
www.allitebooks.com

http://www.allitebooks.org

JMeter Cookbook

70 insightful and practical recipes to help you successfully
use Apache JMeter

Bayo Erinle

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

JMeter Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1221014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-828-0

www.packtpub.com

Cover image by Artie Ng (artherng@yahoo.com.au)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Bayo Erinle

Reviewers
Yoann Ciabaud

Andrey Pokhilko

Shantonu Sarker

Federico Diaz Valpuesta

Źmicier Žaleźničenka

Commissioning Editor
Usha Iyer

Acquisition Editor
Owen Roberts

Content Development Editor
Dayan Hyames

Technical Editor
Akash Rajiv Sharma

Copy Editors
Maria Gould

Paul Hindle

Deepa Nambiar

Project Coordinator
Harshal Ved

Proofreaders
Simran Bhogal

Ameesha Green

Indexers
Hemangini Bari

Tejal Soni

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Bayo Erinle is an author and senior software engineer with over 11 years of experience
in designing, developing, testing, and architecting software. He has worked in various
spectrums of the IT field, including government, commercial, finance, and health care.
As a result, he has been involved in the planning, development, implementation, integration,
and testing of numerous applications, including multi-tier, standalone, distributed, and
Cloud-based applications. He is passionate about programming, performance, scalability,
and all technology-related things. He is always intrigued by new technology and enjoys
learning new things.

He currently resides in Maryland, USA, and when he is not hacking away at some new
technology, he enjoys spending time with his wife, Nimota, and their three children,
Mayowa, Durotimi, and Fisayo.

He has also authored Performance Testing with JMeter 2.9, Packt Publishing.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Yoann Ciabaud is an architect/developer with strong application architecture skills in
Java/JEE, integration, and database environments. While mainly focused on application
architecture, design, and development, Yoann also has extensive skills in infrastructure
(networks, server, and operating systems) and the design, build, and configuration of
development, test, and production environments.

He is currently working for an electronic financial transaction company called Monext in
France. Including other project and line roles, Yoann has worked in large (more than 50) and
small (sole team member) teams on complex distributed architectures based on a wide range
of technologies.

I would like to thank my lovely wife, who lets me spend time working on
reviewing a book instead of having more family time together. I want to
assure her, I will catch up soon.

Andrey Pokhilko is well known as the founder of JMeter-Plugins.org, an open source
project that has been enhancing the JMeter user experience since 2009. While working
on this project, he also led Load Testing Group at search giant Yandex (NASDAQ: YNDX),
a position that provided him with invaluable experience in high-load performance testing.
At Yandex, he developed the updated version of Yandex.Tank, an open source load
testing tool.

Keen to apply his ideas to a wider range of load testing problems, Andrey left Yandex
in 2014 to focus on building Loadosophia.org, a start-up that provides load test results
analysis as a service.

www.allitebooks.com

http://www.allitebooks.org

Shantonu Sarker is a freelance software test automation engineer, currently working
for oDesk/Elance/Staff.com. As a consultant, he works as a trainer in BITM (an institute of
BASIS) and as an automation tester for several reputed companies in Bangladesh. He has
his own start-up company named QualitySofts.

He has attended three professional training courses provided by BASIS (Bangladesh
Association for Software and Information Services) on OOP, OOAD, and software design and
architecture. He also has training in Agile development and testing (Kanban and Scrum) and
security testing. He is also learning to speak Japanese and has passed the JLPT-L4 exam.

He has previously reviewed Performance Testing with JMeter 2.9, Packt Publishing.

I would like to thank my Guru, Mahajatok. Without his guidance, I would not
be what I am today.

Federico Diaz Valpuesta is a Linux systems administrator currently living in Seville,
Spain. He has extensive experience in the administration of local area networks and
Linux servers.

He has been using Linux since 1999, starting with RedHat 7.2, and currently uses Debian.
He has learned to use all the various "flavors" of Linux when he needs to solve a problem,
so he usually installs Debian for web servers, CentOS for clustering, and Zentyal for small
LANs, user management, and file/printer sharing.

Right now, he is working as a freelance web developer, deploying web apps in AWS,
DigitalOcean, and Hetzner. He lends a hand in virtualization and helps everyone who
wants to get started with Linux.

In addition to trying new things on his computer for long hours, he also likes mountain
biking and watching TV. You can follow his activities on his blog or Twitter.

Źmicier Žaleźničenka holds a Master of Science degree in Computer Science from Delft
University of Technology, the Netherlands. He is currently working as a software developer at
TomTom in Amsterdam. His areas of interest include search engines, application monitoring
software, and performance optimization of large-scale web applications. He has worked
closely with JMeter, both during his studies and day-to-day development activities.

I'd like to thank Packt Publishing for giving me the opportunity to edit
this publication.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: JMeter Fundamentals 7

Introduction 7
Executing a test script 8
Recording a script via HTTP(S) Test Script Recorder 12
Recording scripts via the Chrome browser extension 17
Converting HTTP web archives (HAR) to JMeter test plans 19
Viewing and analyzing test results 22
Feeding data into a script 24
Using timers 26
Managing HTTP user sessions 27
Testing Single Page Applications (SPAs) 28
Testing AJAX-centric applications 30

Chapter 2: Handling Responses 33
Introduction 33
Using Regular Expression Extractor 34
Using Regular Expression Tester 36
Using CSS/jQuery Extractor 38
Using XPath Extractor 40
Dealing with file downloads 42
Handling XML responses 44
Handling JSON responses 47
Handling HTML responses 50
Using Response Assertion 54
Using Duration Assertion 56
Uploading files with your scripts 58

www.allitebooks.com

http://www.allitebooks.org

ii

Table of Contents

Chapter 3: Building Robust Test Plans with Controllers 61
Introduction 61
Using Transaction Controller in test plans 62
Using Loop Controller in test plans 65
Leveraging ForEach Controller in test plans 69
Using Interleave and Random Controller in test plans 72
Using Runtime Controller in test plans 77

Chapter 4: Testing Services 81
Introduction 81
Testing REST web services 82
Testing SOAP web services 85
Testing FTP services 90
Testing relational databases 94
Testing NoSQL databases 98
Testing JMS services 101

Chapter 5: Diving into Distributed Testing 105
Introduction 105
Testing applications with JMeter's master-slave setup 106
Testing internal applications using JMeter and Vagrant 109
Testing external facing applications using JMeter, Vagrant, and AWS 113
Testing external facing applications using Flood.IO 118
Testing external facing applications using BlazeMeter 122

Chapter 6: Extending JMeter 125
Introduction 125
Using REST Sampler 126
Using Ultimate Thread Group 130
Using Throughput Shaping Timer 132
Using Console Status Logger 136
Using Dummy Sampler 138
Developing custom JMeter plugins 140
Testing WebSocket-enabled applications 144

Chapter 7: Building, Debugging, and Analyzing the Results
of Test Plans 149

Introduction 149
Using the View Results Tree listener 150
Using the Aggregate Report listener 152
Debugging with Debug Sampler 153
Using Constant Throughput Timer 155
Using the JSR223 postprocessor 156

iii

Table of Contents

Analyzing Response Times Over Time 159
Analyzing transactions per second 161
Using User Defined Variables (UDV) 163

Chapter 8: Beyond the Basics 165
Introduction 165
Continuous Integration with JMeter 166
Testing with different bandwidths 173
Using the HTTP Cache Manager component 176
Using script languages within test plans 178
Writing Test scripts through Ruby DSL 181
Understanding JMeter properties 183
Monitoring servers while executing tests (using VisualVM) 186
Monitoring servers while executing tests (using YourKit Profiler) 189
Monitoring servers while executing tests (using New Relic) 192
Performance tips to scale JMeter 197

Appendix: Installing the Supporting Software Needed for This Book 201
Introduction 201
Installing JMeter 202
Installing Java Development Kit (JDK) 202
Installing JMeter plugins 203
Installing Vagrant 203
Installing VirtualBox 204
Installing Maven 204
Installing Git 205
Obtaining AWS keys for EC2 205

Index 207

iv

Table of Contents

Preface
In today's ever-growing IT sector, users are growing increasingly impatient when faced with
slow and unresponsive applications. Slow page load times and sluggish services could mean
unsatisfactory customer experiences leading to fewer customer visits, which in the end
translates to smaller profit margins for businesses. As such, it becomes increasingly
important to a business's success to have fast, reliable, and responsive systems that
give users a superb experience, foster growth, and increase revenue.

Performance testing is a type of testing intended to determine the responsiveness, reliability,
throughput, interoperability, and scalability of a system and/or application under a given
workload. It is critical and essential to the success of any software product launch and its
maintenance. It also plays an integral part in scaling an application out to support a wider
user base.

Apache JMeter is a free, open source, cross-platform performance testing tool that has been
around since the late 90s. It is mature, robust, portable, and highly extensible. It has a large
user base and offers lots of plugins to aid testing.

This book is a practical, hands-on guide that focuses on how to leverage Apache JMeter to
meet your testing needs. With over 50 practical and carefully selected recipes, it will guide
you through building robust and maintainable test scripts, Cloud testing, developing custom
JMeter plugins, integrating JMeter into continuous delivery workflows, and much more. You
will find a lot of useful knowledge here to apply to your current or future testing engagements.
Whether you are a developer or tester, this book is sure to have an impact on you and provide
you with valuable knowledge to help you achieve success in your future testing endeavors.

Preface

2

What this book covers
Chapter 1, JMeter Fundamentals, covers fundamental and intermediate skills to help you use
JMeter efficiently.

Chapter 2, Handling Responses, details how to handle various server and application responses.

Chapter 3, Building Robust Test Plans with Controllers, covers five useful and often
encountered JMeter controllers and how to apply them to your use cases.

Chapter 4, Testing Services, details how to test web services and supporting application
resources with JMeter.

Chapter 5, Diving into Distributed Testing, takes an in-depth look at leveraging the Cloud for
performance testing. We cover three Cloud providers and see how to roll our own when the
need arises.

Chapter 6, Extending JMeter, covers how to extend JMeter with plugins. We also detail how
to write your own JMeter plugin.

Chapter 7, Building, Debugging, and Analyzing the Results of Test Plans, discusses some
useful components in JMeter and how to leverage them, as well as how to build realistic,
robust, and maintainable scripts.

Chapter 8, Beyond the Basics, covers integrating JMeter into continuous delivery workflows,
scaling JMeter, and many other advanced tips and pointers.

Appendix, Installing the Supporting Software Needed for This Book, covers how to install the
supporting software and how to proceed with the recipes in the chapters.

What you need for this book
To follow along with the examples in this book, you will need the following:

 f A computer with an Internet connection
 f Apache JMeter: http://jmeter.apache.org/
 f Java Runtime Environment (JRE) or Java Development Kit (JDK): http://www.

oracle.com/technetwork/java/javase/downloads/index.html

In addition, for some recipes in Chapter 1, JMeter Fundamentals, you will need the following:

 f Google Chrome Browser: https://www.google.com/chrome/browser/
 f Apache Maven: http://maven.apache.org/
 f YourKit Java Profiler: http://www.yourkit.com/ (this is commercial ware,

but the free trial will do to follow along with the recipe)
 f A Heroku account: http://www.heroku.com
 f Apache Tomcat: http://tomcat.apache.org/download-70.cgi

http://jmeter.apache.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.google.com/chrome/browser/
http://maven.apache.org/
http://www.yourkit.com/
http://www.heroku.com
http://tomcat.apache.org/download-70.cgi

Preface

3

For Chapter 5, Diving into Distributed Testing, you will need the following:

 f Vagrant: http://www.vagrantup.com/

 f An AWS account: http://aws.amazon.com/

 f A Flood.IO account: https://flood.io/

 f A BlazeMeter account: http://blazemeter.com

For Chapter 8, Beyond the Basics, any free Java IDE will do. This includes the following:

 f IntelliJ Community Edition: http://www.jetbrains.com/idea/download/

 f Eclipse: https://www.eclipse.org/downloads/

The book contains pointers and additional helpful links to set all these up.

Who this book is for
This book is targeted primarily at developers and testers. Developers who have always been
intrigued by performance testing and want to get in on the action will find it extremely useful,
and will gain essential skills as they walk through the practical recipes in the book.

Testers will also benefit from this book since it will guide them through solving practical,
real-world challenges when testing modern web applications, giving them ample knowledge
to aid them in becoming better testers. Additionally, they will be exposed to certain helpful
testing tools that will come in handy at some point in their testing careers.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Open the add_cookie_manager.jmx test script."

A block of code is set as follows:

 JMeterVariables:
 JMeterThread.last_sample_ok=true
 JMeterThread.pack=org.apache.jmeter.threads.SamplePackage@2ae97e14
 START.HMS=053854
 START.MS=1396517934834
 START.YMD=20140403
 TESTSTART.MS=1396702498383
 speed=7.7

http://www.vagrantup.com/
http://aws.amazon.com/
https://flood.io/
http://blazemeter.com
http://www.jetbrains.com/idea/download/
https://www.eclipse.org/downloads/

Preface

4

 speed_g=1
 speed_g0="speed":7.7
 speed_g1=7.7
 sunrise=1396694648
 sunrise_g=1
 sunrise_g0="sunrise":1396694648
 sunrise_g1=1396694648
 sunset=1396740883
 sunset_g=1
 sunset_g0="sunset":1396740883
 sunset_g1=1396740883

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<body>
Posted by
login
register

Any command-line input or output is written as follows:

 Adding newrelic:stark on frozen-headland-2987... done, v7 (free)

 Use `heroku addons:docs newrelic` to view documentation.

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Press the Record button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

Preface

5

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message. If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, see our
author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

6

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
JMeter Fundamentals

In this chapter, we will cover the following recipes:

 f Executing a test script

 f Recording a script via HTTP(S) Test Script Recorder

 f Recording scripts via the Chrome browser extension

 f Converting HTTP web archives (HAR) to JMeter test plans

 f Viewing and analyzing test results

 f Feeding data into a script

 f Using timers

 f Managing HTTP user sessions

 f Testing Single Page Applications (SPAs)

 f Testing AJAX-centric applications

Introduction
In this chapter, you will learn the fundamentals and intermediate skills that will help you
work better with JMeter. Tasks such as executing or recording scripts are routine and you can
be almost certain that you will need to perform them, sometimes on a daily basis. Also, we
will learn how to view and analyze the results of test executions, feed data into test scripts,
and make test scripts mimic user behavior with the aid of timers. In later recipes, we dive
into dealing with handling authentication, authorization, and testing today's new breed of
applications with JMeter.

www.allitebooks.com

http://www.allitebooks.org

JMeter Fundamentals

8

Executing a test script
Sometimes, the test scripts to execute have already been recorded and handed over to
you to run. In this recipe, we will show you just how to go about executing a script that
was prerecorded.

How to do it…
To execute a test script, perform the following steps:

1. Open the command line prompt.

2. Change to the directory of your JMeter install. We'll refer to this as JMETER_HOME.

Refer to Appendix for JMeter installation instructions.

3. Change JMETER_HOME to the bin directory.

4. To launch the JMeter GUI on Windows, type in jmeter.bat. Alternatively,
for Unix/Mac OS, type in ./jmeter.

5. Navigate to File | Open.

Alternative key binding: Mac OS (Command + O),
Windows (Ctrl + O).

6. Navigate to the script you want to execute. For example, ch1/getting_started.
jmx provided with the sample code.

7. Press the green start icon at the top.

Alternative key binding: Mac OS (Command + R),
Windows (Ctrl + R).

8. View the results from one of the added listeners. If you are using
getting_started.jmx from step 6, click on the View Results
Tree listener as shown in the following screenshot:

Chapter 1

9

Executing a test script

How it works…
Test scripts are a series of prerecorded requests issued against an application. They are
captured interactions of a user's actions with the application. These include visiting a URL,
navigating around several pages, logging in, and so on. JMeter, like most test tools, has
the ability to record and replay back test scripts. JMeter test scripts are stored in the XML
(extendable markup language) format with the .jmx extension. Curious users can open the
test script in a text editor of their choice (for example, Sublime Text, Notepad, and so on) and
view exactly what it is doing, though, it is much more clear to understand what a script does
by looking at it in JMeter's GUI.

After executing the test, results are reported through any configured listeners. A script can
have one or several listeners attached to it (see recipes in Chapter 7, Building, Debugging,
and Analyzing the Results of Test Plans).

JMeter Fundamentals

10

There's more…
Scripts can also be executed in what JMeter refers to as non-GUI mode, which is completely
on the command line without launching the JMeter GUI. To do this, instead of executing
jmeter.bat or JMeter, like we did in step 4, we'll use certain JMeter command-line
arguments to specify the test script and the resulting output file, which we can then
go back and view with the JMeter GUI after the tests are executed.

On Unix/Mac OS, type in the following command:

./jmeter -n -t [path to test script] -l [path to results files]

On Windows, type in the following command:

jmeter.bat -n -t [path to test script] -l [path to results files]

An example of running in non-GUI mode
Here is an example of running code in non-GUI mode: This is how we executed the
google_simulation.jmx test script in our bundled sampled in non-GUI mode. As you can see,
we supplied parameters –n and –t and the absolute path to where our script is located
(/Users/berinle/workspace/jmeter-cookbook/ch1/google_simulation.jmx)
followed by the path to the results file (/Users/berinle/workspace/jmeter-cookbook/
ch1/google_simulation_result.csv).

./jmeter -n -t /Users/berinle/workspace/jmeter-cookbook/ch1/google_
simulation.jmx -l /Users/berinle/workspace/jmeter-cookbook/ch1/
google_simulation_result.csv

Created the tree successfully using /Users/berinle/workspace/jmeter-cookbook/
ch1/google_simulation.jmx.

Starting the test @ Tue Feb 25 05:07:45 EST 2014 (1393322865378)

Waiting for possible shutdown message on port 4445.

Tidying up ... @ Tue Feb 25 05:08:46 EST 2014 (1393322926156)

... end of run

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

11

To view the results after the test has been executed, open up the JMeter GUI, create a new
test plan, and add a listener to it by navigating to Test plan | Add | Listener | Aggregate
Report. Click on the Browse… button to navigate to the location of the results file and open it.
This is demonstrated in the following screenshot:

Viewing the results of a test run

There are several reasons why you might want to execute a test in non-GUI mode. Some of the
reasons include:

 f Running on a Unix machine with no GUI layer (that is, the JMeter GUI does not
even open up)

 f Running a distributed test

 f Performance reasons of the JMeter GUI, which can sometimes be resource intensive;
running in non-GUI mode alleviates this issue

JMeter Fundamentals

12

Recording a script via HTTP(S) Test Script
Recorder

Recording scripts is where you will spend most of your time. It is often the first step to develop
test plans for applications. Though you can develop test plans manually by building them from
within the JMeter GUI, or generating them via some domain-specific language (DSL), recording
scripts by JMeter's HTTP(S) Test Script Recorder is one of the available options you have when
building your test plans.

How to do it…
In this recipe, we cover how to record test scripts with HTTP(S) Test Script Recorder. Perform
the following steps:

1. Start JMeter. Perform the following steps:

 � Open the command-line prompt

 � Change to the directory of your JMeter install (JMETER_HOME)

 � Change to the bin directory

 � Execute the following command:

 For Windows, type the following command:
 jmeter.bat

 For Mac OS/Unix, type the following command:

 ./jmeter

2. Once the GUI is opened, click on the Templates… button (the icon that appears
immediately to the right of the new test plan icon) on the toolbar.

Templates were added in JMeter 2.10, so don't expect to see
them in versions prior to that.

3. In the drop-down menu of the Select Template box, choose Recording and click on
the Create button.

4. Click on the HTTP(S) Test Script Recorder element (under WorkBench) and change
Port (under Global Settings) from 8888 to 7000.

 � You can use a different port if you want to. What is important to choose
is a port that is not currently used by an existing process on the machine.
The default is 8888.

Chapter 1

13

5. Leave the rest of the components with the default set values.

6. The template does an excellent job and is configured with sensible defaults.
The defaults provide the following:

 � Target the recorded actions to Recording Controller added by the template.

 � Group a series of requests that constitute a page load. We will see more on
this topic later.

 � Instruct the script recorder to bypass recording requests of a series of
elements that are not relevant to test execution. These include JavaScript
files, style sheets, and images.

 � Add the often-used components, including user-defined variables,
HTTP Request Defaults, and HTTP Cookie Manager, to the test plan.

 � Add Thread Group and Recording Controller to the test plan.

 � Add a View Results Tree listener to view results of the test plan.

7. Click on the Start button at the bottom of the HTTP(S) Test Script
Recorder component.

With these settings, the test script recorder server will start on the port 7000, monitor all
requests going through that port, and record them to a test plan using the default recording
controller. For details, see the following screenshot:

HTTP(S) Test Script Recorder configuration

JMeter Fundamentals

14

How it works…
These steps instruct JMeter to act as an HTTP proxy and listen for incoming and outgoing
requests from your browser to the Internet on the assigned port, in our case 7000.

We now need to configure the browser to use the proxy server we just configured and redirect
requests to the assigned port. There are several ways to do that, but we will focus here on the
two most common ways.

There's more…
Modern browsers have a vibrant and active plugin ecosystem that allows you to extend
the capabilities of your browser with an added plugin. FoxyProxy is one such plugin
(http://getfoxyproxy.org/). It is a neat add-on for a browser that allows you to set up
various proxy settings and toggle between them on the fly, without having to mess around
with system settings on the machine. It really makes the work hassle free. Thankfully,
FoxyProxy has a plugin for all major browsers including Google Chrome, Firefox, and
Internet Explorer. If you are using any of those, you are lucky; head over and grab it!

Changing the machine system settings
The other common way to configure the browser is to change the system settings.
The following are the details on how to configure Windows and Mac OS.

On Windows OS, perform the following steps to configure a proxy:

1. Navigate to Start | Control Panel | Network and Internet | Internet Options.

2. In the Internet Options dialog box, click on the Connections tab.

3. Click on the LAN Settings button.

4. To enable the use of a proxy server, check the Use a proxy server for your LAN
(These settings will not apply to dial-up or VPN connections) box as shown in
the following screenshot.

5. In the proxy Address box, enter localhost in the IP address.

6. In the Port number text box, enter 7000 (to match the port you set up for your JMeter
proxy earlier).

http://getfoxyproxy.org/

Chapter 1

15

7. If you want to bypass the proxy server for the local IP addresses, select the Bypass
proxy server for local addresses checkbox.

8. Click on OK to complete the proxy configuration process. This is shown in the
following screenshot:

Manually setting a proxy on Windows 7

On Mac OS, perform the following steps to configure a proxy:

1. Navigate to System Preference | Network | Advanced….

2. Go to the Proxies tab.

3. Check Web Proxy (HTTP).

4. Under Web Proxy Server, enter localhost.

5. For port, enter 7000 (to match the port you set up for your JMeter HTTP proxy earlier).

6. Do the same for Secure Web Proxy (HTTPS).

JMeter Fundamentals

16

7. Click on OK, as shown in the following screenshot:

Manually setting a proxy on Mac OS

For all other systems, consult the related operating system documentation.

With both JMeter's HTTP(S) Test Script Recorder and browser configured to use it, we are now
ready to record a test. Perform the following steps:

1. Point your browser to a website of your choice.

2. Navigate to a few links.

3. Notice that all user actions are being captured under the Thread Group component in
the JMeter GUI.

4. Stop the recording by stopping HTTP(S) Test Script Recorder.

The HTTP(S) Test Script Recorder server is set up to listen to requests on a particular port and
then set the browser or system to redirect all requests to the assigned port. This allows us
to capture the user actions as they interact with web applications, allowing us to replay their
actions like we did in the Executing a test script recipe.

Chapter 1

17

See also
 f The Recording scripts via the Chrome browser extension recipe in

Chapter 8, Beyond the Basics

 f The Writing Test scripts through Ruby DSL recipe

 f The Converting HTTP web archives (HAR) to JMeter test plan recipe

Recording scripts via the Chrome browser
extension

Recording test scripts is one you will be doing quite often. There are many alternatives to how
we can record test scripts in JMeter.

How to do it…
In this recipe, we show you how to record test scripts with just a browser add-on installed on
the Google Chrome browser. Perform the following steps:

1. Install the Google Chrome browser if it's not already installed on your machine.

You can download it from
https://www.google.com/intl/en/chrome/browser/.

2. Open the Chrome Web Store.

3. Search for blazemeter on the web store.

4. Install the BlazeMeter browser extension by clicking on the Free button.

Once installed, a new BlazeMeter icon will be placed in the top-right
corner of your browser toolbar.

5. Click on the newly added BlazeMeter extension button in the top-right corner of your
browser toolbar.

6. Press the Record button.

7. Point your browser to a website of your choice.

8. Navigate through the website as you will normally do as a user.

9. After the previous step, stop the recording and click on the export to jmx button
(.jmx). This will download a copy of your script to your local machine.

10. Open the exported test script in JMeter.

www.allitebooks.com

https://www.google.com/intl/en/chrome/browser/
http://www.allitebooks.org

JMeter Fundamentals

18

11. Add View Results in Tree Listener to the test plan (Test plan | Add | Listener | View
Results in Tree Listener).

12. Run the exported test script with JMeter.
13. View the results.

Exporting your recorded test plan requires a free account with
BlazeMeter for you to be logged in.

Installing the BlazeMeter Chrome extension

The BlazeMeter Chrome extension should look similar to what is shown in the preceding
screenshot. Using this extension, additional properties can be configured in the Advance
section of the extension. The following is a screenshot of the extension:

Using the BlazeMeter Chrome extension

Chapter 1

19

How it works…
The browser extension captures the user interaction with the website in the JSON format as
long as the recorder is on.

When the recording is stopped, no further user actions are captured. After the export button
has been clicked on the JSON format is then converted to the XML format, which JMeter
understands and can work with. The downloaded recorded script can then be edited and
run within JMeter like any other script.

There's more…
The extension allows you to selectively capture requests by providing you with the ability to
pause recording in between the user interactions. It also allows you to filter out unwanted
traffic you might not be interested in capturing in your test scripts through the include filter
pattern text area.

Furthermore, the Advance menu option allows you to gain more control over which requests
are captured in your script, allowing you to capture only the top-level requests (default),
disable browser cache (default), disable recording cookies (default), and edit the setting
before proceeding to run.

Finally, as BlazeMeter (one of the many providers offering distributed testing in the Cloud)
provides this extension, it offers additional features including the following:

 f Allows you to run your scripts directly in the Cloud (see Chapter 5, Diving into
Distributed Testing)

 f Allows you to simulate thousands of users with ease (see Chapter 5, Diving into
Distributed Testing)

Converting HTTP web archives (HAR) to
JMeter test plans

Another alternative to recording test scripts in JMeter is converting the existing HTTP web
archives directly into JMeter test scripts.

How to do it…
This recipe shows you how to generate a test script from captured HTTP web requests in your
browser. Perform the following steps:

1. Install and launch the Google Chrome browser (if you don't already have it).

2. Open Developer Tools by navigating to Tools | Developer Tools.

JMeter Fundamentals

20

Alternative key bindings: Mac OS (Command + Shift + I),
Windows (Ctrl + Shift + I).

Opening Chrome Developer Tools

3. Click on the Network tab.

4. Make sure that the Preserve log checkbox is checked.

5. Browse the websites as you normally would.

6. Once you have finished browsing, open the developer tool window, right-click and
select Copy All as HAR.

7. Point your browser to https://flood.io/har2jmx.

8. Copy the contents of the clipboard to the input box.

9. Click on the Convert button.

10. Launch the JMeter GUI.

11. Open and examine the downloaded test script.

https://flood.io/har2jmx

Chapter 1

21

12. Add View Results in Tree Listener to the test plan (Test plan | Add | Listener | View
Results in Tree Listener).

13. Save and run the exported test script.

14. View the results.

Make sure that the Preserve log checkbox in the Network tab is checked to ensure all the
user actions are captured, as illustrated in the following screenshot:

Preserve log checkbox in the Network tab

As shown in the following screenshot, while on the Network tab, right-click to see the Copy All
as HAR option:

Copy All as HAR

How it works…
With the help of built-in browser tools and plugins, a browser is able to capture all interactions
between a user and a web application into the JSON (JavaScript Object Notation) format
known as the web archive (HAR). This resulting JSON object includes all the information about
each request including HTTP headers, methods, query strings, and so on. Given the JSON
object or a file with its content, the HAR to JMX converter can then read, parse, and construct
JMeter elements for each user request, similar to what a JMeter HTTP proxy would have done.

JMeter Fundamentals

22

There's more…
For command-line fans who do not wish to go through the Flood IO's website to do a
conversion, there's a command-line tool that can be used to achieve the HAR TO JMX
conversion. Har2jmeter located at http://seitenbau.github.io/har2JMeter/ is
a utility written in the Groovy language. It's still in its infancy, so you might encounter a few
quirks here and there. While testing it, one thing we found out is that it currently didn't play
well with secure connections (HTTPS). Also, it didn't group requests into logical controllers.
We mention it here just to make you aware that it exists and such bugs will probably be fixed
in the near future.

For Firefox, the firebug plugin allows you the same capability to capture
requests as HAR. Visit http://www.ehow.com/how_8789702_
create-har-files-using-firebug.html to see how this can
be accomplished.

Viewing and analyzing test results
When it comes to viewing your test results, JMeter comes with a vast number of components
to aid this regard. Each component gives a different perspective into how to visualize your test
results. Deciding which to use depends mostly on what kind of data you are interested in for
a test run. Also, JMeter doesn't place a limit on how many of these listeners you can use on a
test script, so it's not uncommon to see scripts with several results listeners.

How to do it…
In this recipe, we will cover three of the most popular built-in viewing components you will
most likely need for your scripts. This is by no means an exhaustive list, so be sure to explore
other viewing components. Perform the following steps:

1. Launch JMeter.

2. Open a previously recorded test script.

3. Add a View Results Tree listener by navigating to Test plan | Add | Listener | View
Results Tree.

4. Add a Aggregate Report listener by navigating to Test plan | Add | Listener |
Aggregate Report.

5. Add View Results in table by navigating to Test plan | Add | Listener | View Results
In Table.

6. Start the test.

7. Examine the results on each of the added results listeners. The entire process is
shown in the following screenshot:

http://seitenbau.github.io/har2JMeter/
http://www.ehow.com/how_8789702_create-har-files-using-firebug.html
http://www.ehow.com/how_8789702_create-har-files-using-firebug.html

Chapter 1

23

Adding the View Results Tree listener

The View Results Tree component is shown in the following screenshot:

JMeter Fundamentals

24

How it works…
Once added, the test results will be written in real time to these listeners as the test is going
on. Each listener gives a different data representation of the test results. Depending on what
you are interested in, you will use a different set of listeners.

There's more…
There are graph listeners that plot graphs in real time, helping you visualize your test results
in a graphical way. Also, there are extensions to JMeter that provide even additional result
listeners just in case you need more than the built-in listener components.

Feeding data into a script
More often than not, we will need to provide varying input datasets to our scripts to
simulate realistic user interaction with an application. Most applications, for instance,
need to be authenticated against to view certain restrictive areas of the application.
The way to accomplish this is by supplying an input datafile to the test script. The file
is normally in the form of comma-separated values (CSV).

How to do it…
This recipe shows you how to feed data into your script to handle such scenarios. Perform the
following steps:

1. Download the book code samples from
http://www.packtpub.com/jmeter-cookbook/book.

Alternatively, you can clone the sample from the GitHub repository at
http://github.com/jmeter-cookbook/bundled-code.

2. Extract the contents of the ZIP file.

3. Launch JMeter.

4. Open the ch1_feed_me_data.jmx script from the scripts/ch1 directory.

5. Add CSV Data Set Config to the test plan by navigating to Test Plan | Add | Config
Element | CSV Data Set Config. Let's configure it:

1. In the Filename box, enter input.txt.

2. Leave the rest of the entries blank.

http://www.packtpub.com/jmeter-cookbook/book
http://github.com/jmeter-cookbook/bundled-code

Chapter 1

25

6. Save and run the test. The execution of the script is shown in the following screenshot:

How it works…
Assuming you haven't changed the default sharing mode of the added CSV dataset
configuration, with each iteration run of our test plan, a line of the input.txt file is
consumed. The consumed values are then turned into JMeter variables named after the
first line of our input datafile, which are user and pass in our case. The values are then
used further down the execution chain to fill in the username and password to access our
application. In this particular test plan, as we have more threads than the amount of input
data, the input data is recycled once the end of the file is reached.

There's more…
In our example, we have just provided the name of the file to read the input feed from.
If you examine the CSV dataset configuration element closely, you will notice that it has
other properties that can be filled in. These include the following:

 f Variable Names: Provide the comma-separated names of the variables. As we left
this blank, the first line of our input script will be treated as the variable name.

 f Delimeter: Change to this option if you want to use a different delimiter other than a
comma. For instance, you can use tab spaces (\t) or the colon symbol (:) instead
of commas.

JMeter Fundamentals

26

 f Allow Quoted Data: Set to True, if you would like to allow quoted data. For example,
'hello' as opposed to hello.

 f Recycle on EOF: In cases where you have more threads than the input data, this
attribute specifies whether to allow the input data to be recycled. In such a case,
the input feed will start from the beginning of the file once the data feed has run out.

 f Stop thread on EOF: This option determines whether to kill the thread has
been reached.

 f Sharing mode: The default option is All meaning all threads; even those in
a different thread group get to share the same data. The other options are Current
thread group and Current thread, which specify that only the threads within a
particular thread group and only a particular thread can retrieve data from the
file, respectively.

Using timers
By default, when test scripts are recorded in JMeter, they contain no pauses between page
requests. This is sometimes known as the think time in test scripts. In reality though, most
users will frequently pause for a duration of time on every page before moving on to another
page in the application. In JMeter, the ways to achieve these pauses are through timers.
JMeter comes with a wealth of timers to achieve this purpose.

How to do it…
In this recipe, we will show you how to mimic realistic user behaviors using the JMeter timers.

1. Launch JMeter.

2. Open the ch1_add_timers.jmx test script located in the scripts/ch1 directory.

3. Add Gaussian Random Timer by navigating to Test plan | Add | Gaussian
Random Timer.

4. Change Deviation (in milliseconds) from 100 to 1000.

5. Change Constant Delay Offset (in milliseconds) from 300 to 500.

6. Save and execute the test script.

How it works…
With our configuration, each thread will pause for a duration of 0.5 to 1.5 seconds after each
request before proceeding to the next request. This is because we applied the timer at the
root level of the test plan. If we wanted to have pauses after each logical page rendering, we
will add a timer at the transaction controller level. This option is mostly what you will go with
as a single rendered web page often consists of multiple requests.

Chapter 1

27

There's more…
There are many more timers that come bundled with JMeter even through additional plugins
that serve different purposes. There are timers that simulate constant delay, constant
throughput, random delay, and so much more. Depending on your use case and what
you are trying to simulate, you will choose one or several of these.

Managing HTTP user sessions
Most websites have a means of authenticating users, thereby enabling them to gain access
to protected data or content that only pertains to them. Also, it is very common for websites to
give users different roles based on what the user will be doing. For instance, a user called Joe
could be given admin privileges while Susan is only given user privileges. Whatever the case,
JMeter has a way to maintain HTTP user sessions for your test scripts.

How to do it…
In this recipe, we will detail how to accomplish this with JMeter. Perform the following steps:

1. Launch JMeter.

2. Open the add_cookie_manager.jmx test script.

3. Run the test plan.

4. Notice the failed requests, even though the log in request succeeded:

 � The Request immediately option following the log in request is indicative of
this. The Request tab shows no cookies were sent with the request. Refer to
the following code:

 GET http://evening-citadel-2263.herokuapp.com/
 [no cookies]
 Request Headers:
 Connection: keep-alive
 Host: evening-citadel-2263.herokuapp.com
 User-Agent: Apache-HttpClient/4.2.6 (java 1.5)

 � Furthermore, our response assertions fail, as subsequent requests were not
associated with the existing user, but were treated as new requests.

5. Clear the results (Mac OS: Command + Shift + E and Windows: Ctrl + Shift + E).

6. Add HTTP Cookie Manager to the test plan by navigating to Test plan | Add | Config
Element | HTTP Cookie Manager.

7. Save and run the test plan.

www.allitebooks.com

http://www.allitebooks.org

JMeter Fundamentals

28

8. Observe the results in the View Results in Tree listener and notice how all the
requests now succeed:

 � If you observe the request immediately following the log in request, you will
notice that the cookie information is correctly sent with the request, thanks
to the added HTTP Cookie Manager. You should see something similar
to this:

 GET http://evening-citadel-2263.herokuapp.com/
 Cookie Data:
 connect.sid=s%3AWN5ITZxWEKyzmmAB5sct7PjA.6UAJ36%2F9%2BWFQPjd
 zA%2B7%2B1NL4%2Bf0HzC%2BOQI%2Bol0V0eJ0
 Request Headers:
 Connection: keep-alive
 Host: evening-citadel-2263.herokuapp.com
 User-Agent: Apache-HttpClient/4.2.6 (java 1.5)

How it works…
The HTTP Cookie Manager stores and sends cookies like a web browser does. The cookie
of any request that contains one is automatically extracted and stored by the component to
be used for all future requests from that particular thread. Each JMeter thread gets its own
session just like in a regular web browser to prevent users' sessions from overlapping with
each other.

There's more…
Apart from the automatically extracted cookies by the HTTP Cookie Manager component,
JMeter provides a way to add user-defined cookie values to a test plan. Unlike their
automatically extracted counter parts, once defined, all threads executing in the test
plan will share these values.

Testing Single Page Applications (SPAs)
Single-page applications are the new wave of web applications being developed in today's
technological industry. The benefits of developing such applications can't be overstated.
They relieve the servers of enormous load and bring faster responsiveness to the end user.
They are architected differently from traditional web applications, which make them slightly
different to develop test scripts for.

