′
a,a �∈ n(σ)

(S-Com)
p

σ1−→ p′ q
σ2−→q′

p |q σ−→ p′ |q′
Sync(σ1,σ2,σ)

Table 6.3 Operational rules for Multi-CCS

We extend the definition of free names F(p, I) (Definition 4.1) and bound names
B(p, I) (Definition 4.2) to strong prefixing as follows:

F(a.p, I) = F(a.p, I) = F(p, I)∪{a}
B(α.p, I) = B(p, I)

The operational semantics for Multi-CCS is given by the labelled transition
system TSM = (PM,A , −→ ), where the states are the processes in PM , A =
{τ}∪(L ∪L )+ is the set of labels (ranged over by σ ), and −→ ⊆PM×A ×PM
is the minimal transition relation generated by the rules listed in Table 6.3.2

The new rules (S-Pref) and (S-Com) have been already discussed. Rule (S-Res)
is slightly different, as it requires that no action in σ can be a or a. With n(σ)
we denote the set of all actions occurring in σ . Formally: n(μ) = {μ}, n(ασ) =
{α}∪n(σ). For instance, n(abac) = {a,b,c} and n(τ) = {τ}.

There is one further new rule, called (Cong), which makes use of a structural
congruence≡, which is needed to overcome a shortcoming of parallel composition:
without rule (Cong), parallel composition is not associative.

Example 6.4. (Parallel composition is not associative, without (Cong)) Consider
process (a.b.p |b.q) |a.r of Exercise 6.3. You should have already observed that
the ternary synchronization among them, (a.b.p |b.q) |a.r τ−→ (p |q) |r, can take
place, as proved in Table 6.4. However, if we consider the very similar process
a.b.p |(b.q |a.r), then we can see that a.b.p is not able to synchronize with both b.q

2 Strictly speaking, according to Definition 2.2, TSM is not a labeled transition system because its
set of labels is not a subset of Act. In this chapter we use a generalization of LTS where the set of
its labels can be much richer, e.g., A for TSM ; see also Section 6.3.2.
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b.p b−→ p

a.b.p ab−→ p b.q b−→q

a.b.p |b.q a−→ p |q a.r a−→ r

(a.b.p |b.q) |a.r τ−→ (p |q) |r

Table 6.4 Multi-party synchronization among three processes

and a.r at the same time! Indeed, on the one hand a.b.p ab−→ p; on the other hand,
b.q |a.r can only offer either b (if the left component moves) or a (if the right com-
ponent moves), but there is no way to offer both the needed actions in one transition,
and so no ternary synchronization can take place. This means that parallel compo-
sition is not associative, unless a suitable structural congruence ≡ is introduced,
together with the operational rule (Cong) (see Example 6.5 for the continuation of
this example).

Similarly, in Example 6.3, we have shown that the ternary synchronization be-
tween the philosopher P0 and the two forks can really take place:

DP τ−→ (νL)(((P′0 |P1) |F ′0) |F ′1)

However, if we consider the slightly different system

DPas
de f
= (νL)(((P0 |P1) |(F0 |F1))

then we can see that there is no way for a philosopher to synchronize with both
forks! Indeed, (F0 |F1) can only offer either up0 or up1. Hence, also this example
shows that parallel composition is not associative without rule (Cong). �

Since associativity is an important property that any natural parallel composi-
tion operator should enjoy, we have to overcome this shortcoming by introducing a
suitable structural congruence ≡ and an associated operational rule (Cong).

Given a set of axioms E, the structural congruence ≡E⊆P×P is the congru-
ence induced by the axioms in E. In other words, p ≡E q if and only if E � p = q,
i.e., p can be proved equal to q by means of the equational deductive system D(E),
composed of the rules in Table 4.1. of Section 4.3.1.

Rule (Cong) makes use of the structural congruence ≡ on process terms induced
by the five equations in Table 6.5.

Axioms E1 and E2 are for associativity and commutativity, respectively, of the
parallel operator. Axiom E3 is for unfolding and explains why we have no explicit
operational rule for handling constants in Table 6.3: the transitions derivable from

C are those transitions derivable from the structurally congruent term p if C
de f
= p.

As a matter of fact, the operational rule (Cons) for constants is subsumed by the
following instance (Cong-c) of rule (Cong):
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E1 (p |q) |r = p |(q |r)
E2 p |q = q | p
E3 A = q if A

de f
= q

E4 (νa)(p |q) = p |(νa)q if a �∈ fn(p)

E5 (νa)p = (νb)(p{b/a}) if b �∈ fn(p)∪bn(p)

Table 6.5 Axioms generating the structural congruence ≡

(Cons)
p σ−→ p′

C σ−→ p′
C

de f
= p (Cong-c)

C ≡ p σ−→ p′ ≡ p′

C σ−→ p′

Axiom E4 allows for enlargement of the scope of restriction; its symmetric ver-
sion,

E4′ (νa)(p |q) = (νa)p |q if a �∈ fn(q),
is subsumed by axioms E2 and E4. The last axiom E5 is the so-called law of alpha-
conversion, using syntactic substitution, defined in Section 4.1.2 for the CCS oper-
ators, while for strong prefixing it is defined as follows:

(a.p){b/a} = b.(p{b/a})
(a.p){b/a} = b.(p{b/a})
(α.p){b/a} = α.(p{b/a}) if α �= a,a

Rule (Cong) enlarges the set of transitions derivable from a given process p, as
the following examples and exercises show. The intuition is that, given a process p,
a transition is derivable from p if it is derivable from any p′ obtained as a rearrange-
ment in any order (or association) of all of its sequential subprocesses.

Example 6.5. (Associativity) Continuing Exercise 6.3 and Example 6.4, let us con-
sider the Multi-CCS process (a.b.p |b.q) |a.r. Example 6.4 shows the proof of tran-
sition (a.b.p |b.q) |a.r τ−→ (p |q) |r.

Now, consider the process a.b.p |(b.q |a.r), that differs from the above for the
different association of its three sequential subprocesses. We have already noticed
that a.b.p |(b.q |a.r) � τ−→ p |(q |r) if rule (Cong) is not available. However, with the
help of rule (Cong), a.b.p is now able to synchronize with both b.q and a.r at the
same time as follows:

a.b.p |(b.q |a.r)≡ (a.b.p |b.q) |a.r τ−→ (p |q) |r ≡ p |(q |r)
a.b.p |(b.q |a.r) τ−→ p |(q |r)

Note that the needed structural congruence uses only the axiom for associativity. �

Example 6.6. (Commutativity) For an example where the commutativity axiom
E2 may be useful, consider process p = (a.c.0 |b.0) |(a.0 |b.c.0). Such a pro-
cess can do a four-way synchronization, labeled τ , to q = (0 |0) |(0 |0), because
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c.0 c−→0

a.c.0 ac−→0 a.0 a−→0

a.c.0 |a.0 c−→0 |0
b.0 b−→0

c.0 c−→0

b.c.0 bc−→0

b.0 |b.c.0 c−→0 |0
(a.c.0 |a.0) |(b.0 |b.c.0) τ−→ (0 |0) |(0 |0)

Table 6.6 Hierarchical multi-party synchronization among four processes

p′ = (a.c.0 |a.0) |(b.0 |b.c.0), which is structurally congruent to p, can perform τ
reaching q. The proof of transition (a.c.0 |a.0) |(b.0 |b.c.0) τ−→ (0 |0) |(0 |0) is re-
ported in Table 6.6. This proof shows a different form of synchronization, where
there is no leader, but rather there are two sub-transactions (each one with a sub-
leader) synchronizing at the end. Without rule (Cong), process p could not perform
such a hierarchical multi-party synchronization. �

Example 6.7. (Unfolding) In order to see that also the unfolding axiom E3 of Table

6.5 is useful, consider a.c.0 |A, where A
de f
= a.0 |c.0. Clearly a.c.0 |A cannot perform

a τ-labeled transition without rule (Cong). However, a.c.0 |A ≡ a.c.0 |(a.0 |c.0)
by axiom E3, and a.c.0 |(a.0 |c.0) ≡ (a.c.0 |a.0) |c.0 by axiom E1. Note that
(a.c.0 |a.0) |c.0 τ−→ (0 |0) |0, so that, with rule (Cong), it is now possible to derive
a.c.0 |A τ−→0 |(0 |0) as follows:

(Pref)
c.0 c−→0(S-Pref)

a.c.0 ac−→0

(Pref)

a.0 a−→0
(S-Com)

a.c.0|a.0 c−→0 |0
(Pref)

c.0 c−→0
(S-Com)

a.c.0|A≡ (a.c.0|a.0) |c.0 τ−→ (0 |0) |0≡ 0 |(0 |0)
(Cong)

a.c.0|A τ−→0 |(0 |0)
Exercise 6.5. (Scope enlargement) Consider process Q = b.c.p1 |(νa)(b.p2 |c.p3)
and assume a �∈ f n(p1). Show that Q ≡ Q′, where Q′ = (νa)((b.c.p1 |b.p2) |c.p3).
(Hint: You need axioms E4 for scope enlargement and also E1.) Show also that
Q τ−→Q′′, where Q′′ = p1 |(νa)(p2 | p3). �

Exercise 6.6. (Alpha-conversion) Consider Q = b.c.p1 |(νa)(b.p2 |c.p3) of Exer-
cise 6.5, but now let a ∈ f n(p1). Show that, by taking a new d not occurring free
or bound in Q, Q≡ (νd)((b.c.p1 |(b.p2){d/a}) |(c.p3){d/a}). (Hint: You need ax-
ioms E5, E4 and E1.) Show also that Q τ−→Q′′, where Q′′ = p1 |(νa)(p2 | p3). �

The structural congruence ≡ allows for a transformation of any process p into a
sort of canonical form qp, its pool form, such that qp can be naturally seen as a sort of
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pool, whose boundaries are defined by restrictions, containing a soup of sequential
processes, that are free to float around thanks to the axioms of associativity E1 and
commutativity E2 of the structural congruence ≡.

Definition 6.1. (Pool form) A Multi-CCS process p is with guarded restriction if
each occurrence of the restriction operator in p occurs within a subterm of the form
μ.q′ of p. Of course, any restriction-free process is also with guarded restriction, as
well as a.(b.(νb)(b.0 |c.0)+ c.0).

A Multi-CCS process p is with prefixed constants if each occurrence of any con-
stant A in p is strongly guarded in p, i.e., it occurs within a subterm of the form μ.q′
of p. For instance, a.A is with prefixed constants, while b.B |B is not.

A Multi-CCS process p is in pool form if p is either with guarded restriction and
with prefixed constants, or of the form (νa)q with q in pool form. �

In other words, a process p is in pool form if all of its active (i.e., not guarded)
occurrences of the restriction operator are at the top level. All the sequential sub-
processes within the scope of the external restrictions can be associated in any order
inside the pool. For instance, (νd)((a.(νb)(c.b.0 |c.0) |c.0) |a.0) is in pool form,
as well as (νd)((c.0 |a.(νb)(c.b.0 |c.0)) |a.0). Both can be seen as a pool form for
(νd)(a.(νb)(c.b.0 |c.0)) |(a.0 |c.0), which is not in pool form. Now we see that any
process can be transformed into a pool form by means of structural congruence ≡.

Lemma 6.1. Any sequential p ∈PM is in pool form.

Proof. By induction on the definition of sequential process. 0 is in pool form, as
well as μ.q. By induction, if p′ is a sequential pool form, then α.p′ is in pool form;
similarly, if p1 and p2 are sequential pool forms, then also p1 + p2 is. �

Proposition 6.3. For any p ∈PM, there exists a Multi-CCS process q in pool form
such that p≡ q.

Proof. By induction on the structure of p, and then by induction on the number of
unguarded occurrences of the restriction operator in p, denoted r-size(p) and de-
fined as follows:

r-size(0) = 0 r-size(μ.p) = 0
r-size(α.p) = 0 r-size(p1 + p2) = 0

r-size(p1 | p2) = r-size(p1)+ r-size(p2) r-size((νa)p) = 1+ r-size(p)

r-size(A) = r-size(p) if A
de f
= p

Note that, since we are assuming that constants are guarded and finitely many,
then function r-size(p) is well defined.

Any sequential process p is already in pool form, by Lemma 6.1. As a matter of
fact, the definition of r-size(p) reflects this fact.

If p= p1 | p2, then by induction there exist pool forms q1 and q2 such that p1 ≡ q1
and p2 ≡ q2. The proof now proceeds by induction on r-size(q1 |q2). The base case
is when r-size(q1 |q2) = 0, i.e., both q1 and q2 are with guarded restriction. In
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such a case, p = p1 | p2 ≡ q1 |q2 by structural congruence, where q1 |q2 is with
guarded restriction, too, hence already in pool form. Otherwise, w.l.o.g., assume
that q1 = (νa)q′1 is in pool form and q2 is in pool form. Then either (νa)q′1 |q2 ≡
(νa)(q′1 |q2) if a �∈ f n(q2) (axioms E2 and E4), or (νa)q′1 |q2≡ (νa′)(q′1{a′/a}|q2)
if a ∈ f n(q2) (axioms E5, E4 and E2). In the former case, r-size(q′1 |q2) < r-
size(q1 |q2), hence the inductive hypothesis can be applied to conclude that there
exists a pool form q such that q ≡ q′1 |q2. By structural congruence, we can derive
that p = p1 | p2 ≡ q1 |q2 = (νa)q′1 |q2 ≡ (νa)(q′1 |q2) ≡ (νa)q, the last term being
a pool form. Similarly, for the latter case. The symmetric case when q2 = (νa)q′2 is
in pool form and q1 is in pool form is analogous, hence omitted.

If p = (νa)p′, then by induction we can assume there exists a pool form q′ ≡ p′,
hence p = (νa)p′ ≡ (νa)q′, the latter being a pool form.

If p = A, with A
de f
= r, then we have that A ≡ r by axiom E3. Note that A is not

a process with prefixed constants, hence to get its pool form we have to resort to
its body r. Here, the argument is not by structural induction: take the pool form q
associated to r by the procedure above, so that A ≡ r ≡ q. Such a procedure will
end eventually because we are assuming that constants are guarded and are finitely
many. �

Note that, given a pool form q, if q σ−→q′, then q′ may be not in pool form. For
instance, a.(c.(νb)(b.0 |d.0)) |a.b.0 is in pool form, but

a.(c.(νb)(b.0 |d.0)) |a.b.0 c−→ (νb)(b.0 |d.0) |b.0
and the reached state is not in pool form, but it is congruent to the pool form
(νb′)((b′.0 |d.0) |b.0).

6.2.1 Conservative Extension

From a syntactical point of view, any CCS process is also a Multi-CCS process, i.e.,
P ⊆PM . Hence, we may wonder also if the operational semantics rules of Table
6.3, when applied to CCS processes, generate an LTS bisimilar to the one the rules
of Table 3.1 would generate. If this is the case, we may conclude that Multi-CCS is
a conservative extension to CCS, up to ∼.

Let us denote by TS1 = (P,Act,→1) the LTS for CCS generated by the axiom
and rules in Table 3.1; and by TS2 = (P,Act,→2) the LTS for CCS generated by
the axiom and rules in Table 6.3.3 Then we can prove the following:

Proposition 6.4. For any p ∈P , if p
μ−→1 p′, then p

μ−→2 p′.

Proof. The proof is by easy induction on the proof of p
μ−→1 p′. From the proof tree

of transition p
μ−→1 p′, we can reconstruct the proof tree of transition p

μ−→2 p′. It

3 Note that the set of labels for TS2 is Act because strong prefixing is not available and so no
transition can be labeled with a (tagged) sequence of actions.
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is enough to observe that each operational rule of Table 3.1 has an obvious cor-
responding one in Table 6.3; the only nonobvious case is for the absence of rule
(Cons). However, we have already discussed that (Cong) with axiom E3 is able to
simulate rule (Cons) — rule (Cong-c), discussed before Example 6.5. �

In the other direction, even if rule (Cong) does enlarge the set of possible tran-
sitions of a CCS process, such an extension is inessential for bisimilarity: any such
an additional transition would reach a process structurally congruent to one of those
already reached by means of the rules in Table 3.1. We want to prove that, given
a transition p

μ−→2 q, we can find a process q′ such that p
μ−→1 q′ with q′ ≡ q. The

proof of this fact needs an auxiliary lemma.

Lemma 6.2. For any p,q∈P such that p≡ q, if p
μ−→1 p′, then there exists q′ such

that q
μ−→1 q′ with p′ ≡ q′.

Proof. The proof is by induction on the proof of p ≡ q. The base cases are for the
five axioms E1–E5. These are rather simple. We work out only two cases.

Case E2: p = p1 | p2 and q = p2 | p1. According to the SOS rules in Table
3.1, transition p = p1 | p2

μ−→1 p′ can be due to one of the following three cases:
p1

μ−→1 p′1 and p′ = p′1 | p2 — rule (Par1); or p2
μ−→1 p′2 and p′ = p1 | p′2 — rule

(Par2); or μ = τ , p1
α−→1 p′1, p2

α−→1 p′2 and p′ = p′1 | p′2 — rule (Com). In the first

case, by (Par2), q = p2 | p1
μ−→1 p2 | p′1 ≡ p′; in the second case, by (Par1), q =

p2 | p1
μ−→1 p′2 | p1 ≡ p′; in the third case, by rule (Com), q = p2 | p1

τ−→1 p′2 | p′1 ≡
p′. Symmetrically if q moves first.

Case E4: s = p |(νa)q and t = (νa)(p |q), with a �∈ fn(p). According to the
rules in Table 3.1, transition s

μ−→ s′ can be due to one of the following three cases:
p

μ−→ p′ and s′ = p′ |(νa)q – rule (Par1); or (νa)q
μ−→ (νa)q′ and s′ = p |(νa)q′ –

rule (Par2); or μ = τ , p α−→ p′, (νa)q α−→ (νa)q′ and s′ = p′ |(νa)q′ – rule (Com).
In the first case, by (Par1) and (Res) (since μ �= a,a), t

μ−→ (νa)(p′ |q) ≡ s′. In
the second case, (νa)q

μ−→ (νa)q′ is derivable only from q
μ−→q′ with μ �= a,a;

hence, by rule (Par2) and (Res), t
μ−→ (νa)(p |q′) ≡ s′. The third case is similar,

and so omitted. Symmetrically, any transition t
μ−→ t ′ can be due only to transi-

tion p |q μ−→ t ′′, with t ′ = (νa)t ′′ and μ �= a,a. Again, three cases are possible:
p

μ−→ p′ and t ′′ = p′ |q – rule (Par1); or q
μ−→q′ and t ′′ = p |q′ – rule (Par2); or

μ = τ , p α−→ p′, q α−→q′ and t ′′ = p′ |q′ – rule (Com). In the first case, by rule
(Par1), s

μ−→ p′ |(νa)q≡ t ′. In the second case, by (Res), (νa)q
μ−→ (νa)q′, and so,

by (Par2), s
μ−→ p |(νa)q′ ≡ t ′. The third case is similar, hence omitted; you should

simply note that α �= a,a, because p cannot perform an action of that (complemen-
tary) type, as a �∈ f n(p).

The inductive cases are the rules of Table 4.1. Even if long, the proofs of these
cases are obvious. In particular, the substitutivity rule
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ti = t ′i
f (t1, . . . , ti, . . . , tk) = f (t1, . . . , t ′i , . . . , tk)

for any f and 1≤ i≤ n,

where f is a static operator, is such that if the transition from f (t1, . . . t j, . . . , ti, . . . , tk)

is due to a premise t j
μ−→1 t ′j ( j �= i), then the states reached in the conclusions are

f (t1, . . . t ′j, . . . , ti, . . . , tk) and f (t1, . . . t ′j, . . . , t ′i , . . . , tk) and these two states are con-

gruent. Instead, if the transition from f (t1, . . . , ti, . . . , tk) is due to a premise ti
μ−→1 s,

then by induction t ′i
μ−→1 s′ with s ≡ s′ and so the states reached in the conclusions

are f (t1, . . . ,s, . . . , tk) and f (t1, . . . ,s′, . . . , tk) and these two states are congruent. �

Proposition 6.5. For any p ∈P , if p
μ−→2 q, then there exists q such that p

μ−→1 q
with q≡ q.

Proof. By induction on the proof of p
μ−→2 q. All the cases are obvious, except for

rule (Cong):

p≡ p′
μ−→2 q′ ≡ q

p
μ−→2 q

By induction, we can assume that, since p′
μ−→2 q′, there exists a state q′ such that

p′
μ−→1 q′ with q′ ≡ q′. By Lemma 6.2, since p ≡ p′ and p′

μ−→1 q′, there exists q′′

such that p
μ−→1 q′′ with q′ ≡ q′′. Summing up, if p

μ−→2 q, then there exists q′′ such
that p

μ−→1 q′′ and q′′ ≡ q′ ≡ q′ ≡ q, as required. �

Proposition 6.6. For any p, p′ ∈P such that p≡ p′, if p′
μ−→2 q, then p

μ−→2 q.

Proof. Trivial application of rule (Cong), with p′
μ−→2 q as its premise. �

Therefore, we can easily prove that relation R = {(p,q)
∣∣ p,q ∈P ∧ p≡ q} is

a strong bisimulation between the two LTSs TS1 and TS2. Let us consider a generic
pair (p,q) ∈ R.

If p
μ−→1 p′, then p

μ−→2 p′ by Proposition 6.4; by Proposition 6.6 also q
μ−→2 p′

with (p′, p′) ∈ R, as required.
Instead, if q

μ−→2 q′, then by Proposition 6.5 there exists q′ such that q
μ−→1 q′

with q′ ≡ q′; by Lemma 6.2, as p≡ q, we have that there exists p′ such that p
μ−→1 p′

with q′ ≡ p′. Summing up, to move q
μ−→2 q′, p replies with transition p

μ−→1 p′ so
that (p′,q′) ∈ R, as required.

Hence, R is a strong bisimulation indeed. As R contains the identity relation
I = {(p, p)

∣∣ p∈P}, we can conclude that Multi-CCS is a conservative extension
of CCS, up to ∼.
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6.2.2 Well-Formed Processes

We propose a syntactic condition on a process p, ensuring that, during its execution,
p is unable to synchronize two atomic sequences, not even indirectly; a process
satisfying such a syntactic condition will be called well-formed. The restriction to
well-formed processes will be crucial in some technical proofs of the following
sections.

The definition of relation Sync(σ1,σ2,σ) requires that at least one of σ1 or σ2
be a single action; this is not enough to prevent that two sequences may synchro-
nize, even if indirectly. For instance, assume we have three processes p1 = a.b.0,
p2 = a.0 and p3 = b.c.0, which may perform the sequences ab,a,bc, respectively;
then a ternary synchronization is possible, because first we synchronize p1 and p2,
by Sync(ab,a,b), getting a single action b, which can be then used for a synchro-
nization with p3, by Sync(b,bc,c); in such a way, the two atomic sequences ab and
bc have been synchronized, by means of the single action a. So, we would like to
mark (p1 | p2) | p3 as not well-formed.

