
■
■
■
■
■
■

■
■
■
■
■
■
■

Shelley Powers

JavaScript
Cookbook
PROGRAMMING THE WEB

2nd
 Ed

ition

www.allitebooks.com

http://www.allitebooks.org

JAVA SCRIPT/ WEB

JavaScript Cookbook

ISBN: 978-1-491-90188-5

US $49.99 CAN $57.99

“ A comprehensive, example-

driven tour of the language

and its platforms.”
—Dr. Axel Rauschmayer

author of Speaking JavaScript

Shelley Powers has been working

with and writing about web tech-

n o l o g i e s—fro m th e f i r s t re l e as e

of JavaScript to the latest graphics

and design tools—for more than 18

years. Her recent O’Reilly books have

covered JavaScript, HTML5 media

objects, Ajax, and web graphics.

Twitter: @oreillymedia

facebook.com/oreilly

Problem solving with JavaScript is a lot trickier now that its use has expanded

considerably in size, scope, and complexity. This cookbook has your back,

with recipes for common tasks across the JavaScript world, whether you’re

working in the browser, the server, or a mobile environment. Each recipe

includes reusable code and practical advice for tackling JavaScript objects,

Node, Ajax, JSON, data persistence, graphical and media applications, complex

frameworks, modular JavaScript, APIs, and many related technologies.

Aimed at people who have some experience with JavaScript, the first part

covers traditional uses of JavaScript, along with new ideas and improved

functionality. The second part dives into the server, mobile development,

and a plethora of leading-edge tools. You’ll save time—and learn more

about JavaScript in the process.

Topics include:

Classic JavaScript:

 ■ Arrays, functions, and the JavaScript Object

 ■ Accessing the user interface

 ■ Testing and accessibility

 ■ Creating and using JavaScript libraries

 ■ Client-server communication with Ajax

 ■ Rich, interactive web efects

JavaScript, All Blown Up:

 ■ New ECMAScript standard objects

 ■ Using Node on the server

 ■ Modularizing and managing JavaScript

 ■ Complex JavaScript frameworks

 ■ Advanced client-server communications

 ■ Visualizations and client-server graphics

 ■ Mobile application development

www.allitebooks.com

http://www.allitebooks.org

Shelley Powers

SECOND EDITION

JavaScript Cookbook

www.allitebooks.com

http://www.allitebooks.org

JavaScript Cookbook, Second Edition

by Shelley Powers

Copyright © 2015 Shelley Powers. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Brian MacDonald

Production Editor: Kara Ebrahim

Copyeditor: Jasmine Kwityn

Proofreader: Kara Ebrahim

Indexer: Judy McConville

Cover Designer: Ellie Volckhausen

Interior Designer: David Futato

Illustrator: Rebecca Demarest

February 2015: Second Edition

Revision History for the Second Edition:

2015-01-23: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491901885 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. JavaScript Cookbook, Second Edition, the
cover image of a little egret, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and instruc‐
tions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors
or omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source licenses or the intel‐
lectual property rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

ISBN: 978-1-491-90188-5

[LSI]

www.allitebooks.com

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491901885
http://www.allitebooks.org

Table of Contents

The World of JavaScript. ix

Part I. Classic JavaScript

1. The JavaScript Not-So-Simple Building Blocks. 3
1.1. Differentiating Between a JavaScript Object, Primitive, and Literal 3
1.2. Extracting a List from a String 7
1.3. Checking for an Existing, Nonempty String 10
1.4. Inserting Special Characters 14
1.5. Replacing Patterns with New Strings 16
1.6. Finding and Highlighting All Instances of a Pattern 18
1.7. Swapping Words in a String Using Capturing Parentheses 22
1.8. Replacing HTML Tags with Named Entities 25
1.9. Converting an ISO 8601 Formatted Date to a Date Object Acceptable
Format 25
1.10. Using Function Closures with Timers 29
1.11. Tracking Elapsed Time 31
1.12. Converting a Decimal to a Hexadecimal Value 32
1.13. Summing All Numbers in a Table Column 33
1.14. Converting Between Degrees and Radians 36
1.15. Find the Radius and Center of a Circle to Fit Within a Page Element 37
1.16. Calculating the Length of a Circular Arc 39
1.17. Using ES6 String Extras Without Leaving Users in the Dirt 40

2. JavaScript Arrays. 43
2.1. Searching Through an Array 43
2.2. Flattening a Two-Dimensional Array with concat() and apply() 45
2.3. Removing or Replacing Array Elements 46
2.4. Extracting a Portion of an Array 48

iii

www.allitebooks.com

http://www.allitebooks.org

2.5. Applying a Function Against Each Array Element 48
2.6. Traversing the Results from querySelectorAll() with forEach() and call() 50
2.7. Applying a Function to Every Element in an Array and Returning a New
Array 51
2.8. Creating a Filtered Array 52
2.9. Validating Array Contents 52
2.10. Using an Associative Array to Store Form Element Names and Values 54
2.11. Using a Destructuring Assignment to Simplify Code 58

3. Functions: The JavaScript Building Blocks. 61
3.1. Placing Your Function and Hoisting 61
3.2. Passing a Function As an Argument to Another Function 63
3.3. Implementing a Recursive Algorithm 65
3.4. Preventing Code Blocking with a Timer and a Callback 68
3.5. Creating a Function That Remembers Its State 72
3.6. Converting Function Arguments into an Array 75
3.7. Reducing Redundancy by Using a Partial Application 77
3.8. Improving Application Performance with Memoization (Caching
Calculations) 80
3.9. Using an Anonymous Function to Wrap Global Variables 82
3.10. Providing a Default Parameter 83

4. The Malleable JavaScript Object. 85
4.1. Keeping Object Members Private 86
4.2. Using Prototype to Create Objects 87
4.3. Inheriting an Object’s Functionality 90
4.4. Extending an Object by Defining a New Property 92
4.5. Preventing Object Extensibility 94
4.6. Preventing Any Changes to an Object 95
4.7. Namespacing Your JavaScript Objects 97
4.8. Rediscovering this with Prototype.bind 100
4.9. Chaining Your Object’s Methods 103

5. JavaScript and Directly Accessing the User Interface. 107
5.1. Accessing a Given Element and Finding Its Parent and Child Elements 107
5.2. Accessing All Images in the Web Page 110
5.3. Discovering All Images in Articles Using the Selectors API 116
5.4. Setting an Element’s Style Attribute 119
5.5. Applying a Striped Theme to an Unordered List 122
5.6. Finding All Elements That Share an Attribute 123
5.7. Inserting a New Paragraph 124
5.8. Adding Text to a New Paragraph 125

iv | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

5.9. Deleting Rows from an HTML Table 127
5.10. Adding a Page Overlay 129
5.11. Creating Collapsible Form Sections 133
5.12. Hiding Page Sections 136
5.13. Creating Hover-Based Pop-Up Info Windows 137
5.14. Displaying a Flash of Color to Signal an Action 140

6. Preliminary Testing and Accessibility. 143
6.1. Cleaning Up Your Code with JSHint 143
6.2. Unit Testing Your Code with QUnit 145
6.3. Testing Your Application in Various Environments 148
6.4. Performance Testing Different Coding Techniques 152
6.5. Highlighting Errors Accessibly 156
6.6. Creating an Accessible Automatically Updated Region 163

7. Creating and Using JavaScript Libraries. 165
7.1. Finding the Perfect Library 165
7.2. Testing for Features with Modernizr.load 166
7.3. Going Beyond the Math Object’s Capability 168
7.4. Finding the Number of Days Between Two Dates 170
7.5. Using an External Library: Building on the jQuery Framework 171
7.6. Using a jQuery Plugin 174
7.7. Handling Keyboard Shortcuts with Mousetrap 177
7.8. Utilizing the Utility Library Underscore 180
7.9. Packaging Your Code 182
7.10. Adding Support for Private Data Members 185
7.11. Minify Your Library 187
7.12. Hosting Your Library 189
7.13. Serving Code from a CDN 192
7.14. Convert Your Library to a jQuery Plug-in 193
7.15. Safely Combining Several Libraries in Your Applications 195

8. Simplified Client-Server Communication and Data. 199
8.1. Handling an XML Document Returned via an Ajax Call 199
8.2. Extracting Pertinent Information from an XML Tree 201
8.3. Parsing and Automatically Modifying JSON 206
8.4. Converting an Object to a Filtered/Transformed String with JSON 208
8.5. Making an Ajax Request to Another Domain (Using JSONP) 209
8.6. Processing JSON from an Ajax Request 212
8.7. Populating a Selection List from the Server 214
8.8. Using a Timer to Automatically Update the Page with Fresh Data 218

Table of Contents | v

www.allitebooks.com

http://www.allitebooks.org

9. Creating Media Rich, Interactive Web Effects. 221
9.1. Creating a Dynamic Line Chart in Canvas 221
9.2. Adding JavaScript to SVG 227
9.3. Accessing SVG from Web Page Script 231
9.4. Integrating SVG and the Canvas Element in HTML 233
9.5. Running a Routine When an Audio File Begins Playing 235
9.6. Controlling Video from JavaScript with the video Element 237
9.7. Adding Filter Effects to Video via Canvas 241

Part II. JavaScript, All Blown Up

10. The New ECMAScript Standard Objects. 249
10.1. Using let in Your Browser Application 250
10.2. Creating a Collection of Non-Duplicated Values 253
10.3. Creating Unique Key/Value Pairs with Uniquely Different Keys 255
10.4. Creating Absolutely Unique Object Property Keys 258
10.5. Iterating Through Tasks Made Easy 260
10.6. Creating Functions that Gracefully Yield 261
10.7. Implementing Just-in-Time Object Behavioral Modifications with
Proxies 263
10.8. Creating a True Class and Extending It (with a Little Help from Traceur) 266
10.9. Using Promises for Efficient Asynchronous Processing 270

11. Node: JavaScript on the Server. 273
11.1. Responding to a Simple Browser Request 273
11.2. Serving Up Formatted Data 276
11.3. Reading and Writing File Data 278
11.4. Using let and Other ES 6 Additions in Node 283
11.5. Interactively Trying Out Node Code Snippets with REPL 284
11.6. Getting Input from the Terminal 287
11.7. Working with Node Timers and Understanding the Node Event Loop 289
11.8. Managing Callback Hell 293
11.9. Accessing Command-Line Functionality Within a Node Application 297
11.10. Running Node and Apache on the Same Port 300
11.11. Keeping a Node Instance Up and Running 302
11.12. Monitoring Application Changes and Restarting 304
11.13. Screen Scraping with Request 305
11.14. Creating a Command-Line Utility with Help From Commander 307

12. Modularizing and Managing JavaScript. 311
12.1. Loading Scripts with a Script Loader 312

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

12.2. Loading Scripts Asynchronously the HTML5 Way 315
12.3. Converting Your JavaScript to AMD and RequireJS 316
12.4. Using RequireJS with jQuery or Another Library 319
12.5. Loading and Using Dojo Modules 323
12.6. Installing and Maintaining Node Modules with npm 325
12.7. Searching for a Specific Node Module via npm 326
12.8. Converting Your Library into a Node Module 327
12.9. Taking Your Code Across All Module Environments 329
12.10. Creating an Installable Node Module 333
12.11. Packaging and Managing Your Client-Side Dependencies with Bower 338
12.12. Compiling Node.js Modules for Use in the Browser with Browserify 340
12.13. Unit Testing Your Node Modules 342
12.14. Running Tasks with Grunt 345

13. Fun with APIs. 351
13.1. Accessing JSON-Formatted Data via a RESTful API 351
13.2. Creating a RESTFul API with Restify 355
13.3. Enabling a Mobile-Like Notification in the Desktop Browser 360
13.4. Loading a File Locally in the Browser 362
13.5. Creating a Mini E-Pub Reader Using Web Workers and the File API 365
13.6. Exploring Google Maps and Other APIS 371
13.7. Accessing Twitter’s API from a Node Application 379

14. JavaScript Frameworks. 387
14.1. Using the Express-Generator to Generate an Express Site 388
14.2. Converting a Generated Express Site into a Basic MVC App 396
14.3. Choosing a SPA Framework: Deconstructing the TodoMVC 410
14.4. Working with the OAuth Framework 422
14.5. Extending the Possible with Web Components 436

15. Advanced Client-Server Communications and Streams. 447
15.1. Allowing Cross-Domain Requests 447
15.2. Implementing a PUT Request in Ajax 450
15.3. Sending Binary Data Through Ajax and Loading into an Image 453
15.4. Sharing HTTP Cookies Across Domains 455
15.5. Establishing Two-Way Communication Between Client and Server 458
15.6. Unloading and Zipping Files Using Transform Streams 464
15.7. Testing the Performance and Capability of Your WebSockets Application 466

16. Data Visualizations and Client/Server Graphics. 469
16.1. Creating an SVG Bar Chart with D3 470
16.2. Mapping Data Point Variations with a Radar Chart 476

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

16.3. Feeding a Scrolling Timeline via WebSocket 478
16.4. Generating Screenshots of Generated Web Page Content (PhantomJS) 483
16.5. Converting Graphics to Text (Ocrad.js) 489
16.6. Cropping (or Otherwise Modifying) Uploaded Images 491

17. Data and Persistence. 495
17.1. Validating Form Data 495
17.2. Persisting Information Using HTML5 502
17.3. Using sessionStorage for Client-Side Storage 505
17.4. Creating a localStorage Client-Side Data Storage Item 513
17.5. Using Squel.js to Query a MySQL Database 517
17.6. Persisting Larger Chunks of Data on the Client Using IndexedDB 520
17.7. Accessing Data in the Cloud Using Dropbox Datastores 523

18. JavaScript Hits the (Mobile) Road. 535
18.1. Creating an Installable, Hosted Web App 535
18.2. Packaging Web Apps for the Amazon Appstore 541
18.3. Building a Basic Android App Using Cordova (PhoneGap) 543
18.4. Porting Where Am I? to Android 551
18.5. Creating a Geolocation Firefox OS App 559
18.6. Porting the Geolocation App to a Google Chrome App 569
18.7. Publishing Your Geolocation App in the Kindle Fire OS Environment 577
18.8. Debugging Your Android or Amazon Fire OS App 580
18.9. Getting Information About the Device 583

A. Up and Running in jsBin and jsFiddle. 589

Index. 595

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

The World of JavaScript

I wrote my first book on JavaScript in 1996. At the time, we had to really dig to fill the
book. This was before DHTML, before ECMAScript, before mobile development, and
definitely before Node.js. Form validation and popping up alerts were the big things.
With this second edition of the JavaScript Cookbook, I had the opposite problem: the
world of JavaScript is just too immense to stuff into one book. But I gave it my all.

The world of JavaScript is the key to this book. The use of JavaScript has expanded from
the browser to the server, to the mobile environment, to the cloud. We’ve gone beyond
simple libraries to complex modular systems; from basic animations to rich data visu‐
alizations, with a little audio and video tossed in for fun and giggles. Entire applications
are served in one HTML page thanks to sophisticated frameworks, and MEAN is no
longer an adjective to apply to nasty folk.

Ajax is still around and still relevant, but now it’s joined by direct and immediate bi‐
directional communication—no more having to fake server-client communication, be‐
cause we have it, for real. We can connect to Twitter and Dropbox, create apps for
Android devices, and open ePub files directly in the browser for reading. The libraries
and modules available in both the client and server take care of so much of the complex,
tedious bits, that we can focus on creating what’s unique to our applications. Ten years
ago, we’d be surprised at finding a library that met our needs. Now, we’re surprised when
we don’t.

We have all of this, but we still have JavaScript, the language. We still have String and
Number, Array and Function, and the most basic of statements:

var someVar = 'Hello, World?';

However, today’s JavaScript is not the same as the language I first wrote about in 1996.
It’s growing and expanding, with ECMAScript 5, and now ECMAScript 6, and even the
newest additions for ECMAScript 7. It seem as if there’s a new addition to the language
every month. What am I saying…there is a new edition every month.

ix

Just to make it even more interesting and rich is the increasing number of APIs provided
by both standards organizations and sevice providers.

There’s never been a more exciting time to be a JavaScript developer. But it can also be
a little overwhelming, and that’s the focus of this book: getting a handle on this big
wonderful world of JavaScript.

Book Audience
In order to encompass the many subjects and topics reflective of JavaScript in use today,
we had to start with one premise: this is not a book for a JavaScript newbie. There are
so many good books and tutorials for those new to JavaScript that we felt comfortable
setting the bar a little higher than the first edition of the JavaScript Cookbook.

If you’ve been playing around with JavaScript for several months, maybe tried your hand
with a little Node or Ajax development, you should be comfortable with the book ma‐
terial. Some of the subjects might be challenging, but in a good way.

Book Architecture or Why Is This Book Organized in This
Way?
I originally had this idea of a large graphic diagramming the world of JavaScript, which
I would split into fragments, which I would then use to introduce each chapter. It didn’t
take long for me to realize that no component of JavaScript exists in isolation from the
others. If anything, JavaScript is one big Venn diagram, with dozens of intersections—
more of a spirograph than distinct, connected bubbles. So much for grand visualizations.
Instead, I split the book into 18 loosely defined chapters, with overlap handled by cross
references.

The book is split into two parts labeled Classic JavaScript and JavaScript, All Blown Up.

The classic parts of JavaScript are the solid foundations of the language we’ve had for
the last decade, and aren’t going away. But they aren’t standing still, either. We have our
friends String, Number, Boolean, Array, Function, and Object, but thanks to ECMA‐
Script 5 and 6, there’s a lot more we can do with these objects. In addition, before we
can get into the more leading-edge, complex uses of JavaScript, we still need to under‐
stand how to use Ajax, work with JSON, create and use libraries, as well as incorporate
one of the more popular (jQuery) into our applications. We also need to understand
how to work within the browser, which is still the working environment for most Java‐
Script development, as well as test our creations and make sure they’re accessible.

Now that video and audio, as well as the Canvas element and SVG, are supported in all
modern browsers, a basic understanding of these rich media elements is fundamental.

x | The World of JavaScript

The All Blown Up part of JavaScript is basically everything else. This includes the new
objects introduced in ECMAScript 6, JavaScript in the server (Node), complex frame‐
works (in the server and client), and modular JavaScript. It also includes JavaScript in
mobile devices, data visualizatons, graphical tools available in the server, bidirectional
client-server communication, and the rich world of available APIs, libraries, and
modules.

It seems a bewildering mess at times, but the more examples you try in the different
environments, the more you realize that JavaScript is the key that makes it all come
together.

A break down of the chapters follows in the next sections.

Part I, Classic JavaScript
Part I focuses on traditional uses of JavaScript as they’ve been practiced the last several
years, but updated to incorporate new ideas, modifications, and improved functionality:

Chapter 1, The JavaScript Not-So-Simple Building Blocks
Covering use of some familiar old friends: String, Number, Boolean, RegExp, Math,
and Date. The coverage goes beyond the basic, and also touches on some of the new
extensions that come to us via ECMAScript 5 and 6.

Chapter 2, JavaScript Arrays
Probably no component of JavaScript, the language, has changed more than the
simple, essential Array. This chapter goes beyond basic Array use, and covers some
of the newer functionality.

Chapter 3, Functions: The JavaScript Building Blocks
The ubiquitous Function—what would we do without it? In JavaScript, very little.
This chapter covers some of the more advanced function uses, and introduces more
modern functional uses. We’ll look at the three basic function construction types,
as well as the extremely useful IIFE (Immediately Invoked Function Expression).

Chapter 4, The Malleable JavaScript Object
Following closely on the heels of the Array in undergoing change, both in percep‐
tion and use, the JavaScript Object is nothing if not malleable, hence the chapter
title. Most of the chapter focuses on this malleability, both the good uses and the
not as good. I also briefly touch on the increasing popularity of functional pro‐
gramming versus object-oriented.

Chapter 5, JavaScript and Directly Accessing the User Interface
You can’t escape the DOM, the DOM knows all (nless it’s Shadow DOM, covered
in Chapter 14). It’s a whole lot more fun to work with the DOM nowadays, thanks
to new querying capabilitiy. And though most folks use jQuery, it’s still important

The World of JavaScript | xi

to understand what’s happening beneath the surface of this and other popular
libraries.

Chapter 6, Preliminary Testing and Accessibility
No matter how new JavaScript is, there are still JavaScript best practices to follow,
such as keeping our code clean, testing, and ensuring accessibility. We now have
new tools to make these necessary tasks a little easier, and a little more entertaining.

Chapter 7, Creating and Using JavaScript Libraries
Here we’ll look at the basics of library creation, including minification, hosting your
library in GitHub or CDN, using external libraries (jQuery and Underscore), and
converting your library to a jQuery plug-in. We’ll take jQuery for a spin, but not
all libraries do all things—we’ll also take a look at libraries that focus on one single
type of task. Once we have the basics of library building under our belt, we can
continue with modularizing our code, in Chapter 12.

Chapter 8, Simplified Client-Server Communication and Data
You can’t play with the new communication techniques (e.g. WebSockets) without
a good understanding of Ajax, as well as how to work with JSON and XML. Yes,
XML still does exist. Understanding the technology covered in this chapter is nec‐
essary before working with the newer client-server communication covered in
Chapter 14.

Chapter 9, Creating Media Rich, Interactive Web Effects
This chapter provides basic usage techniques for the Canvas element and 2D
graphics, SVG, and the audio and video elements. It also touches on combining the
media types (integrating SVG and Canvas) and altering videos as they run. Data
visualizations, more escoteric graphical tools, and server-side graphics are covered
in Chapter 16.

Part II, JavaScript, All Blown Up
Part II is labeled All Blown Up because a few years ago, JavaScript developers never could
have imagined all the things we can do today. Not all of the technology covered is brand
new, but most is leading-edge. This part of the book also gets into the more complex
uses of JavaScript, such as advanced client-server communication, data visualization,
OAuth, and mobile development:

Chapter 10, The New ECMAScript Standard Objects
There are several new objects introduced with ECMAScript 6. I touch on all of them,
or at least, all of them known at the time the book was written. (Yes, JavaScript is
changing…a bit too fast to keep up with, at times.) What’s my favorite new addi‐
tions? Function generators and iterators.

xii | The World of JavaScript

Chapter 11, Node: JavaScript on the Server
This chapter provides a faster paced introduction to working with Node.js. You
don’t need past experience with Node to work with the examples in this chapter,
but the chapter does move along quickly. It also answers those most commonly
asked Node questions: How do you keep a Node server running; how do you run
Node on the same server as Apache; how do you automatically restart Node when
the application changes, or it goes down for some reason. It also explores how to
use Node modules, and how to create a stand alone application based on Node.

Chapter 12, Modularizing and Managing JavaScript
This chapter is all about the new world of JavaScript modularization. It takes the
older but still necessary components of code reuse, covered in Chapter 7, and in‐
corporates the many new tools and approaches for creating, distributing, and using
modular code. The chapter introduces the different approaches to modularization
(AMD and Common JS), creating Node modules, working with RequireJS, Bower,
Browserify, and that task master, Grunt. We in JavaScript are nothing if not creative
with our application names.

Chapter 13, Fun with APIs
An API is a programmer contract. It’s an interface into the inner working of the
browser, but it’s also a way of accessing services or data from a media server or
remote resource. APIs are also used in graphical, data, and mobile applications,
covered in Chapters 16 through 18. This chapter introduces three different kinds
of APIs: remote APIs built on the principle of REST, new W3C APIs that introduce
us to new capabilities in the browser, and remote APIs that act locally.

Chapter 14, JavaScript Frameworks
Some of the more complex JavaScript components are the frameworks, whether
they’re located on the server (ExpressJS), or in the client (AngularJS, Backbone, or
Ember). Frameworks also encompass complex strategies for certain problems or
business use, like OAuth for authorization, and the very new Web Components.

A few asides about this chapter before moving on: I wanted to include a demon‐
stration of at least one of the popular client-side MV* framework tools in the book,
but couldn’t decide which one. They do differ enough that covering one results in
recipes that aren’t helpful for folks not using that specific framework. That’s when
I decided on deconstructing the ToDoMVC web application, and diving into how
it’s implemented using three of the more popular framework tools: Angular, Em‐
ber.js, and Backbone. Hopefully, the process I used can be used with the other
frameworks.

I did go into much more depth with the OAuth framework, because of its increasing
use authorizing access for data and services at the many APIs we’re interested in
using. OAuth is also used with the Twitter API, covered in Chapter 13, as well as
the Dropbox Datastores, covered in Chapter 17.

The World of JavaScript | xiii

I also covered Web Components, but without reliance on a polyfill (e.g. Google’s
Polymer), as I’m wary of replying on roprietary technology when learning about
something new.

Chapter 15, Advanced Client-Server Communications and Streams
Client-server communications is so much better now that WebSockets and CORS
(Cross-Origin Resource Sharing) are standard in all modern browsers. Real-time,
bidirectional communication can greatly simplify our lives. And because this type
of communication is a stream, this chapter also takes a look at Node’s new transform
streams.

Chapter 16, Data Visualizations and Client/Server Graphics
Some of the graphical applications we had fun with when the Canvas element and
SVG first received broader support are giving way to more serious data visualiza‐
tions, most of which use data provided directly from the server. This chapter takes
a closer look at data visualization tools, including one that partners with a Web‐
Socket server application.

Speaking of the server, we now have access to the same rich visualization and
graphics tools in the server that we’ve had in the client, and we’ll explore some of
the more interesting possibilities.

Chapter 17, Data and Persistence
Data. The world runs on data. This chapter first checks in with form validation,
because a good data system depends on good data. Next, we look at the new data
storage mechanisms now available in our browsers, including the more complex
IndexedDB. And because JavaScript is now on the server, we take a peek at accessing
SQL databases (accessing MongoDB is covered in Chapter 15). Lastly, we’ll explore
data in the cloud, by working with Dropbox’s Datastores.

Chapter 18, JavaScript Hits the (Mobile) Road
The last chapter is about all things mobile. Well, Android and web apps mobile
(sorry, no iOS coverage). Thanks to Cordova/PhoneGap, and new mobile APIs, we
can now take our mad HTML5, CSS, and JavaScript skills to Android and Kindle
Fire tablets and smart phones. How fun is that?

Appendix A, Up and Running in jsBin and jsFiddle
This appendix introduces you to jsBin and jsFiddle, which are useful for trying out
the different examples in the book.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

xiv | The World of JavaScript

Constant width

Indicates computer code in a broad sense, including commands, arrays, elements,
statements, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events,
event handlers, XML tags, HTML tags, macros, the contents of files, and the output
from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Websites and pages are mentioned in this book to help you locate online information
that might be useful. Normally both the address (URL) and the name (title, heading) of
a page are mentioned. Some addresses are relatively complicated, but you can probably
locate the pages easier using your favorite search engine to find a page by its name,
typically by writing it inside quotation marks. This may also help if the page cannot be
found by its address; it may have moved elsewhere, but the name may still work.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/shelleyp/javascriptcookbook.

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example code

The World of JavaScript | xv

https://github.com/shelleyp/javascriptcookbook

does not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: JavaScript Cookbook, Second Edition, by
Shelley Powers. Copyright 2015 Shelley Powers, 978-1-491-90188-5.

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu‐
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/js-cookbook-2e.

xvi | The World of JavaScript

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/js-cookbook-2e

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
My appreciation to my editors, Simon St. Laurent and Brian McDonald, as well as all of
the rest of the O’Reilly production staff.

I also want to extend a thank you to my tech reviewers, Dr. Axel Rauschmayer and
Semmy Purewal, with the caveat that any errors or gotchas still in the finished work are
my responsibility.

I also want to thank the many people in the JavaScript community who generously give
their time in extending the language, creating the JavaScript implementations, and the
other technologies so many of us have come to depend on and appreciate. I also want
to include those who write about the technologies online so the rest of us don’t have to
stumble around in the dark.

The World of JavaScript | xvii

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

www.allitebooks.com

http://www.allitebooks.org

PART I

Classic JavaScript

Classic JavaScript is the JavaScript that’s stable, well used, well known, and still a fun‐
damental component of any and all JavaScript applications. From working with the
built-in objects, such as String and Number, to communicating with the server via Ajax
and creating media effects with SVG, Canvas, Video, and Audio, the JavaScript in this
section has broad support and well defined understanding.

CHAPTER 1

The JavaScript Not-So-Simple
Building Blocks

Most JavaScript functionality comes to us via a very basic set of objects and data types.
The functionality associated with strings, numbers, and booleans is provided via the
String, Number, and Boolean data types. Other fundamental functionality, including
regular expressions, dates, and necessary mathematical operations, are provided via the
built-in RegExp, Date, and Math objects, respectively.

The fundamental building blocks of JavaScript have changed over time, but their core
functionality remains the same. In this chapter, I’m focusing less on the syntax associated
with the objects, and more on understanding their place in JavaScript.

A good, introductory overview of the JavaScript standard built-in
objects can be found in the Mozilla Developer Network JavaScript
Reference.

1.1. Differentiating Between a JavaScript Object,
Primitive, and Literal

Problem
People toss around terms like object, primitive, and literal. What is the difference be‐
tween the three, and how can you tell which is which?

3

http://mzl.la/1yHWKMr
http://mzl.la/1yHWKMr

Solution
A JavaScript literal represents a value of a specific type, such as a quoted string (String),
floating-point number (Number), or boolean (Boolean):

"this is a string"
1.45
true

A JavaScript primitive is an instance of a particular data type, and there are five such in

the language: String, Number, Boolean, null, and undefined. The following are exam‐
ples of JavaScript primitives:

"this is a string"
null

Of the primitive data types, three have complementary constructor objects: String,
Number, and Boolean. These objects provide access to the built-in properties and
methods that allow us to do more than simple assignment and subsequent access:

var str1 = "this is a string";
console.log(str1.length); // using String object's length property

Many of the examples in this book use the console.log() function
to display JavaScript results. “The Console Is Your Friend” on page 589
provides a quick how-to on accessing the JavaScript console in
modern browers, and Appendix A also provides directions for set‐
ting up your environment and running the code snippets found in
the solutions.

Discussion
It may seem as if we’re working with simple strings or numbers when we declare a
variable:

var str1 = "this is a simple string";

However, we’re actually creating doorways into an extensive set of functionality.
Without reliance on JavaScript objects, we can assign a string, number, or boolean value
to a variable and then access it at a later time. However, if we want to do more with the
variable, we’ll need to use the data type’s complementary JavaScript object and its
properties.

As an example, if we want to see the length of a string, we’ll access the String object’s

length property:

var str1 = "this is a simple string";
console.log(str1.length); // prints out 23 to browser console

4 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

Behind the scenes, when the code accesses a String object’s property on the literal, a new
String object is created and its value is set to the value of the string contained in the

variable. The length property is accessed and printed out, and the newly created String
object is discarded.

JavaScript engines don’t have to actually create an object to wrap the
primitive when you access object properties; they only have to emu‐
late this type behavior.

There are exactly five primitive data types in JavaScript: string, number, boolean, null,

and undefined. Only the string, number, and boolean data types have complementary
constructor objects. The actual representation of strings, floating-point numbers, inte‐
gers, and booleans are literals:

var str1 = "this is a simple string"; // the quoted string is the literal

var num1 = 1.45; // the value of 1.45 is the literal

var answer = true; // the values of true and false are boolean literals

We can create primitive boolean, string, and number variables either by using a literal

representation or using the object without using the new operator:

var str1 = String("this is a simple string"); // primitive string

var num1 = Number(1.45); // primitive number

var bool1 = Boolean(true); // primitive boolean

To deliberately instantiate an object, use the new operator:

var str2 = new String("this is a simple string"); // String object instance

var num2 = new Number(1.45); // Number object instance

var bool2 = new Boolean(true); // primitive boolean

You can quickly tell the difference between a primitive and an object instance when you
compare an object instance to a literal value using strict equality. For example, running
the following code in a browser:

var str1 = String("string");
var num1 = Number(1.45);
var bool1 = Boolean(true);

if (str1 === "string") {
 console.log('equal');
}

1.1. Differentiating Between a JavaScript Object, Primitive, and Literal | 5

if (num1 === 1.45) {
 console.log('equal');
}

if (bool1 === true) {
 console.log('equal');
}

var str2 = new String("string");
var num2 = new Number(1.45);
var bool2 = new Boolean(true);

if (str2 === "string") {
 console.log('equal');
} else {
 console.log('not equal');
}

if (num2 === 1.45) {
 console.log('equal');
} else {
 console.log('not equal');
}

if (bool2 === true) {
 console.log('equal');
} else {
 console.log('not equal');
}

Results in the following print outs to the console:

equal
equal
equal
not equal
not equal
not equal

The primitive variables (those not created with new) are strictly equal to the literals,
while the object instances are not. Why are the primitive variables strictly equal to the
literals? Because primitives are compared by value, and values are literals.

For the most part, JavaScript developers don’t directly create object instances for the
three primitive data types. Developers just want a number, boolean, or string variable
to act like a number, boolean, or string, rather than an object; we don’t need the enhanced
functionality of the object. More importantly, when developers use strict equality or type
checking in the code, they want a variable to match their expectations of data type, rather
than be defined as “object”:

6 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

var num1 = 1.45;

var num2 = new Number(1.45);

console.log(typeof num1); // prints out number
console.log(typeof num2); // prints out object

Code validators, such as JSHint, output a warning if you instantiate a primitive data
type object directly for just this reason.

See Also
Recipe 1.3 has a more detailed look at the strict equality operators, as compared to the
standard equality operators.

1.2. Extracting a List from a String

Problem
You have a string with several sentences, one of which includes a list of items. The list
begins with a colon (:) and ends with a period (.), and each item is separated by a comma.
You want to extract just the list.

Before:

This is a list of items: cherries, limes, oranges, apples.

After:

['cherries','limes','oranges','apples']

Solution
The solution requires two actions: extract out the string containing the list of items, and
then convert this string into a list.

Use String’s indexOf() to locate the colon, and then use it again to find the first period

following the colon. With these two locations, extract the string using String’s sub

string():

var sentence = 'This is one sentence. This is a sentence with a list of items:' +
'cherries, oranges, apples, bananas. That was the list of items.';
var start = sentence.indexOf(':');
var end = sentence.indexOf('.', start+1);

var listStr = sentence.substring(start+1, end);

Once you have the string consisting of the list items, use the String split() to break
the string into an array:

1.2. Extracting a List from a String | 7

var fruits = listStr.split(',');
console.log(fruits); // ['cherries', ' oranges', ' apples', ' bananas']

Discussion
The indexOf() method takes a search value, as first parameter, and an optional begin‐
ning index position, as second.

The list is delimited by a beginning colon character and an ending period. The index

Of() method is used without the second parameter in the first search, to find the colon.

The method is used again but the colon’s position (plus 1) is used to modify the begin‐
ning location of the search for the period:

var end = sentence.indexOf('.',start+1);

If we didn’t modify the search for the ending period, we’d end up with the location of
the first sentence’s period rather than the period for the sentence containing the list.

Once we have the beginning and ending location for the list, we’ll use the sub

string() method, passing in the two index values representing the beginning and end‐
ing positions of the string:

var listStr = sentence.substring(start+1, end);

The extracted string is:

cherries, oranges, apples, bananas

We’ll finish by using split() to split the list into its individual values:

var fruits = listStr.split(',') ; // ['cherries', ' oranges',
 ' apples', ' bananas']

There is another string extraction method, substr(), that begins extraction at an index
position marking the start of the substring and passing in the length of the substring as
the second parameter. We can easily find the length just by subtracting the beginning
position of the string from the end position:

var listStr = sentence.substr(start+1, end-start);

var fruits = listStr.split(',');

See Also
Another way to extract the string is to use regular expressions and the RegExp object,
covered beginning in Recipe 1.5.

8 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

Advanced
The result of splitting the extracted string is an array of list items. However, the items
come with artifacts (leading spaces) from sentence white space. In most applications,
we’ll want to clean up the resulting array elements.

We’ll discuss the Array object in more detail in Chapter 2, but for now, we’ll use the

Array forEach() method in addition to the String object’s trim() method to clean up
the array:

fruits = listStr.split(',');

console.log(fruits); // [' cherries', ' oranges', ' apples', ' bananas']

fruits.forEach(function(elmnt,indx,arry) {
 arry[indx] = elmnt.trim();
});

console.log(fruits); // ['cherries', 'oranges', 'apples", "bananas"]

The forEach() method applies the function passed as parameter (the callback) to each
array element. The callback function supports three arguments: the array element value,
and optionally, the array element index and the array itself.

Another simpler approach is to pass a regular expression to the split() that trims the
result before it’s returned:

var fruits = listStr.split(/\s*,\s*/);

Now the matching returned value is just the string without the surrounding white space.

The forEach() method is also covered in Recipe 2.5. The code in this
section mutates the array in place, which means it actually modifies
the array as it’s traversed. Another nondestructive approach is to use

the newer map() Array method, covered in Recipe 2.7.

Extra: Simplifying the Code Using Chaining
The example code in this recipe is correct, but a little verbose. We can compress the
code by using JavaScript’s method chaining, allowing us to attach one method call to the
end of a previous method call if the object and methods allow it. In this case, we can

chain the split() method directly to the substring() method:

var start = sentence.indexOf(":");
var end = sentence.indexOf(".", start+1);

var fruits = sentence.substring(start+1, end).split(",");

1.2. Extracting a List from a String | 9

The code isn’t more accurate, but it uses less space and can be easier to read. I’ll cover
method chaining in more detail in Recipe 4.9.

1.3. Checking for an Existing, Nonempty String

Problem
You want to verify that a variable is defined, is a string, and is not empty.

Solution
The simplest solution when testing for a nonempty string is the following:

if (typeof unknownVariable === 'string' && unknownVariable.length > 0)

If the variable isn’t a string, the test will fail, and if the string’s length isn’t longer than
zero (0), it will fail.

However, if you’re interested in testing for a string, regardless of whether it’s a String

object or a string literal, you’ll need a different typeof test, as well as test to ensure the
variable isn’t null:

if (((typeof unknownVariable != 'undefined' && unknownVariable) &&
 unknownVariable.length() > 0) &&
 typeof unknownVariable.valueOf() == 'string') ...

Discussion
You can use length to find out how long the string is and test whether the string variable
is an empty string (zero length):

if (strFromFormElement.length == 0) // testing for empty string

However, when you’re working with strings and aren’t sure whether they’re set or not,
you can’t just check their length, as you’ll get an undefined JavaScript error if the variable
has never been set (or even declared). You have to combine the length test with another

test for existence and this brings us to the typeof operator.

The JavaScript typeof operator returns the type of a variable. The list of possible re‐
turned values are:

• number if the variable is a number

• string if the variable is a string

• boolean if the variable is a Boolean

• function if the variable is a function

• object if the variable is null, an array, or another JavaScript object

10 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

www.allitebooks.com

http://www.allitebooks.org

• undefined if the variable is undefined

Combining the test for a string and a test on the string length ensures our app knows
if the variable is a non-zero length string or not:

if (typeof unknownVariable == 'string' && unknownVariable.length > 0) ...

However, if you’re looking for a nonempty string regardless of whether the string is a
literal or an object, than things get a little more interesting. A string that’s created using
the String constructor:

var str = new String('test');

has a typeof value equal to object not string. We need a more sophisticated test.

First, we need a way to test whether a variable has been defined and isn’t null. The typeof
can be used to ensure the variable isn’t undefined:

if (typeof unknownVariable != 'undefined')...

But it’s not sufficient, because null variables have a typeof value equal to object.

So the defined and not null test is changed to check to see if the variable is defined and

isn’t null:

if (typeof unknownVariable != 'undefined' && unknownVariable) ...

Just listing the variable is sufficient to test whether it’s null or not.

We still don’t know, though, if the variable is a nonempty string. We’ll return the length
test, which should allow us to test whether the variable is a string, and is not empty:

if ((typeof unknownVariable != 'undefined' && unknownVariable) &&
 unknownVariable.length > 0) ...

If the variable is a number, the test fails because a number doesn’t have a length. The

String object and string literal variables succeed, because both support length. However,

an array also succeeds, because the Array object also supports length.

To finish the test, turn to a little used method, valueOf(). The valueOf() method is
available on all JavaScript objects, and returns the primitive (unwrapped) value of the

object. For Number, String, and Boolean, valueOf() returns the primitive value. So if

the variable is a String object, valueOf() returns a string literal. If the variable is already

a string literal, applying the valueOf() method temporarily wraps it in a String object,

which means the valueOf() method will still return a string literal.

Our finished test then becomes:

if(((typeof unknownVariable != "undefined" && unknownVariable) &&
 (typeof unknownVariable.valueOf() == "string")) &&

1.3. Checking for an Existing, Nonempty String | 11

Now, the test functions without throwing an error regardless of the value and type of
the unknown variable, and only succeeds with a nonempty string, regardless of whether
the string is a string object or literal.

Our use of valueOf() is limited. The method is primarily used by the
JavaScript engine, itself, to handle conversions in instances when a
primitive is expected and the engine is given an object.

The process is complex, and normally your application usually won’t have to be this
extensive when testing a value. You’ll typically only need to test whether a variable has

been set (typeof returns the correct data type), or find the length of a string in order to
ensure it’s not an empty string.

Extra: Loose and Strict Equality Operators
I used loose equality (== and !=) in this section, but I use strict equality (=== and !==)
elsewhere in the book. My use of both types of operators is not a typo.

Some folks (Douglas Crockford being the most outspoken) consider the loose equality
operators (== and !=) to be evil, and discourage their use. The main reason many de‐
velopers eschew loose equality operators is that they test primitive values rather than
the variable object, in totality, and the results of the test can be unexpected.

For instance, the following code succeeds:

var str1 = new String('test');
if (str1 == 'test') { ...}

whereas this code fails:

var str1 = new String('test');
if (str1 === 'test') { ...}

The first code snippet succeeds because the string literal (test) and the primitive value

the str1 variable contains are identical. The second code snippet fails the conditional
test because the objects being compared are not equivalent, though they both share the

same primitive value (test): the str1 variable is a String object, while the compared
value is a string literal.

While results of this comparison are relatively intuitive, others are less so. In the fol‐
lowing code snippet, a string is compared to a number, and the results may be
unexpected:

var num = 0;
var str = '0';

12 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

console.log(num == str); // true
console.log(num === str); // false

In the Abstract Equality Comparison Algorithm, when a string is compared to a number,
the loose equality comparison is treated as if the following occurs:

console.log(num === toNumber(str));

And therein lies the risk of loose equality: not understanding the implicit type
conversion.

Sometimes, though, the very nature of the loose equality operator can be useful. For
instance, the following code snippet demonstrates how the loose equality operator saves
us time and code. The test to see if the variable is “bad” succeeds with standard equality

regardless of whether the variable is undefined or null, where it wouldn’t succeed if
strict equality had been used:

var str1;

if (str1 == null) {
 console.log('bad variable');
}

Rather than using the first typeof in the solution, I could shorten the test to the following
and get the same result:

if ((unknownVariable != null && unknownVariable.length > 0) &&
 typeof unknownVariable.valueOf() == 'string') ...

Should you always use strict equality except in these rare instances? Just to ensure you
don’t get unexpected results?

I’m going to buck the industry trend and say “No.” As long as you’re cognizant of how
the equality operators work, and your code is such that you’re either only interested in
primitive values or you want the object type coercion I just demonstrated, you can use
loose equality operators in addition to strict equality.

Consider the following scenario: in a function, you’re testing to see if a counter is a
certain value (100, for example). You’re expecting the counter, passed into the function,
to be a number, but the developer who sent the value to your function passed it as a
string.

When you perform the test, you are only interested in the value of the variable, not
whether it’s a string or number. In this case, strict equality would fail, but not because
the value isn’t what you’re testing for, but because the tested value and the function
argument are different types. And the failure may be such that the developer using your
function thinks that the application generating the value is in error, not that a type
conversion hasn’t been made.

1.3. Checking for an Existing, Nonempty String | 13

http://es5.github.io/#x11.9.3

You don’t care in your function that the variable is a string and not a number. In this
case, what you’re implicitly doing is converting the variable to what you expect and then
doing the comparison. The following are equivalent:

if (counter == 100) ...

if (parseInt(counter) === 100) ...

If the type is critically important, then a first test should be on the
type and a relevant error generated. But this is what I mean by be‐
ing cognizant of your code.

In a more realistic scenario, you may be working with a string, and you don’t care if the
person who passed the string value to your function used a String constructor to create
the string, or used a string literal—all you care about is the primitive value:

var str = 'test';
var str2 = new String('test');

doSomething(str);
doSomething(str2);
...

function doSomething (passedString) {

 if (passedString == 'test')
 ...
}

See Also
For more on the equality operators and their differences, as well as a view from the other
side on the issue, I recommend JS101: Equality. The Mozilla Developer Network has a
lovely, in-depth overview of the comparison operators and how they work in their doc‐
umentation on comparison operators. And do check out the Abstract Equality Com‐
parison Algorithm, directly.

1.4. Inserting Special Characters

Problem
You want to insert a special character, such as a line feed, into a string.

14 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

http://dailyjs.com/2012/08/27/equality/
http://mzl.la/1z2y92i
http://es5.github.io/#x11.9.3
http://es5.github.io/#x11.9.3

Solution
Use one of the escape sequences in the string. For instance, to include the copyright
symbol in a block of text to be added to the page (shown in Figure 1-1), use the escape

sequence \u00A9:

var resultString = "<p>This page \u00A9 Shelley Powers </p>";

// print out to page

 var blk = document.getElementById("result");
 blk.innerHTML = resultString;

Figure 1-1. Using an escape sequence to create the copyright symbol

Discussion
The escape sequences in JavaScript all begin with the backslash character, (\). This char‐
acter signals the application processing the string that what follows is a sequence of
characters that need special handling. Table 1-1 lists the other escape sequences.

Table 1-1. Escape sequences

Sequence Character

\' Single quote

\" Double quote

\\ Backslash

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\ddd Octal sequence (3 digits: ddd)

\xdd Hexadecimal sequence (2 digits: dd)

\udddd Unicode sequence (4 hex digits: dddd)

1.4. Inserting Special Characters | 15

The last three escape sequences in Table 1-1 are patterns, where providing different
numeric values will result in differing escape sequences. The copyright symbol in the
solution is an example of the Unicode sequence pattern.

The escape sequences listed in Table 1-1 can also be represented as a Unicode se‐
quence. Unicode is a computing standard for consistent encoding, and a Unicode se‐

quence is a specific pattern for a given character. For instance, the horizontal tab (\t),

can also be represented as the Unicode escape sequence, \u0009. Of course, if the user
agent disregards the special character, as browsers do with the horizontal tab, the use is
moot.

One of the most common uses of escape sequences is to include double or single quotes
within strings delimited by the same character:

var newString = 'You can\'t use single quotes ' +
 'in a string surrounded by single quotes.' +
 'Oh, wait a sec...yes you can.';

1.5. Replacing Patterns with New Strings

Problem
You want to replace all matched substrings with a new substring.

Solution
Use the String’s replace() method, with a regular expression:

var searchString = "Now is the time, this is the tame";
var re = /t\w{2}e/g;
var replacement = searchString.replace(re, "place");
console.log(replacement); // Now is the place, this is the place

Discussion
The solution also makes use of a global search. Using the global flag (g) with the regular

expression in combination with the String replace() method will replace all instances
of the matched text with the replacement string. If we didn’t use the global flag, only the
first match would trigger a replacement.

The literal regular expression begins and ends with a slash (/). As an alternative, I could
have used the built-in RegExp object:

var re = new RegExp('t\\w{2}e',"g");
var replacement = searchString.replace(re,"place");
console.log(p);

16 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

The difference is the surrounding slashes aren’t necessary when using RegExp, but the
use of the backslash in the pattern has to be escaped. In addition, the global indicator
is a second, optional argument to the RegExp constructor.

You can use a regular expression literal or a RegExp object instance interchangeably.
The primary difference is that the RegExp constructor allows you to create the regular
expression dynamically.

Extra: Regular Expression Quick Primer
Regular expressions are made up of characters that are used alone or in combination
with special characters. For instance, the following is a regular expression for a pattern
that matches against a string that contains the word technology and the word book, in
that order, and separated by one or more whitespace characters:

var re = /technology\s+book/;

The backslash character (\) serves two purposes: either it’s used with a regular character,
to designate that it’s a special character, or it’s used with a special character, such as the
plus sign (+), to designate that the character should be treated literally. In this case, the
backslash is used with s, which transforms the letter s to a special character designating

a whitespace character (space, tab, line feed, or form feed). The \s special character is

followed by the plus sign, \s+, which is a signal to match the preceding character (in
this example, a whitespace character) one or more times. This regular expression would
work with the following:

technology book

It would also work with the following:

technology book

It would not work with the following, because there is no white space between the words:

technologybook

It doesn’t matter how much whitespace is between technology and book, because of the

use of \s+. However, using the plus sign does require at least one whitespace character.

Table 1-2 shows the most commonly used special characters in JavaScript applications.

Table 1-2. Regular expression special characters

Character Matches Example

^ Matches beginning of input /^This/ matches This is…

$ Matches end of input /end$/ matches This is the end

* Matches zero or more times /se*/ matches seeee as well as se

? Matches zero or one time /ap?/ matches apple and and

+ Matches one or more times /ap+/ matches apple but not and

1.5. Replacing Patterns with New Strings | 17

Character Matches Example

{n} Matches exactly n times /ap{2}/ matches apple but not apie

{n,} Matches n or more times /ap{2,}/ matches all p’s in apple and appple but not apie

{n,m} Matches at least n, at most m times /ap{2,4}/ matches four p’s in apppppple

. Any character except newline /a.e/ matches ape and axe

[…] Any character within brackets /a[px]e/ matches ape and axe but not ale

[^…] Any character but those within brackets /a[^px]/ matches ale but not axe or ape

\b Matches on word boundary /\bno/ matches the first no in nono

\B Matches on nonword boundary /\Bno/ matches the second no in nono

\d Digits from 0 to 9 /\d{3}/ matches 123 in Now in 123

\D Any nondigit character /\D{2,4}/ matches Now ' in ‘Now in 123;

\w Matches word character (letters, digits, underscores) /\w/ matches j in javascript

\W Matches any nonword character (not letters, digits,

or underscores)
\/W/ matches % in 100%

\n Matches a line feed

\s A single whitespace character

\S A single character that is not whitespace

\t A tab

(x) Capturing parentheses Remembers the matched characters

Regular expressions are powerful but can be tricky. I’m only cover‐
ing them lightly in this book. If you want more in-depth coverage of
regular expressions, I recommend the excellent Regular Expressions
Cookbook by Jan Goyvaerts and Steven Levithan (O’Reilly).

See Also
Recipe 1.7 shows variations of using regular expressions with the String replace meth‐
od, including the use of capturing parenthesis.

1.6. Finding and Highlighting All Instances of a Pattern

Problem
You want to find all instances of a pattern within a string.

18 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

http://shop.oreilly.com/product/0636920023630.do
http://shop.oreilly.com/product/0636920023630.do

Solution
Use the RegExp exec method and the global flag (g) in a loop to locate all instances of
a pattern, such as any word that begins with t and ends with e, with any number of
characters in between:

var searchString = "Now is the time and this is the time and that is the time";
var pattern = /t\w*e/g;
var matchArray;

var str = "";

// check for pattern with regexp exec, if not null, process

while((matchArray = pattern.exec(searchString)) != null) {
 str+="at " + matchArray.index + " we found " + matchArray[0] + "\n";
}
console.log(str);

The results are:

at 7 we found the
at 11 we found time
at 28 we found the
at 32 we found time
at 49 we found the
at 53 we found time

Discussion
The RegExp exec() method executes the regular expression, returning null if a match
is not found, or an object with information about the match, if found. Included in the
returned array is the actual matched value, the index in the string where the match is
found, any parenthetical substring matches, and the original string:

• index: The index of the located match

• input: The original input string

• [0]: The matched value

• [1],…,[n]+: Parenthesized substring matches, if any

The parentheses capture the matched values. Given a regular expression like that in the
following code snippet:

var re = /a(p+).*(pie)/ig;
var result = re.exec("The apples in the apple pie are tart");
console.log(result);
console.log(result.index);
console.log(result.input);

the resulting output is:

1.6. Finding and Highlighting All Instances of a Pattern | 19

["apples in the apple pie", "pp", "pie"]
4
"The apples in the apple pie are tart"

The array results contain the complete matched value at index zero (0), and the rest of

the array entries are the parenthetical matches. The index is the index of the match, and

the input is just a repeat of the string being matched. In the solution, the index where
the match was found is printed out in addition to the matched value.

The solution also uses the global flag (g). This triggers the RegExp object to preserve
the location of each match, and to begin the search after the previously discovered
match. When used in a loop, we can find all instances where the pattern matches the
string. In the solution, the following are printed out:

at 7 we found the
at 11 we found time
at 28 we found the
at 32 we found time
at 49 we found the
at 53 we found time

Both time and the match the pattern.

Let’s look at the nature of global searching in action. In Example 1-1, a web page is

created with a textarea and an input text box for accessing both a search string and a
pattern. The pattern is used to create a RegExp object, which is then applied against the
string. A result string is built, consisting of both the unmatched text and the matched

text, except the matched text is surrounded by a span element (with a CSS class used to
highlight the text). The resulting string is then inserted into the page, using the

innerHTML for a div element.

Example 1-1. Using exec and global flag to search and highlight all matches in a text
string

<!DOCTYPE html>
<html>

<head>

<title>Searching for strings</title>
<style>

.found

{
 background-color: #ff0;
}
</style>

</head>

<body>

 <form id="textsearch">
 <textarea id="incoming" cols="150" rows="10">
 </textarea>
 <p>

20 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

www.allitebooks.com

http://www.allitebooks.org

 Search pattern: <input id="pattern" type="text" />
 </p>
 </form>
 <button id="searchSubmit">Search for pattern</button>
 <div id="searchResult"></div>

<script>

 document.getElementById("searchSubmit").onclick=function() {

 // get pattern
 var pattern = document.getElementById("pattern").value;
 var re = new RegExp(pattern,"g");

 // get string
 var searchString = document.getElementById("incoming").value;

 var matchArray;
 var resultString = "<pre>";
 var first=0;
 var last=0;

 // find each match
 while((matchArray = re.exec(searchString)) != null) {
 last = matchArray.index;

 // get all of string up to match, concatenate
 resultString += searchString.substring(first, last);

 // add matched, with class
 resultString += "" + matchArray[0] + "";
 first = re.lastIndex;
 }

 // finish off string
 resultString += searchString.substring(first,searchString.length);
 resultString += "</pre>";

 // insert into page
 document.getElementById("searchResult").innerHTML = resultString;
 }

</script>

</body>

</html>

Figure 1-2 shows the application in action on William Wordsworth’s poem, “The Kitten
and the Falling Leaves” after a search for the following pattern:

lea(f|ves)

1.6. Finding and Highlighting All Instances of a Pattern | 21

The bar (|) is a conditional test, and will match a word based on the value on either side
of the bar. So leaf matches, as well as leaves, but not leap.

Figure 1-2. Application finding and highlighting all matched strings

You can access the last index found through the RegExp’s lastIndex property. The

lastIndex property is handy if you want to track both the first and last matches.

See Also
Recipe 1.5 describes another way to do a standard find-and-replace behavior, and
Recipe 1.7 provides a simpler approach to finding and highlighting text in a string.

1.7. Swapping Words in a String Using Capturing
Parentheses

Problem
You want to accept an input string with first and last name, and swap the names so the
last name is first.

22 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

Solution
Use capturing parentheses and a regular expression to find and remember the two names
in the string, and reverse them:

var name = "Abe Lincoln";
var re = /^(\w+)\s(\w+)$/;
var newname = name.replace(re,"$2, $1");

Discussion
Capturing parentheses allow us to not only match specific patterns in a string, but to
reference the matched substrings at a later time. The matched substrings are referenced

numerically, from left to right, as represented by $1 and $2 in the replace() method.

In the solution, the regular expression matches two words separated by a space. Cap‐

turing parentheses were used with both words, so the first name is accessible using $1,

the last name with $2.

The capturing parentheses aren’t the only special characters available with replace().
Table 1-3 shows the other special characters that can be used with regular expressions

and String replace().

Table 1-3. String.replace special patterns

Pattern Purpose

$$ Allows a literal dollar sign ($) in replacement

$& Inserts matched substring

$` Inserts portion of string before match

$' Inserts portion of string after match

$n Inserts n th captured parenthetical value when using RegExp

The second pattern, which reinserts the matched substring, can be used to provide a
simplified version of the Example 1-1 application shown in Recipe 1.6. That example
found and provided markup and CSS to highlight the matched substring. It used a loop

to find and replace all entries, but in Example 1-2 we’ll use replace() with the matched

substring special pattern ($&).

Example 1-2. Using String.replace and special pattern to find and highlight text in a
string

<!DOCTYPE html>
<html>

<head>

<title>Searching for strings</title>
<style>

.found

{

1.7. Swapping Words in a String Using Capturing Parentheses | 23

 background-color: #ff0;
}
</style>

</head>

<body>

 <form id="textsearch">
 <textarea id="incoming" cols="100" rows="10">
 </textarea>
 <p>
 Search pattern: <input id="pattern" type="text" />
 </p>
 </form>
 <button id="searchSubmit">Search for pattern</button>
 <div id="searchResult"></div>

<script>

 document.getElementById("searchSubmit").onclick=function() {

 // get pattern
 var pattern = document.getElementById("pattern").value;
 var re = new RegExp(pattern,"g");

 // get string
 var searchString = document.getElementById("incoming").value;

 // replace
 var resultString = searchString.replace(re,"$&");

 // insert into page
 document.getElementById("searchResult").innerHTML = resultString;
 }

</script>

</body>

</html>

This is a simpler alternative, but the result isn’t quite the same: the line feeds aren’t
preserved with Example 1-2, but they are with Example 1-1.

The captured text can also be accessed via the RegExp object using the exec() method.

Let’s return to the Recipe 1.7 solution code, this time using exec():

var name = "Abe Lincoln";
var re = /^(\w+)\s(\w+)$/;
var result = re.exec(name);
var newname = result[2] + ", " + result[1];

This approach is handy if you want to access the capturing parentheses values, but
without having to use them within a string replacement.

24 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

1.8. Replacing HTML Tags with Named Entities

Problem
You want to paste example markup into a web page, and escape the markup (i.e., have
the angle brackets print out rather than have the contents parsed).

Solution
Use regular expressions to convert angle brackets (<>) into the named entities < and

>:

var pieceOfHtml = "<p>This is a paragraph</p>";
pieceOfHtml = pieceOfHtml.replace(/</g,"<");
pieceOfHtml = pieceOfHtml.replace(/>/g,">");
console.log(pieceOfHtml);

Discussion
It’s not unusual to want to paste samples of markup into another web page. The only
way to have the text printed out, as is, without having the browser parse it, is to convert
all angle brackets into their equivalent named entities.

The process is simple with the use of regular expressions and the String replace
method, as demonstrated in the solution. The key is to remember to use the global flag
with the regular expression, to match all instances of the angle brackets.

Of course, if the regular expression finds the use of > or < in a
mathematical or conditional expression, it will replace these, too.

1.9. Converting an ISO 8601 Formatted Date to a Date
Object Acceptable Format

Problem
You need to convert an ISO 8601 formatted date string into values that can be used to
create a new Date object instance.

Solution
Parse the ISO 8601 string into the individual date values, and use it to create a new
JavaScript Date object instance:

1.8. Replacing HTML Tags with Named Entities | 25

var dtstr= "2014-3-04T19:35:32Z";

dtstr = dtstr.replace(/\D/g," ");
var dtcomps = dtstr.split(" ");

// modify month between 1 based ISO 8601 and zero based Date

dtcomps[1]--;

var convdt = new Date(Date.UTC.apply(null,dtcomps));

console.log(convdt.toString()); // Tue, 04 Mar 2014 19:35:32 GMT

Discussion
The ISO 8601 is an international standard that defines a representation for both dates
and times. It’s not unusual for applications that provide APIs to require ISO 8601 for‐
matting. It’s also not unusual for most dates to and from APIs to be in UTC, rather than
local time.

The solution shows one variation of ISO 8601 formatting. The following demonstrate
some others:

• 2009

• 2009-10

• 2009-10-15

• 2009-10-15T19:20

• 2009-10-15T19:20:20

• 2009-10-15T19:20:20.50

The values are year, month, date, then T to represent time, and hours, minutes, seconds,
and fractions of sections. The time zone also needs to be indicated. If the date is in UTC,
the time zone is represented by the letter Z, as shown in the solution:

2014-3-04T19:35:32Z

Otherwise, the time zone is represented as +hh:mm to represent a time zone ahead of

UTC, and -hh:mm to represent a time zone behind UTC.

If you attempt to create a JavaScript Date with an ISO 8601 formatted string, you’ll get
an invalid date error. Instead, you have to convert the string into values that can be used
with the JavaScript Date.

The simplest way to parse an ISO 8601 formatted string is to use the String split()

method. To facilitate using split(), all non-numeric characters are converted to one
specific character. In the solution, the non-numeric characters are converted to a space:

dtstr = dtstr.replace(/\D/g, " ");

26 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

The ISO-formatted string would be converted to:

2014 03 04 19 35 32

ISO months are one-based values of 1 through 12. To use the month value in JavaScript

Dates, the month needs to be adjusted by subtracting 1:

dtcomps[1]--;

Finally, the new Date is created. To maintain the UTC setting, the Date’s UTC() method

is used to create the date in universal time, which is then passed to the Date constructor.

Rather than listing out each and every single date value, the apply() method is used,

with null as the first value, and all of the arguments as an array as the second:

var convdt = new Date(Date.UTC.apply(null,dtcomps));

The task gets more challenging when you have to account for the different ISO 8601
formats. Example 1-3 shows a JavaScript application that contains a more complex

JavaScript function that converts from ISO 8601 to allowable Date values. The first test
in the function ensures that the ISO 8601 format can be converted to a JavaScript Date.
This means that, at a minimum, the formatted string must have a month, day, and year.

Example 1-3. Converting ISO 8601 formatted dates to JavaScript Dates

<!DOCTYPE html>
<html>

<head>

 <title>Converting ISO 8601 date</title>
</head>

<body>

 <form>
 <p>Datestring in ISO 8601 format: <input type="text" id="datestring" />
 </p>
 </form>
 <button id="dateSubmit">Convert Date</button>
 <div id="result"></div>

 <script type="text/javascript">
 document.getElementById("dateSubmit").onclick=function() {

 var dtstr = document.getElementById("datestring").value;
 var convdate = convertISO8601toDate(dtstr);
 document.getElementById("result").innerHTML=convdate;
 }

 function convertISO8601toDate(dtstr) {

 // replace anything but numbers by spaces
 dtstr = dtstr.replace(/\D/g," ");

 // trim any hanging white space
 dtstr = dtstr.replace(/\s+$/,"");

1.9. Converting an ISO 8601 Formatted Date to a Date Object Acceptable Format | 27

 // split on space
 var dtcomps = dtstr.split(" ");

 // not all ISO 8601 dates can convert, as is
 // unless month and date specified, invalid
 if (dtcomps.length < 3) return "invalid date";

 // if time not provided, set to zero
 if (dtcomps.length < 4) {
 dtcomps[3] = 0;
 dtcomps[4] = 0;
 dtcomps[5] = 0;
 }

 // modify month between 1 based ISO 8601 and zero based Date
 dtcomps[1]--;

 var convdt = new Date(Date.UTC.apply(null,dtcomps));

 return convdt.toUTCString();
 }
 </script>

</body>

</html>

Another test incorporated into Example 1-3 is whether a time is given. If there aren’t
enough array elements to cover a time, then the hours, minutes, and seconds are set to
zero when the UTC date is created.

There are other issues related to dates not covered in the application. For instance, if
the ISO 8601 formatted string isn’t in UTC time, converting it to UTC can require
additional code, both to parse the time zone and to adjust the date to incorporate the
time zone.

Eventually, you won’t need this special processing, because ECMA‐
Script 5 includes support for ISO 8601 dates in methods such as Date

parse(). However, implementation is still inconsistent across all ma‐
jor browsers—nonexistent in older browsers—so you’ll need these
workarounds, or a shim, for now. See Recipe 1.17 for more on using
a shim.

28 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

1.10. Using Function Closures with Timers

Problem
You want to provide a function with a timer, but you want to add the function directly
into the timer method call.

Solution
Use an anonymous function as first parameter to the setInterval() or setTimeout()
method call:

intervalId=setInterval(
 function() {
 x+=5;
 var left = x + "px";
 document.getElementById("redbox").style.left=left;
 },100);

Discussion
Unlike the other material covered in this chapter, JavaScript timers don’t belong to any
of the basic built-in objects. Instead, they’re part of the basic Web API (previously known
as the Browser Object Model, or BOM). In the browser, they’re properties of the Window

object, the browser’s global object, though we don’t need to specify window when ac‐
cessing them. In Node.js, the two timer functions are part of the global object.

When you’re creating timers using setTimeout() and setInterval(), you can pass in
a function variable as the first parameter:

function bing() {
 alert('Bing!');
}

setTimeout(bing, 3000);

However, you can also use an anonymous function, as demonstrated in the solution.
This approach is more useful, because rather than have to clutter up the global space
with a function just to use with the timer, you can embed the function directly. In
addition, you can use a variable local to the scope of the enclosing function when you
use an anonymous function.

Example 1-4 demonstrates an anonymous function within a setInterval() method
call. The approach also demonstrates how the use of this function closure allows access
to the parent function’s local variables within the timer method. In the example, clicking
the red box starts the timer, and the box moves. Clicking the box again clears the timer,

1.10. Using Function Closures with Timers | 29

and the box stops. The position of the box is tracked in the x variable, which is within
scope for the timer function, as it operates within the scope of the parent function.

Example 1-4. Using an anonymous function within a setInterval timer parameter

<!DOCTYPE html>
<head>

<title>interval and anonymous function</title>
<style>

#redbox
{
 position: absolute;
 left: 100px;
 top: 100px;
 width: 200px; height: 200px;
 background-color: red;
}
</style>

</head>

<body>

<div id="redbox"></div>

<script>

 var intervalId=null;

 document.getElementById('redbox').addEventListener('click',startBox,false);

 function startBox() {
 if (intervalId == null) {
 var x = 100;
 intervalId=setInterval(
 function() {
 x+=5;
 var left = x + "px";
 document.getElementById("redbox").style.left=left;
 },100);
 } else {
 clearInterval(intervalId);
 intervalId=null;
 }
 }
</script>

</body>

There’s no guarantee that the timer event fires when it is supposed to fire. Timers run
on the same execution thread as all other user interface (UI) events, such as mouse-
clicks. All events are queued and blocked, including the timer event, until its turn. So,
if you have several events in the queue ahead of the timer, the actual time could differ
—probably not enough to be noticeable to your application users, but a delay can
happen.

30 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

www.allitebooks.com

http://www.allitebooks.org

See Also
John Resig offers an excellent discussion on how timers work, and especially the issues
associated with event queues and single threads of execution.

Function closures are covered in more detail in Recipe 3.5. See function closures in
timers in action in Recipe 1.11.

1.11. Tracking Elapsed Time

Problem
You want to track the elapsed time between events.

Solution
Create a Date object when the first event occurs, a new Date object when the second
event occurs, and subtract the first from the second. The difference is in milliseconds;
to convert to seconds, divide by 1,000:

var firstDate = new Date();

setTimeout(function() {
 doEvent(firstDate);
}, 25000);

function doEvent() {
 var secondDate = new Date();
 var diff = secondDate - firstDate;
 console.log(diff); // approx. 25000
}

Discussion
Some arithmetic operators can be used with Date, but with interesting results. In the
example, one Date instance can be subtracted from another, and the difference between
the two is returned as milliseconds. However, if you add two dates together, the result
is a string with the second Date instance concatenated to the first:

Thu Oct 08 2009 20:20:34 GMT-0500 (CST)Thu Oct 08 2009 20:20:31 GMT-0500 (CST)

If you divide the Date instances, the dates are converted to their millisecond value, and
the result of dividing one by the other is returned. Multiplying two dates will return a
very large millisecond result.

1.11. Tracking Elapsed Time | 31

http://ejohn.org/blog/how-javascript-timers-work/

Only the Date instance subtraction operator really makes sense, but
it’s interesting to see what happens with arithmetic operators and the
Date object.

1.12. Converting a Decimal to a Hexadecimal Value

Problem
You have a decimal value, and need to find its hexadecimal equivalent.

Solution
Use the Number toString() method:

var num = 255;

// displays ff, which is hexadecimal equivalent for 255

console.log(num.toString(16));

Discussion
By default, numbers in JavaScript are base 10, or decimal. However, they can also be
converted to a different radix, including hexadecimal (16) and octal (8). Hexadecimal

numbers begin with 0x (a zero followed by lowercase x), and octal numbers always begin
with zero:

var octoNumber = 0255; // equivalent to 173 decimal
var hexaNumber = 0xad; // equivalent to 173 decimal

A decimal number can be converted to another radix, in a range from 2 to 36:

var decNum = 55;
var octNum = decNum.toString(8); // value of 67 octal
var hexNum = decNum.toString(16); // value of 37 hexadecimal
var binNum = decNum.toString(2); // value of 110111 binary

To complete the octal and hexadecimal presentation, you’ll need to concatenate the zero

to the octal, and the 0x to the hexadecimal value.

Although decimals can be converted to any base number (between a range of 2 to 36),
only the octal, hexadecimal, and decimal numbers can be manipulated, directly as
numbers. In addition, when using JavaScript strict mode, only decimal and hexadecimal
literals are supported, as octal integers are no longer supported in JavaScript.

32 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

Extra: Speaking of Strict Mode
Strict mode is an ECMAScript 5 addition that signals the use of a more restricted version
of the JavaScript language. Strict mode can be implemented for an entire script or only
for a function. Triggering is simple:

'use strict';

or:

"use strict";

This code should be the first line in your script block or function.

When strict mode is engaged, a mistake that would normally be ignored now generates
an error. What kind of mistake?

• Typos in variable names in assignment throw an error.

• Assignments that would normally fail quietly now throw an error.

• Attempting to delete an undeletable property fails.

• Using nonunique property names.

• Using nonunique function parameter names.

Strict mode also triggers other requirements:

• Octals aren’t supported in strict mode.

• The eval() statement is limited, and with is not supported.

• When constructing a new object, new is required for this to function correctly.

Bottom line: strict mode helps eliminate unexpected and unexplainable results.

1.13. Summing All Numbers in a Table Column

Problem
You want to sum all numbers in a table column.

Solution
Traverse the table column containing numeric string values, convert to numbers, and
sum the numbers:

var sum = 0;

// use querySelector to find all second table cells

var cells = document.querySelectorAll("td:nth-of-type(2)");

1.13. Summing All Numbers in a Table Column | 33

for (var i = 0; i < cells.length; i++) {
 sum+=parseFloat(cells[i].firstChild.data);
}

Discussion
The global functions parseInt() and parseFloat() convert strings to numbers, but

parseFloat() is more adaptable when it comes to handling numbers in an HTML table.

Unless you’re absolutely certain all of the numbers will be integers, parseFloat() can
work with both integers and floating-point numbers.

As you traverse the HTML table and convert the table entries to numbers, sum the
results. Once you have the sum, you can use it in a database update, print it to the page,
or pop up a message box, as the solution demonstrates.

You can also add a sum row to the HTML table. Example 1-5 demonstrates how to
convert and sum up numeric values in an HTML table, and then how to insert a table

row with this sum, at the end. The code uses document.querySelectorAll(), which

uses a different variation on the CSS selector, td + td, to access the data this time. This
selector finds all table cells that are preceded by another table cell.

Example 1-5. Converting table values to numbers and summing the results

<!DOCTYPE html>
<html>

<head>

<title>Accessing numbers in table</title>
</head>

<body>

<table id="table1">
 <tr>
 <td>Washington</td><td>145</td>
 </tr>
 <tr>
 <td>Oregon</td><td>233</td>
 </tr>
 <tr>
 <td>Missouri</td><td>833</td>
 </tr>
</table>

<script type="text/javascript">

 var sum = 0;

 // use querySelector to find all second table cells
 var cells = document.querySelectorAll("td + td");

 for (var i = 0; i < cells.length; i++)
 sum+=parseFloat(cells[i].firstChild.data);

34 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

 // now add sum to end of table
 var newRow = document.createElement("tr");

 // first cell
 var firstCell = document.createElement("td");
 var firstCellText = document.createTextNode("Sum:");
 firstCell.appendChild(firstCellText);
 newRow.appendChild(firstCell);

 // second cell with sum
 var secondCell = document.createElement("td");
 var secondCellText = document.createTextNode(sum);
 secondCell.appendChild(secondCellText);
 newRow.appendChild(secondCell);

 // add row to table
 document.getElementById("table1").appendChild(newRow);

</script>

</body>

</html>

Being able to provide a sum or other operation on table data is helpful if you’re working
with dynamic updates via an Ajax operation, such as accessing rows of data from a
database. The Ajax operation may not be able to provide summary data, or you may not
want to provide summary data until a web page reader chooses to do so. The users may
want to manipulate the table results, and then push a button to perform the summing
operation.

Adding rows to a table is simple, as long as you remember the steps:

1. Create a new table row using document.createElement("tr").

2. Create each table row cell using document.createElement("td").

3. Create each table row cell’s data using document.createTextNode(), passing in the
text of the node (including numbers, which are automatically converted to a string).

4. Append the text node to the table cell.

5. Append the table cell to the table row.

6. Append the table row to the table. Rinse, repeat.

If you perform this operation frequently, you can create functions for these operations,
and package them into JavaScript libraries that you can reuse. Also, many of the available
JavaScript libraries can do much of this work for you.

1.13. Summing All Numbers in a Table Column | 35

See Also
Wonder why I’m not using forEach() with the results of the query? That’s because the

querySelectorAll() returns a NodeList, not an array, and forEach() is an Array
method. But there is a workaround, covered in Recipe 2.6.

Extra: Modularization of Globals
The parseFloat() and parseInt() methods are global methods. As part of a growing
effort to modularize JavaScript, both methods are now attached to the Number object,
as new static methods, in ECMAScript 6:

var num = Number.parseInt('123');

The motive is good, but at the time this book was written, only Firefox supported the
Number methods.

1.14. Converting Between Degrees and Radians

Problem
You have an angle in degrees. To use the value in the Math object’s trigonometric func‐
tions, you need to convert the degrees to radians.

Solution
To convert degrees to radians, multiply the value by (Math.PI / 180):

var radians = degrees * (Math.PI / 180);

To convert radians to degrees, multiply the value by (180 / Math.PI):

var degrees = radians * (180 / Math.PI);

Discussion
All Math trigonometric methods (sin(), cos(), tin(), asin(), acos(), atan(), and

atan2()), take values in radians, and return radians as a result. Yet it’s not unusual for
people to provide values in degrees rather than radians, as degrees are the more familiar
unit of measure. The functionality covered in the solution provides the conversion
between the two units.

36 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

1.15. Find the Radius and Center of a Circle to Fit Within a
Page Element

Problem
Given the width and height of a page element, you need to find the center and radius
of the largest circle that fits within that page element.

Solution
Find the smaller of the width and height; divide this by 2 to find the radius:

var circleRadius = Math.min(elementWidth, elementHeight) / 2;

Given the page element’s width and height, find the center by dividing both by 2:

var x = elementWidth / 2;
var y = elementHeight / 2;

Discussion
Working with graphics requires us to do things such as finding the center of an element,
or finding the radius of the largest circle that will fit into a rectangle (or largest rectangle
that can fit in a circle).

Example 1-6 demonstrates both of the solution calculations, modifying an SVG circle

contained within an HTML document so that the circle fits within the div element that
surrounds it.

Example 1-6. Fitting a SVG circle into a div element

<!DOCTYPE html>
<html>

<head>

<title>Using Math method to fit a circle</title>
<style type="text/css">

#elem
{
 width: 600px;
 height: 400px;
 border: 1px solid black;
}
</style>

<script type="text/javascript">

window.onload = window.onresize = function() {
 var box = document.getElementById("elem");
 var style = window.getComputedStyle(box,null);

1.15. Find the Radius and Center of a Circle to Fit Within a Page Element | 37

 var height = parseInt(style.getPropertyValue("height"));
 var width = parseInt(style.getPropertyValue("width"));

 var x = width / 2;
 var y = height / 2;

 var circleRadius = Math.min(width,height) / 2;

 var circ = document.getElementById("circ");
 circ.setAttribute("r",circleRadius);
 circ.setAttribute("cx",x);
 circ.setAttribute("cy",y);
}

</script>

</head>

<body>

<div id="elem">
 <svg width="100%" height="100%">
 <circle id="circ" width="10" height="10" r="10" fill="red" />
 </svg>

</div>

</body>

Figure 1-3 shows the page once it’s loaded. There are techniques in SVG that can ac‐

complish the same procedure using the SVG element’s viewPort setting, but even with
these, at some point in time you’ll need to dust off your basic geometry skills if you want
to work with graphics. However, as the example demonstrates, most of the math you’ll
need is basic.

38 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

Figure 1-3. Page with SVG circle fit into rectangular div element

1.16. Calculating the Length of a Circular Arc

Problem
Given the radius of a circle, and the angle of an arc in degrees, find the length of the arc.

Solution
Use Math.PI to convert degrees to radians, and use the result in a formula to find the
length of the arc:

// angle of arc is 120 degrees, radius of circle is 2

var radians = degrees * (Math.PI / 180);
var arclength = radians * radius; // value is 4.18879020478...

Discussion
The length of a circular arc is found by multiplying the circle’s radius times the angle of
the arc, in radians.

If the angle is given in degrees, you’ll need to convert the degree to radians first, before
multiplying the angle by the radius.

1.16. Calculating the Length of a Circular Arc | 39

See Also
Recipe 1.14 covers how to convert between degrees and radians.

1.17. Using ES6 String Extras Without Leaving Users
in the Dirt

Problem
You want to use new ECMAScript 6 features, such as the string extras like starts

With() and endsWith(), but you don’t want your applications to break for people using
browsers that don’t support this newer functionality.

Solution
Use an ECMAScript 6 (or ES 6) shim to provide support for the functionality in browsers
not currently implementing it. Example 1-7 demonstrates how a shim enables support
for the new ES 6 String functionality.

Example 1-7. Using a shim to enable ES 6 functionality

<!DOCTYPE html>
<html>

<head>

<meta charset="utf-8">
<title>ES 6 String</title>
<script type="text/javascript" src="es6-shim.js"></script>
</head>

<body>

<script type="text/javascript">

 // quote from "To Kill a Mockingbird"
 var str = "Mockingbirds don't do one thing except make music " +
 "for us to enjoy. They don't eat up people's gardens, " +
 "don't nest in corn cribs, " +
 "they don’t do one thing but sing their hearts out for us. " +
 "That's why it’s a sin to kill a mockingbird."

 console.log(str.startsWith("Mockingbirds")); // true
 console.log(str.startsWith("autos", 20)); // false

 console.log(str.endsWith("mockingbird.")); // true
 console.log(str.endsWith("kill", str.length-15)); // true

 var cp = str.codePointAt(50); // 102 for 'f'
 var cp2 = str.codePointAt(51); // 111 for 'o'
 var cp3 = str.codePointAt(52); // 114 for 'r'

40 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

www.allitebooks.com

http://www.allitebooks.org

 var str2 = String.fromCodePoint(cp,cp2,cp3);

 console.log(str2); // for
</script>

</body>

</html>

Discussion
JavaScript (or ECMAScript, the more proper name) is advancing much more rapidly
now than in the past, but uneven implementation is still an issue. We do live in better
times, as the major browser companies are more ready to embrace new features more
quickly, and automated browser upgrades help eliminate some of the bogging down we
had with a browser such as IE 6. In addition, until we see complete cross-browser sup‐
port for a new feature, we can still make use of enhancements in Node.js applications
on the server, and via the use of shims in the client. I’ll cover Node.js in a later chapter,
but for now, let’s look at shims, JavaScript compatibility, and what they mean for some‐
thing like the new String object enhancements.

The shim used in the example is the ES6-shim created by Paul Mill‐
er. There are other shims and libraries known as polyfills, which you’ll
see used elsewhere in this book.

The latest formal release of ECMAScript (ES) is ECMAScript 5, and I make use of several
ES 5 features throughout the book. Work is underway, though, on the next generation
of ES, appropriately named ES.Next (ECMA-262 Edition 6), but commonly referred to
as ES 6.

As consensus is reached on new ES features, they’re added to the existing draft specifi‐
cation. They’re also listed in ES compatibility tables, such as the ones Mozilla incorpo‐
rates in much of its documentation, and the exceedingly helpful ECMAScript 6 Com‐
patibility Table.

Among the ES 6 additions are the following new String.prototype methods:

• startsWith: Returns true if string begins with characters from another string

• endsWith: Returns true if string ends with characters from another string

• contains: Returns true if string contains another string

• repeat: Repeats the string a given number of times and returns the result

• codePointAt: Returns the Unicode code point (unicode number) that starts at the
given index

1.17. Using ES6 String Extras Without Leaving Users in the Dirt | 41

https://github.com/paulmillr/es6-shim/
http://kangax.github.io/es5-compat-table/es6/
http://kangax.github.io/es5-compat-table/es6/

Both startsWith() and endsWith() require a string to examine as first parameter, and

an optional integer as second parameter. For startsWith(), the integer marks the po‐

sition in the string to begin the search; for endsWith(), the integer represents the po‐
sition in the string where the search should terminate.

The contains() method also takes two parameters—search string and optional starting

position for search—but it returns true or false depending on whether it found the
search string anywhere in the string:

console.log(str.contains("gardens")); // true

The repeat() method takes a given string and repeats it however many times is given
in the only parameter, returning the result:

var str2 = 'abc';
console.log(str2.repeat(2)); // abcabc

The codePointAt() method returns the UTF-16 encoded code point value for the
character found at the position in the string. In addition, there’s also a new static method,

fromCodePoint, which returns a string created by a sequence of code points:

var cp = str.codePointAt(50); // 102 for 'f'
var cp2 = str.codePointAt(51); // 111 for 'o'
var cp3 = str.codePointAt(52); // 114 for 'r'

var str2 = String.fromCodePoint(cp,cp2,cp3);

console.log(str2); // for

At the time of this writing, if I were to access the web page in Example 1-7 without the
use of the ES 6 shim, the JavaScript would fail for all but a developer release of Firefox.
With the use of the shim, the JavaScript works for all modern browsers.

See Also
Another alternative to a shim is a transpiler that compiles tomorrow’s code into today’s
environment. Google’s version, Traceur, is introduced in Recipe 2.11, and demonstrated
more fully in Recipe 10.8.

42 | Chapter 1: The JavaScript Not-So-Simple Building Blocks

CHAPTER 2

JavaScript Arrays

There is no array data type in JavaScript. Instead, support for arrays is managed through
the JavaScript Array object.

Array object support has changed considerably over the years—going from simple array
access and assignment to sophisticated functionality allowing us to search and sort
arrays, as well as manipulate the array elements using more efficient techniques. This
chapter focuses on how to best utilize these more modern Array additions.

Most modern browsers support the solutions presented in this chap‐
ter. To support folks not using modern browsers, there are several
shims you can use to ensure applications work for most. Recipe 1.17
described some of the shims, and demonstrated how you can use
them.

2.1. Searching Through an Array

Problem
You want to search an array for a specific value and get the array element index if found.

Solution
Use the Array methods indexOf() and lastIndexOf():

var animals = new Array("dog","cat","seal","elephant","walrus","lion");
console.log(animals.indexOf("elephant")); // prints 3

43

Discussion
Though support for both indexOf() and lastIndexOf() has existed in browsers for
some time, their use wasn’t standardized until the release of ECMAScript 5. Both meth‐
ods take a search value that is then compared to every element in the array. If the value
is found, both return an index representing the array element. If the value is not found,

–1 is returned. The indexOf() method returns the first one found, the lastIndex

Of() returns the last one found:

var animals = new Array("dog","cat","seal","walrus","lion", "cat");

console.log(animals.indexOf("cat")); // prints 1
console.log(animals.lastIndexOf("cat")); // prints 5

Both methods can take a starting index, setting where the search is going to start:

var animals = ["dog","cat","seal","walrus","lion", "cat"];

console.log(animals.indexOf("cat",2)); // prints 5
console.log(animals.lastIndexOf("cat",4)); // prints 1

If your interest goes beyond just finding an exact match, you can use the ECMAScript

6 (ES 6) Array method findIndex(), providing a function that tests each array value,
returning the index of the array element when the test is successful.

An example use of findIndex() is the following, using the new method to find an array
element whose value equals or exceeds 100:

var nums = [2, 4, 19, 15, 183, 6, 7, 1, 1];

var over = nums.findIndex(function(element) {
 return (element >= 100);
});

console.log(nums[over]);

A comparable ES 6 Array method is find(), which does the same process but returns
the value of the element that successfully passes the given test. Both methods take a

callback function, and an optional second argument to act as this in the function. The
callback function has three arguments, the array element, index, and array, itself, but
only the first is required. Neither method mutates the original array.

See Also
See Recipe 3.5 for more on callback functions.

44 | Chapter 2: JavaScript Arrays

Extra: Array Literal or Array Object Instance?
The solutions demonstrated in this recipe show two different ways of creating an array:
creating an instance of an Array object, or assigning an array literal. So, which is better?
As with most of JavaScript, the answer is, it depends.

An array literal is simpler to create and takes less space in the file. Some JavaScript
developers would say it looks more elegant, too. When you use the Array object con‐
structor, the JavaScript engine has to spend more time understanding exactly what it is
that you want to do: you’re creating an object, OK, what kind of object, and so on.
However, if you use an array literal in a function, JavaScript instantiates the array each
time the function is called. And, if you need to create a specifically sized array, you
should use the Array contructor.

Tools such as JSLint will complain if you use the Array constructor, as will as most
JavaScript developers. Based on this, I use array literals, but its use isn’t inherently wrong.

jsPerf is a site that allows you to quickly create JavaScript test cases
and run the tests. You can then share your test case and results with
the world. I cover it in more detail in Recipe 6.4.

2.2. Flattening a Two-Dimensional Array with concat()
and apply()

Problem
You want to flatten a two-dimensional array.

Solution
Use the Array object concat() method to merge the multidimensional array into a
single-dimensional array:

var fruitarray = [];
fruitarray[0] = ['strawberry','orange'];
fruitarray[1] = ['lime','peach','banana'];
fruitarray[2] = ['tangerine','apricot'];
fruitarray[3] = ['raspberry','kiwi'];

// flatten array

var newArray = fruitarray.concat.apply([],fruitarray);
console.log(newArray[5]); // tangerine

2.2. Flattening a Two-Dimensional Array with concat() and apply() | 45

http://jsperf.com

Discussion
The Array object concat() method takes one or more arrays and appends the array
elements on to the end of the contents of the parent array on which the method was
called. The merged array is then returned as a new array. One use for this type of func‐
tionality is to return a single-dimensional array made up of elements from a multidi‐
mensional array, as shown in the solution.

I could have flattened the array using the following:

var newArray = fruitarray[0].concat(fruitarray[1],fruitarray[2],fruitarray[3]);

But if the array has several members, this approach is tedious and error prone. I could
also have used a loop or recursion, but these approaches can be equally tedious. Instead,

I used the apply() method. This method allows us to apply the function being called

(concat) given an array of arguments. In this case, the array of arguments is the original
multidimensional array.

In order for this to work, an empty array is passed as the first parameter to apply(),

because concat() works by concatenating the arrays onto an existing array. I can’t use
the first element of the array, because its values will be repeated in the final result.

2.3. Removing or Replacing Array Elements

Problem
You want to find occurrences of a given value in an array, and either remove the element
or replace with another value.

Solution
Use the Array indexOf() and splice() to find and remove/replace array elements:

var animals = new Array("dog","cat","seal","walrus","lion", "cat");

// remove the element from array

animals.splice(animals.indexOf("walrus"),1); // dog,cat,seal,lion,cat

// splice in new element

animals.splice(animals.lastIndexOf("cat"),1,"monkey");

// dog,cat,seal,lion,monkey

console.log(animals.toString());

Discussion
The splice() method takes three parameters: the first parameter is required, as it’s the
index where the splicing is to take place; the second, optional parameter is the number

46 | Chapter 2: JavaScript Arrays

of elements to remove; the third parameter, also optional, is a set of the replacement
elements (if any). If the index is negative, the elements will be spliced from the end rather
than the beginning of the array:

var animals = ["cat","walrus","lion", "cat"];

// splice in new element

animals.splice(-1,1,"monkey"); // cat,walrus,lion,monkey

If the number of elements to splice is not provided, all elements from the index to the
end will be removed:

var animals = ["cat","walrus","lion", "cat"];

// remove all elements after second

animals.splice(2); // cat,walrus

The last parameter, the replaced value, can be a set of replacement elements, separated
by commas:

var animals = ["cat","walrus","lion", "cat"];

// replace second element with two

animals.splice(2,1,"zebra","elephant"); // cat,walrus,zebra,elephant,cat

Removing or replacing one element is handy, but being able to remove or replace all
instances of a particular element is even handier. In Example 2-1, an array is created

with several elements, including multiple instances of a specific value. The splice()

method is used in a loop to replace all of the elements with a given value. The splice()
method is used again, in a separate loop, to remove the newly spliced elements.

Example 2-1. Using looping and splice to replace and remove elements

var charSets = ["ab","bb","cd","ab","cc","ab","dd","ab"];

// replace element

while (charSets.indexOf("ab") != -1) {
 charSets.splice(charSets.indexOf("ab"),1,"**");
}

// ["**", "bb", "cd", "**", "cc", "**", "dd", "**"]

console.log(charSets);

// delete new element

while(charSets.indexOf("**") != -1) {
 charSets.splice(charSets.indexOf("**"),1);
}
console.log(charSets); // ["bb", "cd", "cc", "dd"]

2.3. Removing or Replacing Array Elements | 47

2.4. Extracting a Portion of an Array

Problem
You want to extract out a portion of an array but keep the original array intact.

Solution
The Array slice() method extracts a shallow copy of a portion of an existing array:

var animals = ['elephant','tiger','lion','zebra','cat','dog','rabbit','goose'];

var domestic = animals.slice(4,7);

console.log(domestic); // ['cat','dog','rabbit'];

Discussion
The slice() makes a copy of a portion of an existing array, returning a new array. It
makes a shallow copy, which means that if the array elements are objects, both arrays
point to the same object—modifications to the object in the new array is reflected in the

same object in the old array. In the following, slice() is used on an array of array
elements to extract out of the arrays. The contents are modified and both arrays are
printed out. The changes to the new array are reflected in the old:

var mArray = [];
mArray[0] = ['apple','pear'];
mArray[1] = ['strawberry','lemon'];
mArray[2] = ['lime','peach','berry'];

var nArray = mArray.slice(1,2);
console.log(mArray[1]); // ['strawberry','lemon']

nArray[0][0] = 'raspberry';
console.log(nArray[0]); // ['raspberry','lemon']
console.log(mArray[1]); // ['raspberry','lemon']

The values are copied by reference. If the array element is a primitive data type, such as
a string or number, the elements are copied by value—changes to the new array won’t
be reflected in the old.