Chapter 1

29

How to do it…
In this recipe, we will work through creating a script for an SPA. Perform the following steps:

1. Launch JMeter.

2. Add HTTP(S) Test Script Recorder and set it up for recording (see the Recording a
script via JMeter HTTP proxy recipe).

3. Click the Add suggested Excludes button.

4. Start the HTTP(S) Test Script Recorder.

5. Point your browser to http://angular.github.io/peepcode-tunes/public/.

6. Add the two available albums (on the right) to your playlist (on the left).

7. Randomly select a song to listen to.

8. Use the buttons on the player to jump to the next or previous song or pause them.

9. Stop the HTTP(S) Test Script Recorder.

10. Add a listener to your test plan.

11. Save and run the test plan.

How it works…
The actions of the user are tracked and recorded via the script recorder we set up in step 2.
Like traditional web applications, we record all actions and exclude irrelevant static resources,
such as images, JavaScript, and style sheets. Every call that makes a server call to backend
services is also recorded as part of the test plan and is available for replay during test
execution. At the end, we have a script that is almost identical to what we would get when
recording a traditional web application.

There's more…
Most SPAs tend to be JavaScript-intensive. As JMeter isn't a web browser, JavaScripts
embedded within a page or included from a separate file altogether won't be executed.
With this in mind, it means JMeter can't be accurately used to measure page load times
or browser DOM rendering. What it can do, however, is record any calls made to the server
from your JavaScript files and play those back when the test is re-executed.

Such calls have an impact on the servers and are critical to measure to know how slow or fast
a user's experience will be when the application is under considerable load.

http://angular.github.io/peepcode-tunes/public/

JMeter Fundamentals

30

Testing AJAX-centric applications
In today's stack of web applications, it is almost unthinkable to build an application without
some dynamic content being retrieved from a backend service. Most of the time, these
applications tend to lean towards partial page fresh. That is, only the needed sections of a
rendered page are refreshed as opposed to the whole page loading its entire content again.
This leads to more responsive pages, which improves the overall experience of the user.

How to do it…
In this recipe, we will walk through how you can test such applications using JMeter. Perform
the following steps:

1. Launch JMeter.

2. Add HTTP(S) Test Script Recorder and set it up for recording (see the Recording a
script via JMeter HTTP proxy recipe).

3. Click the Add suggested Excludes button.

4. Start the HTTP(S) Test Script Recorder.

5. Point your browser to https://maps.google.com.

6. Perform a couple of searches in the provided search box (for example, pizza,
restaurants, hotels, and so on).

7. Click on a few of the returned results.

8. Repeat steps 6 and 7 two more times.

9. Stop the HTTP(S) Test Script Recorder.

10. Add a listener to your test plan.

11. Save and run the test plan.

How it works…
The actions of the user are tracked and recorded via the script recorder we set up in step 2.
Like traditional web applications, we record all actions and exclude irrelevant static resources,
such as images, JavaScript, and style sheets. Calls that trigger backend server calls are
trapped and are available for replay later. At the end, we have a script that is almost
identical to what we would get when recording a traditional web application.

https://maps.google.com

Chapter 1

31

There's more...
AJAX-centric applications tend to involve a lot of asynchronous server requests made from
within the client (frontend). These calls are normally made from embedded script tags within
a view technology, for example, HTML, Java Server Pages (JSP), Groovy Server Pages (GSP),
or from an included JavaScript file in the page. As such, JMeter records all such server
requests and they can be played back at the time of running our test plans. This allows
us to simulate the intended load on our servers, as though the application was the one
making the AJAX calls.

2
Handling Responses

In this chapter, we will cover the following recipes:

 f Using Regular Expression Extractor

 f Using Regular Expression Tester

 f Using CSS/jQuery Extractor

 f Using XPath Extractor

 f Dealing with file downloads

 f Handling XML responses

 f Handling JSON responses

 f Handling HTML responses

 f Using Response Assertion

 f Using Duration Assertion

 f Uploading files with your scripts

Introduction
When testing applications, it is important to know how to handle the responses from the
several requests that constitute the test script. In this chapter, we will tackle how to deal with
various server responses for applications under test. These include handling XML, JSON, and
HTML responses. It's even more important to know how to extract information contained in
those responses, as you might need them to feed data dynamically to your script down the
execution chain. Preprocessors and postprocessors, as their names imply, are applied before
and after samplers respectively to extract information from server responses, which can
then be stored and used later down the execution chain. In the later recipes, we cover
how to handle file uploads with JMeter and assert the correctness of such responses.

Handling Responses

34

Using Regular Expression Extractor
JMeter comes bundled with a Regular Expression Extractor component that gives you fine-
grained control over what to extract from a server response using regular expression syntax.
Readers familiar with regular expression syntax will feel right at home, but don't worry if you
haven't used regular expressions before. Regular expressions are special characters that
match portions of a field based on a set of rules defined by a regular expression pattern.
More information about regular expressions can be found on http://en.wikipedia.org/
wiki/Regular_expression or by searching on the Internet.

How to do it…
In this recipe, we will cover how to use the Regular Expression Extractor component in
JMeter to extract server responses to make our test script dynamic in nature. Perform
the following steps:

1. Launch JMeter.

2. Open the ch2_regex.jmx test script located in the scripts/ch2 directory.

3. Run the script.

4. Observe the errors in the View Results Tree listener. Notice the response code is
403, indicating a forbidden request. This is shown in the following code:
Headers size in bytes: 319
Body size in bytes: 1081
Sample Count: 1
Error Count: 1
Response code: 403
Response message: Forbidden

Response headers:
HTTP/1.1 403 Forbidden
Content-Type: application/json
Date: Wed, 09 Apr 2014 09:52:40 GMT
Set-Cookie: connect.sess=s%3Aj%3A%7B%22_csrf%22%3A%22scyJ6YXNZ4rjd
AXXy8DkD3Yy%22%7D.eygkOhdJO%2B%2BkLd5%2FWcz0wZUFjpnyYtOeC18%2BrUx7
hv8; Path=/; HttpOnly

5. Add Regular Expression Extractor to the request labeled add_regex_here by
navigating to add_regex_here | Add | Post Processors | Regular Expression
Extractor.

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression

Chapter 2

35

6. Fill in the values as follows:
Response Field to check: Headers
 Reference Name: token
 Regular Expression: XSRF-TOKEN=(.+);
 Template: 1
 Match No. (0 for Random): 0
 Default Value: NOT_FOUND

7. Save and re-run the script.

8. Observe that the errors are now gone and the post is successful. This is shown in the
following screenshot:

How it works…
The test script is recorded for a site that uses Cross-Site Request Forger (CSRF) to prevent
against malicious attacks that prey on user vulnerability. As such, a token is attached to each
user's session that is then sent along with every request from that user. Each user gets their
own unique token, and therefore, using the same token for two users flags an error on the
server and the request is denied. That is exactly what happened in step 4.

Handling Responses

36

In steps 5 and 6, we extracted the CSRF token with the aid of Regular Expression Extractor,
and correctly sent the unique token for the rest of the requests for that user in the test script.
Doing so allowed each request to be completed successfully.

There's more…
This is only one way Regular Expression Extractor can be used. There are several more cases
where it could come to the rescue. These include the following:

 f Extracting URL paths

 f Extracting HTML responses

 f Extracting XML responses

 f Extracting JSON responses

You will find yourself using Regular Expression Extractor quite a lot in your testing scenarios.

To get the most out of Regular Expression Extractor, read more on regular
expressions. Understanding regular expressions is critical to defining the
correct pattern matches in your test script.

Using Regular Expression Tester
When trying to extract parts of a server response through a regular matching expression,
Regular Expression Tester is your best friend. This component allows you to test your regular
expression patterns directly on the sampler response data. Without such a component,
it will be daunting to nail down the exact regular expression to fulfill your matching needs.
This component comes bundled as part of the View Results Tree listener.

How to do it…
In this recipe, we cover the use of Regular Expression Tester:

1. Launch JMeter.

2. Open the ch2_regex_tester.jmx test script located in the scripts/ch2
directory.

3. Run the test plan.

4. Click on the View Results Tree listener.

5. In the bottom-left corner of the View Results Tree listener, select the RegEx
Tester option.

Chapter 2

37

6. In the Regular expression textbox, enter a regular expression to extract information
from the server response. We can proceed in the following way:

 � Let's say we wanted to extract the xsrf token; we will use the regular
expression 'xsrf':'(\w+)'

 � To extract the search ID, we could use searchId =\s+\"(\d+)\"

 � To extract the user region, we could use region":\s+"(\w+), and so on

7. Once we have the right regular expression, we could then apply it to the HTTP sampler
to correctly execute our test plan. This is shown in the following screenshot:

How it works…
Regular Expression Tester executes directly on the sampler response data since it is bundled
as part of the results listener. As a result, we are able to refine our regular expression to our
content without needing to re-execute our test script. This is a huge time saver and makes
what could otherwise be a daunting task simple, in a sense.

www.allitebooks.com

http://www.allitebooks.org

Handling Responses

38

There's more…
Regular expressions are extremely expressive and powerful. It is beyond the scope of this
book to cover all the different syntax that could be used. For more information on regular
expressions, some good starting resources are:

 f http://jmeter.apache.org/usermanual/regular_expressions.html

 f http://en.wikipedia.org/wiki/Regular_expression

 f http://www.vogella.com/tutorials/JavaRegularExpressions/
article.html

 f http://www.regexr.com/

Using CSS/jQuery Extractor
JMeter offers CSS/jQuery Extractor that allows you to extract server responses using a
CSS/jQuery-like syntax. This component was introduced in JMeter 2.9 and is particularly
helpful when dealing with HTML responses. CSS/jQuery-like syntax allows you to easily
select HTML DOM elements that might otherwise have been difficult to write a regular
expression for, for example, selecting a button with a danger class in the response (button.
danger), selecting images matching a particular regular expression (img[src~=(?i)\\.
(png|jpeg|gif)]), and so on. The default implementation of the CSS/jQuery
implementation is JSoup (http://jsoup.org) and the API documentation for its selector
can be found at http://jsoup.org/apidocs/org/jsoup/select/Selector.html.

How to do it…
In this recipe, we will cover how to use the CSS/jQuery Extractor component to extract
information from server responses. Perform the following steps:

1. Launch JMeter.

2. Open the ch2_css_jquery.jmx test script located in the scripts/ch2 directory.

3. Open the HTTP request labeled add_css_jquery_here.

4. Add CSS/JQuery Expression Extractor by navigating to Request | Add | Post
Processor | CSS/JQuery Extractor.

5. Fill in the values as follows:
 Reference Name: post
 CSS/JQuery expression: div.entry p:matches(\w+)
 Attribute:
 Match No. (0 for Random): 0
 Default Value: NOT_FOUND

http://jmeter.apache.org/usermanual/regular_expressions.html
http://en.wikipedia.org/wiki/Regular_expression
http://www.vogella.com/tutorials/JavaRegularExpressions/article.html
http://www.vogella.com/tutorials/JavaRegularExpressions/article.html
http://www.regexr.com/
http://jsoup.org
http://jsoup.org/apidocs/org/jsoup/select/Selector.html

Chapter 2

39

6. Save and run the script.

7. Open Debug Sampler and check whether the expression matches the intended
query. This is shown in the following screenshot:

How it works…
As a postprocessor component, CSS/jQuery Extractor acts on requests within its scope and
applies the specified CSS or jQuery expression, extracting all matches and storing them after
what we specify in JMeter's session. This can then be referred to by other requests later in
the execution chain.

In our case, we extracted all the div elements that matched a paragraph.

There's more…
Because of the flexibility provided by expression syntax, this component can't be fully covered
within this book, but we encourage you to read more on CSS/jQuery syntax to fully harness
the power of this component.

Handling Responses

40

Some good starting resources are:

 f http://jsoup.org/apidocs/org/jsoup/select/Selector.html

 f http://www.w3schools.com/cssref/css_selectors.asp

Also, at the time of writing this, there is another implementation (Lagarto) syntax that is
supported right out of the box by JMeter. Details can be found at http://jodd.org/doc/
lagarto/index.html.

Compared to Regular Expression Extractor, CSS/jQuery Extractor is
resource-intensive as it does a complete HTML parse of the document to
perform its work. In cases where Regular Expression Extractor can do the
work, use that instead.

Using XPath Extractor
When it comes to dealing with XML or (X)HTML, JMeter comes bundled with an XPath
Extractor component that allows you to extract matches from XML server responses using an
XPath query language. For instance, extracting the title of a standard HTML structure can be
accomplished using html/head/title, getting all the paragraphs can be accomplished
using body/p, and so on. Moreover, when dealing with web services, particularly SOAP
services, XMLs are used heavily as a means of exchange. This component is a perfect fit
for handling such responses and extracting the needed information.

How to do it…
In this recipe, we will cover how to use XPath Extractor to handle XML server responses.
Perform the following steps:

1. Launch JMeter.

2. Open the ch2_xpath_extractor.jmx test script located in the scripts/ch2
directory.

3. Open the HTTP request labeled add_xpath_extractor_here.

4. Add XPath Extractor to it by navigating to Request | Add | Post Processor |
XPath Extractor.

5. Fill in the values as follows:
 Reference Name: author
 XPath query: /bookstore/book/author[1]
 Default Value: NOT_FOUND

6. Save and run the script

http://jsoup.org/apidocs/org/jsoup/select/Selector.html
http://www.w3schools.com/cssref/css_selectors.asp
http://jodd.org/doc/lagarto/index.html
http://jodd.org/doc/lagarto/index.html

Chapter 2

41

7. Open View Results Tree and check whether the expression actually matches the
intended query. This is shown in the following screenshot:

How it works…
As a postprocessor component, XPath Extractor acts on request within its scope and applies
the specified XPath jQuery expression to it, extracting all matches and storing the match
under an attribute named in Reference Name. This can then be referred to by other requests
later in the execution chain.

In our case, we extracted all the first authors in the returned XML response from the server.

There's more…
Because of the flexibility provided by expression syntax, this component can't be fully covered
within this book, but we encourage you to read more on the XPath query syntax to fully
harness the power of this component.

A good starting resource is http://www.w3schools.com/xpath/xpath_syntax.asp.

http://www.w3schools.com/xpath/xpath_syntax.asp

Handling Responses

42

Dealing with file downloads
It is not uncommon to come across scenarios where you need to simulate downloading a file
or multiple files from an external server when recording your test scripts. JMeter provides the
ability to record and play back file downloads.

How to do it…
In this recipe, we will cover how to use JMeter in a file download scenario. Perform the
following steps:

1. Launch JMeter.

2. Add Thread Group to the new test plan by navigating to Test Plan | Add | Threads
(Users) | Thread Group.

3. Add the HTTP Request sampler by navigating to Thread Group | Add | Sampler |
HTTP Request.

4. Fill in its attributes in the following way:

 � Server Name or IP: docs.spring.io

 � Method: GET

 � Path: /spring-data/jpa/docs/1.5.x/reference/pdf/spring-
data-jpa-reference.pdf

5. Add the View Results Tree listener to the test plan by navigating to Test Plan | Add |
Listener | View Results Tree.

6. Add Save Responses to the file listener of your test script by navigating to Test plan |
Add | Listener | Save Responses to file.

7. Fill in the following attributes:

 � Filename prefix: springdata_

 � Variable Name: manual

8. Save and run the test plan.

9. Observe the results in the View Results Tree listener. You should have an output
similar to this:

 Response too large to be displayed. Size: 224921 > Max:
204800, Start of message:
 %PDF-1.4
 %ª«¬
 4 0 obj
 <<

Chapter 2

43

 /Title (Spring Data JPA - Reference Documentation)
 /Author (Oliver Gierke, Thomas Darimont, and Christoph Strobl)
 /Creator (DocBook XSL Stylesheets with Apache FOP)
 /Producer (Apache FOP Version 1.0)
 /CreationDate (D:20140313175008+01'00')
>>
endobj
 ...

Navigate to the bin directory of your JMeter install ($JMETER_HOME/bin) and you should see
a PDF named springdata_1.pdf that has been downloaded there.

How it works…
We created a script that made a request to download a PDF file off an external server. We
then added Save Responses to a file component of our test script. This component allows us
to save the responses we get from a server to a file for later analysis or use. In this case, the
server responded with a PDF file, which we then saved as a local file in the bin directory of
our JMeter install directory. At the same time, we were able to verify the resources returned
from the server by examining the Response Data tab in View Results Tree.

The name of the file is determined by the attributes we specified in step 7. Since we ran this
once, there was no file already named springdata_1.pdf in the bin directory, and so one
was created with that name. Subsequent runs will produce files named springdata_x.pdf,
where x represents the number of runs.

The prefix filename can also be used to specify an alternative location to download the files
to instead of cluttering up your $JMETER_HOME/bin directory. For example, you can specify
/tmp/springdata_ (or any valid directory path on your system) to have the files downloaded
to that location instead.

There's more…
In our use case, we have chosen to use Save Responses to store our downloads in a file
component. You would normally want to use this component when dealing with file downloads
within your test plan, since it is able to download the contents of the resource and make it
available to you locally. For example, we could go further by processing the downloaded file
and uploading it to another server altogether through FTP, or consuming an uploading service
at the targeted server.

Handling Responses

44

Handling XML responses
Sometimes, the responses coming from the server are in XML format. Knowing how to handle
such responses to extract the information needed by your scripts is an important aspect of
building dynamic and robust scripts. Such scenarios might involve consuming web services or
doing data manipulation to post to an external data source.

How to do it…
In this recipe, we will cover how to use JMeter to extract information from XML responses
while consuming a freely available weather service. Perform the following steps:

1. Launch JMeter.

2. Add Thread Group to the new test plan by navigating to Test Plan | Add | Threads
(Users) | Thread Group.

3. Add the HTTP Request sampler by navigating to Thread Group | Add | Sampler |
HTTP Request.

4. Fill in its attributes in the following way:

 � Server Name or IP: api.openweathermap.org

 � Method: GET

 � Path: /data/2.5/weather

5. Add the following request parameters to the request by clicking on the Add button:

Name Value
q London, UK

mode XML

6. Add three XPath Extractors to HTTP Request by navigating to HTTP Request | Add |
Post Processors | XPath Extractor.

7. Fill in the following details for the three XPath Extractors respectively:

Reference Name XPath query Default Value
sunrise /current/city/sun/@rise NOT_FOUND

sunset /current/city/sun/@set NOT_FOUND

wind /current/wind/direction/@name NOT_FOUND

8. Add the View Results Tree listener to the test plan by navigating to Test Plan | Add |
Listener | View Results Tree.

Chapter 2

45

9. Add Debug Sampler to the test plan by navigating to Thread Group | Add | Sampler
| Debug Sampler.

10. Save and run the test plan.

11. Observe the results in the View Results Tree listener. You should have an output
similar to this:
 <current>
 <city id="2643743" name="London">
<coordlon="-0.13" lat="51.51"/>
 <country>GB</country>
 <sun rise="2014-04-04T05:27:38" set="2014-04-
04T18:39:07"/>
 </city>
 <temperature value="287.91" min="286.15" max="290.37"
unit="kelvin"/>
 <humidity value="36" unit="%"/>
 <pressure value="1009" unit="hPa"/>
 <wind>
 <speed value="2.57" name="Light breeze"/>
 <direction value="257" code="WSW" name="West-southwest"/>
 </wind>
 <clouds value="44" name="scattered clouds"/>
 <precipitation mode="no"/>
 <weather number="802" value="scattered clouds" icon="03d"/>
 <lastupdate value="2014-04-04T16:09:34"/>
 </current>

12. Navigate to Debug Sampler and observe our XPath queries matched as expected.
Refer to the following code:

 JMeterVariables:
 JMeterThread.last_sample_ok=true
 JMeterThread.pack=org.apache.jmeter.threads.
SamplePackage@46befbc1
 START.HMS=122646
 START.MS=1396628806364
 START.YMD=20140404
 TESTSTART.MS=1396631743509
 sunrise=2014-04-04T05:27:38
 sunrise_1=2014-04-04T05:27:38
 sunrise_matchNr=1
 sunset=2014-04-04T18:39:07
 sunset_1=2014-04-04T18:39:07
 sunset_matchNr=1
 wind_dir=West-southwest
 wind_dir_1=West-southwest
 wind_dir_matchNr=1

Handling Responses

46

How it works…
We created a script that made a request to consume a weather API that in turn returned
results matching our query in XML format. The details returned included things such as the
coordinates of the city, what country the city is in, the temperature, humidity, wind speed,
and so on. In our case, the data of concern to us was what direction the wind was blowing at
the time we made the request and also what the sunrise and sunset times were for the city.
Armed with that information, we constructed and added three XPath Extractors to our test
plan, one for each piece of information we needed to extract from the response. We then
added a View Results Tree listener and Debug Sampler to our test plan to ensure we are
extracting the intended targets.

Regular expressions are lower in terms of memory consumption than
XPath queries as they don't have to work the DOM the same way the latter
has to. Always prefer regular expressions over XPath queries if you have to
decide between the two.

There's more…
We have used XPath Extractor in our case, but the same information could be extracted
using Regular Expression Extractor. Depending on your needs, you might want to write regular
expressions if it suits your needs more. Fortunately, JMeter also comes bundled with an
equivalent tester for XPath queries like it does for regular expressions. It is one of the options
to select from in the View Results Tree listener. Additionally, most major browsers also have
plugins that test XPath queries.

Good plugins for Google Chrome and Firefox are listed as follows:

 f Chrome: XPath Helper

 f Firefox: Firepath Plugin

Both can be installed by searching the respective web stores of the browsers.

With these plugins, you are able to test your XPath queries to see whether they match before
transferring them to JMeter.

The XPath syntax is discussed in more detail on
http://www.w3schools.com/XPath/xpath_syntax.asp.

http://www.w3schools.com/XPath/xpath_syntax.asp

Chapter 2

47

Handling JSON responses
When testing most of today's modern web applications, an often-encountered response
from the server is a JSON payload. JSON (JavaScript Object Notation) is a lightweight
data-interchange format that is easy for humans to read/write, and also easy for machines
to generate and parse. Due to this ease and its language neutrality, a lot of interchange with
servers and services is carried out in this format.

How to do it…
In this recipe, we will cover how to use JMeter to extract information from JSON responses
while consuming a freely available weather service. Perform the following steps:

1. Launch JMeter.

2. Add Thread Group to the new test plan by navigating to Test Plan | Add | Threads
(Users) | Thread Group.

3. Add the HTTP Request sampler by navigating to Thread Group | Add | Sampler |
HTTP Request.

4. Fill in its attributes in the following way:

 � Server Name or IP: api.openweathermap.org

 � Method: GET

 � Path: /data/2.5/weather

5. Add the following request parameters to the request by clicking on the Add button:

Name Value
q London,uk

mode Json

6. Add three Regular Expression Extractors to the HTTP Request by navigating to
HTTP Request | Add | Post Processors | Regular Expression Extractor.

7. Fill in the following details for the three Regular Expression Extractors respectively:

Reference
name

XPath query Math no. Template Default value

sunrise "sunrise":(\d+) 0 1 NOT_FOUND

sunset "sunset":(\d+) 0 1 NOT_FOUND

speed "speed":([\d.]+) 0 1 NOT_FOUND

www.allitebooks.com

http://www.allitebooks.org

Handling Responses

48

8. Add the View Results Tree listener to the test plan by navigating to Test Plan | Add |
Listener | View Results Tree.

9. Add Debug Sampler to the test plan by navigating to Thread Group | Add | Sampler
| Debug Sampler.

10. Save and run the test plan.

11. Observe the results in the View Results Tree listener. You should have an output
similar to this:
 {
 "coord":{
 "lon":-76.73,
 "lat":38.94
 },
 "sys":{
 "message":0.0533,
 "country":"US",
 "sunrise":1396694648,
 "sunset":1396740883
 },
 "weather":[
 {
 "id":501,
 "main":"Rain",
 "description":"moderate rain",
 "icon":"10d"
 }
],
 "base":"cmc stations",
 "main":{
 "temp":282.25,
 "pressure":1014,
 "humidity":53,
 "temp_min":279.82,
 "temp_max":284.15
 },
 "wind":{
 "speed":7.7,
 "deg":290,
 "gust":13.4
 },
 "rain":{
 "1h":2.29
 },
 "clouds":{

Chapter 2

49

 "all":1
 },
 "dt":1396702471,
 "id":4349159,
 "name":"Bowie",
 "cod":200
 }

12. Navigate to Debug Sampler and observe our XPath queries matched as expected.
Refer to the following code snippet:
 JMeterVariables:
 JMeterThread.last_sample_ok=true
 JMeterThread.pack=org.apache.jmeter.threads.
SamplePackage@2ae97e14
 START.HMS=053854
 START.MS=1396517934834
 START.YMD=20140403
 TESTSTART.MS=1396702498383
 speed=7.7
 speed_g=1
 speed_g0="speed":7.7
 speed_g1=7.7
 sunrise=1396694648
 sunrise_g=1
 sunrise_g0="sunrise":1396694648
 sunrise_g1=1396694648
 sunset=1396740883
 sunset_g=1
 sunset_g0="sunset":1396740883
 sunset_g1=1396740883

How it works…
We created a script that made a request to consume a weather API that in turn returned
results matching our query in JSON format. The details returned included things such as the
coordinates of the city, what country the city is in, the temperature, humidity, wind speed,
and so on. In our case, the data of concern to us was the wind speed at the time we made
the request and also what the sunrise and sunset times were for the city. Armed with that
information, we constructed and added three Regular Expression Extractors to our test plan,
one for each piece of information we needed to extract from the response. We then added a
View Results Tree listener and Debug Sampler to our test plan to ensure we are extracting the
intended targets.

Handling Responses

50

There's more…
We have used Regular Expression Extractor in our case, but this is by no means the only way
you can extract information from a JSON response. As you will see in later recipes, you can
extend JMeter with plugins that will provide additional components that ease dealing with
more complex JSON structures, for example, the JSONPathExtractor plugin on
http://jmeter-plugins.org/wiki/JSONPathExtractor/.

Some good resources for learning more about JSON are:

 f http://www.json.org/

 f http://en.wikipedia.org/wiki/JSON

 f http://www.w3schools.com/json/

Also, when scripting against web applications that make AJAX calls, the responses from the
server are normally in JSON format. One way to monitor traffic and examine the responses
of such calls is through the Network tab of your browser. This gives you an idea of what the
server is returning for each AJAX request and helps prepare the right query or expression to
extract the needed information in your script.

The following is a screenshot of what the Network tab in the Google Chrome browser looks
like when interacting with such an application:

Handling HTML responses
HTML responses are by far the most common responses you will get when scripting against
web applications in general. That should come as no surprise since the language of the Web
is HTML. HTML DOM elements are used to render all the presentation layer of a website.
Since most HTML elements have a beginning and closing tag, for example, <html></html>,
<head></head>, and so on, their structure closely resembles that of XML documents, which
we covered in the Handling XML responses recipe, and hence they are sometimes referred to
as (X)HTML documents. They aren't exactly the same, but it suffices to know they are similar.
That said, testing them is very similar to testing XML responses.

http://jmeter-plugins.org/wiki/JSONPathExtractor/
http://www.json.org/
http://en.wikipedia.org/wiki/JSON
http://www.w3schools.com/json/

Chapter 2

51

How to do it…
In this recipe, we will cover how to use JMeter to extract information from HTML responses.
Perform the following steps:

1. Launch JMeter.

2. Add Thread Group to the new test plan by navigating to Test Plan | Add | Threads
(Users) | Thread Group.

3. Add the HTTP Request sampler by navigating to Thread Group | Add | Sampler |
HTTP Request.

4. Fill in its attributes in the following way:

 � Server Name or IP: evening-citadel-2263.herokuapp.com

 � Method: GET

 � Path: N/A

5. Add CSS/jQuery Extractor to the HTTP Request sampler by navigating to HTTP
Request | Add | Post Processors | CSS/JQuery Extractor.

6. Fill in the following details for CSS/jQuery Extractor:

 � Reference Name: post

 � CSS/JQuery expression: div.entry p:matches(\w+)

 � Attribute: N/A

 � Match No: 0

 � Default Value: NOT_FOUND

7. Add XPath Extractor to the HTTP Request sampler by navigating to HTTP Request |
Add | Post Processors | XPath Extractor.

8. Fill in the following details for XPath Extractor:

 � Reference Name: post_x

 � XPath query: /html/body/div/p

 � Default Value: NOT_FOUND

9. Add the View Results Tree listener to the test plan by navigating to Test Plan | Add |
Listener | View Results Tree.

10. Add Debug Sampler to the test plan by navigating to Thread Group | Add | Sampler
| Debug Sampler.

11. Save and run the test plan.

Handling Responses

52

12. Observe the results in the View Results Tree listener. You should have an output
similar to this:
 <!DOCTYPE html>
 <html>
 <body>
 ...
 <div class='entry'>
 <h3>Historic</h3>
 <p>A historic day for @newrelic as we launch Insights
and create a new category: Software Analytics</p>
 <p>Posted by joel</p>
 </div>

 <div class='entry'>
 <h3>Trains</h3>
 <p>WAT? A blog post from @mreinhold that doesn't
mention trains in the title or atom feed? </p>
 <p>Posted by sam</p>
 </div>

 <div class='entry'>
 <h3>consequat. Duisauteirure dolor in reprehenderit in
voluptatevelitesse</h3>
 <p>I just backed MicroView: Chip-sized Arduino with
built-in OLED Display!</p>
 <p>Posted by hari</p>
 </div>

 <div class='entry'>
 <h3>Thoughts on Scala</h3>
 <p>Must be heavy baby. This and that...</p>
 <p>Posted by bayo</p>
 </div>

 <div class='entry'>
 <h3>Trains</h3>
 <p>WAT? A blog post from @mreinhold that doesn't
mention trains in the title or atom feed? </p>
 <p>Posted by sam</p>
 </div>
 ...

 </body>
 </html>

Chapter 2

53

13. Navigate to Debug Sampler and observe that our XPath query and CSS/jQuery
expression matched as expected. This is shown in the following code:
 JMeterVariables:
 JMeterThread.last_sample_ok=true
 JMeterThread.pack=org.apache.jmeter.threads.
SamplePackage@22c81e1d
 START.HMS=202355
 START.MS=1396743835431
 START.YMD=20140405
 TESTSTART.MS=1396745910042
 post=Must be heavy baby. This and that...
 post_x=A historic day for @newrelic as we launch Insights and
create a new category: Software Analytics
 post_x_1=A historic day for @newrelic as we launch Insights
and create a new category: Software Analytics
 post_x_10=Posted by sam
 post_x_2=Posted by joel
 post_x_3=WAT? A blog post from @mreinhold that doesn't mention
trains in the title or atom feed?
 post_x_4=Posted by sam
 post_x_5=I just backed MicroView: Chip-sized Arduino with
built-in OLED Display!
 post_x_6=Posted by hari
 post_x_7=Must be heavy baby. This and that...
 post_x_8=Posted by bayo
 post_x_9=WAT? A blog post from @mreinhold that doesn't mention
trains in the title or atom feed?
 post_x_matchNr=10

How it works…
We created a script that made a request to our test application. The server responded with an
HTML document. We then observed the HTML response in the Elements tab of our browser
to get to grips with its structure (the same can be observed through the View Results Tree
listener). In our case, we were interested in extracting all the posts made by users from
the resulting response. To achieve this, we added an XPath Extractor postprocessor and
configured it with a /html/body/div/p query, since the observed posts in this particular
application are embedded in the HTML paragraph elements. For illustrative purposes, we
also added a CSS/jQuery Extractor postprocessor to show how you could get to the same
information using that component. However, with CSS/jQuery Extractor, only one random
post (since our Match No is set to 0) is returned on every invocation.

Handling Responses

54

Finally, we are able to verify our components. We make sure they extract the right things by
adding Debug Sampler to our test plan and view the results upon executing the test.

There's more…
Though we have used both XPath and CSS/jQuery Extractors in this sample, Regular
Expression Extractor could also have been used. Do not feel constrained; employ the
right component to get the job done depending on your needs.

See also
 f The Using Regular Expression Extractor recipe

 f The Using Regular Expression Tester recipe

 f The Using CSS/jQuery Extractor recipe

 f The Using XPath Extractor recipe

 f The Handling XML responses recipe

Using Response Assertion
JMeter comes bundled with assertion components. Assertions are used to perform additional
checks on samplers and are processed by default after every sampler in the same scope,
except for in cases where they have been added as a direct child of a sampler. You can think
of these as mini unit tests within your test plans that ensure the responses from the server
actually work fine. For example, when you make HTTP requests in a web application, the
server responses may respond with different HTTP header status codes, denoting the success
or failure of your request. A status code of 200, for example, means the request succeeded,
401 means access was denied to the requested resource, 500 means an internal server error
occurred while attempting to fulfill your request, and so on.

How to do it…
In this recipe, we will cover how to use JMeter's Response Assertion to provide our test scripts
with additional checks, thus making them more robust. Perform the following steps:

1. Launch JMeter.

2. Add Thread Group to the new test plan by navigating to Test Plan | Add | Threads
(Users) | Thread Group.

3. Add the HTTP Request sampler by navigating to Thread Group | Add | Sampler |
HTTP Request.

Chapter 2

55

4. Fill in its attributes in the following way:

 � Server Name or IP: evening-citadel-2263.herokuapp.com
 � Method: GET
 � Path: N/A

5. Add the Response Assertion component to the HTTP Request sampler by navigating
to HTTP Request | Add | Assertions | Response Assertion.

6. Add the following pattern to match the output:
logout

7. Add the View Results Tree listener by navigating to Test Plan | Add | Listener | View
Results Tree.

8. Save and run the test.

9. Observe that the assertion fails.

10. Add the following four patterns separately by clicking on the Add button four times:
<body>
Posted by
login
register

11. Save and re-run the test.

12. Notice that the request succeeds including the assertion checks, as shown in the
following screenshot:

Handling Responses

56

How it works…
We constructed a simple test plan that made a single request to a web application returning
its home page. We then added a Response Assertion component to the HTTP request to run
additional checks on the server response. In our first trial, we purposely ran a check that was
bound to fail (looking for a logout link when the user had not logged in) to verify the assertion
was actually doing its job. Once that was confirmed, we deleted the failed check and added
four additional pattern checks to assert. This included checking there is at least one post on
the site, whether registered links are present if the user is not logged in, and so on. We then
re-ran our test and observed a successful run.

Assertions have a performance impact on test execution, so try to avoid using
too many (more than a couple) within your test plans.

There's more…
In our case, we are asserting the text response from the server. Response Assertion can be
used to assert URLs, response code, response messages, and response headers. In addition,
it can be configured to do contains, matches, equals, or substring searches. This can be very
helpful depending on your use case and how you intend to assert.

Using Duration Assertion
Another useful assertion component that comes bundled with JMeter is the Duration
Assertion component. Like its name implies, this component is used to test that each
response returns within a given time specified by the user. Any response that doesn't return
within the specified time is marked as a failed response. For example, this can be particularly
useful when testing API calls for application services, or ensuring the accumulative service
calls to render a page are all performing efficiently.

How to do it…
In this recipe, we will cover how to use the Duration Assertion component. Perform the
following steps:

1. Launch JMeter.

2. Add Thread Group to the new test plan by navigating to Test Plan | Add | Threads
(Users) | Thread Group.

3. Add the HTTP Request sampler by navigating to Thread Group | Add | Sampler |
HTTP Request.

Chapter 2

57

4. Fill in its attributes in the following way:

 � Server Name or IP: evening-citadel-2263.herokuapp.com

 � Method: GET

 � Path: N/A

5. Add the Duration Assertion component to the HTTP Request sampler by navigating
to HTTP Request | Add | Assertions | Duration Assertion.

6. In the Duration in milliseconds box, enter 50.

7. Add the View Results Tree listener by navigating to Test Plan | Add | Listener |
View Results Tree.

8. Save and run the test.

9. Observe that the assertion fails. You should see a failure similar to the one shown in
View Results Tree, as follows:
Assertion error: false
Assertion failure: true
Assertion failure message: The operation lasted too long: It took
5,756 milliseconds, but should not have lasted longer than 50
milliseconds.

10. Increase Duration in milliseconds (in step 6) to 5000.

11. Save and re-run the test.

12. Observe that the assertion now succeeds.

How it works…
Once added to a request, the Duration Assertion component verifies that the response to
which it is applied comes back in the time specified by the user. Responses that come back
within the time specified are considered successful while those that lapse are failed.

There's more…
This can be used in conjunction with other assertion components, for example, the Response
Assertion component we covered in the previous recipe (Using Duration Assertion). We
encourage you to look at http://jmeter.apache.org/usermanual/component_
reference.html#assertions for a complete list of assertion components bundled
with JMeter.

www.allitebooks.com

http://jmeter.apache.org/usermanual/component_reference.html#assertions
http://jmeter.apache.org/usermanual/component_reference.html#assertions
http://www.allitebooks.org

Handling Responses

58

Uploading files with your scripts
Uploading files is a common functionality in web applications. Social networks, for example,
encourage you to upload a profile picture when registering for an account. Attaching files to
e-mails is also a fairly common routine task. Services such as Dropbox allow you to upload
multiple files through their web and platform-native applications. JMeter allows you to test
such applications by providing a mechanism to upload files as part of your test plan. In this
recipe, we will cover how to upload files with JMeter.

How to do it…
Perform the following steps to upload files with your scripts:

1. Launch JMeter.

2. Add HTTP(S) Test Script Recorder by navigating to WorkBench | Add | Non-Test
Elements | HTTP Mirror Server and configure it appropriately.

