
www.allitebooks.com

http://www.allitebooks.org


Java Hibernate 
Cookbook

Over 50 recipes to help you build dynamic and powerful 
real-time Java Hibernate applications

Yogesh Prajapati

Vishal Ranapariya

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org


Java Hibernate Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or 
transmitted in any form or by any means, without the prior written permission of the publisher, 
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the 
information presented. However, the information contained in this book is sold without 
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers 
and distributors will be held liable for any damages caused or alleged to be caused directly or 
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies 
and products mentioned in this book by the appropriate use of capitals. However, Packt 
Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1110915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-190-4

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org


Credits

Authors
Yogesh Prajapati

Vishal Ranapariya

Reviewers
Mathieu Nayrolles

Ravi Sharma

Umamaheswaran T.G

Commissioning Editor
Taron Pereira

Acquisition Editor
Kevin Colaco

Content Development Editor
Samantha Gonsalves

Technical Editor
Siddhesh Ghadi

Copy Editor
Shruti Iyer

Project Coordinator
Sanchita Mandal

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

www.allitebooks.com

http://www.allitebooks.org


About the Authors

Yogesh Prajapati is a Java programmer. He has more than 4 years of experience in 
implementing enterprise web applications using J2EE technologies. Yogesh has experience in 
technologies and frameworks such as Spring, Hibernate, RESTful Web Services, and MongoDB.

He pursued a BCA from Ganpat University, Kherva, Gujarat, India. In 2011, Yogesh obtained a 
master's degree in computer application from Gujarat University, Gujarat, India.

Yogesh's expertise is not limited to a particular domain; he has worked with clients in the 
transportation, finance, and health care domains. Apart from this, he has had experience in 
GIS development and has also worked in the hospitality industry.

Yogesh has a blog, http://kode12.com, where he shares his knowledge of Java and other 
technologies. He is interested in contributing to open source technologies and is enthusiastic 
about building new products and services. You can follow Yogesh on his blog and on Linkedin 
at http://in.linkedin.com/in/yogeshmprajapati.

First, I would like to thank all those who helped me personally and 
professionally to complete this book.

I would also like to thank my wife, Varsha, for her valuable support as she 
understood me and helped me finish this book. I would like to extend a big 
thank you to my baby boy, Aarush. Apart from these two people, I would like 
to thank my parents, Manoj and Vina Prajapati, who continuously motivated 
me while writing. Also, I would like thank my sisters, Sonal and Shital, who 
always support me to fulfill my dreams.

Lastly, a special shout-out goes to god, who gives me the power to 
accomplish such tasks. Last but not least, I would like to extend a very 
special thanks to the Java and Hibernate technologies for making life easier.

www.allitebooks.com

http://kode12.com
http://in.linkedin.com/in/yogeshmprajapati
http://www.allitebooks.org


Vishal Ranapariya is a Java developer. He has more than 4 years of experience in 
implementing enterprise web applications using J2EE technology. He has experience with 
technologies and frameworks such as Java, J2EE, Spring, Hibernate, RESTful web services, 
MongoDB, and Core Hadoop.

Vishal pursued a BCA from Gujarat University, Gujarat, India. In 2011, he obtained a master's 
degree in computer application from Gujarat University, Gujarat, India.

Vishal has blogs at http://kode12.com, where he shares his knowledge of Java-related 
open source technologies. He is interested in contributing to open source technologies. Vishal 
is enthusiastic about building new products and services. You can follow Vishal on his blog 
and on LinkedIn at https://in.linkedin.com/in/vishalranapariya.

Firstly, I would like to thank all those who helped me personally and 
professionally to complete this book. I would also like to thank my parents, 
who continuously motivated me while writing this book.

www.allitebooks.com

http://kode12.com
https://in.linkedin.com/in/vishalranapariya
http://www.allitebooks.org


About the Reviewers

Mathieu Nayrolles was born in France and lived in a small village in Côte d'Azur for almost 
15 years. He began his studies in computer science in France and continued with them in 
Montréal, Canada, where he now lives with his wife. Mathieu holds two master's degrees in 
eXia.Cesi (software engineering) and UQAM (computer science) respectively. He is now a PhD 
student at Concordia University (electrical and computer engineering), Montréal, Canada, 
under the supervision of Dr. Wahab Hamou-Lhadj.

Despite his academic journey, Mathieu has been consulting as a Magento performances 
specialist since the release of Magento 1.6 (August 2011) and has also worked for companies 
worldwide, such as Eurocopter and Saint-Gobain, where he learned how important good 
technical resources are.

You can discover some of Mathieu's work through his books, Instant Magento Performance 
Optimization How-to, Magento Site Performance Optimization, Mastering Apache Solr,  
and Xamarin Studio for Android Programming: A C# Cookbook or its latest editions,  
https://bumper-app.com, https://mindup.io/ and https://toolwatch.io/.

You can follow Mathieu on Twitter at @MathieuNls.

Ravi Sharma is a software professional with over 12 years of experience, working with 
various companies such as Oracle, Yahoo, and Tier-1 Banks and in the mobile advertising 
sector. He has mainly worked with Lower latency, which are highly transactional systems 
involving the processing of billions of requests per day and creating scalable systems.

Ravi received his BTech degree (honors) from YMCA Institute of Engineering, Faridabad, India. 
In the last few years, he has been a part of various political and social organisations (NGOs), 
where he has written on architecture and design and built systems for political organisations. 
Ravi has also built an e-governance system called eSwaraj (http://www.eswaraj.com).

www.allitebooks.com

https://bumper-app.com
https://mindup.io/
https://toolwatch.io/
http://www.eswaraj.com
http://www.allitebooks.org


Umamaheswaran T.G has more than 15 years of experience in information technology. 
He is a software architect at C1X (www.c1exchange.com), a fast growing start-up in the 
San Francisco Bay Area. Uma is an ex-Yahoo employee. Prior to that, he was a senior Java 
consultant for Wells Fargo USA, Citibank Japan, and various other clients.

Uma has also reviewed the following books for Packt Publishing: 

 f Drools Developer's Cookbook

 f Learning Informatica PowerCenter 9.x 

I would like to thank my wife, Chitra, and my two kids, Sivasweatha and 
Sivayogeith, for their support and cooperation.

www.allitebooks.com

www.c1exchange.com
http://www.allitebooks.org


www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for 
a range of free newsletters and receive exclusive discounts and offers on Packt books and 
eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt
 f Copy and paste, print, and bookmark content
 f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib 
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org


i

Table of Contents
Preface v
Chapter 1: Setting Up Hibernate 1

Introduction 1
Getting the required libraries for hibernate 3
Creating a hibernate persistent class 4
Providing an XML-based hibernate mapping 8
Providing an annotation-based hibernate mapping 12
Providing a hibernate configuration using an XML file 18
Providing a hibernate configuration using the properties file 20
Configuring hibernate programmatically 22

Chapter 2: Understanding the Fundamentals 25
Introduction 26
Building a SessionFactory 26
Creating a generic SessionFactory provider class 28
Opening a new session 29
Opening a stateless session 31
Saving an object to the database 32
Fetching an object from the database 36
Removing an object from the database 42
Updating an object 44
Creating a criteria 46
Restricting the results using a criteria 47
Pagination using a criteria 50
Sorting the results 51
Transforming a result 53
Using basic projection 57

www.allitebooks.com

http://www.allitebooks.org


ii

Table of Contents

Chapter 3: Basic Annotations 59
Introduction 59
Declaring a class as an entity and creating a table in the database –  
@Entity and @Table 60
Creating a column in the table – @Column 62
Creating a primary key and composite primary key column – @Id and  
@IdClass 64
Creating an autogenerator column 65

Chapter 4: Working with Collections 71
Introduction 71
Persisting List 71
Persisting Set 83
Persisting Map 87
Persisting Array 92

Chapter 5: Working with Associations 97
Introduction 97
One-to-one mapping using foreign key association 98
One-to-one mapping using a common join table 107
One-to-one mapping using a common primary key 112
One-to-many mapping or many-to-one mapping 116
Many-to-many mapping 121

Chapter 6: Querying 129
Introduction 129
Working with an alias 129
Performing aggregate operations 133
Executing a subquery using a criteria 142
Executing a native SQL query 143
Executing a query using HQL 146
Using formula in hibernate 149
Working with NamedQuery 152

Chapter 7: Advanced Concepts 155
Introduction 155
Working with a first-level cache 156
Working with a second-level cache 162
Working with a query cache 165
Working with the table per class hierarchy strategy of inheritance 168
Working with the table per subclass strategy of inheritance 173
Working with the table per concrete class strategy of inheritance 177
Working with the versioning of objects 182



iii

Table of Contents

Maintaining the history of an object 184
Working with an interceptor 190
Working with batch processing 195

Chapter 8: Integration with Other Frameworks 199
Introduction 199
Integration with Spring 199
Integration with Struts 210

Index 223





v

Preface
There are multiple databases available to store our valuable data. When we go for relational 
data structures, we can perform any operation on the data using queries on the interface 
provided by the database vendor or using a third party tool. The syntax for all databases is 
almost similar, but some databases follow their own syntax and semantics of writing a query. 
Nowadays, real-world applications require a quick development cycle, database-independent 
query execution, and a generic code that can be supported by multiple databases. It's a very 
hard and time-consuming task for a software developer to fulfill this set of requirements.

Hibernate is an ORM (Object Relational Mapping) tool that helps us by making our development 
process faster and making the software development independent of the database; so, we 
can easily change a database vendor without worrying about the changes required in code. 
Therefore, whether you are developing a standalone Java application or a server-side Java 
Enterprise application, you could use hibernate to make your code database-independent.

Java Hibernate Cookbook will help you to learn hibernate from the basics to an advanced 
level. In this book, we will try to create simple and short recipes to understand hibernate  
step by step.

What this book covers
Chapter 1, Setting Up Hibernate, provides the basics of hibernate and the persistent class. 
Next, you will learn to obtain the required libraries, XML and annotation-based configuration, 
and the mapping required for hibernate.

Chapter 2, Understanding the Fundamentals, takes you through the basic objects required 
to start working with hibernate, such as SessionFactory, Session, Criteria, 
Projection, and so on.

Chapter 3, Basic Annotations, covers the very basic annotations that are useful and 
necessary while writing with hibernate, such as declaring table (@Table), declaring column  
(@Column), declaring primary key (@Id), and so on.



Preface

vi

Chapter 4, Working with Collections, explains how collections work with hibernate and how to 
persist Java collections such as List, Map, Set, and so on using hibernate.

Chapter 5, Working With Associations, helps you to understand relationships and associations 
such as one-to-one, one-to-many (many-to-one), and many-to-many. In this chapter, you will 
discover the simplest way to implement a relationship using hibernate.

Chapter 6, Querying, applies the basics of hibernate to query a database. This chapter helps 
you to understand the fundamentals of hibernate such as alias, subquery, NamedQuery, 
formula, and HQL.

Chapter 7, Advanced Concepts, helps you to learn the advanced concepts in hibernate such 
as caching, inheritance strategy, versioning, and maintaining the history of the objects.

Chapter 8, Integration with Other Frameworks, explains integration with other MVC frameworks 
such as Struts and Spring. It shows how to achieve a persistent life cycle in the frameworks.

What you need for this book
Knowledge of the Java programming language is a must. Also, you are expected to have an 
understanding of the relational database, SQL query, and JDBC API. The knowledge of IDEs 
such as Eclipse or NetBeans is preferred.

You will need the following software/tools:

 f JDK 6

 f Eclipse IDE

 f Maven

 f Hibernate 3.6.7 JAR

 f MySQL Database Server

 f JDBC Driver for MySQL

 f Hibernate Envers

Who this book is for
This is book for the Java developers who now want to learn hibernate. A good knowledge and 
understanding of Java is preferred to allow an efficient programming of the core elements and 
applications. It would also be helpful if the readers are familiar with the basics of SQL.



Preface

vii

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it, 
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software or 
any other preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the  
previous section.

There's more…
This section consists of any additional information about the recipe in order to make the 
reader more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of 
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "dialect 
helps hibernate to generate database specific SQL statements."



Preface

viii

A block of code is set as follows:

<hibernate-mapping>
  <class="Employee" table="employee">
    <id name="id" type="long" column="id">
      <generator class="increment" />
    </id>
    <property column="firstName" name="firstName" />
    <property column="salary" name="salary" />
  </class>
</hibernate-mapping>

When we wish to draw your attention to a particular part of a code block, the relevant lines or 
items are set in bold:

@AuditTable(value="emp_history")
public class Employee {
  // other fields and setters/getters
}

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or disliked. Reader feedback is important for us as it helps us develop 
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the 
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or 
contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors


Preface

ix

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to 
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com 
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, 
you can visit http://www.packtpub.com/support and register to have the files e-mailed 
directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen. 
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be 
grateful if you could report this to us. By doing so, you can save other readers from frustration 
and help us improve subsequent versions of this book. If you find any errata, please report 
them by visiting http://www.packtpub.com/submit-errata, selecting your book, 
clicking on the Errata Submission Form link, and entering the details of your errata. Once your 
errata are verified, your submission will be accepted and the errata will be uploaded to our 
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At 
Packt, we take the protection of our copyright and licenses very seriously. If you come across 
any illegal copies of our works in any form on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated 
material.

We appreciate your help in protecting our authors and our ability to bring you valuable 
content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support




1

1
Setting Up Hibernate

In this chapter, we will cover the following recipes:

 f Getting the required libraries for hibernate

 f Creating a hibernate persistent class

 f Providing an XML-based hibernate mapping

 f Providing an annotation-based hibernate mapping

 f Providing a hibernate configuration using an XML file

 f Providing a hibernate configuration using a properties file

 f Configuring hibernate programmatically

Introduction
In this chapter, we will take a look at how the hibernate and ORM (Object-relational Mapping) 
frameworks work, how to configure hibernate in different ways, and the libraries that are 
required for the hibernate application. An essential part of the application is the hibernate 
configuration. Through the configuration, we can provide database information to the 
hibernate engine, such as the database host, port, username, password, the database name, 
the drive class, and so on.

In the older era of Java development, developers used some methodologies to persist data. 
To persist data means to save or store data in some storage medium by maintaining it in 
a certain state. Once the data is successfully persisted, it can be used at any given time. A 
database is the more preferable storage medium for a transactional operation. Usually, we 
use JDBC (Java Database Connectivity) to perform such operation with the database.

www.allitebooks.com

http://www.allitebooks.org


Setting Up Hibernate

2

If we use the JDBC operation, we need to work a bit harder and take care of the  
following processes:

 f Opening a database connection

 f Maintaining an open connection

 f Building a query

 f Executing a query

 f Getting a response to the query

 f Mapping the query response with the custom classes

 f Closing the database connection

To avoid this hectic process, we can use the ORM tools available in the market. ORM stands 
for Object Relation Mapping. It works as a bridge between the application and database by 
simplifying the communication between them.

The benefits of the ORM framework are as follows:

 f It reduces the development time/cost.

 f It speeds up the development.

 f It provides us with portability. Hibernate supports multiple databases, so there is no 
need to write a database-specific code.

This is a useful feature of hibernate. Generally, all databases have their own syntax made up 
of Data Definition Language (DDL) or Data Manipulation Language (DML) statements. If 
we used JDBC, we would need to write a database-specific code as our database is changed. 
However, hibernate gets rid of the developer's headache by handling this issue.

The syntax of a query may be different for different database parameters; still, hibernate 
works in the same way for all types of databases. Hibernate's term dialect helps achieve 
this type of functionality. The implementation of the dialect class is provided by the 
database provider to inform hibernate about the syntax of this particular database.

Some useful features of hibernate are as follows:

 f Code reusability

 f Transaction management

 f Efficient collection/custom classes mapping

 f The caching mechanism supported by hibernate



Chapter 1

3

Getting the required libraries for hibernate
To work with hibernate, we need a JAR (Java Archive) file provided by hibernate. Here, we 
will see how to download the hibernate core distribution. There are multiple ways to get the 
required libraries; here, we will consider two of them:

 f Manually downloading

 f Using Maven

Manually downloading
The first and most basic JAR file needed is a JDBC driver. The JDBC driver is a bridge or an API 
between Java and the database. The JDBC driver provides us with the generic classes that 
will help us communicate with the database. Generally, the driver is either provided by the 
database provider or developed by communities; however, you have to get it yourself. This also 
depends on the type of the database you are using. As we will use the MySQL database for 
this book, we will use the Mysql-Connector.jar file.

How to do it…
Let's come back to the library section. Apart from JDBC, you will need the JAR files for 
hibernate. Perform the following steps:

1. Download the hibernate core distribution from http://hibernate.org/orm/.

2. Now, place all the files in your classpath if you plan to run a standalone program and 
put them in the lib folder if it's a J2EE project.

When you manually download the libraries, it's the programmer's 
responsibility to get all the required and dependent JAR files from 
the official site of hibernate; failing this, they will face errors.

Using Maven
If you use the Maven project, it would get rid of your headache of finding all the JAR files  
for hibernate and the dependent libraries. You can use the following Maven configuration  
for hibernate.

http://hibernate.org/orm/


Setting Up Hibernate

4

How to do it…
1. Enter the following code into the pom.xml source file to show the dependency 

mapping of hibernate and MySQL in pom.xml:
…
<dependencies>
  <!-- MySQL connector -->
  <dependency>
    <groupId>MySQL</groupId>
    <artifactId>MySQL-connector-Java</artifactId>
    <version>MySQL-connector-version</version>
  </dependency>
 
  <!-- Hibernate framework -->
  <dependency>
    <groupId>hibernate</groupId>
    <artifactId>hibernate-core</artifactId>
    <version>hibernate-version</version>
  </dependency>
<dependencies>

Using this method, Maven will download all the required JAR files related to hibernate and the 
dependent libraries required for hibernate.

Replace MySQL-connector-version with your required MySQL connector 
version in the <version>MySQL-connector-version</version> 
line, and replace hibernate-version with your required hibernate version in 
the <version>hibernate-version</version> line.

Creating a hibernate persistent class
As discussed in the Preface, the developer will be dealing with objects at every step of 
development. Also, when we use hibernate, we don't need to work on a core SQL query. Here, 
we will create a POJO (Plain Old Java Object) in Java, which represents a table in the database.

Getting ready
By POJO, we mean that we will create a Java class that satisfies the following requirements:

 f It needs to have a default constructor that is persistent.

 f It should contain the id attribute. ID is used to identify the object and is mapped with 
the primary column of a table.

 f All attributes should have Getter and Setter methods, such as getXXX and 
setXXX where xxx is a field name.



Chapter 1

5

How to do it...
We will now create a persistent class and name it Employee. The following table shows a 
representation of the Employee class:

Employee
id

firstName

salary

1. Create the Employee.java class and place the following code in the class:
public class Employee{
  private long id;
  private String firstName;
  private double salary;
  // other fields

  // default constructor
  public Employee() {
  }

  public long getId() {
       return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getFirstName() {
    return firstName;
  }

  public void setFirstName(String firstName) {
    this.firstName = firstName;
  }

  public double getSalary() {
    return salary;
  }

  public void setSalary(double salary) {
    this.salary = salary;



Setting Up Hibernate

6

  }
  
  //
  // Getter and setter for other fields...
  //

}

Now the preceding class satisfies all the requirements listed before to be a persistent class.

The preceding class now contains the following:

 f The default Employee() constructor

 f The id attribute, which is the primary column of the table and can be used to 
uniquely identify an entry

 f The individual getters and setters in all the attributes (id, firstName, and salary)

There's more…
Now, let's see how to design a POJO for tables having references between the Department 
and Employee tables:

Department Employee
id id

deptName firstName

salary

department

The following code is the definition for the Department class in Department.java:

public class Department{
  private long id;
  private String deptName;

  //default constructor
  public void Department(){
  }

  //getters and setters
  public long getId() {
    return id;
  }

  public void setId(long id) {



Chapter 1

7

    this.id = id;
  }

  public String getDeptName() {
    return deptName;
  }

  public void setDeptName(String deptName) {
    this.deptName = deptName;
  }

}

The following code is the definition for the Employee class in Employee.java:

public class Employee{
  private long id;
  private String firstName;
  private double salary;
  private Department department; // reference to Department.

  //default constructor
  public void Employee(){
  }

  //getters and setters
  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getFirstName() {
    return firstName;
  }

  public void setFirstName(String firstName) {
    this.firstName = firstName;
  }

  public double getSalary() {
    return salary;
  }



Setting Up Hibernate

8

  public void setSalary(double salary) {
    this.salary = salary;
  }

  public Department getDepartment(){
    return department;
  }

  public setDepartment(Department department){
    this.department = department;
  }
  
}

Downloading the example code

You can download the example code files for all Packt 
books you have purchased from your account at 
http://www.packtpub.com. If you purchased 
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the 
files e-mailed directly to you.

Providing an XML-based hibernate mapping
In the preceding recipe, you learned how to create a POJO. Now we will consider how to create 
the configuration for hibernate. There are multiple ways of mapping, and this is one of them.

Generally, the configuration provides the following information:

 f The mapping between the POJO and the database table

 f The mapping between the POJO property and the database table column

 f The definition of the primary key column

 f The definitions of the foreign key column and relationships such as one-to-one,  
one-to-many, many-to-one, many-to-many with another table, and so on

 f Constraints such as not-null, formula, lazy, cascade, and so on

 f The definitions of the length, the data type of the column, the formula, and so on



Chapter 1

9

How to do it…
To provide hibernate mapping based on XML, perform the following steps:

1. Ensure that the basic structure of the configuration file is as follows:
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD X.X//EN"
"http://hibernate.sourceforge.net/hibernate-mapping- 
X.X.dtd">
<hibernate-mapping>
...
</hibernate-mapping>

We have not provided the DTD code for the future demo in 
this book, but it should be present while developing.

2. Create a XML file and name it Employee.hbm.xml. Then, add the configuration, as 
shown in the following code:
<hibernate-mapping>
  <class="Employee" table="employee">
    <id name="id" type="long" column="id">
      <generator class="increment" />
    </id>
    <property column="firstName" name="firstName" />
    <property column="salary" name="salary" />
    <!-- other properties mapping-->
  </class>
</hibernate-mapping>

Here, we named the mapping file Employee.hbm.xml. 
However, while developing, there is no strict rule regarding the 
naming convention. Here, we will create a new hbm file for each 
POJO; for example, we created an Employee.hbm.xml file for 
the Employee.java class. Another common practice we will 
use here is to create one hbm file for the module, map all the 
classes of this module in the same mapping file, and name this 
file modulename.hbm.xml.

How it works…
Here, <hibernate-mapping> is a root element that contains all the <class> elements. 
The <class> tag contains the following attributes:

 f name: This specifies the FQN (Fully Qualified Name) of the Java class.



Setting Up Hibernate

10

 f table: This denotes the database table used for the class defined in the  
name attribute.

 f The <generator> tag in the <id> tag is used to generate the value of the primary 
key. There are many types of built-in generators provided by hibernate, such as 
identity, sequence, hilo, and so on.

The <id> tag defines the primary key column for the database table. It contains the  
following attributes:

 f name: This specifies the Java class attribute name

 f column: This denotes the database table's column name

 f type: This specifies the data type of the column that will help hibernate during the 
creation and retrieval of the automatic table

 f size: This denotes the size attribute that defines the length of the table's column

The type attribute in the <id> and <property> tags helps 
hibernate to create a table structure automatically for us using 
the hbm mapping.

Usually, we create a mapping file called hbm (hibernate mapping). It is a normal XML schema 
file that contains custom hibernate XML tags. This helps the hibernate engine to map the 
class to the table and the class field to the table column, along with the given attributes.

All the mapping definitions for hibernate are bundled under the <hibernate-mapping> 
... </hibernate-mapping> tag. In <hibernate-mapping> ... </hibernate-
mapping>, we can add any number of class-to-table mapping definitions.

It is good practice to provide the type in mapping because if 
this attribute is not provided, hibernate needs to use reflection 
to get the data type of the field; reflection requires a little more 
processing than a normal execution does.

There's more…
Now, let's create the XML mapping for the POJO having a reference with another POJO. Here, 
we will create two different mapping files. To achieve this using an XML-based mapping, we 
have to create different class mappings for each POJO that has a dependency.

The following is a code that represents the mapping for the Department class. The mapping 
is in the Department.hbm.xml file:

…
<hibernate-mapping>



Chapter 1

11

  <class name="Department" table="department">
    <id name="id" type="long" column="id">
      <generator class="auto" />
    </id>

    <property column="deptName" name="deptName" />
    <!-- other properties mapping -->
  </class>  
</hibernate-mapping>
…

Next, we will create a mapping for the Employee class. Its definition is present in the 
Employee.hbm.xml file:

…
<hibernate-mapping>
  <class="Employee" table="employee">
    <id name="id" type="long" column="id">
      <generator class="auto" />
    </id>

    <property column="firstName" name="firstName" />
    <property column="salary" name="salary" />
    <many-to-one name="department" class="Department" >
      <column name="department"/>
    </many-to-one>
    <!-- other properties mapping-->
  </class>
</hibernate-mapping>
…

In the preceding example, we mapped the Department entity with the Employee entity. This 
will refer to the department column in the employee table. This means that it will create a 
foreign key that is referenced to the department table.

Here, we will use the <many-to-one> relationship, which means that either many employees 
are connected with one department, or one department is used by many employees.

The properties are as follows:

 f not-null="true": This property prevents the user from inserting the NULL value  
in the column

 f lazy="true": This feature helps us while retrieving data using hibernate

www.allitebooks.com

http://www.allitebooks.org


Setting Up Hibernate

12

The two possible options for lazy are true and false. In our example, Employee is a parent 
class, whereas Department is a child of the Employee class. Now, while fetching, if we set 
lazy as true, it means that it will only fetch employee records. No child records will be fetched 
with Employee, and hibernate will use a separate query if we try to access a child record, which 
is employee.getDepartment(). If we set lazy as false, hibernate will fetch the child 
records with the parent, which means that the department information will also be fetched, 
along with that of the employee. Hibernate will use a join query to fetch the child records.

Providing an annotation-based hibernate 
mapping

When we choose the annotation-based way to provide a configuration, we don't need to create 
any hibernate mapping (usually *.hbm. xml) file. Hibernate provides the annotations that we 
can directly write to the POJO, and we can provide all the mappings via the classes, which we 
can do using the previous XML file.

How to do it…
Now, let's create the class that contains the annotation-based mapping. As we used  
the Employee class to provide XML-based mapping here, we will use the same class  
with annotations:

1. Represent the annotation-based mapping for the Employee class in  
Employee.java, as shown in the following code:

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name="employee")
public class Employee{

  @Id
  @Column(name="id")
  @GeneratedValue(strategy = GenerationType.AUTO)
  private long id;

  @Column(name="firstname")
  private String firstName;



Chapter 1

13

  @Column(name = "salary")
  private double salary;

  // default constructor
  public Employee() {
  }

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getFirstName() {
      return firstName;
  }

  public void setFirstName(String firstName) {
    this.firstName = firstName;
  }

  public double getSalary() {
    return salary;
  }

  public void setSalary(double salary) {
    this.salary = salary;
  }

}

How it works…
Now, compare the annotations with the XML mapping to gain a better understanding of the 
difference between the two methods.

Declaring a class — Table for the database
In the annotations, we will write the following code:

@Entity
@Table(name="employee")
public class Employee{...}



Setting Up Hibernate

14

Now, check the XML mapping for the same here:

<class name="Employee" table="employee">

The keywords used in the preceding class are described below:

 f @Entity: This annotation declares the class as an entity bean.

 f @Table: We can set this annotation at the class level only. You can provide the name 
attribute, which is considered as a database table name. You can also just write  
@Table without any attribute; in this case, the class name is considered as a table 
name by hibernate.

Declaring an ID — The primary key for the table
In the annotations, we will write the following code:

@Id
@Column(name="id")
@GeneratedValue(strategy = GenerationType.AUTO)
private long id;

Now, check the XML mapping for the same in the following code:

<id name="id" type="long" column="id">
  <generator class="auto" />
</id>

The annotations used in the preceding code are described below:

 f @Id: This annotation declares the property to be an identifier property, and this is 
used as a primary key for the table.

 f @Column: This annotation is used to define the column for the table. Here, we used 
name="id", meaning that hibernate considers the column name to be "id". You 
can also write @Column without any attributes; in this case, the property name is 
considered to be a column name for the table.

 f @GeneratedValue: Using this annotation, we can provide information to hibernate 
on how to generate a value for the primary key column. Here, we will use strategy 
= GenerationType.AUTO, which means that hibernate uses the autoincrement 
value for the id column. If not provided, hibernate uses the most appropriate 
generation strategy.

Referencing an object
In the annotations, we will write the following code:

@JoinColumn(name="department")
@ManyToOne
private Department department;



Chapter 1

15

Now check the XML mapping for the same in the following code:

<many-to-one name="department" class="Department">
  <column name="department"/>
</many-to-one>

The annotations used in the preceding code are described below:

 f @JoinColumn: This annotation notifies hibernate that this is a reference column.

 f @ManyToOne: This annotation defines the relation between the referenced tables. 
Here, we have used many-to-one, meaning that one department can be mapped with 
multiple employees.

There's more…
In the previous section you learned how to reference a class using hibernate. In this section, 
we will take a look at how to provide the reference of one class in another class in detail.

Do not get confused when writing Employee.java again to show the reference object 
annotation.

The following code represents the annotation-based mapping for the Employee class that 
has the reference field in Employee.java:

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.ManyToOne;
import javax.persistence.Table;

@Entity
@Table(name="employee")
public class Employee{

   @Id
   @Column(name="id")
   @GeneratedValue(strategy = GenerationType.AUTO)
   private long id;
   
   @Column(name="firstname")
   private String firstName;
   
   @Column(name = "salary")
   private double salary;
   



Setting Up Hibernate

16

   @JoinColumn(name="department")
   @ManyToOne
   private Department department;
   
   // default constructor
   public Employee() {
   }
   
   // getters & setters
   public long getId() {
   return id;
   }
   
   public void setId(long id) {
   this.id = id;
   }
   
   public String getFirstName() {
   return firstName;
   }
   
   public void setFirstName(String firstName) {
   this.firstName = firstName;
   }
   
   public double getSalary() {
   return salary;
   }
   
   public void setSalary(double salary) {
   this.salary = salary;
   }
   
   public Department getDepartment(){
   return department;
   }

  public setDepartment(Department department){
    this.department = department;
  }
}



Chapter 1

17

The following code represents the annotation-based mapping for the Department class in 
Department.java:

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table //If name is not supplied hibernate will use class name as  
table name
public class Department{
  @Id
  @Column //If name is not supplied hibernate will use field name  
as column name
  @GeneratedValue(strategy = GenerationType.AUTO)
  private long id;

  @Column
  private String deptName;
  
  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getDeptName() {
    return deptName;
  }

  public void setDeptName(String deptName) {
    this.deptName = deptName;
  }

}



Setting Up Hibernate

18

Providing a hibernate configuration using an 
XML file

In the preceding discussion, you learned how to create a class and provide a mapping  
to hibernate. These mappings show the relationship between the Java class and the  
database table.

Still, hibernate requires some information about the database, host, and port, on which the 
application is running. It also requires information about the username and password to 
access the database. Hibernate uses this set of configurations to connect to the database.

This is a traditional way to provide the hibernate configuration; however here, we need to create 
an XML file, generally called hibernate.cfg.xml, in the classpath. There is no strict rule to 
name it hibernate.cfg.xml; we can give it a custom name instead of hibernate.cfg.
xml, in which case, we need to instruct hibernate to load the configuration from the particular 
file. Otherwise, hibernate looks for the file named hibernate.cfg.xml in the classpath.

How to do it...
Now, we will create the XML file that shows the configuration for MySQL:

1. Enter the following code in hibernate.cfg.xml to show the configuration for the 
applications:
...
<hibernate-configuration>
  <session-factory>

  <property name="hibernate.dialect">
    org.hibernate.dialect.MySQLDialect
  </property>
  <property name="hibernate.connection.driver_class">
    com.mysql.jdbc.Driver
  </property>
  <property name="hibernate.connection.url">
    jdbc:mysql://localhost:3306/kode12
  </property>
  <property name="hibernate.connection.username">
    root
  </property>
  <property name="hibernate.connection.password">
    root
  </property>
  <property name="show_sql">true</property>



Chapter 1

19

  <property name="hbm2ddl.auto">update</property>

  <!-- List of XML mapping files -->
  <mapping resource="Employee.hbm.xml"/>
  <mapping resource="Department.hbm.xml"/>

  </session-factory>
</hibernate-configuration>

How it works...
Here, we will take a look at only the basic configuration parameters. Let's understand the 
meaning of each property:

 f <property name="hibernate.dialect">org.hibernate.dialect.
MySQLDialect</property>: This property helps hibernate to generate database-
specific SQL statements. This is an optional property. According to hibernate 
documentation, hibernate will be able to choose the correct implementation of 
dialect automatically using the JDBC metadata returned by the JDBC driver.

 f <property name="hibernate.connection.driver_class">com.mysql.
jdbc.Driver</property>: Using this property, we can provide the Fully Qualified 
Name (FQN) of the java driver name for a particular database. The driver class 
is implemented using Java and resides in the JAR file and contains the driver that 
should be placed in our classpath.

 f <property name="hibernate.connection.url">jdbc:mysql://
localhost:3306/kode12</property>: Using this property, we can provide 
the physical location of the database; however, the connection URL may vary from 
database to database. Here, we will use the MySQL database, so the URL shows 
jdbc:MySQL://<host/computer-name/ip>:<port>/<database name to 
connect>.

 f <property name="hibernate.connection.username">root</property>: 
Using this property, we can provide the username to access a particular database.

 f <property name="hibernate.connection.password">root</property>: 
Using this property, we can provide the password to access a particular database.

 f <property name="show_sql">true</property>: The possible value for this 
property is either true or false. This is an optional property. Hibernate logs all the 
generated queries that reach the database to the console if the value of show_sql 
is set to true. This is useful during basic troubleshooting. Hibernate will use the 
prepared statement so that it does not display the parameter in the output window. If 
you want to see this parameter as well, you will have to enable the detailed log. Log4j 
is preferred for the detailed log.