In order to define well-formed Multi-CCS processes, some auxiliary definitions
are needed.

Definition 6.2. (Initials for sequential processes) For any sequential Multi-CCS
process p, In(p)⊆A is the set of initials of p, defined inductively as

In(0) = /0 In(μ.p) = {μ}
In(α.p) = α " In(p) In(p1 + p2) = In(p1)∪ In(p2)

where α " In(p) = {α "σ
∣∣ σ ∈ In(p)}. �

Exercise 6.7. Prove that, for any sequential Multi-CCS process p, if p ≡ q, then
In(p) = In(q).

(Hint: By induction on the proof of p≡ q. Note that, since p is sequential, none of
the axioms E1–E5 is applicable, as they are all about non-sequential processes. For
the rules of equational deduction, the only nontrivial case is the rule of substitutivity,
that has to be proved only for the operators of prefixing, strong prefixing and choice,
as p is sequential.) �

Exercise 6.8. Let p be a sequential Multi-CCS process. If p σ−→ p′, then σ ∈ In(p).
(Hint: By induction on the proof of p σ−→ p′.) �

Definition 6.3. (Names in sequences of a process) Let ns(p) ⊆L ∪L be the set
of (free) names occurring in sequences of length two or more of p. Set ns(p) is de-
fined as the least set of visible actions such that the following equations are satisfied:

ns(0) = /0 ns(μ.p) = ns(p)
ns((νa)p) = ns(p)\{a,a} ns(p1 + p2) = ns(p1)∪ns(p2)

ns(A) = ns(q) if A
de f
= q ns(p1 | p2) = ns(p1)∪ns(p2)

ns(α.p) = ns(p)∪{α}∪⋃
σ∈In(p)∧σ �=τ n(σ)
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For finitary processes, ns(p) can be computed by means of the auxiliary function
γ(p, /0), whose second parameter is a set of already known constants, initially empty.

γ(0, I) = /0 γ(μ.p, I) = γ(p, I)
γ((νa)p, I) = γ(p, I)\{a,a} γ(p1 + p2, I) = γ(p1, I)∪ γ(p2, I)

γ(A, I) =

{
/0 A ∈ I,

γ(p, I∪{A}) A �∈ I∧A
de f
= p

γ(p1 | p2, I) = γ(p1, I)∪ γ(p2, I)

γ(α.p, I) = γ(p, I)∪{α}∪⋃
σ∈In(p)∧σ �=τ n(σ) �

An interesting property of structurally congruent processes is that they have the
same set of names in sequences. Some auxiliary results are needed to prove this.
Given a set of labels A⊆A and a substitution {b/a}, we define

A{b/a}=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A if a,a �∈ A,
A\{a}∪{b} if a ∈ A∧a �∈ A,
A\{a}∪{b} if a ∈ A∧a �∈ A,
A\{a,a}∪{b,b} if a,a ∈ A.

Exercise 6.9. For any sequential Multi-CCS process p and for any b �∈ f n(p)∪
bn(p), In(p{b/a}) = In(p){b/a}. (Hint: By induction on the structure of the se-
quential process p.) �

Lemma 6.3. For any finitary Multi-CCS process p and for any b �∈ f n(p)∪ bn(p),
we have ns(p{b/a}) = ns(p){b/a}.
Proof. For simplicity’s sake, the proof is given for finite Multi-CCS processes only,
i.e., for processes not using any constant. The proof is by induction on the structure
of p. We proceed by case analysis.

If p = 0, then 0{b/a}= 0, and the thesis trivially holds.

If p = μ.q, then (μ.q){b/a}=

⎧⎪⎨
⎪⎩

μ.(q{b/a}) if μ �= a,a,
b.(q{b/a}) if μ = a,
b.(q{b/a}) if μ = a.

Let us consider only the first option (as the other two are similar): (μ.q){b/a} =
μ.(q{b/a}). Then, ns((μ.q){b/a}) = ns(μ.(q{b/a})) = ns(q{b/a}), as ns(μ.p) =
ns(p) by Definition 6.3. By induction, ns(q{b/a}) = ns(q){b/a}, and so we have
ns(q){b/a}= ns(μ.q){b/a} by Definition 6.3. The thesis follows by transitivity.

If p = α.p1, then (α.p1){b/a}=

⎧⎪⎨
⎪⎩

α.(p1{b/a}) if α �= a,a,
b.(p1{b/a}) if α = a,
b.(p1{b/a}) if α = a.

Let us consider the first option only (as the other two are similar): (α.p1){b/a} =
α.(p1{b/a}). Then, ns((α.p1){b/a}) = ns(α.(p1{b/a})) = ns(p1{b/a})∪{α}∪⋃

σ∈In(p1{b/a})∧σ �=τ n(σ), by Definition 6.3. By induction, we have ns(p1{b/a}) =
ns(p1){b/a}. By Exercise 6.9, we have In(p1{b/a}) = In(p1){b/a}. Moreover,⋃

σ∈In(p1){b/a}∧σ �=τ n(σ) = (
⋃

σ∈In(p1)∧σ �=τ n(σ)){b/a}. Therefore, ns(p1){b/a}∪
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{α}∪(⋃σ∈In(p1)∧σ �=τ n(σ)){b/a}= (ns(p1)∪{α}∪⋃
σ∈In(p1)∧σ �=τ n(σ)){b/a}=

ns(α.p1){b/a}. The thesis follows by transitivity.
If p = p1 + p2, then (p1 + p2){b/a}= p1{b/a}+ p2{b/a}. Therefore, ns((p1 +

p2){b/a}) = ns(p1{b/a}+ p2{b/a}) = ns(p1{b/a})∪ns(p2{b/a}). By induction,
we have ns(p1{b/a}) = ns(p1){b/a} and ns(p2{b/a}) = ns(p2){b/a}. Therefore,
we can conclude that ns(p1{b/a})∪ns(p2{b/a}) = ns(p1){b/a}∪ns(p2){b/a}=
(ns(p1)∪ns(p2)){b/a} = ns(p1 + p2){b/a}. The thesis follows by transitivity.

The case when p = q1 |q2 is as above, hence omitted.
If p=(νc)q, then either ((νc)q){b/a}=(νc)q in case a= c; or ((νc)q){b/a}=

(νc)(q{b/a}) in case a �= c; note that no other case is possible, since b is a new
name and so b �= c. In the former case, ns(((νa)q){b/a}) = ns((νa)q). As a,a �∈
ns((νa)q), it follows that ns((νa)q) = ns((νa)q){b/a}; hence, the thesis follows
by transitivity. In the latter case, ns(((νc)q){b/a}) = ns((νc)(q{b/a})). By Def-
inition 6.3, ns((νc)(q{b/a})) = ns(q{b/a}) \ {c,c}. By induction, ns(q{b/a}) =
ns(q){b/a}. Moreover, since a �= c and b �= c, we have that ns(q){b/a} \ {c,c} =
(ns(q) \ {c,c}){b/a}. Therefore, by Definition 6.3, we have (ns(q) \ {c,c}){b/a}
= ns((νc)q){b/a}. Then, the thesis follows by transitivity. �

Proposition 6.7. Let p,q be two Multi-CCS processes. If p≡ q, then ns(p) = ns(q).

Proof. By induction on the proof of p ≡ q. First, we have to prove the thesis for
the five axioms of Table 6.5. For axiom E1, note that ns((p |q) |r) = ns(p |(q |r)) =
ns(p)∪ns(q)∪ns(r); similarly, for axiom E2. For axiom E3, A ≡ q if A

de f
= q; then,

the thesis follows because ns(A) = ns(q) by Definition 6.3. For axiom E4, we have

ns(p1 |(νa)p2) = ns(p1)∪ns((νa)p2)
= ns(p1)\{a,a} ∪ ns(p2)\{a,a} because a �∈ f n(p1)
= (ns(p1)∪ns(p2))\{a,a}
= ns(p1 | p2)\{a,a}
= ns((νa)(p1 | p2))

For axiom E5, we have

ns((νa)p) = ns(p)\{a,a}
= ns(p){b/a}\{b,b} because b �∈ f n(p)∪bn(p)
= ns(p{b/a})\{b,b} by Lemma 6.3
= ns((νb)(p{b/a}))

Then, one has to prove the thesis for all the rules of equational deduction.
The only nontrivial case is about substitutivity for strong prefixing: p = α.p1 and
q=α .q1, with p1 ≡ q1. By induction, we have that ns(p1) = ns(q1), and by Exercise
6.7, In(p1) = In(q1) Therefore,

ns(p) = ns(p1)∪{α}∪⋃
σ∈In(p1)∧σ �=τ n(σ)

= ns(q1)∪{α}∪⋃
σ∈In(q1)∧σ �=τ n(σ) = ns(q). �

The following proposition clarifies that the label of a transition from p, which
involves some sequence of length two or more, is composed of actions in ns(p). This



282 6 Multi-CCS

is somehow the generalization of Proposition 4.6, stating that any action performed
by a CCS process p is included in the set of its free names, f n(p).

Proposition 6.8. For any Multi-CCS process p, if p σ−→ p′ and either |σ | ≥ 2, or
σ �= τ and there exists a transition label σ ′ in its proof tree with |σ ′| ≥ 2, then
n(σ)⊆ ns(p).

Proof. By induction on the proof of p σ−→ p′. We proceed by case analysis.
If p = μ.q, then p σ−→ p′ is possible only if σ = μ and p′ = q, by axiom (Pref).

This case is vacuous as the only transition label in the proof tree is μ .

If p=α .p1, then p σ−→ p′ is possible only if p1
σ ′−→ p′ with σ =α "σ ′. If |σ ′| ≥ 2,

then induction can be applied to conclude that n(σ ′) ⊆ ns(p1); as n(σ) = {α}∪
n(σ ′) and ns(p1)∪{α} ⊆ ns(p), the thesis follows trivially. If |σ ′| = 1, then two
further subcases are possible: either σ ′ = τ or σ ′ = β ; in the former subcase, this
is possible only if p1, being sequential, has performed a prefix τ via (Pref), so that no
transition label in the proof tree is longer than one, hence this subcase is vacuous; in
the latter subcase, σ = αβ and n(σ)⊆ ns(p), because, by Exercise 6.8, β ∈ In(p1).

If p = p1 + p2, then p σ−→ p′ is possible only if p1
σ−→ p′ or p2

σ−→ p′. W.l.o.g.,
assume that p1

σ−→ p′; then, if the hypothesis holds for this premise, by induction,
we have n(σ)⊆ ns(p1). Since ns(p1)⊆ ns(p), the thesis follows by transitivity.

If p = q1 |q2, then p σ−→ p′ is possible only if q1
σ−→q′1 and p′ = q′1 |q2; or

q2
σ−→q′2 and p′ = q1 |q′2; or q1

σ1−→q′1, q2
σ2−→q′2, Sync(σ1,σ2,σ) and p′ = q′1 |q′2.

In the first subcase, if the hypothesis holds for this premise, by induction, we
have n(σ) ⊆ ns(q1); as ns(q1) ⊆ ns(p), the thesis follows by transitivity. The sec-
ond subcase is symmetric, hence omitted. In the third subcase, as by hypothesis
σ �= τ , then σ1 or σ2 must be of length greater than one. W.l.o.g., assume |σ1| ≥ 2.
Since Sync(σ1,σ2,σ), necessarily n(σ) ⊆ n(σ1). By induction, n(σ1) ⊆ ns(q1); as
ns(q1)⊆ ns(p), the thesis follows by transitivity.

If p = (νa)q, then p σ−→ p′ is possible only if q σ−→q′, with a,a �∈ n(σ). If the
hypothesis holds for the premise, then, by induction, n(σ)⊆ ns(q). As ns((νa)q) =
ns(q)\{a,a} and a,a �∈ n(σ), it follows that also n(σ)⊆ ns((νa)q), as required.

If the last rule applied in deriving p σ−→ p′ is (Cong), then the premise is p ≡
q σ−→q′ ≡ p′. If the hypothesis holds for the premise q σ−→q′, then n(σ) ⊆ ns(q).
By Proposition 6.7, ns(q) = ns(p), and so the thesis follows trivially. �

Exercise 6.10. Prove that for any Multi-CCS process p, if p σ−→ p′, then ns(p′) ⊆
ns(p). (Hint: By induction on the proof of the transition.) �

Now we can define the well-formedness predicate for a process p; if a process
p is well-formed, we say that wf(p) holds, and wf(p) holds if the auxiliary relation
(with the same name, with abuse of notation) wf(p, /0) holds; the auxiliary relation
wf(p, I), where the second parameter is a set of constants, is defined as the least
relation induced by the axioms and rules of Table 6.7. The assumption that any
process uses finitely many constants ensures that the well-formedness predicate is
well-defined.
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wf(0, I)

wf(q, I)

wf(μ.q, I)

wf(p, I) � ∃β .β ∈ ns(α .p)∧β ∈ ns(α .p)

wf(α.p, I)

wf(p, I)

wf((νa)p, I)

A ∈ I

wf(A, I)

wf(p, I∪{A}) A
de f
= p A �∈ I

wf(A, I)

wf(p1, I) wf(p2, I) � ∃β .β ∈ ns(p1)∧β ∈ ns(p2)

wf(p1 | p2, I) wf(p1 + p2, I)

Table 6.7 Well-formedness predicate

Example 6.8. Let us consider three processes p1 = a.b.0, p2 = a.0 and p3 = b.c.0.
Note that wf(p2), because wf(0) holds; similarly, wf(b.0); as a consequence, wf(p1)
holds, because ns(p1) = {a,b} does not contain a pair of complementary actions.
In the same way, we can prove that wf(p3) holds, with ns(p3) = {b,c}. We also
have that wf(p1 | p2), as no action of ns(p1) occurs complemented in ns(p2) = /0.
However, it is not the case that wf((p1 | p2) | p3), because there exists an action,
namely b, such that b ∈ ns(p1 | p2) and b ∈ ns(p3). �

Exercise 6.11. Consider process p=(a.c.0 |b.0) |(a.0 |b.c.0) of Example 6.6. Show
that p is not well-formed. �

Exercise 6.12. If wf(p), then

(i) � ∃β .β ∈ ns(p)∧β ∈ ns(p); and
(ii) wf(pn) for any n≥ 1, where p1 = p and pn+1 = p | pn.

(Hint: Item (i) can be proved by induction on the proof of wf(p); item (ii) follows
directly from (i).) �

We will prove (see Theorem 6.2) that the well-formedness condition ensures that
there is no potential synchronizability between two (not necessarily different) se-
quences of p.

Remark 6.4. (Alternative, more restrictive, well-formedness condition) A sim-
pler, but more restrictive, definition of well-formedness requires that syntactically
the strong prefixing operator takes the form a.p, where a is any input, and, addi-
tionally, that atomic sequences can only be composed of inputs, by forcing that the
normal prefix after a strong prefix be an input too. Formally, strong well-formedness
of p, denoted by swf(p), can be easily defined by means of an auxiliary relation
swf(p, I), in analogy to Table 6.7, where the two interesting rules are
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swf(p, I) In(p)⊆L +∪{τ}
swf(a.p, I)

swf(p1, I) swf(p2, I)

swf(p1 | p2, I) swf(p1 + p2, I)

In this way, atomic sequences are composed of inputs only, and cannot synchro-
nize. However, strong well-formedness is more restrictive than the one in Table 6.7
and would discard some useful processes, such as those in Section 6.4.2 and Section
6.5.3, which prove the great expressive power of well-formed Multi-CCS. �

Exercise 6.13. Prove that if swf(p), then wf(p). (Hint: First prove the auxiliary
lemma that if swf(p), then ns(p)⊆L . Then, the proof is by induction on the proof
of swf(p).) �

We now want to prove that if wf(p) holds and p ≡ q, then also wf(q) holds. In
order to prove this, we need an auxiliary lemma.

Lemma 6.4. If wf(p) holds and b �∈ f n(p)∪bn(p), then wf(p{b/a}) holds.

Proof. For simplicity’s sake, we restrict ourselves to finite Multi-CCS processes. The
proof is by structural induction on p. We proceed by case analysis. As the proof is
very similar to that of Lemma 6.3, we provide only a few cases.

If p = α.p1, then (α.p1){b/a}=

⎧⎪⎨
⎪⎩

α .(p1{b/a}) if α �= a,a,
b.(p1{b/a}) if α = a,
b.(p1{b/a}) if α = a.

Let us consider the first option only (as the other two are similar): (α .p1){b/a} =
α.(p1{b/a}). Since wf(α.p1), we have wf(p1) and � ∃β .β ∈ ns(α.p1)∧β ∈ ns(α.p1).
By induction, wf(p1{b/a}) holds. Moreover, as b is a new name and α �= a,a, it fol-
lows that � ∃β .β ∈ ns(α.p1){b/a}∧ β ∈ ns(α.p1){b/a}. By Lemma 6.3, we have
that ns(α.p1){b/a} = ns((α .p1){b/a}) = ns(α.(p1{b/a})); therefore, we have
that � ∃β .β ∈ ns(α .(p1{b/a}))∧ β ∈ ns(α .(p1{b/a})). Hence, wf(α .(p1{b/a}))
holds, as required.

If p = p1 | p2, then (p1 | p2){b/a} = p1{b/a}| p2{b/a}. Since wf(p1 | p2), we
have wf(p1), wf(p2) and � ∃β .β ∈ ns(p1)∧β ∈ ns(p2). As b is a new name, it fol-
lows that � ∃β .β ∈ ns(p1){b/a}∧β ∈ ns(p2){b/a}. By induction, wf(p1{b/a}) and
wf(p2{b/a}) hold. By Lemma 6.3, it follows that ns(p1){b/a} = ns(p1{b/a}) as
well as ns(p2){b/a}= ns(p2{b/a}). Hence, we also have that � ∃β .β ∈ ns(p1{b/a})
∧β ∈ ns(p2{b/a}), and so wf(p1{b/a}| p2{b/a}) holds, as required. �

Theorem 6.1. If wf(p) and p≡ q, then wf(q).

Proof. By induction on the proof of p≡ q. First, we have to prove the thesis for the
five axioms of Table 6.5.

For axiom E1, wf(p1 |(p2 | p3)) holds if wf(p1), wf(p2 | p3) and � ∃β .β ∈ ns(p1)∧
β ∈ ns(p2 | p3). Moreover, wf(p2 | p3) holds if wf(p2), wf(p3) and � ∃β .β ∈ ns(p2)∧
β ∈ ns(p3). Hence, wf(p1 | p2) holds as wf(p1), wf(p2) and � ∃β .β ∈ ns(p1)∧β ∈
ns(p2 | p3), as ns(p2)⊆ ns(p2 | p3). Finally, as required, also wf((p1 | p2) | p3) holds,
because wf(p1 | p2), wf(p3) and � ∃β .β ∈ ns(p1 | p2)∧β ∈ ns(p3); the last condition,
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which is equivalent to � ∃β .β ∈ ns(p1)∪ ns(p2)∧ β ∈ ns(p3), holds because, on
the one hand, we have that � ∃β .β ∈ ns(p2)∧ β ∈ ns(p3) and, on the other hand,
the condition � ∃β .β ∈ ns(p1)∧β ∈ ns(p2 | p3) ensures that � ∃β .β ∈ ns(p1)∧β ∈
ns(p3). The cases of axioms E2 and E3 are trivial. For axiom E4, wf(p |(νa)q) holds
only if wf(p), wf((νa)q) and � ∃β .β ∈ ns(p)∧β ∈ ns((νa)q). As wf((νa)q) holds,
it follows that wf(q) holds, too; moreover, ns((νa)q) = ns(q)\{a,a}. Therefore, as
a �∈ f n(p), we have that � ∃β .β ∈ ns(p)∧β ∈ ns(q). It follows that wf(p |q) holds,
and so wf((νa)(p |q)), as required. For axiom E5, wf((νa)p) holds only if wf(p)
holds, and so, by Lemma 6.4, also wf(p{b/a}) holds, for any b �∈ f n(p)∪ bn(p).
Hence, also wf((νb)(p{b/a})) holds, as required.

Then, one has to prove the thesis for all the rules of equational deduction. The
only nontrivial case is about substitutivity; we discuss two cases only. For strong
prefixing, we assume we have p = α.p1 and q = α.q1, with p1 ≡ q1 and wf(p);
hence, wf(p1) and � ∃β .β ∈ ns(α.p1)∧ β ∈ ns(α.p1) By induction, we have that
wf(q1); by Proposition 6.7, we have that ns(p1) = ns(q1), and, finally, by Exercixe
6.7, also that In(p1) = In(q1). Therefore, it follows that ns(α.p1) = ns(α.q1), and
so we have that � ∃β .β ∈ ns(α.q1)∧ β ∈ ns(α.q1). Hence, wf(α.q1) holds, as re-
quired. For parallel composition, we assume we have p = p1 |r and q = p2 |r, with
p1≡ p2 and wf(p); therefore, wf(p1) and wf(r) hold and � ∃β .β ∈ ns(p1)∧β ∈ ns(r).
By induction, we have that wf(p2). By Proposition 6.7, we have that ns(p1) =
ns(p2); hence, we have that � ∃β .β ∈ ns(p2)∧β ∈ ns(r). Therefore, wf(p2 |r) holds,
as required. �

Exercise 6.14. Prove that, if swf(p) and p≡ q, then swf(q). �

Proposition 6.9. Given a well-formed Multi-CCS process p, if p σ−→ p′, then wf(p′).

Proof. By induction on the proof of p σ−→ p′. We proceed by case analysis.
If p = μ.p′, then p

μ−→ p′; the thesis follows because wf(μ.p′) holds only if
wf(p′).

If p = α.p1, then p σ−→ p′ is possible only if p1
σ ′−→ p′ and σ = α "σ ′. Since

wf(p), we also have that wf(p1), so that induction can be applied to conclude that
wf(p′).

If p = p1 + p2, then p σ−→ p′ is possible only if p1
σ−→ p′ or p2

σ−→ p′. W.l.o.g.,
assume that p1

σ−→ p′. Since wf(p), we also have that wf(p1), so that induction can
be applied to conclude that wf(p′).

If p = q1 |q2, then p σ−→ p′ is possible only if q1
σ−→q′1 and p′ = q′1 |q2; or

q2
σ−→q′2 and p′ = q1 |q′2; or q1

σ1−→q′1, q2
σ2−→q′2, Sync(σ1,σ2,σ) and p′ = q′1 |q′2.

Note that, by definition, wf(q1 |q2) holds if wf(q1), wf(q2) and � ∃β .β ∈ ns(q1)∧β ∈
ns(q2). In the first case, by induction, we have that wf(q′1); moreover, by Exercise
6.10, ns(q′1)⊆ ns(q1), so that � ∃β .β ∈ ns(q′1)∧β ∈ ns(q2). Hence, wf(q′1 |q2). The
other two cases are similar, hence omitted.