3. Start the HTTP(S) Test Script Recorder.

4. Point your browser to http://angular-file-upload.appspot.com/.

5. Click on the Choose File button to choose a single text file.

6. Choose a file to upload.

7. Stop the script recorder.

8. Add the View Results Tree listener to the test plan by navigating to Test Plan
| Add | Listener | View Results Tree.

9. Save and run the test plan.

10. Observe the results.

How it works…
To upload files, HTML form elements require a post action with multipart / form-data content
or a MIME type (content-type). JMeter comes bundled with a built-in multipart / form-data
option for post requests, enabling it to correctly process file uploads. We leveraged this option
in step 6 when we uploaded a file through the web application.

JMeter assumes the file we are uploading resides in the bin directory
or paths relative to the bin directory. You either need to specify
the absolute path of the file in your script or put it in the expected
directory. Failure to do this will lead to errors (for example, java.
io.FileNotFoundException: bg.jpg (no such file or directory))
when re-executing the script after recording it.

http://angular-file-upload.appspot.com/

Chapter 2

59

There's more…
If you observe the recorded request for the actual file upload, you will notice all it is doing
is marking a post to use multipart / form-data and then specifying the file path of the file,
parameter name, and MIME type. The MIME type allows the appropriate type to be set for
different file types, for example, PDF, image, text, doc, and so on. For example, we could go
further and use this in conjunction with the concepts we covered in the Dealing with file
downloads recipe and test an end-to-end file transfer from one application to another.

3
Building Robust Test

Plans with Controllers

In this chapter, we will cover the following recipes:

 f Using Transaction Controller in test plans

 f Using Loop Controller in test plans

 f Leveraging ForEach Controller in test plans

 f Using Interleave and Random Controllers in test plans

 f Using Runtime Controller in test plans

Introduction
Whether you are recording scripts or manually writing them, you will need to make use of
controllers to aid the logic within your test plan. Logic controllers help determine the order in
which samplers are processed in your test plans. Controllers are direct child elements of a
Thread Group and contain one or more samplers. There are various controllers ranging from
logic (random, if, switch, and so on) to looping (while, ForEach, loop, and so on), and recording
controllers. At the time of writing this, JMeter comes bundled with 16 different controllers;
more controllers can be provided by extending JMeter with plugins.

In this chapter, we will detail how to use five of the most frequently encountered controllers
in the test plans. Due to page constraints, we are unable to cover all controllers. For a
full list of bundled controllers including those not covered in this chapter's recipes, visit
http://jmeter.apache.org/usermanual/component_reference.html#logic_
controllers.

http://jmeter.apache.org/usermanual/component_reference.html#logic_controllers
http://jmeter.apache.org/usermanual/component_reference.html#logic_controllers

Building Robust Test Plans with Controllers

62

Using Transaction Controller in test plans
In general, you can think of controllers as container elements that group or hold numerous
samplers. Transaction controllers are a specialized form of controllers that generate an
additional sample that measures the overall time taken to perform its nested samplers.
For instance, in most typical web applications, it takes a number of requests to provide all
the data needed for a page to render correctly. This could involve several AJAX calls to the
backend server or external web services. For such circumstances, you might be interested in
how long it takes for the combined set of requests to execute, and not just for individual ones.

How to do it…
In this recipe, we will cover how to use Transaction Controllers to measure the combined time
taken for a series of requests that satisfy the operation. Perform the following steps:

1. Launch JMeter.

2. Click on the Templates… button (right next to the New button) on the toolbar.

3. Select Recording from the Select Template drop-down and click on the
Create button.

4. Under WorkBench, click on the HTTP(S) Test Script Recorder and do the following:

 � Port: 7070 (or your desired proxy port)

 � URL Patterns to Exclude: .*\.(bmp|css|js|gif|ico|jpe?g|png|swf
|woff).*

Refer to the Recording a script via HTTP(S) Test Script
Recorder recipe in Chapter 1, JMeter Fundamentals,
for details on how this is done.

5. Click on the Start button and accept the CA certification to begin the script recorder.

6. Open your browser and configure it to use the recorder you set up in step 4.

Refer to the Recording a script via HTTP(S) Test Script
Recorder recipe in Chapter 1, JMeter Fundamentals,
for details on how this is done.

Chapter 3

63

7. Point your browser to http://www.huffingtonpost.com (or any website of
your choice).

8. Browse around the website a little.

9. Stop the script recorder.

10. Observe the recorded test plan.

11. Add Aggregate Report listener to the test plan by navigating to Test Plan | Add |
Listener | Aggregate Report.

12. Save and run the test plan. Notice that the individual request times are
reported individually.

13. For each Transaction Controller, check the Generate parent sample checkbox.

14. Save and run the test plan and notice that the parent sampler is now recorded
(not the individual ones). This is shown in the following screenshot:

Generating parent sampler times with Transaction Controller

The recorded test plan for this recipe is bundled with the book under the
name ch3_tx_ctrl.jmx. Alternatively, you can download or clone the
test plan from the Git repository for the book at https://github.com/
jmeter-cookbook/bundled-code.

http://www.huffingtonpost.com
https://github.com/jmeter-cookbook/bundled-code
https://github.com/jmeter-cookbook/bundled-code

Building Robust Test Plans with Controllers

64

How it works…
To serve up a page in most web applications, a number of calls to services might be
needed to gather all the information needed by the page. This is normally accomplished
through asynchronous requests to those services via AJAX (Asynchronous JavaScript
and XML) calls. It is the duty of Transaction Controller to bundle all such related calls
into a single transaction, so that the total time taken to satisfy all such calls can be
measured cumulatively.

In our use case, in step 4, we instructed the script recorder to group all related calls into new
transactions. With the browser configured to use the proxy in step 6, we then proceeded to our
web application in step 7. As we navigated through various pages within the application, all
the requests needed to satisfy each page are grouped into separate Transaction Controllers.
Once we had our various transaction groups, we were then about to measure the individual
execution times for each sampler in step 14. However, since we were interested in how long it
took to execute all requests within a page, we checked the Generate parent sample checkbox
in each Transaction Controller and re-ran the test script. This gave us the summarized view of
how long it took for each page to load. This is demonstrated in the following screenshot:

Using Aggregate Report to view summary results

Chapter 3

65

There's more…
It is important to note that the Transaction Controller records all time spent by nested samplers
excluding any timers included as part of the thread group or controller. So for instance, if we
had a constant timer that paused for say half a second (500 milliseconds), then that time is not
included as part of the total execution time of the Transaction Controller. If you would like to take
those into account, check the Include duration of timer and pre-post processors in Generated
parent sample checkbox for each Transaction Controller in your test plan.

Using Loop Controller in test plans
Sometimes when testing applications, you might need to repeatedly execute a particular
request or group of requests for a certain number of times over a given period. For example,
simulating a user paging through the various posts for a blog, going through their monthly
transaction activities on a financial website, or paging through the search results of matching
products on an e-commerce website, and so on. For all these cases, Loop Controllers come
to the rescue.

Loop Controllers are controllers that specialize in executing all their contained child samplers
repeatedly for a given number of times. They are a perfect fit for the paging scenarios
described previously.

How to do it…
In this recipe, we will cover how to use Loop Controllers to perform repeated tasks within a
test plan. Perform the following steps:

1. Launch JMeter.

2. Click on the Templates… button (right next to the New button) on the toolbar.

3. Select Recording from the Select Template drop-down and click on the
Create button.

4. Under WorkBench, click on the HTTP(S) Test Script Recorder and do the following:

 � Port: 7070 (or your desired proxy port)

 � URL Patterns to Exclude: .*\.(bmp|css|js|gif|ico|jpe?g|png|swf
|woff).*

Refer to the Recording a script via HTTP(S) Test Script
Recorder recipe in Chapter 1, JMeter Fundamentals,
for details on how this is done.

5. Click on the Start button and accept the CA certification to begin the script recorder.

Building Robust Test Plans with Controllers

66

6. Open your browser and configure it to use the recorder you set up in step 4.

Refer to the Recording a script via HTTP(S) Test Script
Recorder recipe in Chapter 1, JMeter Fundamentals,
for details on how this is done.

7. Point your browser to http://evening-citadel-2263.herokuapp.com.
8. Click on the Next link three times.
9. Click on the Previous link three times.
10. Stop the script recorder.
11. Observe the recorded test plan.
12. Save and run the test plan. Observe the results of the execution.
13. Add Loop Controller to the Sampler produced in step 8 by navigating to

Sampler | Insert Parent | Logic Controller | Loop Controller.

In this step, you are grouping three samplers under a Loop
Controller. See the following screenshot for what the final output
should look like.

14. Add a Loop Controller to the sample produced in step 9 by navigating to Sampler |
Insert Parent | Logic Controller | Loop Controller.

15. For both Loop Controllers added, specify a loop count of 2.
16. Save and run the test plan. Observe the results of the execution. This is shown

in the following screenshot:

The recorded test plan for this recipe is bundled with the book
under the name ch3_loop_ctrl.jmx. Alternatively, you
can download or clone them from the Git repository for the
book at https://github.com/jmeter-cookbook/
bundled-code.

http://evening-citadel-2263.herokuapp.com
https://github.com/jmeter-cookbook/bundled-code
https://github.com/jmeter-cookbook/bundled-code

Chapter 3

67

Using Loop Controllers

The following screenshot shows how to specify the number of loops in the Loop
Controller component:

Specifying the loop count for a Loop Controller

How it works…
What we intended to achieve on the outset of this recipe was to use JMeter to simulate a user
browsing a sample blog post site page by page. Instead of recording each pagination link click,
for example, viewing the next three pages by clicking next link three times, we just clicked on
the next link only once in step 8. We also recorded a previous link by clicking the same way.
We then added two Loop Controllers to our test plan; one as the parent component of the next
samplers and the other that of the previous samplers. This gives us the flexibility to control
the number of times we execute each sampler individually. With that, we are now able to fully
simulate the scenario we set out to emulate; a user paging through posts on a website.

Building Robust Test Plans with Controllers

68

This is shown in the following screenshot:

Since embedded components, samplers, timers, functions, and so on are
executed repeatedly for as many times as defined in the Loop Controller,
you should be mindful of their side effects. For example, functions such as
random will get a new value upon each loop execution.

Results denoting that four iterations were run

There's more…
Loop Controller components have a checkbox named Forever. Like its name implies, this
property when checked puts the controller into an infinite loop. Child components of the
Loop Controller are executed continuously until the test plan is forcefully stopped.
This can be helpful when running stress testing on a system or application.

Loop Controllers can also be combined with other forms of controllers in the same test plan to
give the desired simulated scenarios.

Chapter 3

69

See also
 f While Controller: https://jmeter.apache.org/usermanual/component_

reference.html#While_Controller

 f ForEach Controller: https://jmeter.apache.org/usermanual/component_
reference.html#ForEach_Controller

Leveraging ForEach Controller in test plans
Another variation of Loop Controllers you might sometimes encounter is the ForEach
controller. These are a specialized form of controllers that loop through the values of a set of
related values. The number of iteration execution is dynamically defined by the resolution of
the related variables as opposed to a fixed number specified in loop controllers. This makes
ForEach Controllers a good fit for use cases where you need to perform repetitive executions
of samplers based on some information from the target application.

How to do it…
In this recipe, we will cover how to use ForEach controllers paginating through the posts of
our sample application. This is going to be very similar to what was covered in the Using Loop
Controller in test plans recipe, only this time, we will use the ForEach Controller to give you an
idea of how it can be used to achieve a similar result. Perform the following steps:

1. Launch JMeter.

2. Click on the Templates… button (right next to the New button) on the toolbar.

3. Select Recording from the Select Template drop-down and click on the
Create button.

4. Under WorkBench, click on HTTP(S) Test Script Recorder and update the
following parameters:

 � Port: 7070 (or your desired proxy port)

 � URL Patterns to Exclude: .*\.(bmp|css|js|gif|ico|jpe?g|png|swf
|woff).*

Refer to the Recording a script via HTTP(S) Test Script
Recorder recipe in Chapter 1, JMeter Fundamentals,
for details on how this is done.

5. Click on the Start button and accept the CA certification to begin the script recorder.

6. Open your browser and configure it to use the recorder you set up in step 4.

https://jmeter.apache.org/usermanual/component_reference.html#While_Controller
https://jmeter.apache.org/usermanual/component_reference.html#While_Controller
https://jmeter.apache.org/usermanual/component_reference.html#ForEach_Controller
https://jmeter.apache.org/usermanual/component_reference.html#ForEach_Controller

Building Robust Test Plans with Controllers

70

7. Point your browser to http://evening-citadel-2263.herokuapp.com.
8. Click on the Next link.
9. Click on the Previous link.
10. Stop the script recorder.
11. Add ForEach Controller as the parent of the sampler produced in step 8 by

navigating to Transaction Controller | Change Controller | Logic Controller |
ForEach Controller.

12. Add ForEach Controller as the parent of the samplers produced in step 9 by
navigating to Transaction Controller | Change Controller | Logic Controller |
ForEach Controller.

13. Update the first ForEach Controller with the following details:
 � Input variable prefix: page
 � Output variable name: returnPage

14. Update the second ForEach Controller with the following details:
 � Input variable prefix: prev
 � Output variable name: returnPage

15. Update the name and path of the child samplers (HTTP Request) of the ForEach
controllers to the following:

 � Name: /${returnPage}
 � Path: /${returnPage}

16. Add two User Defined Variables components to the thread group by navigating to
Thread Group | Config Element | User Defined Variables.

17. Add the following entries to the first User Defined Variables component:

Name Value Description
page_1 1 N/A
page_2 2 N/A
page_3 3 N/A
page_4 4 N/A

18. Add the following entries to the second User Defined Variables component:

Name Value Description
prev_1 4 N/A
prev_2 3 N/A
prev_3 2 N/A
prev_4 1 N/A

http://evening-citadel-2263.herokuapp.com

Chapter 3

71

19. Add a View Results Tree listener to your test plan by navigating to Test Plan | Add |
Listener | View Results Tree.

20. Save and run the test plan. Observe the results of the execution.

The recorded test plan for this recipe is bundled with the book under the
name ch3_foreach_ctrl.jmx. Alternatively, you can download or clone
the test plan from the Git repository for the book at https://github.
com/jmeter-cookbook/bundled-code.

Structure of the ForEach Controller

The following screenshot shows how to specify variables in the User Defined
Variables component:

User defined variables

https://github.com/jmeter-cookbook/bundled-code
https://github.com/jmeter-cookbook/bundled-code

Building Robust Test Plans with Controllers

72

How it works…
First, we recorded our sample scenario of a user browsing our sample application. Once
recorded, we put each of the pagination links within a ForEach Controller. We then added a
User Defined Variables component to our test plan defining the variables page_1 to page_4
with input values for our ForEach Controller component to consume. Since we defined our
input variable prefix as Page and output variable as returnPage in the ForEach controller, on
each iteration, the controller reads a page_x or prev_x (where x is the iteration count) value
and produces a different value in the returnPage. In the embedded child HTTP Samplers,
we then use the value contained in the returnPage variable to dynamically feed data into
the sampler.

There's more…
In addition to using User Defined Variables with the ForEach controller, postprocessors such
as Regular Expression Extractor, CSS/jQuery Extractor, XPath Extractor, and so on can be used
to process the preceding HTTP Samplers, and used to define values to feed into the ForEach
component. If possible, this is actually a better alternative to using User Defined Variables as
they make feed values completely dynamic based on the application.

See also
 f http://jmeter.apache.org/demos/ForEachTest2.jmx

 f http://jmeter.apache.org/demos/forEachTestPlan.jmx

Using Interleave and Random Controller in
test plans

When designing test plans, sometimes it is useful to simulate the random behavior of users.
That is, not have all users in your test plan execute the same flow of events in the same
manner. For example, in a typical e-commerce website selling products, it is not unusual to
have potential consumers come and shop for different products. Some visit the site with
the intention of buying, while some might have just visited the site to compare prices with a
competing vendor. So, you could have Consumer A visit the site, browse around, put a few
items in their cart, and then check out. Consumer B visits the site, just browses, not adding
anything to their cart. As such, for this described scenario, we have two scenarios that we
could interleave or randomly pick between.

http://jmeter.apache.org/demos/ForEachTest2.jmx
http://jmeter.apache.org/demos/forEachTestPlan.jmx

Chapter 3

73

JMeter provides two built-in controllers that allow us to do just that. These are Interleave
and Random Controllers. These two controllers closely resemble each other in functionality.
Interleave Controllers allow JMeter to alternate between child components on each iteration
pass. Random Controllers, on the other hand, allow JMeter to randomly pick the child
component to execute on each iteration pass. As such, the processing order of an Interleave
Controller is predetermined based on the number of iterations specified, while that of a
random controller is not. So for example, for a Random Controller contained in a thread group
with one thread and six loops with say six child samplers, it is possible that only three or four
of the samplers are executed during a single execution run, while the others are not because
they were not randomly picked. However, for an Interleave Controller, under the same defined
conditions, all child elements are guaranteed to be executed.

In this recipe, we will cover how to use controllers in a test plan.

How to do it…
In this recipe, we will cover how to use both Interleave and Random Controllers in a test plan.
Perform the following steps:

1. Launch JMeter.
2. Click on the Templates… button (right next to the New button) on the toolbar.
3. Select Recording from the Select Template dropdown and click on the

Create button.
4. Under WorkBench, click on the HTTP(S) Test Script Recorder and do the following:

 � Port: 7070 (or your desired proxy port)
 � URL Patterns to Exclude: .*\.(bmp|css|js|gif|ico|jpe?g|png|swf

|woff).*

Refer to the Recording a script via HTTP(S) Test Script Recorder
recipe in Chapter 1, JMeter Fundamentals, for details on how
this is done.

5. Click on the Start button and accept the CA certification to begin the script recorder.
6. Open your browser and configure it to use the recorder you set up in step 4.
7. Point your browser to http://evening-citadel-2263.herokuapp.com.
8. Click on the Next link once.
9. Click on the Previous link once.
10. Click on the Login link in the top right corner.
11. Log in to the application with valid credentials (Username: bayo and

Password: express).
12. Click on the Post link.

http://evening-citadel-2263.herokuapp.com

Building Robust Test Plans with Controllers

74

13. Fill in the details of the post and submit.
14. Click the Logout link to log out of the application.
15. Stop the script recorder.
16. Observe the recorded test plan.
17. Save and run the test plan. Observe the results of the execution.
18. Add Interleave Controller to the sample produced in steps 8 and 9 by navigating to

Sampler | Add | Insert Parent | Logic Controller | Interleave Controller.
19. Add Interleave Controller as the parent of the samplers produced from steps 10

to 13 by navigating to Sampler | Add | Insert Parent | Logic Controller |
Interleave Controller.

20. Save and run the test plan. Observe the results of the execution.
21. Replace the Interleave Controller with a Random Controller by navigating to

Sampler | Add | Insert Parent | Logic Controller | Random Controller.
22. Save and run the test plan. Observe the results of the execution.

The recorded test plans for this recipe are bundled with the book
under the names ch3_interleave_ctrl.jmx and ch3_
random_ctrl.jmx respectively. Alternatively, you can download
or clone them from the Git repository for the book at https://
github.com/jmeter-cookbook/bundled-code.

Using the Interleave Controller

https://github.com/jmeter-cookbook/bundled-code
https://github.com/jmeter-cookbook/bundled-code

Chapter 3

75

The following screenshot shows how your test plan should be laid out when using a Random
Controller for our previous example:

Using the Random Controller

How it works…
We recorded two scenarios in our test plan: a user browsing posts in our sample application
and one that posted a message. We then post both these samplers under an Interleave
Controller. Once the Interleave Controller was added, we saved and executed the test plan.
What we observe is that the browse and post samplers are alternately executed for our
specified loop iteration. That is, browse, post, browse, post, and then browse since we only
specified five loops in our thread group.

We then swapped the Interleave Controller for a Random Controller, saved, and repeated the
test run. This time, we observed that browse and post samplers are executed at random and
not interleaved. For our case, we had only the post flow executed for the same specified loop
of five iterations.

Building Robust Test Plans with Controllers

76

This is shown in the following screenshot:

Since each embedded component, samplers, timer, functions, and so on
are executed repeatedly for as many times as defined in the loop controller,
you should be mindful of their side effects. For example, functions such as
random will get a new value upon each loop execution.

Flow of execution with Interleave Controller

The following screenshot shows the results of executing the test with a Random
Controller Component:

Flow of execution with Random Controller

Chapter 3

77

There's more…
Both Interleave and Random Controller components have a checkbox named Ignore
sub-controller block which, once checked, allows you to skip execution of all subcomponents
embedded within them. This is helpful to quickly ignore a group of samplers and child
components. In addition, both these controllers can be used in combination with user
controllers in JMeter.

Using Runtime Controller in test plans
When designing test plans, sometimes it is useful to have control over the duration of
execution for the various samplers contained within your test plan. It might be helpful to run
a particular group of requests longer than others to see what stress the requests put on the
system. This is exactly what the Runtime Controller does. It allows us to control how long its
child elements are allowed to run for. This can help shape our test plans to mimic the actual
behavior of users in our system. For example, on a typical blogging website, there is far more
time spent reading the contents of posts by readers than there is putting up new posts.
As a result, you may want the reading flow to execute for half an hour, while the posting
flow executes for only 5 minutes.

How to do it…
In this recipe, we will cover the usage of a Runtime Controller. Perform the following steps:

1. Launch JMeter.

2. Click on the Templates… button (right next to the New button) on the toolbar.

3. Select Recording from the Select Template drop-down and click on the
Create button.

4. Under WorkBench, click on the HTTP(S) Test Script Recorder and update the
following parameters:

 � Port: 7070 (or your desired proxy port)

 � URL Patterns to Exclude: .*\.(bmp|css|js|gif|ico|jpe?g|png|swf
|woff).*

Refer to the Recording a script via HTTP(S) Test Script Recorder
recipe in Chapter 1, JMeter Fundamentals, for details on how
this is done.

5. Click on the Start button and accept the CA certification to begin the script recorder.

6. Open your browser and configure it to use the recorder you set up in step 4.

Building Robust Test Plans with Controllers

78

7. Point your browser to http://evening-citadel-2263.herokuapp.com.
8. Click on the Next link three times.
9. Click on the Previous link three times.
10. Stop the script recorder.
11. Observe the recorded test plan.
12. Save and run the test plan. Observe the results of the execution.
13. Add Loop Controller to the sample produced in step 8 by navigating to HTTP Request

| Insert Parent | Logic Controller | Loop Controller.
14. Add Loop Controller to the sample produced in step 9 by navigating to HTTP Request

| Insert Parent | Logic Controller | Loop Controller.
15. Add Runtime Controller as a parent of both samplers produced in step 8 and 9

by navigating to Loop Controller | Insert Parent | Logic Controller | Runtime
Controller.

16. In the Runtime Controller, specify a time of 60 seconds (that is, 1 minute).
17. Save and run the test plan. Observe the number of times each sampler ran during

the specified minute execution. This is shown in the following screenshot:

The recorded test plans for this recipe are bundled with the book
under the name ch3_runtime_ctrl.jmx. Alternatively, you can
download or clone the test plan from the Git repository for the book at
https://github.com/jmeter-cookbook/bundled-code.

Using Runtime Controller

http://evening-citadel-2263.herokuapp.com
https://github.com/jmeter-cookbook/bundled-code

Chapter 3

79

How it works…
We recorded a scenario of a user simply browsing our sample website. Once done, we put
some of the recorded samplers into loops in steps 14 and 15 to simulate the user paging
through the listed posts on the website. We then embedded the pagination flows within a
Runtime Controller. Having these components under the Runtime Controller allows us to
control how long they can run for. In our case, we have chosen to have them run for a minute.
Once configured, we saved the test plan and we were able to observe from the result listener
that the test execution reflected just that.

There's more…
Runtime Controllers give us a handle on controlling just how long parts of our test plan
or entire test plan should run. Their child subcomponents can be any of JMeter's built-in
samplers or controllers like we had in our example previously. Also, like with most controllers,
it can be used in combination with other components (built-in and extended) to help shape
your desired scenarios.

Testing Services

In this chapter, we will cover the following topics:

 f Testing REST web services

 f Testing SOAP web services

 f Testing FTP services

 f Testing relational databases

 f Testing NoSQL databases

 f Testing JMS services

Introduction
Services are the heartbeat of any application because of the critical role they play in the
entire application. They are also responsible for orchestrating communications between
the controllers and lower-level resources such as the database, messaging resources,
third-party services, and so on. Furthermore, they often encapsulate the business logic
of the application, thereby doing most of the heavy lifting so to speak. As such, it is
important to have a means of testing them and knowing whether they pose a bottleneck
to the application or not. Testing them could help expose areas that need tuning within the
application or infrastructure that could then be communicated to the responsible parties.

Apart from testing services, it is also beneficial to test the underlying resources the application
relies on directly. Such resources could be the database, messaging, e-mail, ftp, reporting,
and so on.

In this chapter, we will detail how to test two categories of services, REST and SOAP.
In later recipes, we cover how to directly test the database, ftp, and messaging resources.

4

Testing Services

82

Testing REST web services
Representational State Transfer (REST) is an architectural style of designing network
applications that relies on a stateless client-server and cacheable communications protocol
(HTTP). Compared to alternatives such as Remote Procedure Calls (RPC), Simple Object
Access Protocol (SOAP), and so on, REST is lightweight, mainly because all communications
between the client and server are over HTTP. This makes them easily testable as well.

REST web services adhere to the principles of REST and rely on the following HTTP methods:
GET, PUT, POST, and DELETE. GET is used to list or retrieve resource(s), PUT is used to
replace or update resource(s), POST is used to create a new resource, and DELETE is used to
delete resource(s). Since REST is an architectural style and not a protocol, there is no official
standard. The only constraints are to stick to the guidelines laid out by REST.

How to do it…
In this recipe, we will cover how to test REST web services. Perform the following steps:

1. Launch JMeter.

2. Add Thread Group by navigating to Test Plan | Add | Threads(Users) |
Thread Group.

3. Add the HTTP Request Default component by navigating to Thread Group | Add |
Config Element | HTTP Request Default. Update the following details:

 � Server Name or IP: api-jcb.herokuapp.com

4. Add the HTTP Header Manager component by navigating to Thread Group | Add |
Config Element | HTTP Header Manager.

5. Click on the Add button to add a header attribute. Update the following details:

 � Name: Content-Type

 � Value: application/json

6. Add HTTP Request to Thread Group by navigating to Thread Group | Add | Sampler
| HTTP Request. Update the following details:

 � Name: Get All Requests

 � Path: /holiday-requests

7. Add another HTTP Request to Thread Group by navigating to Thread Group | Add |
Sampler | HTTP Request. Update the following details:

 � Name: Create Holiday Request

 � Path: /holiday-requests

Chapter 4

83

 � Method: POST

 � Body Data: This is given by the following code snippet:
{
 "employeeId": 688,
 "employeeName": "Stephen Lee",
 "startDate": "2014-07-01T00:00:00Z",
 "endDate": "2014-07-08T00:00:00Z"
}

8. Add Regular Expression Extractor to the Create Holiday Request HTTP sampler
by navigating to Create Holiday Request | Add | Post Processor | Regular
Expression Extractor.

9. Fill in the details for Regular Expression Extractor as follows:

 � Reference Name: id

 � Regular Expression: "id":(\d+)

 � Template: 1

 � Match No.: 0

 � Default Value: NOT_FOUND

10. Add another HTTP Request to Thread Group by navigating to Thread Group | Add |
Sampler | HTTP Request. Fill in the following details:

 � Name: Modify Holiday

 � Path: /holiday-requests

 � Method: PUT

 � Body Data: This is given by the following code snippet:
{
 "id":${id},
 "employeeId": 688,
 "employeeName": "Stephen Lee",
 "startDate": "2014-08-01T00:00:00Z",
 "endDate": "2014-08-08T00:00:00Z"
}

11. Add another HTTP Request to Thread Group by navigating to Thread Group | Add |
Sampler | HTTP Request. Fill in the following details:

 � Name: Delete Holiday

 � Path: /holiday-requests/${id}

 � Method: DELETE

Testing Services

84

12. Add the View Results Tree listener to the test plan by navigating to Test Plan | Add |
Listener | View Results Tree.

13. Save and run the test plan. Observe the results of the execution.

The recorded test plan for this recipe is bundled with the book under the
name ch4-rest.jmx. Alternatively, it can be downloaded or cloned from
the book's Git repository at http://github.com/jmeter-cookbook/
bundled-code.

How it works…
As stated earlier, REST services almost always operate over a HTTP protocol. This makes
the HTTP Request component a viable option to test them. In our scenario, we are testing
a Human Resources web service. The Human Resources department of a company, for
example, will be the consumer of the service, using it to manage employee vacation requests.
Through this service, employees of a company can put in vacation requests (POST). They
can update the details of the requests should they later change their mind (PUT). They could
altogether cancel the vacation (DELETE). At any given point, we can see a list of all the holiday
requests that have been put in or even narrow down on a particular one (GET).

To test all these scenarios, we created a new test plan, added Thread Group to it, and added
HTTP Request as a child component of Thread Group. For reuse, we added the HTTP Request
Defaults and HTTP Header Manager components to Thread Group. The former allows us to
define common elements such as the host server, port, request parameters, and so on. The
latter allows us to provide additional arguments or parameters to HTTP Header. This is not to
be confused with request parameters. In our case, our service retrieves and sends JSON, so
we add a single entry, Content-Type: application/json. The Content-Type represents the
MIME type of the HTTP Request body and is used to denote the content of HTTP POST and
PUT requests. With those set, we consume our service to retrieve some resources from a URI.
To do this, we configured the path of the HTTP Request component we added to /holiday-
requests. This takes care of getting all vacations requested by employees. If we wanted
to narrow this down and get a particular vacation, we could instead have used /holiday-
requests/id, where id is the identifier of the target vacation.

In the same manner, we provided requests to create, update, and delete a resource in steps
7, 10, and 11 respectively. We accomplished this by adding HTTP Request samplers to
Thread Group with the right HTTP methods accordingly. To create a new resource, we used
POST and sent the JSON representing the resource we wanted to create with HTTP Request.
To update a resource, we used PUT and sent the updated resource with the request in JSON
format. Finally, to delete the resource, we sent a HTTP request to /holiday-requests/id
with a DELETE method, where id represented the resource to delete.

http://github.com/jmeter-cookbook/bundled-code
http://github.com/jmeter-cookbook/bundled-code

Chapter 4

85

There's more…
It is not uncommon to encounter REST web services that are securely protected. Attempting to
invoke such services without proper credentials will lead to an access denied error. As such,
we have to properly send across the credentials with each request we make to such secure
services. Often, this can be accomplished by adding HTTP Header properties representing
validation tokens along with each request. Just like we added a header property to denote
we will be receiving and sending JSON messages to our service, we can add additional
header properties to represent such tokens. These tokens vary from service to service, so be
sure to consult the API vendor for the valid properties to set when testing them. HTTP basic
authentication and OAuth are the standard REST security mechanisms and can both be
handled through the HTTP Header properties.

See also
More information about REST can be found at
http://en.wikipedia.org/wiki/Representational_state_transfer.

Testing SOAP web services
SOAP is a protocol specification to exchange information between network systems.
Communication and negotiation between systems is done by passing XML message formats
over a variety of transport protocols, including HTTP, JMS, Mail, VFS, and so on. Unlike REST,
which is an architectural style, SOAP is a protocol, and is thus governed by standards. Due
to SOAP's characteristics (extensibility, neutrality, and independence), it is a good candidate
for systems integration and interoperability. It provides a mechanism for legacy and modern
systems to communicate effectively without needing to be on the same platform or in the
same programming language.

JMeter offers two components (SOAP/XML-RPC Request and HTTP Request) that help when
testing SOAP web services.

How to do it…
In this recipe, we will see how both SOAP/XML-RPC and HTTP Request can be used to test
SOAP web services:

1. Launch JMeter.

2. Add Thread Group by navigating to Test Plan | Add | Threads(Users) |
Thread Group.

3. Add the SOAP/XML-RPC Request sampler to Thread Group by navigating to Thread
Group | Add | Sampler | SOAP/XML-RPC Request.

http://en.wikipedia.org/wiki/Representational_state_transfer

Testing Services

86

4. Fill in the details of SOAP/XML-RPC Request as follows:

 � URL: http://wsf.cdyne.com/WeatherWS/Weather.asmx

 � Send SOAPAction: http://ws.cdyne.com/WeatherWS/
GetCityWeatherByZIP

 � SOAP/XML-RPC Data: This is given by the following code snippet:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/" xmlns:weat="http://ws.cdyne.com/WeatherWS/">
 <soapenv:Header/>
 <soapenv:Body>
 <weat:GetCityWeatherByZIP>
 <weat:ZIP>${__Random(20700,20900)}</weat:ZIP>
 </weat:GetCityWeatherByZIP>
 </soapenv:Body>
</soapenv:Envelope>

Make sure the checkbox for Send SOAPAction is checked.

5. Add the HTTP Request component to Thread Group by navigating to
Thread Group | Add | Sampler | HTTP Request.

6. Fill out the details of HTTP Request as follows:

 � Server Name or IP: wsf.cdyne.com

 � Method: POST

 � Path: /WeatherWS/Weather.asmx

 � Body Data: This is given by the following code snippet:
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/
soap/envelope/" xmlns:weat="http://ws.cdyne.com/WeatherWS/">
 <soapenv:Header/>
 <soapenv:Body>
 <weat:GetCityWeatherByZIP>
 <weat:ZIP>${__
Random(20700,20900)}</weat:ZIP>
 </weat:GetCityWeatherByZIP>
 </soapenv:Body>
</soapenv:Envelope>

7. Add HTTP Header Manager as a child of HTTP Request by navigating to HTTP
Request | Add Config Element | HTTP Header Manager.

http://wsf.cdyne.com/WeatherWS/Weather.asmx
http://ws.cdyne.com/WeatherWS/GetCityWeatherByZIP
http://ws.cdyne.com/WeatherWS/GetCityWeatherByZIP

Chapter 4

87

8. Click on the Add button to add a header parameter.

9. Fill in the details as follows:

 � Name: Content-Type

 � Value: text/xml

10. Click on the Add button to add another header parameter. Fill in the following details:

 � Name: SoapAction

 � Value: http://ws.cdyne.com/WeatherWS/GetCityWeatherByZIP

11. Add the View Results Tree listener to your Test Plan by navigating to Test Plan | Add
| Listener | View Results Tree.

12. Save and run the test plan. Observe the results of the execution as shown in the
following screenshot:

Using SOAP/XML-RPC Request to test a SOAP web service

http://ws.cdyne.com/WeatherWS/GetCityWeatherByZIP

Testing Services

88

The following screenshot shows an example of using the HTTP Request component to test
SOAP web services:

Using HTTP Request to test a SOAP web service

How it works…
In this example, we are testing a weather service at http://wsf.cdyne.com/WeatherWS/
Weather.asmx, which has been exposed as a SOAP web service. Our goal was to get the
weather information for various ZIP or postal codes at the time we run our tests. To do that,
we started out by creating a new test plan and adding Thread Group to it. In step 3, we added
a SOAP/XML-RPC Request component to our test plan and filled it out with the appropriate
details needed to satisfy our SOAP request. Such details include the URL where the service
is housed, the SOAP action or operation that we intend to perform (http://ws.cdyne.
com/WeatherWS/GetCityWeatherByZIP in our case), and the actual data in the form of
XML we want to send. A sample of that data format can be seen at http://wsf.cdyne.
com/WeatherWS/Weather.asmx?op=GetCityForecastByZIP or by examining the
web services definition language (WSDL) file at http://wsf.cdyne.com/WeatherWS/
Weather.asmx?WSDL. With all the details in, our SOAP/XML-RPC is ready to communicate

http://wsf.cdyne.com/WeatherWS/Weather.asmx
http://wsf.cdyne.com/WeatherWS/Weather.asmx
http://ws.cdyne.com/WeatherWS/GetCityWeatherByZIP
http://ws.cdyne.com/WeatherWS/GetCityWeatherByZIP
http://wsf.cdyne.com/WeatherWS/Weather.asmx?op=GetCityForecastByZIP
http://wsf.cdyne.com/WeatherWS/Weather.asmx?op=GetCityForecastByZIP
http://wsf.cdyne.com/WeatherWS/Weather.asmx?WSDL
http://wsf.cdyne.com/WeatherWS/Weather.asmx?WSDL

Chapter 4

89

with the service and retrieve weather information for any valid ZIP or postal code we
supply. For the supplier ZIP code, on each invocation, we have used one of JMeter's
built-in functions, __Random(), to randomize our ZIP code selection with a given boundary.
${__Random(20700,20900)} will return random values within 20700 and 20900 for
each invocation.

For illustrative purposes, we showed that the web service could also be tested with a HTTP
Request component since it is communicating over HTTP. To do that, we added a HTTP Request
component to Thread Group and configured it appropriately. This time, we set the server name
to wsf.cdyne.com and the path to /WeatherWS/Weather.asmx. We changed the HTTP
Request method to POST and sent the raw XML data through the body data of the request.
With that configuration, the HTTP Request component mirrored the settings we configured
for the SOAP/XML-RPC component, and can now also talk to the web service.

When we saved and ran the test plan, we observed that both components are able to
communicate with the web service and report the server response.

When you examine Response Data in the View Results Tree listener,
responses from both HTTP Request and SOAP/XML-RPC might not
give the same response as they might get supplied different ZIP codes
at runtime.

The following screenshot demonstrates View Results Tree:

Testing Services

90

There's more…
SOAP web services are broader than we can cover in a single recipe, or even the entire book
for that matter. For example, one of the main features of web services is that they can be
securely protected, thus allowing only authorized consumers to invoke them. In most cases,
authentication information can be passed with requests through the SOAP header attributes
in SOAP messages for example. We strongly encourage you to read more content online.
Super intrigued readers could also pick up books and resources on web services for an
in-depth understanding of what is happening under the hood.

Another good resource for testing and understanding SOAP web services is SOAP UI, a freely
available tool. It can be download from http://www.soapui.org/.