2.5. Applying a Function Against Each Array Element

Problem
You want to use a function to check an array value, and replace it if it matches a given
criterion.

48 | Chapter 2: JavaScript Arrays

Solution
Use the Array method forEach() to apply a callback function to each array element:

var charSets = ["ab","bb","cd","ab","cc","ab","dd","ab"];

function replaceElement(element,index,array) {
 if (element == "ab") array[index] = "**";
}

// apply function to each array element

charSets.forEach(replaceElement);
console.log(charSets); // ["**", "bb", "cd", "**", "cc", "**", "dd", "**"]

Discussion
In Example 2-1, we used a while loop to traverse an array and replace a value. Most of

the tedious bits are eliminated by using the forEach() method.

The forEach() method takes one argument, the callback function. The function itself
has three parameters: the array element, an index of the element, and the array. All three

were used in the function, replaceElement, though only the first argument is required.

In the function, the value is tested to see if it matches a given string, ab. If matched, the
array element’s index is used to modify the array element’s value with the replacement

string, **.

Don’t return a value from the function passed to the forEach()
method, as the value will be discarded.

See Also
The solution mutates the array in place. If you wish to make a copy of the modified array

rather than replacing the original, use map(), which is covered in Recipe 2.7.

Extra: About That Conditional Statement
The solution used a single line for the conditional statement, sans braces:

if (element == "ab") array[index] = "**";

Using this single line syntax without braces can be frowned upon because it doesn’t
account for the possibility of future additions to the conditional block:

if (element == "ab") {
 array[index] = "**";

2.5. Applying a Function Against Each Array Element | 49

 //some other line of code
}

However, we should be aware of what we’re doing with our code, enough so that we’ll
know if there’s a strong possibility of additional code within the conditional block. I
don’t see any harm in using a single line when warranted, such as when the conditional
stands alone and isn’t part of an if-then-else construct.

Of course, we can be even more cryptic and use the following:

(element == "ab") && (array[index] = "**");

If the element has a value of ab, the assignment in the second set of parenthesis is
performed. This syntax not only works, it can be faster than the original approach.
However, those not familiar with this cryptic conditional could have problems under‐
standing what’s happening, as the approach is less readable than using the traditional

if statement.

2.6. Traversing the Results from querySelectorAll() with
forEach() and call()

Problem
You want to use forEach() on the nodeList returned from a call to querySelector

All().

Solution
You can coerce forEach() into working with a NodeList (the collection returned by

querySelectorAll()) using the following:

// use querySelector to find all second table cells

var cells = document.querySelectorAll("td + td");

[].forEach.call(cells,function(cell) {
 sum+=parseFloat(cell.firstChild.data);
 });

Discussion
The forEach() is an Array method, and the results of querySelectorAll() is a
NodeList, which is a different type of object than an Array.

In the solution, to get forEach() to work with the NodeList, we’re calling the method

on an empty array, and then using call() on the object to emulate the effect of an Array
method on the NodeList, as if it were an actual array.

50 | Chapter 2: JavaScript Arrays

www.allitebooks.com

http://www.allitebooks.org

Simple, but there are drawbacks. Unless you convert the NodeList into an Array, the
coercion is a one-shot that has to be repeated if you need to use the same functionality
again. In addition, later in the code you may automatically try another Array method
on the NodeList, only to have it fail because you didn’t use coercion.

See Also
This approach is also used to convert both NodeLists and function arguments into an
array, as detailed in Recipe 3.6.

2.7. Applying a Function to Every Element in an Array and
Returning a New Array

Problem
You want to convert an array of decimal numbers into a new array with their hexadec‐
imal equivalents.

Solution
Use the Array map() method to create a new array consisting of elements from the old
array that have been modified via a callback function passed to the method:

var decArray = [23, 255, 122, 5, 16, 99];

var hexArray = decArray.map(function(element) {
 return element.toString(16);
});

console.log(hexArray); // ["17", "ff", "7a", "5", "10", "63"]

Discussion
Like the forEach() method in Recipe 2.5, the map() method applies a callback function

to each array element. Unlike forEach(), though, the map() method results in a new
array rather than modifying the original array. You don’t return a value when using

forEach(), but you must return a value when using map().

The function that’s passed to the map() method has three parameters: the current array
element, and, optionally, the array index and array. Only the first is required.

2.7. Applying a Function to Every Element in an Array and Returning a New Array | 51

2.8. Creating a Filtered Array

Problem
You want to filter element values in an array and assign the results to a new array.

Solution
Use the Array filter() method:

var charSet = ["**","bb","cd","**","cc","**","dd","**"];

var newArray = charSet.filter(function(element) {
 return (element !== "**");
});

console.log(newArray); // ["bb", "cd", "cc", "dd"]

Discussion
The filter() method is another ECMAScript 5 addition, like forEach() and map()
(covered in Recipe 2.5 and Recipe 2.7, respectively). Like them, the method is a way of
applying a callback function to every array element.

The function passed as a parameter to the filter() method returns either true or

false based on some test against the array elements. This returned value determines if

the array element is added to a new array: it’s added if the function returns true; other‐

wise, it’s not added. In the solution, the character string (**) is filtered from the original
array when the new array is created.

The function has three parameters: the array element, and, optionally, the index for the
element and the original array.

2.9. Validating Array Contents

Problem
You want to ensure that array contents meet certain criteria.

Solution
Use the Array every() method to check that every element passes a given criterion. For
instance, the following code checks to ensure that every element in the array consists
of alphabetical characters:

// testing function

function testValue (element,index,array) {

52 | Chapter 2: JavaScript Arrays

 var textExp = /^[a-zA-Z]+$/;
 return textExp.test(element);
}

var elemSet = ["**",123,"aaa","abc","-",46,"AAA"];

// run test

var result = elemSet.every(testValue);

console.log(result); // false

var elemSet2 = ["elephant","lion","cat","dog"];

result = elemSet2.every(testValue);

console.log(result); // true

Or use the Array some() method to ensure that one or more of the elements pass the
criteria. As an example, the following code checks to ensure that at least some of the
array elements are alphabetical strings:

var elemSet = new Array("**",123,"aaa","abc","-",46,"AAA");

// testing function

function testValue (element) {
 var textExp = /^[a-zA-Z]+$/;
 return textExp.test(element);
}

// run test

var result = elemSet.some(testValue);

console.log(result); // true

Discussion
Unlike the Array methods I covered earlier in the chapter, every() and some() functions
do not work against all array elements: they only process as many array elements as
necessary to fulfill their functionality.

The solution demonstrates that the same callback function can be used for both the

every() and some() methods. The difference is that when using every(), as soon as

the function returns a false value, the processing is finished, and the method returns

false. The some() method continues to test against every array element until the call‐

back function returns true. At that time, no other elements are validated, and the

method returns true. However, if the callback function tests against all elements, and

doesn’t return true at any point, some() returns false.

2.9. Validating Array Contents | 53

Which method to use depends on your needs. If all array elements must meet certain

criteria, then use every(); otherwise, use some().

The callback function takes three parameters: the element, and an optional element
index and array.

Extra: Using Anonymous Functions in Array Methods
In Recipe 2.8, I used an anonymous function, but in this solution, I use a named function.
When to use which depends on the context and your own preferences.

The advantage to a named function is it shows up in a stack trace when you’re debugging
your code, while an anonymous function doesn’t. This isn’t an issue when you’re dealing
with simple, targeted functionality, as demonstrated in all of these solutions. However,
it can very much be an issue in functionality that’s deeply nested, or is asynchronous.

Another advantage to the named function is you can use it in multiple places. Again,
though, it doesn’t make sense to reuse a function targeted to a specific Array method
callback for any reason other than that specific callback. And the disadvantage is that
you are cluttering up the global space when you use a named function.

A final possible advantage is that named functions perform better in all browsers than
anonymous functions in the context of an Array method callback. Now, this might be
the best reason for using a named function.

2.10. Using an Associative Array to Store Form Element
Names and Values

Problem
You want to store form element names and values for later validation purposes.

Solution
Use an associative array to store the elements, using the element identifiers as array
index:

var elemArray = new Object(); // notice Object, not Array
var elem = document.forms[0].elements[0];
elemArray[elem.id] = elem.value;

Iterate over the array using a combination of keys() and forEach():

Object.keys(elemArray).forEach(function (key) {
 var value = elemArray[key];
 console.log(value);
 });

54 | Chapter 2: JavaScript Arrays

Discussion
Typically, JavaScript arrays use a numeric index:

arr[0] = value;

However, you can create an associative array in JavaScript, where the array index can
be a string representing a keyword, mapping that string to a given value. In the solution,
the array index is the identifier given the array element, and the actual array value is the
form element value.

You can create an associative array, but you’re not using the Array object to do so. Using
the Array object is risky and actively discouraged—especially if you’re using one of the

built-in libraries that use the prototype attribute for extending objects, as people dis‐
covered when the popular Prototype.js library was first released several years ago.

When we use an Array to create an associative array, what we’re really doing is adding
new properties to the Array, rather than adding new array elements. You could actually
create an associative array with a RegExp or String, as well as an Array. All are JavaScript

objects, which are associative arrays. When you’re adding a new array, element:

obj[propName] = "somevalue";

what you’re really doing is adding a new object property:

obj.propName = "somevalue";

Additionally, when you use an Array to create an associative array, you can no longer
access the array elements by numeric index, and the length property returns zero.

Instead of using an Array to create the associative array, use the JavaScript Object di‐
rectly. You get the exact same functionality, but avoid the clashes with libraries that

extend the base Array object using prototype.

Example 2-2 shows a web page with a form. When the form is submitted, all of the form
elements of type text are accessed and stored in an associative array. The element IDs
are used as the array keyword, and the values assigned to the array elements. Once
collected, the associative array is passed to another function that could be used to val‐
idate the values, but in this case just creates a string of keyword/value pairs that are
displayed.

Example 2-2. Demonstrating associative array with form elements

<!DOCTYPE html>
<html>

<head>

<title>Associative Array</title>
</head>

<body>

<form id="picker">
 <label>Value 1:</label> <input type="text" id="first" />

2.10. Using an Associative Array to Store Form Element Names and Values | 55

 <label>Value 2:</label> <input type="text" id="second" />

 <label>Value 3:</label> <input type="text" id="third" />

 <label>Value 4:</label> <input type="text" id="four" />

 <button id="validate">Validate</button>
</form>

<div id="result"></div>
<script>

 // get the form element names and values and validate
 document.getElementById('validate').addEventListener('click',function (evnt) {
 evnt.preventDefault();

 // create array of element key/values
 var elems = document.getElementById("picker").elements;
 var elemArray = new Object();
 for (var i = 0; i < elems.length; i++) {
 if (elems[i].type == "text") elemArray[elems[i].id] = elems[i].value;
 }

 var str = '';
 Object.keys(elemArray).forEach(function (key) {
 var value = elemArray[key];
 str+=key + '->' + value + '
';
 });

 document.getElementById("result").innerHTML = str;
 }, false);

</script>

</body>

</html>

In the example, notice that the array index is formed by the form element’s id. The

Object keys() returns an array of the object’s enumerable properties, and forEach()
traverses the array.

Figure 2-1 shows the example after values are typed into the form fields and the form
is submitted.

56 | Chapter 2: JavaScript Arrays

Figure 2-1. Demonstration of associative array and traversing form elements

See Also
For additional information on the risks associated with associative arrays in JavaScript,
read JavaScript “Associative Arrays” Considered Harmful.

Extra: The dict Pattern
Dr. Axel Rauschmayer discusses a pattern called the dict pattern. Rather than creating
a standard object, create one that has a null prototype to avoid inheriting existing prop‐
erties that can muck up the applications.

The difference between using a standard object and using one with a null prototype is
demonstrated in the following code snippet:

var newMap = {};

var key = 'toString';

console.log(key in newMap);
console.log(newMap[key]);

var secondMap = Object.create(null);
console.log(key in secondMap);

secondMap[key] = 'something diff';
console.log(key in secondMap);
console.log(secondMap[key]);

2.10. Using an Associative Array to Store Form Element Names and Values | 57

http://bit.ly/1J9vRon
http://www.2ality.com/2013/10/dict-pattern.html

Here’s the result of the code (run in jsBin):

true

function toString() { [native code] }
false

true

"something diff"

The toString() method is, of course, a standard Object method. So when we test to
see if it exists in a regularly created object, it does. However, if we create the null pro‐

totype object, toString() doesn’t exist. Not until we add it as a key.

2.11. Using a Destructuring Assignment to Simplify Code

Problem
You want to assign array element values to several variables, but you really don’t want
to have assign each, individually.

Solution
Use ECMAScript 6’s destructuring assignment to simplify array assignment:

var stateValues = [459, 144, 96, 34, 0, 14];

var [Arizona, Missouri, Idaho, Nebraska, Texas, Minnesota] = stateValues;

console.log(Missouri); // 144

Discussion
In the solution, variables are declared and instantiated with values in an Array, starting
with the Array index at position zero. If the number of variables is less than the array
elements, they’re assigned the element values up until all variables have been assigned.
If there are more variables than array elements, the unmatched variables are created,

but they’re set to undefined.

The destructuring assignment is less a new feature in ECMAScript 6, and more an en‐
hancement of existing functionality. It’s not necessary functionality, as it’s not providing
access to functionality we’ve not had and can’t emulate. It’s an improvement in the
language that will, according to the specification, “Allow for destructuring of arrays and
objects using syntax that mirrors array and object initialisers.”

Unfortunately, implementation of the functionality is extremely limited, and there is no
shim that I know of that can emulate it. However, things change quickly in the world of
JavaScript, and it’s good to be aware of what’s coming down the road.

58 | Chapter 2: JavaScript Arrays

Extra: Harmony Flags and Using Traceur
V8 JavaScript Engine developers have signaled future implementation of destructuring
assignment, which means the capability will also be available in Node.js, as well as
browsers like Chrome and Opera (in addition to existing support in Firefox).

Enabling the newest, latest ECMAScript features is typically off by default in most
browsers and environments. However, you can signal that you want to enable support
for newer features in some of the environments.

In Chrome and Opera, you can enable ES 6 feature support by accessing the URL
chrome://flags. This opens up the flags page, where you can search for a flag labeled
Experimental JavaScript and enable it. Note that this can add to the instability of your
JavaScript applications.

In addition to enabling ES 6 support in browsers and Node, Google created Traceur, an
application that takes ECMAScript.next code and transpiles (translates and compiles)
it into ECMAScript.current code, which should be executable in all modern environ‐
ments. An example of using Traceur is the following, the results of using the application
on the solution code:

$traceurRuntime.ModuleStore.getAnonymousModule(function() {
 "use strict";
 var stateValues = [459, 144, 96, 34, 0, 14];
 var $__3 = stateValues,
 Arizona = $__3[0],
 Missouri = $__3[1],
 Idaho = $__3[2],
 Nebraska = $__3[3],
 Texas = $__3[4],
 Minnesota = $__3[5];
 console.log(Missouri);
 return {};
});

The Traceur results were derived using Google’s Traceur REPL (Read-
Eval-Print) application. Just copy the code into the given space on the
left side of the application, and it produces the translated and com‐
piled results on the right.

Traceur can be accessed via the Traceur GitHub page. It’s also an option in jsBin (see
Appendix A for more on working with jsBin).

There are also polyfills and shims to enable ES 6 support. Addy Osmani’s page Tracking
ECMAScript 6 Support tracks ES 6 support tools and technology.

2.11. Using a Destructuring Assignment to Simplify Code | 59

http://bit.ly/1yHX8dy
http://bit.ly/1yHX8dy
https://github.com/google/traceur-compiler
http://bit.ly/1J9yiaG
http://bit.ly/1J9yiaG

See Also
Recipe 10.8 contains a detailed description on how to use Traceur with your browser-
based applications. A more detailed discussion on support for ECMAScript 6
(Harmony) features in different browsers can be found in Recipe 10.1.

60 | Chapter 2: JavaScript Arrays

CHAPTER 3

Functions: The JavaScript Building Blocks

JavaScript functions provide a way to encapsulate a block of code in order to reuse the
code several times. They are first-class objects in JavaScript, which means they can be
treated as an object, as well as an expression or statement.

There are three basic ways to create a function:

Declarative function

A declarative function is a statement triggered by the function keyword; declarative
functions are parsed when the JavaScript application is first loaded.

Anonymous function or function constructor

An anonymous function is constructed using the new operator and referencing the

Function object. It’s anonymous because it isn’t given a name, and access to the
function occurs through a variable or another object property. Unlike the declara‐
tive function, an anonymous function is parsed each time it’s accessed.

Function literal or function expression
A literal function is a function expression, including parameter and body, which is
used in place—such as a callback function in an argument to another function.
Similar to the declarative function, function literals are also parsed only once, when
the JavaScript application is loaded. The function literal can also be anonymous.

3.1. Placing Your Function and Hoisting

Problem
You’re not sure where to place your function to ensure it’s accessible when needed.

61

Solution
If you’re using a declarative function, you can place the function anywhere in the code.
However, if you’re using a function expression, you must do so before the function is
used. The reasons are given in the discussion.

Discussion
An important concept to remember when considering the different ways you can create
a function is hoisting. In JavaScript, all variable declarations are moved, or hoisted to
the top of their current scope. That’s declaration, though, not instantiation. The differ‐
ence is critical. If you access a variable that’s not declared, you’ll get a reference error.
However, if you access a variable before it’s declared, but it is declared within the scope

at a later time, you’ll get an undefined:

console.log(a); // undefined
var a;

If you don’t assign a value to the variable when you declare it, you’ll still get an undefined
when you access the variable:

console.log(a); // undefined
var a = 1;

This is because the variable declaration is hoisted, not the assignment, which happens
in place.

What does this have to do with functions? Quite a bit. If you create a declarative function,
hoisting will ensure the function definition is moved to the top of the current scope
before it’s accessed:

console.log(test()); // 'hello'
function test() {
 return 'hello';
}

However, if you use a functional expression, you’re basically toast:

console.log(test());
var test = function() {
 return 'hello';
 };

A reference error results because the variable test may be declared, but it’s not instan‐
tiated, and your code is trying to treat this noninstantiated variable as a function.

62 | Chapter 3: Functions: The JavaScript Building Blocks

3.2. Passing a Function As an Argument to Another
Function

Problem
You want to pass a function as an argument to another function.

Solution
For the following function:

function otherFunction(x,y,z) {
 x(y,z);
}

Use a function expression (literal function) as argument:

var param = function(arg1, arg2) { alert(arg1 + " " + arg2); };
otherFunction(param, "Hello", "World");

or:

otherFunction(function(arg1,arg2) {
 alert(arg1 + ' ' + arg2); }, "Hello","World");

Discussion
The function keyword is an operator as well as a statement, and can be used to create
a function as an expression. Functions created this way are called function expressions,
function literals, and anonymous functions.

A function name can be provided with literal functions, but it’s only accessible within
the function:

var param = function inner() { return typeof inner; }
console.log(param()); // "function"

The main benefit with naming the function expression is when you’re
debugging your JavaScript, the named function appears by its name
in a stack trace, rather than just an anonymous function.

You can pass a function as an argument to another function as a named variable, or
even directly within the argument list, as shown in the solution. Function literals are
parsed when the page is loaded, rather than each time they’re accessed.

3.2. Passing a Function As an Argument to Another Function | 63

Extra: Functional Programming and JavaScript
A function that accepts another function as a parameter, or returns a function, or both,
is known as a higher order function. The concept is from a programming paradigm
known as functional programming. Functional programming is a way of abstracting out
the complexity of an application, replacing complicated loops and conditional state‐
ments with nice, clean function calls.

Our more traditional JavaScript development approach using condi‐
tionals, loops, and associated procedures is called imperative
programming.

As an example of functional programming, consider something simple: sum all the
numbers in an array. One way of doing so is to create a variable to hold the sum, iterate

through the array using a for loop, and adding the value of each array element to the
sum variable:

var nums = [1, 45, 2, 16, 9, 12];
var sum = 0;
for (var i = 0; i < nums.length; i++) {
 sum+=nums[i];
}
console.log(sum); // 85

Now examine how the function Array.reduce(), one of the ECMAScript 5 additions
to JavaScript, performs the same functionality:

var nums = [1, 45, 2, 16, 9, 12];
var sum = nums.reduce(function(n1,n2) { return n1 + n2; });
console.log(sum); // 85

The results are the same, but the difference is less verbose code, and a clearer under‐
standing of what’s happening to drive the result: the array elements are traversed, some
operation is performed until the end result is reduced to a single value—in this case, a
sum of all array element values.

The real benefit to functional programming, however, is more reliable code. When you
break your application down into functional bits, and each function performs a single
task, and the only data available to that function comes in via function arguments, the
only output from the operation is that returned by the function, you reduce unintended
side effects in the code.

64 | Chapter 3: Functions: The JavaScript Building Blocks

A function that always delivers the same result given the same argu‐
ment values, and that never modifies any external data or triggers any
side effects is known as a pure function.

In other words, no matter what happens elsewhere in the application—in any library,

with any global variable—the effects of applying a function such as Array.reduce()
will always be consistent.

See Also
See Recipe 3.3 for a demonstration of using a named function literal in recursion. See
Recipe 3.4 for a demonstration of using a callback function to prevent blocking.

3.3. Implementing a Recursive Algorithm

Problem
You want to implement a function that will recursively traverse an array and return a
string of the array element values, in reverse order.

Solution
Use a function literal recursively until the end goal is met:

var reverseArray = function(x,indx,str) {
 return indx == 0 ? str :
 reverseArray(x,--indx,(str+= " " + x[indx]));
}

var arr = ['apple','orange','peach','lime'];
var str = reverseArray(arr,arr.length,"");
console.log(str);

var arr2 = ['car','boat','sun','computer'];
str = reverseArray(arr2,arr2.length,"");
console.log(str);

Discussion
Before looking at the solution, I want to cover the concept of recursion first, and then
look at functional recursion.

3.3. Implementing a Recursive Algorithm | 65

Recursion is a well-known concept in the field of mathematics, as well as computer
science. An example of recursion in mathematics is the Fibonacci Sequence:

f(n)= f(n-1) + f(n-2),
 for n= 2,3,4,...,n and
 f(0) = 0 and f(1) = 1

A Fibonacci number is the sum of the two previous Fibonacci numbers.

Another example of mathematical recursion is a factorial, usually denoted with an ex‐
clamation point (4!). A factorial is the product of all integers from 1 to a given number
n. If n is 4, then the factorial (4!) would be:

4! = 4 x 3 x 2 x 1 = 24

These recursions can be coded in JavaScript using a series of loops and conditions, but
they can also be coded using functional recursion. A common example of JavaScript
recursion is the solution for a Fibonacci:

var fibonacci = function (n) {
 return n < 2 ? n : fibonacci(n - 1) + fibonacci(n - 2);
}

or a factorial:

function factorial(n) {
 return n == 1 ? 1 : n * Factorial(n -1);
}

In the Fibonacci example, n is tested to see if it is less than 2. If it is, it’s returned; otherwise

the Fibonacci function is called again with (n – 1) and with (n – 2), and the sum of both
is returned.

Neither function works with negative values. Negative numbers are
not extensible to factorial, and the function given for the Fibonacci is
not adjusted for negative values.

A little convoluted? The second example with the factorial might be clearer. In this
example, when the function is first called, the value passed as argument is compared to

the number 1. If n is less than or equal to 1, the function terminates, returning 1.

However, if n is greater than 1, what’s returned is the value of n times a call to the

factorial function again, this time passing in a value of n – 1. The value of n, then,
decreases with each iteration of the function, until the terminating condition (or base)
is reached.

66 | Chapter 3: Functions: The JavaScript Building Blocks

What happens is that the interim values of the function call are pushed onto a stack in
memory and kept until the termination condition is met. Then the values are popped
from memory and returned, in a state similar to the following:

return 1;

return 1;

return 1 * 2;

return 1 * 2 * 3;

return 1 * 2 * 3 * 4;

In the solution, we reverse the array elements by using a recursive function literal. In‐
stead of beginning at index zero, we begin the array from the end length, and decrement
this value with each iteration. When the value is zero, we return the string.

If we want the reverse—to concatenate the array elements, in order, to a string—modify
the function:

var orderArray = function(x,indx,str) {
 return indx == x.length-1 ? str : orderArray(x,++indx,(str+=x[indx] + " "));
}

var arr = ['apple','orange','peach','lime'];
var str = orderArray(arr,-1,"");

// apple orange peach lime

console.log(str);

Rather than the length of the array, we start with an index value of –1, and continue the
loop until one less than the length of the array. We increment the index value rather
than decrement it with each loop.

Most recursive functions can be replaced with code that performs the same function
linearly, via some kind of loop. The advantage of recursion is that recursive functions
can be fast and efficient. In addition, it adheres to the functional programming para‐
digm, which means the code is going to be more reliable and consistent.

The downside, though, is that recursive functions can be very memory-intensive. How‐
ever, the next section explains why this is likely to change in future implementations of
JavaScript.

Advanced: Tail Call Optimization
Promised in ECMAScript 6 is a new JavaScript feature called tail call optimization, or
more properly, proper tail calls.

In the following recursive factorial function (less cryptically displayed than the one I
provided previously):

3.3. Implementing a Recursive Algorithm | 67

function factorial(num)
{
 if (num == 0) {
 return 1;
 }
 // Otherwise, call this recursive procedure again.
 else {
 return (num * factorial(num - 1));
 }
}

The call to the function at the end of the function is the tail call. Currently, each time
the recursive function is called, another frame is added to the call stack. Basically what’s
happening is the JavaScript engine is keeping track of the function call and the data

passed to it. Enough calls, and the memory is exhausted and you get a RangeError.

What the proper tail call (optimization) does is reuse the same frame rather than add a

new one. Once this feature is incorporated, the possibility of a RangeError error hap‐
pening is eliminated.

At the time this was written, no browser or other JavaScript engine
has implemented proper tail call functionality. There is a way of
working around the lack of this optimization by using what is known
as a trampoline. However, the approach is not for the faint of heart.
For more on using a trampoline, I recommend reading Reginald
Braithwaite’s Functional JavaScript—Tail Call Optimization and
Trampolines.

See Also
Some of the negative consequences of recursive functions can be mitigated via memo‐
ization, covered in Recipe 3.8. Accessing the outer variable internally with the recursive
function is covered in Recipe 3.5, which goes into function scope.

3.4. Preventing Code Blocking with a Timer and a Callback

Problem
You have a piece of code that can be time consuming, and you don’t want to block the
rest of the code from processing while waiting for it to finish. But you do need to perform
some functionality when the time-consuming function is finished.

Solution
Use a callback function in conjunction with setTimeout() with timer set to zero (0).

68 | Chapter 3: Functions: The JavaScript Building Blocks

http://bit.ly/1J9BoeR
http://bit.ly/1J9BoeR

In Example 3-1, factorial() is called twice: once with a value of 3 and once with a

value of 4. In factorial(), the value of the parameter is printed out to the console in

each iteration. In noBlock(), a setTimeout() is used to call factorial(), passing to it
its first parameter. In addition, an optional second parameter is called if the second

parameter is a function. noBlock() is called twice with other JavaScript statements

printing nonessential text to the console inserted preceding, between, and after the two

calls. It’s also called a third time, in the callback for the very first call to noBlock().

Example 3-1. Using a timer and callback function to prevent code blocking

function factorial(n) {
 console.log(n);
 return n == 1 ? 1 : n * factorial(n -1);
}

function noBlock(n, callback) {
 setTimeout(function() {
 var val = factorial(n);
 if (callback && typeof callback == 'function') {
 callback(val);
 }
 },0);
}

console.log("Top of the morning to you");

noBlock(3, function(n) {
 console.log('first call ends with ' + n);
 noBlock(n, function(m) {
 console.log("final result is " + m);
 });
});

var tst = 0;
for (i = 0; i < 10; i++) {
 tst+=i;
}

console.log("value of tst is " + tst);

noBlock(4, function(n) {
 console.log("end result is " + n);
});

console.log("not doing too much");

The result of this application run in jsBin is the following output:

"Top of the morning to you"
"value of tst is 45"
"not doing too much"

3.4. Preventing Code Blocking with a Timer and a Callback | 69

3
2
1
"first call ends with 6"
4
3
2
1
"end result is 24"
6
5
4
3
2
1
"final result is 720"

Even though the calls to noBlock() occur before a couple of the extraneous con

sole.log() calls, the function’s process doesn’t block the other JavaScript from pro‐

cessing. In addition, the calls to callBack() are processed in the proper order: the two
outer calls complete, before the second one invoked in the callback for the first call to

callBack() is processed.

Discussion
Regardless of the underlying system or application, JavaScript is not multithreaded: all
processes are run on a single thread of execution. Normally this isn’t an issue except for
those times when you’re running an extremely lengthy bit of code and you don’t want
to block the rest of the application from finishing its work. In addition, you may want
to hold off on running another piece of code until after the lengthy code is finished.

One solution for both programming challenges is to use a JavaScript timer in conjunc‐
tion with a callback function—a function passed as parameter to another function, and
called within that function in certain circumstances and/or at the end of a process.

When a JavaScript timer event occurs, like any other asynchronous event in JavaScript,
it’s added to the end of the event queue rather than getting pushed into the queue im‐
mediately. Exactly how and where it enters the queue varies by browser and application
environment, but generally, any functionality associated with the timer event is pro‐
cessed after any other functionality within the same queue.

This can be a bit of an annoyance if you want a process to run exactly after so many
seconds, but the functionality can also be a handy way of not blocking an application

while waiting for a time-intensive event. By setting the setTimeout() timer to zero (0),
all we’ve done in the solution is to create an event that’s pushed to the end of the execution
queue. By putting the time-intensive event into the timer’s process, we’re now no longer
blocking, while waiting for the process to complete.

70 | Chapter 3: Functions: The JavaScript Building Blocks

And because we usually want to perform a final operation when a time-consuming
process finishes, we pass a callback function to the timer process that’s called only when
the process is ended.

In the program output, the three outer console.log() calls are processed immediately,
as is the outer loop within the program execution queue:

"Top of the morning to you"
"value of tst is 45"
"not doing too much"

The next event in the queue is the first noBlock() function call, where the code called

factorial() logged its activity as it ran, followed by a call to the callback function
logging the function’s result:

3
2
1
"first call ends with 6"

The second call to callBack() operated the same way and again factorial() logged
its activity, and the callback logged the result:

4
3
2
1
"end result is 24"

Only then is the third call to callBack(), invoked in the callback function for the first

callBack(), and using the end result of the first function call:

6
5
4
3
2
1
"final result is 720"

The concept of a callback and not blocking while waiting on long
processes or events is essential for event handling for mouse clicks
and Ajax calls, as well as underlying the processing architecture for
Node.js, which we’ll explore in more detail later in the book.

3.4. Preventing Code Blocking with a Timer and a Callback | 71

3.5. Creating a Function That Remembers Its State

Problem
You want to create a function that can remember data, but without having to use global
variables and without resending the same data with each function call.

Solution
Create an outer function that takes one or more parameters, and then an inner function
that also takes one or more parameters but uses both its and its parent function’s pa‐
rameters. Return the inner function from the outer function, and assign it to a variable.
From that point, use the variable as a function:

function greetingMaker(greeting) {
 function addName(name) {
 return greeting + " " + name;
 }
 return addName;
}

// Now, create new partial functions

var daytimeGreeting = greetingMaker("Good Day to you");
var nightGreeting = greetingMaker("Good Evening");

...

// if daytime

console.log(daytimeGreeting(name));

// if night

console.log(nightGreeting(name));

Discussion
We want to avoid cluttering up the global space with variables, as much as possible.
However, there are times when you need to store data to be used across several function
calls, and you don’t want to have to repeatedly send this information to the function
each time.

A way to persist this data from one function to another is to create one of the functions
within the other, so both have access to the data, and then return the inner function
from the outer. Returning one function from another, when the returned function is
using the outer function’s scope, is known as a function closure. Before I get into the
specifics of function closure, I want to spend a few minutes on functions and scope.

In the solution, the inner function addName() is defined in the outer function greeting

Maker(). Both of the functions have one argument. The inner function has access to

72 | Chapter 3: Functions: The JavaScript Building Blocks

both its argument and the outer function’s argument, but the outer function cannot
access the argument passed to the inner function. The inner function can operate on
the outer function’s parameters because it is operating within the same context, or
scope, of the outer function.

In JavaScript, there is one scope that is created for the outermost application environ‐
ment. All global variables, functions, and objects are contained within this outer scope.

When you create a function, you create a new scope that exists as long as the function
exists. The function has access to all variables in its scope, as well as all of the variables
from the outer scope, but the outer scope does not have access to the variables in the
function. Because of these scoping rules, we can access window and document objects
in all of our browser applications, and the inner function in the solution can also access
the data passed to, or originating in, the outer function that wraps it.

This also explains how the recursive functions in Recipe 3.3 can in‐
ternally access the variables they’re assigned to in the outer applica‐
tion scope.

However, the outer function cannot access the inner function’s arguments or local data
because they exist in a different scope.

When a function returns a function that refers to the outer function’s local scope:

function outer (x) {
 return function(y) { return x * y; };
}

var multiThree = outer(3);
alert(multiThree(2)); // 6 is printed
alert(multiThree(3)); // 9 is printed

The returned function forms a closure. A JavaScript closure is both a function and an
environment that existed at the time it was created. In addition, the example also dem‐
onstrates partial application, where a function’s arguments are partially filled (our
bound) before it’s executed.

When the inner function is returned from the outer function, its application scope at
the time, including all references to the outer function’s variables, persist with the func‐
tion. So even though the outer function’s application scope no longer exists, the inner
function’s scope exists at the time the function was returned including a snapshot of the
outer function’s data. It will continue to exist until the application is finished.

3.5. Creating a Function That Remembers Its State | 73

Another way a closure can be made is if an inner function is as‐
signed to a global variable.

So what happens to these variables when an application scope is released? JavaScript
supports automatic garbage collection, which means that you and I don’t have to man‐
ually allocate or deallocate memory for our variables. Instead, the memory for variables
is created automatically when we create variables and objects, and deallocated auto‐
matically when the variable scope is released.

In the solution, the outer function greetingMaker() takes one argument, which is a

specific greeting. It also returns an inner function, addName(), which itself takes the

person’s name. In the code, greetingMaker is called twice, once with a daytime greeting,

assigned to a variable called daytimeGreeting, and once with a nighttime greeting,

assigned to a variable called nightGreeting.

Now, whenever we want to greet someone in daytime, we can use the daytime greeting

function, daytimeGreeting, passing in the name of the person. The same applies to the

nighttime greeting function, nightGreeting. No matter how many times each is used,
the greeting string doesn’t need to be re-specified: we just pass in a different name. The
specialized variations of the greeting remain in scope until the application terminates.

Closures are interesting and useful, especially when working with JavaScript objects, as
we’ll see later in the book. But there is a downside to closures that turn up when we
create accidental closures.

An accidental closure occurs when we code JavaScript that creates closures, but aren’t
aware that we’ve done so. Each closure takes up memory, and the more closures we
create, the more memory is used. The problem is compounded if the memory isn’t
released when the application scope is released. When this happens, the result is a per‐
sistent memory leak.

Here’s an example of an accidental closure:

function outerFunction() {
 var doc = document.getElementById("doc");
 var newObj = { 'doc' : doc};
 doc.newObj = newObj;
}

The newObj contains one property, doc, which contains a reference to the page element

identified by doc. But then this element is given a new property, newObj, which contains
a reference to the new object you just created, which in turn contains a reference to the
page element. This is a circular reference from object to page element, and page element
to object.

74 | Chapter 3: Functions: The JavaScript Building Blocks

The problem with this circular reference is exacerbated in earlier versions of IE, because
these older IE versions did not release memory associated with DOM objects (such as

the doc element) if the application scope was released. Even leaving the page does not
reclaim the memory: you have to close the browser.

Other browsers and newer versions of IE detect this type of situation and perform a
cleanup when the user leaves the application (the web page where the JavaScript resided).
However, function closures should be deliberate, rather than accidental.

See Also
Mozilla provides a nice, clean description of closures at http://mzl.la/1z2yXUY.

John Resig’s Partial Application in JavaScript has a good write up and demonstration
on the concept of partial application. Another example can be found in Recipe 3.7.

3.6. Converting Function Arguments into an Array

Problem
You want to use Array functionality on a function’s arguments, but the arguments object
isn’t an array.

Solution
Use Array.prototype.slice() and then the function call() method to convert the

arguments collection into an array:

function someFunc() {
 var args = Array.prototype.slice.call(arguments);
 ...
}

Or, here’s a simpler approach:

function someFunc() {
 var args = [].slice.call(arguments);
}

Discussion
The arguments object is available within a function (and only available within a func‐
tion) and is an array-like object consisting of all arguments passed to the function. I say

“array like” because the only Array property available to the object is length.

There could be any number of times when our function may get an unknown number
of arguments and we’re going to want to do something with them, such as iterate over

3.6. Converting Function Arguments into an Array | 75

http://mzl.la/1z2yXUY
http://ejohn.org/blog/partial-functions-in-javascript/

the batch and perform some process. It would be nice to be able to use a handy Array

method like reduce() with the arguments:

function sumRounds() {
 var args = [].slice.call(arguments);

 return args.reduce(function(val1,val2) {
 return parseInt(val1,10) + parseInt(val2,10);
 });
}

var sum = sumRounds("2.3", 4, 5, "16", 18.1);

console.log(sum); // 45

The slice() method returns a shallow copy of a portion of an array, or all of an array

if a begin or ending value is not given. The slice() method is also a function, which

means functional methods like call() can be used with it. In the code snippet, call()

is passed the function arguments, which performs the necessary conversion on the

argument list, passing in the resulting array to slice().

The call() method’s first argument is a this value—typically the calling object itself,

followed by any number of arguments. In the solution, this is the slice() method,

and the outer function’s arguments are passed as arguments for slice(). What this

technique has effectively done is coerce the outer function’s arguments into an accept‐

able format to serve as argument for slice().

See Also
The Advanced section in Recipe 3.7 has a twist on the argument conversion process.

Extra
The approach described for converting arguments into an array can also be used to
convert a NodeList into an array. Given HTML with the following:

<div>test</div>
<div>test2</div>
<div>test3</div>

A query for all div elements results in a NodeList. You can process each node using

forEach() if you first convert the NodeList to an array:

var nlElems = document.querySelectorAll('div');
var aElems = [].slice.call(nlElems);

aElems.forEach(function(elem) {
 console.log(elem.textContent);
});

76 | Chapter 3: Functions: The JavaScript Building Blocks

This code prints out:

test
test2
test3

You can also use forEach() on the NodeList directly, as covered in Recipe 2.6.

3.7. Reducing Redundancy by Using a Partial Application

Problem
You have a function with three arguments (has an arity of three (3)) but the first two
arguments are typically repeated based on specific use. You want to eliminate the rep‐
etition of arguments whenever possible.

Solution
Create one function that manipulates three values and returns a result:

function makeString(ldelim, str, rdelim) {
 return ldelim + str + rdelim;
}

Now create another function that accepts two arguments, and returns the previously
created function, but this time, encoding two of the arguments:

function quoteString(str) {
 return makeString("'",str,"'");
}

function barString(str) {
 return makeString("-", str, "-");
}

function namedEntity(str) {
 return makeString("&#", str, ";");
}

Only one argument is needed for the new functions:

console.log(quoteString("apple")); // "'apple'"
console.log(barString("apple")); // "-apple-"

console.log(namedEntity(169)); // "© - copyright symbol

Discussion
Reducing the arity of a function is a classic example of partial application as demon‐
strated earlier in Recipe 3.5 and in this solution.

3.7. Reducing Redundancy by Using a Partial Application | 77

One function performs a process on a given number of arguments and returns a result,
while a second function acts as a function factory: churning out functions that return
the first function, but with arguments already encoded. As the solution demonstrates,
the encoded arguments can be the same, or different.

Advanced: A Partial Function Factory
We can reduce the redundancy of our function factory even further by creating a generic

function, named partial(), capable of reducing any number of arguments for any
number of functions:

function partial(fn /*, args...*/) {
 var args = [].slice.call(arguments, 1);

 return function() {
 return fn.apply(this, args.concat([].slice.call(arguments)));
 };
}

We’ll need a copy of the arguments passed to partial() but we don’t want the first,
which is the actual function. Typically, to convert a function’s arguments into an array,
we’d use syntax like the following:

var args = [].slice.call(arguments);

In partial(), we specify the beginning value for slice(), in this case 1, skipping over
the first argument. Next, an anonymous function is returned that consists of returning

the results of the apply() method on the function passed as an argument to parti

al(), passing in the anonymous function as this, and concatenating the arguments

passed to partial() to whatever arguments are also passed to the newly generated

function. The apply() method is similar to call() in that it calls the function (repre‐

sented by this), but accepts an array-like list of arguments, rather than an actual array
of arguments.

Now we can create functions to generate strings, or add a constant to numbers, or any
other type of functionality:

function add(a,b) {
 return a + b;
}

var add100 = partial(add, 100);
console.log(add100(14)); // 114

However, we have to be aware, of the order of arguments. In the case of the delimited

string function, we need to remember that partial() concatenates whatever is passed

to the generated function to the end of the argument list passed to partial():

78 | Chapter 3: Functions: The JavaScript Building Blocks

function makeString(ldelim, rdelim, str) {
 return ldelim + str + rdelim;
}

var namedEntity = partial(makeString, "&#", ";");

console.log(namedEntity(169));

I had to modify makeString() to expect the inserted string to be at the end of the
argument list, rather than in the middle, as was demonstrated in the solution.

Extra: Using bind() to Partially Provide Arguments
ECMAScript 5 simplifies the creation of partial applications via the Function.proto

type.bind() method. The bind() method returns a new function, setting this to
whatever is provided as first argument. All the other arguments are prepended to the
argument list for the new function.

Rather than having to use partial() to create the named entity function, we can now

use bind() to provide the same functionality, passing in undefined as the first argument:

function makeString(ldelim, rdelim, str) {
 return ldelim + str + rdelim;
}

var named = makeString.bind(undefined, "&#", ";");

console.log(named(169)); // "©"

Now you have two good ways to simplify your functions.

See Also
Many of us conflated partial application with currying when we first started exploring
this capability in JavaScript (guilty as charged). But there is a difference. Partial appli‐
cation is a way of fixing however many arguments to a returned function, which is then
invoked with whatever new arguments are necessary to finish the task. Currying, on
the other hand, keeps returning functions for however many arguments are passed.

For an excellent look at partial applications compared to currying, I recommend Ben
Alman’s blog post “Partial Application in JavaScript”.

3.7. Reducing Redundancy by Using a Partial Application | 79

http://bit.ly/1J9Qfpt

3.8. Improving Application Performance with
Memoization (Caching Calculations)

Problem
You want to optimize your JavaScript applications and libraries by reducing the need
to repeat complex and CPU-intensive computations.

Solution
Use function memoization in order to cache the results of a complex calculation. Here,
I’m borrowing an example from Douglas Crockford’s book, JavaScript: The Good
Parts (O’Reilly), as applied to the code to generate a Fibonacci number:

var fibonacci = function () {
 var memo = [0,1];
 var fib = function (n) {
 var result = memo[n];
 if (typeof result != "number") {
 result = fib(n -1) + fib(n - 2);
 memo[n] = result;
 }
 return result;
 };
 return fib;
}();

Discussion
Memoization is the process where interim values are cached rather than recreated, cut‐
ting down on the number of iterations and computation time. It works especially well
with something like the Fibonacci numbers or factorials, both of which operate against
previously calculated values. For instance, we can look at a factorial, 4!, as follows:

return 1;

return 1;

return 1 * 2;

return 1 * 2 * 3;

return 1 * 2 * 3 * 4;

But we can also view it as: 3! * 4 // 4!

In other words, if we cache the value for 2! when creating 3!, we don’t need to recalculate

1 * 2 and if we cache 3! when calculating 4!, we don’t need 1 * 2 * 3, and so on.

Memoization is built into some languages, such as Java, Perl, Lisp, and others, but not
into JavaScript. If we want to memoize a function, we have to build the functionality

80 | Chapter 3: Functions: The JavaScript Building Blocks

http://shop.oreilly.com/product/9780596517748.do
http://shop.oreilly.com/product/9780596517748.do

ourselves. The key to the effective use of memoization is being aware that the technique
doesn’t result in performance improvements until the number of operations is signifi‐
cant enough to compensate for the extra effort.

Example 3-2 shows the memoized and nonmemoized versions of the Fibonacci function
that Crockford provided in his book. Note that the calculations are intense and can take
a considerable time. Save any work you have in other tabs. You may have to override a
message given by the browser, too, about killing a script that’s running a long time.

Example 3-2. A demonstration of memoization

// Memoized Function

var fibonacci = function () {
 var memo = [0,1];
 var fib = function (n) {
 var result = memo[n];
 if (typeof result != "number") {
 result = fib(n -1) + fib(n - 2);
 memo[n] = result;
 }
 return result;
 };
 return fib;
}();

// nonmemoized function

var fib = function (n) {
 return n < 2 ? n : fib(n - 1) + fib(n - 2);
};
// run nonmemo function, with timer

console.time("non-memo");
for (var i = 0; i <= 10; i++) {
 console.log(i + " " + fib(i));
}
console.timeEnd("non-memo");

// now, memo function with timer

console.time("memo");
for (var i = 0; i <= 10; i++) {
 console.log(i + " " + fibonacci(i));
}
console.timeEnd("memo");

First, the code is run in 10 times in a loop, in jsFiddle via Firefox:

non-memo: 14ms
memo: 8ms

The result generates one big “meh.” In the second run, though, the code is edited to run

the code in a for loop of 30. The result is as follows:

3.8. Improving Application Performance with Memoization (Caching Calculations) | 81

non-memo: 4724ms
memo: 19ms

A major change. When I tried to run the example in a loop of 50 iterations, my browser
crashed.

See Also
There’s little information on JavaScript memoization online. Crockford provides a
generic “memoize” function in his book, as does Addy Osmani in “Faster JavaScript
Memoization for Improved Application Performance”. In addition, the Underscore.js

library also provides a memoize() function.

3.9. Using an Anonymous Function to Wrap Global
Variables

Problem
You need to create a variable that maintains state between function calls, but you want
to avoid global variables.

Solution
Use an Immediately-Invoked Function Expression (IIFE) to wrap variables and functions
both:

<!DOCTYPE html>
<head>

<title>faux Global</title>
<script>

 (function() {
 var i = 0;

 function increment() {
 i++;
 alert("value is " + i);
 }

 function runIncrement() {
 while (i < 5) {
 increment();
 }
 }

 window.onload=function() {
 runIncrement();
 }

82 | Chapter 3: Functions: The JavaScript Building Blocks

http://bit.ly/1J9Ru8h
http://bit.ly/1J9Ru8h

 })();

</script>

</head>

<body>

</body>

</html>

Discussion
An anonymous function surrounds the global values, is immediately evaluated, and
then never evaluated again. Ben Allam gave the pattern the name of Immediately-
Invoked Function Expression (IIFE or “iffy”), though functionality demonstrated in the
solution has existed for some time. IIFEs are used in many major libraries and frame‐
works, including the popular jQuery, as a way of wrapping plug-in functions so that the
code can use the jQuery dollar sign function ($) when the jQuery plug-in is used with
another framework library.

The approach consists of surrounding the code block with parentheses, beginning with
the anonymous function syntax, and following up with the code block and then the final
function closure. It could be the following, if there’s no parameter passed into the code
block:

})();

or the following, if you are passing a parameter into the function:

})(jQuery);

Now you can create as many variables as you need without polluting the global space
or colliding with global variables used in other libraries.

See Also
Ben Alman coined the IIFE phrase in Immediately-Invoked Function Expression. In
addition to the writing on IIFE, take time to read the articles Ben links in the “Further
Reading” section.

3.10. Providing a Default Parameter

Problem
You want to specify a default value for a parameter if no argument value is given when
a function is called.

3.10. Providing a Default Parameter | 83

http://bit.ly/i-ife

Solution
Use the new ECMAScript 6 (ES 6) default parameter functionality:

function makeString(str, ldelim = "'", rdelim = "'") {

 return ldelim + str + rdelim;

}

console.log(makeString(169)); // "'169'"

Discussion
One of the biggest gaps in JavaScript is the lack of a default parameter. Yes, we can
emulate the same functionality, but nothing is simpler and more elegant than having
support for a default parameter built in.

The use is simple: if one or more arguments can be optional, you can provide a default
parameter using syntax like the following:

ldelim = "'"

Just assign the default value (in whatever data type format) to the parameter.

The default parameter functionality can be used with any parameter. To maintain the

proper argument position, you can pass a value of undefined in the argument:

console.log(makeString(169,undefined,"-")); // "'str-"

At the time I wrote this, only Firefox had implemented default parameter functionality.

To ensure future compatibility, test the parameter for the undefined value and adjust
accordingly:

function makeString(str, ldelim="'", rdelim="'") {
 ldelim = typeof ldelim !== 'undefined' ? ldelim : "'";
 rdelim = typeof rdelim !== 'undefined' ? rdelim : "'";

 return ldelim + str + rdelim;

}

84 | Chapter 3: Functions: The JavaScript Building Blocks

CHAPTER 4

The Malleable JavaScript Object

With the increased interest in functional programming, you might think there’s less
interest in JavaScript’s object-based capability. However, JavaScript is a flexible, adapt‐
able language, and is just as happy to embrace both functional programming and object-
oriented development.

There is a caveat related to JavaScript’s object-oriented capabilities: unlike languages
such as Java or C++, which are based on classes and class instances, JavaScript is based
on prototypical inheritance. What prototypical inheritance means is that reuse occurs
through creating new instances of existing objects, rather than instances of a class. In‐
stead of extensibility occurring through class inheritance, prototypical extensibility
happens by enhancing an existing object with new properties and methods.

Prototype-based languages have an advantage in that you don’t have to worry about
creating the classes first, and then the applications. You can focus on creating applica‐
tions, and then deriving the object framework via the effort.

It sounds like a mishmash concept, but hopefully as you walk through the recipes you’ll
get a better feel for JavaScript’s prototype-based, object-oriented capabilities.

A Brief Note About Functional Programming and
Object-Oriented Development

In the last few years, especially after the explosive growth of jQuery and Node.js, the
trend is to use functional programming (discussed in Chapter 2) as a development ap‐

proach over the more traditional prototype object-oriented techniques.

Functional programming does have benefits. There is less chance of unwanted side
effects, the coding can be simpler to read and maintain, and at times, it seems we’re
spending less time on the fussy “get everything together” parts.

85

But object-oriented development is a long-established and understood development
paradigm, with well-understood design principles. In addition, there is strong support
for object-oriented development in JavaScript, and much of the history of the language
has been focused on this approach.

The thing is, JavaScript supports both, and is completely neutral as to which approach
is best. That is its benefit, and its bane:

As far as JavaScript development is concerned, what are the pros and cons of each
paradigm? The biggest drawback is that the language supports both paradigms but
leaves it up to you. It supports both but doesn’t mandate (or make particularly suitable)
any. Frameworks exist to simplify object-oriented JavaScript as well as function-
oriented JavaScript.

— Dino Esposito

Read more of Dino Esposito’s comparison of functional programming and object-
oriented development in “Functional vs. Object-Oriented JavaScript Development”.

4.1. Keeping Object Members Private

Problem
You want to keep one or more object properties private, so they can’t be accessed outside
the object instance.

Solution
When creating the private data members, do not use the this keyword with the member:

function Tune(song,artist) {
 var title = song;
 this.concat = function() {
 return title + " " + artist;
 }
}

var happySongs = [];
happySongs[0] = new Tune("Putting on the Ritz", "Ella Fitzgerald");

console.log(happySongs[0].title); // undefined

// prints out correct title and artist

console.log(happySongs[0].concat());

Discussion
Variables in the object constructor (the function body), are not accessible outside the

object unless they’re attached to that object using this. If they’re redefined using the

86 | Chapter 4: The Malleable JavaScript Object

http://msdn.microsoft.com/en-us/magazine/gg476048.aspx

var keyword or passed in as parameters only, the Tune’s inner function, the concat()
method, can access these now-private data members.

This type of method—one that can access the private data members, but is, itself, ex‐

posed to public access via this—has been termed a privileged method by Douglas
Crockford, the father of JSON (JavaScript Object Notation). As he himself explains:

This pattern of public, private, and privileged members is possible because JavaScript has
closures. What this means is that an inner function always has access to the vars and
parameters of its outer function, even after the outer function has returned. This is an
extremely powerful property of the language [. . . .] Private and privileged members can
only be made when an object is constructed. Public members can be added at any time.

Be aware, though, that the privacy of the variable is somewhat illusory. One can easily
assign a value to that property outside the constructor function, and overwrite the pri‐
vate data:

happySongs[0].title = 'testing';

console.log(happySongs[0].title); // testing

However, the “privacy” of the data isn’t meant to ensure security of the object. It’s a
contract with the developer, a way of saying, “This data isn’t meant to be accessed directly,
and doing so will probably mess up your application.” As such, developers also typically
use a naming convention where private data members begin with an underscore, to
highlight that they aren’t meant to be accessed or set directly:

function Tune(song,artist) {
 var _title = song;
 this.concat = function() {
 return _title + " " + artist;
 }
}

See Also
See Recipe 3.5 for more on function closures. See Recipe 4.2 for more on adding public
members after the object has been defined.

4.2. Using Prototype to Create Objects
You want to create a new object, but you don’t want to add all the properties and methods
into the constructor function.

Solution
Use the object’s prototype to add the new properties:

4.2. Using Prototype to Create Objects | 87

http://www.crockford.com/javascript/private.html

Tune.prototype.addCategory = function(categoryName) {
 this.category = categoryName;
}

Discussion
Object is the ancestor for every object in JavaScript; objects inherit methods and prop‐

erties from the Object via the Object prototype. It’s through the prototype that we can
add new methods to existing objects:

var str = 'one';

String.prototype.exclaim = function() {
 if (this.length == 0) return this;
 return this + '!';
}

var str2 = 'two';

console.log(str.exclaim()); // one!
console.log(str2.exclaim()); // two!

Before ECMAScript 5 added trim() to the String object, applications used to extend

the String object by adding a trim method through the prototype object:

String.prototype.trim = function() {
 return (this.replace(/^[\s\xA0]+/, "").replace(/[\s\xA0]+$/, ""));
}

Needless to say, you’d want to use extreme caution when using this functionality. Ap‐

plications that have extended the String object with a homegrown trim method may

end up behaving differently than applications using the new standard trim method. To
avoid this, libraries test to see if the method already exists before adding their own.

We can also use prototype to add properties to our own objects. In Example 4-1, the

new object, Tune, is defined using function syntax. It has two private data members, a

title and an artist. A publicly accessible method, concatTitleArtist(), takes these
two private data members, concatenates them, and returns the result.

After a new instance of the object is created, and the object is extended with a new

method (addCategory()) and data member (category) the new method is used to
update the existing object instance.

Example 4-1. Instantiating a new object, adding values, and extending the object

function Tune(title,artist) {
 this.concatTitleArtist = function() {
 return title + " " + artist;
 }
}

88 | Chapter 4: The Malleable JavaScript Object

// create instance, print out values

var happySong = new Tune("Putting on the Ritz", "Ella Fitzgerald");

// extend the object

Tune.prototype.addCategory = function(categoryName) {
 this.category = categoryName;
}

// add category

happySong.addCategory("Swing");

// print song out to new paragraph

var song = "Title and artist: " + happySong.concatTitleArtist() +
 " Category: " + happySong.category;

console.log(song);

The result of running the code is the following line printed out to the console:

"Title and artist: Putting on the Ritz Ella Fitzgerald Category: Swing"

One major advantage to extending an object using prototype is increased efficiency.

When you add a method directly to a function constructor, such as the concat

TitleArtist() method in Tune, every single instance of the object then has a copy of
this function. Unlike the data members, the function isn’t unique to each object instance.

When you extend the object using prototype, as the code did with addCategory(), the
method is created on the object itself, and then shared equally between all instances of
the objects.

Of course, using prototype also has disadvantages. Consider again the concat

TitleArtist() method. It’s dependent on access to data members that are not accessible

outside the object. If the concatTitleArtist() method was defined using prototype
and then tried to access these data members, an error occurs.

If you define the method using prototype directly in the constructor function, it is
created in the scope of the function and does have access to the private data, but the
data is overridden each time a new object instance is created:

function Tune(title,artist) {
 var title = title;
 var artist = artist;
 Tune.prototype.concatTitleArtist = function() {
 return title + " " + artist;
 }
}

var sad = new Tune('Sad Song', 'Sad Singer')
var happy = new Tune('Happy', 'Happy Singer');

4.2. Using Prototype to Create Objects | 89

console.log(sad.concatTitleArtist()); // Happy Happy Singer

The only data unique to the prototype function is what’s available via this. There are
twisty ways around this, but they not only add to the complexity of the application, they

tend to undermine whatever efficiency we get using prototype.

Generally, if your function must deal with private data, it should be defined within the

function constructor, and without using prototype. Otherwise, the data should be

available via this, or static and never changing once the object is created.

4.3. Inheriting an Object’s Functionality

Problem
When creating a new object type, you want to inherit the functionality of an existing
JavaScript object.

Solution
Use Object.create() to implement the inheritance:

function origObject() {
 this.val1 = 'a';
 this.val2 = 'b';
}

origObject.prototype.returnVal1 = function() {
 return this.val1;
};

origObject.prototype.returnVal2 = function() {
 return this.val2;
};

function newObject() {
 this.val3 = 'c';
 origObject.call(this);
}

newObject.prototype = Object.create(origObject.prototype);
newObject.prototype.constructor=newObject;

newObject.prototype.getValues = function() {
 return this.val1 + " " + this.val2 + " "+ this.val3;
};

var obj = new newObject();

90 | Chapter 4: The Malleable JavaScript Object

console.log(obj instanceof newObject); // true
console.log(obj instanceof origObject); // true

console.log(obj.getValues()); "a b c"

Discussion
The Object.create() method introduced with ECMAScript 5 provides classical in‐
heritance in JavaScript. The first parameter is the object that serves as prototype for the
newly created object, and the second optional parameter is a set of properties defined

for the object, and equivalent to the second argument in Object.defineProperties().

In the solution for this recipe, the prototype for the original object is passed in the

Object.create() call, assigned to the new object’s own prototype. The new object’s

constructor property is set to the new object’s constructor function. The new object’s

prototype is then extended with a new method, getValues(), which returns a string

consisting of concatenated properties from both objects. Note the use of instanceof
demonstrating how both the old and new object prototypes are in the new object’s
prototype chain.

In the constructor function for the new object, you need to use call() to chain the
constructors for both objects. If you want to pass the argument list between the two

objects, use apply() instead, as demonstrated in Example 4-2.

Example 4-2. Demonstrating classical inheritance in JavaScript with Object.create

function Book (title, author) {
 this.getTitle=function() {
 return "Title: " + title;
 };
 this.getAuthor=function() {
 return "Author: " + author;
 };
}

function TechBook (title, author, category) {

 this.getCategory = function() {
 return "Technical Category: " + category;
 };

 this.getBook=function() {
 return this.getTitle() + " " + author + " " + this.getCategory();
 };

 Book.apply(this, arguments);
}

TechBook.prototype = Object.create(Book.prototype);

4.3. Inheriting an Object’s Functionality | 91

TechBook.prototype.constructor = TechBook;

// get all values

var newBook = new TechBook("The JavaScript Cookbook",
 "Shelley Powers", "Programming");

console.log(newBook.getBook());

// now, individually

console.log(newBook.getTitle());
console.log(newBook.getAuthor());
console.log(newBook.getCategory());

In jsBin, the output for the application is:

"Title: The JavaScript Cookbook Shelley Powers Technical Category: Programming"
"Title: The JavaScript Cookbook"
"Author: Shelley Powers"
"Technical Category: Programming"

4.4. Extending an Object by Defining a New Property

Problem
You can easily slap a new property onto an object, but you want to do so in such a way
that you have more control of how it’s used.

Solution
Use the defineProperty() method to add the property.

Given the following object:

var data = {}

If you want to add the following two properties with the given characteristics:

• type: Initial value set and can’t be changed, can’t be deleted or modified, but can be
enumerated

• id: Initial value set, but can be changed, can’t be deleted or modified, and can’t be
enumerated

Use the following JavaScript:

var data = {};

Object.defineProperty(data, 'type', {
 value: 'primary',
 enumerable: true
});

92 | Chapter 4: The Malleable JavaScript Object

console.log(data.type); // primary
data.type = 'secondary';
console.log(data.type); // nope, still primary

Object.defineProperty(data, 'id', {
 value: 1,
 writable: true
});

console.log(data.id); // 1
data.id=300;
console.log(data.id); // 300

for (prop in data) {
 console.log(prop); // only type displays
}

Discussion
The defineProperty() is a way of adding a property to an object other than direct
assignment that gives us some control over its behavior and state. There are two varia‐

tions of property you can create with defineProperty(): a data descriptor, as demon‐
strated in the solution, and an accessor descriptor, defined with a getter-setter function
pair.

The defineProperty() Object method for accessor descriptors re‐

places the now deprecated __defineGetter and __defineSetter.

An example of an accessor descriptor is the following:

var data = {};

var group = 'history';

Object.defineProperty(data, "category", {
 get: function () { return group; },
 set: function (value) { group = value; },
 enumerable: true,
 configurable: true
});

console.log(data.category); // history

group = 'math';
console.log(data.category); // math

4.4. Extending an Object by Defining a New Property | 93

data.category = 'spanish';
console.log(data.category); // spanish
console.log(group); // spanish

Changes to the value for data.category and group are now interconnected.

The Object.defineProperty() supports three parameters: the object, the property,
and a descriptor object. The latter consists of the following options:

• configurable: false by default; controls whether the property descriptor can be
changed

• enumerable: false by default; controls whether the property can be enumerated

• writable: false by default; controls whether the property value can be changed
through assignment

• value: The initial value for the property

• get: undefined by default; property getter

• set: undefined by default; property setter

The defineProperty() method has wide support in all modern browsers, but with
caveats. Safari does not allow its use on a DOM object, while IE8 only supports it on a
DOM object (IE9 and later support it on all objects).

See Also
Recipe 4.5 details how to prevent the addition of new properties to an object, and
Recipe 4.6 covers freezing an object against any further change.

4.5. Preventing Object Extensibility

Problem
You want to prevent others from extending an object.

Solution
Use the ECMAScript 5 Object.preventExtensions() method to lock an object against
future property additions:

'use strict';

var Test = {
 value1 : "one",
 value2 : function() {
 return this.value1;
 }

94 | Chapter 4: The Malleable JavaScript Object

};

try {
 Object.preventExtensions(Test);

 // the following fails, and throws a TypeError in Strict mode
 Test.value3 = "test";

} catch(e) {
 console.log(e);
}

Discussion
The Object.preventExtensions() method prevents developers from extending the
object with new properties, though property values themselves are still writable. It sets

an internal property, Extensible, to false. You can check to see if an object is extensible

using Object.isExtensible:

if (Object.isExtensible(obj)) {
 // extend the object
}

If you attempt to add a property to an object that can’t be extended, the effort will either

fail silently, or, if strict mode is in effect, will throw a TypeError exception:

TypeError: Can't add property value3, object is not extensible

Though you can’t extend the object, you can edit existing property values, as well as
modify the object’s property descriptor.

See Also
Recipe 4.4 covers property descriptors. strict mode was covered in “Extra: Speaking
of Strict Mode” on page 33.

4.6. Preventing Any Changes to an Object

Problem
You’ve defined your object, and now you want to make sure that its properties aren’t
redefined or edited by other applications using the object.

Solution
Use Object.freeze() to freeze the object against any and all changes:

'use strict';

4.6. Preventing Any Changes to an Object | 95

var test = {
 value1 : 'one',
 value2 : function() {
 return this.value1;
 }
}

try {
 // freeze the object
 Object.freeze(test);

 // the following throws an error in Strict Mode
 test.value2 = 'two';

 // so does the following
 test.newProperty = 'value';

 var val = 'test';

 // and the following
 Object.defineProperty(test, 'category', {
 get: function () { return test; },
 set: function (value) { test = value; },
 enumerable: true,
 configurable: true
 });
} catch(e) {
 console.log(e);
}

Discussion
ECMAScript 5 brought us several Object methods for better object management. The

least restrictive is Object.preventExtensions(obj), covered in Recipe 4.5, which dis‐
allows adding new properties to an object, but you can still change the object’s property
descriptor or modify an existing property value.

The next, more restrictive method is Object.seal(), which prevents any modifications
or new properties from being added to the property descriptor, but you can modify an
existing property value.

The most restrictive method is Object.freeze(). This method disallows extensions to
the object and restricts changes to the property descriptor. In addition,

Object.freeze() also prevents any and all edits to existing object properties. Literally,
once the object is frozen, that’s it—no additions, no changes to existing properties.

The first property modification in the solution code:

test.value2 = "two";

results in the following error (in Chrome):

96 | Chapter 4: The Malleable JavaScript Object

TypeError: Cannot assign to read only property 'value2' of #<Object>

If we comment out the line, the next object adjustment:

test.newProperty = "value";

throws the following error:

TypeError: Can't add property newProperty, object is not extensible

Commenting out this line leaves the use of defineProperty():

var val = 'test';

// and the following

Object.defineProperty(test, "category", {
 get: function () { return test; },
 set: function (value) { test = value; },
 enumerable: true,
 configurable: true
});

We get the final exception, for the use of defineProperty() on the object:

TypeError: Cannot define property:category, object is not extensible.

If we’re not using strict mode, the first two assignments fail silently, but the use of

defineProperty() still triggers an exception (this mixed result is another good reason
for using strict mode).

Check if an object is frozen using the companion method, Object.isFrozen():

if (Object.isFrozen(obj)) ...

4.7. Namespacing Your JavaScript Objects

Problem
You want to encapsulate your data and functions in such a way as to prevent clashes
with other libraries.

Solution
Use an object literal, what I call a one-off object, to implement the JavaScript version of
namespacing. An example is the following:

var jscbObject = {

 // return element
 getElem : function (identifier) {
 return document.getElementById(identifier);
 },

4.7. Namespacing Your JavaScript Objects | 97

 stripslashes : function(str) {
 return str.replace(/\\/g, '');
 },

 removeAngleBrackets: function(str) {
 return str.replace(/</g,'<').replace(/>/g,'>');
 }
};

var sample = "<div>testing\changes</div>";

var result = jscbObject.stripslashes(sample);
result = jscbObject.removeAngleBrackets(result);

console.log(result); //<div>testingchanges</div>

Discussion
As mentioned elsewhere in this book, all built-in objects in JavaScript have a literal
representation in addition to their more formal object representation. For instance, an

Array can be created as follows:

var newArray = new Array('one','two','three');

or using the array literal notation:

var newArray = ['one','two','three'];

The same is true for objects. The notation for object literals is pairs of property names
and associated values, separated by commas, and wrapped in curly brackets:

var newObj = {
 prop1 : "value",
 prop2 : function() { ... },
 ...
};

The property/value pairs are separated by colons. The properties can be scalar data
values or they can be functions. The object members can then be accessed using the
object dot-notation:

var tmp = newObj.prop2();

or:

var val = newObj.prop1 * 20;

or:

getElem("result").innerHTML=result;

Using an object literal, we can wrap all of our library’s functionality in such a way that
the functions and variables we need aren’t individually in the global space. The only
global object is the actual object literal, and if we use a name that incorporates

98 | Chapter 4: The Malleable JavaScript Object

functionality, group, purpose, author, and so on, in a unique manner, we effectively
namespace the functionality, preventing name clashes with other libraries.

Advanced
I use the term one-off with the object literal rather than the more commonly known
singleton because, technically, the object literal doesn’t fit the singleton pattern.

A singleton pattern is one where only one instance of an object can be created. We can
say this is true of our object literal, but there’s one big difference: a singleton can be
instantiated at a specific time rather than exist as a static construct, which is what the
solution defines.

I went to Addy Osmani’s JavaScript Design Patterns (O’Reilly) to get an example of a
good implementation of a singleton:

var mySingleton = (function () {

 // Instance stores a reference to the Singleton
 var instance;

 function init() {

 // Singleton

 // Private methods and variables
 function privateMethod(){
 console.log("I am private");
 }

 var privateVariable = "Im also private";

 var privateRandomNumber = Math.random();

 return {

 // Public methods and variables
 publicMethod: function () {
 console.log("The public can see me!");
 },

 publicProperty: "I am also public",

 getRandomNumber: function() {
 return privateRandomNumber;
 }

 };

 };

4.7. Namespacing Your JavaScript Objects | 99

http://shop.oreilly.com/product/0636920025832.do_Learning

 return {

 // Get the Singleton instance if one exists
 // or create one if it doesn't
 getInstance: function () {

 if (!instance) {
 instance = init();
 }

 return instance;
 }

 };

})();

singleA = mySingleton.getInstance();
var singleB = mySingleton.getInstance();
console.log(singleA.getRandomNumber() === singleB.getRandomNumber());

The singleton uses an Immediately-Invoked Function Expression (IIFE) to wrap the
object, which immediately returns an instance of the object. But not just any instance
—if an instance already exists, it’s returned rather than a new instance. The latter is

demonstrated by the object’s getRandomNumber() function, which returns a random
number that is generated when the object is created, and returns the same random
number regardless of which “instance” is accessed.

Access Addy Osmani’s Learning JavaScript Design Patterns online, or
you can purchase a digital and/or paper copy directly at O’Reilly, or
from your favorite book seller.

See Also
Chapter 7 covers external libraries and packaging your code into a library for external
distribution. Chapter 12 covers another important pattern, the module pattern, and how
modularization works with JavaScript.

4.8. Rediscovering this with Prototype.bind

Problem
You want to control the scope assigned a given function.

100 | Chapter 4: The Malleable JavaScript Object

http://bit.ly/ZQNe8L

Solution
Use the bind() method:

window.onload=function() {

 window.name = "window";

 var newObject = {
 name: "object",

 sayGreeting: function() {
 alert("Now this is easy, " + this.name);
 nestedGreeting = function(greeting) {
 alert(greeting + " " + this.name);
 }.bind(this);

 nestedGreeting("hello");
 }
 };

 newObject.sayGreeting("hello");
};

Discussion
this represents the owner or scope of the function. The challenge associated with this
in JavaScript libraries is that we can’t guarantee which scope applies to a function.

In the solution, the object has a method, sayGreeting(), which outputs a message and

maps another nested function to its property, nestedGreeting.

Without the Function’s bind() method, the first message printed out would say, “Now
this is easy, object”, but the second would say, “hello window”. The reason the second
printout references a different name is that the nesting of the function disassociates the
inner function from the surrounding object, and all unscoped functions automatically
become the property of the window object.

What the bind() method does is use the apply() method to bind the function to the

object passed to the object. In the example, the bind() method is invoked on the nested

function, binding it with the parent object using the apply() method.

bind() is particularly useful for timers, such as setInterval(). Example 4-3 is a web

page with a script that uses setTimeout() to perform a countdown operation, from 10
to 0. As the numbers are counted down, they’re inserted into the web page using the

element’s innerHTML property.

4.8. Rediscovering this with Prototype.bind | 101

Example 4-3. Demonstrating the utility of bind

<!DOCTYPE html>
<head>

<html>

<title>Using bind with timers</title>
<meta charset=utf-8" />
<style type="text/css">
 #item {
 font-size: 72pt;
 margin: 70px auto;
 width: 100px;
 }
</style>

</head>

<body>

 <div id="item">
 10
 </div>
 <script>

 var theCounter = new Counter('item',10,0);
 theCounter.countDown();

 function Counter(id,start,finish) {
 this.count = this.start = start;
 this.finish = finish;
 this.id = id;
 this.countDown = function() {
 if (this.count == this.finish) {
 this.countDown=null;
 return;
 }
 document.getElementById(this.id).innerHTML=this.count--;
 setTimeout(this.countDown.bind(this),1000);
 };
 }
 </script>

</body>

</html>

If the setTimeout() function in the code sample had been the following:

setTimeout(this.countDown, 1000);

the application wouldn’t have worked, because the object scope and counter would have
been lost when the method was invoked in the timer.

102 | Chapter 4: The Malleable JavaScript Object

Extra: self = this
An alternative to using bind(), and one that is still in popular use, is to assign this to

a variable in the outer function, which is then accessible to the inner. Typically this is

assigned to a variable named that or self:

window.onload=function() {

 window.name = "window";

 var newObject = {
 name: "object",

 sayGreeting: function() {
 var self = this;
 alert("Now this is easy, " + this.name);
 nestedGreeting = function(greeting) {
 alert(greeting + " " + self.name);
 };

 nestedGreeting("hello");
 }
 };

 newObject.sayGreeting("hello");
};

Without the assignment, the second message would reference “window”, not “object”.

4.9. Chaining Your Object’s Methods

Problem
You wish to define your object’s methods in such a way that more than one can be used
at the same time, similar to the following, which retrieves a reference to a page element

and sets the element’s style property:

document.getElementById("elem").setAttribute("class","buttondiv");

Solution
The ability to directly call one function on the result of another in the same line of code
is known as method chaining. It requires specialized code in whatever method you want
to chain.

For instance, if you want to be able to chain the TechBook.changeAuthor() method in
the following code snippet, you must also return the object after you perform whatever
other functionality you need:

4.9. Chaining Your Object’s Methods | 103

function Book (title, author) {
 this.getTitle=function() {
 return "Title: " + title;
 };

 this.getAuthor=function() {
 return "Author: " + author;
 };

 this.replaceTitle = function (newTitle) {
 var oldTitle = title;
 title = newTitle;
 };

 this.replaceAuthor = function(newAuthor) {
 var oldAuthor = author;
 author = newAuthor;
 };
}

function TechBook (title, author, category) {
 this.getCategory = function() {
 return "Technical Category: " + category;
 };

 Book.apply(this,arguments);

 this.changeAuthor = function(newAuthor) {
 this.replaceAuthor(newAuthor);

 return this; // necessary to enable method chaining
 };
}

var newBook = new TechBook("I Know Things", "Smart Author", "tech");
console.log(newBook.changeAuthor("Book K. Reader").getAuthor());

Discussion
The key to making method chaining work is to return a reference to the object at the

end of the method, as shown in the changeAuthor() method in the solution:

this.changeAuthor = function(newAuthor) {
 this.replaceAuthor(newAuthor);

 return this; // necessary to enable method chaining
};

Chaining is used extensively in JavaScript objects, and demonstrated throughout this
book when we see functionality such as:

var result = str.replace(/</g,'<').replace(/>/g,'>');

104 | Chapter 4: The Malleable JavaScript Object

Libraries such as jQuery also make extensive use of method chaining, as we’ll see later
in the book.

4.9. Chaining Your Object’s Methods | 105

CHAPTER 5

JavaScript and Directly Accessing
the User Interface

The user interface in JavaScript applications is typically the web page in which the script
is embedded. The page may open in an Android tablet or a traditional computer brows‐
er, but the concepts are the same.

Nowadays, most people use libraries and frameworks in order to manipulate the web
page. However, no matter how helpful and sophisticated the library, you still need to
have a good idea of what you can, and cannot, do to the web page before making effective
use of a library. More importantly, you need to have a good idea of the best practices to
use when modifying the web page.

5.1. Accessing a Given Element and Finding Its Parent and
Child Elements

Problem
You want to access a specific web page element, and then find its parent and child
elements.

Solution
Give the element a unique identifier:

<div id="demodiv">
 <p>
 This is text.
 </p>
</div>

107

Use document.getElementById() to get a reference to the specific element:

var demodiv = document.getElementById("demodiv");

Find its parent via the parentNode property:

var parent = demodiv.parentNode;

Find its children via the childNodes property:

var children = demodiv.childNodes;

Discussion
A web document is organized like an upside-down tree, with the topmost element at
the root and all other elements branching out beneath. Except for the root element

(HTML), each element has a parent node, and all of the elements are accessible via the

document.

There are several different techniques available for accessing these document elements,
or nodes as they’re called in the Document Object Model (DOM). Today, we access these
nodes through standardized versions of the DOM, such as the DOM Levels 2 and 3.
Originally, though, a de facto technique was to access the elements through the browser
object model, sometimes referred to as DOM Level 0. The DOM Level 0 was invented
by the leading browser company of the time, Netscape, and its use has been supported
(more or less) in most browsers since. The key object for accessing web page elements

in the DOM Level 0 is the document object.

The most commonly used DOM method is document.getElementById(). It takes one

parameter: a case-sensitive string with the element’s identifier. It returns an element
object, which is referenced to the element if it exists; otherwise, it returns null.

There are numerous ways to get one specific web page element, in‐
cluding the use of selectors, covered later in the chapter. But you’ll
always want to use the most restrictive method possible, and you can’t

get more restrictive than document.getElementById().

The returned element object has a set of methods and properties, including several

inherited from the node object. The node methods are primarily associated with tra‐
versing the document tree. For instance, to find the parent node for the element, use
the following:

var parent = document.getElementById("demodiv").parentNode; // parent node

You can find out the type of element for each node through the nodeName property:

var type = parent.nodeName; // BODY

108 | Chapter 5: JavaScript and Directly Accessing the User Interface

If you want to find out what children an element has, you can traverse a collection of

them via a NodeList, obtained using the childNodes property:

var demodiv = document.getElementById("demodiv");
var outputString = "";

if (demodiv.hasChildNodes()) {
 var children = demodiv.childNodes;
 for (var i = 0; i < children.length; i++) {
 outputString+="has child " + children[i].nodeName + " ";
 }
}
console.log(outputString);

Given the element in the solution, the output would be:

"has child #text has child P has child #text "

You might be surprised by what appeared as a child node. In this example, whitespace

before and after the paragraph element is itself a child node with a nodeName of #text.

For the following div element:

<div id="demodiv" class="demo">
 <p>Some text</p>
 <p>Some more text</p>
</div>

the demodiv element (node) has five children, not two:

has child #text
has child P
has child #text
has child P
has child #text

In the last code snippet, IE8 only picks up the two paragraph ele‐
ments, which demonstrates why it’s important to be specific with the

queries and check nodeName to ensure you’re accessing the correct
elements.

The best way to see how messy the DOM can be is to use a debugger such as Firebug or
the Chrome developer tools, access a web page, and then utilize whatever DOM in‐
spection tool the debugger provides. I opened a simple page in Chrome and used the
developer tools to display the element tree, as shown in Figure 5-1.

5.1. Accessing a Given Element and Finding Its Parent and Child Elements | 109

Figure 5-1. Examining the element tree of a web page using Chrome’s developer tools

5.2. Accessing All Images in the Web Page

Problem
You want to access all img elements in a given document.

Solution
Use the document.getElementsByTagName() method, passing in img as the parameter:

var imgElements = document.getElementsByTagName('img');

Discussion
The document.getElementsByTagName() method returns a collection of nodes (a

NodeList) of a given element type, such as the img tag in the solution. The collection
can be traversed like an array, and the order of nodes is based on the order of the elements

within the document (the first img element in the page is accessible at index 0, etc.):

var imgElements = document.getElementsByTagName('img');
for (let i = 0; i < imgElements.length; i++) {
 var img = imgElements[i];
 ...
}

110 | Chapter 5: JavaScript and Directly Accessing the User Interface

The NodeList collection can be traversed like an array, but it isn’t an Array object—you

can’t use Array object methods, such as push() and reverse(), with a NodeList. Its

only property is length, and its only method is item(), returning the element at the
position given by an index passed in as parameter:

var img = imgElements.item(1); // second image

NodeList is an intriguing object because it’s a live collection, which means changes made

to the document after the NodeList is retrieved are reflected in the collection.

Example 5-1 demonstrates the NodeList live collection functionality, as well as getEle

mentsByTagName.

In the example, three images in the web page are accessed as a NodeList collection using

the getElementsByTagName method. The length property, with a value of 3, is output

to the console. Immediately after, a new paragraph and img elements are created, and

the img is appended to the paragraph. To append the paragraph following the others in

the page, getElementsByTagName is used again, this time with the paragraph tags (p).
We’re not really interested in the paragraphs, but in the paragraphs’ parent elements,

found via the parentNode property on each paragraph.

The new paragraph element is appended to the paragraph’s parent element, and the

previously accessed NodeList collection’s length property is again printed out. Now, the

value is 4, reflecting the addition of the new img element.

Example 5-1. Demonstrating getElementsByTagName and the NodeList live collection
property

<!DOCTYPE html>
<html>

<head>

<title>NodeList</title>
</head>

<body>

 <p></p>
 <p></p>
 <p></p>

<script>

 var imgs = document.getElementsByTagName('img');
 console.log(imgs.length);
 var p = document.createElement("p");
 var img = document.createElement("img");
 img.src="someimg.jpg";
 p.appendChild(img);

 var paras = document.getElementsByTagName('p');
 paras[0].parentNode.appendChild(p);

 console.log(imgs.length);

5.2. Accessing All Images in the Web Page | 111

 </script>

</body>

</html>

In addition to using getElementsByTagName() with a specific element type, you can

also pass the universal selector (*) as a parameter to the method to get all elements:

var allelems = document.getElementsByTagName('*');

IE7, or IE8 running in IE7 mode, will return an empty NodeList if

you use the universal selector with getElementsByTagName().

See Also
In the code demonstrated in the discussion, the children nodes are traversed using a

traditional for loop. Array functionality, such as forEach(), can’t be used directly with
a NodeList because it’s not an Array. You can coerce the NodeList, as is demonstrated
in Recipe 2.6, but this type of coercion has its own drawbacks.

Extra: Namespace Variation
Like most of the DOM API access methods, there is a variation of getElementsByTag

Name(), getElementsByTagNameNS, which can be used in documents that support mul‐
tiple namespaces, such as an XHTML web page with embedded MathML or SVG.

In Example 5-2, an SVG document is embedded in XHTML. Both the XHTML docu‐

ment and the embedded SVG make use of the title element. The title element in the

XHTML document is part of the default XHTML namespace, but the title in the SVG
is part of the Dublin Core namespace.

When the title element is accessed, information about the title, including its name‐

space, the prefix, the localName, and the textContent, are printed out. The prefix is

the dc component of dc:title, and the localName is the title part of dc:title. The

textContent is a new property, added with the DOM Level 2, and is the text of the

element. In the case of title (either the XHTML or the Dublin Core element), it would

be the title text.

Example 5-2. The differences between the namespace and nonnamespace variation of
getElementsByTagName

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">
<head>

112 | Chapter 5: JavaScript and Directly Accessing the User Interface

<title>Namespace</title>
<script type="text/javascript">
//<![CDATA[

window.onload=function () {

 var str = "";
 var title = document.getElementsByTagName("title");
 for (var i = 0; i < title.length; i++) {
 str += title.item(i).namespaceURI + " " +
 title.item(i).prefix + " " +
 title.item(i).localName + " " +
 title.item(i).text + " ";
 }
 alert(str);

 str = "";
 if (!document.getElementsByTagNameNS) return;
 var titlens =
document.getElementsByTagNameNS("http://purl.org/dc/elements/1.1/",
"title");
 for (var i = 0; i < titlens.length; i++) {
 str += titlens.item(i).namespaceURI + " " +
 titlens.item(i).prefix + " " +
 titlens.item(i).localName + " " +
 titlens.item(i).textContent + " ";
 }
 alert(str);}
//]]>

</script>

</head>

<body>

<h1>SVG</h1>
<svg id="svgelem" height="800" width="800" xmlns="http://www.w3.org/2000/svg">
 <circle id="redcircle" cx="300" cy="300" r="300"
 fill="red" />
 <metadata>
 <rdf:RDF xmlns:cc="http://web.resource.org/cc/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <cc:Work rdf:about="">
 <dc:title>Sizing Red Circle</dc:title>
 <dc:description></dc:description>
 <dc:subject>
 <rdf:Bag>
 <rdf:li>circle</rdf:li>
 <rdf:li>red</rdf:li>
 <rdf:li>graphic</rdf:li>
 </rdf:Bag>
 </dc:subject>
 <dc:publisher>

5.2. Accessing All Images in the Web Page | 113

 <cc:Agent rdf:about="http://www.openclipart.org">
 <dc:title>Testing RDF in SVG</dc:title>
 </cc:Agent>
 </dc:publisher>
 <dc:creator>
 <cc:Agent>
 <dc:title id="title">Testing</dc:title>
 </cc:Agent>
 </dc:creator>
 <dc:rights>
 <cc:Agent>
 <dc:title>testing</dc:title>
 </cc:Agent>
 </dc:rights>
 <dc:date></dc:date>
 <dc:format>image/svg+xml</dc:format>
 <dc:type
 rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
 <cc:license
 rdf:resource="http://web.resource.org/cc/PublicDomain"/>
 <dc:language>en</dc:language>
 </cc:Work>
 <cc:License
 rdf:about="http://web.resource.org/cc/PublicDomain">
 <cc:permits
 rdf:resource="http://web.resource.org/cc/Reproduction"/>
 <cc:permits
 rdf:resource="http://web.resource.org/cc/Distribution"/>
 <cc:permits
 rdf:resource="http://web.resource.org/cc/DerivativeWorks"/>
 </cc:License>
 </rdf:RDF>
 </metadata>
 </svg>
</body>

</html>

The result of the application can vary between browsers. When using Firefox and later

versions of IE, and accessing title using getElementsByTagName(), the only title

returned is the XHTML document title. However, when using the namespace varia‐

tion (getElementsByTagNameNS()), and specifying the Dublin Core namespace, all of
the Dublin Core titles in the RDF within the SVG are returned.

When using getElementsByTagName with title in Chrome and Opera, both the
XHTML title and the Dublin Core titles are returned, as shown in Figure 5-2.

114 | Chapter 5: JavaScript and Directly Accessing the User Interface

http://purl.org/dc/elements/1.1/

Figure 5-2. Using getElementsByTagNameNS to get namespaced elements

Though IE8 doesn’t directly support the XHTML MIME type, if the page is served as

text/html using some form of content negotiation, IE will process the page as HTML.

However, though the getElementsByTagName() works with IE, the namespaced version

of the method, getElementsByTagNameNS(), does not. All of the values are returned as

undefined. IE8 doesn’t return the dc:title entries in the SVG, either.

If the Dublin Core namespace is declared in the html element, instead of in the svg

element, IE8 does return all of the dc:title entries, as well as the XHTML title:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:dc="http://xml:lang="en">

An alternative approach uses a tag name string that concatenates the prefix and

localName. All of the browsers will find the dc:title using the following:

var titles = document.getElementsByTagName("dc:title");

However, you can’t access the namespace-specific properties using the pseudoname‐
space method. Your applications can’t access the namespace properties using the IE

approach of embedding all of the namespace declarations in the html tag, but you can

find out the namespace URI via Microsoft’s tagURN property:

console.log(title[i].tagURN); // for dc:title

5.2. Accessing All Images in the Web Page | 115

Browsers can use the following to get all elements with a given tag, regardless of name‐

space, if the document is served as application/xhtml+xml or other XML type:

var titles = document.getElementsByTagNameNS("*","title");

This JavaScript returns both the default XHTML namespace title and the titles in the
Dublin Core namespace.

As mentioned earlier, IE8 doesn’t properly support namespaces, but
later versions do, thanks to support for XHTML.

5.3. Discovering All Images in Articles Using the
Selectors API

Problem
You want to get a list of all img elements that are descendants of article elements,
without having to traverse an entire collection of elements.

Solution
Use the Selectors API and access the img elements contained within article elements
using CSS-style selector strings:

var imgs = document.querySelectorAll("article img");

Discussion
The Selectors API has achieved support in all modern browser versions, though there
are quirks in support among the browsers.

There are two selector query API methods. The first, querySelectorAll(), is demon‐

strated in the solution; the second is querySelector(). The difference between the two

is querySelectorAll(), which returns all elements that match the selector criteria,

while querySelector() only returns the first found result.

The selectors syntax is derived from CSS selector syntax, except that rather than style

the selected elements, they’re returned to the application. In the example, all img ele‐

ments that are descendants of article elements are returned. To access all img elements
regardless of parent element, use:

var imgs = document.querySelectorAll("img");

116 | Chapter 5: JavaScript and Directly Accessing the User Interface

In the solution, you’ll get all img elements that are direct or indirect descendants of an

article element. This means that if the img element is contained within a div that’s

within an article, the img element will be among those returned:

<article>

 <div>

 </div>
</article>

If you want only those img elements that are direct children of an article element, use
the following:

var imgs = document.querySelectorAll("article> img");

If you’re interested in accessing all img elements that are immediately followed by a
paragraph, use:

var imgs = document.querySelectorAll("img + p");

If you’re interested in an img element that has an empty alt attribute, use the following:

var imgs = document.querySelectorAll('img[alt=""]');

If you’re only interested in img elements that don’t have an empty alt attribute, use:

var imgs = document.querySelectorAll('img:not([alt=""])');

The negation pseudoselector (:not) is used to find all img elements with alt attributes
that are not empty.

All of the queries demonstrated in this section should get the same
result in all modern browsers. Unfortunately, IE8 has only limited
support for selectors—the code in the solution does not work.

Unlike the collection returned with getElementsByTagName() covered earlier, the col‐

lection of elements returned from querySelectorAll() is not a “live” collection. Up‐
dates to the page are not reflected in the collection if the updates occur after the collection
is retrieved.

Though the Selectors API is a wonderful creation, it shouldn’t be used
for every document query. You should always use the most restric‐
tive query when accessing elements. For instance, it’s more efficient

to use getElementById() to get one specific element given an
identifier.

5.3. Discovering All Images in Articles Using the Selectors API | 117

Extra: Namespace Variation and CSS Selectors
The following is how to define a namespace in CSS3, via the Namespace module:

@namespace svg "http://www.w3.org/2000/svg";

If an element is given with a namespace prefix, such as the following:

<q:elem>...</q:elem>

to style the element, use:

@namespace q "http://example.com/q-markup";
q|elem { ... }

and to style an attribute, you could use:

@namespace foo "http://www.example.com";
[foo|att=val] { color: blue }

Recipe 5.2 covered the concept of namespaces when querying against the document,

and introduced the namespace-specific method getElementsByTagNameNS(). Because
the CSS selectors allow for resolving namespaces, we might assume we could use name‐

spaces with querySelector() and querySelectorAll(). In fact, we could with earlier
iterations of the API Selectors draft, but there is no way to do so today.

Now, a namespace error will be thrown if the namespace is not resolved before using
the Selectors API methods. Unfortunately, the Selectors API doesn’t provide an ap‐
proach to resolve the namespace before using one of the methods. Instead, the Selectors
API specification recommends using JavaScript processing to handle namespaces. For

instance, to find all of the dc:title elements within an SVG element in a document,
use the following:

var list = document.querySelectorAll("svg title");
var result = new Array();
var svgns = "http://www.w3.org/2000/svg"

for(var i = 0; i < list.length; i++) {
 if(list[i].namespaceURI == svgns) {
 result.push(list[i]);
}

In the example code, querying for all of the titles that are descendants of the svg element
will return both SVG titles and any Dublin Core or other titles used in the SVG block.
In the loop, if the title is in the Dublin Core namespace, it’s pushed on to the new array;
otherwise, if the title is in some other namespace, including the SVG namespace, it’s
disregarded.