If p = (νa)q, then p σ−→ p′ is possible only if q σ−→q′, with a,a �∈ n(σ) and
p′ = (νa)q′. Note that, by definition, wf((νa)q) holds only if wf(q). By induction,
we have wf(q′); hence, also wf((νa)q′).
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If the last rule applied in deriving p σ−→ p′ is (Cong), then the premise is p ≡
q σ−→q′ ≡ p′. By Theorem 6.1, we have wf(q), so that induction can be applied to
conclude that wf(q′); hence, wf(p′) by Theorem 6.1. �

By iterating the result of the proposition above, we get that all the processes
reachable from a well-formed process are well-formed.

Exercise 6.15. Prove that if swf(p) and p σ−→ p′, then swf(p′). �

To conclude this section, we state the theorem justifying the well-formedness
predicate, as defined in Table 6.7: if a process is well-formed, it is not possible to
synchronize two sequences, not even indirectly. As a matter of fact, two sequences
cannot be synchronized directly, as relation Sync(σ1,σ2,σ) requires that at least
one of σ1 and σ2 be a single action. However, indirectly, two sequences can be
synchronized, as discussed at the beginning of this section and also in Example 6.6.

Theorem 6.2. (Well-formedness implies no synchronization of sequences) If
wf(p) and p σ−→ p′, then in the proof of such a transition it is not possible that
two sequences are synchronized, not even indirectly.

Proof. By induction on the proof of p σ−→ p′. All the cases are trivial — if the
thesis holds for the premise transition, then it holds also for the conclusion —
except when rule (S-Com) is used. In such a case, assume we have p = p1 | p2,
p1

σ1−→ p′1, p2
σ2−→ p′2, Sync(σ1,σ2,σ) and p′ = p′1 | p′2. Since wf(p1 | p2), then also

wf(p1) and wf(p2). Hence, by induction, we can assume that the thesis holds for
the two premise transitions. So, it remains to prove that, since wf(p1 | p2) holds, no
indirect synchronization of two sequences is performed in the last proof step of tran-
sition p1 | p2

σ−→ p′1 | p′2. By definition of Sync, at least one of σ1 and σ2 is a single
action. W.l.o.g., assume σ2 = α . We have two cases.

(a) If no transition label σ ′2, with |σ ′2| ≥ 2, occurs in the proof tree of p2
σ2−→ p′2,

then such a transition is obtained by no synchronization of a sequence; therefore,
also the conclusion p σ−→ p′ does not synchronize two sequences.

(b) If a transition label σ ′2, with |σ ′2| ≥ 2 occurs in the proof tree of p2
σ2−→ p′2,

then by Proposition 6.8, we are sure that σ2 = α ∈ ns(p2). Since wf(p1 | p2) holds,
we know that � ∃β .β ∈ ns(p1)∧β ∈ ns(p2). Since Sync(σ1,σ2,σ) and σ2 = α , it is
necessary that α ∈ n(σ1). Two subcases are now in order, depending on the possible
presence of a label σ ′1, with |σ ′1| ≥ 2, in the proof tree of p1

σ1−→ p′1.

(i) If such a sequence is not present, then p1
α−→ p′1 is obtained by no synchroniza-

tion of a sequence; therefore, also the conclusion p σ−→ p′ does not synchronize
two sequences.

(ii) On the contrary, if such a sequence is present, then by Proposition 6.8,
n(σ1)⊆ ns(p1), hence contradicting the well-formedness condition of p1 | p2: in
fact, on the one hand, as action α ∈ n(σ1), also α ∈ ns(p1); on the other hand,
we argued that α ∈ ns(p2). Therefore, as we assumed wf(p1 | p2), this second
subcase is not possible.
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Summing up, wf(p1 | p2) ensures that no indirect synchronization of two se-
quences may take place in the proof of p1 | p2

σ−→ p′1 | p′2. �

6.2.3 Some Subclasses of Multi-CCS Processes

As done for CCS in Section 3.4, we may introduce a hierarchy of six subclasses
of Multi-CCS. The first subclass, called finite Multi-CCS, is obtained by forbidding
the use of process constants. Of course, from a practical point of view, its interest
is rather small. However, finite Multi-CCS is expressive enough to describe some
simple, useful examples for discriminating between behavioral equivalences.

Finite-state Multi-CCS is obtained by restricting the syntax to allow only for
action prefixing, strong prefixing, choice and process constants. Formally, it is gen-
erated by the abstract syntax

p ::= 0
∣∣ μ.p

∣∣ α.p
∣∣ p+ p

∣∣ C,

where it is assumed that the number of process constants is finite and that each
process constant is (normally) guarded. This subclass is interesting as it allows for
the modeling of any finite-state transition system labeled with sequences of actions,
as discussed in the following remark.

Remark 6.5. (Guardedness prevents infinitely branching sequential processes)

We have assumed that each process constant in the body of a defining equation
occurs inside a normally prefixed subprocess μ.q. This prevents even sequential

processes from being infinitely branching. For instance, the constant A
de f
= a.A+b.0

is unguarded because the occurrence of A in the body is not normally prefixed.
According to the operational rules, A has infinitely many transitions leading to 0,
each of the form anb, for n≥ 0. So A is not finitely branching.

In fact, under the guardedness assumption, it is possible to prove, by following
the proof of Theorem 3.2, that finite-state Multi-CCS defines, up to isomorphism,
the set of transition systems whose transitions are labeled on A with finitely many
states and transitions. �

Regular Multi-CCS extends finite-state Multi-CCS in the same way regular CCS
extends finite-state CCS. It allows for a limited use of parallel composition and
restriction, but its processes still generate finite-state LTSs. This class is the most
useful from an applicative point of view, as it allows for the modeling of finite-state
systems in a modular way.

In the same way, one can define Multi-BPP as the Multi-CCS variant of BPP, as
well as finite-net Multi-CCS as the Multi-CCS variant of finite-net CCS. Formally,
finite-net Multi-CCS processes are generated by the following abstract syntax:
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s ::= 0
∣∣ μ.t

∣∣ α .s
∣∣ s+ s

t ::= s
∣∣ t | t ∣∣ C

p ::= t
∣∣ (νa)p

This class is interesting because in [Gor15] (based on ideas in [GV10]) it is shown
that its processes are in close connection with finite P/T Petri nets [Pet81, Rei85,
DesRei98]. Indeed, in one direction, a well-formed, finite-net Multi-CCS process is
given semantics in terms of a finite P/T Petri net. Conversely, for any finite P/T net
N, we can find a well-formed, finite-net Multi-CCS process p such that the net of
p is isomorphic to N. Hence, (well-formed) finite-net Multi-CCS processes are for
Petri nets as fundamental as finite-state CCS processes are for LTSs.

Finally, finitary Multi-CCS is the calculus where the only syntactical constraint
is that, for any p ∈PM , the set Const(p) is finite. This is the actual calculus we are
using in this chapter.

6.3 Behavioral Semantics

Ordinary bisimulation equivalence, called interleaving bisimulation equivalence in
this context, enjoys some expected algebraic properties, but unfortunately it is not
a congruence for parallel composition. In order to find a suitable compositional se-
mantics for Multi-CCS, we define an alternative operational semantics, where tran-
sitions are labeled with a multiset of concurrently executable sequences. Ordinary
bisimulation equivalence over this enriched transition system is called step bisimu-
lation equivalence, which is proved to be a congruence for the Multi-CCS operators.

6.3.1 Interleaving Semantics

Strong bisimilarity was defined in Definition 2.14 over transition systems whose set
of labels is any set A, where A ⊆ Act = L ∪L ∪ {τ}. However, it is obviously
possible to generalize its definition to take into account any arbitrary set of labels.
In our setting, the set of labels is A = {τ}∪ (L ∪L )+ and the labeled transition
system is TSM = (PM,A , −→ ), where −→ ⊆ PM ×A ×PM is the minimal
transition relation generated by the rules listed in Table 6.3.

So, a strong bisimulation over TSM is a relation R ⊆ PM ×PM such that if
(q1,q2) ∈ R then for all σ ∈A

• ∀q′1 such that q1
σ−→q′1, ∃q′2 such that q2

σ−→q′2 and (q′1,q
′
2) ∈ R

• ∀q′2 such that q2
σ−→q′2, ∃q′1 such that q1

σ−→q′1 and (q′1,q
′
2) ∈ R.

Two Multi-CCS processes p and q are interleaving bisimilar, written p∼ q, if there
exists a strong bisimulation R over PM such that (p,q) ∈ R.
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Interleaving bisimulation equivalence ∼ enjoys some expected algebraic proper-
ties. The first is that two structurally congruent Multi-CCS processes are bisimilar.

Proposition 6.10. Let p,q ∈PM be Multi-CCS processes. If p≡ q, then p∼ q.

Proof. It is enough to check that relation R = {(p,q)
∣∣ p≡ q} is a bisimulation. If

(p,q) ∈ R and p σ−→ p′, then by rule (Cong) also q σ−→ p′ and (p′, p′) ∈ R. Symmet-
rically, if q moves first. �

Note that an obvious consequence of the above proposition is that the following
algebraic laws hold for strong bisimilarity ∼, for all p,q,r ∈PM:

(1) p |(q |r) ∼ (p |q) |r
(2) p |q ∼ q | p
(3) C ∼ p if C

de f
= p

(4) (νa)(p |q) ∼ p |(νa)q if a �∈ f n(p)
(5) (νa)p ∼ (νb)(p{b/a}) if b �∈ f n(p)∪bn(p)

Other expected properties hold for interleaving bisimilarity, as the following
propositions show.

Proposition 6.11. Let p,q,r ∈PM be processes. Then the following hold:

(6) (p+q)+ r ∼ p+(q+ r) (7) p+q ∼ q+ p
(8) p+0 ∼ p (9) p+ p ∼ p

Proof. The proof is standard and is similar to that of Propositions 4.1. For instance,
for property (7) it is enough to prove that R = {((p+ q),(q+ p)

∣∣ p,q ∈PM}∪
{(p, p)

∣∣ p ∈PM} is a strong bisimulation. �

Proposition 6.12. Let p ∈PM be a Multi-CCS process. Then the following hold:

(10) p |0 ∼ p (11) (νa)(νb)p ∼ (νb)(νa)p

(12) (νa)0 ∼ 0 (13) (νa)(μ.p) ∼
{

0 if μ = a or μ = a
μ.(νa)p otherwise

Proof. The proof is standard and is similar to those of Propositions 4.2 and 4.4. �

Exercise 6.16. Prove the laws (6)–(13) above, by providing a suitable bisimulation
relation for each law. �

Exercise 6.17. Prove that also the scope-enlargement laws for dynamic operators,
listed in Proposition 4.12, hold for Multi-CCS. �

Strong prefixing enjoys some algebraic properties listed below.

Proposition 6.13. Let p,q ∈PM be sequential processes. The following laws hold:

(i) α.0 ∼ 0

(ii) α.(p+q) ∼ α.p+α.q
(iii) α.τ.p ∼ α.p



290 6 Multi-CCS

Proof. For (i), it is trivial to see that relation R1 = {(α.0,0)
∣∣ α ∈L ∪L } is a

bisimulation.
For (ii), relation R2 = {(α.(p + q),α .p + α.q)

∣∣ α ∈ L ∪L ∧ p,q ∈ PM}
∪{(p, p)

∣∣ p ∈PM} is a bisimulation. Transition α.(p+ q) α"σ−→ r is possible, by
rule (S-Pref), only if p+q σ−→ r, and so only if either p σ−→ r (rule (Sum1)) or q σ−→ r
(rule (Sum2)). Hence, by rule (S-Pref) also transitions α.p α"σ−→ r or α.q α"σ−→ r are
derivable and, finally, α.p+α.q α"σ−→ r with (r,r) ∈ R2. Symmetrically if α.p+α.q
moves first.

For (iii), R3 = {(α.τ.p,α.p)
∣∣ α ∈L ∪L ∧ p ∈PM}∪{(p, p)

∣∣ p ∈PM}
is a bisimulation. The only transition from α.τ.p is α.τ.p α"σ−→ p′, which is possible
only if τ.p σ−→ p′; by (Pref), we have that p′ = p and σ = τ , so α " τ = α . This is
matched by the only transition from α.p, α.p α−→ p, with (p, p) ∈ R3. �

Remark 6.6. (Interleaving law) By the strong prefixing law above, in particular (ii)
(distributivity of stron prefixing w.r.t. the choice operator), any sequential term p is
bisimulation equivalent to a sumform Σ n

i=1σi.pi, where with the notation σi.pi we
mean α1.α2. . . . .αn−1.αn.pi, if σi = α1α2 . . .αn.

Let p = Σ n
i=1σi.pi and q = Σ m

j=1σ ′j.q j. Then, it is easy to observe that

p |q ∼ Σ n
i=1σi.(pi |q) + Σ m

j=1σ ′j.(p |q j) + Σi, j:Sync(σi,σ ′j ,σ ′′i j)
σ ′′i j.(pi |q j)

generalizing the interleaving law for CCS, described in Proposition 4.3. �

Exercise 6.18. Let p ∈PM be a sequential process. Prove that the following

(iv) (νa)(α.p) ∼
{

0 if α = a or α = a
α.(νa)p otherwise

(v) α.(νa)p ∼ (νb)(α.(p{b/a})) if α = a∨α = a and b �∈ fn(p)∪bn(p),

hold, where we take the liberty of extending the Multi-CCS syntax to allow for the
application of strong prefixing to a restricted (sequential) process term, which is not
syntactically admissible. �

Interleaving bisimulation equivalence is a congruence for almost all the operators
of Multi-CCS, in particular for strong prefixing.

Proposition 6.14. Given two sequential Multi-CCS processes p and q, if p∼ q, then
the following hold:

(i) α.p ∼ α .q for all α ∈L ∪L ,
(ii) p+ r ∼ q+ r for all sequential r ∈P .

Proof. Let R be a bisimulation such that (p,q) ∈ R. For case (i), It is easy to check
that relation R = {(α.p,α.q)}∪R is a bisimulation. Case (ii) is left as an exercise
for the reader. �
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Proposition 6.15. Given two Multi-CCS processes p and q, if p ∼ q, then the fol-
lowing hold:

(i) μ.p ∼ μ.q for all μ ∈ Act,
(ii) (νa)p ∼ (νa)q for all a ∈L .

Proof. The proof is very similar to the one for Theorem 4.1, and so left as an exercise
for the reader. �

Unfortunately, ∼ is not a congruence for parallel composition, as the following
example shows.

Example 6.9. (No congruence for parallel composition) Consider the CCS pro-
cesses r = a.a.0 and t = a.0 |a.0. Clearly, r is bisimilar to t, r ∼ t. However, if we
consider the context C [−] = −|a.a.c.0, we get that C [r] �∼ C [t], because the latter
can execute c, i.e., C [t] c−→ (0 |0) |0, as

(Pref)
a.0 a−→0

(Pref)
a.0 a−→0

(Pref)
c.0 c−→0(S-Pref)

a.c.0 ac−→0
(S-Pref)

a.a.c.0 aac−→0
(S-Com)

a.0 |a.a.c.0 ac−→0 |0
(S-Com)

(a.0 |a.0) |a.a.c.0≡ a.0 |(a.0 |a.a.c.0) c−→0 |(0 |0)≡ (0 |0) |0
(Cong)

(a.0 |a.0) |a.a.c.0 c−→ (0 |0) |0
while C [r] cannot. The reason for this difference is that the process a.a.c.0 can
react with a number of concurrently active components equal to the length of the
trace it can perform. Hence, a congruence semantics for the operator of parallel
composition needs to distinguish between r and t on the basis of their different
degrees of parallelism. In other words, the interleaving semantics is to be replaced
by a truly concurrent semantics, as illustrated in the following section. �

6.3.2 Step Semantics

Multi-CCS can be equipped with a step semantics, i.e., a semantics where each
transition is labeled with a finite multiset of sequences that concurrent subprocesses
can perform at the same time. Ordinary bisimulation over this kind of richer LTSs
is known as step bisimilarity; this equivalence was originally introduced over Petri
nets in [NT84], while [Mil85] is the first paper presenting a step semantics for a
process algebra over LTSs.

The step operational semantics for Multi-CCS is given by the labeled transition
system TSs = (PM,B, −→s ), where PM is the set of Multi-CCS processes, B =
M f in(A ) — i.e., the set of all the finite multisets over A — is the set of labels
(ranged over by M, possibly indexed), and −→s ⊆PM×B×PM is the minimal
transition relation generated by the rules listed in Table 6.8.
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(Prefs)
μ.p

{μ}−→s p
(Cons)

p M−→s p′

C M−→s p′
C

de f
= p

(S-Prefs)
p
{σ}−→s p′

α.p
{α"σ}−→s p′

(Ress)
p M−→s p′

(νa)p M−→s (νa)p′
a,a �∈ n(M)

(Sums
1)

p
{σ}−→s p′

p+q
{σ}−→s p′

(Sums
2)

q
{σ}−→s q′

p+q
{σ}−→s q′

(Pars
1)

p M−→s p′

p |q M−→s p′ |q
(Pars

2)
q M−→s q′

p |q M−→s p |q′

(S-Coms)
p

M1−→s p′ q
M2−→s q′

p |q M−→s p′ |q′
MSync(M1⊕M2,M)

Table 6.8 Step operational semantics

MSync(M,M)

Sync(σ1,σ2,σ) MSync(M⊕{σ},M′)

MSync(M⊕{σ1,σ2},M′)

Table 6.9 Step synchronization relation

Axiom (Prefs) states that μ.p can perform the singleton {μ}, reaching p. Rule (S-
Prefs) assumes that the transition in the premise is sequential, i.e., composed of one
single sequence. This is because α.p is a sequential process, and so it cannot execute
multiple sequences at the same time. Similarly, since the + operator composes only
sequential processes, it is assumed in the premise that the label is composed of one
single sequence. Rule (Ress) requires that M contains no occurrences of action a or
a in any sequence σ ∈M; we denote by n(M) the set

⋃
σ∈M n(σ).

The highlight of this semantics is rule (S-Coms): it allows for the generation
of multisets as labels, by using an additional auxiliary relation MSync, defined in
Table 6.9, where ⊕ denotes multiset union. The intuition behind the definitions of
rule (S-Coms) and MSync is that, whenever two parallel processes p and q perform
steps M1 and M2, respectively, then we can put all the sequences together — yield-
ing M1 ⊕M2 — and see if MSync(M1 ⊕M2,M) holds. The resulting multiset M
may be just M1⊕M2 (hence no synchronization takes place), according to axiom
MSync(M,M), or the multiset M′ we obtain from the application of the rule: select
two sequences σ1 and σ2 from M1⊕M2, synchronize them producing σ , then re-
cursively apply MSync to σ ⊕ (M1⊕M2)\{σ1,σ2} to obtain M′. This procedure of
synchronizing sequences may go on until pairs of synchronizable sequences can be
found, but may also stop at any moment due to the axiom MSync(M,M).

Example 6.10. (Step semantics: distinguishing parallelism from sequentiality)

Consider the CCS processes a.0 |b.0 and a.b.0+ b.a.0, discussed in Remark 3.11.
The former is a parallel process, while the latter is a sequential process; nonetheless,
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DP

{think}

{τ} {τ}{eat} {eat}

{τ} {τ}
{think, think}{τ, think} {τ, think}

{τ, think} {τ, think}{eat, think} {eat, think} {think}

{think}

{think}

{think}

Fig. 6.8 The step labeled transition system for DP

they generate two isomorphic interleaving LTSs (see Figure 3.7). We argued that in-
terleaving LTSs (i.e., LTSs with transitions labeled with a single action) are unable
to distinguish parallelism (or concurrency) from sequentiality. Here we show that
step transition systems can instead! On the one hand, a.0 |b.0 can, besides the ob-

vious sequential transitions a.0 |b.0 {a}−→s 0 |b.0 and a.0 |b.0 {b}−→s a.0 |0, also do the

parallel transition a.0 |b.0 {a,b}−→s 0 |0:

(Prefs)

a.0
{a}−→s 0

(Prefs)

b.0
{b}−→s 0

(S-Coms) MSync({a,b},{a,b})
a.0 |b.0 {a,b}−→s 0 |0

On the other hand, a.b.0+b.a.0 cannot do the same parallel step. �

Exercise 6.19. Show that the two processes r = a.a.0 and t = a.0 |a.0 of Example
6.9 are not step bisimilar, even if they are interleaving bisimilar. �

A nontrivial example of two step bisimilar processes is given by the two pro-
cesses (a.0 |b.0)+ a.b.0 and a.0 |b.0.4 It is not difficult to check that they are step
bisimilar: on the one hand, whatever step is performed by a.0 |b.0, the very same
step can be performed also by (a.0 |b.0)+a.b.0, as it has a.0 |b.0 as one of its two
summands; on the other hand, the additional sequential steps due to summand a.b.0
can be easily matched by a.0 |b.0, by performing its two actions sequentially. This
example shows that a parallel process can be saturated with additional summands
expressing some linearizations of its step behavior, without changing its step equiv-
alence class. Therefore, also (a.0 |b.0)+a.b.0+b.a.0 is step bisimilar to a.0 |b.0.

Example 6.11. (Proving mutual exclusion) Let us consider the dining philosophers
system DP of Example 6.3. A proof that DP acts correctly, i.e., it never allows both
philosophers to eat at the same time, can be given by inspecting its step transition
system (see Figure 6.8). As a matter of fact, the step {eat,eat} is not present. �

4 Strictly speaking, the term (a.0 |b.0)+ a.b.0 is not legal, as the sum operator is unguarded (see
the discussion in Section 3.1.2); however, a completely equivalent term with guarded sum can be
provided in Multi-CCS as (νc)((a+ c) |(b+ c.a.b)).
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It is interesting to observe that the step operational rules in Table 6.8 do not make
use of the structural congruence ≡. The same operational effect of rule (Cong) is
here ensured by relation MSync that allows for multiple synchronization of concur-
rently active subprocesses.