SOAP UI offers tons of features including generating sample requests for each operation
exposed by a web service, security testing, intuitive GUI, and lots more. We encourage you
to download a copy and evaluate it if you are primarily tasked with SOAP web services.

See also
Interested readers can read more on SOAP at http://en.wikipedia.org/wiki/SOAP.

Testing FTP services
File Transfer Protocol (FTP) is a standard network protocol used to transfer files between
hosts over the Internet. Applications will normally use it as a means of uploading or
downloading files to/from different hosts. FTP was not designed as a secure protocol,
and as a result has several security vulnerabilities, the biggest being unencrypted traffic,
which allows eavesdropping. Since security is an important aspect of almost all applications,
it is not desirable to use FTP in its standard form.

SFTP is secure FTP, allowing all FTP communication to be secure over Secure Shell (SSH).
In this form, all communication and data is encrypted, preventing preying eyes from
intercepting communication and eavesdropping.

How to do it…
Out of the box, JMeter supports testing FTP. However, in this recipe, we will focus on testing
SFTP, since as explained earlier, it is the most often encountered case due to its high security.

This recipe relies on extending JMeter with a plugin.

http://www.soapui.org/
http://en.wikipedia.org/wiki/SOAP

Chapter 4

91

Perform the following steps:

1. Install the JMeter SSH Sampler plugin:

 � Download the JMeter plugin from https://github.com/yciabaud/
jmeter-ssh-sampler/releases

 � Download the JSCH JAR file from http://devbucket-afriq.
s3.amazonaws.com/jmeter-cookbook/jsch-0.1.51.jar

 � Copy the ApacheJMeter_ssh-1.1.0.jar file to the $JMETER_HOME/
lib/ext directory

 � Copy the jsch-0.1.51.jar file to the $JMETER_HOME/lib directory

2. Launch JMeter.

3. Add Thread Group by navigating to Test Plan | Add | Threads(Users) |
Thread Group.

4. Add the SSH SFTP component to Thread Group by navigating to Thread Group | Add
| Sampler | SSH SFTP.

5. Fill out the following details:

 � Hostname: ${host}

 � User Name: ${user}

 � Password: ${password}

 � Action: put

 � Source path: ${src}

 � Destination path: ${dest}

6. Add two CSV Data Set Config elements by navigating to Thread Group | Add |
Config Element | CSV Data Set Config.

7. Fill in the following parameter (leave everything else as it is):

 � Filename: sftp.txt

8. Fill in the following parameter (leave everything else as it is):

 � Filename: sftp-files.txt

9. Add the View Results Tree listener to your test plan by navigating to Test Plan | Add
| Listener | View Results Tree.

10. Save the test plan.

11. Create two files (one named sftp.txt and a second named sftp-files.txt)
in the same directory where the script resides.

https://github.com/yciabaud/jmeter-ssh-sampler/releases
https://github.com/yciabaud/jmeter-ssh-sampler/releases
http://devbucket-afriq.s3.amazonaws.com/jmeter-cookbook/jsch-0.1.51.jar
http://devbucket-afriq.s3.amazonaws.com/jmeter-cookbook/jsch-0.1.51.jar

Testing Services

92

12. The contents of the sftp.txt file should look similar to this:
host,user,password
your-host-ip,your-username,your-password

This is provided just for illustrative purposes of what the structure
of the file should look like. You should replace this with your own
host, user, and password respectively!

13. The contents of the sftp-files.txt file should look similar to this:
src,dest
/tmp/a.txt,/tmp/output-a.txt
/tmp/b.txt,/tmp/output-b.txt
/tmp/c.txt,/tmp/output-c.txt

14. Save and run the test plan. Observe the results of the execution.

Confirm the files were successfully transferred by logging in to the SFTP server and verifying
the files in the destination directory. Refer to the following screenshot for more details:

Configuring the SSH SFTP component

Chapter 4

93

Alternatively, you could run a local FTP server on your machine to follow
along with the example.
For Windows: http://www.coreftp.com/server/.
For Mac OS X: http://igerry.com/desktop/apple-os/
enabling-ftp-server-os-x-mavericks.html.
For Unix: http://www.sysadminshare.com/2011/03/enable-
ftp-service-in-unix-server.html.

To confirm that the files were securely transferred to the server, open a terminal window, log
in, and list the contents of the target directory like we do in the following code snippet:

root@test:/tmp# ls -l
total 12
-rw-r--r-- 1 root root 149 May 11 22:48 output-a.txt
-rw-r--r-- 1 root root 149 May 11 22:48 output-b.txt
-rw-r--r-- 1 root root 149 May 11 22:48 output-c.txt

Refer to the following screenshot for more details:

Results of executing the SSH SFTP test plan

http://www.coreftp.com/server/
http://igerry.com/desktop/apple-os/enabling-ftp-server-os-x-mavericks.html
http://igerry.com/desktop/apple-os/enabling-ftp-server-os-x-mavericks.html
http://www.sysadminshare.com/2011/03/enable-ftp-service-in-unix-server.html
http://www.sysadminshare.com/2011/03/enable-ftp-service-in-unix-server.html

Testing Services

94

How it works…
We started out by extending JMeter with the SSH Sampler plugin. This plugin provided SSH
and SFTP features by adding two additional samplers (SSH Command and SSH SFTP) to
JMeter's built-in samplers. One of these samplers, SSH SFTP, is just what we need to secure
FTP connections to transfer files between hosts. As usual, we created a test plan, added Thread
Group to it, and then added the SSH SFTP sampler as a child of Thread Group. Once added, we
configured the SSH SFTP component with the details needed to communicate with our SFTP
server. These included specifying a host, username, password, and operation to perform as well
as the source and destination directories. In our case, since our goal is to transfer files from our
local machine (or wherever the script is being run) to our SFTP server, we used a PUT action,
which is the FTP action to put/store a local file you can't store to a remote location.

In addition, to make our scripts more robust, we added a CSV Data Set Config element to
Thread Group to externalize these parameters from our scripts and supply them at runtime.
This allows us to change the values without needing to change the script.

With all the relevant information configured, we were able to successfully transfer a couple
of files from our local machine to the SFTP server as observed in the results listener. We also
confirmed this by logging in to our SFTP server and verifying the files are at the location they
should be at.

There's more…
Though we have only used a single FTP operation in this recipe, the SSH SFTP sampler
supports all FTP actions. These include GET, RM, RMDIR, and LS. We use GET to download
files from the SFTP server, RM to delete a file from the SFTP server, RMDIR to delete an entire
directory on the SFTP server, and LS to list the contents of a directory on the SFTP server.

In addition, the two samplers provided by the plugin allow us to connect with the SSH client
certificates, that is, public keys instead of a username/password combo. When working with
SSH, authenticating via public key is often desirable as it allows you to easily connect to the
box instead of entering a username and password each time.

Testing relational databases
Almost every application you interact with over the Internet is backed by a database of some
sort. Databases house the data needed by the application. Such data is then retrieved and
converted to a form required by the graphical user interface (GUI) by a middleware to display
to the end user. Depending on the application needs and business logic, some data may be
created, updated, and deleted from the database.

Chapter 4

95

Sometimes, it is necessary to directly test databases outside the application(s) that use it.
This may help identify database bottlenecks such as expensive table joins, missing table
indexes, slow running queries, and so on.

How to do it…
In this recipe, we will cover how JMeter can be used to test a relational database directly.
Perform the following steps:

This recipe requires the use of a relational database, so we will set one
up here. However, this will most likely have been set up for you, but we do
this for illustrative purposes.

1. Set up an H2 database:

 � Download an H2 database distribution from
http://www.h2database.com/html/download.html.

 � Extract the archive to a location of your choice. We will refer to this
as H2_HOME.

 � From the command line, go to the H2_HOME/bin folder.

 � Start the H2 database server by issuing either of these commands:

 On Unix: ./h2.sh

 On Windows: h2.bat

2. This will launch your browser and point to the H2 Admin console as shown in the
upcoming screenshot.

3. Create a test database named test by changing your JDBC URL value to either of
the following:

 � On Unix: jdbc:h2:tcp://localhost//tmp/test;MVCC=TRUE

 � On Windows: jdbc:h2:tcp://localhost/c:/test;MVCC=TRUE

4. Click on the Connect button.

5. Copy the contents of the ch4.sql script into the space provided in the console.

6. Click on the Run button.

7. This will create some tables and populate sample data for us to test with.

8. Now that we have a database and a table to test with, we can go ahead and
configure a JDBC Connection Configuration component to point to it. Refer the
following screenshot:

http://www.h2database.com/html/download.html.

Testing Services

96

Since H2 is Java-based, to run it, you need to have a Java Runtime
Environment (JRE) set up on the machine you are using. Please refer
to Appendix, Installing the Supporting Software Needed for this Book
for instructions on setting up a JRE on your machine if you don't already
have one.

9. Copy the JDBC driver (h2-1.4.178.jar or similar) from the H2_HOME/bin folder to
the JMETER_HOME/lib folder.

10. Add the JDBC Connection Configuration component to the test plan by right-clicking
on Test Plan and navigating to Test Plan | Add | Config Element | JDBC Connection
Configuration.

11. Configure the properties as follows:

 � Variable Name: mydb

 � Validation Query: Select 1 from dual

 � Database URL: jdbc:h2:tcp://localhost//tmp/test;MVCC=TRUE
(those using Windows should use jdbc:h2:tcp://localhost/c:/
test;MVCC=TRUE)

 � JDBC Driver class: org.h2.Driver

 � Username: sa

12. Leave the rest of the configurations as is.

13. Add Thread Group by navigating to Test Plan | Add | Threads(User) | Thread Group.

14. Add the JDBC Request sampler to Thread Group by navigating to Thread Group |
Add | Sampler | JDBC Request.

Chapter 4

97

15. Fill in the following details:

 � Variable Name: mydb (should match the variable name specified in step 3)

 � SQL Query: This is given by the following code snippet:
 select *
 from emp e
 inner join dept d on d.deptno = e.deptno

16. Add the View Results Tree listener by navigating to Thread Group | Add | Listener |
View Results Tree.

17. Add the Aggregate Report listener to Thread Group | Add | Listener |
Aggregate Report.

18. Save and run the test plan. Observe the results.

How it works…
To test a relational database, JMeter offers two components, JDBC Connection Configuration
and JDBC Request, both of which work in combination to make testing possible. The JDBC
Connection Configuration component is needed to set up the connection to the database.
The most important elements in its configuration are the database URL, JDBC driver class,
the username, and the password. This information is needed to successfully connect to any
relational database. In our case, we used H2 (a pure Java SQL database), but any other
database such as Oracle, MySQL, Postgres, DB2, and so on will equally do. The way we are
able to connect to any of these relational databases is through their JDBC driver classes,
which come bundled in the form of a JAR file. The JAR file containing the driver class for
your target database can be downloaded by searching online or at the vendor's website.

You must copy this JDBC driver JAR to the $JMETER_HOME/lib
directory and restart JMeter to make it available to your test plans.

Once the connection has been set up, to issue queries and requests to the database, we
need the JDBC Request component. We added this to our Thread Group, and in our case,
issued a query to list all employees, their department, and other relevant details such as hire
date, compensation, and so on. If this query was used within an application, then it becomes
important to know how fast the query is. To test its execution speed, we added an Aggregate
Report listener to our test plan and increased the size of Thread Group/users to 100 with a
loop of 3. Once executed, in our case, we found the query performed quite well with a speed
of about 3 milliseconds. With that in mind, if we used this in the context of an application
and that application module is running slowly, say 12 seconds, then we could be certain that
it wasn't the query running slow but rather some other parts of the module, and divert our
attention to those.

Testing Services

98

There's more…
In our case, we issued a SELECT request to our database, but the JDBC Request component
supports all other DDL operations including INSERT, DELETE, and UPDATE. In addition,
it supports callable statements (used to execute stored procedures) and prepared
statements (used to supply bind parameters and prevent SQL injection attacks).

Also, the JDBC Connection Configuration element allows you to supply the maximum number
of connections. This can be configured to match what is configured on the application server
settings to realistically mimic available connection settings to the application. Also, the JDBC
Connection Configuration element allows you to choose the transaction isolation level for
operations. It's best to leave it as DEFAULT, but other options are available as well should
you need fine-grained control over transaction isolation levels.

Testing NoSQL databases
A new wave of databases categorized as NoSQL (Not Only SQL or No SQL depending on
which interpretation you prefer) have burst on to the scene and offer some features not
provided by relational databases that many applications have found invaluable and essential.
Such features include document-oriented storage, the schema-less nature of documents,
replication, high availability, sharding, map/reduce, and so on. Each of these bring something
new to the table and allow applications to relay information and offer certain features
they haven't been able to do with relational databases. Popular NoSQL databases include
MongoDB, Couchbase, Redis, Apache Cassandra, Riak, and so on.

As such, it is not uncommon to encounter applications today entirely or partly backed by
NoSQL databases. In fact, several of the applications we have used during the course of
this book are backed up by NoSQL databases.

How to do it…
JMeter offers a way to directly test MongoDB (one of the most popular NoSQL databases) out
of the box. In this recipe, we will see how to do just that. Perform the following steps:

1. Install MongoDB as described in
http://docs.mongodb.org/manual/installation/.

For easier use, make sure MONGODB_HOME/bin is available at
your path, so you can access commands such as mongod and
mongo easily from any terminal and/or directory.

2. Start the MongoDB instance with mongod.

http://docs.mongodb.org/manual/installation/

Chapter 4

99

3. Test that the connection is up and running by opening a terminal window and typing
mongo. You should see a message similar to this on your terminal window:
MongoDB shell version: 2.6.1
connecting to: test
Server has startup warnings:
2014-05-13T19:58:11.240-0400 [initandlisten]
2014-05-13T19:58:11.240-0400 [initandlisten] ** WARNING: soft
rlimits too low. Number of files is 256, should be at least 1000

4. Launch JMeter.

5. Add Thread Group by navigating to Test Plan | Add | Threads(Users) |
Thread Group.

6. Add the MongoDB Source Config element by navigating to Thread Group | Add |
Config Element | MongoDB Source Config.

7. Fill in the contents as follows:

 � Server Address List: 127.0.0.1

 � MongoDB Source: mongo

You can use any name you wish for the MongoDB source, but
make sure it is unique if you have more than one MongoDB source
configuration component.

8. Add the MongoDB Script component to Thread Group by navigating to Thread Group
| Add | Sampler | MongoDB Script.

9. Fill in the following details:

 � MongoDB Source: mongo (should match the name you specified in step 7)

 � Database Name: jmeterDB

 � Username: (leave it blank)

 � Password: (leave it blank)

 � The script to run: This is shown by the following code snippet:
db.jmeter.insert({"title":"This is it", "content": "Super
cool stuff", "comments": [{"user": "john doe", "comment": "I
didn't find this very useful."}, {"user": "lisa", "comment":
"Get a life!"}]});
db.jmeter.insert({"title":"Another Post", "content": "Super
cool stuff", "comments": [{"user": "john doe", "comment": "I
didn't find this very useful."}, {"user": "joan", "comment":
"Get a life!"}, {"user": "badboy", "comment": "This is all
very exciting."}]});
db.jmeter.insert({"title":"Working with JMeter", "content":
"Super cool stuff", "comments": [{"user": "cynthia",

Testing Services

100

"comment": "Testing out comments."}]});
db.jmeter.insert({"title":"Can Gatling overtake JMeter?",
"content": "Gatling promises to deliver some cool stuff.
JMeter still and ever will rule", "comments": []});
db.jmeter.insert({"title":"Cloud Testing", "content": "Super
cool stuff", "comments": [{"user": "mia", "comment": "I
never knew you could do that!"}]});
db.jmeter.insert({"title":"Bring Back Our girls", "content":
"In Nigeria, a terrorrist group called Boko Haram have
taken hold of over 300 school girls", "comments": [{"user":
"dele", "comment": "This is depressing.I didn't find this
very useful."}, {"user": "kunle", "comment": "I pray for
their safe return"}]});

Any valid mongo script can be filled in by the mongo-data.json
script to run text area depending on your testing needs. Here, we
are just testing inserts. The script we run is bundled with the sample
code under the name mongo-data.json.

10. Add the View Results Tree listener to Test Plan by navigating to Test Plan | Add |
Listener | View Results Tree.

11. Save and run the test plan. Observe the results of the execution.

How it works…
To directly test a MongoDB database, JMeter comes bundled with two components, MongoDB
Source Config and MongoDB Script. The former lets your specify connection details and
options including write concern details. The latter lets you specify the database to use for
operations, the username and password if any, and the actual script to run during test
execution. In our previous example, we configured both and were able to successfully
populate our target collection (JMeter) with some sample data.

The contents of our database can be seen by opening up a terminal, connecting to the mongo
instance, selecting our target database, and issuing a query against the collection:

mongo
use jmeterDB
db.jmeter.find();

There's more…
Though we have chosen to run inserts in our example, any valid MongoDB operations can be
run. These include find(), update(), exists(), remove(), and so on. A list of operations
can be found on the MongoDB website at http://docs.mongodb.org/manual/, with a SQL
comparison at http://docs.mongodb.org/manual/reference/sql-comparison/.

http://docs.mongodb.org/manual/
http://docs.mongodb.org/manual/reference/sql-comparison/

Chapter 4

101

See also
For those who are not fond of working on the terminal, there is Robomongo, a GUI tool to make
working with MongoDB a little easier. It can be downloaded from http://robomongo.org/.

Testing JMS services
Another common service often found in some applications are Java Message Service (JMS)
services. JMS services are message services that allow applications that run on the JVM
to communicate with each other through message passing. There are two main channels
of communication: Topics (pub/sub) or Queues (p2p). With Topics, a producer sends a
message to a destination and all subscribers to that channel get the message. You can think
of this as a mailing list. When you are subscribed or opt in for mails from a vendor, then you
are added to their e-mail or mail distribution, and you receive all communication sent by the
vendor afterwards. What subscribers choose to do with the received message is entirely up to
them. With Queues, the producer sends a message to a destination and only one subscriber
gets to pick up the message at a time. A classic use of a Queue for example could be sending
out a registration mail to a new registrant of a website or sending a payment invoice for
purchased items.

How to do it…
JMeter supports testing both Topics and Queues directly. In this recipe, we will focus on
testing a Topic, but testing Queues follows a similar pattern. Perform the following steps:

For this recipe, we will use a free and open source messaging server
known as ActiveMQ. You can learn more about Apache ActiveMQ
from http://activemq.apache.org/.

1. Download Apache ActiveMQ from http://activemq.apache.org/download.
html. At the time of writing this, the latest release was version 5.9.1, which is what
we will use.

2. Extract it to the location of your chosen directory. We will refer to this location as
ACTIVEMQ_HOME.

3. Copy activemq-all-<version>.jar (activemq-all-5.9.1.jar in our case)
from $ACTIVEMQ_HOME to the $JMETER_HOME/lib directory.

4. Open a terminal window, go to the $ACTIVEMQ_HOME/bin directory, and start
activemq. Fill in the following details:

 � On Unix: ./activemq console

 � On Windows: activemq.bat console

http://robomongo.org/
http://activemq.apache.org/
http://activemq.apache.org/download.html
http://activemq.apache.org/download.html

Testing Services

102

5. You should see logs similar to the following code:
INFO: Using default configuration
(you can configure options in one of these file: /etc/default/
activemq /Users/berinle/.activemqrc)
INFO: Invoke the following command to create a configuration file
./activemq setup [/etc/default/activemq | /Users/berinle/.
activemqrc]
INFO: Using java '/Library/Java/JavaVirtualMachines/jdk1.7.0_21.
jdk/Contents/Home/bin/java'
INFO: Starting in foreground, this is just for debugging purposes
(stop process by pressing CTRL+C)
Java Runtime: Oracle Corporation 1.7.0_21 /Library/Java/
JavaVirtualMachines/jdk1.7.0_21.jdk/Contents/Home/jre
…
INFO | Connector ws started
 INFO | Apache ActiveMQ 5.9.1 (localhost, ID:bayo-macbook.
local-50624-1400111865074-0:1) started

 INFO | For help or more information please see: http://activemq.
apache.org

6. Launch JMeter.

7. Add Thread Group by navigating to Test Plan | Add | Threads(Users) |
Thread Group.

8. Add the User Defined Variables component by navigating to Thread Group | Add |
Config Element | User Defined Variables.

9. Add the following variables to the User Defined Variables component:

Name Value
contextFactory org.apache.activemq.jndi.

ActiveMQInitialContextFactory

providerUrl tcp://localhost:61616

connectionFactory ConnectionFactory

destination dynamicTopics/jmeterTopic

10. Add the JMS Publisher component to Thread Group by navigating to Thread
Group | Add | Sampler | JMS Publisher.

11. Fill in the following details:

 � Initial Context Factory: ${contextFactory}

 � Provider URL: ${providerUrl}

 � Connection Factory: ${connectionFactory}

 � Destination: ${destination}

 � Message source: Select textarea radio button

Chapter 4

103

 � Message Type: Select Text Message radio button

 � Text Message or Object Message serialized to XML by XStream: test
from jmeter

12. Add JMS Subscriber to Thread Group by navigating to Thread Group | Add | Sampler
| JMS Subscriber.

13. Fill in the following details:

 � Initial Context Factory: ${contextFactory}

 � Provider URL: ${providerUrl}

 � Connection Factory: ${connectionFactory}

 � Destination: ${destination}

14. Add the View Results Tree listener to your Test Plan by navigating to Test Plan | Add
| Listener | View Results Tree.

15. Save and run the test plan. Observe the results of the execution.

How it works…
Our first step was to set up a messaging server to test with. Thankfully, Apache ActiveMQ is
a free and open source messaging server that is super easy to set up. Once installed, we
started the messaging server on a terminal window. To allow JMeter to communicate with the
messaging server, we copied over the required JAR file to JMeter's lib directory. We then set
up our test plan as usual, adding Thread Group and two JMS samplers, JMS Publisher and
JMS Subscriber, needed to communicate with the messaging server. The former is responsible
for producing or publishing messages, while the latter consumes the messages produced. To
ensure that happens, we made sure both components were configured to read/write from the
same dynamicTopics/jmeterTopic destination folder. We also took advantage of a neat
feature of ActiveMQ here to dynamically create a destination for us (a Topic) on the fly. If not,
we would have had to set up the Topic through an admin interface or similar to make the
Topic available.

With all the configurations set up properly, we were able to run the test and observe
our results that a message was in fact produced by the publisher and consumed by the
subscriber just like we intended.

When the test is run, in the View Results Tree listener, you will notice a similar message on
JMS Publisher:

Response code: 200
Response message: 1 messages published

Testing Services

104

The following message can be seen on JMS Subscriber:

Response code: 200
Response message: 1 message(s) received successfully

There's more…
JMS is a broad subject, and it's testing can't be fully covered in a few pages. In our previous
sample, we elected text messages to directly enter into the space provided in the publisher
component. JMS supports many more types of messages, including map, object, and bytes
messages, each of which are supported by the component. Also, the component allows us to
read messages from a file, or even pick up random files from a location. In addition, both the
components support durability and selectors, two important features of JMS.

See also
There are several excellent resources on the Internet on JMS. For curious readers who want to
explore more, some good starting resources are as follows:

 f http://en.wikipedia.org/wiki/Java_Message_Service

 f http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html

http://en.wikipedia.org/wiki/Java_Message_Service
http://docs.oracle.com/javaee/6/tutorial/doc/bncdq.html

5
Diving into

Distributed Testing

In this chapter, we will cover the following recipes:

 f Testing applications with JMeter's master-slave setup

 f Testing internal applications using JMeter and Vagrant

 f Testing external facing applications using JMeter, Vagrant, and AWS

 f Testing external facing applications using Flood.IO

 f Testing external facing applications using BlazeMeter

Introduction
There are times when you will need to put more load on the applications under test. Such
load may be more than a single machine can handle normally due to resource limitations
such as RAM, CPU, and so on. As such, to get the target load on the application under test,
you will need to distribute your tests across multiple machines. This is what is referred to as
distributed testing.

Distributed testing is a form of testing that allows tests to be distributed across multiple
machines on a network to achieve a target load while still keeping test results accurate.
The results from each machine are then combined into a single result to give a final report
as we would have had in the case of running on a single machine.

In this chapter, we will detail how to run tests across multiple machines. We will begin by
seeing how to manually configure distributed testing in JMeter with a master-slave setup,
and then see how to effortlessly automate the configuration of as many machines as needed
to run our tests. In later recipes, we cover how to use some of the available Cloud services for
testing and even see how to roll our own infrastructure in the Cloud when needed.

Diving into Distributed Testing

106

Testing applications with JMeter's
master-slave setup

Out of the box, JMeter provides a way to perform distributed testing. This comes in the form
of a master-slave setup. In this mode, there is a machine known as a master, which controls
a number of client machines (JMeter instances) known as slaves. This approach has some
benefits, including managing multiple JMeter instances remotely from the master node,
automatically collecting test results from all slave nodes and aggregating them into a single
report, and replicating test plans from the master node to slave nodes without the need to
copy them to each server. That said, it also has some drawbacks, with the major one being
the master quickly becoming a bottleneck as a result of collecting information from slaves in
real time. In our experience, we have found this approach doesn't scale well if you have more
than a couple of slave nodes. Refer to the other recipes in this chapter to see how to get past
this hurdle.

How to do it…
Perform the following steps:

1. Install JMeter on machine 1. We will refer to this as master.

2. Install JMeter on machine 2. We will refer to this as slave_one.

3. Get the IP address of machine 2 on the network. Open a terminal window and run the
following commands:

 � For Windows: ipconfig

 � For Unix/Mac OS: ifconfig | grep inet

4. Edit JMETER_HOME/bin/jmeter-server, uncomment the line starting with #RMI_
HOST_DEF, and replace it with the IP address retrieved from step 2, for example,
RMI_HOST_DEF=-Djava.rmi.server.hostname= 172.28.128.3.

5. Start the JMeter server script using the following instructions:

 � For Windows: JMETER_HOME/bin/jmeter-server.bat

 � For Unix/Mac OS: JMETER_HOME/bin/jmeter-server

6. On the master JMeter installation, edit JMETER_HOME/bin/jmeter.properties
and add the IP address of the slave node. Look for the line starting with remote_
hosts=127.0.0.1 and replace 127.0.0.1 with the IP address of the slave node,
for example, remote_hosts= 172.28.128.3.

7. Repeat steps 2 to 6 on machine 3, which we will refer to as slave_two.

Chapter 5

107

When adding additional IPs to the remote_hosts property, be sure
to separate them with a comma, for example, remote_hosts=
172.28.128.3,172.28.128.4.

8. Launch the JMeter GUI on the master.

9. Open the scripts/ch5/cloud/shoutbox_loop.jmx test plan bundled with the
book samples. Alternatively, it can be downloaded from http://bit.ly/1rvb1bv.

10. Execute the test on the slave nodes by navigating to Run | Remote Start All.

The following diagram illustrates the architecture of a master-slave setup:

http://bit.ly/1rvb1bv

Diving into Distributed Testing

108

Since the script starts 200 users on each slave node and we run the test on both configured
nodes, the following screenshot shows the test hitting the peak of 400 users:

Controlling slave nodes via a JMeter master

How it works…
In a master-slave setup, the machines communicate over remote method invocation (RMI).
On the slave nodes, we set up the communication by editing RMI_HOST_DEF in the
jmeter-server file and then set up the master to be able to talk to each slave by adding
the slave's IP address to the list of remote_hostserver in the jmeter.properties file.
Once configured, we are able to start the test script loaded in the master node remotely on
each slave mode, thereby distributing the load.

There's more…
As explained in the introduction of this recipe, this approach has its drawbacks. Thankfully,
we are not limited to it as the only way to achieve distributed testing in JMeter. We can
eliminate the master completely and eliminate any bottlenecks that arise from it, allowing us
to scale a lot more as a result. Additionally, we can take advantage of Cloud providers offering
distributed testing via JMeter and eliminate most mundane setup tasks. For this and much
more, see the other recipes in this chapter.

See also
 f http://jmeter.apache.org/usermanual/jmeter_distributed_testing_

step_by_step.pdf

 f http://en.wikipedia.org/wiki/Java_remote_method_invocation

http://jmeter.apache.org/usermanual/jmeter_distributed_testing_step_by_step.pdf
http://jmeter.apache.org/usermanual/jmeter_distributed_testing_step_by_step.pdf
http://en.wikipedia.org/wiki/Java_remote_method_invocation

Chapter 5

109

Testing internal applications using JMeter
and Vagrant

Until an application becomes external and public facing on the Internet for users to see,
access to it remains internal to a company's network barricaded by firewalls. Only users on
the company's intranet and network can get to the application. Due to this reason, testing
such applications from external machines would be impossible unless some firewall rules
are changed to allow it. Often, making such changes is time-consuming and sometimes not
even allowed due to company policies. The next best thing is to configure the test servers
within your company's network that can connect to the internal application under test, while
still keeping the company's application private. This is a win-win situation and one you will
normally encounter.

Configuring machines for testing from scratch can be a daunting task, especially when the
same steps have to be repeated from one machine to the other. Performing such tasks
manually becomes mundane and error prone. What if there was a way to write a script
describing just how each machine should be set up, and we could run this script to
automate the configuration of any machine for testing? Thankfully, there is!

Vagrant is a tool to create and configure lightweight, reproducible, and portable development
environments. It allows us to automate machine creation and configuration, making what
would have been a daunting and error prone process painless. More information about
Vagrant can be found at http://www.vagrantup.com/.

Vagrant and Virtualbox are cross-platform and work equally well on Windows
and Unix operating systems alike.

How to do it…
In this recipe, we will cover how to distribute our test between two machines on a network.
We will assume that the application we are testing is closed to the world and only visible
from within our network. Perform the following steps:

1. Download and install Vagrant as described in the Appendix, Installing Supporting
Software Needed for the Book.

2. Download and extract the bundled scripts accompanying the book (8280OS_ch5_
recipe_vagrant_internal.zip), or alternatively clone the GitHub repository
at https://github.com/jmeter-cookbook/recipe_vagrant_internal_
shell on each machine you want to use as a test server.

http://www.vagrantup.com/
https://github.com/jmeter-cookbook/recipe_vagrant_internal_shell
https://github.com/jmeter-cookbook/recipe_vagrant_internal_shell

Diving into Distributed Testing

110

Vagrant requires VirtualBox or VMware Fusion to run. Make
sure they are installed on each machine before proceeding. At
the time of writing this book, Vagrant is at version 1.6.2 and
VirtualBox at 4.3.12. These are the versions we use throughout
the book. Refer to the Appendix for installation instructions.

3. On each machine, open a terminal window and change the directory of the extract (or
GitHub clone) and run the following code:
vagrant up

4. You should see logs similar to the following code:
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Clearing any previously set network interfaces...
==> default: Available bridged network interfaces:
1) en0: Ethernet
2) en1: Wi-Fi (AirPort)
 default: What interface should the network bridge to? 1
==> default: Preparing network interfaces based on
configuration...
 default: Adapter 1: nat
 default: Adapter 2: bridged
==> default: Forwarding ports...
 default: 1099 => 1097 (adapter 1)
 default: 22 => 2222 (adapter 1)
==> default: Booting VM...
==> default: Waiting for machine to boot. This may take a few
minutes...
…

5. Run vagrant status to verify whether a virtual machine has been set up and is
running. You should see something similar to the following code:
Current machine states:
default running (virtualbox)

6. Connect to the virtual machine by running vagrant ssh.

7. On VirtualBox, ensure JMeter has been properly set up at /usr/local/apache-
jmeter-2.11 by running the following code:
 /usr/local/apache-jmeter-2.11/bin/jmeter.sh –v

Chapter 5

111

8. You should see logs similar to the following code:
…
Copyright (c) 1998-2014 The Apache Software Foundation
Version 2.11 r1554548

9. Repeat steps 5 to 7 on the other box(es) to ensure they are ready for testing.

10. Run the bundled test plan on each machine by running the following code:
/usr/local/apache-jmeter-2.11/bin/jmeter -n -t /vagrant/testplans/
shoutbox_loop.jmx -l /vagrant/testplans/output.csv

11. Wait until the test finishes executing on each box. You should see something similar
to the following code:
2014/05/27 17:20:45 INFO - jmeter.engine.StandardJMeterEngine:
Notifying test listeners of end of test
2014/05/27 17:20:45 INFO - jmeter.reporters.Summariser: summary +
2711 in 17s = 160.7/s Avg: 521 Min: 76 Max: 1677 Err:
0 (0.00%) Active: 0 Started: 200 Finished: 200
summary + 2711 in 17s = 160.7/s Avg: 521 Min: 76 Max:
1677 Err: 0 (0.00%) Active: 0 Started: 200 Finished: 200
2014/05/27 17:20:45 INFO - jmeter.reporters.Summariser: summary =
7800 in 45.4s = 171.7/s Avg: 470 Min: 76 Max: 6100 Err:
1 (0.01%)
summary = 7800 in 45.4s = 171.7/s Avg: 470 Min: 76 Max:
6100 Err: 1 (0.01%)
Tidying up ... @ Tue May 27 17:20:45 UTC 2014 (1401211245810)
... end of run

12. Gather the results from each box by copying each output to a common accessible
location on your network. In our case, the output file on each box is written to the
testplans directory, which can be seen on the host machine.

You can use a sync service like Dropbox (http://www.dropbox.com)
to share files between two or more machines if you are having difficulty
sharing files between your test servers.

13. Merge the output from all test boxes into one file. Readers following along on
Windows can do that in a text editor. On Unix, we can use a cat command
as follows:
cat output1.csv output2.csv >> merged-output.csv

14. Launch the JMeter GUI.

15. Add the Summary Report listener by navigating to Test Plan | Add | Listener |
Summary Report.

http://www.dropbox.com

Diving into Distributed Testing

112

16. Click on Summary Report.

17. Click on the Browse… button. Select the merged-output.csv file and observe the
results of the test, as shown in the following screenshot:

Summary Report of output on an internal virtual machine

How it works…
Our goal in this recipe was to distribute our test load between two machines on the network.
We started out by installing Vagrant, a tool to help us build and configure machines with
minimal fuss on each target machine. Using a configuration file (Vagrantfile), we were able
to configure two machines with JMeter installed and ready to run our test scripts (steps 3 to
8). Once configured, we ran our tests in non-GUI mode, specifying additional commands when
starting JMeter (step 10). The -n command instructed JMeter to run in non-GUI mode, -t told
it what file to run, and -l specified the location to write the results of the test execution to.

Once each box completed its test, we gathered the results from each individual box and
then merged the results into one. We were then able to view the combined results of the
distributed load test with JMeter's Summary Report listener.

There's more...
Using the same concepts illustrated in this recipe, we can create many more virtual machines
to meet the targeted load for testing. If the application is public facing, then we could gain
access to many more machines through Cloud services and infrastructure to perform our
tests. For more on leveraging the Cloud for distributed testing, see the following recipes:

 f Testing external facing applications using JMeter, Vagrant, and AWS

 f Testing external facing applications using Flood.IO

 f Testing external facing applications using BlazeMeter

Chapter 5

113

Testing external facing applications using
JMeter, Vagrant, and AWS

Once the target test load of an application reaches a certain point (it varies from application
to application), you can no longer accurately perform tests on it from a single box. The
main reason for this is resource limitation. Each machine, no matter how powerful it is, is
limited by RAM, processor speed, and so on. A clever workaround to resource limitation is
divide-and-conquer. With this technique, the test load can be distributed to several low- or
middle-end machines, thus achieving the target test goal without sacrificing test accuracy.

Amazon Web Services (AWS) offers a broad set of global compute, storage, database, analytics,
application, and deployment services that help them move faster and scale applications
with lower IT costs. With its services, we can create several virtual machines needed for our
distributed load test without having to worry about all the low-level infrastructure details.
More information about AWS can be found at https://aws.amazon.com/.

To follow along with this recipe, you need an AWS account. You can
register for free at https://aws.amazon.com.

How to do it…
In this recipe, we will see how we can leverage Vagrant and AWS to conduct distributed testing
with JMeter, essentially rolling out our own testing infrastructure in the Cloud. Perform the
following steps:

1. Download and install Vagrant by navigating to http://www.vagrantup.com/.

2. Open a terminal window and run the following command: vagrant plugin
install vagrant-aws. You will see logs similar to the following code:
Installing the 'vagrant-aws' plugin. This can take a few
minutes...
Building nokogiri using packaged libraries.
…
Installed the plugin 'vagrant-aws (0.4.1)'!

3. Clone the project from GitHub at https://github.com/jmeter-cookbook/
recipe_vagrant_aws_shell and follow the README.md instructions or download
the recipe bundle with the book (8280OS_ch5_recipe_vagrant_aws.zip).

https://aws.amazon.com/
https://aws.amazon.com
http://www.vagrantup.com/
https://github.com/jmeter-cookbook/recipe_vagrant_aws_shell
https://github.com/jmeter-cookbook/recipe_vagrant_aws_shell

Diving into Distributed Testing

114

4. Modify the following entries in the Vagrantfile with the appropriate settings from
your AWS account and save the file when done:
aws.access_key_id = "YOUR AWS KEY ID"
aws.secret_access_key = "YOUR AWS SECRET KEY"
aws.keypair_name = "YOUR KEYPAIR NAME"
aws.region = "YOUR AWS REGION"
override.ssh.private_key_path = "PATH TO YOUR PRIVATE KEY"

Your access key, secret access key, and keypair can be obtained
by following the documentation at http://aws.amazon.com/
documentation/ec2/.