Setting Up Hibernate

20

 f <property name="hbm2ddl.auto">create</property>: The possible values 
are validate, update, create or create-drop. This is also an optional property. 
Here, we will set value=create so that it will remove all the schemas and create 
a new one using the hibernate mapping on each build of sessionfactory. For 
value=update, hibernate will update the new changes in the database.

Do not use the hbm2ddl.auto property in the production 
environment because it may remove all of the data and schema. 
So, it's best practice to avoid it in the production environment.

 f <mapping resource="Employee.hbm.xml"/>: All of the mapping file is 
declared in the mapping tag, and the mapping file is always named xx.hbm.xml. 
We can use multiple mapping tags for multiple mapping files.

Here is an example:
<mapping resource="Employee.hbm.xml"/>
<mapping resource="Department.hbm.xml"/>

There's more…
Here are some useful properties used in hibernate:

 f hibernate.format_sql:

 � The possible values are true and false

 � It shows the hibernate-generated queries in the pretty format if set as true

 f hibernate.connection.pool_size:

 � The possible value is always greater than 1 (value >= 1)

 � It limits the maximum number of pooled connections

 f hibernate.connection.autocommit:

 � The possible values are true and false

 � It sets the autocommit mode for JDBC

Providing a hibernate configuration using 
the properties file

This is another way to configure hibernate; here, we will create a file with the .properties 
extension. Usually called hibernate.properties, this file is a replacement for hibernate.
cfg.xml. You can use any approach (either cfg.xml or the properties file). However, the 
properties file is better for startup, and it is the easiest approach to get started quickly.



Chapter 1

21

This is a simpler representation of an XML file. Hibernate searches for the XML file or the 
properties file at startup to find the configuration in your classpath. We can use any one of 
these options. You can use both of them at the same time, but this is uncommon because 
hibernate gives priority to the XML file over properties; the properties file is simply ignored in 
such cases.

The properties file looks similar to a normal text file, but the content should 
be in a key/value pair, which is Key=Value.
Here is an example: hibernate.connection.driver_class=com.
mysql.jdbc.Driver.

How to do it…
Now, we will create a file called hibernate.properties in our classpath and write the 
following properties in the file. The following code represents hibernate.cfg.xml in the 
hibernate.properties file:

…
hibernate.dialect=org.hibernate.dialect.MySQLDialect
hibernate.connection.driver_class=com.mysql.jdbc.Driver
hibernate.connection.url=jdbc:mysql://localhost:3306/kode12
hibernate.connection.username=root
hibernate.connection.password=root
show_sql=true
hbm2ddl.auto=update
…

How it works…
When we create an instance of the Configuration class, it will look for hibernate.cfg.
xml or hibernate.properties in our classpath. If we use a .properties file, it'll get all 
of the property defined in the file, rather than create a Configuration object.

The difference between an XML and properties file is that, in an XML 
file, you can directly map classes using the <Mapping> tag, but 
there is no way to configure it in a properties file. So, you can use 
this methodology when you use a programmatic configuration.

www.allitebooks.com

http://www.allitebooks.org


Setting Up Hibernate

22

Configuring hibernate programmatically
In the preceding section, we understood XML and the properties-based configuration. 
Hibernate also supports the programmatic configuration. To configure hibernate using this 
method, we have to work on a Java code and create an instance of the org.hibernate.
cfg.Configuration class. There are multiple ways to configure hibernate.

How to do it…
First, write the following code:

Configuration configuration = new Configuration();

This will create an instance of the Configuration class using hibernate.cfg.xml or 
hibernate.properties, whichever is found in the classpath.

Provide the following mapping files to the configuration:

configuration = configuration.addResource("Employee.hbm.xml");
configuration = configuration.addResource("Department.hbm.xml");

You can use an alternate way, as shown in the following code:

Configuration configuration = new  
Configuration().addResource("Employee.hbm.xml").addResource("Depar 
tment.hbm.xml");

We can also provide a direct mapping using the class, as shown in the following code:

configuration = configuration.addClass("Department.class");

This will also look for Department.hbm.xml.

We can also set a custom property. To set up the custom property, use the following method:

configuration.setProperty(propertyName, value);

For example, consider the following code:

configuration.setProperty("show_sql", true);

To set up multiple properties using the properties object, execute the following code:

configuration.setProperties(java.util.Properties properties);



Chapter 1

23

Here is an example:

Properties properties = new Properties();
properties.put("hibernate.dialect",  
"org.hibernate.dialect.MySQLDialect");
properties.put("hibernate.connection.driver_class",  
"com.mysql.jdbc.Driver");
properties.put("hibernate.connection.url",  
"jdbc:mysql://localhost:3306/kode12");
properties.put("hibernate.connection.username", "root");
properties.put("hibernate.connection.password", "root");
properties.put("show_sql", "true");
properties.put("hbm2ddl.auto", "update");
configuration.setProperties(properties);

To read the mapping from the URL, you can use the following code:

configuration = configuration.addURL(java.net.URL url);

To read the mapping from the XML file, you can use the following code:

configuration = configuration.addXML(String xml);

How it works…
When we select the programmatic configuration option, the Configuration class 
is very important. Using the instance of the Configuration class, we will build a 
SessionFactory object, as shown in the following code:

SessionFactory sessionFactory = new  
Configuration().buildSessionFactory();

When the preceding code is executed, it creates a SessionFactory object using a 
.properties or .cfg file or whichever source is provided to create the configuration.





25

2
Understanding the 

Fundamentals

In this chapter, we will cover the following recipes:

 f Building a SessionFactory

 f Creating a generic SessionFactory provider class

 f Opening a new session

 f Opening a stateless session

 f Saving an object to the database

 f Fetching an object from the database

 f Removing an object from the database

 f Updating an object

 f Creating a criteria

 f Restricting the results using a criteria

 f Pagination using a criteria

 f Sorting the results

 f Transforming a result

 f Using basic projection



Understanding the Fundamentals

26

Introduction
Before we proceed, it's necessary to learn about the fundamentals of hibernate: the classes 
and interfaces required.

In this chapter, we will cover the fundamentals of hibernate, such as SessionFactory, 
Session, and Criteria. We will discuss the importance of SessionFactory in the 
hibernate application. Criteria is used to do the actual transaction or the CRUD (Create, 
Read, Update, Delete) operation. Apart from this, we will cover some basic and useful 
functionalities, such as the sorting of results, limiting the number of rows, transforming a 
result, and the basics of projections.

Building a SessionFactory
First, we will discuss SessionFactory and how to create it in detail. As the name suggests, 
a SessionFactory is a factory of sessions.

A SessionFactory has the following features:

 f It's an interface implemented using the singleton pattern.

 f It's created using the configuration provided by the configuration file.

 f It's thread-safe, so it's created once during the application's lifetime, and multiple 
users or threads can access it at the same time without any concurrency issue.

 f As a SessionFactory object is immutable, changes made to the configuration will 
not affect the existing factory object.

 f It's a factory class, and its main duty is to create, manage, and retrieve a session on 
request. A Session is used to get a physical connectivity with the database.

How to do it…
If you are using a version of hibernate that is earlier than 4, use the following code to create  
a SessionFactory:

/* Line 1 */ Configuration cfg = new Configuration();
/* Line 2 */ cfg = cfg.configure();
/* Line 3 */ SessionFactory sessionFactory =  
cfg.buildSessionFactory();

As the buildSessionFactory() method of the Configuration class is deprecated in 
the version 4 of hibernate, you can use the following code to create a SessionFactory:

/* Line 1 */ Configuration configuration = new Configuration();
/* Line 2 */ configuration = configuration.configure();



Chapter 2

27

/* Line 3 */ StandardServiceRegistryBuilder builder = new  
StandardServiceRegistryBuilder();
/* Line 4 */ builder =  
builder.applySettings(configuration.getProperties());
/* Line 5 */SessionFactory sessionFactory =  
configuration.buildSessionFactory(builder.build());

How it works…
First of all, let's understand the code from the beginning.

When Line 1 with the Configuration cfg = new Configuration(); code is 
executed, it creates a blank configuration.

When Line 2 with cfg = cfg.configure(); is executed, the configure() method 
will look for the hibernate.cfg.xml or hibernate.properties file and then fetch 
all the properties defined in the configuration and mapping files and filled out in the 
configuration object.

When Line 3 with SessionFactory sessionFactory = cfg.
buildSessionFactory(); is executed, the preceding code builds SessionFactory 
using the Configuration object. It actually creates the SessionFactory object using  
the configuration loaded in Line 2.

For the second part of the code, do the same thing. However, as the API is different, you need 
to create an instance of StandardServiceRegistryBuilder in Line 3, which works as 
a builder of the ServiceRegistry interface.

In Line 4, apply all the settings that are loaded into the configuration object. In the last line, 
Line 5, create an object of SessionFactory, the configuration being set by the builder itself.

There's more…
If we want to connect two different databases in an application, we need to create two 
different SessionFactory objects in it. Let's see how to do this.

For example, if we have two different databases, MySQL and PostgreSQL, we will create two 
different CFG files called mysql.cfg.xml and postgresql.cfg.xml. Then, we will just 
create a SessionFactory, as shown in the following code:

Configuration configurationMySQL = new  
Configuration().configure("mysql.cfg.xml");
SessionFactory sessionFactoryMySQL = configurationMySQL  
.buildSessionFactory();



Understanding the Fundamentals

28

Configuration configurationPostgresql = new  
Configuration().configure("postgresql.cfg.xml");
SessionFactory sessionFactoryPostgresql = configurationPostgresql  
.buildSessionFactory();

Now, we have two different SessionFactory objects that we can use as per our requirement.

Creating a generic SessionFactory provider 
class

Now, we will create a helper class, which will help us to set and get SessionFactory  
on demand.

We require SessionFactory at every point while working with hibernate. So, we will create  
a HibernateUtil.java class.

This is just a naming convention and not a hibernate standard but 
is used globally by developers and communities for the ease of use.

How to do it…
Here, we will create a Java file with the name HibernateUtil.java:

1. Enter the following code in the HibernateUtil.java file:
import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

public class HibernateUtil {
  private static final SessionFactory sessionFactory;
    
  static {
    try {
      // Create the SessionFactory from hibernate.cfg.xml
     sessionFactory = new  
Configuration().configure().buildSessionFactory();

      // Use code below for Hibernate version 4
      // Configuration configuration = new Configuration();
      // configuration = configuration.configure();
      // StandardServiceRegistryBuilder builder = new  
StandardServiceRegistryBuilder();
      // builder =  
builder.applySettings(configuration.getProperties());



Chapter 2

29

      // SessionFactory sessionFactory = configuration.
buildSessionFactory(builder.build());
    } catch (Throwable ex) {
      // Log the exception.
      System.err.println("SessionFactory creation failed."  
+ ex);
      throw new ExceptionInInitializerError(ex);
    }
  }

  public static SessionFactory getSessionFactory() {
    return sessionFactory;
  }

  public static void shutdown() {
    // Close caches and connection pools
    getSessionFactory().close();
  }
}

How it works…
Here, we created the SessionFactory object and initialized it using the static block. 
The content inside the static block is executed only once. Here, it initializes the object 
of SessionFactory at the start of the program, and you can use it until the program's 
termination.

You can get the previously initially created SessionFactory object using the 
getSessionFactory() method. The main benefits of this method are the code's reusability 
and ease of use.

From now onwards for all demos, we will invoke HibernateUtil.getSessionFactory() 
method and also assume that SessionFactory has been successfully initialized.

The shutdown() method is used to close the sessionfactory. Once the close() method 
is invoked using the sessionfactory object, it close all caches and connection pools and 
releases all the connections to the database.

Opening a new session
A Session is also known as an interface that is used to get a physical connectivity with a 
database. It is instantiated every time we need to interact with the database for the CRUD 
(Create, Read, Update, Delete) operations. Persistent objects always travel from the 
application to the database and vice versa only through the Session.



Understanding the Fundamentals

30

Now, let's find out more about Session and how to open a new Session using a 
SessionFactory.

Getting ready
Before we create a Session object, we need to get an object such as a SessionFactory  
as a prerequisite:

1. Use the following code to open a new session:
SessionFactory sessionFactory =  
HibernateUtil.getSessionFactory();

How to do it…
Now, we will open a new Session with the database:

Session session = sessionFactory.openSession();

Other methods are also available to open a Session, as shown in the following code:

Session openSession(org.hibernate.Interceptor interceptor);
Session openSession(java.sql.Connection connection,  
org.hibernate.Interceptor interceptor);

How it works…
This will open a brand new Session for us. It opens the database connection when it is 
created and holds it until the session is closed. A Session created using these methods is 
not associated with any thread, so it's our responsibility to flush or close it once we are done 
with the database operation.

A Session is a bridge between the Java application and hibernate. The Session interface 
wraps the JDBC connection. A Session always tries to be in sync with the persistent store 
where all transactions are made.

A Session is always a part of first-level cache; it caches all the objects that are transmitted 
through that particular session. All cached objects will be destroyed once this session is closed.

Actually, opening a new Session for every database 
transaction is considered to be a good practice for a 
multithreaded application.



Chapter 2

31

There's more…
We can use the same session instead of creating a brand-new session; hibernate provides the 
facility to reuse an already created session.

Let's look at how to do it:

1. Enter the following code to get the current session from sessionFactory:
SessionFactory sessionFactory =  
HibernateUtil.getSessionFactory();
Session session = sessionFactory.getCurrentSession();

It may seem easy to get the current session, but the twist here is that you have to provide 
more configuration to the Configuration object if you plan to reuse the Session, as 
shown in the following code:

<property name="hibernate.current_session_context_class">
  Thread
</property>

In the preceding code, we set a thread value for the hibernate.current_session_
context_class key, meaning that the context of the current Session is limited to the life of 
the current thread only.

For example, in a non-multithreaded environment, a Session is created when the main 
thread is started. It will close automatically once the SessionFactory is closed.

This will help us more in a non-multithreaded environment because 
it's faster than creating a new session each time.

Opening a stateless session
Basically, a stateless session is used to perform only one task. It does not take place in any 
type of cache. A cache is used to store the frequently used objects in the current context. 
There are some cases where a stateless session is very useful; for example, if we are reading 
data from a file and inserting it into the database, we don't need to cache that data further 
because this is a one-time operation.

Apart from this, a stateless session does not use dirty checking while performing a 
transactional operation. The collections, as well as hibernate's event model and interceptors, 
are ignored by a stateless session.

www.allitebooks.com

http://www.allitebooks.org


Understanding the Fundamentals

32

How to do it…
Now, let's look at how to create a stateless session. It's the same as creating a session, but 
the method is different:

1. Enter the following code to open a stateless session:
SessionFactory sessionFactory =  
HibernateUtil.getSessionFactory();
Session session = sessionFactory.openStatelessSession();

Saving an object to the database
Now, we have reached a point from where we start the actual transactional operations, such 
as insert, delete, update, and so on.

In this recipe, we will look at how to save an object to the database.

The equivalent SQL query is as follows:

 f Department: INSERT INTO department (deptName) VALUES ('department 
name');

 f Employee: INSERT INTO employee (firstName, salary, department) 
VALUES ('first name', salary value, department id);

How to do it…
Let's look at how to save an object to the database:

1. The following code shows how we can save an object to the database:
SessionFactory sessionFactory =  
HibernateUtil.getSessionFactory();
Session session = sessionFactory.openSession();

// begin a transaction 
session.getTransaction().begin(); 

//creating a department object
Department department = new Department();
department.setDeptName("developement");

// save department object
session.save(department); 
System.out.println("Department saved, id:  " +  
department.getId());



Chapter 2

33

//creating an employee object
Employee employee = new Employee();
employee.setFirstName("yogesh");
employee.setSalary(50000);
//  set department of employee
employee.setDepartment(department);

// save employee object
session.save(employee); 
System.out.println("Employee saved, id:  " +  
employee.getId());
  
// commit transaction
session.getTransaction().commit(); 

session.close(); 
HibernateUtil.shutdown();

The output of the preceding code would be as follows:

Hibernate: insert into Department (deptName) values (?)
Department saved, id:  1
Hibernate: insert into employee (department, firstName, salary)  
values (?, ?, ?)
Employee saved, id:  1

In the output, hibernate shows all the queries in the values(…) clause with the question 
mark (?) sign. As hibernate used PreparedStatement to save the record, it shows queries 
such as this one. If we want to see all the parameters set by hibernate, we have to configure 
a logging framework in our application. Log4j is a widely used, easy to configure, and easy to 
use framework.

To configure Log4j, we need some JAR files, which are easily available on the official site of 
Log4j, http://logging.apache.org/log4j.

The Maven dependency for Log4j is as follows:

<dependency>
  <groupId>log4j</groupId>
  <artifactId>log4j</artifactId>
  <version>1.2.17</version>
</dependency>

http://logging.apache.org/log4j


Understanding the Fundamentals

34

Also, you need to create a file with the name log4j.properties in your classpath. The 
minimal content of file should be as follows:

Source file: Log4j.properties

# Root logger option
log4j.rootLogger=INFO, stdout

# Direct log messages to stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.Target=System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
 
# Log JDBC bind parameter runtime arguments
log4j.logger.org.hibernate.type=trace

If log4j is configured, the output of the preceding code will be displayed as follows:

Hibernate: insert into Department (deptName) values (?)
binding parameter [1] as [VARCHAR] - [developement]
Department saved, id:  1
Hibernate: insert into Employee (department, firstName, salary)  
values (?, ?, ?)
binding parameter [1] as [BIGINT] - [1]
binding parameter [2] as [VARCHAR] - [yogesh]
binding parameter [3] as [INTEGER] - [50000]
Employee saved, id:  1

In the output, you can see the logs that show all the binding parameters in sequence.

How it works…
Here, we created a department object and saved it using a Session. Hibernate saved 
the record with id equal to 1; even though it is not provided by us via code, once we 
print the value of id field, it shows up as 1. Actually, the id field is annotated with the @
GeneratedValue annotation, which acts as an autoincrement column, and the database 
returns a saved object back to hibernate; so, we get id with the value 1 here.

Perform the following steps to save the records:

1. Get the SessionFactory.

2. Open a new session.

3. Begin a transaction.

4. Create a department object.

5. Save a department.



Chapter 2

35

6. Create an employee object.

7. Set the saved department object as an employee department.

8. Save an employee.

9. Commit the transaction.

10. Close the session.

11. Close the SessionFactory.

There's more…
In the preceding example, we saved the department first and then the employee. But this is just 
a sample case; in a working scenario, we cannot save the department every time. As we have a 
many-to-one relationship between department and employee, multiple employees can refer to a 
single department. So, we can use an already saved object, as shown in the following code:

SessionFactory sessionFactory = HibernateUtil.getSessionFactory();
Session session = sessionFactory.openSession();

// begin a transaction 
session.getTransaction().begin(); 

//creating department object
Department department = new Department();
department.setId(1l);

//creating an employee object
Employee employee = new Employee();
employee.setFirstName("aarush");
employee.setSalary(35000);
//  set department of employee
employee.setDepartment(department);

// save employee object
session.save(employee); 
System.out.println("Employee saved, id:  " + employee.getId());

// commit transaction
session.getTransaction().commit(); 

session.close(); 
HibernateUtil.shutdown();



Understanding the Fundamentals

36

The output of the preceding code will be as follows:

Hibernate: insert into employee (department, firstName, salary)  
values (?, ?, ?)
Employee saved, id:  2

Hibernate internally creates a core SQL query with the 
question mark (?) sign, which is actually replaced with the 
value of the field by hibernate.

Here, we create the department object and set the value to 1 in the id field. Now, while 
saving an employee, hibernate sets the reference with the department having id=1.

While using this method, if the object is not found in the 
database against the passed value, hibernate throws an error 
related to the violation of the foreign key constraints.

Fetching an object from the database
Now we will take a look at how to fetch objects using a Session. Here, we will also see how to 
get only one record using the primary key column. We override a toString() method in the 
Employee and Department classes so that it's easy to display the data within an object,  
as shown in the following code:

@Override
    public String toString() {
      return "\nEmployee"
      + "\n id: " + this.getId()
      + "\n first name: " + this.getFirstName()
      + "\n salary: " + this.getSalary()
      + "\n department: " + this.getDepartment().getDeptName();
    }

How to do it…
Here, we are trying to get an employee having id equals 1.

The equivalent SQL query is as follows:

SELECT * FROM employee WHERE id=1;



Chapter 2

37

Now, let's look at how to do the same using hibernate:

1. Enter the following code to fetch an object of the employee type, where the id is 1:
SessionFactory sessionFactory =  
HibernateUtil.getSessionFactory();
Session session =  sessionFactory.openSession();
Employee employee =  (Employee) session.get(Employee.class,  
1l);
if(employee != null){
  System.out.println(employee.toString());
}

session.close(); 
HibernateUtil.shutdown();

The output of the preceding code will be as follows:

Hibernate: select employee0_.id as id0_1_, employee0_.department  
as department0_1_, employee0_.firstName as firstName0_1_,  
employee0_.salary as salary0_1_, department1_.id as id1_0_,  
department1_.deptName as deptName1_0_ from employee employee0_  
left outer join department department1_ on  
employee0_.department=department1_.id where employee0_.id=?

Employee
 id: 1
 first name: yogesh
 salary: 50000.0
 department: developement

How it works…
Now, let's take a look at how the preceding code works. The first thing I want to highlight here 
is the query shown on the console/output window preceded by hibernate. Here, the hibernate 
engine internally creates a core SQL query to perform the operation that we can find in the 
console/output window. Hibernate internally uses JDBC to execute this query.

Another thing that needs to be highlighted is that we used the Session.get(...) method 
to fetch the data from the database. When you use the Session.get(...) method to fetch 
a record, it will perform the following actions:

 f Hit the database

 f Return a persistent instance of the given entity for the given identifier

 f Return null if no record is found



Understanding the Fundamentals

38

It's better to check whether the object is null or not if you 
are using the get() method, because get() returns 
null if no record is found, and you will face java.lang.
NullPointerException while accessing a null object.

There's more…
Let's consider another method named load(...) to fetch the data.

Now we will take a look at how to fetch data using the load(...) method and the difference 
between the load() and get() methods.

The load() method works in the following manner:

 f It returns the proxy (hibernate term) object. This means that it returns the dummy 
object without hitting the database if the same object is found in a persistent state 
for the given identifier.

 f If the object is not found in the session cache, it will hit the database.

 f If no row is found in the session cache as well as in the database, then it will throw an 
ObjectNotFoundException error.

Let's take a look at some real-time scenarios.

Scenario 1
The record is in the session cache when load() is invoked.

Code for scenario 1
SessionFactory sessionFactory = HibernateUtil.getSessionFactory();
Session session = sessionFactory.openSession();
System.out.println("Employee get...");
Employee employeeGet = (Employee) session.get(Employee.class,  
Long.valueOf(2));
System.out.println(employeeGet.toString());
      
System.out.println("Employee load...");
Employee employeeLoad = (Employee) session.load(Employee.class,Long.
valueOf(2));
System.out.println(employeeLoad.toString());

session.close(); 
HibernateUtil.shutdown();



Chapter 2

39

Output for scenario 1
Employee get...
Hibernate: select employee0_.id as id0_1_, employee0_.department  
as department0_1_, employee0_.firstName as firstName0_1_,  
employee0_.salary as salary0_1_, department1_.id as id1_0_,  
department1_.deptName as deptName1_0_ from employee employee0_  
left outer join department department1_ on  
employee0_.department=department1_.id where employee0_.id=?

Employee
 id: 2
 first name: aarush
 salary: 35000.0
 department: developement

Employee load...

Employee
 id: 2
 first name: aarush
 salary: 35000.0
 department: developement

Explanation for scenario 1
From the output, it's clear that when the first get() method is invoked, the persisted object, 
Employee#2, is stored in the session cache at that time. When load() is invoked, it is 
directly loaded from the session; there is no need to hit the database. Here, we can show that 
the Select query is executed only once.

Scenario 2
The record is not in the session cache when load() is invoked.

Code for scenario 2
SessionFactory sessionFactory = HibernateUtil.getSessionFactory();
Session session = sessionFactory.openSession();
System.out.println("Employee get...");
Employee employeeGet = (Employee) session.get(Employee.class, new  
Long(1));
System.out.println(employeeGet .toString());
      
System.out.println("Employee load...");
Employee employeeLoad = (Employee) session.load(Employee.class,  
new Long(2));



Understanding the Fundamentals

40

System.out.println(employeeLoad  .toString());

session.close(); 
HibernateUtil.shutdown();

Output for scenario 2
Employee get...
Hibernate: select employee0_.id as id0_1_, employee0_.department  
as department0_1_, employee0_.firstName as firstName0_1_,  
employee0_.salary as salary0_1_, department1_.id as id1_0_,  
department1_.deptName as deptName1_0_ from employee employee0_  
left outer join department department1_ on  
employee0_.department=department1_.id where employee0_.id=?

Employee
 id: 1
 first name: yogesh
 salary: 50000.0
 department: developement

Employee load...
Hibernate: select employee0_.id as id0_1_, employee0_.department  
as department0_1_, employee0_.firstName as firstName0_1_,  
employee0_.salary as salary0_1_, department1_.id as id1_0_,  
department1_.deptName as deptName1_0_ from employee employee0_  
left outer join department department1_ on  
employee0_.department=department1_.id where employee0_.id=?

Employee
 id: 2
 first name: aarush
 salary: 35000.0
 department: developement

Explanation for scenario 2
Here, we easily determine that when get() is invoked, it hits the database and loads 
Employee#1. When load() is invoked, it also hits the database, because the requested 
Employee#2 object is not in the session cache.

Scenario 3
The record is neither in the session cache nor in the database when load() is invoked.



Chapter 2

41

Code for scenario 3
SessionFactory sessionFactory = HibernateUtil.getSessionFactory();
Session session = sessionFactory.openSession();
System.out.println("\nEmployee get...");
Employee employeeGet = (Employee) session.get(Employee.class, new  
Long(1));
System.out.println(employeeGet.toString());

System.out.println("\nEmployee load...");
Employee employeeLoad = (Employee) session.load(Employee.class,  
new Long(3));
System.out.println(employeeLoad .toString());

session.close(); 
HibernateUtil.shutdown();

Output for scenario 3
Employee get...
Hibernate: select employee0_.id as id0_1_, employee0_.department  
as department0_1_, employee0_.firstName as firstName0_1_,  
employee0_.salary as salary0_1_, department1_.id as id1_0_,  
department1_.deptName as deptName1_0_ from employee employee0_  
left outer join department department1_ on  
employee0_.department=department1_.id where employee0_.id=?

Employee
 id: 1
 first name: yogesh
 salary: 50000.0
 department: developement

Employee load...
Hibernate: select employee0_.id as id0_1_, employee0_.department  
as department0_1_, employee0_.firstName as firstName0_1_,  
employee0_.salary as salary0_1_, department1_.id as id1_0_,  
department1_.deptName as deptName1_0_ from employee employee0_  
left outer join department department1_ on  
employee0_.department=department1_.id where employee0_.id=?
Exception in thread "main" org.hibernate.ObjectNotFoundException:  
No row with the given identifier exists: [vo.Employee#3]
    at  
org.hibernate.impl.SessionFactoryImpl$2.handleEntityNotFound(Sessi 
onFactoryImpl.java:435)
    at  
org.hibernate.proxy.AbstractLazyInitializer.checkTargetState(Abstr 
actLazyInitializer.java:189)

www.allitebooks.com

http://www.allitebooks.org


Understanding the Fundamentals

42

    at  
org.hibernate.proxy.AbstractLazyInitializer.initialize(AbstractLaz 
yInitializer.java:178)
    at  
org.hibernate.proxy.AbstractLazyInitializer.getImplementation(Abst 
ractLazyInitializer.java:215)
    at  
org.hibernate.proxy.pojo.javassist.JavassistLazyInitializer.invoke 
(JavassistLazyInitializer.java:190)
    at  
vo.Employee_$$_javassist_1.getId(Employee_$$_javassist_1.java)
    at ch2.Load6.main(Load6.java:21)

Explanation for scenario 3
Here, get() hits the database and gets the Employee#1 object. Load tries to find 
Employee#3 in the session cache, but it will not find it there. So, it goes for the database and 
throws an org.hibernate.ObjectNotFoundException error, because Employee#3 is 
not in the database either.

Removing an object from the database
Now, we take a look at how to remove a record from the database.

How to do it…
Here, we are trying to remove an employee object having id equals 1.

The SQL query executed to achieve the same result is as follows:

DELETE FROM employee WHERE id=1;

Now, let's take a look at how to do the same using hibernate.

Code
Enter the following code to delete an object of the employee type, where id is 1:

SessionFactory sessionFactory =  
HibernateUtil.getSessionFactory();
Session session = sessionFactory.openSession();

session.getTransaction().begin();
Employee employee = (Employee) session.get(Employee.class,  
new Long(1));
session.delete(employee);



Chapter 2

43

session.getTransaction().commit();

session.close(); 
HibernateUtil.shutdown();

Output
The output will be as follows:

Hibernate: select employee0_.id as id0_1_, employee0_.department  
as department0_1_, employee0_.firstName as firstName0_1_,  
employee0_.salary as salary0_1_, department1_.id as id1_0_,  
department1_.deptName as deptName1_0_ from employee employee0_  
left outer join department department1_ on  
employee0_.department=department1_.id where employee0_.id=?
Hibernate: delete from employee where id=?

How it works…
Here, the first query is executed to get the record from the database for Employee#1, and the 
second query is used to delete Employee#1.

The delete(Object object) method is void, so it returns nothing. This method throws an 
error if the record does not exist in the database for the given identifier.

If the record does not exist in the database, you will face the Exception in thread 
"main" java.lang.IllegalArgumentException: attempt to create delete 
event with null entity exception because get() returns the null object while you try 
to delete that object.

However, if you use the following code to delete the record, you will face another type of error:

Employee employee = new Employee();
employee.setId(1);
session.delete(employee);

When the preceding code is executed, you will face the Exception in thread "main" 
org.hibernate.StaleStateException: Batch update returned unexpected 
row count from update [0]; actual row count: 0; expected: 1" exception. 
This is because we are trying to delete Employee#1 from the database (which does not 
exist), and the employee object is also not null; so, it throws an error.

There are many cases where you may face an exception; for example, when you try to remove 
a parent object that is referred to by the child object. In such cases, you will get a foreign 
key constraint violated exception.



Understanding the Fundamentals

44

Updating an object
Here, we look at how to get a record from the database and update the same record to 
the database. The main goal is to get Employee#2 and update the first name, aarush, to 
aarush_updated.

How to do it…
Here, we are trying to update an employee object having id equals 2.

The SQL query executed to achieve the same result is as follows:

UPDATE employee SET firstName='aarush_updated' WHERE id=2;

Now, let's take a look at how to do the same using hibernate.

Code
Enter the following code to update an object of the employee type, where id is 2:

SessionFactory sessionFactory =  
HibernateUtil.getSessionFactory();
Session session = sessionFactory.openSession();

/* Line 3 */ Employee employee = (Employee)  
session.get(Employee.class, new Long(2));

System.out.println("\nOld Employee...");
System.out.println(employee.toString());

session.getTransaction().begin();
/* Line 9 */ employee.setFirstName("aarush_updated");
/* Line 10 */ session.update(employee);
session.getTransaction().commit();

System.out.println("\nEmployee after Update...");
System.out.println(employee.toString());

session.close();
HibernateUtil.shutdown();



Chapter 2

45

Output
The output will be as follows:

Hibernate: select employee0_.id as id0_1_, employee0_.department  
as department0_1_, employee0_.firstName as firstName0_1_,  
employee0_.salary as salary0_1_, department1_.id as id1_0_,  
department1_.deptName as deptName1_0_ from employee employee0_  
left outer join department department1_ on  
employee0_.department=department1_.id where employee0_.id=?

Old Employee...

Employee
 id: 2
 first name: aarush
 salary: 35000.0
 department: developement
Hibernate: update employee set department=?, firstName=?, salary=?  
where id=?

Employee after Update...

Employee
 id: 2
 first name: aarush_updated
 salary: 35000.0
 department: developement

How it works…
Here, we used the update() method to update a record. The code written in the third line 
is used to get the particular employee for update. In the ninth line, we set a new name to the 
employee object and update it using the tenth line.

There's more...
In the preceding section, we used the update() method for updating a particular 
record. Apart from this method, hibernate will provide one more useful method called 
saveOrUpdate().

This particular method is used to save or update records. Hibernate updates the records for a 
given object if the identifier field is given. If an identifier is not given, then hibernate will insert 
a new record.



Understanding the Fundamentals

46

Creating a criteria
Generally, we require filtered data in a SQL query, in which we use the WHERE clause to apply 
a condition to the data. Apart from the WHERE clause, we can use ORDER BY to apply sorting 
to the data, either ascending or descending, and LIMIT (if it's MySQL) to get a limited number 
of rows.

Hibernate allows us to perform all the operations mentioned before in an object-oriented 
way. A criteria is an interface; it provides an API to perform WHERE, ORDER BY, LIMIT, result 
transformation, and so on.

How to do it...
Here, we will try to create a criteria for employee.

The SQL query executed to achieve the same result is as follows:

SELECT * FROM employee;

Now, let's take a look at how to do the same using hibernate.

Code
Enter the following code to create a criteria for employee:

Criteria criteria = session.createCriteria(Employee.class);
List<Employee> employees = criteria.list();
for(Employee employee : employees){
System.out.println(employee.toString());
}

Output
The output will be as follows:

Hibernate: select this_.id as id0_1_, this_.department as  
department0_1_, this_.firstName as firstName0_1_, this_.salary as  
salary0_1_, department2_.id as id1_0_, department2_.deptName as  
deptName1_0_ from employee this_ left outer join department  
department2_ on this_.department=department2_.id

Employee
 id: 1
 first name: yogesh
 salary: 50000.0
 department: developement



Chapter 2

47

Employee
 id: 2
 first name: aarush_updated
 salary: 35000.0
 department: developement

How it works…
Here, we created a criteria for the Employee class, and using it, we tried to load all the 
records from the Employee table. Previously, we used session.load() or session.
get() to fetch the record from the database, but these methods return only one record at a 
time. Now, we can fetch multiple records using criteria().