The workaround is not an elegant approach, but it is serviceable, and also the only option
available for namespaces and the Selectors API at this time. Luckily, having to deal with
namespaces in web development happens rarely.

118 | Chapter 5: JavaScript and Directly Accessing the User Interface

See Also
There are three different CSS selector specifications, labeled as Selectors Level 1, Level
2, and Level 3. CSS Selectors Level 3 contains links to the documents defining the other
levels. These documents provide the definitions of, and examples for, the different types
of selectors. The CSS3 Namespace module is also located at the W3C. The Selectors API
Level 1 is a W3C Recommendation.

John Resig, the creator of the popular jQuery library, has provided a comprehensive test
suite for selectors (GitHub source). The CSS3.info site also has a nice selectors test. This
one is a little easier to view, and provides links with each test to the example code.

5.4. Setting an Element’s Style Attribute

Problem
You want to add or replace a style setting on a specific web page element.

Solution
To change one CSS property, modify the property value via the element’s style property:

elem.style.backgroundColor="red";

To modify one or more CSS properties for a single element, you can use setAttri

bute() and create an entire CSS style rule:

elem.setAttribute("style",
 "background-color: red; color: white; border: 1px solid black");

Or you can predefine the style rule, assign it a class name, and set the class property
for the element:

.stripe{
 background-color: red;
 color: white;
 border: 1px solid black;
}

...

elem.setAttribute("class", "stripe");

Discussion
An element’s CSS properties can be modified in JavaScript using one of three ap‐
proaches. As the solution demonstrates, the simplest approach is to set the property’s

value directly using the element’s style property:

5.4. Setting an Element’s Style Attribute | 119

http://www.w3.org/TR/css3-selectors/
http://www.w3.org/TR/css3-namespace/
http://www.w3.org/TR/selectors-api/
http://www.w3.org/TR/selectors-api/
http://ejohn.org/apps/selectortest/
http://ejohn.org/apps/selectortest/
http://github.com/jeresig/selectortest/
http://tools.css3.info/selectors-test/test.html

elem.style.width = "500px";

If the CSS property contains a hyphen, such as font-family or background-color, use
the CamelCase notation for the property:

elem.style.fontFamily = "Courier";
elem.style.backgroundColor = "rgb(255,0,0)";

The CamelCase notation removes the dash, and capitalizes the first letter following the
dash.

You can also use setAttribute() to set the style property:

elem.setAttribute("style","font-family: Courier; background-color: yellow");

The setAttribute() method is a way of adding an attribute or replacing the value of
an existing attribute for a web page element. The first argument to the method is the
attribute name (automatically lowercased if the element is an HTML element), and the
new attribute value.

When setting the style attribute, all CSS properties that are changed settings must be
specified at the same time, as setting the attribute erases any previously set values.

However, setting the style attribute using setAttribute() does not erase any settings
made in a stylesheet, or set by default by the browser.

A third approach to changing the style setting for the element is to modify the class
attribute:

elem.setAttribute("class", "classname");

Advanced
Rather than using setAttribute() to add or modify the attribute, you can create an

attribute and attach it to the element using createAttribute() to create an Attr node,

set its value using the nodeValue property, and then use setAttribute() to add the
attribute to the element:

var styleAttr = document.createAttribute("style");
styleAttr.nodeValue = "background-color: red";
someElement.setAttribute(styleAttr);

You can add any number of attributes to an element using either createAttribute()

and setAttribute(), or setAttribute() directly. Both approaches are equally
efficient, so unless there’s a real need, you’ll most likely want to use the simpler approach

of setting the attribute name and value directly using setAttribute().

When would you use createAttribute()? If the attribute value is going to be another

entity reference, as is allowed with XML, you’ll need to use createAttribute() to create

an Attr node, as setAttribute() only supports simple strings.

120 | Chapter 5: JavaScript and Directly Accessing the User Interface

Extra: Accessing an Existing Style Setting
For the most part, accessing existing attribute values is as easy as setting them. Instead

of using setAttribute(), use getAttribute():

var className = document.getElementById("elem1").getAttribute("class");

Getting access to a style setting, though, is much trickier, because a specific element’s
style settings at any one time is a composite of all settings merged into a whole. This
computed style for an element is what you’re most likely interested in when you want to
see specific style settings for the element at any point in time. Happily, there is a method

for that: getComputedStyle(). Unhappily, older versions of IE (IE8 and older) don’t

support the method. Instead, you have to use Microsoft’s currentStyle to access the
computed style.

In addition to having to having to use a different technique with older versions of IE,
you also have to change the property name. When accessing a CSS property using

getComputedStyle(), you’ll use the CSS property name. However, with current

Style, you have to use CamelCase. Example 5-3 demonstrates one cross-browser ap‐

proach to getting an element’s background-color.

Example 5-3. Getting a computed CSS property that works cross-browser

<!DOCTYPE html>
<html>

<head>

 <meta charset="utf-8">
 <title>CSS Computed Style</title>
 <style>
 #test {
 background-color: red;
 width: 100px;
 height: 100px;
 }
 </style>
</head>

<body>

 <div id="test"><p>Hi</p></div>
 <script>
 var elem = document.getElementById("test");

 var bkcolor = elem.currentStyle ? elem.currentStyle['backgroundColor'] :
 window.getComputedStyle(elem).getPropertyValue("background-color");

 console.log(bkcolor);
 </script>
</body>

</html>

5.4. Setting an Element’s Style Attribute | 121

In all versions of IE (old and new), the alert message reads red, while Firefox and

Chrome return rgb(255,0,0), and Opera returns #ff0000.

As I said, getting CSS style information is tricky.

5.5. Applying a Striped Theme to an Unordered List

Problem
You want to modify the appearance of unordered list items so that the list appears
striped.

Solution
Use the Selectors API to query for every other item in the list, and then change the

background color by changing the class for the element or setting the style attribute

on the element using setAttribute():

var lis = document.querySelectorAll('li:nth-child(2n+1)');
for (var i = 0; i < lis.length; i++) {
 lis[i].setAttribute("style","background-color: #ffeeee");
}

or:

var lis = document.querySelectorAll('li:nth-child(odd)');
for (var i = 0; i < lis.length; i++) {
 lis[i].setAttribute("style","background-color: #eeeeff");
}

or access the list parent element and then traverse its child nodes, changing the back‐

ground color of every other element, using the arithmetic modulo operator:

var parentElement = document.getElementById("thelist");
var lis = parentElement.getElementsByTagName("li");
for (var i = 0; i < lis.length; i++) {
 if (i % 2 == 0) {
 lis[i].setAttribute("style","background-color: #eeffee");
 }
}

Discussion
The :nth-child() pseudoclass allows us to specify an algorithm pattern, which can be

used to find elements that match a certain pattern, such as 2n+1, to find every other

element. You can also use the odd and even arguments to access the odd or even elements
of the type:

var lis = document.querySelectorAll('li:nth-child(odd)');

122 | Chapter 5: JavaScript and Directly Accessing the User Interface

Not all browsers support this selector type. Firefox, Opera, Safari, and Chrome do, but
IE8 doesn’t support the first two approaches given in the solution, and older versions
of most other browsers don’t. If you need to support older browsers, you’ll want to use
the third approach in the solutions: get access to all of the elements using whatever

method, and then use the modulo arithmetic operator to filter the elements. modulo
returns the remainder of dividing the first operand by the second. Dividing the numbers
0, 2, 4, 6, and so on by 2 returns 0, satisfying the conditional test, and the element’s style
is altered.

In the solution, the even elements are the ones altered. To alter the odd elements, use
the following:

if ((i + 1) % 2) {
 ...
}

See Also
See Recipe 5.3 for more details on the Selectors API and the querySelector() and

querySelectorAll() methods. See Recipe 5.4 for more on using setAttribute().

5.6. Finding All Elements That Share an Attribute

Problem
You want to find all elements in a web document that share the same attribute.

Solution
Use the universal selector (*) in combination with the attribute selector to find all ele‐
ments that have an attribute, regardless of its value:

var elems = document.querySelectorAll('*[class]');

The universal selector can also be used to find all elements with an attribute that’s as‐
signed the same value:

elems = document.querySelectorAll('*[class="red"]');

Discussion
The solution demonstrates a rather elegant query selector, the universal selector (*). The
universal selector evaluates all elements, so it’s the one you want to use when you need
to verify something about each element. In the solution, we want to find all of the ele‐
ments with a given attribute.

5.6. Finding All Elements That Share an Attribute | 123

To test whether an attribute exists, all you need to do is list the attribute name within

square brackets ([attrname]). In the solution, we’re first testing whether the element

contains the class attribute. If it does, it’s returned with the element collection:

var elems = document.querySelectorAll('*[class]');

Next, we’re getting all elements with a class attribute value of red. If you’re not sure of
the class name, you can use the substring-matching query selector:

var elements = document.querySelectorAll('*[class*="red"]');

Now any class name that contains the substring “red” matches.

You could also modify the syntax to find all elements that don’t have a certain value. For

instance, to find all div elements that don’t have the target class name, use the :not
negation operator:

var elems = document.querySelectorAll('div:not(.red)');

The examples all work with all modern browsers. Both of the selec‐
tor syntax examples in the solution work with IE8, but the use of the

negation operator, :not, does not.

See Also
See Recipe 5.3 for more details on the Selectors API and the querySelector() and

querySelectorAll() methods.

5.7. Inserting a New Paragraph

Problem
You want to insert a new paragraph just before the third paragraph within a div element.

Solution
Use some method to access the third paragraph, such as getElementsByTagName(), to

get all of the paragraphs for a div element. Then use the createElement() and insert

Before() DOM methods to add the new paragraph just before the existing third
paragraph:

// get the target div

var div = document.getElementById("target");

// retrieve a collection of paragraphs

var paras = div.getElementsByTagName("p");

124 | Chapter 5: JavaScript and Directly Accessing the User Interface

// if a third para exists, insert the new element before

// otherwise, append the paragraph to the end of the div

var newPara = document.createElement("p");
if (paras[3]) {
 div.insertBefore(newPara, paras[3]);
} else {
 div.appendChild(newPara);
}

Discussion
The document.createElement() method creates any HTML element, which then can
be inserted or appended into the page. In the solution, the new paragraph element is

inserted before an existing paragraph using insertBefore().

Because we’re interested in inserting the new paragraph before the existing third para‐

graph, we need to retrieve a collection of the div element’s paragraphs, check to make

sure a third paragraph exists, and then use insertBefore() to insert the new paragraph
before the existing one. If the third paragraph doesn’t exist, we can append the element

to the end of the div element using appendChild().

See Also
Recipe 5.8 contains a complete example demonstrating how to access the div element
and the paragraphs, and add a paragraph with text just before the second paragraph.

5.8. Adding Text to a New Paragraph

Problem
You want to create a new paragraph with text and insert it just before the second para‐

graph within a div element:

// use getElementById to access the div element

var div = document.getElementById("target");

// use getElementsByTagName and the collection index

// to access the second paragraph

var oldPara = div.getElementsByTagName("p")[1]; // zero based index

// create a text node

var txt =
 document.createTextNode("The new paragraph will contain this text");

// create a new paragraph

var para = document.createElement("p");

5.8. Adding Text to a New Paragraph | 125

// append the text to the paragraph, and insert the new para

para.appendChild(txt);
div.insertBefore(para, oldPara);

Discussion
The text within an element is, itself, an object within the DOM. Its type is a Text node,

and it is created using a specialized method, createTextNode(). The method takes one
parameter: the string containing the text.

Example 5-4 shows a web page with a div element containing four paragraphs. The
JavaScript creates a new paragraph from text provided by the user via a prompt. The
text could just as easily have come from a server communication or other process.

The provided text is used to create a text node, which is then appended as a child node

to the new paragraph. The paragraph element is inserted in the web page before the
first paragraph.

Example 5-4. Demonstrating various methods for adding content to a web page

<!DOCTYPE html>
<html>

<head>

<title>Adding Paragraphs</title>
</head>

<body>

<div id="target">
 <p>
 There is a language 'little known,'

 Lovers claim it as their own.
 </p>
 <p>
 Its symbols smile upon the land,

 Wrought by nature's wondrous hand;
 </p>
 <p>
 And in their silent beauty speak,

 Of life and joy, to those who seek.
 </p>
 <p>
 For Love Divine and sunny hours

 In the language of the flowers.
 </p>
</div>

<script>

 // use getElementById to access the div element
 var div = document.getElementById("target");

 // get paragraph text
 var txt = prompt("Enter new paragraph text","");

126 | Chapter 5: JavaScript and Directly Accessing the User Interface

 // use getElementsByTagName and the collection index
 // to access the first paragraph
 var oldPara = div.getElementsByTagName("p")[0]; //zero based index

 // create a text node
 var txtNode = document.createTextNode(txt);

 // create a new paragraph
 var para = document.createElement("p");

 // append the text to the paragraph, and insert the new para
 para.appendChild(txtNode);

 div.insertBefore(para, oldPara);
</script>

</body>

</html>

Inserting user-supplied text directly into a web page without scrub‐
bing the text first is not a good idea. When you leave a door open,
all sorts of nasty things can crawl in. Example 5-4 is for demonstra‐
tion purposes only.

5.9. Deleting Rows from an HTML Table

Problem
You want to remove one or more rows from an HTML table.

Solution
Use the removeChild() method on an HTML table row, and all of the child elements,
including the row cells, are also removed:

var parent = row.parentNode;
var oldrow = parent.removeChild(parent);

Discussion
When you remove an element from the web document, you’re not only removing the
element, you’re removing all of its child elements. In this DOM pruning you get a ref‐
erence to the removed element if you want to process its contents before it’s completely
discarded. The latter is helpful if you want to provide some kind of undo method in case
the person accidentally selects the wrong table row.

5.9. Deleting Rows from an HTML Table | 127

To demonstrate the nature of DOM pruning, in Example 5-5, DOM methods crea

teElement() and createTextNode() are used to create table rows and cells, as well as
the text inserted into the cells. As each table row is created, an event handler is attached
to the row’s click event. If any of the new table rows is clicked, a function is called that
removes the row from the table. The removed table row element is then traversed and
the data in its cells is extracted and concatenated to a string, which is printed out.

Example 5-5. Adding and removing table rows and associated table cells and data

<!DOCTYPE html>
<head>

<title>Adding and Removing Elements</title>
<style>

table {
 border-collapse: collapse;
}
td, th {
 padding: 5px;
 border: 1px solid #ccc;
}
tr:nth-child(2n+1)
{
 background-color: #eeffee;
}
</style>

</head>

<body>

<table id="mixed">
 <tr><th>Value One</th><th>Value two</th><th>Value three</th></tr>
</table>

<div id="result"></div>

<script>

 var values = new Array(3);
 values[0] = [123.45, "apple", true];
 values[1] = [65, "banana", false];
 values[2] = [1034.99, "cherry", false];

 var mixed = document.getElementById("mixed");

 var tbody = document.createElement("tbody");

 // for each outer array row
 for (var i = 0 ; i < values.length; i++) {
 var tr = document.createElement("tr");

 // for each inner array cell
 // create td then text, append
 for (var j = 0; j < values[i].length; j++) {

128 | Chapter 5: JavaScript and Directly Accessing the User Interface

 var td = document.createElement("td");
 var txt = document.createTextNode(values[i][j]);
 td.appendChild(txt);
 tr.appendChild(td);
 }

 // attache event handler
 tr.onclick=prunerow;

 // append row to table
 tbody.appendChild(tr);
 mixed.appendChild(tbody);
 }

 function prunerow() {

 // remove row
 var parent = this.parentNode;
 var oldrow = parent.removeChild(this);

 // datastring from removed row data
 var datastring = "";
 for (var i = 0; i < oldrow.childNodes.length; i++) {
 var cell = oldrow.childNodes[i];
 datastring+=cell.firstChild.data + " ";
 }

 // output message
 var msg = document.createTextNode("removed " + datastring);
 var p = document.createElement("p");
 p.appendChild(msg);
 document.getElementById("result").appendChild(p);

 }
</script>

</body>

5.10. Adding a Page Overlay

Problem
You want to overlay the web page in order to display a message, photo, or form.

Solution
Provide a stylesheet setting for a div element that is sized and positioned to cover the
entire web page. It could be completely opaque, but most overlays are transparent
enough to see the underlying page material:

5.10. Adding a Page Overlay | 129

.overlay

{
 background-color: #000;
 opacity: .7;
 filter: alpha(opacity=70);
 position: absolute; top: 0; left: 0;
 width: 100%; height: 100%;
 z-index: 10;
}

Create a div element (or other element) on demand, adding whatever other content is
to be displayed to the element:

function expandOverlay() {

 var overlay = document.createElement("div");
 overlay.setAttribute("id","overlay");
 overlay.setAttribute("class", "overlay");
 document.body.appendChild(overlay);
}

When the overlay is no longer needed, remove it from the page:

function restore() {
 document.body.removeChild(document.getElementById("overlay"));
}

Discussion
Creating an overlay in a web page consists of creating an element set to a z-index higher
than anything else in the page, absolutely positioned at the upper left of the page, and
sized 100%.

In the solution to this recipe, this is achieved more easily by creating a CSS style setting

for the overlay class that manages the appearance of the element, and then using

document.createElement() and appendChild() to add it to the page. To restore the

page, the overlay element is removed.

Page overlays are popular for displaying photos, videos, ads, logins, or providing im‐
portant site messages. Example 5-6 contains a web page with a message. Clicking on the
message block removes the overlay and message.

Example 5-6. Creating an overlay for displaying a message

<!DOCTYPE html>
<head>

<title>Overlay</title>
<style>

.overlay

{
 background-color: #000;

130 | Chapter 5: JavaScript and Directly Accessing the User Interface

 opacity: .5;
 filter: alpha(opacity=50);
 position: fixed; top: 0; left: 0;
 width: 100%; height: 100%;
 z-index: 10;
}
.overlaymsg

{
 position: absolute;
 background-color: yellow;
 padding: 10px;
 width: 200px;
 height: 200px;
 font-size: 2em;
 z-index: 11;
 top: 50%;
 left: 50%;
 margin-left: -100px;
 margin-top: -100px;
}
</style>

<script>

function displayPopup() {

 // create overlay and append to page
 var overlay = document.createElement("div");
 overlay.setAttribute("id","overlay");
 overlay.setAttribute("class", "overlay");
 document.body.appendChild(overlay);

 // create message and append to overlay
 var msg = document.createElement("div");
 var txt =
 document.createTextNode("Please join our mailing list! (Click to close.)");
 msg.appendChild(txt);
 msg.setAttribute("id", "msg")
 msg.setAttribute("class","overlaymsg");

 // click to restore page
 msg.onclick=restore;

 // append message to overlay
 document.body.appendChild(msg);

}

// restore page to normal

function restore() {

 document.body.removeChild(document.getElementById("overlay"));
 document.body.removeChild(document.getElementById("msg"))

5.10. Adding a Page Overlay | 131

}

window.onload=function() {
 displayPopup();
}

</script>

</head>

<body>

<p>Existing material.</p>
</body>

Example 5-6 creates an overlay that fits the size of the page as it’s currently opened. Note

the CSS setting for the overlay, in particular the fixed positioning. This ensures that
the overlay fits the window even if the contents require you to scroll to the right, or
down, to see all of the contents.

The message is positioned in the center using a CSS trick: set the left and top position
to 50% of the page’s width and height, and then set the block’s margins to a negative
value equal to half the block’s height and width.

We could append the message directly to the overlay, and when the overlay is removed,

the message is also removed with removeChild(). However, the overlay’s opacity set‐
ting would impact on its child elements. To ensure the message is bright and easy to

read, it’s appended to the web page document, but its z-index setting is set higher than
the overlay, placing it on top of the overlay.

Most publications that use overlays to display messages when the page
is first accessed, use graphics with a “close this” or “X” to indicate
where to click to close the message.

We could also statically create a section to display and hide it when not in use, but this
just clutters up the page contents and can, depending on how it’s formatted, have adverse
impact on screen readers. In addition, if you want the same overlay on all pages, it’s
simpler to create it as part of the site’s JavaScript library and automatically include it in
each page that uses the library.

See Also
See Recipe 5.9 for more information on removeChild(), Recipe 5.8 about adding text
to a web page element, and Recipe 5.7, which covers how to create new page elements.

132 | Chapter 5: JavaScript and Directly Accessing the User Interface

5.11. Creating Collapsible Form Sections

Problem
You have a large form that takes up a lot of space. You only want to display sections of
the form as they are needed.

Solution
Split the form into display blocks using div elements, and then change the block’s styling
to control the display of the form section. When the page is loaded, hide all of the form

blocks by changing the display value to none using JavaScript:

theformblock.setAttribute("style","display: none");

or:

theformblock.style.display="none";

To expand the section, change the display setting to block using setAttribute:

theformblock.setAttribute("style","block");

or set the value directly:

theformblock.style.display="block";

Discussion
There are multiple ways you can prevent form elements from taking up page space. For
one, you can clip the element by setting the clipping area. Another approach is to resize
the element to zero height. The best approach, though, and the one most applications
use, is to employ a collapsible section.

A collapsible section is a form of widget—a set of elements, CSS, and JavaScript packaged
together and generally considered one object. The typical implementation consists of
one element that acts as a label that is always displayed, another element that holds the
content, and all contained within a third, parent element.

The collapsible section may or may not be used with other collapsible sections to form
a higher level widget, the accordion. The accordion widget is a grouping of collapsible
sections with an additional behavior: depending on preference, any number of collaps‐
ible sections can be expanded, or only one section can be expanded at a time.

To demonstrate how collapsible sections can be used with forms, Example 5-7 shows a

form that’s split into two sections. Notice that each form block has an associated label

that expands the collapsed form section when clicked. When the label is clicked again,
the form section is collapsed again.

5.11. Creating Collapsible Form Sections | 133

Example 5-7. Collapsed form element

<!DOCTYPE html>
<head>

<title>Collapsed Form Elements</title>
<style>

.label

{
 width: 400px;
 margin: 10px 0 0 0;
 padding: 10px;
 background-color: #ccccff;
 text-align: center;
 border: 1px solid #ccccff;
}
.elements

{
 border: 1px solid #ccccff;
 padding: 10px;
 border: 1px solid #ccccff;
 width: 400px;
}
button

{
 margin: 20px;
}
</style>

</head>

<body>

<form>

 <div>
 <div id="section1" class="label">
 <p>Checkboxes</p>
 </div>
 <div id="section1b" class="elements">
 <input type="checkbox" name="box1" /> - box one

 <input type="checkbox" name="box1" /> - box one

 <input type="checkbox" name="box1" /> - box one

 <input type="checkbox" name="box1" /> - box one

 <input type="checkbox" name="box1" /> - box one

 </div>
 </div>
 <div>

 <div id="section2" class="label">
 <p>Buttons</p>
 </div>
 <div class="elements">
 <input type="radio" name="button1" /> - button one

 <input type="radio" name="button1" /> - button one

 <input type="radio" name="button1" /> - button one

 <input type="radio" name="button1" /> - button one

 <input type="radio" name="button1" /> - button one

134 | Chapter 5: JavaScript and Directly Accessing the User Interface

 <button>Submit</button>
 </div>
</div>

</form>

<script>

 var elements = document.getElementsByTagName("div");

 // collapse all sections
 for (var i = 0; i < elements.length; i++) {
 if (elements[i].className == "elements") {
 elements[i].style.display="none";
 } else if (elements[i].className == "label") {
 elements[i].onclick=switchDisplay;
 }
 }

 //collapse or expand depending on state
 function switchDisplay() {

 var parent = this.parentNode;
 var target = parent.getElementsByTagName("div")[1];

 if (target.style.display == "none") {
 target.style.display="block";
 } else {
 target.style.display="none";
 }
 return false;
 }
</script>

</body>

There are numerous ways you can map the click activity in one element by changing

the display in another. In Example 5-7, I wrapped both the label and the content

elements in a parent element. When you click on a label, the parent to the label element
is accessed in JavaScript and its children returned as an HTML collection. The second

element’s display toggles—if the element’s display is none, it’s changed to block; if the

display is block, it’s changed to none.

In the example, notice that the form elements are displayed when the page loads, and

only collapsed after the elements are loaded. This is because the form elements are
displayed by default if JavaScript is disabled.

Extra: JavaScript or HTML5?
The example in this recipe uses JavaScript to collapse and display portions of a form.

HTML5 provides two elements, details and summary, that implement this effect
without any need for scripting.

5.11. Creating Collapsible Form Sections | 135

When should you use one over the other? If you want to add sections into the page that
are displayed or hidden based on the user action, it’s just as simple to use the HTML5
elements. However, if you need special effects, or want to attach other behavior when
the page section is displayed or hidden, you need to stick with JavaScript.

5.12. Hiding Page Sections

Problem
You want to hide an existing page element and its children until needed.

Solution
You can set the CSS visibility property to hide and show the message:

msg.style.hidden="visible"; // to display
msg.style.hidden="hidden"; // to hide

or you can use the CSS display property:

msg.style.display="block"; // to display
msg.style.display="none"; // to remove from display

Discussion
Both the CSS visibility and display properties can be used to hide and show ele‐
ments. There is one major difference between the two that impacts which one you’ll
use.

The visibility property controls the element’s visual rendering, but its physical pres‐
ence still affects other elements. When an element is hidden, it still takes up page space.

The display property, on the other hand, removes the element completely from the
page layout.

The display property can be set to several different values, but four are of particular
interest to us:

• none: When display is set to none, the element is removed completely from display.

• block: When display is set to block, the element is treated like a block element,
with a line break before and after.

• inline-block: When display is set to inline-block, the contents are formatted

like a block element, which is then flowed like inline content.

• inherit: This is the default display, and specifies that the display property is in‐
herited from the element’s parent.

136 | Chapter 5: JavaScript and Directly Accessing the User Interface

There are other values, but these are the ones we’re most likely to use within JavaScript
applications.

Unless you’re using absolute positioning with the hidden element, you’ll want to use the

CSS display property. Otherwise, the element will affect the page layout, pushing any
elements that follow down and to the right, depending on the type of hidden element.

There is another approach to removing an element out of page view, and that is to move
it totally offscreen using a negative left value. This could work, especially if you’re cre‐
ating a slider element that will slide in from the left. It’s also an approach that the ac‐
cessibility community has suggested using when you have content that you want ren‐
dered by assistive technology (AT) devices, but not visually rendered.

See Also
Speaking of accessibility, Recipe 6.5 demonstrates how to incorporate accessibility into
forms feedback, and Recipe 6.6 touches on creating an updatable, accessible page region.

5.13. Creating Hover-Based Pop-Up Info Windows

Problem
You like the Netflix website’s pop-up window that displays when the mouse cursor is
over a movie thumbnail, and you want to incorporate this functionality into your own
application.

Solution
The Netflix-style of pop-up info window is based on four different functionalities.

First, you need to capture the mouseover and mouseout events for each image thumbnail,
in order to display or remove the pop-up window, respectively. In the following code,
the cross-browser event handlers are attached to all images in the page:

window.onload=function() {
 var imgs = document.getElementsByTagName("img");
 for (var i = 0; i < imgs.length; i++) {
 imgs[i].addEventListener("mouseover",getInfo, false);
 imgs[i].addEventListener("mouseout",removeWindow, false);
 }
}

Second, you need to access something about the item you’re hovering over in order to
know what to use to populate the pop-up bubble. The information can be in the page,
or you can use web server communication to get the information:

function getInfo() {

5.13. Creating Hover-Based Pop-Up Info Windows | 137

 // prepare request
 if (!xmlhttp) {
 xmlhttp = new XMLHttpRequest();
 }
 var value = this.getAttribute("id");
 var url = "photos.php?photo=" + value;
 xmlhttp.open('GET', url, true);
 xmlhttp.onreadystatechange = showWindow;
 xmlhttp.send(null);

 return false;
}

Third, you need to either show the pop-up window, if it already exists and is not dis‐
played, or create the window. In the following code, the pop-up window is created just
below the object, and just to the right when the web server call returns with the infor‐

mation about the item. The getBoundingClientRect() method is used to determine

the location where the pop up should be placed, and createElement() and create

TextNode() are used to create the pop up:

// compute position for pop up

function compPos(obj) {
 var rect = obj.getBoundingClientRect();
 var height;
 if (rect.height) {
 height = rect.height;
 } else {
 height = rect.bottom - rect.top;
 }
 var top = rect.top + height + 10;
 return [rect.left, top];
}

// process return

function showWindow() {
 if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 var response = xmlhttp.responseText.split("#");
 var img = document.getElementById(response[0]);

 if (!img) return;

 // derive location for pop up
 var loc = compPos(img);
 var left = loc[0] + "px";
 var top = loc[1] + "px";

 // create pop up
 var div = document.createElement("popup");
 div.id = "popup";
 var txt = document.createTextNode(response[1]);
 div.appendChild(txt);

138 | Chapter 5: JavaScript and Directly Accessing the User Interface

 // style pop up
 div.setAttribute("class","popup");
 div.setAttribute("style","left: " + left + "; top: " + top);
 document.body.appendChild(div);
 }
}

Lastly, when the mouseover event fires, you need to either hide the pop-up window or
remove it—whichever makes sense in your setup. Since the application created a new

pop-up window in the mouseover event, it removes the pop-up in the mouseout event
handler:

function removeWindow() {
 var popup = document.getElementById("popup");
 if (popup)
 popup.parentNode.removeChild(popup);

 return false;
}

Discussion
Creating a pop-up information or help window doesn’t have to be complicated if you
keep the action simple and follow the four steps outlined in the solution. If the pop up

provides help for form elements, then you might want to cache the information within
the page, and just show and hide pop-up elements as needed. However, if you have pages
like the ones at Netflix, which can have hundreds of items, you’ll have better perfor‐
mance if you get the pop-up window information on demand via a web service call (i.e.,
Ajax or WebSockets). The solution demonstrates that using web calls doesn’t add sig‐
nificant additional complexity to the application.

When I positioned the pop up in the example, I didn’t place it directly over the object.
The reason is that I’m not capturing the mouse position to have the pop up follow the
cursor around, ensuring that I don’t move the cursor directly over the pop up. But if I
statically position the pop up partially over the object, the web page readers could move
their mouse over the pop up, which triggers the event to hide the pop up…which then
triggers the event to show the pop up, and so on. This creates a flicker effect, not to
mention a lot of network activity.

If, instead, I allowed the mouse events to continue by returning true from either event
handler function, when the web page readers move their mouse over the pop up, the
pop up won’t go away. However, if they move the mouse from the image to the pop up,
and then to the rest of the page, the event to trigger the pop-up event removal won’t fire,
and the pop up is left on the page.

5.13. Creating Hover-Based Pop-Up Info Windows | 139

The best approach is to place the pop up directly under (or to the side, or a specific
location in the page) rather than directly over the object. This is the approach Netflix
uses on its site.

5.14. Displaying a Flash of Color to Signal an Action

Problem
Based on some action, you want to display a visual cue to signify the success of the
action.

Solution
Use a flash to signal the success or failure of an action. While a red flash is standard for
signaling either a successful deletion or an error, a yellow flash is typically used to signal
a successful update or action:

var fadingObject = {
 yellowColor : function (val) {
 var r="ff"; var g="ff";
 var b=val.toString(16);
 var newval = "#"+r+g+b;
 return newval;
 },

 fade : function (id,start,finish) {
 this.count = this.start = start;
 this.finish = finish;
 this.id = id;
 this.countDown = function() {
 this.count+=30;
 if (this.count >= this.finish) {
 document.getElementById(this.id).style.background=
 "transparent";
 this.countDown=null;
 return;
 }
 document.getElementById(this.id).style.backgroundColor=
 this.yellowColor(this.count);
 setTimeout(this.countDown.bind(this),100);
 }
 }
};
...
// fade page element identified as "one"

fadingObject.fade("one", 0, 300);
fadingObject.countDown();

140 | Chapter 5: JavaScript and Directly Accessing the User Interface

Discussion
A flash, or fade as it is frequently called, is a quick flash of color. It’s created using a
recurring timer that gradually changes the background color of the object being flashed.
The color is varied by successively changing the values of the nondominant RGB colors,
or colors from a variation of 0 to 255, while holding the dominant color or colors at

FF. If, for some reason, the color can’t be perceived (because of color blindness or other
factor), the color shows as successions of gray. As you progress down the figure, the
color gets progressively paler, as the nondominant red and blue values are increased,

from initial hexadecimal values of 00 (0) to FF (255).

The color yellow used in the solution kept the red and green values static, while changing
the blue. A red flash would keep the red color static, while adjusting both the green and
blue.

In the solution, I’m setting the beginning and ending colors for the flash when the

application calls the fade method on the object, fadingObject. Thus, if I don’t want to
start at pure yellow or end at white, I can begin or end with a paler color.

A color flash is used to highlight an action. As an example, a red flash can signal the
deletion of a table row just before the row is removed from the table. The flash is an
additional visual cue, as the table row being deleted helps set the context for the flash.
A yellow flash can do the same when a table row is updated.

A flash can also be used with an alert message. In the following code snippet, I created
an alert that displayed a solid color until removed from the page. I could also have used
a red flash to highlight the message, and left the background a pale pink at the end:

function generateAlert(txt) {

 // create new text and div elements and set
 // Aria and class values and id
 var txtNd = document.createTextNode(txt);
 msg = document.createElement("div");
 msg.setAttribute("role","alert");
 msg.setAttribute("id","msg");

 // fade
 obj.fade("msg", 0, 127);
 obj.redFlash();

 msg.setAttribute("class","alert");

 // append text to div, div to document
 msg.appendChild(txtNd);
 document.body.appendChild(msg);
}

5.14. Displaying a Flash of Color to Signal an Action | 141

The only requirement for the solution would be to either make the color-fade effect

more generic, for any color, or add a new, specialized redFlash method that does the
same as the yellow.

Also note the use of the ARIA alert role in the code snippet. Including an accessible
effect ensures all your users will benefit, and as the code demonstrates, it doesn’t add
any extra effort.

See Also
Recipe 6.5 demonstrates how to incorporate accessibility into forms feedback, and
Recipe 6.6 touches on creating an updatable, accessible page region.

142 | Chapter 5: JavaScript and Directly Accessing the User Interface

CHAPTER 6

Preliminary Testing and Accessibility

Best developer practices run the gamut from keeping the cruft out of your code to
ensuring your code is accessible to all your application or site’s users. In this chapter,
I’m focusing on two specific components: prelimary testing and accessibility.

There are various forms of testing, including running tools that highlight bad practices,
unit testing, performance testing, as well as testing your applications in a variety of
environments.

Regardless of how well the code tests out, if it isn’t accessible to all your audience, then
it fails. At the end of the chapter, we’ll look at a couple of approaches you can take to
ensure your code is accessible as well as accurate and efficient.

6.1. Cleaning Up Your Code with JSHint

Problem
You want to check your code for any gotchas that may not trigger a failure, but also
aren’t the best coding practices.

Solution
Use a lint tool such as JSHint to highlight potential problems or less than optimal code.

Discussion
The simplest approach to ensuring your code meets a minimum standard of acceptable
coding standards is to use the strict setting at the beginning of your code or function:

'use strict';

143

This setting ensures certain programming standards are met, such as always defining

variables, and never using eval(). And of course, the most reliable way of ensuring
your code meets standards is whatever error mechanism is built into the tools you’re
using to run the code, typically explored in depth using your favorite debugging tool.

There are a set of coding practices, though, that don’t typically trigger an error or warn‐
ing, but should be avoided because they may introduce unwanted application behaviors
or results that are hard to discover. That’s where a linting tool comes in. And the most
popular of the JavaScript lint tools is JSHint.

JSHint is a fork of a previously popular lint tool named JSLint. JSHint is now more
popular because it is more configurable and less rigid—as well as being actively
maintained.

Documentation and installation source and instruction for JSHint can
be found at the JSHint home page, which includes links and refer‐
ences to various JSHint plug-ins available in a variety of
environments.

JSHint can be installed using npm, part of the world of Node.js that is covered in
Chapter 11:

npm install jshint -g

When JSHint is installed using npm, you can run it against any JavaScript using
command-line syntax such as the following:

jshint scriptfile.js

Though workable, running JSHint at the command line is a bit tedious. A preferred
option is to use a plug-in or browser tool. Both of the JavaScript online playgrounds—
JS Bin and jsFiddle—I used to test most of the examples for this book either use JSHint
by default or provide an option to run the tool.

When running JSHint, you’re running with a default group of settings. Among some of
the default settings are those that prevent bitwise operators from being used, requiring
curly brackets ({}) for every block, and the use of strict equality (“===”). You can see all
of the options in the .jshintrc file.

If you want to change a default setting, use one of four techniques:

• From the command line you can use the --config flag and specify the name of the
file containing the configuration settings.

• Create a local version of the .jshintrc file.

• Add settings to your project’s package.json file (more on this in Chapter 11).

144 | Chapter 6: Preliminary Testing and Accessibility

http://www.jshint.com/install/
http://bit.ly/1GVO2Ku

• Embed JSHint settings directly in your code.

When you’re using an integrated tool that may not provide a way to add an override file
for changing JSHint options, you can embed JSHint comments to change default settings
directly in the JavaScript. For instance, one of my chronic code foibles is mixing quotes
(single and double) in the same code. To prevent this, I can add the following to my
JavaScript:

/*jshint quotmark:true */

And I’ll get a warning that I used both types of quotes in the code. If I want to use
standard equality operators without warnings, I can use the following:

/*jshint quotmark:true, eqeqeq:false */

var test1 = "today";
var test2 = 'tomorrow';

if (test == tomorrow)
 console.log("nope");

Using a linting tool such as JSHint doesn’t mean you have to create perfect code based
on some arbitrary standard. However, it does help ensure that when you decide to write
code that bucks the standards, you do so deliberately, rather than accidentally.

See Also
See “Extra: Speaking of Strict Mode” on page 33 for more on use strict, and the concept
of strict equality. See Chapter 11 for more on Node, and Recipe 12.14 about using JSHint
with a task runner.

6.2. Unit Testing Your Code with QUnit

Problem
You want to ensure the robustness of your application or library. A part of this is per‐
forming unit testing, but you don’t want to create the tests manually.

Solution
Use a tool such as QUnit to incorporate unit testing into your application at the earliest

possible stage. For instance, we’re interested in testing a new function, addAndRound():

function addAndRound(value1,value2) {
 return Math.round(value1 + value2);
}

6.2. Unit Testing Your Code with QUnit | 145

A QUnit test case could look like the following, which performs two assertion tests:

equal, to test whether the function returns a value given as the first parameter, and ok
which just checks the truthfulness (the truthy value) of the function’s return:

test("testing addAndRound", function() {
 equal(6, addAndRound(3.55, 2.33), "checking valid");
 ok(addAndRound("three", "4.12"), "checking NaN");
});

The first test succeeds because both parameters are numbers, or can be coerced into
being numbers, and the function result is 6. The second fails when the function call

returns NaN because the first parameter can’t be coerced into a number, as shown in
Figure 6-1.

Figure 6-1. Result of running QUnit assertion tests in JS Bin

Discussion
There are multiple types of tests, such as tests for security, usability, and performance,
but the most basic form of testing is unit testing. Unit testing consists of performing
tests of discrete source code units, verifying that the unit behaves as expected, and that
operations on data provided to or returned from the unit also meet expectations. In
JavaScript, a unit is typically a function.

A good rule of thumb when it comes to unit testing is that every requirement or use
case for a function should have an associated test case (or cases). The unit test checks

146 | Chapter 6: Preliminary Testing and Accessibility

that the requirement is met, and the function performs as expected. You can develop
your own tests, but using something like QUnit simplifies the test writing.

You can download QUnit at the QUnit website, as well as the jQuery
CDN (Content Delivery Network). You can also install it using npm,
and it’s available as a library in JS Bin.

Depending on how you’re using QUnit, you’ll need to add links to the library to your
test page. If you’re using something like JS Bin, selecting the QUnit option adds all
relevant script source files. At a minimum, you’ll need to add a link to the QUnit CSS

file, as well as the script. You’ll also need to add two div elements for the QUnit output.
QUnit gives the following as a minimum QUnit test page:

 <!DOCTYPE html>
 <html>
 <head>
 <meta charset="utf-8">
 <title>QUnit Example</title>
 <link rel="stylesheet" href="qunit.css">
 </head>
 <body>
 <div id="qunit"></div>
 <div id="qunit-fixture"></div>
 <script src="qunit.js"></script>
 <script src="tests.js"></script>
 </body>
 </html>

The unit tests will be in the tests.js file.

The QUnit website provides very good documentation on using the product, so I’m
only going to touch on some of the more common components, demonstrated in the
solution.

The tests are included within an outer function named test(). This is the most com‐
monly used way to trigger the QUnit testing, and is used to perform a synchronous test.
The first parameter is a label for the test results, the second a callback function that
includes the tests.

QUnit supports several assertion tests, including the two demonstrated in the solution:

• deepEqual: Tests for deep, strict equality

• equal: Tests for standard equality

• notDeepEqual: The inversion of deepEqual testing for deep, strict nonequality

• notEqual: The inversion of equal testing for standard nonequality

6.2. Unit Testing Your Code with QUnit | 147

https://qunitjs.com/
https://code.jquery.com/
https://code.jquery.com/

• notPropEqual: Tests an object’s properties for inequality

• notStrictEqual: Tests for strict inequality

• ok: Tests whether first argument equates to true

• propEqual: Tests an object’s properties for equality

• strictEqual: Tests for strict equality

• throws: Tests if callback throws an exception, and can optionally compare thrown
error

When the QUnit test is run, a display is output to the page specifying which tests failed
and succeeded, each associated with the test label passed to the assertions.

Extra: Writing Tests First
(((programming, TDD vs. BDD approach))Modern development practices have em‐
braced the idea of writing the tests before much of the functionality for the application
(and libraries) is written. This Test-Driven Development (TDD) is a component of the
Agile development paradigm.

TDD takes some getting used to. Rather than a more formal structured programming
or waterfall project design, with TDD you define the tests, do some coding, run the tests,
do some refacturing to remove duplicate code, and then repeat the process until the
entire functionality is finished. Previous approaches incorporated testing only at the
very end of the process, when much of the code has already been created.

The Microsoft Developer Network has a page describing a typical scenario. In addition,
there are several books and publications online describing both TDD and Agile software
development.

In addition, another well-known Agile component is behavior-driven development
(BDD), developed by Dan North. If you’re interested in utilizing BDD with your Java‐
Script applications, there is a tool, Cucumber.js, specifically designed for BDD in JS.

6.3. Testing Your Application in Various Environments

Problem
You have a set of environments (operating system and browser) you need to support,
but you don’t have enough machines to test your application or library in each
environment.

148 | Chapter 6: Preliminary Testing and Accessibility

http://bit.ly/1GVPBYK
https://github.com/cucumber/cucumber-js

Solution
Use an emulating tool or browser testing service that can test your application in all of
your environments. These aids help you not only test the integrity of the code, but the
appearance and behavior of your user interface.

Discussion
In-house testing works if your customer uses a finite set of machines and you can easily
re-create the environments, or you work for a large enough corporation that can afford
to set up one of everything. For most other situations, you either need to use some form
of emulation tool or a service.

This is especially critical when you’re testing client-side JavaScript. Web or mobile de‐
velopment environments are undergoing rapid change, and a technology you think is
safe to use may end up blowing up in your face when you test the functionality in
environments other than the ones you use for development.

Emulators are a favorite for mobile developers. Some are specific to a browser, such as
Ripple for Chrome. Others are standalone tools like Opera Mobile Classic Emulator,
shown in Figure 6-2 or the Android Emulator (part of the Android SDK).

Download the Opera emulator, or access Ripple for Chrome at the
Google Web Store. An excellent resource for discovering emulators is
the Emulator page at “Breaking the Mobile Web”.

A variation for testing mobile applications is a simulator, which simulates some of the
environment but doesn’t fully emulate it at the hardware level. An example of a simulator
is Apple’s iOS Simulator.

6.3. Testing Your Application in Various Environments | 149

http://www.opera.com/developer/mobile-emulator
http://bit.ly/1JazB96
http://www.mobilexweb.com/emulators

Figure 6-2. Snapshot of Opera Mobile Classic Emulator emulating my cellphone

If you’re more interested in testing how the client interface works in different browsers
and different environments, then you’ll want to look for a cross-browser testing service
(BrowserStack or Sauce Labs), or an application like Ghostlab (demonstrated in
Figure 6-3). You might also consider automated testing services, where you create a
script that’s automatically run (Selenium is an example). The key is to look for a service
or tool that provides interactive testing—not one that is primarily used to check out the
design of the page in different environments. One advantage to some of these tools is
they provide testing in both browser and mobile environments. The disadvantage is
cost: either a one-time cost for an application, or a monthly or annual fee for a service.
The only tool that didn’t have a price tag attached is IE NetRenderer, which allows you
to test your website in every variation of IE, from versions 5.5 through 11.

150 | Chapter 6: Preliminary Testing and Accessibility

http://www.browserstack.com/
https://saucelabs.com/home
http://vanamco.com/ghostlab/
http://netrenderer.com/

Figure 6-3. Ghostlab Demonstration Photo: one computer, one tablet, and a
smartphone

One of the services I have used is BrowserStack. It, like most of the other tools and
services, provides a trial period for testing the service. In addition, it also works with
testing environments, such as QUnit, demonstrated earlier in the chapter.

BrowserStack offers a variety of services, including screenshots of your site across sev‐
eral devices—desktop or mobile. From a client-side JavaScript developer’s perspective,
the service we’re most interested in is the Live testing, where we can pick an OS and a
browser and test our client application, directly. Figure 6-4 demonstrates running an
application in Safari on OS X—an environment I don’t have access to.

6.3. Testing Your Application in Various Environments | 151

Figure 6-4. Testing an app on Safari in OS X using Browserstack

BrowserStack also provides automated cloud-testing of JavaScript applications. The
testing is free for open source software, and available for a fee for commercial and non-
open source testing. You can incorporate automated testing with various tools, such as
Yeti and TestSwarm. However, it’s primarily focused on testing Node.js applications.

See Also
I’m covering the Web APIs for mobile development in Chapter 18, and the frameworks
and tools in Chapter 15. Integrating testing into a modular development with Node.js
is covered in Chapter 12.

6.4. Performance Testing Different Coding Techniques

Problem
In JavaScript there are, typically, multiple ways you can code a solution. The problem
then becomes determining which of the different ways performs best across different
environments.

152 | Chapter 6: Preliminary Testing and Accessibility

Solution
One approach is to use a performance testing tool, such as jsPerf, to try out the different
approaches and then proceed accordingly.

For instance, in Recipe 2.9, I wanted to determine which had better performance—using
an anonymous function or a named function—when passed as a callback function in
an Array method. In jsPerf, I set up an array of string elements and created the named

function, rpl(), in the Preparation code section:

var charSet = ["**","bb","cd","**","cc","**","dd","**"];

function rpl (element) {
 return (element !== "**");
};

My first test case was using the anonymous function:

var newArray = charSet.filter(function(element) {
 return (element !== "**");
});

My second test case was using the named function:

var newArray = charSet.filter(rpl);

Running the test in various browsers, shown in Figure 6-5, demonstrated that the
anonymous function was the better-performing alternative.

Figure 6-5. Results of running two test cases in jsPerf

Discussion
There are variations of performance testing, from the simple alternative testing demon‐
strated in the solution, to complex, involved load testing of entire systems. These types

6.4. Performance Testing Different Coding Techniques | 153

of testing aren’t used to discover whether there are bugs in the code, or if the code meets
use requirements—unit testing should find the former, and some form of user compli‐
ance testing finds the latter.

Performance testing is specifically for finding the best, most efficient approach to cre‐
ating your application, and then making sure it meets the demands placed on it when
running at peak usage.

JsPerf is built on Benchmark.js, which is also available for separate
use. The test case in the solution can be accessed at http://jsperf.com/
anony. There are numerous performance and load testing tools to use
with Node.js applications. One I’ve used is Selenium.

Another approach to performance testing is profiling. Most browser debuggers have a
built-in profiling capability. As an example, the popular Firebug debugger for Firefox
has profiling built in and available with the click of the “Profile” button, shown in
Figure 6-6. Once you turn profiling on, you can run your user compliance tests as a way
of generating good usage statistics, and then click the “Profile” button again. Firebug
then generates a listing of functions called any time for them to respond.

Figure 6-6. An example of Firebug profiling in Firefox

154 | Chapter 6: Preliminary Testing and Accessibility

http://jsperf.com/
http://benchmarkjs.com/
http://benchmarkjs.com/
http://jsperf.com/anony
http://jsperf.com/anony
http://www.seleniumhq.org/

Chrome also has extensive profiling capability, shown in Figure 6-7. To use it, open up
the JavaScript Console, click the Profiles tab, and then start whichever profiling type
you want to start. After you’ve used your application for some time, click the Profiles
“Stop” button and view the results.

Figure 6-7. An example of profiling in Chrome

You do want to make sure all of your browser extensions are dis‐
abled when you run a profiling tool in your browser, as these will
impact the results. In fact, you want to eliminate or minimize any
extension when you’re testing your code.

Extra: About That Use of jsPerf
jsPerf is a fun tool to use, and can be very informative. However, there are issues asso‐
ciated with the tool that can impact the reliability of its tests. One such is the JIT (Just-
In-Time) compiler optimizations, which can influence the results. Unless you’re really
familiar with what’s happening with the JavaScript engine, you don’t know if your tests
results have been skewed because of optimizations.

The creator of jsPerf, Mathias Bynens, discusses some of the issues of benchmarking in
“Bulletproof JavaScript Benchmarks”. Vyacheslav Egorov gave a talk on the subject,
available on YouTube.

6.4. Performance Testing Different Coding Techniques | 155

http://bit.ly/1GVRN2x
http://bit.ly/1yHXEs1

As an aside, an interesting article, “Optimization Killers”, discusses coding techniques
that kill optimization.

6.5. Highlighting Errors Accessibly

Problem
You want to highlight form field entries that have incorrect data, and you want to ensure
the highlighting is effective for all web page users.

Solution
Use CSS to highlight the incorrectly entered form field, and use WAI-ARIA (Accessible
Rich Internet Applications) markup to ensure the highlighting is apparent to all users:

[aria-invalid] {
 background-color: #ffeeee;
}

For the fields that need to be validated, assign a function to the form field’s onchange
event handler that checks whether the field value is valid. If the value is invalid, pop up
an alert with information about the error at the same time that you highlight the field:

document.getElementById("elemid").onchange=validateField;
...
function validateField() {

 // check for number
 if (isNaN(this.value)) {
 this.setAttribute("aria-invalid, "true");
 generateAlert("You entered an invalid value for A. Only numeric values
 such as 105 or 3.54 are allowed");
 }
}

For the fields that need a required value, assign a function to the field’s onblur event
handler that checks whether a value has been entered:

document.getElementById("field").onblur=checkMandator;
...
function checkMandatory() {
 // check for data
 if (this.value.length == 0) {
 this.setAttribute("aria-invalid", "true");
 generateAlert("A value is required in this field");
 }
}

If any of the validation checks are performed as part of the form submission, make sure
to cancel the submission event if the validation fails.

156 | Chapter 6: Preliminary Testing and Accessibility

http://bit.ly/1GVS31j

Discussion
The WAI-ARIA (Accessible Rich Internet Applications) provides a way of marking cer‐
tain fields and behaviors in such a way that assistive devices do whatever is the equivalent
behavior for people who need these devices. If a person is using a screen reader, setting

the aria-attribute attribute to true (or adding it to the element) should trigger a
visual warning in the screen reader—comparable to a color indicator doing the same
for people who aren’t using assistive technologies.

Read more on WAI-ARIA at the Web Accessibility Initiative at the
W3C. I recommend using NV Access, an open source, freely avail‐
able screen reader, for testing whether your application is respond‐
ing as you think it should with a screen reader.

In addition, the role attribute can be set to several values of which one, “alert”, triggers
a comparable behavior in screen readers (typically saying out the field contents).

Providing these cues are essential when you’re validating form elements. You can vali‐
date a form before submission and provide a text description of everything that’s wrong.
A better approach, though, is to validate data for each field as the user finishes, so they’re
not left with a lot of irritating error messages at the end.

As you validate the field, you can ensure your users know exactly which field has failed
by using a visual indicator. They shouldn’t be the only method used to mark an error,
but they are an extra courtesy.

If you highlight an incorrect form field entry with colors, avoid those that are hard to
differentiate from the background. If the form background is white, and you use a dark
yellow, gray, red, blue, green, or other color, there’s enough contrast that it doesn’t matter
if the person viewing the page is color blind or not. In the example, I used a darker pink
in the form field.

I could have set the color directly, but it makes more sense to handle both updates—

setting aria-invalid and changing the color—with one CSS setting. Luckily, CSS at‐
tribute selectors simplify our task in this regard.

In addition to using color, you also need to provide a text description of the error, so
there’s no question in the user’s mind about what the problem is.

How you display the information is also an important consideration. None of us really
like to use alert boxes, if we can avoid them. Alert boxes can obscure the form, and the
only way to access the form element is to dismiss the alert with its error message. A
better approach is to embed the information in the page, near the form. We also want
to ensure the error message is available to people who are using assistive technologies,

6.5. Highlighting Errors Accessibly | 157

http://www.w3.org/WAI/intro/aria
http://www.w3.org/WAI/intro/aria
http://www.nvaccess.org/

such as a screen reader. This is easily accomplished by assigning an ARIA alert role
to the element containing the alert for those using screen readers or other AT devices.

One final bonus to using aria-invalid is it can be used to discover all incorrect fields
when the form is submitted. Just search on all elements where the attribute is present
and if any are discovered, you know there’s still an invalid form field value that needs
correcting.

Example 6-1 demonstrates how to highlight an invalid entry on one of the form ele‐
ments, and highlight missing data in another. The example also traps the form submit,
and checks whether there are any invalid form field flags still set. Only if everything is
clear is the form submission allowed to proceed.

Example 6-1. Providing visual and other cues when validating form fields

<!DOCTYPE html>
<head>

<title>Validating Forms</title>
<style>

[aria-invalid] {
 background-color: #ffeeee;
}

[role="alert"]
{
 background-color: #ffcccc;
 font-weight: bold;
 padding: 5px;
 border: 1px dashed #000;
}

div

{
 margin: 10px 0;
 padding: 5px;
 width: 400px;
 background-color: #ffffff;
}
</style>

</head>

<body>

<form id="testform">
 <div><label for="firstfield">*First Field:</label>

 <input id="firstfield" name="firstfield" type="text" aria-required="true"
 required />
 </div>
 <div><label for="secondfield">Second Field:</label>

 <input id="secondfield" name="secondfield" type="text" />
 </div>
 <div><label for="thirdfield">Third Field (numeric):</label>

158 | Chapter 6: Preliminary Testing and Accessibility

 <input id="thirdfield" name="thirdfield" type="text" />
 </div>
 <div><label for="fourthfield">Fourth Field:</label>

 <input id="fourthfield" name="fourthfield" type="text" />
 </div>

 <input type="submit" value="Send Data" />
</form>

<script>

 document.getElementById("thirdfield").onchange=validateField;
 document.getElementById("firstfield").onblur=mandatoryField;
 document.getElementById("testform").onsubmit=finalCheck;

 function removeAlert() {

 var msg = document.getElementById("msg");
 if (msg) {
 document.body.removeChild(msg);
 }
 }

 function resetField(elem) {
 elem.parentNode.setAttribute("style","background-color: #ffffff");
 var valid = elem.getAttribute("aria-invalid");
 if (valid) elem.removeAttribute("aria-invalid");
 }

 function badField(elem) {
 elem.parentNode.setAttribute("style", "background-color: #ffeeee");
 elem.setAttribute("aria-invalid","true");
 }

 function generateAlert(txt) {

 // create new text and div elements and set
 // Aria and class values and id
 var txtNd = document.createTextNode(txt);
 msg = document.createElement("div");
 msg.setAttribute("role","alert");
 msg.setAttribute("id","msg");
 msg.setAttribute("class","alert");

 // append text to div, div to document
 msg.appendChild(txtNd);
 document.body.appendChild(msg);
 }

 function validateField() {

 // remove any existing alert regardless of value

6.5. Highlighting Errors Accessibly | 159

 removeAlert();

 // check for number
 if (!isNaN(this.value)) {
 resetField(this);
 } else {
 badField(this);
 generateAlert("You entered an invalid value in Third Field. " +
 "Only numeric values such as 105 or 3.54 are allowed");
 }
 }

 function mandatoryField() {

 // remove any existing alert
 removeAlert();

 // check for value
 if (this.value.length > 0) {
 resetField(this);
 } else {
 badField(this);
 generateAlert("You must enter a value into First Field");
 }
 }

 function finalCheck() {

 removeAlert();
 var fields = document.querySelectorAll("[aria-invalid='true']");
 if (fields.length > 0) {
 generateAlert("You have incorrect fields entries that must be fixed " +
 "before you can submit this form");
 return false;
 }
 }

</script>

</body>

If either of the validated fields is incorrect in the application, the aria-invalid attribute

is set to true in the field, and an ARIA role is set to alert on the error message, as

shown in Figure 6-8. When the error is corrected, the aria-invalid attribute is re‐
moved, as is the alert message. Both have the effect of changing the background color
for the form field.

160 | Chapter 6: Preliminary Testing and Accessibility

Figure 6-8. Highlighting an incorrect form field

Notice in the code that the element wrapping the targeted form field is set to its correct
state when the data entered is correct, so that when a field is corrected it doesn’t show
up as inaccurate or missing on the next go-round. I remove the existing message alert
regardless of the previous event, as it’s no longer valid with the new event.

When the form is submitted, the application uses the querySelectorAll() method call

to check for all instances of aria-invalid set to true, and rejects the submission until
these are corrected, as shown in Figure 6-9:

var badFields = document.querySelectorAll("[aria-invalid='true']");

You can also disable or even hide the correctly entered form elements, as a way to
accentuate those with incorrect or missing data. However, I don’t recommend this ap‐
proach. Your users may find as they fill in the missing information that their answers
in other fields are incorrect. If you make it difficult for them to correct the fields, they’re
not going to be happy with the experience—or the company, person, or organization
providing the form.

Another approach you can take is to only do validation when the form is submitted.
Many built-in libraries operate this way. Rather than check each field for mandatory or
correct values as your users tab through, you only apply the validation rules when the
form is submitted. This allows users who want to fill out the form in a different order
to do so without getting irritating validation messages as they tab through. This ap‐
proach is a friendlier technique for those people using a keyboard, rather than a mouse,

6.5. Highlighting Errors Accessibly | 161

to tab through the form. Or you can use a mix of both: field-level validation for correct
data type and format, form-level validation for required values.

Figure 6-9. Attempting to submit a form with inaccurate form field entries

Using JavaScript to highlight a form field with incorrect and missing data is only one
part of the form submission process. You’ll also have to account for JavaScript being
turned off, which means you have to provide the same level of feedback when processing
the form information on the server, and providing the result on a separate page.

It’s also important to mark if a form field is required ahead of time. Use an asterisk in
the form field label, with a note that all form fields with an asterisk are required. Use

the aria-required attribute to ensure this information is communicated to those using

assistive devices. I also recommend using the HTML5 required attribute when using

aria-required.

See Also
In Recipe 17.1 I cover form validation libraries and modules to simplify form validation.
I also touch on using HTML5’s declarative form validation techniques.

162 | Chapter 6: Preliminary Testing and Accessibility

6.6. Creating an Accessible Automatically Updated Region

Problem
You have a section of a web page that is updated periodically, such as a section that lists
recent updates to a file, or one that reflects recent Twitter activity on a subject. You want
to ensure that when the page updates, those using a screen reader are notified of the
new information.

Solution
Use WAI-ARIA region attributes on the element being updated:

<ul id="update" role="log" aria-alive="polite" aria-atomic="true"
aria-relevant="additions">

Discussion
A section of the web page that can be updated after the page is loaded, and without
direct user intervention, calls for WAI-ARIA Live Regions. These are probably the sim‐
plest ARIA functionality to implement, and they provide immediate, positive results.
And there’s no code involved, other than the JavaScript you need to create the page
updates.

Recipe 8.8 updates the web page based on the contents of a text file on the server that
the application retrieves using Ajax.

I modified the code that polls for the updates to check how many items have been added
to the unordered list after the update. If the number is over 10, the oldest is removed
from the page:

// process return

function processResponse() {
 if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 var li = document.createElement("li");
 var txt = document.createTextNode(xmlhttp.responseText);
 li.appendChild(txt);
 var ul = document.getElementById("update");
 ul.appendChild(li);

 // prune top of list
 if (ul.childNodes.length > 10) {
 ul.removeChild(ul.firstChild);
 }

 } else if (xmlhttp.readyState == 4 && xmlhttp.status != 200) {
 console.log(xmlhttp.responseText);

6.6. Creating an Accessible Automatically Updated Region | 163

 }
}

With this change, the list doesn’t grow overly long.

I made one more change, adding the ARIA roles and states to the unordered list that
serves as the updatable live region:

<ul id="update" role="log" aria-live="polite" aria-atomic="false"
aria-relevant="additions s">

From left to right: the role is set to log, because I’m polling for log updates from a file,

and only displaying the last 10 or so items. Other options include status, for a status

update, and a more general region value, for an undetermined purpose.

The aria-live region attribute is set to polite, because the update isn’t a critical update.

The polite setting tells the screen reader to voice the update, but not interrupt a current

task to do so. If I had used a value of assertive, the screen reader would interrupt

whatever it is doing and voice the content. Always use polite, unless the information
is critical.

The aria-atomic is set to false, so that the screen reader only voices new additions,

based on whatever is set with aria-relevant. It could get very annoying to have the
screen reader voice the entire set with each new addition, as would happen if this value

is set to true.

Lastly, the aria-relevant is set to additions, as we don’t care about the entries being
removed from the top. This setting is actually the default setting for this attribute, so,
technically, it isn’t needed. In addition, AT devices don’t have to support this attribute.

Still, I’d rather list it than not. Other values are removals, text, and all (for all events).
You can specify more than one, separated by a space.

This WAI-ARIA–enabled functionality was probably the one that impressed me the
most. One of my first uses for Ajax, years ago, was to update a web page with information.
It was frustrating to test the page with a screen reader (JAWS, at the time) and hear
nothing but silence every time the page was updated. I can’t even imagine how frus‐
trating it was for those who needed the functionality.

Now we have it, and it’s so easy to use. It’s a win-win.

See Also
See Recipe 8.8 for more of the code for the live update. Hopefully your code is clean,
unit and performance tested, functioning, and accessible. But that’s only half the job of
preparing your code for production use. Chapter 12 dives into how to make sure your
code—whether browser-based or a Node application—works in today’s modular
environments.

164 | Chapter 6: Preliminary Testing and Accessibility

CHAPTER 7

Creating and Using JavaScript Libraries

You need to know what JavaScript can do, which is why this book primarily features
native JavaScript examples. For the most part, though, you’ll use libraries and/or frame‐
works to create your applications, because these essential tools make your job so much
easier.

This chapter takes a look at finding that perfect library, as well as using libraries for tasks
that are complex or mundane. It looks at incorporating the popular jQuery library into
your application, as well as how to use some of the various jQuery plug-ins—libraries
built on top of the jQuery framework.

But the Web does not live by jQuery alone. There are other libraries, such as Under‐
score.js, providing a host of useful utilities. And there are special-purpose libraries cre‐
ated for specific business needs. We focus so much on developing the UI (user interface)
that we forget that libraries can help with basic math and date functionality, as well as
provide handy UI functionality, such as managing keystrokes.

No matter how many good libraries there are, though, sometimes you can’t find what
you need, or what you need is specific to your own application(s). Then you need to
create your own code—from scratch, or based on existing libraries—and do so in such
a way that it can be used again and again (and is easily maintained, as well as clean, and,
hopefully, bug free).

7.1. Finding the Perfect Library

Problem
You need functionality in your application, and you’re pretty sure someone somewhere
must have already created it. So, other than using a search engine, how can you find
good modules, libraries, and tools?

165

Solution
Look for resource sites that not only provide a listing of libraries, modules, and tools,
but also provide information about their use, their popularity, and how active the sup‐
port is for them.

Discussion
First of all, don’t knock search engines for finding good JavaScript source. By using
Google’s Search tools and restricting results to the past year, I can easily find recent and
up-to-date code, as well as interesting newcomers that haven’t yet achieved a high level
of popularity.

Still, you’re also just as likely to run into pages of Stack Overflow results rather than a
library when searching for JavaScript functionality, so another option when looking for
a new library is to search popular script resources sites.

GitHub is a good resource for JavaScript libraries, modules, and tools, and you’ll also
be able to see at a glance if the code is being maintained and how popular it is. You can
search for specific functionality, or you can use the GitHub Explore page to find new
and interesting GitHub projects by category. I especially recommend the Data Visual‐
ization category.

Micro.js is a site featuring a small set of what it calls micro-frameworks. These are smaller,
more purposed JavaScript libraries, all displayed in a fun little site.

JSDB.io calls itself “the definitive source of the best JavaScript libraries, frameworks,
and plugins,” and it is an excellent resource. Again, just search for the general type of

functionality you need, such as canvas chart, and then peruse the results. The results
even give you an approval percentage, and the returned page also provides information
such as GitHub watchers, average time between commits, average forks, and average
number of contributors.

7.2. Testing for Features with Modernizr.load

Problem
You’re using newer technologies, and you want to make sure the client can support the
technologies before you load them.

Solution
You can use a library such as Modernizr to handle basic HTML5/CSS differences be‐

tween browsers. But you can also use a companion tool, Modernizr.load, to test to see
if an existing technology is supported.

166 | Chapter 7: Creating and Using JavaScript Libraries

https://github.com/explore
http://bit.ly/1yHY4ia
http://bit.ly/1yHY4ia
http://microjs.com/#
http://www.jsdb.io/

As an example, if you want to incorporate touch events in your application, you can use
Modernizr to test whether they’re supported in an environment and only load the ap‐
plication script if they are. In the following code, the application is testing to see if the
touch events, covered in Chapter 18, are supported. If they are, the application script is
loaded:

Modernizr.load({
 test: Modernizr.touch,
 yep : 'touchtest.js'
});

Discussion
Modern browser makers are highly competitive, which means that most of the modern
technologies we want to use are already part of the browser your user is most likely
using. Unfortunately, we can’t take it as given that every user is using the most modern
browser, and that’s where a concept like feature detection enters.

Years ago, when testing for browser differences, we’d check browser versions because
browser companies didn’t release new versions all that often. The idea of doing this
nowadays, when some of the companies seemingly release a new version every week, is
ludicrous. Feature detection is a way of guaranteeing that the environment will support
your application, regardless of browser version or client.

Feature detection can be tedious, though, and tricky. That’s where a feature detection

tool like Modernizr.load comes in. It comes with a set of feature detection tests already

built in, as demonstrated in the solution. And you can use Modernizer.load plugins to
check for others, or even create your own.

To use Modernizr.load, go to the Modernizr site, check the features you want to test
and/or support, and the site builds a custom library. To use the library, include the script

in the page (in the head element, preferably after your style elements), and then include
the links to your test scripts.

You can also use the software to load a polyfill library to manage differences:

Modernizr.load({
 test: Modernizr.websockets,
 nope : 'websockets.js'
});

You can list multiple JavaScript files, separated by commas, for both the yep and nope
properties.

7.2. Testing for Features with Modernizr.load | 167

http://modernizr.com/

7.3. Going Beyond the Math Object’s Capability

Problem
The Math object provides good, basic mathematical functionality, but lacks advanced
or business-specific math functionality that you need. In addition, Math does everything
in floating point, and you need functions that work to a higher degree of precision.

Solution
Use a library that expands on the Math object’s capability. Examples of these libraries
and their usage are covered in the discussion.

Discussion
Most of our math functionality is satisfied by the built-in Math object. However, there
are instances where what it provides, or doesn’t provide, leaves gaps. That’s where a small
but powerful set of Math libraries and/or modules comes in. I’ll cover some options in
this section.

Math.js
The Math.js library can be installed using npm or Bower, downloaded directly from its
website, or accessed via content delivery network (CDN). It can be used in the browser,
or in Node applications. It provides a set of functions to perform operations, such as

add() and multiply(), that have the added advantage of being chainable:

var result = math.select(9)
 .add(3)
 .subtract(6)
 .multiply(23)
 .done(); // get value

console.log(result); //{ value: 138 }

It also provides functionality to parse a mathematical expression, with its own version

of eval():

var exp = "4 + 3 * 10 / 8";
console.log(math.eval(exp)); // 7.75

In addition, it supports matrices. For example, to create a [3,3] matrix:

var m = math.matrix([[4,3,2],[6,6,8],[7,4,5]]);
console.log(m.valueOf()); //[[4, 3, 2], [6, 6, 8], [7, 4, 5]]

Note that the matrix arrays are contained within an outer array. Use the following to
create a zero-filled matrix:

168 | Chapter 7: Creating and Using JavaScript Libraries

http://mathjs.org/

var z = math.zeros(2,2);
console.log(z.valueOf()); // [[0, 0], [0, 0]]

Most of the Math.js functions require the valueOf() or done() function to actually get
the value of the operation, as noted in the code snippets.

Math.js also provides support for BigNumbers, numbers that have arbitrary precision,
as well as complex numbers, with both real and imaginary parts:

var b = math.complex('4 - 2i');
b.re = 5;
console.log(b.valueOf()); // 5 - 2i

Accounting
There are several libraries and modules for providing accounting capability, but argu‐
ably the most popular is Accounting.js, maintained by Open Exchange Rates (whose
currency conversion API is introduced in Recipe 13.1). Like many other libraries, it can
be downloaded from its main site, accessed via CDN, or installed using npm:

npm install accounting

You can use Accounting.js to format a number into a currency format:

var options = {
 symbol : "$",
 decimal : ".",
 thousand: ",",
 precision : 2,
 format: "%s%v"
};

// Example usage:

var m = accounting.formatMoney(45998307);
console.log(m);// $45,998,307.00

You can also format entire columns of numbers:

var list = [[456, 12, 3], [99, 23,3],[667,902,12]];
var c = accounting.formatColumn(list);
console.log(c);[['$456.00', '$ 12.00', '$ 3.00'],
 ['$99.00', '$23.00', '$ 3.00'],
 ['$667.00', '$902.00', '$ 12.00']]

The formatting isn’t all U.S. dollar–based either:

var p = accounting.formatMoney(4899.49, "€", 2, ".", ",");
console.log(p); // €4.899,49

The Accounting.js functionality isn’t extensive, but what it does, it does well.

7.3. Going Beyond the Math Object’s Capability | 169

http://openexchangerates.github.io/accounting.js/
http://bit.ly/1z9AWtG

Advanced Mathematics and Statistics
A popular advanced math module in Node is Numbers, installed as:

npm install numbers

You can also download or install it on the client using Bower.

The library provides advanced calculus functions, matrix math, and even some statistics.
From the documentation:

numbers.statistic.mean(array);
numbers.statistic.median(array);
numbers.statistic.mode(array);
numbers.statistic.standardDev(array);
numbers.statistic.randomSample(lower, upper, n);
numbers.statistic.correlation(array1, array2);

I’ll leave it for the more mathematically inclined to explore all the functionality.

See Also
Using npm to install Node modules is covered in Recipe 12.6. Working with Bower is
covered in Recipe 12.11, and CDNs are discussed in Recipe 7.13.

7.4. Finding the Number of Days Between Two Dates

Problem
You can create two different dates with the Date object, but you can’t easily find the
number of days between them.

Solution
Use the date library Moment.js to access the more advanced datetime functions. The
following solution shows how to find the number of days between two dates using this
library:

var deadline = moment('October 1, 2014');
var t = moment();

var df = deadline.diff(t, 'days');
console.log(df); // 37 days

Discussion
The Moment.js library can be used in Node via npm, or in the browser—either down‐
loaded, via Bower or Require.js, or linking directly to the CDN:

170 | Chapter 7: Creating and Using JavaScript Libraries

http://www.numbersjs.info/

<script src="//cdnjs.cloudflare.com/ajax/libs/moment.js/2.8.1/moment.min.js">
</script>

The Date object does not provide any technique to easily find differences between two
dates. Not so with Moment.js. In the solution, I could easily discover how many days
there were between two dates. And in the following snippet, I created a Date when this
was written, and added seven days:

var t = moment();
console.log(t.format("dddd, MMMM Do YYYY, h:mm:ss a")); // formatted date

t.add(7, 'days');
console.log(t.format("dddd, MMMM Do YYYY, h:mm:ss a")); // date 7 days in future

The Moment.js library is an excellent example of a small, well-purposed JavaScript li‐
brary fulfilling a real need.

7.5. Using an External Library: Building on the jQuery
Framework

Problem
You want to create application-specific libraries without having to create your own li‐
brary of reusable routines.

Solution
Use one of the JavaScript libraries, such as jQuery or Underscore, to provide the basic
functionality you need, but isolate the use so that you can swap libraries if needed.

Discussion
There are good reasons for using an existing JavaScript library such as jQuery. One is
that the code has been robustly tested by several people. Another is that you can tap into
a community of support when you run into problems in your applications. jQuery is
also extensible, with a wealth of plugins you can incorporate, as well as the ability to
create your own. Then there’s the time-saving aspect, as jQuery takes over managing
the tedious bits of your application.

I’m focusing primarily on jQuery because it is the library incorporated into most of the
applications I use. It’s also small, specific, modular, and uncomplicated. However, there
are other good general-purpose and extensible libraries, depending on your needs and
preferences.

7.5. Using an External Library: Building on the jQuery Framework | 171

You can access both a minified version of jQuery and an uncom‐
pressed developer version. You can also access jQuery through Git‐
Hub, or link directly to the CDN version.

To use jQuery, include a link to the library before providing links to your own or other,
secondary libraries. If using the CDN, use the following:

<script src="//code.jquery.com/jquery-2.1.1.min.js"></script>

A basic starting page that jQuery provides is the following, where the jQuery script is
downloaded, and included in the web page’s body:

<!doctype html>
<html>

<head>

 <meta charset="utf-8" />
 <title>Demo</title>
</head>

<body>

 <script src="jquery.js"></script>
 <script>
 // Your code goes here.
 </script>
</body>

</html>

If you are placing the scripting block in the body, consider putting it at the end, making
it easier to discover. There are several application-specific libraries that are dependent
on jQuery, so you may want to check if they provide it as part of their own installation.

One aspect of jQuery that differs from most of the examples in this book is that jQuery’s

starting point for script is not window.onload, as used for many applications. Instead,
the jQuery library provides a page start routine that waits for DOM elements to be
loaded, but does not wait for images or other media to finish loading. This beginning
point is called the ready event, and looks like the following:

$(document).ready(function() {
 ...
});

The code snippet demonstrates a couple of other things about jQuery. First, notice the

dollar sign element reference: $(document). In jQuery, the dollar sign ($) is a reference
to the main jQuery class, and acts as a selector for all element access in the application.
If you’re working with jQuery, use the jQuery selector rather than your own element
access, because the jQuery selector comes with prepackaged functionality essential for
jQuery to operate successfully.

172 | Chapter 7: Creating and Using JavaScript Libraries

http://jquery.com/
https://github.com/jquery/jquery
https://github.com/jquery/jquery
https://code.jquery.com/jquery-2.1.1.min.js

The syntax you use when querying for page elements is the same as the syntax for the

querySelector() and querySelectorAll() methods, described in Chapter 5. It’s based
on CSS selector syntax for accessing a named element, such as the following:

#divOne{
 color: red;
}

Using jQuery to access a div element with an id of divOne looks like this:

$("#divOne").click(function() {
 console.log("element clicked");
});

This code snippet returns a reference to the div element identified by divOne, and then

attaches a function to the element’s onclick event handler that prints out a message.

The code also demonstrates another fundamental aspect of jQuery—it makes heavy use
of method chaining. Method chaining is a way of appending methods one to another.

In the code, instead of returning a reference to the div element and then attaching the
event handler function to it, you attach the event handler directly to the element request.

There is extensive documentation and tutorials on using jQuery, so I’ll leave any further
exploration of jQuery for an off-book exercise. However, I did want to cover one im‐
portant aspect of using jQuery—or any framework library with your own applications.

The key to making these work now and in the future is to wrap the library use in such
a way that you can swap one library out for another, without having to recode your
applications—or, at least, minimize the amount of recoding you would have to do.

Instead of using the jQuery ready event, create your own so you don’t build a higher-
level dependency on jQuery. Instead of using jQuery methods directly in your business
logic, use your own objects and methods, and call the jQuery methods within these. By
providing a layer of abstraction between the implementation of your application’s busi‐
ness logic and the external framework library, if someday you stumble upon Frew, the
Wonder Library, you can swap out jQuery (or another library or framework) and build
on Frew.

When I wrote the first edition of the JavaScript Cookbook, the big libraries at the time
were Prototype.JS and jQuery. Since then, Prototype.JS hasn’t been updated since 2012.
This is why you want to isolate which library you use: if it’s no longer being supported,
you can swap to another if necessary. It may seem like jQuery will be around forever,
but things change.

Of course, some frameworks really do require a commitment, so if you go with this
approach, make sure that your choice has an active community and lively support.

7.5. Using an External Library: Building on the jQuery Framework | 173

See Also
jQuery Cookbook by Cody Lindley (O’Reilly) is an excellent book that provides a com‐
prehensive overview and detailed how-tos for jQuery. “How jQuery Works” is a good
introduction into using jQuery.

7.6. Using a jQuery Plugin

Problem
You’ve made use of jQuery in all of your applications, but it doesn’t support some func‐
tionality you need, such as sliding an element in from the side of the web page, or
providing a color animation.

Solution
Use a jQuery UI plugin to provide the additional functionality. In Example 7-1, I’m
using the jQuery UI Toggle plugin to show and hide a block of text based on a button

clicked event. The effect I’m using is fold, which creates a nice paper fold effect as the

content is shown. I’m also starting with the block hidden with the style setting on the

element, with a value of display: none.

Example 7-1. Showing and hiding a block of text using a jQuery UI effect

<!doctype html>
<html lang="en">
<head>

<meta charset="utf-8">
<title>jQuery fold demo</title>
<link rel="stylesheet"
 href="//code.jquery.com/ui/1.11.1/themes/smoothness/jquery-ui.css">
<style>

#extra {
 width: 600px;
 height: 200px;
 background-color: floralwhite;
 padding: 10px;
 margin-bottom: 20px;
}
</style>

<script src="//code.jquery.com/jquery-1.10.2.js"></script>
<script src="//code.jquery.com/ui/1.11.1/jquery-ui.js"></script>
</head>

<body>

<div id="extra" style="display: none">Lorem ipsum dolor sit amet, consectetur ad
ipiscing elit. Integer in erat semper, condimentum erat nec, porttitor ipsum. Ma
uris id erat luctus, finibus quam a, luctus est. Morbi id metus magna. Sed inter
dum vel arcu sed accumsan. Etiam quis ultrices elit. Maecenas efficitur in orci

174 | Chapter 7: Creating and Using JavaScript Libraries

http://shop.oreilly.com/product/9780596159788.do
https://learn.jquery.com/about-jquery/how-jquery-works/

a efficitur. Duis id elit commodo, malesuada lorem nec, aliquet lacus. Praesent
sit amet laoreet eros, eu pulvinar libero. Sed vel dolor ac orci congue vulputat
e. Donec pulvinar risus magna, non feugiat sem aliquet eget. Nullam viverra vive
rra nunc et rutrum. Sed sed tellus a lorem porta vestibulum vel ac lacus. Suspen
disse potenti. Curabitur ac tristique lorem, sed ullamcorper odio. Mauris at acc
umsan lacus. Pellentesque at faucibus neque, nec aliquet mauris.</div>

<button id="choice">Show additional info</button>
<script>

$("#choice").click(function() {
 $("#extra").toggle("fold" , {horizFirst: true});
});
</script>

</body>

</html>

Discussion
jQuery is a slim library providing core functionality that allows us to manipulate the
DOM simply and easily. To keep it slim, any additional functionality is added via plugins,
each of which are created to work within the jQuery infrastructure.

The jQuery UI is a set of plugins and is probably one of the better known jQuery ex‐
tensions. As the name implies, we can use it to create a nice variety of visual effects to
add some liveliness to the page—and without having to spend days coding the effect.

In the solution, the code links to a stylesheet, as well as two JavaScript libraries: the
primary jQuery library, and the jQuery UI. The stylesheet ensures that the effects meet
our expectations, as the jQuery UI plugins are all involved with appearance.

The jQuery plugins website provides a search engine to look for use‐
ful plugins. In addition, they’re also tagged, so you can browse among
the plugins specific to whatever is your interest: UI, Ajax, forms, etc.
Each plugin provides whatever instruction is needed to get the plugin
to work.

Extra: Why Not Just Use HTML5 and CSS3 for Managing Visual Effects?
Some of the functionality in jQuery and the plugins is now implemented declaratively
in HTML5 and CSS3. Declarative functionality is the ability to specify what we want,
and it just happens. Instead of having to code a transition, we declare it in CSS and trust
that the browser handles the transition properly.

The following CSS modifies the extra div element in Example 7-1. Now, when the
mouse cursor is over the element, it shrinks until disappearing completely. Move the
mouse cursor out, and it transitions back to its full size:

7.6. Using a jQuery Plugin | 175

http://plugins.jquery.com/

#message {
 width: 600px;
 height: 200px;
 background-color: floralwhite;
 padding: 10px;
 margin-bottom: 20px;
 -webkit-transition:width 2s, height 2s, background-color 2s,
 -webkit-transform 2s;
 transition:width 2s, height 2s, transform 2s;
}
#message:hover {
 -webkit-transform:scale(0);
 transform:scale(0);
}

The advantage to this approach is it works even if JavaScript is turned off. And the
browser developers can optimize the transition effect—increasing both the efficiency
and the overall appearance of the effect. It seems like a win-win.

The limitation to using CSS3/HTML5 is trying to trigger the effect based on the button’s

click event. In addition, you don’t have complete control over appearance or effect.
This is particularly true with HTML5 elements.

If you’re using the new HTML5 input elements, such as date, the browser creates the
appropriate container, but you’ll find that the container’s appearance can differ dra‐
matically from browser to browser. Firefox just provides a field, while Opera pops up a

calendar picker when you click in the field. The color input pops up the system color
picker in Firefox and Chrome, but an odd drop-down color picker in Opera.

If it’s important for appearance and behavior to be consistent across all agents and in
all environments, depending on the declarative power of HTML5 and CSS3 is probably
not going to be the best option. They can be a useful addition, but not a complete
replacement.

Extra: Plugin? Or Plug-in?
I use both “plug-in” and “plugin” in the book. The proper word usage is plug-in, hy‐
phenated, but as you’ll notice, many communities (e.g., the jQuery community) use
plugin without hyphenation. Eventually, I expect plugin without the hyphenation to
become the standard.

Ultimately, though, we all know what we’re talking about, so use whatever is comfortable
for you, or whatever maps to what the community uses.

See Also
The world of jQuery is large. In Recipe 17.1, I use jQuery to demonstrate one method
of validating forms. jQuery also supports a nice, touch-enabled mobile interface system

176 | Chapter 7: Creating and Using JavaScript Libraries

called jQuery Mobile. It’s demonstrated in “Extra: Adding jQuery Mobile Support to a
Cordova Android App” on page 556.

7.7. Handling Keyboard Shortcuts with Mousetrap

Problem
You need to provide support for keyboard shortcuts, but coding for these is exceedingly
tedious.

Solution
Use a standalone library, such as Keypress, or a jQuery plugin, like jQuery.hotkeys.

Keypress is very simple to use. Just drop in the library, and set up the shortcuts or key
combinations you want to capture. You can capture simple combos, or more complex
sequences:

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8">
<title>Keypress</title>
<script src="keypress.js"></script>
</head>

<body>

 <div id="message">Press shift-r or press a b c </div>

<script>

 var message = document.getElementById("message");
 var listener = new window.keypress.Listener();
 listener.simple_combo("shift r", function() {
 message.innerHTML = "Pressed shift r";
 });
 listener.sequence_combo("a b c", function() {
 message.innerHTML = "you know your ABCs";
 });
</script>

</body>

</html>

If you’re using jQuery, then you can use the jQuery.hotkeys plugin as follows:

<!doctype html>
<html lang="en">
<head>

<meta charset="utf-8">
<title>jQuery hotkeys</title>
<script src="//code.jquery.com/jquery-1.10.2.js"></script>

7.7. Handling Keyboard Shortcuts with Mousetrap | 177

<script src="jquery.hotkeys.js"></script>

<script type="text/javascript">
 $(document).ready(function() {
 $(document).on('keydown',null,'shift+r', function() {
 $('#message').html('you pressed shift r');
 });
 $(document).bind('keydown', 'ctrl+a', function() {
 $('#message').html('Pressed ctrl+a');
 });
 });
</script>

</head>

<body>

<div id="message"></div>
</body>

</html>

Discussion
Capturing keystrokes and shortcut combinations isn’t a complex task, but it is tedious,
which makes it ideal for a library.

Two popular libraries for keyboard shortcut and key tracking are Mousetrap and the
one demonstrated in the solution, Keypress. I went with Keypress because it looks to be
more actively maintained than Mousetrap—an important consideration when picking
a library. In addition, Keypress supports more sophisticated keyboard actions I found
to be useful.

Keypress is very easy to use, as the solution demonstrated. There are three simple meth‐
ods to use:

• simple_combo: For the typical two-key shortcut, such as Ctrl+a

• counting_combo: Takes two arguments, the key sequence, and a counter

• sequence_combo: Takes a sequence of keys

The counting_combo() function is a handy bit of code. It takes a two-key combination,
such as Tab+space, or Ctrl+a. As long as you continue holding down the first key, the
counter increases for key press on the second key. It makes a great way to cycle through
tabs, or highlight paragraphs in a row, or whatever action cycling through a collection.

178 | Chapter 7: Creating and Using JavaScript Libraries

Any key combination can be a modifier in Keypress. Typically, modifiers would be
combinations like Alt+q, Ctrl+a, or Shift+r. The combinations begin with one of the
three:

• Ctrl

• Shift

• Tab

Keypress basically allows you to define your shortcut to be whatever you want it to be,
which is extensible, but use such freedom with caution: we’re creatures of habit, and we
like our shortcuts to be familiar.

If you need something even more complicated, there’s register_combo() that takes an
object specifying any number of properties associated with the key action. In the fol‐

lowing code, register_combo() specifies both key up and key down functions, as well

as setting the is_unordered to true. This property allows me to type Alt+m and m+Alt,
equally:

listener.register_combo({
 "keys": "alt m",
 "on_keydown": function() {
 message.innerHTML = "alt m down";
 },
 "on_keyup": function() {
 message.innerHTML = "alt m up";
 },
 "is_unordered": true
 });
}

There are several other properties you can set, detailed in the library’s documentation.

Lastly, if you want to register several shortcuts at one time, use register_many():

var scope = this;
var many = listener.register_many([
 {
 "keys": "alt b",
 "on_keydown": function() {
 message.innerHTML = "alt b";
 },
 "this": scope
 },
 {
 "keys": "alt c",
 "on_keydown": function() {
 message.innerHTML = "alt c";
 },
 "this": scope
 }]);

7.7. Handling Keyboard Shortcuts with Mousetrap | 179

The scope of the object is specifically set to the window via the this property.

You can also unregister any key combination with:

• unregister_combo(shift r)

• unregister_many(name of variable)

• reset: Resets all combinations

There are also opportunities to pause the keyboard capturing when the cursor is in an

input field or in other circumstances. Keypress works equally on its own or in combi‐
nation with JQuery.

If you prefer to use a jQuery plugin, though, then jQuery.hotkeys is probably for you,
as demonstrated in the solution. Note, though, that its functionality is limited compared
to Keypress. However, if you’re only interested in creating traditional shortcuts, then
the plugin fits your needs.

To use, simply map the key combination using jQuery’s on()/off() syntax, or you can

use the plugins own bind()/unbind() methods.

7.8. Utilizing the Utility Library Underscore

Problem
You want a simple-to-use, basic utility library that can be used with your applications
or in combination with other more complex frameworks like jQuery.

Solution
Use the increasingly ubiquitous Underscore.js library. It can be downloaded, installed
using npm or Bower, or accessed via CDN:

<script src="//cdnjs.cloudflare.com/ajax/libs/underscore.js/1.7.0/underscore.js">
</script>

In Recipe 3.8, I demonstrated memoization with a Fibonacci. With Underscore.js, my
job is greatly simplified:

var fibonacci = _.memoize(function(n) {
 return n < 2 ? n: fibonacci(n - 1) + fibonacci(n - 2);
});

console.log(fibonacci(10)); // 55

180 | Chapter 7: Creating and Using JavaScript Libraries

https://github.com/jeresig/jquery.hotkeys

Discussion
Underscore.js provides various functions categorized as:

• Collections

• Arrays

• Functions

• Objects

• Utility

• Chaining

Underscore.js enhances existing JavaScript capability, but does so without extending

the prototype object, which could make the library incompatible with other libraries
or your own application.

The utility’s functionality is accessible via the underscore (_) character, hence the name.
However, if you use it with another library that also uses the underscore, you can remove
the conflict:

var underscore = _.noConflict();

The solution demonstrated the _.memoize() functionality. The following code dem‐
onstrates just a sampling of some of the other functionality:

// flatten a multidimensional array

var ary = _.flatten([1, ['apple'], [3, [['peach']]]]);
console.log(ary); // [1, "apple", 3, "peach"]

// filter an object based on an array of blacklisted keys

var fltobj = _.omit({name: 'moe', age: 50, userid: 'moe1'}, 'userid');

console.log(fltobj); // [object Object] { age: 50, name: "moe'}

// escape a string for insertion into HTML

var str = _.escape("<div>This & that and 'the other'</div>");

console.log(str); // "<div>This & that and
 'the other'</div>"

Underscore.js is documented at http://underscorejs.org/. The GitHub
repository is at https://github.com/jashkenas/underscore.

7.8. Utilizing the Utility Library Underscore | 181

http://underscorejs.org/
https://github.com/jashkenas/underscore

7.9. Packaging Your Code

Problem
You want to package your code for reuse in your own projects, and possible reuse by
others.

Solution
If your code is in one big file, look for opportunities to extract reusable functionality
into self-contained objects in a separate library.