5. On the terminal, run vagrant up vm1 --provider=aws to create and start the
first virtual machine. You should see logs similar to the following code:
Bringing machine 'vm1' up with 'aws' provider...
[fog][WARNING] Unable to load the 'unf' gem. Your AWS strings may
not be properly encoded.
==> vm1: HandleBoxUrl middleware is deprecated. Use HandleBox
instead.
==> vm1: This is a bug with the provider. Please contact the
creator
==> vm1: of the provider you use to fix this.
==> vm1: Warning! The AWS provider doesn't support any of the
Vagrant
==> vm1: high-level network configurations (`config.vm.network`).
They
==> vm1: will be silently ignored.
==> vm1: Launching an instance with the following settings...
==> vm1: -- Type: m1.small
==> vm1: -- AMI: ami-7747d01e
==> vm1: -- Region: us-east-1
==> vm1: -- Keypair: cookbook-key
==> vm1: -- Block Device Mapping: []
==> vm1: -- Terminate On Shutdown: false
==> vm1: -- Monitoring: false
==> vm1: -- EBS optimized: false
==> vm1: Waiting for instance to become "ready"...
==> vm1: Waiting for SSH to become available...
==> vm1: Machine is booted and ready for use!
...
==> vm1: notice: /Stage[main]/Java::Package_debian/Package[java]/
ensure: ensure changed 'purged' to 'present'
==> vm1: notice: Finished catalog run in 111.06 seconds

http://aws.amazon.com/documentation/ec2/
http://aws.amazon.com/documentation/ec2/

Chapter 5

115

6. Run vagrant up vm2 --provider=aws to create and start the second
virtual machine.

7. Verify that both machines are running with the vagrant status command.
You should see the following logs:
Current machine states:
vm1 running (aws)
vm2 running (aws)

8. Verify that both machines are ready for testing by running the following commands on
both machines:
vagrant ssh vm1 (or vagrant ssh vm2 for the second machine)
/usr/local/apache-jmeter-2.11/bin/jmeter –v

9. Run the bundled test plan on each machine by running the following code:
/usr/local/apache-jmeter-2.11/bin/jmeter -n -t /vagrant/testplans/
shoutbox_loop.jmx -l /vagrant/testplans/output.csv

10. Wait until the test finishes executing on each box. You should see something similar
to the following code:
…
2014/05/27 22:33:22 INFO - jmeter.threads.JMeterThread: Thread
finished: Browsing Group 1-199
2014/05/27 22:33:22 INFO - jmeter.threads.JMeterThread: Thread
finished: Browsing Group 1-196
2014/05/27 22:33:23 INFO - jmeter.threads.JMeterThread: Thread
finished: Browsing Group 1-200
2014/05/27 22:33:23 INFO - jmeter.engine.StandardJMeterEngine:
Notifying test listeners of end of test
2014/05/27 22:33:23 INFO - jmeter.reporters.Summariser: summary +
6226 in 25s = 249.8/s Avg: 118 Min: 13 Max: 1757 Err:
0 (0.00%) Active: 0 Started: 200 Finished: 200
summary + 6226 in 25s = 249.8/s Avg: 118 Min: 13 Max:
1757 Err: 0 (0.00%) Active: 0 Started: 200 Finished: 200
2014/05/27 22:33:23 INFO - jmeter.reporters.Summariser: summary =
7800 in 31.2s = 250.1/s Avg: 131 Min: 13 Max: 2069 Err:
0 (0.00%)
summary = 7800 in 31.2s = 250.1/s Avg: 131 Min: 13 Max:
2069 Err: 0 (0.00%)
Tidying up ... @ Tue May 27 22:33:23 UTC 2014 (1401230003229)
... end of run

Diving into Distributed Testing

116

11. Gather the results from each box by copying each output to a commonly accessible
location on your network using a command-line utility like scp. In our case, the
output file on each box is written to the testplans directory on the virtual machine
since that is the location we specified as the output directory. For example,
we grabbed the files from our virtual machines using the following syntax:
scp -i [PATH TO YOUR KEYPAIR FILE] ubuntu@[HOST IP]:/vagrant/
testplans/[OUTPUT FILE CSV] .

12. For example, look at the following code:
scp -i ~/cookbook-key.pem ubuntu@50.16.19.128:/vagrant/testplans/
output.csv vm1-out.csv
scp -i ~/cookbook-key.pem ubuntu@54.87.206.240:/vagrant/testplans/
output.csv vm2-out.csv

You can also use a GUI tool such as Cyberduck
(http://cyberduck.io/) to retrieve files from the
virtual machine boxes if the command line isn't your cup
of tea.

13. Merge the output from all test boxes into one file. Readers following along on
Windows can do that in a text editor. On Unix, we can use a cat command
as follows:
cat vm1-out.csv vm2-out.csv >> merged-output.csv

14. Launch the JMeter GUI.

15. Add the Summary Report listener by navigating to Test plan | Add | Listener |
Summary Report.

16. Click on Summary Report.

17. Click on the Browse… button.

18. Select the merged-output.csv file and observe the results of the test.

19. Shut down the virtual machines by running vagrant destroy.

AWS is a paid service, and you are charged by the
hour per instance. Be sure to stop the instances when
done with your tests to avoid unnecessary charges.

http://cyberduck.io/

Chapter 5

117

The Summary Report of our AWS test execution is shown in the following screenshot:

How it works…
Our goal in this recipe was to distribute our test load between two virtual machines in the
Cloud. We started out by installing Vagrant, a tool to help us build and configure machines
with minimal fuss on each target machine. Secondly, we installed the vagrant-aws plugin,
which allows Vagrant to create, configure, and manage machines on an AWS infrastructure.
Using a configuration file (Vagrantfile), we were able to configure two machines with
JMeter installed and ready to run our test scripts. Once configured, we ran our tests in
non-GUI mode specifying additional commands when starting JMeter (step 9). The -n
command instructed JMeter to run in non-GUI mode, -t told it what file to run, and -l
specified the location to write the results of the test execution to.

Once each box completed its test, we gathered the results from each individual box using
the scp command (or any such similar tools) and then merged the results into one. We were
then able to view the combined results of the distributed load test with JMeter's Summary
Report listener.

There's more…
This recipe covered how to roll out our own testing Cloud infrastructure with ease. There
are times when you will have a need to do this. One good reason could be lowering your
company's IT cost as this route is far cheaper than maintaining the infrastructure yourself.
Also, there are alternative Cloud services dedicated solely to testing purposes. See the
following recipes for more information:

 f The Testing external facing applications using Flood.IO recipe

 f The Testing external facing applications using BlazeMeter recipe

Diving into Distributed Testing

118

Testing external facing applications using
Flood.IO

When it comes to distributed testing, there is no shortage of available Cloud services that
have sprung up in recent years that do an excellent job of minimizing the time it takes to
set up and run tests. One such service is Flood.IO, located at https://flood.io. In their
words, Flood.IO takes the pain out of setting up and maintaining a Cloud-based load and
performance test infrastructure. By not having to set up and configure machines for testing,
one huge task is taken off from our plates and we are able to focus on what we are really
after, that is, testing our application. Beyond setup and configuration, this service provides
beautiful and detailed analysis reports, real-time monitoring of test execution, the ability to
scale globally on demand, and lots more.

At the time of writing this book, Flood.IO offers both free and paid services. The free service
however is limited, as you might expect and only allows you to run tests for a maximum of
5 minutes. Since the node is shared, you might need to wait for it to become available if any
other users are also using it at the same time.

How to do it…
In this recipe, we will show you how to use Flood.IO to run a distributed test plan in the Cloud.
Since we will be using the free plan, the test is only run within a grid, but that is sufficient for
our purposes.

This recipe requires you to create a free account with Flood.IO.

1. Create a Flood.IO account at https://flood.io.

2. Log in to your account.

3. Click on the Create Flood button on the dashboard.

4. Under Files, upload the shoutbox_loop.jmx file bundled with the book (8280OS_
ch5_cloud_testing.zip). This is also available at https://github.com/
jmeter-cookbook/cloud_testing/raw/master/shoutbox_loop.jmx.

5. Leave the enabled script validation on so that the script can be validated
for correctness.

6. Under Grids, select a grid to run the test in. Since we are on a free account, only one
grid will be available.

7. Fill in the following details for the rest of the variables on the Create Flood page:

 � Name: shoutbox loop

 � Tags: cookbook

https://flood.io
https://flood.io
https://github.com/jmeter-cookbook/cloud_testing/raw/master/shoutbox_loop.jmx
https://github.com/jmeter-cookbook/cloud_testing/raw/master/shoutbox_loop.jmx

Chapter 5

119

 � Threads: 1000
 � Rampup: 90
 � Duration: 600

8. Click on the Start Flood button.
9. Your test should begin shortly after (this may vary depending on the queue for the

box) and start reporting live results from the test execution.
10. Wait for the test simulation to finish and observe the detailed reports.

A link to the reports of the test simulation we ran for this recipe is
located at https://flood.io/nffYmfOzfuGIFZyWtpN8LA.

The creation of floods is shown in the following screenshot:

Creating a flood in Flood.IO

https://flood.io/nffYmfOzfuGIFZyWtpN8LA

Diving into Distributed Testing

120

How it works…
Getting our test simulations running in the Cloud was as easy as it can be. All we need to
do is create an account with Flood.IO and then proceed to create a test simulation, which
in their terms is referred to as a flood. We then uploaded a prerecorded test plan from our
local machine to their service and chose to run in the free available grid. Though optional,
we specified the name for our flood and gave it a tag. Since our uploaded test simulation
uses JMeter's property function, that is, ${__P(threads, 200)}, and ${__P(rampup,
30)} to specify the number of threads to run and how quickly those should be ramped up,
we specified 1000 and 90 to override the defaults. This allowed us to simulate up to 1000
users ramped up over a 90-second period. We also elected to run our test for 10 minutes by
specifying a duration of 600 in the Duration box.

The free tier account only allows you to run the test for 5 minutes at a time
before prematurely stopping your tests.

Once the flood is started, we are immediately transitioned into a live reporting view to show
real-time analysis of the test simulation, as seen in the following screenshot:

Live reporting of a test simulation run on Flood.IO

Chapter 5

121

These reports are detailed and we can trace each individual transaction by clicking on them
for even further analysis.

There's more…
The paid plans allow you to run tests for longer and even customize grids to your liking.
Through the ruby-jmeter gem covered in the Writing Test scripts through Ruby DSL
recipe in Chapter 8, Beyond the Basics we can run our test plans developed in Ruby right
in the Cloud without even visiting the web UI. All that is needed is our Flood.IO API token,
which can be retrieved under the security section of your account settings.

So, as an example, using the ruby-jmeter gem, we can replicate our recipe completely from
the comfort of our local box without needing to fiddle with the UI at all. The code sample is
located at xxx and is also bundled with the code bundle of this book.

Assuming you have installed the ruby-jmeter gem, registered an account with Flood.
IO, and retrieved your API token key, you can save the following contents to a Ruby file, say
shoutbox_loop.rb (located at https://github.com/jmeter-cookbook/cloud_
testing), and run your simulation in the Cloud. Once saved, you can type ruby shoutbox_
loop.rb to run. This is shown in the following code snippet:

require 'rubygems'
require 'ruby-jmeter'
test do
 cookies clear_each_iteration: false
 threads count: 1000, rampup: 90, duration: (60 * 5), continue_
forever: true do
 defaults :domain => 'evening-citadel-2263.herokuapp.com'
 random_timer 1000, 2000
 visit name: 'Home', url: '/'
 visit name: 'Page 2', url: '/2'
 visit name: 'Page 3', url: '/3'
 visit name: 'Page 4', url: '/4'
 visit name: 'Page 3', url: '/3'
 visit name: 'Page 2', url: '/2'
 visit name: 'Home', url: '/'
 end
end.flood('API TOKEN KEY')

Once you hit Enter, the gem responds with a URL to the results of your test, which you can
then open in your browser to see live results like we did earlier.

The results for our simulation run are located at:
https://flood.io/4ddgffykQBuMBDQR8sSOnA.

https://github.com/jmeter-cookbook/cloud_testing
https://github.com/jmeter-cookbook/cloud_testing
https://flood.io/4ddgffykQBuMBDQR8sSOnA

Diving into Distributed Testing

122

See also
 f The Writing Test scripts through Ruby DSL recipe in Chapter 8, Beyond the Basics

 f The Testing external facing applications using BlazeMeter recipe
 f https://github.com/flood-io/ruby-jmeter#running-a-jmeter-test-

plan-on-floodio

Testing external facing applications using
BlazeMeter

Another Cloud service we could use for distributed testing is BlazeMeter, located at
http://blazemeter.com/. In their words, BlazeMeter offers you your own elastic
performance testing Cloud. By not having to set up and configure machines for testing,
one huge task is taken off from our plates and we are able to focus on what we are really
after, testing our application.

At the time of this writing, BlazeMeter offers both free and paid services. The free service
however is limited, as you might expect, and only allows you to run a maximum of
50 concurrent users on shared servers with reports retained for only 24 hours. This
is enough to illustrate the concept in this recipe, so that is what we will be using.

How to do it…
In this recipe, we will show you how to use BlazeMeter to run a distributed test plan in the
Cloud. Since we will be using the free plan, we are limited to a maximum of 50 concurrent
users on a shared machine.

This recipe requires you to create a free account with BlazeMeter.

1. Create a BlazeMeter account at http://blazemeter.com/.
2. Log in to your account.
3. Click on the + button on the top navigation bar.
4. In the Text Name box, enter shoutbox loop.
5. Leave the default load origin as -is.
6. Click on the Upload Files button and upload the shoutbox_loop.jmx file

bundled with the book. This is also available at https://github.com/jmeter-
cookbook/cloud_testing/raw/master/shoutbox_loop.jmx.

https://github.com/flood-io/ruby-jmeter#running-a-jmeter-test-plan-on-floodio
https://github.com/flood-io/ruby-jmeter#running-a-jmeter-test-plan-on-floodio
http://blazemeter.com/
http://blazemeter.com/
https://github.com/jmeter-cookbook/cloud_testing/raw/master/shoutbox_loop.jmx
https://github.com/jmeter-cookbook/cloud_testing/raw/master/shoutbox_loop.jmx

Chapter 5

123

7. Change the Rampup setting to 10 seconds by dragging on the corresponding slider.

8. Change the Duration setting to 10 minutes by dragging on the corresponding slider.

9. Change the JMeter version to 2.11.

10. Leave the rest of the attributes at their default state.

11. Click on the Save button to save the test.

12. Click on the Start button to begin the test run.

13. Your test should begin shortly after (this may vary depending on the queue for the
box) and start reporting live results from the test execution.

14. Wait for the test simulation to finish and observe the detailed reports. This is
demonstrated in the following screenshot:

Adding a new test in BlazeMeter

Diving into Distributed Testing

124

How it works…
Getting our test simulations running in the Cloud is easy. All we need to do is create an
account with BlazeMeter and then proceed to create a test simulation. We then uploaded a
prerecorded test plan from our local machine to their service and chose to run on the freely
shared server. We changed the ramp up setting to 10 seconds and duration to 10 minutes
respectively. With those settings, we saved our test simulation and clicked on the Start button
to begin the simulation run.

The free tier account only allows you to run tests for a maximum of 1 hour
with 50 concurrent users.

Once the test simulation is started, we can view live results by switching to the reports
view. Once the test finishes, an e-mail is sent to you with a link to the detailed report of the
simulation run. The report includes various tabs to help give a different perspective of the
test run. You are able to track individual transactions, errors, hits/sec, CPU, network I/O,
and so on. You can view the reports for our own test run at https://a.blazemeter.com/
report/NTgyOTE1.

There's more…
The paid plans allow you to run tests for longer and spin off a lot more load. Whatever you
use, you can be assured BlazeMeter has a plan to accommodate you. In addition, BlazeMeter
provides a Chrome browser extension to help ease recording test plans and help run the
recorded test plan directly in the Cloud on their infrastructure.

See also
 f The Testing external facing applications using JMeter, Vagrant, and AWS recipe

 f The Testing external facing applications using Flood.IO recipe

 f The Recording scripts via the Chrome browser extension recipe in Chapter 1,
JMeter Fundamentals

https://a.blazemeter.com/report/NTgyOTE1
https://a.blazemeter.com/report/NTgyOTE1

6
Extending JMeter

In this chapter, we will cover the following recipes:

 f Using REST Sampler

 f Using Ultimate Thread Group

 f Using Throughput Shaping Timer

 f Using Console Status Logger

 f Using Dummy Sampler

 f Developing custom JMeter plugins

 f Testing WebSocket-enabled applications

Introduction
No matter how good a tool is, it normally won't provide all the user needs out of the box.
As such, it is important to provide a means by which the tool can be extended to provide
additional functionality. Such extensions can turn an already good tool into a great one.

JMeter is no different. It provides extension points in the form of plugins. Since JMeter is
written in Java, plugins are nothing more than compiled byte code packaged as Java
Archives (JARs).

In this chapter, we will detail how to extend JMeter's functionality by installing some
excellent and well-thought-out plugins, and dive into the details of how to use some of
the components they provide. In the last recipe, we teach you how to write a custom
JMeter plugin from scratch.

Extending JMeter

126

Using REST Sampler
As we explained in Chapter 4, Testing Services, Representational State Transfer (REST)
is an architecture style of designing networked applications that relies on stateless,
client-server, cacheable communications protocol (HTTP). It is lightweight and easily
testable mainly because all communications between client and server are over HTTP.

More information about REST can be found at http://en.wikipedia.org/wiki/
Representational_state_transfer.

How to do it…
In this recipe, we will cover how to test REST web services with the REST Sampler extension.
The main feature of this extension is to allow us to interact with services that work only on
XML. As such, it allows us to deal with XML payloads easily.

REST Sampler can also be used with a service that consumes and
produces JSON.

1. Download the Extras with Libs set of plugins from
http://jmeter-plugins.org/.

2. Install the plugins by doing the following:

1. Extract the ZIP archive to the location of your choice.

2. Copy the ExtrasLibs.jar JMeter plugins from the ext directory of the
extracted location to $JMETER_HOME/lib/ext directory.

3. Copy all the JAR files from the lib directory of the extracted location to the
$JMETER_HOME/lib directory.

3. Launch JMeter.

4. Add Thread Group by navigating to Test Plan | Add | Threads(Users) |
Thread Group.

5. Add the User Defined Variable component by navigating to Thread Group | Add |
Config Element | User Defined Variable.

http://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Representational_state_transfer
http://jmeter-plugins.org/

Chapter 6

127

6. Click on the Add button to add the following variables:

 � Name: base_url

 � Value: http://api-jcb.herokuapp.com

7. Add the HTTP Header Manager component to Thread Group by navigating to
Thread Group | Add | Config Element | HTTP Header Manager.

8. Click on the Add button to add a header attribute with the following parameters:

 � Name: Content-Type

 � Value: application/xml

9. Click on the Add button again to add a second header attribute with the
following parameters:

 � Name: Accept

 � Value: application/xml

10. Add REST Sampler to Thread Group by navigating to Thread Group | Add | Sampler
| jp@gc – REST Sampler.

11. Fill in the details for REST Sampler as follows:

 � Name: Create Holiday Request

 � Method: POST

 � Base Url: ${base_url}

 � Port: (blank)

 � Resource: /holiday-requests/v2

 � Body: This is given by the following code:

 <holidayRequest>
 <employeeId>300</employeeId>
 <employeeName>Jackson Fredo</employeeName>
 <startDate>2014-06-19T00:00:00Z</startDate>
 <endDate>2014-06-25T00:00:00Z</endDate>
 </holidayRequest>

12. Add Regular Expression Extractor to the Create Holiday Request HTTP sampler
by navigating to Create Holiday Request | Add | Post Processor | Regular
Expression Extractor.

http://api-jcb.herokuapp.com

Extending JMeter

128

13. Fill in the details for Regular Expression Extractor as follows:

 � Reference Name: id

 � Regular Expression: <id>(\d+)</id>

 � Template: 1

 � Match No.: 0

 � Default Value: NOT_FOUND

14. Add another REST Sampler component to Thread Group by navigating to Thread
Group | Add | Sampler | jp@gc – REST Sampler. Fill in the details as follows:

 � Name: Modify Holiday

 � Resource: /holiday-requests/v2

 � Method: PUT

 � Body Data: This is given by the following code:

 <holidayRequest>
 <id>${id}</id>
 <employeeId>300</employeeId>
 <employeeName>Jackson Fredo</employeeName>
 <startDate>2014-07-19T00:00:00Z</startDate>
 <endDate>2014-07-25T00:00:00Z</endDate>
 </holidayRequest>

15. Add another REST Sampler component to Thread Group by navigating to Thread
Group | Add | Sampler | jp@gc – REST Sampler. Fill in the details as follows:

 � Name: Delete Holiday

 � Resource: /holiday-requests/v2/${id}

 � Method: DELETE

16. Add a View Results Tree listener to the test plan by navigating to Test Plan | Add |
Listener | View Results Tree.

17. Save and run the test plan. Observe the results of the execution.

How it works…
Since the service endpoints we tested in this recipe consumed and produced XML,
we employed the REST Sampler and leveraged the main feature allowing us to easily
interact with a service.

Chapter 6

129

To test the various REST operations for create, read, update and delete (CRUD), we created a
new test plan, added a Thread Group to it, and added a REST Sampler as a child component
of the Thread Group. For reuse, we added a User Defined Variable component and HTTP
Head Manager components to Thread Group. The former allows us to define common
elements such as the host server, port, request parameters, and so on. The latter allows us
to provide additional arguments or parameters to HTTP Header. This is not to be confused
with request parameters. In our case, our service retrieves and sends XML, so we add a
single entry, Content-Type: application/xml. With those set, we consume our service to
retrieve some resources from a URI. To do this, we configured the path of the REST Sampler
component we added to /holiday-requests/v. This takes care of getting all the vacations
requested by employees. If we wanted to narrow this down and get a particular vacation,
we could instead have used /holiday-requests/v/id, where id is the identifier of
the target vacation.

In the same manner, we provided requests to create, update, and delete a resource in steps
8, 10, and 11 respectively. We accomplished this by adding REST Sampler to Thread Group
with the right HTTP methods accordingly. To create a new resource, we used POST and sent
the XML representing the resource we wanted to create with the HTTP request. To update
a resource, we used PUT and sent the updated resource with the request in XML format.
Finally, to delete the resource, we sent a HTTP request to /holiday-requests/v/id
with a DELETE method, where id represented the resource to delete.

There's more…
It is not uncommon to encounter REST web services that are securely protected. Attempting to
invoke such services without proper credentials will lead to an access denied error. As such,
we have to properly send across the credentials with each request we make to such secured
services. Often, this can be accomplished by adding HTTP Header Properties representing
validation tokens along with each request. Just like we added a header property to denote
that we will be receiving and sending XML messages to our service, we can add additional
header properties to represent such tokens. These tokens vary from service to service,
so be sure to consult the API vendor for the valid properties to set when testing them.

See also
 f Chapter 4, Testing Services.

Extending JMeter

130

Using Ultimate Thread Group
At times, you might need more fine-grained control over your thread groups. You may need
to define initial delays and the run duration for your threads. Also, you may need to specify
separate scheduled records with different values for each of the previously mentioned
properties. This is exactly what Ultimate Thread Group does. It allows you to define an infinite
number of schedule records with different ramp-up times, shutdown times, and flight times
while providing you with a load preview graph. This can help you define test plans that fit
realistic use cases.

How to do it…
In this recipe, we will see how we can use Ultimate Thread Group in our test plans. Perform
the following steps:

1. Download the standard set of plugins from http://jmeter-plugins.org/.

2. Install the plugins by doing the following:

1. Extract the ZIP archive to the location of your choice.

2. Copy the JAR file contained in lib/ext folder of the extract location to
$JMETER_HOME/lib/ext directory.

3. Copy all the JAR files from the lib directory of the extracted location to the
$JMETER_HOME/lib directory.

3. Launch JMeter.

4. Add jp@gc - Ultimate Thread Group by navigating to Test Plan | Add |
Threads(Users) | jp@gc - Ultimate Thread Group.

5. Click on the Add Row button three times to add three separate scheduled records.

6. Fill in the details as follows:

Start Threads
Count

Initial Delay,
sec

Start Time,
sec

Hold Load For,
sec

Shutdown Time

100 0 30 60 10
100 20 45 40 10
50 40 0 60 25

7. Add the HTTP Request component to the thread group by navigating to
jp@gc - Ultimate Thread Group | Add | Sampler | HTTP Request.

http://jmeter-plugins.org/

Chapter 6

131

8. Fill in the following details:

 � Server Name or IP: api-jcb.herokuapp.com

 � Method: GET

 � Path: /holiday-requests

9. Add the Aggregate Report listener to the test plan by navigating to jp@gc - Ultimate
Thread Group | Add | Listener | Aggregate Report.

10. Run the test and observe the result. This is shown in the following screenshot:

Using Ultimate Thread Group

Extending JMeter

132

How it works…
We extended JMeter by downloading and installing extensions from the JMeter plugin website.
Once installed, we had additional components to add to our test plans. One such component
is Ultimate Thread Group. We created a new test plan and added this component to it. We
then defined three separate scheduled records within the Ultimate Thread Group component.
In our case, this gave us a total of 250 simulated users. The first scheduled record starts 100
users within 30 seconds, executes the test for 60 seconds, and shuts them down within 10
seconds. The second scheduled record starts another set of 100 users (with a delay of 20
seconds) within 45 seconds, executes the test for 40 seconds, and shuts them down within
10 seconds. The third scheduled record starts the last set of 50 users (with a delay of 40
seconds) at once, executes the test for 60 seconds, and shuts them down within 25 seconds.

This gave us the load preview graph illustrated in the previous screenshot. With that set,
we added a HTTP Request Sampler component and a result listener to our test plans.
Once executed, we were able to observe what the test plan did and whether it was
exactly as we expected.

See also
Among the additional components provided by the extension is Stepping Thread Group. This
component provides a thread-scheduling algorithm similar to what users of HP's LoadRunner
are used to. You can read more about the details at http://jmeter-plugins.org/wiki/
SteppingThreadGroup/.

Using Throughput Shaping Timer
Sometimes, stakeholders give you a projected target for several components within the
system under load. For example, you might be told that at peak hours, the reporting module
of an application receives high volumes of traffic, while the product viewing module receives
much less traffic. With the help of network engineers, you will be able to come up with the
number of requests per second during peak and off-peak hours for various modules within
the application under test. However, once you have such numbers, it becomes increasingly
difficult to tweak thread groups and timer delay settings within JMeter to simulate a targeted
requests per second (RPS) value for the modules. This is exactly what the Throughput Shaping
Timer component is for. It allows you to easily control a targeted RPS more easily.

http://jmeter-plugins.org/wiki/SteppingThreadGroup/
http://jmeter-plugins.org/wiki/SteppingThreadGroup/

Chapter 6

133

How to do it…
In this recipe, we will show you how to leverage the Throughput Shaping Timer component in
test plans. Perform the following steps:

1. Download the standard set of plugins from http://jmeter-plugins.org/.

2. Install the plugins by doing the following:

 � Extract the ZIP archive to the location of your choice

 � Copy the JAR file contained in lib/ext folder of the extract location to
$JMETER_HOME/lib/ext directory

 � Copy all the JAR files from the lib directory of the extracted location to
$JMETER_HOME/lib directory

3. Launch JMeter.

4. Add Thread Group by navigating to Test Plan | Add | Threads(Users) |
Thread Group.

5. Specify the following values for its attributes:

 � Number of Threads (users): 300

 � Ramp-Up Period (in seconds): 45

 � Loop count: Forever

6. Add the HTTP Request component to Thread Group by navigating to Thread Group |
Add | Sampler | HTTP Request.

7. Fill in the following details:

 � Server Name or IP: api-jcb.herokuapp.com

 � Method: GET

 � Path: /holiday-requests

8. Add Throughput Shaping Timer to Thread Group by navigating to Thread Group |
Add | Timer | jp@gc - Throughput Shaping Timer.

9. Click on the Add Row button five times to add five separate entry records.

10. Fill in the details as follows:

Start RPS End RPS Duration, sec
1 1000 120
1000 1000 60
1000 500 30
500 750 60
750 0 120

http://jmeter-plugins.org/

Extending JMeter

134

11. Add the Transactions per Second listener by navigating to Thread Group | Add |
Listener | jp@gc - Transactions per Second.

12. Add the Aggregate Report listener by navigating to Thread Group | Add | Listener |
Aggregate Report.

13. Run the test and observe the result as shown in the following screenshot:

Using Throughput Shaping Timer

Chapter 6

135

On running our test plan, our results look very close to what we set out to achieve,
as observed in the following screenshot:

The Transactions per Second view of our test run

How it works…
Just as its name implies, the Throughput Shaping Timer add-on helps orchestrate threads,
timer delay, and so on in a manner to ensure the desired throughput is attained (or as close
to it as possible depending on server resources and other constraints). In our case, the goal
was to test a REST endpoint and ensure it could handle as many as 1000 transactions per
second under peak load. With the aid of the Throughput Shaping Timer component, we were
able to configure our desired intent. We added several entries to the component. Each entry
added specified a starting and ending request per second (RPS) and the duration it should
be sustained for. The loading graph attached to the component helps visualize the load on the
server over time.

After the execution of our test, we were able to verify our results by observing the Transaction
per Second listener and see it closely mimic our intended load target.

Extending JMeter

136

The number of threads to attain the desired transactions per second (TPS)
can be calculated as RPS * max response time / 1000.

See also
The full documentation of the Throughput Shaping Timer component can be found at
http://jmeter-plugins.org/wiki/ThroughputShapingTimer/.

Using Console Status Logger
When executing JMeter tests (especially in non-GUI mode), it is helpful to get feedback on
the terminal window regarding the progress and results of the tests. That is the main goal of
the Console Status Logger component. This listener plugin prints short summary logs to the
console while JMeter is running in non-GUI mode. In addition, the same info is written to the
jmeter.log file when running in GUI mode.

How to do it…
In this recipe, we will use Console Status Logger to run a test in non-GUI mode. Perform the
following steps:

1. Download the standard set of plugins from http://jmeter-plugins.org/.

2. Install the plugins by doing the following:

 � Extract the ZIP archive to the location of your choice

 � Copy the JAR file contained in lib/ext folder of the extract location to
$JMETER_HOME/lib/ext directory

 � Copy all the JAR files from the lib directory of the extracted location to the
$JMETER_HOME/lib directory

3. Launch JMeter.

4. Open the ch6_console_status_log.jmx file bundled with the book's
code samples.

5. Add the jp@gc - Console Status Logger component to the test plan by navigating to
Test Plan | Add | Listener | jp@gc - Console Status Logger.

6. Close the JMeter GUI.

7. Run the test in non-GUI mode as shown in the following code snippet:
./jmeter -n -t [absolute path to script file]
./jmeter -n -t /workspace/packtpub/jmeter-cookbook/scripts/ch6/
ch6_console_status_log.jmx

http://jmeter-plugins.org/wiki/ThroughputShapingTimer/
http://jmeter-plugins.org/

Chapter 6

137

8. Observe the results in the terminal session. You should see an output similar to the
following code snippet:

Starting the test @ Thu Jul 03 08:31:56 EDT 2014 (1404390716297)
Waiting for possible shutdown message on port 4445
#0 Threads: 10/50 Samples: 1 Latency: 13 Resp.Time:
693 Errors: 0
#1 Threads: 13/50 Samples: 30 Latency: 66 Resp.Time:
459 Errors: 0
#2 Threads: 18/50 Samples: 53 Latency: 34 Resp.Time:
262 Errors: 0
summary + 85 in 3.2s = 26.3/s Avg: 336 Min: 127 Max:
1743 Err: 0 (0.00%) Active: 18 Started: 18 Finished: 0
#3 Threads: 23/50 Samples: 69 Latency: 31 Resp.Time:
264 Errors: 0
#4 Threads: 28/50 Samples: 110 Latency: 19 Resp.Time:
221 Errors: 0
#5 Threads: 33/50 Samples: 106 Latency: 32 Resp.Time:
276 Errors: 0
#6 Threads: 37/50 Samples: 38 Latency: 116 Resp.Time:
656 Errors: 0
#7 Threads: 42/50 Samples: 152 Latency: 56 Resp.Time:
325 Errors: 0
#8 Threads: 47/50 Samples: 122 Latency: 36 Resp.Time:
352 Errors: 0
#9 Threads: 50/50 Samples: 215 Latency: 27 Resp.Time:
254 Errors: 0
...
summary + 3165 in 28s = 115.0/s Avg: 300 Min: 119 Max:
2079 Err: 0 (0.00%) Active: 0 Started: 50 Finished: 50
summary = 3250 in 30.1s = 108.0/s Avg: 301 Min: 119 Max:
2079 Err: 0 (0.00%)
Tidying up ... @ Thu Jul 03 08:32:26 EDT 2014 (1404390746878)
... end of run

How it works…
Once added to a test plan, the Console Status Log listener prints short summary logs of the
progress of the test to the console as it executes in non-GUI mode. The information printed
includes the number of active threads running, the number of samples, the average response
time, the error rate as a percentage, and the average latency time. This is slightly more
expressive than the default output from JMeter. The following is a sample of the output
from the same test execution without the Console Status Log listener:

Waiting for possible shutdown message on port 4445
summary + 1696 in 11.1s = 153.2/s Avg: 184 Min: 55 Max: 1208
Err: 0 (0.00%) Active: 47 Started: 50 Finished: 3

Extending JMeter

138

summary + 1554 in 20.1s = 77.4/s Avg: 303 Min: 55 Max: 1485
Err: 0 (0.00%) Active: 0 Started: 50 Finished: 50
summary = 3250 in 30.3s = 107.3/s Avg: 241 Min: 55 Max: 1485
Err: 0 (0.00%)
Tidying up ... @ Thu Jul 03 08:40:19 EDT 2014 (1404391219234)
... end of run

The same information printed to the console is also written to the
jmeter.log file in GUI mode.

Using Dummy Sampler
Dummy Sampler is one of the most useful components you will come across. This sampler
generates responses with the values already defined. For example, this can be very handy
when used in combination with postprocessors such as the RegExp extractor, BeanShell
postprocessor, CSS/JQuery extractor, BSF postprocessor, and so on. It cuts down script
development and debugging time since you don't have to be repetitive with test executions
or wait for certain conditions in the application under test to be met.

How to do it…
In this recipe, we will use Dummy Sampler with test plans to debug and extract information for
a response using the BSF postprocessor. Perform the following steps:

1. Download the standard set of plugins from http://jmeter-plugins.org/.

2. Install the plugins by doing the following:

 � Extract the ZIP archive to a location of your choice

 � Copy the JAR file contained in lib/ext folder of the extracted location to
the $JMETER_HOME/lib/ext directory

 � Copy all the JAR files from the lib directory of the extracted location to the
$JMETER_HOME/lib directory

3. Download the groovy-all JAR file from http://devbucket-afriq.
s3.amazonaws.com/jmeter-cookbook/groovy-all-2.3.3.jar, or by
searching "maven central" at http://search.maven.org, and add it to the
$JMETER_HOME/lib directory.

4. Launch JMeter.

5. Add Thread Group by navigating to Test Plan | Add | Threads(Users) |
Thread Group.

6. Add Dummy Sampler to Thread Group by navigating to Thread Group | Add |
Sampler | jp@gc - Dummy Sampler.

http://jmeter-plugins.org/
http://devbucket-afriq.s3.amazonaws.com/jmeter-cookbook/groovy-all-2.3.3.jar
http://devbucket-afriq.s3.amazonaws.com/jmeter-cookbook/groovy-all-2.3.3.jar
http://search.maven.org

Chapter 6

139

7. In the Response Data text area, add the following content:
<records>
 <car name='HSV Maloo' make='Holden' year='2006'>
 <country>Australia</country>
 <record type='speed'>Production Pickup Truck with speed of
271kph</record>
 </car>
 <car name='P50' make='Peel' year='1962'>
 <country>Isle of Man</country>
 <record type='size'>Smallest Street-Legal Car at 99cm wide
and 59 kg in weight</record>
 </car>
 <car name='Royale' make='Bugatti' year='1931'>
 <country>France</country>
 <record type='price'>Most Valuable Car at $15 million</
record>
 </car>
</records>

8. Add BSF PostProcessor as a child of Dummy Sampler by navigating to
jp@gc - Dummy Sampler | Add | Post Processors | BSF PostProcessor.

9. Select groovy as the language of choice in the Language drop-down box.

10. In the Scripts text area, add the following content:
def response = prev.getResponseDataAsString()
def slurper = new XmlSlurper()
def html = slurper.parseText(response)
def cars =
 html.car.collect {
 [
 name: it.@name.text(),
 make: it.@make.text(),
 year: it.@year.text(),
 country: it.country

]
 }

int count = 0
cars.each {
 vars.putObject("car_${count++}", it)
}

Extending JMeter

140

11. Add the View Results Tree listener to the test plan by navigating to Test Plan | Add |
Listener | jp@gc - Console Status Logger.

12. Add the Console Status Log component to the test plan by navigating to Test Plan |
Add | Listener | View Results Tree.

13. Add Debug Sampler to the test plan by navigating to Test Plan | Add | Sampler |
Debug Sampler.

14. Run the test and observe the results.

How it works…
Our goal was to illustrate how the Dummy Sampler component could be used to generate
a response and extract relevant information from the produced response. In step 6, we
added a Dummy Sampler component to our test plan and filled the response with an XML
response in step 7. Normally, such responses will be generated from the server in response to
requesting a resource. With the response at hand, we then proceeded to add a postprocessor
component to extract information from it. In our case, we chose BSF PostProcessor, but
other postprocessors (depending on your needs) could have easily been used. For our sample
response, we wanted to extract information such as the name, make, year, and country for
as many cars as are in the response. Some of those details were nested within the response
and might be cumbersome to extract without the powerful nature of BSF PostProcessor. In
the end, we were able to extract the information we were interested in and publish them as
JMeter variables, thereby making them available to other JMeter components that might wish
to act on them further down the test plan.