The criteria.list() method returns java.util.List<Object>. In our example it returns 
java.util.List<Employee> because we created a criteria using the Employee class.

Restricting the results using a criteria
Let's take a look at how to add restrictions, which are equal to the WHERE clause in SQL.

How to do it…
Let's consider that we have four records in the employee table, as shown in the following tables:

This is the Employee table:

idfirstNamesalarydepartment
1Yogesh500001

2Aarush350001

3Varsha300003

4Vishal750002

This is the Department table:

iddeptName
1development

2R&D

3UI/UX

Now, the scenario is that we want to get only those employees whose salary is greater  
than 35000.



Understanding the Fundamentals

48

The equivalent SQL query to select the above employees is as follows:

SELECT * FROM employee WHERE salary > 35000;

Now, let's look at how to do the same using hibernate.

Code
Enter the following code to create a criteria for employee:

Criteria criteria = session.createCriteria(Employee.class);
criteria.add(Restrictions.gt("salary", 35000));
List<Employee> employees = criteria.list();
for (Employee employee : employees) {
    System.out.println(employee.toString());
}

Output
The output will be as follows:

Hibernate: select this_.id as id0_1_, this_.department as  
department0_1_, this_.firstName as firstName0_1_, this_.salary as  
salary0_1_, department2_.id as id1_0_, department2_.deptName as  
deptName1_0_ from employee this_ left outer join department  
department2_ on this_.department=department2_.id where  
this_.salary>?

Employee
 id: 1
 first name: yogesh
 salary: 50000.0
 department: developement

Employee
 id: 6
 first name: vishal
 salary: 75000.0
 department: R&D

How it works…
Here, you need to understand the line criteria.add(Restrictions.gt("salary", 
35000d)); only.



Chapter 2

49

We represent WHERE salary > 35000 in Restrictions.gt("salary", 35000d), 
gt, that is, using the greater than sign. It will find all the records of the employees having a 
salary greater than 35000.

There are many functions available in the class Restrictions. You can use logical 
operators such as:

 f gt(>, greater than)

 f ge(>=, greater than or equal to)

 f lt(<, less than)

 f le(<=, less than or equal to)

 f eq(=, equal to)

 f ne(<>, !=, not equal to)

Apart from these logical operators, you can use:

 f like (to perform Like operation)

 f iLike (to perform Like operation with ignore case)

 f Not

 f Between

 f In

 f Or

 f isNull

 f isNotNull

 f isEmpty

 f isNotEmpty, and many more useful functions

These will help us to represent the SQL expression in hibernate notation.

We can add multiple conditions by adding more criteria.add() statements.

Remember that when you add more restrictions using the 
criteria.add() method, hibernate considers the AND 
(&&) condition between all restriction conditions.



Understanding the Fundamentals

50

Pagination using a criteria
Now we will look at how to limit the number of rows using hibernate.

How to do it...
Here's a scenario to easily understand what we are about to do.

Let's consider that we have four rows in an employee table, and a SELECT * FROM 
employee SQL query returns all four records. However, if we want only the second and third 
records, we can use the SELECT * FROM employee LIMIT 1, 2 SQL statement.

Let's take a look at how to achieve such a condition in hibernate:

Code
Enter the following code to paginate using a criteria:

SessionFactory sessionFactory =  
HibernateUtil.getSessionFactory();
Session session = sessionFactory.openSession();

Criteria criteria = session.createCriteria(Employee.class);
criteria.setFirstResult(1); // represent LIMIT 1,* in MySQL
criteria.setMaxResults(2);// represent LIMIT *,2 in MySQL

List<Employee> employees = criteria.list();
for (Employee employee : employees) {
  System.out.println(employee.toString());
}

session.close();
HibernateUtil.shutdown();

Output
The output will be as follows:

Hibernate: select this_.id as id0_1_, this_.department as  
department0_1_, this_.firstName as firstName0_1_, this_.salary as  
salary0_1_, department2_.id as id1_0_, department2_.deptName as  
deptName1_0_ from employee this_ left outer join department  
department2_ on this_.department=department2_.id limit ?, ?

Employee
 id: 2



Chapter 2

51

 first name: aarush
 salary: 35000.0
 department: developement

Employee
 id: 3
 first name: varsha
 salary: 30000.0
 department: UI/UX

You can use pagination and restrictions together as well.

How it works…
Here, two methods play a main role: the first is setFirstResult() and the second is 
setMaxResult(). The setFirstResult() method is used to set a start limit, and 
setMaxResult() is used to set the maximum limit. Hibernate adds the database-dependent 
clause; for example, hibernate adds the LIMIT clause here as the current database is MySQL.

Sorting the results
In SQL, we use the ORDER BY clause to sort a result by column name and either ascending or 
descending order. We can achieve the same thing in hibernate as well.

How to do it…
Let's suppose that we selected all the records from the employee table, and then, by default, 
the records were sorted by the primary key column. But now, we want all the records to be 
sorted by the descending order of firstName.

Now, the scenario is to select all the employees and order them using their first name.

The equivalent SQL query to do this is is as follows:

SELECT * FROM employee ORDER BY firstName DESC;

Consider the following table data for this recipe:

idfirstNamesalarydepartment
1Yogesh500001

2Aarush350001

3Varsha300003

4Vishal750002

www.allitebooks.com

http://www.allitebooks.org


Understanding the Fundamentals

52

Let's take a look at how to achieve such a condition in hibernate:

Code
Enter the following code to sort the results according to the employee's first name:

Criteria criteria = session.createCriteria(Employee.class);    
criteria.addOrder(Order.desc("firstName")); // desc() used to add  
order Descending
// criteria.addOrder(Order.asc("id")); // asc() used to add order  
Ascending

List<Employee> employees = criteria.list();
for (Employee employee : employees) {
  System.out.println(employee.toString());
}

Output
Hibernate: select this_.id as id1_1_1_, this_.department_id as  
departme4_1_1_, this_.firstName as firstNam2_1_1_, this_.salary as  
salary3_1_1_, department2_.id as id1_0_0_, department2_.deptName  
as deptName2_0_0_ from Employee this_ left outer join Department  
department2_ on this_.department_id=department2_.id order by  
this_.firstName desc  

Employee
 id: 1
 first name: Yogesh
 salary: 50000
 department: development

Employee
 id: 4
 first name: Vishal
 salary: 75000
 department: R&D

Employee
 id: 3
 first name: Varsha
 salary: 30000
 department: UI/UX

Employee
 id: 2



Chapter 2

53

 first name: Aarush
 salary: 35000
 department: development

How it works…
In a general scenario, when the ORDER BY clause is not supplied, the database returns 
records in the default order in which data is stored.

Here, we applied the descending order to the firstName column, so the employee Yogesh 
comes first, and Aarush goes last. The order by this_.firstName desc clause is used 
by hibernate to get the desired results.

Transforming a result
As a developer, I love this feature, as it helps the developers to transform the returned rows to 
List, Map, or user-defined Bean.

How to do it...
Now we will take a look at three scenarios of the demonstration code that will convert the 
records returned by hibernate to List, Map, and Bean.

Here, we use the Transformers class to provide the transforming mechanism to criteria.

Scenario 1: Converting a result to List
All the demos up to this point show that if we use the criteria.list() method, the 
resultant data is always returned in List. However, you can still use Transformers.TO_
LIST in criteria, as follows:

criteria.setResultTransformer(Transformers.TO_LIST);

This means that every row in the result will be represented as a List.

Scenario 2: Converting a result to Map
Now, let's see how to convert the resultant data in Map:

criteria.setResultTransformer(Transformers.ALIAS_TO_ENTITY_MAP);

This means every object from List represents Map.



Understanding the Fundamentals

54

Code
For example, the following code shows how to transform the resultant data into Map:

Criteria criteria = session.createCriteria(Employee.class);
criteria.setResultTransformer(Transformers.ALIAS_TO_ENTITY_MAP);
List list = criteria.list();
System.out.println("List: " + list);
Map map = (Map) list.get(0);
Employee employeeMap = (Employee) map.get(Criteria.ROOT_ALIAS);
System.out.println(employeeMap.toString());

Output
The output will be as follows:

List: [{this=Employee@3235025a}, {this=Employee@4e84c320},  
{this=Employee@2644f3a2}, {this=Employee@7c7d8dfe}]
Employee
 id: 2
 first name: aarush
 salary: 35000.0
 department: developement

When we print out a list object in the console, we can see that it's represented as key and 
value format in the Map structure. We will try to get the value from map at the zero position 
using the following code:

Map map = (Map) list.get(0); 

The key of Map is this, and the value is the object of the Employee class.

So, the standard way to access a map's value is by its key. Here, the key is this, which is 
the equivalent of the Root alias of criteria in hibernate. So, you can access an object of 
Employee with the help of the following code:

Employee employeeMap = (Employee) map.get(Criteria.ROOT_ALIAS);

Scenario 3: Converting a result to user-defined Bean
This feature is useful when we select the columns in the resultant data and want to form that 
data in an already defined Bean.

For example, if we select the empId, empFirstName, empSalary, and the empDeptName, 
we can easily form this data into an EmployeeDetail bean, as we already have a bean 
defined with the name EmployeeDetail.java with these four fields:

public class EmployeeDetail {
    private long empId;
    private String empFirstName;



Chapter 2

55

    private double empSalary;
    private String empDeptName;

    public long getEmpId() {
      return empId;
    }

    public void setEmpId(long empId) {
      this.empId = empId;
    }

    public String getEmpFirstName() {
      return empFirstName;
    }

    public void setEmpFirstName(String empFirstName) {
      this.empFirstName = empFirstName;
    }

    public double getEmpSalary() {
      return empSalary;
    }

    public void setEmpSalary(double empSalary) {
      this.empSalary = empSalary;
    }

    public String getEmpDeptName() {
      return empDeptName;
    }

    public void setEmpDeptName(String empDeptName) {
      this.empDeptName = empDeptName;
    }
    
    @Override
    public String toString() {
      return "\nEmployeeDetail "
          + "\n Employee id: " + this.empId
          + "\n Employee FirstName: " + this.empFirstName
          + "\n Employee Salary: " + this.empSalary
          + "\n Employee DepartmentName : " + this.empDeptName;
    }

}



Understanding the Fundamentals

56

Code
Now, the following code shows how to convert the resultant data into an  
EmployeeDetail bean:

Criteria criteria = session.createCriteria(Employee.class);
criteria.createAlias("department", "_department");

ProjectionList projectionList = Projections.projectionList();
projectionList.add(Projections.alias(Projections.property("id"),  
"empId"));
projectionList.add(Projections.alias(Projections.property("firstNa 
me"), "empFirstName"));
projectionList.add(Projections.alias(Projections.property("salary" 
), "empSalary"));
projectionList.add(Projections.alias(Projections.property("_depart 
ment.deptName"), "empDeptName"));
criteria.setProjection(projectionList);

criteria.setResultTransformer(Transformers.aliasToBean(EmployeeDet 
ail.class));
List<EmployeeDetail> employeeDetails = criteria.list();

EmployeeDetail employeeDetail = employeeDetails.get(0);
System.out.println(employeeDetail.toString());

Output
The output will be as follows:

EmployeeDetail
 Employee id: 1
 Employee FirstName: yogesh
 Employee Salary: 50000.0
 Employee DepartmentName : developement

To use this feature in hibernate, we need to match a resultant column alias with a fieldname 
in the bean. For example, here we gave empId as an alias of the id field.

Actually, here you will notice a new term known as projection, which we will discuss in the  
next section.



Chapter 2

57

Using basic projection
First of all, let's understand what projection is. It is a class provided by hibernate that is 
used to select a particular field while querying. Apart from that, we can use some built-in 
aggregation functions provided by hibernate.

Here, we will only consider a basic projection. Now, the scenario is that we need only the id 
and firstName fields from the employee table to set them in projection.

If we have only one field to select, we can directly use the following code:

setProjection(Projections object);

However, if we need more than one column in the result, we need to use the 
ProjectionList class, as follows:

setProjection(ProjectionList object);

When we use ProjectionList, hibernate returns List<Object> in the result. So, it's 
better to use ALIAS_TO_ENTITY_MAP for the ease of access of fields; however, it depends 
on the actual requirement.

How to do it...
Here, we will take a look at two scenarios that show how to select single and multiple fields 
while querying with hibernate.

Scenario 1:
We want to select only one field using.

The equivalent SQL query to select only the id column from the employee table is as follows:

SELECT id FROM employee.

Let's take a look at how to achieve such a condition in hibernate:

Code
Enter the following code:

Criteria criteria = session.createCriteria(Employee.class);
criteria.setProjection(Projections.property("id"));
System.out.println(criteria.list());

Output
The output will be as follows:

Hibernate: select this_.id as y0_ from employee this_
[1, 2, 3, 4]



Understanding the Fundamentals

58

Scenario 2:
We want to select multiple fields.

The equivalent SQL query to select multiple id and firstName columns from the employee 
table in hibernate is as follows:

SELECT id, firstName FROM employee.

Let's take a look at how to achieve such a condition in hibernate:

Code
Enter the following code:

Criteria criteria = session.createCriteria(Employee.class);
ProjectionList projectionList =  
Projections.projectionList();
projectionList.add(Projections.alias(Projections.property(" 
id"), "empId"));
projectionList.add(Projections.alias(Projections.property(" 
firstName"), "empFirstName"));
criteria.setProjection(projectionList);
criteria.setResultTransformer(Transformers.ALIAS_TO_ENTITY_ 
MAP);
List list = criteria.list();
System.out.println(list);

Output
The output will be as follows:

[{empId=1, empFirstName=yogesh}, {empId=2, empFirstName=aarush},  
{empId=3, empFirstName=varsha}, {empId=4, empFirstName=vishal}]

From the output, we can easily determine that projection is applied and only the two required 
columns are returned.

Now you will easily understand how projection works.



59

3
Basic Annotations

In this chapter, we will cover the following recipes:

 f Declaring a class as an entity and creating a table in the database  
– @Entity and @Table

 f Creating a column in the table – @Column

 f Creating a primary key and composite primary key column – @Id and @IdClass

 f Creating an autogenerator column

Introduction
Annotation is used to provide a metadata of code. It is a part of the code file itself. It is used 
to give some extra information about the code and can be used with variables, method 
packages, the interface, or the class itself.

The advantages of annotation are that it's easy to use and makes the development process 
faster. Before annotation was introduced, there were many methodologies which were used to 
provide information to the code, such as XML-based mapping. Here, we will take a look at how 
annotations are useful in the development process.

In this chapter, we will consider the basic and necessary annotations used to start 
development using hibernate.



Basic Annotations

60

Declaring a class as an entity and creating a 
table in the database – @Entity and @Table

We need a class to be declared as an entity for hibernate to use it. Hibernate considers the 
class as a persistent class if it is annotated with the @Entity annotation.

How to do it…
Perform the following steps to declare a class as a hibernate entity:

1. Enter the following code on your editor:
@Entity
public class Employee {
  // Fields and getter/setter
}

Here, we annotate a class, Employee, with the @Entity annotation. As a result, 
hibernate considers the current class eligible to be persisted.

If you build a session factory with the preceding code and the 
table name is not given, hibernate will create a table with the 
name employee, which is equal to the class name.

2. If we want a user-defined table name rather than a default name, we can use the  
@Table annotation. The following code shows us how to achieve this:
@Entity
@Table(name="tbl_employee")
public class Employee {
  // Fields and getter/setter
}

Here, we give name="tbl_employee" as a parameter in the @Table annotation. So, 
hibernate will override the default table name with the name "tbl_employee".

There is another attribute available with @Table annotations; let's take a look at it.

This attribute is called uniqueConstraints. It is used when we need the UNIQUE key 
constraint with multiple fields.

The following code shows how to do this:

@Entity
@Table(name = "tbl_employee", uniqueConstraints =  
@UniqueConstraint(columnNames = { "id" , "empCode"}))



Chapter 3

61

public class Employee {

    @Id
    private long id;

    @Column
    private String empCode;
  
    // Fields and getter/setter

}

When a SessionFactory is created for the first time and property hbm2ddl.auto is  
set to create, hibernate will execute the following queries to create a table and the unique 
key constraints:

Hibernate: drop table if exists tbl_employee
Hibernate: create table tbl_employee (id bigint not null, empCode  
varchar(255), primary key (id))
Hibernate: alter table tbl_employee add constraint  
UK_3r763mmnyundobvaiqjv6lnj1  unique (id, empCode)

When the table is created using the preceding code, hibernate will create the UNIQUE key 
using two fields: id and empCode.

Take a look at the following script belonging to the table created by hibernate to understand 
uniqueConstraints:

CREATE TABLE `tbl_employee` (
  `id` bigint(20) NOT NULL,
  `empCode` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY `id` (`id`,`empCode`)
);

The uniqueConstraints is useful when we need a 
UNIQUE constraint for multiple fields. For only one column, 
you can use the @Column(unique=true) annotation 
directly on the field.

How it works…
Hibernate uses the declared annotation at the time of compilation to get the information 
applied to the Java code. You can't persist a class if it is not annotated with @Entity or 
defined in *.hbm.xml.

The @Table annotation is an optional annotation and is used when the custom table  
name is required.



Basic Annotations

62

Creating a column in the table – @Column
In the previous recipe, you learned how to create a table in the database with attributes. Now, 
we will take a look at how to declare a column in the table with some useful options.

How to do it…
First of all, we take a basic example of creating a column:

1. We will first create a column with the name empCode in the employee table. As no 
information is provided for the column name, hibernate uses a variable name. Enter 
the following code:
@Entity
public class Employee {
    @Column
    private String empCode;

    // fields and getter/setter

}

2. If we need a custom column name, we can use the name attribute, as shown in the 
following code:
@Column(name="emp_code")
private String empCode;

Now, hibernate will create a column with the name "emp_code".

There's more…
Let's take a look at some useful attributes available for the @Column annotation.

length
The length attribute is used to provide the column with a maximum size.

Here is an example:

@Column(name="emp_code", length=100)
private String empCode;

If length is not provided, the default size of the data type is used, 
and it is database-specific.



Chapter 3

63

nullable
The nullable attribute accepts a Boolean value. If nullable is true, it means that the 
column contains a NULL value. It does not accept NULL if the value of nullable is set to 
false, but the default value of nullable is true.

Here is an example:

@Column(name="emp_code", nullable=false)
private String empCode;

unique
The unique attribute also accepts a Boolean value. If unique is set to true, hibernate will 
create a column with a UNIQUE index. However, the default value is false.

Here is an example:

@Column(name="emp_code", unique=true)
private String empCode;

Here, hibernate creates a UNIQUE index for the "emp_code" column.

columnDefinition
This is a useful attribute of the annotation. It accepts a string value. We can give it a SQL 
fragment, which is used at the time of table creation.

Let's consider a useful example.

If we have a date field and want to set a default date but no date is provided at the time of the 
insertion of the rows, we can use the following code:

@Column(columnDefinition = "timestamp NOT NULL DEFAULT  
CURRENT_TIMESTAMP")
private Date startDate;

Hibernate directly uses this string while creating the table.

scale and precision
We will consider scale and precision together for a better understanding.

The precision and scale attributes come into the picture when we have the decimal data 
type of the column and want to store the value with the decimal point.

Here is an example:

@Column(precision = 7, scale = 2)
private BigDecimal salary;



Basic Annotations

64

This will create a salary column with the decimal data type and length 7,2. This means that 
you can enter a value up to 7 and from among that 2 digit contains decimal part.

insertable and updatable
Both these attributes accept a Boolean value. This denotes whether the column takes part in 
the insert and update operations or not.

See also…
There is another annotation, @JoinColumn, which is used when we want a reference 
between tables. We will discuss this is in Chapter 5, Working with Associations.

Creating a primary key and composite 
primary key column – @Id and @IdClass

It's necessary to declare an Identity column in each class while developing with hibernate. 
Sometimes, when we need to declare a primary key as a combination of multiple columns, we 
call this the composite primary key, as the primary key is composed of multiple columns. We 
can declare a column with the primary key constraint and also generate a composite primary 
key using hibernate.

How to do it…
Let's start with a primary key declaration:

1. To declare a column as a primary key column, we use the @Id annotation, as follows:
@Id
private long id;

When the preceding code is executed, hibernate creates a column with the name 
id and also adds the primary key index to it. In this case, @Column is not required 
unless you want a custom column name.

2. To declare it as a composite primary key, we will consider creating a composite 
primary key using the employee's first name and phone. Therefore, the firstName 
column will be duplicated, but the combination of both the firstName and phone 
column will never be duplicated. Let's take a look at how to achieve this by coding:
@Entity
@IdClass(Employee.class)
public class Employee implements Serializable {
  @Id
  private String firstName;



Chapter 3

65

  @Id
  private String phone;
}

Here, we annotated the firstName and phone columns with @Id, which means that we 
want to create a primary key for both. Also, we annotated the entity class with the @IdClass 
annotation.

Another thing that needs to be taken care of is that the entity class 
must implement Serializable if you plan to store the entity in 
any cache, session, or you wish to transfer the entity over wire. It is 
not necessary, but recommended.

The following table script shows how the composite primary key is generated:

CREATE TABLE `employee` (
  `phone` varchar(255) NOT NULL,
  `firstName` varchar(255) NOT NULL,
  PRIMARY KEY (`phone`,`firstName`)
);

Creating an autogenerator column
Generally, we create a primary column with some autogenerated value. Hibernate allows us 
to create the same using code. Let's take a look at some methods to create a column with an 
autogenerated value.

How to do it…
We can create an autogenerated column in many ways, such as:

 f Using a default generation strategy

 f Using a sequence generator

 f Using a table generator

Default generation strategy
To use a default strategy for autogeneration, we will use the @GeneratedValue annotation, 
as follows:

@Id
@GeneratedValue
private long id;



Basic Annotations

66

Using the preceding code, hibernate will create a column with an autoincremental value.

By default, hibernate uses the GenerationType.AUTO strategy if no strategy is supplied; so,  
@GeneratedValue is equal to @GeneratedValue(strategy=GenerationType.AUTO).

Still, as it is database–specific, it's the responsibility of the database to provide a value for this 
column, and the same rule is applied for @GeneratedValue(strategy=GenerationTy
pe.IDENTITY).

Sequence generator
Here, we are using GenerationType.SEQUENCE in the @GeneratedValue annotation; 
let's take a look at how to do it.

Generally, the value for the column is provided by the database if it is a sequence.

We can create a sequence in the database, if it is supported by the database, and add the 
mapping in the Java code, as shown in the following code.

For example, our database sequence is created with the name "seq". We can use the same, 
as shown in the following code:

@Id
@SequenceGenerator(name="seq", sequenceName="DB_SEQ")
@GeneratedValue(strategy=GenerationType.SEQUENCE, generator="seq")
private long id;

Here, the sequenceName = "DB_SEQ" value is a sequence name in the database, which is 
manually created by us.

Table generator
In a table generator, the value for the primary key column is stored in one table. Hibernate 
uses this table to get the next value for the primary key column in the particular class.

Let's take a look at how to do it using code:

@Id
@Column(name = "id")
@GeneratedValue(strategy = GenerationType.TABLE, generator =  
"gen_tbl")
@TableGenerator(name = "gen_tbl", table = "gen_table", pkColumnName  
= "pk", valueColumnName = "id", pkColumnValue = "employee0",  
initialValue = 0, allocationSize = 1)
private long id;

Here, we used the @TableGenerator annotation to define a table generator.



Chapter 3

67

There's more…
Let's take a look at some attributes available in the @GeneratedValue and @Table 
Generator annotations.

Attributes available in the @GeneratedValue annotation
Let's consider some attributes available in the @GeneratedValue annotation.

Strategy
This attribute accepts the enum GenerationType value.

Four possible values available for enum GenerationType are as follows:

 f AUTO

 f IDENTITY

 f SEQUENCE

 f TABLE

Generator
This attribute accepts a string value; it's the name of the generator in GenerationType.
SEQUENCE and GenerationType.TABLE.

Attributes available in @TableGenerator annotation
Now, we will consider some attributes of @TableGenerator.

name
The name attribute accepts a string value and defines a unique name for the table  
generator in a class. It is used in the @GeneratedValue annotation to provide a value  
to the generator attribute.

Here is an example:

name = "gen_tbl"

table
The table attribute accepts a string value. It is a new table name created by hibernate to 
contain the next value for the primary key column.

Here is an example:

table = "gen_table"

Here, hibernate will create a table with the name "gen_table".



Basic Annotations

68

pkColumnName
This attribute accepts a string value. It defines a column with the name "gen_table" in the 
table to store a key for the class.

Here is an example:

pkColumnName = "pk"

Here, hibernate will create a column with the name "pk" in the "gen_table" table.

valueColumnName
This attribute accepts a string value. It is another column used by hibernate to hold an actual 
value for the primary key column.

Here is an example:

valueColumnName = "id"

Here, hibernate will create a column with the name "id" in the "gen_table" table.

pkColumnValue
This is a static value for the particular class stored in the "pk" column. It is used to get a 
value for the primary key, which is stored in the "id" column against this value.

Here is an example:

pkColumnValue = "employee"

Here, hibernate will insert a row in "gen_table" with the "employee" value in the "pk" 
column and provide a value in the "id" column, which is equal to initialValue.

initialValue
This attribute defines an initial value for the primary column.

Here is an example:

initialValue = 0

allocationSize
This attribute defines the increment in a value for the primary key column.

Here is an example:

allocationSize = 1



Chapter 3

69

Once the code is executed, hibernate will create the following table structure in the database:

Table: employee

id
1

Table: gen_table

pk id
Employee 2

Here, the "gen_table" table shows a value in "id", which is 2, because we inserted 
a 1 record in employee, then hibernate updated the value of the "id" column for the 
"employee" key by allocationSize (here value 1).





71

4
Working with 

Collections

In this chapter, we will cover the following recipes:

 f Persisting List

 f Persisting Set

 f Persisting Map

 f Persisting Array

Introduction
Hibernate allows us to map the Java collections object with data structures. In this chapter, 
we will look at how to deal with Java collections using Hibernate. Java collections commonly 
include List, Map, Set, and Array. All standard Java collections are supported by hibernate.

Persisting List
List is an interface provided by Java and accessed from java.util.List that has the 
capability to store a sequence of elements, allow duplicate elements, and contain elements 
of the same type. Some classes that implement the List interface are java.util.
ArrayList, java.util.LinkedList, and so on. Now, let's look at how to use List while 
using hibernate.



Working with Collections

72

Getting ready
Here, we consider a new table structure for employee, and each employee has multiple 
e-mail addresses. So, we create an Employee class that has the List<String> field e-mails 
called list of e-mail addresses. Here, we use the List class for this recipe. To achieve this, we 
need to create classes and tables; so, first of all, let's meet the basic prerequisites.

Creating tables
Use the following script to create the tables, unless you are using hbm2dll=create|update 
to dynamically create the table using hibernate.

Use the following code to create the employee table:

CREATE TABLE `employee` (
  `id` BIGINT(20) NOT NULL AUTO_INCREMENT,
  `name` VARCHAR(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
);

Use the following code to create the email table:

CREATE TABLE `email` (
  `Employee_id` BIGINT(20) NOT NULL,
  `emails` VARCHAR(255) DEFAULT NULL,
  `email_index` INT(11) NOT NULL,
  PRIMARY KEY (`Employee_id`,`email_index`),
  KEY `FK5C24B9C37808516` (`Employee_id`),
  CONSTRAINT `FK5C24B9C37808516` FOREIGN KEY (`Employee_id`)  
  REFERENCES `employee` (`id`)
);

Creating a class
Use the following code to create a class:

Source file: Employee.java

@Entity
@Table(name = "employee")
public class Employee {

  @Id
  @GeneratedValue
  @Column(name = "id")
  private long id;



Chapter 4

73

  @Column(name = "name")
  private String name;

  @ElementCollection(fetch=FetchType.LAZY)
  @CollectionTable(name = "email")
  @IndexColumn(name="email_index")
  private List<String> emails;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

  public List<String> getEmails() {
    return emails;
  }

  public void setEmails(List<String> emails) {
    this.emails = emails;
  }

  @Override
  public String toString() {
    return "Employee"
        + "\n\tId:" + this.id
        + "\n\tName:" + this.name
        + "\n\tEmails:" + this.emails;
  }

}



Working with Collections

74

How to do it…
In this section, we will take a look at how to insert, retrieve, delete, and update List,  
step by step.

Inserting a record
The following code is used to insert a record into the database. Here, we will try to insert the 
record of an employee with three e-mail addresses:

Code
  SessionFactory sessionFactory =  
HibernateUtil.getSessionFactory();
  Session session = sessionFactory.openSession();

  Employee employee = new Employee();
  employee.setName("yogesh");
    
  List<String> emails = new ArrayList<String>();
  emails.add("emailaddress1@provider1.com");
  emails.add("emailaddress2@provider2.com");
  emails.add("emailaddress3@provider3.com");
  employee.setEmails(emails);
    
  session.getTransaction().begin();
  session.save(employee);
  session.getTransaction().commit();

Output
Hibernate: insert into employee (name) values (?)
Hibernate: insert into email (Employee_id, email_index, emails)  
values (?,?,?)
Hibernate: insert into email (Employee_id, email_index, emails)  
values (?,?,?)
Hibernate: insert into email (Employee_id, email_index, emails)  
values (?,?,?)
Employee
  Id: 1
  Name: yogesh
  Emails: [emailaddress1@provider1.com,  
emailaddress2@provider2.com, emailaddress3@provider3.com]

When this code is executed, it inserts one record into the employee table and three into the 
email table. It also sets a primary key value for the employee record in each record of the 
email table as a reference.



Chapter 4

75

Retrieving a record
Here, we know that the record is inserted with id 1. So, we will try to get only this record and 
understand how List works.

Use the following code to retrieve the records of Employee#1:

Code
  Employee employee = (Employee) session.get(Employee.class, 1l);
  System.out.println(employee.toString());

Output
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from employee employee0_ where employee0_.id=?
Hibernate: select emails0_.Employee_id as Employee1_0_0_,  
emails0_.emails as emails0_, emails0_.email_index as email3_0_  
from email emails0_ where emails0_.Employee_id=?
Employee 
  Id: 1
  Name: yogesh
  Emails: [emailaddress1@provider1.com,  
emailaddress2@provider2.com, emailaddress3@provider3.com]

Here, we notice that hibernate executes two different queries: one is to load the employee 
object and the other to load all the e-mail addresses referenced to that particular employee.

Updating a record
Here, we will try to add one more e-mail address to the list of e-mail IDs for Employee#1, 
which means that we will update the list of e-mails. Use the following code to do so:

Code
  Employee employee = (Employee) session.get(Employee.class, 1l);
  List<String> emails = employee.getEmails();
  emails.add("emailaddress3@provider3.com");
  session.getTransaction().begin();
  session.saveOrUpdate(employee);
  session.getTransaction().commit();
   System.out.println(employee.toString());

Output
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from employee employee0_ where employee0_.id=?
Hibernate: select emails0_.Employee_id as Employee1_0_0_,  
emails0_.emails as emails0_, emails0_.email_index as email3_0_  
from email emails0_ where emails0_.Employee_id=?



Working with Collections

76

Hibernate: insert into email (Employee_id, email_index, emails)  
values (?,?,?)
Employee 
  Id: 1
  Name: yogesh
  Emails: [emailaddress1@provider1.com,  
emailaddress2@provider2.com, emailaddress3@provider3.com,  
emailaddress3@provider3.com]

Here, we can see that we have two e-mail addresses with the same value, emailaddress3@
provider3.com. This happens because here we used List, and it allows the existence of 
duplicate elements.

Deleting a record
Here, we will try to delete the record of Employee#1 from the database using the following code:

Code
  Employee employee = new Employee();
  employee.setId(1);
  session.getTransaction().begin();
  session.delete(employee);
  session.getTransaction().commit();

Output
Hibernate: delete from email where Employee_id=?
Hibernate: delete from employee where id=?

While deleting the employee record, hibernate also deletes all the child records associated 
with Employee#1; in our case, these are the e-mail addresses.

How it works…
When we use hbm2dll=auto|update, hibernate will create two tables for us: one is 
employee and the other is email:

employee

id

name

Employee_id

emails

email

email_index



Chapter 4

77

An important point that needs to be highlighted here is as follows:

  @ElementCollection(fetch=FetchType.LAZY)
  @CollectionTable(name = "email")
  @IndexColumn(name="email_index")
  private List<String> emails;

Let's take a look at the preceding code in detail:

 f @CollectionTable: This annotation indicates that the current field is of the 
Collection type, and hibernate creates a separate table for it. It also creates a 
reference between them. In this case, hibernate creates a table named email with 
email and employee_id. The employee_id column is made by joining the persisted 
class name and the primary key column of the employee class with an underscore (_).

 f @ElementCollection: This annotation is used to define the relationship with the 
embedded or basic type.

Here, we also use the fetch=FetchType.LAZY attribute, which means that hibernate will 
load a child or referenced record on demand only. In our Retrieving a record example, it will 
execute the employee and e-mail queries separately. Hibernate uses FetchType.LAZY if no 
attribute is defined for fetch.

Another possible value with the fetch attribute is FetchType.EAGER, which means that 
hibernate will load all the child records at the time of the retrieval of the parent record. In 
other words, it eagerly loads all the records. If we use FetchType.EAGER, hibernate uses the 
following query:

Hibernate:
SELECT 
  employee0_.id AS id0_0_,
  employee0_.name AS name0_0_,
  emails1_.Employee_id AS Employee1_0_2_,
  emails1_.emails AS emails2_,
  emails1_.email_index AS email3_2_ 
FROM
  employee employee0_ 
  LEFT OUTER JOIN email emails1_ 
    ON employee0_.id = emails1_.Employee_id 
WHERE employee0_.id = ?

The preceding code uses left outer join to get the child records, the reason being that 
when we use FetchType.LAZY, hibernate executes a separate query to load the child or 
referenced record.