If you find you have a set of functions you repeat in all of your applications, consider
packaging them for reuse via an object literal. Transform the following:

function getElem(identifier) {
 return document.getElementById(identifier);
}

function stripslashes (str) {
 return str.replace(/\\/g, '');
}

function removeAngleBrackets(str) {
 return str.replace(/</g,'<').replace(/>/g,'>');
}

to:

var jscbObject = {

 // return element
 getElem : function (identifier) {
 return document.getElementById(identifier);
 },

 stripslashes : function(str) {
 return str.replace(/\\/g, '');
 },

 removeAngleBrackets: function(str) {
 return str.replace(/</g,'<').replace(/>/g,'>');
 }
};

Discussion
We can’t find everything we need in external libraries. On rare occasions, there isn’t a
library that provides the basic functionality we need, or you need to extend an existing
library. In addition, our business requirements are unique and requires their own

182 | Chapter 7: Creating and Using JavaScript Libraries

JavaScript functionality. Both types of code can be packaged up into libraries, either to
make them easier to use in our applications, or to share with the world.

There is some fundamental restructuring you need to perform on the code in order to
neatly package it into a library. In the solution, I’ve taken three functions in the global
space and converted them into three methods on one object. Not only does this reduce
the clutter in the global space, but it helps prevent clashes with similar-sounding func‐
tion names in other libraries.

Even as global functions, though, they’re a step up from code that’s hardcoded to a

specific use. For instance, if your code has the following to access a style property from
an element:

// get width

var style;
var elem = div.getElementById("elem");

if (elem.currentStyle) {
 style = elem.currentStyle["width"];
} else if (document.defaultView &&
 document.defaultView.getComputedStyle) {
 style = document.defaultView.getComputedStyle(elem,null)
 .getPropertyValue("width");
}

Repeating this code in more than one function in your application can quickly bloat the
size of the JavaScript, as well as make it harder to read. Package the code by extracting
it into a reusable function, and eventually into a new member of your library object
literal:

var jscbObject = {

 // get stylesheet style
 getStyle : function (obj, styleName) {
 if (obj.currentStyle) {
 return obj.currentStyle[styleName];
 } else if (document.defaultView &&
 document.defaultView.getComputedStyle) {
 return
 document.defaultView.getComputedStyle(obj,null)
 .getPropertyValue(styleName);
 }
 return undefined;
 },
...
}

As you split your code into libraries of reusable objects, look for an opportunity to collect
your code into layers of functionality.

7.9. Packaging Your Code | 183

Before the advent of jQuery and other very nice user interface libraries, I had one library,
bb.js, that provided basic functionality such as event handling, accessing generic style
elements, and processing keyboard events. I had another library, mtwimg.js, providing
image handling in a web page, similar to what the library Lightbox 2 provides, but on
a much smaller scale. My image handling library is built on my general library, so that
I don’t have to repeat the functionality in both libraries, but I also keep my bb.js library
small, and focused.

Download Lightbox 2, or access it via the GitHub page.

When I created a third library, accordion.js, which created automatic accordion widgets
(also sometimes called collapsible sections), it was also built on the bb.js generic library,
considerably reducing the development time. More importantly, if I eventually decide
to drop support for my generic library in favor of another externally developed library,
such as jQuery, though the internal functionality in accordion.js and mtwimg.js has to
change, the web pages that use both don’t, because the latter two libraries’ outward-
facing functionality isn’t impacted. This is a concept known as refactoring: improving
the efficiency of your code without affecting the external functionality.

Oh, and while you’re at it: document your code. Though you may provide a minified
version of your code for production use, consider providing a nonminified, well-
documented version of your JavaScript libraries so that others can learn from your code,
the same as you’re able to learn from theirs.

See Also
You can take your code a step further by wrapping the functionality in an Immediately-
Invoked Function Expression (IIFE), covered in Recipe 7.10. Cleaning up your code,
testing it, and packaging it for easy reuse are also the first steps you need to take to
modularize your code. The concept of JavaScript modularization, as well as tools to
assist you in modularizing your code for both internal and external use, are covered in
Chapter 12.

184 | Chapter 7: Creating and Using JavaScript Libraries

http://lokeshdhakar.com/projects/lightbox2/
https://github.com/lokesh/lightbox2/

7.10. Adding Support for Private Data Members

Problem
You’ve discovered reusable functionality and created an object with the functionality
defined as object methods. However, you also need to add support for private data
members, too.

Solution
One approach to ensuring a data member isn’t exposed to public access is to redefine
the object as a function with publicly exposed methods or data objects that use the
private data or methods. If we redefined the functionality of the object in Recipe 7.9,
modifying the string methods to use a replacement string, we could store the replace‐
ment string as private data:

var StrManipulate = function() {
 var replacementText = "**";

 this.replaceSlashes = function(str) {
 return str.replace(/\\/g, replacementText);
 };

 this. replaceAngleBrackets = function(str) {
 return str.replace(/</g,replacementText).replace(/>/g,replacementText);
 };
};

And create a new instance of the object:

var strObj = new StrManipulate();
console.log(strObj.replaceAngleBrackets("<html>"); // "**html**"

However, if we don’t want to use a declared function, or abandon our use of an object,
we can encapsulate that object in an IIFE:

(function() {

 var replacementStr = "**";

 this.jscb = {

 // return element
 getElem : function (identifier) {
 return document.getElementById(identifier);
 },

 replaceSlashes : function(str) {
 return str.replace(/\\/g, replacementStr);
 },

7.10. Adding Support for Private Data Members | 185

 replaceAngleBrackets: function(str) {
 return str.replace(/</g,replacementStr).replace(/>/g,replacementStr);
 }
};
})();

Discussion
A simple function-to-object conversion is easier on the global namespace than separate
functions, but a one-off object of this nature has disadvantages, including an inability
to add private data accessible by all of the object methods.

One approach is to convert the object to a declared function and expose all of the meth‐

ods, but not the data, via this, as shown in the example. For years, this was the approach
to use when creating libraries.

However, a more future-proof solution, which is also more elegant and efficient, is to
use an IIFE to encapsulate the object’s methods and data. This approach creates a sin‐
gleton—a single object—rather than an object that’s instantiated. It also allows you to
use either a function as the core of the library object, or an object, as shown in the
solution.

You can even ensure that the object is a singleton. I adapted the object created in the
solution into a true singleton, following the Singleton implementation in Addy Osmani’s
Learning JavaScript Design Patterns. Example 7-2 shows the new implementation, and
a test case. The main difference is that a singleton implementation is created with

init(), which is called when the getInstance() function is called. If the instance al‐
ready exists, though, the original instance is returned—a new instance is not created,
as the strict equality (===) tests demonstrates.

Example 7-2. Converting library object into Singleton

var jscbSingleton = (function() {

 var instance;

 function init() {
 var replacementStr = "**";

 return {

 // return element
 getElem : function (identifier) {
 return document.getElementById(identifier);
 },

 replaceSlashes : function(str) {
 return str.replace(/\\/g, replacementStr);
 },

186 | Chapter 7: Creating and Using JavaScript Libraries

 replaceAngleBrackets: function(str) {
 return str.replace(/</g,replacementStr).replace(/>/g,replacementStr);
 }
 };
 }

 return {

 // Get the Singleton instance if one exists
 // or create one if it doesn't
 getInstance: function () {

 if (!instance) {
 instance = init();
 }

 return instance;
 }

 };
})();

var jscb = jscbSingleton.getInstance();
var jscb2 = jscbSingleton.getInstance();

console.log(jscb === jscb2); // true

var str = jscb.replaceAngleBrackets("<html>");
console.log(str);

There are no absolutes when it comes to creating a reusable library or utility object. I
demonstrated a couple of approaches in this and the last few sections, but they’re just a
start. The best way to determine how to implement your library object is to examine
existing ones. I suggest taking a look at the source code for jQuery and Underscore,
both of which were covered earlier in the chapter, and Lightbox 2, which I mentioned
in Recipe 7.9—all of these can be discovered in GitHub.

7.11. Minify Your Library

Problem
You want to compactly package your code for wider distribution.

Solution
After you’ve optimized your library code and tested it thoroughly through unit testing,
compress it with a JavaScript optimizer.

7.11. Minify Your Library | 187

Discussion
Once you’ve created your library, optimized it for efficiency, and run it through your
unit testing, you’re ready to prep your code for production use.

One preparation is to compress the JavaScript as much as possible, so the file is small
and loads quickly. JavaScript compression is handled through minify applications you
can find online, such as the well-known and interestingly named UglifyJS. Why Uglify?
Because when you compress your JavaScript, it becomes an incomprehensible jumble
of densely packed characters.

To use Uglify, you can either cut and paste your JavaScript into the UglifyJS website
page, provide the URL for your JavaScript library, or use the command-line tool.

Access UglifyJS at http://marijnhaverbeke.nl/uglifyjs.

The result of running the tool is a mess, like the following:

function timerEvent(){4==xmlhttp.readyState&&populateList(),timer=
setTimeout(timerEvent,3e3)}function populateList(){var a=
"http://burningbird.net/text.txt";xmlhttp.open("GET",a,!0),
xmlhttp.onreadystatechange=processResponse,xmlhttp.send(null)}
function processResponse(){if(4==xmlhttp.readyState&&200==xmlhttp.status)
{var a=document.createElement("li"),
b=document.createTextNode(xmlhttp.responseText);
a.appendChild(b);var c=document.getElementById("update");c.appendChild(a),
c.childNodes.length>10&&c.removeChild(c.firstChild)}else 4==
xmlhttp.readyState&&200!=xmlhttp.status&&console.log(xmlhttp.responseText)}
var xmlhttp=new XMLHttpRequest,timer;window.onload=function()
{populateList(),timerEvent()};

The purpose of a minification tool is to compress the text so it requires less bandwidth
and loads faster. Some would say the lack of readability is a perk.

See Also
See Recipe 6.2 for more on unit testing.

188 | Chapter 7: Creating and Using JavaScript Libraries

http://marijnhaverbeke.nl/uglifyjs

7.12. Hosting Your Library

Problem
You want to open source your code, but you don’t want to have to maintain the libraries
on your own server.

Solution
Use one of the source code sites to host your code, and provide the tools to manage
collaboration with other developers.

Discussion
One of the beautiful things about JavaScript is that many of the libraries and applications
are open source, which means that not only are they typically free to use, but you can
also adapt the library with your innovations, or even collaborate on the original. I
strongly encourage open sourcing your libraries as much as possible. However, unless
you have the resources to mount a public-facing source code control system, you’ll want
to use one of the sites that provide support for open source applications.

One source code host is Google Code, which contains a simple user interface to start a
new project and upload code. You can choose between two version control software
systems (Subversion and Mercurial), as well as one of a host of open source licenses.

There is a wiki component to each project where you can provide documentation, as
well as a way to provide updates for those interested in the project. The site also provides
issue-tracking software for people to file bugs in addition to a download link and a
separate link for source code.

The SVG-enabling software SVGWeb is hosted in Google Code. Figure 7-1 shows the
front page for the project and the links to all of the secondary support pages, including
the Wiki, Downloads, Issues, Source, and so on.

7.12. Hosting Your Library | 189

http://code.google.com/hosting/

Figure 7-1. SVGWeb hosted at Google Code

There is no charge for hosting an application on Google Code.

Another very popular host for open source projects is GitHub. Unlike Google Code,
there are limits to what is supported for a free account on the service, but JavaScript
libraries should not tax these limits. You shouldn’t incur any costs, as long as your
projects are open source and publicly available. However, there is a fee if you want to
use the service for a private collaboration with several others.

As with Google Code, GitHub supports source code control and collaboration from
several people, including records of issues, downloads, a wiki support page, and a nice
graphs page that provides graphics of language support, usage, and other interesting
indicators.

The very popular jQuery library is hosted on GitHub, as shown in Figure 7-2, though
you can download jQuery from its own domain. Node and most Node modules are also
hosted by GitHub.

190 | Chapter 7: Creating and Using JavaScript Libraries

Figure 7-2. The GitHub page for the jQuery library

Source Forge used to be the place to host your open source software
in the past. However, the site blocks access to certain countries lis‐
ted in the United States Office of Foreign Assets Control sanction list,
and has fallen out of favor with many open source developers.

GitHub is based on Git, an open source, source code control system. You typically install
Git locally and manage your project in GitHub via Git. There are Git client applications
for Linux, Windows, and Mac OS X.

The Git site provides extensive documentation, including a very nice
interactive tutorial for learning how the system works. GitHub also
provides solid documentation in using the service.

Git is usually accessed via the command line. When setting it up, the first thing you’ll
do is introduce yourself to it—providing a name that is used to label all commits:

git config --global user.name "name"

Next, you’ll need to sign up for a GitHub account, providing an email you’ll use with
Git to connect your local environment with the hub:

git config --global user.email "email address"

7.12. Hosting Your Library | 191

http://sourceforge.net/
http://git-scm.com/

At this point, you can do a variety of tasks, including setting up a repository, as well as
participating in other GitHub-hosted projects.

See Also
As I mentioned in the text, there is good documentation associated with Git and GitHub,
but I also recommend Version Control with Git, 2nd Edition by Jon Loeliger and Mat‐
thew McCullough (O’Reilly).

7.13. Serving Code from a CDN

Problem
You’ve created a module or library and want to make it available for others to use. You’re
providing it for download, but you also want to provide a link to the code allowing
people to directly link it—a concept known as hotlinking. However, you don’t want to
host the source on your own server because you’re concerned about up-time, availability,
and performance.

Solution
Use a content delivery network (CDN)—sometimes referred to as a content distribution
network—to host your module/library. In addition, encourage developers to link to the
module/library using a protocol-less URL or protocol-relative URL, in order to prevent
unnecessary browser or user agent warnings:

//somedomain.com/somescript.js

Discussion
The first time you access a web page or application that incorporates a JavaScript file,
the browser or other user agent typically caches the results. The browser pulls up the
cached library the next time you access the file, making the access that much faster. The
ability to take advantage of browser caching is just one of the reasons why hosting
popular JavaScript libraries on a CDN makes sense. Others are ensuring access even if
your server goes down (or goes away), as well as preventing an unnecessary burden on
your own server. After all, when you provide a link to a JavaScript file to download,
people will link the script directly (as the jQuery folks discovered).

There are various CDNs, and which one you use is dependent on cost, availability, and
company preference. Google provides CDN service for popular script libraries, but
hosting libraries is by invitation only. jQuery uses MaxCDN, but it is a commercial
service. In fact, most CDNs are commercial, with only a few, such as cdnjs, providing a
free service.

192 | Chapter 7: Creating and Using JavaScript Libraries

http://shop.oreilly.com/product/0636920022862.do
http://bit.ly/1C8gZEU
https://developers.google.com/speed/libraries/
http://www.maxcdn.com/
http://cdnjs.com/

Once you do decide on a CDN, when you provide links for developers, you’ll also want
to encourage the use of protocol-less or a protocol-relative URL:

//somedomain.com/library.js

This is because the browser or user agent will use the same protocol used to access the
web page with all the protocol-less links, which means the resource is accessed with a
compatible protocol. If you’ve ever accessed a script or file with “http://” in a web page
that you’ve accessed with, “https://”, then you’re familiar with the annoying warning you
can get in a browser such as Internet Explorer.

I believe it was Paul Irish who first wrote about the protocol-
relative URL.

7.14. Convert Your Library to a jQuery Plug-in

Problem
You want to convert your library methods and functions into a jQuery plug-in for use
by others.

Solution
If your plug-in has one or more separate functions that do not need to participate in

the jQuery chain, create a function on the fn property:

 $.fn.setColor = function(color) {
 this.css("color", color);
 };

If you want your method to participate in the jQuery chain, assign your method to the

fn property and then return the original jQuery object:

$.fn.increaseWidth = function() {
 return this.each(function() {
 var width = $(this).width() + 10;
 $(this).width(width);
 });
};

If your function uses the jQuery dollar sign function ($) and you’re concerned that the

library could be used with other libraries that make use of $, wrap your function in an
anonymous function:

;(function($) {
 $.fn.flashBlueRed = function() {

7.14. Convert Your Library to a jQuery Plug-in | 193

http://bit.ly/1yHYB3N
http://bit.ly/1yHYB3N

 return this.each(function() {
 var hex = rgb2hex($(this).css("background-color"));
 if (hex == "#0000ff") {
 $(this).css("background-color", "#ff0000");
 } else {
 $(this).css("background-color", "#0000ff");
 }
 });
 };
})(jQuery);

Discussion
It’s relatively simple to create a jQuery plug-in once you understand the nuances of the
jQuery plugin infrastructure.

If you’re interested in creating a jQuery method that can be used with a jQuery selector
and participate in the jQuery chain, you’ll use syntax such as the following, which sets

the function to the fn property, and returns the original jQuery object:

$.fn.increaseWidth = function() {
 return this.each(function() {
 var width = $(this).width() + 10;
 $(this).width(width);
 });
};

However, if you want to make use of the dollar sign function ($) within the code, but
still have the plug-in work within a multiple library setting, wrap the method in an
anonymous function:

;(function($) {
 $.fn.flashBlueRed = function() {
 return this.each(function() {
 var hex = rgb2hex($(this).css("background-color"));
 if (hex == "#0000ff") {
 $(this).css("background-color", "#ff0000");
 } else {
 $(this).css("background-color", "#0000ff");
 }
 });
 };
})(jQuery);

Notice the following line in both examples:

return this.each(function () {

This code is necessary to allow the method to work on whatever is returned by the
selector, regardless of whether it’s a single item or a group of items. The line begins the
code block that includes your actual method code.

194 | Chapter 7: Creating and Using JavaScript Libraries

Check out the semicolon (;) just before the anonymous function. I
picked this trick up from Cody Lindley in jQuery Cookbook (O’Reil‐
ly). Putting the semicolon before the anonymous function ensures
that the function won’t break if another plugin forgets to terminate a
method or function with a semicolon.

If you’re only interested in adding a jQuery function that isn’t part of the jQuery chain,
use the jQuery function syntax:

 $.fn.setColor = function(color) {
 this.css("color", color);
 };

Once you have created your plug-in code, package it in a separate file; to use the code,

all someone has to do is create a script reference to include the plugin source following
the jQuery script.

7.15. Safely Combining Several Libraries in Your
Applications

Problem
You want to incorporate more than one external library, as well as your own, into one
application without each stepping all over the others.

Solution
The safest approach for using multiple libraries is to pick ones that are all based on the
same framework, such as using only libraries based on jQuery, the framework used in
earlier recipes.

If that strategy doesn’t work, make sure the libraries all use good programming practices,
and none are overriding functionality or event handling provided by the others.

Discussion
Regardless of library purpose, there are fundamental rules governing the behavior of
libraries that must be followed. Well-designed libraries do not do things like this:

window.onload=function() {...}

I use the DOM Level 0 window.onload event handler with some of the examples in the
book because it’s quick, simple, and doesn’t add a lot of code to the sample. However, if
you have one library that uses the old DOM Level 0 event handling, it overwrites the
event capturing utilized by the other libraries and your own application. Well-designed

7.15. Safely Combining Several Libraries in Your Applications | 195

http://shop.oreilly.com/product/9780596159788.do

libraries don’t use DOM Level 0 event handling. Well-designed libraries also namespace
all of their functionality. You won’t find the following in a well-defined library:

function foo() { ... }
function bar() { ... }

Each function like this ends up in the global space, which increases the likelihood of
clashes with other libraries, and your own applications. Well-designed libraries typically
use an anonymous function, ensuring no clash with whatever is exposed to the global
space:

(function() {
 var root = this;

 ...

 if (typeof define === 'function' && define.amd) {
 define('underscore', [], function() {
 return _;
 });
 }
}).call(this);

A library that plays well with other libraries and applications will not extend existing

objects via the prototype object. Yes, I know it’s a wonderful way of extending objects,
and fundamental to JavaScript, but you can’t control one library from overriding another

if both are extending the prototype property for the same object. Besides, if the frame‐

work and external libraries you use don’t extend existing objects via the prototype, this
leaves you free to play in your application.

Come to that, library builders should never assume that their library is the only one
used in a project.

Well-designed libraries provide event hooks so that you can hook into the library at the
points where it performs a major action. In Recipe 7.14, the jQuery plug-in described
in the solution provided event handler hooks you can use to provide your own func‐
tionality before or after the plug-in’s validation routine.

Well-designed libraries provide good documentation of all of the publicly exposed bits,
including methods, properties, and events. You shouldn’t have to guess how to use the
library, or examine minute portions of the code, in order to figure out what you need
to do.

The Underscore.js library, covered earlier, provides a wonderfully
annotated version of the source code—a concept that should be
mandatory for all library developers.

196 | Chapter 7: Creating and Using JavaScript Libraries

http://underscorejs.org/docs/underscore.html

Well-designed libraries are thoroughly tested, and provide a way to report bugs and
view existing bugs. Test code should be accessible wherever it’s hosted. If there’s a major
security problem with an existing library, you need to know about it. If there are minor
bugs, you need to know about these, too.

Well-designed libraries provide nonminified, original source code. This isn’t essential
—just helpful, and something I look for in a library.

It goes without saying that a good library is one actively maintained, but it can’t hurt to
repeat this assertion. An even better library is one that’s open sourced, and maintained
by a community of users, who hopefully play well together—or is one you can maintain
on your own, if the original maintainer can no longer do so.

To summarize:

• A good library does not use DOM Level 0 event handling.

• A well-defined library uses an anonymous function to wrap its functionality and
doesn’t pollute the global namespace.

• A well-defined library introduces few global objects.

• Libraries that play well with others provide event hooks. Well-behaved libraries also

don’t extend existing objects via the prototype property.

• Solid libraries are well-tested, and provide these tests as deliverables.

• Stable libraries are actively maintained, and preferably, open sourced.

• Secure libraries provide documentation of known bugs and problems, and a way
to report on any bugs and problems you find.

• Usable libraries are well-documented. Bandwidth-friendly libraries are optimized
and compressed, though you can always compress the library yourself.

• Confident libraries aren’t built on the assumption that no other library will be used.

For the most part, you should be able to find what you need and have it work with your
preferred framework. Be cautious if a library requires you to add a new framework, that
needs to coexist with another framework. However, most well-built framework libraries
could work with others.

As an example of framework coexistence, if you use jQuery, you can use another frame‐
work library, such as Underscore or Mootools. The use of global namespaces should

prevent name clashes. The only exception to the namespace rule is the dollar sign ($)

function, which can be used in other libraries. You can override the $ by adding the
following, after all the libraries have been loaded:

var $j = jQuery.noConflict();

Once you add this code, instead of:

7.15. Safely Combining Several Libraries in Your Applications | 197

$("#elem").fadeOut('slow');

use:

$j("#elem").fadeOut('slow');

You can use most well-made framework libraries together, but there is tremendous
overlap in functionality between the libraries, and this overlap in functionality comes
with a cost: bandwidth to download the libraries. Try to avoid using more than one
framework library at a time. Find the one you like, and be prepared to commit to it for
some time to come.

See Also
The jQuery web page documenting how to use the framework with other libraries is at
http://bit.ly/1x63fEe.

198 | Chapter 7: Creating and Using JavaScript Libraries

http://bit.ly/1x63fEe

CHAPTER 8

Simplified Client-Server
Communication and Data

The oldest client-server communication technique is Ajax, and it’s still the most widely
used. In a nutshell, the procedure consists of preparing a request to the web server,
typically as a POST or GET request, making the request, and assigning a callback func‐
tion to process the result. In the callback function, server responses are tested until a
successful response is received and the result is processed—either an acknowledgment
is made that the request was successful (POST), or the returned results are processed
(GET).

The data that passes between the client and server can be simple text, or it can be for‐
matted as XML or JSON. The latter is becoming the increasingly popular choice, with
most server-side technologies providing APIs that generate and consume JSON.

This chapter focuses on Ajax, only, as well as basic processing of text,
XML, and JSON data. Chapter 14 covers other, more leading-edge
client-server communication techniques.

8.1. Handling an XML Document Returned via an Ajax Call

Problem
You need to prepare your Ajax application to deal with data returned in XML.

Solution
First, ensure the application can handle a document with an XML MIME type:

199

if (window.XMLHttpRequest) {
 xmlHttpObj = new XMLHttpRequest();
 if (xmlHttpObj.overrideMimeType) {
 xmlHttpObj.overrideMimeType('application/xml');
 }
}

Next, access the returned XML document via the XHMLHttpRequest’s responseXML
property, and then use the DOM methods to query the document for data:

if (xmlHttpObj.readyState == 4 && xmlHttpObj.status == 200) {
 var citynodes = xmlHttpObj.responseXML.getElementsByTagName("city");
 ...
}

Discussion
When an Ajax request returns XML, it can be accessed as a document object via the

XMLHttpRequest object’s responseXML property. You can then use DOM methods to
query the data and process the results.

If the server-side application is returning XML, it’s important that it return a MIME

type of text/xml, or the responseXML property will be null. If you’re unsure whether
the API returns the proper MIME type, or if you have no control over the API, you can

override the MIME type when you access the XMLHttpRequest object:

if (window.XMLHttpRequest) {
 xmlHttpObj = new XMLHttpRequest();
 if (xmlHttpObj.overrideMimeType) {
 xmlHttpObj.overrideMimeType('application/xml');
 }
}

The overrideMimeType() is not supported with versions of IE older than IE11, nor is

it supported in the first draft for the W3C XMLHttpRequest specification. Because of

this uncertain support, if you want to use responseXML, it’s better to either change the

server-side application so that it supports the application/xml MIME type, or convert
the text into XML using the following cross-browser technique:

if (window.DOMParser) {
 parser=new DOMParser();
 xmlResult = parser.parserFromString(xmlHttpObj.responseText,
 "text/xml");
} else {
 xmlResult = new ActiveXObject("Microsoft.XMLDOM");
 xmlResult.async = "false"
 xmlResult.loadXML(xmlHttpObj.responseText);
}
var stories = xmlResult.getElementsByTagName("story");

200 | Chapter 8: Simplified Client-Server Communication and Data

Parsing XML in this way adds another level of processing. It’s better, if possible, to return
the data formatted as XML from the service. Example 8-2 in Recipe 8.2 demonstrates a
complete application page processing an XML document.

See Also
The W3C specification for XMLHttpRequest can be found at http://www.w3.org/TR/
XMLHttpRequest/.

8.2. Extracting Pertinent Information from an XML Tree

Problem
You want to access individual pieces of data from an XML document.

Solution
Use the same DOM methods you use to query your web page elements to query the

XML document. For example, the following will get all elements that have a resource
tag name:

var resources = xmlHttpObj.responseXML.getElementsByTagName("resource");

Discussion
When you have a reference to an XML document, you can use the DOM methods to
query any of the data in the document. It’s not as simple as accessing data from a JSON
object, but it’s vastly superior to extracting data from a large piece of just plain text.

To demonstrate working with an XML document, Example 8-1 contains a Node.js
(commonly referred to simply as Node) application that returns XML containing three

resources. Each resource contains a title and a url.

It’s not a complicated application or a complex XML result, but it’s sufficient to generate

an XML document. Notice that a MIME type of text/xml is given in the header, and

the Access-Control-Allow-Origin header value is set to accept queries from all do‐
mains (*). Because the Node application is running at a different port than the web page
querying it, we have to set this value in order to allow cross-domain requests.

Node is covered in Chapter 11, and the details for Example 8-1 are
covered in Recipe 11.2. Cross-domain requests are covered in more
detail in Recipe 15.1.

8.2. Extracting Pertinent Information from an XML Tree | 201

http://www.w3.org/TR/XMLHttpRequest/
http://www.w3.org/TR/XMLHttpRequest/

Example 8-1. Node.js server application that returns an XML result

var http = require('http'),
 url = require('url');
var XMLWriter = require('xml-writer');

// start server, listen for requests

var server = http.createServer().listen(8080);
server.on('request', function(req, res) {

 var xw = new XMLWriter;

 // start doc and root element
 xw.startDocument().startElement("resources");

 // resource
 xw.startElement("resource");
 xw.writeElement("title","Ecma-262 Edition 6");
 xw.writeElement("url",
 "http://wiki.ecmascript.org/doku.php?id=harmony:specification_drafts");
 xw.endElement();

 // resource
 xw.startElement("resource");
 xw.writeElement("title","ECMA-262 Edition 5.1");
 xw.writeElement("url",
 "http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf");
 xw.endElement();

 // resource
 xw.startElement("resource");
 xw.writeElement("title", "ECMA-402");
 xw.writeElement("url",
 "http://ecma-international.org/ecma-402/1.0/ECMA-402.pdf");
 xw.endElement();

 // end resources
 xw.endElement();

 res.writeHeader(200, {"Content-Type": "application/xml",
 "Access-Control-Allow-Origin": "*"});
 res.end(xw.toString(),"utf8");
});

Most Ajax calls process plain text or JSON, but there’s still a need for processing XML.
SVG is still XML, as is MathML, XHTML, and other markup languages. In the solution,

a new XMLHttpRequest object is created to handle the client-server communication. If

you’ve not used Ajax previously, the XMLHttpRequest object’s methods are:

202 | Chapter 8: Simplified Client-Server Communication and Data

• open: Initializes a request. Parameters include the method (GET, POST, DELETE,
or PUT), the request URL, whether the request is asynchronous, and a possible
username and password. By default, all requests are sent asynchronously.

• setRequestHeader: Sets the MIME type of the request.

• send: Sends the request.

• sendAsBinary: Sends binary data.

• abort: Aborts an already sent request.

• getResponseHeader: Retrieves the header text, or null if the response hasn’t been
returned yet or there is no header.

• getAllResponseHeaders: Retrieves the header text for a multipart request.

The communication is opened using object’s open() method, passing in the HTTP

method (GET), the request URL (the Node application), as well as a value of true,
signaling that the communication is asynchronous (the application doesn’t block wait‐
ing on the return request). If the application is password protected, the fourth and fifth
optional parameters are the username and password, respectively.

I know that the application I’m calling is returning an XML-formatted response, so it’s
not necessary to override the MIME type (covered in Recipe 8.1).

In the application, the XMLHttpRequest’s onReadyStateChange event handler is assigned

a callback function, getData(), and then the request is sent with send(). If the HTTP
method had been POST, the prepared data would have been sent as a parameter of

send().

In the callback function getData(), the XMLHttpRequest object’s readyState and

status properties are checked (see Example 8-2). Only when the readyState is 4 and

status is 200 is the result processed. The readyState indicates what state the Ajax call

is in, and the value of 200 is the HTTP OK response code. Because we know the result is

XML, the application accesses the XML document via the XMLHttpRequest object’s

responseXML property. For other data types, the data is accessed via the response prop‐

erty, and responseType provides the data type (arrayBuffer, blob, document, json, text).
Not all browsers support all data types, but all modern browsers do support XML and
at least arrayBuffer, JSON, and text.

Example 8-2. Application to process resources from returned XML

<!DOCTYPE html>
<html>

<head>

 <title>Stories</title>
 <meta charset="utf-8" />
</head>

8.2. Extracting Pertinent Information from an XML Tree | 203

<body>

 <div id="result">
 </div>
<script type="text/javascript">

 var xmlHttpObj;

 // ajax object
 if (window.XMLHttpRequest) {
 xmlRequest = new XMLHttpRequest();
 }

 // build request
 var url = "http://shelleystoybox.com:8080";
 xmlRequest.open('GET', url, true);
 xmlRequest.onreadystatechange = getData;
 xmlRequest.send();

 function getData() {
 if (xmlRequest.readyState == 4 && xmlRequest.status == 200) {
 try {
 var result = document.getElementById("result");
 var str = "<p>";

 // can use DOM methods on XML document
 var resources =
 xmlRequest.responseXML.getElementsByTagName("resource");

 // process resources
 for (var i = 0; i < resources.length; i++) {
 var resource = resources[i];

 // get title and url, generate HTML
 var title = resource.childNodes[0].firstChild.nodeValue;
 var url = resource.childNodes[1].firstChild.nodeValue;
 str += "" + title + "
";
 }

 // finish HTML and insert
 str+="</p>";
 result.innerHTML=str;
 } catch (e) {
 console.log(e.message);
 }
 }
 }
</script>

</body>

</html>

204 | Chapter 8: Simplified Client-Server Communication and Data

When processing the XML code, the application first queries for all resource elements,

returned in a nodeList. The application cycles through the collection, accessing each

resource element in order to access the title and url, both of which are child nodes.

Each is accessed via the childNodes collection, and their data, contained in the node

Value attribute, is extracted.

The resource data is used to build a string of linked resources, which is output to the

page using innerHTML. Instead of using a succession of childNodes element collections
to walk the trees, I could have used the Selectors API to access all URLs and titles, and
then traversed both collections at one time, pulling the paired values from each, in
sequence:

var urls = xmlRequest.responseXML.querySelectorAll("resource url");
var titles = xmlRequest.responseXML.querySelectorAll("resource title");

for (var i = 0; i < urls.length; i++) {
 var url = urls[i].firstChild.nodeValue;
 var title = titles[i].firstChild.nodeValue;
 str += "" + title + "
";
}

I could have also used getElementsByTagName against each returned resource element
—any XML DOM method that works with the web page works with the returned XML.

The try…catch error handling should catch any query that fails because the XML is
incomplete.

The document returned in responseXML has access to the standard
DOM APIs, but not the HTML DOM APIs. For the most part, this
shouldn’t be a problem, as most of the functionality you’ll use is based
on the standard DOM APIs. An example of the DOM API is the

getElementsByTagName() method used in the solution. An example

of the HTML DOM is when you access elements from a form, or use

the write() method. This book rarely uses the HTML DOM API.

See Also
The DOM methods are covered in Chapter 5. For more on the differences between the
standard DOM and the HTML DOM, check out the W3C DOM specification page.
The JavaScript (ECMAScript) binding for each specification demonstrates how to access
the DOM using script.

8.2. Extracting Pertinent Information from an XML Tree | 205

http://www.w3.org/DOM/DOMTR

8.3. Parsing and Automatically Modifying JSON

Problem
You want to safely create a JavaScript object from JSON. You also want to replace the
numeric representation of true and false (1 and 0, respectively) with their Boolean

counterparts (true and false).

Solution
Parse the object with the JSON built-in capability added to browsers via ECMAScript
5. To transform the numeric values to their Boolean counterparts, create a reviver
function:

var jsonobj = '{"test" : "value1", "test2" : 3.44, "test3" : 0}';
var obj = JSON.parse(jsonobj, function (key, value) {
 if (typeof value == 'number') {
 if (value == 0) {
 value = false;
 } else if (value == 1) {
 value = true;
 }
 }
 return value;
 });

 console.log(obj.test3); // false

Discussion
To figure out how to create JSON, think about how you create an object literal and just
translate it into a string (with some caveats).

If the object is an array:

var arr = new Array("one","two","three");

the JSON notation would be equivalent to the literal notation for the array:

["one","two","three"];

Note the use of double quotes ("") rather than single, which are not allowed in JSON.

If you’re working with an object:

var obj3 = {
 prop1 : "test",
 result : true,
 num : 5.44,
 name : "Joe",
 cts : [45,62,13]};

206 | Chapter 8: Simplified Client-Server Communication and Data

the JSON notation would be:

{"prop1":"test","result":true,"num":5.44,"name":"Joe","cts":[45,62,13]}

Notice in JSON how the property names are in quotes, but the values are only quoted
when they’re strings. In addition, if the object contains other objects, such as an array,
it’s also transformed into its JSON equivalent. However, the object cannot contain
methods. If it does, an error is thrown. JSON works with data only.

The JSON static object isn’t complex, as it only provides two methods: stringify() and

parse(). The parse() method takes two arguments: a JSON-formatted string and an

optional reviver function. This function takes a key/value pair as parameters, and
returns either the original value or a modified result.

In the solution, the JSON-formatted string is an object with three properties: a string,
a numeric, and a third property, which has a numeric value but is really a Boolean with
a numeric representation—0 is false, 1 is true.

To transform all 0, 1 values into false, true, a function is provided as the second ar‐

gument to JSON.parse(). It checks each property of the object to see if it is a numeric.
If it is, the function checks to see if the value is 0 or 1. If the value is 0, the return value

is set to false; if 1, the return value is set to true; otherwise, the original value is
returned.

The ability to transform incoming JSON-formatted data is essential, especially if you’re
processing the result of an Ajax request or JSONP response. You can’t always control
the structure of the data you get from a service.

There are restrictions on the JSON: strings must be double quoted,
and there are no hexadecimal values and no tabs in strings.

See Also
See Recipe 8.4 for a demonstration of JSON.stringify(). For more on the allowable
syntax for JSON, I recommend the original JSON page.

8.3. Parsing and Automatically Modifying JSON | 207

http://json.org/

8.4. Converting an Object to a Filtered/Transformed String
with JSON

Problem
You need to convert a JavaScript object to a JSON-formatted string for posting to a web
application. However, the web application has data requirements that differ from your
client application.

Solution
Use the JSON.stringify() method, passing in the object as first parameter and pro‐
viding a transforming function (a replacer) as the second parameter:

function convertBoolToNums(key, value) {
 if (typeof value == 'boolean') {
 if (value)
 value = 1;
 else
 value = 0;
 }
 return value;
};

var obj = {test : "value1",
 test2 : 3.44,
 test3 : false};

var jsonstr = JSON.stringify(obj, convertBoolToNums, 3);

console.log(jsonstr); // '{ "test" : "value1", "test2" : 3.44, "test3" : 0}'

Discussion
The JSON.stringify() method takes three parameters: the object to be transformed
into JSON, an optional function or array used either to transform or filter one or more
object values, and an optional third parameter that defines how much and what kind
of whitespace is used in the generated result.

In the solution, a function is used to check property values, and if the value is a Boolean,

converts false to 0, and true to 1. The function results are transformed into a string if
the return value is a number or Boolean. The function can also act as a filter: if the

returned value from the function is null, the property/value pair is removed from the
JSON.

208 | Chapter 8: Simplified Client-Server Communication and Data

You can also use an array rather than a function. The array can contain strings or num‐
bers, and is a whitelist of properties that are allowed in the result. The following code:

var whitelist = ["test","test2"];

var obj = {"test" : "value1", "test2" : 3.44, "test3" : false};
var jsonobj = JSON.stringify(obj, whitelist, '\t');

Would result in a JSON string including the object’s test and test2 properties, but not

the third property (test3), The resulting string is also pretty-printed using a tab (\t)
this time, instead of the three spaces used in the solution:

{
 "test": "value1",
 "test2": 3.44
}

The last parameter controls how much whitespace is used in the result. It can be a
number representing the number of spaces or a string. If it is a string, the first 10 char‐
acters are used as whitespace. If I use the following:

var jsonobj = JSON.stringify(obj, whitelist, "***");

the result is:

{
***"test": "value1",
***"test2": 3.44
}

As mentioned earlier, the tab (\t) generates the standard pretty-print for JSON.

See Also
See Recipe 8.3 for a discussion on JSON.parse().

8.5. Making an Ajax Request to Another Domain
(Using JSONP)

Problem
You want to query for data using a web service API, such as the Rotten Tomatoes API,
or the Flicker API. However, the Ajax same-origin security policy prevents cross-domain
communication.

Solution
One approach is to use JSONP (JSON with padding) to work around the security issues.

8.5. Making an Ajax Request to Another Domain (Using JSONP) | 209

First, you create a new script element, making the URL the endpoint for the API

method call. The following creates a script element with a call to Flickr’s photo search
API method:

function addScript(url) {
 var script = document.createElement('script');
 script.type="text/javascript";
 script.src = url;
 document.getElementsByTagName('head')[0].appendChild(script);
}

The URL looks like the following, including a request to return the data formatted as

JSON, and providing a callback function name. The api_key is generated by Flickr, and

the user_id is the unique user identifier, the NSID, for your account. Note this isn’t the
same as the username.

Easily find the user_id using the idGettr web service.

I’m asking for the first page of results for a given user:

http://api.flickr.com/services/rest/?method=flickr.photos.search&user_id=xxx
&api_key=xxx&page=1&format=json&jsoncallback=processPhotos

When the script tag is created, the request to Flickr is made, and because I passed in
the request for a JSON-formatted result and provided a callback function name, that’s
how the return is provided. The following is a basic callback function that just displays

the results to the console:

function processPhotos(obj) {
 photos = obj.photos.photo;
 var str = '';
 photos.forEach(function(photo) {
 str+=photo.title + '
 ';
 });
 document.getElementById('result').innerHTML = str;
}

Discussion
Ajax works within a protected environment that ensures we don’t end up embedding
dangerous text or code into a web page because of a call to an external application (which
may or may not be secure).The downside to this security is that we can’t directly access
services to external APIs. Instead, we have to create a server-side proxy application
because server applications don’t face the cross-domain restriction.

210 | Chapter 8: Simplified Client-Server Communication and Data

http://idgettr.com/

One workaround is to use JSONP, demonstrated in the solution. Instead of using

XMLHttpRequest, we convert the request URL into one that we can attach to a script’s

src attribute, because the script element does not follow the same-origin policy.

If the service is amenable, it returns the data formatted as JSON, even wrapping it in a
callback function. When the script is created, it’s no different than if the function call is
made directly in our code, and we’ve passed an object as a parameter. We don’t even
have to worry about converting the string to a JavaScript object.The callback’s argument
is a JSON object.

The photos are returned in pages, and you can repeat the calls as many times as you
want to get as many photos as you need, changing the page number with each call.
Example 8-3 contains a simple, working example of using JSONP to access information
from Flickr. Just remember to use your own API key and NSID.

Example 8-3. Using JSONP to circumvent cross-domain restrictions and processing the
result

<!DOCTYPE html>
<html>

<head>

 <meta charset="utf-8">
 <title>JSONP</title>
</head>

<body>

 <div id="result">
 </div>
<script >

function addScript(url) {
 var script = document.createElement('script');
 script.src = url;
 document.getElementsByTagName('head')[0].appendChild(script);
}

addScript('https://api.flickr.com/services/rest/?method=flickr.photos.search
&user_id=NSID&api_key=yourapikey&page=1&format=json&jsoncallback=processPhotos');

// assign photos globally, call first to load

function processPhotos(obj) {
 photos = obj.photos.photo;
 var str = '';
 photos.forEach(function(photo) {
 str+=photo.title + '
 ';
 });
 document.getElementById('result').innerHTML = str;
}
</script>

</body>

</html>

8.5. Making an Ajax Request to Another Domain (Using JSONP) | 211

It’s a clever trick, but should only be used with caution. Even with secure services such
as Flickr, there is the remote possibility that someone could find a way to inject JavaScript
into the data via the client-side application for the service, which can cause havoc in the
application.

See Also
The Flickr API and development environment is documented at https://www.flickr.com/
services/api/. I also access the Flickr services in Recipe 13.1.

A more modern solution to the problem of cross-domain service access is to use cross-
origin resource sharing (CORS). I discuss and demonstrate this capability in Recipe 15.1.

8.6. Processing JSON from an Ajax Request

Problem
You want to format Ajax data as JSON, rather than text or XML.

Solution
Create and initiate the Ajax request the same as for an XML or text data request. In this
code, the service is a Node application, accessible at port 8080:

// ajax object

if (window.XMLHttpRequest) {
 httpRequest = new XMLHttpRequest();
}

// build request

var url = "http://shelleystoybox.com:8080";
httpRequest.open('GET', url, true);
httpRequest.onreadystatechange = getData;
httpRequest.send();

In the function to process the response, use the JSON object’s parse() method to convert
the returned text into a JavaScript object:

function getData() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 try {

 // Javascript function JSON.parse to parse JSON data
 var jsonObj = JSON.parse(httpRequest.responseText);
 console.log(jsonObj.list[0].name);
 } catch (e) {
 console.log(e.message);
 }

212 | Chapter 8: Simplified Client-Server Communication and Data

https://www.flickr.com/services/api/
https://www.flickr.com/services/api/

 }
}

The key to sending JSON in response to an Ajax request is to use whatever language’s

version of the JSON.stringify() method to convert the object into a JSON-formatted
string. In the following Node application, we can use the Node version of JSON to format

the data. The MIME type for the data is also set to application/json:

var http = require('http');

// start server, listen for requests

var server = http.createServer().listen(8080);
server.on('request', function(req, res) {

 var titleList = {
 "list" : [
 { "id": "id1",
 "name": "Title One"
 },
 { "id": "id12",
 "name": "Another Value"
 },
 { "id": "id20",
 "name": "End of the Road"
 },
 { "id": "id24",
 "name": "One More"
 }
],
 "totalRecords": 4
 };
 res.writeHeader(200, {"Content-Type": "application/json", "Access-Control-All
ow-Origin": "*"});
 res.end(JSON.stringify(titleList));
});

Example 8-4 contains the script for a client to process the data by printing out each value

to the console.

Example 8-4. Processing JSON data from an Ajax request

var httpRequest;

// ajax object

if (window.XMLHttpRequest) {
 httpRequest = new XMLHttpRequest();
}

// build request

var url = "http://shelleystoybox.com:8080";
httpRequest.open('GET', url, true);
httpRequest.onreadystatechange = getData;
httpRequest.send();

8.6. Processing JSON from an Ajax Request | 213

function printData(element) {
 console.log(element.name);
}

function getData() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {
 try {

 // Javascript function JSON.parse to parse JSON data
 var jsonObj = JSON.parse(httpRequest.responseText);
 jsonObj.list.forEach (function(element) {
 console.log(element.name);
 });

 } catch (e) {
 console.log(e.message);
 }
 }
}

8.7. Populating a Selection List from the Server

Problem
Based on a user’s actions with another form element, you want to populate a selection
list with values.

Solution
Capture the change event for the form element:

document.getElementById("nicething").onchange=populateSelect;

In the event handler function, make an Ajax call with the form data:

var url = "nicething.php?nicething=" + value;
xmlhttp.open('GET', url, true);
xmlhttp.onreadystatechange = getThings;
xmlhttp.send(null);

In the Ajax result function, populate the selection list:

if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 var select = document.getElementById("nicestuff");
 select.length=0;
 var nicethings = xmlhttp.responseText.split(",");
 for (var i = 0; i < nicethings.length; i++) {
 select.options[select.length] =
 new Option(nicethings[i],nicethings[i]);
 }

214 | Chapter 8: Simplified Client-Server Communication and Data

 select.style.display="block";
} else if (xmlhttp.readyState == 4 && xmlhttp.status != 200) {
 document.getElementById('nicestuff').innerHTML =
 'Error: Search Failed!';
}

Discussion
One of the more common forms of Ajax is to populate a select or other form element

based on a choice made by the user. Instead of populating a select element with many
options, or building a set of 10 or 20 radio buttons, you can capture the user’s choice in
another form element, query a server application based on the value, and build the other
form elements based on the value—all without leaving the page.

Example 8-5 demonstrates a simple page that captures the change event for radio but‐

tons within a fieldset element, makes an Ajax query with the value of the selected
radio button, and populates a selection list by parsing the returned option list. A comma
separates each of the option items, and new options are created with the returned text

having both an option label and option value. Before populating the select element,

its length is set to 0. This is a quick and easy way to truncate the select element—
removing all existing options, and starting fresh.

Example 8-5. Creating an on-demand select Ajax application

<!DOCTYPE html>
<head>

<title>On Demand Select</title>
<style>

#nicestuff
{
 display: none;
 margin: 10px 0;
}
#nicething
{
 width: 400px;
}
</style>

</head>

<body>

<form action="backuppage.php" method="get">
 <p>Select one:</p>
 <fieldset id="nicething">
 <input type="radio" name="nicethings" value="bird" />
 <label for="bird">Birds</label>

 <input type="radio" name="nicethings" value="flower" />
 <label for="flower">Flowers</label>

 <input type="radio" name="nicethings" value="sweets" />

8.7. Populating a Selection List from the Server | 215

 <label for="sweets">Sweets</label>

 <input type="radio" name="nicethings" value="cuddles" />
 <label for="cuddles">Cute Critters</label>
 </fieldset>
 <input type="submit" id="submitbutton" value="get nice things" />
 <select id="nicestuff"></select>
</form>

<script>

var xmlhttp;

function populateSelect() {

 var value;

 var inputs = this.getElementsByTagName('input');
 for (var i = 0; i < inputs.length; i++) {
 if (inputs[i].checked) {
 value = inputs[i].value;
 break;
 }
 }

 // prepare request
 if (!xmlhttp) {
 xmlhttp = new XMLHttpRequest();
 }
 var url = "nicething.php?nicething=" + value;
 xmlhttp.open('GET', url, true);
 xmlhttp.onreadystatechange = getThings;
 xmlhttp.send(null);
}

// process return

function getThings() {
 if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 var select = document.getElementById("nicestuff");
 select.length=0;
 var nicethings = xmlhttp.responseText.split(",");
 for (var i = 0; i < nicethings.length; i++) {
 select.options[select.length] =
 new Option(nicethings[i], nicethings[i]);
 }
 select.style.display="block";
 } else if (xmlhttp.readyState == 4 && xmlhttp.status != 200) {
 alert("No items returned for request");
 }
}

document.getElementById("submitbutton").style.display="none";
document.getElementById("nicething").onclick=populateSelect;

216 | Chapter 8: Simplified Client-Server Communication and Data

</script>

</body>

The form does have an assigned action page, and a submit button that’s hidden when
the script is first run. These are the backup if scripting is turned off. The application is
also old school—text-based data that you can either append directly to the page (if for‐
matted as HTML), or parse using the String functions. JSON is nice, but there’s always
room for just plain text.

The example uses a PHP application to populate the selection list. It could also be a
Node application if you want to use JavaScript in both the client and server:

<?php

//If no search string is passed, then we can't search

if(empty($_REQUEST['nicething'])) {
 echo "No State Sent";
} else {
 //Remove whitespace from beginning & end of passed search.
 $search = trim($_REQUEST['nicething']);
 switch($search) {
 case "cuddles" :
 $result = "puppies,kittens,gerbils";
 break;
 case "sweets" :
 $result = "licorice,cake,cookies,custard";
 break;
 case "bird" :
 $result = "robin,mockingbird,finch,dove";
 break;
 case "flower" :
 $result = "roses,lilys,daffodils,pansies";
 break;
 default :
 $result = "No Nice Things Found";
 break;
 }

 echo $result;
}
?>

Progressively building form elements using Ajax or another communication technique
isn’t necessary in all applications, but it is a great way to ensure a more effective form
in cases where the data can change, or the form is complex.

8.7. Populating a Selection List from the Server | 217

8.8. Using a Timer to Automatically Update the Page with
Fresh Data

Problem
You want to display entries from a file, but the file is updated frequently.

Solution
Use Ajax and a timer to periodically check the file for new values and update the display
accordingly.

The Ajax we use is no different than any other Ajax request. We’ll use a GET, because

we’re retrieving data. We put together the request, attach a function to the onreadysta

techange event handler, and send the request:

var xmlhttp;

// prepare and send XHR request

function populateList() {
 var url = 'text.txt'; // change to full url to prevent caching problems
 xmlhttp.open('GET', url, true);
 xmlhttp.onreadystatechange = processResponse;
 xmlhttp.send(null);
}

In the code that processes the response, we just place the new text into a new unordered

list item and append it to an existing ul element:

// process return

function processResponse() {
 if(xmlhttp.readyState == 4 && xmlhttp.status == 200) {
 var li = document.createElement("li");
 var txt = document.createTextNode(xmlhttp.responseText);
 li.appendChild(txt);
 document.getElementById("update").appendChild(li);
 setTimeout(populateList,15000);
 } else if (xmlhttp.readyState == 4 && xmlhttp.status != 200) {
 console.log(xmlhttp.responseText);
 }
}

The new part is the addition of the setTimeout() in the code. It triggers the entire
process again in 15 seconds.

218 | Chapter 8: Simplified Client-Server Communication and Data

The process is started by creating the xmlHttpRequest object in the Window load event

handler, and then calling populateList() the first time:

window.onload=function() {
 xmlhttp = new XMLHttpRequest();
 populateList();
}

Discussion
The fact that we’re doing a direct request on a static text file might be new, but remember
that a GET request is more or less the same as the requests we put into the location bar
of our browsers. If something works in the browser, it should successfully return in an
Ajax GET request…within reason.

The key to using timers with Ajax calls is to make sure that the last call is completed

before making the next. By adding the call to setTimeout() at the end of the Ajax call,
we trigger the timer when we know an outstanding request isn’t being processed. We
can also put in a check for the request status, and cancel the timer event altogether if
we’re concerned about hitting a failing service, over and over again.

When I ran the application that included the solution code, I changed the text file by

using the Unix echo command:

$ echo "This is working" > text.txt

And then watched as the text showed up on the page, as shown in Figure 8-1.

Figure 8-1. Demonstration of updates from polled Ajax calls

8.8. Using a Timer to Automatically Update the Page with Fresh Data | 219

If you’re planning to use this form of polling with another service, like the Twitter API,
be aware that you can get kicked off if you’re considered abusive of the service. Check
to see if there are restrictions for how often you can access a service using the API.

Depending on the browser, you may run into caching issues if you
access the text.txt file locally. Providing a full URL should prevent this
from occurring.

See Also
An example of accessing Twitter’s API from a Node application is in Recipe 13.7.

A more viable approach to updating client data based on changes in the server is using
WebSockets, covered in Recipe 15.5. However, if you want to keep all your processes in
the client, the use of a timer is effective.

220 | Chapter 8: Simplified Client-Server Communication and Data

CHAPTER 9

Creating Media Rich,
Interactive Web Effects

Pretty pictures. Cool videos. Sound!

The Web of the future will be a richer place with the new and improved innovations
ready to use. Our old friends SVG and Canvas are getting new life and generating new
interest. Added to them are the new video and audio elements included in HTML5, and
the near-future potential of 3D graphics.

Best of all, none of these innovations requires any kind of proprietary plug-in—they’re
all becoming integrated with all your browser clients, including those on your smart‐
phones and tablets, as well as your computers.

This chapter assumes you have some familiarity with the Canvas
element, as well as SVG. A brief tutorial or introduction should be
sufficient. I recommend the Mozilla Developer Network Canvas Tu‐
torial and the W3C’s SVG Primer. MDN also has several good intro‐
ductions to working with SVG.

9.1. Creating a Dynamic Line Chart in Canvas

Problem
You want to display a line chart in your web page, but the data changes over time, and
you want to dynamically update it.

221

http://mzl.la/1zG4ME5
http://mzl.la/1zG4ME5
http://bit.ly/1zG4NrA

Solution
Use the canvas element and the path method to create the chart. When the data changes,
update the chart:

 var array1 = [[100,100], [150, 50], [200,185],
 [250, 185], [300,250], [350,100], [400,250],
 [450, 100], [500,20], [550,80], [600, 120]];

 var imgcanvas = document.getElementById("imgcanvas");

 if (imgcanvas.getContext) {
 var ctx = imgcanvas.getContext('2d');

 // rect one
 ctx.strokeRect(0,0,600,300);

 // line path
 ctx.beginPath();
 ctx.moveTo(0,100);
 for (var i = 0; i < array1.length; i++) {
 ctx.lineTo(array1[i][0], array1[i][1]);
 }
 ctx.stroke();
}

Discussion
Canvas paths are the way to create arbitrary shapes in Canvas. After getting the canvas

context, ctx, the path is begun with a call to ctx.beginPath(), which begins a new

Canvas path. The next line of code is ctx.moveTo, which moves the drawing “pen” to a

beginning location, but without drawing. From that point, several lineTo() calls are
made using an array of paired values representing the x,y location for each line endpoint.

After the path has been defined, it’s drawn. We’re not creating a closed path, so I’m not

using ctx.closePath(), which would draw all the defined lines and then attempt to
draw a line from the ending point to the beginning point. Instead, I’m drawing the line

given the points that have been defined, using ctx.stroke().

The appearance of the drawing is influenced by two Canvas settings: strokeStyle and

fillStyle. The strokeStyle setting sets the color for the outline of a drawing, while

the fillStyle does the same for the drawing filling:

ctx.strokeStyle="black";
ctx.fillStyle="#ff0000;

Any CSS setting will do, or you can use a CanvasGradient or CanvasPattern. You can

use the rgba setting to add transparency:

222 | Chapter 9: Creating Media Rich, Interactive Web Effects

ctx.fillStyle="rgba(255,0,0,0.5)";

You can also use the globalAlpha setting to set the transparency for any drawing that
follows:

ctx.globalAlpha = 0.2;

You can further control the appearance of the drawing outline by changing the stroke’s
line width:

ctx.line

To dynamically update the chart, you can incorporate timers, and either replace the path
(by creating an entirely new context, which would erase the old), or add the new line
chart to the same chart. Example 9-1 shows a web page that creates the line in the solution
and then creates two others, each drawn after a short period of time using timers. The
colors for the stroke path are changed between lines.

Example 9-1. Using timers to dynamically update a line chart

<!DOCTYPE html>
<head>

<title>Canvas Chart</title>
<meta charset="utf-8" />

</head>

<body>

<canvas id="imgcanvas" width="650" height="350">
<p>Include an image that has a static representation of the chart</p>
</canvas>

<script>

 var points = [[[100,100], [150, 50], [200,185],
 [250, 185], [300,250], [350,100], [400,250],
 [450, 100], [500,20], [550,80], [600, 120]],

 [[100,100], [150, 150], [200,135],
 [250, 285], [300,150], [350,150], [400,280],
 [450, 100], [500,120], [550,80], [600, 190]],

 [[100,200], [150, 100], [200,35],
 [250, 185], [300,10], [350,15], [400,80],
 [450, 100], [500,120], [550,80], [600, 120]]];

 var colors = ['black','red','green'];

 var imgcanvas = document.getElementById("imgcanvas");

 if (imgcanvas.getContext) {

 var ctx = imgcanvas.getContext('2d');

9.1. Creating a Dynamic Line Chart in Canvas | 223

 // rectangle wrapping line chart
 ctx.strokeRect(0,0,600,300);

 points.forEach(function(element, indx, arry) {
 setTimeout(function() {

 // set up beginning
 ctx.beginPath();
 ctx.moveTo(0,100);

 ctx.strokeStyle = colors[indx];

 for (var i = 0; i < element.length; i++) {
 ctx.lineTo(element[i][0], element[i][1]);
 }

 ctx.stroke();

 }, indx * 5000);

 });
 }
</script>

</body>

Figure 9-1 shows the line chart after all three lines have been drawn.

There are other path methods: arc(), to draw curves, and quadraticCurveTo() and

bezierCurveTo(), to draw quadratic and bezier curves. All of these methods can be
combined in one path to create complex images.

See Also
All modern browsers support the Canvas element and 2D API. Mozilla provides a solid
Canvas tutorial.To ensure the Canvas examples work with older versions of Internet
Explorer (8.0 and older), you can use the ExplorerCanvas library.

224 | Chapter 9: Creating Media Rich, Interactive Web Effects

https://developer.mozilla.org/en/Canvas_tutorial
http://code.google.com/p/explorercanvas/

Figure 9-1. Canvas drawing from Example 9-1 using the path method

Extra: Simplify Your Canvas Charts Using a Library
It doesn’t have to be difficult to create a chart using Canvas from scratch, but why walk
the steps taken by others? There are several excellent libraries that can simplify not only
chart making but other Canvas effects.

Over 50 libraries for chart making are listed in a TechSlides Page, including the in‐
creasingly popular D3, which I’ll cover in Recipe 16.1. Most of the libraries are freely
available, though some do charge a fee for commercial use.

One of the libraries, Highcharts, even provides demonstrations that you can edit in
jsFiddle, making it easy to try out the library’s capability. It’s dependent on jQuery,
reducing the code to an absurdly simple level. As an example, one of the demonstrations
is for a very professional line chart, with plot lines and labels, as shown in Figure 9-2.
Yet the code to create this example is equivalent to that in the following code block,
which I modified to feature my own locations and temperature metric, which you can
try yourself at jsFiddle:

$(function () {
 $('#container').highcharts({
 title: {
 text: 'Monthly Average Temperature',
 x: -20 //center

9.1. Creating a Dynamic Line Chart in Canvas | 225

http://bit.ly/1zG5mBP
http://www.highcharts.com/
http://jsfiddle.net/Lm3xvy74/

 },
 subtitle: {
 text: 'Source: Weather.com',
 x: -20
 },
 xAxis: {
 categories: ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
 },
 yAxis: {
 title: {
 text: 'Temperature (°F)'
 },
 plotLines: [{
 value: 0,
 width: 1,
 color: '#808080'
 }]
 },
 tooltip: {
 valueSuffix: '°F'
 },
 legend: {
 layout: 'vertical',
 align: 'right',
 verticalAlign: 'middle',
 borderWidth: 0
 },
 series: [{
 name: 'Seattle, WA',
 data: [47,51,55,59,65,70,75,75,70,60,52,47]
 }, {
 name: 'Grand Isle, VT',
 data: [27,31,40,54,67,76,81,79,71,57,45,33]
 }, {
 name: 'St. Louis, MO',
 data: [40,45,55,67,77,85,89,88,81,69,56,43]
 }]
 });
 });

Not only is the plotted chart professional looking, it’s zoomable, which means you can
move your mouse cursor over the chart to examine the plot points in detail. That level
of interactivity isn’t necessarily trivial in Canvas, because one of the downsides to Canvas
is the fact that you can’t attach event handlers to the individual elements of Canvas—
only to the Canvas area itself. Not being able to attach an event to individual elements
means that you’ll have to keep track of where the mouse is, and what’s underneath it at
any point in time.

Thankfully, you can attach event handlers to SVG elements, as demonstrated in
Recipe 9.2.

226 | Chapter 9: Creating Media Rich, Interactive Web Effects

Figure 9-2. Line graph with interactive zoomability

9.2. Adding JavaScript to SVG

Problem
You want to add JavaScript to an SVG file or element.

Solution
JavaScript in SVG is included in script elements, just as with HTML, except with the
addition of CDATA markup surrounding the script in case XHTML-sensitive charac‐

ters, such as < and >, are used (Example 9-2).

The DOM methods are also available for working with the SVG elements.

Example 9-2. Demonstration of JavaScript within an SVG file

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<svg xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/xlink" width="600" height="600">
 <script type="text/ecmascript">
 <![CDATA[

9.2. Adding JavaScript to SVG | 227

 // set element onclick event handler
 window.onload=function () {

 var square = document.getElementById("square");

 // onclick event handler, change circle radius
 square.onclick = function() {
 var color = this.getAttribute("fill");
 if (color == "#ff0000") {
 this.setAttribute("fill", "#0000ff");
 } else {
 this.setAttribute("fill","#ff0000");
 }
 }
 }
]]>
 </script>
 <rect id="square" width="400" height="400" fill="#ff0000"
 x="10" y="10" />
</svg>

Discussion
As the solution demonstrates, SVG is XML, and the rules for embedding script into

XML must be adhered to. This means providing the script type within the script tag,
as well as wrapping the script contents in a CDATA block. If you don’t have the CDATA

section, and your script uses characters such as < or &, your page will have errors, because
the XML parser treats them as XML characters, not script.

There is some drive to treat SVG as HTML, especially when the SVG
is inline in HTML documents. That’s what Chrome does. Still, it’s
better to be safe than sorry, and follow XML requirements.

The DOM methods, such as document.getElementById(), aren’t HTML specific;
they’re usable with any XML document, including SVG. What’s new is the SVG-specific

fill attribute, an attribute unique to SVG elements, such as rect.

If namespaces were used with any of the elements in the file, then
the namespace version of the DOM methods (discussed previously
in “Extra: Namespace Variation” on page 112), would have to be used.

The code in the solution is a standalone SVG file, with a .svg extension. If we were to
embed the SVG within an HTML file, as shown in Example 9-3, the color-changing

228 | Chapter 9: Creating Media Rich, Interactive Web Effects

animation would work the same. The CDATA section is removed because all modern
browsers understand the SVG is now in an HTML context. If the file is XHTML, though,
add them back.

Example 9-3. SVG element from Example 9-2, embedded into an HTML page

<!DOCTYPE html>
<html>

<head>

<title>Accessing Inline SVG</title>
<meta charset="utf-8">
</head>

<body>

<svg width="600" height="600">
 <script>

 // set element onclick event handler
 window.onload=function () {

 var square = document.getElementById("square");

 // onclick event handler, change circle radius
 square.onclick = function() {
 var color = this.getAttribute("fill");
 if (color == "#ff0000") {
 this.setAttribute("fill","#0000ff");
 } else {
 this.setAttribute("fill","#ff0000");
 }
 }
 }
 </script>
 <rect id="square" width="400" height="400" fill="#ff0000"
 x="10" y="10" />
</svg>

</body>

</html>

Chrome, Safari, Opera, and Firefox all support SVG, including SVG in HTML. IE sup‐
ports SVG after version 9.

To learn more about SVG, in general, I recommend SVG Essentials,
Second Edition by J. David Eisenber (O’Reilly).

9.2. Adding JavaScript to SVG | 229

http://shop.oreilly.com/product/0636920032335.do
http://shop.oreilly.com/product/0636920032335.do

Extra: Using SVG Libraries
There aren’t quite as many libraries for working with SVG as there are for working with
Canvas, but the ones that exist are very handy. One of the most popular is the D3 library,
covered in Chapter 17. Three other popular libraries include the granddaddy of the SVG
libraries, Raphaël, and the newer Snap.svg and SVG.js. All three can simplify SVG cre‐
ation and animation. You can even use Raphaël in both jsBin and jsFiddle, as shown in
Figure 9-3. The following code snippet shows an example of using Raphaël:

// Creates canvas 320 × 200 at 10, 50

var paper = Raphael(10, 50, 320, 400);

// Creates circle at x = 150, y = 140, with radius 100

var circle = paper.circle(150, 140, 100);
// Sets the fill attribute of the circle to red (#f00)

circle.attr("fill", "#f0f");

// Sets the stroke attribute of the circle to white

circle.attr("stroke", "#ff0");

Figure 9-3. Using Raphaël in jsBin

230 | Chapter 9: Creating Media Rich, Interactive Web Effects

http://raphaeljs.com/
http://snapsvg.io/
http://www.svgjs.com/

9.3. Accessing SVG from Web Page Script

Problem
You want to modify the contents of an SVG element from script within the web page.

Solution
If the SVG is embedded directly in the web page, access the element and its attributes
using the same functionality you would use with any other web page element:

var square = document.getElementById("ssquare");
square.setAttribute("width", "500");

However, if the SVG is in an external SVG file embedded into the page via an object
element, you have to get the document for the external SVG file in order to access the
SVG elements. The technique requires object detection because the process differs by
browser:

// set element onclick event handler

window.onload=function () {

 var object = document.getElementById("object");
 var svgdoc;

 try {

 svgdoc = object.contentDocument;
 } catch(e) {
 try {

 svgdoc = object.getSVGDocument();

 } catch (e) {
 alert("SVG in object not supported in your environment");
 }
 }

 if (!svgdoc) return;

 var square = svgdoc.getElementById('square');
 square.setAttribute("width", "500");

Discussion
The first option listed in the solution accesses SVG embedded in an HTML file. You can
access SVG elements using the same methods you’ve used to access HTML elements.

The second option is a little more involved, and depends on retrieving the document

object for the SVG document. The first approach tries to access the contentDocument

9.3. Accessing SVG from Web Page Script | 231

property on the object. If this fails, the application then tries to access the SVG document

using getSVGDocument(). Once you have access to the SVG document object, you can
use the same DOM methods you would use with elements native to the web page.

Example 9-4 shows the second way to add SVG to a web page, and how to access the
SVG element(s) from script in HTML.

Example 9-4. Accessing SVG in an object element from script

<!DOCTYPE html>
<head>

<title>SVG in Object</title>
<meta charset="utf-8" />
</head>

<body>

<object id="object" data="rect.svg"
style="padding: 20px; width: 600px; height: 600px">
<p>No SVG support</p>
</object>

<script type="text/javascript">

 var object = document.getElementById("object");
 object.onload=function() {
 var svgdoc;

 // get access to the SVG document object
 try {

 svgdoc = object.contentDocument;
 } catch(e) {
 try {

 svgdoc = object.getSVGDocument();

 } catch (e) {
 alert("SVG in object not supported in your environment");
 }
 }

 if (!svgdoc) return;
 var r = svgdoc.rootElement;

 // get SVG element and modify
 var square = svgdoc.getElementById('square');
 square.onclick = function() {

 var width = parseFloat(square.getAttribute("width"));
 width-=50;
 square.setAttribute("width",width);
 var color = square.getAttribute("fill");
 if (color == "blue") {
 square.setAttribute("fill","yellow");

232 | Chapter 9: Creating Media Rich, Interactive Web Effects

 square.setAttribute("stroke","green");
 } else {
 square.setAttribute("fill","blue");
 square.setAttribute("stroke","red");
 }
 }
 }
</script>

</body>

In addition to the different approaches to get the SVG document, you also have to handle

browser differences in how the onload event handler works. Firefox and Opera fire the

onload event handler for the window after all the document contents have loaded, in‐

cluding the SVG in the object element. However, Safari and Chrome, probably because

of the shared core, fire the window.onload event handler before the SVG has finished
loading.

In the example code, the object is accessed in script after it has loaded; the object.on

load event handler is then accessed to get the SVG document and assigned the function

to the onclick event handler.

9.4. Integrating SVG and the Canvas Element in HTML

Problem
You want to use the canvas element and SVG together within a web page.

Solution
One option is to embed both the SVG and the canvas element directly into the HTML

page, and then access the canvas element from script within SVG:

<!DOCTYPE html>
<head>

<title>Canvas and SVG</title>
<meta charset="utf-8" />
</head>

<body>

<canvas id="myCanvas" width="400px" height="100px">
 <p>canvas item alternative content</p>
</canvas>

 <svg id="svgelem" height="400">
 <title>SVG Circle</title>
 <script type="text/javascript">
 window.onload = function () {
 var context =

9.4. Integrating SVG and the Canvas Element in HTML | 233

 document.getElementById("myCanvas").getContext('2d');

 context.fillStyle = 'rgba(0,200,0,0.7)';
 context.fillRect(0,0,100,100);
 };
 </script>
 <circle id="redcircle" cx="100" cy="100" r="100" fill="red" stroke="#000" />
 </svg>
</body>

Or you can embed the canvas element as a foreign object directly in the SVG:

<!DOCTYPE html>
<html>

<head>

<title>Accessing Inline SVG</title>
<meta charset="utf-8">
</head>

<body>

<svg id="svgelem" height="400" width="600">
 <script type="text/javascript">
 window.onload = function () {
 var context2 = document.getElementById("thisCanvas").getContext('2d');

 context2.fillStyle = "#ff0000";
 context2.fillRect(0,0,200,200);
 };
 </script>

 <foreignObject width="300" height="150">
 <canvas width="300" height="150" id="thisCanvas">
 alternate content for browsers that do not support Canvas
 </canvas>
 </foreignObject>
 <circle id="redcircle" cx="300" cy="100" r="100" fill="red" stroke="#000" />
 </svg>
</body>

</html>

Discussion
When the SVG element is embedded into the current web page, you can access HTML
elements from within the SVG. However, you can also embed elements directly in SVG,

using the SVG foreignObject element. This element allows us to embed XHTML,
MathML, RDF, or any other XML-based syntax.

At the time this was written, IE didn’t support foreignObject in
SVG.

234 | Chapter 9: Creating Media Rich, Interactive Web Effects

In both solutions, I was able to use getElementById(). However, if I want to manipulate

the elements using other methods, such as getElementsByTagName(), I have to be care‐

ful about which version of the method I use. For instance, I can use getElementsByTag

Name() for the outer canvas element, but I would need to use the namespace version of

the method, getElementsByTagNameNS, if the contained object is XML, such as RDF/
XML. Because the embedded object in the solution is HTML5, a namespace wasn’t
necessary.

Once you have the canvas context, use the element like you would from script within
HTML: add rectangles, draw paths, create arcs, and so on.

Extra: Canvas? Or SVG?
Why would you use Canvas over SVG, or SVG over Canvas? The canvas element is
faster in frame-type animations. With each animation, the browser only needs to redraw
the changed pixels, not re-create the entire scene. However, the advantage you get with

the canvas element animation lessen when you have to support a variety of screen sizes,
from smartphone to large monitor. SVG scales beautifully.

Another advantage to SVG is that it figures in rich data visualizations with the assistance
of powerful libraries, covered in Chapter 17. But then, Canvas is used with 3D systems,
such as WebGL, also covered in Chapter 17.

But why choose one over the other? One use of SVG and Canvas together is to provide
a fallback for the canvas element: the SVG writes to the DOM and persists even if Java‐

Script is turned off, while the canvas element does not.

9.5. Running a Routine When an Audio File Begins Playing

Problem
You want to provide an audio file and then pop up a question or other information when
the audio file begins or ends playing.

Solution
Use the HTML5 audio element:

<audio id="meadow" controls>
 <source src="meadow.mp3" type="audio/mpeg3"/>
 <source src="meadow.ogg" type="audio/ogg" />
 <source src="meadow.wav" type="audio/wav" />
 <p>Meadow sounds</p>
</audio>

9.5. Running a Routine When an Audio File Begins Playing | 235

and capture either its play event (playback has begun) or ended event (playback has
finished):

var meadow = document.getElementById("meadow");
meadow.addEventListener("ended", aboutAudio);

then display the information:

function aboutAudio() {
 var info = 'This audio file is a recording from Shaw Nature Reserve';
 var txt = document.createTextNode(info);
 var div = document.createElement("div");
 div.appendChild(txt);
 document.body.appendChild(div);
}

Discussion
HTML5 added two media elements: audio and video. These simple-to-use controls
provide a way to play audio and video files without having to use Flash.

In the solution, the audio element’s controls Boolean attribute is set, so the controls

are displayed. The element has three source children elements, providing support for

three different types of audio files: WAV, MP3, and Ogg Vorbis. The use of the source
element allows different browsers to find the format (codec) that they support. For the
example, the browser support is:

• Firefox accepts either the WAV or Ogg Vorbis. It also accepts MP3, but uses the
underlying operating system support to do so, rather than providing its own.

• Opera supports WAV and Ogg Vorbis, but not MP3.

• Chrome supports WAV, MP3, and Ogg Vorbis.

• Safari supports MP3 and WAV.

• IE supports the MP3.

A link to the WAV file is provided as a fallback, which means people using browsers

that don’t support audio can still access the sound file. I could have also provided an

object element, or other fallback content.

The Mozilla Developer Network has a comprehensive table with au‐
dio and video codec support for the various browsers.

The media elements come with a set of methods to control the playback, as well as events

that can be triggered when the event occurs. In the solution, the ended event is captured

236 | Chapter 9: Creating Media Rich, Interactive Web Effects

http://mzl.la/1DS3rPL

and assigned the event handler aboutAudio(), which displays a message about the file
after the playback is finished. Notice that though the code is using a DOM Level 0 event
handler with the window load event, it’s using DOM Level 2 event handling with the

audio element. Browser support is erratic with this event handler, so I strongly recom‐

mend you use addEventListener(). However, onended does seem to work without
problems when used directly in the element:

<audio id="meadow" src="meadow.wav" controls onended="alert('All done')">
 <p>Meadow sounds</p>
</audio>

It’s interesting to see the appearance of the elements in all of the browsers that currently
support them. There is no standard look, so each browser provides its own interpreta‐
tion. You can control the appearance by providing your own playback controls and using
your own elements/CSS/SVG/Canvas to supply the decoration.

See Also
See Recipe 9.6 for a demonstration of using the playback methods and providing alter‐
native visual representations for the new media elements, as well as providing a different
form of fallback.

9.6. Controlling Video from JavaScript with the video
Element

Problem
You want to embed video in your web page, without using Flash. You also want a con‐
sistent look for the video control, regardless of browser and operating system.

Solution
Use the HTML5 video element:

<video id="meadow" poster="purples.jpg" >
 <source src="meadow.m4v" type="video/mp4"/>
 <source src="meadow.ogv" type="video/ogg" />
</video>

You can provide controls for it via JavaScript, as shown in Example 9-5. Buttons are

used to provide the video control, and text in a div element is used to provide feedback
on time during the playback.

9.6. Controlling Video from JavaScript with the video Element | 237

Example 9-5. Providing a custom control for the HTML5 video element

<!DOCTYPE html>
<head>

<title>Meadow Video</title>
<script>

<style>
 video {
 border: 1px solid black;
 }
</style>

window.onload=function() {

 // events for buttons
 document.getElementById("start").addEventListener("click",startPlayback);
 document.getElementById("stop").addEventListener("click",stopPlayback);
 document.getElementById("pause").addEventListener("click",pausePlayback);

 // setup for video playback
 var meadow = document.getElementById("meadow");
 meadow.addEventListener("timeupdate",reportProgress);

 // video fallback
 var detect = document.createElement("video");
 if (!detect.canPlayType) {
 document.getElementById("controls").style.display="none";
 }
}

// start video, enable stop and pause

// disable play

function startPlayback() {
 var meadow = document.getElementById("meadow");
 meadow.play();
 document.getElementById("pause").disabled=false;
 document.getElementById("stop").disabled=false;
 this.disabled=true;
}

// pause video, enable start, disable stop

// disable pause

function pausePlayback() {
 document.getElementById("meadow").pause();
 this.disabled=true;
 document.getElementById("start").disabled=false;
 document.getElementById("stop").disabled=true;
}

// stop video, return to zero time

// enable play, disable pause and stop

function stopPlayback() {
 var meadow = document.getElementById("meadow");

238 | Chapter 9: Creating Media Rich, Interactive Web Effects

 meadow.pause();
 meadow.currentTime=0;
 document.getElementById("start").disabled=false;
 document.getElementById("pause").disabled=true;
 this.disabled=true;
}

// for every time divisible by 5, output feedback

function reportProgress() {
 var time = Math.round(this.currentTime);
 var div = document.getElementById("feedback");
 div.innerHTML = time + " seconds";
}

</script>

</head>

<body>

<video id="meadow" poster="purples.jpg" >
 <source src="meadow.m4v" type="video/mp4"/>
 <source src="meadow.ogv" type="video/ogg" />
</video>

<div id="feedback"></div>
<div id="controls">
<button id="start">Play</button>
<button id="stop">Stop</button>
<button id="pause">Pause</button>
</controls>

</body>

Discussion
The new HTML5 video element, as with the HTML5 audio element, can be controlled
with its own built-in controls, or you can provide your own, as shown in Example 9-5.
The media elements support the following methods:

• play: Starts playing the video

• pause: Pauses the video

• load: Preloads the video without starting play

• canPlayType: Tests if the user agent supports the video type

The media elements don’t support a stop method, so the code emulates one by pausing

video play and then setting the video’s currentTime attribute to 0, which basically resets
the play start time.

I also used currentTime to print out the video time, using Math.round to round the
time to the nearest second, as shown in Figure 9-4.

9.6. Controlling Video from JavaScript with the video Element | 239

Figure 9-4. Playing a video using the video control, displaying the number of seconds of
video

The video control is providing two different video codecs: H.264 (.mp4), and Ogg
Theora (.ogv). Firefox, Opera, and Chrome support Ogg Theora, but Safari and IE only
support the H.264-formatted video. However, by providing both types, the video works

in all of the browsers that support the video element.

The video and audio controls are inherently keyboard-accessible. If you do replace the
controls, you’ll want to provide accessibility information with your replacements. The
video control doesn’t have built-in captioning, but work is underway to provide the API
for captioning.

The video playback functionality demonstrated in the solution works,
as is, with video that isn’t encrypted. If the video (or audio) file is
encrypted, considerably more effort is necessary so that the video
plays, making use of the new HTML 5.1 W3C Encrypted Media Ex‐
tensions (EME).

The W3C Encrypted Media Extensions working draft can be seen at
http://www.w3.org/TR/encrypted-media/. EME is implemented in
certain versions of IE11, Chrome, and Opera, and Mozilla has an‐
nounced implementation in Firefox.

240 | Chapter 9: Creating Media Rich, Interactive Web Effects

http://www.w3.org/TR/encrypted-media/
http://bit.ly/1DS5umQ

9.7. Adding Filter Effects to Video via Canvas

Problem
You’re interested in not only playing video in your web page but also playing modified
versions of the video, such as one that has been grayscaled, or manipulated in some way.

Solution
Use HTML5 video with the Canvas element, playing the video to a scratch Canvas
element:

function drawVideo() {
 var videoObj = document.getElementById("videoobj");

 // if not playing, quit
 if (videoObj.paused || videoObj.ended) return false;

 // draw video on canvas
 var canvasObj = document.getElementById("canvasobj");
 var ctx = canvasObj.getContext("2d");
 ctx.drawImage(videoObj,0,0,480,270);

 ...
 setTimeout(drawVideo,20);
}

You can then add the ability to capture the image data using the Canvas element’s

getImageData(), modify the image data with whatever filter you want, and then play
the image data to a second, visible Canvas element:

var pData = ctx.getImageData(0,0,480,270);

// grayscale it and set to display canvas

pData = grayScale(pData);
ctx2.putImageData(pData,0,0);

Discussion
The best thing about all the new HTML5 media elements is how you can use them
together. Using video and Canvas, you can not only provide custom controls, you can
also provide custom video filters, too.

9.7. Adding Filter Effects to Video via Canvas | 241

The new CSS filter capability can be used with the Video element to
create any variation of blurred, or colored, or other effect. However,
not all browsers currently support it—only the Webkit-based brows‐
ers, such as Chrome, Opera, and Safari. Firefox does have plans to
implement the filters in the future. The W3C specification for the
filters can be found at http://www.w3.org/TR/filter-effects-1/.

To play a video in a Canvas element, we’ll need to add both elements to the web page:

 <video id="videoobj" controls width="480" height="270">
 <source src="videofile.mp4" type="video/mp4" />
 <source src="videofile.webm" type="video/webm" />
 </video>
 <canvas id="canvasobj" width="480" height="270"></canvas>

Both the canvas and video elements are the same width and height.

To draw the video onto the canvas, we’re going to use the Canvas drawImage(). There
are several variations of parameters we could use with this method, but the signature
we’re interested in is the following:

void drawImage(
 in nsIDOMElement image,
 in float dx,
 in float dy,
 in float dw,
 in float dh
);

These parameters are:

• image: A reference to a Canvas element, an img element, or a Video element

• dx: x coordinate of the top-left corner of the source image

• dy: y coordinate of the top-left corner of the source image

• dw: Width of the source image (can be scaled)

• dh: Height of the source image (can be scaled)

Example 9-6 demonstrates a first pass at an application to modify the video playing the
Canvas element. It just takes what’s showing in the video and plays it, as is, in the Canvas.

The application uses setTimeout() to test whether the video is still playing and grabs
the video every 20 milliseconds, which is fast enough to provide smooth playback for

human perceptions. There is a timeupdate event handler for the Video element, but it’s
only invoked every 200 milliseconds (per the W3C specification on the media elements),
which is way too slow for our purposes.

242 | Chapter 9: Creating Media Rich, Interactive Web Effects

http://www.w3.org/TR/filter-effects-1/

Example 9-6. A first cut at drawing video data to a canvas element

<!DOCTYPE html>
<head>

<title>Play video in canvas</title>
 <meta charset="utf-8" />
 <script>
 window.onload=function() {
 document.getElementById("videoobj").
 addEventListener("timeupdate", drawVideo, false);
 }
 function drawVideo() {
 var videoObj = document.getElementById("videoobj");
 var canvasObj = document.getElementById("canvasobj");
 var ctx = canvasObj.getContext("2d");
 ctx.drawImage(videoObj,0,0);
 }
 </script>
</head>

<body>

 <video id="videoobj" controls width="480" height="270">
 <source src="videofile.mp4" type="video/mp4" />
 <source src="videofile.webm" type="video/webm" />
 </video>
 <canvas id="canvasobj" width="480" height="270"></canvas>
</body>

In the code, during each time out event, the video is tested to see if it’s still playing before
it’s grabbed and displayed in the Canvas element. The application works in all modern
browsers.

The next step is to modify the video data before it’s streamed to the Canvas element.
For the example, I’m going to do a crude modification of the original video to simulate
how a person could perceive the video if they suffered from a form of color blindness
known as protanopia. This type of color blindness is one of the most common, and
those who have it can’t perceive red light. I say “crude” because a much more accurate
representation is so computationally expensive that the playback visibly stutters.

I used values from a web page that’s now only accessible via the In‐
ternet Archive. I tested variations of the different color blind values
against online tools and the accuracy is close enough to give a good
approximation of what an individual experiences—without blowing
the app up.

A more accurate JavaScript function to demonstrate color blindness
is Color.vision.simulate. There are also online color blindness simu‐
lators; the two I tested are ASP.Net Color Blindness simulator and the
Etre Color Blindness Simulator. I took screenshots of the video at
various points and then ran the comparison.

9.7. Adding Filter Effects to Video via Canvas | 243

http://bit.ly/1DS6lnB
http://bit.ly/1yHYOE2
http://bit.ly/1yHYQM8
http://bit.ly/1yHYR2L

To modify the video playback, we need two things: the function to modify the data, and
a scratch canvas object used to capture the video data, as it is, and then serve as our
intermediate in the transformation. We need a scratch Canvas element because we’re

using the Canvas element’s getImageData() to access the actual video data, and putI

mageData() to play the video data after it has been manipulated.

The getImageData() function returns an object consisting of three values: the width,

the height, and the image data as a Uint8ClampedArray typed array.

The getImageData() method originally returned the data as a Can‐
vasPixelArray. However, the folks at the W3C have deprecated Can‐

vasPixelArray in favor of a Uint8ClampedArray typed array.

The canvas pixel data is sent to the filter, which does its conversion and then returns
the data, as shown in Example 9-7.

Example 9-7. Video with applied color blind filter, playing side by side with original

<!DOCTYPE html>
<head>

<title>Protanopia</title>
 <meta charset="utf-8" />
 <script>

 // Protanopia filter
 function protanopia(pixels) {
 var d = pixels.data;
 for (var i=0; i<d.length; i+=4) {
 var r = d[i];
 var g = d[i+1];
 var b = d[i+2];

 //convert to an approximate protanopia value
 d[i] = 0.567*r + 0.433*g;
 d[i+1] = 0.558*r + 0.442*g;
 d[i+2] = 0.242*g + .758*b;
 }
 return pixels;
 }
 // event listeners
 window.onload=function() {
 document.getElementById("videoobj").
 addEventListener("play", drawVideo, false);
 }

 // draw the video
 function drawVideo() {
 var videoObj = document.getElementById("videoobj");

244 | Chapter 9: Creating Media Rich, Interactive Web Effects

 // if not playing, quit
 if (videoObj.paused || videoObj.ended) return false;

 // create scratch canvas
 var canvasObj = document.getElementById("canvasobj");
 var bc = document.createElement("canvas");
 bc.width=480;
 bc.height=270;

 // get contexts for scratch and display canvases
 var ctx = canvasObj.getContext("2d");
 var ctx2 = bc.getContext("2d");

 // draw video on scratch and get its data
 ctx2.drawImage(videoObj, 0, 0, 480, 270);
 var pData = ctx2.getImageData(0,0,480,270);

 // grayscale it and set to display canvas
 pData = protanopia(pData);
 ctx.putImageData(pData,0,0);

 setTimeout(drawVideo,20);
 }
 </script>
</head>

<body>

 <video id="videoobj" controls width="480" height="270">
 <source src="videofile.mp4" type="video/mp4" />
 <source src="videofile.webm" type="video/webm" />
 </video>
 <canvas id="canvasobj" width="480" height="270"></canvas>
</body>

Figure 9-5 shows a screenshot of the filter in action with the video, “Big Buck Bunny,”
beloved by video developers everywhere for its generous Creative Commons license.

9.7. Adding Filter Effects to Video via Canvas | 245

Figure 9-5. Screenshot of filter effect

246 | Chapter 9: Creating Media Rich, Interactive Web Effects

PART II

JavaScript, All Blown Up

The JavaScript in this section of the book breaks out of the boundaries of the browser,
introduces new built-in objects, works with new and interesting forms of data, and
encompasses complex frameworks. In this section, we learn not to reinvent the wheel,
to embrace the mobile environment, and to integrate a plethora of new tools into our
development effort.

CHAPTER 10

The New ECMAScript Standard Objects

In Part I, we examined the objects that have been a part of JavaScript from the beginning:

the global object (window in the browser), Object, String, Number, Boolean, Math, Date,
Array, and Function. Beginning with ECMAScript 6, also known as ECMAScript Next
and ES 6, we now have new constructs: Map, WeakMap, Set, WeakSet, Symbol, Class,
Proxy, and Promise.

Though it’s technically not an object, I also decided to include a discussion of let in
this chapter. I wanted to demonstrate to you the difficulties with handling cross-browser

differences for a new language construct, such as let, yield, const, and others, as
compared to how we can handle the differences for objects.

For the most part, you can manage browser differences for object support using a poly‐
fill. I recommend using Paul Miller’s ES 6 Shim. You can also use Google’s Traceur,
covered in Recipe 10.8.

If you’re concerned about which browser or environment currently supports what ob‐
jects, the following are a list of references that can help you discover this information:

• The ECMAScript 6 Compatibility Table

• Addy Osmani’s “Tracking ECMAScript 6 Support”

• ECMAScript 6 Support in Mozilla

• Microsoft’s “What’s New in JavaScript”

• Chromium Dashboard: What We’re Up To

249

https://github.com/paulmillr/es6-shim
http://kangax.github.io/compat-table/es6/
http://addyosmani.com/blog/tracking-es6-support/
http://mzl.la/1xN8JHB
http://bit.ly/1xN8KeN
http://www.chromestatus.com/features

Even if you use a polyfill or other tool, you’ll need to test your use
of ES 6 features in every target browser if you plan on using them in
production.

10.1. Using let in Your Browser Application

Problem
You’re interested in using let in your browser application, but aren’t sure which brows‐
ers support it (or other ECMAScript functionality), or what you need to do to get it to
work.

Solution
Support for ECMAScript 6 functionality, such as let, can be difficult to determine, and
may require setting flags, specifying JavaScript version numbers, or using specialized
polyfills or other tools. Unfortunately, not all approaches are compatible across all the

modern browsers. The support for let is a perfect example of fractured ES 6 support
across browsers.

To use let in Firefox, you have to give a version number with the script tag:

<script type="application/javascript;version=1.7">
 if (true) {
 let i = 'testing let';
 console.log(i);
 }

 if (typeof i != 'undefined'){
 console.log(i);
 } else {
 console.log('undefined');
 }
</script>

In Firefox, the console output is what we would expect:

testing let
undefined

To get the same result in Internet Explorer 11, your HTML document must be HTML5,
which means using the following DOCTYPE:

<!DOCTYPE html>

250 | Chapter 10: The New ECMAScript Standard Objects

This puts IE 11 into edge mode, where many ES 6 features are supported. Unfortunately,

IE 11 ignores any script block with a type of application/javascript;version=1.7,

so you’ll have to remove the type setting for the script to work.

The same applies to Chrome. Chrome supports let if you remove Firefox’s peculiar use

of type and if you enable the chrome://flags/#enable-javascript-harmony flag. In
addition, you must also use strict mode, so the code needs to be modified to:

<script>

 'use strict';

 if (true) {
 let i = 'testing let';
 alert(i);
 }

 if (typeof i != 'undefined'){
 alert(i);
 } else {
 alert('undefined');
 }
</script>

This code snippet also works for IE, but not Firefox. The code also works in Opera if
you enable the same Chrome Harmony flag (copy and paste the above flag URI into the
location bar for Opera and click “Enable”).