There's more…
Though we entered an XML response in the Dummy Sampler component, it can handle any
other type of responses including JSON, HTML, text, and so on. Also, Dummy Sampler allows
you more fine-grained control over the response code, response message, response time, and
latency of requests.

Developing custom JMeter plugins
One of the major benefits of using JMeter is that it is open source. As a result, it has a high
level of community involvement that has lead to the creation of ample plugins that can be
used to extend it and provide functionality that doesn't come out of the box. In the rare
event that a plugin you need doesn't already exist, or the already existing one doesn't suit
your needs, nothing stops you from creating one and contributing to the community. This is
a huge win for JMeter over other closed commercial tools, as this opens up a new realm
of possibilities.

Chapter 6

141

How to do it…
JMeter comes bundled with an FTP sampler out of the box. In today's world of high secrecy,
this protocol is too weak to use to transfer any kind of sensitive information between two
machines, as information is not relayed over a secure channel and is thus subject to
eavesdropping. To transfer files securely, we will develop a minimalistic SFTP component
(credit goes to Yoann Ciabaud) that we can use within our test plans.

In this recipe, we will show you the process of developing a custom component. Perform the
following steps:

1. Install JDK as described in the Appendix.

2. Install Gradle (a build tool) as described in the Appendix.

3. Create a new folder named jmeter-sftp-sampler on your machine. We will refer
to this folder as $ROOT_FOLDER.

4. Open a terminal window and navigate to the location of $ROOT_FOLDER.

5. While in $ROOT_FOLDER, run the following command:

 � On Unix:
 gradle init --type java-library

 � On Windows:
 gradle.bat init --type java-library

6. Upon completion of this command, you will have a structure similar to the following
code snippet:
├── build.gradle
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar
│ └── gradle-wrapper.properties
├── gradlew
├── gradlew.bat
├── settings.gradle
└── src
 ├── main
 │ └── java
 │ └── Library.java
 └── test
 └── java
 └── LibraryTest.java
7 directories, 8 files

Extending JMeter

142

7. Delete the Library.java and LibraryTest.java files as they are not needed.
They are shown as follows:

 � rm src/main/java/Library.java

 � rm src/test/java/LibraryTest.java

8. Update the contents of the build.gradle file with the following:
apply plugin: 'java'
repositories {
 mavenCentral()
}
version = '0.1'
dependencies {
 compile 'org.slf4j:slf4j-api:1.7.5'
 testCompile 'junit:junit:4.11'
 compile('org.apache.jmeter:ApacheJMeter_core:2.11') {
 exclude module: 'rsyntaxtextarea'
 }
 compile 'com.fifesoft:rsyntaxtextarea:2.5.0'
 compile 'com.jcraft:jsch:0.1.51'
}

9. On the terminal, while at $ROOT_FOLDER, run mkdir -p src/main/java/com/
jcb/sampler to create a package to hold the classes.

10. Create a file named SFTPSampler.java in the com.jcb.sampler package.

11. Copy the contents of http://bit.ly/1mUCWKN to the SFTPSampler.java file.

12. Create a file named SFTPSamplerBeanInfo.java in the com.jcb.sampler
package.

13. Copy the contents of http://bit.ly/1qIPrk6 to the SFTPSamplerBeanInfo.
java file.

14. Create a file named SFTPUserInfo.java in the com.jcb.sampler package.

15. Copy the contents of http://bit.ly/1omkmhi to the SFTPUserInfo.java file.

16. Build a JAR by running gradle build from $ROOT_FOLDER.

17. Copy the newly created JAR ($ROOT_FOLDER/build/libs/jmeter-sftp-
sampler-0.1.jar) to the $JMETER_HOME/lib/ext directory and cp $ROOT_
FOLDER/build/libs/jmeter-sftp-sampler-0.1.jar $JMETER_HOME/lib/
ext.

18. Launch JMeter.

19. Add Thread Group to the test plan by navigating to Test Plan | Add | Threads(Users)
| Thread Group.

http://bit.ly/1mUCWKN
http://bit.ly/1qIPrk6
http://bit.ly/1omkmhi

Chapter 6

143

20. Verify our newly created component is available in the list of available samplers by
navigating to Thread Group | Add | Sampler | SFTPSampler.

21. Use our sampler to upload or download files from an SFTP server by filling in the
server details and relevant information.

How it works…
Since JMeter is pure Java, any extension in the form of plugins must compile down to byte
code so that the Java Virtual Machine (JVM) can understand. So, it is no surprise that the
first thing we needed to do was ensure we have a JDK installed on our system. The JDK allows
us to write Java programs and also provides us ways to compile such programs to versions
the JVM can execute. To take care of dependency management and building and packaging
the application, we employed Gradle (http://www.gradle.org/), an incredibly powerful
build tool for Java applications. Once Gradle was installed, we were able to use it to set up a
standard Java project with a single command in step 4. In step 6, we deleted unneeded files
put there by our initial setup command. Since we are building a plugin, in step 7, we added
a dependency on JMeter core classes that is needed by all plugin extensions. Furthermore,
since our aim was to build Secure File Transfer Protocol (SFTP) functionality, we added a
dependency on the excellent JSCH library, a pure Java implementation of SSH2 (http://
www.jcraft.com/jsch/). As a result of adding these dependencies, Gradle will take care
of fetching all the JARs needed from external repositories and making them available in the
classpath of our project.

With the required libraries out of the way, we proceeded to create a custom JMeter sampler in
step 9. At minimum, to create a sampler, we need to have a class extend AbstractSampler
and provide an implementation for the sample (entry) method. In this method, we provide
implementation details of how the sampler should function and what we consider a failure or
success of this sampler. At the end of the method's execution, we return an instance of org.
apache.jmeter.samplers.SampleResult, which JMeter will use to report returns back
to test plans. In our case, within the method, we make a secure SSH connection to a server
and perform different operations based on the action configured by the user. This is where we
leverage the JSCH library we added as a dependency earlier on.

In step 11, we created a class, SFTPSamplerBeanInfo, that extends BeanInfoSupport.
This is not a mandatory class, but it was added to create logical groups of elements on the
GUI, and also to set default values for certain elements within our sampler. The final class
that we created, SFTPUserInfo, is just a supporting utility class for our sampler. It is an
implementation of JSCH's com.jcraft.jsch.UserInfo and its sole purpose is to store
password and passphrase entries from our sampler and use them when connecting to
the server.

With all our classes in, we packaged our JAR by running gradle build and copied the
resulting archive to the JMETER_HOME/lib/ext directory, making it available to JMeter.
When we launched JMeter, we saw our sampler was now available to use and could now be
used to securely transfer files between two servers.

http://www.gradle.org/
http://www.jcraft.com/jsch/
http://www.jcraft.com/jsch/

Extending JMeter

144

There's more…
We have barely scratched the surface of what you can achieve by building your own JMeter
plugins. What we built is a watered down version of the nice SSH sampler plugin by Yoann
Ciabaud available at https://github.com/yciabaud/jmeter-ssh-sampler. We
strongly encourage you to have a look at it and give it a try if you enjoy using it. There are
ample samples on the Internet of various plugins, and we encourage you to look at their
source code and gain insight from the wonderful work others have done. A good place to
start will be looking at the samples provided with the JMeter official source code at https://
github.com/apache/jmeter/tree/docs-2.11/src/examples/org/apache/
jmeter/examples/sampler.

See also
A good way to get a grasp of developing custom plugins is to study the already existing ones
out there. A good place to start is looking at the source code of the awesome JMeter-plugins
extension at https://github.com/undera/jmeter-plugins/.

Also, check out the source code of JMeter at https://github.com/apache/jmeter/.

Additionally, check out the Testing FTP services recipe in Chapter 4, Testing Services.

Testing WebSocket-enabled applications
Another common wave of applications in today's flood of web applications is reactive real-
time applications using WebSocket. WebSocket is a protocol that provides full-duplex bi-
directional communication over a single TCP connection using default HTTP and HTTPS ports.
Unlike other protocols, one connection is used for two-way communication for the WebSocket
protocol. This makes it a good candidate for developing browser chat applications, gaming
applications, real-time browser monitoring tools, and so on. It is supported on the majority of
modern web browsers.

How to do it…
In this recipe, we will cover how to test WebSocket-enabled applications with JMeter:

1. Download the JMeter WebSocket Sampler component from https://github.com/
maciejzaleski/JMeter-WebSocketSampler/releases.

2. Download the bundled ZIP containing the needed dependencies for the WebSocket
Sampler component from http://download.eclipse.org/jetty/updates/
jetty-bundles-9.x/9.1.1.v20140108/.

https://github.com/yciabaud/jmeter-ssh-sampler
https://github.com/apache/jmeter/tree/docs-2.11/src/examples/org/apache/jmeter/examples/sampler
https://github.com/apache/jmeter/tree/docs-2.11/src/examples/org/apache/jmeter/examples/sampler
https://github.com/apache/jmeter/tree/docs-2.11/src/examples/org/apache/jmeter/examples/sampler
https://github.com/undera/jmeter-plugins/
https://github.com/apache/jmeter/
https://github.com/maciejzaleski/JMeter-WebSocketSampler/releases
https://github.com/maciejzaleski/JMeter-WebSocketSampler/releases
http://download.eclipse.org/jetty/updates/jetty-bundles-9.x/9.1.1.v20140108/
http://download.eclipse.org/jetty/updates/jetty-bundles-9.x/9.1.1.v20140108/

Chapter 6

145

3. Install the WebSocket Sampler component by doing the following:

1. Place the downloaded JAR from step 1 into the $JMETER_HOME/lib/ext
directory.

2. Place the dependencies specified in https://github.com/
maciejzaleski/JMeter-WebSocketSampler/wiki/Dependencies
(which are included as part of the ZIP file downloaded in step 2) into the
$JMETER_HOME/lib/ext directory. The JARs should be similar to
this listing:

 ├── org.eclipse.jetty.http_9.1.1.v20140108.jar
 ├── org.eclipse.jetty.io_9.1.1.v20140108.jar
 ├── org.eclipse.jetty.util_9.1.1.v20140108.jar
 ├── org.eclipse.jetty.websocket.api_9.1.1.v20140108.jar
 ├── org.eclipse.jetty.websocket.client_9.1.1.v20140108.jar
 └── org.eclipse.jetty.websocket.common_9.1.1.v20140108.jar

4. Launch (or restart) JMeter.

5. Add a new Thread Group to the newly created script by navigating to Test Plan | Add
| Threads (Users) | Thread Group.

6. Add WebSocket Sampler to Thread Group by navigating to Thread Group | Add |
Sampler | WebSocket Sampler.

7. Fill in the following details for the WebSocket Sampler component:

 � Server Name or IP: echo.websocket.org

 � Streaming connection: checked

 � Request data: Websocket request from JMeter

8. Add the View Results Tree listener to the test script by navigating to Test Plan | Add
| Listener | View Results Tree.

9. Save and run the test plan.

https://github.com/maciejzaleski/JMeter-WebSocketSampler/wiki/Dependencies
https://github.com/maciejzaleski/JMeter-WebSocketSampler/wiki/Dependencies

Extending JMeter

146

10. View the results in the listener and observe that the WebSocket request was
successful, as shown in the following screenshot:

Using WebSocket Sampler

How it works…
We extended JMeter with the WebSocket plugin (and its dependencies) to enable JMeter to
understand how to correctly satisfy WebSocket requests. Once installed, we got a WebSocket
Sampler that we then added to our test plan to make WebSocket requests. Each WebSocket
request from a client starts with a HTTP request, provided the server understands the
WebSocket protocol, and it upgrades the HTTP protocol into a WebSocket one during the
handshaking phase of communication. All further communication between the client and
the server is then transmitted over the WebSocket protocol using the token handed off to the
client upon handshaking.

In our previous simple test case, the server echoes back any messages we sent it over the
WebSocket protocol.

Chapter 6

147

There's more…
Socket.io is a library written completely in JavaScript that uses the WebSocket protocol to
communicate but falls back on other methods if needed. It comes in two flavors; a client-side
library to run within the browser and a server-side library for Node.js. We can test applications
that use Socket.io with JMeter. To do so, we have to fully simulate the chain of processes
needed to communicate successfully at that level. This includes the initial HTTP request,
the handshake process (switching from HTTP to the WebSocket protocol), the connection
to the server with the token retrieved from the handshaking step, the event handling (for
example, sending a message), and disconnecting from the server when done. Our test is that
of a minimal chat application that uses Socket.io at its core. Take a look at the sample
application at http://chattybox.herokuapp.com and the test script written for it in
scripts/ch6/websocket_02.jmx.

See also
You can read more about WebSocket and socket.io at http://www.websocket.org
and https://github.com/automattic/socket.io-protocol.

http://chattybox.herokuapp.com
http://www.websocket.org
https://github.com/automattic/socket.io-protocol

7
Building, Debugging,

and Analyzing the
Results of Test Plans

In this chapter, we will cover the following recipes:

 f Using the View Results Tree listener

 f Using the Aggregate Report listener

 f Debugging with Debug Sampler

 f Using Constant Throughput Timer

 f Using the JSR223 postprocessor

 f Analyzing Response Times Over Time

 f Analyzing transactions per second

 f Using User Defined Variables (UDV)

Introduction
One of the critical aspects of performance testing is knowing the right tools to use to attain
your desired targets. Even when you settle on a tool, it is helpful to understand its features,
component sets, and extensions, and appropriately apply them when needed.

In this chapter, we will go over some helpful components that will aid you in recording robust
and realistic test plans while effectively analyzing reported results. We will also cover some
components to help you debug test plans.

Building, Debugging, and Analyzing the Results of Test Plans

150

Using the View Results Tree listener
One of the most often used listeners in JMeter is the View Results Tree listener. This listener
shows a tree of all sample responses, giving you quick navigation of any sample's response
time, response codes, response content, and so on. The component offers several ways to
view the response data, some of which allow you to debug CSS/jQuery, regular expressions,
and XPath queries, among other things. In addition, the component offers the ability to
save responses to file, in case you need to store them for offline viewing or run some other
processes on them. Along with the various bundled testers, the component provides a search
functionality that allows you to quickly search for the responses of relevant items.

How to do it…
In this recipe, we will cover how to add the View Results Tree listener to a test plan and
then use its in-built testers to test the response and derive expressions that we can use
in postprocessor components. Perform the following steps:

1. Launch JMeter.

2. Add Thread Group to the test plan by navigating to Test Plan | Add | Threads (Users)
| Thread Group.

3. Add HTTP Request to the thread group by navigating to Thread Group | Add |
Sampler | HTTP Request.

4. Fill in the following details:

 � Server Name or IP: dailyjs.com

5. Add the View Results Tree listener to the test plan by navigating to Test Plan | Add |
Listener | View Results Tree.

6. Save and run the test plan.

7. Once done, navigate to the View Results Tree component and click on the Response
Data tab.

8. Observe some of the built-in renders.

9. Switch to the HTML render view by clicking on the dropdown and use the search
textbox to search for any word on the page.

10. Switch to the HTML (download resources) render view by clicking on the dropdown.

11. Switch to the XML render view by clicking on the dropdown. Notice the entire HTML
DOM structure is presented as the XML node elements.

12. Switch to the RegExp Tester render view by clicking on the dropdown and try out
some regular expression queries.

13. Switch to the XPath Query Tester render view and try out some XPath queries.

Chapter 7

151

14. Switch to the CSS/jQuery Tester render view and try out some jQuery queries, for
example, selecting all links inside divs marked with a class preview (Selector:
div.preview a, Attribute: href, CSS/jQuery Implementation: JSOUP).

How it works…
As your test plans execute, the View Result Tree listener reports each sampler in your test
plans individually. The Sampler Result tab of the component gives you a summarized view of
the request and response including information such as load time, latency, response headers,
body content sizes, response code and messages, response header content, and so on. The
Request tab shows the actual request that got fulfilled by the sampler, which could be any
of the acceptable requests the server can fulfill (for example, GET, POST, PUT, DELETE, and
so on) along with details of the request headers. Finally, the Response Data tab gives the
rendered view of the response received back from the server. The component includes several
built-in renders along with tester components (CSS/JQuery, RegExp, and XPath) that allow
us to test and come up with the right expressions or queries needed to use in postprocessor
components within our test plans. This is a huge time saver as it means we don't have to
exercise the same tests repeatedly to nail down such expressions.

There's more…
As with most things bundled with JMeter, additional view renders can be added to the View
Result Tree component. The defaults included are Document, HTML, HTML (download
resources), JSON, Text, and XML. Should any of these not suit your needs, you can create
additional ones by implementing org.apache.jmeter.visualizers.ResultRender
interface and/or extending org.apache.jmeter.visualizers.SamplerResultTab
abstract class, bundling up the compiled classes as a JAR file and placing them in the
$JMETER_HOME/lib/ext directory to make them available for JMeter.

The View Result Tree listener consumes a lot of memory and CPU resources,
and should not be used during load testing. Use it only to debug and validate
the test plans.

See also
 f The Debugging with Debug Sampler recipe

 f The detailed component reference for the View Results Tree listener can be found
at http://jmeter.apache.org/usermanual/component_reference.
html#View_Results_Tree.

http://jmeter.apache.org/usermanual/component_reference.html#View_Results_Tree
http://jmeter.apache.org/usermanual/component_reference.html#View_Results_Tree

Building, Debugging, and Analyzing the Results of Test Plans

152

Using the Aggregate Report listener
Another often used listener in JMeter is the Aggregate Report listener. This listener creates a
row for each uniquely named request in the test plan. Each row gives a summarized view of
useful information including Request Count, Average, Median, Min, Max, 90% Line, Error
Rate, Throughput, Requests/second, and KB/sec. The 90% Line column is particularly
worth paying close attention to as you execute your tests. This figure gives you the time it
takes for the majority of threads/users to execute a particular request. It is measured in
milliseconds. Higher numbers here are indicative of slow requests and/or components
within the application under test.

Equally important is the Error % column, which reports the failure rate of each sampled
request. It is reasonable to have some level of failure when exercising test runs, but too high
a number is an indication of either errors in scripts or certain components in the application
under test. Finally, of interest to stack holders might be the number of requests per second,
which the Throughput column reports. The throughput values are approximate and let you
know just how many requests per second the server is able to handle.

How to do it…
In this recipe, we will cover how to add an Aggregate Report listener to a test plan and then
see the summarized view of our execution:

1. Launch JMeter.
2. Open the ch7_shoutbox.jmx script bundled with the code samples. Alternatively,

you can download it from https://github.com/jmeter-cookbook/bundled-
code/scripts/ch7/ch7_shoutbox.jmx.

3. Add the Aggregate Report listener to Thread Group by navigating to Thread Group |
Add | Listener | Aggregate Report.

4. Save and run the test plan.
5. Observe the real-time summary of results in the listener as the test proceeds.

How it works…
As your test plans execute, the Aggregate Report listener reports each sampler in your test
plan on a separate row. Each row is packed with useful information. The Label column reflects
the sample name, # Samples gives a count of each sampler, and Average, Mean, Min, and
Max all give you the respective times of each sampler. As mentioned earlier, you should
pay close attention to the 90% Line and Error % columns. This can help quickly pinpoint
problematic components within the application under test and/or scripts. The Throughput
column gives an idea of the responsiveness of the application under test and/or server.
This can also be indicative of the capacity of the underlying server that the application
under test runs on. This entire process is demonstrated in the following screenshot:

https://github.com/jmeter-cookbook/bundled-code/scripts/ch7/ch7_shoutbox.jmx
https://github.com/jmeter-cookbook/bundled-code/scripts/ch7/ch7_shoutbox.jmx

Chapter 7

153

Using the Aggregate Report listener

See also
 f http://jmeter.apache.org/usermanual/component_reference.

html#Summary_Report.

Debugging with Debug Sampler
Often, in the process of recording a new test plan or modifying an existing one, you will need
to debug the scripts to finally get your desired results. Without such capabilities, the process
will be a mix of trial and error and will become a time-consuming exercise. Debug Sampler is
a nifty little component that generates a sample containing the values of all JMeter variables
and properties. The generated values can then be seen in the Response Data tab of the
View Results Tree listener. As such, to use this component, you need to have a View Results
Tree listener added to your test plan. This component is especially useful when dealing with
postprocessor components as it helps to verify the correct or expected values that were
extracted during the test run.

How to do it…
In this recipe, we will see how we can use Debug Sampler to debug a postprocessor in our test
plans. Perform the following steps:

1. Launch JMeter.

2. Open the prerecorded script ch7_debug_sampler.jmx bundled with the book.
Alternatively, you can download it from http://git.io/debug_sampler.

3. Add Debug Sampler to the test Thread Group by navigating to Thread Group | Add |
Sampler | Debug Sampler.

4. Save and run the test.

http://jmeter.apache.org/usermanual/component_reference.html#Summary_Report
http://jmeter.apache.org/usermanual/component_reference.html#Summary_Report
http://git.io/debug_sampler

Building, Debugging, and Analyzing the Results of Test Plans

154

5. Navigate to the View Results Tree listener component.

6. Switch to RegExp Tester by clicking on the dropdown.

7. Observe the response data of the Get All Requests sampler.

8. What we want is a regular expression that will help us extract the ID of entries within
this response. After a few attempts, we settle at "id":(\d+).

9. Enable all the currently disabled samplers, that is, Request/Create Holiday Request,
Modify Holiday, Get All Requests, and Delete Holiday Request.

10. You can achieve this by selecting all the disabled components, right-clicking on them,
and clicking on Enable.

11. Add the Regular Expression Extractor postprocessor to the Request/Create Holiday
Request sampler by navigating to Request/Create Holiday Request | Add | Post
Processors | Regular Expression Extractor.

12. Fill in the following details:

 � Reference Name: id

 � Regular Expression: "id":(\d+)

 � Template: 1

 � Match No.: 0

 � Default Value: NOT_FOUND

13. Save and rerun the test.

14. Observe the ID of the newly created holiday request and whether it was correctly
extracted and reported in Debug Sampler.

How it works…
Our goal was to test a REST API endpoint that allows us to list, modify, and delete existing
resources or create new ones. When we create a new resource, the identifier (ID) is
autogenerated from the server. To perform any other operations on the newly created
resource, we need to grab its autogenerated ID, store that in a JMeter variable, and use it
further down the execution chain. In step 7, we were able to observe the format of the server
response for the resource when we executed the Get All Requests sampler. With the aid of
RegExp Tester, we were able to nail down the right regular expression to use to extract the
ID of a resource, that is, "id":(\d+). Armed with this information, we added a Regular
Expression Extractor postprocessor component to the Request/Create Holiday Request
sampler and used the derived expression to get the ID of the newly created resource. We then
used the ID stored in JMeter to modify and delete the resource down the execution chain.
After test completion, with the help of Debug Sampler, we were able to verify whether the
resource ID was properly extracted by the Regular Expression Extractor component and
stored in JMeter as an ID variable.

Chapter 7

155

Using Constant Throughput Timer
While running test simulations, it is sometimes necessary to be able to specify the throughput
in terms of the number of requests per minute. This is the function of Constant Throughput
Timer. This component introduces pauses to the test plan in such a way as to keep the
throughput as close as possible to the target value specified. Though the name implies it
is constant, various factors affect the behavior, such as server capacity, other timers or
time-consuming elements in the test plan, and so on. As a result, the targeted throughput
could be lowered.

How to do it…
In this recipe, we will add Constant Throughput Timer to our test plan and see how we can
specify the expected throughput with it. Perform the following steps:

1. Launch JMeter.

2. Open the prerecorded script ch7_constant_throughput.jmx bundled with
the book. Alternatively, you can download it from http://git.io/constant_
throughput.

3. Add Constant Throughput Timer to Thread Group by navigating to Thread Group |
Add | Timer | Constant Throughput Timer.

4. Fill in the following details:

 � Target throughput (in samples per minute): 200

 � Calculate Throughput based on: this thread only

5. Save and run the test plan.

6. Allow the test to run for about 5 minutes.

7. Observe the result in the Aggregate Result listener as the test is going on.

8. Stop the test manually as it is currently set to run forever.

How it works…
The goal of the Constant Throughput Timer component is to get your test plan samples as
close as possible to a specified desired throughput. It achieves this by introducing variable
pauses to the test plan in such a manner that will keep numbers as close as possible to
the desired throughput. That said, throughput will be lowered if the server resources of the
system under test can't handle the load. Also, other elements (for example, other timers,
the number of specified threads, and so on) within the test plan can affect attaining the
desired throughput.

Building, Debugging, and Analyzing the Results of Test Plans

156

In our recipe, we have specified the throughput rate to be calculated based on a single thread,
but Constant Throughput Timer also allows throughput to be calculated based on all active
threads and all active threads in the current thread group. Each of these settings can be used
to alter the behavior of the desired throughput.

As a rule of thumb, avoid using other timers at the same time
you use Constant Throughput Timer, since you'll not achieve
the desired throughput.

See also
 f The Using Throughput Shaping Timer recipe in Chapter 6, Extending JMeter
 f http://jmeter.apache.org/usermanual/component_reference.

html#timers

Using the JSR223 postprocessor
The JSR223 postprocessor allows you to use precompiled scripts within test plans. The fact
that the scripts are compiled before they are actually used brings a significant performance
boost compared to other postprocessors. This also allows a variety of programming languages
to be used, including Java, Groovy, BeanShell, JEXL, and so on. This allows us to harness the
powerful language features in those languages within our test plans.

JSR223 components, for example, could help us tackle preprocessor or postprocessor
elements and samplers, allowing us more control over how elements are extracted from
responses and stored as JMeter variables.

How to do it…
In this recipe, we will see how to use a JSR223 postprocessor within our test plan. We have
chosen Groovy (http://groovy.codehaus.org/) as our choice of scripting language,
but any of the other supporting languages will do:

1. Download the standard set of plugins from http://jmeter-plugins.org/.

2. Install the plugins by doing the following:

 � Extract the ZIP archive to the location of your chosen directory

 � Copy the lib folder in the extracted directory into the
$JMETER_HOME directory

3. Download the groovy-all JAR file from http://devbucket-afriq.
s3.amazonaws.com/jmeter-cookbook/groovy-all-2.3.3.jar and
add it to the $JMETER_HOME/lib directory.

http://jmeter.apache.org/usermanual/component_reference.html#timers
http://jmeter.apache.org/usermanual/component_reference.html#timers
http://groovy.codehaus.org/
http://jmeter-plugins.org/

Chapter 7

157

4. Launch JMeter.

5. Add Thread Group by navigating to Test Plan | Add | Threads(Users) |
Thread Group.

6. Add Dummy Sampler to Thread Group by navigating to Thread Group | Add |
Sampler | jp@gc - Dummy Sampler.

7. In the Response Data text area, add the following content:
<records>
 <car name='HSV Maloo' make='Holden' year='2006'>
 <country>Australia</country>
 <record type='speed'>Production Pickup Truck with speed of
271kph</record>
 </car>
 <car name='P50' make='Peel' year='1962'>
 <country>Isle of Man</country>
 <record type='size'>Smallest Street-Legal Car at 99cm wide
and 59 kg in weight</record>
 </car>
 <car name='Royale' make='Bugatti' year='1931'>
 <country>France</country>
 <record type='price'>Most Valuable Car at $15 million</
record>
 </car>
</records>

8. Download the Groovy script file from http://git.io/8jCXMg to any location of
your choice. Alternatively, you can get it from the code sample bundle accompanying
the book (ch7_jsr223.groovy).

9. Add JSR223 PostProcessor as a child of Dummy Sampler by navigating to
jp@gc - Dummy Sampler | Add | Post Processors | JSR223 PostProcessor.

10. Select Groovy as the language of choice in the Language drop-down box.

11. In the File Name textbox, put in the absolute path to where the Groovy script file is,
for example, /tmp/scripts/ch7/ch7_jsr223.groovy.

12. Add the View Results Tree listener to the test plan by navigating to Test Plan | Add |
Listener | View Results Tree.

13. Add Debug Sampler to Thread Group by navigating to Thread Group | Add | Sampler
| Debug Sampler.

14. Save and run the test.

15. Observe the Response Data tab of Debug Sampler and see how we now have the
JMeter variables car_0, car_1, and car_2, all extracted from the Response Data
tab and populated by our JSR223 postprocessor component.

http://git.io/8jCXMg

Building, Debugging, and Analyzing the Results of Test Plans

158

How it works…
JMeter exposes certain variables to the JSR223 component, allowing it to get hold of sample
details and information, perform logic operations, and store the results as JMeter variables.
The exposed attributes include Log, Label, Filename, Parameters, args[], ctx, vars, props,
prev, sampler, and OUT. Each of these allows access to important and useful information
that can be used during the postprocessing of sampler responses.

The log gives access to Logger (an instance of an Apache Commons Logging log instance;
see http://bit.ly/1xt5dmd), which can be used to write log statements to the logfile.
The Label and Filename attributes give us access to the sample label and script file name
respectively. The Parameters and args[] attributes give us access to parameters sent to
the script. The ctx attribute gives access to the current thread's JMeter context (http://
bit.ly/1lM31MC). vars gives access to write values into JMeter variables (http://bit.
ly/1o5DDBr), exposing them to the result of the test plan. The props attribute gives us
access to JMeterProperties. The sampler attribute gives us access to the current sampler
while OUT allows us to write log statements to the standard output, that is, System.
out. Finally, the prev sample gives access to previous sample results (http://bit.
ly/1rKn8Cs), allowing us to get useful information such as the response data, headers,
assertion results, and so on.

In our script, we made use of the prev and vars attributes. With prev, we were able to get
hold of the XML response from the sample. Using Groovy's XmlSlurper (http://bit.
ly/1AoRMnb), we were able to effortlessly process the XML response and compose the
interesting bits, storing them as JMeter variables using the vars attribute.

Using this technique, we are able to accomplish tasks that might have otherwise been
cumbersome to achieve using any other postprocessor elements we have seen in other
recipes. We are able to take full advantage of the language features of any chosen scripting
language. In our case, we used Groovy, but any other supported scripting languages you are
comfortable with will do as well.

See also
 f http://jmeter.apache.org/api

 f http://jmeter.apache.org/usermanual/component_reference.
html#BSF_PostProcessor

 f http://jmeter.apache.org/api/org/apache/jmeter/threads/
JMeterContext.html

 f http://jmeter.apache.org/api/org/apache/jmeter/threads/
JMeterVariables.html

 f http://jmeter.apache.org/api/org/apache/jmeter/samplers/
SampleResult.html

http://bit.ly/1xt5dmd
http://bit.ly/1lM31MC
http://bit.ly/1lM31MC
http://bit.ly/1o5DDBr
http://bit.ly/1o5DDBr
http://bit.ly/1rKn8Cs
http://bit.ly/1rKn8Cs
http://bit.ly/1AoRMnb
http://bit.ly/1AoRMnb
http://jmeter.apache.org/api
http://jmeter.apache.org/usermanual/component_reference.html#BSF_PostProcessor
http://jmeter.apache.org/usermanual/component_reference.html#BSF_PostProcessor
http://jmeter.apache.org/api/org/apache/jmeter/threads/JMeterContext.html
http://jmeter.apache.org/api/org/apache/jmeter/threads/JMeterContext.html
http://jmeter.apache.org/api/org/apache/jmeter/threads/JMeterVariables.html
http://jmeter.apache.org/api/org/apache/jmeter/threads/JMeterVariables.html
http://jmeter.apache.org/api/org/apache/jmeter/samplers/SampleResult.html
http://jmeter.apache.org/api/org/apache/jmeter/samplers/SampleResult.html

Chapter 7

159

Analyzing Response Times Over Time
An important aspect of performance testing is the response times of the application under
test. As such, it is often important to visually see the response times over a duration of time
as the test plan is executed. Out of the box, JMeter comes with the Response Time Graph
listener for this purpose, but it is limited and lacks some features. Such features include the
ability to focus on a particular sample when viewing chat results, controlling the granularity
of timeline values, selectively choosing which samples appear or not in the resulting chart,
controlling whether to use relative graphs or not, and so on. To address all these and more,
the Response Times Over Time listener extension from the JMeter plugins project comes to
the rescue. It shines in areas where the Response Time Graph falls short.

How to do it…
In this recipe, we will see how to use the Response Times Over Time listener extension in our
test plan and get the response times of our samples over time. Perform the following steps:

1. Download the standard set of plugins from http://jmeter-plugins.org/.

2. Install the plugins by doing the following:

 � Extract the ZIP archive to the location of your chosen directory

 � Copy the lib folder in the extracted directory into the
$JMETER_HOME directory

3. Launch JMeter.

4. Open any of your existing prerecorded scripts or record a new one. Alternatively, you
can open the ch7_response_times_over_time.jmx script accompanying the
book or download it from http://git.io/response_times_over_time.

5. Add the Response Times Over Time listener to the test plan by navigating to Test
Plan | Add | Listener | jp@gc - Response Times Over Time.

6. Save and execute the test plan.

7. View the resulting chart in the tab by clicking on the Response Times Over
Time component.

8. Observe the time elapsed on the x axis and the response time in milliseconds on the
y axis for all samples contained in the test plan.

9. Navigate to the Rows tab and exclude some of the samples from the chart by
unchecking the selection boxes next to the samples.

10. Switch back to the Chart tab and observe that the chart now reflects your changes,
allowing you to focus in on interested samples.

11. Switch to the Settings tab and see all the available configuration options.

http://jmeter-plugins.org/
http://git.io/response_times_over_time

Building, Debugging, and Analyzing the Results of Test Plans

160

12. Change some options and repeat the test execution. This is shown in the
following screenshot:

Analyzing Response Times Over Time

How it works…
Just like its name implies, the Response Times Over Time listener extension displays the
average response time in milliseconds for each sampler in the test plan. It comes with various
configuration options that allow you to customize the resulting graph to your heart's content.
More importantly, it allows you to focus in on specific samples in your test plan, helping you
pinpoint potential bottlenecks or problematic modules within the application under test.

For graphs to be more meaningful, it helps to give samples sensible descriptive names and
tweak the granularity of the elapsed time to a higher number in the Settings tab if you have
long running tests. After test execution, data of any chart can also be exported to a CSV file for
further analysis or use as you desire.

Chapter 7

161

Any listener that charts results will have some impact on performance and
shouldn't be used during high volume load testing.

Analyzing transactions per second
Sometimes we are tasked with testing backend services, application program interfaces
(APIs), or some other components that may not necessarily have a graphical user interface
(GUI) attached to it, for example, a classic web application. At such times, the measure of the
responsiveness of the module, for example, will be how many transactions per second it can
withstand before slowness is observed. For example, transactions per second (TPS) is useful
information for stakeholders who are providing services that can be consumed by various
third-party components or other services. Good examples of these include the Google search
engine, which can be consumed by third-parties, and the Twitter and Facebook APIs, which
allow developers to integrate their application with Twitter and Facebook respectively.

The transactions per second listener extension component from the JMeter plugins project
allows us to measure the transactions per second. It plots a chart of the transactions per
second over an elapsed duration of time.

How to do it…
In this recipe, we will see how to use the transactions per second listener extension in our test
plan and get the transactions per second for a test API service:

1. Download the standard set of plugins from http://jmeter-plugins.org/.

2. Install the plugins by doing the following:

 � Extract the ZIP archive to the location of your chosen directory

 � Copy the lib folder in the extracted directory into the
$JMETER_HOME directory

3. Launch JMeter.

4. Open the ch7_transaction_per_sec.jmx script accompanying the book or
download it from http://git.io/trans_per_sec.

5. Add the Transactions Per Second listener to the test plan by navigating to Test Plan
| Add | Listener | jp@gc - Transactions per Second.

6. Save and execute the test plan.

7. View the resulting chart in the tab by clicking on the Transactions Per
Second component.

8. Observe the time elapsed on the x axis and the transactions/sec on the y axis for all
samples contained in the test plan.

http://jmeter-plugins.org/
http://git.io/trans_per_sec

Building, Debugging, and Analyzing the Results of Test Plans

162

9. Navigate to the Rows tab and exclude some of the samples from the chart by
unchecking the selection boxes next to the samples.

10. Switch back to the Chart tab and observe that the chart now reflects your changes,
allowing you to focus in on interesting samples.

11. Switch to the Settings tab and see all the available configuration options.

12. Change some options and repeat the test execution.

How it works…
The transactions per second listener extension displays the transactions per second for each
sample in the test plan by counting the number of successfully completed transactions each
second. It comes with various configuration options that allow you to customize the resulting
graph. Such configurations allow you to focus in on specific samples of interest in your test
plan, helping you to get at impending bottlenecks within the application under test.

It is helpful to give your samples sensible descriptive names to help make better sense of the
resulting graphs and data points. This is shown in the following screenshot:

Analyzing transactions per second

Chapter 7

163

Using User Defined Variables (UDV)
User Defined Variables (UDVs) are a great way to make test scripts more dynamic and robust.
They allow you to define an initial set of variables, which can then be referenced in your test
plans. When used with JMeter functions such as __P(), they provide a means to update
initially defined values from the command line without needing to modify the test script.
Features such as this allow you to record a script against one environment (for example,
a development environment) and then run it against a different environment (for example,
Functional Test, UAT, and STAGE) at a later time. Also, UDVs allow you to extract common
elements within your test plan into a centralized location, which makes your scripts a lot
more maintainable.

All UDVs are evaluated at the start of the script regardless of where they are placed in the test
plan. As a result, they cannot reference variables that are defined as part of the test run such
as variables set during postprocessors. Additionally, it should be noted that UDVs shouldn't be
used in combination with functions that change their results with each evaluation, as only the
first evaluated value will be stored in the UDV.

User Defined Variables are shared across thread groups, so be sure to use
different names for different values when you have more than one thread
group in your test plan.

How to do it…
In this recipe, you will learn how to use User Defined Variables to define some initial values
that we will use within our test plan. Perform the following steps:

1. Launch JMeter.

2. Open the ch7_user_defined_variables.jmx script accompanying the book or
download it from http://git.io/user_defined_variables.