If we use FetchType.EAGER, hibernate will use the JOIN query to get the child records.



Working with Collections

78

Here, hibernate uses the left outer join to get child records, because FetchType.EAGER is 
used in the code.

@IndexColumn(name="email_index")

This annotation is used to hold the indexes of the collection's elements. This means that 
Hibernate creates a separate column in the child table (here, email) with the value given 
in the attribute name (here, email_index). This column preserves the sequence of the 
collection objects and helps while retrieving the records.

There's more…
In the preceding example, we dealt with List of the basic data type, which means that we 
used List of String (List<String>). Now, let's consider that we have a Degree class, 
which contains the degree name and passing year and want to map it with Employee. 
For this, we deal with List<Object> instead of List<String>. In our case, it will be 
List<Degree>. Let's take a look at how to do it.

Creating classes
Use the following code to create the classes:

Source file: Degree.java

@Entity
@Table(name="degree")
public class Degree {
  
  @Id
  @GeneratedValue
  private long id;
  
  @Column(name="degreename")
  private String degreeName;
  
  @Column(name="passingyear")
  private int passingYear;

  public Degree() {
  
  }
  
  public Degree(String degreeName, int passingYear) {
    this.degreeName = degreeName;
    this.passingYear = passingYear;
  }



Chapter 4

79

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getDegreeName() {
    return degreeName;
  }

  public void setDegreeName(String degreeName) {
    this.degreeName = degreeName;
  }

  public int getPassingYear() {
    return passingYear;
  }

  public void setPassingYear(int passingYear) {
    this.passingYear = passingYear;
  }

  @Override
  public String toString() {
    return "\n\nDegree " 
        + "\n\tId:" + this.id
        + "\n\tName:" + this.degreeName
        + "\n\tPassing year:" + this.passingYear;
  }
}

Source file: Employee.java

@Entity
@Table(name = "employee")
public class Employee {

  @Id
  @GeneratedValue
  @Column(name = "id")
  private long id;

  @Column(name = "name")
  private String name;



Working with Collections

80

  @OneToMany(cascade={CascadeType.ALL})
  private List<Degree> degrees;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

  public List<Degree> getDegrees() {
    return degrees;
  }

  public void setDegrees(List<Degree> degrees) {
    this.degrees = degrees;
  }

  @Override
  public String toString() {
    return "Employee " 
        + "\n\tId: " + this.id 
        + "\n\tName: " + this.name
        + "\n\tDegrees: " + this.degrees;
  }
}

When we create SessionFactory with the hbm2dll=create|update option, hibernate 
will create the employee, degree and employee_degree tables for us; otherwise, you can 
use the following table script:

degree

id (PK)

degreename

id (PK)

name

employee

passingyear

employee_id (FK)

degrees_id (FK)

employee_degree



Chapter 4

81

Creating tables
Use the following script to create tables if you are not using hbm2dll=create|update. This 
script is for the tables that are generated by hibernate.

Use the following code to create the degree table:

CREATE TABLE `degree` ( 
  `id` bigint(20) NOT NULL AUTO_INCREMENT, 
  `degreename` varchar(255) DEFAULT NULL, 
  `passingyear` int(11) DEFAULT NULL, 
  PRIMARY KEY (`id`) 
);

Use the following code to create the employee table:

CREATE TABLE `employee` ( 
  `id` bigint(20) NOT NULL AUTO_INCREMENT, 
  `name` varchar(255) DEFAULT NULL, 
  PRIMARY KEY (`id`) 
);

Use the following code to create the employee_degree table:

CREATE TABLE `employee_degree` ( 
  `employee_id` bigint(20) NOT NULL, 
  `degrees_id` bigint(20) NOT NULL, 
  UNIQUE KEY `degrees_id` (`degrees_id`), 
  KEY `FK9CF457D5DB631AF` (`degrees_id`), 
  KEY `FK9CF457D699100AA` (`employee_id`), 
  CONSTRAINT `FK9CF457D699100AA` FOREIGN KEY (`employee_id`)  
REFERENCES `employee` (`id`), 
  CONSTRAINT `FK9CF457D5DB631AF` FOREIGN KEY (`degrees_id`)  
REFERENCES `degree` (`id`) 
);

Here, we used @OneToMany(cascade={CascadeType.ALL}) to map degree  
with employee.

Refer to the following code that shows how to insert/display records.

Inserting a record
Here, we insert one employee record with the two degrees associated with this employee.

Code
Use the following code to insert an employee record with degrees:

Employee employee = new Employee();
employee.setName("yogesh");



Working with Collections

82

List<Degree> degrees = new ArrayList<Degree>();
degrees.add(new Degree("B.E.", 2008));
degrees.add(new Degree("M.S.", 2011));

employee.setDegrees(degrees);

session.getTransaction().begin();
session.save(employee);
session.getTransaction().commit();

Output
Hibernate: insert into employee (name) values (?)
Hibernate: insert into degree (degreename, passingyear) values (?,  
?)
Hibernate: insert into degree (degreename, passingyear) values (?,  
?)
Hibernate: insert into employee_degree (employee_id, degrees_id)  
values (?, ?)
Hibernate: insert into employee_degree (employee_id, degrees_id)  
values (?, ?)

Here, from the SQL statements, we understand that the first SQL statement inserts one record 
in to the employee table, the next two statements create two records in the degree table, 
and the last two statements create the mapping records in the employee_degree table 
using the inserted values of both the employee and degree tables.

Retrieving a record
Here, we will fetch the record of Employee#1 from the database. Use the following code  
to do so:

Code
Employee employee = (Employee) session.get(Employee.class, 1l);
System.out.println(employee.toString());

Output
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from employee employee0_ where employee0_.id=?
Hibernate: select degrees0_.employee_id as employee1_0_1_,  
degrees0_.degrees_id as degrees2_1_, degree1_.id as id1_0_,  
degree1_.degreename as degreename1_0_, degree1_.passingyear as  
passingy3_1_0_ from employee_degree degrees0_ inner join degree  
degree1_ on degrees0_.degrees_id=degree1_.id where degrees0_.employee_
id=?
Employee 
  Id: 1



Chapter 4

83

  Name: yogesh
  Degrees: [

Degree 
  Id: 1
  Name: B.E.
  Passing year: 2008, 

Degree 
  Id: 2
  Name: M.S.
  Passing year: 2011]

Persisting Set
Set provides an unordered data structure, and duplicate elements are not allowed. Some 
classes implemented by the Set interface are java.util.HashSet, java.util.
LinkedHashSet, and so on. For this recipe, we will use the java.util.HashSet class, 
which implements the java.util.Set interface. The only difference between List and 
Set is that Set doesn't allow duplicate values. For example, in our previous example, we 
added the e-mail address with emailaddress3@provider3.com twice, and hibernate will 
allow us to do this. But in case of Set, you cannot add a duplicate value. Let's take a look at 
how to achieve this.

Getting ready
Now, we need the class to persist Set in hibernate. Use the next code snippet to create the 
Employee class.

Creating a class
Use the following code to create the classes:

Source file: Employee.java

@Entity
@Table(name = "employee")
public class Employee {

  @Id
  @GeneratedValue
  @Column(name = "id")
  private long id;



Working with Collections

84

  @Column(name = "name")
  private String name;

  @ElementCollection
  @CollectionTable(name = "email")
  private Set<String> emails;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

  public Set<String> getEmails() {
    return emails;
  }

  public void setEmails(Set<String> emails) {
    this.emails = emails;
  }

  @Override
  public String toString() {
    return "Employee"
        + "\n\tId: " + this.id
        + "\n\tName: " + this.name
        + "\n\tEmails: " + this.emails;
  }

}



Chapter 4

85

How to do it…
Here, we will discuss how to persist Set and also the manipulation operations with Set, such 
as inserting, retrieving, deleting, and updating.

Inserting a record
Here, we create the employee record with some e-mail addresses of the employee.

From the code's point of view, there are fewer changes as compared to List. This is because 
this relationship is not directly known to the database but virtually created by hibernate. Use 
the following code to do so:

Code
  SessionFactory sessionFactory =    
HibernateUtil.getSessionFactory();
  Session session = sessionFactory.openSession();

  Employee employee = new Employee();
  employee.setName("yogesh");
    
  Set<String> emails = new HashSet<String>();
  emails.add("emailaddress1@provider1.com");
  emails.add("emailaddress2@provider2.com");
  emails.add("emailaddress3@provider3.com");
  employee.setEmails(emails);
    
  session.getTransaction().begin();
  session.save(employee);
  session.getTransaction().commit();

Output
Hibernate: insert into employee (name) values (?)
Hibernate: insert into email (Employee_id, emails) values (?, ?)
Hibernate: insert into email (Employee_id, emails) values (?, ?)
Hibernate: insert into email (Employee_id, emails) values (?, ?)

When the code is executed, it inserts one record into the employee table and three records 
into the email table, and it also sets a primary key value for the employee record in each 
record of the email table as a reference.

Retrieving a record
Here, we know that our record is inserted with id 1. So, we will try to get only this record and 
understand how Set works in our case:



Working with Collections

86

Code
  Employee employee = (Employee) session.get(Employee.class, 1l);
  System.out.println(employee.toString());

Output
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from employee employee0_ where employee0_.id=?
Hibernate: select emails0_.Employee_id as Employee1_0_0_,  
emails0_.emails as emails0_ from email emails0_ where  
emails0_.Employee_id=?
Employee
  Id: 1
  Name: yogesh
  Emails: [emailaddress1@provider1.com,  
emailaddress2@provider2.com,   emailaddress3@provider3.com]

Updating a record
Here, we will try to add one more e-mail address to Employee#1:

Code
  Employee employee = (Employee) session.get(Employee.class, 1l);
  Set<String> emails = employee.getEmails();
  emails.add("emailaddress3@provider3.com");
  session.getTransaction().begin();
  session.saveOrUpdate(employee);
  session.getTransaction().commit();
  System.out.println(employee.toString());

Output
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from employee employee0_ where employee0_.id=?
Hibernate: select emails0_.Employee_id as Employee1_0_0_,  
emails0_.emails as emails0_ from email emails0_ where  
emails0_.Employee_id=?
Employee
  Id: 1
  Name: yogesh
  Emails: [emailaddress2@provider2.com,  
emailaddress1@provider1.com  emailaddress3@provider3.com]

Here, we can see that we tried to add the e-mail address, emailaddress3@provider3.com, 
which is already in List; therefore, hibernate doesn't execute an update query to the database. 
This is because Set doesn't allow duplicate values.



Chapter 4

87

Deleting a record
Here again, we will try to delete the Employee#1 object. Use the following code to do so:

Code
  Employee employee = new Employee();
  employee.setId(1);
  session.getTransaction().begin();
  session.delete(employee);
  session.getTransaction().commit();

Output
Hibernate: delete from email where Employee_id=?
Hibernate: delete from employee where id=?

While deleting the object, hibernate will delete the child records (here, e-mail addresses) as 
well. This works in the same way as List.

How it works…
The implementation of Set is the same as that of List, because this relationship is handled 
by hibernate only and is not directly known by the database. Also, hibernate creates the same 
table structure as List, as shown in table below:

employee

id

name

Employee_id

emails

email

Persisting Map
Map is used when we want to persist a collection of key/value pairs where the key is always 
unique. Some common implementations of java.util.Map are java.util.HashMap, 
java.util.LinkedHashMap, and so on. For this recipe, we will use java.util.HashMap.



Working with Collections

88

Getting ready
Now, let's assume that we have a scenario where we are going to implement Map<String, 
String>; here, the String key is the e-mail address label, and the value String 
is the e-mail address. For example, we will try to construct a data structure similar to 
<"Personal e-mail", "emailaddress2@provider2.com">, <"Business e-mail", 
"emailaddress1@provider1.com">. This means that we will create an alias of the actual 
e-mail address so that we can easily get the e-mail address using the alias and can document 
it in a more readable form. This type of implementation depends on the custom requirement; 
here, we can easily get a business e-mail using the Business email key.

Use the following code to create the required tables and classes.

Creating tables
Use the following script to create the tables if you are not using hbm2dll=create|update. 
This script is for the tables that are generated by hibernate:

Use the following code to create the email table:

CREATE TABLE `email` (
  `Employee_id` BIGINT(20) NOT NULL,
  `emails` VARCHAR(255) DEFAULT NULL,
  `emails_KEY` VARCHAR(255) NOT NULL DEFAULT '',
  PRIMARY KEY (`Employee_id`,`emails_KEY`),
  KEY `FK5C24B9C38F47B40` (`Employee_id`),
  CONSTRAINT `FK5C24B9C38F47B40` FOREIGN KEY (`Employee_id`)  
REFERENCES `employee` (`id`)
);

Use the following code to create the employee table:

CREATE TABLE `employee` (
  `id` BIGINT(20) NOT NULL AUTO_INCREMENT,
  `name` VARCHAR(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
);

Creating a class
Source file: Employee.java

@Entity
@Table(name = "employee")
public class Employee {

  @Id



Chapter 4

89

  @GeneratedValue
  @Column(name = "id")
  private long id;

  @Column(name = "name")
  private String name;

  @ElementCollection
  @CollectionTable(name = "email")
  private Map<String, String> emails;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

  public Map<String, String> getEmails() {
    return emails;
  }

  public void setEmails(Map<String, String> emails) {
    this.emails = emails;
  }

  @Override
  public String toString() {
    return "Employee" 
        + "\n\tId: " + this.id
        + "\n\tName: " + this.name
        + "\n\tEmails: " + this.emails;
  }
}



Working with Collections

90

How to do it…
Here, we will consider how to work with Map and its manipulation operations, such as 
inserting, retrieving, deleting, and updating.

Inserting a record
Here, we will create one employee record with two e-mail addresses:

Code
  Employee employee = new Employee();
  employee.setName("yogesh");
    
  Map<String, String> emails = new HashMap<String, String>();
  emails.put("Business email", "emailaddress1@provider1.com");
  emails.put("Personal email", "emailaddress2@provider2.com");
  employee.setEmails(emails);

  session.getTransaction().begin();
  session.save(employee);
  session.getTransaction().commit();

Output
Hibernate: insert into employee (name) values (?)
Hibernate: insert into email (Employee_id, emails_KEY, emails)  
values (?,?,?)
Hibernate: insert into email (Employee_id, emails_KEY, emails)  
values (?,?,?)

When the code is executed, it inserts one record into the employee table and two records 
into the email table and also sets a primary key value for the employee record in each 
record of the email table as a reference.

Retrieving a record
Here, we know that our record is inserted with id 1. So, we will try to get only that record and 
understand how Map works in our case.

Code
  Employee employee = (Employee) session.get(Employee.class, 1l);
  System.out.println(employee.toString());
  System.out.println("Business email: " +    
employee.getEmails().get("Business email"));



Chapter 4

91

Output
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from employee employee0_ where employee0_.id=?
Hibernate: select emails0_.Employee_id as Employee1_0_0_,  
emails0_.emails as emails0_, emails0_.emails_KEY as emails3_0_  
from email emails0_ where emails0_.Employee_id=?
Employee
  Id: 1
  Name: yogesh
  Emails: {Personal email=emailaddress2@provider2.com, Business    
email=emailaddress1@provider1.com}
  Business email: emailaddress1@provider1.com

Here, we can easily get a business e-mail address using the Business email key from the 
map of e-mail addresses. This is just a simple scenario created to demonstrate how to persist 
Map in hibernate.

Updating a record
Here, we will try to add one more e-mail address to Employee#1:

Code
Employee employee = (Employee) session.get(Employee.class, 1l);
Map<String, String> emails = employee.getEmails();
emails.put("Personal email 1", "emailaddress3@provider3.com");
session.getTransaction().begin();
session.saveOrUpdate(employee);
session.getTransaction().commit();
System.out.println(employee.toString());

Output
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from employee employee0_ where employee0_.id=?
Hibernate: select emails0_.Employee_id as Employee1_0_0_,  
emails0_.emails as emails0_, emails0_.emails_KEY as emails3_0_  
from email emails0_ where emails0_.Employee_id=?
Hibernate: insert into email (Employee_id, emails_KEY, emails)  
values (?, ?, ?)
Employee
  Id: 2
  Name: yogesh
  Emails: {Personal email 1= emailaddress3@provider3.com, Personal    
email=emailaddress2@provider2.com, Business    
email=emailaddress1@provider1.com}



Working with Collections

92

Here, we added a new e-mail address with the Personal email 1 key and the value is 
emailaddress3@provider3.com.

Deleting a record
Here again, we will try to delete the records of Employee#1 using the following code:

Code
Employee employee = new Employee();
employee.setId(1);
session.getTransaction().begin();
session.delete(employee);
session.getTransaction().commit();

Output
Hibernate: delete from email where Employee_id=?
Hibernate: delete from employee where id=?

While deleting the object, hibernate will delete the child records (here, e-mail addresses)  
as well.

How it works…
Here again, we need to understand the table structures created by hibernate:

employee

id

name

Employee_id

emails

email

emails_KEY

This is the same as in all the other examples in this chapter. Hibernate creates a composite 
primary key in the email table using two fields: employee_id and emails_KEY.

Persisting Array
Working with Array is similar to that with List, but in List, it is not compulsory to add @
IndexColumn. However, Array requires an indexed column to maintain the column order.



Chapter 4

93

Getting ready
Create the required class using the following code to persist Array:

Source file: Employee.java

@Entity
@Table(name = "employee")
public class Employee {

  @Id
  @GeneratedValue
  @Column (name = "id")
  private long id;

  @Column (name = "name")
  private String name;

  @ElementCollection
  @IndexColumn(name="email_index")
  @CollectionTable(name = "email")
  private String[] emails;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

  public String[] getEmails() {
    return emails;
  }

  public void setEmails(String[] emails) {



Working with Collections

94

    this.emails = emails;
  }

  @Override
  public String toString() {
    return "Employee" 
    + "\n\tId: " + this.id + "\n\tName: " + this.name
        + "\n\tEmails: " + Arrays.toString(this.emails);
  }
}

How to do it…
We will take a look at how to insert and retrieve the data from hibernate using Array.

Inserting a record
Here, we create one employee record with Array of e-mail addresses. Use the following 
code to do so:

Code
Employee employee = new Employee();
employee.setName("vishal");
employee.setEmails (new String []{"emailaddress1@provider1.com",  
"emailaddress2@provider2.com", "emailaddress3@provider3.com",  
"emailaddress4@provider4.com"});

session.getTransaction().begin();
session.save(employee);
session.getTransaction().commit();

Output
Hibernate: insert into employee (name) values (?)
Hibernate: insert into email (Employee_id, email_index, emails)  
values (?,?,?)
Hibernate: insert into email (Employee_id, email_index, emails)  
values (?,?,?)
Hibernate: insert into email (Employee_id, email_index, emails)  
values (?,?,?)
Hibernate: insert into email (Employee_id, email_index, emails)  
values (?,?,?)

Retrieving a record
Use the following code to retrieve records for Employee#1:



Chapter 4

95

Code
Employee employee = (Employee) session.get(Employee.class, 1l);
System.out.println(employee.toString());

Output
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from employee employee0_ where employee0_.id=?
Hibernate: select emails0_.Employee_id as Employee1_0_0_,  
emails0_.emails as emails0_, emails0_.email_index as email3_0_  
from email emails0_ where emails0_.Employee_id=?
Employee
  Id: 1
  Name: vishal
  Emails: [emailaddress1@provider1.com,  
emailaddress2@provider2.com,  emailaddress3@provider3.com,  
emailaddress4@provider4.com]





97

5
Working with 
Associations

In this chapter, we will cover the following recipes:

 f One-to-one mapping using a foreign key association

 f One-to-one mapping using a common join table

 f One-to-one mapping using a common primary key

 f One-to-many mapping or many-to-one mapping

 f Many-to-many mapping

Introduction
An association represents the relationship between tables. There are two main types of 
associations: unidirectional and bidirectional. We will take a look at how to use associations 
with an example.

There are four main well-known types of relationships:

 f One-to-one

 f One-to-many

 f Many-to-one

 f Many-to-many

There are multiple ways to achieve these relationships.



Working with Associations

98

One-to-one mapping using foreign key 
association

In a one-to-one relationship, each row in the first table is linked to exactly one row in another 
table. If this relationship is applied, we can say that both the tables have an exactly equal 
number of rows any time.

We will take a look at the unidirectional and bidirectional ways to show a one-to-one 
relationship between the tables.

Getting ready
Here, we will consider the Person and PersonDetail classes to show a demo. So, let's first 
create the classes and tables for both.

Creating the tables
Use the following script to create the tables if you are not using hbm2dll=create|update:

Use the following script to create the passport_detail table:

CREATE TABLE `passport_detail` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `passportno` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
);

Use the following script to create the person table:

CREATE TABLE `person` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  `passport_detail_id` bigint(20) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `FK_PERSON_ID` (`passport_detail_id`),
  CONSTRAINT `FK_PERSON_ID` FOREIGN KEY (`passport_detail_id`)  
REFERENCES `passport_detail` (`id`)
);



Chapter 5

99

Creating the classes
Use the following code to create the classes:

Source file: PassportDetail.java

@Entity
@Table(name = "passport_detail")
public class PassportDetail {

  @Id
  @GeneratedValue
  @Column(name = "id")
  private long id;

  @Column(name = "passportno")
  private String passportNo;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getPassportNo() {
    return passportNo;
  }

  public void setPassportNo(String passportNo) {
    this.passportNo = passportNo;
  }

}

Source file: Person.java

@Entity
@Table(name = "person")
public class Person {

  @Id
  @GeneratedValue
  @Column(name = "id")
  private long id;

  @Column(name = "name")



Working with Associations

100

  private String name;

  @OneToOne(cascade = CascadeType.ALL)
  @JoinColumn(name = "passport_detail_id")
  private PassportDetail passportDetail;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

  public PassportDetail getPassportDetail() {
    return passportDetail;
}

  public void setPassportDetail(PassportDetail passportDetail) {
    this.passportDetail = passportDetail;
  }

}

How to do it…
In this section, we will take a look at how to insert a record step by step.

Inserting a record
Using the following code, we will insert a Person object with a PassportDetail one:

Code
  PassportDetail detail = new PassportDetail();
  detail.setPassportNo("G51546645");

  Person person = new Person();
  person.setName("Vishal");



Chapter 5

101

  person.setPassportDetail(detail);

  Transaction transaction = session.getTransaction();
  transaction.begin();

  session.save(person);
  transaction.commit();

Output
  Hibernate: insert into passport_detail (passportno) values (?)
  Hibernate: insert into person (name, passport_detail_id) values  
  (?,?)

Here, we created PassportDetail and Person objects and saved both to the database.

How it works...
Here, the one-to-one relationship is not directly known to the database, but it is created for 
simplicity purposes and is useful to define a user-specific scenario. This means that each 
Person has one and only one PassportDetail object, and PassportDetail does not 
exist without Person.

As we used the @OneToOne annotation in the preceding code, hibernate will consider that we 
want to have a one-to-one relationship between both the tables.

Let's take a look at an option used in the preceding code in detail:

cascade=CascadeType.ALL:

This option in the @OneToOne annotation shows that hibernate uses cascading for all database 
operations. Here, we save a Person record, but before saving a Person object, it saves a 
PassportDetail object because PassportDetail is referred to by the Person object. If 
the PassportDetail object is not persisted at the time of saving the Person object, and 
the appropriate CascadeType option is not used, it throws an error similar to "Exception 
in thread "main" org.hibernate.TransientObjectException: object 
references an unsaved transient instance - save the transient instance 
before flushing: "PassportDetail".

The @JoinColumn annotation is used to define the relationship between tables—in our case, 
between the person table and a column created with the name "passport_detail_id"—
and it refers to the primary key of the " "passport_detail " table, which is "id".

In other words, it creates a foreign key reference.



Working with Associations

102

There's more…
Here, we will take a look at the bidirectional way to achieve the relationship.

The logic behind this technique is that each row in the parent table knows its child record 
identity, and each row from child table knows its parent record identity. For example, in our 
case, Person knows its PassportDetail record, and PassportDetail knows its Person 
record; so, we can get the detail for both using any one table.

Here, we will use the same tables/classes structure as the one in the previous section with 
minor changes.

Creating the tables
Use the following script to create the tables if you are not using hbm2dll=create|update:

Use the following script to create the passport_detail table:

CREATE TABLE `passport_detail` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `passportno` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
);

Use the following script to create the passport_detail table:

CREATE TABLE `person` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  `passport_detail_id` bigint(20) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `FK_PERSON_ID` (`passport_detail_id`),
  CONSTRAINT `FK_PERSON_ID` FOREIGN KEY (`passport_detail_id`)  
REFERENCES `passport_detail` (`id`)
);

Creating the classes
Use the following code to create the classes:

Source file: Person.java

@Entity
@Table(name = "person")
public class Person {

  @Id
  @GeneratedValue



Chapter 5

103

  @Column(name = "id")
  private long id;

  @Column(name = "name")
  private String name;

  @OneToOne(cascade = CascadeType.ALL)
  @JoinColumn(name = "passport_detail_id")
  private PassportDetail passportDetail;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

  public PassportDetail getPassportDetail() {
    return passportDetail;
  }

  public void setPassportDetail(PassportDetail passportDetail) {
    this.passportDetail = passportDetail;
  }

  @Override
  public String toString() {
    return "Person" 

      +"\n Id: " + this.id
      +"\n Name: " + this.name
      +"\n Passport Detail " 
      + "\n\t Id: " + this.passportDetail.getId()
      + "\n\t PassportNo: " + this.passportDetail.getPassportNo();
        
  } 

} 



Working with Associations

104

Source file: PersonDetail.java

@Entity
@Table(name = "passport_detail")
public class PassportDetail {

  @Id
  @GeneratedValue
  @Column(name = "id")
  private long id;

  @Column(name = "passportno")
  private String passportNo;

  @OneToOne(mappedBy = "passportDetail", cascade =  
CascadeType.ALL)
  private Person person;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getPassportNo() {
    return passportNo;
  }

  public void setPassportNo(String passportNo) {
    this.passportNo = passportNo;
  }

  public Person getPerson() {
    return person;
  }

  public void setPerson(Person person) {
    this.person = person;
  }

  @Override
  public String toString() {
    return "Passport Detail"



Chapter 5

105

      +"\n Id: " + this.id
      +"\n Name: " + this.getPassportNo()
      +"\n Person " 
      + "\n\t Id: " + this.person.getId()
      + "\n\t PassportNo: " + this.person.getName();
        
}

Inserting a record
Here, we will insert a Person object with a PassportDetail:

Code
PassportDetail detail = new PassportDetail();
detail.setPassportNo("G54624512");

Person person = new Person();
person.setName("Yogesh");
person.setPassportDetail(detail);

Transaction transaction = session.getTransaction();
transaction.begin();

session.save(person);
transaction.commit();

Output
Hibernate: insert into passport_detail (passportno) values (?)
Hibernate: insert into person (name, passport_detail_id) values  
(?,?)

Retrieving a record using the parent record
Now, we will try to get a PassportDetail (child) record using a Person (parent) record. 
Execute the following code:

Code
Criteria criteria = session.createCriteria(Person.class);
Person person = (Person) criteria.uniqueResult();
System.out.println(person.toString());

Output
Hibernate: select this_.id as id1_1_1_, this_.name as name2_1_1_,  
this_.passport_detail_id as passport3_1_1_, passportde2_.id as  
id1_0_0_, passportde2_.passportno as passport2_0_0_ from person  
this_ left outer join passport_detail passportde2_ on  
this_.passport_detail_id=passportde2_.id



Working with Associations

106

Hibernate: select person0_.id as id1_1_1_, person0_.name as  
name2_1_1_, person0_.passport_detail_id as passport3_1_1_,  
passportde1_.id as id1_0_0_, passportde1_.passportno as  
passport2_0_0_ from person person0_ left outer join  
passport_detail passportde1_ on  
person0_.passport_detail_id=passportde1_.id where  
person0_.passport_detail_id=?

Person
  Id: 1
  Name: Yogesh
  Passport Detail 
    Id: 1
    PassportNo: G54624512

Retrieving a record using the child record
Now, we will do the inverse of the preceding example and try to get a Person (parent) record 
using a PassportDetail (child) record:

Code
Criteria criteria =  
session.createCriteria(PassportDetail.class);
PassportDetail passportDetail = (PassportDetail)  
criteria.uniqueResult();
System.out.println(passportDetail.toString());

Output
Hibernate: select this_.id as id1_0_1_, this_.passportno as  
passport2_0_1_, person2_.id as id1_1_0_, person2_.name as  
name2_1_0_, person2_.passport_detail_id as passport3_1_0_ from  
passport_detail this_ left outer join person person2_ on  
this_.id=person2_.passport_detail_id

Passport Detail
 Id: 1
 PassportNoName: G54624512
 Person 
   Id: 1
   PassportNoName: Yogesh



Chapter 5

107

One-to-one mapping using a common  
join table

In this method, we will use a third table that contains the relationship between the employee 
and detail tables. In other words, the third table will hold a primary key value of both tables to 
represent a relationship between them.

Getting ready
Use the following script to create the tables and classes. Here, we use Employee and 
EmployeeDetail to show a one-to-one mapping using a common join table:

Creating the tables
Use the following script to create the tables if you are not using hbm2dll=create|update:

Use the following script to create the detail table:

CREATE TABLE `detail` (
  `detail_id` bigint(20) NOT NULL AUTO_INCREMENT,
  `city` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`detail_id`)
);

Use the following script to create the employee table:

CREATE TABLE `employee` (
  `employee_id` BIGINT(20) NOT NULL AUTO_INCREMENT,
  `name` VARCHAR(255) DEFAULT NULL,
  PRIMARY KEY (`employee_id`)
);

Use the following script to create the employee_detail table:

CREATE TABLE `employee_detail` (
  `detail_id` BIGINT(20) DEFAULT NULL,
  `employee_id` BIGINT(20) NOT NULL,
  PRIMARY KEY (`employee_id`),
  KEY `FK_DETAIL_ID` (`detail_id`),
  KEY `FK_EMPLOYEE_ID` (`employee_id`),
  CONSTRAINT `FK_EMPLOYEE_ID` 
    FOREIGN KEY (`employee_id`) 
    REFERENCES `employee` (`employee_id`),
  CONSTRAINT `FK_DETAIL_ID` 
    FOREIGN KEY (`detail_id`) 
    REFERENCES `detail` (`detail_id`)
);



Working with Associations

108

Creating the classes
Use the following code to create the classes:

Source file: Employee.java

@Entity
@Table(name = "employee")
public class Employee {

  @Id
  @GeneratedValue
  @Column(name = "employee_id")
  private long id;

  @Column(name = "name")
  private String name;

  @OneToOne(cascade = CascadeType.ALL)
  @JoinTable(
    name="employee_detail"
    , joinColumns=@JoinColumn(name="employee_id")
    , inverseJoinColumns=@JoinColumn(name="detail_id")
  )
  private Detail employeeDetail;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

  public Detail getEmployeeDetail() {
    return employeeDetail;
  }

  public void setEmployeeDetail(Detail employeeDetail) {
    this.employeeDetail = employeeDetail;



Chapter 5

109

  }
  
  @Override
  public String toString() {
    return "Employee"
      +"\n Id: " + this.id
      +"\n Name: " + this.name
      +"\n Employee Detail " 
      + "\n\t Id: " + this.employeeDetail.getId()
      + "\n\t City: " +  
        this.employeeDetail.getCity();

  } 

}

Source file: Detail.java

@Entity
@Table(name = "detail")
public class Detail {

  @Id
  @GeneratedValue
  @Column(name = "detail_id")
  private long id;

  @Column(name = "city")
  private String city;
  
  @OneToOne(cascade = CascadeType.ALL)
  @JoinTable(
    name="employee_detail"
    , joinColumns=@JoinColumn(name="detail_id")
    , inverseJoinColumns=@JoinColumn(name="employee_id")
  )
  private Employee employee;
  
  public Employee getEmployee() {
    return employee;
  }

  public void setEmployee(Employee employee) {
    this.employee = employee;
  }



Working with Associations

110

  public String getCity() {
    return city;
  }

  public void setCity(String city) {
    this.city = city;
  }

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  @Override
  public String toString() {
    return "Employee Detail"
      +"\n Id: " + this.id
      +"\n City: " + this.city
      +"\n Employee " 
      + "\n\t Id: " + this.employee.getId()
      + "\n\t Name: " + this.employee.getName();

  }
  
}

How to do it…
In this section, we will take a look at how to insert a record step by step.

Inserting a record
Using the following code, we will insert an Employee record with a Detail object:

Code
Detail detail = new Detail();
detail.setCity("AHM");

Employee employee = new Employee();
employee.setName("vishal");
employee.setEmployeeDetail(detail);



Chapter 5

111

Transaction transaction = session.getTransaction();
transaction.begin();

session.save(employee);
transaction.commit();

Output
Hibernate: insert into detail (city) values (?)
Hibernate: insert into employee (name) values (?)
Hibernate: insert into employee_detail (detail_id, employee_id)  
values (?,?)

Hibernate saves one record in the detail table and one in the employee table and then 
inserts a record in to the third table, employee_detail, using the primary key column value 
of the detail and employee tables.

How it works…
From the output, it's clear how this method works. The code is the same as in the other 
methods of configuring a one-to-one relationship, but here, hibernate reacts differently. 
Here, the first two statements of output insert the records in to the detail and employee 
tables respectively, and the third statement inserts the mapping record in to the third table, 
employee_detail, using the primary key column value of both the tables.

Let's take a look at an option used in the previous code in detail:

 f @JoinTable: This annotation, written on the Employee class, contains the 
name="employee_detail" attribute and shows that a new intermediate table is 
created with the name "employee_detail"

 f joinColumns=@JoinColumn(name="employee_id"): This shows that a 
reference column is created in employee_detail with the name "employee_id", 
which is the primary key of the employee table

 f inverseJoinColumns=@JoinColumn(name="detail_id"): This shows that 
a reference column is created in the employee_detail table with the name 
"detail_id", which is the primary key of the detail table

Ultimately, the third table, employee_detail, is created with two columns: one is 
"employee_id" and the other is "detail_id".