Example 6.12. (Why is structural congruence not needed?) Continuing Example
6.5, consider process Q = a.b.p |(b.q |a.r). We have already noticed that in the in-
terleaving transition system Q � τ−→ p |(q |r) if rule (Cong) is not available. However,
such a process can do a ternary synchronization step as follows:

b.p
{b}−→s p

a.b.p
{ab}−→s p

b.q
{b}−→s q a.r

{a}−→s r
MSync({b,a},{b,a})

b.q |a.r {b,a}−→s q |r
MSync({ab,b,a},{τ})

a.b.p |(b.q |a.r) {τ}−→s p |(q |r)
where one of the two possible proofs for MSync({ab,b,a},{τ}) is

Sync(ab,a,b)

Sync(b,b,τ) MSync({τ},{τ})
MSync({b,b},{τ})

MSync({ab,b,a},{τ})
Note that the proof of MSync({ab,b,a},{τ}) gives a precise algorithm on how
to rearrange the three sequential subprocesses of Q to obtain a process Q′ in
such a way that no instance of rule (Cong) is needed in deriving the interleaving
ternary synchronization; first, the subprocesses originating sequences ab and a are
to be contiguous: a.b.p |a.r would produce sequence b. Then, we compose this
system with the subprocess performing b, yielding Q′ = (a.b.p |a.r) |b.q. Indeed,
Q′ τ−→ (p |r) |q and its proof makes no use of rule (Cong). Note that the proof of
MSync({ab,b,a},{τ}) is not unique: another one may start by synchronizing first
ab and b, and then also a and a; the resulting process is (a.b.p |b.q) |a.r, which can
execute the interleaving ternary synchronization without using the operational rule
(Cong), too. �

Exercise 6.20. Continuing Example 6.6, consider p=(a.c.0 |b.0) |(a.0 |b.c.0). Prove

that transition p
{τ}−→s (0 |0) |(0 |0) is derivable. �

6.3.3 Step Bisimilarity Implies Interleaving Bisimilarity

By step bisimilarity, denoted∼step, we mean ordinary bisimulation equivalence over
the step transition system of Multi-CCS. This section is devoted to prove that step
bisimilarity ∼step is more discriminating than interleaving bisimilarity ∼, at least
for well-formed processes. The proof is rather technical and needs many auxiliary
lemmata. First, we list some properties of relation MSync.
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Lemma 6.5. (Additivity) For all multisets M1,M2,N ∈B, we have MSync(M1,M2)
if and only if MSync(M1⊕N,M2⊕N).

Proof. Take a proof tree for MSync(M1,M2), which will end with an axiom of the
form MSync(M2,M2); then, replace such an axiom with MSync(M2⊕N,M2⊕N)
and update accordingly the proof tree; the resulting proof tree proves MSync(M1⊕
N,M2⊕N). For instance, the proof tree

Sync(σ1,σ2,σ ′)
Sync(σ ′,σ3,σ) MSync(M′

1⊕{σ},M′
1⊕{σ})

MSync(M′
1⊕{σ ′,σ3},M′

1⊕{σ})
MSync(M′

1⊕{σ1,σ2,σ3},M′
1⊕{σ})

is transformed into the proof tree

Sync(σ1,σ2,σ ′)
Sync(σ ′,σ3,σ) MSync(M′

1⊕{σ}⊕N,M′
1⊕{σ}⊕N)

MSync(M′
1⊕{σ ′,σ3}⊕N,M′

1⊕{σ}⊕N)

MSync(M′
1⊕{σ1,σ2,σ3}⊕N,M′

1⊕{σ}⊕N)

Conversely, the proof tree for MSync(M1 ⊕ N,M2 ⊕ N) ends with an axiom
MSync(M2⊕N,M2⊕N); by replacing such an axiom with MSync(M2,M2) and by
updating accordingly the proof tree, we get a proof tree for MSync(M1,M2). �

Exercise 6.21. (Additivity 2) Prove that, for all multisets M1,M2,N1,N2 ∈ B, if
MSync(M1,N1) and MSync(M2,N2), then MSync(M1⊕M2,N1⊕N2).

(Hint: The proof tree for MSync(M2,N2) can be adapted, as per Lemma 6.5, to a
proof tree for MSync(N1⊕M2,N1⊕N2); then, as the proof tree for MSync(M1,N1)
ends with axiom MSync(N1,N1), replace such an axiom with the proof tree for
MSync(N1⊕M2,N1⊕N2) and update accordingly the proof tree of MSync(M1,N1)
by adding M2 to the first argument and N2 to the second argument of all the involved
occurrences of MSync. The resulting proof tree proves the thesis.) �

Lemma 6.6. (Transitivity) For all multisets M1,M2,M3 ∈ B, if MSync(M1,M2)
and MSync(M2,M3), then MSync(M1,M3).

Proof. The proof tree for MSync(M1,M2) has a final axiom MSync(M2,M2); replace
that axiom with the proof tree for MSync(M2,M3), to create a new proof tree where
all the occurrence of M2 (as second argument of MSync) are replaced with M3 in
the original proof tree: this new proof tree proves MSync(M1,M3). �

Lemma 6.7. (Associativity) For all M1,M2,M3 ∈ B such that there exist M′,M
with MSync(M1 ⊕M2,M′) and MSync(M′ ⊕M3,M), there exists M′′ such that
MSync(M2⊕M3,M′′) and MSync(M1⊕M′′,M). Also, MSync(M1⊕M2⊕M3,M).

Proof. As MSync(M1⊕M2,M′), by additivity Lemma 6.5 we have MSync(M1⊕M2⊕
M3,M′ ⊕M3). By transitivity Lemma 6.6, we have MSync(M1⊕M2⊕M3,M). By
choosing M′′ = M2⊕M3, as MSync(M2⊕M3,M2⊕M3), by additivity Lemma 6.5
we have MSync(M1⊕M2⊕M3,M1⊕M2⊕M3), and by transitivity Lemma 6.6, we
have MSync(M1⊕M2⊕M3,M) as well. �
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Proposition 6.16. For all p,q,r ∈ PM, if p |(q |r) M−→s s, then there exists t such

that (p |q) |r M−→s t, with s≡ t, and vice versa.

Proof. By induction on the proof of p |(q |r) M−→s s. We have three cases: (i) p M−→s p1

and s= p1 |(q |r); or (ii) (q |r) M−→s s1 and s= p |s1; or (iii) p
M1−→s p1, (q |r) M2−→s s1,

MSync(M1⊕M2,M) and s = p1 |s1.

In the first case, by rule (Pars
1), p |q M−→s p1 |q, and so (p |q) |r M−→s (p1 |q) |r,

with p1 |(q |r)≡ (p1 |q) |r, as required.

In the second case, we have three subcases: (a) q M−→s q1 and s1 = q1 |r; or

(b) r M−→s r1 and s1 = q |r1; or (c) q
M1−→s q1, r

M2−→s r1, MSync(M1⊕M2,M) and

s1 = p1 |r1. In the first subcase, by rule (Pars
2), p |q M−→s p |q1, and so, by rule

(Pars
1), (p |q) |r M−→s (p |q1) |r, with p |(q1 |r) ≡ (p |q1) |r. The second subcase is

symmetric, hence omitted. In the third subcase, by (Pars
2), p |q M1−→s p |q1, and so, by

(S-Coms), (p |q) |r M−→s (p |q1) |r1, with p |(q1 |r1)≡ (p |q1) |r1.

In the third case, we have three subcases: (a) q
M2−→s q1 and s1 = q1 |r; or (b)

r
M2−→s r1 and s1 = q |r1; or (c) q

M′
1−→s q1, r

M′
2−→s r1, MSync(M′

1⊕M′
2,M2) and s1 =

p1 |r1. The first two subcases are similar to the third subcase of the previous case,

and so omitted. In the third subcase, by rule (S-Coms), p |q M1⊕M′
1−→s p1 |q1, and so

(p |q) |r M−→s (p1 |q1) |r1 — because MSync(M1⊕M′
1⊕M′

2,M) by the associativity
Lemma 6.7 — with p1 |(q1 |r1)≡ (p1 |q1) |r1.

The symmetric cases where (p |q) |r M−→s t moves first are analogous, hence omit-
ted. �

Lemma 6.8. For all M,N ∈B, and for all σ1,σ2,σ ∈A such that Sync(σ1,σ2,σ),
if MSync(M,N⊕{σ1,σ2}), then MSync(M,N⊕{σ}).
Proof. Since Sync(σ1,σ2,σ), we have MSync({σ1,σ2},{σ}) by a trivial applica-
tion of the rule in Table 6.9. By the additivity Lemma 6.5, we have MSync(N ⊕
{σ1,σ2},N⊕{σ}). Finally, as MSync(M,N⊕{σ1,σ2}), by the transitivity Lemma
6.6, we get the thesis MSync(M,N⊕{σ}). �

Proposition 6.17. If p M−→s q and M = M′ ⊕ {σ1,σ2} and Sync(σ1,σ2,σ), then

p N−→s q, with N = M′ ⊕{σ}.

Proof. By induction on the proof of p M−→s q. First note that rules for sequential
processes are not applicable, as they do not produce steps with more than one
element. Then, for the rule (Pars

1), (Pars
2), (Ress) and (Coms), the thesis follows

by trivial induction; for instance, for the case of rule (Pars
1), if p |q M−→s p′ |q

because p M−→s p′ with M = M′ ⊕ {σ1,σ2} and Sync(σ1,σ2,σ), then by induc-

tion we have p N−→s p′, and so p |q N−→s p′ |q. The base case of induction is rule
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(S-Coms). Assume p
M1−→s p′, q

M2−→s q′, p |q M−→s p′ |q′, with M = M′ ⊕ {σ1,σ2},
Sync(σ1,σ2,σ) and MSync(M1 ⊕M2,M′ ⊕ {σ1,σ2}). Then, by Lemma 6.8, also
MSync(M1⊕M2,M′ ⊕ {σ}); hence, by taking N = M′ ⊕ {σ}, rule (S-Coms) can

be applied to derive also p |q N−→s p′ |q′. �

The following lemma and proposition assume that (part of) the involved pro-
cesses are well-formed.

Lemma 6.9. Given two processes p and q, such that wf(q) and a �∈ f n(p), if

p
M1−→s p′, q

M2−→s q′, MSync(M1⊕M2,M) and (νa)(p |q) M−→s (νa)(p′ |q′), then there

exists N such that (νa)q N−→s (νa)q′ and MSync(M1 ⊕ N,M), so that transition

p |(νa)q M−→s p′ |(νa)q′ is derivable.

Proof. By induction on the cardinality of M2. If M2 = {σ}, then a,a �∈ n(σ), because
a �∈ f n(p) and a,a �∈ n(M) by rule (Ress). Therefore, N = M2 = {σ}.

In general, when the cardinality of M2 is greater than one, we have two cases: (i)
a,a �∈ n(M2); or (ii) a ∈ n(M2). In the former case, take N = M2. In the latter case,
take the the sequence in M2, say γ , with the greatest number of occurrences of a or a,
say k≥ 1, where i is the number of a and k− i the number of a, for 0≤ i≤ k. Hence,
in order to let the forbidden actions disappear in M (a,a �∈ n(M) by rule (Ress)), it is
necessary that M2 contains i occurrences of action a and k− i occurrences of action
a; in fact, since wf(q), all the occurrences of such k actions cannot be produced by
a synchronization of a sequence in q with some action in p; otherwise, there would
be two atomic sequences in M2 not respecting the well-formedness condition of q.
This multiset N = {γ, i×a,(k− i)×a} is a submultiset of M2, and MSync(N,{γ}),
for some suitable γ . Now, let M′

2 = (M2 \N)⊕ {γ}. Note that if q
M2−→s q′, then

also q
M′

2−→s q′, by (possibly repeated) application of Proposition 6.17. Moreover,
MSync(M1⊕M′

2,M) holds because the synchronization of all the sequences in N is
strictly necessary in order to satisfy the condition a,a �∈ n(M); moreover, if γ = τ ,
then such an action cannot be used for further synchronization, while if γ =σ , then it
can be used for further synchronizations, but the order of these first synchronizations
(within N) w.r.t. the others is irrelevant by Lemma 6.2. Finally, note that the cardi-

nality of M′
2 is less than that of M2; hence, induction can be applied: if p

M1−→s p′,

q
M′

2−→s q′, MSync(M1⊕M′
2,M) and (νa)(p |q) M−→s (νa)(p′ |q′), then there exists N

such that (νa)q N−→s (νa)q′, MSync(M1 ⊕N,M) and p |(νa)q M−→s p′ |(νa)q′, as
required. �

In the lemma above, the requirement that q is well-formed is crucial for getting
the thesis, as the following example shows.

Example 6.13. Let us consider processes p = b.0 and q = b.a.0 |a.c.0. Clearly, q

is not well-formed because a ∈ ns(b.a.0) and a ∈ ns(a.c.0). Note that p
M1−→s 0

with M1 = {b}, q
M2−→s 0 |0 with M2 = {ba,ac}, and also MSync(M1⊕M2,M) with
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M = {c}, because Sync(b,ba,a) and Sync(a,ac,c); as a consequence, we have that
(νa)(p |q) M−→s (νa)(0 |(0 |0)) is derivable. However, there is no multiset N such
that (νa)q N−→s (νa)(0 |0) and MSync(M1 ⊕N,M). As a matter of fact, the two
sequences in M2 cannot synchronize, and so M2 cannot be reduced to a simpler
multiset N, as done in the proof of Lemma 6.9. �

By the example above, one may be induced to think that the non-existence of
a suitable multiset N is due to the fact that the synchronization relation is too re-
strictive; a more liberal definition of Sync, allowing for the synchronization of two
sequences, may work: if Sync(ba,ac,bc), then the required N can be {bc}, with
(νa)q N−→s (νa)(0 |0). However, also with this more liberal definition of Sync, it is
possible to find a counterexample to Lemma 6.9, as the following example shows.

Example 6.14. Let q = (a.b.0 |a.c.0) |c.d.b.0. If we assume to have a liberal syn-
chronization relation that allows for the synchronization of two sequences, then
(νa,b)q can only do a step labeled {d}, by first synchronizing ab with ac, yield-
ing cb, which is to be synchronized with cdb, yielding d. Let p = c.e.c.0, which can
only perform {cec}. Hence, p |(νa,b)q can perform, as its initial steps, only {d}
and {cec}. On the other hand, (νa,b)(p |q) can also perform initially the step {ed},
by first synchronizing cec with cdb, yielding cedb, and then synchronizing this with
cb — obtained by synchronizing ab with ac – yielding ed. �

In conclusion, the validity of Lemma 6.9 strictly depends on the actual definition
of the synchronization relation Sync: with the rules in Table 6.1, the thesis holds for
well-formed processes; on the contrary, it seems that no different definition of Sync
can work for non-well-formed processes.

Proposition 6.18. Given two processes p and q, such that wf(q) and a �∈ f n(p), if

(νa)(p |q) M−→s s, then there exists t such that p |(νa)q M−→s t, with s ≡ t, and vice
versa.

Proof. By induction on the proof of (νa)(p |q) M−→s s. We have three cases: (i)

p M−→s p′ and s=(νa)(p′ |q); or (ii) q M−→s q′, and s=(νa)(p |q′); or (iii) p
M1−→s p′,

q
M2−→s q′, MSync(M1 ⊕M2,M) and s = (νa)(p′ |q′). In the first case, by rule

(Pars
1), p |(νa)q M−→s p′ |(νa)q, with (νa)(p′ |q) ≡ p′ |(νa)q. In the second case,

by rule (Ress), (νa)q M−→s (νa)q′ and then by (Pars
2), p |(νa)q M−→s p |(νa)q′, with

(νa)(p |q′) ≡ p |(νa)q′. In the third case, by Lemma 6.9, there exists N such that

(νa)q N−→s (νa)q′ and MSync(M1⊕N,M); therefore, p |(νa)q M−→s p′ |(νa)q′, with
(νa)(p′ |q′)≡ p′ |(νa)q′, as required.

The symmetric cases where p |(νa)q M−→s t moves first are analogous, hence left
as an exercise for the reader. �

Theorem 6.3. Let p,q∈PM be well-formed processes such that p≡ q. If p M−→s p′,
then there exists q′ such that q M−→s q′ with p′ ≡ q′.
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Proof. By induction on the proof of p ≡ q. One has to show that for each axiom
p = q in Table 6.5, generating the structural congruence≡, we have the thesis. This
is obvious for all five axioms, except for E1 (associativity) and E4 (scope enlarge-
ment). For these cases, we can resort to Propositions 6.16 and 6.18, respectively.
Note that the assumption that the two processes are well-formed is necessary only
for the case of axiom E4, i.e., for Proposition 6.18. �

Now we want to prove that all the step transitions labeled on a singleton are also
interleaving transitions. The proof is first given for the restricted case of pool forms;
then, the result is generalized to all well-formed processes.

Lemma 6.10. For any p ∈PM in pool form, if p
{σ}−→s q, then p σ−→q.

Proof. (Sketch) The proof is by induction on the proof of p
{σ}−→s q. We proceed by

case analysis.

If p = μ.p′, then p
{μ}−→s p′ by (Prefs), and also p

μ−→ p′ by (Pref).

If p = α .p′, then p
{α"σ}−→s q is derivable by rule (S-Prefs) only if p′

{σ}−→s q. As p′ is
sequential, hence in pool form by Lemma 6.1, induction can be applied to conclude
that p′ σ−→q; hence, by rule (S-Pref), it follows that p α"σ−→q.

If p = p1+ p2, then p
{σ}−→s q is derivable only if either p1

{σ}−→s q (rule (Sums
1)) or

p2
{σ}−→s q (rule (Sums

2)). Hence, by induction (as p1 and p2 are sequential, hence in
pool form), we have that either p1

σ−→q or p2
σ−→q. In any case, transition p σ−→q

is derivable by (Sum1) or (Sum2).
If p = p1 | p2, then both p1 and p2 are pool forms, by Definition 6.1. Transi-

tion p
{σ}−→s q is derivable only in one of the three cases: p1

{σ}−→s p′1 and q = p′1 | p2

(rule (Pars
1)); or p2

{σ}−→s p′2 and q = p1 | p′2 (rule (Pars
2)); or p1

M1−→s p′1, p2
M2−→s p′2

and MSync(M1⊕M2,{σ}) (rule (S-Coms)). In the first case, by induction, we have
p1

σ−→ p′1 and so, by rule (Par1), also p σ−→q. The second case is analogous, hence
omitted. The third case is the most difficult one. As both p1 and p2 are pool forms, for
each sequence σ k

j ∈Mk, there is a subprocess pk
j of pk that performs it, for k = 1,2.

That is, from p1
M1−→s p′1 and p2

M2−→s p′2 we can extract two multisets T1 and T2 of

transitions of the form pk
j

{σ k
j }−→s qk

j that, by induction, have their counterpart of the

form pk
j

σ k
j−→qk

j. These interleaving transitions can be rearranged suitably to build a

proof tree for p′ σ−→q′, with p≡ p′ and q≡ q′, by using the actual proof of relation
MSync(M1⊕M2,{σ}) which tells in what order the parallel subcomponents pk

j are
to be arranged by means of the structural congruence, as illustrated in Example
6.12; then, p σ−→q follows by rule (Cong).

If p = (νa)p′, transition p
{σ}−→s q is derivable only if, by rule (Ress), p′

{σ}−→s q′
is derivable, with σ not containing any occurrence of a or a, and q = (νa)q′. By
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induction (as p′ is a pool form, too), we have p′ σ−→q′, and so by rule (Res), also
p σ−→q is derivable.

If p=A, with A
de f
= r. This case is empty, as we are assuming p in pool form (hence

with prefixed constants), and p = A does not satisfy this requirement. �

Proposition 6.19. For any well-formed process p ∈PM, if p
{σ}−→s q, then p σ−→q.

Proof. Given p, we can extract a pool form p′ for it, by Proposition 6.3, such that

p≡ p′. By Theorem 6.1, we have wf(p′). By Theorem 6.3, if p
{σ}−→s q, then p′

{σ}−→s q′

with q ≡ q′. By Lemma 6.10, we also have p′ σ−→q′, and so, by rule (Cong), also
p σ−→q. �

In the reverse direction, one can prove the following fact.

Proposition 6.20. Let p∈PM be a well-formed process. If p σ−→q, then there exists

q′ such that p
{σ}−→s q′ with q′ ≡ q.

Proof. The proof is by induction on the proof of p σ−→q. All the cases are trivial,
except when rule (Cong) is used

p≡ p′ σ−→q′ ≡ q

p σ−→q

Note that wf(p′) holds, as wf(p) and p≡ p′, by Theorem 6.1. If p′ σ−→q′, by induc-

tion, we can assume that p′
{σ}−→s q′′ with q′′ ≡ q′. By Theorem 6.3, also transition

p
{σ}−→s q′′′ is derivable with q′′′ ≡ q′′. So the thesis follows as, by transitivity, also

q′′′ ≡ q. �

We cannot prove the stronger result p
{σ}−→s q, because of the free use of structural

congruence; e.g., μ.(p |(q |r)) μ−→ ((p |q) |r) (due to (Cong)), while μ.(p |(q |r))
cannot reach ((p |q) |r) in the step transition system.

Theorem 6.4. (Step bisimilarity implies interleaving bisimilarity) Let p,q∈PM
be well-formed processes. If p∼step q then p∼ q.

Proof. Let R be a step bisimulation such that (p,q)∈ R. Then, it is easy to prove that
R is an interleaving bisimulation up to ∼. Consider a generic pair (p,q) ∈ R and
assume that p σ−→ p′. By Proposition 6.20, if p σ−→ p′, then there exists p′′ such that

p
{σ}−→s p′′ with p′ ≡ p′′, and so also p′ ∼ p′′ by Proposition 6.10. Since (p,q) ∈ R

and R is a step bisimulation, then also q
{σ}−→s q′ is derivable with (p′′,q′) ∈ R. By

Proposition 6.19, also q σ−→q′ is derivable. Summing up, to move p σ−→ p′, q replies
with q σ−→q′, so that p′ ∼ p′′Rq′ ∼ q′, as required by the definition of (interleaving)
bisimulation up to ∼. The case when q moves first is symmetric, hence omitted. �
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Of course, the reverse implication of the theorem above is false; for instance,
a.0 |b.0 ∼ a.b.0+b.a.0 but Example 6.10 shows that the two are not step bisimilar
as only the former can perform a step transition labeled {a,b}.

6.3.4 Properties of the Step Semantics

For step bisimilarity ∼step we have very similar algebraic laws as for interleaving
bisimilairty∼: essentially all the laws of Section 6.3.1 hold also for step bisimilarity,
except the interleaving law of Remark 6.6. In particular, the following proposition
shows that the structural congruence is a step bisimilarity, hence the five laws listed
after Proposition 6.10 hold also for it.

Proposition 6.21. Let p,q ∈PM be well-formed processes. If p≡ q then p∼step q.

Proof. It is enough to check that relation R= {(p,q)
∣∣ p≡ q} is a step bisimulation.

If (p,q) ∈ R and p M−→s p′, then by Theorem 6.3 there exists q′ such that q M−→s q′
with p′ ≡ q′, hence (p′,q′) ∈ R. Symmetrically, if q moves first. �

Now we prove that step bisimilarity is a congruence for the Multi-CCS operators.

Proposition 6.22. (Congruence for prefixing, parallel composition and restric-

tion) Let p and q be Multi-CCS processes. If p∼step q, then
(i) μ.p ∼step μ.q, for all μ ∈ Act,
(ii) p |r ∼step q |r, for any process r ∈PM.
(iii) (νa)p ∼step (νa)q, for all a ∈L .