Safari doesn’t, at this time, support let.

Discussion
The let keyword allows JavaScript developers to define block-level variables, rather
than global variables or variables in a function block. An example is given in the solution,

where the variable i is only available within the conditional block, but is undefined
outside the block.

JavaScript developers have pushed for the concept of let longer than most additions to
ECMAScript 6, but its use in production applications must be restricted because of the
difficulty to support it, as was demonstrated in the solution.Yes, you can support it across
browsers, but only when flags are set, and even then, Firefox doesn’t currently support
a syntax that works for Chrome, IE, and Opera, and Safari is missing, altogether.

By the time you read this, Firefox may have dropped its versioning
syntax.

10.1. Using let in Your Browser Application | 251

The same holds for many of the ES 6 new language constructs: if the construct requires
setting a browser flag, you have to assume your end user hasn’t set it so you can’t depend
on it. This differs from supporting the new ES objects (covered in the rest of this chapter)
because it’s easier to emulate a new object using a polyfill, than it is to emulate a new
language construct.

Even a translator-compiler (transpiler), such as Google’s Traceur, can only convert let

into var, because there is no current workaround for the concept of let. Running the
solution code snippet in the Traceur REPL (read-evaluate-print) results in the following:

$traceurRuntime.ModuleStore.getAnonymousModule(function() {
 "use strict";
 'use strict';
 if (true) {
 var i = 'testing let';
 alert(i);
 }
 if (typeof i != 'undefined') {
 alert(i);
 } else {
 alert('undefined');
 }
 return {};
});
//# sourceURL=traceured.js

In this case, the workaround is worse than not having a workaround, because var does

not result in the same behavior as the use of let. The resulting print-out for the Traceur
version is:

testing let
testing let

The variable i is printed out twice, as it is defined in the code outside the conditional
block—the variable is no longer scoped to the block.

See Also
Read more about Microsoft’s Edge mode in Document Modes are Deprecated. Microsoft
also provides a JavaScript compatibility table that lists Edge Mode support.

To peek under the covers regarding let (and other new ES 6 language constructs) in

Firefox, check out a related Bugzilla bug specific to the use of let. To go even deeper
into the inner workings of the ES 6 specification, you might also want to explore the

concept of temporal dead zones related to let and const, beginning with “Performance
concern with let/const”.

Recipe 10.8 has more on incorporating Traceur into your browser apps. Using let in
Node is covered in Recipe 11.4.

252 | Chapter 10: The New ECMAScript Standard Objects

http://google.github.io/traceur-compiler/demo/repl.html#
http://bit.ly/1xN9ujP
http://bit.ly/1xN9y33
http://mzl.la/1xN9BvX
http://bit.ly/1xN9z7e
http://bit.ly/1xN9z7e

10.2. Creating a Collection of Non-Duplicated Values

Problem
You want to create a collection of unique values.

Solution
Use the new ECMAScript 6 Set object to create the collection:

var col1 = new Set();
col1.add("apple");
col1.add("oranges");
console.log(col1.size); // 2

Discussion
Before ECMAScript 6, the only object JavaScript provided for collections was the Array.
It’s been very useful, but has its limitations: one glaring example is lack of ability to
enforce uniqueness of collection members without having to do some computationally
expensive processing.

To ensure a unique value in an Array, before you add the new member, you’d have to
see if it was already in the Array by checking it against all existing members. No amount
of fancy new Array methods is going to make this simpler.

The Set handles uniqueness for us. If you try to add the same value multiple times, it’s
added the first time and the rest of the additions are just ignored:

col1.add("banana");
col1.add("banana"); // ignored
col1.add("banana"); // yup, still ignored

The Set also has a clean way of removing members, without having to use the splice()
method:

col1.delete("banana"); // OK, all gone

To discover whether the Set has a specific value, use the has() method:

col1.has("banana"); // false, it was removed
col1.has("apple"); // true

You can also iterate through the members:

col1.forEach(function(value) {
 console.log(value);
});

as well as convert a Set to an Array using the new ES 6 spread operator:

10.2. Creating a Collection of Non-Duplicated Values | 253

var arr = [...col1];
console.log(arr[1]); // oranges

If the browser supports the spread operator, of course. The spread operator allows for
expansion in place. Instead of specifying each member of the set when assigning to the
new array, the spread operator performs a one-to-one assignment, until all members of
the expanded object are exhausted. It can be used in array literals, as demonstrated in
the code snippet, or it can be used with function arguments:

functionName(...iterableObj)

Returning to Set, you can also create a set from an array literal with the following syntax:

var col2 = new Set(['one','two','three']);
console.log(col2.size); // 3

And if you want to get rid of all the Set members, use clear():

col1.clear();
console.log(col1.size); // 0

Unlike some other JavaScript functionality, the Set does not do any type coercion. If you

add 5 and "5", both will be added and treated as two distinct Set members. Think of
how strict equality works: the only time Set won’t add a member is if they are strictly
equal.

Advanced
A Set collection can consist of any number of object types, including objects. And that
includes well-known objects, functions, even other Sets:

var mySet = new Set();

mySet.add(window);
mySet.add(function() { console.log("whoa");});

var mySet2 = new Set();
mySet2.add('test');
mySet2.add(5);
mySet2.add(true);

mySet.add(mySet2);

mySet.forEach(function(value) {
 console.log(value.toString());
});

The output from this code snippet is:

[object Window]
function () { console.log("whoa");}
[object Set]

254 | Chapter 10: The New ECMAScript Standard Objects

There’s also a variation of Set that accepts only objects, and that’s WeakSet. The entire
reason for this second object is that references to objects contained in the collection are
weakly held. When there is no other reference to the object in the collection, it can be
garbage collected. The advantage to using WeakSet is that it helps prevent memory leaks.
However, because of their nature, you can’t enumerate through the collection members
with a WeakSet, like you can with Set.

10.3. Creating Unique Key/Value Pairs with Uniquely
Different Keys

Problem
You want to create a set of key/value pairs, but not all of the keys are strings.

Solution
Use the new Map object:

var myMap = new Map();

myMap.set("value1", "this is value");
myMap.set(3, "another value");

myMap.set(NaN, "isn't this interesting");

myMap.set(window, "really now");

console.log(myMap.get("value1")); // this is a value
console.log(myMap.get(NaN)); // isn't this interesting
console.log(myMap.get(3)); // another value
console.log(myMap.get(window)); // really now

Discussion
Prior to ES 6, you could create key/value pairs by creating an Object using a specialized
syntax (to avoid default values), and adding each key and value to the new object:

var newObj = Object.create(null, {
 prop1: {
 value: undefined,
 enumerable: true,
 writable: true,
 configurable: true
 },
 prop2: {
 value: undefined,
 enumerable: true,
 writable: true,

10.3. Creating Unique Key/Value Pairs with Uniquely Different Keys | 255

 configurable: true
 }
 });

newObj.prop1 = "first";
newObj.prop2 = "second";
newObj.prop3 = "third"; // added third prop

console.log(newObj.prop1); // first
console.log(newObj.prop2); // second

Using Object.create() with null as the first parameter ensures that the object doesn’t

inherit the Object prototype, and the only properties are those specifically added. If
you didn’t care about creating a completely clean object, you could also use an object
literal:

var newObj = { prop1: "first", prop2: "second"};

One limitation with using objects as a way of mapping key/value pairs, other than having
to ensure they’re created without an existing prototype, is that keys are strings. Even
when it seems as if our use of non-string values is acceptable:

newObj.NaN = 'hey, it works!';

What happens is the NaN is really converted into a string representation of NaN:

for (var prop in newObj) {
 console.log(prop); // NaN prints out as "NaN"
}

In addition, trying to assign a property such as a function, or a number, throws an error:

newObj.5 = 'no way';

newObj.function() {} = 'Seriously?';

However, functions, numbers, strings, objects…all of these are allowable with a Map,
as demonstrated in the solution.

Use set() to add new key/value pairs, and delete() to remove those no longer needed:

myMap.set('mykey',100);
myMap.delete('mykey');

And use clear() to clear all collection members.

Unlike object properties, it’s simple to discover how many key/value pairs a Map
contains:

console.log(myMap.size); // 3

And you can easily traverse through both keys and values:

// iterating through both key an value

for (var [key, value] of myMap) {

256 | Chapter 10: The New ECMAScript Standard Objects

 console.log(key + " = " + value);
}

// iterating through keys

for (var key of myMap.keys()) {
 console.log(key);
}

// iterating through values

for (var value of myMap.values()) {
 console.log(value);
}

// using forEach

myMap.forEach(function(value) {
 console.log(value);
});

All the traversals use iterators, except for forEach(). The first example uses an implicit

entries() method that returns an object with an array of [key, value] pairs, allowing

us to access both in the loop. The entries(), keys(), and values() function all return
iterators, which also means we can use the following syntax with each:

var mapIter = myMap.keys();

console.log(mapIter.next().value); // "value1"
console.log(mapIter.next().value); // 3
console.log(mapIter.next().value); // NaN

Iterators are discussed in more detail in Recipe 10.5.

You can also discover if a specific key is contained in a Map collection with has():

myMap.set(23,'value');
console.log(myMap.has(23)); // true

The solution demonstrates using NaN as a key value. As the Mozilla Developer Network

entry on Map notes, while NaN is technically not equivalent to itself, when used as a key,
it is equivalent:

myMap.set(NaN, 'nada');

var id = Number('not a number');

console.log(myMap.get(id)); // 'nada'

When all is said and done, though, you may want to just forgo using NaN as a key.

10.3. Creating Unique Key/Value Pairs with Uniquely Different Keys | 257

Advanced
As with Sets, Map keys and values can be objects, as well as scalar values. This includes

the built-in objects, such as window. But the objects must be exactly equal—they can’t

be equivalent. In the following code snippet, two object literals, an array, and window
are used to set members in the Map. The code tries to access the Array object’s value
using another equivalent array literal, but it doesn’t work. Only when I use the exact
same object (whether through the original variable, or a new one assigned the object),
can the application access the value:

var b = {first: 'apple', second: 'pear'};
var c = {first: '5', second: '1'};
var d = [1,2,3,4];
var e = b;

var myMap = new Map();

myMap.set(b, 'first');
myMap.set(c, 'second');
myMap.set(d, 'array');
myMap.set(window,'global');

console.log(myMap.get(window)); // 'global'
console.log(myMap.get([1,2,3,4])); // undefined
console.log(myMap.get(d)); // 'array'
console.log(myMap.get(e)); // 'first'

There is also another new object, WeakMap, that functions in a similar manner to Map,
except the collection only accepts object keys, and the object keys are held weakly, and
therefore can be garbage collected. This means the WeakMap collection can’t be enu‐
merated, but does help prevent unexpected and unwanted memory leaks.

10.4. Creating Absolutely Unique Object Property Keys

Problem
You want to create unique object property keys that you’re absolutely confident will
remain unique and won’t clash.

Solution
Use the ECMAScript 6 Symbol to create the unique key:

var uniqueId = Symbol();
var newObj = {};
newObj[uniqueId] = 'No two alike';
console.log(newObj[uniqueId]); // 'No two alike'

258 | Chapter 10: The New ECMAScript Standard Objects

var uniqueId2 = Symbol('one');
var uniqueId3 = Symbol('one');

Discussion
Symbol is one of those new additions with ECMAScript 6 that you didn’t know you
needed until you saw it. We’ve become rather adept over the years at dealing with not
having the capability to create unique identifiers. But being adept at working around a
gap in a language isn’t the same as having the language flexibly move to fill in the gap.

In the solution, a new identifier, uniqueId, is created to act as property identifier. Even
if some other library wanted to use the exact same identifier, the two uses can’t clash
because the new identifier would just be returned when making the call to Symbol, even
with the same optional string, as demonstrated with the second and third unique
identifiers.

Symbol can also be used to create a set of enumerated values:

var green = Symbol();
var red = Symbol();

function switchLight(light) {
 if (light === green) {
 console.log("Turning light red");
 light = red;
 } else {
 console.log("Turning light green");
 light = green;
 }
 return light;
}

var light = green;

light = switchLight(light);
light = switchLight(light);

Instead of creating a number or string variables and then assigning values (and having
to perform type checking as well as value checking when the value is evaluated), you
can just create a new enumerated identifier.

Symbol is not like String or Number, in that you don’t create a new instance of an object

using new. You call it as a Function, and the new identifier is returned.

At the time this was written, only Chrome and Firefox Nightly sup‐
ported Symbol. Exercise caution when using it.

10.4. Creating Absolutely Unique Object Property Keys | 259

10.5. Iterating Through Tasks Made Easy

Problem
You want to iterate over a set of tasks, but not all at the same time, and not all within
the same expression.

Solution
Use an iterator, a new ES 6 protocol:

function makeIterator(array){
 var nextIndex = 0;
 return {
 next: function(){
 return nextIndex < array.length ?
 {value: array[nextIndex++], done: false} :
 {done: true};
 }
 }
}

var tasks = [{"task": function() {
 console.log('hello from a');
 }},
 {"task": function() {
 console.log('hello from b');
 }}];

var taskRunner = makeIterator(tasks);

taskRunner.next().value.task();
taskRunner.next().value.task();

It has the following results:

hello from a
hello from b

Discussion
The ES 6 iterator isn’t a new object or construct, but an implementation strategy, or
protocol. It’s not a new syntax, like spread, or a new built-in, like Map. As long as an
existing object can support some specific characteristics, it can be used as an iterator.
In the solution, a function is called, and returns an iterator over an array of functions.

The makeIterator() function accepts an array as argument and returns an object with

one property: next(). This property is used to iterate over the array contents, but

260 | Chapter 10: The New ECMAScript Standard Objects

iteration doesn’t require a loop, and we don’t have to maintain the state of each array
access via incremented index variable.

Each successive next() returns the next value in the array. Because each array value is
a function, it can then be invoked.

As an example, consider an online help system that walks the user through steps. As

they complete each step, they hit the Enter key, and your code calls up the next data/

function using next(). The application isn’t blocking, as it would in a loop, and you
don’t have to maintain an array counter as a global variable.

When the list is complete, the done variable is set to true. So to make the implementation
safer, you could use the following:

var taskRunner = makeIterator(tasks);

var task = taskRunner.next();
console.log(task);
if (!task.done) task.value.task();

task = taskRunner.next();
console.log(task);
if (!task.done) task.value.task();

task = taskRunner.next();
console.log(task);
if(!task.done) task.value;

which prints out:

{ value: { task: [Function] }, done: false }
hello from a
{ value: { task: [Function] }, done: false }
hello from b
{ done: true }

10.6. Creating Functions that Gracefully Yield

Problem
It’s simple to break out of a function with return, but you want to be able to get back
into the function at that point in the future, and then have it resume.

Solution
Use an ES 6 generator function:

function* taskRunner() {
 console.log('doing something');
 yield function () {

10.6. Creating Functions that Gracefully Yield | 261

 console.log('hello from a');
 };
 console.log('doing something after a');
 yield function() {
 console.log('hello from b');
 }
 console.log('doing something after b');
}

var tasks = taskRunner();

tasks.next().value();
tasks.next().value();
tasks.next();

which results in:

doing something
hello from a
doing something after a
hello from b
doing something after b

Discussion
As already noted, it’s easy to break out of a JavaScript function. Just type in a return
statement and you’re done. But what if you want to get back into the function at that
exact point, and have it continue?

Couldn’t be done, or at least not without embedded event handlers and callbacks and
such, until ES 6 brought us generators: functions that can be entered and exited and that
remember their state.

The solution demonstrates iterating over a set of tasks, each preceded by a yield state‐
ment with a function expression, though any expression works. Mozilla demonstrates
a function generator by providing code for a neverending counter. In this case, the
expression is a number incrementation:

function* idMaker(){
 var index = 0;
 while(true)
 yield index++;
}

var gen = idMaker();

console.log(gen.next().value); // 0
console.log(gen.next().value); // 1
console.log(gen.next().value); // 2

262 | Chapter 10: The New ECMAScript Standard Objects

See Also
The Node community has been especially interested in generators because they can be
used to prevent callback hell. Node is covered in Chapter 11, but you can read more
about using generators in Node in Arunoda Susiripala’s “JavaScript Generators and
Preventing Callback Hell”.

Generators also figure heavily in Koa, a lightweight alternative to the popular Express
Node framework.

10.7. Implementing Just-in-Time Object Behavioral
Modifications with Proxies

Problem
You want to attach behavior to an object, such as ensuring proper data types for values
or log when an object changes, but you want to do so transparently.

Solution
Use the ES 6 Proxy to attach the desired behavior to the targeted action. To ensure that
only given properties are set on an object and that a number property for an object is
given an actual number, not a string or other value that can’t be converted to a number,
use a Proxy to test the value when it’s set on the object:

function propChecker(target) {

 return Proxy(target, {
 set: function(target, property, value) {
 if (property == 'price') {
 if (typeof value != 'number') {
 throw new TypeError("price is not a number");
 } else if (value <= 0) {
 throw new RangeError("price must be greater than zero");
 }
 } else if (property != 'name') {
 throw new ReferenceError("property '" + property + "' not valid");
 }
 target[property] = value;
 }
 });
}

function Item() {

 return propChecker(this);
}

10.7. Implementing Just-in-Time Object Behavioral Modifications with Proxies | 263

http://bit.ly/1xNbvg6
http://bit.ly/1xNbvg6
http://koajs.com/

try {

 var keyboard = new Item();

 keyboard.name = "apple"; // OK

 keyboard.type = "red delicious"; // throws ReferenceError

 keyboard.price = "three dollars"; // throws TypeError

 keyboard.price = -1.00; // throws RangeError

} catch(err) {
 console.log(err.message);
}

Discussion
The Proxy object wraps an object and can be used to trap specific actions, and then
provide additional or alternative behaviors based on both the actions and the object’s
data at the time of the action. The Mozilla Developer Network documentation for the
object refers to the capability as meta-programming API.

In the solution, because we want to modify what happens when properties are set on
the target object, and the target objects are themselves instances, the proxy of the object
is returned, rather than the object directly, in the constructor. This is accomplished by

passing this as the target object for the Proxy call, and then defining a handler function,

propChecker, for the object.

Proxy has undergone considerable change over time and is current‐
ly only implemented in Firefox. Note that some code examples for

Proxy use Proxy.create(). This has been deprecated in favor of just

calling Proxy.

In the handler, we’re only interested in altering the semantics of the set operation. The
function used to handle the operation is passed the target object, the property, and the
new property value. In the function, the code tests to see if the property being set is

price, and if so, it then checks to see if it’s a Number. If it isn’t, a TypeError is thrown.
If it is, then the value is checked to make sure it’s greater than zero. If it’s not, then a

RangeError is thrown.

Finally, the property is checked to see if it’s name, instead. If it isn’t, the final error, a
ReferenceError, is thrown. If none of the error conditions is triggered, then the property
is assigned the value.

264 | Chapter 10: The New ECMAScript Standard Objects

Based on all of this, new instances of the target object can only have the two properties
set, and the numeric property must be a number greater than zero.

The solution is based, in part, on a code sample created by Nicholas
Zakas, and repurposed, with thanks.

Proxy supports a considerable number of traps, which I’ve listed in Table 10-1. The table
lists the API trap, followed by the parameters the handler function expects, expected
return value, and how it’s triggered. These are all pulled directly from the Harmony
documentation, as it’s the most current listing at this time. The important point to keep
in mind is that each of these is a trap that you can trigger and redefine the semantics of.

Table 10-1. Proxy traps

Proxy trap Function parameters Expected
return
value

How the trap is triggered

getOwnPropertyDescriptor target, name desc or

undefined

Object.getOwnPropertyDescriptor(proxy,name)

getOwnPropertyNames target string Object.getOwnPropertyNames(proxy)

getPrototypeOf target any Object.getPrototypeOf(proxy)

defineProperty target, name, desc boolean Object.defineProperty(proxy,name,desc)

deleteProperty target, name boolean Object.deleteProperty(proxy,name)

freeze target boolean Object.freeze(target)

seal target boolean Object.seal(target)

preventExtensions target boolean Object.preventExtensions(proxy)

isFrozen target boolean Object.isFrozen(proxy)

isSealed target boolean Object.isSealed(proxy)

isExtensible target boolean Object.isExtensible(proxy)

has target, name boolean name in proxy

hasOwn target, name boolean ({}).hasOwnProperty.call(proxy,name)

get target, name, receiver any receiver[name]

set target, name, value, receiver boolean receiver[name] = val

enumerator target iterator for (name in proxy) (iterator should yield all

enumerable own and inherited properties)

keys target string Object.keys(proxy) (return array of enumerable own

properties only)

apply target, thisArg, args any proxy(…args)

construct target, args any new proxy(…args)

10.7. Implementing Just-in-Time Object Behavioral Modifications with Proxies | 265

http://bit.ly/1xNbPLF/
http://bit.ly/1xNbPLF/

Proxies can also wrap JavaScript built-in objects, such as Arrays, or even the Date object.
In the following code, a proxy is used to redefine the semantics of what happens when

the code accesses an array. The get passes the target, name, and receiver to the proxy
handling function. The value of the array at the given index is checked and if it’s a value

of zero (0), a value of false is returned; otherwise, a value of true is returned:

var handler = {
 get: function(arry, indx){
 if (arry[indx] === 0) {
 return false;
 } else {
 return true;
 }

 }
};

var arr = [1,0,6,1,1,0];
var a = new Proxy(arr, handler);

console.log(a[2]); // true
console.log(a[0]); // true
console.log(a[1]); // false

The array value at an index of 2 is not zero, so true is returned. The same is true for the

value at an index of zero. However, the value at the index of 1 is zero, so false is returned.

This behavior holds anytime this array proxy is accessed.

Object properties can be accessed as array elements, so we can’t
always assume that the index value is numeric. However, the accu‐
racy of the proxy handler in this case is the same: if the value at the

given index is exactly equivalent to a numeric value of zero (0), false

is returned; otherwise, true is returned.

10.8. Creating a True Class and Extending It (with a Little
Help from Traceur)

Problem
JavaScript’s ability to emulate a class using functions and the prototype is all well and
good, but you want a more conventional class.

Solution
Use the ES 6 class.

266 | Chapter 10: The New ECMAScript Standard Objects

The class is created with the class keyword, providing a constructor to instantiate the
object. You can then include additional functionality to suit your needs. To extend the

class, use the extends keyword, and in the subclass’s constructor, invoke the super class
constructor. You’ll need to do the same within any function that’s shared in both classes:

 class Book {
 constructor(title, author, pubdate) {
 this.title = title;
 this.author = author;
 this.pubdate = pubdate;
 }
 getBook() {
 return this.author + " published " + this.title + " in " + this.pubdate;
 }
 }

 class TypedBook extends Book {
 constructor(title, author, pubdate, type) {
 super.constructor(title, author, pubdate);
 this.type = type;
 }
 getBook() {
 return super.getBook() + " - category: " + this.type;
 }
 getType() {
 return this.type;
 }
 }

 var bookA = new TypedBook("Winning Small", "Sally Author", 2012, "history");
 console.log(bookA.getBook());
 // Sally Author published Winning Small in 2012 - category: history
 console.log(bookA.getType()); // history

Discussion
The new class functionality in ECMAScript 6 is actually quite clean, and relatively simple
to understand. As the solution demonstrates, all you need to do is define the superclass,

provide a constructor() and whatever additional functionality you want, and then
define any subclasses. The important point to remember is to invoke the superclass
functions in the constructor and in any subclass functions shared between both.

The tricky part is trying the class functionality out before it’s implemented in the brows‐
ers. At the time this was written, no browser had implemented the class functionality.
Instead, I used Google Traceur to test out the code.

If you’ve not used Traceur previously, you’ll need to include a reference to the main
Traceur JavaScript file, and to the associated Bootstrap script file that triggers the Traceur

10.8. Creating a True Class and Extending It (with a Little Help from Traceur) | 267

compile that generates the code necessary to make the functionality work. You can
download both files, or link directly to the Google Code files:

<script src="https://google.github.io/traceur-compiler/bin/traceur.js">
</script>

<script src="https://google.github.io/traceur-compiler/src/bootstrap.js">
</script>

If you also want to take advantage of the ES 6 experimental features, add the following

script block:

<script>

 traceur.options.experimental = true;
</script>

Next, include the class JavaScript in another script block, but instead of using text/

javascript for type, you must use module in order to trigger the Traceur functionality.
Example 10-1 has a complete page with all that’s necessary to get the classes to work.

Example 10-1. Using Traceur to emulate the ECMAScript 6 class

<!DOCTYPE html>
<html>

<head>

 <meta charset="utf-8">
 <title>ECMAScript 6 class</title>
<script src="https://google.github.io/traceur-compiler/bin/traceur.js"></script>
<script src="https://google.github.io/traceur-compiler/src/bootstrap.js"></script>
</head>

<body>

<script type="module">

 class Book {
 constructor(title, author, pubdate) {
 this.title = title;
 this.author = author;
 this.pubdate = pubdate;
 }
 getBook() {
 return this.author + " published " + this.title + " in " + this.pubdate;
 }
 }

 class TypedBook extends Book {
 constructor(title, author, pubdate, type) {
 super.constructor(title, author, pubdate);
 this.type = type;
 }
 getBook() {
 return super.getBook() + " - category: " + this.type;
 }

268 | Chapter 10: The New ECMAScript Standard Objects

 getType() {
 return this.type;
 }
 }

 var bookA = new TypedBook("Winning Small", "Sally Author", 2012, "history");

 // Sally Author published Winning Small in 2012 - category: history
 console.log(bookA.getBook());

 // history
 console.log(bookA.getType());
</script>

</body>

</html>

To better understand what Traceur does to your code, you can copy and paste just the
script into the Traceur REPL (read-evaluate-print) tool. The results for the class code
are as follows:

$traceurRuntime.ModuleStore.getAnonymousModule(function() {
 "use strict";
 var Book = function Book(title, author, pubdate) {
 this.title = title;
 this.author = author;
 this.pubdate = pubdate;
 };
 ($traceurRuntime.createClass)(Book, {getBook: function() {
 return this.author + " published " + this.title + " in " + this.pubdate;
 }}, {});
 var TypedBook = function TypedBook(title, author, pubdate, type) {
 $traceurRuntime.superCall(this, $TypedBook.prototype, "constructor",
 [title, author, pubdate]);
 this.type = type;
 };
 var $TypedBook = TypedBook;
 ($traceurRuntime.createClass)(TypedBook, {
 getBook: function() {
 return
 $traceurRuntime.superCall(this, $TypedBook.prototype, "getBook", []) +
 " - category: " + this.type;
 },
 getType: function() {
 return this.type;
 }
 }, {}, Book);
 var bookA = new TypedBook("Winning Small", "Sally Author", 2012, "history");
 console.log(bookA.getBook());
 console.log(bookA.getType());
 return {};
});
//# sourceURL=traceured.js

10.8. Creating a True Class and Extending It (with a Little Help from Traceur) | 269

http://google.github.io/traceur-compiler/demo/repl.html#

In many cases, the resulting behavior of the new ES 6 code and the compiled alternative
are equivalent, but as covered earlier in the chapter, in Recipe 10.1, such a happy result
isn’t guaranteed.

10.9. Using Promises for Efficient Asynchronous
Processing

Problem
You want to have your code do something based on the success or failure of an asyn‐
chronous operation.

Solution
One option is to use the new native Promise object. A classic use for Promise in a client
application is to use it with an Ajax call:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>Promises</title>
 <script>
 var test = new Promise(function(resolve, reject) {
 var req = new XMLHttpRequest();

 req.open('GET', 'http://examples.burningbird.net:8124');
 req.onload = function () {
 if (req.status == 200) {
 resolve(req.response);
 } else {
 reject(req.statusText);
 }
 };

 req.onerror = function() {
 reject("network error");
 };

 req.send();
 });

 test.then(
 function(response) {
 console.log("Response is ", response);
 }, function (error) {
 console.error("Request failed: ", error);
 });
 </script>

270 | Chapter 10: The New ECMAScript Standard Objects

 </head>
 <body>
 </body>
</html>

Discussion
In the solution, a Promise is created and assigned to a variable. The Promise encapsulates
an Ajax call to a server application. Instead of assigning a function name to the

XMLHttpRequest’s onload event handler, the function is defined within the Promise, so

it has access to the resolve() and reject() functions, passed as parameters to the
Promise.

If the Ajax request is successful, the resolve() Promise function is called; otherwise,

the reject() function is called.

Once the Promise has been defined, it’s invoked by chaining the Promise’s then()

function call to the variable. The first parameter to then() is the function that handles
a successful event; the second is a function handling an unsuccessful event.

If you compare the solution to the typical Ajax application, such as the one demonstrated
in Example 8-2 in Chapter 8, you’ll notice one missing component: no callback. There

is no assignment of a traditional callback function to onreadystatechange:

xmlRequest.onreadystatechange = getData;

There is no testing for HTTP status or errors. Instead, an ES 6 promise is used with the
HTTP request, with a status of 200 resolving the promise, sending the HTTP response

to the resolving function, and anything else rejecting the promise, with HTTP status

Text sent to the function.

The E6 Promise allows us to assign handlers to the two possible states of a pending
request: resolved or rejected. The Promise, and the contained HTTP request, is invoked

with then(), with two parameters: the resolving function, and the rejecting function.

In the earlier incarnations of Node, the developers originally intended to use the concept
of a promise to provide asynchronous access, rather than the last argument callback that
exists today. I believe this was a good decision, though many folks disagreed with it. I
feel the callback is more intuitively obvious solution, but those that disagree state that
the callback concept fails in more complex situations, where nested callbacks cause
additional complexity.

There are solutions to complex, nested callbacks in Node, as I detail
in Recipe 11.8.

10.9. Using Promises for Efficient Asynchronous Processing | 271

The interest in promises persisted and now their implementation is being incorporated
into existing and future versions of JavaScript.

See Also
Marc Harter discusses using generators and promises with Node application in “Man‐
aging Node.js Callback Hell with Promises, Generators and Other Approaches”. James
Coglan wrote a thoughtful piece on why Node’s callback choice was in error in “Callbacks
are imperative, promises are functional: Node’s biggest missed opportunity”.

A variation of the solution that creates a reusable function utilizing a Promise for an
Ajax call is discussed in HTML5 Rocks article “JavaScript Promises” by Jake Archibald.
Note there is limited browser support for the Promise at this time, but the HTML5
Rocks article lists out various polyfills you can use to achieve the same effect in all
browsers.

272 | Chapter 10: The New ECMAScript Standard Objects

http://bit.ly/1xNcL2Cs/
http://bit.ly/1xNcL2Cs/
http://bit.ly/1xNcNHZ
http://bit.ly/1xNcNHZ
http://www.html5rocks.com/en/tutorials/es6/promises/

CHAPTER 11

Node: JavaScript on the Server

The dividing line between “old” and “new” JavaScript occurred when Node.js (referred
to primarily as just Node) was released to the world. Yes, the ability to dynamically
modify page elements was an essential milestone, as was the emphasis on establishing
a path forward to new versions of ECMAScript, but it was Node that really made us
look at JavaScript in a whole new way. And it’s a way I like—I’m a big fan of Node and
server-side JavaScript development.

I won’t even attempt to cover all there is to know about Node on an
introductory level in one chapter, so I’m focusing primarily on the
interesting bits for the relative newbie. For more in-depth coverage,
I’m going to toot my own horn and recommend my book, Learning
Node (O’Reilly).

At a minimum, this chapter does expect that you have Node in‐
stalled in whatever environment you wish, and are ready to jump into
the solution examples.

11.1. Responding to a Simple Browser Request

Problem
You want to create a Node application that can respond to a very basic browser request.

Solution
Use the built-in Node HTTP server to respond to requests:

// load http module

var http = require('http');

// create http server

273

http://shop.oreilly.com/product/0636920024606.do
http://shop.oreilly.com/product/0636920024606.do

http.createServer(function (req, res) {

 // content header
 res.writeHead(200, {'content-type': 'text/plain'});

 // write message and signal communication is complete
 res.end("Hello, World!\n");
}).listen(8124);

console.log('Server running on 8124/');

Discussion
The simple text message web server response to a browser request is the “Hello World”
application for Node. It demonstrates not only how a Node application functions, but
how you can communicate with it using a fairly traditional communication method:
requesting a web resource.

Starting from the top, the first line of the solution loads the http module using Node’s

require() function. This instructs Node’s modular system to load a specific library

resource for use in the application—a process I’ll cover in detail in Chapter 12. The http
module is one of the many that comes, by default, with a Node installation.

Next, an HTTP server is created using http.createServer(), passing in an anonymous

function, known as the RequestListener with two parameters. Node attaches this
function as an event handler for every server request. The two parameters are request

and response. The request is an instance of the http.IncomingMessage object and the

response is an instance of the http.ServerResponse object.

The http.ServerResponse is used to respond to the web request. The http.Incoming

Message object contains information about the request, such as the request URL. If you
need to get specific pieces of information from the URL (e.g., query string parameters),

you can use the Node url utility module to parse the string. Example 11-1 demonstrates
how the query string can be used to return a more custom message to the browser.

Example 11-1. Parsing out query string data

// load http module

var http = require('http');

// create http server

http.createServer(function (req, res) {

 // get query string and parameters
 var query = require('url').parse(req.url,true).query;

 // content header
 res.writeHead(200, {'content-type': 'text/plain'});

274 | Chapter 11: Node: JavaScript on the Server

 // write message and signal communication is complete
 var name = query.first ? query.first : "World";

 res.end("Hello, " + name + "!\n");
}).listen(8124);

console.log('Server running on 8124/');

A URL like the following:

http://shelleystoybox.com:8124/?first=Reader

results in a web page that reads “Hello, Reader!”

Notice in the application that I used require() in the code, and chained methods di‐
rectly on the returned module object. If you’re using an object multiple times, it makes
sense to assign it a variable at the top of the application. However, if you’re only using
the module object once, it can be more efficient to just load the object in place, and then

call the methods directly on it. In the code, the url module object has a parse() method

that parses out the URL, returning various components of it (href, protocol, host,

etc.). If you pass true as the second argument, the string is also parsed by another

module, querystring, which returns the query string as an object with each parameter
as an object property, rather than just returning a string.

In both the solution and in Example 11-1, a text message is returned as page output,

using the http.ServerResponse end() method. I could also have written the message

out using write(), and then called end():

 res.write("Hello, " + name + "!\n");
 res.end();

The important takeaway from either approach is you must call the response end()
method after all the headers and response body have been sent.

Chained to the end of the createServer() function call is another function call, this

time to listen(), passing in the port number for the server to listen in on. This port
number is also an especially important component of the application.

Traditionally, port 80 is the default port for most web servers (that aren’t using HTTPS,
which has a default port of 443). By using port 80, requests for the web resource don’t
need to specify a port when requesting the service’s URL. However, port 80 is also the
default port used by our more traditional web server, Apache. If you try to run the Node
service on the same port that Apache is using, your application will fail. The Node
application either must be standalone on the server, or run off a different port.

11.1. Responding to a Simple Browser Request | 275

I cover how to run both Node and Apache seemingly on port 80 at
the same time in Recipe 11.10.

You can also specify an IP address (host) in addition to the port. Doing this ensures that
people make the request to a specific host, as well as port. Not providing the host means
the application will listen for the request for any IP address associated with the server.
You can also specify a domain name, and Node resolves the host.

There are other arguments for the methods demonstrated, and a host of other methods,
but this will get you started. Refer to the Node documentation for more information.

See Also
Node documentation can be found at http://nodejs.org/api/.

11.2. Serving Up Formatted Data

Problem
Instead of serving up a web page or sending plain text, you want to return formatted
data, such as XML, to the browser.

Solution
Use Node module(s) to help format the data. For example, if you want to return XML,
you can use a module to create the formatted data:

var XMLWriter = require('xml-writer');

var xw = new XMLWriter;

// start doc and root element

xw.startDocument().startElement("resources");

// resource

xw.startElement("resource");
xw.writeElement("title","Ecma-262 Edition 6");
xw.writeElement("url","http://wiki.ecmascript.org/doku.php?id=harmony:specific
ation_drafts");

// end resource

xw.endElement();

276 | Chapter 11: Node: JavaScript on the Server

http://nodejs.org/api/

// end resources

xw.endElement();

Then create the appropriate header to go with the data, and return the data to the
browser:

 // end resources
 xw.endElement();

 res.writeHeader(200, {"Content-Type": "application/xml", "Access-Control-Allow
 -Origin": "*"});
 res.end(xw.toString(),"utf8");

Discussion
Web servers frequently serve up static or server-side generated resources, but just as
frequently, what’s returned to the browser is formatted data that’s then processed in the
web page before display.

In Chapter 8, in Recipe 8.2 we examined one use of data formatted as XML that’s gen‐
erated by a Node application on the server and then processed using the DOM API in
the browser. Parts of the server application have been excerpted out for the solution.

There are two key elements to generating and returning formatted data. The first is to
make use of whatever Node library to simplify the generation of the data, and the second
is to make sure that the header data sent with the data is appropriate for the data.

In the solution, the xml-writer module is used to assist us in creating proper XML.
This isn’t one of the modules installed with Node by default, so we have to install it using
npm, the Node Package Manager:

npm install xml-writer

This installs the xml-writer module in the local project directory, in the /node-
modules subdirectory. To install the module globally, which makes it available for all
projects, use:

npm install xml-writer -g

Then it’s just a simple matter of creating a new XML document, a root element, and
then each resource element, as demonstrated in the solution. It’s true, we could just build
the XML string ourselves, but that’s a pain. And it’s too easy to make mistakes that are
then hard to discover. One of the best things about Node is the enormous number of
modules available to do most anything we can think of. Not only do we not have to write
the code ourselves, but most of the modules have been thoroughly tested and actively
maintained.

11.2. Serving Up Formatted Data | 277

It’s important to understand that not all Node modules are actively
maintained. When you look at a module in GitHub, check when it
was last updated, and whether there are any old, unresolved issues.
You may not want to use a module that’s no longer being actively
updated. However, if you do like a module that’s not being actively
maintained, you can consider forking it and maintaining the fork,
yourself.

Once the formatted data is ready to return, create the header that goes with it. In the

solution, because the document is XML, the header content type is set to application/

xml before the data is returned as a string.

See Also
Using npm to install and manage Node modules is covered in Recipe 12.6.

11.3. Reading and Writing File Data

Problem
You want to read from or write to a locally stored file.

Solution
Node’s filesystem management functionality is included as part of the Node core, via

the fs module:

var fs = require('fs');

To read a file’s contents, use the readFile() function:

var fs = require('fs');

fs.readFile('main.txt', {encoding: 'utf8'},function(err,data) {
 if (err) {
 console.log("Error: Could not open file for reading\n");
 } else {
 console.log(data);
 }
});

To write to a file, use writeFile():

var fs = require('fs');

var buf = "I'm going to write this text to a file\n";
fs.writeFile('main2.txt', buf, function(err) {
 if (err) {

278 | Chapter 11: Node: JavaScript on the Server

 console.log(err);
 } else {
 console.log("wrote text to file");
 }
});

The writeFile() function overwrites the existing file. To append text to the file, use

appendText():

var fs = require('fs');

var buf = "I'm going to add this text to a file";
fs.appendFile('main2.txt', buf, function(err) {
 if (err) {
 console.log(err);
 } else {
 console.log("appended text to file");
 }
 });

Discussion
Node’s filesystem support is both comprehensive and simple to use. To read from a file,

use the readFile() function, which supports the following parameters:

• The filename, including the operating system path to the file if it isn’t local to the
application

• An options object, with options for encoding, as demonstrated in the solution, and

flag, which is set to r by default (for reading)

• A callback function with parameters for an error and the read data

In the solution, if I didn’t specify the encoding in my application, Node would have
returned the file contents as a raw buffer. Since I did specify the encoding, the file content
is returned as a string.

The writeFile() and appendFile() functions for writing and appending, respectively,

take parameters similar to readFile():

• The filename and path

• The string or buffer for the data to write to the file

• The options object, with options for encoding (w as default for writeFile() and

a as default for appendFile()) and mode, with a default value of 438 (0666 in Octal)

• The callback function, with only one parameter: the error

11.3. Reading and Writing File Data | 279

The options value of mode is used to set the file’s sticky and permission bits, if the file was
created because of the write or append. By default, the file is created as readable and
writable by the owner, and readable by the group and the world.

I mentioned that the data to write can be either a buffer or a string. A string cannot
handle binary data, so Node provides the Buffer, which is capable of dealing with either
strings or binary data. Both can be used in all of the filesystem functions discussed in
this section, but you’ll need to explicitly convert between the two types if you want to
use them both.

For example, instead of providing the utf8 encoding option when you use write

File(), you convert the string to a buffer, providing the desired encoding when you do:

var fs = require('fs');

var str = "I'm going to write this text to a file";
var buf = new Buffer(str, 'utf8');
fs.writeFile('mainbuf.txt', str, function(err) {
 if (err) {
 console.log(err);
 } else {
 console.log("wrote text to file");
 }
});

The reverse—that is, to convert the buffer to a string—is just as simple:

var fs = require('fs');

fs.readFile('main.txt', function(err,data) {
 if (err) {
 console.log(err.message);
 } else {
 var str = data.toString();
 console.log(str);
 }
});

The Buffer toString() function has three optional parameters: encoding, where to
begin the conversion, and where to end it. By default, the entire buffer is converted using
the utf8 encoding.

The readFile(), writeFile(), and appendFile() functions are asynchronous, mean‐
ing the won’t wait for the operation to finish before proceeding in the code. This is
essential when it comes to notoriously slow operations such as file access. There are

synchronous versions of each: readFileSync(), writeFileSync(), and appendFile

Sync(). I can’t stress enough that you should not use these variations. I only include a
reference to them to be comprehensive.

280 | Chapter 11: Node: JavaScript on the Server

Advanced
Another way to read or write from a file is to use the open() function in combination

with read() for reading the file contents, or write() for writing to the file. The advan‐
tages to this approach is more finite control of what happens during the process. The
disadvantage is the added complexity associated with all of the functions, including only
being able to use a buffer for reading from and writing to the file.

The parameters for open() are:

• Filename and path

• Flag

• Optional mode

• Callback function

The same open() is used with all operations, with the flag controlling what happens.
There are quite a few flag options, but the ones that interest us the most at this time are:

• r: Opens the file for reading; the file must exist

• r+: Opens the file for reading and writing; an exception occurs if the file doesn’t
exist

• w: Opens the file for writing, truncates the file, or creates it if it doesn’t exist

• wx: Opens the file for writing, but fails if the file does exist

• w+: Opens the file for reading and writing; creates the file if it doesn’t exist; truncates
the file if it exists

• wx+: Similar to w+, but fails if the file exists

• a: Opens the file for appending, creates it if it doesn’t exist

• ax: Opens the file for appending, fails if the file exists

• a+: Opens the file for reading and appending; creates the file if it doesn’t exist

• ax+: Similar to a+, but fails if the file exists

The mode is the same one mentioned earlier, a value that sets the sticky and permis‐

sion bits on the file if created, and defaults to 0666. The callback function has two pa‐
rameters: an error object, if an error occurs, and a file descriptor, used by subsequent
file operations.

The read() and write() functions share the same basic types of parameters:

• The open() methods callback file descriptor

• The buffer used to either hold data to be written or appended, or read

11.3. Reading and Writing File Data | 281

• The offset where the input/output (I/O) operation begins

• The buffer length (set by read operation, controls write operation)

• Position in the file where the operation is to take place; null if the position is the
current position

The callback functions for both methods have three arguments: an error, bytes read (or
written), and the buffer.

That’s a lot of parameters and options. The best way to demonstrate how it all works is
to create a complete Node application that opens a brand new file for writing, writes
some text to it, writes some more text to it, and then reads all the text back and prints

it to the console. Since open() is asynchronous, the read and write operations have to
occur within the callback function. Be ready for it in Example 11-2, because you’re going
to get your first taste of a concept known as callback hell.

Example 11-2. Demonstrating open, read, and write

var fs = require('fs');

fs.open('newfile.txt', 'a+',function(err,fd){
 if (err) {
 console.log(err.message);
 } else {
 var buf = new Buffer("The first string\n");
 fs.write(fd, buf, 0, buf.length, 0, function(err, written, buffer) {
 if (err) {
 console.log(err.message);
 } else {
 var buf2 = new Buffer("The second string\n");
 fs.write(fd, buf2, 0, buf2.length, 0,
 function(err, written2, buffer) {
 if (err) {
 console.log(err.message);
 } else {
 var length = written + written2;
 var buf3 = new Buffer(length);
 fs.read(fd, buf3, 0, length, 0,
 function(err, bytes, buffer) {
 if(err) {
 console.log(err.message);
 } else {
 console.log(buf3.toString());
 }
 });
 }
 });
 }
 });
 }
});

282 | Chapter 11: Node: JavaScript on the Server

To find the length of the buffers, I used length, which returns the number of bytes for
the buffer. This value doesn’t necessarily match the length of a string in the buffer, but
it does work in this usage.

That many levels of indentation can make your skin crawl, but the example demonstrates

how open(), read(), and write() work. These combinations of functions are what’s

used within the readFile(), writeFile(), and appendFile() functions to manage file
access. The higher level functions just simplify the most common file operations.

See Recipe 11.8 for a solution to all that nasty indentation.

11.4. Using let and Other ES 6 Additions in Node

Problem
You want to use some of the new ECMAScript 6 functionality, such as let in your Node
application, but they don’t seem to work.

Solution
You’ll need to use two command-line options when you run the Node application:

harmony, to add in support for whatever ECMAScript Harmony features are currently

implemented, and use-strict to enforce strict JavaScript processing:

node --harmony --use-strict open.js

Or you can trigger strict mode by adding the following line as the first in the application:

'use strict';

Discussion
Internally, Node runs on V8, Google’s open source JavaScript engine. You might assume
that the engine implements most if not all of the newest cutting-edge JavaScript func‐

tionality, including support for let. And it is true that Google has implemented much
of the newest JavaScript functionality.

However, some of the newer functionality isn’t available to a Node application unless

you specify the harmony command-line option, similar to having to turn the option on
in your browser. You can find this and other options by typing the following at the
command line:

man node

11.4. Using let and Other ES 6 Additions in Node | 283

Once the --harmony option has been given, you can use let instead of var. However,

you must also use strict mode to use let, either by providing the command-line flag, or

using use strict in the application:

'use strict';

let fs = require('fs');

fs.readFile('main.txt', {encoding: 'utf8', flag: 'r+'},function(err,data) {
 if (err) {
 console.log(err.message);
 } else {
 console.log(data);
 }
});

Recipe 10.1 discusses using let in the browser.

Node’s parent company, Joyent, maintains a GitHub page listing all of
the new ECMAScript 6 (Harmony) features currently implemented
in V8. It also lists out the flags you can use to utilize all, or a subset,
of the features.

11.5. Interactively Trying Out Node Code Snippets with
REPL

Problem
You can test JavaScript code snippets in jsFiddle or jsBin, but what about Node’s server-
based code snippets?

Solution
Use Node’s REPL (read-evalute-print-Loop), an interactive command-line version of
Node that can run any code snippet.

To use REPL, type node at the command line without specifying an application to run.

If you wish, you can also specify a flag, like --harmony, to use the ECMAScript 6
functionality:

$ node --harmony

You can then specify JavaScript in a simplified emacs (sorry, no vi) line-editing style.
You can import libraries, create functions—whatever you can do within a static appli‐
cation. The main difference is that each line of code is interpreted instantly:

> var f = function(name) {
... console.log('hello ' + name);

284 | Chapter 11: Node: JavaScript on the Server

http://bit.ly/1xNhKR1

... }
undefined

> f('world');
hello world
undefined

When you’re finished, just exit the program:

> .exit

Discussion
REPL can be started standalone or within another application if you want to set certain
features. You type in the JavaScript as if you’re typing in the script in a text file. The main
behavioral difference is you might see a result after typing in each line, such as the

undefined that shows up in the runtime REPL.

But you can import modules:

> var fs = require('fs');

And you can access the global objects, which we just did when we used require().

The undefined that shows after typing in some code is the return value for the execution
of the previous line of code. Setting a new variable and creating a function are some of

the JavaScript that returns undefined, which can get quickly annoying. To eliminate

this behavior, as well as make some other modifications, you can use the REPL.start()
function within a small Node application that triggers REPL (but with the options you
specify).

The options you can use are:

• prompt: Changes the prompt that shows (default is >)

• input: Changes the input readable stream (default is process.stdin, which is the
standard input)

• output: Changes the output writable stream (default is process.stdout, the stan‐
dard output)

• terminal: Set to true if the stream should be treated like a TTY, and have ANSI/
VT100 escape codes written

• eval: Function used to replace the asynchronous eval() function used to evaluate
the JavaScript

• useColors: Set to true to set output colors for the writer function (default is based
on the terminal’s default values)

• useGlobal: Set to true to use the global object, rather than running scripts in a
separate context

11.5. Interactively Trying Out Node Code Snippets with REPL | 285

• ignoreUndefined: Set to true to eliminate the undefined return values

• writer: The function that returns the formatted result from the evaluated code to

the display (default is the util.inspect function)

An example application that starts REPL with a new prompt, ignoring the undefined
values, and using colors is:

var net = require("net"),
 repl = require("repl");

var options = {
 prompt: '-- ',
 useColors: true,
 ignoreUndefined: true,
};

repl.start(options);

Both the net and repl modules are necessary. The options we want are defined in the

options object and then passed as parameter to repl.start(). When we run the ap‐
plication, REPL is started but we no longer have to deal with undefined values:

node reciple11-5.js
-- var f = function (name) {
... console.log('hello ' + name);
... }
-- f('world');
hello world

As you can see, this is a much cleaner output without all those messy undefined print
outs.

Extra: Wait a Second, What global Object?
Caught that, did you?

One difference between JavaScript in Node and JavaScript in the browser is the global

scoping. In a browser, when you create a variable outside a function, using var, it belongs

to the top-level global object, which we know as window:

var test = 'this is a test';
console.log(window.test); // 'this is a test'

This has been a bit of a pain, too, as we get namespace collisions among all our older
libraries.

In Node, each module operates within its own separate context, so modules can declare
the same variables, and they won’t conflict if they’re all used in the same application.

286 | Chapter 11: Node: JavaScript on the Server

However, there are objects accessible from Node’s global object. We’ve used a few in

previous examples, including console, the Buffer object, and require(). Others include

some very familiar old friends: setTimeout(), clearTimeout(), setInterval(), and

clearInterval().

11.6. Getting Input from the Terminal

Problem
You want to get input from the application user via the terminal.

Solution
Use Node’s Readline module.

To get data from the standard input, use code such as the following:

var readline = require('readline');

var rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});

rl.question(">>What's your name? ", function(answer) {
 console.log("Hello " + answer);
 rl.close();
});

Discussion
The Readline module provides the ability to get lines of text from a readable stream.

You start by creating an instance of the Readline interface with createInterface()
passing in, at minimum, the readable and writable streams. You need both, because
you’re writing prompts, as well as reading in text. In the solution, the input stream is

process.stdin, the standard input stream, and the output stream is process.stdout.
In other words, input and output are from, and to, the command line.

The solution used the question() function to post a question, and provided a callback

function to process the response. Within the function, close() was called, which closes
the interface, releasing control of the input and output streams.

You can also create an application that continues to listen to the input, taking some
action on the incoming data, until something signals the application to end. Typically
that something is a letter sequence signaling the person is done, such as the word exit.

This type of application makes use of other Readline functions, such as setPrompt() to

11.6. Getting Input from the Terminal | 287

change the prompt given the individual for each line of text, prompt(), which prepares

the input area, including changing the prompt to the one set by setPrompt(), and

write(), to write out a prompt. In addition, you’ll also need to use event handlers to

process events, such as line, which listens for each new line of text.

Example 11-3 contains a complete Node application that continues to process input
from the user until the person types in exit. Note that the application makes use of

process.exit(). This function cleanly terminates the Node application.

Example 11-3. Access numbers from stdin until the user types in exit

var readline = require('readline');
var sum = 0;

var rl = readline.createInterface({
 input: process.stdin,
 output: process.stdout
});

console.log("Enter numbers, one to a line. Enter 'exit' to quit.");

rl.setPrompt('>> ');
rl.prompt();

rl.on('line', function(input) {
 input = input.trim();
 if (input == 'exit') {
 rl.close();
 return;
 } else {
 sum+= Number(input);
 }
 rl.prompt();
});

// user typed in 'exit'

rl.on('close', function() {
 console.log("Total is " + sum);
 process.exit(0);
});

Running the application with several numbers results in the following output:

Enter numbers, one to a line. Enter 'exit' to quite.
>> 55
>> 209
>> 23.44
>> 0
>> 1
>> 6
>> exit
Total is 294.44

288 | Chapter 11: Node: JavaScript on the Server

I used console.log() rather than the Readline interface write() to write the prompt
followed by a new line, and to differentiate the output from the input.

11.7. Working with Node Timers and Understanding the
Node Event Loop

Problem
You need to use a timer in a Node application, but you’re not sure which of Node’s three
timers to use, or how accurate they are.

Solution
If your timer doesn’t have to be precise, you can use setTimeout() to create a single

timer event, or setInterval() if you want a reoccurring timer:

setTimeout(function() {}, 3000);

setInterval(function() {}, 3000);

Both function timers can be canceled:

var timer1 = setTimeout(function() {}, 3000);
clearTimeout(timer1);

var timer2 = setInterval(function() {}, 3000);
clearInterval(timer2);

However, if you need more finite control of your timer, and immediate results, you

might want to use setImmediate(). You don’t specify a delay for it, as you want the
callback to be invoked immediately after all I/O callbacks are processed but before any

setTimeout() or setInterval() callbacks:

setImmediate(function() {});

It, too, can be cleared, with clearImmediate().

Discussion
Node, being JavaScript based, runs on a single thread. It is synchronous. However, input/
output (I/O) and other native API access either runs asynchronously or on a separate
thread. Node’s approach to managing this timing disconnect is the event loop.

In your code, when you perform an I/O operation, such as writing a chunk of text to a
file, you specify a callback function to do any post-write activity. Once you’ve done so,
the rest of your application code is processed. It doesn’t wait for the file write to finish.
When the file write has finished, an event signaling the fact is returned to Node, and

11.7. Working with Node Timers and Understanding the Node Event Loop | 289

pushed on to a queue, waiting for process. Node processes this event queue, and when
it gets to the event signaled by the completed file write, it matches the event to the
callback, and the callback is processed.

As a comparison, think of going into a deli and ordering lunch. You wait in line to place
your order, and are given an order number. You sit down and read the paper, or check
your Twitter account while you wait. In the meantime, the lunch orders go into another
queue for deli workers to process the orders. But each lunch request isn’t always finished
in the order received. Some lunch orders may take longer. They may need to bake or
grill for a longer time. So the deli worker processes your order by preparing your lunch
item and then placing it in an oven, setting a timer for when it’s finished, and goes on
to other tasks.

When the timer pings, the deli worker quickly finishes his current task, and pulls your
lunch order from the oven. You’re then notified that your lunch is ready for pickup by
your order number being called out. If several time-consuming lunch items are being
processed at the same time, the deli worker processes them as the timer for each item
pings, in order.

All Node processes fit the pattern of the deli order queue: first in, first to be sent to the
deli (thread) workers. However, certain operations, such as I/O, are like those lunch
orders that need extra time to bake in an oven or grill, but don’t require the deli worker
to stop any other effort and wait for the baking and grilling. The oven or grill timers are
equivalent to the messages that appear in the Node event loop, triggering a final action
based on the requested operation.

You now have a working blend of synchronous and asynchronous processes. But what
happens with a timer?

Both setTimeout() and setInterval() fire after the given delay, but what happens is
a message to this effect is added to the event loop, to be processed in turn. So if the event
loop is particularly cluttered, there is a delay before the the timer functions’ callbacks
are called:

It is important to note that your callback will probably not be called in exactly (delay)
milliseconds. Node.js makes no guarantees about the exact timing of when the callback
will fire, nor of the ordering things will fire in. The callback will be called as close as
possible to the time specified.

— Node Timers documentation

For the most part, whatever delay happens is beyond the kin of our human senses, but
it can result in animations that don’t seem to run smoothly. It can also add an odd effect
to other applications.

In Recipe 16.3, I created a scrolling timeline in SVG, with data fed to the client via
WebSockets. To emulate real-world data, I used a three-second timer and randomly

290 | Chapter 11: Node: JavaScript on the Server

generated a number to act as a data value. In the server code, I used setInterval(),
because the timer is reoccurring:

var app = require('http').createServer(handler)
 , fs = require('fs');
var ws = require("nodejs-websocket");

app.listen(8124);

// serve static page

function handler (req, res) {
 fs.readFile(__dirname + '/drawline.html',
 function (err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading drawline.html');
 }
 res.writeHead(200);
 res.end(data);
 });
}

// data timer

function startTimer() {
 setInterval(function() {
 var newval = Math.floor(Math.random() * 100) + 1;
 if (server.connections.length > 0) {
 console.log('sending ' + newval);
 var counter = {counter: newval};
 server.connections.forEach(function(conn, idx) {
 conn.sendText(JSON.stringify(counter), function() {
 console.log('conn sent')
 });
 });
 }
 },3000);
}

// websocket connection

var server = ws.createServer(function (conn) {
 console.log('connected');
 conn.on("close", function (code, reason) {
 console.log("Connection closed")
 });
}).listen(8001, function() {
 startTimer(); }
);

I included console.log() calls in the code so you can see that the timer event in com‐

parison to the communication responses. When the setInterval() function is called,

11.7. Working with Node Timers and Understanding the Node Event Loop | 291

it’s pushed into the process. When its callback is processed, the WebSocket communi‐
cations are also pushed into the queue.

The solution uses setInterval(), one of Node’s three different types of timers. The

setInterval() function has the same format as the one we use in the browser. You
specify a callback for the first function, provide a delay time (in milliseconds), and any
potential arguments. The timer is going to fire in three seconds, but we already know
that the callback for the timer may not be immediately processed.

The same applies to the callbacks passed in the WebSocket sendText() calls. These are

based on Node’s Net (or TLS, if secure) sockets, and as the socket.write() (what’s used

for sendText()) documentation notes:

The optional callback parameter will be executed when the data is finally written out—
this may not be immediately.

— Node Net documentation

If you set the timer to invoke immediately (giving zero as the delay value), you’ll see
that the data sent message is interspersed with the communication sent message (before
the browser client freezes up, overwhelmed by the socket communications—you don’t
want to use a zero value in the application again).

However, the timelines for all the clients remain the same because the communications
are sent within the timer’s callback function, synchronously, so the data is the same for
all of the communications—it’s just the callbacks that are handled, seemingly out of
order.

Earlier I mentioned using setInterval() with a delay of zero. In actuality, it isn’t exactly
zero—Node follows the HTML5 specification that browsers adhere to, and “clamps” the
timer interval to a minimum value of four milliseconds. While this may seem to be too
small of an amount to cause a problem, when it comes to animations and time-critical
processes the time delay can impact the overall appearance and/or function.

To bypass the constraints, Node developers utilized Node’s process.nextTick() in‐

stead. The callback associated with process.nextTick() is processed on the next event
loop go around, usually before any I/O callbacks (though there are constraints, which
I’ll get to in a minute). No more pesky four millisecond throttling. But then, what hap‐

pens if there’s an enormous number of recursively called process.nextTick() calls?

To return to our deli analogy, during a busy lunch hour, workers can be overrun with
orders and so caught up in trying to process new orders that they don’t respond in a
timely manner to the oven and grill pings. Things burn when this happens. If you’ve
ever been to a well-run deli, you’ll notice the counter person taking the orders will assess
the kitchen before taking the order, tossing in some slight delay, or even taking on some
of the kitchen duties, letting the people wait just a tiny bit longer in the order queue.

292 | Chapter 11: Node: JavaScript on the Server

The same happens with Node. If process.nextTick() were allowed to be the spoiled
child, always getting its way, I/O operations would get starved out. Node uses another

value, process.maxTickDepth, with a default value of 1000 to constrain the number of

process.next() callbacks that are processed before the I/O callbacks are allowed to
play. It’s the counter person in the deli.

In more recent releases of Node, the setImmediate() function was added. This function
attempts to resolve all of the issues associated with the timing operations and create a

happy medium that should work for most folks. When setImmediate() is called, its

callback is added after the I/O callbacks, but before the setTimeout() and setInterv

al() callbacks. We don’t have the four millisecond tax for the traditional timers, but we

also don’t have the brat that is process.nextTick().

To return one last time to the deli analogy, setImmediate() is a customer in the order
queue who sees that the deli workers are overwhelmed with pinging ovens, and politely
states he’ll wait to give his order.

However, you do not want to use setImmediate() in the scrolling
timeline example, as it will freeze your browser up faster than you
can blink.

11.8. Managing Callback Hell

Problem
You want to do something such as check to see if a file is present, and if so open it and
read the contents. Node provides this functionality, but to use it asynchronously, you
end up with nested code (noted by indentations) in the code that makes the application
unreadable and difficult to maintain.

Solution
Use a module such as Async. For instance, in Example 11-2 we saw definitely an example
of nested callbacks, and this is a fairly simple piece of code: open a file, write two lines
to it, and then read them back and output them to the console:

var fs = require('fs');

fs.open('newfile.txt', 'a+',function(err,fd){
 if (err) {
 console.log(err.message);
 } else {
 var buf = new Buffer("The first string\n");
 fs.write(fd, buf, 0, buf.length, 0, function(err, written, buffer) {

11.8. Managing Callback Hell | 293

 if (err) {
 console.log(err.message);
 } else {
 var buf2 = new Buffer("The second string\n");
 fs.write(fd, buf2, 0, buf2.length, 0,
 function(err, written2, buffer) {
 if (err) {
 console.log(err.message);
 } else {
 var length = written + written2;
 var buf3 = new Buffer(length);
 fs.read(fd, buf3, 0, length, 0,
 function(err, bytes, buffer) {
 if(err) {
 console.log(err.message);
 } else {
 console.log(buf3.toString());
 }
 });
 }
 });
 }
 });
 }
});

Notice the messy indentation for all the nested callbacks. We can clean it up using Async:

var fs = require('fs');
var async = require('async');

async.waterfall([
 function openFile(callback) {
 fs.open('newfile.txt', 'a+',function (err, fd){
 callback(err,fd);
 });
 },
 function writeBuffer(fd, callback) {
 var buf = new Buffer("The first string\n");
 fs.write(fd, buf, 0, buf.length, 0, function(err, written, buffer) {
 callback(err, fd, written);
 });
 },
 function writeBuffer2(fd, written, callback) {
 var buf = new Buffer("The second string\n");
 fs.write(fd, buf, 0, buf.length, 0, function(err, written2, buffer){
 callback(err, fd, written, written2);
 });
 },
 function readFile(fd, written, written2, callback) {
 var length = written + written2;
 var buf3 = new Buffer(length);
 fs.read(fd, buf3, 0, length, 0, function(err, bytes, buffer) {

294 | Chapter 11: Node: JavaScript on the Server

 callback (err, buf3.toString());
 });
 }
], function (err, result) {
 if (err) {
 console.log(err);
 } else {
 console.log(result);
 }
});

Discussion
Async is a utility module that detangles the callback spaghetti that especially afflicts
Node developers. It can now be used in the browser, as well as Node, but it’s particularly
useful with Node.

Node developers can install Async using npm:

npm install async

To access the source for the browser, go to the module’s GitHub page.

Async provides functionality that we’re now finding in native JavaScript, such as map,

filter, and reduce. However, the functionality I want to focus on is its asynchronous
control management.

The solution used Async’s waterfall(), which implements a series of tasks, passing the
results of prior tasks to those next in the queue. If an error occurs in any task, when the
error is passed in the callback to the next task, Async stops the sequence and the error
is processed.

Comparing the older code and the new Async-assisted solution, the first task is opening
a file for writing. In the older code, if an error occurs, it’s printed out. Otherwise, a new
Buffer is created and used to write a string to the newly opened file. In the Async version,

though, the functionality to create the file is embedded in a new function openFile(),

included as the first element in an array passed to the waterfall() function. The

openFile() function takes one parameter, a callback() function, which is called once

the file is opened, in the fs.open() callback function and takes as parameters the error
object and the file descriptor.

The next task is to write a string to the newly created file. In the old code, this happens

directly in the callback function attached to the fs.open() function call. In the Async

11.8. Managing Callback Hell | 295

https://github.com/caolan/async

version, though, writing a string to the file happens in a new function, added as second

task to the waterfall() array. Rather than just taking a callback as argument, this

function, writerBuffer(), takes the file descriptor fd returned from fs.open(), as well
as a callback function. In the function, after the string is written out to the file using

fs.write(), the number of bytes written is captured and passed in the next callback,
along with the error and file descriptor.

The following task is to write out a second string. Again, in the old code, this happens

within the callback function, but this time, the first fs.write()’s callback. At this time,
we’re looking at the third nested callback in the old code, but in the Async version, the

second written string operation is just another task and another function in the water

fall() task array. The function, writeBuffer2(), accepts the file descriptor, the num‐
ber of bytes written out in the first write task, and, again, a callback function. Again, it
writes the new string out and passes the error, file descriptor, the bytes written out in
the first write, and now the bytes written out on the second to the callback function.

In the old code within the fourth nested callback function (this one for the second

fs.write() function), the count of written bytes is added and used in a call to fs.read()
to read in the contents of the newly created file. The file contents are then output to the
console.

In the Async modified version, the last task function, readFile(), is added to the task
array and it takes a file descriptor, the two writing buffer counts, and a final callback as

parameters. In the function, again the two byte counts are added and used in fs.read()
to read in the file contents. These contents are passed, with the error object, in the last
callback function call.

The results, or an error, are processed in the waterfall()’s own callback function.

Rather than a callback nesting four indentations deep, we’re looking at a sequence of
function calls in an array, with an absolute minimum of callback nesting. And we could
go on and on, way past the point of what would be insane if we had to use the typical
nested callback.

I used waterfall() because this control structure implies a series of tasks, each imple‐
mented in turn, and each passing data to the next task. It takes two arguments: the task
array and a callback with an error and an optional result. Async also supports other

control structures such as parallel(), for completing tasks in parallel; compose(),

which creates a function that is a composition of passed functions; and series(), which
accomplishes the task in a series but each task doesn’t pass data to the next (as happens

with waterfall().

296 | Chapter 11: Node: JavaScript on the Server

11.9. Accessing Command-Line Functionality Within a
Node Application

Problem
You want to access command-line functionality, such as ImageMagick, from within a
Node application.

Solution
Use Node’s child_process module. For example, if you want to use ImageMagick’s

identify, and then print out the data to the console, use the following:

var spawn = require('child_process').spawn,
 imcmp = spawn('identify',['-verbose', 'osprey.jpg']);

imcmp.stdout.on('data', function (data) {
 console.log('stdout: ' + data);
});

imcmp.stderr.on('data', function (data) {
 console.log('stderr: ' + data);
});

imcmp.on('exit', function (code) {
 console.log('child process exited with code ' + code);
});

Discussion
The child_process module provides four methods to run command-line operations
and process returned data:

• spawn(command, [args], [options]): This launches a given process, with op‐

tional command-line arguments, and an options object specifying additional in‐

formation such as cwd to change directory and uid to find the user ID of the process.

• exec(command, [options], callback): This runs a command in a shell and buf‐
fers the result.

• execFile(file, [args],[options],[callback]): This is like exec() but exe‐
cutes the file directly.

• fork(modulePath, [args],[options]): This is a special case of spawn(), and
spawns Node processes, returning an object that has a communication channel built
in. It also requires a separate instance of V8 with each use, so use sparingly.

11.9. Accessing Command-Line Functionality Within a Node Application | 297

The child_process methods have three streams associated with them: stdin, stdout,

and stderr. The spawn() method is the most widely used of the child_process meth‐
ods, and the one used in the solution. From the solution top, the command given is the

ImageMagick identify command-line application, which can return a wealth of in‐

formation about an image. In the args array, the code passes in the --verbose flag, and

the name of the image file. When the data event happens with the child_pro

cess.stdout stream, the application prints it to the console. The data is a Buffer that

uses toString() implicitly when concatenated with another string. If an error happens,
it’s also printed out to the console. A third event handler just communicates that the
child process is exiting.

If you want to process the result as an array, modify the input event handler:

imcmp.stdout.on('data', function (data) {
 console.log(data.toString().split("\n"));
});

Now the data is processed into an array of strings, split on the new line within the

identify output.

If you want to pipe the result of one process to another, you can with multiple child

processes. If, in the solution, I want to pipe the result of the identify command to

grep, in order to return only a subset of the information, I can do this with two different

spawn() commands, as shown in Example 11-4.

In the code, the resulting data from the identify command is written to the stdin input

stream for the grep command, and the grep’s data is then written out to the console.

Example 11-4. Spawning two child processes to pipe the results of one command to
another

var spawn = require('child_process').spawn,
 imcmp = spawn('identify',['-verbose', 'fishies.jpg']),
 grep = spawn('grep', ['Resolution']);

imcmp.stdout.on('data', function (data) {
 grep.stdin.write(data);
});

imcmp.stderr.on('data', function (data) {
 console.log('stderr: ' + typeof data);
});

grep.stdout.on('data', function (data) {
 console.log('grep data: ' + data);
});

grep.stderr.on('data', function (data) {
 console.log('grep error: ' + data);

298 | Chapter 11: Node: JavaScript on the Server

});
imcmp.on('close', function (code) {
 console.log('child process close with code ' + code);
 grep.stdin.end();
});

grep.on('close', function(code) {
 console.log('grep closes with code ' + code);
});

In addition, the application also captures the close event when the streams terminate

(not necessarily when the child processes exit). In the close event handler for the

identify child process, the stdin.end() method is called for grep to ensure it
terminates.

The result of running the application on the test image is:

child process close with code 0
grep data: Resolution: 240x240
 exif:ResolutionUnit: 2
 exif:XResolution: 2400000/10000
 exif:YResolution: 2400000/10000

grep closes with code 0

Note the order: the original identify child process stream terminates once its data is

passed to the grep command, which then does its thing and prints out the target data

(the photo resolution). Then the grep command’s close event is processed.

Instead of using a child process, if you have either GraphicsMagick or ImageMagick
installed, you can use the gm Node module for accessing the imaging capability. Just
install it as:

npm install gm

Of course, you can still use the child process, but using the GraphicsMagick module can
be simpler.

Extra: Using Child Processes with Windows
The solution demonstrates how to use child processes in a Linux environment. There
are similarities and differences between using child processes in Linux/Unix, and using
them in Windows.

In Windows, you can’t explicitly give a command with a child process; you have to

invoke the Windows cmd.exe executable and have it perform the process. In addition,

the first flag to the command is /c, which tells cmd.exe to process the command and
then terminate.

11.9. Accessing Command-Line Functionality Within a Node Application | 299

http://aheckmann.github.io/gm/

Borrowing an example from Learning Node (O’Reilly), in the following code, the

cmd.exe command is used to get a directory listing, using the Windows dir command:

var cmd = require('child_process').spawn('cmd', ['/c', 'dir\n']);

cmd.stdout.on('data', function (data) {
 console.log('stdout: ' + data);
});

cmd.stderr.on('data', function (data) {
 console.log('stderr: ' + data);
});

cmd.on('exit', function (code) {
 console.log('child process exited with code ' + code);
});

11.10. Running Node and Apache on the Same Port

Problem
You want your users to be able to access your Node application without having to specify
a port number. You can run it at port 80, but then your Node application is in conflict
with your Apache web server.

Solution
There are a couple of options you can use to run Node and Apache seemingly on port
80 at the same time. One is to use nginx, as a reserve proxy for both Apache and Node.
A reverse proxy intercepts a web request and routes it to the correct service. Using a
reverse proxy, you can start Node on a different port address, and when the reverse
proxy gets a request for the Node application, it properly routes it to the appropriate
port.

Another option is to use either Node as the reverse proxy to Apache, or Apache as a
reverse proxy to Node. In the discussion, I cover the steps to using Apache as a reverse
proxy for a Node application.

Discussion
We take our server infrastructures for granted when we’re developing traditional web
server applications. Node, though, changes all the rules, and we’re having to become
more familiar with how it all holds together.

For instance, traditional web servers are listening on a specific port, though we don’t
use a port number in our URLs. However, they’re listening on port 80, which is the
default port when you’re using Hypertext Transfer Protocol (HTTP).

300 | Chapter 11: Node: JavaScript on the Server

http://shop.oreilly.com/product/0636920024606.do

If you’re using Apache and attempt to start a Node web service on port 80, it will fail. If
Apache isn’t running, you can still run into problems starting your Node application on
port 80, because you’re doing so without administrative (root) privileges. You’ll get an
EACCES error (“permission denied”) because starting an application on a port less than
1024 requires root privileges.

So you might try to then run the application using sudo, which allows you to run an
application as root:

sudo node app.js

Chances are if you do have root privileges your application will start. But it also increases
the vulnerability of your server. Very few applications are hardened enough to run with
root privileges and that includes Apache, which actually spawns a worker thread running
as a nonprivileged user to respond to all web requests.

There are options for running Apache and a Node application on the same server and
seemingly both on port 80. One popular option is to use Nginx (pronounced as “Engine
X”) as a reverse proxy for both Apache and the Node application. Another is to use a
separate server for the Node application, which isn’t an impossible solution considering
how affordable Virtual Private Servers (VPS) have become.

Another option for Node application deployment is to use a cloud
server or other third-party service that enables Node Hosting. Among
some of the Node deployment services are Joyent, host company for
Node, Nodejitsu, and Codeship.

However, if you’re interested in as simple a solution as possible, and the performance
requirements for your Node application are such that Apache’s single-threaded pro‐
cessing won’t be detrimental, you can use Apache as a reverse proxy for your Node
application.

A reverse proxy is when the user accesses a specific URL, and the server that receives
the request then sends it to the correct application. To use Apache as a reverse proxy
for a Node application, you need to ensure that two Apache modules are enabled:

sudo a2enmod proxy
sudo a2enmod proxy_http

Next, you’ll need to configure a virtual host for your Node application. I’m currently
running a Ghost weblog (Node-based) on the same server as my main Apache server.
The virtual host file I created for this weblog is contained in the following code snippet:

<VirtualHost ipaddress:80>
 ServerAdmin myemail
 ServerName shelleystoybox.com

11.10. Running Node and Apache on the Same Port | 301

https://www.joyent.com/
https://www.nodejitsu.com/
https://www.codeship.io/

 ErrorLog path-to-logs/error.log
 CustomLog path-to-logs/access.log combined

 ProxyRequests off

 <Location />
 ProxyPass http://ipaddress:2368/
 ProxyPassReverse http://ipaddress:2368/
 </Location>
</VirtualHost>

You’ll need to replace the IP address with your own. Note that the request is proxied to
a specific port the Node application is listening to (in this case, port 2368). It’s essential

that you set ProxyRequests to off, to ensure forward proxying is turned off. Keeping
forward proxying open can allow your server to be used to access other sites, while
hiding the actual origins of the request.

Then it’s a matter of just enabling the virtual host and reloading Apache:

a2ensite shelleystoybox.com
service apache2 reload

People can also access the Ghost weblog by directly specifying the port address. The
only way to prevent this is to disable direct access to the port from outside the server.
In my Ubuntu system, I configured this with an iptables rule:

iptables -A input -i eth0 -p tcp --dport 2368 -j DROP

But unless you really need this, use caution when messing around with iptables.

Now I can set my Node application to listen in on port 2368, and start the application
without root privileges.

The main drawback to using Apache as a reverse proxy for a Node application is that
Apache is single-threaded, which can cramp Node’s style. If performance is a problem
for you, then you should consider the other approaches I outlined earlier.

Read more about Apache mod_proxy at http://httpd.apache.org/docs/
2.2/mod/mod_proxy.html.

11.11. Keeping a Node Instance Up and Running

Problem
You’re in Linux, and you want to start up a Node application, but you also don’t want
to keep a terminal window open while the application is running.

302 | Chapter 11: Node: JavaScript on the Server

http://httpd.apache.org/docs/2.2/mod/mod_proxy.html
http://httpd.apache.org/docs/2.2/mod/mod_proxy.html

Solution
Use Forever to ensure the application is restarted if it’s ever shut down:

forever start -l forever.log -o out.log -e err.log index.js

Discussion
Forever is a CLI (Command-Line Interface) tool that can be used to not only start a
Node application, but to ensure the application is restarted if, for some reason, it’s shut
down.

Install Forever using npm:

sudo npm install forever -g

Then start your Node application, making use of one or more of Forever’s flags. For my
Ghost installation, I used:

forever start -l forever.log -o out.log -e err.log index.js

The start action is one of the many available with Forever. This action starts the Node
application as a Unix daemon or background process. It makes use of node.daemon,
another Node module that can be used to create Unix daemons.

The command line also makes use of three options:

• -l to create a log file

• -o to log stdout from the script to the specified output file

• -e to log stderr from the script to the specified error file

Some other Forever actions are:

• stop to stop the daemon script

• restart to restart the daemon script

• stopall to stop all scripts

• restartall to restart all scripts

• list to list all running scripts

• logs to list log files for running scripts

Forever will restart the application if it shuts down for whatever reason. However, if the
entire system is rebooted, you’ll need an additional step, to ensure that Forever is started.
For my Node Ghost weblog, I used Ubuntu’s Upstart program. To do this, I created a
configuration file in /etc/init named ghost.conf with the following text (generalized for
the book):

11.11. Keeping a Node Instance Up and Running | 303

/etc/init/ghost.conf
description "Ghost"

start on (local-filesystems)
stop on shutdown

setuid your-userid
setgid your-grpid

script
 export HOME="path-to-ghost"
 cd path-to-ghost
 exec /usr/local/bin/forever -a -l
 path-to-logfiles/forever.log --sourceDir path-to-ghost index.js

end script

When my server reboots, Forever restarts my Ghost weblog’s daemon, using the given
nonroot user and group IDs.

11.12. Monitoring Application Changes and Restarting

Problems
Development can get rather active, and it can be difficult to remember to restart an
application when the code has changed.

Solution
Use the nodemon utility to watch your source code and restart your application when
the code changes.

To use, first install nodemon:

npm install -g nodemon

Instead of starting the application with node, use nodemon instead:

nodemon serverapp.js

Discussion
The nodemon utility monitors the files within the directory where it was started. If any
of the files change, the Node application is automatically restarted. This is a handy way
of making sure your running Node application reflects the most recent code changes.

Needless to say, nodemon is not a tool you want to use in a production system. You don’t
want tools to automatically start when a bit of code changes, because the code change

304 | Chapter 11: Node: JavaScript on the Server

may not be production ready. Production systems do better when rollouts are triggered
by human intention not accidental software intervention.

If the application accepts values when started, you can provide these on the command

line, just as with Node, but precede them with double dashes (--) flag, which signals to

nodemon to ignore anything that follows, and pass it to the application:

nodemon serverapp.js -- -param1 -param2

When started, you should get feedback similar to the following:

14 Jul 15:11:40 - [nodemon] v1.2.1
14 Jul 15:11:40 - [nodemon] to restart at any time, enter `rs`
14 Jul 15:11:40 - [nodemon] watching: *.*
14 Jul 15:11:40 - [nodemon] starting `node helloworld.js`
Server running on 8124/

If the code changes, you’ll see something similar to the following:

14 Jul 15:13:42 - [nodemon] restarting due to changes...
14 Jul 15:13:42 - [nodemon] starting `node helloworld.js`
Server running on 8124/

If you want to manually restart the application, just type rs into the terminal where
nodemon is running. You can also use a configuration file with the utility, monitor only
select files or subdirectories, and even use it to run non-Node applications.

The nodemon utility can also be used with Forever, discussed in Recipe 11.11. If the Node
application crashes, Forever restarts it, and if the source code for the application changes,

nodemon restarts the application. To use the two together, you do need to use the --

exitcrash flag, to signal nodemon to exit if the application crashes:

forever nodemon --exitcrash serverapp.js

You can use this combination in production, but I’m wary of restarting applications
automatically when code changes. However, you do have this option with this utility.

11.13. Screen Scraping with Request

Problem
You want to access a web resource from within your Node application.

Solution
Use Request, one of the most popular and widely used Node modules. It’s installed with
npm:

npm install request;

and can be used as simply as:

11.13. Screen Scraping with Request | 305

var request = require('request');
request('http://oreilly.com', function (error, response, body) {
 if (!error && response.statusCode == 200) {
 console.log(body);
 }
})

Discussion
Request provides support for the HTTP methods of GET, POST, DELETE, and PUT.
In the case of GET, if the status indicates success (a status code of 200), you can then
process the returned data (formatted as HTML in this instance) however you would
like.

You can stream the result to a file using the filesystem module:

var request = require('request');
var fs = require('fs');

request('http://burningbird.net/flame.png')
 .pipe(fs.createWriteStream('flame.png'));

You can also stream a system file to a remote server with PUT, as noted in the module’s
documentation:

fs.createReadStream('flame.json')
 .pipe(request.put('http://mysite.com/flame.json'))

You can also handle multipart form uploading and authentication.

An interesting use of Request is to scrape a website or resource and then use other
functionality to query for specific information within the returned material. A popular
module to use for querying is Cheerio, which is a very tiny implementation of jQuery
core intended for use in the server. In Example 11-5, a simple application is created to

pull in all links (a) contained in h2 elements (typical for individual article titles in a main
page) and then list the text of the link to a separate output.

Example 11-5. Screen scraping made easy with Request and Cheerio

var request = require('request');
var cheerio = require('cheerio');

request('http://burningbird.net', function (error, response, html) {
 if (!error && response.statusCode == 200) {
 var $ = cheerio.load(html);
 $('h2 a').each(function(i,element) {
 console.log(element.children[0].data);
 });
 }
});

306 | Chapter 11: Node: JavaScript on the Server

After the successful request is made, the HTML returned is passed to Cheerio via the

load() method, and the result is assigned to a dollar sign variable ($), so we can use the
result in a manner we’re used to, when using jQuery.

The element pattern of h2 a is then used to query for all matches, and the result is

processed using the each method, accessing the text for each heading. The output to
the console should be the titles of all the articles on the main page of the weblog.

11.14. Creating a Command-Line Utility with Help From
Commander

Problem
You want to turn your Node module into a Linux command-line utility, including sup‐
port for command-line options/arguments.

Solution
To convert your Node module to a Linux command-line utility, add the following line
as the first line of the module:

#!/usr/bin/env node

To provide for command-line arguments/options, including the ever important --

help, make use of the Commander module:

var program = require('commander');

program
 .version ('0.0.1')
 .option ('-s, --source [website]', 'Source website')
 .option ('-f, --file [filename]', 'Filename')
 .parse(process.argv);

Discussion
Converting a Node module to a command-line utility is quite simple. First, add the
following line to the module:

#!/usr/bin/env node

Change the module file’s mode to an executable, using CHMOD:

chmod a+x snapshot

Notice that I dropped the .js from the file once I converted it to a utility. To run it, I use
the following:

./snapshot -s http://oreilly.com -f test.png

11.14. Creating a Command-Line Utility with Help From Commander | 307

The command-line utility I created makes use of Phantom to create am image capture
of a website. Recipe 16.4 covers the use of Phantom, but for now, Example 11-6 contains
the complete code, making use of Commander.

Example 11-6. Making a Screenshot utility constructed of Phantom and Commander

#!/usr/bin/env node

var phantom = require('phantom');
var program = require('commander');

program
 .version ('0.0.1')
 .option ('-s, --source [website]', 'Source website')
 .option ('-f, --file [filename]', 'Filename')
 .parse(process.argv);

phantom.create(function (ph) {
 ph.createPage(function (page) {
 page.open(program.source, function (status) {
 console.log("opened " + program.source, status);
 page.render(program.file, function() {
 ph.exit();
 });
 });
 });
});

Commander is another favorite Node module of mine, because it provides exactly what
we need to create a command-line utility: not only a way to process command-line

arguments, but also to handle requests for help with the module using --help. To use
it, you just need to specify a version for the utility, and then list out all of the command-
line arguments/options. Note that you need to specify which of the options require an
argument, and provide an English language description of the purpose of the option.

Lastly, call Commander’s parse() argument, passing to it the process.argv structure,
which contains all of the arguments given on the utility’s command line.

Now, you can run the utility with the short option, consisting of a dash (-) and a single
lowercase alphabetic character:

./snapshot -s http://oreilly.com -f test.png

Or you can use the long option, consisting of a double-dash (--) followed by a complete
word:

./snapshot --source http://oreilly.com --file test.png

And when you run the utility with either -h or --help, you get:

 Usage: snapshot [options]

308 | Chapter 11: Node: JavaScript on the Server

 Options:

 -h, --help output usage information
 -V, --version output the version number
 -s, --source [website] Source website
 -f, --file [filename] Filename

Running the following returns the version:

./snapshot -V

Commander generates all of this automatically, so we can focus on our utility’s primary
functionality.

Commander can be installed using npm:

npm install commander

11.14. Creating a Command-Line Utility with Help From Commander | 309

https://github.com/visionmedia/commander.js

CHAPTER 12

Modularizing and Managing JavaScript

One of the great aspects of writing Node.js applications is the built-in modularity the
environment provides. As demonstrated in Chapter 11, it’s simple to download and
install any number of Node modules, and using them is equally simple: just include a

single require() statement naming the module, and you’re off and running.

The ease with which the modules can be incorporated is one of the benefits of JavaScript
modularization. Modularizing ensures that external functionality is created in such a
way that it isn’t dependent on other external functionality, a concept known as loose
coupling. This means I can use a Foo module, without having to include a Bar module,
because Foo is tightly dependent on having Bar included.

JavaScript modularization is both a discipline and a contract. The discipline comes in
by having to follow certain mandated criteria in order for external code to participate
in the module system. The contract is between you, me, and other JavaScript developers:
we’re following an agreed on path when we produce (or consume) external functionality
in a module system, and we all have expectations based on the module system.

ECMAScript 6 provides native support for modules, but the specifi‐
cation is still undergoing change and there is no implementation
support yet. There is some support for it in Traceur, as well as a
polyfill, which can at least provide an idea of how they’ll be imple‐
mented in the future.

Chances are you have used modularized JavaScript. If you have used jQuery with Re‐
quireJS or Dojo, you’ve used modularized JavaScript. If you’ve used Node, you’ve used
a modular system. They don’t look the same, but they work the same: ensuring that
functionality developed by disparate parties works together seamlessly. The modular
system that RequireJS and Dojo support is the Asynchronous Module Definition

311

http://bit.ly/14RI7K6
https://github.com/ModuleLoader/es6-module-loader

(AMD), while Node’s system is based on CommonJS. One major difference between
the two is that AMD is asynchronous, while CommonJS is synchronous.

Even if you don’t use a formal modular system, you can still improve the performance

of script loading with script loaders and using new HTML5 async functionality. You
can also improve the management of your entire application process using tools such
as Grunt, or ensuring your own code is packaged for ease of use and innovation.

One major dependency on virtually all aspects of application and
library management and publication is the use of Git, a source con‐
trol system, and GitHub, an extremely popular Git endpoint. How Git
works and using Git with GitHub are beyond the scope of this book.
I recommend The Git Pocket Guide (O’Reilly) to get more familiar
with Git, and GitHub’s own documentation for more on using this
service.

12.1. Loading Scripts with a Script Loader

Problem
You need to use several different JavaScript libraries in your web pages, and they’re
starting to slow the page loads.

Solution
One solution is to use a script loader to load your JavaScript files asynchronously and
concurrently. Examples of use are documented in the discussion.

Discussion
There are several techniques you can use to load JavaScript files. One is the traditional
method of using a script element for each file, and just loading each in turn. The issue
that people have had with this approach is the inefficiency of having to access each file
individually, the problems that can occur if scripts are loaded out of order (with one
script being dependent on another already loaded), and the fact that the entire page is
blocked while the scripts load.

Some solutions are to compile all the individual JavaScript files into a single file, which
is what the content management system (CMS) Drupal does. This eliminates the mul‐
tiple file access and even the issues with ordering, but it still leaves us with the fact that
the page is blocked from loading until the scripts are loaded.

Script loaders were created to provide a way of loading JavaScript files asynchronously,
which means the rest of the page can continue loading while the script is loading. They

312 | Chapter 12: Modularizing and Managing JavaScript

http://shop.oreilly.com/product/0636920024972.do
https://github.com/

use script injection: creating a script element in a script block that loads the JavaScript
file, and then appending that block to the page. The inline JavaScript is executed asyn‐
chronously and does not block the page from loading like the use of the traditional

script element does.

The code to do so can be similar to the script block shown in the following minimal
HTML5 page:

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8">
<title>title</title>
</head>

<body>

 <script>
 var scrpt = document.querySelector("script");
 var t = document.createElement("script");
 t.src = "test1.js";
 scrpt.parentNode.insertBefore(t,scrpt);
 </script>
</body>

</html>

To prevent the variables from cluttering up the global namespace, they can be included
in an Immediately-Invoked Function Expression (IIFE):

<script>

 (function() {
 var scrpt = document.querySelector("script");
 var t = document.createElement("script");
 t.src = "test1.js";
 scrpt.parentNode.insertBefore(t,scrpt);
 }());
</script>

If you need to use a pathname for the script, you can use a protocol-relative URL
(sometimes referred to as a protocol-less URL) so that the code adapts whether the page
is accessed with http or https:

t.src = "//somecompany.com/scriptfolder/test1.js";

With this, the client application uses the same protocol (http or https) used to access the
parent page.

Multiple scripts can be loaded into the page using this approach. It can also be used to
load CSS files, as well as larger images or other media files. However, we don’t have to
do the work ourselves: we can use a script loading library, such as HeadJS.

According to the HeadJS documentation, the best approach to including support for

the library is to include a link to the library in the head element:

12.1. Loading Scripts with a Script Loader | 313

<html>

 <head>
 <script src="head.min.js"></script>
 <script>
 head.load("file1.js", "file2.js");
 </script>
 </head>
 <body>
 <!-- my content-->

 <script>
 head.ready(function () {
 // some callback stuff
 });
 </script>
 </body>
</html>

Note the head.load() function call. All of the script files to be loaded are listed in the
function call. In addition, any ready state functionality can be provided in the

head.ready() function call.

If you do have JavaScript, you want to load right away; rather than using another script
element, you can use a data- attribute on the script element loading HeadJS:

<script src="head.min.js" data-headjs-load="init.js"></script>

Any immediately invoked functionality is then listed in init.js.

HeadJS has other functionality, including assistance for responsive
design and browser version support. Read more about setting it up
in the set up documentation.

Another script loader with an interesting twist is Basket.js. It also loads JavaScript files

asynchronously, but it goes a step further: it caches the script using localStorage, which
means if the JavaScript has already been accessed once, a second access loads the Java‐
Script from cache rather than loading the file again.