Working with Associations

112

One-to-one mapping using a common 
primary key

In this method, we will create a relationship in such a way that both tables contain the same 
primary key value for the related record. So, we can say that here we used unidirectional 
as well as bidirectional relationships, because we can get either record through another 
record using its primary key. For example, if Person is inserted with id 1, you should get the 
PassportDetail record inserted with id 1 as well.

Getting ready
Here, we will create Person and PassportDetail classes to work this demo.

Creating the tables
Use the following script to create the tables if you are not using hbm2dll=create|update:

Use the following script to create the passport_detail table:

CREATE TABLE `passport_detail` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `passportno` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
);

Use the following script to create the person table:

CREATE TABLE `person` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `FK_PASSPORT_DETAIL_ID` (`id`),
  CONSTRAINT `FK_PASSPORT_DETAIL_ID` 
    FOREIGN KEY (`id`) 
    REFERENCES `passport_detail` (`id`)
);

Creating the classes
Here, we will use Person and PassportDetail classes:

Source file: Person.java

@Entity
@Table(name = "person")
public class Person {



Chapter 5

113

  @Id
  @GeneratedValue
  @Column(name = "id")
  private long id;

  @Column(name = "name")
  private String name;

  @OneToOne(cascade = CascadeType.ALL)
  @PrimaryKeyJoinColumn
  private PassportDetail passportDetail;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

  public PassportDetail getPassportDetail() {
    return passportDetail;
  }

  public void setPassportDetail(PassportDetail passportDetail) {
    this.passportDetail = passportDetail;
  }

}

Source file: PassportDetail.java

@Entity
@Table(name = "passport_detail")
public class PassportDetail {



Working with Associations

114

  @Id
  @GeneratedValue
  @Column(name = "id")
  private long id;

  @Column(name = "passportno")
  private String passportNo;

  @OneToOne(
    mappedBy = "passportDetail"
    , cascade =   CascadeType.ALL
  )
  private Person person;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getPassportNo() {
    return passportNo;
  }

  public void setPassportNo(String passportNo) {
    this.passportNo = passportNo;
  }

  public Person getPerson() {
    return person;
  }

  public void setPerson(Person person) {
    this.person = person;
  }

}



Chapter 5

115

How to do it…
In this section, we will take a look at how to insert a record step by step.

Inserting a record
Use the following code to insert a record in to the database. Here, we will insert a Person 
with a PassportDetail object:

Code
  PassportDetail detail = new PassportDetail();
  detail.setPassportNo("G44244781");

  Person person = new Person();
  person.setId(1);
  person.setName("Virendra");
  person.setPassportDetail(detail);

  Transaction transaction = session.getTransaction();
  transaction.begin();
  session.save(person);
  transaction.commit();

Output
  Hibernate: insert into passport_detail (passportno) values (?)
  Hibernate: insert into person (name) values (?)

How it works…
Let's start with the changes in the PassportDetail class.

The first change is in @OneToOne(cascade = CascadeType.ALL).

Here, we used @OneToOne with the CascadeType.ALL option, which informs hibernate to 
create a one-to-one relationship and apply cascading for all operations.

The changes in the Person class are as follows:

 f @PrimaryKeyJoinColumn

 f private PassportDetail passportDetail;

The @PrimaryKeyJoinColumn annotation is used with the PassportDetail class, which 
creates a reference between the primary key of the Person class and the primary key of the 
PassportDetail class.



Working with Associations

116

One-to-many mapping or many-to-one 
mapping

Here, we will create a different scenario for a better understanding of the relationship. We will 
take a look at the use of both one-to-many and many-to-one relationships in a single example.

Now, we will create a relationship between actor and movie tables, where one actor is 
associated with one movie, but one movie can be associated with multiple actors.

Getting ready
We will create the classes and tables for Movie and Actor.

Creating the tables
Use the following script to create the tables if you are not using hbm2dll=create|update:

Use the following script to create the movie table:

CREATE TABLE `movie` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
)

Use the following script to create the actor table:

CREATE TABLE `actor` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `actorname` varchar(255) DEFAULT NULL,
  `movie_id` bigint(20) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `FK_MOVIE_ID` (`movie_id`),
  CONSTRAINT `FK_MOVIE_ID` 
    FOREIGN KEY (`movie_id`) 
    REFERENCES `movie` (`id`)
)

Creating the classes
Use the following code to create the classes:

Source file: Movie.java

@Entity
@Table(name = "movie")



Chapter 5

117

public class Movie {

  @Id
  @GeneratedValue
  @Column(name = "id")
  private long id;

  @Column(name = "name")
  private String name;

  @OneToMany(mappedBy = "movie")
  private Set<Actor> actors;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

  public Set<Actor> getActors() {
    return actors;
  }

  public void setActors(Set<Actor> actors) {
    this.actors = actors;
  }

  @Override
  public String toString() {
    return "Movie" + "\n Id: " + this.id + 
      "\n Name: " + this.name;

  }
}



Working with Associations

118

Source file: Actor.java

@Entity
@Table(name = "actor")
public class Actor {

  @Id
  @GeneratedValue
  @Column(name = "id")
  private long id;

  @Column(name = "actorname")
  private String actorName;

  @ManyToOne
  @JoinColumn(name = "movie_id")
  private Movie movie;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getActorName() {
    return actorName;
  }

  public void setActorName(String actorName) {
    this.actorName = actorName;
  }

  public Movie getMovie() {
    return movie;
  }

  public void setMovie(Movie movie) {
    this.movie = movie;
  }

  @Override
  public String toString() {



Chapter 5

119

    return "Actor" + "\n Id: " + this.id +   
    "\n Name: " + this.actorName;

  }
}

How to do it…
In this section, we will see how to achieve one-to-many or many-to-one associativity using 
Actor and Movie classes. Also we will learn how to retrieve data from either side i.e. retrieve 
movie from actor and actor from movie.

Inserting a record
Use the following code to insert a record, and you will understand how this relationship works:

Code
Movie movie= new Movie();
movie.setName("Furious 7");

Actor actor1 = new Actor();
actor1.setActorName("Vin Diesel");
actor1.setMovie(movie);

Actor actor2= new Actor();
actor2.setActorName("Paul Walker");
actor2.setMovie(movie);

Transaction transaction = session.getTransaction();
transaction.begin();
session.save(movie);
session.save(actor1);
session.save(actor2);
transaction.commit();

Output
Hibernate: insert into movie (name) values (?)
Hibernate: insert into actor (actorname, movie_id) values (?,?)
Hibernate: insert into actor (actorname, movie_id) values (?,?)

Retrieving a record – many-to-one-mapping
Here, we will retrieve the Actor object and also the Movie object associated with it:



Working with Associations

120

Code
Criteria criteria = session.createCriteria(Actor.class);
criteria.add(Restrictions.eq("actorName", "Paul Walker"));
Actor actor = (Actor) criteria.uniqueResult();

System.out.println(actor);
System.out.println(actor.getMovie());

Output
Hibernate: select this_.id as id1_1_, this_.actorname as  
actorname1_1_,this_.movie_id as movie3_1_1_, movie2_.id as id0_0_,  
movie2_.name as name0_0_ from actor this_ left outer join movie  
movie2_ on this_.movie_id=movie2_.id where this_.actorname=?
Actor
 Id: 2
 Name: Paul Walker
Movie
 Id: 1
 Name: Furious 7

Retrieving a record – one-to-many-mapping
Now, we will retrieve the Movie object and get the Actor object associated with that movie:

Code
Criteria criteria = session.createCriteria(Movie.class);
criteria.add(Restrictions.eq("id", 1L));
Movie movie = (Movie) criteria.uniqueResult();
System.out.println(movie);

Set<Actor> actors = movie.getActors();
for(Actor actor : actors){
  System.out.println(actor);
}

Output
Hibernate: select this_.id as id0_0_, this_.name as name0_0_ from  
movie this_ where this_.id=?
Movie
 Id: 1
 Name: Furious 7
Hibernate: select actors0_.movie_id as movie3_0_1_, actors0_.id as  
id1_, actors0_.id as id1_0_, actors0_.actorname as actorname1_0_,  
actors0_.movie_id as movie3_1_0_ from actor actors0_ where  
actors0_.movie_id=?



Chapter 5

121

Actor
 Id: 1
 Name: Vin Diesel
Actor
 Id: 2
 Name: Paul Walker

How it works…
From the output, we can easily understand how this relationship works. Let's take a look at an 
option used in the previous example.

The option from the Movie class:

@ManyToOne
@JoinColumn(name="movie_id")
private Movie movie;

In the preceding code, we used the @ManyToOne annotation; it shows many actors associated 
with one movie. This side of the relationship is considered to be the owning side and is 
responsible for the update if we use bidirectional operations.

The option from the Actor class:

@OneToMany(mappedBy = "movie")
private Set<Actor> actors;

In the preceding code, we used mappedBy = "movie" with the @OneToMany annotation;  
@OneToMany shows that one movie is associated with multiple actors, mappedBy = "movie" 
shows that this is the nonowning side of the relationship, and you can get the parent object from 
the mappedBy movie entity.

Many-to-many mapping
This type of relationships seems like an open one, because a record from either side is related 
to another on the other side. Let's consider one scenario. Here, we will use the Developer 
and Technology classes. In this scenario, multiple developers can associate with multiple 
technologies and vice versa.

Getting ready
Here, we will create the tables and classes to work this demo.



Working with Associations

122

Creating the tables
Use the following script to create the tables if you are not using hbm2dll=create|update:

Use the following script to create the developer table:

CREATE TABLE `developer` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
);

Use the following script to create the technology table:

CREATE TABLE `technology` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `expertise` varchar(255) DEFAULT NULL,
  `language` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
);

Use the following script to create the developer_technology table:

CREATE TABLE `developer_technology` (
  `developer_id` bigint(20) NOT NULL,
  `technology_id` bigint(20) NOT NULL,
  PRIMARY KEY (`developer_id`,`technology_id`),
  KEY `FK_TECHNOLOGY_ID` (`technology_id`),
  KEY `FK_DEVELOPER_ID` (`developer_id`),
  CONSTRAINT `FK_DEVELOPER_ID 
    FOREIGN KEY (`developer_id`) 
    REFERENCES `developer` (`id`),
  CONSTRAINT `FK_TECHNOLOGY_ID` 
    FOREIGN KEY (`technology_id`) 
    REFERENCES `technology` (`id`)
);

Creating the classes
Use the following code to create the classes:

Source file: Developer.java

@Entity
@Table(name = "developer")
public class Developer {
  @Id
  @GeneratedValue



Chapter 5

123

  @Column(name = "id")
  private long id;

  @Column(name = "name")
  private String name;

  @ManyToMany(cascade = CascadeType.ALL)
  private Set<Technology> technology;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

  public Set<Technology> getTechnology() {
    return technology;
  }

  public void setTechnology(Set<Technology> technology) {
    this.technology = technology;
  }

  @Override
  public String toString() {
    return "Developer" + "\n Id: " + this.id + "\n Name: " +  
  this.name;

  }

}



Working with Associations

124

Source file: Technology.java

@Entity
@Table(name = "technology")
public class Technology {

  @Id
  @GeneratedValue
  @Column(name = "id")
  private long id;

  @Column(name = "language")
  private String language;

  @Column(name = "expertise")
  private String expertise;

  @ManyToMany(mappedBy = "technology")
  private Set<Developer> developer;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getLanguage() {
    return language;
  }

  public void setLanguage(String language) {
    this.language = language;
  }

  public String getExpertise() {
    return expertise;
  }

  public void setExpertise(String expertise) {
    this.expertise = expertise;
  }



Chapter 5

125

  public Set<Developer> getDeveloper() {
    return developer;
  }

  public void setDeveloper(Set<Developer> developer) {
    this.developer = developer;
  }
  
  @Override
  public String toString() {
    return "Technology"
        +"\n Id: " + this.id
        +"\n Language: " + this.language
        +"\n Expertise: " + this.expertise;

  }

}

How to do it…
As a part of the scenario, we will create three Developer objects and two Technology 
objects, where all three developers have knowledge on two technologies.

Inserting a record
Here, we will insert three Developer and two Technology records in to the database. 
Hibernate will create a mapping between them in a third table. Execute the following code:

Code
Developer developer1= new Developer();
developer1.setName("Vishal");

Developer developer2= new Developer();
developer2.setName("Yogesh");

Developer developer3= new Developer();
developer3.setName("Virendra");

Technology technology1=new Technology();
technology1.setLanguage("Java");
technology1.setExpertise("Intermediate");

Technology technology2=new Technology();



Working with Associations

126

technology2.setLanguage("Bigdata");
technology2.setExpertise("Expert");

Set<Technology> technologies= new HashSet<Technology>();
technologies.add(technology1);
technologies.add(technology2);

developer1.setTechnology(technologies);
developer2.setTechnology(technologies);
developer3.setTechnology(technologies);

Transaction transaction = session.getTransaction();
transaction.begin();
session.save(developer1);
session.save(developer2);
session.save(developer3);
transaction.commit();

Output
Hibernate: insert into developer (name) values (?)
Hibernate: insert into technology (expertise, language) values  
(?,?)
Hibernate: insert into technology (expertise, language) values  
(?,?)
Hibernate: insert into developer (name) values (?)
Hibernate: insert into developer (name) values (?)
Hibernate: insert into developer_technology (developer_id,  
technology_id) values (?,?)
Hibernate: insert into developer_technology (developer_id,  
technology_id) values (?,?)
Hibernate: insert into developer_technology (developer_id,  
technology_id) values (?,?)
Hibernate: insert into developer_technology (developer_id,  
technology_id) values (?,?)
Hibernate: insert into developer_technology (developer_id,  
technology_id) values (?,?)
Hibernate: insert into developer_technology (developer_id,  
technology_id) values (?,?)

Retrieving a record using Developer with Technology
Here, we will query the Developer object and then try to get all the Technology objects 
that Developer knows:

Code
Criteria criteria = session.createCriteria(Developer.class);
criteria.add(Restrictions.eq("id", 1L));



Chapter 5

127

Developer developer = (Developer) criteria.uniqueResult();
System.out.println(developer.toString());

Set<Technology> tech = developer.getTechnology();
for(Technology technology : tech){
  System.out.println(technology.toString());
}

Output
Hibernate: select this_.id as id0_0_, this_.name as name0_0_ from  
developer this_ where this_.id=?
Developer
  Id: 1
  Name: Vishal
Hibernate: select technology0_.developer_id as developer1_0_1_,  
technology0_.technology_id as technology2_1_, technology1_.id as  
id1_0_, technology1_.expertise as expertise1_0_,  
technology1_.language as language1_0_ from developer_technology  
technology0_ inner join technology technology1_ on  
technology0_.technology_id=technology1_.id where  
technology0_.developer_id=?
Technology
  Id: 1
  Language: Java
  Expertise: Intermediate
Technology
  Id: 2
  Language: Bigdata
  Expertise: Expert

Retrieving a record using Technology with Developers
Now, we will perform a reverse process; from the Technology object, we will try to get 
Developers that have knowledge of that Technology. Execute the following code:

Code
Criteria criteria = session.createCriteria(Technology.class);
criteria.add(Restrictions.eq("id", 1L));

Technology technology= (Technology) criteria.uniqueResult();

System.out.println(technology);
Set<Developer> devs = technology.getDeveloper();
for(Developer developer : devs){
  System.out.println(developer.toString());
}



Working with Associations

128

Output
Hibernate: select this_.id as id1_0_, this_.expertise as  
expertise1_0_, this_.language as language1_0_ from technology  
this_ where this_.id=?
Technology
  Id: 1
  Language: Java
  Expertise: Intermediate
Hibernate: select developer0_.technology_id as technology2_1_1_,  
developer0_.developer_id as developer1_1_, developer1_.id as  
id0_0_, developer1_.name as name0_0_ from developer_technology  
developer0_ inner join developer developer1_ on  
developer0_.developer_id=developer1_.id where  
developer0_.technology_id=?
Developer
  Id: 2
  Name: Yogesh
Developer
  Id: 3
  Name: Virendra
Developer
  Id: 1
  Name: Vishal

How it works…
From the output, we can get information on all the knowledge of technology a particular 
developer has and also of all the developers who have the knowledge of that particular 
technology. Execute the following code for their respective options:

The option from Developer:

@ManyToMany(cascade = CascadeType.ALL)
private Set<Technology> technology;

We used the @ManyToMany option; it shows that this particular developer can be associated 
with multiple technologies.

The option from Technology:

@ManyToMany(mappedBy="technology")
private Set<Developer> developer;

We used the @ManyToMany option; it shows that this particular technology can be associated 
with multiple developers. Also, mappedBy="technology" shows that this is a nonowning side.



129

6
Querying

In this chapter, we will cover the following recipes:

 f Working with an alias

 f Performing aggregate operations

 f Executing a subquery using a criteria

 f Executing a native SQL query

 f Executing a query using HQL

 f Using a formula in hibernate

 f Working with NamedQuery

Introduction
This chapter shows a different functionality and an API used to query with hibernate. In this 
chapter, you will also learn how hibernate provides a facility to perform complex queries in an 
object-oriented manner.

We will discuss a number of functionalities useful while querying, such as an alias, aggregate 
functions, and subquery. Sometimes, we need to use a native SQL in hibernate, and you will 
also learn about executing it. Apart from this, you will learn HQL (Hibernate Query Language), 
which provides a purely object-oriented way to execute the query, NamedQuery, and formulas.

Working with an alias
An alias is useful when we want a relationship between tables and also when we want to refer 
to a field of the child object using a field of the parent object. So, an alias works as a bridge 
between them and is also used to refer to a field.



Querying

130

How to do it…
Let's consider one scenario. We have an Employee and Department relationship where 
each employee has only one department, but each department can be used multiple times  
for different employees. Add the following code to the respective files:

Source file: Employee.java

@Entity
@Table
public class Employee{

    @Id
    @GeneratedValue
    private long id;

    @Column
    private String name;

    @ManyToOne
    @JoinColumn
    private Department department;

    // getters and setters

}

Source file: Department.java

@Entity
@Table
public class Department{

    @Id
    @GeneratedValue
    private long id;

    @Column
    private String name;

    // getters and setters

}

Now, using the criteria of the Employee class, we want to access a field name of the 
Department class. The following code shows the same.



Chapter 6

131

First, we will take a look at what would happen if we did not use an alias. Execute the  
following code:

Criteria criteria = session.createCriteria(Employee.class);
criteria.add(Restrictions.eq("department.name", "account"));
List list = criteria.list();

The preceding code throws an error similar to could not resolve property: 
department.name of: Employee.

Now, to resolve the error, we need to create an alias for the Department class. Execute the 
following code:

/* Line 1 */ Criteria criteria =  
session.createCriteria(Employee.class);
/* Line 2 */ criteria.createAlias("department", "dept");
/* Line 3 */ criteria.add(Restrictions.eq("dept.name", "account"));
/* Line 4 */ List list = criteria.list();

Now it will work as expected.

How it works…
Here, in Line 2, we created an alias in the second code snippet. The 
createAlias(String, String) method accepts both the parameters as string: the first 
is the instance variable of the referenced class (here, the Department class), and the other 
is an alias name (here, dept), which will be used further.

In Line 3, we used the alias dept to refer the name field of the Department class using the 
dept.name code.

Line 4 actually makes the call to the database to get the data.

There's more…
Let's consider a department that also refers to another class called Location. In this case, 
let's take a look at how to refer to an attribute of the Location class using the criteria of 
Employee. Here, we will create a three-level hierarchy to make the example a bit more 
complex. Add the following code to the respective files:

Source file: Location.java

@Entity
@Table
public class Location{
  @Id
  @GeneratedValue



Querying

132

  private long id;

  @Column
  private String name;
  // getters and setters

}

Source file: Department.java

@Entity
@Table
public class Department{
  @Id
  @GeneratedValue
  private long id;
  
  @Column
  private String name;
  
  @ManyToOne
  @JoinColumn
  private Location location;
  // getters and setters

}

Source file: Employee.java

@Entity
@Table
public class Employee{
  @Id
  @GeneratedValue
  private long id;
  
  @Column
  private String name;
  
  @ManyToOne
  @JoinColumn
  private Department department;
  // getters and setters
  
}



Chapter 6

133

Let's directly go to the code side:

/* Line 1 */ Criteria criteria =  
session.createCriteria(Employee.class);

/* Line 3 */ criteria.createAlias("department", "dept");
/* Line 4 */ criteria.createAlias("dept.location", "loc");

/* Line 5 */ criteria.add(Restrictions.eq("loc.name", "AHD"));
List list = criteria.list();

Here, we created a chain of aliases to refer to the subclasses. In Line 3, we created an alias 
of the Department class, which is dept, and in Line 4, we created an alias, "loc", which 
refers to the location class using the previous alias, "dept".

Performing aggregate operations
Next to the common SQL databases, hibernate allows us to perform an aggregate operation 
using a hibernate API. We can perform an aggregation operation such as sum, avg, min, max, 
count, and so on.

We will discuss the use of some aggregate functions by example.

Getting ready
To perform an aggregation operation, we will consider a predefined table structure with the 
data so that it's easy to understand how the aggregate functions work.

The predefined table and class structure we mentioned earlier can be found in two different 
classes, product and category, with their relationship. The following code and script can 
be used to create a Java class and a database table.

Creating the tables
Use the following script to create the tables if you are not using hbm2dll=create|update:

Use the following code to create the category table:

CREATE TABLE `category` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `created_on` datetime DEFAULT NULL,
  `name` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
);



Querying

134

Use the following code to create the product table:

CREATE TABLE `product` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  `price` double DEFAULT NULL,
  `category_id` bigint(20) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `FK_CATEGORY_ID` (`category_id`),
  CONSTRAINT `FK_CATGORY_ID` 
FOREIGN KEY (`category_id`) 
  REFERENCES `category` (`id`)
);

Creating the classes
Use the following code to create the classes:

Source file: Category.java

@Entity
@Table(name = "category")
public class Category {

  @Id
  @GeneratedValue
  @Column(name = "id")
  private long id;

  @Column(name = "name")
  private String name;

  @Column(name = "created_on")
  private Date createdOn;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }



Chapter 6

135

  public void setName(String name) {
    this.name = name;
  }

  public Date getCreatedOn() {
    return createdOn;
  }

  public void setCreatedOn(Date createdOn) {
    this.createdOn = createdOn;
  }

}

Source file: Product.java

@Entity
@Table(name = "product")
public class Product {

  @Id
  @GeneratedValue
  @Column(name = "id")
  private long id;

  @Column(name = "name")
  private String name;

  @Column(name = "price")
  private double price;

  @ManyToOne
  @JoinColumn(name = "category_id")
  private Category category;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }



Querying

136

  public void setName(String name) {
    this.name = name;
  }

  public double getPrice() {
    return price;
  }

  public void setPrice(double price) {
    this.price = price;
  }

  public Category getCategory() {
    return category;
  }

  public void setCategory(Category category) {
    this.category = category;
  }

}

Inserting data in the tables
We can determine that every product is associated with at least one category. Consider the 
following table and it's data.

This is the data for the category table:

id created_on name
1 2015-01-01 15:34:54 Furniture

2 2015-01-22 15:35:02 Stationary

This is the data for the product table:

id name price category_id
1 Meeting room table 100.23 1

2 Metal bookcases 120 1

3 Lighting 70.36 1

4 Business envelopes 40.92 2

5 Paper clips 20.61 2

6 Highlighters 30 2

Now for this recipe, we are considering the preceding table structure and data.



Chapter 6

137

How to do it…
Now, we will do the exercise for the different aggregation functions mentioned in the following 
list using a hibernate API:

 f Sum

 f Avg

 f Min

 f Max

 f Count

Sum
The aggregate function sum is used to obtain the sum of the values of a particular column.

Let's take a look at a scenario where we want the sum of prices by category, and our expected 
output is as follows:

 f Category name: Furniture, Sum of price: 290.59

 f Category name: Stationary, Sum of price: 91.53

In this case, execute the following code:

Code
Criteria criteria = session.createCriteria(Product.class);
ProjectionList projectionList = Projections.projectionList();
/* Line 4 */projectionList.add(Projections.groupProperty("category"));

/* Line 6 */ projectionList.add(Projections.alias(Projections.
sum("price"),  
"price"));
criteria.createAlias("category", "category");
projectionList.add(Projections.alias(Projections.property("categor 
y.name"), "cat_name"));

criteria.setProjection(projectionList);
criteria.setResultTransformer(criteria.ALIAS_TO_ENTITY_MAP);

List list = criteria.list();
for (Iterator iterator = list.iterator(); iterator.hasNext();) {
  Map map = (Map) iterator.next();
  System.out.println("Category name: " + map.get("cat_name"));
  System.out.println("SUM(price): " + map.get("price")); 
}



Querying

138

Output
Hibernate: select this_.category_id as y0_, sum(this_.price) as y1_,  
category1_.name as y2_ from product this_ inner join category  
category1_ on this_.category_id=category1_.id group by  
this_.category_id
Hibernate: select category0_.id as id1_0_, category0_.created_on as  
created2_1_0_, category0_.name as name1_0_ from category category0_  
where category0_.id=?
Hibernate: select category0_.id as id1_0_, category0_.created_on as  
created2_1_0_, category0_.name as name1_0_ from category category0_  
where category0_.id=?

Category name: Furniture 
Sum(price): 290.59000000000003

Category name: Stationary 
Sum(price): 91.53

The Projections.sum("price") code from Line 6 shows that we wanted the sum of the 
prices, and the Projections.groupProperty("category") code from Line 4 shows 
that we used "category" as a group property while obtaining the sum of the prices.

Avg
The aggregate function avg is used to find the average of values.

Let's consider a scenario where we want the average of the prices by category, and our 
expected output is as follows:

 f Category name: Furniture Average of price: 96.86

 f Category name: Stationary Average of price: 30.51

Here, we change a small part of the code in Line 6 from the sum example; we just change 
the Projection.sum(…) method to Projection.avg(…), as shown in the following code:

Code
/* Line 6 */ projectionList.add(Projections.alias(Projections.
avg("price"),  
"price"));

Output
Hibernate: select this_.category_id as y0_, avg(this_.price) as y1_, 
category1_.name as y2_ from product this_ inner join category  
category1_ on this_.category_id=category1_.id group by  
this_.category_id
Hibernate: select category0_.id as id1_0_, category0_.created_on as  
created2_1_0_, category0_.name as name1_0_ from category category0_  
where category0_.id=?



Chapter 6

139

Hibernate: select category0_.id as id1_0_, category0_.created_on as  
created2_1_0_, category0_.name as name1_0_ from category category0_  
where category0_.id=?

Category name: Furniture 
AVG(price): 96.86333333333334

Category name: Stationary 
AVG(price): 30.51

Min
The aggregate function min is used to find the product having the minimum value in a 
particular category. Execute the following code:

Code
Criteria criteria = session.createCriteria(Product.class);
ProjectionList projectionList = Projections.projectionList();
projectionList.add(Projections.groupProperty("category"));

/* Line 6 */ projectionList.add(Projections.alias(Projections.
min("price"),  
"price"));
criteria.createAlias("category", "category");
projectionList.add(Projections.alias(Projections.property("categor 
y.name"), "cat_name"));
projectionList.add(Projections.alias(Projections.property("name"),  
"prod_name"));

criteria.setProjection(projectionList);
criteria.setResultTransformer(criteria.ALIAS_TO_ENTITY_MAP);

List list = criteria.list();
for (Iterator iterator = list.iterator(); iterator.hasNext();) {
  Map map = (Map) iterator.next();
  System.out.println("\nCategory name: " + map.get("cat_name"));
  System.out.println("Product name: " + map.get("prod_name"));
  System.out.println("MIN(price): " + map.get("price"));
}

Output
Hibernate: select this_.category_id as y0_, min(this_.price) as y1_,  
category1_.name as y2_, this_.name as y3_ from product this_ inner 
join  
category category1_ on this_.category_id=category1_.id group by  
this_.category_id



Querying

140

Hibernate: select category0_.id as id1_0_, category0_.created_on as  
created2_1_0_, category0_.name as name1_0_ from category category0_  
where category0_.id=?
Hibernate: select category0_.id as id1_0_, category0_.created_on as  
created2_1_0_, category0_.name as name1_0_ from category category0_  
where category0_.id=?

Category name: Furniture 
Product name: Lighting 
MIN(price): 70.36

Category name: Stationary 
Product name: Paper clips
MIN(price): 20.61

From the output, it's clear that we have a product named Lighting in the Furniture 
category that has the minimum price in that category, and product with name Paper clips 
in the Stationary category with minimum price in its category.

Max
The aggregate function max is used to find the maximum value in a particular category.

Code
Here, we will change a small part of the code in Line 6 from the Min example; we will just 
change the Projection.min(…) method to Projection.max(…), as shown in the 
following code:

/* Line 6 */ projectionList.add(Projections.alias(Projections.
max("price"),  
"price"));

Output
Hibernate: select this_.category_id as y0_, max(this_.price) as y1_,  
category1_.name as y2_, this_.name as y3_ from product this_ inner 
join  
category category1_ on this_.category_id=category1_.id group by  
this_.category_id
Hibernate: select category0_.id as id1_0_, category0_.created_on as  
created2_1_0_, category0_.name as name1_0_ from category category0_  
where category0_.id=?
Hibernate: select category0_.id as id1_0_, category0_.created_on as  
created2_1_0_, category0_.name as name1_0_ from category category0_  
where category0_.id=?

Category name: Furniture Product 
name: Meeting room table 
MAX(price): 120.0



Chapter 6

141

Category name: Stationary 
Product name: Business envelopes 
MAX(price): 40.92

Count
The aggregate function count is used to count the number of occurrences of a value.

Code
Here again, we will change a small part of the code in Line 6 from the Max example; we will 
just change the Projection.max(…) method to Projection.cont(…), as shown in the 
following code:

/* Line 6 */ projectionList.add(Projections.alias(Projections.
count("price"),  
"price"));

Output
Hibernate: select this_.category_id as y0_, count(this_.price) as y1_,  
category1_.name as y2_, this_.name as y3_ from product this_ inner 
join  
category category1_ on this_.category_id=category1_.id group by  
this_.category_id
Hibernate: select category0_.id as id1_0_, category0_.created_on as  
created2_1_0_, category0_.name as name1_0_ from category category0_  
where category0_.id=?
Hibernate: select category0_.id as id1_0_, category0_.created_on as  
created2_1_0_, category0_.name as name1_0_ from category category0_  
where category0_.id=?

Category name: Furniture 
COUNT(price): 3

Category name: Stationary 
COUNT(price): 3

From the output, it's clear that we have three products in each category.

count only calculates the number of records. If you need a distinct 
count of the values, another method available is as follows:
Projections.countDistinct(String propertyName);



Querying

142

Executing a subquery using a criteria
In this recipe, we will take a look at how to use subquery. Here, we will do the same thing 
as before; we will use the DetachedCriteria class provided by the hibernate API. The 
DetachedCriteria class works in detached mode and is used to create a criteria query 
when the session is not available, as we can execute DetachedCriteria with the existing 
session object.

How to do it…
We will create one scenario to show how DetachedCriteria acts as a subquery.

The scenario is to get all the products whose categories have been recently added.

The preferred solution for this problem is as follows:

 f First, we will create DetachedCriteria to find the maximum createdOn date

 f Then, we will use the result of the first query to check the date of the  
product's category

Consider the following code:

Code
/* Line 1 */ DetachedCriteria detachedCriteria =  
DetachedCriteria.forClass(Category.class);
/* Line 2 */  
detachedCriteria.setProjection(Projections.max("createdOn"));

/* Line 4 */ Criteria criteria =  
session.createCriteria(Product.class);
/* Line 5 */ criteria.createAlias("category", "cat");
/* Line 6 */ criteria.add(Subqueries.propertyEq("cat.createdOn",  
detachedCriteria));
List<Product> list = criteria.list();
for(Product product : list){
  System.out.println("\nProduct id: " + product.getId());
  System.out.println("Product name: " + product.getName());
  System.out.println("Product price: " + product.getPrice());
  System.out.println("Category name: " +  
  product.getCategory().getName());
}



Chapter 6

143

Output
Hibernate: select this_.id as id0_1_, this_.category_id as  
category4_0_1_, this_.name as name0_1_, this_.price as price0_1_,  
cat1_.id as id1_0_, cat1_.created_on as created2_1_0_, cat1_.name as  
name1_0_ from product this_ inner join category cat1_ on  
this_.category_id=cat1_.id where cat1_.created_on = (select  
max(this_.created_on) as y0_ from category this_)

Product id: 4
Product name: Business envelopes
Product price: 40.92
Category name: Stationary

Product id: 5
Product name: Paper clips
Product price: 20.61
Category name: Stationary

Product id: 6
Product name: Highlighters
Product price: 30.0
Category name: Stationary

How it works…
From the output, it's clear that we have the last inserted category, which is Stationary; so, 
we got all the products under the Stationary category.

Line 1 and 2 from the preceding code show that we want to create a DetachedCriteria 
object for the Category class. Here, the task of DetachedCriteria is to find the maximum 
createdOn date from the category table.

In Line 4, we created the Criteria object for the Product class. In Line 6, we passed 
an object of DetachedCriteria in the SubQueries object, so hibernate will create a 
subquery for DetachedCriteria.

Executing a native SQL query
We can directly use a hand-written core SQL query with hibernate. This is a useful feature if 
we want to execute a database-specific query that is not supported by the hibernate API, such 
as query hints or the CONNECT keyword in an Oracle database.

This is a useful feature when the developer has a ready native SQL. We can perform the 
Select, non-select, and Bulk operations as well.



Querying

144

How to do it…
We can use Session.createSQLQuery(String query) to execute a SQL query. We have 
multiple APIs available to execute the SQL query, and we will take a look at these in detail:

 f Scalar queries

 f Entity queries

Scalar queries
This is a basic type of query that returns a list of values (scalar).