Proof. Assume R is a step bisimulation containing the pair (p,q). For case (i), re-
lation R1 = R∪ {(μ.p,μ.q)} is a step bisimulation. For case (ii), relation R2 =
{(p′ |r′,q′ |r′) ∣∣ r′ ∈P (p′,q′) ∈ R} is a step bisimulation. For case (iii), relation
R3 = {((νa)p′,(νa)q′)

∣∣ (p′,q′) ∈ R} is a step bisimulation. �

Proposition 6.23. (Congruence for strong prefixing and choice) Let p and q be
sequential processes. If p∼step q, then

(i) α.p ∼step α.q, for all α ∈L ∪L ,
(ii) p+ r ∼step q+ r, for any sequential process r.

Proof. Assume R is a step bisimulation containing the pair (p,q).
Case (i) can be proven by considering relation R4 = R∪{(α.p,α.q)}. Transi-

tion α.p
{α"σ}−→s p′ is derivable, by rule (S-Pref), only if p

{σ}−→s p′. As (p,q) ∈ R, also

q
{σ}−→s q′ with (p′,q′) ∈ R. Hence, also α.q

{α"σ}−→s q′ with (p′,q′) ∈ R3, as required.
Case (ii) can be proven by showing that R5 = {(p+ r,q+ r)

∣∣ r ∈PM}∪R∪
{(r,r) ∣∣ r ∈PM} is a step bisimulation. �
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Summing up, we have that step bisimilarity is a congruence over Multi-CCS
processes. This result gives evidence that to give a satisfactory account of Multi-
CCS one needs a non-interleaving model of concurrency, such as the step transition
system. The advantages of the step semantics are essentially:

• a simpler structural operational semantics, which makes no use of the structural
congruence ≡, and

• a more adequate behavioral semantics, namely step bisimilarity, which is finer
than interleaving bisimilarity over well-formed processes and is a congruence
for all the operators of the language.

Proposition 6.22(ii) and Theorem 6.4 ensure that for any pair of well-formed
Multi-CCS processes p and q, if p ∼step q then p |r ∼ q |r, for any process r. One
may wonder if the reverse holds: if for all r such that w f (p |r) and w f (q |r), we have
that p |r ∼ q |r, can we conclude that p ∼step q? If this is the case, we can say that
step equivalence is the coarsest congruence contained in interleaving bisimulation
for Multi-CCS. The answer to this question is negative, as the following example
shows.

Example 6.15. Take processes p = τ.τ.0 and q = τ.0 |τ.0. It is not difficult to see
that p |r ∼ q |r, for all (well-formed) processes r; however, p �∼step q as only q can
perform the step {τ,τ}. �

The problem of finding the coarsest congruence contained in ∼ is open.

6.4 Case Studies

Here we briefly present three well-known coordination problems in the theory of
concurrent computation, which can be solved satisfactorily in well-formed Multi-
CCS (but not in CCS).

6.4.1 Concurrent Readers and Writers

According to [Pet81], there are several variants of this problem, originally intro-
duced in [CHP71], but the basic structure is the same. Processes are of two types:
reader processes and writer processes. All processes share a common file; so, each
writer process must exclude all the other writers and all the readers while writing
on the file, while multiple reader processes can access the shared file simultane-
ously. The problem is to define a control structure that does not deadlock or allow
violations of the mutual exclusion criteria.

Assume we have n readers and m writers and that at most k ≤ n readers can
read simultaneously. We can assume we have k lock resources such that a reader
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can read if at least one lock is available, while a writer can write if all the k locks
are available, so that it prevents all the k possible concurrent reading operations.
As for the dining philosophers problem, in a naı̈ve CCS solution to this problem,
a deadlock may occur when two writers are competing for the acquisition of the k
locks, so that one has acquired i locks and the other one k− i, for some 0 < i < k;
in such a situation, both writers are stuck, waiting for the missing locks, and all
the readers are not allowed to read as no lock is available. Another problem that
may arise in a CCS solution to this problem is that a writer process, while trying to
acquire the k locks, may be blocked in the middle because some reader process is
so fast in continuously acquiring the lock, reading, releasing the lock, reacquiring
the lock, reading again, and so on, that the race for the acquisition of the lock may
be won always by the same (reader) process. In such a situation, less than k readers
can read simultaneously, as some locks were already taken by the writer process.

A simple Multi-CCS solution to this coordination problem is forcing atomicity
on the writer’s acquisition of the k locks so that either all or none are taken. To make
the presentation simple, assume that n = 4,k = 3,m = 2. Each reader process R,
each lock process L, each writer W can be represented as follows:

R
de f
= lock.read.unlock.R

L
de f
= lock.unlock.L

W
de f
= lock.lock.lock.write.unlock.unlock.unlock.W

The whole system CRW is defined as

CRW
de f
= (ν lock,unlock)(R |R |R |R |W |W |L |L |L),

where parentheses are omitted as | is associative. Note that a writer W executes a
four-way synchronization with the three instances of the lock process L in order to
get permission to write:

CRW τ−→ (ν lock,unlock)(R |R |R |R |W ′ |W |L′ |L′ |L′),

where W ′ = write.unlock.unlock.unlock.W and L′ = unlock.L.
It is easy to see that the LTS for CRW is finite-state: indeed, R, L and W are finite-

state Multi-CCS processes and CRW is a regular Multi-CCS process. Note also that,
in order to ensure correctness, it is not necessary to require atomicity also on the
release of the locks. This choice is only done in order to have a smaller model.

Exercise 6.22. Draw the interleaving LTS for the process CRW . Check that no dead-
lock is present. �

Exercise 6.23. Draw also the step LTS for CRW . Check that no step {read,write},
as well as {write,write}, is present, hence showing that mutual exclusion is en-
sured. Argue also that the solution ensures maximal concurrency among the reader
processes. �
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6.4.2 Courteous Dining Philosophers

The (randomized) courteous dining philosophers algorithm, described in [LR81,
RL94], can be adapted, by exploiting the multi-party synchronization capability
of Multi-CCS, to obtain a symmetric, distributed (to some extent — see Remark
6.2), deterministic, divergence-free solution ensuring strong non-starvation: for any
computation, each time a philosopher wants to eat, he will eat eventually, that is, no
hungry philosopher will starve.

It is necessary to add three variables for each pair of adjacent philosophers Pi and
Pi+1: one, called S(i,i+1), lets Pi to inform Pi+1 of his desire to eat (values on/off), and
vice versa, variable S(i+1,i) informs Pi that Pi+1 wishes to eat (or not); then, variable
K(i,i+1) shows which of the two has eaten last (values i/i+1/neutral, the last being
the dummy initial value). When a philosopher Pi gets hungry, he first declares his
desire to eat to his two neighbors by setting variables S(i,i+1) and S(i,i−1) to on; then
he tries to perform a multiway synchronization with the two forks, provided that the
following conditions are satisfied:

• S(i+1,i) is set to off or K(i,i+1) is set to i+1 or neutral; this means that the philoso-
pher Pi+1 is either not willing to eat or has been served last (or neither has been
served yet);

• similarly, S(i−1,i) is set to off or K(i−1,i) is set to i− 1 or neutral; this means that
the philosopher Pi−1 is either not willing to eat or has been served last (or neither
has been served yet).

After eating, philosopher Pi puts down the forks and updates the variables he shares
with his neighbors in the obvious way (no longer hungry and last to eat).

For simplicity’s sake, here we present the (value-passing) Multi-CCS solution in
the restricted case of two philosophers only. This solution is slightly simpler than
the general parametric one for n≥ 3 (see Exercise 6.25). The whole system is

CDP
de f
= (νL)(P0 |S(0,1)(off) |K(0,1)(neutral) |S(1,0)(off) |P1 |F0 |F1),

where L is the set of all the involved actions except thinki, willi (denoting the desire
to eat of philosopher Pi) and eati, for i = 0,1. For (i, j) = (0,1),(1,0), the signal
variable S(i, j)(x) is defined as the following value-passing CCS process

S(i, j)(x)
de f
= r(i, j)(x).S(i, j)(x)+w(i, j)(on).S(i, j)(on)+w(i, j)(off).S(i, j)(off),

where action r(i, j)(x) stands for the output (read operation) of the value x that
S(i, j)(x) currently stores, while actions w(i, j)(on) and w(i, j)(off) stand for the in-
put (write operation) of the value on or off, respectively, to be stored. Observe that,
initially in CDP, the stored value is off, meaning that philosopher Pi is not willing to
eat yet. The variable K(0,1) is defined as

K(0,1)(x)
de f
= l(0,1)(x).K(0,1)(x)+ v(0,1)(0).K(0,1)(0)+ v(0,1)(1).K(0,1)(1),
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where action l(0,1)(x) stands for the output (read operation) of the value x that
K(0,1)(x) currently stores, while actions v(0,1)(0) and v(0,1)(1) stand for the input
(write operation) of the value 0 or 1, respectively, to be stored. Observe that, initially
in CDP, the stored value is neutral, meaning that neither philosopher has eaten yet.
Note that the value neutral cannot be assigned later on.

The two fork processes are defined as usual:

Fi
de f
= upi.T1 Ti

de f
= dni.Fi for i = 0,1

Finally, the alternating philosopher, which alternates the activities of thinking and
eating (see Example 6.3), is defined by the process Pi, for i = 0,1, as

Pi
de f
= thinki.P′i

P′i
de f
= wi,i+1(on).willi.P′′i

P′′i
de f
= upi.upi+1.Qi

Qi
de f
= r(i+1,i)(off).Q′i + l(i,i+1)(neutral).Q′i + l(i,i+1)(i+1).Q′i

Q′i
de f
= eati.P′′′i

P′′′i
de f
= w(i,i+1)(off).v(i,i+1)(i).dni.dni+1.Pi

where, as usual, i+ 1 is computed modulo 2. Pi first thinks and then declares his
intention to eat by setting S(i,i+1) to on and, at the same time, by performing the
observable action willi. Now process P′′i tries to execute a long transaction, starting
with the atomic acquisition of the two forks and then ending with a safety check: Qi
checks that either S(i+1,i) is set to off, or K(i,i+1) is set to neutral or to i+ 1; if this
four-way synchronization is successful, then P′′i reaches state Q′i, i.e., the philoso-
pher can eat now, reaching state P′′′i . Finally, P′′′i , in one single atomic transaction,
sets S(i,i+1) to off, also sets K(i,i+1) to i and finally releases the two forks, so that the
cycle can be repeated.

A possible computation for CDP is

CDP
think0−→ think1−→ (νL)(P′0 |S(0,1)(off) |K(0,1)(neutral) |S(1,0)(off) |P′1 |F0 |F1)
will0−→ will1−→ (νL)(P′′0 |S(0,1)(on) |K(0,1)(neutral) |S(1,0)(on) |P′′1 |F0 |F1)

τ−→ (νL)(Q′0 |S(0,1)(on) |K(0,1)(neutral) |S(1,0)(on) |P′′1 |T0 |T1)
eat0−→ (νL)(P′′′0 |S(0,1)(on) |K(0,1)(neutral) |S(1,0)(on) |P′′1 |T0 |T1)

τ−→ (νL)(P0 |S(0,1)(off) |K(0,1)(0) |S(1,0)(on) |P′′1 |F0 |F1)
think0−→ will0−→ (νL)(P′′0 |S(0,1)(on) |K(0,1)(0) |S(1,0)(on) |P′′1 |F0 |F1),

but now the reached state is such that only P′′1 can execute the fork acquisition trans-
action; as a matter of fact, P′′0 cannot because S(1,0) is set to on (signaling that P′′1 is
willing to eat) and K(0,1) is set to 0 (recording that P′′0 was served last). Then, the
computation can only proceed as
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(νL)(P′′0 |S(0,1)(on) |K(0,1)(0) |S(1,0)(on) |P′′1 |F0 |F1)
τ−→ (νL)(P′′0 |S(0,1)(on) |K(0,1)(0) |S(1,0)(on) |Q′1 |T0 |T1)

eat1−→ (νL)(P′′0 |S(0,1)(on) |K(0,1)(0) |S(1,0)(on) |P′′′1 |T0 |T1)
τ−→ (νL)(P′′0 |S(0,1)(on) |K(0,1)(1) |S(1,0)(off) |P1 |F0 |F1)

and the reached state will allow P′′0 to get the forks, even in case P1 will desire to
eat, because variable K(0,1) records that P′′1 was served last.

Exercise 6.24. Try to draw the interleaving LTS for CDP. Argue that CDP ensures
strong non-starvation. �

Exercise 6.25. Provide the Multi-CCS specification of this version of the courteous
dining philosophers problem for the case of n philosophers, with n≥ 3.

(Hint: Note that the component that needs major modification is the philosopher
Pi, as now he has to interact with many more variables; for instance, the signal vari-
ables he has to set to on when declaring his willingness to eat are S(i,i+1) and S(i,i−1);
similarly, when trying to acquire the two forks, he has to test variables S(i+1,i) and
S(i−1,i) as well as K(i,i+1) and K(i−1,i).) �

6.4.3 Cigarette Smokers Problem

This problem, proposed by Patil in [Pat71], is a typical instance of a problem for
which no deadlock-free and divergence-free solution seems to exist in CCS. Here is
its description, according to [Pet81]. There are four processes: an agent A and three
smokers. Each smoker continuously makes a cigarette and smokes it. But to smoke
a cigarette, three ingredients are needed: tobacco, paper and matches. One of the
smokers has paper, another has tobacco and the third one has matches. The agent
A has an infinite supply of all three. The agent A places two of the ingredients on
the table. The smokers who has the remaining ingredient can then make and smoke
a cigarette, signaling the agent upon completion. The agent then puts out another
two of the three ingredients and the cycle repeats. The problem is to define the code
for the smoker processes to determine which of the three processes should proceed,
avoiding deadlock.

A possible solution to the problem is to have an atomic transaction in which one
of the smokers synchronize with the two resources offered by the smoker in that
round. The three smokers can be defined as

Spap
de f
= tob.mat.smoke.end.Spap

Stob
de f
= mat.pap.smoke.end.Stob

Smat
de f
= pap.tob.smoke.end.Smat ,

where actions pap stands for paper, tob for tobacco and mat for matches; the action
subscripting S signals the ingredient which that smoker already has.
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The agent A decides internally (i.e., by means of an internal choice) which com-
bination of two ingredients to put on the table; the two ingredients are to be treated
as resources that are consumed and then reproduced. Agent A is defined as

A
de f
= τ.(tob.0 |mat.0 |end.A)+ τ.(mat.0 | pap.0 |end.A)

+τ.(pap.0 | tob.0 |end.A)

and the whole system is

Patil
de f
= (ν tob, pap,mat,end)(A |Stob |Smat |Spap),

where, at each round, a multi-party synchronization takes place among one of the
three smokers and the two offered ingredients, so that deadlock is prevented. Unfor-
tunately, this solution generates an infinite-state labeled transition system, because
agent A is a BPP process. However, note that, by adding the equation p |0 = p to
those defining the structural congruence ≡ and by identifying congruent states, the
resulting labeled transition systems would be finite-state. The finite representabil-
ity of Patil behavior is also justified by the following observation: Patil is a well-
formed, finite-net Multi-CCS process, hence, by the Petri net semantics defined in
[Gor15, GV10], the Petri net model for Patil is a finite P/T Petri net [DesRei98];
actually, such a net is safe (i.e., the number of active subprocesses is always finite),
hence with a finite-state underlying (interleaving) labeled transition system.

Patil showed in [Pat71] that no sequence of P and V operations [Dij68] — which
are related to the semaphore structure, described in Example 3.5 of Section 3.4.3 —
can correctly solve this problem. The reason is that P and V operations offer binary
synchronization only, while this problem requires a multi-party synchronization.
Following the same argument by Patil, one can give evidence supporting the claim
that this problem cannot be solved in CCS.

6.5 Expressiveness

As we have seen, Multi-CCS is rather expressive: so expressive that even some use-
ful operators are actually derivable in terms of strong prefixing. In particular, we
show that Multi-CCS−c, where the operator + is removed, is as expressive as Multi-
CCS, hence proving that the choice operator is redundant in Multi-CCS. Moreover,
some operators that have been shown encodable, to some extent, into CCS in Chap-
ter 5 are now more easily encodable. For instance, CCS+r, the extension to CCS
with the relabeling operator, is fully encodable into Multi-CCS. We also show that
the CSP parallel operator, which is not encodable into CCS, is actually encodable
into Multi-CCS. We conclude this section by presenting one problem in distributed
computing that cannot be solved in Multi-CCS, hence emphasizing that Multi-CCS,
albeit very expressive, cannot solve all possible problems in concurrency theory.
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6.5.1 Choice

Strong prefixing can be exploited to provide an encoding of the choice operator in
terms of parallel composition and restriction, so that Multi-CCS turns out to be, to
some extent, redundant. The encoding is a formal compilation of a Multi-CCS term
p to a term �p�c of the Multi-CCS sublanguage not including the choice operator,
called Multi-CCS−c. We will show that this encoding is correct, up to ∼, meaning
that p∼ �p�c.

The encoding of the choice operator is based on an idea originally presented in
[NP96]. If we want to encode the process s = a.p′+ b.q′ into a process s′ without
the choice operator, we can split the choice subprocesses into two parallel processes
a.p′ and b.q′, both strongly prefixed by a private action c, over which a third process
c.0 acts as a semaphore:

s′ = (νc)(c.a.p′ |c.b.q′ |c.0)

The implementation s′ reflects the intuition that the execution of an action from
s = a.p′+ b.q′ is divided into two distinct phases, to be executed atomically: first,
choose the summand (by synchronizing the strong prefix c with the semaphore c),
and then perform an action from the chosen summand.

If c �∈ f n(p′ |q′), the observable behavior of s and s′ is exactly the same. Indeed,
on the one hand, transition s a−→ p′ is matched by s′ a−→ (νc)(p′ |c.b.q′ |0), where
the reached state is bisimilar to p′ because c.b.q′ is blocked forever as c �∈ f n(p′).

On the other hand, transition s b−→q′ is matched by s′ b−→ (νc)(c.a.p′ |q′ |0), where
the reached state is bisimilar to q′ because c.a.p′ is blocked forever as c �∈ f n(q′).
In general, the encoding of a generalized sum μ1.p1 +μ2.p2 + . . .+μn.pn becomes
the process (νc)(c.μ1.p1 |c.μ2.p2 | · · · |c.μn.pn |c.0).

We can formalize this idea as follows. Let �·�c be the function from Multi-CCS
processes to Multi-CCS−c processes defined homomorphically with respect to most
operators,

�0�c = 0 �μ.q�c = μ.�q�c �α.p�c = α.�p�c

�q1 |q2�
c = �q1�

c |�q2�
c �(νa)q�c = (νa)�q�c,

except for constant and choice, for which it is defined as

�A�c = Ac where Ac = �p�c if A
de f
= p

�p1 + p2�
c = (νa)(�p1�

c
a |�p2�

c
a |a.0) a /∈ f n(p1 + p2)

with the auxiliary encoding �·�c
a defined (only over sequential processes) as

�0�c
a = 0 �μ.q�c

a = a.�μ.q�c

�α.p�c
a = a.�α.p�c �p1 + p2�

c
a = �p1�

c
a |�p2�

c
a
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E6 p |0 = p

E7 (νa)p = 0 if p σ−→ p′ implies a ∈ n(σ)∨a ∈ n(σ) ∀σ∀p′

E8 (νa)(p |q) = (νa)p |(νa)q if a does not occur free in p |q

Table 6.10 Additional axioms generating the structural congruence ≡1

Note that the guard a is not added to 0 because it is useless: no transition is
derivable from a.0.

Example 6.16. Consider the CCS process p = (a.0+(b.d.0+ c.0)) |(b.0+ a.e.0).
The result of the encoding is

�p�c = �a.0+(b.d.0+ c.0)�c |�b.0+a.e.0�c

= (ν f )(�a.0�c
f |�b.d.0+ c.0�c

f | f .0) |(νg)(�b.0�c
g |�a.e.0�c

g |g.0)
= (ν f )(�a.0�c

f |�b.d.0�c
f |�c.0�c

f | f .0) |(νg)(�b.0�c
g |�a.e.0�c

g |g.0)
= (ν f )( f .a.0 | f .b.d.0 | f .c.0 | f .0) |(νg)(g.b.0 |g.a.e.0 |g.0)

Transition p τ−→d.0 |0, due to a synchronization on channel b, is matched by
transition �p�c τ−→ (ν f )( f .a.0 |d.0 | f .c.0 |0) |(νg)(0 |g.a.e.0 |0), where the reached
state is bisimilar to d.0 |0. �

In the proof that p ∼ �p�c we are going to provide, we make use of a generous
structural congruence, denoted with≡1, which is generated by adding to the axioms
E1–E5 of Table 6.5 also the axioms E6–E8 of Table 6.10. Note that an instance
of axiom E7 is (νa)0 = 0, as its side condition is vacuously true when p = 0. The
side condition of axiom E8 can be made more general, but for the purposes of this
section, this simple requirement is enough. Observe that axioms E6–E8 are sound
w.r.t. bisimilarity ∼. As a consequence, the following proposition follows trivially.

Proposition 6.24. Let p,q ∈PM be Multi-CCS processes. If p≡1 q, then p∼ q.

Proof. It is enough to check that relation R = {(p,q)
∣∣ p≡1 q} is a bisimulation. If

(p,q) ∈ R and p σ−→ p′, then by induction on the proof of p≡1 q one can prove that
also q σ−→q′ and (p′,q′) ∈ R. Symmetrically, if q moves first.

The base cases are the eight axioms generating ≡1. For the five axioms of Table
6.5, we can resort to rule (Cong): if p σ−→ p′ and p ≡ q, then, by (Cong), also
q σ−→q′, with p′ ≡ q′, and so also p′ ≡1 q′. For the three axioms in Table 6.10, one
has to prove the thesis directly; for instance, if p |0 σ−→ p′ |0, then p σ−→ p′, with
p′ |0 ≡1 p′; these three cases are trivial. The inductive cases are concerned with
the rules of equational deduction; these are omitted; a similar proof is reported in
Lemma 6.2. �

The proof technique we adopt to prove that p ∼ �p�c is based on the idea of
strong bisimulation up to, but since ∼ is not a congruence for parallel composi-
tion, we replace it with a sound approximation that is a congruence also for parallel
composition, namely relation ≡1.
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Definition 6.4. (Strong bisimulation up to ≡1) A strong bisimulation up to ≡1 is
a relation R⊆ Q×Q such that if (q1,q2) ∈ R then for all σ ∈A

• ∀q′1. q1
σ−→q′1, ∃q′2 such that q2

σ−→q′2 and q′1 ≡1 R≡1 q′2
• ∀q′2. q2

σ−→q′2, ∃q′1 such that q1
σ−→q′1 and q′1 ≡1 R≡1 q′2. �

Proposition 6.25. If R is a strong bisimulation up to ≡1, then R⊆∼.