Once you include the Basket.js JavaScript file, you can then define the JavaScript files
to be loaded:

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <title>title</title>
 </head>
<body>

 <script src="basket.full.min.js"></script>

314 | Chapter 12: Modularizing and Managing JavaScript

http://bit.ly/1yI09Lc

 <script>
 basket.require({ url: 'test1.js'},
 { url: 'test2.js'});
 </script>
</body>

</html>

If you monitor the page using your browser’s debugger/development tools, and reload
the page, you’ll note that the files aren’t accessed again after the first load.

To handle source dependencies, Basket.js returns a promise from require(), and the

then() callback is executed. You can then list the second JavaScript file in the callback:

<script>

 basket.require({ url: 'test2.js'}).then(function() {
 basket.require({ url: 'test1.js'});
 });
</script>

Access Basket.js and read how to use it in the library’s home page.

12.2. Loading Scripts Asynchronously the HTML5 Way

Problem
You’re interested in processing scripts asynchronously—not blocking the page from
loading while the scripts load—but you have discovered that the script injection tech‐
nique has one problem: the CSS Object Model (CSSOM) blocks inline scripts because
these scripts typically operate on the CSSOM. Since the CSSOM doesn’t know what the
script is going to do, it blocks the script until all of the CSS is loaded. This, then, delays
the network access of the script until all CSS files have been loaded.

Solution
Use the new HTML5 async script element attribute instead of script injection:

<script src="//cdnjs.cloudflare.com/ajax/libs/mathjs/0.26.0/math.min.js" async>
</script>

<script

src="//cdnjs.cloudflare.com/ajax/libs/backbone.js/1.1.2/backbone-min.js" async>
</script>

12.2. Loading Scripts Asynchronously the HTML5 Way | 315

http://addyosmani.github.io/basket.js/

Discussion
There are two script element attributes: defer, which defers script loading until the rest

of the page is loaded, and the newest async. The latter tells the browser to load the script
asynchronously, as the page is being parsed. It only works with external scripts; the page
still blocks with inline scripts.

The async attribute prevents many of the problems we’ve had with blocked scripts and
having to use tricks such as script injection. The only reason script injection is still being
used is there are older versions of browsers, such as IE9 and older, that don’t support it.

12.3. Converting Your JavaScript to AMD and RequireJS

Problem
You’re interested in taking advantage of modularization and controlled dependencies
by converting your libraries to the Asynchronous Module Definition (AMD) format,
implemented with RequireJS, but you’re not sure where to start and what to do.

Solution
RequireJS is integrated into the following three small JavaScript libraries:

one.js

define(function() {
 return {
 hi: function() {
 console.log('hello from one');
 }
 }
});

two.js

define(function() {
 return {
 hi: function(val) {
 console.log('hello ' + val + ' from two');
 }
 }
});

mylib.js

require(["./one","./two"],function(one,two) {
 one.hi();
 two.hi('world');
 console.log("And that's all");
});

316 | Chapter 12: Modularizing and Managing JavaScript

And the web page, index.html:

<!DOCTYPE html>
<html>

 <head>
 <title>Hello Modularization</title>
 <script data-main="scripts/mylib" src="scripts/require.js"></script>
 </head>
 <body>
 <h1>Stuff</h1>
 </body>
</html>

Discussion
Consider the following three very basic JavaScript libraries:

one.js

function oneHi() {
 console.log('hello from one');
}

two.js

function twoHi(val) {
 console.log('hello ' + val + ' from two');
}

mylib.js

function allThat() {
 oneHi();
 twoHi('world');
 console.log("And that's all");
}

They could be included in a simple web page as demonstrated in the following code,
assuming all the JavaScript libraries are in a subdirectory named scripts/:

<!DOCTYPE html>
<html>

 <head>
 <title>Hello Modularization</title>
 <script src="scripts/one.js" type="text/javascript"></script>
 <script src="scripts/two.js" type="text/javascript"></script>
 <script src="scripts/mylib.js" type="text/javascript"></script>
 <script type="text/javascript">
 allThat();
 </script>
 </head>
 <body>
 <h1>Stuff</h1>

12.3. Converting Your JavaScript to AMD and RequireJS | 317

 </body>
</html>

And you might expect the application to work, with the messages printed out in the

right order. However, if you make a modest change, such as use the async attribute with
all of the scripts:

<script src="scripts/one.js" async type="text/javascript"></script>
<script src="scripts/two.js" async type="text/javascript"></script>
<script src="scripts/mylib.js" async type="text/javascript"></script>

You’ll be hosed, because the browser no longer blocks program execution, waiting for
each script to load, in turn, before going to the next. Other challenges that can occur
are that you’re using other people’s libraries and you don’t know the correct order to list
the source scripts, or you forget one or more of them. The problem with this common
approach from the past is that nothing enforces both order and dependencies. That’s
where RequireJS comes in.

In the solution, you’ll notice two key words: define and require. The define keyword

is used to define a module, while require is used to list dependencies with a callback
function that’s called when all dependencies are loaded.

In the solution, two of the libraries are defined as modules, each return a function. The
third library, mylib.js, declares the two modules as dependencies and in the callback
function, invokes the returned module functions. All of this is pulled into the HTML
page with the following line:

<script data-main="scripts/mylib" src="scripts/require.js"></script>

The actual source is the RequireJS library. The custom attribute data-main specifies the
JavaScript source to load after RequireJS is loaded.

The modules can return more than one function, or can return data objects, functions,
or a combination of both:

define(function() {
 return {
 value1: 'one',
 value2: 'two',
 doSomething: function() {
 // do something
 }
 }
})

Modules can also have dependencies. The following code version of two.js creates a
dependency on one.js in two.js and removes it as a dependency in mylib.js:

318 | Chapter 12: Modularizing and Managing JavaScript

http://requirejs.org/

two.js

define(['one'], function(one) {
 return {
 hi: function(val) {
 one.hi();
 console.log('hello ' + val + ' from two');
 }
 }
});

mylib.js

require(["./two"],function(two) {
 two.hi('world');
 console.log("And that's all");
});

Typically after you create your JavaScript files, you’ll want to opti‐
mize them. RequireJS provides the tools and documentation for op‐
timizing your source at http://requirejs.org/docs/optimization.html.

See Also
Your library can still exist as a standard JavaScript library and an AMD-compliant
module, as discussed in Recipe 12.9.

12.4. Using RequireJS with jQuery or Another Library

Problem
Your applications uses jQuery (or Underscore.js or Backbone). How can the library fit
into the use of RequireJS to manage dependencies?

Solution
If the library can work with AMD (as jQuery can), and you save the jQuery file as
jquery.js and load it in the same directory as your application JavaScript, you can use
the jQuery functionality easily, as shown in the following small code snippet:

require(["./jquery"],function($) {
 $('h1').css('color','red');
});

However, if the jQuery file is named something else, or you’re accessing the library from
a CDN, then you’ll need to use a RequireJS shim:

12.4. Using RequireJS with jQuery or Another Library | 319

http://requirejs.org/docs/optimization.html

requirejs.config({
 baseUrl: 'scripts/lib',
 paths: {
 jquery: '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min'
 },
});

Discussion
As the solution demonstrates, if your application code already incorporates jQuery’s

dollar sign ($) and the jQuery file is local to the script, you can incorporate its use in
your application in the same manner used for any other module. The jQuery library
can recognize that it’s within a RequireJS environment, and respond accordingly. Where
things get a little more complicated is if the library is not accessed locally, is accessed
from a CDN, or the library doesn’t support AMD.

To demonstrate, I modified the source files discussed in Recipe 12.3. The source files
are now organized in the following directory structure:

www
 app
 main.js
 index.html
 scripts
 app.js
 lib
 one.js
 require.js
 two.js

In addition, I removed the define() in the source library two.js, making it into an

anonymous closure—an IIFE object that is added to the Window object as two:

(function (){
 window.two = this;
 this.hi = function(val) {
 console.log('hello ' + val + ' from two');
 }
}());

The one.js file still contains the AMD define() statement, meaning it requires no special
handling to use:

define(function() {
 return {
 hi: function() {
 console.log('hello from one');
 }
 }
});

320 | Chapter 12: Modularizing and Managing JavaScript

The app.js file contains a RequireJS config block that, among other things, sets a base

Url for all loaded modules, defines a CDN path for both jQuery and the app subdirec‐

tory, and creates a shim for the non-AMD compliant two. It also loads the app/main
module:

requirejs.config({
 baseUrl: 'scripts/lib',
 paths: {
 app: '../../app',
 jquery: '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min'
 },
 shim: {
 two: {
 exports: 'two'
 }
 }
});

requirejs(["app/main"]);

The shim for two defines an exported object (an object defined on Window in the

browser), since the library doesn’t use define() to identify the object.

Lastly, the main.js module lays out the dependency on jQuery, one, and two, and runs
the application:

define(["jquery","one","two"],function($,one, two) {
 one.hi();
 two.hi('world');
 console.log("And that's all");
 $('h1').css('color','red');
});

If two had been dependent on one of the modules or other libraries, such as one, the
dependency would have been noted in the shim:

requirejs.config({
 baseUrl: 'scripts/lib',
 paths: {
 app: '../../app',
 jquery: '//ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min'
 },
 shim: {
 two: {
 deps: ['one'],
 exports: 'two'
 }
 }
});

If you’d like to make your JavaScript library into an AMD-compliant module, but still
allow it to be used in other contexts, you can add a small amount of code to ensure both:

12.4. Using RequireJS with jQuery or Another Library | 321

(function (){
 window.two = this;
 this.hi = function(val) {
 console.log('hello ' + val + ' from two');
 }

}());

The tiny library is now redesigned into an IIFE. Any private data and methods would
be fully enclosed in the closure, and the only public method is exposed by adding it as
a property to the object. The object itself is given global access via assignment to the
Window property.

A variation on this would be the following, where the exposed methods and data are
returned as an object to the assigned variable:

var two = (function (){
 return {
 hi: function (val) {
 console.log('hello ' + val + ' from two');
 }
 }

}());

The code now meets the module pattern, ensuring both public and private data and
functions are encapsulated using the closure, and globally accessible methods and data
are returned in the object. Another variation of the module pattern is the following:

var two = (function() {
 var my = {};
 my.hi = function(val) {
 console.log('hello ' + val + ' from two');
 };
 return my;
}());

I modified the original form of the object to make it AMD compliant:

(function (){
 window.two = this;
 this.hi = function(val) {
 console.log('hello ' + val + ' from two');
 }

 if (typeof define === "function" && define.amd) {
 define("two", [], function() {
 return two;
 });
 }
}());

322 | Chapter 12: Modularizing and Managing JavaScript

The code tests to see if the define() function exists. If so, then it’s invoked, passing in
the name of the exported library object and in the callback, returning the exported
library object. This is how a library such as jQuery can work in AMD, but still work in
other traditional JavaScript environments.

A variation, using the more established module pattern, is the following:

var two = (function (){
 var two = {};

 two.hi = function(val) {
 console.log('hello ' + val + ' from two');
 }

 if (typeof define === "function" && define.amd) {
 define("two", [], function() {
 return two;
 });
 }

 return two;
}());

jQuery also supports the CommonJS modular system.

12.5. Loading and Using Dojo Modules

Problem
You’re interested in using some of the Dojo functionality, but you’re not sure how to
load the associated modules.

Solution
Dojo has implemented the AMD architecture for its functionality. When you add the
main Dojo script to your page, what you’re loading is the module loader, rather than all
of its various functions:

<script src="http://ajax.googleapis.com/ajax/libs/dojo/1.10.0/dojo/dojo.js"
 data-dojo-config="async: true"></script>

The library can be accessed at a CDN, as the code snippet demonstrates. The custom

data attribute data-dojo-config specifies that the Dojo asynchronous AMD loader
should be used.

12.5. Loading and Using Dojo Modules | 323

To use the Dojo functionality, specify the dependencies in the require() method:

 <script>
 require([
 'dojo/dom',
 'dojo/dom-construct'
], function (dom, domConstruct) {
 var ph = dom.byId("placeholder");
 ph.innerHTML = "Using Dojo";
 domConstruct.create("h1", {innerHTML: "<i>Howdy!</i>"},ph,"before");
 });
 </script>

Discussion
Dojo is a sophisticated library system providing functionality similar to that provided
in the jQuery environment. It does require a little time to become familiar with its
implementation of AMD, though, before jumping in.

In the solution, the Dojo asynchronous loader is sourced from a CDN. The solution

then imports two Dojo modules: dojo/dom and dojo/dom-construct. Both provide
much of the basic DOM functionality, such as the ability to access an existing element

by an identifier (dom.byId()), and create and place a new element (domConstruct.cre

ate()). To give you a better idea how it all holds together, a complete page example is
given in Example 12-1.

Example 12-1. A complete Dojo example accessing one page element and adding
another

<!DOCTYPE html>
<html>

<head>

 <meta charset="utf-8">
 <title>Dojo</title>
 <script src="http://ajax.googleapis.com/ajax/libs/dojo/1.10.0/dojo/dojo.js"
 data-dojo-config="async: true"></script>
</head>

<body>

 <div id="placeholder"></div>
 <script>
 require([
 'dojo/dom',
 'dojo/dom-construct'
], function (dom, domConstruct) {
 var ph = dom.byId("placeholder");
 ph.innerHTML = "Using Dojo";
 domConstruct.create("h1", {innerHTML: "<i>Howdy!</i>"},ph,"before");
 });
 </script>
</body>

</html>

324 | Chapter 12: Modularizing and Managing JavaScript

Though Dojo is generally AMD-compatible, there’s still some funk‐
iness with the implementation that makes it incompatible with a
module loader like RequireJS. The concepts of a module loader, the

require() and define() functions, and creating a configuration
object are the same, but implementation compatibility fails.

Dojo does provide a decent set of tutorials to help you understand
more fully how the framework operates.

12.6. Installing and Maintaining Node Modules with npm

Problem
You’re new to Node. You’ve installed it, and played around with the core Node modules
installed with Node. But now, you need something more.

Solution
The glue that holds the Node universe together is npm, the Node package manager. To
install a specific module, use the following on the command line:

npm install packagename

If you want to install the package globally, so it’s accessible from all locations in the
computer, use the following:

npm install -g packagename

When to install locally or globally is dependent on whether you’re going to re

quire() the module, or if you need to run it from the command line. Typically you

install require() modules locally, and executables are installed globally, though you
don’t have to follow this typical usage. If you do install a module globally, you might
need administrative privileges:

sudo npm install -g packagename

Discussion
The solution demonstrated the most common use of npm: installing a registered npm
module locally or globally on your system. However, you can install modules that are
located in GitHub, downloaded as a tar file, or located in a folder. If you type:

npm install --help

you’ll get a list of allowable approaches for installing a module:

npm install
npm install <pkg>
npm install <pkg>@<tag>

12.6. Installing and Maintaining Node Modules with npm | 325

http://dojotoolkit.org/documentation/

npm install <pkg>@<version>
npm install <pkg>@<version range>
npm install <folder>
npm install <tarball file>
npm install <tarball url>
npm install <git:// url>
npm install <github username>/<github project>

If your current directory contains a npm-shrinkwrap.json or package.json file, the de‐

pendencies in the files are installed by typing npm install.

Recipe 12.10 covers the structure and purpose of the package.json file.

To remove an installed Node module, use:

npm rm packagename

The package and any dependencies are removed. To update existing packages, use:

npm update [g] [packagename [packagename ...]]

You can update locally or globally installed modules. When updating, you can list all
modules to be updated, or just type the command to update all locally-installed modules
relative to your current location.

12.7. Searching for a Specific Node Module via npm

Problem
You’re creating a Node application and want to reuse existing modules, but you don’t
know how to discover them.

Solution
In most cases, you’ll discover modules via recommendations from your friends and co-
developers, but sometimes you need something new.

You can search for new modules directly at the npm website. The front page also lists
the most popular modules, which are worth an exploratory look.

You can also use npm directly to search for a module. For instance, if you’re interested
in modules that do something with PDFs, run the following search at the command
line:

npm search pdf

326 | Chapter 12: Modularizing and Managing JavaScript

https://www.npmjs.org/

Discussion
The npm website provides more than just good documentation for using npm; it also
provides a listing of newly updated modules, as well as those modules most depended
on. Regardless of what you’re looking for, you definitely should spend time exploring
these essential modules. In addition, if you access each module’s page at npm, you can
see how popular the module is, what other modules are dependent on it, the license,
and other relevant information.

However, you can also search for modules, directly, using npm.

The first time you perform a search with npm, you’ll get the following feedback:

npm WARN Building the local index for the first time, please be patient

The process can take a fair amount of time, too. Luckily, the index build only needs to
be performed the first time you do a search. And when it finishes, you’re likely to get a
huge number of modules in return, especially with a broader topic such as modules that
work with PDFs.

You can refine the results by listing multiple terms:

npm search PDF generation

This query returns a much smaller list of modules, specific to PDF generation. You can
also use a regular expression to search:

npm search \/Firefox\\sOS

Now I’m getting all modules that reference Firefox OS. However, as the example dem‐
onstrates, you have to incorporate escape characters specific to your environment, as I

did with the beginning of the regular expression, and the use of \s for white space.

Once you do find a module that sounds interesting, you can get detailed information
about it with:

npm view node-firefoxos-cli

You’ll get the package.json file for the module, which can tell you what it’s dependent
on, who wrote it, and when it was created. I still recommend checking out the module’s
GitHub page directly. There you’ll be able to determine if the module is being actively
maintained or not. If you access the npm website page for the module, you’ll also get
an idea of how popular the module is.

12.8. Converting Your Library into a Node Module

Problem
You want to use one of your libraries in Node.

12.8. Converting Your Library into a Node Module | 327

https://www.npmjs.org/

Solution
Convert the library into a Node module. For example, if the library is designed as the
following IIFE:

(function () {
 var val = 'world';
 console.log('Hello ' + val + ' from two');
}());

You can convert it to work with Node by the simple addition of an exports keyword:

module.exports = (function () {
 return {
 hi: function(val) {
 console.log('Hello ' + val + ' from two');
 }
 };
 }());

You can then use the module in your application:

var two = require('./two.js');

two.hi('world');

Discussion
Node’s module system is based on CommonJS, the second modular system covered in

this chapter. CommonJS uses three constructs: exports to define what’s exported from

the library, require() to include the module in the application, and module, which
includes information about the module but also can be used to export a function,
directly.

Though the solution maintains the IIFE, it’s not really required in the CommonJS en‐
vironment, because every module operates in its own module space. The following is
also acceptable:

module.exports.hi = function (val) {
 console.log('hello ' + val + ' from two');
}

If your library returns an object with several functions and data objects, you can assign

each to the comparably named property on module.exports, or you could return an
object from a function:

module.exports = function () {
 return {
 somedata: 'some data',
 hi: function(val) {
 console.log('Hello ' + val + ' from two');
 }

328 | Chapter 12: Modularizing and Managing JavaScript

 };
 };

And then invoke the object in the application:

var twoObj = require('./two.js');

var two = twoObj();
two.hi(two.somedata);

Or you can access the object property directly:

var hi = require('./twob.js').hi;

hi('world');

Because the module isn’t installed using npm, and just resides in the directory where
the application resides, it’s accessed by the location and name, not just the name.

See Also
In Recipe 12.9, I cover how to make sure your library code works in all of the environ‐
ments: CommonJS, Node, AMD, and as a traditional JavaScript library.

12.9. Taking Your Code Across All Module Environments

Problem
You’ve written a library that you’d like to share with others, but folks are using a variety
of module systems to incorporate external JavaScript. How can you ensure your library
works in all of the various environments?

Solution
The following library with two functions:

function concatArray(str, array) {
 return array.map(function(element) {
 return str + ' ' + element;
 });
}

function splitArray(str,array) {
 return array.map(function(element) {
 var len = str.length + 1;
 return element.substring(len);
 });
}

12.9. Taking Your Code Across All Module Environments | 329

Will work with RequireJS, Node, as a plain script, and CommonJS in the browser when
converted to:

(function(global) {
 'use strict';

 var bbArray = {};

 bbArray.concatArray = function (str, array) {
 return array.map(function(element) {
 return str + ' ' + element;
 });
 };

 bbArray.splitArray = function (str,array) {
 return array.map(function(element) {
 var len = str.length + 1;
 return element.substring(len);
 });
 };

 if (typeof module != 'undefined' && module.exports) {
 module.exports = bbArray;
 } else if (typeof define === "function" && define.amd) {
 define("bbArray", [], function() {
 return bbArray;
 });
 } else {
 global.bbArray = bbArray;
 }

}(this));

Discussion
To ensure your library works in a traditional scripting environment, you should en‐
capsulate your functionality in an IIFE, to minimize leak between private and public
functionality and data. You’ll also want to limit pollution of the global space:

(function(global) {
 'use strict';

 var bbArray = {};

 bbArray.concatArray = function (str, array) {
 return array.map(function(element) {
 return str + ' ' + element;
 });
 };

 bbArray.splitArray = function (str,array) {
 return array.map(function(element) {

330 | Chapter 12: Modularizing and Managing JavaScript

 var len = str.length + 1;
 return element.substring(len);
 });
 };

 global.bbArray = bbArray;

}(this));

The object is being used in an environment that may not have access to a window object,

so the global object (global in Node, window in the browser) is passed as an argument

to the object as this, and then defined as global in the library.

At this point, the library can work as a traditional library in a browser application:

<!DOCTYPE html>
<html>

<head>

 <meta charset="utf-8">
 <title>Array test</title>
 <script src="bbarray.js" type="text/javascript">
 </script>
 <script type="text/javascript">
 var a = ['one', 'two', 'three'];
 var b = bbArray.concatArray('number is ',a);
 console.log(b);
 var c = bbArray.splitArray('number is ', b);
 console.log(c);
 </script>
</head>

<body>

</body>

</html>

The result is two print outs to the console:

['number is one', 'number is two', 'number is three']
['one', 'two', 'three']

Next, we’ll add the Node support. We add this using the following lines of code:

if (typeof module != 'undefined' && module.exports) {
 module.exports = bbArray;
}

This code checks whether the module object is defined and if it is, whether the mod

ule.exports object exists. If the tests succeed, then the object is assigned to module.ex

ports, no different than defining exported functionality (covered earlier in
Recipe 12.8). It can now be accessed in a Node application like the following:

var bbArray = require('./bbarray.js');

var a = ['one', 'two', 'three'];

12.9. Taking Your Code Across All Module Environments | 331

var b = bbArray.concatArray('number is ',a);
console.log(b);
var c = bbArray.splitArray('number is ', b);
console.log(c);

Now we add support for CommonJS, specifically RequireJS. From Recipe 12.4, we know

to check if define exists, and if so, to add support for RequireJS. After adding this
modification, the library module now looks like this:

(function(global) {
 'use strict';

 var bbArray = {};

 bbArray.concatArray = function (str, array) {
 return array.map(function(element) {
 return str + ' ' + element;
 });
 };

 bbArray.splitArray = function (str,array) {
 return array.map(function(element) {
 var len = str.length + 1;
 return element.substring(len);
 });
 };

 if (typeof module != 'undefined' && module.exports) {
 module.exports = bbArray;
 } else if (typeof define === "function" && define.amd) {
 define("bbArray", [], function() {
 return bbArray;
 });
 } else {
 global.bbArray = bbAarray;
 }

}(this));

The module can now be used in a web application that incorporates RequireJS for
module support. Following RequireJS’s suggestion that all inline scripts be pulled into
a separate file, the JavaScript application to test the library is created in a file named
main.js:

require(["./bbarray"], function(bbArray) {
 var a = ['one', 'two', 'three'];
 var b = bbArray.concatArray('number is ',a);
 console.log(b);
 var c = bbArray.splitArray('number is ', b);
 console.log(c);
});

332 | Chapter 12: Modularizing and Managing JavaScript

And the web page incorporates the RequireJS script, loaded via CDN:

<!DOCTYPE html>
<html>

<head>

 <meta charset="utf-8">
 <title>Array test</title>
 <script src="//cdnjs.cloudflare.com/ajax/libs/require.js/2.1.14/require.min.js"
 data-main="main">
 </script>
</head>

<body>

</body>

</html>

Modify the URL for Require.js to match what’s available at the CDN when you run the
test.

See Also
The example covered in this recipe works in all of our environments but it has one
limitation: it’s not using any other libraries. So what happens when you need to include
libraries?

This is where things can get ugly. We know that CommonJS/Node import dependencies

with require:

var library = require('somelib');

While AMD incorporates dependencies in require or define:

define(['./somelib'], function(library) {

// rest of the code

});

Not compatible. At all. The workaround for this problem has been either to use Brows‐
erify (covered in Recipe 12.12) or to incorporate a Universal Module Definition (UMD).
You can see examples of a UMD online, and it’s covered in detail in Addy Osmani’s
“Writing Modular JavaScript with AMD, CommonJS, and ES Harmony”.

12.10. Creating an Installable Node Module

Problem
You’ve either created a Node module from scratch, or converted an existing library to
one that will work in the browser or in Node. Now, you want to know how to modify it
into a module that can be installed using npm.

12.10. Creating an Installable Node Module | 333

http://addyosmani.com/writing-modular-js/

Solution
Once you’ve created your Node module and any supporting functionality (including
module tests), you can package the entire directory. The key to packaging and publishing
the Node module is creating a package.json file that describes the module, any depen‐
dencies, the directory structure, what to ignore, and so on.

The following is a relatively basic package.json file:

{
 "name": "bbArray",
 "version": "0.1.0",
 "description": "A description of what my module is about",
 "main": "./lib/bbArray",
 "author": {
 "name": "Shelley Powers"
 },
 "keywords": [
 "array",
 "utility"
],
 "repository": {
 "type": "git",
 "url": "https://github.com/accountname/bbarray.git"
 },
 "engines" : {
 "node" : ">=0.10.3 <0.12"
 },
 "bugs": {
 "url": "https://github.com/accountname/bbarray/issues"
 },
 "licenses": [
 {
 "type": "MIT",
 "url": "https://github.com/accountname/bbarray/raw/master/LICENSE"
 }
],
 "dependencies": {
 "some-module": "~0.1.0"
 },
 "directories":{
 "doc":"./doc",
 "man":"./man",
 "lib":"./lib",
 "bin":"./bin"
 },
 "scripts": {
 "test": "nodeunit test/test-bbarray.js"
 }
 }

334 | Chapter 12: Modularizing and Managing JavaScript

Once you’ve created package.json, package all the source directories and the pack‐
age.json file as a gzipped tarball. Then install the package locally, or install it in npm for
public access.

Discussion
The package.json file is key to packaging a Node module up for local installation or

uploading to npm for management. At a minimum, it requires a name and a version.
The other fields given in the solution are:

• description: A description of what the module is and does

• main: Entry module for application

• author: Author(s) of the module

• keywords: List of keywords appropriate for module

• repository: Place where code lives, typically GitHub

• engines: Node version you know your module works with

• bugs: Where to file bugs

• licenses: License for your module

• dependencies: Any module dependencies

• directories: A hash describing directory structure for your module

• scripts: A hash of object commands that are run during module lifecycle

There are a host of other options, which are described at the npm website. You can also
use a tool to help you fill in many of these fields. Typing the following at the command
line runs the tool that asks questions and then generates a basic package.json file:

npm init

Once you have your source set up and your package.json file, you can test whether
everything works by running the following command in the top-level directory of your
module:

npm install . -g

If you have no errors, then you can package the file as a gzipped tarball. At this point,
if you want to publish the module, you’ll first need to add yourself as a user in the npm
registry:

npm add-user

To publish the Node module to the npm registry, use the following in the root directory
of the module, specifying a URL to the tarball, a filename for the tarball, or a path:

npm publish ./

12.10. Creating an Installable Node Module | 335

https://www.npmjs.org/doc/files/package.json.html

If you have development dependencies for your module, such as using a testing frame‐
work like Mocha, one excellent shortcut to ensure these are added to your pack‐
age.json file is to use the following, in the same directory as the package.json file, when
you’re installing the dependent module:

npm install -g mocha --save-dev

Not only does this install Mocha (discussed later, in Recipe 12.13), this command also
updates your package.json file with the following:

 "devDependencies": {
 "grunt": "^0.4.5",
 "grunt-contrib-jshint": "^0.10.0",
 "mocha": "^1.21.4"
 }

You can also use this same type of option to add a module to dependencies in pack‐
age.json. The following:

npm install d3 --save

adds the following to the package.json file:

"dependencies": {
 "d3": "^3.4.11"
 }

If the module is no longer needed and shouldn’t be listed in package.json, remove it from

the devDependencies with:

npm remove mocha --save-dev

And remove a module from dependencies with:

npm remove d3 --save

If the module is the last in either dependencies or devDependencies, the property isn’t
removed. It’s just set to an empty value:

"dependencies": {}

npm provides a decent developer guide for creating and installing a
Node module. You should consider the use of an .npmignore file for
keeping stuff out of your module. And though this is beyond the scope
of the book, you should also become familiar with Git and GitHub,
and make use of it for your applications/modules.

Extra: The README File and Markdown Syntax
When you package your module or library for reuse and upload it to a source repository
such as GitHub, you’ll need to provide how-to information about installing the module/
library and basic information about how to use it. For this, you need a README file.

336 | Chapter 12: Modularizing and Managing JavaScript

http://bit.ly/1yI0ihz
http://bit.ly/1yI0ihz

You’ve seen files named README.md or readme.md with applications and Node mod‐
ules. They’re text-based with some odd, unobtrusive markup that you’re not sure is
useful, until you see it in a site like GitHub, where the README file provides all of the
project page installation and usage information. The markup translates into HTML,
making for readable Web-based help.

The content for the README is marked up with annotation known as Markdown. The
popular website Daring Fireball calls Markdown easy to read and write, but “Readability,
however, is emphasized above all else.” Unlike with HTML, the Markdown markup
doesn’t get in the way of reading the text.

Daring Fireball also provides an overview of generic Markdown, but
if you’re working with GitHub files, you might also want to check out
GitHub’s Flavored Markdown.

In Recipe 18.5 in Chapter 18, I created a simple Firefox OS mobile app named “Where
Am I?” Part of its installation is a README.md file that provides information about
using the app. The following is a brief excerpt from the file:

Where Am I?

This is a simple demonstration Firefox OS app that uses the Geolocation API
to get the user's current location, and then loads a static map into the page.

Obtaining

The Where Am I? app is hosted on the web, in a [Burningbird work directory]
(http://burningbird.net/work/whereami)

Usage

Import it into the Mozilla WebIDE using the hosted app option, and then run
the app in one or more simulators.

When I use a CLI tool like Pandoc, I can covert the README.md file into readable
HTML:

pandoc README.md -o readme.html

Figure 12-1 displays the generated content. It’s not fancy, but it is imminently readable.

12.10. Creating an Installable Node Module | 337

http://bit.ly/df-markdown
http://bit.ly/1yI0iOz
http://johnmacfarlane.net/pandoc/

Figure 12-1. Generated HTML from README.md text and Markdown annotation

When you install your source in a site such as GitHub (discussed in Recipe 7.12 in
Chapter 7), GitHub uses the README.md file to generate the cover page for the
repository.

12.11. Packaging and Managing Your Client-Side
Dependencies with Bower

Problem
You really like how npm manages dependencies and wish there was something com‐
parable for the client.

Solution
Bower can help you manage client dependencies. To use it you must have Node, npm,
and support for Git installed on your client or server.

Once your environment is set up, install Bower using npm:

npm install -g bower

Now, to add packages to the bower-components subdirectory, install them with bower:

338 | Chapter 12: Modularizing and Managing JavaScript

bower install jquery

Then you can create a bower.json file by typing the following in the root directory of
your library or application:

bower init

The application asks a set of questions and generates a bower.json file, which can be
used to install the dependencies with another simple command:

bower install

Discussion
Bower is a way of keeping your script and other dependencies collected and up to date.
Unlike npm, it can work with a variety of file extensions, including CSS, images, as well
as script. You can use it to install dependencies in bower-components, and then access
the dependencies directly in your web applications:

<script src="path/to/bower_components/d3/d3.min.js"></script>

You can package all of your application’s dependencies in a bower.json file, and reinstall
them in a fresh directory with a simple command (in the same directory as the bow‐
er.json file):

bower install

To ensure you’re using the latest and greatest version of the module and library, update
your dependencies:

bower update

If your application is publicly available on GitHub, you can register its dependencies in
Bower by, first, ensuring the bower.json file for the application is accurate, you’re using
semantic versioning with your Git tags, your application is publicly available as a Git
end point (such as GitHub), and the package name adheres to the bower.json specifi‐
cation. Once these dependencies are met, register the application:

bower register <package-name> <git-endpoint>

If you’re wondering why you can’t use something like require directly with Bower,
remember that it’s a dependency management tool, just like npm. It’s the libraries and
infrastructure in place, such as RequireJS, that allows you to use modular AMD or
CommonJS techniques.

You can read more about using Bower at the application’s website.

Bower can be used with other tools, such as Grunt, demonstrated later
in Recipe 12.14.

12.11. Packaging and Managing Your Client-Side Dependencies with Bower | 339

http://semver.org/
http://bower.io/

12.12. Compiling Node.js Modules for Use in the Browser
with Browserify

Problem
Node has a lot of really great modules that you’d really like to use in your browser.

Solution
You can use Browserify to compile the Node module into browser accessible code. If it’s
one of the Node core modules, many are already compiled into shims that can be used
in your browser application.

For instance, if you’re interested in using the Node querystring module functionality,
you create a client JavaScript bundle using the following Browserify command:

browserify -r querystring > bundle.js

Then use the module in your browser app:

 <script src="bundle.js" type="text/javascript">
 </script>
 <script type="text/javascript">
 var qs = require('querystring');

 var str = qs.stringify({ first: 'apple', second: 'pear', third: 'pineapple'})
;
 console.log(str); //first=apple&second=pear&third=pineapple
 </script

Discussion
Browserify is a tool that basically moves Node functionality to the browser, as long as
doing so makes sense. Of course, some functionality won’t work (think input/output)
but a surprising amount of functionality, including that in Node core, can work in the
browser.

Browserify is installed via npm:

npm install -g browserify

It runs at the command line, as shown in the solution. In the solution, the -r flag triggers

Browserify into creating a require() function to wrap the module’s functionality, so

we can use it in a similar manner in the browser app. The querystring module is one
of the many Node core modules already compiled as a shim. The others are:

• assert

• buffer

340 | Chapter 12: Modularizing and Managing JavaScript

• console

• constants

• crypto

• domain

• events

• http

• https

• os

• path

• punycode

• querystring

• stream

• string_decoder

• timers

• tty

• url

• util

• vm

• zlib

You can also compile other Node modules into browser code, including your own. As
an example, let’s say I have the following three Node files:

one.js

module.exports = function() {
 console.log('hi from one');
};

two.js

var one = require ('./one');

module.exports = function(val) {
 one();
 console.log('hi ' + val + ' from two');
};

index.js

12.12. Compiling Node.js Modules for Use in the Browser with Browserify | 341

var two = require ('./two');

module.exports = function() {
 two('world');
 console.log("And that's all");
}

I compiled it into an appl.js file using the following:

browserify ./index.js -o ./appl.js

Including the library in a web page results in the same three console log() function
calls as you would see if you ran the original index.js file with Node, as soon as the
generated script file is loaded.

12.13. Unit Testing Your Node Modules

Problem
You want to know the best way to ensure your module is ready for others to try.

Solution
Add unit tests as part of your production process.

Given the following module, named bbarray, and created in a file named index.js in the
module directory:

var util = require('util');

(function(global) {
 'use strict';

 var bbarray = {};

 bbarray.concatArray = function (str, array) {
 if (!util.isArray(array) || array.length === 0) {
 return -1;
 } else if (typeof str != 'string') {
 return -1;
 } else {
 return array.map(function(element) {
 return str + ' ' + element;
 });
 }
 };
 bbarray.splitArray = function (str,array) {
 if (!util.isArray(array) || array.length === 0) {
 return -1;
 } else if (typeof str != 'string') {
 return -1;

342 | Chapter 12: Modularizing and Managing JavaScript

 } else {
 return array.map(function(element) {
 var len = str.length + 1;
 return element.substring(len);
 });
 }
 };
 if (typeof module != 'undefined' && module.exports) {
 module.exports = bbarray;
 } else if (typeof define === "function" && define.amd) {
 define("bbarray", [], function() {
 return bbarray;
 });
 } else {
 global.bbarray = bbaarray;
 }

}(this));

Using Mocha, a JavaScript testing framework, and Node’s built-in assert module, the
following unit test (created as index.js and located in the project’s test subdirectory)
should result in the successful pass of six tests:

var assert = require('assert');
var bbarray = require('../index.js');

describe('bbarray',function() {
 describe('#concatArray()', function() {
 it('should return -1 when not using array', function() {
 assert.equal(-1, bbarray.concatArray(9,'str'));
 });
 it('should return -1 when not using string', function() {
 assert.equal(-1, bbarray.concatArray(9,['test','two']));
 });
 it('should return an array with proper args', function() {
 assert.deepEqual(['is test','is three'],
 bbarray.concatArray('is',['test','three']));
 });
 });
 describe('#splitArray()', function() {
 it('should return -1 when not using array', function() {
 assert.equal(-1, bbarray.splitArray(9,'str'));
 });
 it('should return -1 when not using string', function() {
 assert.equal(-1, bbarray.splitArray(9,['test','two']));
 });
 it('should return an array with proper args', function() {
 assert.deepEqual(['test','three'],
 bbarray.splitArray('is',['is test','is three']));
 });
 });
});

12.13. Unit Testing Your Node Modules | 343

The result of the test is shown in Figure 12-2, run using npm test.

Figure 12-2. Running unit tests based on Node Assert and Mocha

Discussion
Unit testing is one of those development tasks that may seem like a pain when you first
start, but can soon become second nature. I don’t necessarily agree with the folks that
believe we should write the unit tests (test-driven development) first, before writing the
code. But developing both test and code in parallel to each other should be a goal.

A unit test is a way that developers test their code to ensure it meets the specifications.
It involves testing functional behavior, and seeing what happens when you send bad
arguments—or no arguments at all. It’s called unit testing because it’s used with indi‐
vidual units of code, such as testing one module in a Node application, as compared to
testing the entire Node application. It becomes one part of integration testing, where all
the pieces are plugged together, before going to user acceptance testing: testing to ensure
that the application does what users expect it to do (and that they generally don’t hate
it when they use it).

In the solution, I use two different functionalities for testing: Node’s built-in assert
module, and Mocha, a sophisticated testing framework. My module is simple, so I’m
not using some of the more complex Mocha testing mechanisms. However, I think you’ll
get a feel for what’s happening.

To install Mocha, use the following:

npm install mocha --save-dep

344 | Chapter 12: Modularizing and Managing JavaScript

I’m using the --save-dep flag, because I’m installing Mocha into the module’s Node
dependencies. In addition, I modify the module’s package.json file to add the following
section:

 "scripts": {
 "test": "node_modules/mocha/bin/mocha test"
 },

The test script is saved as index.js in the test subdirectory under the project. The fol‐
lowing command runs the test:

npm test

The Mocha unit test makes use of assertion tests from Node’s assert module.

12.14. Running Tasks with Grunt

Problem
Pulling your Node module together is getting more complex—too complex to manually
manage all of the elements.

Solution
Use a task runner like Grunt to manage all the bits for you.

For the following bbarray module:

var util = require('util');

(function(global) {
 'use strict';

 var bbarray = {};

 bbarray.concatArray = function (str, array) {
 if (!util.isArray(array) || array.length === 0) {
 return -1;
 } else if (typeof str != 'string') {
 return -1;
 } else {
 return array.map(function(element) {
 return str + ' ' + element;
 });
 }
 };

 bbarray.splitArray = function (str,array) {
 if (!util.isArray(array) || array.length === 0) {
 return -1;
 } else if (typeof str != 'string') {

12.14. Running Tasks with Grunt | 345

 return -1;
 } else {
 return array.map(function(element) {
 var len = str.length + 1;
 return element.substring(len);
 });
 }
 };

 if (typeof module != 'undefined' && module.exports) {
 module.exports = bbarray;
 } else if (typeof define === 'function' && define.amd) {
 define('bbarray', [], function() {
 return bbarray;
 });
 } else {
 global.bbarray = bbaarray;
 }

}(this));

Saved as bbarray.js in the root directory, with a Mocha test file:

var assert = require('assert');
var bbarray = require('../bbarray.js');

describe('bbarray',function() {
 describe('#concatArray()', function() {
 it('should return -1 when not using array', function() {
 assert.equal(-1, bbarray.concatArray(9,'str'));
 });
 it('should return -1 when not using string', function() {
 assert.equal(-1, bbarray.concatArray(9,['test','two']));
 });
 it('should return an array with proper args', function() {
 assert.deepEqual(['is test','is three'],
 bbarray.concatArray('is',['test','three']));
 });
 });
 describe('#splitArray()', function() {
 it('should return -1 when not using array', function() {
 assert.equal(-1, bbarray.splitArray(9,'str'));
 });
 it('should return -1 when not using string', function() {
 assert.equal(-1, bbarray.splitArray(9,['test','two']));
 });
 it('should return an array with proper args', function() {
 assert.deepEqual(['test','three'],
 bbarray.splitArray('is',['is test','is three']));
 });
 });
});

346 | Chapter 12: Modularizing and Managing JavaScript

Saved as index.js in a test subdirectory, the Grunt file is:

module.exports = function(grunt) {
 var banner = '/*\n<%= pkg.name %> <%= pkg.version %>';
 banner += '- <%= pkg.description %>\n<%= pkg.repository.url %>\n';
 banner += 'Built on <%= grunt.template.today("yyyy-mm-dd") %>\n*/\n';

 grunt.initConfig({
 pkg: grunt.file.readJSON('package.json'),
 jshint: {
 files: ['gruntfile.js', 'src/*.js'],
 options: {
 maxlen: 80,
 quotmark: 'single'
 }
 },
 uglify: {
 options: {
 banner: banner,
 },
 build: {
 files: {
 'build/<%= pkg.name %>.min.js':
 ['build/<%= pkg.name %>.js'],
 }
 }
 },
 simplemocha: {
 options: {
 globals: ['assert'],
 timeout: 3000,
 ignoreLeaks: false,
 ui: 'bdd',
 reporter: 'tap'
 },
 all: { src: ['test/*.js'] }
 }
 });

 grunt.loadNpmTasks('grunt-contrib-jshint');
 grunt.loadNpmTasks('grunt-contrib-uglify');
 grunt.loadNpmTasks('grunt-simple-mocha');

 grunt.registerTask('default',
 ['jshint', 'simplemocha', 'uglify']);
};

When the file is saved as gruntfile.js, Grunt runs all the tasks defined in the file:

grunt

12.14. Running Tasks with Grunt | 347

Discussion
Grunt is a task runner. Its only purpose is to consistently run a series of tasks. It’s similar
to the old Makefile, but without the decades of musty history.

To use Grunt, install it first:

npm install -g grunt-cli

Grunt needs to run in the same directory as your application/module’s package.json file,
as it works with the file. You can create either a JavaScript or Coffee-based Grunt file,
but I’m focusing on the JS version.

Create the file by using the grunt-init CLI, with a given template, or you can use the
example file given in the Getting Started Guide.

A module needs to run within a certain framework to work with Grunt. Luckily, plugins
have been created for many of the commonly used modules, such as the plugins used
in the example for JSHint, Uglify, and Mocha. To ensure they’re listed in the pack‐

age.json file, they need to be installed using --save-dev:

npm install grunt-contrib-jshint --save-dev
npm install grunt-simple-mocha --save-dev
npm install grunt-contrib-uglify --save-dev

Each plugin also provides instructions about how to modify the Gruntfile to use the
plugin and process your files.

Once you have both the package.json and gruntfile.js files running, the following will
install any of the dependencies in the file, and run the Grunt tasks:

npm install
grunt

The result of running Grunt with the file in the solution is:

Running "jshint:files" (jshint) task
>> 1 file lint free.

Running "simplemocha:all" (simplemocha) task
1..6
ok 1 bbarray concatArray() should return -1 when not using array
ok 2 bbarray concatArray() should return -1 when not using string
ok 3 bbarray concatArray() should return an array with proper args
ok 4 bbarray splitArray() should return -1 when not using array
ok 5 bbarray splitArray() should return -1 when not using string
ok 6 bbarray splitArray() should return an array with proper args
tests 6
pass 6
fail 0

Running "uglify:build" (uglify) task
>> Destination build/bbarray.min.js not written because src files were empty.

348 | Chapter 12: Modularizing and Managing JavaScript

http://gruntjs.com/getting-started

Done, without errors.

There are no files in the src directory, but I left the instructions in the Grunt file, for
future expansion of the module.

See Also
Read all about Grunt, and check out the available plugins, at the application’s website.

Another popular build system is Gulp.

12.14. Running Tasks with Grunt | 349

http://gruntjs.com/
http://gulpjs.com/

CHAPTER 13

Fun with APIs

An API is a defined interface that acts like a handshake between software components,
allowing one component to access another even though the components have been
developed separately.

APIs vary widely: from those built into operating systems allowing developers to access
OS-specific functionality, to functional APIs that are grouped to allow access to specific
types of functionality (in the browser or accessible in the server). APIs are also used to
provide a bridge between a client on one machine, to a service or resource on another.

An API isn’t a library or module, though both can implement APIs. They’re more a
contract between developers where the API implementer promises to provide certain
functionality, as long as people accessing the functionality play nice (and don’t abuse
the privilege, in the case of remote services).

In this chapter, we look at APIs in all their glorious forms: how to access, how to create,
and how to use.

A really great resource listing many of the web APIs, or APIs that can
be used to allow web applications to access hardware and locally
stored data, is the WebAPI page offered in the Mozilla Developer
Network (MDN). The MDN provides a single page resource page
detailing all specifications, in development or stable.

13.1. Accessing JSON-Formatted Data via a RESTful API

Problem
You want to access data formatted as JSON from a service through their API. You need
to access the data both in a client and in a Node application, but don’t know the best
approach to use in both cases.

351

https://developer.mozilla.org/en-US/docs/WebAPI
https://developer.mozilla.org/en-US/docs/Web/Specification_list

Solution
One of the simplest approaches for accessing data through an API that supports the
principles of Representational State Transfer (REST), and returns data formatted as

JSON, is to use jQuery’s getJSON() function:

$.getJSON('http://somedomain.com/latest.json?apid=someid', function(data) {
 // do something with the data now formatted as an object
});

In a Node application, the simplest technique for accessing JSON-formatted data from

an API is to use node-rest-client to access the data:

var Client = require('node-rest-client').Client;

var client = new Client();

client.get('http://somedomain.com/latest.json?apid=someid'
 function(data, response) {
 // do something the with data now formatted as an object
});

Discussion
A RESTful API is one that is stateless, meaning that each client request contains every‐
thing necessary for the server to respond (doesn’t imply any stored state between re‐
quests); it uses HTTP methods explicitly. It supports a directory-like URI structure, and
transfers data formatted a certain way (typically XML or JSON). The HTTP methods
are:

• GET: To get resource data

• PUT: To update a resource

• DELETE: To delete a resource

• POST: To create a resource

Because we’re focusing on getting data, the only method of interest at this time is GET.
And because we’re focused on JSON, we’re using client methods that can access JSON-
formatted data and convert the data into objects we can manipulate in our JavaScript
applications.

Let’s look at a couple of examples.

The Open Exchange Rate provides an API that we can use to get current exchange rates,
name-to-acronym for the different types of currencies, and the exchange rates for a
specific date. It has a Forever Free plan that provides limited access to the API without
cost—something we should look for in any commercial API service.

352 | Chapter 13: Fun with APIs

https://openexchangerates.org/
https://openexchangerates.org/signup/free

It’s a very simple matter to make two queries of the system (for current currency rate,
and name-to-acronyms), and when both queries finish, to get the acronyms as keys,
and use these to look up the long name and rate in the results, printing the pairs out to
the console:

var moneyAPI1 = "https://openexchangerates.org/api/latest.json?app_id=apid";
var moneyAPI2 = "http://openexchangerates.org/api/currencies.json?app_id=apid";

$.getJSON(moneyAPI1).done(function(data) {
 $.getJSON(moneyAPI2).done(function(data2) {
 var rates = data.rates;
 var keys = Object.keys(rates);
 for (var i = 0; i < keys.length; i++) {
 var rate = rates[keys[i]];
 var name = data2[keys[i]];
 console.log(name + " " + rate);
 }
 });
});

The base currency is “USD” or the U.S. dollar, and a here’s a sampling of the results:

"Malawian Kwacha 394.899498"
"Mexican Peso 13.15711"
"Malaysian Ringgit 3.194393"
"Mozambican Metical 30.3662"
"Namibian Dollar 10.64314"
"Nigerian Naira 162.163699"
"Nicaraguan Córdoba 26.03978"
"Norwegian Krone 6.186976"
"Nepalese Rupee 98.07189"
"New Zealand Dollar 1.185493"

In the code snippet, I use the jQuery done() method to make the next query, and then
process both results when both queries are finished. In a production system, we’d cache
the results for however long our plan allows (hourly for the free API access).

To demonstrate accessing JSON-formatted data from an API in Node, I’m going to mix
it up and use a different API. This time, I’m going to access Flickr’s API. The API calls
are formed using the same principles. For instance, to search for photos using a text
search string with “birds”, use:

https://api.flickr.com/services/rest/?method=flickr.photos.search&
text=bird&api_key=apikey

However, if you want to return search results for a specific person, and formatted as
JSON, you’d craft the request as:

"https://api.flickr.com/services/rest/?method=flickr.photos.search&
text=bird&user_id=92659632@N05&format=json&api_key=apikey

13.1. Accessing JSON-Formatted Data via a RESTful API | 353

The result is a response formatted as JSON-P, which expects the object to be passed to

a function named jsonFlickrAPI(). However, if you want a result crafted purely as

JSON, which I do when using node-rest-client, you add another parameter to the

query string, nojsoncallback, setting it to a value of 1:

"https://api.flickr.com/services/rest/?method=flickr.photos.search&
text=bird&user_id=92659632@N05&format=json&api_key=apikey&nojsoncallback=1

Now, it’s just a matter of processing the results. The returned JSON will be an object,

photos, with several single properties such as total, pages, and number of items per

page given in perpage. The actual photos are in an array of object associated with the

property photo, and it contains information such as id, owner, title, whether it’s public,
and so on. A small Node application that accesses all photos that match a search on
“bird” in my account, and that prints out the title for each, is given in the following code
snippet:

var Client = require('node-rest-client').Client;
var client = new Client();

var flickrapi =
"https://api.flickr.com/services/rest/?method=flickr.photos.search
&text=bird&user_id=92659632@N05&format=json&api_key=apikey&nojsoncallback=1";

client.get(flickrapi, function(data, response) {
 var photos = data.photos.photo;
 photos.forEach(function(elem) {
 console.log(elem.title);
 });
});

Simple enough, but one thing I’ve learned with Node is if there’s an API, there’s at least

one module. A quick search brings up flickrapi, a module to access Flickr. Still, some‐
times it’s fun to do the down and dirty ourselves.

Access the Flickr API at https://www.flickr.com/services/api/.

See Also
The examples didn’t need to escape the values used as parameters in the API requests,

but if you do need to escape values, you can use the built-in QueryString.escape()
function. It’s demonstrated in Recipe 13.6, an application that uses remote API requests
made to Google’s Map services to provide a movable map.

354 | Chapter 13: Fun with APIs

https://github.com/Pomax/node-flickrapi
https://www.flickr.com/services/api/

13.2. Creating a RESTFul API with Restify

Problem
You want to create a RESTful web service, but it doesn’t need to provide a browser-
friendly interface.

Solution
The Restify Node module is ideal for creating a service that needs to support a REST
API, but without having to fuss with templates and other frontend devices.

Once installed, using Restify is as easy as setting up a server, and routing requests:

var restify = require('restify');

var server = restify.createServer({name: 'Examples'});
server.use(restify.bodyParser());

server.get('/api/get/:widget', function retrieve(req, res, next) {
 res.send('data is ' + req.params.widget);
 next();
});

server.post('/api/post/', function create(req, res, next) {
 console.log(req.params);
 res.send('created widget ' + req.params.param1);
 return next();
 });

server.listen(8080, function() {
 console.log('%s listening at %s', server.name, server.url);
});

Discussion
If you’ve ever created an application that interacts with an API, like many covered in
Chapter 16, then you know that, for the most part, the APIs have no user interface
element to them. They’re a way to get data from (or send data to) a service, delete existing
data, or update data—the Create-Read-Update-Delete (CRUD) of an API. The actual
commands translate to HTTP verbs:

• GET: Get the data

• POST: Create new data

• PUT: Update data

• DEL: Remove data

13.2. Creating a RESTFul API with Restify | 355

Frameworks like Express work great to provide web pages that people use to interact
with the server, but they have an overhead that isn’t essential if your main interest is in
providing a RESTful API for a data service you’re providing (whether externally, or for
your own applications). Restify, on the other hand, is specifically geared to supporting
an API based on the principles of REST.

As the solution demonstrated, Restify is also quite easy to use. You create a server lis‐
tening for requests. Based on the URL sent for the request, and the type of HTTP request
made, the router routes the request to a specific handler, which processes the request.
In the solution, the request is processed in a callback function for each handler (one for
GET, one for POST). Restify is inherently lean; support for certain functionality is pulled

in by plugin. In the solution one plugin is used: restify.bodyParser. This plugin will
pull out the parameters set with the POST request. I used cURL—a command-line tool
to transfer data using one of several protocols (in the example, HTTP)—to test the API:

 curl --data "param1=value" http://examples.burningbird.net:8080/api/post

The resulting response is:

"created widget value"

If I didn’t want to mess with cURL, Restify also provides methods to create a client. To
test the POST, I could write a client as follows:

var restify = require('restify');

var client = restify.createStringClient({
 url: 'http://examples.burningbird.net:8080'
});

client.post('/api/post', {param1: 'value'}, function(err, req, res, data) {
 console.log(data);
});

And the resulting data would be:

created widget value

Restify provides a JsonClient, a StringClient (demonstrated), and an HttpClient object.

One way to test how this all works is to create a tiny RESTful API supporting GET, POST,

PUT, and DEL. To keep it simple, I’m using the save module, which stores the data in
memory. The API manages widgets, that universally usable demonstration product. The
widget data structure is:

• _id: Default identifier

• name: Name of the widget

• cost: Cost of the widget

356 | Chapter 13: Fun with APIs

Example 13-1 contains the complete server application. The code makes use of several
Restify objects, to send appropriate messages back to the client. The code also outputs
feedback to the console, so you can watch the application as it works.

Example 13-1. A complete though small RESTful API to manage widgets

var restify = require('restify');
var widget = require('save')('widget');

var server = restify.createServer({name: 'Examples'});
server.use(restify.fullResponse());
server.use(restify.bodyParser());

// GET

server.get('/api/:widget', function retrieve(req, res, next) {
 widget.findOne({_id: req.params.widget}, function (err, obj) {
 if (err) {
 return next (
 new restify.InvalidArgumentError(JSON.stringify(error.errors)));
 }
 if (obj) {
 res.send(200,obj);
 } else {
 res.send(404);
 }
 return next();
 });
});

// POST

server.post('/api/create', function create(req, res, next) {
 widget.create(req.params, function (err,widget) {
 console.log(widget);
 res.send(201, widget._id);
 });
 return next();
 });

// PUT

server.put('/api/:id', function(req, res, next) {
 if (req.params.cost === undefined) {
 return next(new
 restify.InvalidArgumentError('cost must be supplied'));
 }
 widget.update({_id: req.params.id, name: req.params.name,
 cost: req.params.cost},
 function (error, obj) {
 if (error) {
 return next(new
 restify.InvalidArgumentError(JSON.stringify(error.errors)));
 }
 res.send(200);

13.2. Creating a RESTFul API with Restify | 357

 return next();
 });
});

server.del('/api/:id', function (req, res, next) {
 widget.delete(req.params.id, function(err) {
 if (err) {
 console.log(err);
 return next (
 new restify.ResourceNotFoundError(JSON.stringify(err.errors)));
 }
 });
 res.send(200);
 return next();
});

server.listen(8080, function() {
 console.log('%s listening at %s', server.name, server.url);
});

To test the application, we can use a command-line utility such as cURL, but it’s not the
most trivial tool to wrap our heads around. Instead, I made use of a client API that
Restify provides. Specifically, I made use of the StringClient object. The test application
is in Example 13-2. All it does is create an object (POST), retrieve it (GET), update it
(PUT), and finally delete it (DEL).

Example 13-2. Testing a RESTful API using the Restify client API

var restify = require('restify');
var assert = require('assert');

var client = restify.createStringClient({
 url: 'http://examples.burningbird.net:8080'
});

function handleError(err) {
 console.log(err);
 process.exit(1);
}

// POST

client.post('/api/create', {name: 'super gidget', cost: '12.35'},
function(err, req, res, data) {
 if (err)
 return handleError(err);
 if (res.statusCode == '201') {
 console.log('POST id ' + data);

 // GET
 var id = data;
 client.get('/api/' + id, function (err, req, res, data) {
 if (err)

358 | Chapter 13: Fun with APIs

 return handleError(err);
 if (res.statusCode == '200') {
 console.log(data);
 // PUT
 client.put('/api/' + id, {name: 'super gidget', cost: '15,76'},
 function(err, req, res, data) {
 if (err)
 return handleError(err);
 console.log('PUT ' + res.statusCode);

 // DEL
 client.del('/api/' + id, function(err, req, res) {
 if (err)
 return handleError(err);
 console.log('DEL ' + res.statusCode);
 process.exit(1);
 });
 });
 }
 });
 }
});

A little callback spaghetti, but manageable. I also created a simple function to output
an error and exit the application.

Running the client against the server the first time results in the following to the server:

Examples listening at http://0.0.0.0:8080
Creating 'widget' {"name":"super gidget","cost":"12.35"}
{ name: 'super gidget', cost: '12.35', _id: '1' }
Finding One 'widget' {"_id":"1"} {}
Updating 'widget' {"_id":"1","name":"super gidget","cost":"15,76"}
with overwrite false
Deleting 'widget' 1

And the following to the client:

POST id 1
{"name":"super gidget","cost":"12.35","_id":"1"}
PUT 200
DEL 200

Running the client several times increments the identifier (id), until the Node API server
is shut down, in which case the memory store is released.

See Also
Install Restify and Save using npm:

npm install restify
npm install save

13.2. Creating a RESTFul API with Restify | 359

Restify’s documentation is at http://mcavage.me/node-restify/, and the Save documen‐
tation can be found in its GitHub repository.

13.3. Enabling a Mobile-Like Notification in the Desktop
Browser

Problem
You need a way to notify a user that an event has occurred or a long-running process is
finished, even if your web page isn’t loaded into the tab that’s currently active.

Solution
Use the Web Notifications API.

This API provides a relatively simple technique to pop up a notification window outside
of the browser, so that if a person is currently looking at a web page in another tab, she’ll
still see the notification.

To use a Web Notification, you do need to get permission. In the following code, the
Web Notification is wrapped in a request in a timer, to emulate a wait time for the
notification. Both are wrapped in a permission request:

Notification.requestPermission(function() {

 setTimeout(function() {
 var notification = new Notification('hey wake up',
 {body: 'your file is done',
 tag: 'preset'});
 }, 5000);
});

Discussion
Mobile environments have notifications that let you know when you received a new
Like in Facebook, or a new email in your email client. We don’t have this capability in
a desktop environment, though some might say this is a good thing.

Still, as we create more sophisticated web applications, it helps to have this functionality
when our applications may take a significant amount of time. Instead of forcing people
to hang around looking at a “working” icon on our pages, the web page visitor can view
other web pages in other tabs, and know she’ll get notified when the long-running
process is finished.

360 | Chapter 13: Fun with APIs

http://mcavage.me/node-restify/
https://github.com/serby/save

The Web Notifications API has gone through a couple of different
iterations, and the API is still undergoing work in the W3C. The
code in the solution works in the latest versions of Firefox, Safari,
and Chrome. However, it doesn’t work in IE, or the current stable
version of Opera. It also doesn’t work with mobile browsers.

In the solution, the first time the code creates a new notification, it gets permission from
the web page visitor. If your application is created as a standalone web application, you
can specify permissions in the manifest file, but for web pages, you have to ask
permission.

Prior to the Notification permission request, you can also test to see if Notification exists,
so an error is not thrown if it’s not supported:

if (window.Notification) {
 Notification.requestPermission(function() {

 setTimeout(function() {
 var notification = new Notification('hey wake up',
 {body: 'your process is done',
 tag: 'loader',
 icon: 'favicon.ico'});
 }, 5000);
 });
}

The Notification takes two arguments—a title string and an object with options:

• body: The text message in the body of the notification

• tag: A tag to help identify notifications for global changes

• icon: A custom icon

• lang: Language of notification

• dir: Direction of language

You can also code four event handlers:

• onerror

• onclose

• onshow

• onclose

And you can programatically close the notification with Notification.close(),
though Safari and Firefox automatically close the notification in a few seconds. All
browsers provide a window close (x) option in the notification.

13.3. Enabling a Mobile-Like Notification in the Desktop Browser | 361

Extra: Web Notifications and the Page Visibility API
You can combine Web Notifications with the Page Visibility API to set the Notification
when the web page visitor isn’t in the web page, only.

The Page Visibility API has broad support in modern browsers. It adds support for one

event, visibilitychange, which is fired when the visibility of the tab page changes. It

also supports a couple of new properties—document.hidden returns true if the tab page

isn’t visible and document.visibilityState, which has one of the following four values:

• visible: When the tab page is visible

• hidden: When the tag page is hidden

• prerender: The page is being rendered but not yet visible (browser support is
optional)

• unloaded: The page is being unloaded from memory (browser support is optional)

To modify the solution so that the notification only fires when the tabbed page is hidden,
modify the code to the following:

 if (window.Notification) {
 Notification.requestPermission(function() {

 setTimeout(function() {
 if (document.visibilityState == "hidden") {
 var notification = new Notification('hey wake up',
 {body: 'your process is done',
 tag: 'loader',
 icon: 'favicon.ico'});
 } else {
 document.getElementById("result").innerHTML = 'your process is done';
 }
 }, 5000);
 });
 }

Before creating the Notification, the code tests to see if the page is hidden. If it is, then
the Notification is created. If it isn’t, then a message is written out to the page instead.

13.4. Loading a File Locally in the Browser

Problem
You want to open an ePub XHTML file and output the text to the web page.

362 | Chapter 13: Fun with APIs

Solution
Use the File API in conjunction with the XML DOM parser:

function loadFile() {

 // look for the body section of the document
 var parser = new DOMParser();
 var xml = parser.parseFromString(this.result,"text/xml");
 var content = xml.getElementsByTagName("body");

 // if found, extract the body element's innerHTML
 if (content.length > 0) {
 var ct = content[0].innerHTML;
 var title = document.getElementById("bookTitle").value;
 title = "<h2>" + title + "</title>";
 document.getElementById("result").innerHTML = title + ct;
 }
}

Discussion
The File API bolts onto the existing input element file type, used for file uploading.
In addition to the capability of uploading the file to the server via a form upload, you
can now access the file directly in JavaScript, and either work with it locally or upload

the file using the XMLHttpRequest object.

For more on FileReader, check out MDN’s page on the API, and a
related tutorial.

There are three objects in the File API:

• FileList: A list of files to upload via input type="file"

• File: Information about a specific file

• FileReader: Object to asynchronously upload the file for client-side access

Each of the objects has associated properties and events, including being able to track
the progress of a file upload (and provide a custom progress bar), as well as signaling

when the upload is finished. The File object can provide information about the file,

including file size and MIME type. The FileList object provides a list of File objects,

because more than one file can be specified if the input element has the multiple

attribute set. The FileReader is the object that does the actual file upload.

13.4. Loading a File Locally in the Browser | 363

http://mzl.la/1ya0o1k
http://mzl.la/1ya0qGs

Example 13-3 is an application that uses all three objects in order to upload a file as
XML, and embed the XML into the web page. In the example, I’m using it to access
uncompressed ePub book chapters. As ePub chapter files are valid XHTML, I can use

the built-in XML Parser object, DOMParser, to process the file.

Example 13-3. Uploading an ePub XHTML chapter into a web page

<!DOCTYPE html>
<head>

<title>ePub Reader</title>
<meta charset="utf-8" />
<style>

#result
{
 width: 500px;
 margin: 30px;
}
</style>

</head>

<body>

 <form>
 <label for="title">Title:</label>
 <input type="text" id="bookTitle" /></br >

 <label for="file">File:</label> <input type="file" id="file" />

 </form>
 <div id="result"></div>

 <script>

 var inputElement = document.getElementById("file");
 inputElement.addEventListener("change", handleFiles, false);

 function handleFiles() {
 var fileList = this.files;
 var reader = new FileReader();
 reader.onload = loadFile;
 reader.readAsText(fileList[0]);
 }

 function loadFile() {

 // look for the body section of the document
 var parser = new DOMParser();
 var xml = parser.parseFromString(this.result,"text/xml");
 var content = xml.getElementsByTagName("body");

 // if found, extract the body element's innerHTML
 if (content.length > 0) {
 var ct = content[0].innerHTML;
 var title = document.getElementById("bookTitle").value;
 title = "<h2>" + title + "</title>";
 document.getElementById("result").innerHTML = title + ct;

364 | Chapter 13: Fun with APIs

 }
 }
 </script>
</body>

Figure 13-1 shows the page with the first chapter of the public domain ePub of Moby
Dick. Note that this is the XHTML file that forms part of the ePub package, not the
actual ePub, itself.

Figure 13-1. Using the File API to read a chapter of an ePub book

The File API is a W3C effort. You can read the latest draft at http://
www.w3.org/TR/FileAPI/. Read Mozilla’s coverage at http://mzl.la/
1ya0qGs.

13.5. Creating a Mini E-Pub Reader Using Web Workers
and the File API

Problem
Your application uploads E-Pub XHTML documents for reading in your web applica‐
tion, but you don’t want to block the browser while the file is being processed.

13.5. Creating a Mini E-Pub Reader Using Web Workers and the File API | 365

http://www.w3.org/TR/FileAPI/
http://www.w3.org/TR/FileAPI/
http://mzl.la/1ya0qGs
http://mzl.la/1ya0qGs

Solution
The solution needs to incorporate two pieces: uploading a file and opening it, and doing
all of this in a separate thread so the browser isn’t blocked waiting for what could be a
time-consuming operation to finish.

See the discussion for the code.

Discussion
In a language such as Java, you can create multiple threads of execution that can operate
concurrently. Computers and operating systems have long had the ability to support
multiple threads—switching the necessary resources among the threads as needed.
Handled correctly, threads can make your application run faster and more efficiently.
Multithreaded development also provides the functionality necessary to ensure the
threads are synced, so the applications are accurate, too.

In the past, a major difference between JavaScript and these multithreaded program‐
ming languages is that JavaScript runs within a single thread of execution. Even when
a timer fires, the associated event falls into the same queue as other pending events. This
single-execution-thread queue is why you can’t absolutely depend on the preciseness of
a JavaScript timer. With Web Workers, introduced as one of the W3C WebApps 1.0
specifications, for better or worse, this all changes.

I say “for better or worse” because thread-based development has always been a double-
edged sword in most development environments. If they’re not properly managed,
multithreaded applications can crash and burn rather spectacularly. Web workers differ
from most of the other multithreaded environments because the latter gives the devel‐
opers more control over the creation and destruction of threads. Web workers provide
threaded development, but at a higher, hopefully safer level.

To create a web worker, all you need do is call the Worker object constructor, passing
in the URI for a script file to run:

var theWorker = new Worker("loading.js");

You can also assign a function to the web worker’s onmessage event handler, and onerror
event handler:

theWorker.onmessage = handleMessage;
theWorker.onerror = handleError;

To communicate with the web worker, use the postMessage method, providing any data
it needs:

theWorker.postMessage(dataObject);

In the web worker, an onmessage event handler receives this message, and can extract
the data from the event object:

366 | Chapter 13: Fun with APIs

onmessage(event) {
 var data = event.data;
 ...
}

If the web worker needs to pass data back, it also calls postMessage. The function to
receive the message in the main application is the event handler function assigned to

the web worker’s onmessage event handler:

theWorker.onmessage= handleMessage;

The function can extract any data it’s expecting from the event object.

One caveat about worker threads, though, is that not all built-in objects or functionality
is available within a worker thread across all browsers. In Firefox at least, the asynchro‐
nous FileReader won’t work in a worker thread. Instead, you have to use the synchronous
version of the code, FileReaderSync thread, as shown in the worker thread, loading.js,
created for this application:

onmessage = function(event) {

 function handleFile(loadFile) {
 var reader = new FileReaderSync();
 var txt = reader.readAsText(loadFile);
 postMessage(txt);
 }

 var str = handleFile(event.data);

};

The reason why the asynchronous version of the function won’t work is the global object
in a worker is not the same as the global object in a browser application, and FileReader
is not one of the objects supported in the thread context. Instead, you have to use
FileReaderSync, which, because of its blocking nature, is only supported in worker
threads. The blocking nature of FileReaderSync isn’t an issue with a worker thread
because the thread is asynchronous by design.

Mozilla provides a listing of what it supports in worker threads. In
my testing, what Firefox supports typically matches what other
browsers support, too.

Now we need to use the worker thread. Example 13-4 is the web page that loads a file
incorporating a worker thread, printing the contents out to the web page when finished.

13.5. Creating a Mini E-Pub Reader Using Web Workers and the File API | 367

http://mzl.la/1KstRbq

Example 13-4. Reading a file using a web worker

<!DOCTYPE html>
<head>

<title>ePub Reader</title>
<meta charset="utf-8" />
<style>

#result
{
 width: 500px;
 margin: 30px;
}
</style>

</head>

<body>

 <form>
 <label for="file">File:</label>
 <input type="file" id="file" />

 </form>
 <div id="result"></div>

 <script>

 var inputElement = document.getElementById("file");
 inputElement.addEventListener("change", handleFiles, false);

 function handleFiles() {
 var file = this.files[0];
 var worker = new Worker("loading.js");
 worker.onmessage=loadFile;
 worker.postMessage(file);
 }

 function loadFile(event) {

 // look for the body section of the document
 var parser = new DOMParser();
 var xml = parser.parseFromString(event.data,"text/xml");
 var content = xml.getElementsByTagName("body");

 // if found, extract the body element's innerHTML
 if (content.length > 0) {
 var ct = content[0].innerHTML;
 document.getElementById("result").innerHTML = ct;
 }
 }

 </script>
</body>

Normally with worker threads the script you’d run would be a computationally intensive
script, with results that aren’t immediately needed. Mozilla’s example for web workers

368 | Chapter 13: Fun with APIs

demonstrates a script that computes a Fibonacci sequence. My own attempt at a more
time consuming process is running a function that reverses an array passed to the worker
thread as data. The worker code is listed in Example 13-5, and saved as reverse.js.

In the JavaScript library, an onmessage event handler function accesses the data from

the event object—the array to reverse—and passes it to the reversed array function.

Once the function finishes, the web worker routine calls postMessage, sending the
resulting string back to the main application.

Example 13-5. Using web worker JavaScript to reverse an array and return the result‐
ing string

// web worker thread - reverses array

onmessage = function(event) {

 var reverseArray = function(x,indx,str) {
 return indx == 0 ? str :
 reverseArray(x,--indx,(str+= " " + x[indx]));;
 }

 // reverse array
 var str = reverseArray(event.data, event.data.length, "");

 // return resulting string to main application
 postMessage(str);
};

The application that uses the worker is given in Example 13-6. When the application

retrieves the uploaded file and extracts the body element, it splits the content into an
array based on the space character. The application sends the array through to the re‐
versed array web worker. Once the web worker finishes, the data is retrieved and output
to the page.

Example 13-6. The ePub reader in Example 13-3, using a web worker to reverse the
content

<!DOCTYPE html>
<head>

<title>ePub Reader</title>
<meta charset="utf-8" />
<style>

#result
{
 width: 500px;
 margin: 30px;
}
</style>

</head>

<body>

 <form>

13.5. Creating a Mini E-Pub Reader Using Web Workers and the File API | 369

 <label for="file">File:</label>
 <input type="file" id="file" />

 </form>
 <div id="result"></div>

 <script>

 var inputElement = document.getElementById("file");
 inputElement.addEventListener("change", handleFiles, false);

 function handleFiles() {
 var fileList = this.files;
 var reader = new FileReader();
 reader.onload = loadFile;
 reader.readAsText(fileList[0]);
 }

 function loadFile() {

 // look for the body section of the document
 var parser = new DOMParser();
 var xml = parser.parseFromString(this.result,"text/xml");
 var content = xml.getElementsByTagName("body");

 // if found, extract the body element's innerHTML
 if (content.length > 0) {
 var ct = content[0].innerHTML;
 var ctarray = ct.split(" ");
 var worker = new Worker("reverse.js");
 worker.onmessage=receiveResult;
 worker.postMessage(ctarray);
 }
 }

 function receiveResult(event) {
 document.getElementById("result").innerHTML = event.data;
 }
</script>

</body>

As you can see in Figure 13-2, the results are interesting. Not very useful—except they
demonstrate that the web worker performs as expected, and quickly, too.

370 | Chapter 13: Fun with APIs

Figure 13-2. Result of reversing the ePub XHTML file contents

13.6. Exploring Google Maps and Other APIS

Problem
Your application needs to incorporate a map, and various map supportive services.

Solution
Use the Google Maps API to add map support to your web page.

In Example 13-7, a form and a space for a map is added to a web page, and the Google
Maps API is used to center the map based on the latitude and longitude given in the
form.

Example 13-7. Panning the Map based on input values

<!DOCTYPE html>
<html>

 <head>
 <style type="text/css">
 #map-canvas {
 width: 600px;
 height: 400px;
 margin-left: 15px;
 }

13.6. Exploring Google Maps and Other APIS | 371

 form {
 margin: 15px;
 }
 </style>
 <script type="text/javascript"
 src="https://maps.googleapis.com/maps/api/js?key=yourkey">
 </script>
 <script type="text/javascript">
 var map;
 function initialize() {
 var mapOptions = {
 center: { lat: 38, lng: -90},
 zoom: 5
 };
 map = new google.maps.Map(document.getElementById('map-canvas'),
 mapOptions);

 document.getElementById("runit").onclick=changeMap;
 }

 function changeMap() {
 var long = parseFloat(document.getElementById("long").value);
 var lat = parseFloat(document.getElementById("lat").value);

 map.panTo({lat: lat, lng: long});
 return false;
 }

 google.maps.event.addDomListener(window, 'load', initialize);

 </script>
 </head>
 <body>
 <form >
 Lat: <input type="text" id="lat" />

 Long: <input type="text" id="long" />

 <button id="runit">Map it!</button>
 </form>

 <div id="map-canvas"></div>
 </body>
</html>

Figure 13-3 shows the map, centered near where I currently live.

372 | Chapter 13: Fun with APIs

Figure 13-3. Google map centered near where I live

Discussion
Google Maps is the granddaddy of APIs for web applications. Though it has become
more functionally rich over the years, it’s still relatively simple to use.

Google Maps is one of Google’s many APIs available via their Google API Console. To
use any of the APIs, you’ll need to create a project, but there’s no expectations about
what you need to do with the project, and unless your application gets a sudden hit of
popularity, you’ll not be charged for the API use.

As long as you provide free access to the pages utilizing Google APIs,
you’re generally free to use the APIs without cost. However, if your
application gets significant use, such as more than 25,000 Google
Maps accesses in a 24-hour window, Google will contact you about
potential payment plans. Each Google API has a Terms of Service
(TOS), spelling out the API’s allowable use.

13.6. Exploring Google Maps and Other APIS | 373

https://code.google.com/apis/console

Once you create a project, you can enable one or more Google APIs for it. The Google
Maps app in the solution app uses the Google Maps JavaScript API v3. You’ll also have
to create an API key, which you can do by clicking the Credentials link in the left sidebar.
For browser applications, create a new Client API key and specify the domain that serves
up the web page containing the app. Google also provides support for OAuth 2.0, which
I cover in Recipe 14.4.

Google mixes things up from time to time. To ensure you’re work‐
ing with the most current environment, double check the Google
documentation for setting up a project, getting an API key, and the
API documentation.

There is a also a server-based API key if your Node application is accessing one of
Google’s server-based APIs, such as the API to Google’s Cloud Storage. The Cloud
Storage API is one of the APIs that does require payment, and you’ll need to set up a
billing account if your application is utilizing it.

If you’re not sure which Google API to use, you can use Google’s API Picker. From this
you can tell if you need the JavaScript API I used, the Google Maps Android API v2,
the embedded Google Maps API, and so on.

The Android-flavored APIs are generally based in Java, which is the Android develop‐
ment language. If you’re creating web applications for Android based in HTML5/CSS/
JavaScript, you’ll need to look for APIs that are RESTful, using the API techniques
covered in the first recipe of this book, or have a JavaScript interface, such as the Map
API demonstrated in the solution.

In addition, Google APIs can be client- or server-based. An example is the APIs for
Google’s geocoding services, which takes a full address and returns longitude and latitude
for Google Maps markers and positioning. The server API has significant limits on use
because the assumption is that the API will be used by a server application that has access
to a fixed set of addresses. The server application then processes the geocode request
for each address, and then caches the request locally, so the Google service doesn’t need
to be accessed again.

All the Google Maps APIs are covered in one set of documents at
Google. The server APIs are listed separately, including the Google
Geocoding API. The client-side geocoding services are part of the
Google Maps JavaScript API.

To demonstrate server access to Google APIs, you first need to create a Server API key,
providing the IP address for your server. You’ll also need to enable the API service (in

374 | Chapter 13: Fun with APIs

http://bit.ly/1ya5FG6
https://developers.google.com/maps/
https://developers.google.com/maps/
http://bit.ly/1ya63ED

this case, the Google Maps Geolocation API). The client keys are domain specific, but
the server key is IP address specific (including subnet, if appropriate).

The server Geocode API uses SSL to protect the data requests, so all API requests begin
with “https”. The general format for the request is:

http://maps.googleapis.com/maps/api/geocode/output?parameters

There are only a finite set of parameters to a request. The address is required; the other,
optional parameters are:

• bounds: Bounding box of viewport within which to prominently bias geocode
results

• key: The server API key

• language: Language for results, defaulting to the language derived from the re‐
questing domain

• region: Two character code that can influence results

• components filter: If you’re using component filtering

Instead of specifying an address, you can specify a component, if
you’re using component filtering.

We’re keeping the application as simple as possible, so the only parameters we’re using
are the address and the API key.

The Node application is a simple web server that takes address requests from a browser
client, checks to see if the address has already been processed, and if not, makes a call

to the Google service. When it gets the result, it caches it using the Node module memory-

cache, and then returns the latitude/longitude pair to the client. The next look up for
the address comes from the cache, rather than from the Google service.

Install memory-cache with npm:

npm install memory-cache

I am using the region parameter in the Google API call, to signal that the API request
is coming from the U.S. region. Adjust your copy of the code to your region, accordingly.

13.6. Exploring Google Maps and Other APIS | 375

http://bit.ly/1ya6sXy

In Example 13-8, the call to the Google API happens in the server response end event,

rather than the data event, because of the asynchronous nature of both the end event
and the Google API client request.

Example 13-8. Accessing Google Geocoding service to get latitude/longitude pairs for an
address

var http = require("http");
var cache = require("memory-cache");
var Client = require("node-rest-client").Client;
var client = new Client();

var server = http.createServer();
server.on('request', request);
server.listen(8080);

function request(request, response) {
 var address;

 // get address from client
 request.on('data', function(data)
 {
 var addrObj = JSON.parse(data);
 address = require("querystring").escape(addrObj.address);
 });

 // get geo loc
 request.on('end', function()
 {
 response.setHeader("Content-Type", "text/json");
 response.setHeader("Access-Control-Allow-Origin", "*");

 // check if cached
 // if so, return cached results
 var loc = cache.get(address);
 if (loc) {
 console.log(loc);
 response.end(loc);
 return;
 }

 // not cached, look up loc using API
 var api =
 "https://maps.googleapis.com/maps/api/geocode/json?key=yourkey&address="
 + address +
 "®ion=us";

 client.get(api, function(data, res) {
 var resultObj = JSON.parse(data);
 location = resultObj.results[0].geometry.location;
 var loc = JSON.stringify(location);
 cache.put(address,loc);

376 | Chapter 13: Fun with APIs

 response.end(JSON.stringify(location));
 });
 });
}

Note the use of the built-in Node module, QueryString, and its escape() method to
prepare the address string for use in a REST API call.

To simplify the client, I’m using jQuery to handle the Ajax call. There is a plugin for
jQuery specifically for Google Maps, but as this chapter is focused on playing with
existing APIs, I’m not using the plugin.

In Example 13-9, the Google Map is loaded with a default location. When a new address
is entered into the form, and the button to change the map is clicked, the Ajax call is
made to the Node server app, sending along the address. When the Ajax call is returned,

map.panTo() is used with the returned latitude/longitude location, and the map is
moved.

Example 13-9. The client page to access addresses and reposition the Google map

<!DOCTYPE html>
<head>

<title>Map Mover</title>
<meta charset="utf-8" />
 <style>
 #map-canvas {
 width: 600px;
 height: 400px;
 margin-left: 15px;
 }
 form {
 margin-bottom: 20px;
 }
 </style>
 <script type="text/javascript"
 src="https://maps.googleapis.com/maps/api/js?key=yourclientkey">
 </script>

 <script src="https://code.jquery.com/jquery-2.1.1.js"></script>
 <script type="text/javascript">

 var map;
 function initialize() {
 var mapOptions = {
 center: { lat: 38, lng: -90},
 zoom: 8
 };
 map = new google.maps.Map(document.getElementById('map-canvas'),
 mapOptions);

 }

13.6. Exploring Google Maps and Other APIS | 377

 google.maps.event.addDomListener(window, 'load', initialize);

 $(document).ready(function() {
 $("#changemap").click(function(event) {
 event.preventDefault();
 var address = $("#address").val();
 console.log(address);
 $.ajax
 ({
 type: "POST",
 url: "http://examples.burningbird.net:8080",
 crossDomain:true,
 dataType: "json",
 data: JSON.stringify({"address": address})
 }).done(function (data) {
 map.panTo(data);
 })
 });
 })
</script>

</head>

<body>

<form>

 <label for="address">Address:</label>
 <input type="text" id="address" name="address" /></br >

 <button id="changemap">Change Map</button>
</form>

<div id="map-canvas"></div>
</body>

Figure 13-4 shows the application after a certain book publisher’s address is submitted
to the application.

378 | Chapter 13: Fun with APIs

Figure 13-4. Map moved to a magical place in California

See Also
Another way to access latitude and longitude of a current address is using the Geolo‐
cation API. It’s used in Chapter 18, in Recipe 18.5.

13.7. Accessing Twitter’s API from a Node Application

Problem
You’re interested in accessing search results and other data from Twitter, without having
to get authorization access from any individual user.

Solution
You don’t need to get authorization from an individual user if you use Application-Only
Authentication, based on OAuth 2.0’s Client Credentials Grant.

Details are in the discussion.

13.7. Accessing Twitter’s API from a Node Application | 379

Discussion
The world of APIs is no longer the Wild West frontier it once was not that many years
ago. Now, API service providers such as Flickr, Twitter, and Facebook place restrictions
on API access to keep from being overwhelmed with requests. In addition, many of the
services are also requiring OAuth authorization, especially with any requests to modify
data, or to access confidential data. Though OAuth 2.0 has simplified the authorization
flow, it still requires a round-trip for a user to the resource’s authorizing server, which
requires a frontend to accommodate the user, and support for SSL, because most au‐
thorizing servers now require HTTPS at the end points of the request.

The days of API access from server-side applications, without direct user intervention,
are increasingly becoming endangered.

Thankfully, there is an OAuth 2.0 pattern, known as Client Credentials Grant, that does
still allow server-side access without individual user intervention, and Twitter has pro‐
vided an implementation called Application-Only authentication.

Because we’re focusing on Twitter’s API, I created a module to wrap the OAuth bits. The
code for it, and an explanation of its use, is covered in “Twitter Application-Only and
OAuth 2.0 Client Credentials Grant” on page 424, in Chapter 14. The module is

twitreq, and exposes two functions: getAuthorization() and getTwitterData(). The

getAuthorization() method handles all of the Twitter authorization, invoking a call‐
back function returning an error (or null), and an access token. Twitter’s Application-
Only authentication does still require an access token for each service request.

The getTwitterData() method takes, as parameters, the access token, and a service
path request. The latter is the key piece of data we’re going to focus on. Twitter’s
Application-Only authentication works with a subset of the REST API that exposes
public facing data accessible via a GET. In other words, you can’t make updates, change
data for an individual user, or use this type of authentication to get information about
an individual’s personal account. You can determine which API endpoint is available
for Application-Only authentication by checking the “Requires authentication?” value
in the endpoint’s page. If it states “Requires user context”, you can’t use it with
Application-Only authentication.

Filtering out the endpoints that require user context still leaves several very useful
endpoints:

• The Search API

• Get the tweets, retweets, and favorites for an individual or group of individuals

• Get the friends/followers for an individual or group of individuals

• Get the lists of a particular user and get the tweets for members of the list

380 | Chapter 13: Fun with APIs

There are rate limits for the API. Twitter has set a limit of 15 requests per 15-minute
window for most of the endpoints. The limit is 180 per 15-minute window for search.
If you’re incorporating the Twitter results into a web application, you can ensure you
don’t exceed this limit by caching the results in the server or the client. You can also

check the status of your rate access using the Twitter REST endpoint of GET applica

tion/rate_limit_status. An example of the query with this endpoint is the following,
checking rate usage for search:

https://api.twitter.com/1.1/application/rate_limit_status.json?resources=search

The API results are returned in JSON:

{
 "rate_limit_context": {
 "access_token": "786491-24zE39NUezJ8UTmOGOtLhgyLgCkPyY4dAcx6NA6sDKw"
 },
 "resources": {
 "search": {
 "/search/tweets": {
 "limit": 180,
 "remaining": 180,
 "reset": 1403602426
 }
 }
 }
}

Twitter maintains a chart of rate limits at https://dev.twitter.com/rest/
public/rate-limits.

In this recipe, we’ll focus on the Search API. The Search API provides a rich interface
for returning a set of tweets (statuses in the parlance of Twitter). An example query is

the following, which returns all recent tweets featuring the hashtag #rose that are in
English:

https://api.twitter.com/1.1/search/tweets.json?q=%23rose
&result_type=recent&lang=en

The data that’s returned is quite extensive. The results of a search returned to an Ajax
call in a web page is shown broken out in Firebug in Figure 13-5. And this is only a tiny,
graphical snapshot of the available data.

13.7. Accessing Twitter’s API from a Node Application | 381

https://dev.twitter.com/rest/public/rate-limits
https://dev.twitter.com/rest/public/rate-limits

Figure 13-5. Returned Twitter search JSON results, expanded in Firebug

We can refine the results in the server, but it depends on what the client accessing the
service is expecting. If the client is expecting all the results, sending all the data isn’t a

bandwidth breaker. The #rose result size was 43.9 KB, which is less than a typical ani‐
mated GIF, and we’re subjected to them seemingly hundreds of times per day.

The Twitter search incorporates several operators, including the aforementioned hash‐
tag (#). Among some of the operators:

• to:person: Tweets directed at a specific person

• @person: Tweets referencing a specific person

• rose filter:links: Tweets about “rose” with links

• rose :): Tweets featuring “rose” that are positive

• rose -thorn: Tweets featuring “rose” without also including “thorn”

The complete list is included in the Twitter Search documentation.

Time to try out the Twitter Search API. First, you’ll need to register an application with
Twitter. There’s no charge, and when you create the new app, you only need to provide
the name, description, and the URI of your primary website. You don’t need to register
a callback URL for this app.

382 | Chapter 13: Fun with APIs

https://apps.twitter.com/
https://apps.twitter.com/

Once you create the app, Twitter assigns it a unique Consumer Key (API Key) and
Consumer Secret (API Secret). They’re accessible via the application page, and the “Keys
and Access Tokens” tab page. You’ll need to keep these confidential: they’re equivalent
to your app’s password with Twitter. You’ll also need to add them to the code a little
later.

To create the Node search server, use the code shown in Example 13-10. The Node server

listens for Ajax requests for a client. It parses out the query string using URL.parse()

for the request, extracting out the search parameters from the URL.query object. It

escapes the result using querystring.escape, and then forms the Twitter search REST

endpoint. This gets passed in a call to twitreq.getTwitterData() along with the access

token, and a callback function. Change the consumerKey and consumerSecret values
to your unique values.

Example 13-10. Twitter Search service in Node

var twitreq = require('./twitreq');
var http = require('http');

var consumerKey = 'yourkey';
var consumerSecret = 'yoursecret';

// getting access token from Twitter

twitreq.getAuthorization(consumerKey,
 consumerSecret, function(err, atoken) {

 if (err) {
 console.log(err);
 return;
 }

 // if authorized, start up HTTP server
 var server = http.createServer(function(req, res) {

 // extract out search query
 var query = require('url').parse(req.url,true).query;
 var search = require('querystring').escape(query.q);

 // forming search path
 var servicePath = '/1.1/search/tweets.json?q=' + search +
 '&result_type=recent&lang=en';

 // make Twitter request, get results, and return to client
 twitreq.getTwitterData(servicePath, atoken, function(results) {
 res.writeHeader(200, {"Content-Type": "application/json",
 "Access-Control-Allow-Origin": "*"});
 res.end(results);
 });
 });

13.7. Accessing Twitter’s API from a Node Application | 383

 server.listen(8080);
});

The callback function takes the returned results and returns it directly to the client, since
it’s already formatted as a JSON string.

The client web page contains an input text field and a button, as well as a div element
for the results. The user can enter any Twitter search string incorporating operators (or
not), and the results are formatted as a list with tweet text and attributed to the Twitter
user who posted the tweet.

The results are accessed using Ajax, and parsed using JSON when returned. The array
of tweets is an array that’s traversed for the individual tweets, and their text, as shown
in Example 13-11.

Example 13-11. Web page accessing the Twitter Node service

<!DOCTYPE html>
<head>

<title>Twitter Search</title>
<meta charset="utf-8" />
<style>

 ul {
 width: 600px;
 list-style-type: none;
 margin-left: 50px;
 padding: 0
 }
 li {
 font: 200 14px/1.5 Helvetica, Verdana, sans-serif;
 padding-bottom: 10px;
 color: #606060;
 }
</style>

</head>

<body>

 <label for="one">Twitter Search Value:</label>
 <input type="text" name="one" id="one" />

 <button id="getdata">Search Twitter</button>
 <div id="result"></div>
 <script>
 var httpRequest;

 document.getElementById('getdata')
 .addEventListener('click',getData,false);

 function getData(e) {
 e.preventDefault();

 var search = document.getElementById('one').value;
 if (!search || search.length === 0) return;
 httpRequest = new XMLHttpRequest();

384 | Chapter 13: Fun with APIs

 search = encodeURIComponent(search);
 var url = "http://shelleystoybox.com:8080/?q=" + search;
 httpRequest.open('GET', url, true);
 httpRequest.onreadystatechange = processData;
 httpRequest.send();
 }

 function processData() {
 if (httpRequest.readyState == 4 && httpRequest.status == 200) {

 var tweets = JSON.parse(httpRequest.responseText);
 var str = '';
 tweets.statuses.forEach(function(tweet) {
 str += '' + tweet.text + ' via '
 + '@' + tweet.user.screen_name + '';
 });
 str += '';
 document.getElementById('result').innerHTML = str;
 }
 }
 </script>
</body>

The data we’re pulling from the results are the tweets, available at tweets.statuses,

and the tweet text and Twitter user from the individual tweets: tweet.text and

tweet.user.screen_name. The data is listed as list items in an unordered list.