For example, the following code shows how to select all the products from the product table:

Code
SQLQuery sqlQuery = session.createSQLQuery("SELECT * FROM product");

List<Object[]> list = sqlQuery.list();
for(Object[] object : list){
  System.out.println("\nId: " + object[0]);
  System.out.println("Name: " + object[1]);
  System.out.println("Price: " + object[2]);
  System.out.println("Category id: " + object[3]);
}

Output
Hibernate: SELECT * FROM product

Id: 1
Name: Meeting room table
Price: 100.23
Category id: 1

Id: 2
Name: Metal bookcases
Price: 120.0
Category id: 1

Id: 3
Name: Lighting
Price: 70.36
Category id: 1

Id: 4
Name: Business envelopes



Chapter 6

145

Price: 40.92
Category id: 2

Id: 5
Name: Paper clips
Price: 20.61
Category id: 2

Id: 6
Name: Highlighters
Price: 30.0
Category id: 2

We can understand from the output that hibernate directly uses the query that is provided  
by us.

Here, we used the SELECT * FROM product query, which is equivalent to SELECT id, 
name, price, category_id FROM product, with which it would select all four fields 
from the product table. So, we can get Object[] of size 4. Hibernate returns List of 
Object array (List<Object[]>).

When we use this methodology to execute a SQL query, hibernate uses ResultSetMetadata 
to determine the order and data type of the fields. So, it will create an overhead for 
hibernate to get the field detail. To remove this overhead from hibernate, we can use the 
addScalar(String fieldName, Type dataType) method in the following way:

SQLQuery sqlQuery = session.createSQLQuery("SELECT id, name, price,  
category_id FROM product");
sqlQuery.addScalar("id", new org.hibernate.type.LongType());
sqlQuery.addScalar("name", new org.hibernate.type.StringType());
sqlQuery.addScalar("price", new org.hibernate.type.DoubleType());
sqlQuery.addScalar("category_id", new  
org.hibernate.type.LongType());
sqlQuery.setResultTransformer(Transformers.ALIAS_TO_ENTITY_MAP);
List list = sqlQuery.list();

Here, we defined a data type for each field using the addScalar(...) method. Another 
thing to add here is that we used ResultsetTransformers to transform the result to Map. 
So, now it returns a List of Map (List<Map>).

Entity queries
In the previous section, we went through the scalar queries, which always return a list of 
values, and we have to iterate all the values horizontally and vertically, which means over rows 
and columns. It is useful to remove this iteration from our (developer) end Entity query. The 
Entity query automatically fills an entity from the values returned by the query.



Querying

146

Here, as a part of our recipe, we will execute the following query to select all the products from 
the table and get the returned data into the Product entity:

Code
SQLQuery sqlQuery = session.createSQLQuery("SELECT * FROM category");
/* Line 2 */ sqlQuery.addEntity(Category.class);
    
List<Category> list = sqlQuery.list();
for(Category category: list){
System.out.println("\nCategory id: " + category.getId());
System.out.println("Category name: " + category.getName());
}

Output
Hibernate: SELECT * FROM category

Category id: 1
Category name: Furniture

Category id: 2
Category name: Stationary

Here, we used the addEntity(Class className) method to add the entity. Here, we 
added the Category.class to add the entity shown in Line 2.

Executing a query using HQL
HQL stands for Hibernate Query Language and is a fully object-oriented language. This 
language is a bit similar to the native query, but in the native SQL query, we use the physical 
table name and actual physical columns to execute a query, and in HQL, we have to use a 
class name instead of a table name and a field name instead of a column name.

HQL queries are converted to SQL queries by hibernate; so, we can use any of the styles. 
However, HQL is preferable from a performance point of view, because hibernate uses SQL 
directly without any optimization, and the HQL query uses hibernate's query generation 
strategy and caching mechanism.

How to do it…
There are multiple clauses available to work with HQL.

The FROM clause
We will use the simple FROM clause to query an object to load the complete object.



Chapter 6

147

Here, we will use the FROM Category query, which is equal to SELECT * FROM category 
in native SQL. Execute the following code:

Code
Query query = session.createQuery("FROM Category");
List<Category> list = query.list();
System.out.println("Category size: " + list.size());

Output
Hibernate: select category0_.id as id1_, category0_.created_on as  
created2_1_, category0_.name as name1_ from category category0_
Category size: 2

From the output, it's clear that hibernate will execute a complete SELECT statement for the 
Category class for the FROM Category query.

In HQL statements, the class name, used instead of the table, and 
fields, used instead of the columns, are case-sensitive; we can use 
the other part of the query in any case. For example, we can use 
fRoM or From instead of FROM.

We can use multiple classes in the same query, which results in a Cartesian product  
or cross join.

Execute the following code:

Code
Query query = session.createQuery("FroM Category, Product");
List list = query.list();
System.out.println("Result size: " + list.size());

Output
Hibernate: select category0_.id as id1_0_, product1_.id as id0_1_,  
category0_.created_on as created2_1_0_, category0_.name as name1_0_,  
product1_.category_id as category4_0_1_, product1_.name as name0_1_,  
product1_.price as price0_1_ from category category0_ cross join 
product product1_
Result size: 12

Here, we used two classes: the first is Category and the other is Product. We have two 
records in the category table and six records in the product table, so the resulting size is 
12, which is equal to a Cartesian product (6 * 2 = 12). This query returns a List of Object 
array (List<Object[]>).



Querying

148

We can use an alias to refer to this class in another part of the query, as shown in the  
following code:

String hql = "FROM Category c, Product p WHERE c.id=1";

The SELECT clause
The FROM clause used in the preceding section selects all the fields from a given class. 
SELECT is used when we need limited columns.

Execute the following code:

Code
Query query = session.createQuery("SELECT id, name from Category");
List list = query.list();
System.out.println("Result size: " + list.size());

Output
Hibernate: select category0_.id as col_0_0_, category0_.name as  
col_1_0_ from category category0_
Result size: 2

Here, hibernate creates a SQL query with only two fields, which is given in HQL.

How it works…
When we use HQL, hibernate internally creates SQL. Hibernate uses the mapping provided via 
an HBM file if it is an XML-based mapping and uses annotations if it is an annotation-based 
mapping to convert HQL into a SQL query.

Hibernate uses a query generation strategy and caching mechanism in the HQL query.  
Query generation is used while converting HQL to SQL, and caching is used after the query 
execution is complete.

There's more…
In this section, we will demonstrate the use of the FROM and SELECT clauses. But apart from 
these clauses, we can also use the other SQL clauses, as shown in the following examples:

The WHERE clause
Here is an example:

String hql = "FROM Category c WHERE c.id=1";



Chapter 6

149

The ORDER BY clause
Here is an example:

String hql = "FROM Category c ORDER BY c.id DESC";

The GROUP BY clause
Here is an example:

String hql = "SELECT COUNT(p.id), p.name FROM Product p GROUP BY  
p.category";

Apart from this, we can use subquery, joins, named queries, and expressions such as 
mathematical, logical, comparison, Update, and Delete.

Using formula in hibernate
Sometimes, we need a calculated column in hibernate; at such a time, the formula feature is 
used. For this, we will use the @Formula annotation with the field.

The field annotated with the @Formula annotation is a read-only field, and the formula is only 
applied while using the SELECT operation.

How to do it…
To show how formula works, we will change a Product class and add a field, capitalName, 
which has no physical column in the product table, as shown in the following code:

Source file: Product.java

@Entity
@Table(name = "product")
public class Product {

  @Id
  @GeneratedValue
  @Column(name = "id")
  private long id;

  @Column(name = "name")
  private String name;

  @Formula("UPPER(name)")
  private String capitalName;
  
  @Column(name = "price")



Querying

150

  private double price;

  @ManyToOne
  @JoinColumn(name = "category_id")
  private Category category;

  // Getters and setters
}

Now, we will run a code to show how it works:

Code
Criteria criteria = session.createCriteria(Product.class);
List<Product> list = criteria.list();
for(Product product : list){
  System.out.println("\nProduct name: " + product.getName());
  System.out.println("Product capital name: " +  
product.getCapitalName());
}

Output
Hibernate: select this_.id as id0_1_, this_.category_id as  
category4_0_1_, this_.name as name0_1_, this_.price as price0_1_,  
UPPER(this_.name) as formula0_1_, category2_.id as id1_0_,  
category2_.created_on as created2_1_0_, category2_.name as name1_0_  
from product this_ left outer join category category2_ on  
this_.category_id=category2_.id

Product name: Meeting room table
Product capital name: MEETING ROOM TABLE

Product name: Metal bookcases
Product capital name: METAL BOOKCASES

Product name: Lighting
Product capital name: LIGHTING

Product name: Business envelopes
Product capital name: BUSINESS ENVELOPES

Product name: Paper clips
Product capital name: PAPER CLIPS

Product name: Highlighters
Product capital name: HIGHLIGHTERS



Chapter 6

151

How it works…
Hibernate uses the phrase provided in @Formula directly in the SQL query. In the formula, we 
can use any SQL clause supported by the database.

From the output, we can easily understand that hibernate uses the string which is given in  
@Formula annotation in a similar way to UPPER(this_.name).

There's more…
Here, we will take a smaller example to convert a product name to uppercase. Apart from this, 
we can use all the SQL clauses in the formula. Now, we will use a whole query in the formula.

For this, we will add one more field, named categoryName, in the product class to fetch the 
category name. Execute the following code:

Source file: Category.java

@Entity
@Table(name = "product")
public class Product {

  @Formula("(SELECT c.name FROM category c WHERE c.id=category_id)")
  private String categoryName;

  // Other fields and getters/setters
}

Code
Criteria criteria = session.createCriteria(Product.class);
List<Product> list = criteria.list();
for(Product product : list){
  System.out.println("\nProduct name: " + product.getName());
  System.out.println("Category name: " +  
product.getCategoryName());
}

Output
Hibernate: select this_.id as id0_1_, this_.category_id as  
category4_0_1_, this_.name as name0_1_, this_.price as price0_1_,  
UPPER(this_.name) as formula0_1_, (SELECT c.name FROM category c WHERE  
c.id=this_.category_id) as formula1_1_, category2_.id as id1_0_,  
category2_.created_on as created2_1_0_, category2_.name as name1_0_  
from product this_ left outer join category category2_ on  
this_.category_id=category2_.id



Querying

152

Product name: Meeting room table
Category name: Furniture

Product name: Metal bookcases
Category name: Furniture

Product name: Lighting
Category name: Furniture

Product name: Business envelopes
Category name: Stationary

Product name: Paper clips
Category name: Stationary

Product name: Highlighters
Category name: Stationary

From the output, we understand that hibernate will use our query provided in @Formula as  
a subquery.

Working with NamedQuery
NamedQuery is another useful feature provided by hibernate. Sometimes, we require a  
query or a bunch of queries multiple times in the life of an application; at such a time, this 
feature helps.

How to do it…
Let's create a scenario to understand this feature.

Let's consider that we want to search a category by name. The following code shows how 
NamedQuery would help us in this case.

For this, we will use the @NamedQuery and @NamedQueries annotations in a class:

 f @NamedQuery: This annotation is used to define a single named query

 f @NamedQueries: This annotation is used to define multiple queries

Update the following code in their respective files:

Source file: Category.java

@NamedQuery(name="getCategoryNameByName", query="FROM Category c  
WHERE c.name=:name")



Chapter 6

153

@Entity
@Table(name = "category")
public class Category {

    // fields and getters/setters
}

Here, we defined NamedQuery using the @NamedQuery annotation, and we used  
two attributes.

name
The name attribute accepts string, which helps to identify NamedQuery. For example: 
name="getCategoryNameByName".

query
The query attribute accepts string. This defines a query, which can be either SQL or HQL. For 
example: query="FROM Category c WHERE c.name=:name".

Take a look at the following code:

Code
/* Line 1 */ Query query =  
session.getNamedQuery("getCategoryNameByName");
/* Line 2 */ query.setString("name", "Stationary");
List list = query.list();
System.out.println("Category size: " + list.size());

Output
Hibernate: select category0_.id as id1_, category0_.created_on as  
created2_1_, category0_.name as name1_ from category category0_ where  
category0_.name=?
Category size: 1

We can determine from the output that hibernate will get a query using the name parameter 
shown in Line 1. We set a named parameter, "name", using the setString(…) method 
shown in Line 2.

The value in the name parameter should be unique to the 
application. If hibernate finds a value of a parameter multiple 
times, it will throw an error. This is similar to "Duplicate 
query mapping getCategoryNameByName", if the 
name getCategoryNameByName were defined multiple 
times in an application.



Querying

154

There's more…
Now, let's take a look at how to use @NamedQueries to define multiple NamedQueries.

In the previous section, we created NamedQuery for "getCategoryNameByName". Now,  
we need one more query, such as "getCategoryNameById". Let's take a look at how to 
define it:

Source file: Category.java

@NamedQueries(
  {
    @NamedQuery(
      name="getCategoryNameByName", 
      query="FROM Category c WHERE c.name=:name"
    ),
    @NamedQuery(
      name="getCategoryNameById", 
      query="FROM Category c WHERE c.id=:id"
    ),
  }
)

@Entity
@Table(name = "category")
public class Category {

    // fields and getters/setters
}

This works in the same way as @NamedQuery. This is only used to define multiple 
NamedQueries.



155

7
Advanced Concepts

In this chapter, we will cover the following recipes:

 f Working with a first-level cache

 f Working with a second-level cache

 f Working with a query cache

 f Working with the table per class hierarchy strategy of inheritance

 f Working with the table per subclass strategy of inheritance

 f Working with the table per concrete class strategy of inheritance

 f Working with the versioning of objects

 f Maintaining the history of an object

 f Working with an interceptor

 f Working with batch processing

Introduction
Hibernate supports some advanced features, such as caching, inheritance, versioning, 
maintaining a history of objects, interceptor, batch processing, and many more.

Here, you will learn the first-level, second-level, and query caches, in detail and with an 
example, to see how to cache particular objects and how caching works. Apart from this, you 
will also learn a useful feature of hibernate called inheritance, which hibernate provides as a 
facility to be applied on the database side. You will learn three major inheritance types in this 
chapter. We will also will look into versioning, maintaining a history of data or of an object for a 
sensitive application, and at last, how to intercept hibernate's processing and how to perform 
batch processing using hibernate.



Advanced Concepts

156

Working with a first-level cache
Once we execute a particular query using hibernate, it always hits the database. As this 
process may be very expensive, hibernate provides the facility to cache objects within a 
certain boundary.

The basic actions performed in each database transaction are as follows:

1. The request reaches the database server via the network.

2. The database server processes the query in the query plan.

3. Now the database server executes the processed query.

4. Again, the database server returns the result to the querying application through  
the network.

5. At last, the application processes the results.

This process is repeated every time we request a database operation, even if it is for a simple 
or small query. It is always a costly transaction to hit the database for the same records 
multiple times. Sometimes, we also face some delay in receiving the results because of 
network routing issues. There may be some other parameters that affect and contribute to the 
delay, but network routing issues play a major role in this cycle.

To overcome this issue, the database uses a mechanism that stores the result of a query, 
which is executed repeatedly, and uses this result again when the data is requested using the 
same query. These operations are done on the database side. Hibernate provides an in-built 
caching mechanism known as the first-level cache (L1 cache).

Following are some properties of the first-level cache:

 f It is enabled by default. We cannot disable it even if we want to.

 f The scope of the first-level cache is limited to a particular Session object only; the 
other Session objects cannot access it.

 f All cached objects are destroyed once the session is closed.

 f If we request for an object, hibernate returns the object from the cache only if the 
requested object is found in the cache; otherwise, a database call is initiated.

 f We can use Session.evict(Object object) to remove single objects from the 
session cache.

 f The Session.clear() method is used to clear all the cached objects from  
the session.



Chapter 7

157

Getting ready
Let's take a look at how the L1 cache works.

Creating the classes
For this recipe, we will create an Employee class and also insert some records into the table:

Source file: Employee.java

@Entity
@Table
public class Employee {

  @Id
  @GeneratedValue
  private long id;

  @Column(name = "name")
  private String name;
  
  // getters and setters
  
  @Override
  public String toString() {
    return "Employee: " +
        "\n\t Id: " + this.id +
        "\n\t Name: " + this.name;
  }
}

Creating the tables
Use the following table script if the hibernate.hbm2ddl.auto configuration property is not 
set to create:

Use the following script to create the employee table:

CREATE TABLE `employee` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
);



Advanced Concepts

158

We will assume that two records are already inserted, as shown in the following  
employee table:

id name
1 Yogesh

2 Aarush

Now, let's take a look at some scenarios that show how the first-level cache works.

How to do it…
Here is the code to see how caching works. In the code, we will load employee#1 and 
employee#2 once; after that, we will try to load the same employees again and see  
what happens:

Code
System.out.println("\nLoading employee#1...");
/* Line 2 */ Employee employee1 = (Employee)  
session.load(Employee.class, new Long(1));
System.out.println(employee1.toString());

System.out.println("\nLoading employee#2...");
/* Line 6 */ Employee employee2 = (Employee)  
session.load(Employee.class, new Long(2));
System.out.println(employee2.toString());

System.out.println("\nLoading employee#1 again...");
/* Line 10 */ Employee employee1_dummy = (Employee)  
session.load(Employee.class, new Long(1));
System.out.println(employee1_dummy.toString());

System.out.println("\nLoading employee#2 again...");
/* Line 15 */ Employee employee2_dummy = (Employee)  
session.load(Employee.class, new Long(2));
System.out.println(employee2_dummy.toString());

Output
Loading employee#1...
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from Employee employee0_ where employee0_.id=?
Employee: 
  Id: 1



Chapter 7

159

  Name: Yogesh

Loading employee#2...
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from Employee employee0_ where employee0_.id=?
Employee: 
  Id: 2
  Name: Aarush

Loading employee#1 again...
Employee: 
  Id: 1
  Name: Yogesh

Loading employee#2 again...
Employee: 
  Id: 2
  Name: Aarush

How it works…
Here, we loaded Employee#1 and Employee#2 as shown in Line 2 and 6 respectively and 
also the print output for both. It's clear from the output that hibernate will hit the database to 
load Employee#1 and Employee#2 because at startup, no object is cached in hibernate. 
Now, in Line 10, we tried to load Employee#1 again. At this time, hibernate did not hit the 
database but simply use the cached object because Employee#1 is already loaded and this 
object is still in the session. The same thing happened with Employee#2.

Hibernate stores an object in the cache only if one of the following operations is completed:

 f Save

 f Update

 f Get

 f Load

 f List

There's more…
In the previous section, we took a look at how caching works. Now, we will discuss some other 
methods used to remove a cached object from the session.



Advanced Concepts

160

There are two more methods that are used to remove a cached object:

 f evict(Object object): This method removes a particular object from the session

 f clear(): This method removes all the objects from the session

evict (Object object)
This method is used to remove a particular object from the session. It is very useful. The 
object is no longer available in the session once this method is invoked and the request for 
the object hits the database:

Code
System.out.println("\nLoading employee#1...");
/* Line 2 */ Employee employee1 = (Employee)  
session.load(Employee.class, new Long(1));
System.out.println(employee1.toString());

/* Line 5 */ session.evict(employee1);
System.out.println("\nEmployee#1 removed using evict(…)...");

System.out.println("\nLoading employee#1 again...");
/* Line 9*/ Employee employee1_dummy = (Employee)  
session.load(Employee.class, new Long(1));
System.out.println(employee1_dummy.toString());

Output
Loading employee#1...
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from Employee employee0_ where employee0_.id=?
Employee: 
  Id: 1
  Name: Yogesh

Employee#1 removed using evict(…)...

Loading employee#1 again...
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from Employee employee0_ where employee0_.id=?
Employee: 
  Id: 1
  Name: Yogesh

Here, we loaded an Employee#1, as shown in Line 2. This object was then cached in the 
session, but we explicitly removed it from the session cache in Line 5. So, the loading of 
Employee#1 will again hit the database.



Chapter 7

161

clear()
This method is used to remove all the cached objects from the session cache. They will no 
longer be available in the session once this method is invoked and the request for the objects 
hits the database:

Code
System.out.println("\nLoading employee#1...");
/* Line 2 */ Employee employee1 = (Employee)  
session.load(Employee.class, new Long(1));
System.out.println(employee1.toString());

System.out.println("\nLoading employee#2...");
/* Line 6 */ Employee employee2 = (Employee)  
session.load(Employee.class, new Long(2));
System.out.println(employee2.toString());

/* Line 9 */ session.clear();
System.out.println("\nAll objects removed from session cache using  
clear()...");

System.out.println("\nLoading employee#1 again...");
/* Line 13 */ Employee employee1_dummy = (Employee)  
session.load(Employee.class, new Long(1));
System.out.println(employee1_dummy.toString());

System.out.println("\nLoading employee#2 again...");
/* Line 17 */ Employee employee2_dummy = (Employee)  
session.load(Employee.class, new Long(2));
System.out.println(employee2_dummy.toString());

Output
Loading employee#1...
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from Employee employee0_ where employee0_.id=?
Employee: 
  Id: 1
  Name: Yogesh

Loading employee#2...
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from Employee employee0_ where employee0_.id=?
Employee: 
  Id: 2
  Name: Aarush



Advanced Concepts

162

All objects removed from session cache using clear()...

Loading employee#1 again...
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from Employee employee0_ where employee0_.id=?
Employee: 
  Id: 1
  Name: Yogesh

Loading employee#2 again...
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from Employee employee0_ where employee0_.id=?
Employee: 
  Id: 2
  Name: Aarush

Here, Line 2 and 6 show how to load Employee#1 and Employee#2 respectively. Now, we 
removed all the objects from the session cache using the clear() method. As a result, the 
loading of both Employee#1 and Employee#2 will again result in a database hit, as shown 
in Line 13 and 17.

Working with a second-level cache
In the previous section, you learned about the first-level cache, which is enabled by default 
and whose scope is limited to a particular session.

Now, the scope of the second-level cache is SessionFactory, and we can use the cached 
objects across the different sessions that are created using this particular SessionFactory. 
Hibernate provides the option to either enable or disable the second-level cache.

Hibernate provides a facility to change the cache provider, which means that we can provide 
any cache provider that supports integration with hibernate. Ehcache is used as the default 
cache provider by hibernate. Apart from Ehcache, there are some other providers available 
that support integration with hibernate. They are listed as follows:

 f OSCache

 f SwarmCache

 f JBoss Cache

In this recipe, we will consider integration with Ehcache.



Chapter 7

163

Getting ready
For this recipe to be successful, we need one more JAR file for Ehcache. We can download the 
Ehcache distribution from the official site, http://ehcache.org/downloads/. You can 
use the following Maven configuration for a Maven-based project:

<dependency>
    <groupId>net.sf.ehcache</groupId>
    <artifactId>ehcache-core</artifactId>
    <version>2.6.9</version>
</dependency>

<dependency>
    <groupId>org.hibernate</groupId>
    <artifactId>hibernate-ehcache</artifactId>
    <version>4.3.5.Final</version>
</dependency>

Enabling a second-level cache
We need to change the configuration.

To enable the second-level cache, we need to add two new mappings in the configuration 
(CFG) file.

The mappings are as follows:

<property name="hibernate.cache.use_second_level_cache">
  true
</property>
<property name="hibernate.cache.region.factory_class">
  net.sf.ehcache.hibernate.EhCacheRegionFactory
</property>

The first property tag is used to enable the second-level cache. We must set the value of 
the hibernate.cache.use_second_level_cache property to true.

Another tag is used to provide a cache provider class, which is vendor-specific. Here, we 
will set the value of the hibernate.cache.region.factory_class property to net.
sf.ehcache.hibernate.EhCacheRegionFactory as we will use Ehcache here.

http://ehcache.org/downloads/


Advanced Concepts

164

Adding a caching strategy using a POJO class
We need to explicitly state which class needs to be cached using the second-level cache and 
which strategy is to be used for this:

Source file: Employee.java

@Entity
@Table(name="employee")
@Cache(usage=CacheConcurrencyStrategy.READ_ONLY)
public class Employee {
    // fields and getters/setters
}

Here, we used the @Cache annotation on top of the Employee class to inform hibernate that 
the result of this class should be cached if any transaction is made for this class.

The usage attribute is used to provide a caching strategy. We can provide five caching 
strategies, which are defined in enum CacheConcurrencyStrategy:

 f CacheConcurrencyStrategy.READ_ONLY: This strategy is suitable where the 
data never changes but is required frequently.

 f CacheConcurrencyStrategy.NONSTRICT_READ_WRITE: This strategy is 
suitable for the applications that only rarely need to modify data.

 f CacheConcurrencyStrategy.READ_WRITE: This strategy is suitable for the 
applications that regularly need to modify data.

 f CacheConcurrencyStrategy.TRNSACTIONAL: The transactional cache strategy 
provides support to transactional cache providers such as JBoss TreeCache.

How to do it…
Now we will consider a basic example of the READ_ONLY caching strategy. Consider the 
following code:

Code
/* Line 1*/ Session session = sessionFactory.openSession();
/* Line 2 */ Employee employee = (Employee) session.load(Employee.
class, new Long(1));
System.out.println(employee.toString());
/* Line 4 */ session.close();
    
/* Line 6 */ Session anotherSession = sessionFactory.openSession();
/* Line 7 */ Employee employee_dummy = (Employee) anotherSession.
load(Employee.class, new Long(1));
System.out.println(employee_dummy.toString());
/* Line 9 */ anotherSession.close();



Chapter 7

165

Output
Hibernate: select employee0_.id as id0_0_, employee0_.name as  
name0_0_ from employee employee0_ where employee0_.id=?
Employee: 
  Id: 1
  Name: Yogesh
Employee: 
  Id: 1
  Name: Yogesh

How it works…
We will now take a look at how the second-level cache works with reference to the preceding 
code. Here, we opened a session to load Employee#1 in Line 1, and this session was 
closed in Line 4 after the loading was complete. Next, we opened a new session in Line 
6 and tried to load the same Employee object. It's clear from the output that the object 
was loaded from the cache because in a first-level caching, objects are destroyed when the 
session is closed. However, here we got the same object without hitting the database.

The flow of a second-level caching is as follows:

1. When hibernate tries to load a particular entity, it first looks for the first-level cache  
of the current session.

2. It is returned if the requested entity is present in the first-level cache.

3. If this particular entity is not found in the first-level cache, it will look for the  
second-level cache.

4. If the entity is found in the second-level cache, it's returned. Hibernate also stores 
this entity in the particular session, so there is no need to go to the second-level 
cache on the next request.

5. If the entity is not found in the second-level cache, hibernate hits the database and 
stores it in both the first and second-level caches and then returns it.

Working with a query cache
Hibernate supports a useful feature that actually helps to improve the performance of the 
application by reducing the processing time. The feature we are talking about here is called 
query cache.

Hibernate caches the query result, which is frequently used. This feature is only useful if the 
same queries are executed frequently.



Advanced Concepts

166

Getting ready
To understand the query cache, we will use the Employee POJO that was created in  
the previous recipe entitled Working with a first-level cache. We also need to modify 
hibernate.cfg.xml to enable the query cache feature:

Source file: Employee.java

@Entity
public class Employee {

  @Id
  @GeneratedValue
  private long id;

  @Column(name = "name")
  private String name;
  
  // getters and setters

}

Enabling a query cache:
To use this feature, we will first need to enable the query cache by adding the following tag in 
the configuration file:

<property name="hibernate.cache.use_query_cache">true</property>

How to do it…
Here, we will create an executable class to see how the query cache works. The following code 
shows the same:

Session session = sessionFactory.openSession();
for (int i = 0; i < 5; i++) {
    /* Line 3 */ Criteria criteria =  
session.createCriteria(Employee.class).setCacheable(true);
    List<Employee> employees = criteria.list();
    System.out.println("Employees found: " + employees.size());
}
session.close();



Chapter 7

167

The following is the output for the preceding code:

Hibernate: select this_.id as id0_0_, this_.name as name0_0_ from  
employee this_
Employees found: 1
Employees found: 1
Employees found: 1
Employees found: 1
Employees found: 1

How it works…
In the preceding code, we executed the same query five times using a loop. This means that 
the query should hit the database five times in order to search. But as shown in output, it hits 
the database only once and from the second time onward, hibernate checks whether this 
particular query is cached or not. If the query is found in the cache, it just displays the output; 
if it's not found in the cache, it first adds it to cache and executes it against the database and 
then displays the result.

From the output, it looks similar to the first-level cache, but there is actually a difference 
between the two of them. The query cache checks whether a particular query is cached or 
not and the first-level cache checks the object in this particular cache. An invocation of the 
list() method always hits the database even if the first-level cache is enabled.

As shown in Line 3, we used the setCachable(true) method. Once we set cachable to 
true, it tells hibernate to cache the particular query.

There's more...
Let's take a look at what happens if we ignore the setCachable(…) method. Consider the 
following code:

Code
Session session = sessionFactory.openSession();
for (int i = 0; i < 5; i++) {
  /* Line 3 */ Criteria criteria =  
session.createCriteria(Employee.class);
  List<Employee> employees = criteria.list();
  System.out.println("Employees found: " + employees.size());
}
session.close();



Advanced Concepts

168

Output
Hibernate: select this_.id as id0_0_, this_.name as name0_0_ from  
employee this_
Employees found: 1
Hibernate: select this_.id as id0_0_, this_.name as name0_0_ from  
employee this_
Employees found: 1
Hibernate: select this_.id as id0_0_, this_.name as name0_0_ from  
employee this_
Employees found: 1
Hibernate: select this_.id as id0_0_, this_.name as name0_0_ from  
employee this_
Employees found: 1
Hibernate: select this_.id as id0_0_, this_.name as name0_0_ from  
employee this_
Employees found: 1

From the output, it's clear that if we don't set setcachable to true, hibernate will not 
cache our query, and the query will hit the database every time the loop iterates. This is not a 
feasible option as it may downgrade the performance.

Working with the table per class hierarchy 
strategy of inheritance

Java is an object-oriented programming language, and while working with the object-oriented 
paradigm, one thing comes to our mind: inheritance. We form a real-world scenario using 
IS A and HAS A relationships. Inheritance is supported by many languages, but relational 
databases are unable to understand the relationship of inheritance. Hibernate provides a way 
to map real-time relationships to the database.

Hibernate provides multiple strategies to achieve such a relationship for relational databases. 
There are three inheritance mapping strategies defined in hibernate:

 f Table per class hierarchy

 f Table per subclass

 f Table per concrete class

Getting ready
In this recipe, we will take a look at table per class hierarchy.

Here, we will create a new data structure that will help you understand the inheritance 
strategy.



Chapter 7

169

Consider a class, Employee. We will extend the Employee class into two  
subclasses—PermanentEmployee and ContractualEmployee. The following figure 
represents the relationship:

Employee
Id
Name

ContractualEmployee
HourlyRate
ContractPeriod

PermanentEmployee
Salary

Creating the classes
Update the following code in their respective files:

Source file: Employee.java

@Entity
@Table(name="employee")
@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(
    name="emp_type"
    , discriminatorType=DiscriminatorType.STRING
    , length=2
)
@DiscriminatorValue(value="E")
public class Employee {
  
    @Id
    @GeneratedValue
    @Column(name="id")
    private long id;
    
    @Column(name="name")
    private String name;
    
    //getters and setters
}

Source file: PermanentEmployee.java

@Entity
@Table(name = "employee")
@DiscriminatorValue(value="PE")
public class PermanentEmployee extends Employee {
  



Advanced Concepts

170

    @Column(name="salary")
    private Double salary;
    
    //getters and setters
}

Source file: ContractualEmployee.java

@Entity
@Table(name = "employee")
@DiscriminatorValue(value="CE")
public class ContractualEmployee extends Employee {
    
    @Column(name="hourly_rate")
    private Double HourlyRate;
    
    @Column(name="contract_period")
    private Float ContractPeriod;
    
    //getters and setters
}

Creating the tables
Use the following table script if the hibernate.hbm2ddl.auto configuration property is not 
set to create:

Use the following script to create the employee table:

CREATE TABLE `employee` (
  `emp_type` VARCHAR(2) NOT NULL,
  `id` BIGINT(20) NOT NULL AUTO_INCREMENT,
  `name` VARCHAR(255) DEFAULT NULL,
  `contract_period` FLOAT DEFAULT NULL,
  `hourly_rate` DOUBLE DEFAULT NULL,
  `salary` DOUBLE DEFAULT NULL,
  PRIMARY KEY (`id`)
);

Now, hibernate will create a table with the fields of Employee, ContractualEmployee, 
PermanentEmployee, and one more column defined in the name attribute of the  
@DiscriminatorColumn annotation.

Here, the Employee class is the topmost in the hierarchy, and we used some annotation on 
the Employee class. Let's take a look at the annotations used in all three classes.



Chapter 7

171

Annotations used in Employee.java
Following are the annotations used in Employee.java:

 f @Inheritance(strategy=InheritanceType.SINGLE_TABLE): This 
annotation is used to define the inheritance strategy. It is used only on the root class 
in the hierarchy.

 f @DiscriminatorColumn(name="emp_type", discriminatorType=Dis
criminatorType.STRING, length=2): This annotation is used to define the 
discriminator column for the SINGLE_TABLE and JOINED mapping strategies. The 
attributes are as follows:

 � name="emp_type": hibernate creates a column with the value provided for 
the name attribute

 � discriminatorType=DiscriminatorType.STRING: This is used to 
define the datatype of the discriminator column

 � length=2: This is used to define the field size of the discriminator column

 f @DiscriminatorValue(value="E"): This annotation defines the value of the 
discriminator column for this particular class. If the value is not provided, hibernate 
uses a class name in DiscriminatorType.STRING, and the provided specific 
functions will be used otherwise.