Proof. It is easy to check that if R is a bisimulation up to ≡1, then ≡1 R ≡1 is a
bisimulation. Hence≡1 R≡1⊆∼ by definition of∼. As the identity relation I ⊆≡1,
we have that relation R = I ◦R◦I ⊆≡1 R≡1, hence R⊆∼ by transitivity. �

Lemma 6.11. For any sequential process p and for any a �∈ f n(p), if �p�c
a

σ−→ , then
σ = a"σ ′ for some σ ′.

Proof. By induction on the structure of p. �

Lemma 6.12. For any process p of the form μ.p′ or α.p′, and for any a �∈ f n(p),
�p�c σ−→q if and only if �p�c

a
a"σ−→q, with a,a not occurring free in q.

Proof. If p=μ.p′, then�p�c=μ.�p′�c μ−→�p′�c. Similarly, �p�c
a = a.μ.�p′�c a"μ−→�p′�c,

and the thesis holds.
If p = α.p′, then �p�c = α .�p′�c α"σ−→q provided that �p′�c σ−→q. Similarly,

�p�c
a = a.(α.�p′�c)

a"(α"σ)−→ q, and the thesis holds. �

Lemma 6.13. For any process p of the form r1 + r2, and for any a �∈ f n(p), the
following hold:

(i) if �p�c σ−→q then there exists q such that �p�c
a

a"σ−→q with (νa)q≡1 q, with a,a
not occurring free in q;

(ii) if �p�c
a

a"σ−→q, then there exists q such that �p�c σ−→q with (νa)q ≡1 q, with
a,a not occurring free in q.

Proof. Case (i). If p = r1 + r2, then �p�c = (νa)(�r1�
c
a |�r2�

c
a |a.0). A transition

�p�c σ−→q is possible only if either �r1�
c
a

a"σ−→q1 with q = (νa)(q1 |�r2�
c
a |0), or

�r2�
c
a

a"σ−→q2 with q = (νa)(�r1�
c
a |q2 |0). Note that �p�c

a = �r1�
c
a |�r2�

c
a. In the for-

mer case, �p�c
a

a"σ−→q1 |�r2�
c
a = q and (νa)q≡1 q by axiom E6. Symmetrically, in the

latter case when �r2�
c
a moves.

Case (ii) is very similar, hence left as an exercise. �

Theorem 6.5. For every MultiCCS process p, we have that p∼ �p�c.

Proof. Consider relation R = {(p,�p�c)
∣∣ p ∈PM}. It is not difficult to prove that

R is a strong bisimulation up to ≡1.
On the one hand, one has to prove that if p σ−→ p′, then there exists q such that

�p�c σ−→q with p′R�p′�c ≡1 q. This can be proved by induction on the proof of
p σ−→ p′. We proceed by case analysis.
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If p = μ.p1, then p
μ−→ p1. Also �p�c = μ.�p1�

c μ−→ �p1�
c with p1 R�p1�

c.
If p = α.p1, then p α"σ−→ p′ provided that p1

σ−→ p′. By induction, we have that
�p1�

c σ−→q such that p′R�p′�c ≡1 q. Also �p�c = α.�p1�
c α"σ−→q, as required.

If p = p1 | p2, then p σ−→ p′ is possible only if p1
σ−→ p′1 and p′ = p′1 | p2; or

p2
σ−→ p′2 and p′= p1 | p′2; or p1

σ1−→ p′1, p2
σ2−→ p′2, Sync(σ1,σ2,σ) and p′= p′1 | p′2.

In the first case, by induction, we have that �p1�
c σ−→q1 such that p′1 R�p′1�

c ≡1 q1.
Also, �p1 | p2�

c = �p1�
c |�p2�

c σ−→q1 |�p2�
c, with p′1 | p2 R�p′1 | p2�

c = �p′1�
c |�p2�

c≡1
q1 |�p2�

c, as required. The other two cases are analogous, hence omitted.
The case p = (νa)p1 is very simple and left as an exercise.
The only nontrivial case is when p = p1 + p2: if p σ−→ p′ because p1

σ−→ p′ (the
symmetric case when p2 moves is analogous, hence omitted), then by induction we
can assume that �p1�

c σ−→q1 with q1 ≡1 �p′�c. Now we proceed by case analysis on
the shape of the sequential process p1. If p1 = μ.p′1 or p1 = μ.p′1, then by Lemma

6.12, also transition �p1�
c
a

a"σ−→q1 is derivable. Hence,
�p�c = (νa)(�p1�

c
a |�p2�

c
a |a.0) σ−→ (νa)(q1 |�p2�

c
a |0), where

(νa)(q1 |�p2�
c
a |0)≡1 (νa)(q1 |�p2�

c
a) by axiom E6,

(νa)(q1 |�p2�
c
a)≡1 q1 |(νa)�p2�

c
a by axiom E4 as a �∈ f n(q1), and,

q1 |(νa)�p2�
c
a ≡1 q1 by axiom E7, as by Lemma 6.11, �p2�

c
a is blocked by the

restriction on a; summing up, (νa)(q1 |�p2�
c
a |0)≡1 �p′�c by transitivity.

Instead, if p1 = r1+r2, then by Lemma 6.13(i), also transition �p1�
c
a

a"σ−→q1 such
that (νa)q1 ≡1 q1 is derivable. Hence,

�p�c = (νa)(�p1�
c
a |�p2�

c
a |a.0) σ−→ (νa)(q1 |�p2�

c
a |0), where

(νa)(q1 |�p2�
c
a |0)≡1 (νa)(q1 |�p2�

c
a) by axiom E6,

(νa)(q1 |�p2�
c
a) ≡1 (νa)q1 |(νa)�p2�

c
a by axiom E8, as a does not occur free in

q1 or in �p2�
c
a,

(νa)q1 |(νa)�p2�
c
a ≡1 (νa)q1 |0 by axiom E7, as by Lemma 6.11, �p2�

c
a is

blocked by the restriction on a; and
(νa)q1 |0 ≡1 (νa)q1 by axiom E6. Summing up, (νa)(q1 |�p2�

c
a |0) ≡1 �p′�c by

transitivity, as (νa)q1 ≡1 q1 and q1 ≡1 �p′�c.
The final case is when p σ−→ p′ is due to rule (Cong), i.e., with premise: p ≡

q,q σ−→q′,q′ ≡ p′. By induction, we can assume that �q�c σ−→ r with r ≡1 �q′�c.
Moreover, it is easy to observe that if p ≡ q, then also �p�c ≡ �q�c. Hence, by rule
(Cong), also transition �p�c σ−→ r is derivable. Note also that �p�c ≡ �q�c implies
�p�c ≡1 �q�c. Summing up, to transition p σ−→ p′, �p�c replies with �p�c σ−→ r such
that r ≡1 �q′�c ≡1 �p′�s, as required.

On the other hand, one has to prove the following: if �p�c σ−→q, then there exists
p′ such that p σ−→ p′ with q≡1 �p′�c. This can be proved by induction on the proof
of �p�c σ−→q, hence by case analysis on the shape of p. Also in this case, the only
non trivial case is for �p1 + p2�

c, and an argument similar to the above suffices. �

The theorem above may induce us to conclude that the choice operator is com-
pletely useless in Multi-CCS. However, for efficiency reasons, this is not the case.
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As a matter of fact, a Multi-CCS process p and its encoding �p�c may have dra-

matically different associated LTSs. For instance, A
de f
= b.A+ c.A is a very simple,

finite-state CCS process, while its encoding �A�c is the Multi-CCS process term

Acde f
= (νd)(d.b.Ac |d.c.Ac |d.0), whose associated LTS has infinitely many states.

6.5.2 Relabeling

In Section 5.3 we discussed how to extend CCS with the relabeling operator and
the stringent conditions under which relabeling can be encoded into CCS. Here we
show that CCS, extended with a rather generous definition of relabeling, can be
encoded into Multi-CCS, up to ∼, with little effort.

A relabeling f is a function f : L → L over the set L of inputs, which can
be extended to all actions in Act as follows: f (a) = f (a) and f (τ) = τ . Relabeling
f is of finite domain if f (a) �= a for finitely many a ∈ L only. In such a case, f
can be more explicitly represented as [b1/a1, . . . ,bn/an] — where we assume that
ai �= a j for all i �= j, as well as ai �= bi for all i = 1, . . . ,n — meaning that action ai
is relabeled to a different action bi for i = 1, . . . ,n, and for any c ∈L ,c �= ai for all
i, we have that f (c) = c. A relabeled process p[ f ] is a process where the actions of
p are renamed according to f . Its operational rule is

(Rel)
p

μ−→ p′

p[ f ]
f (μ)−→ p′[ f ]

We call CCS+r the extension of CCS obtained by adding the relabeling operator
using finite domain relabelings only. Let �·�r be the function from CCS+r processes
to Multi-CCS processes, which is homomorphic w.r.t. most operators,

�0�r = 0 �p1 + p2�
r = �p1�

r + �p2�
r �μ.q�r = μ.�q�r

�(νa)q�r = (νa)�q�r �q1 |q2�
r = �q1�

r |�q2�
r,

while for constants and the relabeling operator it is defined as

�A�r = Ar where Ar = �p�r if A
de f
= p

�p[ f ]�r = (νL)(�p�r |Cf ) where Cf
de f
= ∑n

i=1 ai.bi.Cf +ai.bi.Cf ,

where, if f = [b1/a1, . . . ,bn/an], then L = {a1, . . . ,an}. As an example, the encod-
ing �p�r for the process term p = (b.c.0 |a.0)[c/b] is the Multi-CCS process

�p�r = (νb)((b.c.0 |a.0) |C[c/b]) where C[c/b]
de f
= b.c.C[c/b] +b.c.C[c/b].

The two processes are clearly bisimilar. For instance, p c−→ (c.0 |a.0)[c/b] is matched
by transition (νb)((b.c.0 |a.0) |C[c/b])

c−→ (νb)((c.0 |a.0) |C[c/b]), where in this lat-
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ter transition a Multi-CCS synchronization takes place between the subcomponent
b.c.0 and C[c/b], with the effect of renaming b to c.

Exercise 6.26. Compute the encoding �A[d/b]�r for process A[d/b], where constant

A is defined as A
de f
= a.(b.0 |c.A)[b/a]. �

Now we prove the correctness of the encoding, up to ∼.

Proposition 6.26. For every process q of CCS+r, q∼ �q�r.

Proof. Consider relation R = {(p,�p�r)
∣∣ p is a CCS+r process}. It is not difficult

to prove that R is a strong bisimulation. One has to prove that p
μ−→ p′ if and only

if �p�r μ−→ �p′�r. This ‘iff’ statement can be divided into two implications.
The former can be proved by induction on the proof of p

μ−→ p′. The only nontriv-

ial case is when p= q[ f ] with f = [b1/a1, . . . ,bn/an]: if p
f (μ)−→ p′ because q

μ−→q′ by
rule (Rel) (hence, p′ = q′[ f ]), then by induction we can assume that �q�r μ−→ �q′�r.

We have that �p�r = (νL)(�q�r |Cf ) where Cf
de f
= ∑n

i=1 ai.bi.Cf + ai.bi.Cf and L =

{a1, . . . ,an}. If μ �∈ L and μ �∈ L, then f (μ) = μ and so to move p
μ−→ p′, �p�r replies

with (νL)(�q�r |Cf )
μ−→ (νL)(�q′�r |Cf ) = �q′[ f ]�r = �p′�r, by application of the

Multi-CCS operational rules (S-Res) and (Par1). Instead, if μ ∈ L or μ ∈ L, then the
relabeling applies: if μ = ai, then f (μ) = bi; instead, if μ = ai, then f (μ) = bi. In

this case, to move p
f (μ)−→ p′, �p�r replies with (νL)(�q�r |Cf )

f (μ)−→ (νL)(�q′�r |Cf ) =
�q′[ f ]�r = �p′�r, by application of the Multi-CCS operational rules (S-Res) and (S-
Com).

The latter implication is when �p�r moves first, and an argument similar to the
above suffices. �

The relabeling operator can be added also to Multi-CCS with little effort. First
of all, as now transitions are labeled with sequences in A = (L ∪L )+ ∪{τ}, it
is necessary to extend a relabeling function f on A , to get f̂ defined as follows:
f̂ (μ) = f (μ), f̂ (ασ) = f (α) f̂ (σ), that is, the resulting sequence f̂ (σ) is obtained
by applying the relabeling f to each action occurrence in σ ∈A . Then, the relabel-
ing operator for Multi-CCS can be described by the operational rule below:

(S-Rel)
p σ−→ p′

p[ f ]
f̂ (σ)−→ p′[ f ]

We may wonder if this form of relabeling operator is encodable into Multi-CCS.
Unfortunately, it seems that a correct encoding, up to ∼, does not exist.

6.5.3 CSP Multiway Synchronization

In this section we show how to implement into Multi-CCS the CSP parallel compo-
sition operator we have presented in Section 5.6.
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(Pref)
μ.p μ−→ p

(Cons)
p

μ−→ p′

C
μ−→ p′

C
de f
= p

(Sum1)
p

μ−→ p′

p+q
μ−→ p′

(Sum2)
q

μ−→q′

p+q
μ−→q′

(H1)
p

μ−→ p′

(ιa)p
μ−→ (ιa)p′

μ �= a (H2)
p a−→ p′

(ιa)p τ−→ (ιa)p′

(Csp1)
p

μ−→ p′

p ‖A q
μ−→ p′ ‖A q

μ �∈ A (Csp2)
q

μ−→q′

p ‖A q
μ−→ p ‖A q′

μ �∈ A

(Csp3)
p

μ−→ p′ q
μ−→q′

p ‖A q
μ−→ p′ ‖A q′

μ ∈ A

Table 6.11 Structural Operational Semantics for TCSP

At an abstract level, in (Theoretical) CSP [Hoa85, Ros98] (also called TCSP)
there is no distinction between actions (inputs) and co-actions (outputs), and so we
assume that the set of all usable actions is simply Act =L ∪{τ}, ranged over by μ .
The abstract syntax of the variant of TCSP we intend to study is

p ::= 0
∣∣ μ.p

∣∣ p+ p
∣∣ p ‖A p

∣∣ (ιa)p
∣∣ C,

where the synchronization set A is a finite subset of L (hence A can also be empty),
and (ιa)p is the hiding operator discussed in Section 5.2. The operational semantics
of TCSP is outlined in Table 6.11. Note that p ‖ /0 q denotes the pure asynchronous
parallel composition of p and q, as no synchronization is allowed.

Example 6.17. (Dining philosophers problem in CSP) A symmetric, fully dis-
tributed, deadlock-free solution to the dining philosophers problem can be easily
provided in CSP, by exploiting its multiway synchronization capability. The five
philosophers can be described by the constants Pi as

Pi
de f
= think.Pi +up(i,i+1).eat.dn(i,i+1).Pi for i = 0, . . . ,4

where index i+ 1 is computed modulo 5 and the actions are indexed by a pair of
numbers in the range {0, . . . ,4}: action up(i,i+1) denotes the philosopher’s (atomic)
action of grabbing the fork of index i together with the fork of index i+1. A philoso-
pher can think or can acquire the two forks; in the latter case, he can then eat, and
when he has finished eating, he has to put down both forks. Process Phils can be
defined as
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Phils
de f
= P0 ‖ /0 P1 ‖ /0 P2 ‖ /0 P3 ‖ /0 P4,

where no synchronization can take place among the philosophers. The five forks can
be defined by means of the constants Fi as

Fi
de f
= up(i,i+1).dn(i,i+1).Fi +up(i−1,i).dn(i−1,i).Fi for i = 0, . . . ,4,

where indexes i+1 and i−1 are computed modulo 5. Action up(i,i+1) denotes avail-
ability of the fork of index i, together with the fork of index i+ 1, by philosopher
of index i; analogously, action up(i−1,i) denotes the availability of the fork of in-
dex i, together with the fork of index i− 1, by philosopher of index i− 1. This
means that forks Fi and Fi+1 shares two similar summands: up(i,i+1).dn(i,i+1).Fi and
up(i,i+1).dn(i,i+1).Fi+1, respectively, onto which they must synchronize. As CSP par-
allel composition is associative when the synchronization set is fixed, we can define
process Forks as follows:

Forks
de f
= F0 ‖A F1 ‖A F2 ‖A F3 ‖A F4

where A = {up(i,i+1),dn(i,i+1)
∣∣ i = 0, . . .4}. Therefore, fork F0 must synchro-

nize either with fork F1 (on actions up(0,1),dn(0,1)) or with fork F4 (on actions
up(4,0),dn(4,0)). The whole system composing the forks and the philosophers is

DPCSP
de f
= (ιA)(Phils ‖A Forks),

where the hiding operator internalizes all the ternary synchronizations occurring
between each philosopher and his two forks. �

Exercise 6.27. Draw the LTS for the system DPCSP when the philosophers and the
forks are only two. Compare it with the LTS in Figure 6.6 for the system DP of
Example 6.3. �

We complete the presentation of finitary5 TCSP by defining the set of names n(p)
for a process p and syntactic substitution.

Definition 6.5. (Names and syntactic substitution) The names of a finitary pro-
cess p, denoted n(p), are defined as the set N(p, /0), where N(p, I), with I a set of
process constants, is defined as follows:

N(0, I) = /0
N(a.p, I) = N(p, I)∪{a}

N(τ.p) = N(p, I)
N(p+q, I) = N(p, I)∪N(q, I)

N(p ‖A q, I) = N(p, I)∪N(q, I)∪A
N((ιa)p, I) = N(p, I)∪{a}

5 We assume that any TCSP process uses only a finite number of constants.
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N(C, I) =

{
N(q, I∪{C}) if C

de f
= q and C �∈ I

/0 if C ∈ I

Syntactic substitution was defined for CCS in Section 4.1.2. We can adapt that
definition to the case of TCSP as follows, by using parametrized constants:

0{b/a} = 0

(a.p){b/a} = b.(p{b/a})
(μ.p){b/a} = μ.(p{b/a}) if μ �= a

(p+q){b/a} = p{b/a}+q{b/a}

(p ‖A q){b/a} = p{b/a} ‖A′ q{b/a} A′ =

{
A if a �∈ A
(A\{a})∪{b} otherwise

((ιc)p){b/a} = (ιc)(p{b/a}) if c �= a,b
((ιa)p){b/a} = (ιa)p

((ιb)p){b/a} =
{
(ιb)p if a �∈ n(p)
(ιc)((p{c/b}){b/a}) otherwise, with c �∈ n(p)

Cθ{b/a} =
⎧⎨
⎩Cθ if a �∈ n(Cθ )

Cθ◦{b/a} otherwise, with Cθ◦{b/a}
de f
= q{b/a} if Cθ

de f
= q

The application of an admissible substitution θ = {b/a} ◦θ ′ to a process p can
be computed as follows: pθ = (p{b/a})θ ′, with the proviso that pε = p. �

Proposition 6.27. For any TCSP process p, for any set A = {a1, . . . ,an} ⊆ n(p)
with n≥ 1, and any set B = {b1, . . . ,bn}, B∩n(p) = /0, let {B/A} be the admissible
substitution {b1/a1, . . . ,bn/an}. Then, the following hold:

• p
ai−→ p′ if and only if p{B/A} bi−→ p′{B/A},

• p c−→ p′ if and only if p{B/A} c−→ p′{B/A}, when c �= ai for all i = 1, . . . ,n.

Proof. By induction on the proof of the involved transitions. �

We are now ready to present the formal encoding �−� from TCSP to Multi-
CCShide, i.e., Multi-CCS enriched with the hiding operator: as we have already stud-
ied in Section 5.2 how to encode the hiding operator within CCS, we can then use
one of the two encodings presented there to map Multi-CCShide into Multi-CCS.

The encoding �−� is homomorphic for all operators but parallel composition,

�0� = 0 �μ.p� = μ .�p�
�p1 + p2� = �p1�+ �p2� �(ιa)p� = (ιa)�p�

�A� = A′ where A′de f
= �q� if A

de f
= q,

while for parallel composition it is defined as

�p1 ‖ /0 p2� = �p1� |�p2�
�p1 ‖A p2� = (νB)(�p1{B/A}� |�p2{B/A}� |CAB),
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where A = {a1, . . . ,an} with n≥ 1, B = {b1, . . . ,bn}, B∩n(p1 ‖A p2) = /0, {B/A} is

the admissible substitution {b1/a1, . . . ,bn/an} and CAB
de f
= ∑ai∈A bi.bi.ai.CAB.

Note that the encoding �p� of a TCSP process p is a well-formed Multi-CCShide

process;6 as a matter of fact, only the component CAB may generate sequences;
the form of such sequences is bibiai for i = 1, . . . ,n, and so �p� satisfies the well-
formedness condition, because bi is a new name which never appears in a sequence,
and ai is an action whose co-action ai is never used at all.

Lemma 6.14. For any TCSP process p, for any set A = {a1, . . . ,an} ⊆ n(p) with
n ≥ 1, and any set B = {b1, . . . ,bn}, B∩ n(p) = /0, let {B/A} be the admissible
substitution {b1/a1, . . . ,bn/an}. Then, the following hold:

• �p�
ai−→ �p′� if and only if �p{B/A}� bi−→ �p′{B/A}�,

• �p�
c−→ �p′� if and only if �p{B/A}� c−→ �p′{B/A}�, when c �= ai for all i =

1, . . . ,n.

Proof. By induction on the proof of the involved transitions. �

Proposition 6.28. For any TCSP process p, if p
μ−→ p′, then �p�

μ−→ �p′�.

Proof. By induction on the proof of p
μ−→ p′. We proceed by case analysis.

If p = μ.p′, then p
μ−→ p′. Also �p� = μ.�p′�

μ−→ �p′�, as required.
If p = p1 + p2, then p

μ−→ p′ is possible only if either p1
μ−→ p′ or p2

μ−→ p′.
By induction, we can assume that �p1�

μ−→ �p′� or �p2�
μ−→ �p′�. Hence, �p� =

�p1�+ �p2�
μ−→ �p′�, as required.

If p= (ιa)q, then p
μ−→ p′ is possible only if either μ �= a, q

μ−→q′ and p′= (ι)q′,
or μ = τ , q a−→q′ and p′ = (ι)q′. In the former case, by induction, we can assume
�q�

μ−→ �q′�. Hence, �p� = (ιa)�q�
μ−→ (ιa)�q′� = �p′�, as required. Similarly, for

the latter case.
If p = p1 ‖A p2, where the synchronization set A is {a1, . . . ,an}, then p

μ−→ p′

is possible only if μ �∈ A, p1
μ−→ p′1 and p′ = p′1 ‖A p2; or μ �∈ A, p2

μ−→ p′2
and p′ = p1 ‖A p′2; or μ ∈ A, p1

μ−→ p′1, p2
μ−→ p′2 and p′ = p′1 ‖A p′2. Let B =

{b1, . . . ,bn} such that B ∩ n(p) = /0, and let {B/A} be the admissible substi-
tution {b1/a1, . . . ,bn/an}. In the first case, by induction, we can assume that
�p1�

μ−→ �p′1�. By Lemma 6.14, then also �p1{B/A}� μ−→ �p′1{B/A}�, because μ �∈
A. Hence, �p� =

(νB)(�p1{B/A}� |�p2{B/A}� |CAB)
μ−→ (νB)(�p′1{B/A}� |�p2{B/A}� |CAB)

= �p′�, as required. The second case is symmetric, hence omitted. In the third
case, assume that μ = ai ∈ A. By induction, we can assume that �p1�

ai−→ �p′1�

6 The well-formedness relation can be extended to the hiding operator in the obvious way: if wf(p),
then wf((ιa)p). Moreover, ns((ιa)p) = ns(p)\{a,a}.