3. Add the User Defined Variables component to the test plan by navigating to Test
Plan | Add | Config Element | User Defined Variables.

4. Fill in the following details:

Name Value
base_url ${__P(base_url, petclinic-jcb.herokuapp.com)}

num_of_users ${__P(num_of_users, 30)}

ramp_up ${__P(ramp_up, 20)}

http://git.io/user_defined_variables

Building, Debugging, and Analyzing the Results of Test Plans

164

5. Click on Thread Group and enter the following details:

 � Number of Threads (users): ${num_of_users}

 � Ramp-Up Period (in seconds): ${ramp_up}

6. Save and run the test.

7. Observe the results in the Aggregate Report listener.

How it works…
Once the prerecorded script was opened, we added a UDV component to our test plan. We
then added some initial values of the target host and the number of users. The values we
provided will be substituted anytime JMeter encounters the replacement token, that is,
${}. As an example, if anytime ${base_url} is encountered in the test script, it will
be replaced with petclinic-jcb.herokuapp.com, ${num_of_users} with 30 and
${ramp_up} with 20.

In addition, we are using the UDVs component with the __P() function. This gives us
maximum flexibility, allowing us to override any value specified in the UDV component right
from the command line at the time of script execution. As described earlier, this is useful
for developing scripts once and then executing them against several environments. As an
example, we could override the base_url by starting JMeter on the command line in the
following way:

./jmeter -Jbase_url=prod.petclinic-jcb.io

UDVs are handy components that make our scripts more robust and maintainable.

If a runtime element such as a postprocessor assigns a value to a variable
with the same name as the one defined in the UDV, then this will also override
the initial value set on the component.

8
Beyond the Basics

In this chapter, we will cover the following recipes:

 f Continuous Integration with JMeter

 f Testing with different bandwidths

 f Using the HTTP Cache Manager component

 f Using script languages within test plans

 f Writing Test scripts through Ruby DSL

 f Understanding JMeter properties

 f Monitoring servers while executing tests (using VisualVM)

 f Monitoring servers while executing tests (using YourKit Profiler)

 f Monitoring servers while executing tests (using New Relic)

 f Performance tips to scale JMeter

Introduction
There are quite a lot of tips and tricks for being more productive with JMeter. These
include integrating it into your company's continuous integration pipeline, simulating varying
connection bandwidths for threads, understanding and tweaking JMeter properties, getting
the most out of JMeter when scaling it across multiple machine instances, and much more.

In this chapter, we will go over some advance tips and see how we can enhance and have a
much better experience with JMeter.

Beyond the Basics

166

Continuous Integration with JMeter
Continuous Integration, or CI as it is often referred to, is a development practice that requires
developers to integrate code into a shared repository several times a day. Each check-in is
then verified by an automated build, allowing teams to detect problems early. This practice
has been around since the late 90s, and more and more companies have embraced it so
much that it has now become 'the de facto practice'.

As such, it would be advantageous and beneficial to have JMeter fit into this pipeline
somehow. Wouldn't it be great to have performance tests automatically run on every code
check-in to version control system (VCS) to know when an introduced change increased
or decreased the application's performance? Such insights become indispensible as the
application grows in complexity and help alleviate changes that will adversely impact the
system from being introduced.

How to do it…
In this recipe, we will cover how to integrate JMeter into a continuous integration workflow
and automatically test our application with each committed code change into the source
repository. Perform the following steps:

1. Download Tomcat from http://archive.apache.org/dist/tomcat/
tomcat-8/v8.0.9/bin/apache-tomcat-8.0.9.zip and extract it to a location
of your choice. We will refer to this location as $TOMCAT_HOME. At the time of writing
this, Tomcat 8 was the latest stable version, and that is what we will use.

2. Download the latest Jenkins WAR application from http://mirrors.jenkins-
ci.org/war/latest/jenkins.war or download the native package for your
operating system from http://jenkins-ci.org/. We will be following the WAR
instruction throughout this recipe.

3. Copy the downloaded WAR in step 2 to the $TOMCAT_HOME/webapps directory.

4. Start Tomcat using the following command:
cd $TOMCAT_HOME/bin

 � On Windows: catalina.bat run

 � On Unix: ./catalina.sh run

5. If all goes well, you should see the following logs on your console:
03-Aug-2014 07:56:28.263 INFO [main] org.apache.coyote.
AbstractProtocol.init Initializing ProtocolHandler ["http-
nio-8080"]

…

http://archive.apache.org/dist/tomcat/tomcat-8/v8.0.9/bin/apache-tomcat-8.0.9.zip
http://archive.apache.org/dist/tomcat/tomcat-8/v8.0.9/bin/apache-tomcat-8.0.9.zip
http://mirrors.jenkins-ci.org/war/latest/jenkins.war
http://mirrors.jenkins-ci.org/war/latest/jenkins.war
http://jenkins-ci.org/

Chapter 8

167

03-Aug-2014 07:56:28.391 INFO [localhost-startStop-1] org.apache.
catalina.startup.HostConfig.deployWAR Deploying web application
archive /Users/berinle/devtools/apache-tomcat-8.0.9/webapps/
jenkins.war

Jenkins home directory: /Users/berinle/.jenkins found at: $user.
home/.jenkins

03-Aug-2014 07:56:41.793 INFO [localhost-startStop-1] org.
apache.catalina.startup.HostConfig.deployWAR Deployment of web
application archive /Users/berinle/devtools/apache-tomcat-8.0.9/
webapps/jenkins.war has finished in 13,402 ms

03-Aug-2014 07:56:42.456 INFO [main] org.apache.catalina.startup.
Catalina.start Server startup in 14142 ms

…

03-Aug-2014 07:56:43.181 INFO [pool-5-thread-2] jenkins.
InitReactorRunner$1.onAttained Started initialization

03-Aug-2014 07:56:57.161 INFO [pool-5-thread-4] jenkins.
InitReactorRunner$1.onAttained Listed all plugins

03-Aug-2014 07:56:57.319 INFO [pool-5-thread-3] null.null Prepared
all plugins

03-Aug-2014 07:56:57.397 INFO [pool-5-thread-3] jenkins.
InitReactorRunner$1.onAttained Started all plugins

03-Aug-2014 07:56:57.480 INFO [pool-5-thread-3] null.null
Augmented all extensions

03-Aug-2014 07:56:57.492 INFO [pool-5-thread-2] null.null Loaded
all jobs

03-Aug-2014 07:57:08.085 INFO [SSHD.init] org.jenkinsci.main.
modules.sshd.SSHD.start Started SSHD at port 64181

03-Aug-2014 07:57:08.319 INFO [pool-5-thread-2] jenkins.
InitReactorRunner$1.onAttained Completed initialization

03-Aug-2014 07:57:08.448 INFO [Jenkins initialization thread]
hudson.WebAppMain$3.run Jenkins is fully up and running

6. Navigate to http://localhost:8080/jenkins/ and verify that Jenkins is up.

7. Specify the location of your Maven install, that is, $M2_HOME or $MAVEN_HOME.
Perform the following steps:

 � Go to http://localhost:8080/jenkins/configure.

 � Under the Maven section, enter a name and path of your maven home.
Alternatively, you can also choose to automatically download and install
maven as part of the installation if you don't already have it on your system.

 � Click on the Save button.

Beyond the Basics

168

8. Install the Performance test plugin add-on for Jenkins and perform the
following steps:

1. Click on the Manage Jenkins link in the left-hand sidebar.

2. Click on the Manage Plugins link.

3. Click on the Available tab and search for the Performance plugin by
typing performance into the search box.

4. Click on the Install checkbox next to the search box.

5. Click on Download now and install after pressing the Restart button.

6. Make sure you see the Success message, confirming the successful
installation of the plugin.

7. Restart the Tomcat server.

9. Go back to the Jenkins landing page at http://localhost:8080/jenkins.

10. Set up a new job by clicking on the New Item link.

11. Give any descriptive name for the new job, for example, Cookbook API.

12. Select the Build a maven project radio button.

13. Add two build parameters to build and perform the following steps:

1. Check the This build is parameterized checkbox.

2. Click on the Add Parameter button and select Text Parameter.

3. Fill in THREAD_COUNT and 10 for the Name and Default Value
textboxes respectively.

4. Click on the Add Parameter button and select Text Parameter.

5. Fill in LOOP_COUNT and 10 for the Name and Default Value
textboxes respectively.

14. In the Source Code Management section, select Git and fill in the following details:

 � Repository URL: git@github.com:jmeter-cookbook/api-jcb.git

 � Branch Specifier (blank for default): origin/maven-build

15. In the Build section, fill in the following under the Goals and Options textbox:
clean -Pjenkins verify -Dperformancetest.threadCount=$THREAD_COUNT
-Dperformancetest.loopCount=$LOOP_COUNT

16. Add Post-Build Action to view the performance test results, and then perform the
following steps:

1. Click on the Add post-build action button under the Post-Build
Actions section.

2. Click on the Publish Performance test result report option.

git@github.com:jmeter-cookbook/api-jcb.git

Chapter 8

169

3. Click on the Add a new report drop-down and select JMeter. In the Report
files textbox, enter **/*.jtl.

4. Click on the Add a new report drop-down and select JmeterSummarizer.

5. Fill in the following details:

 � Reports file: **/*.log

 � Summarizer Date Format: yyyy/mm/dd HH:mm:ss

 � Under the Use Error thresholds on single build section, fill in the
following details:

Unstable: 2

Failed: 5

 � Under the Use Relative thresholds for build comparison section,
fill in the following details:

Unstable % Range: 1 and 5 respectively

Failed % Range: 5 and 10 respectively

 � Select the Compare with previous Build radio button

 � Click on the Save button to save the configuration

17. Kick off a build by clicking on the Run button.

18. Specify the following build parameters:

 � THREAD_COUNT: 50

 � LOOP_COUNT: 10

19. Click on the Build button.

20. You can observe each step of the build process, including the performance tests run,
by clicking on the Console Output link on the left side bar.

21. Once the build is complete, you can navigate the build workspace folder to see
detailed HTML reports of the test run:

 � Click on the Workspace folder link

 � Click on the target folder link

 � Click on the api-jcb.html link

This gives a nice summary of the JMeter tests exercised along with a
response times, status codes, and a graph. You can also drill down further to
a detailed response information view from here by clicking on the buttons at
the bottom of the page.

Beyond the Basics

170

22. Observe the other graphs generated by the build process and perform the
following steps:

1. Click on the Workspace folder link.

2. Click on the target folder link.

3. Click on the jmeter folder link.

4. Click on the results folder link.

5. Click on the api-jcb-ResponseTimesOverTime.png,
api-jcb-TransactionsPerSecond.png, and api-jcb-
ThreadsStateOverTime.png links.

The following is a screenshot of the sample view of the requests duration graph generated for
our test run:

Requests duration over time graph

Chapter 8

171

The following is a screenshot of the sample view of the transactions per second graph
generated for our test run:

Transactions per second graph

How it works…
To integrate with a CI server, we first had to set up a local server. There are ample servers
we could use for this, but the two most popular ones are Tomcat and Jetty. For illustrative
purposes, we chose Tomcat. Once downloaded, we then deployed Jenkins to our Tomcat
server by placing the already packaged WAR into the webapps directory of our Tomcat
instance. Jenkins comes with quite a few plugins that add additional features. One of these
plugins is the Performance plugin, which adds support for capturing reports from JMeter tests
as part of our build process. We added this in step 8, since that is exactly what we intend to
do. Running the actual test was configured as part of our build process with a maven plugin.

Beyond the Basics

172

We then proceeded to add a new build job to Jenkins to instruct it in how exactly we want
our project to be built. Along the way, we configured a parameterized build which allows
us to dynamically configure how many threads and iterations run for each build.

With everything configured, we were able to kick off our build and observe the results of our
test execution. Additionally, we verified the response times and other graphs we specified to
be generated as part of our build process.

There's more…
We have cheated a bit here, since the test plan we are running in our Jenkins job is actually
configured to run against an already deployed instance on Heroku, a Cloud platform. Ideally,
we need our CI process to also deploy a new version of our project, which contains the new
code changes to the server before proceeding to run our tests against it. This way, we can
truly verify that the introduced change is in fact responsible for performance degradation or
an increase. Doing this was a bit out of the scope of this book, so we decided not to include it.
We will leave it as an exercise for the reader.

Additionally, we configured relative and error thresholds in step 14. Free feel to tweak this
to suit the needs of your project. For example, your project could be more strict about what
is considers as acceptable success. Maybe you want to mark a build as failed if there is any
failure while exercising the JMeter tests as opposed to the 2-5 percent range we specified
previously. For such instances, a build will be marked as failed if it even has as little as 0.1
percent of errors. For example, you might see this on the Jenkins console output if a build is
marked as failed:

…

 [JENKINS] Archiving /Users/berinle/.jenkins/workspace/Cookbook
API (jmeter)/target/api-jcb-0.0.1.jar to com.jcb/api-jcb/0.0.1/
api-jcb-0.0.1.jar

channel stopped

Performance: Percentage of errors greater or equal than 0% sets
the build as unstable

Performance: Percentage of errors greater or equal than 0% sets
the build as failure

Performance: Recording JMeter reports '**/*.jtl'

Performance: Parsing JMeter report file /Users/berinle/.jenkins/
jobs/Cookbook API (jmeter)/builds/2014-08-20_05-46-35/performance-
reports/JMeter/api-jcb.jtl

api-jcb.jtl has an average of: 1259

Performance: File api-jcb.jtl reported 0.15% of errors [FAILURE].
Build status is: FAILURE

Chapter 8

173

Performance: Recording JmeterSummarizer reports '**/*.log'

Performance: Parsing JMeterSummarizer report file api-jcb.jmx.log

Build step 'Publish Performance test result report' changed build
result to FAILURE

Finished: FAILURE

Finally, we could take things one step further and take advantage of Cloud CI services such
as Travis CI (https://travis-ci.org/) or Drone.IO (https://drone.io/). Flood.IO,
in fact, has a nice little integration with Travis CI in the form of webhooks. You can read more
about that is https://flood.io/blog/37-travis-ci-integration. Blazemeter
offers free Jenkins plugins, which enable your CI server to exercise your tests directly in the
Cloud with each change to the repository.

See also
 f The Testing external facing applications with Flood.IO recipe in Chapter 5,

Diving Into Distributed Testing

 f The Writing Test scripts through Ruby DSL recipe

 f Flood.IO's Travis CI integration (https://flood.io/blog/37-travis-ci-
integration)

 f Loading testing in CI environments (http://bit.ly/1vldvf1)

 f The BlazeMeter plugin for Jenkins (http://bit.ly/1tBWx9Q)

Testing with different bandwidths
To be certain that an application is ready to be shipped, one of the important aspects worth
considering is how it will perform on different network speeds. For example, an application
that shines when connecting from a really fast network such as an Ethernet or Fast Ethernet
LAN might really underperform on a slow network such as a mobile EDGE or HSPA+ network
for example. This could be a result of many things, including the amount of data being
transferred across the network. The more data, the more latency and slowness will be
seen on a slower network.

JMeter provides a way to simulate various network bandwidths, helping you to know exactly
how the application under test will react under various network conditions. This is valuable
information to stakeholders and helps teams plan ahead and put in place workarounds to give
end users a better experience regardless of which device or network they are connecting from.

https://travis-ci.org/
https://drone.io/
https://flood.io/blog/37-travis-ci-integration
https://flood.io/blog/37-travis-ci-integration
https://flood.io/blog/37-travis-ci-integration
http://bit.ly/1vldvf1
http://bit.ly/1tBWx9Q

Beyond the Basics

174

How to do it…
In this recipe, we will see how JMeter can be used to test at various bandwidths. Perform the
following steps:

1. Open $JMETER_HOME/bin/user.properties.

2. Add the following properties to the end of the file (if they don't already exist).
This specifies a mobile data GPRS: 171 Kbps bandwidth. Refer to the
following parameters:

 � httpclient.socket.http.cps=21888

 � httpclient.socket.https.cps=21888

3. Save the file.

4. Launch JMeter.

5. Open the prerecorded script ch8_bandwidth.jmx bundled with the book.
Alternatively, you can download it from http://git.io/bandwidth.

6. Run the test and observe the results in the Aggregate Report listener.

7. Pay special attention to the KB/sec column and notice JMeter tries as much as
possible to throttle the bandwidth, keeping it as close as possible to the defined
max of 171 kb/s.

8. Open $JMETER_HOME/bin/user.properties.

9. Modify the values of the CPS like so to specify a Wi-Fi 802.11a/g: 54 Mbps
bandwidth:

 � httpclient.socket.http.cps=6912000

 � httpclient.socket.https.cps=6912000

10. Close and re-launch JMeter.

11. Repeat the last test.

12. Observe the values reported in the KB/sec column of the listener this time.

Chapter 8

175

The following screenshot shows what our listener reported when we ran our test with a
bandwidth of 171 Kbps:

Running with a bandwidth of 171 Kbps

The following screenshot shows what our listener reported when we ran our test with a
bandwidth of 54 Mbps:

Running with a bandwidth of 54 Mbps

Be sure to comment out or remove the newly added entries to
user.properties once you are done with this recipe to avoid
throttling other tests.

Beyond the Basics

176

How it works…
With the addition/modification of two configuration settings in the $JMETER_HOME/bin/
user.properties file, JMeter is able to throttle network bandwidth for our tests and
give us some idea on how the application under test might or might not hold up under
such bandwidths. It does this by delegating that responsibility to the underlining Apache
HttpComponents implementation.

With our sample run as shown previously, we are able to observe just that. We can see a low
percentage of errors reported for our mobile clients (that is, a bandwidth of 171 Kbps), while
none is reported for our WIFI (that is, a bandwidth of 54 Mbps).

The value for CPS we entered in the recipe is calculated as follows:
cps = (target bandwidth in kbps * 1024) / 8

See also:
 f Apache HTTP Components (http://hc.apache.org/)

 f Controlling bandwidth in JMeter (http://bit.ly/1otmUIz)

Using the HTTP Cache Manager component
In practice, web browsers have a caching mechanism to reduce the amount of data
transferred over the network. This in turn gives end users a better experience. If data has not
changed since the first time it was fetched from the remote server, there is no point fetching it
again and thus, it can be fetched from a locally cached copy of the browser.

This same behavior can also be achieved with JMeter using the HTTP Cache Manager
component. With the HTTP Cache Manager configured, JMeter is able to cache responses
from sampled requests and serve them back on subsequent requests if they have not
changed on the remote server.

How to do it…
In this recipe, we will add an HTTP Cache Manager component to a test plan and observe the
response times in comparison to it being disabled. Perform the following steps:

1. Launch JMeter.

2. Open the pre-recorded script ch8_cache_manager.jmx bundled with the book.
Alternatively, you can download it from http://git.io/cache_manager.

3. Run the test plan and observe the result in the View Results in Table listener.

http://hc.apache.org/
http://bit.ly/1otmUIz
http://git.io/cache_manager

Chapter 8

177

4. Add HTTP Cache Manager to Test Plan by navigating to Test Plan | Add | Config
Element | HTTP Cache Manager.

5. Run the test and observe the results.

6. Click on the HTTP Cache Manager component and check the Use Cache
Control/Expires header when processing the GET requests checkbox.

7. Run the test and observe the results.

How it works…
The HTTP Cache component primarily works with two attributes, Last-Modified and Etag.
The Last-Modified header attribute denotes the date and time at which the origin server
reports the resource that was last modified. The Etag response header provides the
current value of the entity tag representing the resource and is used in conjunction
with the If-None-Match header attribute.

The first time a resource is requested, JMeter saves the results in memory, that is, it writes
it to RAM. Last-Modified and Etag are saved for the request. On subsequent requests, the
sampler checks whether there is an entry in the cache, and if there is a hit, sets the If-Last-
Modified and If-None-Match headers for the request.

As can be observed with our sample run, once the HTTP Cache Manager was added and we
opted to use the cache control as done in step 6, the initial request took the most time. See
the Sample Time(ms), Bytes, and Latency columns of the View Results in Table listener.
The remaining four calls made to the same URL are served from the cache and returned
immediately. The Sample Time (ms), Bytes, and Latency options are all 0 for those calls
showing that no network latency was involved or data transferred. This mimics the exact
behavior of a web browser, achieving exactly what we set out to do. This is shown in
the following screenshot:

Using the HTTP Cache Manager

Beyond the Basics

178

As a rule of thumb, different timers can be used within the
same test plan.

See also
 f HTTP ETag wiki (http://en.wikipedia.org/wiki/HTTP_ETag)

 f HTTP Header Fields
(http://en.wikipedia.org/wiki/List_of_HTTP_header_fields)

 f Blog post: Using HTTP Cache Manager (http://bit.ly/V0sET4)

 f Blog post: Understanding JMeter Cache (http://bit.ly/1sA3839)

Using script languages within test plans
JSR223 PostProcessor allows you to use precompiled scripts within test plans. The fact that
the scripts are compiled before they are actually used brings a significant performance boost
compared to their inline counter parts. This also allows a variety of scripting languages to be
used including Java, groovy, beanshell, jexl, and so on, allowing us to harness the powerful
language features in those languages within our test plan.

JSR223 components could, for example, help us tackle preprocessor or postprocessor
elements, samplers, or completed or logical loops within our test plans, allowing us to have
more control over how elements are extracted from responses and stored as JMeter variables.

How to do it…
In this recipe, we will see how to use a JSR223 postprocessor within our test plan. We have
chosen groovy (http://groovy.codehaus.org/) as our choice of scripting language, but
any of the other supporting languages will do. Perform the following steps:

1. Download the standard set of plugins from http://jmeter-plugins.org/.

2. Install the plugins by doing the following:

 � Extract the ZIP archive to a location of your chosen directory

 � Copy the JAR file contained in the lib/ext folder of the extract location to
$JMETER_HOME/lib/ext directory

3. Download the groovy-all JAR (java archive) from http://devbucket-afriq.
s3.amazonaws.com/jmeter-cookbook/groovy-all-2.3.3.jar or by
searching maven central at the http://search.maven.org and add it to the
$JMETER_HOME/lib directory.

http://en.wikipedia.org/wiki/HTTP_ETag
http://en.wikipedia.org/wiki/List_of_HTTP_header_fields
http://bit.ly/V0sET4
http://bit.ly/1sA3839
http://groovy.codehaus.org/
http://jmeter-plugins.org/
http://devbucket-afriq.s3.amazonaws.com/jmeter-cookbook/groovy-all-2.3.3.jar
http://devbucket-afriq.s3.amazonaws.com/jmeter-cookbook/groovy-all-2.3.3.jar
http://search.maven.org

Chapter 8

179

4. Launch JMeter.

5. Add Thread Group to Test Plan | Add | Threads(Users) | Thread Group.

6. Add Dummy Sampler to Thread Group by navigating to Thread Group | Add |
Sampler | jp@gc - Dummy Sampler.

7. In the Response Data text area, fill in the following contents:
<records>
 <car name='HSV Maloo' make='Holden' year='2006'>
 <country>Australia</country>
 <record type='speed'>Production Pickup Truck with speed of
271kph</record>
 </car>
 <car name='P50' make='Peel' year='1962'>
 <country>Isle of Man</country>
 <record type='size'>Smallest Street-Legal Car at 99cm wide
and 59 kg in weight</record>
 </car>
 <car name='Royale' make='Bugatti' year='1931'>
 <country>France</country>
 <record type='price'>Most Valuable Car at $15 million</
record>
 </car>
</records>

8. Download the groovy script file from http://bit.ly/1DORckr to any location
of your choosing. Alternatively, you can get it from the code sample bundle
accompanying the book.

9. Add JSR223 PostProcessor as a child of the Dummy Sampler by navigating to
jp@gc - Dummy Sampler | Add | Post Processors | JSR223 PostProcessor.

10. Select groovy as the language of choice in the Language drop-down box.

11. In the File Name text box, put in the absolute path to where the groovy script file is,
for example, /tmp/scripts/ch7/ch7_jsr223.groovy.

12. Add View Results Tree listener to Test Plan by navigating to Test Plan | Add |
Listener | View Results Tree.

13. Add Debug Sampler to Thread Group by navigating to Thread Group | Add | Sampler
| Debug Sampler.

14. Save and run the test.

15. Observe the Response Data tab of Debug Sampler and see we now have JMeter
variables car_0, car_1, and car_2, all extracted from the response and populated
by our JSR223 PostProcessor component.

http://bit.ly/1DORckr

Beyond the Basics

180

How it works…
JMeter exposes certain variables to the JSR223 component, allowing it to get hold of sample
details and information, perform logic operations, and store the results as JMeter variables.
The exposed attributes include Log, Label, Filename, Parameters, args[], ctx, vars, props,
prev, sampler, and OUT. Each of these parameters allow access to important and useful
information that can be used during the postprocessing of sampler responses.

The Log attribute gives access to Logger, which can be used to write log statements to the log
file. The Label and Filename attribute give access to the sample label and script file name
respectively. The Parameters and args[] attribute give access to parameters sent to the script.
The ctx gives access to the current thread's JMeter context (http://bit.ly/1lM31MC).
vars gives access to write values into JMeter variables (http://bit.ly/1o5DDBr), exposing
them to the result of the test plan. The props attribute gives us access to JMeterProperties.
The sampler attribute gives us access to the current sampler, while OUT allows us to write
log statements to the standard output, that is, System.out. Finally, the prev sample gives
access to the previous SampleResult (http://bit.ly/1rKn8Cs), allowing us to get useful
information such as the response data, headers, assertion results, and so on.

In our script, we made use of the prev and vars attributes. With prev, we were able to get
hold of the XML response from the sample. Using groovy's XmlSlurper (http://bit.
ly/1AoRMnb), we were able to effortlessly process the XML response and compose the
bits of information, and store them as JMeter variables using the vars attribute.

Using this technique, we are able to accomplish tasks that might have otherwise been
cumbersome using any other postprocessor elements we have seen in other recipes. We are
able to take full advantage of the language features of any chosen scripting language. In our
case, we used groovy, but any other supported scripting languages you are comfortable with
will do as well.

See also
 f http://jmeter.apache.org/usermanual/component_reference.

html#BSF_PostProcessor

 f http://jmeter.apache.org/api/org/apache/jmeter/threads/
JMeterContext.html

 f http://jmeter.apache.org/api/org/apache/jmeter/threads/
JMeterVariables.html

 f http://jmeter.apache.org/api/org/apache/jmeter/samplers/
SampleResult.html

http://bit.ly/1lM31MC
http://bit.ly/1o5DDBr
http://bit.ly/1rKn8Cs
http://bit.ly/1AoRMnb
http://bit.ly/1AoRMnb
http://jmeter.apache.org/usermanual/component_reference.html#BSF_PostProcessor
http://jmeter.apache.org/usermanual/component_reference.html#BSF_PostProcessor
http://jmeter.apache.org/api/org/apache/jmeter/threads/JMeterContext.html
http://jmeter.apache.org/api/org/apache/jmeter/threads/JMeterContext.html
http://jmeter.apache.org/api/org/apache/jmeter/threads/JMeterVariables.html
http://jmeter.apache.org/api/org/apache/jmeter/threads/JMeterVariables.html
http://jmeter.apache.org/api/org/apache/jmeter/samplers/SampleResult.html
http://jmeter.apache.org/api/org/apache/jmeter/samplers/SampleResult.html

Chapter 8

181

Writing Test scripts through Ruby DSL
Sometimes, it is helpful to manually write your scripts instead of recording them. Cases such
as integrating your test plans with a continuous integration build server, or being able to
debug your test plans from the comfort of an Integrated Development Environment (IDE)
benefit mostly from this.

Thankfully, there is a Ruby gem that provides a readable and concise DSL, allowing you to
write test plans using the Ruby programming language.

How to do it…
In this recipe, we will go over how to do just that. Perform the following steps:

1. Install Ruby on your system by following the instructions given in Appendix, Installing
Supporting Software Needed for the Book.

2. Install the JMeter DSL Ruby gem by running the following on the command prompt:

 � For Mac OS:
 sudo gem install ruby-jmeter

 � For Windows:
 gem install ruby-jmeter

3. On successful gem installation, you will see lines similar to the following code:
Fetching: mime-types-2.1.gem (100%)
Successfully installed mime-types-2.1
Fetching: rest-client-1.6.7.gem (100%)
Successfully installed rest-client-1.6.7
Fetching: ruby-jmeter-2.11.2.gem (100%)
Successfully installed ruby-jmeter-2.11.2
Fetching: mini_portile-0.5.2.gem (100%)
Successfully installed mini_portile-0.5.2
Parsing documentation for mime-types-2.1
Installing ri documentation for mime-types-2.1
Parsing documentation for rest-client-1.6.7
Installing ri documentation for rest-client-1.6.7
Parsing documentation for ruby-jmeter-2.11.2
Installing ri documentation for ruby-jmeter-2.11.2
Parsing documentation for mini_portile-0.5.2
Installing ri documentation for mini_portile-0.5.2
4 gems installed

Beyond the Basics

182

4. Open a test editor such as Notepad, Sublime, vi, Emacs, and so on.

5. Create a file named ruby_dsl_simulation.rb with the following content:
require 'rubygems'
require 'ruby-jmeter'
test do
 cookies clear_each_iteration: false
 csv_data_set_config :filename => 'shoutbox-registration.txt'
 threads :count => 1 , :rampup => 1, :loops => 2 do
 defaults :domain => 'evening-citadel-2263.herokuapp.com'
 random_timer 1000, 2000
 transaction '01_shoutbox_home' do
 visit :name => 'Home', :url => '/' do
 end
 end
 transaction '02_shoutbox_signin' do
 submit :name => 'Login', :url => '/login',
 :fill_in => {
 :'user[name]' => '${user}',
 :'user[pass]' => '${pass}'
 } do
 visit :name => "home_redirect", :url => '/' do
 assert 'contains' => '${user}'
 assert 'contains' => 'logout'
 end
 end
 end
 transaction '03_logout' do
 visit :name => 'Logout', :url => '/logout' do
 end
 visit :name => 'home_redirect', :url => '/' do
 assert 'contains' => 'register'
 end
 end
 end
 view_results_tree
end.jmx(file: './ch8_ruby_dsl_simulation.jmx')

6. Save the file.

7. On the command line, run the following command:
ruby ruby_dsl_simulation.rb

8. Open the generated test plan (ch8_ruby_dsl_simulation.jmx) in JMeter GUI
and run it.

Chapter 8

183

How it works…
The JMeter DSL gem allows you to express test plans in a clear and concise DSL, written in
Ruby. The first two lines will require you to import the necessary extensions into your Ruby
script in order to provide additional instructions via the DSL.

Each test block corresponds to a test plan definition in JMeter world. The cookies method
defines HttpCookieManager to help store a user session after successful login. The
csv_data_set_config method defines a CSV Data Set Config that we use to read our input
data for the script. The threads method defines the number of threads that will run in the test
plan. Optionally, you could specify how long the threads could loop for. We have defined the
HttpRequestDefaults component using the defaults method, providing a base URL for
our test script. Using the transaction method, we have grouped a series of requests into
transaction controllers, similar to what we do when we record scripts manually. Finally, we use
the submit method to log in into our application and assert successful logging in and logging
out with the ResponseAssertion component. The visit method specifies the URL to go
to and a friendly URL name. The end.jmx (file: …) specifies the name of the file to save
the test plan under when we run ruby_dsl_simulation.rb. It is saved as jmeter.jmx
by default.

There's more…
The JMeter ruby gem can do a lot more than we have space to cover here. Some of the tasks,
JMeter Ruby gem can perform are as follows:

 f Run directly from the command line without needing to launch JMeter GUI.

 f Run our script directly in the Cloud on http://flood.io (one of the Cloud
providers offering Cloud distributed testing). See details of this in Chapter 5,
Diving into Distributed Testing.

 f Submit forms, parse responses, and more.

 f Code within an IDE with code completion.

Understanding JMeter properties
In rare cases, you may need to tweak JMeter configuration to specify custom settings to use
to start and run JMeter. Settings such as the default language to start JMeter GUI with, which
XML parser to use, what elements to display on the GUI menu, the look and feel, the SSL
settings, defining remote hosts when doing distributed testing with a master/slave setup,
logging threshold, and much more can be configured using JMeter properties.

http://flood.io

Beyond the Basics

184

In previous versions of JMeter, all properties were defined under the $JMETER_HOME/bin/
jmeter.properties file. This was monolithic and became a bit cumbersome to manage.
Therefore, in later versions, the JMeter team has separated out these properties into
additional files, user.properties and system.properties, making them a lot more
concise and easier to manage. The user.properties file can be used to provide additional
properties to configure JMeter and is considered the preferred place to define user custom
settings such as classpath configuration, logging settings, and so on. This helps isolate your
changes from the factory settings defined out of the box. The system.properties is used
to update system properties such as SSL settings, keytool file location, and so on.

How to do it…
In this recipe, we will use JMeter properties to change the default language of the JMeter
GUI to French, the default excludes in the script recorder, and the summarizer interval when
running in non-GUI mode. Perform the following steps:

1. Open $JMETER_HOME/bin/jmeter.properties in any editor of your choice.

2. At the bottom of the file, enter the following property:

 � language: fr

3. Save the file.

4. Launch JMeter in GUI mode.

5. Observe that all elements in the GUI are now in French.

6. Open $JMETER_HOME/bin/jmeter.properties and remove the language
property to return to the default mode.

7. Add these two additional properties:

 � proxy.excludes.suggested: .*\\.(css|js)

 � summariser.interval: 10

8. Save the file and launch JMeter GUI.

9. Add HTTP(S) Test Script Recorder to Test Plan by navigating to WorkBench | Add |
Non-Test Elements | HTTP(S) Test Script Recorder.

10. Click on the Add suggested Excludes button.

11. Verify it *\\.(css|js) as we have specified.

12. Close JMeter GUI.

Chapter 8

185

13. Execute a test in non-GUI mode. From the $JMETER_HOME/bin directory, run the
following command:
./jmeter -n -t [absolute path to jmx file to run]

e.g.

./jmeter -n -t ~/workspace/packtpub/cookbook-bundled-code/scripts/
ch8/ch8_continuous_integration.jmx

14. Observe, the summarizer now logs the output every 10 seconds as we have defined.

How it works…
JMeter properties provide a way to alter the behavior of most aspects of JMeter. The three
property files (jmeter.properties, user.properties, and system.properties)
needed to do this to reside in the $JMETER_HOME/bin directory. In our recipe, we altered
the language used to start the JMeter GUI in French by specifying the language=fr property.
We then changed the default exclude lists of the HTTPS script recorder to exclude only CSS
and JS (JavaScript) files by specifying the proxy.excludes.suggested=.*\\.(css|js)
property. Finally, we changed the frequency of the summarizer logs from 30 seconds to 10
seconds by specifying summariser.interval=10.

There is a lot more that can be done with the properties file. Each properties file is
heavily commented to give you a good grasp of what it does and how to set it. Readers are
strongly encouraged to open the files and read through the comments. That is the best way to
understand what options are available for you to tweak.

A user.properties file can be placed in the directory where JMeter
starts, which will take precedence over user.properties located in
the $JMETER_HOME/bin directory.

See also
 f The Testing with different bandwidth recipe

 f Configuring JMeter (http://jmeter.apache.org/usermanual/get-started.
html#configuring_jmeter)

http://jmeter.apache.org/usermanual/get-started.html#configuring_jmeter
http://jmeter.apache.org/usermanual/get-started.html#configuring_jmeter

Beyond the Basics

186

Monitoring servers while executing tests
(using VisualVM)

When executing test scripts, it is important to monitor the server resources where the tested
application is being hosted. Resources such as CPU, memory, thread count and thread pool,
I/O resources, and so on are integral to the performance of an application. Monitoring these
resources helps give crucial insights into where the bottlenecks lie in the tested application or
hosted environment.

How to do it…
In this recipe, we will show you how to monitor application resources using VisualVM, a tool
that comes bundled with standard JDK installation files. Perform the following steps:

1. Install Maven, Git, and JDK 7 as described in the Appendix.

The examples have been tested with JDK 7 only. At the time of
writing this, they haven't been updated to work with JDK 8.

2. Create a directory to keep the sample code. We will refer to this as CODE_SAMPLES.

3. Open a terminal or DOS prompt and change the CODE_SAMPLES directory.

4. Clone the application using the following command:
git clone https://github.com/jmeter-cookbook/spring-petclinic.git

5. Run the application using the following command:
mvn tomcat7:run

If the application started correctly, you should see a log similar
to this on the console and be able to access the application at
http://localhost:9966/petclinic.

Chapter 8

187

 ...
 INFO RequestMappingHandlerMapping - Mapped "{[/owners/*/pets/
{petId}/visits],methods=[GET],params=[],headers=[],consumes=[]
,produces=[],custom=[]}" onto public org.springframework.web.
servlet.ModelAndView org.springframework.samples.petclinic.web.
VisitController.showVisits(int)
 INFO SimpleUrlHandlerMapping - Mapped URL path [/resources/**]
onto handler 'org.springframework.web.servlet.resource.
ResourceHttpRequestHandler#0'
 INFO SimpleUrlHandlerMapping - Mapped URL path [/webjars/**]
onto handler 'org.springframework.web.servlet.resource.
ResourceHttpRequestHandler#1'
 INFO SimpleUrlHandlerMapping - Root mapping to handler
of type [class org.springframework.web.servlet.mvc.
ParameterizableViewController]
 INFO SimpleUrlHandlerMapping - Mapped URL path [/**]
onto handler 'org.springframework.web.servlet.resource.
DefaultServletHttpRequestHandler#0'
 INFO DispatcherServlet - FrameworkServlet 'petclinic':
initialization completed in 985 ms
 Mar 18, 2014 9:39:13 AM org.apache.coyote.AbstractProtocol start
 INFO: Starting ProtocolHandler ["http-bio-9966"]

6. Launch VisualVM and then perform the following steps:

1. Go to the bin directory of your JDK home installation.

2. Double-click on jvisualvm (or launch it from the command line).

7. Connect VisualVM to the running Java process by locating it within VisualVM and
double-clicking it.

8. Launch JMeter.

9. Open the petclinic.jmx test script in the scripts/ch8 directory and run it.

Beyond the Basics

188

10. Monitor the server resources (CPU, heap (memory), classes, and threads) during your
test. This is shown in the following screenshot:

VisualVM Connecting to running application

How it works…
In step 7, when we ran mvn tomcat7:run, it started an embedded Apache Tomcat server
and deployed an instance of our application to it. When we launched VisualVM in step 8, all
the Java processes running on the system (of which our application was one) are listed and
we are able to connect to it and probe it. Afterwards, JVM statistics and metrics are sent from
the server to the VisualVM agent that enables it to report statistics such as heap memory
usage and thread count.