Annotations used in ContractualEmployee.java
Following are the annotations used in ContractualEmployee.java:

 f @DiscriminatorValue(value="CE"): The value "CE" is used for this particular 
class

Annotations used in PermanentEmployee.java
Following are the annotations used in PermanentEmployee.java:

 f @DiscriminatorValue(value="PE"): The value "PE" is used for this  
particular class

How to do it…
Now, we will save three records of each type of the classes Employee, 
PermanentEmployee, and ContractualEmployee:

Code
Session session = sessionFactory.openSession();

Transaction transaction = session.getTransaction();



Advanced Concepts

172

transaction.begin();

Employee employee = new Employee();
employee.setName("Aarush");
session.save(employee);

PermanentEmployee permanentEmployee = new PermanentEmployee();
permanentEmployee.setName("Mike");
permanentEmployee.setSalary(10000D);
session.save(permanentEmployee);

ContractualEmployee contractualEmployee = new ContractualEmployee();
contractualEmployee.setName("Vishal");
contractualEmployee.setHourlyRate(200D);
contractualEmployee.setContractPeriod(100F);
session.save(contractualEmployee);

transaction.commit();

session.close();

Output
Hibernate: insert into employee (name, emp_type) values (?, 'E')
Hibernate: insert into employee (name, salary, emp_type) values (?,  
?, 'PE')
Hibernate: insert into employee (name, contract_period, hourly_rate,  
emp_type) values (?, ?, ?, 'CE')

The following employee table below shows the database table structure after saving three 
records:

emp_type id name contract_period hourly_rate salary
E 1 Aarush (NULL) (NULL) (NULL)
PE 2 Mike (NULL) (NULL) 10000

CE 3 Vishal 100 200 (NULL)

How it works…
Here, we defined the Employee class as the parent class, and the ContractualEmployee 
and PermanentEmployee classes are defined as the subclasses of the Employee class.

When we save a record in the parent class, hibernate saves the values in the fields of that 
particular class and the other columns from the subclasses are saved with a null value.



Chapter 7

173

If we save the record in the ContractualEmployee and PermanentEmployee subclasses, 
hibernate saves the values in the fields of the current and parent class.

We can use the value of the emp_type column, which is E (Employee), PE is for 
PermanentEmployee and CE for ContractualEmployee to determine records.

Working with the table per subclass 
strategy of inheritance

In the previous recipe, we went through the table per class hierarchy inheritance strategy. 
Table per class hierarchy stores all the rows in a single table and the discriminator column 
is used to uniquely identify the records. Sometimes, the tables become very large if the 
hierarchy is deep. In such a case, we can use another strategy called table per subclass.

In the table-per-subclass strategy, hibernate creates separate tables for each class. The 
relationship exists between the parent and child tables, where the common data is stored in 
the parent class and the data of the subclass is stored in a separate specific table.

Getting ready
Consider a new table structure as shown in the following table:

Employee
Id
Name

ContractualEmployee

HourlyRate
ContractPeriod

PermanentEmployee

Salary
Emp_Id Emp_Id

Creating the classes
Update the following code in their respective files:

Source file: Employee.java

@Entity
@Table(name="employee")
@Inheritance(strategy=InheritanceType.JOINED)
public class Employee {
  
  @Id
  @GeneratedValue



Advanced Concepts

174

  @Column(name="id")
  private long id;
  
  @Column(name="name")
  private String name;
  
  // getters and setters  
}

Source file: ContractualEmployee.java

@Entity
@Table
@PrimaryKeyJoinColumn(name="emp_id")
public class ContractualEmployee extends Employee {
  
  @Column(name="hourly_rate")
  private Double HourlyRate;
  
  @Column(name="contract_period")
  private Float ContractPeriod;
  
  // getters and setters  

}

Source file: PermanentEmployee.java

@Entity
@Table
@PrimaryKeyJoinColumn(name="emp_id")
public class PermanentEmployee extends Employee {
  
  @Column(name="salary")
  private Double salary;
  
  // getters and setters

}

Creating the tables
Use the following table script if the hibernate.hbm2ddl.auto configuration property is not 
set to create:

Use the following script to create the employee table:

CREATE TABLE `employee` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,



Chapter 7

175

  `name` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
);

Use the following script to create the contractualemployee table:

CREATE TABLE `contractualemployee` (
  `contract_period` float DEFAULT NULL,
  `hourly_rate` double DEFAULT NULL,
  `emp_id` bigint(20) NOT NULL,
  PRIMARY KEY (`emp_id`),
  KEY `FK_EMPLOYEE_ID` (`emp_id`),
  CONSTRAINT `FK_EMPLOYEE_ID` 
    FOREIGN KEY (`emp_id`) 
    REFERENCES `employee` (`id`)
);

Use the following script to create the permanentemployee table:

CREATE TABLE `permanentemployee` (
  `salary` double DEFAULT NULL,
  `emp_id` bigint(20) NOT NULL,
  PRIMARY KEY (`emp_id`),
  KEY `FK_EMPLOYEE_ID` (`emp_id`),
  CONSTRAINT `_EMPLOYEE_ID` 
    FOREIGN KEY (`emp_id`) 
    REFERENCES `employee` (`id`)
);

In this strategy, we used the @Inheritance annotation with 
strategy=InheritanceType.JOINED in the Employee parent class only. For the 
subclasses, we used @PrimaryKeyJoinColumn(name="emp_id"). Hibernate will create 
a foreign key column in all the subtables with the value of the name attribute of the @
PrimaryKeyJoinColumn annotation.

How to do it…
Now, we will save three records per class for Employee, PermanentEmployee, and 
ContractualEmployee. Cosider the following code:

Code
Session session = sessionFactory.openSession();

Transaction transaction = session.getTransaction();
transaction.begin();



Advanced Concepts

176

Employee employee = new Employee();
employee.setName("Aarush");
session.save(employee);

PermanentEmployee permanentEmployee = new PermanentEmployee();
permanentEmployee.setName("Mike");
permanentEmployee.setSalary(10000D);
session.save(permanentEmployee);

ContractualEmployee contractualEmployee = new ContractualEmployee();
contractualEmployee.setName("Vishal");
contractualEmployee.setHourlyRate(200D);
contractualEmployee.setContractPeriod(100F);
session.save(contractualEmployee);

transaction.commit();
session.close();

Output
Hibernate: insert into employee (name) values (?)
Hibernate: insert into employee (name) values (?)
Hibernate: insert into PermanentEmployee (salary, emp_id) values (?,  
?)
Hibernate: insert into employee (name) values (?)
Hibernate: insert into ContractualEmployee (contract_period,  
hourly_rate, emp_id) values (?, ?, ?)

The following employee table shows the database table structure after saving three records:

id name
1 Aarush

2 Mike

3 Vishal

The following is the database table structure for the contractualemployee table:

contract_period hourly_rate emp_id
100 200 3



Chapter 7

177

The following is the database table structure for the permanentemployee table:

salary emp_id
10000 2

How it works…
Upon careful observation of the data from the three tables and its output, you can understand 
how this strategy works. In this strategy, the common data is stored in the parent table, which 
is Employee here. The subtable stores the class-specific and common data in the parent 
table. Also, the subclasses refer to the parent class primary key as a foreign key.

Working with the table per concrete class 
strategy of inheritance

This is the easiest strategy among all. In this strategy, hibernate creates a different table for 
each subclass and parent class. The disadvantage of this approach is that duplicate columns 
are created in the subclass table.

Getting ready
Consider a new table structure as shown in the following table:

Employee
Id
Name

ContractualEmployee
HourlyRate
ContractPeriod

PermanentEmployee
Salary

Creating the classes
Update the following code in their respective files:

Source file: Employee.java

@Entity
@Table(name="employee")
@Inheritance(strategy=InheritanceType.TABLE_PER_CLASS)
public class Employee {
  
  @Id



Advanced Concepts

178

  @GeneratedValue(strategy = GenerationType.TABLE)
  @Column(name="id")
  private long id;
  
  @Column(name="name")
  private String name;
  
  //getters and setters
}

Source file: ContractualEmployee.java

@Entity
@AttributeOverrides({
  @AttributeOverride(name="id", column = @Column(name="id")),
  @AttributeOverride(name="name", column = @Column(name="name"))
})
public class ContractualEmployee extends Employee {
  
  @Column(name="hourly_rate")
  private Double HourlyRate;
  
  @Column(name="contract_period")
  private Float ContractPeriod;
  
  //getters and setters
}

Source file: PermanentEmployee.java

@Entity
@AttributeOverrides({
  @AttributeOverride(name="id", column = @Column(name="id")),
  @AttributeOverride(name="name", column = @Column(name="name"))
})
public class PermanentEmployee extends Employee {
  
  @Column(name="salary")
  private Double salary;
  
  //getters and setters
}



Chapter 7

179

Creating the tables
Use the following table script if the hibernate.hbm2ddl.auto configuration property is not 
set to create:

Use the following script to create the employee class:

CREATE TABLE `employee` (
  `id` bigint(20) NOT NULL,
  `name` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
);

Use the following script to create the contractualemployee class:

CREATE TABLE `contractualemployee` (
  `id` bigint(20) NOT NULL,
  `name` varchar(255) DEFAULT NULL,
  `contract_period` float DEFAULT NULL,
  `hourly_rate` double DEFAULT NULL,
  PRIMARY KEY (`id`)
);

Use the following script to create the permanentemployee class:

CREATE TABLE `permanentemployee` (
  `id` bigint(20) NOT NULL,
  `name` varchar(255) DEFAULT NULL,
  `salary` double DEFAULT NULL,
  PRIMARY KEY (`id`)
);

Annotations used in Employee.java
Following are the annotations used in Employee.java:

 f @Inheritance(strategy=InheritanceType.TABLE_PER_CLASS): This 
annotation defines the inheritance strategy to be used for an entity class hierarchy. It 
is used only with the parent or root classes.



Advanced Concepts

180

Annotations used in PermanentEmployee.java and 
ContractualEmployee.java
Following are the annotations used in PermanentEmployee.java and 
ContractualEmployee.java:

@AttributeOverrides({
  @AttributeOverride(name="id", column = @Column(name="id")),
  @AttributeOverride(name="name", column = @Column(name="name"))
})

 f @AttributeOverrides: This annotation is used to override the mappings of 
multiple properties or fields

 f @AttributeOverride: This annotation is used to override the mappings of basic 
properties or fields

Hibernate creates a column in the table for the attributes that are overridden by the parent 
class, in which it generally creates redundant data.

Note that this strategy does not support the IDENTITY and AUTO 
generator strategies; we have to use other generation strategy 
options or provide a primary key explicitly.

How to do it…
As in the other inheritance strategies, we will insert three records here and see how this 
strategy works. Update the following code:

Code
Session session = sessionFactory.openSession();

Transaction transaction = session.getTransaction();
transaction.begin();

Employee employee = new Employee();
employee.setId(1);
employee.setName("Aarush");
session.save(employee);

PermanentEmployee permanentEmployee = new PermanentEmployee();
permanentEmployee.setId(2);
permanentEmployee.setName("Mike");
permanentEmployee.setSalary(10000D);
session.save(permanentEmployee);



Chapter 7

181

ContractualEmployee contractualEmployee = new ContractualEmployee();
contractualEmployee.setId(3);
contractualEmployee.setName("Vishal");
contractualEmployee.setHourlyRate(200D);
contractualEmployee.setContractPeriod(100F);
session.save(contractualEmployee);

transaction.commit();

session.close();

Output
Hibernate: insert into employee (name, id) values (?, ?)
Hibernate: insert into PermanentEmployee (name, salary, id) values (?,  
?, ?)
Hibernate: insert into ContractualEmployee (name, contract_period,  
hourly_rate, id) values (?, ?, ?, ?)

The following employee table shows the database table structure after saving three records:

id name
1 Aarush

The following is the database table structure for the contractualemployee table:

id name contract_period hourly_rate
3 Vishal 100 200

The following is the database table structure for the permanentemployee table:

id name salary
2 Mike 10000

How it works…
Hibernate creates a separate table for all the subclasses. We can see here that an overridden 
attribute is created in each table.

The disadvantage of this strategy is that if we add, delete, or update a field in the root class, it 
causes major changes in the subtable as well. This is because in this strategy, the parent class 
is scattered into the other subclasses and the subclasses use the field of the parent class.



Advanced Concepts

182

Working with the versioning of objects
Once a record is inserted in the database, we can update it any number of times. The 
versioning feature of hibernate is useful when we want to know how many times a particular 
record has been modified. This feature is useful in sensitive applications in the finance 
domain, where we need to record each and every data movement.

When we use the versioning feature, hibernate inserts the initial version number as zero. 
Whenever a record is modified, the value of the version is increased by one.

Getting ready
To work with the versioning concept, we have to make a small change in the POJO. We have 
to create a field with the numeric type and declare this field with the @version annotation so 
that hibernate will consider it to be the versioning column.

Creating the classes
The following code shows the Java file changes for versioning:

Source file: Employee.java

@Entity
@Table(name = "employee")
public class Employee {

  @Id
  @GeneratedValue
  @Column(name = "id")
  private long id;

  @Column(name = "name")
  private String name;

  @Version
  private long version;
  
  //getters and setters
}



Chapter 7

183

Creating the tables
Use the following table script if the hibernate.hbm2ddl.auto configuration property is not 
set to create:

Use the following script to create the employee table:

CREATE TABLE `employee` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  `version` bigint(20) NOT NULL,
  PRIMARY KEY (`id`)
);

How to do it…
Here, we will insert a record and see the table data after a successful insertion. Update the 
following code:

Code
Session session = sessionFactory.openSession();
Transaction transaction = session.getTransaction();
transaction.begin();

Employee employee = new Employee();
employee.setName("Aarush");
session.save(employee);

transaction.commit();
session.close();

Output
Hibernate: insert into employee (name, version) values (?, ?)

The following employee table shows a database table structure after saving one record:

id name version
1 Aarush 0

How it works…
Hibernate inserts a zero value in the row when a record is created for the first time. This 
particular value is increased by one on each update operation.



Advanced Concepts

184

Once you perform an update operation, hibernate updates the version column as well. The 
following code shows the same:

Code
Employee employee = new Employee();
employee.setId(1);
employee.setName("Aaru");
session.saveOrUpdate(employee);

Output
Hibernate: update employee set name=?, version=? where id=? and  
version=?

The following data table shows the data after an update:

id name version
1 Aaru 1

Once we update an employee name here, hibernate increases the version number.

Maintaining the history of an object
In the previous recipe, we used the versioning feature of hibernate to check how many times a 
particular record has been modified. This is a good feature; however, it gives us just a number. 
Versioning does not store the modified data anywhere. So, it's hard to find out the previous 
state of the object before the modification.

As a solution to this, hibernate provides another project called Envers.

Envers helps us maintain the history of the database and it keeps track of the modifications 
in the database table rows. For this to work, we have to change the configuration in the POJO 
and configuration (.cfg.xml) files.

To configure Envers with hibernate, we need JAR files in our project. You can use the following 
Maven dependency for the Maven-based project:

<dependency>
  <groupId>org.hibernate</groupId>
  <artifactId>hibernate-envers</artifactId>
  <version>4.3.10.Final</version>
</dependency>



Chapter 7

185

Once we configure Envers in our application, it creates a version table that contains the fields of 
the original table. Whenever the original table gets modified, hibernate automatically adds an 
entry in the version table; so, for every insert, update, and delete operation, hibernate inserts 
the records in the version table. Another table is automatically created by hibernate with the 
name revinfo that stores revision information such as the revision id and revision timestamp.

Getting ready
Here, we will download the required libraries using the Maven dependency. The following code 
shows how to create the required classes and tables.

Creating the classes
The following code shows an Employee POJO and the changes in the configuration file 
(*.cgf.xml):

Source file: Employee.java

@Entity
@Table(name = "employee")
/* Line 3 */ @Audited
public class Employee {

  @Id
  @GeneratedValue
  private long id;

  @Column(name = "name")
  private String name;

/* Line 13 */  @NotAudited
  @Column(name="password")
  private String password;
  
  // getters ans setters
  
}

Source file: hibernate.cfg.xml

Add the below lines to your configuration file:

<listener class="org.hibernate.envers.event.AuditEventListener"  
type="post-insert"/>
<listener class="org.hibernate.envers.event.AuditEventListener"  
type="post-update"/>
<listener class="org.hibernate.envers.event.AuditEventListener"  
type="post-delete"/>



Advanced Concepts

186

Creating the tables
Use the following table script if the hibernate.hbm2ddl.auto configuration property is not 
set to create:

Use the following script to create the employee table:

CREATE TABLE `employee` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  `password` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
);

Use the following script to create the employee_aud table:

CREATE TABLE `employee_aud` (
  `id` bigint(20) NOT NULL,
  `REV` int(11) NOT NULL,
  `REVTYPE` tinyint(4) DEFAULT NULL,
  `name` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`,`REV`),
  KEY `FK_REVISION_ID` (`REV`),
  CONSTRAINT `FK_REVISION_ID` FOREIGN KEY (`REV`) REFERENCES  
`revinfo` (`REV`)
);

Use the following script to create the revinfo table:

CREATE TABLE `revinfo` (
  `REV` int(11) NOT NULL AUTO_INCREMENT,
  `REVTSTMP` bigint(20) DEFAULT NULL,
  PRIMARY KEY (`REV`)
);

How to do it…
Now, we will insert a record in the employee table and take a look at the tables created by 
hibernate with the data. Update the following code:

Code
Session session = sessionFactory.openSession();
Transaction transaction = session.getTransaction();
transaction.begin();

Employee employee = new Employee();



Chapter 7

187

employee.setName("Aarush");
employee.setPassword("p@$sw0rd");
session.save(employee);

transaction.commit();
session.close();

Output
/* Line 1 */ Hibernate: insert into employee (name, password) values  
(?, ?)
/* Line 2 */ Hibernate: insert into REVINFO (REVTSTMP) values (?)
/* Line 3 */ Hibernate: insert into employee_AUD (REVTYPE, name, id,  
REV) values (?, ?, ?, ?)

The following employee table shows the data after the insertion is completed:

id name password
1 Aarush p@$sw0rd

The following is the database table structure for the REVINFO table:

REV REVTSTMP
1 1421832556098

The following is the database table structure for the employee_AUD table:

id REV REVTYPE name
1 1 0 Aarush

How it works…
Now, we will discuss how this feature works. We will take a look at the changes in each file  
in detail.

Let's consider the Employee.java file. In the Employee class, we added the @Audited 
annotation at the class level shown in Line 3.

@Audited is present at the class level. This means that hibernate will enable the history of 
the Employee object and store the changes in the revision table.

Another useful annotation used in this class is @NotAudited, which is shown in Line 13.



Advanced Concepts

188

Using the @Audited annotation at the class level means that all the fields of that class are 
involved in the auditing process. If we do not want any field to be involved in the auditing 
process, the @NotAudited annotation is used. For instance, here we annotate a password 
field with the @NotAudited annotation, so hibernate will ignore this field during auditing.

Now, let's consider the hibernate.cfg.xml file. In this configuration file, we added three 
new listener tags, where the class attribute defines the Listener class and the type attribute 
defines a type of operation, such as post-insert, post-update, and post-delete.

There are many events available in hibernate. Here, post-insert means that the auditing 
is done after the insertion is completed. This works in a similar way for post-update and 
post-delete.

There's more…
Once we execute the code, hibernate will create three tables:

 f employee: This represents the Employee class.

 f employee_AUD: This represents the audit table for the Employee class. Hibernate 
will create an audit table by the concatenation of the actual table name as a prefix 
and the "_AUD" value as a suffix if value is not provided.

 f revinfo: This stores the revision information, such as the revision id and revision 
timestamp.

We can change the suffix and prefix value of the table as well as the audit table name in the 
following way:

@AuditTable(value="emp_history")
public class Employee {
  // other fields and setters/getters
}

Now, hibernate will create the table name, emp_history; the prefix and suffix are ignored in 
this case.

Changing the suffix by changing the property in the  
configuration file
To change the audit table suffix, you can update the following configurations:

<property name="org.hibernate.envers.auditTableSuffix">
  _history
</property>



Chapter 7

189

You can also use:

<property name="org.hibernate.envers.audit_table_suffix">
  _history
</property>

Hibernate uses _history as the suffix if not provided. 
The _AUD" suffix is used by default.

Changing the prefix by changing the property in the  
configuration file
To change the audit table prefix, you can update the following configurations:

<property name="org.hibernate.envers.auditTablePrefix">
  history_
</property>

You can also use:

<property name="org.hibernate.envers.audit_table_prefix">
  history_
</property>

Hibernate uses history_ as the prefix if not provided. 
The "" prefix is used by default.

Now, hibernate will create an audit table with the given configuration, which will contain all 
auditable fields and the REV and REVTYPE column.

The REV and REVTYPE columns are used to maintain the revisions. To change the name of 
the REV and REVTYPE columns, use the following code:

Renaming the REV column
To change the revision field name, you can update the following configurations:

<property name="org.hibernate.envers.revision_field_name">
  REV_COL
</property>

You can also use:

<property name="org.hibernate.envers.revisionFieldName">
  REV_COL
</property>



Advanced Concepts

190

Hibernate uses REV_COL as the column name; if not provided, 
REV is used by default.

Renaming the REVTYPE column
To change the revision type field name, you can update the following configurations:

<property name="org.hibernate.envers.revision_type_field_name">
  REVTYPE_COL
</property>

You can also use:

<property name="org.hibernate.envers.revisionTypeFieldName">
  REVTYPE_COL
</property>

Hibernate uses REVTYPE_COL as the column name; if not 
provided, REVTYPE is used by default.

Working with an interceptor
As we know, in the hibernate persistent lifecycle, a particular object travels from state to state, 
from transient, persistent, to detached. During processing, it may commit or roll back before it 
reaches the last state. Sometimes, we need to perform some additional tasks such as cleanup, 
log or some operations on the object between different states of the persistent life cycle. To 
perform such activities, hibernate provides a useful and pluggable feature called interceptor.

Interceptor, as the name suggests, is used to intercept any operation. Interceptors apply 
hooks inside the logic. In hibernate, we have some built-in interceptors that help us intercept 
our logic.

Generally, an interceptor is used to log monitor data that is input and to validate it. You can 
also change or overwrite it at runtime. Let's take a look at the next example.

Getting ready
In this recipe, we will discuss the use of a basic interceptor and some methods of intercepting. 
Here, we will try to save the employee object and capturing the log while saving an object.

Creating the classes
For this recipe, we will create an Employee class:



Chapter 7

191

Source file: Employee.java

@Entity
@Table(name = "employee")
public class Employee {

  @Id
  @GeneratedValue
  private long id;

  @Column(name = "name")
  private String name;

  // getters ans setters
}

Creating the tables
Use the following table script if the hibernate.hbm2ddl.auto configuration property is not 
set to create:

Use the following script to create the employee table:

CREATE TABLE `employee` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `name` varchar(255) DEFAULT NULL,
  PRIMARY KEY (`id`)
);

How to do it…
First of all, we need to create an interceptor class that extends EmptyInterceptor, which 
implements the org.hibernate.Interceptor interface. Update the following code:

Code
Source file: CustomInterceptor.java

import org.hibernate.EmptyInterceptor;
import org.hibernate.type.Type;
public class CustomInterceptor extends EmptyInterceptor {

  /* Line 3 */ public boolean onSave(Object entity, Serializable id,  
Object[] state, String[] propertyNames, Type[] types) {
    System.out.println("On Save");
    System.out.println("entity: " + entity);



Advanced Concepts

192

    System.out.println("id: " + id);
    System.out.println("state: " + Arrays.toString(state));
    System.out.println("propertyNames: " +  
Arrays.toString(propertyNames));
    System.out.println("types: " + Arrays.toString(types));
    return false;
  }

  /* Line 13 */ public void preFlush(Iterator iterator) {
    System.out.println("\n\nPre flush");
    while (iterator.hasNext()) {
      System.out.println(iterator.next());
    }
  }

  /* Line 20 */ public void postFlush(Iterator iterator) {
    System.out.println("\n\nPost flush");
    while (iterator.hasNext()) {
      System.out.println(iterator.next());
    }
  }
}

Source file: InterceptorTest.java

/* Line 1 */ CustomInterceptor interceptor = new CustomInterceptor();
/* Line 2 */ Session session =  
sessionFactory.withOptions().interceptor(interceptor).openSession( 
);
/* Line 3 */ Transaction tx = null;
/* Line 4 */ tx = session.beginTransaction();

/* Line 6 */ Employee employee = new Employee();
/* Line 7 */ employee.setName("Vishal");
/* Line 8 */ session.saveOrUpdate(employee);

/* Line 9 */ tx.commit();
/* Line 10 */ session.close();
/* Line 11 */ sessionFactoy.close();

Output:
On Save
entity: Employee: 
  Id: 0
  Name: Vishal



Chapter 7

193

id: null
state: [Vishal]
propertyNames: [name]
types: [org.hibernate.type.StringType@4abd7e7c]
Hibernate: insert into employee (name) values (?)

Pre flush
Employee: 
  Id: 1
  Name: Vishal

Post flush
Employee: 
  Id: 1
  Name: Vishal

How it works…
In the previous section, we created two different Java source files. the first one is 
CustomInterceptor.java, which overrides some methods of the EmptyInterceptor 
superclass, and the other is the InterceptorTest.java executable class, which shows the 
code to test the mechanism.

Now, we will consider the code in detail.

The working of InterceptorTest.java
This is an executable class and contains the main method.

In Line 1, we created the object of the CustomInterceptor class.

Line 2 shows how to provide options to SessionFactory on runtime; builder design patterns 
are used to provide the interceptor to the session. The withOptions() method returns 
the instance of SessionBuilder. On top of it, we set an interceptor that is an instance of 
CustomInterceptor using the interceptor() method and then opened a new session.

The code from Line 3 onward creates an employee object and saves it within the boundary 
of the transaction.

The working of CustomInterceptor.java
Here, we extended the EmptyInterceptor class and implemented the three methods.



Advanced Concepts

194

The working of onSave Method
The onSave method is called before the object is saved to the database. Constructor of 
onSave is shown in the following code:

boolean onSave(Object entity,
               Serializable id,
               Object[] state,
               String[] propertyNames,
               Type[] types)
               throws CallbackException

The arguments passed are as follows:

 f Object entity: This shows the requested object for save. Here, the employee is passed, 
so it shows the details of the employee. One important thing shown here is that the 
object is not saved while processing this method, so the id fields are set to 0.

 f Serializable id: This shows the serializable id. Here, it is null because we are saving 
the object.

 f Object[] state: This contains the values to be saved; here, vishal, as we have only 
one field in the POJO.

 f String[] propertyNames: This contains the property name with respect to the state 
field; here, the name field, where the value of this field is stored in the state object.

 f Type[] types: This field contains the datatype of all the fields that are sent to save.

The working of preFlush Method
Another of the methods we implemented is preFlush. This method is called after commit is 
completed and just before flush is started. Use of preFlush() is shown in the following code:

  /* Line 13 */ public void preFlush(Iterator iterator) {
    System.out.println("\n\nPre flush");
    while (iterator.hasNext()) {
      System.out.println(iterator.next());
    }
  }

In the output, you will find id=1, which was 0 in the onSave() method, because the object 
is saved to the database. The argument iterator returns the object whose id is going to be 
flushed out.

The working of postFlush Method
The last of the three methods is postFlush. This method is called after commit is completed 
and just before flush is completed. Use of postFlush() is shown in the following code:

  /* Line 20 */ public void postFlush(Iterator iterator) {
    System.out.println("\n\nPost flush");
    while (iterator.hasNext()) {



Chapter 7

195

      System.out.println(iterator.next());
    }
  }

Working with batch processing
Sometimes, we need to save a large number of records in the database. Let's say we need 
10,000 records in the database, and we use the basic approach to save the records. The way 
to do this is as follows:

Session session = SessionFactory.openSession();
Transaction tx = session.beginTransaction();
for ( int i=0; i<100000; i++ ) {
    Employee employee = new Employee(.....);
    session.save(employee);
}
tx.commit();
session.close();

Two known issues in the preceding method are as follows:

 f Hibernate will try to save each object to the database one by one; this will be time 
consuming and may increase the load on the database and application as well

 f The application may face OutOfMemoryException because hibernate saves all the 
new employee objects in the second-level cache

To overcome these problems and to make the application faster, we need to use  
batch processing. Hibernate supports batch processing, which is the same as a  
JDBC batch processing.

Getting ready
The following codes help you to create the required classes and tables for this recipe.

Creating the classes
To perform batch processing using hibernate, we need to create the Employee class and 
make a little change in configuration file; here, we need to make the changes in hibernate.
cfg.xml. Update the following code:

Source file: Employee.java

@Entity
@Table(name = "employee")
public class Employee {



Advanced Concepts

196

  @Id
  @GeneratedValue
  private long id;

  @Column(name = "name")
  private String name;

  // getters and setters  
}

Source file: hibernate.cfg.xml

…
 <property name="hibernate.jdbc.batch_size">
    50
</property>  
 <property name="hibernate.cache.use_second_level_cache"> 
false 
</property>  
…

How to do it…
First of all, we will take a look at an executable code snippet that shows how to use batch 
processing in hibernate:

Source file: BatchProcessingMain.java

Session session = sessionFactory.openSession();
Transaction transaction = session.beginTransaction();
for (int i = 0; i < 10000; i++) {
  Employee employee = new Employee();
  employee.setName("Name : " + String.valueOf(i));
  session.save(employee);
/* Line 7 */  if (i % 50 == 0) {
/* Line 8 */   session.flush();
/* Line 9*/   session.clear();
  }
}
transaction.commit();
session.close();



Chapter 7

197

The following is the output for the preceding code:

Hibernate: insert into employee (name) values (?)
Hibernate: insert into employee (name) values (?)
Hibernate: insert into employee (name) values (?)
.
.
.
Hibernate: insert into employee (name) values (?)

How it works…
First of all, the change in hibernate.cfg.xml is hibernate.jdbc.batch_size = 50, 
informing hibernate to create a batch of 50 for the batch operation. Another is hibernate.
cache.use_second_level_cache = false, informing hibernate not to cache the object 
as we were doing a batch operation, and it is unnecessary to store the objects in the cache.

In the executable code, we looped 10,000 times and saved the records using the session.
save(…) method. In Line 7, we checked whether the value of the i variable was equal to  
a multiple of 50 and then flushed and cleared the session.

The Session.flush() method was used to persist a record and sent to the database. You 
cannot actually see it from the database or using another session/thread because this record 
is not committed yet. Once a transaction is committed, the records are available for the other 
session/thread.

The Session.clear() method clears all the cached records from the session and releases 
the memory.





199

8
Integration with  

Other Frameworks

In this chapter, we will cover the following recipes:

 f Integration with Spring

 f Integration with Struts

Introduction
In the today's world, many frameworks are available to make the development process easier. 
A framework typically provides an architecture that is best suited for industry development, 
and it also provides the flexibility to integrate one framework with another. Hence, the demand 
for this type of framework has increased.

Hibernate provides easy integration with frameworks such as Spring and Struts. In this 
chapter, we will take a look at how to integrate hibernate ORM with Spring version 4 and 
Struts version 2.

Integration with Spring
Spring is an open source development framework that helps developers make the 
development process much better. Spring is known for DI (dependency injection), IoC 
(inversion of control), AOP (aspects-oriented programming), core and test container, data 
access/integration with JDBC, ORM, JMS(Java Messaging Service), web integration with 
servlet, portlet, and other frameworks, such as Struts, and Spring DAO (data access object) 
support. We can use the Spring framework in either a Java Standalone application or a JEE 
enterprise application.



Integration with Other Frameworks

200

The official site for Spring is https://spring.io, which gives detailed information about all 
the projects by Spring, and http://projects.spring.io/spring-framework/, which 
is for the Spring framework.

In this recipe, we will take a look at how to integrate hibernate with Spring using a Spring  
DAO pattern. Also, we will assume that you have a basic knowledge of patterns, Maven, and 
Spring core.

Getting ready
Before moving forward, let's understand DAO.

DAO stands for data access object. It is a pattern that provides an abstract interface layer to 
access the database or a persistent layer using some predefined methods.

Generally, we have two different styles of DAO.

 f Generic DAO or DAO per application: This is a central DAO that provides all the 
methods for a CRUD operation, such as Save, Delete, Update, Get by id, and so 
on. This type of DAO is useful when we have to perform a common operation across 
the application.

 f DAO per class: In this style, we have a separate DAO for each class. It also contains 
generic methods such as Save, Delete, Update, and Get by id, and it may have 
its own methods as well.

In this example, we will use the DAO per class method.

The project dependencies
Here, we will create a Maven project, so all project dependencies mentioned will be  
in pom.xml:

Source file: pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0  
  http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>com.packt</groupId>
  <artifactId>SpringHibernateExample</artifactId>
  <packaging>war</packaging>
  <version>0.0.1-SNAPSHOT</version>
  <name>SpringHiber Maven Webapp</name>
  <url>http://maven.apache.org</url>
  <properties>

https://spring.io
http://projects.spring.io/spring-framework/


Chapter 8

201

    <spring-framework.version>4.0.3.RELEASE</spring- 
    framework.version>
    <hibernate.version>4.3.5.Final</hibernate.version>
  </properties>

  <dependencies>
    <dependency>
      <groupId>org.springframework</groupId>
      <artifactId>spring-context</artifactId>
      <version>${spring-framework.version}</version>
    </dependency>
    <dependency>
      <groupId>org.springframework</groupId>
      <artifactId>spring-tx</artifactId>
      <version>${spring-framework.version}</version>
    </dependency>

    <dependency>
      <groupId>org.springframework</groupId>
      <artifactId>spring-orm</artifactId>
      <version>${spring-framework.version}</version>
    </dependency>

    <dependency>
      <groupId>org.hibernate</groupId>
      <artifactId>hibernate-core</artifactId>
      <version>${hibernate.version}</version>
    </dependency>

    <dependency>
      <groupId>mysql</groupId>
      <artifactId>mysql-connector-java</artifactId>
      <version>5.1.9</version>
    </dependency>

  </dependencies>
  <build>
    <finalName>SpringHibernateExample</finalName>
  </build>
</project> 

Here, we used only the required dependency for this recipe.