318 6 Multi-CCS

and �p2�
ai−→ �p′2�. By Lemma 6.14, then also �p1{B/A}� bi−→ �p′1{B/A}� as well

as �p2{B/A}� bi−→ �p′2{B/A}�. Hence, �p� =

(νB)(�p1{B/A}� |�p2{B/A}� |CAB)
ai−→ (νB)(�p′1{B/A}� |�p′2{B/A}� |CAB)

= �p′�, because of a ternary synchronization among the three parallel components
which has the effect of renaming bi back to ai.

The simpler case when p = p1 ‖ /0 p2 is left as an exercise for the reader.

If p = C, where C
de f
= q, then C

μ−→q′ is possible only if q
μ−→q′. By induction,

we can assume that �q�
μ−→ �q′�. As �C� = C′ de f

= �q�, we also have C′
μ−→ �q′�, as

required. �

Proposition 6.29. For any TCSP process p, if �p�
μ−→q, then there exists p′ such

that q = �p′� and p
μ−→ p′.

Proof. By induction on the proof of �p�
μ−→ �p′�. The proof is very similar to that of

Proposition 6.28 and is left as an exercise for the reader. �

Theorem 6.6. (Correctness of the implementation, up to ∼) For any TCSP pro-
cess p, p∼ �p�.

Proof. It is enough to check that relation R = {(p,�p�)
∣∣ p is a TCSP process} is a

strong bisimulation. This is an easy exercise, given the results in Propositions 6.28
and 6.29. �

6.5.4 Last Man Standing Problem

Even if Multi-CCS is a rather powerful language, we cannot expect to be able to
solve all possible problems in concurrency. The Last Man Standing (LMS) problem,
introduced in [VBG09], can be solved in some process calculus if there exists a
process p able to detect the presence or absence of other copies of itself without
generating deadlocks or introducing divergence. In order to check whether the LMS
can be solved in Multi-CCS, we would need to identify a Multi-CCS process p such
that p is able to execute an action a only when there is exactly one copy of p in the
current system, while p is able to perform an action b only when there are at least
two copies of p in the current system. In other words, if si is the system where i
copies of p are enabled, we should have that

s1 = p s1
a−→ s1 � b−→

while

s2 = p | p s2 � a−→ s2
b−→

. . .

sn = p | p | · · · | p︸ ︷︷ ︸
n

sn � a−→ sn
b−→
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with a �= b. Rule (Par1) in Table 6.3 allows us to easily prove that the LMS cannot
be solved in Multi-CCS. In fact this rule states that any process p, able to execute
some action a, can perform the same action in the presence of other processes as
well, so that if p a−→ p′, then also p | p a−→ p | p′, which contradicts the requirement
that s2 � a−→ . As a matter of fact, Multi-CCS is permissive: no parallel process can
prevent the execution of an action of another process. A process calculus where the
LMS problem is solvable has to possess some further features, such as the capability
to express priority among its actions (see, e.g., [VBG09] and the references therein).

The LMS problem has a relationship with a well-studied problem in the theory
of finite Petri nets [Pet81]: the inability to test for exactly a specific marking in
an unbounded place; in our case, the LMS requires that a transition labeled a be
enabled only if exactly one token is present in the place for p, while a transition
labeled b is enabled only if two or more tokens are present in the place for p. Often,
the variant of this problem that is commonly studied in the theory of Petri nets is
the so-called zero testing: a transition is enabled only if no tokens are present in a
certain place. However, finite Petri nets are unable to test for a zero marking in an
unbounded place. This specific limitation can be overcome by extending finite Petri
nets to include inhibitor arcs (see, e.g, [Pet81, BG09]).

6.5.5 Conclusion

To conclude this section about expressiveness, let us recapitulate the various ap-
proaches and techniques we adopted in this book in order to compare the expressive
power of different languages.

In Chapter 3 we have compared various subcalculi of CCS on the basis of their
capabilities of expressing larger and larger families of languages: so the comparison
among these languages was based on trace semantics and using typical tools of the
theory of formal languages. Figure 3.6 (Section 3.4) gives the overall picture of
the classification, while Figure 3.11 (Section 3.4.5) describes more precisely the
relationship w.r.t the Chomsky hierarchy. Among the languages described there,
only finitary CCS is Turing-complete.

In Chapter 5 we have done an analogous classification for the various languages
based on ACP sequential composition. In Section 5.4.5 a precise description of the
syntactic and semantic relationships among these languages is given in terms of the
class of languages they can represent. The overall picture is described in Figure 5.5,
where the only Turing-complete formalism is PAER.

These kinds of comparisons are rooted in classical results of the theory of formal
languages. However, these results are of no use when comparing two languages that
are both Turing-complete.

If we want to prove that two (Turing-complete) calculi are equally expressive,
then one possibility is to define suitable encodings in both directions, preserving the
same intended behavioral semantics. This is what we have done in Chapter 5, when
extending CCS with some additional operator. For instance, in Section 5.4.6 we have
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shown that CCSseq, i.e., the calculus obtained by enriching CCS with sequential
composition, is as expressive as CCS; on the one hand, CCSseq is a conservative
extension of CCS; on the other hand, we have shown an encoding of CCSseq into
CCS, up to weak bisimilarity. Similarly, in Section 5.5 we have shown that CCS!
(finite CCS with replication) and CCS? (finite CCS with duplication) are equally
expressive, by providing an encoding, up to ∼, in each direction.

A technique for proving that a Turing-complete language is more expressive than
another Turing-complete formalism can be based on the class of processes the two
languages can represent, up to some behavioral equivalence. This is the technique
we have adopted in Example 3.20 (Section 3.4.6) to prove that full CCS is more
expressive than finitary CCS: on the one hand, finitary CCS is a subcalculus of full
CCS, and so all the LTSs representable by finitary CCS are also representable by full
CCS; on the other hand, there is a full CCS process with an infinite sort, and this
cannot be trace equivalent to any finitary CCS process, as any finitary CCS process
has a finite sort.

A different technique has been adopted in this chapter to compare CCS and
Multi-CCS: on the one hand, we have proved that Multi-CCS is a conservative
extension of CCS, so that also Multi-CCS is Turing-complete; on the other hand,
we have singled out a well-known problem in the theory of concurrency, namely
the dining philosophers, for which a symmetric, fully distributed, deadlock-free and
divergence-free solution exists in Multi-CCS, while this is not the case for CCS, as
proved in [LR81, RL94].

This technique has been adopted also by others in different contexts. For instance,
[LV10] proves a strict expressiveness hierarchy among CCS-like calculi equipped
with n-ary synchronizations: in this setting, CCS2 denotes ordinary CCS with binary
synchronization; such a language is strictly less expressive than CCS3 (i.e., CCS
which allows also for ternary synchronizations) and, in general, CCSn is strictly
more expressive than CCSn−1 for any n≥ 3. This was proved on a parametric gen-
eralization of the dining philosophers problem, called the dining philosophers prob-
lem in the n-hypercube, where the philosophers sit at the vertices of a hypercube of
dimension n, forks are at the edges, and philosophers can grab forks at their adjacent
edges only. Laneve and Vitale demonstrated that the problem has symmetric, fully
distributed, deadlock-free solutions in CCSn but not in CCSn−1.

Another well-known problem in distributed computing that has been used to
compare the expressive power of concurrent languages is the leader-election prob-
lem — originally formalized by Le Lann in [L77] — which consists in requiring
that the members of a network be able to elect one of their members as their leader,
i.e., to reach an agreement (on the leader) in a completely decentralized way. The
problem can be formulated in different manners, depending on network topology,
with different difficulties in getting the solution. By using a variation of this prob-
lem, Palamidessi [Pal03] observed, in the context of the π-calculus [MPW92], the
superior expressiveness of mixed choice (i.e., different addends in a sum may start
with actions of input or output, as in CCS) with respect to separate choice (all the
addends start with the same type of action, either all inputs or all outputs): the rela-
tive expressive power of the two constructs is stated in terms of the impossibility of
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a reasonable encoding7 of mixed choice into separate choice, as only the language
with mixed choice can solve the leader-election problem for a fully connected, sym-
metric network in a decentralized manner. By the way, note that also CCS with
separate choice is Turing-complete, as the CCS modeling of the Counter Machines
in Section 3.5.2 is done with separate choice only. So, Palamidessi’s result may be
used to show that finitary CCS (with mixed choice) is more expressive than finitary
CCS with separate choice. By following the same approach, many other separation
results have been obtained, each one based on the capability or impossibility of solv-
ing the leader election under appropriate conditions. We refer you to [VPP07] for
an overview.

Another problem we have used in this chapter is the last man standing problem
(LMS, for short), for which no solution exists in Multi-CCS. Nonetheless, this prob-
lem is solvable in other calculi that offer different features, such as priority among
actions. In particular, [VBG09] presents a finite (i.e., with no recursion, hence not
Turing-complete) language, called FAP, which can solve the LMS problem; this
means there exists a problem in concurrency (i.e., the LMS problem) that a Turing
complete language (i.e., Multi-CCS) cannot solve, while it can be solved by a not
Turing-complete language (i.e., FAP).

These observations spur an obvious question: when is a formalism for concur-
rency complete? And with respect to what? Unfortunately, we still miss a definitive
answer to this philosophical question, even if recent research is trying to unveil some
aspects of this problem.

7 According to [Pal03], an encoding �−� is reasonable if it preserves a number of properties, of
which the most important is distribution-preserving: �p |q� = �p� |�q�.
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Symbol Description Where
L set of input actions Definition 2.1
L set of co-actions (outputs) Definition 2.1
Act set of labels Definition 2.1

μ−→ labeled transition in an LTS Definition 2.2
σ−→∗ reflexive-transitive closure of

μ−→ Definition 2.4
→∗ reachability Definition 2.4
∼= isomorphism Definition 2.8
=tr trace equivalence Definition 2.9
≤tr trace preorder Exercise 2.16
=ctr completed trace equivalence Definition 2.11
� simulation preorder Definition 2.12
� simulation equivalence Definition 2.12
�c completed simulation preorder Definition 2.13
�c completed simulation equivalence Definition 2.13
�rs ready simulation preorder Definition 2.33
�rs ready simulation equivalence Definition 2.33
∼ bisimulation equivalence Definition 2.14
∼∗ string bisimulation equivalence Exercise 2.41

σ
=⇒ labeled weak transition in an LTS Definition 2.16
=wtr weak trace equivalence Definition 2.17
≤wtr weak trace preorder Exercise 2.45
=wctr weak completed trace equivalence Definition 2.18
� weak simulation preorder Definition 2.19
� weak simulation equivalence Definition 2.19
�c weak completed simulation preorder Definition 2.60
�c weak completed simulation equivalence Definition 2.60
≈ weak bisimulation equivalence Definition 2.20
≈c rooted weak bisimulation equivalence Definition 2.23
≈br branching bisimulation equivalence Definition 2.24
≈c

br rooted branching bisimulation equivalence Definition 2.26

© Springer International Publishing Switzerland 2015 
, , Texts in Theoretical

 DOI 10.1007/978-3-319- -7
R. Gorrieri, C. Versari Introduction to Concurrency Theory
Computer Science. An EATCS Series, 21491

323



Symbol Description Where
∼i i-th approximation of ∼ Definition 2.28
∼ω limit of the approximations of ∼ Definition 2.28
�i i-th approximation of � Definition 2.93
�ω limit of the approximations of � Definition 2.93
Cons set of CCS process constants Section 3.1.2
Const(p) set of constants used by p Definition 3.1
P set of CCS processes Definition 3.4
C the CCS labeled transition system Definition 3.5
Cp reachable sub-LTS from p Remark 3.6
P f in set of finite CCS processes Section 3.4.1
=tr f f-trace equivalence Definition 5.2
∼ f f-bisimulation equivalence Definition 5.6
≈ f weak f-bisimulation equivalence Definition 5.7
≈c

f rooted weak f-bisimilarity Definition 5.8
∼= f f-isomorphism Definition 5.9
P f inBPA set of finite BPA processes Section 5.4.2
PBPA∗ set of BPA∗ processes Section 5.4.3
PBPA set of BPA processes Section 5.4.4
PPA set of PA processes Section 5.4.5
PPAER set of PAER processes Section 5.4.5
Sync synchronization relation for Multi-CCS Section 6.1.3
PM set of Multi-CCS processes Section 6.2
≡ structural congruence for Multi-CCS Section 6.2
wf(p) well-formed Multi-CCS process Section 6.2.2
swf(p) strong well-formed Multi-CCS process Section 6.2.2
MSync step synchronization relation Section 6.3.2
∼step step bisimilarity Section 6.3.3
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[CLN01] R. Cleaveland, G. Lüttgen, V. Natarajan, “Priority in process algebra”, Chapter 12 of

[BPS01], 711-765, 2001.
[CPS93] R. Cleaveland, J. Parrow, B. Steffen, “The Concurrency Workbench: A semantics-based

tool for the verification of concurrent systems”, ACM Trans. Program. Lang. Syst. 15(1):36-
72, 1993.

[CRT11] S. Crafa, F. Ranzato, F. Tapparo, “Saving space in a time efficient simulation algorithm”,
Fundamenta Informaticae 108(1-2): 23-42, 2011.

[CWB] P. Stevens et al., The Edinburgh Concurrency Workbench. Downloadable code and manual
available at http://homepages.inf.ed.ac.uk/perdita/cwb/

[DesRei98] J. Desel, W. Reisig, “Place/Transition Petri Nets”, in [RR98], 122-173, 1998.
[Dav58] M. Davis, Computability and Unsolvability. McGraw-Hill, New York, 1958.
[DDM88] P. Degano, R. De Nicola, U. Montanari, “A distributed operational semantics for CCS

based on C/E systems”, Acta Informatica 26(1-2):59-91, 1988.

http://homepages.inf.ed.ac.uk/perdita/cwb/


References 327

[DG91] P. Degano, R. Gorrieri, “Atomic refinement for process description languages”, in Procs.
Mathematical Foundations of Computer Science (MFCS’91), LNCS 520, 121-130, Springer-
Verlag, 1991.

[Den07] Y. Deng, “A simple completeness proof for the axiomatisations of weak behavioural
equivalences”, Bulletin of the EATCS, 93:207-219, 2007. Full version available from
http://basics.sjtu.edu.cn/∼yuxin/publications/branch.ps

[Dij68] E.W. Dijkstra, “Cooperating sequential processes”, (F. Genuys ed.) Programming Lan-
guages, Academic Press, 43-112, 1968.

[Dij69] E.W. Dijkstra, “Structured programming”, in Software Engineering Techniques (J.N. Bux-
ton and B. Randell, eds), Report on a conference sponsored by the NATO Science Committee,
pages 84-88, 1969. Available from
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF

[Dij71] E.W. Dijkstra, “Hierarchical ordering of sequential processes”, Acta Informatica 1(2):
115-138, 1971.

[DP02] B.A. Davey, H.A. Priestley, Introduction to Lattices and Order (second edition), Cam-
bridge University Press, 2002.

[DPP01] A. Dovier, C. Piazza, A. Policriti, “A fast bisimulation algorithm”, in Proc. 13th Conf.
on Computer-Aided Verification (CAV’01), LNCS 2102, 79-90, Springer-Verlag, 2001.

[EM94] J. Esparza, M. Nielsen, “Decidability issues for Petri nets: a survey”, Bulletin of the
EATCS 52:244-262, 1994.

[Esp98] J. Esparza, “Decidability and complexity of Petri net problems: an introduction” in
[RR98], 374-428, 1998.

[ER64] C. Elgot, A. Robinson, “Random-access stored-program machines, an approach to pro-
gramming languages”, Journal of the ACM 11(4):365-399, 1964.

[FB94] R.W. Floyd, R. Beigel, The Languages of Machines, Computer Science Press, 1994.
[FG01] R. Focardi, R. Gorrieri, “Classification of security properties – Part I: Information flow”,

Foundations of Security Analysis and Design, FOSAD 2000, LNCS 2171, 331-396, Springer-
Verlag, 2001.

[FGM02] R. Focardi, R. Gorrieri, F. Martinelli, “Classification of security properties – Part II:
Network security”, Foundations of Security Analysis and Design, FOSAD 2002, LNCS 2946,
139-185, Springer-Verlag, 2002.

[Flo62] R.W. Floyd, “Algorithm 97: Shortest Path”, Comm. of the ACM 5 (6):345, 1962.
[Fok00] W. Fokkink, Introduction to Process Algebra, EATCS Texts in Theoretical Computer

Science, Springer-Verlag, 2000.
[FR80] N. Francez, M. Rodeh, “A distributed abstract data type implemented by a probabilistic

communication scheme”, In Procs. FOCS’80, pages 373-379. IEEE Press, 1980.
[FV99] K. Fisler, M.Y. Vardi, “Bisimulation and model checking”, in Procs. CHARME’99, LNCS

1703, 338-341, Springer-Verlag, 1999.
[vGl01] R.J. van Glabbeek, “The linear time - branching time spectrum I”, Chapter 1 of [BPS01],

3-99, 2001.
[vGl93] R.J. van Glabbeek, “The linear time - branching time spectrum II”, in Procs. CONCUR

’93, LNCS 715, 66-81, Springer-Verlag, 1993.
[vGl05] R.J. van Glabbeek, “A characterisation of weak bisimulation congruence”, in Processes,

Terms and Cycles: Steps on the Road to Infinity, Essays dedicated to Jan Willem Klop, on the
occasion of his 60th birthday, LNCS 3838, 26-39. Springer-Verlag, 2005.

[vGP08] R.J. van Glabbeek, B. Ploeger, “Correcting a space-efficient simulation algorithm”, in
Procs. Computer Aided Verification (CAV’08), LNCS 5123: 517-529, Springer-Verlag, 2008.

[vGW96] R.J. van Glabbeek, W.P. Weijland, “Branching time and abstraction in bisimulation
semantics”, Journal of the ACM 43(3):555-600, 1996.

[Gol90] U. Goltz, “CCS and Petri nets”, LNCS 469, 334-357, Springer-Verlag, 1990.
[GMM90] R. Gorrieri, S. Marchetti, U. Montanari, “A2CCS: Atomic Actions for CCS”, Theoret-

ical Computer Science 72(2-3):203-223, 1990.
[Gor15] R. Gorrieri, “The language of finite P/T Petri nets”, submitted for publication.
[GPP03] R. Gentilini, C. Piazza, A. Policriti, “From bisimulation to simulation: Coarsest partition

problems”, Journal of Automated Reasoning 31(1):73-103, 2003.

http://basics.sjtu.edu.cn/~yuxin/publications/branch.ps
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1969.PDF


328 References

[GR01] R. Gorrieri, A. Rensink, “Action refinement”, Chapter 16 of [BPS01], 1047-1147, 2001.
[GV10] R. Gorrieri, C. Versari, “A Process calculus for expressing finite Place/Transition Petri

nets”, in Procs EXPRESS’10, EPTCS 41, 76-90, 2010.
[H02] H. Hermanns, Interactive Markov Chains: The Quest for Quantified Quality, LNCS 2428,

Springer-Verlag, 2002.
[Hil96] J. Hillston, A Compositional Approach to Performance Modelling, BCS Distinguished

Dissertation, Cambridge University Press, 1996.
[Hir93] Y. Hirshfeld, “Petri nets and the equivalence problem”, in Procs. 7th Workshop on Com-

puter Science Logic (CSL’93), LNCS 832,165-174, Springer-Verlag, 1993.
[HJ99] Y. Hirshfeld, M. Jerrum, “Bisimulation equivalence is decidable for normed process

algebra”, In Procs of 26th Int. Colloquium on Automata, Languages and Programming
(ICALP’99), LNCS 1644, 412-421. Springer-Verlag, 1999.

[HJM96] Y. Hirshfeld, M. Jerrum, F. Moller, “A polynomial algorithm for deciding bisimilarity
of normed context-free processes”, Theoretical Computer Science 158(1/2):143-159, 1996.

[Hoa78] C.A.R. Hoare, “Communicating sequential processes”, Communications of the ACM
21(8):666-677, 1978.

[Hoa85] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall International Series
in Computer Science, 1985.

[HMU01] J.E. Hopcroft, R. Motwani, J.D. Ullman, Introduction to Automata Theory, Languages
and Computation, 2nd ed., Addison-Wesley, 2001.

[HR95] M. Hennessy, T. Regan, “A process algebra for timed systems”, Information and Com-
putation 117:221-239, 1995.

[HRS76] H.B. Hunt, D.J. Rosenkrantz, T.G. Szymanski, “On the equivalence, containment, and
covering problems for the regular and context-free languages”, Journal of Computer and
System Sciences 12:222-268, 1976.

[HU79] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Computa-
tion, Addison-Wesley, 1979.

[Jan95] P. Janc̆ar, “Undecidability of bisimilarity for Petri nets and some related problems”, The-
oretical Computer Science 148(2):281-301, 1995.

[Jan03] P. Janc̆ar, “Strong bisimilarity on basic parallel processes is PSPACE-complete”, in Procs
of the 18th Annual IEEE Symposium on Logic in Computer Science (LICS’03), 218-227,
IEEE Computer Society Press, 2003.

[Jan13] P. Janc̆ar, “Bisimilarity on basic process algebra is in 2-exptime (an explicit proof)”,
Logical Methods in Computer Science 9(1:10), 1-19, 2013.

[JE96] P. Janc̆ar, J. Esparza, “Deciding finiteness of Petri nets up to bisimulation”, In Proceedings
of 23rd International Colloquium on Automata, Languages, and Programming (ICALP’96),
LNCS 1099, 478-489, Springer-Verlag, 1996.

[JKM01] P. Janc̆ar, A. Kuc̆era, and R. Mayr, “Deciding bisimulation-like equivalences with finite-
state processes”, Theoretical Computer Science 258(1-2):409-433, 2001.

[JM95] P. Janc̆ar, F. Moller, “Checking regular properties of Petri nets”, In Proceedings of the
6th International Conference on Concurrency Theory (CONCUR’95), LNCS 962, 348-362,
Springer-Verlag, 1995.

[JW+91] K. Jensen, N. Wirth, A.B. Mickel, J.F. Miner, Pascal User Manual and Report: ISO
Pascal Standard (third edition), Springer-Verlag, 1991.

[Kel76] R. Keller, “Formal verification of parallel programs”, Comm. of the ACM 19(7):561-572,
1976.