There's more…
Within VisualVm, you can probe further into the application by clicking on the Sampler tab
and clicking on the CPU or Memory tab to know what classes are taking the most CPU time
or consuming the most amount of memory respectively. The Threads tab gives a list of all
running threads in the application and their respective statuses. This can be useful to detect
deadlocks and/or hangs within the application. For instance, a thread waiting for a long
amount of time for a lock or resource held by another could be indicative of a race condition
and defect within the application.

Chapter 8

189

Finally, the Profiler tab allows you to gather finer-grained statistics about the running
application for more detailed analysis. Within the Profiler tab, once the CPU or Memory
button is clicked, the profiling agent attaches to the running application, and application
metrics will be gathered. In the terminal, on the server console, you should see a log similar
to this:

 ...
 Profiler Agent: JNI OnLoad Initializing...
 Profiler Agent: JNI OnLoad Initialized successfully
 Profiler Agent: Waiting for connection on port 5140 (Protocol
version: 12)
 Profiler Agent: Established connection with the tool
 Profiler Agent: Local accelerated session
 Profiler Agent: 250 classes cached.
 ...

The usages of profilers go way beyond the scope of this book, but we encourage you to dive
deeper and understand it. It will help get you make better sense of your testing results.

VisualVM is not the only way to get such metrics. For alternatives and even more detailed
profiling, please refer to the following recipes:

 f The Monitoring servers while executing tests (using YourKit Profiler) recipe

 f The Monitoring servers while executing tests (using New Relic) recipe

Monitoring servers while executing tests
(using YourKit Profiler)

When it comes to monitoring application and machine resources, there is no shortage of
available tools to aid such regard. There are a vast number of commercial tools that do a
great job of this. One of such tools is YourKit Profiler.

How to do it…
In this recipe, we show you how you can monitor your server and application resources using
the YourKit Profiler.

1. Install Maven, Git, and JDK 7 as described in the Appendix.

The examples have been tested with JDK 7 only. At the time of
writing, they haven't been updated to work with JDK 8.

Beyond the Basics

190

2. Get a trial copy of YourKit Java Profiler from http://yourkit.com/ and install it.

3. Create a directory to keep the sample code. We will refer to this as CODE_SAMPLES.

4. Open a terminal or DOS prompt and change the CODE_SAMPLES directory.

5. Clone the application using the following command:
git clone https://github.com/jmeter-cookbook/spring-petclinic.git.

6. Run the application using the following command:
mvn tomcat7:run:

If the application started correctly, you should see a log
similar to this on the console and be able to access the
application at http://localhost:9966/petclinic.
Refer the following code snippet for more information:

 ...
 INFO RequestMappingHandlerMapping - Mapped "{[/owners/*/pets/
{petId}/visits],methods=[GET],params=[],headers=[],consumes=[]
,produces=[],custom=[]}" onto public org.springframework.web.
servlet.ModelAndView org.springframework.samples.petclinic.web.
VisitController.showVisits(int)
 INFO SimpleUrlHandlerMapping - Mapped URL path [/resources/**]
onto handler 'org.springframework.web.servlet.resource.
ResourceHttpRequestHandler#0'
 INFO SimpleUrlHandlerMapping - Mapped URL path [/webjars/**]
onto handler 'org.springframework.web.servlet.resource.
ResourceHttpRequestHandler#1'
 INFO SimpleUrlHandlerMapping - Root mapping to handler
of type [class org.springframework.web.servlet.mvc.
ParameterizableViewController]
 INFO SimpleUrlHandlerMapping - Mapped URL path [/**]
onto handler 'org.springframework.web.servlet.resource.
DefaultServletHttpRequestHandler#0'
 INFO DispatcherServlet - FrameworkServlet 'petclinic':
initialization completed in 985 ms
 Mar 18, 2014 9:39:13 AM org.apache.coyote.AbstractProtocol start
 INFO: Starting ProtocolHandler ["http-bio-9966"]

7. Launch YourKit.

http://yourkit.com/

Chapter 8

191

8. Connect YourKit to the running Java process by locating it within YourKit and
double-clicking on it and perform the following step. On successful connection,
you should see a log similar to the following one on the server console:

[YourKit Java Profiler 2013 build 13050] Log file: /Users/
berinle/.yjp/log/Launcher-8713.log

9. Launch JMeter.

10. Open the petclinic.jmx test script in the scripts/ch8 directory and run it.

11. In YourKit, click on the Performance Charts tab and monitor the server
resources (CPU, heap (memory), classes and threads) during your test.

12. Stop the test and view the results as shown in the following screenshot:

YourKit Connecting to running application

Beyond the Basics

192

How it works…
In step 7, when we ran mvn tomcat7:run, the command started an embedded Apache
Tomcat server and deployed an instance of our application to it. When we launched YourKit
Profiler in step 9, all the Java processes running on the system (of which our application was
one) were listed and we were able to connect to it and probe it. Afterwards, JVM statistics and
metrics were sent from the server to the YourKit agent, which enabled it to report statistics
such as CPU usage, heap memory usage, and thread count to name a few.

There's more…
YourKit is a full pledged Java profiler that gives you a detailed analysis of the various aspects
of an application. You can introspect the memory and look further into which objects are
taking too much memory on the heap, which methods are causing the application to drag,
potential memory leaks in an application, and so on. Other profilers are available and they
all give about the same insight into an application's inner workings.

Other popular known profilers include JProfiler and JProbe.

Detailing all the workings of a profiler go beyond this book. Curious readers are encouraged
to find out more profilers by doing a web search and/or reading the help documentation that
comes with the profiler. For YourKit Profiler discussed in this section, details can be found on
their site at http://yourkit.com/.

YourKit is not the only way to get such metrics but it is definitely better at doing the job,
being a full pledged profiler. For alternatives, please refer to the following recipes:

 f The Monitoring Servers while executing tests (using VisualVM) recipe

 f The Monitoring Servers while executing tests (using New Relic) recipe

Monitoring servers while executing tests
(using New Relic)

When you are profiling an application that is deployed in the Cloud, using any of the
other discussed profiling methods cannot work. In such cases, if the Cloud provider offers
integration with New Relic (which most do), then you can profile the application using the
method described here.

New Relic (http://www.newrelic.com) is an application performance management and
monitoring tool. It allows you connect to your applications running on Cloud servers and get
performance metrics and insights like you would get when running locally. It's a commercial
tool, but they do offer a free account that is sufficient for us to illustrate the concepts in
this recipe.

http://yourkit.com/
http://www.newrelic.com

Chapter 8

193

How to do it…
In this recipe, we will show you can monitor your server and application resources using New
Relic. Perform the following steps:

1. Install Maven, Git, and JDK 7 as described in the Appendix.

The examples have been tested with JDK 7 only. At the time of writing,
they haven't been updated to work with JDK 8.

Sign up for a free Heroku account at http://www.heroku.com.

1. Install Heroku toolbelt for your operating system as described at
https://toolbelt.heroku.com/.

2. Create a directory to keep the sample code. We will refer to this as CODE_SAMPLES.

3. Open a terminal or DOS prompt and change the CODE_SAMPLES directory.

4. Clone the application using the following command:
git clone https://github.com/jmeter-cookbook/spring-petclinic.git

5. Deploy the application on Heroku and run the following command:
heroku create

1. If this is successful, you should see the following log (yours will be different
as Heroku assigns random names to newly created applications.):
 Creating frozen-headland-2987... done, stack is cedar
 http://frozen-headland-2987.herokuapp.com/ | git@heroku.
com:frozen-headland-2987.git
 Git remote heroku added

2. Run the following command:
 git push heroku master

http://www.heroku.com
https://toolbelt.heroku.com/

Beyond the Basics

194

3. If all checks out, you should see logs similar to the following:
 Initializing repository, done.
 Counting objects: 3632, done.
 Delta compression using up to 8 threads.
 Compressing objects: 100% (1988/1988), done.
 Writing objects: 100% (3632/3632), 847.01 KiB | 0 bytes/s,
done.
 Total 3632 (delta 1127), reused 3615 (delta 1113)
 -----> Java app detected
 -----> Installing OpenJDK ... done
 -----> Installing Maven 3.0.3... done
 -----> Installing settings.xml... done
 -----> executing /app/tmp/cache/.maven/bin/mvn -B -Duser.
home=/tmp/build_85518f88-fc2e-4468-b487-80acd6cff8bb
-Dmaven.repo.local=/app/tmp/cache/.m2/repository -s /app/
tmp/cache/.m2/settings.xml -DskipTests=true clean install
 [INFO] Scanning for projects...
 [INFO]
 [INFO] --

 [INFO] Building petclinic 1.0.0-SNAPSHOT
 [INFO] --

 Downloading: http://s3pository.heroku.com/jvm/
org/apache/maven/plugins/maven-compiler-plugin/3.0/maven-
compiler-plugin-3.0.pom

 [INFO] --

 [INFO] BUILD SUCCESS
 [INFO] --

 [INFO] Total time: 51.380s
 [INFO] Finished at: Thu Mar 20 09:51:04 UTC 2014
 [INFO] Final Memory: 20M/493M
 [INFO] --

 -----> Discovering process types
 Procfile declares types -> web
 -----> Compressing... done, 98.3MB
 -----> Launching... done, v6
 http://frozen-headland-2987.herokuapp.com/ deployed
to Heroku

Chapter 8

195

6. Verify that the application was successfully deployed by either copying the provided
URL in the browser or running the following on the command line:
heroku open

Add the New Relic add-on to your deployed application and do the following:

 � Run the following command:
 heroku addons:add newrelic:stark

 � You should see the following logs:
 Adding newrelic:stark on frozen-headland-2987... done, v7
(free)

 Use `heroku addons:docs newrelic` to view documentation.

 � Run the following command to bind a name to your application for
identification on New Relic:

 heroku config:set NEW_RELIC_APP_NAME="Spring Petclinic"

7. View metric results on the New Relic dashboard and perform the
following steps:

1. Go to your Heroku dashboard at https://dashboard.herokuapp.com,
and select the app for which you have installed the New Relic add-on.

2. Alternatively, you can run Heroku add-ons: open New Relic from the terminal
window to go directly to the New Relic dashboard.

3. Select New Relic from your list of add-ons.

4. For more information on working with New Relic, see the New Relic
documentation at https://newrelic.com/docs/.

It could take up to 5 minutes before your application metrics
are reported to the New Relic dashboard.

8. Open the petclinic-heroku.jmx file in the scripts/ch8 directory.

9. Click on User Defined Variables and change the base_url to match the
URL of your assigned application, that is, <your-app-name>.herokuapp.com.

10. Save your changes and run the test.

11. Monitor the server and application resources in the New Relic dashboard.

https://dashboard.herokuapp.com
https://newrelic.com/docs/

Beyond the Basics

196

12. Stop the test and view the results as shown in the following screenshot:

New Relic connecting to running application

We renamed our deployed application on Heroku afterwards and
the actual sample deployed at the time of writing is now available at
http://petclinic-jcb.herokuapp.com/.

http://petclinic-jcb.herokuapp.com/

Chapter 8

197

How it works…
In step 9, we deployed our application to Heroku's Cloud platform when we ran the Git push
Heroku master application. This in turn stated an embedded Jetty server and deployed our
application to it. In step 10, we verified that the application was successfully deployed by
making sure it was accessible by running Heroku. We then added the New Relic monitoring
capabilities to our application when we ran Heroku add-ons: docs, and newrelic: stark in
step 11. Once added, our application was restarted on Heroku and within 5 minutes, the
application and server metrics were sent to the New Relic monitoring dashboard. New Relic
gives numerous metrics for our application including CPU and memory usage, top requests,
throughput, database monitoring (seeing top queries from within our application), and so on.

Some of the features such as database monitoring are not part of the free
tier. However, New Relic allows you upgrade your account to a pro account
from a trial once the add-on is added.

There's more...
New Relic works with a variety of technology stacks including Java (which we illustrated in this
recipe), Node.js, and Rails, to name a few. When testing applications deployed in the Cloud, it
is a handy and valuable tool to introspect application performance and resource consumption.

More details can be found on New Relic's site at http://www.newrelic.com.

See also
For alternatives, please refer to the following recipes:

 f The Monitoring servers while executing tests (using VisualVM) recipe

 f The Monitoring servers while executing tests (using YourKit Profiler) recipe

 f The PerfMon plugin for JMeter
(http://jmeter-plugins.org/wiki/PerfMon/)

Performance tips to scale JMeter
When you need to simulate a large load in test runs—for instance, more than a couple of
hundred users—it is important to follow certain measures to ensure you get the best out of
JMeter. Though there is no one-size-fits-all approach to determine how much load can be put
on a certain machine, as this depends on the type of application, network settings, machine
resources, and several other factors, we can still adhere to certain guidelines to get the most
out of JMeter regardless of the nature of your tests or applications under test.

http://www.newrelic.com
http://jmeter-plugins.org/wiki/PerfMon/

Beyond the Basics

198

How to do it…
In this recipe, we will point out some guidelines that will help you get more performance out of
JMeter. Perform the following steps:

1. You need to know the approximate capacity/load for machine(s) which use to perform
your tests can handle for a given application under tests:

 � A machine with 4GB RAM and a quad-core 2.4 GHz processor, running
JMeter with 1GB of heap, can usually run 200-250 users before starting to
deteriorate in performance. Also, a test plan with delays between requests,
will be able to handle larger loads than those without, as the machine's
resources are not as stressed as in the latter case.

2. Favor multiple slave nodes with no master configuration over master/slave setup.

 � When scaling out JMeter, that is, running in distributed mode, you are better
off running separate instances of JMeter per node machine than running in a
master/slave configuration.

 � Though there are some benefits to running distributed tests as a master/
slave configuration (for example, a consolidated place to control slave
machines, aggregated reporting, and so on), the overhead quickly outweighs
the benefits when you have more than a couple of slave machines.
The master node is overwhelmed and becomes the bottleneck.

3. Run in non-GUI mode.

 � The GUI mode is fine for recording, building, and running preliminary tests,
but it is not recommended to use for large scale testing since it in itself
consumes some resources. For large scale testing, the command line is
your friend. You can spin off tests from the command line using the
following command:

 jmeter[.bat] -n –t [absolute path to test file]

 From the $JMETR_HOME/bin directory:

 � On Windows:
 jmeter.bat -n -t c:\jmeter-test-plan.jmx

 � On Unix:

 ./jmeter -n -t /tmp/jmeter-test-plan.jmx

Chapter 8

199

4. Disable all listeners in your test plans.

 � While listeners are beneficial for preliminary testing, they can have adverse
effects on performance. Some listeners consume more resources than
others. Listeners such as View Results Tree and graph plotting listeners
are known suspects for high resource consumption. Instead, you can run in
non-GUI mode specifying a results JTL file and use the JTL file view with the
results of your test after it has completed, using any listener component such
as the Aggregate Report listener. All JMeter listener components have a file
input box where you can select existing results files to view at any time. An
example of specifying a log file is as follows:

./jmeter -n -t ~/workspace/packtpub/cookbook-bundled-code/
scripts/ch8/ch8_mobile_website.jmx -l /tmp/mobile.jtl

5. Use timers in your scripts.

 � Ideally, your tests are meant to simulate realistic behaviors and conditions.
For example, when browsing a web application, a user would normally pause
for a duration of time between page clicks and requests. By default, pauses
are not captured when you record test scripts. Be sure you put some pauses
in test plans.

6. Understand the application requirements and the test target goals.

 � When developing test plans, it is crucial to understand the requirements
of the application under test so as to develop relevant, useful, and
comprehensive test plans that meet their criteria.

7. Performance testing and tuning are best friends.

 � The goal of performance testing is often to ensure the application under test
meets certain criteria set by stakeholders. Under heavy load, the application
will exhibit some errors or slowness that might not have been seen under low
or moderate load. The errors or slowness could be due to some application
component or system configuration that needs to be tweaked. This often
leads to a series of tune-test cycle to identify, isolate, and hopefully resolve
the bottleneck.

As a rule of thumb, make only one change at a time to
know whether the change had a positive or negative
impact on performance.

Beyond the Basics

200

8. Keep a profiler and monitoring tools close at hand.

 � Without adequate tools to monitor the system, network, and application
metrics, exercising performance test is like shooting in the dark. You will
almost certainly fail to hit your target. As such, it is important you have
insight into all the layers involved in your testing to pinpoint exactly the root
causes of issues when they arise. This is often not a simple task, but having
the right tools certainly gets you a step closer.

How it works…
We have highlighted some common guidelines we have learned and followed over the years
as we aim to get the best performance out of JMeter when scaling it. It is important to know
the limitation of your test machines and plan accordingly. A master/slave setup can't be
used for any serious load testing spanning for more than a couple of machines. A better
approach is to avoid a master altogether and accumulate results from node machines post-
test. Disabling listeners, using timers, and running in non-GUI mode saves resources and
enables you put more load on a test server. It is also crucial to have insights into all the layers
of the application under test, including the system, network, metrics, and so on, to adequately
diagnose and resolve issues encountered.

This is by no means an exhaustive list, but these are good starter guidelines as you prepare to
scale JMeter.

See also
 f The Using timers recipe in Chapter 1, JMeter Fundamentals

 f The Testing external facing applications using Flood.IO recipe in Chapter 5,
Diving into Distributed Testing

 f The Testing external facing applications using BlazeMeter recipe in Chapter 5,
Diving into Distributed Testing

 f The Using Throughput Shaping Timer recipe in Chapter 6, Extending JMeter

 f The Using Constant Throughput Timer recipe in Chapter 7, Building, Debugging, and
Analyzing the Results of Test Plans

 f http://blazemeter.com/blog/5-ways-launch-jmeter-test-without-
using-jmeter-gui

 f http://blazemeter.com/blog/how-reduce-memory-usage-jmeter

http://blazemeter.com/blog/5-ways-launch-jmeter-test-without-using-jmeter-gui
http://blazemeter.com/blog/5-ways-launch-jmeter-test-without-using-jmeter-gui
http://blazemeter.com/blog/how-reduce-memory-usage-jmeter

Installing the
Supporting Software
Needed for this Book

In this appendix, we will cover the following recipes:

 f Installing JMeter

 f Installing Java Development Kit (JDK)

 f Installing JMeter plugins

 f Installing Vagrant

 f Installing VirtualBox

 f Installing Maven

 f Installing Git

 f Obtaining AWS keys for EC2

Introduction
During the course of the book, we have installed several types of supporting software needed
to follow along with some of the recipes. At such times, we have asked you to refer to the
appendix for installation instructions.

In this appendix, we'll cover how to install the needed software to successfully follow along
with those recipes.

Installing the Supporting Software Needed for this Book

202

Installing JMeter
Perform the following steps to install JMeter on your system:

1. Navigate to http://jmeter.apache.org/download_jmeter.cgi.

2. Download version 2.11 by clicking on the ZIP or gz archive under the
Binaries section.

3. If you don't find this version there, you can download it from the older archives page
at http://archive.apache.org/dist/jmeter/binaries/.

4. Extract the archive to the location of your chosen directory.

We refer to this location as JMETER_HOME throughout the book.

One line install
Assuming you have curl installed on your system, then you can do the following:

For the tar gzip archive:

curl -L -O http://mirror.metrocast.net/apache//jmeter/binaries/apache-
jmeter-2.11.tgz && tar xzf apache-jmeter-2.11.tgz

For the ZIP archive:

curl -L -O http://mirror.metrocast.net/apache//jmeter/binaries/apache-
jmeter-2.11.zip && unzip apache-jmeter-2.11.zip

Installing Java Development Kit (JDK)
Perform the following steps to install the JDK on your system:

1. Download the latest version (Java SE 7u67 at the time of writing this book) of the
Java 7 JDK (not 8) from Oracle at http://www.oracle.com/technetwork/
java/javase/downloads/index.html.

2. Agree to the license agreements.

3. Pick the installer compatible with your system.

4. Double-click on the installer and follow the onscreen instructions.

See also
 f http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

http://jmeter.apache.org/download_jmeter.cgi
http://archive.apache.org/dist/jmeter/binaries/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

Appendix

203

Installing JMeter plugins
Perform the following steps to install JMeter plugins on your system:

1. Download the latest standard set of plugin from http://jmeter-plugins.
org/. At the time of writing this book, it was version 1.1.3. Alternatively, you can
download it directly from http://jmeter-plugins.org/downloads/file/
JMeterPlugins-Standard-1.1.3.zip.

2. Extract the contents of the ZIP archive into the JMETER_HOME directory.

One line install
Assuming you have JMETER_HOME defined, run the following command on your
console window:

export JMETER_HOME=/tmp/apache-jmeter-2.11

curl -L -O http://jmeter-plugins.org/downloads/file/JMeterPlugins-
Standard-1.1.3.zip && unzip -o JMeterPlugins-Standard-1.1.3.zip -d
$JMETER_HOME

See also
 f http://jmeter-plugins.org/wiki/PluginInstall/

Installing Vagrant
Perform the following steps to install Vagrant on your system:

1. Download the Vagrant installer compatible with your system from
http://www.vagrantup.com/downloads.html. At the time of writing this
book, version 1.6.3 is the latest version, and that is what was used in the book.

2. Once downloaded, double-click on the installer and follow the onscreen instructions.

If needed, the older versions of the installer can be retrieved from
http://www.vagrantup.com/downloads-archive.html.

See also
 f http://www.vagrantup.com

http://jmeter-plugins.org/
http://jmeter-plugins.org/
http://jmeter-plugins.org/downloads/file/JMeterPlugins-Standard-1.1.3.zip
http://jmeter-plugins.org/downloads/file/JMeterPlugins-Standard-1.1.3.zip
http://jmeter-plugins.org/wiki/PluginInstall/
http://www.vagrantup.com/downloads.html
http://www.vagrantup.com/downloads-archive.html
http://www.vagrantup.com

Installing the Supporting Software Needed for this Book

204

Installing VirtualBox
For you to be able to do anything with Vagrant, you need to have VirtualBox or VMFusion.
VirtualBox is freely available while VMFusion is not. We have opted to use VirtualBox in
the book for this reason alone, so everyone can follow along without needing to pay for
commercial ware. Perform the following steps:

1. Download a VirtualBox installer compatible with your system from
https://www.virtualbox.org/wiki/Downloads. At the time of writing this
book, version 4.3.14 is the latest version, and that is what was used in the book.

2. Once downloaded, double-click on the installer and follow the onscreen instructions.

If needed, the older versions of the installer can be retrieved from
https://www.virtualbox.org/wiki/Download_Old_
Builds.

See also
 f https://www.virtualbox.org

Installing Maven
Perform the following steps to install Maven on your system:

1. Download Maven from http://maven.apache.org/download.cgi. At the time
of writing this book, version 3.2.3 is the latest version, and that is what was used in
the book.

2. Once downloaded, extract the archive to the location of your chosen directory.
We refer to this as M2_HOME.

3. Include the extracted location in your path variable so that mvn is available on
the terminal:

 � For example, if you extracted the archive to c:\devtools\apache-
maven-3.2.3 on Windows, or /Users/bayo/devtools/apache-
maven-3.2.3 on Unix/Mac OS, you will proceed with the following steps:

 � On Windows:
 set M2_HOME=c:\devtools\apache-maven-3.2.3
 set PATH=%PATH%;%M2_HOME%\bin;

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Download_Old_Builds
https://www.virtualbox.org/wiki/Download_Old_Builds
https://www.virtualbox.org
http://maven.apache.org/download.cgi

Appendix

205

 � On Unix/Mac OS:
 export M2_HOME=/Users/bayo/devtools/apache-maven-3.2.3
 export PATH=$PATH:$M2_HOME/bin

Alternatively, you could set these in your shell profiles, for example, ~/.zshrc (for Zsh) or
~/.bash_profile (for Bash) for convenience.

Installing Git
Perform the following steps to install Git on your system:

1. Download Git from http://git-scm.com/downloads.

2. Once downloaded, double-click on the installer and follow the onscreen instructions.

Obtaining AWS keys for EC2
To obtain AWS access keys, which are needed for recipes in Chapter 5, Diving into Distributed
Testing, perform the following steps:

1. Create a free AWS account if you don't already have one by navigating to
http://aws.amazon.com/ and clicking on the Sign up or Create a Free
Account button.

2. Once your account has been created, go to the IAM console at
https://console.aws.amazon.com/iam/home?#home.

3. Click on the Users link on the sidebar.

4. Select your IAM username and select User Actions | Manage Access Keys:

 � Create a new user by clicking on the Create New Users button and following
the onscreen instructions

 � Note the Access Key ID and Secret Access Key of the newly created user and
download them

5. Click on the Create Access Key button:

 � A new key/secret pair is generated and can be downloaded

6. Click on the Download credentials.

See also
 f http://docs.aws.amazon.com/AWSSimpleQueueService/latest/

SQSGettingStartedGuide/AWSCredentials.html

http://git-scm.com/downloads
http://aws.amazon.com/
https://console.aws.amazon.com/iam/home?#home
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html
http://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSGettingStartedGuide/AWSCredentials.html

Index
A
Aggregate Report listener

using 152
AJAX (Asynchronous JavaScript and XML) 64
AJAX-centric applications

testing 30
Amazon Web Services. See AWS
Apache ActiveMQ

about 103
download link 101

applications
testing, with JMeter master-slave

setup 106-108
AWS

about 113
URL 113
used, for testing external

applications 113-117
AWS access keys

obtaining 205

B
BlazeMeter

about 122
URL 122
used, for testing external facing

applications 122-124

C
Chrome browser extension

used, for recording script 17-19
comma-separated values (CSV) 24
Console Status Logger

using 136, 137

Constant Throughput Timer
using 155

Continuous Integration (CI)
JMeter, integrating with 166-173

Cross-Site Request Forger (CSRF) 35
CSS/jQuery Extractor

using 38, 39
custom JMeter plugins

developing 140-143
Cyberduck

URL 116

D
data

feeding, into script 24-26
Debug Sampler

about 153
debugging with 153, 154

distributed testing 105
Drone.IO

URL 173
Dropbox

URL 111
Dummy Sampler

using 138-140
Duration Assertion component

using 56, 57

E
external facing applications

testing, AWS used 113-117
testing, BlazeMeter used 122-124
testing, Flood.IO used 118-121
testing, JMeter used 113-117
testing, Vagrant used 113-117

208

F
file downloads

dealing with 42, 43
files

uploading, with scripts 58, 59
File Transfer Protocol (FTP) 90
Firefox

Firepath Plugin 46
Flood.IO

URL 118, 173
used, for testing external

facing applications 118-121
ForEach Controller

about 72
leveraging, in test plans 69-72
URL 69

FoxyProxy
about 14
URL 14

FTP services
testing 90-94

G
Git

download link 205
installing 205

Google Chrome
download link 17
XPath Helper 46

Gradle
URL 143

graphical user interface (GUI) 94
Groovy

URL 156
groovy-all JAR file

download link 138
Groovy script file

download link 157
Groovy Server Pages (GSP) 31

H
H2 database

download link 95
setting up 95

Har2jmeter 22

Heroku
toolbelt, installing 193
URL 193
URL, for dashboard 195

HTML responses
handling 50-53

HTTP Cache Manager component
using 176
working 177

HTTP Header Properties 129
HTTP(S) Test Script Recorder

about 16
used, for recording script 12-14

HTTP user sessions
managing 27, 28

HTTP web archives (HAR)
converting, to JMeter test plans 19-22

I
installation

Git 205
Java Development Kit (JDK) 202
JMeter 202
JMeter plugins 203
Maven 204
Vagrant 203
VirtualBox 204

Integrated Development
Environment (IDE) 181

Interleave Controller
about 77
using, in test plans 72-76

internal applications
testing, JMeter used 109-112
testing, Vagrant used 109-112

J
Java Archives (JARs) 125
Java Message Service. See JMS services
Java Runtime Environment (JRE) 96
Java Server Pages (JSP) 31
Java Virtual Machine (JVM) 143
Java Development Kit (JDK)

download link 202
installing 202

209

Jenkins WAR application
download link 166

JMeter
download link 202
installing 202
integrating, with Continuous

Integration 166-173
performance tips 197-200
URL, for source code 144
URL, for variables 158
used, for testing external

facing applications 113-117
used, for testing internal

applications 109-112
JMeter DSL gem 183
JMeter plugins

download link 203
installing 203

JMeter-plugins extension
URL 144

JMeter properties
about 183
system.properties 184
user.properties 184
using 184, 185

JMeter SSH Sampler plugin
installing 91

JMeter test plans
HTTP web archives (HAR), converting to 19-21

JMeter WebSocket Sampler component
URL, for dependencies 145
URL, for downloading 144

JMS services
about 104
reference links 104
testing 101-103

JSCH JAR file
download link 91

JSON (JavaScript Object Notation)
about 21, 47
online resources 50

JSONPathExtractor plugin
URL 50

JSON responses
handling 47-49

JSoup
URL 38

JSR223 postprocessor
using 156-158

L
Loop Controller

about 68
using, in test plans 65-67

M
machine system settings

changing 14-16
master-slave setup

architecture 107, 108
used, for testing applications 106, 107
working 108

Maven
download link 204
installing 204

MongoDB
installing 98
URL, for operations 100

N
network bandwidths

testing with 173-176
New Relic

about 192
URL 192
URL, for documentation 195
used, for monitoring servers 192-197

NoSQL databases
testing 98-100

P
performance tips, JMeter 197-200
properties, CSV dataset configuration

Allow Quoted Data 26
Delimeter 25
Recycle on EOF 26
Sharing mode 26
Stop thread on EOF 26
Variable Names 25

210

R
Random Controller

about 77
using, in test plans 72-76

Regular Expression Extractor
using 34-36

regular expressions
reference link 34

Regular Expression Tester
using 36
working 37

relational databases
testing 94-98

remote method invocation (RMI) 108
Remote Procedure Calls (RPC) 82
Representational State Transfer (REST)

about 82
reference link 85

Response Assertion
using 54-56

Response Times Over Time listener
analyzing 159, 160

REST Sampler
using 126-129

REST web services
testing 82-85

Robomongo
URL 101

Ruby DSL
used, for writing test scripts 181-183

Runtime Controller
about 79
using, in test plans 77-79

S
script languages

using, within test plans 178-180
scripts

data, feeding into 24-26
recording, via Chrome browser

extension 17-19
recording, via HTTP(S) Test Script

Recorder 12-14
Secure File Transfer Protocol (SFTP) 90, 143

Secure Shell (SSH) 90
servers

monitoring, New Relic used 192-197
monitoring, VisualVM used 186-189
monitoring, YourKit Profiler used 189-192

Simple Object Access Protocol (SOAP)
about 82, 85
reference link 90

Single Page Applications. See SPAs
SOAP UI

about 90
URL 90

SOAP web services
testing 85-90

Socket.io
about 147
URL 147

SPAs
testing 28, 29

SSH sampler plugin
URL 144

Stepping Thread Group
about 132
URL 132

T
testing

FTP services 90-94
JMS services 101-103
NoSQL databases 98-100
relational databases 94-98
REST web services 82-85
SOAP web services 85-90

test plans
ForEach Controller, leveraging 69-72
Interleave Controller, using 72-76
Loop Controller, using 65-67
Random Controller, using 72-76
Runtime Controller, using 77-79
script languages, using within 178-180
Transaction Controller, using 62-64

test results
analyzing 22-24
viewing 22-24

211

test script
executing 8-10
running, in non-GUI mode 11
writing, through Ruby DSL 181-183

think time 26
Throughput Shaping Timer

URL, for documentation 136
using 132-135

timers
using 26

Tomcat
download link 166

Transaction Controller
about 65
using, in test plans 62-64

transactions per second (TPS)
about 161
analyzing 161, 162

Travis CI
URL 173

U
Ultimate Thread Group

using 130-132
User Defined Variables (UDVs)

using 163, 164

V
Vagrant

about 109
download link 203
installing 203
URL 109
used, for testing internal

applications 109-112
version control system (VCS) 166
View Results Tree listener

using 150, 151
VirtualBox

download link 204
installing 204

VisualVM
used, for monitoring servers 186-189

W
weather service

testing 88
web services definition

language (WSDL) file 88
WebSocket

URL 147
WebSocket-enabled applications

testing 144-146
While Controller

URL 69

X
XML responses

handling 44-46
XmlSlurper

URL 158
XPath Extractor

using 40, 41
XPath queries 46
XPath syntax

reference link 46

Y
YourKit Profiler

about 192
URL 190
used, for monitoring servers 189-192

Thank you for buying

JMeter Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Performance Testing with
JMeter 2.9
ISBN: 978-1-78216-584-2 Paperback: 148 pages

Learn how to test web applications using Apache JMeter
with practical, hands-on examples

1. Create realistic and maintainable scripts for
web applications.

2. Use various JMeter components to achieve
testing goals.

3. Removal of unnecessary errors and
code compilation.

4. Acquire skills that will enable you to leverage the
Cloud for distributed testing.

Metasploit Penetration
Testing Cookbook
Second Edition
ISBN: 978-1-78216-678-8 Paperback: 320 pages

Over 80 recipes to master the most widely used
penetration testing framework

1. Special focus on the latest operating systems,
exploits, and penetration testing techniques for
wireless, VOIP, and Cloud.

2. This book covers a detailed analysis of
third-party tools based on the Metasploit
framework to enhance the penetration
testing experience.

3. Detailed penetration testing techniques for
different specializations like wireless networks,
VOIP systems with a brief introduction to
penetration testing in the Cloud.

Please check www.PacktPub.com for information on our titles

Mapping and Visualization
with SuperCollider
ISBN: 978-1-78328-967-7 Paperback: 222 pages

Create interactive and responsive audio-visual
applications with SuperCollider

1. Master 2D computer-generated graphics
and animation.

2. Perform complex encodings and
audio/data analysis.

3. Implement intelligent generative
audio-visual systems.

Application Testing with
Capybara
ISBN: 978-1-78328-125-1 Paperback: 104 pages

Confidently implement automated tests for web
applications using Capybara

1. Learn everything to become super productive with
this highly acclaimed test automation library.

2. Using some advanced features, turn yourself into
a Capybara ninja!

3. Packed with practical examples and easy-to-follow
sample mark-up and test code.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: JMeter Fundamentals
	Introduction
	Executing a test script
	Recording a script via HTTP(S) Test Script Recorder
	Recording scripts via the Chrome browser extension
	Converting HTTP web archives (HAR) to JMeter test plans
	Viewing and analyzing test results
	Feeding data into a script
	Using timers
	Managing HTTP user sessions
	Testing Single Page Applications (SPAs)
	Testing AJAX-centric applications

	Chapter 2: Handling Responses
	Introduction
	Using Regular Expression Extractor
	Using Regular Expression Tester
	Using CSS/jQuery Extractor
	Using XPath Extractor
	Dealing with file downloads
	Handling XML responses
	Handling JSON responses
	Handling HTML responses
	Using Response Assertion
	Using Duration Assertion
	Uploading files with your scripts

	Chapter 3: Building Robust Test Plans with Controllers
	Introduction
	Using Transaction Controller in test plans
	Using Loop Controller in test plans
	Leveraging ForEach Controller in test plans
	Using Interleave and Random Controller in test plans
	Using Runtime Controller in test plans

	Chapter 4: Testing Services
	Introduction
	Testing REST web services
	Testing SOAP web services
	Testing FTP services
	Testing relational databases
	Testing NoSQL databases
	Testing JMS services

	Chapter 5: Diving into Distributed Testing
	Introduction
	Testing applications with JMeter's
master-slave setup
	Testing internal applications using JMeter and Vagrant
	Testing external facing applications using JMeter, Vagrant, and AWS
	Testing external facing applications using Flood.IO
	Testing external facing applications using BlazeMeter

	Chapter 6: Extending JMeter
	Introduction
	Using REST Sampler
	Using Ultimate Thread Group
	Using Throughput Shaping Timer
	Using Console Status Logger
	Using Dummy Sampler
	Developing custom JMeter plugins
	Testing WebSocket-enabled applications

	Chapter 7: Building, Debugging, and Analyzing the Results of Test Plans
	Introduction
	Using the View Results Tree listener
	Using the Aggregate Report listener
	Debugging with Debug Sampler
	Using Constant Throughput Timer
	Using the JSR223 postprocessor
	Analyzing Response Times Over Time
	Analyzing transactions per second
	Using User Defined Variables (UDV)

	Chapter 8: Beyond the Basics
	Introduction
	Continuous Integration with JMeter
	Testing with different bandwidths
	Using the HTTP Cache Manager component
	Using script languages within test plans
	Writing test scripts through Ruby DSL
	Understanding JMeter properties
	Monitoring servers while executing tests (using VisualVM)
	Monitoring servers while executing tests (using YourKit Profiler)
	Monitoring servers while executing tests (using New Relic)
	Performance tips to scale JMeter

	Appendix: Installing the Supporting Software Needed for this Book
	Introduction
	Installing JMeter
	Installing the Java Development Kit (JDK)
	Installing JMeter plugins
	Installing Vagrant
	Installing VirtualBox
	Installing Maven
	Installing Git
	Obtaining AWS keys for EC2

	Index