The result of running a Twitter search for references to “#JavaScript” is shown in
Figure 13-6.

It’s relatively simple to change the search endpoint to other endpoints, or even expand

the application to map endpoints to routes: /search/ or /status/:id/.

See Also
The mechanics of OAuth (both 1.0 and 2.0) are covered in Recipe 14.4, and the code
behind the OAuth modules created for this recipe’s example is covered in “Twitter
Application-Only and OAuth 2.0 Client Credentials Grant” on page 424. An example of
full read/write access to the Twitter API, using OAuth 1.0, is provided in “Full Read/
Write Authorization with the Twitter API and OAuth 1.0” on page 426.

Accessing Twitter’s API using Twitter’s implementation is discussed in “Application-
Only Authentication”, and the API used in this recipe is covered in “The Search API”.

13.7. Accessing Twitter’s API from a Node Application | 385

https://dev.twitter.com/oauth/application-only
https://dev.twitter.com/oauth/application-only
https://dev.twitter.com/rest/public/search

Figure 13-6. Result of running Twitter search for #JavaScript

386 | Chapter 13: Fun with APIs

CHAPTER 14

JavaScript Frameworks

“Framework” is an overloaded term, used to represent anything from simple libraries
and data schemas, to fullblown content systems. In this chapter, when I use the word
“framework,” I’m using it to represent a class of software created to implement a class
of applications, though each specific application is unique.

For today’s JavaScript developer, a framework can vary from a complete server-side (or
client-based) database application, to authorizations systems, and so on. A framework
differs from a standard library or module because the framework is meant to provide
all of the underlying infrastructure necessary to solve a complete and typically complex
task.

Many of the frameworks—in both the client and the server—are based on a specific
paradigm: MVC, or the Model-View-Controller paradigm. MVC is based on a three-
way architecture for applications where data, business rules, and the functions to main‐
tain both are represented by the Model, the user interface is the View, and the Controller
is the communication between the two. A well-represented variation of the MVC is one
where the services of the Controller are merged into that of the View, leading us to
reclassify MVC as MV*—encompassing systems that break out the Controller as well
as those that don’t.

The client-side frameworks, such as AngularJS, support a popular programming para‐
digm frequently associated with the Single Page Application, or SPA. The basis for these
types of applications is that all functionality is implemented within one page that is
dynamically updated, as needed, rather than refreshed. Think Gmail, Dropbox, or Git‐
Hub, and you have an SPA. It’s the basis for a comparison site of client-side frameworks,
the TodoMVC.

But developers don’t live by MVC/SPAs alone. Frameworks can also provide the infra‐
structure for a more finite functionality, such as authorization (OAuth). In addition,
newer technologies such as Web Components allow us to package UI and behavior into

387

reusable components, which can then be used with other framework tools, or on their
own.

14.1. Using the Express-Generator to Generate an Express
Site

Problem
You’re interested in using Express to manage your server-side data application, but you
don’t want to manage all the bits yourself.

Solution
There are multiple Node frameworks you can use to create server-side applications, but
the most popular and widely used is Express. To kickstart your Express application, use
the Express-Generator, otherwise known as Express(1). Express(1) is a command-line
tool that generates the skeleton infrastructure of a typical Express application.

First, create a working directory where the tool can safely install a new application
subdirectory. Next, install Express(1), globally:

npm install -g express-generator

If you prefer not to install Express(1) globally, you can specify a path to the application.
However, installing it globally is the simpler option.

Next, generate the Express application shell. I’ll get into the details of the choices made
for the application in the discussion, but for now, use the following:

express --css stylus tada

Express(1) creates a new directory with several subdirectories, some basic files to get
you started, and a package.json file with all of the dependencies. To install the depen‐
dencies, change to the newly created directory and type:

npm install

Once all of the dependencies are installed, run the application using the following:

npm start

You can now access the generated Express application, using your IP address or domain
and port 3000, the default Express port.

Discussion
Express provides an MVC framework based on Node and with support for multiple
templating engines and CSS preprocessors. In the solution, the options I chose for the

388 | Chapter 14: JavaScript Frameworks

example application are Jade as the template engine (the default), and Stylus as the CSS
preprocessor (plain CSS is the default). Though Express from scratch enables a wider
selection, Express(1) supports only the following template engines:

• express --ejs: Adds support for the EJS template engine

• express --hbs: Adds support for the Handlebar template engine

• express --hogan: Adds support for the Hogan.js template engine

Express(1) also supports the following CSS preprocessors:

• express --css less: Support for Less

• express --css stylus: Support for Stylus

• express --css compass: Support for Compass

Not specifying any CSS preprocessor defaults to plain CSS.

Read more on template engines and preprocessors in “Extra: Work‐
ing with Templates” on page 393.

Express(1) also assumes that the project directory is empty. If it isn’t, force the Express

generator to generate the content by using the -f or --force option.

The newly generated subdirectory has the following structure (disregarding node_mod

ules):

app.js
/bin
 www
/package.json
/public
 /images
 /javascripts
 /stylesheets
 style.css
 style.styl
/routes
 index.js
 users.js
/views
 error.jade
 index.jade
 layout.jade

14.1. Using the Express-Generator to Generate an Express Site | 389

The app.js file is the core of the Express application. It includes the references to nec‐
essary libraries:

var express = require('express');

var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');

var routes = require('./routes/index');
var users = require('./routes/users');

It also creates the Express app with the following line:

var app = express():

Next, it establishes Jade as the view engine by defining the views and view engine
variables:

app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'jade');

The middleware calls are loaded, next, with app.use(). Middleware is functionality that
sits between the raw request and the routing, processing specific types of requests. The
rule for the middleware is if a path is not given as first parameter, it defaults to a path

of /, which means the middleware functions are loaded with the default path. In the
following generated code:

// uncomment after placing your favicon in /public

//app.use(favicon(__dirname + '/public/favicon.ico'));

app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: false }));
app.use(cookieParser());
app.use(require('stylus').middleware(path.join(__dirname, 'public')));
app.use(express.static(path.join(__dirname, 'public')));

The first several middleware are loaded with every app request. Among the middleware
includes support for a favicon.ico for the application, support for development logging,
as well as parsers for both JSON and urlencoded bodies. It’s only when we get to the

Stylus and static entries that we see assignment to specific paths: the Stylus middleware

and static file request middleware are loaded when requests are made to the public
directory.

The routing is handled next:

app.use('/', routes);
app.use('/users', users);

390 | Chapter 14: JavaScript Frameworks

The top-level web request (/) is directed to Node module, routes, while all user requests

(/users) get routed to the users module.

What follows is the error handling. First up is 404 error handling when a request is made
to a nonexistent web resource:

app.use(function(req, res, next) {
 var err = new Error('Not Found');
 err.status = 404;
 next(err);
});

Next comes the server error handling, for both production and development:

// error handlers

// development error handler

// will print stacktrace

if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

// production error handler

// no stacktraces leaked to user

app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

By default, Express is set up to run in development mode. To change the application to

production mode, you need to set an environment variable, NODE-ENV to “production”.
In Linux, the following could be used:

export NODE_ENV=production

The last line of the generated file is the module.exports for the app.

In the routes subdirectory, the default routing is included in the index.js file:

var express = require('express');
var router = express.Router();

/* GET home page. */

router.get('/', function(req, res) {

14.1. Using the Express-Generator to Generate an Express Site | 391

 res.render('index', { title: 'Express' });
});

module.exports = router;

What’s happening in the file is the Express router is used to route any HTTP GET

requests to / to a callback where the request response receives a view rendered for the
specific resource page. This is in contrast to what happens in the users.js file, where the
response receives a text message rather than a view:

var express = require('express');
var router = express.Router();

/* GET users listing. */

router.get('/', function(req, res) {
 res.send('respond with a resource');
});

module.exports = router;

What happens with the view rendering in the first request? There are three Jade files in
the views subdirectory: one for error handling, one defining the page layout, and one,
index.jade, that renders the page. The index.jade file contains:

extends layout

block content
 h1= title
 p Welcome to #{title}

It extends the layout.jade file, which contains:

html
 head
 title= title
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 block content

The layout.jade file defines the overall structure of the page, regardless of content, in‐

cluding a reference to an automatically generated CSS file. The block content setting
defines where the location of the content is placed. The format for the content is defined

in index.js, in the equivalently named block content setting.

The two Jade files define a basic web page with an h1 element assigned a title variable,
and a paragraph with a welcome message. Figure 14-1 shows the default page.

392 | Chapter 14: JavaScript Frameworks

Figure 14-1. The Express generated web page served up in Chrome

Figure 14-1 shows that the page isn’t especially fascinating, but it does represent how
the pieces are holding together: the application router routes the request to the appro‐
priate route module, which directs the response to the appropriate rendered view, and
the rendered view uses data passed to it to generate the web page. If you make the
following web request:

http://yourdomain.com:3000/users

you’ll see the plain text message, rather than the rendered view.

A basic application generated by Express(1) contains routes and views, but it isn’t an
MVC application. There is no data persistence and the router is not the same as a con‐
troller. These two components will need to be implemented in order for the application
to be a fully featured MVC application.

Extra: Working with Templates
The template system used in the solution, Jade, is a succinct language that specifies
HTML page constructs, and allows us to map the data to these constructs. A good
example is the following, which creates a web page listing out widgets, the programming
world’s favorite example subject:

extends layout

block content
 table
 caption Widgets
 if widgets.length
 tr

14.1. Using the Express-Generator to Generate an Express Site | 393

 th SN
 th Name
 th Price
 th Description
 th
 th
 each widget in widgets
 if widget
 include row

What this little block of code does is, first of all, include in the content of another Jade
file (layout.jade), which contains the general layout for each web page in the application.
Then it defines a block of content consisting of a table with several columns, each headed

by their own table header (th). The table rows are where the data passed to the template
engine get integrated into the page. Jade provides a looping construct of the form:

each element in array of objects

Where each object in the array is processed. If there is a row, then another Jade file
provides the processing of the data for that row, accessing the data from each object:

tr
 td #{widget.sn}
 td #{widget.name}
 td $#{widget.price.toFixed(2)}
 td #{widget.desc}
 td
 a(href='/widgets/edit/#{widget.sn}') Edit
 td
 a(href='/widgets/#{widget.sn}') Delete

Recipe 14.2 covers how to convert the generated Express site into a simple MVC, in‐
corporting the Jade files just covered; but for now, let’s continue with a discussion about
templates.

The whole purpose of the template is to provide the structure for presentation of the
data, without having to hard code in the data—allowing us to isolate the generation of
the views, from the generation of the data.

Jade is only one template system available. Another popular one is EJS, where the data
is embedded directly into the HTML structure, in a manner very similar to what we do
with PHP in a CMS such as Drupal:

var html = "<h1>"+data.title+"</h1>"
html += ""
for(var i=0; i<data.supplies.length; i++) {
 html += ""
 html += data.supplies[i]+""
}
html += ""

394 | Chapter 14: JavaScript Frameworks

The structure is different, but the concepts are the same—a controller renders the view,
passing whatever data is needed for the view:

res.render('widgets/index', {title : 'Widgets', widgets : docs});

And the view then incorporates the data into the page structure.

Templates are available in both servers and client applications, though the integration
may differ between the two environments, as we’ll see later in Recipe 14.3.

Read more about EJS at its website, and Jade at its website. They’re
not the only template engines available. A comparison of various
engines is available at http://paularmstrong.github.io/node-templates/.

Extra: Wait…What About Stylus?
In the basic Express application, I incorporated support for Jade as template engine, but
I also incorporated Stylus. So, what’s Stylus and where does it fit into all of this?

Stylus is a CSS Preprocessor—a way of writing CSS without the excess verbage. With
Stylus, we can drop colons, semicolons, and braces. We can also incorporate functions
and mixins to dynamically modify the CSS, not to mention conditionals, interations,
and other programmatic constructs that would cause massive breakage in our CSS files.
Stylus then takes all of this, and generates nice, clean, legal CSS.

In the generated Express app, this:

body
 padding: 50px
 font: 14px "Lucida Grande", Helvetica, Arial, sans-serif
a
 color: #00B7FF

becomes this:

body {
 padding: 50px;
 font: 14px "Lucida Grande", Helvetica, Arial, sans-serif;
}
a {
 color: #00b7ff;
}

This is not a complicated example, but it does demonstrate a little of what Stylus does.

14.1. Using the Express-Generator to Generate an Express Site | 395

http://embeddedjs.com/
http://jade-lang.com/
http://paularmstrong.github.io/node-templates/

There is more than one CSS preprocessor—I suggest checking out
Less and Sass, in addition to Stylus. Google Chrome’s DevTools al‐
lows you to live edit the CSS preprocessor files and view the results
immediately.

14.2. Converting a Generated Express Site into a Basic
MVC App

Problem
The generated Express site is a great start, but where do you begin to turn it into an
MVC application?

Solution
When demonstrating something new, a favorite subject is the widget, and I’ll use the
widget to demonstrate how to covert the generated Express site into an MVC.

To start, consider Table 14-1, which defines the actions necessary to maintain an ap‐
plication based on MVC.

Table 14-1. REST/route/CRUD mapping for maintaining widgets

HTTP verb Path Action Used for

GET /widgets index Displaying widgets

GET /widgets/new new Returning the HTML form for creating a new widget

POST /widgets create Creating a new widget

GET /widgets/:id show Displaying a specific widget

GET /widgets/edit/:id/ edit Returning the HTML for editing a specific widget

PUT /widgets/:id update Updating a specific widget

DELETE /widgets/:id destroy Deleting a specific widget

The key to implementing these actions is that the user interface is implemented sepa‐
rately from the operations on the data to maintain the underlying model. The thing that
controls how it all works together is the controller. This infrastructure reflects the con‐
cept of separation of concerns, specifically, MVC. The actual solution is embedded in
the discussion.

Discussion
The Express basic router can be considered a “controller” because it directs views based
on URLs, as well as supplying rudimentary data. But the generated Express application

396 | Chapter 14: JavaScript Frameworks

http://lesscss.org/
http://sass-lang.com/
http://bit.ly/1yI0Fc7
http://bit.ly/1yacjw2

reflects only the “VC” in MVC, and weakly, at that. The missing element is the Model,
which we’ll have to create from scratch.

However, even after we add support for a Model, the controlling code doesn’t make sure
the right data gets to the right view, or the right action performs the right database
updates. We need to replace the controller with something more sophisticated.

Lastly, the simple Jade files generated by the Express application don’t implement any
of the user interface components we need, and we’ll have to create those ourselves.

When finished, Figure 14-2 shows the interaction between the three components, as
implemented in the MVC used in this recipe.

Figure 14-2. Diagram of MVC structure implemented in this section

To start, we’ll modify the generated Express directory structure to the following:

app.js
bin
 www
controllers
model
package.json
public

 images
 javascripts
 stylesheets
 widgets
routes
 index.js
views
 error.jade
 index.jade
 layout.jade
 widgets

The new additions are the widgets subdirectories in both views and public, the control‐
lers and model subdirectories, and the removal of the users.js routing file.

14.2. Converting a Generated Express Site into a Basic MVC App | 397

Next, we’ll need to map the different routes laid out in Table 14-1 to the appropriate

controller. The simplest approach is a separate file that takes the Express app object, and

the name of the data object, and maps the routes accessed as verbs on the app to the
appropriate controller function. Example 14-1 shows the complete code, saved in map‐
routecontroller.js, to maintain the widgets data store.

Example 14-1. Mapping routes to controllers

exports.mapRoute = function(app, prefix) {

 prefix = '/' + prefix;

 var prefixObj = require('./controllers' + prefix);

 // index
 app.get(prefix, prefixObj.index);

 // add
 app.get(prefix + '/new', prefixObj.new);

 // show
 app.get(prefix + '/:sn', prefixObj.show);

 // create
 app.post(prefix + '/create', prefixObj.create);

 // edit
 app.get(prefix + '/edit/:sn/', prefixObj.edit);

 // update
 app.put(prefix + '/:sn', prefixObj.update);

 // delete
 app.delete(prefix + '/:sn', prefixObj.destroy);

};

The module is imported into the primary app.js file:

var map = require('./maproutecontroller');

And the mapping is completed with the following code:

var prefixes = ['widgets'];

// map route to controller

prefixes.forEach(function(prefix) {
 map.mapRoute(app, prefix);
});

Notice that the code could allow for updates to multiple data objects: just add the other

data objects to the prefixes array. Speaking of which, before we code the controller, we

398 | Chapter 14: JavaScript Frameworks

need to add in the data store. This example uses MongoDB, an open source document
database. If you’ve not used MongoDB before, this is a rather abrupt introduction to
the database, but thankfully MongoDB requires very little setup code.

Installation instructions and preliminary setup instructions can be
found at the MongoDB website. I recommend “Introduction to Mon‐
goDB” and “What is a Document Database”.

The Node module that gives us access to MongoDB is Mongoose. It’s installed with:

npm install mongoose --saved

The --saved flag ensures the module dependency is added to the Express application’s
package.json file.

Once Mongoose is imported into the app.js file, a connection to the database is made
with the URL mongodb://127.0.0.1/WidgetDB. The connection is to the MongoDB lo‐

cated in the localhost, and to the database named WidgetDB. The first time it’s accessed,
MondoDB creates the database.

The application is using Node’s process object to capture the exit event, when the

application is terminated. In the exit event handler, the MongoDB connection is closed.
Example 14-2 contains the complete code for the app.js file. It’s the same generated app.js
file covered in Recipe 14.1, with the addition of the controller and database code, and

one more module, method-override, discussed later in this section.

Example 14-2. Complete code for app.js, including router/controller mapping and data‐
base connection

var express = require('express');
var map = require('./maproutecontroller');
var mongoose = require('mongoose');

// middleware

var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');
var methodOverride = require('method-override');

var routes = require('./routes/index');

var app = express();

// view engine setup

app.set('views', path.join(__dirname, 'views'));

14.2. Converting a Generated Express Site into a Basic MVC App | 399

http://www.mongodb.org/
http://bit.ly/1yI1pOb
http://bit.ly/1yI1pOb
http://bit.ly/1yI1q4H
http://mongoosejs.com/

app.set('view engine', 'jade');

// uncomment after placing your favicon in /public

//app.use(favicon(__dirname + '/public/favicon.ico'));

app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: false }));
app.use(cookieParser());
app.use(require('stylus').middleware(path.join(__dirname, 'public')));
app.use(express.static(path.join(__dirname, 'public')));

// override with POST having ?_method=PUT or DELETE

app.use(methodOverride('_method'))

app.use('/', routes);

// MongoDB

mongoose.connect('mongodb://127.0.0.1/WidgetDB');

mongoose.connection.on('open', function() {
 console.log('Connected to Mongoose');
});

var prefixes = ['widgets'];

// map route to controller

prefixes.forEach(function(prefix) {
 map.mapRoute(app, prefix);
});

// catch 404 and forward to error handler

app.use(function(req, res, next) {
 var err = new Error('Not Found');
 err.status = 404;
 next(err);
});

// error handlers

// development error handler

// will print stacktrace

if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

// production error handler

400 | Chapter 14: JavaScript Frameworks

// no stacktraces leaked to user

app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

module.exports = app;

process.on('exit', function(code) {
 mongoose.disconnect();
});

Now it’s time to code the model. In a file named widget.js in the model subdirectory, the
Mongoose Schema object is accessed, and used to create a Widget schema. The Widget
schema creates a data object that can be used to interface with the widget database:

var mongoose = require('mongoose');

var Schema = mongoose.Schema;

// create Widget model

var widgetSchema = new Schema({
 sn : {type: String, require: true, trim: true, unique: true},
 name : {type: String, required: true, trim: true},
 desc : String,
 price : Number
});

var Widget = mongoose.model('Widget', widgetSchema);

The rest of the file’s code defines the external interface for the data store. The functions

created are used to list all of the widgets (listWidgets), get one specific widget (get

Widget), create a widget (createWidget), delete the widget (deleteWidget), and update

the widget (updateWidget). Most of the functions are dependent on data passed to them
by the still-to-be-coded controller, and all take a callback function as last parameter.
That’s how the model functions can communicate back with data (and errors) to the
controller:

exports.widgetDB = {
 createWidget: function (widget, callback) {

 var widgetObj = new Widget(widget);

 widgetObj.save(function(err, data) {
 callback(err,data);
 });

 },

14.2. Converting a Generated Express Site into a Basic MVC App | 401

 listWidgets: function (callback) {
 Widget.find({}, function (err, docs) {
 callback(err,docs);
 });
 },

 getWidget: function(sn, callback) {
 Widget.findOne({sn: sn}, function (err,doc) {
 console.log(err);
 callback(err, doc);
 });
 },

 deleteWidget: function(sn, callback) {
 Widget.remove({sn: sn}, function(err) {
 callback(err);
 });
 },

 updateWidget: function(sn, widget, callback) {
 Widget.update({sn: sn}, widget, function(err) {
 callback(err);
 });
 }
};

Mongoose provides the methods, such as update and remove, to easily communicate
with the MongoDB database. The database schema is simple:

• sn: A manually given serial number, so we don’t need to depend on the MongoDB
automatically generated identifier

• name: Widget name

• desc: A description of the widget

• price: The widget price

The key to finding and manipulating single widgets is the serial number sn.

Now that the model is complete, we can focus on the controller. In the controller sub‐
directory, we create a file, widgets.js, containing the controller code. It imports the model
object and assigns it to a variable:

var widgetDB = require('../model/widget.js').widgetDB;

The controller functions are exported individually, and we’ve already mapped them to
routes in maproutecontroller.js. Each function does two things: it invokes the appro‐
priate model function to get data or update the database, and it updates the view. When
it updates the view, it sends an error message if an error occurs, or it renders a Jade
template, sending the template whatever data is retrieved from the database:

402 | Chapter 14: JavaScript Frameworks

// index listing of widgets at /widgets/

exports.index = function(req, res) {
 widgetDB.listWidgets(function(err, docs) {
 if (err) {
 res.send(err);
 } else {
 console.log(docs);
 res.render('widgets/index', {title : 'Widgets', widgets : docs});
 }
 });
};

// display new widget form

exports.new = function(req, res) {
 var filePath = require('path')
 .normalize(__dirname + "/../public/widgets/new.html");
 res.sendFile(filePath);
};

// add a widget

exports.create = function(req, res) {

 var widget = {
 sn : req.body.widgetsn,
 name : req.body.widgetname,
 price : parseFloat(req.body.widgetprice),
 desc: req.body.widgetdesc};

 widgetDB.createWidget(widget, function(err,data) {
 if (err) {
 res.send(err);
 } else {
 console.log(data);
 res.render('widgets/added', {title: 'Widget Added', widget: widget});
 }
 });
};

// show a widget

exports.show = function(req, res) {
 var sn = req.params.sn;
 widgetDB.getWidget(sn, function(err,doc) {
 if (err)
 res.send('There is no widget with sn of ' + sn);
 else
 res.render('widgets/show', {title : 'Show Widget', widget : doc});
 });
};

// delete a widget

exports.destroy = function(req,res) {

14.2. Converting a Generated Express Site into a Basic MVC App | 403

 var sn = req.params.sn;
 widgetDB.deleteWidget(sn, function(err) {
 if (err) {
 res.send('There is no widget with sn of ' + sn);
 } else {
 console.log('deleted ' + sn);
 res.send('deleted ' + sn);
 }
 });

};

// display edit form

exports.edit = function(req, res) {
 console.log(req.params);
 var sn = req.params.sn;
 console.log(sn);
 widgetDB.getWidget(sn, function(err, doc) {
 console.log(doc);
 if(err)
 res.send('There is no widget with sn of ' + sn);
 else
 res.render('widgets/edit', {title : 'Edit Widget', widget : doc});
 });
};

// update a widget

exports.update = function(req,res) {
 var sn = req.params.sn;
 var widget = {
 sn : sn,
 name : req.body.widgetname,
 price : parseFloat(req.body.widgetprice),
 desc : req.body.widgetdesc};

 console.log(sn);
 console.log(widget);
 widgetDB.updateWidget(sn, widget, function(err) {
 if (err)
 res.send('Problem occured with update' + err)
 else
 res.render('widgets/added', {title: 'Widget Edited', widget : widget})
 });
};

Though normally we’d use unit testing and debugging with the application, we’re keep‐

ing things as simple as possible, and just incorporating console.log() function calls
to get access to data and results so we can monitor the app as it’s running.

404 | Chapter 14: JavaScript Frameworks

We don’t capture statistics, use database security, or other compo‐
nents of a robust application. We don’t even check to make sure the

serial number field sn is unique before adding a new product, or
editing an existing one. A more robust application would take an‐
other chapter. Or two.

The form to add a new widget is just straight-up HTML, in a file named new.html,
located in the public/widgets subdirectory:

<!doctype html>
<html lang="en">
<head>

 <meta charset="utf-8" />
 <title>Widgets</title>
</head>

<body>

<h1>Add Widget:</h1>

<form method="POST" action="/widgets/create"
enctype="application/x-www-form-urlencoded">

 <p>Widget Serial Number: <input type="text" id="widgetsn" name="widgetsn"
 size="25" required /></p>

 <p>Widget name: <input type="text" name="widgetname"
 id="widgetname" size="25" required/></p>

 <p>Widget Price: <input type="text"
 pattern="^\$?([0-9]{1,3},([0-9]{3},)*[0-9]{3}|[0-9]+)(.[0-9][0-9])?$"
 name="widgetprice" id="widgetprice" size="25" required/></p>

 <p>Widget Description:

 <textarea name="widgetdesc" id="widgetdesc" cols="20"
 rows="5"></textarea>
 <p>

 <input type="submit" name="submit" id="submit" value="Submit"/>
 <input type="reset" name="reset" id="reset" value="Reset"/>
 </p>
 </form>
</body>

The last additions are to create the view files. They’re located in their own widgets
subdirectory under views. First come the files to handle the overall page structure. The

header.jade file defines the head element for all of the pages, incorporating a link to the
stylesheet:

head
 title #{title}
 meta(charset="utf-8")

14.2. Converting a Generated Express Site into a Basic MVC App | 405

 link(type="text/css"
 rel="stylesheet"
 href="/stylesheets/main.css"
 media="all")

It’s incorporated into the rest of the page layout, in the layout.jade file:

doctype html
html(lang="en")
 include header
 body
 block content

The head template is included in with the Jade include command.

The added.jade file isn’t creating the form to add a new widget—that’s accomplished
with a static HTML file named new.html, located in the public/widgets subdirectory.
The added.jade template is used to provide feedback of the successful creation of the
new widget:

extends layout

block content
 h1 #{title} | #{widget.name}
 include widget

ul
 li sn: #{widget.sn}
 li Name: #{widget.name}
 li Price: $#{widget.price.toFixed(2)}
 li Desc: #{widget.desc}

The partioning of the template into separate components enables reuse of common
components, such as the display of the widget data in a specific format.

The next file is edit.jade, which is used to update the widget. It’s the most complex
template because it incorporates data from the controller, and submits the data for an

update. Although the form method states it’s a POST, the method-override module,
which is included in the app.js file, is used to signal that the method is really a PUT:

 action="/widgets/#{widget.sn}?_method=PUT"

It’s triggered by the following line, way back in the app.js file:

// override with POST having ?_method=PUT or DELETE

app.use(methodOverride('_method'))

Here is the complete edit.jade file:

extends layout

block content
 h1 Edit #{widget.name}
 form(method="POST"

406 | Chapter 14: JavaScript Frameworks

 action="/widgets/#{widget.sn}?_method=PUT"
 enctype="application/x-www-form-urlencoded")
 p Widget Name:
 input(type="text"
 name="widgetname"
 id="widgetname"
 size="25"
 value="#{widget.name}"
 required)
 p Widget Price:
 input(type="text"
 name="widgetprice"
 id="widgetprice"
 size="25"
 value="#{widget.price}"
 pattern=
 "^\$?([0-9]{1,3},([0-9]{3},)*[0-9]{3}|[0-9]+)(.[0-9][0-9])?$"
 required)
 p Widget Description:
 br
 textarea(name="widgetdesc"
 id="widgetdesc"
 cols="20"
 rows="5") #{widget.desc}
 p
 input(type="submit"
 name="submit"
 id="submit"
 value="Submit")
 input(type="reset"
 name="reset"
 id="reset"
 value="reset")

The index.jade file displays a lists of all widgets in the database, with options to edit or
delete each:

extends layout

block content
 table
 caption Widgets
 if widgets.length
 tr
 th SN
 th Name
 th Price
 th Description
 th
 th
 each widget in widgets
 if widget
 include row

14.2. Converting a Generated Express Site into a Basic MVC App | 407

It makes use of a row.jade template, which displays the widget as cells in a table row:

tr
 td #{widget.sn}
 td #{widget.name}
 td $#{widget.price.toFixed(2)}
 td #{widget.desc}
 td
 a(href='/widgets/edit/#{widget.sn}') Edit
 td
 a(href='/widgets/#{widget.sn}') Delete

When the option to delete the widget is chosen, the widget is displayed in a separate
page, generated from the show.jade template, the last of the templates:

extends layout

block content
 h1 #{widget.name}
 include widget
 form(method="POST"
 action="/widgets/#{widget.sn}?_method=DELETE"
 enctype="application/x-www-form-urlencoded")
 input(type="submit"
 name="submit"
 id="submit"
 value="Delete Widget")

The person is given a chance to decide if he wants to delete this particular widget, and
a button to do so.

To start the application, type in:

npm start

And you’re off and running. Access the site as follows, starting with the new form:

http://yourdomain.com:3000/widgets/new/

How does all of this look? The CSS is simple, so set your expectations accordingly.
Figure 14-3 shows the display with three widgets, and Figure 14-4 shows the page to
edit an existing widget. Nothing exciting, but it does show that all the pieces are working.

408 | Chapter 14: JavaScript Frameworks

Figure 14-3. Listing of existing widgets

Figure 14-4. Widget edit form

Though a very simple application, the Widget is a complete MVC application based on
Express.

See Also
If you’re unfamiliar with MVC or MV*, I recommend the following resources:

• Jeff Atwood’s “Understanding Model-View-Controller”

14.2. Converting a Generated Express Site into a Basic MVC App | 409

http://bit.ly/1IH94gC

• Addy Osmani’s “Journey Through the JavaScript MVC Jungle”

• The “JavaScript MV* Pattern” chapter in Osmani’s book, Learning JavaScript Design
Patterns (O’Reilly)

14.3. Choosing a SPA Framework: Deconstructing the
TodoMVC

Problem
You’ve been tasked to convert your company website into an SPA—a single-page ap‐
plication. You need to find a framework to use, but there are so many. What should you
look for in a framework?

Solution
There are several different frameworks you can choose from when selecting a frame‐
work for your new SPA. When determining which to use, check out the documentation
for the top tools, read articles comparing the differences, and ask friends and other
techies for recommendations.

The most effective approach I’ve seen, however, for comparing the different frameworks
that can support a SPA (or any other MV* application) is the TodoMVC website. At a
minimum, you can get a feel for how each framework manages the exact same task.

Discussion
The TodoMVC website has defined a specific type of application, a to-do list, and invited
developers to create the application using the different MV* frameworks. It’s one of the
most brilliant ideas I’ve seen for comparing different architectures, because a to-do list
application supports several activities that accentuate architecture comparison:

• Providing a dynamic interface

• An ideal candidate for an SPA architecture

• Requiring data storage and retrieval, but the data is uncomplicated so we can focus
on the support without getting bogged down in the data schema (allowing the
developers to use localstorage)

• Depends on routing to define activities

• Small and self-contained enough so the examples are simple to review

410 | Chapter 14: JavaScript Frameworks

http://bit.ly/1IH96oT
http://shop.oreilly.com/product/0636920025832.do
http://shop.oreilly.com/product/0636920025832.do
http://todomvc.com/

The TodoMVC folks provide a specification for developers to follow that’s detailed
enough to ensure all of the applications meet the same requirements in a similar enough
manner to ensure easy comparison.

In this section, I’ll briefly cover the ToDo requirements and then examine the submis‐
sions for three of the more popular frameworks: AngularJS, Backbone.js, and Ember.js.
Note, though, that the site provides ToDo applications from a host of other frameworks,
including those for new framework tools as they are developed. Don’t feel you have to
limit yourself to just these three frameworks.

The ToDo submissions, and all supporting material, is one big Git‐
Hub Project, which means you can easily download everything, for
perusing and play in your own environment.

The ToDo Requirements
To ensure the apps are easily comparable, the ToDo wranglers have provided a set of
programming guidelines. It’s basic stuff: use strict mode, run the code through JSHint,
indent the code, use semicolons, and so on.

The creators have provided a template for the projects. Following is the directory
structure:

index.html
bower.json
bower_components/
css
└── app.css
js/
├── app.js
├── controllers/
└── models/
readme.md

The project should have a README file and a bower.json file, unless having the file
conflicts somehow with the application.

Recipe 12.11 covers Bower, and “Extra: The README File and Mark‐
down Syntax” on page 336 covers README files.

The ToDo List is an SPA, so the only HTML file is the top-level index.html. It’s also the
only file I’m including the complete source for, in Example 14-3, because it’s critical for

14.3. Choosing a SPA Framework: Deconstructing the TodoMVC | 411

http://bit.ly/1IH9MKN
https://github.com/tastejs/todomvc
https://github.com/tastejs/todomvc

understanding what’s happening with each of the framework submissions. The inden‐
tation has been removed to accomodate the book page width.

Example 14-3. Complete index.html template from the TodoMVC project

<!doctype html>
<html lang="en">
<head>

<meta charset="utf-8">
<title>Template • TodoMVC</title>
<link rel="stylesheet" href="bower_components/todomvc-common/base.css">
<!-- CSS overrides - remove if you don't need it -->

<link rel="stylesheet" href="css/app.css">
</head>

<body>

<section id="todoapp">
<header id="header">
<h1>todos</h1>
<input id="new-todo" placeholder="What needs to be done?" autofocus>
</header>

<!-- This section should be hidden by default and shown when there are todos -->

<section id="main">
<input id="toggle-all" type="checkbox">
<label for="toggle-all">Mark all as complete</label>
<ul id="todo-list">
<!-- These are here just to show the structure of the list items -->

<!-- List items should get the class `editing` when editing and

`completed` when marked as completed -->

<li class="completed">
<div class="view">
<input class="toggle" type="checkbox" checked>
<label>Create a TodoMVC template</label>
<button class="destroy"></button>
</div>

<input class="edit" value="Create a TodoMVC template">

<div class="view">
<input class="toggle" type="checkbox">
<label>Rule the web</label>
<button class="destroy"></button>
</div>

<input class="edit" value="Rule the web">

</section>

<!-- This footer should hidden by default and shown when there are todos -->

<footer id="footer">
<!-- This should be `0 items left` by default -->

1 item left
<!-- Remove this if you don't implement routing -->

<ul id="filters">

412 | Chapter 14: JavaScript Frameworks

All

Active

Completed

<!-- Hidden if no completed items are left ↓ -->
<button id="clear-completed">Clear completed (1)</button>
</footer>

</section>

<footer id="info">
<p>Double-click to edit a todo</p>
<!-- Remove the below line ↓ -->
<p>Template by Sindre Sorhus</p>
<!-- Change this out with your name and url ↓ -->
<p>Created by you</p>
<p>Part of TodoMVC</p>
</footer>

<!-- Scripts here. Don't remove this ↓ -->
<script src="bower_components/todomvc-common/base.js"></script>
<script src="js/app.js"></script>
</body>

</html>

Projects could be completed much more quickly and cleanly if all developers were
handed annotated HTML files such as this when creating new applications. It’s template
and requirements in one.

When the ToDo list is empty, the footer and main blocks should be hidden. ToDos are
created from the top, and hitting Enter appends the new item to the list, and clears the
input field.There’s a “mark all complete” checkbox item that marks all ToDos complete.
Each ToDo can be removed, completed, and edited. All ToDos can be removed at once,
and the ToDo list is maintained in LocalStorage, so the apps are kept simple and not
bogged down in data implementation issues.

The frameworks do require routing (covered in Recipe 14.2). If routing isn’t part of the
framework tool (it is, for most), then the developer can use Flatiron, which provides
basic routing capabilities regardless of other infrastructure.

ToDo in AngularJS
AngularJS is the Big Daddy in frameworks. It’s one of the most popular, and most widely
used. It is a complete MVC framework, and is sponsored by Google, which adds to
overall stability of the project.

14.3. Choosing a SPA Framework: Deconstructing the TodoMVC | 413

https://github.com/flatiron/director

To explore AngularJS and the ToDo, I focused on the Optimized AngularJS project.

The AngularJS ToDo page lists several links to demos and source. To
follow my overview of AngularJS’s implementation of the ToDo list,
open the source files in GitHub.

AngularJS enhances HTML with a construct that the framework terms directives. These
are annotations added to existing HTML elements that attach specific behaviors when
the application is “compiled”—processed by the framework engine. The ToDo applica‐

tion contains source code for two custom directives: todo-escape and todo-focus, both
used in the form used to edit each ToDo:

form ng-submit="doneEditing(todo)">
<input class="edit" ng-trim="false" ng-model="todo.title"
ng-blur="doneEditing(todo)" todo-escape="revertEditing(todo)"
todo-focus="todo == editedTodo">
</form>

The source for the todo-focus is short, sweet, and self-explanatory (an indirect un‐
derlying programming constraint for most Framework apps):

/*global todomvc */

'use strict';

/**

* Directive that places focus on the element it is applied to when the

expression it binds to evaluates to true

*/

todomvc.directive('todoFocus', function ($timeout) {
 return function (scope, elem, attrs) {
 scope.$watch(attrs.todoFocus, function (newVal) {
 if (newVal) {
 $timeout(function () {
 elem[0].focus();
 }, 0, false);
 }
 });
 };
});

What’s the expression? todo == editedToDo when the current ToDo is now the edited
ToDo.

There are predefined directives (ones provided with AngularJS) in use in the main

section, such as the use of ng-show attached to the outer section element. The ng-

show directive controls whether the element and its contents are displayed or not. In the

414 | Chapter 14: JavaScript Frameworks

http://todomvc.com/architecture-examples/angularjs/#/
http://bit.ly/1IHaB6r

HTML snippet, the section shows when the todos.length is truthy (a value greater than
zero):

<section id="main" ng-show="todos.length" ng-cloak>
<input id="toggle-all" type="checkbox" ng-model="allChecked"
ng-click="markAll(allChecked)">
<label for="toggle-all">Mark all as complete</label>
<ul id="todo-list">
<li ng-repeat="todo in todos | filter:statusFilter track by $index"
ng-class="{completed: todo.completed, editing: todo == editedTodo}">
<div class="view">
<input class="toggle" type="checkbox" ng-model="todo.completed"
ng-change="todoCompleted(todo)">
<label ng-dblclick="editTodo(todo)">{{todo.title}}</label>
<button class="destroy" ng-click="removeTodo(todo)"></button>
</div>

<form ng-submit="doneEditing(todo)">
<input class="edit" ng-trim="false" ng-model="todo.title"
ng-blur="doneEditing(todo)"
todo-escape="revertEditing(todo)" todo-focus="todo == editedTodo">
</form>

</section>

Directives are only part of the AngularJS template system. Another system component

that appears in the HTML template is Markup: double curly brackets, such as {{to

do.title}} in the HTML snippet binding expressions to elements. A third system
component are the form controls, binding view and model, and providing necessary

functionality such as data binding. The ng-model attribute demonstrates two-way data
binding in the HTML snippet.

The specification listed three routes that were mandatory:

• #/ (all - default)

• #/active

• #/completed

They match, naturally enough, a listing of all ToDos that are not complete, a listing of
all those that are complete, and the total list.

In the optimized AngularJS app, the routing is handled in the controller implementa‐
tion, the largest piece of code in the app, located in /controllers/todoControl.js. The

controller method takes, as arguments, a unique name (“TodoCtrl”), and the con‐

troller constructor function. It’s added to the application’s Angular Module, the to

domvc, so that the controller isn’t added to the global space. The Angular Module, which
is the container for all the bits, is created in the app.js file and consists of one simple
line:

14.3. Choosing a SPA Framework: Deconstructing the TodoMVC | 415

var todomvc = angular.module('todomvc', []);

To return to the controller, its construction function receives four arguments:

• $scope: The execution context for expressions

• $location: The parsed URL and location service

• $filter: Formats expressions for display

• todoStorage: The model

The model itself has two methods: put() and get().

It’s quite a clean implementation to walk through, and one can use what’s in the example
as a way of digging into the extensive AngularJS documentation.

What are some of the pros and cons of AngularJS? The directives are one advantage,
providing a way to package reusable chunks of code. So is the simplified support for
MVC, as well as the two-way data binding. AngularJS also comes with its own baked-
in testing tools. The disadvantages include the fact that is a sophisticated, rather complex
system, and has one of the larger code bases. It’s not a good choice for smallish appli‐
cations, but can be definitely worthwhile for larger, more complex websites.

ToDo in Backbone.js
The Backbone.js architecture example ToDo application reflects the simpler infrastruc‐
ture that is Backbone.js. It’s dependent on Underscore, but you don’t have to use the
Underscore templating system with it. The ToDo app, however, does use Underscore.

The index.html page has the following code:

<script type="text/template" id="stats-template">
<%= remaining %>
 <%= remaining === 1 ? 'item' : 'items' %> left
<ul id="filters">

All

Active

Completed

<% if (completed) { %>
<button id="clear-completed">Clear completed (<%= completed %>)</button>
<% } %>
</script>

416 | Chapter 14: JavaScript Frameworks

The use of “text/template” is a way of embedding template code that the browser engine
ignores. This is the template for the statistics that are displayed at the bottom of the of
the ToDo list, as well as links to the different views. In JavaScript, in views/app-view.js,

the Underscore _template() function is used to compile the template into a function
that can be rendered:

statsTemplate: _.template($('#stats-template').html()),

If you look further down in the Views code, you’ll see a render function that basically
pulls together all of the view information, including a call to the newly generated

statsTemplate function:

// Re-rendering the App just means refreshing the statistics -- the rest

// of the app doesn't change.

render: function () {
 var completed = app.todos.completed().length;
 var remaining = app.todos.remaining().length;
 if (app.todos.length) {
 this.$main.show();
 this.$footer.show();
 this.$footer.html(this.statsTemplate({
 completed: completed,
 remaining: remaining
 }));
 this.$('#filters li a')
 .removeClass('selected')
 .filter('[href="#/' + (app.TodoFilter || '') + '"]')
 .addClass('selected');
 } else {
 this.$main.hide();
 this.$footer.hide();
 }
 this.allCheckbox.checked = !remaining;
},

The completed and remaining values are derived from the length property on both
sets of items, and depending on their value, the footer and main section are displayed

(or not), and the values are sent as parameters to statsTemplate for display in the

sections marked <%= remaining %> and <%= completed>, as well as used in expressions
determining other view characteristics.

The other template in the HTML file is processed in the second view JavaScript file,
todo-view.js. It renders the ToDo list, as you can imagine, assigning event listeners for
all of the relevant events, and so on.

The router code passes on one route, filter triggering a setFilter() function. The
function takes one parameter that determines how the collection is filtered. In the Col‐

lection JavaScript, the ToDos can be filtered on completed or remaining depending on
the value of the ToDo’s completed attribute.

14.3. Choosing a SPA Framework: Deconstructing the TodoMVC | 417

The application makes use of an extension, Backbone.localStorage, to manage the mod‐
el. It’s instantiated in the Collections todo.js code:

localStorage: new Backbone.LocalStorage('todos-backbone'),

And then maintained in the Model code:

var app = app || {};

(function () {
 'use strict';

 // Todo Model
 // ----------

 // Our basic **Todo** model has `title`, `order`, and `completed` attributes.
 app.Todo = Backbone.Model.extend({
 // Default attributes for the todo
 // and ensure that each todo created has `title` and `completed` keys.
 defaults: {
 title: '',
 completed: false
 },

 // Toggle the `completed` state of this todo item.
 toggle: function () {
 this.save({
 completed: !this.get('completed')
 });
 }
 });

})();

The default attribute values for the title and completed attributes are set for each

ToDo, and the only other action is toggling the completed attribute.

The advantage to Backbone.js is its community support and small size. Some would say
Backbone.js has surpassed AngularJS as the most popular framework, though “popu‐
larity” is hard to measure. It is the smallest frameworks that I know of, and requires
minimal effort to incorporate. It’s also very flexible. The drawbacks to the framework
are both its small size and flexibility. You have to develop much of the necessary infra‐
structure for an application yourself, and this becomes problematic as the project size
grows.

ToDo in Ember.js
Ember.js is dependent on jQuery and Handlebars.js for templating, which you can tell
as soon as you open the index.html file, an excerpt of which follows:

418 | Chapter 14: JavaScript Frameworks

<script type="text/x-handlebars" data-template-name="todo-list">
 {{#if length}}
 <section id="main">
 {{#if canToggle}}
 {{input type="checkbox" id="toggle-all" checked=allTodos.allAreDone}}
 {{/if}}
 <ul id="todo-list">
 {{#each}}
 <li {{bind-attr class="isCompleted:completed isEditing:editing"}}>
 {{#if isEditing}}
 {{todo-input type="text" class="edit" value=bufferedTitle
 focus-out="doneEditing" insert-newline="doneEditing"
 escape-press="cancelEditing"}}
 {{else}}
 {{input type="checkbox" class="toggle" checked=isCompleted}}
 <label {{action "editTodo" on="doubleClick"}}>{{title}}</label>
 <button {{action "removeTodo"}} class="destroy"></button>
 {{/if}}

 {{/each}}

 </section>
 {{/if}}
</script>

The Handlebars.js template syntax is very identifiable. Instead of using the more generic

“text/template” type on the script element, Handlebars.js uses “text/x-handlebars”.
Handlebars.js also more closely matches programming constructs. It is simple, though,
to see the data’s impact on the views: if the length variable is truthy, process the contained
template; if the ToDo is being edited, process this template code; otherwise, process this
other; and so on. Very readable.

Like with the AngularJS and the Backbone.js versions, the app.js file just creates the
overall application. The interesting stuff is in the other files, such as the router.js file,
which has one of the more identifiable router structure if you’ve used a framework such
as Express (covered earlier in this chapter). Especially when compared to my own ver‐
sion of Express as an MVC app, in Recipe 14.2.

Most of the view work is handled by Handlebars, with the exception of customizing the

input element, seemingly to eliminate a redundant text selection problem.

There is a helper file, with some unique code:

/*global Ember */

(function () {
 'use strict';

 Ember.Handlebars.helper('pluralize', function (singular, count) {
 /* From Ember-Data */
 var inflector = Ember.Inflector.inflector;

14.3. Choosing a SPA Framework: Deconstructing the TodoMVC | 419

 return count === 1 ? singular : inflector.pluralize(singular);
 });
})();

This is to handle inflection rules, so that we get something like “ten items”, rather than
“ten item”, or be forced to use the awkward “ten item(s)”. Sure enough, a quick look at
the index.html file shows us the following:

{{remaining.length}}
{{pluralize 'item' remaining.length}} left

The controller files match the router/controller mapping in the router.js file, and is quite
easy to follow. An example is the following excerpt, from todos_controller.js, when a
new ToDo is created:

createTodo: function () {
 var title, todo;

 // Get the todo title set by the "New Todo" text field
 title = this.get('newTitle').trim();
 if (!title) {
 return;
 }

 // Create the new Todo model
 todo = this.store.createRecord('todo', {
 title: title,
 isCompleted: false
 });

 todo.save();

 // Clear the "New Todo" text field
 this.set('newTitle', '');
},

The store is based on Ember.js DS.Model class, defining the structure (and data types)
of the ToDo’s fields. The localStorage connection comes in from using the Ember.js
localstorage_adapter.js. What it does is out of sight, out of mind.

Those who like Ember.js mention its “opinionated” structure, which means it takes care
of most of the decision making for you. One could also call this a drawback, as is the
fact that though it can emulate an MVC, it isn’t a true MVC system. However, the Em‐
ber.js team provides excellent documentation, which helps when you’re coming up to
speed with the framwork.

One concern I’ve seen expressed frequently about Ember.js is its slowness and memory
usage. However, it is one of the newer frameworks and we can assume performance will
improve over time.

420 | Chapter 14: JavaScript Frameworks

In Comparison
Out of sight, out of mind is one of the major advantages to using one of the frameworks
I’ve covered in this section: there’s some upfront time, but the processing each provides
(which we don’t have to implement) makes the time worthwhile.

Each framework has its fans, and each has its detractors. These three are also the three
most commonly compared, and I’ll provide links to some comparisons at the end of the
section. AngularJS is the most mature of the frameworks, and arguably, the most pop‐
ular. It features in the MEAN stack, as in MongoDB-Express-AngularJS-Node.

On the other hand, Ember.js has an infrastructure that could more easily match what
we’re used to, coming in from an Express background. Backbone.js’s goal to minimize
its source is a commendable goal—one thing we don’t need is bloated code. Because of
the basic nature of its implementation, Backbone.js is now the basis of other frameworks,
providing expanded functionality. Backbone.js also lets you pick your own template
system, but AngularJS and Ember.js seem to have a more smoothly integrated template
system.

AngularJS makes use of promises, which I touched on in Chapter 11. I’m not as fond of
promises as others are, but this may be the kicker for you. Ember.js has put enormous
effort into the data model, and also handles much of the functionality, such as back
button support, that the other frameworks skipped.

All three frameworks have been used with some major websites, so they’re all hard‐
ened (production and scalability tested).

Of course, they’re not the only kids on the block, and it’s worth your time to explore the
other frameworks at the TodoMVC website.

See Also
For more on SPAs, I suggest:

• Mikito Takada’s (mixu) free book, “Single page apps in depth”

• For more on SPAs in a ASP.NET environment, see “Learn About ASP.NET Single
Page Application”

• Manning Publication’s book Single Page Web Applications

For comparisons of the three frameworks:

• “AngularJS vs. Backbone.js vs. Ember.js”

• “A Comparison of Angular, Backbone, CanJS and Ember”

• “Ember, Angular, and Backbone: Which JavaScript Framework is Right For You?”

14.3. Choosing a SPA Framework: Deconstructing the TodoMVC | 421

http://bit.ly/1yI1xgK
http://www.asp.net/single-page-application
http://www.asp.net/single-page-application
http://bit.ly/1yI1y4d
http://bit.ly/1IHcfoE
http://bit.ly/1IHcgZU
http://bit.ly/1IHcikt

• “Evaluation of AngularJS, EmberJS, BackboneJS + MarionetteJS”

I also recommend “Journey Through The JavaScript MVC Jungle”.

14.4. Working with the OAuth Framework

Problem
You need access to the Dropbox (or Facebook or Twitter) API in your Node application,
but it requires authorization. Specifically, it requires OAuth authorization.

Solution
You’ll need to incorporate an OAuth client in your application. You’ll also need to meet
the OAuth requirements demanded by the resource provider.

See the discussion for details.

Discussion
OAuth is an authorization framework used with most popular social media and cloud
content applications. If you’ve ever gone to a site and it’s asked you to authorize access
to data in (Facebook/Twitter/Dropbox), you’ve participated in the OAuth authorization
flow.

There are two versions of OAuth, 1.0 and 2.0, and no, they’re not compatible. OAuth
1.0 was based on proprietary APIs developed by Flickr and Google, and was heavily web
page focused and didn’t gracefully transcend the barrier between web, mobile, and ser‐
vice applications. When wanting to access resources in a mobile phone app, the app
would have the user log in to the app in a mobile browser and then copy access tokens
to the app—an ugly process guaranteed to fail for most users.

Other criticisms of OAuth 1.0 is that the process required that the authorization server
be the same as the resource server, which doesn’t scale when you’re talking about service
providers such as Twitter, Facebook, and Amazon.

OAuth 2.0 presents a simpler authorization process, and also provides different types
of authorization (different flows) for different circumstances. Some would say, though,
that it does so at the cost of security, as it doesn’t have the same demands for encrypting
hash tokens and request strings.

Most developers won’t have to create an OAuth 2.0 server, and doing so is way beyond
the scope of this book, much less this recipe. But it’s common for applications to in‐
corporate an OAuth client (1.0 or 2.0), for one service or another, so I’m going to present
three different types of OAuth use with two different services: Dropbox and Twitter.
First, though, let’s discuss the differences between authorization and authentication.

422 | Chapter 14: JavaScript Frameworks

http://bit.ly/1IHclwr
http://bit.ly/1IHcq3a

Authorization Isn’t Authentication
Authorization is saying to a resource, “I authorize this application to access my resources
on your resource server.” Authentication is the process of authenticating whether you
are, indeed, the person who owns this account and has control over these resources. An
example would be if I want to comment on an article at a newspaper’s online site. It will
likely ask me to log in via some service. If I pick my Facebook account to use as the
login, the news site will most likely want some data from Facebook.

The news site is, first, authenticating me as a legitimate Facebook user, with an estab‐
lished Facebook account. In other words, I’m not just some random person coming in
and commenting anonymously. Secondly, the news site wants something from me in
exchange for the privilege of commenting: it’s going to want data about me. Perhaps it
will ask for permission to post for me (if I post my comment to Facebook as well as the
news site). This is both an authentication and an authorization request.

If I’m not already logged into Facebook, I’ll have to log in. Facebook is using my correct
application of username and password to authenticate that, yes, I own the Facebook
account in question. Once logged in, Facebook asks whether I agree to giving the news‐
paper site the authorization to access resources it wants. If I agree (because I desperately
want to comment on a particular story), Facebook gives the news site the authorization,
and there’s now a persistent connection from the newspaper to my Facebook account
(which you can see in your FB settings). I can make my comment, and make comments
at other stories, until I log out or revoke the Facebook authorization.

Of course, none of this implies that Facebook or the news site is actually authenticating
who I am. Authentication, in this case, is about establishing that I am the owner of the
Facebook account. The only time real authentication enters the picture is in a social
media context such as Twitter’s authenticated accounts for celebrities.

Our development task is made simpler by the fact that software to handle authorization
is frequently the same software that authenticates the individual, so we’re not having to
deal with two different JavaScript libraries/modules/systems. There are also several ex‐
cellent OAuth (1.0 and 2.0) modules we can use in Node applications. One of the most
popular is Passport, and there are extensions for various authorization services created
specifically for the Passport system. However, there are also very simple OAuth clients
that provide barebones authorization access for a variety of services, and some modules
that are created specifically for one service.

Read more about Passport and its various strategies supporting dif‐
ferent servers at its website. The most popular of the barebones OAuth
modules is node-oauth, though Simple OAuth 2 is also very popu‐
lar. Most examples assume the developer is creating an Express ap‐
plication, so you do need to be famliar with Express before reading
the OAuth module documentation.

14.4. Working with the OAuth Framework | 423

http://passportjs.org/
http://bit.ly/1yI25Di
http://bit.ly/1yI26ao

Now, on to the technology.

Twitter Application-Only and OAuth 2.0 Client Credentials Grant
There are few web resources that nowadays provide an API you can access without
having some kind of authorization credential. This means having to incorporate a
round-trip directive to the end users—asking them to authorize access to their account
at the service before the application can access data. The problem is that sometimes all
you need is simple read-only access without update privileges, without a frontend login
interface, and without having a specific user make an authorizing grant.

OAuth 2.0 accounts for this particular type of authorizing flow with the Client Creden‐
tials Grant. The diagram for this simplified authorization is shown in Figure 14-5.

Figure 14-5. The Client Credentials Grant authorization flow

Twitter provides what it calls Application-Only authorization, which is based on OAuth
2.0’s Client Credentials Grant. In Recipe 13.7, I used this type of authorization to access
Twitter’s Search API. We focused on the API in that chapter, but now we’ll take a look
at the authorization process.

I used the Node module oauth to implement the authorization. It’s the most basic of the
authorization modules, and supports both OAuth 1.0 and OAuth 2.0 authorization
flows. To isolate the Twitter API application from the OAuth bits, I wrapped the OAuth

usage with my own module, twitreq, displayed in Example 14-4. It exports two meth‐

ods: getAuthorization() to get the necessary access token, and getTwitterData() to
make the actual API request with the access token.

Example 14-4. The twitreq module code, wrapping OAuth 2.0 authorization

var OAuth2 = require('oauth').OAuth2;
var https = require('https');

var atoken;

// consumer key and secret passed in from client

exports.getAuthorization = function (consumerKey, consumerSecret, callback) {
 var oauth2 = new OAuth2(
 consumerKey,
 consumerSecret,
 'https://api.twitter.com/',
 null,

424 | Chapter 14: JavaScript Frameworks

 'oauth2/token',
 null);

 // signaling a client credentials authorization request
 oauth2.getOAuthAccessToken('', {
 'grant_type': 'client_credentials'},
 function(err, atoken) {
 callback(err,atoken);
 }
);
};
// can be any Twitter App-only authorization API endpoint

exports.getTwitterData = function (servicePath, atoken, callback) {
 var options = {
 hostname: 'api.twitter.com',
 path: servicePath,
 headers: {
 Authorization: 'Bearer ' + atoken
 }
 };

 https.get(options, function (result) {
 var buffer = '';
 result.setEncoding('utf8');
 result.on('data', function (data) {
 buffer += data;
 });
 result.on('end', function () {
 callback(buffer);
 });
 });
};

To use the Twitter authorization API, the client application has to register their appli‐
cation with Twitter. Twitter provides both a consumer key and a consumer secret. They’re

passed to the getAuthorization() function, along with a callback function.

In getAuthorization(), a new OAuth2 object is created, passing in:

• Consumer key

• Consumer secret

• API base URI – (API URI minus the query string)

• A value of null signals OAuth to use the default, “/oauth/authorize”

• The access token path

• Null, because we’re not using any custom headers

The oauth module takes this data and forms a POST request to Twitter, passing along
the consumer key and secret, as well as providing a scope for the request. Twitter’s

14.4. Working with the OAuth Framework | 425

documentation provides an example POST request for an access token (line breaks
inserted for readability):

POST /oauth2/token HTTP/1.1
Host: api.twitter.com
User-Agent: My Twitter App v1.0.23
Authorization: Basic eHZ6MWV2RlM0d0VFUFRHRUZQSEJvZzpMOHFxOVBaeVJn
 NmllS0dFS2hab2xHQzB2SldMdzhpRUo4OERSZHlPZw==
 Content-Type: application/x-www-form-urlencoded;charset=UTF-8
Content-Length: 29
Accept-Encoding: gzip

grant_type=client_credentials

The request is sent using SSL, a requirement for OAuth 2.0 (and one I’ll get into more
detail a little later). The reason why SSL is used is because encryption is not used with
the communication as it is with OAuth 1.0.

The response includes the access token (again, line breaks for readability):

HTTP/1.1 200 OK
Status: 200 OK
Content-Type: application/json; charset=utf-8
...
Content-Encoding: gzip
Content-Length: 140

{"token_type":"bearer","access_token":"AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
%2FAAAAAAAAAAAAAAAAAAAA%3DAA"}

The access token has to be used with any of the API requests. There is no further au‐
thorization steps, so the process is very simple. In addition, it doesn’t require an indi‐
vidual’s authorization, so it’s not as disruptive to the user.

Twitter provides wonderful documentation. I recommend reading

“Application-Only authentication Overview”. The oauth module can
be installed in the usual way:

npm install oauth

Full Read/Write Authorization with the Twitter API and OAuth 1.0
Application-Only authentication is great for accessing read-only data, but what if you
want to access a user’s specific data, or even make a change to her data? Then you’ll need
the full OAuth authorization. In this section, we’ll again use Twitter for the demonstra‐
tion, because of its use of OAuth 1.0 authorization. In the next, we’ll look at
OAuth 2.0.

426 | Chapter 14: JavaScript Frameworks

https://dev.twitter.com/oauth/application-only

I refer to it as OAuth 1.0, but Twitter’s service is based on OAuth Core
1.0 Revision A. However, it’s a lot easier just to say OAuth 1.0.

OAuth 1.0 requires a digital signature. The steps to derive this digital signature, graph‐
ically represented in Figure 14-6, and as outlined by Twitter are:

1. Collect the HTTP method and the base URI, minus any query string.

2. Collect the parameters, including the consumer key, request data, nonce, signature
method, and so on.

3. Create a signature base string, which consists of the data we’ve gathered, formed
into a string in a precise manner, and encoded just right.

4. Create a signing key, which is a combination of consumer key, and OAuth token
secret, again combined in a precise manner.

5. Pass the signature base string and the signing key to an HMAC-SHA1 hashing
algorithm, which returns a binary string that needs further encoding.

Figure 14-6. OAuth 1.0 authorization flow

You have to follow this process for every request. Thankfully, we have modules and
libraries that do all of this mind numbing work for us. I don’t know about you, but if I
had to do this, my interest in incorporating Twitter data and services into my application
would quickly wane.

Our friend oauth provides the underlying OAuth 1.0 support, but we don’t have to code

to it directly this time. Another module, node-twitter-api, has wrapped all of the

OAuth pieces, All we need do is create a new node-twitter-api object, passing in our
consumer key and secret, as well as the callback/redirect URL required by the resource

services, as part of the authorization process. Processing the request object in that URL

14.4. Working with the OAuth Framework | 427

http://oauth.net/core/1.0a/
http://oauth.net/core/1.0a/

provides us the access token and secret we need for API access. Every time we make a
request, we pass in the access token and secret.

The twitter-node-api module is a thin wrapper around the REST API: to make a
request, we extrapolate what the function is from the API. If we’re interested in posting
a status update, the REST API endpoint is:

https://api.twitter.com/1.1/statuses/update.json

The twitter-node-api object instance function is statuses(), and the first parameter

is the verb, update:

 twitter.statuses('update', {
 "status": "Hi from Shelley's Toy Box. (Ignore--developing Node app)"
 }, atoken, atokensec, function(err, data, response) {...});

The callback function arguments include any possible error, requested data (if any), and
the raw response.

A complete example is shown in Example 14-5. It uses the Node core https module for
server communication, provides a primitive web page for the user, and then uses another

module, route, to handle simple routing. The route is instantiated and then passed to
the HTTPS server when created. It will now intercept web requests, looking for matches
to process.

Note that the application uses https and not http for web service. OAuth redirect/
callback URLs must be protected by SSL for most resource providers. “Extra: Setting
Up HTTPS for Testing” on page 433 discusses SSL in more detail.

Example 14-5. Twitter app fully authorized via OAuth 1.0

var twitterAPI = require('node-twitter-api');
var route = require('router')();
var https = require('https');
var fs = require('fs');
var url = require('url');

var options = {
 key: fs.readFileSync('/home/examples/ssl/server.key'),
 cert: fs.readFileSync('/home/examples/ssl/server.crt')
};

https.createServer(options, route).listen(443);

var twitter = new twitterAPI({
 consumerKey: 'yourkey',
 consumerSecret: 'yoursecret',
 callback: 'https://yourdomain.com/auth/'
});

var token, tokensec;

428 | Chapter 14: JavaScript Frameworks

var atoken, atokensec;

var menu = 'Say hello
' +
 'Account Settings
';

route.get('/', function(req, res) {
 twitter.getRequestToken(function(error, requestToken, requestTokenSecret,
 results) {
 if (error) {
 console.log('Error getting OAuth request token : ' + error);
 res.writeHead(200);
 res.end('Error getting authorization' + error);
 } else {
 token = requestToken;
 tokensec = requestTokenSecret;
 res.writeHead(302, {'Location':
 'https://api.twitter.com/oauth/authenticate?oauth_token='
 + requestToken});
 res.end();
 }
 });
});

route.get('/auth/', function(req,res) {
 var url_parts = url.parse(req.url, true);
 var query = url_parts.query;
 twitter.getAccessToken(token, tokensec,query.oauth_verifier,
 function(err, accessToken, accessTokenSecret,results) {
 res.writeHead(200);
 if (err) {
 res.end('problems getting authorization with Twitter' + err);
 } else {
 atoken = accessToken;
 atokensec = accessTokenSecret;
 res.end(menu);
 }
 });
});

route.get('/post/status/', function(req,res) {
 twitter.statuses('update', {
 "status": "Hi from Shelley's Toy Box. (Ignore--developing Node app)"
 }, atoken, atokensec, function(err, data, response) {
 res.writeHead(200);
 if (err) {
 res.end('problems posting ' + JSON.stringify(err));
 } else {
 res.end('posting status: ' + JSON.stringify(data) + '
' + menu);
 }
 });

14.4. Working with the OAuth Framework | 429

});

route.get('/get/account/', function(req, res) {
 twitter.account('settings',{},atoken,atokensec,
 function(err,data,response){
 res.writeHead(200);
 if (err) {
 res.end('problems getting account ' + JSON.stringify(err));
 } else {
 res.end('<p>' + JSON.stringify(data) + '</p>' + menu);
 }
 });
});

The routes of interest in the app are:

• /: Page that triggers a redirect to Twitter for authorization

• /auth: The callback or redirect URL registered with the app, and passed in the
request

• /post/status/: Post a status to Twitter account

• /get/account/: Get account information for individual

In each case, the appropriate node-twitter-api function is used:

• /: Get a request token and request token secret, using getRequestToken()

• /auth/: Get the API access token and token secret, caching them locally, display
menu

• /post/status/: status() with update as first parameter, status, access token and
secret, and callback function

• /get/account/: account() with settings as first parameter, an empty object, since
no data is needed for the request, and the access token, secret, and callback

The Twitter authorization page that pops up is displayed in Figure 14-7 and the web
page that displays account information for yours truly is displayed in Figure 14-8.

430 | Chapter 14: JavaScript Frameworks

Figure 14-7. Twitter Authorization page, redirected from the recipe app

Figure 14-8. Display of Twitter user account data in app

14.4. Working with the OAuth Framework | 431

Read more on node-twitter-api at its GitHub respository page, and

router at its GitHub page. Other libraries provide the same type of

functionality at the same level as node-twitter-api, but most of them
are tightly integrated with Express. Express is a rather heavy tool to
use just to demonstrate the target functionality.

Accessing Dropbox using OAuth 2.0 in a Web Page
The popular cloud service Dropbox provides APIs for accessing both its file and data
storage cloud services. I covered the data storage components of the service in
Recipe 17.7. In this section, I want to focus on its OAuth 2.0 authorization process.

The Dropbox API is utilitizing the Authorization Code Grant OAuth 2.0 flow, dia‐
grammed in Figure 14-9.

Figure 14-9. Diagram of OAuth 2.0 Authorization Code Grant (source: Oath 2.0
documentation)

The code for the application created in Chapter 18 is browser-based, using Dropbox’s
JavaScript SDK for Data Storage. The first step in creating the application was registering
it at Dropbox, in order to get the consumer key and secret. However, only the key is
used in the client-side application (leaving the secret to remain secret). In the

432 | Chapter 14: JavaScript Frameworks

https://github.com/reneraab/node-twitter-api
https://github.com/gett/router
http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

registration process, we also had to register a redirect URL, which is http://localhost:
8080/ for the app.

When the user accesses the page, if he’s not already authenticated, he’ll click the Dropbox
login button. He’s redirected to the Dropbox authorization page, where he agrees to
authorize Dropbox access to the application. Dropbox redirects him back to the app,
using the redirect URL.

What’s happening behind the scenes is the client is using the application key to make a
request for an authorization token from the Dropbox authorization sever, redirecting
the user to the server. When authorized, the user is redirected back to the client, along
with the authorization token. The client requests an access token from the authorization
server, sending the authorization token and the redirection URL. The authorization
server authenticates the client app (application key), validates the authorization key, and
ensures the redirect URL sent with the request matches what’s registered in the appli‐
cation. If it all works out, the authorization server returns an access token, which can
now be used with all future requests.

No digital signature is necessary for the authorization or access token request, but the
redirection URL passed with the request had better be identical to that registered to the
application, as I discovered when I used:

http://localhost:8080

rather than:

http://localhost:8080/

Although it sounds as complicated as OAuth 1.0, it really isn’t. Having to use a digital
signature and package all of the tokens and data for every request is far more cumber‐
some than OAuth 2.0’s flow, and it doesn’t work well with all use cases.

Not all resource services support OAuth 2.0 only, as we noted with Twitter earlier. And
the implementations may have interesting quirks. One similarity they all share, though,
is the necessity for HTTP server support.

Extra: Setting Up HTTPS for Testing
OAuth is dependent on SSL (Secure Sockets Layer). Some of the resource servers support

localhost for development, and technically transmissions between the authorization
server and the client application doesn’t have to be protected…but it is. I haven’t dis‐
covered any service that doesn’t require SSL. Eventually you’re going to need to set up
an HTTPS server. Look on the bright side: by default, the browser assumes an HTTPS
server runs on port 443, which means you can have two web services running with
default ports on a server at the same time.

HTTPS is dependent on SSL, which is dependent on having a digital certificate. Unless
the certificate is signed by a signing authority every time someone accesses the server,

14.4. Working with the OAuth Framework | 433

the browser will put up all sorts of walls trying to keep the end user out. An example is
shown in Figure 14-10, when I practically had to arm wrestle Chrome into letting me
into my own website.

Figure 14-10. The web equivalent of ‘ware: there be dragons here

Big problem for publicly accessible sites, but not for development and testing purposes.

Before you set up the HTTPS server, you need a digital certificate. Luckily, there’s a self-
signed certificate that is relatively easy to create. We had to create a self-signed certificate
for signing an Android app in Chapter 18, and now we’ll create one for HTTPS.

In Windows, in a Command window, I used the following to create a self-signed cer‐
tificate. The keytool.exe file is available as part of the Android SDK:

keytool.exe -getkey -v keystore release.keystore -alias MyApp -keyalg RSA
-keysize 2048 -validity 10000

In Linux, I used:

openssl x509 -req -days 365 -in server.csr -signkey server.key -out server.crt

You’ll be asked some questions, but the important part is you’ll be prompted to set up
a password. Remember it, as you’ll need it when you start the Node server.

434 | Chapter 14: JavaScript Frameworks

To start up an HTTPS server, rather than HTTP, the application needs to import the

https Node core module. An options object has properties named key and cert, which

are read in from the server.key and server.cert generated files, respectively. The op

tions object is passed to the HTTPS server when creating it, as shown in the following

code. (The route is a reference to the router object used in the Twitter OAuth 1.0 ex‐
ample, earlier.)

var options = {
 key: fs.readFileSync('/home/examples/ssl/server.key'),
 cert: fs.readFileSync('/home/examples/ssl/server.crt')
};

https.createServer(options, route).listen(443);

When you run the Node application, you’ll be asked for the password you associated
with the digital certificate.

Really, if it weren’t for the ugly, deliberately scary behavior we hit when accessing a
website with a self-signed digital certificate, the whole thing would be a piece of cake.
But when it comes to testing and development, we can just ignore the rude messages
and focus on developing our apps and testing them.

See Also
For additional reading on OAuth and the differences between OAuth 1 and 2, I recom‐
mend the following. As you’ll soon discover, there are strong opinions about OAuth:

• “What are the biggest differences between OAuth 1.0 and OAuth 2.0?”

• “Introducing OAuth 2.0”

• “OAuth 2.0 - The Good, The Bad, & The Ugly”

• “OAuth 2.0 and the Road to Hell”

• “Top Differences between OAuth 1.0 and OAuth 2.0 for API Calls”

And for more on the technology discussed in this section:

• “Google’s OAuth 2.0 Playground” (give this one a spin for fun)

• node-twitter-api module

• The Twitter Public APIs

• “Using OAuth 2.0 for Login”

• “Implementing Sign in with Twitter Overview”

• Dropbox Developer Home

• Using the (Dropbox) Datastore in JavaScript

14.4. Working with the OAuth Framework | 435

http://bit.ly/1IHfb4E
http://bit.ly/1IHffBu
http://bit.ly/1IHfhJq
http://bit.ly/1IHfkFf
http://bit.ly/1IHfxYU
https://developers.google.com/oauthplayground/
https://github.com/reneraab/node-twitter-api
https://dev.twitter.com/rest/public
http://bit.ly/1IHfnRm
http://bit.ly/1IHfsVf
https://www.dropbox.com/developers
http://bit.ly/1IHfv3m

14.5. Extending the Possible with Web Components

Problem
Sometimes you don’t need a complete framework ala AngularJS or Express. You just
need a component that encapsulates a specific look and feel and behavior and that you
can include as easily as you’d include an HTML element.

Solution
If you’re willing to work with very new technology, and be dependent on a polyfill, you
can consider Web Components. However, use extreme caution if you’re considering
using them in a production system.

The Web Components consist of a Template, HTML Imports, Shadow DOM, and Cus‐
tom Elements. Each will be covered in the discussion.

Discussion
Think of a web page widget that’s completely self-contained and you have some resem‐
blance to Web Components, but only in the most shallow sense. Web Components, as
a term, encompasses several different constructs. In the following sections, I’ll cover
each, provide examples, discuss polyfills, and what to expect in the future.

At the time this was written, the examples only worked in Chrome.
See the end of the section for a list of polyfills that can help you get
Web Components working in other browsers.

Template

The template element is now part of the HTML5 specification. Currently it’s supported
in most modern browsers, except—and this is a biggie—IE.

Within the template element we include HTML that we want to group as a whole that
isn’t instantiated until it is cloned. It is parsed when loaded, to ensure it’s valid, but it
doesn’t exist. Yet.

Working with templates is very intuitive. Consider a common practice with today’s Ajax
applications: taking returned data from a web service and formatting it as an unordered

list (ul) (or new paragraph, or table, or whatever). Typically we’d using the DOM meth‐

ods to query for the existing ul element, create each list item (li) in the list, append text
to the item, and append the item to the list.

436 | Chapter 14: JavaScript Frameworks

What if we could cut out some of the steps? We could, with the template. Given the
following HTML:

<ul id="results">

<template id="dataitem">
 <li id="listitem">
</template>

This is the JavaScript to add three li elements to the unordered list:

if ('content' in document.createElement('template')) {

 var temp = document.getElementById('dataitem');
 var li = temp.content.getElementById('listitem');

 li.textContent = 'first value';

 // Clone the new row and insert it into the table
 var ul = document.getElementById('results');
 var clone = document.importNode(temp.content, true);
 ul.appendChild(clone);

 li.textContent = 'second value';
 clone = document.importNode(temp.content, true);
 ul.appendChild(clone);

 li.textContent = 'third value';
 clone = document.importNode(temp.content, true)
 ul.appendChild(clone);

} else {
 // use traditional approach
}

Once we’re sure that the user agent supports the technology, we access the template
element, access the HTML elements contained in the template that we want to alter,

make the alteration, and then clone the template using document.importNode(). The

first parameter to importNode() is the template’s content, the second a boolean indi‐
cating whether the descendants of the node also need to be imported.

Once the template is cloned, it’s appended to the unordered list using appendChild().
If templates are currently supported in the user agent, an obvious workaround would
be to follow the procedure we normally use (create a list item, add text, append to the
unordered list).

As I noted, templates are very intuitive, but you might be wondering, what’s the point?
All we’ve done is add a lot more code for a process that’s already simple.

14.5. Extending the Possible with Web Components | 437

When you consider adding a table row, which consists of a tr element, and one or more

cells (td), then a template begins to make more sense:

<template id="tablerow">
 <tr>
 <td></td>
 <td></td>
 </tr>
</template>

The process to create this structure in JavaScript requires creating three new elements
(a table row and two table cells), adding text to the table cells, appending the cells to the
table row, and then appending the table row to the table.

How much simpler is it just to do the following?

if ('content' in document.createElement('template')) {
 var temp = document.querySelector('#tablerow');
 var tds = temp.content.querySelectorAll('td');

 tds[0].textContent = 'Washington';
 tds[1].textContent = 'apples';

 var tb = document.getElementsByTagName('tbody');
 var clone = document.importNode(temp.content, true);
 tb[0].appendChild(clone);

 tds[0].textContent = 'Georgia';
 tds[1].textContent = 'peaches';

 clone = document.importNode(temp.content, true);
 tb[0].appendChild(clone);
}

Templates are also important for their use in Custom Elements, discussed in “Custom
Elements” on page 442, as well as the “Shadow DOM” on page 439.

HTML Imports

A second new Web Component construct is HTML Imports. HTML Imports gives us
the ability to include HTML documents in other HTML documents. Yes, we’ve had this
capability with iFrames and Ajax, but these earlier approaches have been kludgy
workarounds.

Import an HTML document using the following:

<link rel="import" href="src/new.html">

If the file included the following HTML:

<div id="newbie">

 Value 1

438 | Chapter 14: JavaScript Frameworks

 Value 2
 Value 3

</div>

The following JavaScript will clone the HTML and append it to the web page that imports
the HTML file:

var link = document.querySelector('link[rel="import"]');
var content = link.import;
var el = content.querySelector('#newbie');
document.body.appendChild(el.cloneNode(true));

Any other page importing the HTML file can also add the HTML, allowing us to create
a chunk of HTML that’s now reusable.

But what if the HTML you want to import includes a stylesheet and a script element?
What happens then?

Let’s say the imported div element contains a style element, such as the following:

<div id="newbie">
 <style>
 li { background-color: yellow}
 </style>
</div>

If that’s the case, when the element is cloned and appended into the importing page,

every li element in the page would have a yellow background, not just the li elements
in the imported HTML.

To apply a style to newly imported elements, we’ll need to resort to the next Web Com‐
ponents construct: the Shadow DOM.

Shadow DOM

I can’t see Shadow DOM without thinking of the fictional character “The Shadow.” What
a great character, and appropriate, too. Only The Shadow knew what evil lurked in the
minds of men, and only the Shadow DOM knows what lurks in its element’s DOM.

Dragging ourselves away from fictional distraction, the Shadow DOM is the most twisty
of the Web Components. But intriguing, too.

First, the nonmysterious bits. The Shadow DOM is a DOM, a tree of nodes just like

we’re used to when we access elements from the document element. The primary
difference is that it doesn’t exist, not in a way we know a DOM existing. When we create
a shadow root of an element, then it comes into existence. But then, whatever the element
used to have, is gone. That’s the key to remember about the Shadow DOM: creating it
replaces the element’s existing DOM.

14.5. Extending the Possible with Web Components | 439

The behavior noted in this chapter related to the Shadow DOM is
subject to change without notice. The Shadow DOM—all of the Web
Components—are very much a work in progress.

To return to the example demonstrated in “HTML Imports” on page 438, what about

providing a stylesheet for the newly added unordered list (ul) and list items (li)? We

already know that if we include a stylesheet in the imported div element that wraps the
list, the contents are applied to all of the list items in the page.

What we need is to use a Shadow DOM and a template element.

Instead of importing the div element, we’ll add it directly to the HTML page. Instead

of wrapping the unordered list in a div element in the imported HTML, we’ll wrap it

in a template, and include a style element for styling the list items:

<template id="newcontent">
<style>

 li {
 background-color: yellow;
 font-size: 12pt;
 color: black;
 width: 500px;
 height; 25px;
 }
</style>

 Value 1
 Value 2
 Value 3

</template>

We’ll add a link to the imported HTML, and we’ll need to access the imported content,

but the content we’re now importing is a template not the div element:

var link = document.querySelector('link[rel="import"]');
var content = link.import;

// get template

var template = content.querySelector('#newcontent');

JavaScript is used to get an access to the div element now contained in the imported

page, and the createShadowRoot() method is called on it:

// create shadow DOM, append template

var div = document.querySelector('#outer');

var shadow = div.createShadowRoot();

440 | Chapter 14: JavaScript Frameworks

The template is appended to the div element’s Shadow DOM, and the template is
removed:

shadow.appendChild(template.content);
template.remove();

The entire HTML page is shown in Example 14-6.

Example 14-6. Demonstration of the Shadow DOM

<!DOCTYPE html>
<html>

<head>

 <meta charset="UTF-8">
 <title>Web Components</title>

 <!-- Importing Custom Elements -->
 <link rel="import" href="src/new2.html">
</head>

<body>

<ul id="test">
original list
second item

<button id="gethtml">Get HTML</button>
<div id="outer"><p>The Shadow DOM doesn't work for you</p></div>
<script>

 document.getElementById('gethtml').addEventListener('click', function() {
 var link = document.querySelector('link[rel="import"]');
 var content = link.import;

 // get template
 var template = content.querySelector('#newcontent');

 // create shadow DOM, append template
 var div = document.querySelector('#outer');

 var shadow = div.createShadowRoot();
 shadow.appendChild(template.content);
 template.remove();
 }, false);

</script>

</div>

</body>

</html>

Figure 14-11 displays the web page before the Shadow DOM and template have been
applied, and Figure 14-12 displays the page, after.

14.5. Extending the Possible with Web Components | 441

Figure 14-11. Before the template and Shadow DOM have been applied

Figure 14-12. After the template and Shadow DOM have been applied

All of these components just demonstrated are useful when creating Custom Elements.

Custom Elements

The Web Components construct that has generated the most interest is the Custom
Element. Instead of having to deal with existing HTML elements and their default
behaviors and appearance, we create a custom element, package in its styling and be‐
havior, and just attach it to the web page.

442 | Chapter 14: JavaScript Frameworks

An excellent demonstration of creating a Custom Element is a “Hello, World” project

that creates a new custom element named, appropriately enough, hello-world:

<!DOCTYPE html>
<html>

<head>

 <meta charset="UTF-8">
 <title><hello-world></title>

 <!-- Importing Custom Elements -->
 <link rel="import" href="src/hello-world.html">
</head>

<body>

 <!-- Using Custom Elements -->
 <hello-world who="Shelley"></hello-world>

</body>

</html>

All of the implementation is in the imported HTML file, reproduced in Example 14-7,
with some minor modification from the original. The file starts with a template, which

is familiar. It consists of a template element wrapping a paragraph (p), which contains

a strong element and a smiley face :):

<template>

 <p>Hello :)</p>
</template>

The file also contains a script element, with an IIFE wrapping all of the code, and the

window and document elements passed to the function.

In the function, a reference to the importing HTML document is assigned to a variable

(thatDoc), while the document related to the script is assigned to thisDoc:

// Refers to the "importer", which is index.html

var thatDoc = document;

// Refers to the "importee", which is src/hello-world.html

var thisDoc = document.currentScript.ownerDocument;

The template is accessed and assigned to a variable. The next several lines of code are
all related to creating a custom element. Refer to the complete code as we traverse it.

Example 14-7. The hello-world element’s definition

<template>

 <p>Hello :)</p>
</template>

<script>

 (function(window,document) {
 // Refers to the "importer", which is index.html

14.5. Extending the Possible with Web Components | 443

https://github.com/webcomponents/hello-world-element

 var thatDoc = document;

 // Refers to the "importee", which is src/hello-world.html
 var thisDoc = document.currentScript.ownerDocument;

 // Gets content from <template>
 var template = thisDoc.querySelector('template').content;

 // Creates an object based in the HTML Element prototype
 var MyElementProto = Object.create(HTMLElement.prototype);

 // Creates the "who" attribute and sets a default value
 MyElementProto.who = 'World';

 // Fires when an instance of the element is created
 MyElementProto.createdCallback = function() {
 // Creates the shadow root
 var shadowRoot = this.createShadowRoot();

 // Adds a template clone into shadow root
 var clone = thatDoc.importNode(template, true);
 shadowRoot.appendChild(clone);

 // Caches DOM query
 this.strong = shadowRoot.querySelector('strong');

 // Checks if the "who" attribute has been overwritten
 if (this.hasAttribute('who')) {
 var who = this.getAttribute('who');
 this.setWho(who);
 }
 else {
 this.setWho(this.who);
 }
 };

 // Fires when an attribute was added, removed, or updated
 MyElementProto.attributeChangedCallback = function(attr, oldVal, newVal) {
 if (attr === 'who') {
 this.setWho(newVal);
 }
 };

 // Sets new value to "who" attribute
 MyElementProto.setWho = function(val) {
 this.who = val;

 // Sets "who" value into
 this.strong.textContent = this.who;
 };

 // Registers <hello-world> in the main document

444 | Chapter 14: JavaScript Frameworks

 window.MyElement = thatDoc.registerElement('hello-world', {
 prototype: MyElementProto
 });
 })(window, document);
</script>

Custom elements inherit from the HTMLElement, and the following code:

 var MyElementProto = Object.create(HTMLElement.prototype);

Creates an instance of the HTMLElement’s prototype, to be used to add the who prop‐

erty, as well as a createdCallback() function called when the element is created, and

attributeChangedCallback(), called when an attribute is changed. In the created

Callback() method, the Shadow DOM is created for the element, and the template is

appended to it as a child element. The strong element is queried on the Shadow DOM,

and the element’s who attribute value is passed to the third method created on the pro‐

totype, the setWho() method.

This method just sets the strong element’s textContent property to the who attribute’s
value.

Once all of this is done, the code that makes hello-world into something real happens
next:

 // Registers <hello-world> in the main document
 window.MyElement = thatDoc.registerElement('hello-world', {
 prototype: MyElementProto
});

The thatDoc variable is pointing to the document element for the HTML document

that’s importing the custom element file. The registerElement() method introduces

the new element to the document, and returns a constructor for constructing a new

instance of the element, assigned to the window element.

All of that, and the page displays the following:

Hello Shelley :)

with the name in bold text.

It seems like a lot of work, and for a simple element like hello-world it’s overkill…until
you realize you can use the element everywhere, and that the custom element can do a
lot more than output a cute message.

14.5. Extending the Possible with Web Components | 445

See Also
More on Web Components, and demos:

• WebComponents.org

• Custom Elements

• Built with Polymer

Currently, only Chrome implements the Web Components natively. If you want to sup‐
port the constructs in other browsers, you’ll need a polyfill. The following are complete
web component framework polyfills:

• Google’s Polymer

• Bosonic

You could also consider focusing on a specific component of Web Components, namely
Custom Elements. The following are polyfills for Custom Elements:

• Mozilla’s X-Tag

• Mozilla Brick

• Polymer’s Custom Elements

The following three articles by the same author, TJ VanToll, demonstrate both concerns
and possibilities about using Web Components now:

• “Why Web Components Aren’t Ready for Production… Yet”

• “An Addendum to Why Web Components Aren’t Ready for Production Yet”

• “Why Web Components Are Ready For Production”

And last, but not least, we couldn’t do without HTML5 Rocks, and the site’s wonderful
articles on the Web Components:

• “HTML Imports”

• “HTML’s New Template Tag”

• “Shadow DOM 101”

• “Custom Elements”

446 | Chapter 14: JavaScript Frameworks

http://webcomponents.org/
http://customelements.io/
http://builtwithpolymer.org/
https://www.polymer-project.org/
http://bosonic.github.io/
http://x-tags.org/
http://brick.readme.io/
https://github.com/Polymer/CustomElements
http://bit.ly/1yaxn5v
http://bit.ly/1yaxsGg
http://bit.ly/1yaxApa
http://bit.ly/1yaxJsY
http://bit.ly/1yaxRIS
http://bit.ly/1yaxVIE
http://bit.ly/1yay0vZ

CHAPTER 15

Advanced Client-Server
Communications and Streams

Ajax opened up a world of possibilities for JavaScript developers, and it’s rare nowadays
that we don’t find data being updated in place thanks to the technology. But we devel‐
opers are greedy and we always want more. Thankfully, we have more.

Thanks to the newer Cross-Origin Resource Sharing (CORS), we can now make re‐
quests of data and services of other domains as easily as we make those in our own.
Perhaps more importantly, we can make requests against our own services running
under a different subdomain, or even different port. And we can share data, such as
HTTP cookies, too.

We can also indulge in real-time bidirectional communication with Web Sockets, which
we can use directly, or assisted by a module such as the popular Socket.IO.

Client-server communication is all about streams, and thanks to the new Node trans‐
form streams, we can simply and easily transform the data that’s communicated. In the
past, we could send zipped files to the server, but how about downloading the file,
opening it for compression, and then saving the results in a few simple lines of code?

15.1. Allowing Cross-Domain Requests

Problem
You understand how to use Ajax, but the data you need is provided on a server in another
domain. When you try to access the data, you got the error shown in Figure 15-1.

447

Figure 15-1. Error accessing data in another domain with an Ajax request

Solution
The solution to accessing the data on another domain doesn’t reside in the client, but
in the server. The server application has to enable CORS, Cross-Origin Resource Shar‐
ing, in order for your other-domain client to work. Thankfully, doing so in a Node server
is extremely easy.

To enable CORS, set the Access-Control-Allow-Origin header value, as demonstrated
in the following very simple web server application:

var http = require('http');

var server = http.createServer(function(req,res){
 // Set CORS headers
 res.setHeader('Access-Control-Allow-Origin', '*');
 res.writeHead(200);
 res.end("Hello cross-domain");

});

server.listen(8080);

Discussion
A security feature of Ajax is the single domain origin, which disallows cross-domain
access. Originally, all Ajax requests disallowed cross-domain requests, regardless of
what the server would allow. However, with the introduction of the XMLHttpRequest
Level 2 specification at the W3C, all clients that support Level 2 support CORS by default.

The CORS Specification is a W3C Recommendation, and is support‐
ed in all of the newer versions of all the major browsers. The differ‐
ent CORS scenarios are covered nicely in the Mozilla Developer Net‐
work’s HTTP Access Control (CORS).

448 | Chapter 15: Advanced Client-Server Communications and Streams

http://www.w3.org/TR/cors/
http://mzl.la/1B1O4Ch

Where the change has to occur now is in the server. All you need do is set the Access-

Control-Allow-Origin header value in the server response. Because the solution uses
the wild card, *, any domain can access the resource. If you want to restrict CORS access
to a specific domain, list the domain:

res.setHeader('Access-Control-Allow-Origin', 'http://specificdomain.com');

Now that your server is set, the client, such as the one in the following code, can access
the data:

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8">
<title>CORS</title>
</head>

<body>

 <div id="result"></div>
 <script type="text/javascript">
 var request = new XMLHttpRequest();

 request.onreadystatechange = function() {
 if (this.readyState == 4) {
 console.log(this.status);
 if (this.status == 200) {
 document.getElementById('result').innerHTML =
 this.responseText;
 }
 }
 }

 request.open('GET','http://burningbird.net:8080/');
 request.send();
 </script>
</body>

</html>

See Also
If you want to make sure your cookies go with you when you cross domains, see
Recipe 15.4. If you’re interested in using verbs other than GET, POST, and HEAD with
your Ajax request, learn about preflighting in Recipe 15.2. To learn how to send binary
data, see Recipe 15.3.

The XMLHttpRequest Level 2 specification is still in Working Draft
status, but has broad support in the newer versions of all the main
browsers.