[KM02] A. Kuc̆era, R. Mayr, “Weak bisimilarity between finite-state systems and BPA or normed
BPP is decidable in polynomial time”, Theor. Comput. Sci. 270(1-2): 677-700, 2002.

[Kos82] S.R. Kosaraju, “Decidability of reachability in vector addition systems”, in Procs. 6th
ACM STOC, 267-281, ACM Press, 1982.

[Koz97] D.C. Kozen, Automata and Computability, Undergraduate Texts in Computer Science,
Springer-Verlag, 1997.

[L77] Le Lann, G. “Distributed systems: Towards a formal approach”, in Procs. IFIP
Congress,155-160, North-Holland, 1977.



References 329

[Ler11] J. Leroux, “Vector addition system reachability problem: a short self-contained proof”, in
Proc. 38th Symposium on Principles of Programming Languages (POPL’11), 307-316, ACM
Press, 2011.

[LR81] D.J. Lehmann, M.O. Rabin, “On the advantages of free choice: A symmetric and fully
distributed solution to the dining philosophers problem”, In Procs. POPL’81, 133-138, ACM
Press, 1981. A revised version appeared as [RL94].

[LS91] K.G. Larsen, A. Skou, “Bisimulation through probabilistic testing”, Information and
Computation 94(1):1-28, 1991.

[LV10] C. Laneve, A. Vitale, “The expressive power of synchronizations”, in Procs LICS’10,
IEEE-CS Press, 382-391, 2010.

[May81] E. W. Mayr, “An algorithm for the general Petri net reachability problem”, in Proc. 13th
Annual ACM Symp. on Theory of Comp., (STOC’81), 238-246, ACM Press, 1981.

[May84] E.W. Mayr, “An algorithm for the general Petri net reachability problem”, SIAM J.
Comput. 13:441-460, 1984.

[May00] R. Mayr, “Process rewrite systems”, Information and Comp. 156(1-2): 264-286, 2000.
[Mil80] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science

92, Springer-Verlag, 1980.
[Mil84] R. Milner. “A complete inference systems for a class of regular behaviors”, J. Comput.

System Sci. 28: 439-466, 1984.
[Mil85] G.J. Milne, “CIRCAL and the representation of communication, concurrency, and time”,

ACM Trans. Program. Lang. Syst. 7(2): 270-298, 1985.
[Mil89] R. Milner, Communication and Concurrency, Prentice-Hall, 1989.
[Mil89b] R. Milner. “A complete axiomatisation for observational congruence of finite-state be-

haviors”, Inf. Comput. 81(2): 227-247, 1989.
[Mil99] R. Milner. Communicating and Mobile Systems: The π-calculus, Cambridge University

Press, 1999.
[Min67] M.L. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Upper Saddle

River, NJ, USA, 1967.
[MPW92] R. Milner, J. Parrow, D. Walker, “A calculus of mobile processes”, Information and

Computation 100(1), 1-77, 1992.
[Mol90a] F. Moller, “The importance of the left merge operator in process algebras”, in Procs.

ICALP’90, LNCS 443, 752-764, Springer-Verlag, 1990.
[Mol90b] F. Moller, “The nonexistence of finite axiomatisations for CCS congruences”, In Procs.

IEEE Symp. on Logic in Comp. Scie. (LICS’90), 142-153, IEEE CS-Press, 1990.
[NP96] U. Nestmann, B.C. Pierce. “Decoding choice encodings”, In Procs. of 7th International

Conference on Concurrency Theory (CONCUR’96), LNCS 1119,179-194, Springer-Verlag,
1996.

[NS94] X. Nicollin, J. Sifakis, “The algebra of timed processes ATP: Theory and application”,
Information and Computation 114:131-178, 1994.

[NT84] M. Nielsen, P.S. Thiagarajan, “Degrees of non-determinism and concurrency: A Petri
net view”, in Procs. of the Fourth Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’84), LNCS 181, 89-117, Springer-Verlag, 1984.

[Old91] E.R. Olderog, Nets, Terms and Formulas, Cambridge Tracts in Theoretical Computer
Science 23, Cambridge University Press, 1991.

[Pal03] C. Palamidessi, “Comparing the expressive power of the synchronous and the asyn-
chronous π-calculi”, Mathematical Structures in Computer Science, 13(5):685-719, 2003.

[Par01] J. Parrow, “An introduction to the π-calculus”, Chapter 8 of [BPS01], 479-543, 2001.
[Park81] D.M.R. Park, “Concurrency and automata on infinite sequences”, In Proc. 5th GI-

Conference on Theoretical Computer Science, LNCS 104, 167-183, Springer-Verlag, 1981.
[Pat71] S. Patil, “Limitations and capabilities of Dijkstra’s semaphore primitives for coordination

among processes”, Computation Structures Group Memo 57, Project MAC, MIT, 1971.
[Petri62] C.A. Petri, Kommunikation mit Automaten, Ph.D. Dissertation, University of Bonn,

1962.
[Pet81] J.L. Peterson, Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981.



330 References

[Plo04a] G.D. Plotkin “The origins of structural operational semantics”, J. Logic and Algebraic
Programming 60-61: 3-15, 2004.

[Plo04b] G.D. Plotkin “A structural approach to operational semantics”, J. Logic and Algebraic
Programming 60-61: 17-139, 2004. Revised version of the original Technical Report DAIMI
FN-19, Aarhus University, 1981.

[PT87] R. Paige, R.E. Tarjan, “Three partition refinement algorithms”, SIAM Journal of Comput-
ing 16(6):973-989, 1987.

[RL94] M. O. Rabin, D. Lehmann, “The advantages of free choice: A symmetric and fully dis-
tributed solution to the dining philosophers problem”, in: A. W. Roscoe (Ed.), A Classical
Mind: Essays in Honour of C.A.R. Hoare, Prentice Hall, 1994, Chapter 20, 333-352. An ex-
tended abstract appeared as [LR81].

[RS59] M.O. Rabin, D. Scott, “Finite automata and their decision problems”, IBM Journal of
Research and Development 3(2):114-125, 1959.

[Rei85] W. Reisig, Petri Nets: An Introduction, EATCS Monographs on Theoretical Computer
Science, Springer-Verlag, 1985.

[Rei98] W. Reisig, Elements of Distributed Algorithms: Modeling and Analysis with Petri Nets,
Springer-Verlag, 1998.

[Ros98] A.W. Roscoe, The Theory and Practice of Concurrency, Prentice-Hall, 1998.
[RSG+] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, B. Roscoe, Modelling and Analysis of

Security Protocols, Addison-Wesley, 2000.
[RR98] W. Reisig, G. Rozenberg (eds.), Lectures on Petri Nets I: Basic Models, Lecture Notes in

Computer Science 1491, Springer-Verlag, 1998.
[RT07] F. Ranzato, F. Tapparo, “A new efficient simulation equivalence algorithm”, in Proc. 22nd

Annual IEEE Symp. on Logic in Comp. Scie. (LICS’07), IEEE CS Press, 171-180, 2007.
[RuS12] J. Rutten, D. Sangiorgi (eds.) Bisimulation and Coinduction: Advanced Topics, Cam-

bridge University Press, 2012.
[San12] D. Sangiorgi, An Introduction to Bisimulation and Coinduction, Cambridge University

Press, 2012.
[Sch72] R. Schroeppel, “A two counter machine cannot calculate 2N”, Massachusetts Institute of

Technology, A.I. Laboratory, Artificial Intelligence Memo 257, 1972.
[Sip06] M. Sipser, Introduction to the Theory of Computation (second edition), Course Technol-

ogy, 2006.
[SM73] L.J. Stockmeyer, A.R. Meyer, “Word problems requiring exponential time”, In Procs. 5th

Annual ACM Symposium on Theory of Computing (STOC’73), 1-9, ACM Press, 1973.
[SM92] D. Sangiorgi, R. Milner, “The problem of weak bisimulation up to”, In Procs. CON-

CUR’92, LNCS 630, 32-46, Springer-Verlag, 1992.
[SW01] D. Sangiorgi, D. Walker, The π-calculus: A Theory of Mobile Processes, Cambridge

University Press, 2001.
[Sr02] J. Srba, “Undecidability of weak bisimilarity for PA-processes”, In Procs. 6th Int. Conf. on

Developments in Language Theory (DLT’02), LNCS 2450, 197-208. Springer-Verlag, 2003.
[Srba] J. Srba, “Roadmap of Infinity Results”, Bulletin of the EATCS 78: 163-175, 2002. Con-

tinuously updated and revised version (2013) available at http://people.cs.aau.dk/
∼srba/roadmap/roadmap.pdf

[Tau89] D. Taubner, Finite Representations of CCS and TCSP Programs by Automata and Petri
Nets, Lecture Notes in Computer Science 369, Springer-Verlag, 1989.

[Tur36] A.M. Turing, “On computable numbers, with an application to the Entscheidungsprob-
lem”. Proceedings of the London Mathematical Society, Series 2, 42, 230-265, 1936.

[VBG09] C. Versari, N. Busi, R. Gorrieri. “An expressiveness study of priority in process calculi”,
Mathematical Structures in Computer Science 19(6):1161-1189, 2009.

[VPP07] M. Vigliotti, I. Phillips and C. Palamidessi, “Tutorial on separation results in process
calculi via leader election problems”, Theoretical Computer Science 388(1-3), 267?289, 2007.

[Yi91] Wang Yi, “CCS + time = an interleaving model for real-time systems”, in Procs ICALP’91,
LNCS 510, 217-228, Springer-Verlag, 1991.

http://people.cs.aau.dk/~srba/roadmap/roadmap.pdf
http://people.cs.aau.dk/~srba/roadmap/roadmap.pdf


Index

Action, 25
Alpha-conversion, 168, 172, 239, 274
Alphabet, 13
Atomicity, 21, 264

All-or-nothing, 21, 265
Non-interruptible, 265

Axiomatization, 83, 188
complete, 192
equational deduction, 189
finite, 196, 201
normal form, 193
saturated normal form, 197
sound, 192

Bag, 12
Bisimulation

algebraic laws, 163, 289
algorithm, 76
axiomatization, 192
congruence, 179, 290
definition, 43
determinism, 52
equivalence, 43, 49
fixed-point, 50, 72
interleaving, 288
largest, 49
minimum LTS, 76
process equation, 101
properties, 48
step, 291
string, 48
undecidability, 144, 151
up to — application, 103, 121, 126, 165,

182, 252, 254
up to — definition, 50, 310
with final states, 217

Bound names, 169

BPA, 228
BPA∗, 224
BPP: Basic Parallel Processes, 105, 124
Branching bisimulation

algebraic laws, 177
application, 124
congruence, 186
definition, 67
equivalence, 68
undecidability, 144
up to — definition, 69

Buffer
n-position, 121, 166
one position, 119
one position — value passing, 152
pipeline, 122, 171
pipeline — value passing, 155
two position, 119, 122
two position — value passing, 155
unbounded, 127, 131
unbounded — value passing, 156

CCS
action prefixing, 83, 95
choice, 84, 95, 308
compositionality, 82, 114
early prototyping, 83, 97
formal syntax, 90
guarded sum, 91
informal presentation, 83
motivation, 81
nil, 83, 96
notational convention, 90
operational semantics, 94
parallel composition, 86, 95
process, 94
process constant, 84, 92, 95, 99, 101, 146

© Springer International Publishing Switzerland 2015 
, , Texts in Theoretical

 DOI 10.1007/978-3-319- -7
R. Gorrieri, C. Versari Introduction to Concurrency Theory
Computer Science. An EATCS Series, 21491

331



332 Index

relabeling, 312
restriction, 86, 96
subclasses, 105, 106, 132
value-passing, 151

Chomsky hierarchy, 14
Cigarette smokers problem, 306
Closure

reflexive, 11
reflexive and transitive, 11, 26, 53
symmetric, 11
transitive, 11

Communication merge, 201
Communication protocol, 115
Completed f-trace

definition, 215
equivalence, 215

Completed simulation
congruence, 181
definition, 41
equivalence, 41
preorder, 41

Completed trace, 128
congruence, 179
definition, 34
equivalence, 34

Computation, 26
Concurrency Workbench (CWB), 97
Concurrent readers and writers, 302
Congruence, 179, 182, 188, 191

coarsest, 185, 187, 224, 302
structural, 272

Context-free language, 136, 229
Counter, 133, 231, 240
Counter Machine, 138, 139, 143, 146

three-counter, 140
CSP, 256, 313

Deadlock, 34, 99, 114, 261
Deng Lemma, 178
Dining philosophers problem, 259, 267, 320

courteous, 304
CSP solution, 314

Divergence, 63, 99, 116, 262
Duplication, 252

Equivalence relation, 11
Expansion

definition, 241
Expansion law, 109, 167

F-bisimulation
algebraic properties, 221, 233
congruence, 221, 225
definition, 217

F-expansion
definition, 241
up to — definition, 242

F-isomorphism, 219
F-trace

definition, 215
equivalence, 215

Finitary CCS, 94, 107, 133, 174
Turing-completeness, 143
Undecidability, 143

Finite Automata
deterministic, 16
nondeterministic, 16

Finite BPA, 219
Finite CCS, 105, 107

signature, 189
Finite-net CCS, 106, 129, 146
Finite-state CCS, 105, 110
Flow-graph, 88
Free names, 168
Full CCS, 137
Function, 12

Turing-computable, 16

Grammar
context-dependent, 15
context-free, 15
general, 14
Greibach normal form, 15, 230
right-linear, 15, 112

Graph, 24, 109
Guardedness, 93, 100–102, 250, 287

Halting problem, 18, 138, 143, 144, 150
Hennessy Lemma, 176
Hiding, 207

algebraic properties, 208
congruence, 208
encoding, 209

Internal choice, 87, 205
algebraic properties, 206
congruence, 207
encoding, 207

Isomorphism, 30, 164, 166, 179
with final states, 219

Iteration, 224
algebraic properties, 225
encoding, 232

Labeled transition system
abstract, 62
boundedly-branching, 27, 126, 229
definition, 25



Index 333

deterministic, 27, 32, 52
finite, 27, 32, 35, 108, 109
finite-state, 27, 56, 111, 114
finitely-branching, 27, 93, 100, 126, 250,

287
image-finite, 27, 55, 75, 93, 100
minimization, 76
reachable from a state, 27, 98
reduced, 27, 98
tau-abstracted, 55, 59
tau-free, 55, 62
with final states, 214

Language, 13
BPP, 128
concatenation, 13
context-dependent, 15, 128, 132
context-free, 15, 128, 131, 230
finite-net CCS, 131
finite-state CCS, 111
iterate, 13
power, 13
prefix-closed, 13, 32
regular, 14, 15, 35, 56, 112, 128

Last man standing problem, 318, 321
Leader-election problem, 320
Left merge, 201
Linking operator, 122, 175, 180
Livelock, 63, 99
Liveness property, 36

Multi-CCS, 259
conservative extension, 276
finitary, 288
finite, 287
finite-net, 287
finite-state, 287
Multi-BPP, 287
regular, 287
well-formed, 279

Multi-party synchronization, 256, 266, 313
Multiset, 12

PA, 233
PAER, 233
Partial order, 11
Path, 26
Pool form, 275
Predictive operator, 187
Prenex form, 173
Preorder, 11
Producer-consumer, 119

unbounded, 131
value-passing, 156

Promotion Lemma, 200

Queue, 157

Reachability problem, 130, 145
Reactive system, 22

discrete, 22
Ready simulation, 43
Recursion, 181, 254
Regular CCS, 105, 113
Regular expression, 14, 35, 227
Relabeling, 210

algebraic properties, 211
congruence, 211
encoding, 212

Relation, 10
Replication, 250

guarded, 254
Representability

finite LTS — Finite CCS, 109
finite-state LTS — Finite-state CCS, 111
finite-state LTSF — Finite-state BPA, 232
finitely-branching — Full CCS, 137
with final states, 220

Rooted branching bisimilarity
algebraic laws, 177
axiomatization, 199
coarsest congruence, 187
congruence, 186
definition, 70

Rooted weak bisimilarity
algebraic laws, 176
axiomatization, 196
coarsest congruence, 185
congruence, 184
definition, 66

Rooted weak f-bisimilarity
algebraic laws, 222
coarsest congruence, 224
congruence, 223
definition, 218

Safety property, 36
Saturation Lemma, 197
Scope-enlargement, 172, 174, 274
Semaphore, 114
Semi-counter, 29, 86, 125, 147, 165
Sequential composition, 89, 213

algebraic properties, 221, 222, 238
congruence, 221, 222
encoding, 237

Set, 10
countable, 12
decidable, 17
finite, 12
semi-decidable, 17



334 Index

uncountable, 12
Signature, 189
Simulation, 58

algorithm, 79
axiomatization, 195
congruence, 181
definition, 36
equivalence, 36, 41, 164, 167
fixed-point, 73
preorder, 36, 41
properties, 40

Size, 108, 168
Sort, 169

definition, 27
undecidability, 145

Stack, 157
State space explosion problem, 99
Step bisimulation, 291
String, 13

concatenation, 13
length, 13
prefix, 13
suffix, 13

Strong prefixing, 263
Structural congruence, 272, 289, 294
Structural Operational Semantics (SOS), 94,

153, 220, 270, 292
Stuttering lemma, 68
Syntactic substitution, 168, 171, 239, 316

Trace
axiomatization, 195
congruence, 180
definition, 31
determinism, 32
equivalence, 31, 164, 167
preorder, 32
undecidability, 145

Turing machine, 16
Turing-completeness, 17, 138, 146, 235, 253,

259, 319
Two-phase semi-counter, 131

Vending machine, 21–23, 34, 53, 60, 82, 85,
88, 92, 112, 118

Weak bisimulation
algebraic laws, 175
application, 123
as a strong bisimulation, 62
congruence, 184
definition, 60
equivalence, 60, 61
largest, 61
process equation, 104
undecidability, 144, 151
up to — application, 130, 134, 159
up to — definition, 65
with final states, 218

Weak completed f-trace
definition, 216
equivalence, 216

Weak completed simulation, 60
congruence, 188

Weak completed trace, 128, 131, 136
congruence, 188
definition, 54
equivalence, 54

Weak f-bisimulation
definition, 218

Weak f-trace
definition, 216
equivalence, 216

Weak simulation
congruence, 188
definition, 57
equivalence, 57
preorder, 57

Weak trace
algebraic laws, 175
axiomatization, 196
congruence, 188
definition, 54
equivalence, 54
preorder, 54
undecidability, 144

Well-formedness, 279, 282
strong, 283


	Foreword
	Acknowledgements

	Contents
	Chapter 1 Introduction
	1.1 Motivation
	1.1.1 Sequentiality, Nondeterminism and Concurrency
	1.1.2 Interaction, Communication and Process Algebra

	1.2 Why This Book?
	1.2.1 Structure of the Book
	1.2.2 How to Use It

	1.3 Background
	1.3.1 Sets, Relations and Functions
	1.3.2 Alphabets, Strings, Languages and Regular Expressions
	1.3.3 Grammars and the Chomsky Hierarchy
	1.3.4 Finite Automata and Turing Machines
	1.3.5 Decidable and Semi-decidable Sets and Problems


	Chapter 2 Transition Systems and Behavioral Equivalences
	2.1 Modeling a Reactive System
	2.2 Labeled Transition Systems
	2.3 Behavioral Equivalences
	2.3.1 Isomorphism
	2.3.2 Traces
	2.3.3 Simulation
	2.3.4 Bisimulation

	2.4 Abstracting from Invisible Actions
	2.4.1 Weak Traces
	2.4.2 Weak Simulation and Weak Bisimulation
	2.4.3 Branching Bisimulation

	2.5 Bisimilarity as a Fixed Point

	Chapter 3 CCS: A Calculus of Communicating Systems
	3.1 A Language for Describing Reactive Systems
	3.1.1 An Informal Overview of CCS Operators
	3.1.2 Formal Syntax

	3.2 Structural Operational Semantics
	3.3 About Guardedness
	3.3.1 Guardedness Implies Finite Branching
	3.3.2 Unique Solution of Equations

	3.4 Some Subclasses of CCS Processes
	3.4.1 Finite CCS
	3.4.2 Finite-State CCS
	3.4.3 Regular CCS
	3.4.4 BPP: Basic Parallel Processes
	3.4.5 Finite-Net CCS
	3.4.6 Finitary CCS

	3.5 Turing-Completeness
	3.5.1 Counter Machines
	3.5.2 Encoding Counter Machines into Finitary CCS
	3.5.3 Undecidability of Behavioral Equivalences for Finitary CCS
	3.5.4 Undecidability of Bisimilarity for Finite-Net CCS

	3.6 Value-Passing CCS

	Chapter 4 Algebraic Laws, Congruences and Axiomatizations
	4.1 Some Algebraic Laws
	4.1.1 Laws for Strong Equivalences
	4.1.2 Syntactic Substitution and Alpha-Conversion
	4.1.3 Laws for Weak Equivalences

	4.2 Congruence
	4.2.1 Strong Bisimulation Equivalence Is a Congruence
	4.2.2 Recursion
	4.2.3 Weak Equivalences Are Congruences

	4.3 Axiomatization of Finite Processes
	4.3.1 Equational Deduction
	4.3.2 Axiomatizing Strong Equivalences
	4.3.3 Axiomatizing Weak Equivalences
	4.3.4 Left Merge and Communication Merge


	Chapter 5 Additional Operators
	5.1 Internal Choice
	5.2 Hiding
	5.3 Relabeling
	5.4 Sequential Composition
	5.4.1 Transition Systems with Final States
	5.4.2 Finite BPA
	5.4.3 BPA*: Finite BPA with Iteration
	5.4.4 BPA: Finite BPA with Recursion
	5.4.5 PA and PAER
	5.4.6 Derived Operator

	5.5 Replication
	5.5.1 Guarded Replication

	5.6 Multi-party Synchronization

	Chapter 6 Multi-CCS
	6.1 Lack of Expressiveness of CCS
	6.1.1 Dining Philosophers Problem
	6.1.2 Strong Prefixing: An Operator for Atomicity
	6.1.3 Multi-party Synchronization

	6.2 Syntax and Operational Semantics
	6.2.1 Conservative Extension
	6.2.2 Well-Formed Processes
	6.2.3 Some Subclasses of Multi-CCS Processes

	6.3 Behavioral Semantics
	6.3.1 Interleaving Semantics
	6.3.2 Step Semantics
	6.3.3 Step Bisimilarity Implies Interleaving Bisimilarity
	6.3.4 Properties of the Step Semantics

	6.4 Case Studies
	6.4.1 Concurrent Readers and Writers
	6.4.2 Courteous Dining Philosophers
	6.4.3 Cigarette Smokers Problem

	6.5 Expressiveness
	6.5.1 Choice
	6.5.2 Relabeling
	6.5.3 CSP Multiway Synchronization
	6.5.4 Last Man Standing Problem
	6.5.5 Conclusion


	Glossary
	References
	Index