Integration with Other Frameworks

202

Creating the tables
Use the following script to create the tables if you are not using hbm2dll=create|update:

Table: film

    create table film (
        id bigint not null auto_increment,
        name varchar(255),
        releaseYear bigint,
        primary key (id)
 );

Creating a model class
A model class is the same as a POJO. Execute the following code:

Source file: Film.java

package com.packt.modal;

import javax.persistence.Column;
import javax.persistence.Entity;
import javax.persistence.GeneratedValue;
import javax.persistence.GenerationType;
import javax.persistence.Id;
import javax.persistence.Table;

@Entity
@Table(name = "film")
public class Film {

  
  public Film() {

  }
  
  public Film(String name, long releaseYear) {
    super();
    this.name = name;
    this.releaseYear = releaseYear;
  }

  @Id
  @GeneratedValue(strategy = GenerationType.IDENTITY)
  private long id;



Chapter 8

203

  @Column
  private String name;

  @Column
  private long releaseYear;

  public long getId() {
    return id;
  }

  public void setId(long id) {
    this.id = id;
  }

  public String getName() {
    return name;
  }

  public void setName(String name) {
    this.name = name;
  }

  public long getReleaseYear() {
    return releaseYear;
  }

  public void setReleaseYear(long releaseYear) {
    this.releaseYear = releaseYear;
  }

  @Override
  public String toString() {
    return "Film [id=" + id + ", name=" + name + ", releaseYear="
        + releaseYear + "]";
  }

}

Creating an interface – DAO
Here, we will create an interface for the film class by adding the following code:

Source file: FilmDao.java

package com.packt.dao;

import java.util.List;



Integration with Other Frameworks

204

import com.packt.modal.Film;

public interface FilmDao {

  public void save(Film film);

  public List<Film> getAll();

  public Film getById(long filmId);
}

The Spring configuration
Spring is known for dependency injection, where it allows the user to inject a dependency 
from a hard code and has the facility to provide the configuration via XML. Here, we will create 
spring.xml in which we will write all the beans that are used at runtime:

Source file: spring.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
  xmlns:tx="http://www.springframework.org/schema/tx"
  xsi:schemaLocation="http://www.springframework.org/schema/beans 
    http://www.springframework.org/schema/beans/spring-beans.xsd
    http://www.springframework.org/schema/tx 
    http://www.springframework.org/schema/tx/spring-tx-4.0.xsd">

  <!-- Line 3 --> <bean id="dataSource"
  class="org.springframework.jdbc.datasource. 
DriverManagerDataSource">
    <!-- Line 4 --> <property name="driverClassName"  
    value="com.mysql.jdbc.Driver" />
    <!-- Line 5  --> <property name="url" 
    value="jdbc:mysql://localhost:3306/springHibernateIntegration"  
/>
    <!-- Line 6  --> <property name="username" value="root" />
    <!-- Line 7  --> <property name="password" value="root" />
  </bean>

  <!-- Line 9  --> <bean id="hibernate4AnnotatedSessionFactory"
    class="org.springframework.orm. 
    hibernate4.LocalSessionFactoryBean">
    <!-- Line 10  --> <property name="dataSource" ref="dataSource"  
/>
    <!-- Line 11  --> <property name="annotatedClasses">



Chapter 8

205

      <list>
        <!-- Line 13  --> <value>com.packt.modal.Film</value>
      </list>
    </property>
    /* Line 16 */ <property name="hibernateProperties">
      <props>
        /* Line 18 */ <prop key="hibernate.dialect">
org.hibernate.dialect.MySQLDialect
</prop>  
        <prop  
key="hibernate.current_session_context_class">thread</prop>
        <prop key="hibernate.format_sql">true</prop>
        <prop key="hibernate.hbm2ddl.auto">create</prop>
      </props>
    </property>
  </bean>

  /* Line 26 */ <bean id="filmDao"  
  class="com.packt.dao.FilmDaoImpl">
    /* Line 27 */ <property name="sessionFactory"  
    ref="hibernate4AnnotatedSessionFactory" />
  </bean>
</beans>

Here, Line 3 creates a bean with id, dataSource, which means that it creates an instance 
of the org.springframework.jdbc.datasource.DriverManagerDataSource class, 
which is mentioned in the class attribute of the bean.

The properties are shown in Lines 4, 5, 6, and 7, which are driverClassName,  
url, username, and password respectively. They are fields declared in the  
org.springframework.jdbc.datasource.DriverManagerDataSource class  
and are used to provide the database-related configuration.

The code shown in Lines 4, 5, 6, and 7 uses a setter-based injection to inject the value in to 
the bean.

The bean declared in Line 9 is used to create the object of SessionFactory, which we 
created using the hibernate.cfg.xml file in the core hibernate application.

The code written in Line 10 provides a reference to the dataSource bean to use the 
database property.

The code written in Line 13 shows the classes used in the application, so it will be scanned 
at the start of the application.

The code written in Line 16 is used to provide a hibernate-specific property to 
SessionFactory.



Integration with Other Frameworks

206

Line 26 shows the initialization of FilmDaoImpl, and Line 27 injects the object of 
SessionFactory into the FilmDaoImpl class. So, we can use it directly without creating 
an object of that class using a new keyword as Spring will create an instance of the particular 
class for us.

Reviewing the project structure
After creating those files, look into your Maven project structure, which is created with Eclipse, 
as shown in the following screenshot:

How to do it…
In this section, we will discuss the implementation of the FilmDao interface and main class 
to run our code using the main method.

The DAO implementations
This shows the implementation of the FilmDao.java interface:

Code
Source File: FilmDaoImpl.java

package com.packt.dao;



Chapter 8

207

import java.util.List;

import org.hibernate.Criteria;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.criterion.Restrictions;

import com.packt.modal.Film;

public class FilmDaoImpl implements FilmDao {

  SessionFactory sessionFactory;

  /* Line 17 */ public void setSessionFactory(SessionFactory  
  sessionFactory) {
    this.sessionFactory = sessionFactory;
  }

  /* Line 21 */ public void save(Film film) {
    Session session = this.sessionFactory.openSession();
    Transaction tx = session.beginTransaction();
    session.saveOrUpdate(film);
    tx.commit();
    session.close();
  }

  /* Line 29 */ public List<Film> getAll() {
    Session session = this.sessionFactory.openSession();
    List<Film> filmList = session.createQuery("from Film").list();
    session.close();
    return filmList;
  }

  /* Line 36 */ public Film getById(long filmId) {
    Session session = this.sessionFactory.openSession();
    Criteria criteria = session.createCriteria(Film.class);
    criteria.add(Restrictions.eq("id", filmId));
    Film film = (Film) criteria.uniqueResult();
    session.close();
    return film;
  }

}



Integration with Other Frameworks

208

The FileDaoImpl class implements the FileDao interface; so, it shows the implementation 
for all the methods defined in the interface.

The setter written in Line 17 is used to inject SessionFactory in this class. Also, Line 21 
shows the implementation of the save() method, Line 29 shows the implementation of the 
getAll() method, and Line 36 shows the implementation of the getById() method.

Now, the following code shows an executable class that is used to test all the functionalities:

Source file: TestApp.java

package com.packt.common;

import java.util.List;
import org.springframework.context.support.
ClassPathXmlApplicationContext 
;
import com.packt.dao.FilmDao;
import com.packt.modal.Film;

public class TestApp {

  public static void main(String[] args) {

    /* Line 14 */ClassPathXmlApplicationContext context = new  
    ClassPathXmlApplicationContext("spring.xml");

    /* Line 16 */FilmDao filmDao = (FilmDao)  
    context.getBean("filmDao");

    /* Line 18 */Film film1 = new Film("Film 1", 2013);
    /* Line 19 */filmDao.save(film1);
    /* Line 20 */System.out.println("Film Saved: " + film1);

    /* Line 22 */Film film2 = new Film("Film 2", 2014);
    /* Line 23 */filmDao.save(film2);
    /* Line 24 */System.out.println("Film Saved: " + film2);

    /* Line 26 */System.out.println("\nAll Film List");
    /* Line 27 */List<Film> films = filmDao.getAll();
    /* Line 28 */for (Film filmObj : films) {
    /* Line 29 */  System.out.println(filmObj);
    /* Line 30 */}

    /* Line 32 */System.out.println("\nGet Film by id 1");
    /* Line 33 */Film film = filmDao.getById(1);



Chapter 8

209

    /* Line 34 */System.out.println(film);
    /* Line 35 */context.close();
  }
}

Output
The output will be as follows:

Hibernate: drop table if exists film
Hibernate: create table film (id bigint not null auto_increment,  
name varchar(255), releaseYear bigint, primary key (id))

Hibernate: insert into film (name, releaseYear) values (?, ?)
Film Saved: Film [id=1, name=Film 1, releaseYear=2013]
Hibernate: insert into film (name, releaseYear) values (?, ?)
Film Saved: Film [id=2, name=Film 2, releaseYear=2014]

All Film List
Hibernate: select film0_.id as id1_0_, film0_.name as name2_0_,  
film0_.releaseYear as releaseY3_0_ from film film0_
Film [id=1, name=Film 1, releaseYear=2013]
Film [id=2, name=Film 2, releaseYear=2014]

Get Film by id 1
Hibernate: select this_.id as id1_0_0_, this_.name as name2_0_0_,  
this_.releaseYear as releaseY3_0_0_ from film this_ where  
this_.id=?
Film [id=1, name=Film 1, releaseYear=2013]

How it works…
Let's consider the code line by line to understand it.

In the line, /* Line 14 */ClassPathXmlApplicationContext context 
= new ClassPathXmlApplicationContext("spring.xml");, we created 
an instance of the ClassPathXmlApplicationContext class and provided our 
bean configuration file, spring.xml, as a constructor argument. As we used the 
ClassPathXmlApplicationContext class, hibernate will look in the classpath for 
spring.xml and load all the beans defined in this file.

Using the line, /* Line 16 */FilmDao filmDao = (FilmDao) context.
getBean("filmDao");, we fetched a bean from the context with id filmDao. It will  
return an instance of the FilmDaoImpl class. The bean is declared in the spring.xml  
file in Line 26: <bean id="filmDao" class="com.packt.dao.FilmDaoImpl">.



Integration with Other Frameworks

210

Lines 18 to 24 are used to create a different instance of Film and save it to the database 
using the DAO method, save(Film film);.

Lines 26 to 30 are used to get all the films using the getAll(); method.

Lines 32 to 35 are used to get Film by id using the getById(long filmId); method.

Integration with Struts
Struts is an open source web application framework that is designed to support the development 
life cycle, which includes building, deploying, and maintaining the application. Struts is based on 
the MVC (Model View Controller) pattern. It is available under Apache License.

The official site of Struts to download the distribution, support, contribution, and tutorials is 
https://struts.apache.org/.

Here, we will create a Maven-based Struts web application to understand how to integrate 
hibernate with Struts. In this recipe, we will continue to use the DAO pattern.

Struts has no plugin available for integration with hibernate, so we will manage all hibernate 
code manually.

Getting ready
In this section, we will create a code file required for hibernate and Struts with a detailed 
description.

The project dependencies
Here, we will create a Maven project; so, all project dependencies will be mentioned in pom.xml:

Source file: pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"  
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0  
http://maven.apache.org/maven-v4_0_0.xsd">
  <modelVersion>4.0.0</modelVersion>
  <groupId>com.packt</groupId>
  <artifactId>StrutsHibernate</artifactId>
  <packaging>war</packaging>
  <version>0.0.1-SNAPSHOT</version>
  <name>StrutsHibernate Maven Webapp</name>
  <url>http://maven.apache.org</url>

  <properties>

https://struts.apache.org/


Chapter 8

211

    <struts2-core.version>2.3.24</struts2-core.version>
    <hibernate.version>4.3.5.Final</hibernate.version>
  </properties>

  <dependencies>
    <dependency>
      <groupId>org.apache.struts</groupId>
      <artifactId>struts2-core</artifactId>
      <version>${struts2-core.version}</version>
    </dependency>

    <dependency>
      <groupId>org.hibernate</groupId>
      <artifactId>hibernate-core</artifactId>
      <version>${hibernate.version}</version>
    </dependency>

    <dependency>
      <groupId>mysql</groupId>
      <artifactId>mysql-connector-java</artifactId>
      <version>5.1.9</version>
    </dependency>
  </dependencies>
  <build>
    <finalName>StrutsHibernate</finalName>
  </build>
</project>

In this pom file, we covered the required dependency for the Struts core, hibernate, and the 
MySQL connector only.

The hibernate configuration
We will create a hibernate configuration file to provide the database configuration:

Source file: hibernate.cfg.xml

<?xml version='1.0' encoding='UTF-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
    "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
    "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
  <session-factory>
    <property  
name="hibernate.dialect">org.hibernate.dialect.MySQLDialect</prope 
rty>



Integration with Other Frameworks

212

    <property  
name="hibernate.connection.url">jdbc:mysql://localhost:3306/Struts 
HibernateIntegration</property>
    <property name="hibernate.connection.username">root</property>
    <property name="hibernate.connection.password">root</property>
    <property name="show_sql">true</property>
    <property name="hbm2ddl.auto">create</property>

    <mapping class="com.packt.modal.Film" />
  </session-factory>
</hibernate-configuration>

Creating the tables
Use the following script to create the tables if you are not using hbm2dll=create|update:

Table: film

    create table film (
        id bigint not null auto_increment,
        name varchar(255),
        releaseYear bigint,
        primary key (id)
 );

Creating a model class
A model class is the same as a POJO. Here, we will use the same POJO class that was created 
in the previous recipe, Integration with Spring. Also, we will use the Film.java file from the 
previous recipe.

Creating an interface – DAO
Here, we will create an interface for the film class. Execute the following code:

Source file: FilmDao.java

package com.packt.dao;

import java.util.List;

import com.packt.modal.Film;

public interface FilmDao {

  public void save(Film film);

  public List<Film> getAll();
}



Chapter 8

213

The Struts configuration
We need to add a filter in web.xml, create Action, and also map Actions with the  
view part.

The deployment descriptor
As this is a web-based example, we need to register the Struts filter in web.xml so that every 
web request coming from the user passes through that filter only:

Source file: web.xml

<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd" >

<web-app>
  <display-name>Struts Hibernate Web Application</display-name>

  <filter>
    <filter-name>struts2</filter-name>
    <filter-class>
    org.apache.struts2.dispatcher.ng.filter.StrutsPrepareAndExecuteFil 
ter
    </filter-class>
  </filter>

  <filter-mapping>
    <filter-name>struts2</filter-name>
    <url-pattern>/*</url-pattern>
  </filter-mapping>

</web-app>

In this file, the filter is added with url-pattern /*, and org.apache.struts2.
dispatcher.ng.filter.StrutsPrepareAndExecuteFilter is added as the filter class 
so that every request is passed through the StrutsPrepareAndExecuteFilter filter.

Creating an Action class
In this class, we create the actions that are used to perform operations:

Source file: FileAction.java

package com.packt.action;

import java.util.ArrayList;
import java.util.List;



Integration with Other Frameworks

214

import org.hibernate.SessionFactory;

import com.opensymphony.xwork2.ActionSupport;
import com.opensymphony.xwork2.ModelDriven;
import com.packt.common.HibernateUtil;
import com.packt.dao.FilmDao;
import com.packt.dao.FilmDaoImpl;
import com.packt.modal.Film;

/* Line 15 */ public class FilmAction extends ActionSupport  
implements ModelDriven {

  Film film = new Film();
  List<Film> films = new ArrayList<Film>();

  @Override
  /* Line 21 */ public String execute() throws Exception {
  /* Line 22 */   return SUCCESS;
  }

  public List<Film> getFilms() {
    return films;
  }

  public void setFilms(List<Film> films) {
    this.films = films;
  }

  public Object getModel() {
    return film;
  }
  
  /* Line 37 */ public String saveFilm(){
    SessionFactory sessionFactory =  
HibernateUtil.getSessionFactory();
    FilmDao filmDao = new FilmDaoImpl(sessionFactory);
    filmDao.save(film);
    
    // refresh films
    films = filmDao.getAll();
    
    return SUCCESS;
  }
  



Chapter 8

215

  /* Line 48 */ public String listAllFilms(){
    films = null;
    SessionFactory sessionFactory =  
HibernateUtil.getSessionFactory();
    
    FilmDao filmDao = new FilmDaoImpl(sessionFactory);
    films = filmDao.getAll();
    
    return SUCCESS;
  }

}

In Line 15, you can find the extends ActionSupport class. The ActionSupport 
implements multiple interfaces, including the Action interface.

Consider the following code:

public interface Action {
   public static final String SUCCESS = "success";
   public static final String NONE = "none";
   public static final String ERROR = "error";
   public static final String INPUT = "input";
   public static final String LOGIN = "login";
   public String execute() throws Exception;
}

Here, we override the execute() method which returns SUCCESS as a result. SUCCESS is 
the final variable of the Action interface, which provides the result name and is used in the 
struts.xml mapping file to redirect if it is success.

Also, Line 15 shows the implements ModelDriven interface, which is used to convert 
the form data into an object automatically.

The Struts Action mapping
Add the following code:

Source file: struts.xml

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC "-//Apache Software Foundation//DTD Struts  
Configuration 2.0//EN" "http://struts.apache.org/dtds/struts- 
2.0.dtd">

<struts>
  /* Line 5 */ <constant name="struts.devMode" value="true" />



Integration with Other Frameworks

216

  <package name="default" namespace="/" extends="struts-default">

    /* Line 9 */ <action name="addFilmAction"  
class="com.packt.action.FilmAction" method="saveFilm">
      /* Line 10 */ <result name="success">view/film.jsp</result>
    </action>

    /* Line 13 */ <action name="listFilmAction"  
class="com.packt.action.FilmAction" method="listAllFilms">
      /* Line 14 */ <result name="success">view/film.jsp</result>
    </action>

  </package>
</struts>

This file shows the handler for all requests and decides the proper responses accordingly.

Line 5 sets the struts.devMode constant to true; Struts will consider the current 
environment to be the development environment and provide more information and logs on 
the console or output window. This option is not preferred in the production environment.

Line 9 creates an action with the name "addFilmAction", the com.packt.action.
FilmAction class, and the method is saveFilm. It means that if a request comes for the 
addFilmAction action, it will execute the saveFilm method of the com.packt.action.
FilmAction class. If the saveFilm method returns success as an output, it will return 
film.jsp as the response written in Line 10.

Lines 13 and 14 are used to create the action for the list of all Films.

Reviewing the project structure
After creating these many files, look into your Maven project structure, which is created with 
Eclipse, as shown in the following screenshot:



Chapter 8

217

How to do it…
In this section, we will discuss the implementation of the FilmDao interface and create a 
.jsp file, which is used to test our code.



Integration with Other Frameworks

218

Implementing a DAO
This file shows the implementation of the FilmDao interface:

Source file: FilmDaoImpl.java

package com.packt.dao;

import java.util.List;

import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;

import com.packt.modal.Film;

public class FilmDaoImpl implements FilmDao {

  private SessionFactory sessionFactory;
  
  public FilmDaoImpl(SessionFactory sessionFactory) {
    this.sessionFactory = sessionFactory;
  }

  public void save(Film film) {
    Session session = this.sessionFactory.openSession();
    Transaction tx = session.beginTransaction();
    session.saveOrUpdate(film);
    tx.commit();
    session.close();
  }

  public List<Film> getAll() {
    Session session = this.sessionFactory.openSession();
    List<Film> filmList = session.createQuery("from Film").list();
    session.close();
    return filmList;
  }
}

In this file, we only created the two methods that are used to save the file and list all the films.

Creating view – JSP
The Film.jsp view is created in the view directory, which resides under the webapp 
directory in a traditional web application:



Chapter 8

219

Source file: film.java

<%@ taglib prefix="s" uri="/struts-tags"%>
<html>
<head>
</head>

<body>
  <h1>Hibernate with Struts 2 integration</h1>

  <h2>Add Film</h2>
  /* Line 10 */ <s:form action="addFilmAction">
    <s:textfield name="name" label="Name" value="" />
    <s:textfield name="releaseYear" label="Release Year" value=""  
/>
    <s:submit />
  </s:form>

  <h2>All Films</h2>
  <s:if test="films.size() > 0">
    <table border="1" cellpadding="3">
      <tr>
        <th>Id</th>
        <th>Name</th>
        <th>Release Year</th>
      </tr>
      /* Line 24 */ <s:iterator value="films">
        <tr>
          <td><s:property value="id" /></td>
          <td><s:property value="name" /></td>
          <td><s:property value="releaseYear" /></td>
        </tr>
      </s:iterator>
    </table>
  </s:if>
</body>
</html>

This file is returned as an output if the method mapped in struts.xml is returned with the 
desired result tag.

Line 10 creates a Struts form with the addFilmAction action, which invokes the 
saveFilm methods of the com.packt.action.FilmAction class with the mapping 
provided in struts.xml.

Line 24 accesses the list of the variable films defined in FilmAction and renders it as a 
table using an iterator.



Integration with Other Frameworks

220

How it works…
Let's take a look at how this works for us by running a project.

As this is a web-based application, we will use Apache Tomcat as the server environment to 
run the project. Tomcat is available under Apache License Version 2 and can be downloaded 
from http://tomcat.apache.org/.

After running the project, we will open the following link in a browser:

http://localhost:9090/StrutsHibernate/listFilmAction

Once you open this link, it will display a form asking you to insert the film details. Below this, 
a list of films will also be displayed. At startup, it shows a blank table as no film records were 
inserted prior to this, as shown in the following screenshot:

Once you insert any record in the form and click on Submit, it will invoke the saveFilm 
method of the FilmAction class. This mapping is provided in struts.xml. Take a look at 
the following screenshot:

http://tomcat.apache.org/


Chapter 8

221

Once you click on Submit, it will submit all the data to the server, and the server will convert 
all the submitted fields to a Film object and save it to the database. This will also return with 
all the film records. Take a look at the following screenshot:



Integration with Other Frameworks

222

See also…
You can read more on Spring integration at:

http://docs.spring.io/spring/docs/current/spring-framework-reference/
html/orm.html.

http://docs.spring.io/spring/docs/current/spring-framework-reference/html/orm.html
http://docs.spring.io/spring/docs/current/spring-framework-reference/html/orm.html


223

Index
Symbols
@Column annotation

about  62
attributes  62

@Entity annotation  60
@GeneratedValue annotation

attributes  67
using  65

@Id annotation
using  64

@IdClass annotation
using  65

@Table annotation  60, 61
@TableGenerator annotation

attributes  67
using  66

A
aggregate operations

avg  138
category table  136
classes, creating  134, 135
count  141
data, inserting in tables  136
max  140
min  139, 140
performing  133
product table  136
sum  137
tables, creating  133

alias
working with  129-133

annotation
about  59
advantages  59

annotation-based hibernate mapping
class, declaring  13, 14
ID, declaring  14
object, referencing  14
providing  12, 13

AOP (aspects-oriented programming)  199
Array

about  92
persisting  92-94
record, inserting  94
record, retrieving  94

associations
bidirectional  97
unidirectional  97

attributes, @Column annotation
columnDefinition  63
insertable  64
length  62
nullable  63
precision  63
scale  63
unique  63
updatable  64

attributes, @GeneratedValue annotation
generator  67
strategy  67

attributes, @TableGenerator annotation
allocationSize  68, 69
initialValue  68
name  67
pkColumnName  68
pkColumnValue  68
table  67
valueColumnName  68

audit table suffix
changing  188, 189



224

autogenerator column
creating  65
default strategy, using  65
sequence generator, using  66
table generator, using  66

B
batch processing

about  195
classes, creating  195-197

C
class

declaring, as hibernate entity  60
column

creating, in table  62
common join table

used, for one-to-one mapping  107
common primary key

used, for one-to-one mapping  112
composite primary key column

creating  64, 65
criteria

creating  46, 47
used, for pagination  50
used, for restricting results  47, 48

CRUD (Create, Read, Update, Delete)  
operation  26

D
DAO (data access object)

about  199, 200
DAO per class  200
generic DAO or DAO per application  200

database
object, fetching from  36-42
object, removing  42, 43
object, saving  32-36

Data Definition Language (DDL)  2
Data Manipulation Language (DML)  2
default generation strategy

using  65
DI (dependency injection)  199

E
Ehcache distribution

URL  163
Envers  184

F
first-level cache

about  156
classes, getting  157
clear() method  161, 162
evict method  160
properties  156
tables, creating  157-159

foreign key association
used, for one-to-one mapping  98

formula
using, in hibernate  149-152

G
generic SessionFactory provider class

creating  28, 29

H
hbm (hibernate mapping)  10
hibernate

annotation-based hibernate mapping,  
providing  12, 13

configuration providing, properties  
file used  20, 21

configuration providing, XML file used  18-20
configuring, programmatically  22, 23
features  2
file, manual download  3
JAR (Java Archive) file  3
libraries, getting  3
Maven used  3, 4
POJO (Plain Old Java Object), creating  

in Java  4-7
URL  3
XML-based hibernate mapping,  

providing  8-12
hibernate persistent class

creating  4-7
HQL (Hibernate Query Language)  129



225

HQL queries
about  146
FROM clause  146, 147
GROUP BY clause  149
ORDER BY clause  149
SELECT clause  148
WHERE clause  148
working  148

I
interceptor

about  190
classes. creating  190
CustomInterceptor.java, working  193
InterceptorTest.java, working  193
onSave Method, working  194
postFlush Method, working  194
preFlush Method, working  194
tables, creating  191-193

IoC (inversion of control)  199

J
JDBC (Java Database Connectivity)  1
JMS (Java Messaging Service)  199

L
List

about  71
class, creating  72-74
Degree class, creating  78-80
degree table, creating  81
employee record, inserting  81
employee record, retrieving  82
persisting  71
record, deleting  76
record, inserting  74
record, retrieving  75
record, updating  75, 76
tables, creating  72
using  71
working  76, 77

Log4j
URL  33

M
many-to-many mapping

about  121
classes, creating  122-125
record, inserting  125
record retrieving, Developer with  

Technologies used  126
record retrieving, Technology with  

Developers used  127, 128
tables, creating  122

Map
about  87
class, creating  88-90
persisting  87
record, deleting  92
record, inserting  90
record, retrieving  90
record, updating  91, 92
tables, creating  88

MVC (Model View Controller)  210

N
NamedQuery

about  152
name attribute  153
query attribute  153
working with  152-154

native SQL query
entity queries  145, 146
executing  143
scalar queries  144, 145

O
object

fetching, from database  36-42
removing, from database  42, 43
saving, to database  32-36
updating  44, 45

object history
classes, creating  185
maintaining  184
tables, creating  186
working  187, 188



226

object versioning
about  182
classes, creating  182
tables, creating  183
working  183

one-to-one mapping
about  116
classes, creating  116-118
record, inserting  119
record, retrieving  120, 121
record, retrieving for  

many-to-one-mapping  119
tables, creating  116

one-to-one mapping, common join table used
about  107
classes, creating  108-110
record, inserting  110, 111
tables, creating  107

one-to-one mapping, common primary  
key used

about  112
classes, creating  112-115
record, inserting  115
tables, creating  112

one-to-one mapping, foreign key  
association used

about  98
classes, creating  99-104
record, inserting  100-105
record retrieving, child record used  106
record retrieving, parent record used  105
tables, creating  98, 102

ORM (Object-relational Mapping)  
frameworks  1

features  2

P
pagination

code  50
creating, criteria   50
output  50

POJO class
used, for adding caching strategy  164

prefix
changing by property, in configuration file  189
REV column, renaming  189, 190

REVTYPE column, renaming  190
primary key column

creating  64, 65
projection

using  57, 58
properties file

used, for providing hibernate  
configuration  20, 21

Q
query

executing, HQL used  146
query cache

about  165
enabling  166-168

R
relationships

many-to-many  97
many-to-one  97
one-to-many  97
one-to-one  97

results
converting  56
converting, to list  53
converting, to map  53
converting, to user-defined Bean  54
criteria, creating  48
output  48, 49
restricting, criteria used  47, 48
sorting  51-53
transforming  53-54

S
second-level cache

about  162
caching strategy adding, POJO  

class used  164
enabling  163
flow  165

sequence generator
using  66

session
opening  29-31



227

SessionFactory
building  26, 27
features  26

Set
about  83
class, creating  83-85
implementation  87
persisting  83
record, deleting  87
record, inserting  85
record, retrieving  85
record, updating  86

Spring integration
about  199, 200
configuration  204-206
DAO implementations  206-209
interface, creating  203
model class, creating  202
project dependency  200, 201
project structure, reviewing  206
reference  222
tables, creating  202
URL  200
working  209, 210

stateless session
opening  31

Struts integration
about  210
Action class, creating  213-215
configuration  213
DAO, implementing  218
deployment descriptor  213
hibernate configuration  211
interface, creating  212
model class, creating  212
project dependency  210, 211
project structure, reviewing  216, 217
Struts Action mapping  215, 216
tables, creating  212
view, creating  218, 219
working  220, 221

sub query
executing, criteria used  142, 143

T
table

creating, in database  60, 61
table generator, using  66

table per class hierarchy strategy
about  168
classes, creating  169, 170
ContractualEmployee.java, annotations  171
Employee.java, annotations  171
PermanentEmployee.java, annotations  171
tables, creating  170
working  172, 173

table per concrete class strategy
about  177
classes, creating  177, 178
ContractualEmployee.java, annotations  180
Employee.java, annotations  179
PermanentEmployee.java, annotations  180
tables, creating  179
working  181

table per subclass strategy
about  173
classes, creating  173, 174
tables, creating  174-177
working  177

U
uniqueConstraints  60

X
XML-based hibernate mapping

providing  8-12
XML file

used, for providing hibernate configuration  
18-20





 
Thank you for buying  

Java Hibernate Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL 
Management, in April 2004, and subsequently continued to specialize in publishing highly focused 
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and 
customizing today's systems, applications, and frameworks. Our solution-based books give you the 
knowledge and power to customize the software and technologies you're using to get the job done. 
Packt books are more specific and less general than the IT books you have seen in the past. Our 
unique business model allows us to bring you more focused information, giving you more of what 
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge 
books for communities of developers, administrators, and newbies alike. For more information, 
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to 
continue its focus on specialization. This book is part of the Packt open source brand, home 
to books published on software built around open source licenses, and offering information to 
anybody from advanced developers to budding web designers. The Open Source brand also runs 
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project 
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would 
like to discuss it first before writing a formal book proposal, then please contact us; one of our 
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

www.packtpub.com


Spring Cookbook
ISBN: 978-1-78398-580-7            Paperback: 234 pages

Over 100 hands-on recipes to build Spring web 
applications easily and efficiently

1. Build full-featured web applications with  
Spring MVC.

2. Use Spring 4 Java configuration style to write  
less code.

3. Learn how to use dependency injection 
and aspect-oriented programming to write 
compartmentalized and testable code.

Learning Spring Application 
Development
ISBN: 978-1-78398-736-8            Paperback: 394 pages

Develop dynamic, feature-rich, and robust Spring-based 
applications using the Spring Framework

1. Build and deploy Spring-powered, production-grade 
applications and services with minimal fuss.

2. Discover the key Spring framework-related 
technology standards such as Spring core,  
Spring-AOP, Spring data access frameworks, and 
Spring testing to develop robust Java applications 
easily and rapidly.

3. A hands-on guide enriched with plenty of 
diagrams, and Java programs to give you a better 
understanding of how to design, develop, and test 
your Spring-based application.

 

 
Please check www.PacktPub.com for information on our titles



Mastering Spring Application 
Development
ISBN: 978-1-78398-732-0            Paperback: 288 pages

Gain expertise in developing and caching your 
applications running on the JVM with Spring

1. Build full-featured web applications, such as 
Spring MVC applications, efficiently that will get 
you up and running with Spring web development.

2. Reuse working code snippets handy for integration 
scenarios such as Twitter, e-mail, FTP, databases, 
and many others.

3. An advanced guide which includes Java programs 
to integrate Spring with Thymeleaf.

Mastering Apache Maven 3
ISBN: 978-1-78398-386-5            Paperback: 298 pages

Enhance developer productivity and address exact 
enterprise build requirements by extending Maven

1. Develop and manage large, complex projects  
with confidence.

2. Extend the default behavior of Maven with custom 
plugins, lifecycles, and archetypes.

3. Explore the internals of Maven to arm yourself 
with knowledge to troubleshoot build issues.

 
 

 
Please check www.PacktPub.com for information on our titles


	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Setting Up Hibernate
	Introduction
	Getting the required libraries for hibernate
	Creating a hibernate persistent class
	Providing an XML-based hibernate mapping
	Providing an annotation-based hibernate mapping
	Providing a hibernate configuration using an XML file
	Providing a hibernate configuration using the properties file
	Configuring hibernate programmatically

	Chapter 2: Understanding the Fundamentals
	Introduction
	Building a SessionFactory
	Creating a generic SessionFactory provider class
	Opening a new session
	Opening a stateless session
	Saving an object to the database
	Fetching an object from the database
	Removing an object from the database
	Updating an object
	Creating a criteria
	Restricting the results using a criteria
	Pagination using a criteria
	Sorting the results
	Transforming a result
	Using basic projection

	Chapter 3: Basic Annotations
	Introduction
	Declaring a class as an entity and creating a table in the database – @Entity and @Table
	Creating a column in the table – @Column
	Creating a primary key and composite primary key column – @Id and @IdClass
	Creating an autogenerator column

	Chapter 4: Working with Collections
	Introduction
	Persisting List
	Persisting Set
	Persisting Map
	Persisting Array

	Chapter 5: Working with Associations
	Introduction
	One-to-one mapping using foreign key association
	One-to-one mapping using a common 
join table
	One-to-one mapping using a common primary key
	One-to-many mapping or many-to-one mapping
	Many-to-many mapping

	Chapter 6: Querying
	Introduction
	Working with an alias
	Performing aggregate operations
	Executing a subquery using a criteria
	Executing a native SQL query
	Executing a query using HQL
	Using formula in hibernate
	Working with NamedQuery

	Chapter 7: Advanced Concepts
	Introduction
	Working with a first-level cache
	Working with a second-level cache
	Working with a query cache
	Working with the table per class hierarchy strategy of inheritance
	Working with the table per subclass strategy of inheritance
	Working with the table per concrete class strategy of inheritance
	Working with the versioning of objects
	Maintaining the history of an object
	Working with an interceptor
	Working with batch processing

	Chapter 8: Integration with 
Other Frameworks
	Introduction
	Integration with Spring
	Integration with Struts

	Index