15.1. Allowing Cross-Domain Requests | 449

http://www.w3.org/TR/XMLHttpRequest2/

15.2. Implementing a PUT Request in Ajax

Problem
Instead of using GET or POST with your cross-domain Ajax request, you want to signal
an update with PUT. But the server doesn’t seem to like the action.

Solution
To use a method other than GET, POST, or HEAD, you have to preflight your request.
As with the cross-domain request covered in Recipe 15.1, the change will need to come
from the server. In this case, a server implemented in Node.

To allow the Node server (implemented with the http module) to accept methods other

than GET, POST, and HEAD, you need to set the Access-Control-Allow-Methods
header to reflect the HTTP verbs you support:

res.setHeader('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS');

The OPTIONS verb is the one that interests us. When the Ajax request is made with a
PUT, the XMLHttpRequest object first sends through the OPTIONS request, to ascer‐
tain whether the PUT request is supported on the server. In the server, the code responds
to the OPTIONS request by returning a status code of 204, no content. The browser
then sends through the PUT request, which our application processes:

var http = require('http');

var server = http.createServer(function(req,res){
 // Set CORS headers

 res.setHeader('Content-type', 'text/plain');
 res.setHeader('Access-Control-Allow-Origin', '*');
 res.setHeader('Access-Control-Allow-Methods', 'GET,PUT,POST,DELETE,OPTIONS');
 if (req.method.toUpperCase() == "OPTIONS") {
 res.writeHead(204);
 return(res.end());
 }
 var data = '';
 req.on('data', function(chunk) {
 data+=chunk;
 });

 req.on('end', function () {
 console.log('PUT: ' + data);
 res.writeHead(200);
 res.end('PUT ' + data);
 });
});

server.listen(8080);

450 | Chapter 15: Advanced Client-Server Communications and Streams

The result of this communication can be seen in Figure 15-2.

Figure 15-2. Communication between browser and server during a cross-domain PUT

Discussion
Most of our Ajax interactions are GET or POST, but what if it were something else, such
as a PUT request? The same security mechanisms that prevented cross-domain requests
also restricted the use of any other HTTP method. With the advent of the CORS spec‐
ification, though, Ajax requests can include PUT and DELETE as well as GET and POST,
allowing for truly RESTful applications.

When a method other than the standard is used, that’s when preflighting comes in. What
happens is that the browser first sends an OPTIONS method to the server to determine
if the action is allowed. It the action is allowed, the browser sends through the PUT
request:

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8">
<title>CORS</title>
</head>

<body>

 <div id="result"></div>
 <script type="text/javascript">
 var request = new XMLHttpRequest();

 request.onreadystatechange = function() {

15.2. Implementing a PUT Request in Ajax | 451

 if (this.readyState == 4) {
 console.log(this.status);
 if (this.status == 200) {
 document.getElementById('result').innerHTML =
 this.responseText;
 }
 }
 }

 request.open('PUT','http://burningbird.net:8080/');
 request.send('{name: test}');
 </script>

</body>

</html>

The server code listed in the solution signals it will accept both the OPTIONS and the
PUT methods. In addition, it processes the OPTIONS request, just sending back a status
code of 204. When it gets the data for the PUT, it pops it out and sends it back, as positive

feedback that the data has been received. The on event handler for both data and end

process the request and the data, and it’s in the end event where the response is written
back to the client.

Technically, the code doesn’t have to respond to the OPTIONS method. However, when

it doesn’t, then we end up with two end events, one for the OPTIONS, and one for the
PUT. This mucks up the console logging and feedback response, so I’d rather the code
process OPTIONS separately.

If you’re using a framework, such as Express, there is a module, ap‐
propriately named CORS, that manages the CORS setup for you. Read
more about it on its GitHub repository page.

Extra: Handling Nonstandard HTTP Request Headers
Preflighting also works if you want to use a nonstandard request header. We’re used to
a header request like the following, set using a XMLHttpRequest object:

request.setRequestHeader('Content-Type', 'application/xml');

But something like the following might give us pause:

request.setRequestHeader('X-MYWAY', 'ididit');

This would give a web server more than pause, unless we specifically allowed for this
type of custom header request. In Node, to do so, there is another CORS access control,

Access-Control-Allow-Headers, that allows us to define which custom header re‐
quests will accept:

452 | Chapter 15: Advanced Client-Server Communications and Streams

https://github.com/troygoode/node-cors/

 res.setHeader('Access-Control-Allow-Headers', 'x-myway,content-type');

The communication between the client and the server then looks similar to the follow‐
ing, indicating a successful effort:

HTTP/1.1 200 OK
Content-Type: text/plain
Access-Control-Allow-Origin: http://examples.burningbird.net
Access-Control-Allow-Headers: X-MYWAY,content-type
Date: Fri, 12 Sep 2014 17:14:23 GMT
Connection: keep-alive
Transfer-Encoding: chunked

OPTIONS / HTTP/1.1
Host: burningbird.net:8080
User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:32.0) Gecko/20100101 Firefox/32.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate
Origin: http://examples.burningbird.net
Access-Control-Request-Method: GET
Access-Control-Request-Headers: content-type,x-myway
Connection: keep-alive

15.3. Sending Binary Data Through Ajax and Loading into
an Image

Problem
You want to get a server-side image through Ajax as binary data.

Solution
Getting binary data via Ajax is a matter of setting the responseType to blob and then
manipulating the data when returned. In the solution, the data is then converted and

loaded into an img element:

<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="utf-8">
<title>CORS blob</title>
</head>

<body>

 <script type="text/javascript">
 var request = new XMLHttpRequest();

 request.open('GET','burningbird.png', true);
 request.responseType = "blob";

15.3. Sending Binary Data Through Ajax and Loading into an Image | 453

 var img = document.getElementById("result");
 request.onload=function(event) {
 var blob = request.response;
 img.src = URL.createObjectURL(blob);
 };
 request.send(null);

 img.onload=function(e) {
 URL.revokeObjectURL(this.src);
 };
 </script>

</body>

</html>

Discussion
Another benefit of the CORS specification is support for binary data (also known as
typed arrays) in Ajax requests. The key requirement to a binary request is to set the

responseType to one of the following:

• arraybuffer

• blob

The data that is received is accessed via the response property in the XMLHttpRequest

object, as one of the following data types (consistent with the responseType setting):

• ArrayBuffer: Fixed-length raw binary data buffer

• Blob: File-like immutable raw data

In the solution, I used the URL.createObjectURL() method to convert the blob to a
DOMString (generally mapped to JavaScript String) with the URL of the passed object.

The URL is assigned to the img element’s src property, as shown in Figure 15-3. Once

the image is loaded, the code calls URL.revokeObjectURL() to release the URL.

454 | Chapter 15: Advanced Client-Server Communications and Streams

Figure 15-3. Image src set to blob URL returned as binary data in Ajax call

Of course, it would be just as simple to assign the url of the PNG file to the src attribute
in the first place. However, the ability to manipulate binary data is a necessity with
various technologies, such as Web Workers and WebGL.

See Also
Read more about Web Workers in Recipe 13.5.

15.4. Sharing HTTP Cookies Across Domains

Problem
You want to access a web resource using Ajax in another domain, but you want to send
a credentialed request, including HTTP cookies and any authentication.

Solution
Changes have to be made in both the client and the server applications to support
credentialed requests.

In the client, we have to set the withCredentials property on the XMLHttpRequest
object:

var request = new XMLHttpRequest();

15.4. Sharing HTTP Cookies Across Domains | 455

request.onreadystatechange = function() {
 if (this.readyState == 4) {
 console.log(this.status);
 if (this.status == 200) {
 document.getElementById('result').innerHTML = this.responseText;
 }
 }
};
request.open('GET','http://burningbird.net:8080/');
request.withCredentials = true;
request.send(null);

In the server, the Access-Control-Allow-Controls header value must be set to true:

var http = require('http');
var Cookies = require('cookies');

var server = http.createServer(function(req,res){
 // Set CORS headers
 res.setHeader('Content-type', 'text/plain');
 res.setHeader('Access-Control-Allow-Origin', 'http://somedomain.com');
 res.setHeader('Access-Control-Allow-Credentials', true);

 var cookies = new Cookies (req, res);
 cookies.set("apple","red");

 res.writeHead(200);
 res.end("Hello cross-domain");

});

server.listen(8080);

Discussion
Being able to send HTTP cookies or authentication across domains is another CORS
extension, as long as both the client and the server signal agreement. However, there
are browser variations that can impact on the success of the application.

In Firefox, I could use a wildcard (*) with the Access-Control-Allow-Origin, and my
request would be accepted:

res.setHeader('Access-Control-Allow-Origin', '*');

But the same request would fail in Chrome, as shown in Figure 15-4.

456 | Chapter 15: Advanced Client-Server Communications and Streams

Figure 15-4. Cookie cross-domain request rejected because of domain setting

Changing the header to a specific domain:

 res.setHeader('Access-Control-Allow-Origin', 'http://examples.burningbird.net');

Allows the request to go through, as shown in Figure 15-5.

15.4. Sharing HTTP Cookies Across Domains | 457

Figure 15-5. Cookie now accessible in cross-domain request after restricting origin

It’s best to stick with the more restrictive approach.

15.5. Establishing Two-Way Communication Between
Client and Server

Problem
You want to initiate two-way, real-time communication between the Node server and
web page client.

Solution
Support bidirectional communication between the client and server by using one of
several possible options.

As one example, you can use WebSockets directly in the client, and then a Node module

that supports WebSockets in the server. In this solution, I’m using nodejs-websocket.
Once the server is created, it starts the communication with the client by sending
through a JavaScript object with two members: a number counter and a string. The
object must be converted to string, first. The code listens for both an incoming message

458 | Chapter 15: Advanced Client-Server Communications and Streams

and a close event. When it gets an incoming message, it increments the counter and
sends the object:

var ws = require("nodejs-websocket");

var server = ws.createServer(function (conn) {

 // object being passed back and forth between
 // client and server
 var counter = {counter: 1, strng: ''};

 // send first communication to client
 conn.sendText(JSON.stringify(counter));

 // on response back
 conn.on('text', function(message) {
 var ct = JSON.parse(message);
 ct.counter = parseInt(ct.counter) + 1;
 if (ct.counter < 100) {
 conn.sendText(JSON.stringify(ct));
 }
 });
 conn.on("close", function (code, reason) {
 console.log("Connection closed")
 });
}).listen(8001);

Another popular WebSockets module is ws. As the following code snippet demonstrates,
the use is almost identical:

var wsServer = require('ws').Server;
var wss = new wsServer({port:8001});
wss.on('connection', (function (conn) {

 // object being passed back and forth between
 // client and server
 var counter = {counter: 1, strng: ''};

 // send first communication to client
 conn.send(JSON.stringify(counter));

 // on response back
 conn.on('message', function(message) {
 var ct = JSON.parse(message);
 ct.counter = parseInt(ct.counter) + 1;
 if (ct.counter < 100) {
 conn.send(JSON.stringify(ct));
 }
 });
}));

15.5. Establishing Two-Way Communication Between Client and Server | 459

The client creates a new WebSockets object, passing in the URI for the WebSockets
server. Notice the protocol used. When the client gets a message, it converts the message
text to an object, retrieves the number counter, increments it, and then uses it in the
object’s string member. The purpose is to print out every other number, starting with
2. State is maintained between the two by passing the string to be printed out within the
message:

<!doctype html>
<html lang="en">
<head>

 <meta charset="utf-8">
 <title>bi-directional communication</title>
 <script type="text/javascript">
 var socket = new WebSocket("ws://shelleystoybox.com:8001");
 socket.onmessage = function (event) {
 var msg = JSON.parse(event.data);
 msg.counter = parseInt(msg.counter) + 1;
 msg.strng+=msg.counter + '-';
 var html = '<p>' + msg.strng + '</p>';
 document.getElementById("output").innerHTML=html;
 socket.send(JSON.stringify(msg));
 };
</script>

</head>

<body>

<div id="output"></div>
</body>

</html>

Discussion
Bidirectional communication, also known as full-duplex communication, is two-way
communication that can occur at the same time. Think of it as a two-way road, with
traffic going both ways.

There are numerous ways of handling bidirectional communication, though it’s only
been in the last year or so that we could use WebSockets. All modern browsers support
the WebSockets specification, and as you can see, it’s extremely easy to use.

A WebSockets request is actually an HTTP request, with upgrade headers. If the server
is capable of understanding the upgrade request, it responds in kind, returning the

upgrade headers and establishing a handshake between the two communication end
points. You can see the communication happen when you use a debugger that allows
you to snoop on the network communication between the client and server, as shown
in Figure 15-6.

460 | Chapter 15: Advanced Client-Server Communications and Streams

Figure 15-6. WebSockets handshake being established with upgrade request and
response

The advantage to WebSockets, other than being unbelievably easy to work with in
browsers, is it’s able to traverse both proxies and firewalls, something that isn’t trivial or
even possible with other bidirectional communication techniques such as HTTP long-
polling or XHR polling. And to ensure applications are secure, user agents such as
Chrome and Firefox prohibit mixed content (i.e., using both HTTP and HTTPS).

WebSockets supports binary data, as well as text. And as the examples demonstrated,

you can transmit JSON by calling JSON.stringify() on the object before sending, and

JSON.parse() on the string in the receiving end.

For more information on WebSockets, check out WebSocket.org.

If you’re using an HTTP server that doesn’t speak WebSockets, you can use two servers
(one for standard HTTP requests, one for WebSockets), and have them listen on two
different ports. Extending this approach to the solution server:

var app = require('http').createServer(handler)
 , fs = require('fs');

var ws = require("nodejs-websocket");

15.5. Establishing Two-Way Communication Between Client and Server | 461

https://www.websocket.org/index.html

app.listen(8124);

function handler (req, res) {
 console.log("if HTTP is required, too");
 fs.readFile(__dirname + '/index.html',
 function (err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }
 counter = 1;
 res.writeHead(200);
 res.end(data);
 });
}

var server = ws.createServer(function (conn) {

 // object being passed back and forth between
 // client and server
 var counter = {counter: 1, strng: ''};

 // send first communication to client
 conn.sendText(JSON.stringify(counter));

 // on response back
 conn.on('text', function(message) {
 var ct = JSON.parse(message);
 ct.counter = parseInt(ct.counter) + 1;
 if (ct.counter < 100) {
 conn.sendText(JSON.stringify(ct));
 }
 });
 conn.on("close", function (code, reason) {
 console.log("Connection closed")
 });
}).listen(8001);

You can also use a more traditional web server, such as Apache, to handle the web page
access, and then just have Node pick up with the WebSockets request. Or use a proxy
to correctly transmit requests to the proper server.

There are also Node modules that incorporate support for the HTTP server so only one
port is needed. That’s how the popular Socket.IO module works. Refactoring the solu‐
tion server to use Socket.IO:

var app = require('http').createServer(handler);
var io = require('socket.io')(app);
var fs = require('fs')

app.listen(8124);

462 | Chapter 15: Advanced Client-Server Communications and Streams

function handler (req, res) {
 fs.readFile(__dirname + '/index.html',
 function (err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }
 res.writeHead(200);
 res.end(data);
 });
}

io.sockets.on('connection', function (socket) {
 var counter = {'counter': 1, 'strng': ''};
 socket.emit('counter', counter);
 socket.on('counter', function (data) {
 data.counter = parseInt(data.counter) + 1;
 if (data.counter < 100) {
 socket.emit('counter', data);
 }
 });
});

The key line is:

var io = require('socket.io')(app);

The Socket.IO server is created and the previously created HTTP server is passed as
parameter.

Now, you’d think you could just use WebSockets directly in the client, but no such luck.

If you use the the HTTP protocol in the URI (http://), WebSockets complains, but if

you send through the WS protocol (ws://), then Socket.IO expresses an immediate and
terminal disapproval.

What’s happening is that Socket.IO is a polyfill, as well as a service wrapper. To ensure
that older clients can use the server, it first connects using long-polling. It is only when
the connection succeeds that it attempts to upgrade to WebSockets. Because of this
behavior, if you use Socket.IO in the server, you need to use the Socket.IO client:

<!doctype html>
<html lang="en">
<head>

 <meta charset="utf-8">
 <title>bi-directional communication</title>
 <script src="//cdn.socket.io/socket.io-1.1.0.js"></script>
 <script>
 var socket = io.connect('http://shelleystoybox.com:8124');
 socket.on('counter', function (data) {
 data.counter = parseInt(data.counter) + 1;
 data.strng+=data.counter + '-';
 var html = '<p>' + data.strng + '</p>';

15.5. Establishing Two-Way Communication Between Client and Server | 463

 document.getElementById("output").innerHTML=html;
 socket.emit('counter', data);
 });
</script>

</head>

<body>

<div id="output"></div>
</body>

</html>

Check out the Socket.IO website for documentation and examples.
The module pair also has additional functionality that facilitates cre‐
ating chat room applications, which is one of the more popular bi‐
directional communication end uses.

15.6. Unloading and Zipping Files Using Transform
Streams

Problem
Clients can upload files to the server, but you want to compress them as soon as they’re
received.

Solution
The solution makes use of the Formidable module to simplify the file uploading, the

Zlib module for compression, and fs for reading and writing the data from and to a
file. It’s a modification of example code from the Formidable documentation:

var formidable = require('formidable');
var http = require('http');
var zlib = require('zlib');
var fs = require('fs');

var gzip = zlib.createGzip();

http.createServer(function(req, res) {
 if (req.url == '/upload' && req.method.toLowerCase() == 'post') {

 // parse a file upload
 var form = new formidable.IncomingForm();
 form.uploadDir = __dirname + '/files';
 form.keepExtensions = false;

 form.parse(req, function(err, fields, files) {
 var wstream = fs.createWriteStream(__dirname + '/files/'
 + files.upload.name + '.gz');

464 | Chapter 15: Advanced Client-Server Communications and Streams

http://socket.io/

 var rstream = fs.createReadStream(files.upload.path);
 rstream
 .pipe(gzip)
 .pipe(wstream)
 .on('finish', function() {
 // delete original uploaded file
 fs.unlink(files.upload.path, function(err) {
 if (err) {
 console.log(err);
 } else {
 res.writeHead(200, {'content-type': 'text/plain'});
 res.write('Uploaded and compressed:\n\n');
 res.end(files.upload.name + '.gz');
 }
 });
 });
 });

 return;
 }

 // show a file upload form
 res.writeHead(200, {'content-type': 'text/html'});
 res.end(
 '<form action="/upload" enctype="multipart/form-data" method="post">'+
 '<input type="text" name="title">
'+
 '<input type="file" name="upload" multiple="multiple">
'+
 '<input type="submit" value="Upload">'+
 '</form>'
);
}).listen(8080);

Discussion
The Formidable module handles much of the tedious processing required for uploading

and saving a file. The parse() callback function, called when it’s finished, contains
information about the location of the uploaded file.

The uploaded file is opened using the fs createReadStream() method, compressed

using Zlib’s createGzip(), and then written using createWriteStream(), all of which
have something in common: they all implement the second-generation Stream

_transform() method. They’re transform streams.

A transform stream is a duplex stream, which means it can both read and write, rather
than being limited to one or the other, as shown in Figure 15-7. As the solution dem‐

onstrates, the readable stream ReadStream object created with createReadStream()

can read the uploaded file, yes, but it can also pipe() the data to the next process in the

chain, the Gzip object returned with the createGzip() method. This object is also

15.6. Unloading and Zipping Files Using Transform Streams | 465

capable of both reading and writing to the stream, as it compresses the data in the
process.

Figure 15-7. The transform stream pattern

When the Gzip object is finished compressing the data, it pipes the data to the writable
WriteStream object. Normally, it’s used to write data, but as a transform stream, it can
also read the data passed from the Gzip object.

Once finished, the originally uploaded file is deleted, and we’re now left with a properly
named file.

A file named:

somelarge.pdf

has become:

somelarge.pdf.gz

The new file takes up considerably less file space.

Node core modules that support transformation are Zlib, for compression, and cryp

to, for encryption. Developers can create their own custom transform streams incor‐
porating their own transforming modules.

15.7. Testing the Performance and Capability of Your
WebSockets Application

Problem
You have an application that sends updated information on a frequent basis to every
connected client, and you’re concerned about performance and how the application will
handle the load.

Solution
You’ll want to perform both speed (performance) tests and load testing.

See the discussion for details.

466 | Chapter 15: Advanced Client-Server Communications and Streams

Discussion
Thanks to Node and WebSockets and other bidirectional communication techniques,
we no longer have to use timers in web pages to hit servers for new data. The server
itself can push the data to all the connected clients whenever the data is fresh. The
animated, scrolling timeline in Recipe 16.3 demonstrates just this type of application.

The question then becomes: yes, it’s cool, but what does the coolness cost? Is my server
going to crash and burn once 10 (100/1,000/10,000) clients connect? Will all the clients
get the same response?

The only answer to these questions comes from two types of tests:

• Speed or performance testing: Tests how fast the page loads, especially when the
server is under stress

• Load testing: A test that emulates many concurrent clients accessing the page at
once

There are services that provide both types of testing, and if you’re a large commercial
operation and the realibility and performance of your application is critical, I definitely
recommend taking advantage of them. Some, like Load Impact, even provide a decent
trial of their product before committing. The result of running a load test in Load Impact
is shown in Figure 15-8.

There are also tools you can use that will hit a page concurrently and then print out the
load responses for each (or even graph it). Selenium is a very popular tool for perfor‐
mance testing.

The Node world also provides tools we can install easily and quickly with npm. They
may not have exactly the same polish as the commercial tools, but they’re certainly a lot
cheaper.

One tool to try is loadtest, which is an easier-to-run variation of ApacheBench (aka

ab). You need to install it globally:

npm install -g loadtest

And then you run it from the command line. The following runs 200 requests per second
(rps), with a concurrency of 10:

loadtest -c 10 --rps 200 http://mysite.com/

There are several other options, and ApacheBench is also an alternative that can be good
for performance testing. However, the tests don’t test the WebSockets connection, be‐
cause the request to the WebSockets server is contained in JavaScript that’s never
processed.

15.7. Testing the Performance and Capability of Your WebSockets Application | 467

http://loadimpact.com/
http://www.seleniumhq.org/

Figure 15-8. Running load test against the scrolling timeline application using Load
Impact

Another option is Thor, which is a load tester that’s run directly against the WebSockets
server:

npm install -g thor

thor --amount 5000 ws://shelleystoybox.com:8001

This is an effective way of hammering (ahem) the WebSockets server with connections,
but we’re still not getting the back and forth communication to really test the entire
application: front and back. The connections are made, and then dropped as quickly,
so it’s not really testing the communication as it exists if you and I were to access the
application from our browsers. However, used with other tests that actually access the
client page and process the WebSockets connection, they can help us determine if per‐
formance is going to be an issue with that many demands for connections (note: the
app held up).

468 | Chapter 15: Advanced Client-Server Communications and Streams

CHAPTER 16

Data Visualizations and
Client/Server Graphics

Graphics capability with JavaScript has changed significantly in the last few years.
Thanks to an increase in support for both SVG and Canvas in the primary browsers
and other environments, libraries to support effects related to both have increased in
quantity and complexity. And the support doesn’t end at the two-dimensional either.

An issue, though, with graphics is that today’s hot item typically becomes tomorrow’s
aged and no longer supported library. A few years back, using the Canvas object to add
effects to static images was very big, but libraries that supported such effort aren’t re‐
ceiving the interest they once did and are no longer being actively supported. Even the
support for WebGL and 3D, which are only now receiving broader support in browsers,
seems to be peaking before it has begun.

However, one area of advanced graphics usage has already transcended the fad stage,
and that’s data visualization. Being able to present data in a visually compelling manner
is never going out of style, and because of the broad support for Canvas, SVG, and
WebGL, has a natural fit in the web page. People appreciate getting a graphical repre‐
sentation of data—they like to be able to see the data at a glance. Thankfully, we now
have a host of tools and libraries that make data visualization more of a fun and inter‐
esting challenge, than the tedious, overly complex job it could be.

Data visualization isn’t the only new avenue of creativity for JavaScript developers.
Technologies that were once only for the C/C++ developers are now available in Java‐
Script—both in the client, and in the server. In this chapter, in addition to looking at
data visualization techniques, I’m going to touch on accessing server-side graphics tools
via Node applications, modifying uploading images, converting graphics to text, and
managing web page screen captures.

469

16.1. Creating an SVG Bar Chart with D3

Problem
You want to create a scalable bar chart, but you’re hoping to avoid having to create every
last bit of the graphics.

Solution
Use D3 and SVG to create a bar chart bound to a set of data your application provides.
Example 16-1 shows a vertical bar chart created using D3 with a given set of data rep‐
resenting the height of each bar.

Example 16-1. SVG bar chart created using D3

<!DOCTYPE html>
<html>

<head>

 <meta charset="utf-8">
 <title>SVG Bar Chart using D3</title>
 <style>
 svg {
 background-color: #ff0;
 }
 </style>
 <script src="http://cdnjs.cloudflare.com/ajax/libs/d3/3.4.11/d3.js">
 </script>
</head>

<body>

<script type="text/javascript">
var data = [56, 99, 14, 12, 46, 33, 22, 100, 87, 6, 55, 44, 27, 28, 34];

var height = 400;
var barWidth = 25;

var x = d3.scale.linear()
 .domain([0, d3.max(data)])
 .range([0, height]);

svg = d3.select("body")
 .append("svg")
 .attr("width", data.length * (barWidth +1))
 .attr("height", height);

svg.selectAll("rect")
 .data(data)
 .enter()
 .append("rect")
 .attr("fill","red")
 .attr("stroke","black")

470 | Chapter 16: Data Visualizations and Client/Server Graphics

 .attr("x", function(d,i) {
 return i * (barWidth + 1);
 })
 .attr("y", function(d) {
 return height - (x(d));
 })
 .attr("width", barWidth)
 .attr("height", x)

</script>

</body>

</html>

Discussion
D3 isn’t a standard graphics tool that creates the shape based on the dimensions you
provide. With D3, you give it a set of data, the objects used to visualize the data, and
then stand back and let it do its thing. It sounds simple, but to get this data visualization
goodness, you do have to properly set it up, and that can be challenging when you first
start using the library.

First of all, be aware that D3 makes use of method chaining to a maximum degree. Yes,
you can invoke methods separately, but it’s clearer, cleaner, and more efficient to use the
library’s chaining support.

In the solution, the first line is the creation of a data set, as an array. D3 expects data
points to be in an array, though each element can be an object, as well as a simple value,
as shown in the solution. Next, the maximum height of the bar chart is defined, as is the
width of each bar. Next, we get into the first use of D3.

D3, created by Mike Bostock, is a powerful data visualization tool that
isn’t necessarily something you can pick up and master in a lazy
afternoon. However, it is a tool well worth learning, so consider the
example in this recipe more of a teaser to get you interested, rather
than a definitive introduction.

For a more in-depth primer, I recommend Getting Started with D3
by Mike Dewar (O’Reilly).

I could have added a static SVG element to the web page, but I wanted to demonstrate
how D3 creates an element. By creating the SVG element, we’re also getting a reference
to it for future work, though we could have used D3 to get a reference to an existing

element, which I’ll cover a little later in this section. In the code, a reference to the body

element is obtained using D3’s select() method. Once this happens, a new SVG ele‐

ment is appended to the body element via append(), and attributes given it via the attr()
function. The height of the element is already predefined, but the width is equal to

16.1. Creating an SVG Bar Chart with D3 | 471

http://d3js.org/
http://shop.oreilly.com/product/0636920025429.do

multiplying the number of data elements by the bar width (+1, to provide necessary
spacing).

Once the SVG element is created, the code uses D3’s scale functionality to determine
the necessary ratio between the element’s height and each bar’s height, in such a way
that the bar chart fills the SVG element, but each bar’s height is proportional. It does

this by using scale.linear() to create a linear scale. According to the D3 documen‐
tation, “The mapping is linear in that the output range value y can be expressed as a
linear function of the input domain value x: y = mx + b.”

The domain() function sets the input domain for the scale, while the range() sets the
output range. In the solution, the value given for the domain is zero to the maximum

value in the data set, determined via a call to max(). The value given for the range is zero
to the height of the SVG element. A function is then returned to a variable that will
normalize any data passed to it when called. If the function is given a value equal to the
height of the largest data value, the returned value is equal to the height of the element
(in this case, the largest data value of 100 returns a scaled value of 400).

The last portion of the code is the part that creates the bars. We need something to work

with, so the code calls selectAll() with rect. There aren’t any rect elements in the

SVG block yet, but we’ll be adding them. The data is passed to D3 via the data() method,

and then the enter() function is called. What enter() does is process the data and
returns placeholders for all the missing elements. In the solution, placeholders for all

15 rect elements, one for each bar, are created.

A rect element is then appended to the SVG element with append(), and the attributes

for each are set with attr(). In the solution, the fill and stroke are given, though

these could have been defined in the page’s stylesheet. Following, the postion for the x

attribute, or the lower-left attribute for the bar, is provided as a function, where d is the

current datum (data value) and i is the current index. For the x attribute, the index is

multiplied by the barWidth, plus one (1), to account for spacing.

For the y attribute, we have to get a little tricky. SVG’s point of origin is the top-left

corner, which means increasing values of y go down the chart, not up. To reverse this,

we need to subtract the value of y from the height. However, we can’t just do this directly.
If the code used the datum passed to it directly, then we’d have a proportional chart with
very small, scrunched down bars, as shown in Figure 16-1. Instead we need to use the

newly created scale function, x, passing the datum to it.

472 | Chapter 16: Data Visualizations and Client/Server Graphics

Figure 16-1. Example of a bar chart without each bar’s height normalized to fill the giv‐
en space

The width of each bar is a constant value given in barWidth, and the height is just the
scale function variable, which is equivalent to calling the scale function and passing in
the datum. All of this creates the chart shown in Figure 16-2.

Figure 16-2. Example of a bar chart with each bar’s height normalized to fill the given
space

16.1. Creating an SVG Bar Chart with D3 | 473

Extra: D3 on the Server
The Graphics libraries and tools primarily work in the client, though I do cover gener‐
ating screenshots with PhantomJS in Recipe 16.4, and cropping images in Recipe 16.6.
The reason why most graphics functionality occurs in the client is because the client is
where the the graphics are rendered. You can generate the graphics commands to create
a Canvas image, but the image has to be rendered in the client.

But you can create the instructions to render the graphics on the server, and in the case
of D3, generating the SVG on the server and saving the results to a file, accessible by
several clients. There is a Node wrapper for D3, and that, combined with the xmldom
library as well as the filesystem modules, is all you need, as shown in Example 16-2.

The D3 commands are identical to those in the solution, except that a rect is used as a

background for the bar chart, and the query for the rect elements in the original solution

is replaced by a reference to elements with a class name of #rect. We need to do this so

the new yellow rect element isn’t figured into the solution. It doesn’t matter that there

are no elements with this class, just as it doesn’t matter that no rect exists in the solution.

Then the SVG namespace is added as an attribute to the SVG element. In addition, the

SVG is serialized as XML using the xmldom’s XMLSerializer().serializeTo

String() function. Because the XML elements returned are capitalized and SVG needs

lowercase, the toLowerCase() method is chained at the end. The result is then saved to
a file.

Example 16-2. Generating SVG on the server and persisting the results to a file

var fs = require('fs');
var d3 = require('d3');
var xmldom = require('xmldom');

var data = [56, 99, 14, 12, 46, 33, 22, 100, 87, 6, 55, 44, 27, 28, 34];

var height = 400;
var barWidth = 25;

var x = d3.scale.linear()
 .domain([0, d3.max(data)])
 .range([0, height]);

console.log(x(100)); // returns 400

svg = d3.select("body")
 .append("svg")
 .attr("width", data.length * (barWidth +1))
 .attr("height", height);

svg.append("rect")
 .attr("width", data.length * (barWidth +1))

474 | Chapter 16: Data Visualizations and Client/Server Graphics

 .attr("height", height)
 .attr("z-index", -1)
 .attr("fill", "yellow");

svg.selectAll("#rect")
 .data(data)
 .enter()
 .append("rect")
 .attr("fill","red")
 .attr("stroke","black")
 .attr("x", function(d,i) {
 return i * (barWidth + 1);
 })
 .attr("y", function(d) {
 return height - (x(d));
 })
 .attr("width", barWidth)
 .attr("height", x);

// add the namespace, save to the file

var svgGraph = d3.select('svg')
 .attr('xmlns', 'http://www.w3.org/2000/svg');
var svgXML = (new xmldom.XMLSerializer())
 .serializeToString(svgGraph[0][0]).toLowerCase();

fs.writeFile('chart.svg', svgXML);

With thanks to Rob Ballau for an earlier version of similar code re‐
lated to persisting SVG from Node.

See Also
An excellent tutorial on creating a horizonal bar chart is “Let’s Make a Bar Chart II” by
the creator of D3, Mike Bostock.

D3 isn’t the only data visualization tool or library you can use, but it is a very flexible
and attractive option. CodeGeekz’s “30 Best Tools for Data Visualiation” provides an
excellent selection of data visualiation tools that also includes a reference to D3.

16.1. Creating an SVG Bar Chart with D3 | 475

http://bit.ly/1DZGp5N
http://bost.ocks.org/mike/bar/2/
http://bit.ly/1DZGw13

16.2. Mapping Data Point Variations with a Radar Chart

Problem
You’re interested in creating a radar chart, which is a way of visualizing multivariate or
multiple simultaneous data points. But you don’t want to try to put something like that
together from scratch.

Solution
Use a library like chart.js to create the radar chart.

In Example 16-3, I create a radar chart with seven properties, and three of my favorite
snack recipes. Each recipe is judged along the seven properties, allowing me to compare
all three recipes across all the seven properties at the same time.

Example 16-3. Charting three different recipes using a radar chart created with chart.js

<!DOCTYPE html>
<html>

<head>

 <meta charset="utf-8">
 <title>Radar chart using chart.js</title>
 <script src="Chart.js">
 </script>
</head>

<body>

<canvas id="myChart" width="400" height="400"></canvas>

<script type="text/javascript">
var data = {
 labels: ["Calories","Health","Difficulty","Expense","Taste",
 "Responsible","Time"],
 datasets: [
 {
 label: "Cheddar Cheese Crackers",
 fillColor: "rgba(220,220,220,0.2)",
 strokeColor: "rgba(220,220,220,1)",
 pointColor: "rgba(220,220,220,1)",
 pointStrokeColor: "#fff",
 pointHighlightFill: "#fff",
 pointHighlightStroke: "rgba(220,220,220,1)",
 data: [60, 50, 90, 50, 80, 80, 70]
 },
 {
 label: "Chocolate Chip Cookies",
 fillColor: "rgba(151,187,205,0.2)",
 strokeColor: "rgba(151,187,205,1)",
 pointColor: "rgba(151,187,205,1)",
 pointStrokeColor: "#fff",

476 | Chapter 16: Data Visualizations and Client/Server Graphics

 pointHighlightFill: "#fff",
 pointHighlightStroke: "rgba(151,187,205,1)",
 data: [95, 20, 10, 70, 90, 90, 40]
 },
 {
 label: "Oatmeal Date Cookies",
 fillColor: "rgba(205,205,0,0.2",
 strokeColor: "rgba(151,151,0,1)",
 pointColor: "rgba(151,187,205,1)",
 pointStrokeColor: "#fff",
 pointHighlightFill: "white",
 pointHighlightStroke: "rgba(151,151,0,1)",
 data: [75, 60, 30, 30, 80, 70, 40]
 }
]
};

window.onload=function() {
 var ctx = document.getElementById("myChart").getContext("2d");
 var myRadarChart = new Chart(ctx).Radar(data);
}

</script>

</body>

</html>

You can see the results in Figure 16-3.

Figure 16-3. Three recipes charted in a radar chart

16.2. Mapping Data Point Variations with a Radar Chart | 477

Discussion
Radar charts are interesting. Unlike a bar chart or line graph, we’re less interested in a
side-by-side comparison of different properties or points, and more interested in view‐
ing all at once. In addition, as long as we use transparent overlays in our technology, we
can compare different subjects and easily see how each skews and in what directions.
In Figure 16-3, I can see at a glance that my recipe for Cheddar Cheese Crackers takes
a significant amount of time, and is much more difficult than my two cookie recipes. I
can also see that between the two cookie recipes, the Oatmeal Date trends as a healthier
cookie than the Chocolate Chip cookie.

To create a chart like this from scratch in Canvas is not a trivial task, nor is it a unique
application of skills. If one person needs to create a radar chart, several need to do so,
so it doesn’t make sense for everyone to create the same software for the same purpose,
which is why charting software is so ubiquitous. The software I used in the example,
chart.js, is a top choice because it’s actively maintained, provides sophisticated presen‐
tation, and is relatively simple to use. It’s also extensible, and the documentation includes
instructions in how to extend the library.

See Also
There are many different libraries for building charts and graphs. A good resource for
discovering them is “50 JavaScript Libraries for Charts and Graphs”. In addition, just
searching for “canvas charts” returns a wealth of libraries. The key to discovering the
right library is to ensure the software is being actively maintained and that it provides
what you need with a minimum of additional cruft, the source is hopefully open and
extensible, and whether you have to pay a fee to use the tool.

16.3. Feeding a Scrolling Timeline via WebSocket

Problem
You need to graph changing data to a timeline, but the data is only available on the
server.

Solution
Use a combination of graphics with the real-time, bidirectional communication capa‐
bility of WebSockets.

To demonstrate, the server is quite simple: serving up the primary HTML interface and
a WebSockets server that sends a randomly generated value between 0 and 100 every
three seconds.

478 | Chapter 16: Data Visualizations and Client/Server Graphics

http://bit.ly/1zG5mBP

The number generation exists outside of the communication, so that all WebSockets

clients get the same data. To manage this, we use setInterval(), set to fire every three

seconds to generate the new value. The nodejs-websocket module we’re using keeps
an array of open connections. The code traverses the array and issues an individual

sendText message for each:

var app = require('http').createServer(handler)
 , fs = require('fs');
var ws = require("nodejs-websocket");

app.listen(8124);

// serve static page

function handler (req, res) {
 fs.readFile(__dirname + '/drawline.html',
 function (err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading drawline.html');
 }
 res.writeHead(200);
 res.end(data);
 });
}

function startTimer() {
 setInterval(function() {
 var newval = Math.floor(Math.random() * 100) + 1;
 if (server.connections.length > 0) {
 console.log('sending ' + newval);
 var counter = {counter: newval};
 server.connections.forEach(function(conn, idx) {
 conn.sendText(JSON.stringify(counter), function() {
 console.log('conn sent')
 });
 });
 }
 },1000);
}

// WebSockets connection

var server = ws.createServer(function (conn) {
 console.log('connected');
 conn.on("close", function (code, reason) {
 console.log("Connection closed")
 });
}).listen(8001, function() {
 startTimer(); }
);

16.3. Feeding a Scrolling Timeline via WebSocket | 479

The console.log() calls are so you can follow the application as it handles new clients.
SVG is used for the graphic because we can easily manipulate components within the
graphic, to expand a graphic beyond the element’s viewport, and it’s simple to transform
the line as it goes beyond the right border of the element:

<!doctype html>
<html lang="en">
<head>

 <meta charset="utf-8">
 <title>The Never Ending Line</title>
 <style>
 #timeline {
 border: 1px solid black;
 }
 path {
 fill: none;
 stroke: maroon;
 stroke-width: 1px;
 }
 </style>
 <script type="text/javascript">
 var counter = 0;
 var x = 0;
 var socket = new WebSocket("ws://shelleystoybox.com:8001");
 socket.onmessage = function (event) {
 var val = JSON.parse(event.data);
 var point = parseInt(val.counter);

 // modify path
 var path = document.getElementById('thepath');
 var d = path.getAttribute('d');
 counter+=10;
 d+= 'L' + counter + ' ' + point;
 path.setAttribute('d',d);

 // now see if path needs moving
 if (counter > 600) {
 x = 600 - counter;
 var translate = 'translate(' + x + ',0)';
 path.setAttribute('transform',translate);
 }
 };

</script>

</head>

<body>

<svg id="timeline" width="600px" height="100px">
 <path id="thepath" d="M0 100" />
</svg>

</body>

</html>

480 | Chapter 16: Data Visualizations and Client/Server Graphics

Figure 16-4 shows the scrolling timeline loaded in two Chrome windows at different
times. As the screenshot demonstrates, both windows are operating on the exact same
data.

Figure 16-4. The scrolling timeline loaded into two separate windows at different times

Discussion
SVG is ideal for a scrolling timeline for three reasons:

• We can access the path element directly, as well as its attributes

• We can modify the path element’s path descriptor attribute d and modify it

• We can move the path easily using a transform when the timeline exceeds the
element’s viewport

Each time the client receives data from the server, it parses out the new y timeline value,

calculates a new x value by adding 10 to a running counter, and then adds the new line

to command to the end of the path element’s d attribute. The attribute is then reset with
the newly modified path:

d+= 'L' + counter + ' ' + point;
path.setAttribute('d',d);

16.3. Feeding a Scrolling Timeline via WebSocket | 481

When the counter value exceeds the width of the SVG element (currently at 600 pixels),

the path is moved to the left by setting a negative x value (holding y constant, at zero),

in a translate transform:

x = 600 - counter;
var translate = 'translate(' + x + ',0)';
path.setAttribute('transform',translate);

The translate transformation moves the path. Other transforms can rotate it, scale it,
skew it, or perform a combination of all the operations.

There’s more on the SVG transform in the Mozilla Developer Net‐
work transform page. Be prepared to brush off your matrix mathe‐
matics.

This is the ideal type of graphical process for SVG.

The same applies to WebSockets. It was made for this type of action: communicating
real-time data to the client without the client having to initiate any action other than
just make a connection. And it’s so simple to use, in both the client and server.

Because the example is emulating a real-world data situation, the data each of the Web‐
Sockets clients receives is exactly the same. If two clients are running concurrently, but
one started before the other, once they both hit the 600-pixel mark, their diagrams are
identical. This is what we’d expect when working with real data.

Other tweaks we can make to the timeline are adding tick marks, mouse-over data
feedback, even the ability to resize the SVG element in order to compress the timeline,
or expand it for a clearer view.

See Also
WebSockets are covered in more detail in Recipe 15.5. Recipe 15.7 includes a discussion
about performance and stress testing of the application featured in the solution.

I cover Node timers and the event loop in some detail in Recipe 11.7.

One of my favorite timeline implementations is Weather Underground’s 10-day Forecast
weather timeline. You can see it embedded about halfway down the page in the St. Louis
weather page (or any other weather page). If you mouse over the timeline and inspect
the element using Firebug or another tool, you’ll see that it’s actually using a Canvas
element. The especially neat thing it does is expand the timeline when you go from daily
to hourly results. Give it a try.

482 | Chapter 16: Data Visualizations and Client/Server Graphics

http://mzl.la/1DZIsGS
http://mzl.la/1DZIsGS
http://bit.ly/1DZJX8d
http://bit.ly/1DZJX8d

16.4. Generating Screenshots of Generated Web Page
Content (PhantomJS)

Problem
You want to add functionality to take screenshots of a web page within your JavaScript
application.

Solution
Use a command line, such as PhantomJS, that provides this capability either directly or
via Node interface. The following code will take a screenshot of the O’Reilly main
website:

var phantom = require('phantom');

var pageUrl = "http://oreilly.com";

phantom.create(function (ph) {
 ph.createPage(function (page) {
 page.open(pageUrl, function(status) {
 console.log(status);
 setTimeout(function(){
 page.render('screenshot.png', function(finished){
 console.log('rendering '+pageUrl+' done');
 ph.exit();
 });
 }, 15000);
 });
 });
});

Discussion
PhantomJS utilizes WebKit for all of its functionality. It’s headless, which means it doesn’t
require a graphical user interface. It can be used for testing in combination with a testing
framework, such as Jasmine or Mocha. It can also be used to monitor network traffic,
or automate web page applications. The functionality we’re interested in, though, is its
screen capturing ability. Because PhantomJS is based in WebKit, and WebKit can render
web pages, it’s a simple step to take screenshots with PhantomJS.

You can download the application from the PhantomJS website. Note,
though, that the latest from the site may not work well in all envi‐
ronments, including with a Node application. Another approach is to
use your system’s package installer.

16.4. Generating Screenshots of Generated Web Page Content (PhantomJS) | 483

http://phantomjs.org/

One way to use PhantomJS to generate a screenshot is to create a JavaScript file that
provides the screenshot specification, and then run it using the PhantomJS command-
line application. Here is an example of a screenshot file:

var page = require('webpage').create();
page.open('http://burningbird.net/', function() {
 page.render('bb.png');
 phantom.exit();
});

In the JavaScript, the basic webpage module is imported and the object created. Then

the web page is opened, and when opened, the render() method is called to render the
web page to a file named bb.png. Finally, PhantomJS is exited.

The JavaScript is processed using the PhantomJS command-line tool:

phantomjs screen.js

This is the simplest screenshot, grabbing the entire page and rendering it to a PNG file.
Other supported formats are GIF, JPEG, and PDF; which is used is determined by the

file extension. However, you can also set the format via a render() options object. You
can also specify the quality of the rendered image:

page.render('bb.pdf', {'format': 'PDF', 'quality': 100});

You can also modify how much of the web page is captured. The default is to make the
image large enough to capture all the content in the entire page. Your application can

chage the emulated view of the browser when taking the screenshot via the viewport

Size property. In the following, the viewport is set to 400x800:

page.viewportSize = {
 width: 400,
 height: 800
}

You can also tell PhantomJS to only rasterize a portion of the web page by using the

clipRect property:

page.clipRect={
 top: 100,
 left: 50,
 width: 100,
 height: 100
}

To see the differences these changes can make, Figure 16-5 shows a screenshot of the
O’Reilly website using all the default settings, while Figure 16-6 shows a screenshot with
both the view port and clipping rectangle set to that in the following JavaScript:

var page = require('webpage').create();
page.open('http://oreilly.com', function() {
 page.viewportSize = {

484 | Chapter 16: Data Visualizations and Client/Server Graphics

 width: 800,
 height: 1280
 }
 page.clipRect = {
 top: 50,
 left: 50,
 width: 600,
 height: 600
 }

 page.render('oreilly2.png');
 phantom.exit();
});

Figure 16-5. Screenshot of O’Reilly’s website using default settings

16.4. Generating Screenshots of Generated Web Page Content (PhantomJS) | 485

Figure 16-6. Screenshot of O’Reilly’s website using set view port and clipping rectangle

If you’re saving the rendered image to a PDF, you can control the PDF page size using

the paperSize property in two different ways. You can specify specific dimensions:

page.paperSize = {
 width: '400px',
 height: '500px',
 border: '0px'
}

or specific formats:

page.paperSize = {
 format: 'letter',
 orientation: 'portrait',
 border: '1cm'
}

There are several other PhantomJS options, including command-line options that en‐

able SSL access of the web pages, provide a path for localStorage storage, or use a
proxy. You can also specify these options in a JSON file.

486 | Chapter 16: Data Visualizations and Client/Server Graphics

The PhantomJS webpage module functionality can be accessed at
http://phantomjs.org/api/webpage/. The CLI options are document‐
ed at http://phantomjs.org/api/command-line.html.

You can use PhantomJS as a Node child process the same as you can use ImageMagick
or any other CLI functionality. The npm page for PhantomJS even provides an example
you can modify:

var path = require('path')
var childProcess = require('child_process')
var phantomjs = require('phantomjs')
var binPath = phantomjs.path

var childArgs = [
 path.join(__dirname, 'phantomjs-script.js'),
 'some other argument (passed to phantomjs script)'
]

childProcess.execFile(binPath, childArgs, function(err, stdout, stderr) {
 // handle results
})

This code snippet runs the earlier PhantomJS JavaScript file using this approach:

var path = require('path')
var childProcess = require('child_process')
var phantomjs = require('phantomjs')
var binPath = phantomjs.path

var childArgs = [
 path.join(__dirname, 'phantom.js')
]

childProcess.execFile(binPath, childArgs, function(err, stdout, stderr) {
 console.log('stdout: ' + stdout);
 console.log('stderr: ' + stderr);
 if (err !== null) {
 console.log('exec error: ' + err);
 }
})

Of course, you still have to create the JavaScript file for PhantomJS to process, but you
can also do that in code using Node’s file-writing modules. Or create a generic JavaScript
file and pass arguments to it specifying web page URL, page sizes, formats, etc., and
provide these as child arguments.

There is a PhantomJS-Node bridge module you can install using npm:

npm install phantom

16.4. Generating Screenshots of Generated Web Page Content (PhantomJS) | 487

http://phantomjs.org/api/webpage/
http://phantomjs.org/api/command-line.html

The key to using the bridge is to remember Node’s callback argument structure, and
that all functionality that is a separate function call in the command-line files is depen‐
dent on callbacks in the Node bridge. In addition, you don’t set the properties directly,

you have to use the bridge module’s set() function, which also utilizes a callback func‐
tion. If you’re thinking this could nest rather quickly, you’re right.

The PhantomJS-Node bridge GitHub page provides minimal docu‐
mentation, and the examples are primarily in CoffeeScript. In addi‐
tion, the results may not be as robust as you’d like.

You’ll also need to incorporate a setTimeout() function call, to give enough time for
the web page to fully open before rendering. This is because of the module implemen‐
tation, and isn’t required when using PhantomJS via its CLI. A complete example is
shown in Example 16-4.

Example 16-4. Complete example using PhantomJS-Node bridge module

var phantom = require('phantom');

var pageUrl = "http://oreilly.com";

phantom.create(function (ph) {
 ph.createPage(function (page) {
 page.set('viewportSize', {width:800, height:1200}, function(){
 page.set('clipRect', {top:50,left:50,width:600,height:600}, function(){
 page.open(pageUrl, function(status) {
 if (status == 'success') {
 setTimeout(function(){
 page.render('screenshot.png', function(finished){
 console.log('rendering '+pageUrl+' done');
 ph.exit();
 });
 }, 15000);
 }
 });
 });
 });
 });
});

All in all, I recommend using Node’s child processes and a generic file and passed ar‐
guments, and leave the bridge module for the CoffeeScript fans.

488 | Chapter 16: Data Visualizations and Client/Server Graphics

https://github.com/sgentle/phantomjs-node

16.5. Converting Graphics to Text (Ocrad.js)

Problem
You want to convert graphical text into plain text.

Solution
Optical Character Recognition (OCR) JavaScript support is somewhat limited, but there
are options in both the client and on the server.

In the client, you can use Ocrad.js to convert image data to text:

<script src="ocrad.js" type="text/javascript">
</script>

<script type="text/javascript">

 var img = new Image();
 img.addEventListener("load", function() {
 var context = document.createElement('canvas').getContext('2d');
 context.drawImage(img,0,0);

 var imgdata = context.getImageData(0,0,this.width, this.height);

 try {
 var text = OCRAD(imgdata);

 document.getElementById("result").innerHTML = text;
 } catch(err) {
 console.log(err);
 }
 }, false);

 img.src = 'ocrtest.png';

</script>

In Node, you can use the Tesseract OCR via a module:

var tesseract = require('node-tesseract');
var fs = require('fs');

var myArgs = process.argv.slice(2);

tesseract.process(__dirname + '/' + myArgs[0],function(err, text) {
 if(err) {
 console.log(err);
 } else {
 fs.writeFile(myArgs[1], text, function(err) {
 if(err) {
 console.log(err);
 } else {

16.5. Converting Graphics to Text (Ocrad.js) | 489

 console.log('Converted text stored in ' + myArgs[1]);
 }
 });
 }
});

Run the Node application, passing in the graphical file and the name of the text output
file:

node ocr.js ocr2.png ocr2.txt

Discussion
The client software Ocrad.js is an Emscripten of Ocrad, which is a GNU OCR applica‐
tion. Emscripten is a source-to-source compiler that takes compiled C/C++ and con‐
verts it into JavaScript. The JavaScript version of Ocrad.js works with a Canvas element,
a Context2D instance, or an instance of ImageData. To work with a PNG image, as in
the example, we’ll need to draw the image to a Canvas element and then get the image

data via getImageData(). The best approach is to capture the image’s load event, and
then perform the conversion in the event handler.

The server software makes use of Tesseract OCR (a respected open source OCR software
application) within a Node application. The Node wrapper for the functionality is very
easy to use, as demonstrated in the solution, and the results are generally good. The
application takes two command-line arguments—the name of the graphic file contain‐
ing the text, and the name of a text file to write the results to:

node ocr.js ocrtest.png ocrtest.txt

You can also use Ocrad.js on the server by installing the Ocrad.js Node wrapper, and
the Canvas module:

npm install ocrad.js
npm install canvas

The Ocrad.js GitHub page includes an example for running the software as a Node
application:

var Ocrad = require('ocrad.js');
var Canvas = require('canvas');
var Image = Canvas.Image;
var fs = require('fs');
fs.readFile(__dirname + '/test.png', function(err, src) {
if (err) {
throw err;
}
var img = new Image();
img.src = src;
var canvas = new Canvas(img.width, img.height);
var ctx = canvas.getContext('2d');
ctx.drawImage(img, 0, 0, img.width, img.height);

490 | Chapter 16: Data Visualizations and Client/Server Graphics

console.log(Ocrad(canvas));
});

OCR in JavaScript returns erratic results, at best, so set your expectations accordingly.
Figure 16-7 demonstrates the results we can get when giving the OCR software a scrap
snipped from a court document PDF. Results are best with larger text, with a clean, light
colored background, and sans-serif fonts, such as Ariel. If you search for “OCR test
images”, you can find several good test images you can use when testing your application.

Figure 16-7. Results of running an extract from a PDF file containing a legal document

See Also
Access a demo of Ocrad.js at http://antimatter15.com/ocrad.js/demo.html. You can also
access the Github page from that URL. The Tesserect OCR Node wrapper can be in‐
stalled using npm:

npm install tesseract-ocr

There is also a cloud-based option for OCR, which is intriguing. Read more about it on
the ABBYY Cloud OCR SDK website.

16.6. Cropping (or Otherwise Modifying) Uploaded
Images

Problem
Your application requires the user to upload an image, which is then cropped (or other‐
wise modified), stored on the server, and made available for use in the application.

16.6. Cropping (or Otherwise Modifying) Uploaded Images | 491

http://antimatter15.com/ocrad.js/demo.html
http://ocrsdk.com/

Solution
Use ImageMagick to crop or otherwise modify an uploaded image.

There are some client-side technologies you can use, such as JCrop for cropping images
in the browser, or tricks associated with Canvas (see Recipe 9.7 for an example) for
manipulating images in the client. When you’re planning on persisting the image on
the server, take advantage of some of the powerful tools available on the server. Specif‐
ically, take advantage of ImageMagick.

Example 16-5 displays an application that loads a simple form to upload a photo, uses

the imagemagick Node module that wraps ImageMagick to crop the uploaded image,
and then loads the cropped image in the feeback page.

Example 16-5. Uploading, cropping, and displaying the cropped image thanks to
ImageMagick

var formidable = require('formidable');
var http = require('http');
var fs = require('fs');
var im = require('imagemagick');

http.createServer(function(req, res) {
 if (req.url == '/upload' && req.method.toLowerCase() == 'post') {

 // parse a file upload
 var form = new formidable.IncomingForm();
 form.uploadDir = __dirname + '/photos';
 form.keepExtensions = true;

 form.parse(req, function(err, fields, files) {
 var filepath = __dirname + '/photos/' + files.upload.name;
 fs.rename(files.upload.path, filepath, function(err) {
 if (err) {
 res.end(err);
 return;
 }

 // crop the image
 im.convert([filepath, '-crop', '100x100+50+50',
 __dirname + '/cropped/' + 'cropped.' + files.upload.name],
 function(err, metadata) {
 console.log(err);
 res.end(err);
 return;
 });

 res.writeHead(200, {'content-type': 'text/html'});
 res.write('<p>Uploaded and cropped:</p>');
 res.end('');
 });

492 | Chapter 16: Data Visualizations and Client/Server Graphics

 });

 // display cropped image
 } else if (req.url.indexOf('/cropped') >= 0) {
 var path = require('url').parse(req.url).path;
 fs.readFile(__dirname + path,
 function (err, data) {
 if (err) {
 res.writeHead(500);
 return res.end(req.url);
 }
 res.writeHead(200);
 res.end(data);
 });
 } else {
 // show a file upload form
 res.writeHead(200, {'content-type': 'text/html'});
 res.end(
 '<form action="/upload" enctype="multipart/form-data" method="post">'+
 'Image: <input type="file" name="upload" multiple="multiple">

'+
 '<input type="submit" value="Upload">'+
 '</form>'
);
 }
}).listen(8080);

Discussion
ImageMagick is a well-known command-line tool to perform an amazing number of
operations on images. It supports a small set of basic commands, but the ones that are

most commonly used are convert and identify.

The identify command extracts metadata about the image, while convert is the tool
that does most of the transformations on the image. Both are accessible as functions by

the imagemagick module, installed with:

npm install imagemagick

The imagemagick module also does a crop, but it uses a resize rather than an actual crop.

In the solution, I used the general convert method, and then specified the -crop option.

The crop isn’t too exciting but does demonstrate the use of ImageMagic in Node. How‐
ever, you don’t have to stay with crop, or with using a library, either. You can also use a
child process to run an ImageMagick command. One of my favorites is the following,
which creates a Polaroid-like effect of whatever image is passed to the application:

var spawn = require('child_process').spawn;

// get photo

var photo = process.argv[2];

16.6. Cropping (or Otherwise Modifying) Uploaded Images | 493

// conversion array

var opts = [
photo,
"-bordercolor", "snow",
"-border", "20",
"-background","grey60",
"-background", "none",
"-rotate", "6",
"-background", "black",
"(", "+clone", "-shadow", "60x4+4+4", ")",
"+swap",
"-background", "none",
"-flatten",
photo + ".png"];

var im = spawn('convert', opts);

To convert the photo, run the following command:

node polaroid bee2.jpg

The result is displayed in Figure 16-8.

Figure 16-8. Photo converted into Polaroid-like effect via Node and ImageMagick

Working with ImageMagick from a Node application is a snap. It’s keeping track of all
those command-line arguments to create an effect that’s hard.

494 | Chapter 16: Data Visualizations and Client/Server Graphics

CHAPTER 17

Data and Persistence

We can animate and interact, stream, play, and render, but we always come back to the
data. Data is the foundation on which we build the majority of our JavaScript applica‐
tions. In Chapter 14, we split data from the view, but in Chapter 16, we twisted them
tightly back together again. In Chapter 15, we sent data back and forth between client
and server, and in Chapter 13, we manipulated data using a host of APIs. Data and
JavaScript, friends forever.

In this chapter, we’re going to look at ways we can persist both data and state using
JavaScript in the client, and on the server. We’re also going to take a quick look at
validating data before we store it.

17.1. Validating Form Data

Problem
Your web application gathers data from the users using HTML forms. Before you send
that data to the server, though, you want to make sure it’s well formed, complete, and
valid. But you’d really prefer not to have to write code to test the data yourself.

Solution
Form validation is a perfect opportunity to introduce an external library. For a given
form, such as the following:

 <form name="example" action="" method="post">
 <fieldset>
 <legend>Example</legend>
 <div>
 <label for="name">Name (required):</label>
 <input type="text" id="name" name="name" value="" />
 </div>

495

 <div>
 <label for="email">Email (required):</label>
 <input type="text" id="email" name="email" value="">
 </div>
 <div>
 <label>Website:</label>
 <input type="text" id="url" name="url" value="">
 </div>

 <div>
 <label>Credit Card:</label>
 <input type="text" id="cc-card" name="cc-card" value="">
 </div>
 <div>
 <label>Expires:</label>
 <input type="text" id="expires" name="expires" value="">
 </div>
 <div>
 <label>CVS:</label>
 <input type="text" id="cvs" name="cvs" value="">
 </div>

 <div>
 <input type="submit" value="Submit">
 </div>
 </fieldset>
</form>

You can use a standalone library, such as Validate.js:

<script type="text/javascript">
 var validator = new FormValidator('example', [{
 name: 'name',
 display: 'Name',
 rules: 'required|min_length[10]'
 },
 {
 name: 'email',
 display: 'Email',
 rules: 'required|valid_email'
 },
 {
 name: 'url',
 display: 'Website URL',
 rules: 'valid_url'
 },
 {
 name: 'cc-card',
 display: 'Credit Card',
 rules: 'valid_credit_card'
 }], function (errors, event) {
 if (errors.length > 0) {
 alert(errors.length);

496 | Chapter 17: Data and Persistence

 var msg = "";
 errors.forEach(function(elem,indx,arry) {
 msg+=elem.message + '
';
 });
 document.getElementById("results").innerHTML=msg;
 }
});
</script>

Or use a jQuery dependent solution, such as the jQuery Validation Engine plugin:

 <form id="example" name="example" action="" method="post">
 <fieldset>
 <legend>Example</legend>
 <div class="fld">
 <label for="name">Name (required):</label>
 <input type="text" id="name" name="name"
 class="validate[required]"
 data-errormessage-value-missing="Name is required"
 value="" />
 </div>
 <div class="fld">
 <label for="email">Email (required):</label>
 <input type="text" id="email" name="email"
 class="validate[required,custom[email]]"
 data-errormessage-value-missing="Email is required"
 data-errormessage-custom-error="Format: name@service.com"
 value="" />
 </div>
 <div class="fld">
 <label>Website:</label>
 <input type="text" id="url" name="url"
 class="validate[custom[url]]"
 data-errormessage-custom-error="Web URL"
 value="">
 </div>

 <div class="fld">
 <label>Credit Card:</label>
 <input type="text" id="cc-card" name="cc-card"
 class="validate[creditCard]"
 data-errormessage-pattern-mismatch="CC format is incorrect"
 value="">
 </div>
 <div class="fld">
 <label>Expires:</label>
 <input type="text" id="expires" name="expires" value="">
 </div>
 <div class="fld">
 <label>CVS:</label>
 <input type="text" id="cvs" name="cvs" value="">
 </div>

17.1. Validating Form Data | 497

 <div class="fld">
 <input type="submit" value="Submit">
 </div>
 </fieldset>
</form>

Include the libraries and stylesheet:

<link rel="stylesheet" href="css/validationEngine.jquery.css" />
<script src="//code.jquery.com/jquery-2.1.1.js"></script>
<script src="js/languages/jquery.validationEngine-en.js"></script>
<script src="js/jquery.validationEngine.js"></script>

And instantiate the validation engine:

<script>

$(document).ready(function(){
 $("#example").validationEngine();
 });
</script>

Discussion
By now, we should not be writing our own forms validation routines. Not unless we’re
dealing with some really bizarre form behavior and/or data. And by bizarre, I mean so
far outside the ordinary that trying to incorporate a JavaScript library would actually
be harder than doing it ourselves—a “the form field value must be a string except on
Thursdays, when it must be a number—but reverse that in even months” type of
validation.

You have a lot of options for libraries, and I’ve only demonstrated a couple. The Vali‐
date.js library is a nice, simple, easy-to-use library that provides validation for most
form types and in most circumstances. It doesn’t require that you modify the form fields,
either, which means it’s easier to just drop it in, instead of reworking the form. Any and
all styling and placement of error messages is developer dependent, too. In

Figure 17-1, I used minimal CSS styling and just placed the error messages in a div
element placed before the form.

498 | Chapter 17: Data and Persistence

Figure 17-1. Form validated with the Validate.js library

In the solution, the code creates a new FormValidator object, passing in the name of
the form, an array of field/rule combinations, and a callback function that accepts an
errors object as parameter. The example uses basic validation: it checks for required

fields (name and email) and whether the formatting is correct for some others (email,

url, and cc-card). In the callback, the error messages for each of the error objects is

extracted and used to create a string that’s published to the div element. I didn’t take
advantage of some of the more sophisticated form validation, including the ability to
code in depedencies for a field, so my bizarre data validation scenario wouldn’t fail with
Validate.js—so no excuse on not using a form validation library.

If you’re incorporating jQuery, you can use the jQuery Validation Engine, which has an
added benefit of localization as well as nicely integrated graphics, as shown in
Figure 17-2.

17.1. Validating Form Data | 499

Figure 17-2. Form validated with jQuery Validation Engine plugin

The jQuery Validation Engine does make use of the class attribute to code in the val‐
idation rules and requirements, and the actual script is a simple instantiation of the
process, as demonstrated in the solution. A new version that’s still in development will

replace the use of class with the more appropriate data- custom attributes. The data-
attributes used in the solution contain the specialized error messages displayed for each
field, and for each type of error. The jQuery Validation Engine supports several.

Read about and download the jQuery Validation Engine plugin at
http://posabsolute.github.io/jQuery-Validation-Engine/. Validate.js is
available at http://rickharrison.github.io/validate.js/.

You don’t have use a plugin to work with jQuery and forms valida‐
tion. Another popular validation library is Parsley, which requires
jQuery, but isn’t a plugin.

Sometimes you need a smaller library specifically for one type of data validation. Credit
cards are tricky things, and though you can ensure a correct format, the values contained
in them must meet specific rules in order to be considered valid credit card submissions.

In addition to the other validation libraries, you can also incorporate a credit card val‐
idation library, such as jQuery.payment, which provides a very simple validation API.
As an example, specify that a field is a credit card number after the form loads:

$('input.cc-card').payment('formatCardNumber');

500 | Chapter 17: Data and Persistence

http://posabsolute.github.io/jQuery-Validation-Engine/
http://rickharrison.github.io/validate.js/
http://parsleyjs.org/
https://github.com/stripe/jquery.payment

And then when the form is submitted, validate the credit card number:

var valid = $.payment.validateCardNumber($('input.cc-card').val());

if (!valid) {
 message.innerHTML="You entered an invalid credit card number";
 return false;
}

The library doesn’t just check format; it also ensures that the value meets a valid card
number for all of the major card companies.

Lastly, you can pair client and server validation, using the same library, or different ones.
One library, Validator.js, can be used in the client:

<script src="validator.min.js"></script>

or installed using npm:

npm install validator

Because it is a dual validation tool, it doesn’t intercept the form submission. Instead, it
provides a set of APIs that can be called to validate form fields:

validator.isEmail(formfield_value); // true if valid email

The advantage to the tool is you can validate fields in both the client and server using
the exact same software. In addition, it gives you more finite control over when the
validation happens, and what kind of message is displayed. Of course, this means more
work for you, but nowhere near the amount you’d have to do if you had to manage every
last aspect of the form validation.

Extra: What About HTML5 Forms Validation Techniques?
In “Extra: Why Not Just Use HTML5 and CSS3 for Managing Visual Effects?” on page
175 I gave some reasons why we can’t rely totally on HTML5 and CSS3 to provide
specialized visual effects. So, how about using the built-in HTML5 forms validation
techniques?

I like the HTML5 forms validation techniques, and the fact that you don’t have to code
anything. However, as in “Extra: Why Not Just Use HTML5 and CSS3 for Managing
Visual Effects?” on page 175, you have the same issues with form validation that you do
with any of the other declarative capabilities: you don’t have finite control over when
events occur, and you don’t have control over the appearance of the feedback.

However, work is underway on a new specification, the CSS Basic User Interface Module
Level 3, which does give us more visual control over some of the declarative function‐
ality. But the control is still finite, the specification is still undergoing work, and the
support is sketchy.

17.1. Validating Form Data | 501

http://dev.w3.org/csswg/css-ui/
http://dev.w3.org/csswg/css-ui/

So the rules still apply: if you need finite control over the appearance and behavior of
form validation, you’re better off using a JavaScript library than depending on the
HTML5 and CSS forms validation specifications. If you do, though, make sure to in‐
corporate accessibility features into your forms. I recommend reading WebAIM’s “Cre‐
ating Accessible Forms”.

See Also
Validator is one of the Node modules most starred (favorited) in the npm registry. All
of the Node modules in this chapter, and used elsewhere in the book, appear in this list.
If you’re working with Node, you should check out as many in the first page of the list
as possible. Like Validator, several in the list work equally well in the client, as in the
server.

17.2. Persisting Information Using HTML5

Problem
You’ve looked at all the ways of handling the back button and controlling page state for
an Ajax application, and you’re saying to yourself, “There has to be a better way.”

Solution
There is a better way—a much better way: using HTML5’s history.pushState and

history.replaceState methods to persist a state object, and the window.onpope

vent to restore the page state:

window.history.pushState({ page : page}, "Page " + page, "?page=" + page);
 ...

window.onpopstate = function(event) {
 // check for event.state, if found, reload state
 if (!event.state) return;
 var page = event.state.page;
}

Discussion
To address the significant problems Ajax developers have had with trying to persist state

through back button events or page reloads, HTML5 includes new history object

methods, pushState and replaceState, to persist state information, and an associated

window.onpopevent that can be used to restore the page state.

A popular approach to maintaining history in the past was to store the data in the page
URL hash, which updates the page history and can be pulled via JavaScript:

502 | Chapter 17: Data and Persistence

http://webaim.org/techniques/forms/
http://webaim.org/techniques/forms/
https://www.npmjs.org/browse/star

http://somecompany.com/example.html#first

The problem with this approach is that if you hit the back button, the URL with the
hash shows in the location bar, but no event is triggered so you can grab the data and
restore the page. The workaround was to use a timer to check for the new hash and then
restore the page if a new hash was found. Not an attractive solution, and one most of
us decided just wasn’t worth trying.

Now, you can easily store any object that can be passed to JSON.stringify. Since the
data is stored locally, the early implementor, Firefox, limits the size of the JSON repre‐
sentation to 640k. However, unless you’re recording the state of every pixel in the page,
640k should be more than sufficient.

In Example 17-1, the stored state object is extremely simple: a page property and its

associated value. The history.pushState also takes a title parameter, which is used
for the session history entry, and a URL. For the example, I appended a query string
representing the page. The following is displayed in the location bar:

http://somecom.com/pushstate.html?page=three

The history.replaceState method takes the same parameters, but modifies the cur‐
rent history entry instead of creating a new one.

Example 17-1. Using history.pushState and history.replaceState to enable back button
support

<!DOCTYPE html>
<head>

 <title>Remember me--new, and improved!</title>
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
</head>

<body>

 <button id="next" data-page="zero">Next Action</button>
 <div id="square" class="zero">
 <p>This is the object</p>
 </div>

 <script type="text/javascript">
 document.getElementById("next").onclick=nextPanel;

 window.onpopstate = function(event) {

 // check for event.state, if found, reload state
 if (!event.state) return;
 var page = event.state.page;
 switch (page) {
 case "one" :
 functionOne();
 break;
 case "two" :
 functionOne();

17.2. Persisting Information Using HTML5 | 503

 functionTwo();
 break;
 case "three" :
 functionOne();
 functionTwo();
 functionThree();
 }
 }

 // display next panel, based on button's class
 function nextPanel() {
 var page = document.getElementById("next").getAttribute("data-page");
 switch(page) {
 case "zero" :
 functionOne();
 break;
 case "one" :
 functionTwo();
 break;
 case "two" :
 functionThree();
 }
 }

 // set both the button class, and create the state link, add to page
 function setPage(page) {
 document.getElementById("next").setAttribute("data-page",page);
 window.history.pushState({ page : page}, "Page " + page,
 "?page=" + page);
 }

 // function one, two, three - change div, set button and link
 function functionOne() {
 var square = document.getElementById("square");
 square.style.position="relative";
 square.style.left="0";
 square.style.backgroundColor="#ff0000";
 square.style.width="200px";
 square.style.height="200px";
 square.style.padding="10px";
 square.style.margin="20px";
 setPage("one");
 }

 function functionTwo() {
 var square = document.getElementById("square");
 square.style.backgroundColor="#ffff00";
 square.style.position="absolute";
 square.style.left="200px";
 setPage("two");
 }

504 | Chapter 17: Data and Persistence

 function functionThree() {
 var square = document.getElementById("square");
 square.style.width="400px";
 square.style.height="400px";
 square.style.backgroundColor="#00ff00";
 square.style.left="400px";
 setPage("three");
 }
 </script>
</body>

When using the browser back button to traverse through the created history entries, or

when hitting the page reload, a window.onpopstate event is fired. This is really the truly
important component in this new functionality, and is the event we’ve needed for years.

In order to restore the web page to the stored state, we create a window.onpopstate
event handler function, accessing the state object from the event passed to the window
handler function:

window.onpopstate = function(event) {
 // check for event.state, if found, reload state
 if (!event.state) return;
 var page = event.state.page;
 ...
 }

In the example, when you click the button three times to get to the third page, reload

the page, or hit the back button, the window.onpopstate event handler fires—perfect
time to get the state data, and repair the page.

17.3. Using sessionStorage for Client-Side Storage

Problem
You want to easily store session information without running into the size and cross-
page contamination problems associated with cookies, and prevent loss of information
if the browser is refreshed.

Solution
Use the new DOM Storage sessionStorage functionality:

sessionStorage.setItem("name", "Shelley");
sessionStorage.city="St. Louis";
...
var name = sessionStorage,getItem("name");
var city = sessionStorage.city;
...
sessionStorage.removeItem("name");
sessionStorage.clear();

17.3. Using sessionStorage for Client-Side Storage | 505

Discussion
One of the constraints with cookies is they are domain/subdomain-specific, not page-
specific. Most of the time, this isn’t a problem. However, there are times when such
domain specificity isn’t sufficient.

For instance, say a shopper has two browser tabs open to the same retail site and adds
a few items to the shopping cart in one tab. In that tab, the shopper clicks a button to
add an item because the page tells the shopper to add the item to the cart in order to
see the price. The shopper does, but decides against buying the item and closes the tab
page, thinking that action is enough to ensure the item isn’t in the cart. The shopper
then clicks the check-out option in the other opened tag, assuming that the only items
currently in the cart are the ones that were added in that browser page.

If the user isn’t paying attention, she may not notice that the cookie-based shopping cart
has been updated from both pages, and she’ll end up buying something she didn’t want.

Although many web users are savvy enough to not make this mistake, there are many
who aren’t—they assume that persistence is browser page–specific, not necessarily

domain-specific. With sessionStorage (to paraphrase the famous quote about Las Ve‐
gas), what happens in the page, stays in the page.

As an example of the differences between the cookies and the newer storage option,

Example 17-2 stores information from a form in both a cookie and sessionStorage.
Clicking the button to get the data gets whatever is stored for the key in both, and displays

it in the page: the sessionStorage data in the first block, the cookie data in the second.
The remove button erases whatever exists in both.

Example 17-2. Comparing sessionStorage and cookies

<!DOCTYPE html>
<html dir="ltr" lang="en-US">
<head>

 <title>Comparing Cookies and sessionStorage</title>
 <meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
 <style>
 div
 {
 margin: 10px;
 }

 #sessionstr, #cookiestr
 {
 width: 100px;
 background-color: yellow;
 padding: 5px;
 }
 </style>
 <script src="cookie.js"></script>

506 | Chapter 17: Data and Persistence

 <script src="app.js"></script>
</head>

<body>

 <form>
 <div>
 <label for="key"> Enter key:</label>
 <input type="text" id="key" />
 </div>
 <div>
 <label for="value">Enter value:</label>
 <input type="text" id="value" />
 </div>
 </form>
 <button id="set">Set data</button>
 <button id="get">Get data</button>
 <button id="erase">Erase data</button>
 <p>Session:</p>
 <div id="sessionstr"></div>
 <p>Cookie:</p>
 <div id="cookiestr"></div>

 <script>

 document.getElementById("set").onclick=setData;
 document.getElementById("get").onclick=getData;
 document.getElementById("erase").onclick=removeData;

</script>

</body>

The cookies.js file contains the code necessary to set, retrieve, and erase a given cookie:

// set session cookie

function setCookie(cookie,value) {
 var cookieVal=cookie + "=" +
 encodeURIComponent(value) + ";path=/";
 document.cookie=cookieVal;
 console.log(cookieVal);
 }

// each cookie separated by semicolon;

function getCookie(key) {
 key = key.replace(/([.*+?^=!:${}()|[\]\/\\])/g, '\\$1');
 var cookie = document.cookie;
 var regex = new RegExp('(?:^|;)\\s?' + key + '=(.*?)(?:;|$)','i');
 var match = cookie.match(regex);

 return match && decodeURIComponent(match[1]);
}

// set cookie date to the past to erase

function eraseCookie (key) {

17.3. Using sessionStorage for Client-Side Storage | 507

 var cookie = key +
 '=;path=/; expires=Thu, 01 Jan 1970 00:00:00 UTC';
 document.cookie = cookie;
 console.log(cookie);
}

And the app.js file contains the rest of the program functionality. No separate JavaScript

file is necessary for working with the sessionStorage object—another major difference
from cookies:

// set data for both session and cookie

function setData() {
 var key = document.getElementById("key").value;
 var value = document.getElementById("value").value;

 // set sessionStorage
 var current = sessionStorage.getItem(key);
 if (current) {
 current+=" " + value;
 } else {
 current=value;
 }

 sessionStorage.setItem(key,current);

 // set cookie
 current = getCookie(key);
 if (current) {
 current+=" " + value;
 } else {
 current=value;
 }
 setCookie(key,current);
}

function getData() {
 try {
 var key = document.getElementById("key").value;
 var session = document.getElementById("sessionstr");
 var cookie = document.getElementById("cookiestr");

 // reset display
 session.innerHTML = cookie.innerHTML = "";

 // sessionStorage
 var value = sessionStorage.getItem(key) || "";
 if (value)
 session.innerHTML="<p>" + value + "</p>";

 // cookie
 value = getCookie(key) || "";
 if (value)

508 | Chapter 17: Data and Persistence

 cookie.innerHTML="<p>" + value + "</p>";
 } catch(e) {
 console(e);
 }
 }

 function removeData() {
 var key = document.getElementById("key").value;

 // sessionStorage
 sessionStorage.removeItem(key);

 // cookie
 eraseCookie(key);
 }

You can get and set the data from sessionStorage accessing it directly, as demonstrated

in the solution, but a better approach is to use the getItem() and setItem() functions.

Load the example page, add one or more values for the same key, and then click the
“Get data” button. The result is displayed in Figure 17-3. No surprises here. The data

has been stored in cookies and sessionStorage. Now, open the same page in a new tab
window, and click the “Get data” button. The activity results in a page like that shown
in Figure 17-4.

Figure 17-3. Displaying stored sessionStorage and cookie data in original tab

17.3. Using sessionStorage for Client-Side Storage | 509

Figure 17-4. Displaying stored sessionStorage and cookie data in second tab

In the new tab window, the cookie value persists because the cookie is session-specific,
which means it lasts until you close the browser. The cookie lives beyond the first tab,

but the sessionStorage, which is specific to the tab window, does not.

Now, in the new tab, add a couple more items to the key value, and click the “Get data”

button. You’ll see the new items added to both sessionStorage and the cookie. Return
to the original tab window and click the “Get data” button. As you can see in
Figure 17-5, the items added in the second tab are showing with the cookie, but not the

sessionStorage item.

510 | Chapter 17: Data and Persistence

Figure 17-5. Returning to the original tab window and clicking “Get data” with A100
key

Lastly, in the original tab window, click the “Erase data” button. Figure 17-6 shows the
results of clicking “Get data” on the original window, while Figure 17-7 shows the results
when clicking “Get data” in the second tab window. Again, note the disparities between

the cookie and sessionStorage.The first tab shows all of the data is gone for both cookie

and sessionStorage, while the second tab still shows data in sessionStorage.

17.3. Using sessionStorage for Client-Side Storage | 511

Figure 17-6. After clicking the “Erase data” button in the original tab window, and
then clicking “Get data”

Figure 17-7. Clicking “Get data” in the second window, after erasing data in the first

512 | Chapter 17: Data and Persistence

The screenshots graphically demonstrate the differences between sessionStorage and
cookies, aside from how they’re set and accessed in JavaScript. Hopefully, the images

and the example also demonstrate the potential hazards involved when using session

Storage, especially in circumstances where cookies have normally been used.

If your website or application users are familiar with the cookie persistence across tabbed

windows, sessionStorage can be an unpleasant surprise. Along with the different be‐
havior, there’s also the fact that browser menu options to delete cookies probably won’t

have an impact on sessionStorage, which could also be an unwelcome surprise for

your users. On the other hand, sessionStorage is incredibly clean to use, and provides
a welcome storage option when we want to link storage to a specific tab window only.

One last note on sessionStorage related to its implementation: both sessionStor

age and localStorage, covered in the next recipe, are part of the W3C DOM Storage

specification. Both are window object properties, which means they can be accessed

globally. Both are implementations of the Storage object, and changes to the proto

type for Storage result in changes to both the sessionStorage and localStorage
objects:

Storage.prototype.someMethod = function (param) { ...};
...
localStorage.someMethod(param);
...
sessionStorage.someMethod(param);

Aside from the differences, covered in this recipe and the next, another major difference

is that the Storage objects don’t make a round trip to the server—they’re purely client-
side storage techniques.

See Also
For more information on the Storage object, sessionStorage, localStorage, or the
Storage DOM, consult the specification. See Recipe 17.4 for a different look at how

sessionStorage and localStorage can be set and retrieved.

17.4. Creating a localStorage Client-Side Data
Storage Item

Problem
You want to shadow form element entries (or any data) in such a way that users can
continue where they left off if the browser crashes, the user accidentally closes the
browser, or the Internet connection is lost.

17.4. Creating a localStorage Client-Side Data Storage Item | 513

http://dev.w3.org/html5/webstorage/

Solution
You could use cookies if the data is small enough, but that strategy doesn’t work in an
offline situation. Another, better approach, especially when you’re persisting larger
amounts of data or if you have to support functionality when no Internet connection is

present, is to use localStorage:

var value = document.getElementById("formelem").value;
If (value) {
 localStorage.formelem = value;
}
...
// recover

var value = localStorage.formelem;
document.getElementById("formelem").value = value;

Discussion
Recipe 17.3 covered sessionStorage, one of the DOM Storage techniques. The local

Storage object interface is the same, with the same approaches to setting the data:

// use item methods

sessionStorage.setItem("key","value");
localStorage.setItem("key","value");

// use property names directly

sessionStorage.keyName = "value:
localStorage.keyName = "value";

// use the key method
sessionStorage.key(0) = "value";
localStorage.key(0) = "value:

and for getting the data:

// use item methods

value = sessionStorage.getItem("key");
value = localStorage.getItem("key");

// use property names directly

value = sessionStorage.keyName:
value = localStorage.keyName;

// use the key method

value = sessionStorage.key(0);
value = localStorage.key(0):

Again, as with sessionStorage, though you can access and set data on localStorage

directly, you should use getItem() and setItem(), instead.

514 | Chapter 17: Data and Persistence

Both of the storage objects support the length property, which provides a count of

stored item pairs, and the clear method (no parameters), which clears out all

Storage. In addition, both are scoped to the HTML5 origin, which means that the data

storage is shared across all pages in a domain, but not across protocols (e.g., http is not

the same as https) or ports.

The difference between the two is how long data is stored. The sessionStorage object

only stores data for the session, but the localStorage object stores data on the client
forever, or until specifically removed.

The sessionStorage and localStorage objects also support one event: the storage
event. This is an interesting event, in that it fires on all pages when changes are made

to a localStorage item. It is also an area of low-compatibility among browsers: you

can capture the event on the body or document elements for Firefox, on the body for IE,

or on the document for Safari.

Example 17-3 demonstrates a more comprehensive implementation than the use case
covered in the solution for this recipe. In the example, all elements of a small form have

their onchange event handler method assigned to a function that captures the change

element name and value, and stores the values in the local storage via localStorage.
When the form is submitted, all of the stored form data is cleared.

When the page is loaded, the form elements onchange event handler is assigned to the
function to store the values, and if the value is already stored, it is restored to the form
element. To test the application, enter data into a couple of the form fields—but, before

clicking the Submit button, refresh the page. Without localStorage, you’d lose the data.
Now, when you reload the page, the form is restored to the state it was in before the
page was reloaded.

Example 17-3. Using localStorage to back up form entries in case of page reload or
browser crash

<!DOCTYPE html>
<html dir="ltr" lang="en-US">
<head>

<title>localstore</title>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
<style>

div

{
 margin: 10px;
}
</style>

<script>

 window.onload=function() {
 var elems = document.getElementsByTagName("input");

 // capture submit to clear storage

17.4. Creating a localStorage Client-Side Data Storage Item | 515

 document.getElementById("inputform").onsubmit=clearStored;

 for (var i = 0; i < elems.length; i++) {

 if (elems[i].type == "text") {

 // restore
 var value = localStorage.getItem(elems[i].id);
 if (value) elems[i].value = value;

 // change event
 elems[i].onchange=processField;
 }
 }
 }

 // store field values
 function processField() {
 localStorage.setItem(window.location.href,"true");
 localStorage.setItem(this.id, this.value);
 }

 // clear individual fields
 function clearStored() {
 var elems = document.getElementsByTagName("input");
 for (var i = 0; i < elems.length; i++) {

 if (elems[i].type == "text") {
 localStorage.removeItem(elems[i].id);
 }
 }
 }

</script>

</head>

<body>

 <form id="inputform">
 <div>
 <label for="field1">Enter field1:</label>
 <input type="text" id="field1" />
 </div>
 <div>
 <label for="field2">Enter field2:</label>
 <input type="text" id="field2" />
 </div>
 <div>
 <label for="field3">Enter field1:</label>
 <input type="text" id="field3" />
 </div>
 <div>
 <label for="field4">Enter field1:</label>
 <input type="text" id="field4" />

516 | Chapter 17: Data and Persistence

 </div>
 <input type="submit" value="Save" />
</body>

The size allotted for localStorage varies by browser, and some browsers, such as Fire‐

fox, allow users to extend the Storage object limits.

The localStorage object can be used for offline work. For the form example, you can

store the data in the localStorage and provide a button to click when connected to the

Internet, in order to sync the data from localStorage to server-side storage.

See Also
See Recipe 17.3 for more on the Storage object, and on sessionStorage and local

Storage.

17.5. Using Squel.js to Query a MySQL Database

Problem
Your application uses a relational database, and you need to construct SQL to access it.

Solution
Use Squel.js to build your SQL statements. The following Node application uses Squel.js
and the node-mysql module to access a MySQL database:

var mysql = require('mysql');
var squel = require('squel');

var connection = mysql.createConnection({
 host: 'localhost',
 user: 'username',
 password: 'password',
 database: 'dbname'
});

connection.connect();
var s = squel.select()
 .field('bTitle')
 .from('sc_tags')
 .from('sc_bookmarks')
 .where("sc_tags.tag = 'xhtml'")
 .where("sc_bookmarks.bId = sc_tags.bId");

console.log(s.toString());

connection.query(s.toString(), function(err, rows, fields) {

17.5. Using Squel.js to Query a MySQL Database | 517

 if (err) throw err;

 rows.forEach(function(elem, indx, arr) {
 console.log(elem.bTitle);
 });

 connection.end();
});

Discussion
Squel.js can be used in a client, but as the library developers note, you don’t really want
to send pre-formed SQL from the client to the server. It’s too easy for SQL injection
attacks to happen when you send SQL to the server.

Instead, we can use it in Node applications, and quite simply too. Although relational
databases aren’t as popular in Node applications as MongoDB or Redis, the node-mysql
module does provide basic MySQL functionality, and Squel.js helps simplify the SQL
formation.

In the solution, Squel.js performs a query on two tables, where rows with a tag name of

xhtml in one table, sc_tags, is used to find identifiers, which are then used to query a

second table, sc_bookmarks. The field we’re interested in is bTitle.

The toString() function returns the formed SQL from Squel.js. In the example, the
result is:

SELECT bTitle FROM sc_tags, sc_bookmarks WHERE (sc_tags.tag = 'xhtml')
AND (sc_bookmarks.bId = sc_tags.bId)

Squel.js supports a wide variety of SQL operations, including the basic CRUD (Create,
Read, Update, and Delete), as well as many variations of queries: filters, subqueries,
joins, and expressions. The queries can be manually created, but Squel.js provides
cleaner, easier to read and maintain results.

As for node-mysql, it can also support basic CRUD, sophisticated queries, connection
pooling, and basic transactions—all of the functionality you’ll typically need with a
relational database.

See Also
Access Squel.js at its main web page, and install it for Node using the following:

npm install squel

The node-mysql module can be installed with:

npm install mysql

Read more about it at https://github.com/felixge/node-mysql.

518 | Chapter 17: Data and Persistence

http://hiddentao.github.io/squel/
https://github.com/felixge/node-mysql

Another database option is MongoDB, demonstrated in Recipe 14.2.

Extra: Avoiding SQL Injection Attacks
The primary vulnerability to using a relational database is SQL injection attacks. They
happen when a user is able to hand type in a query value, and he adds a little extra text
to get more data than you want. For instance, if you ask for a username for the following
query:

"select * from users where username = '" + username;

Instead of providing a username, he can provide the following:

shelleyp'; drop table users

Leading to the following SQL:

"select * from users where username = 'shelleyp'; drop table users"

To prevent SQL injections, values directly provided by the user are escaped, and node-
mysql provides this capability. Depending on how you’re connected, you can use either

pool.escape() or connection.escape() to do this functionality:

var sql = 'SELECT * FROM users WHERE id = ' + connection.escape(userId);

You can also defend against SQL injection using SQL parameters, in the form like the
following:

connection.query('SELECT * FROM users WHERE id = ?',
 [userId], function(err, results) {
 // ...
});

Unfortunately, this structure does prevent using Squel.js, though the latter library does
provide its own parameterized query:

console.log(JSON.stringify(
 squel.select()
 .from("users")
 .where("id = ?", 3)
 .toParam()
));

Resulting in the following output:

{"text":"SELECT * FROM users WHERE (id = ?)","values":[3]}

You’ll have to map this object to what node-mysql requires, so it may not be as useful.

17.5. Using Squel.js to Query a MySQL Database | 519

17.6. Persisting Larger Chunks of Data on the Client Using
IndexedDB

Problem
You need more sophisticated data storage on the client than what’s provided with other

persistent storage methods, such as localStorage.

Solution
If your users are using newer browser versions, you can use IndexedDB.

The web page in Example 17-4 uses IndexedDB to create a database and a data object.
Once created, it adds data and then retrieves the first object. A more detailed description
of what’s happening is in the discussion.

Example 17-4. Example of using IndexedDB to create a datastore, add data, and then
retreive a data object

<!DOCTYPE html>
<html>

<head>

 <meta charset="utf-8">
 <title>IndexedDB</title>
</head>

<body>

<script>

 var data = [{name: "Joe Brown",age: 53, experience: 5},
 {name: "Cindy Johnson", age: 44, experience: 5},
 {name: "Some Reader", age: 30, experience: 1}];

 var delreq = indexedDB.deleteDatabase("Cookbook");

 delreq.onerror = function(event) {
 console.log("delete error", event);
 done = true;
 };

 var request = indexedDB.open("Cookbook", 1);

 request.onupgradeneeded = function(event) {

 window.db = event.target.result;
 var transaction = event.target.transaction;

 var objectStore = db.createObjectStore("reader",
 { keyPath: "id", autoIncrement: true });

520 | Chapter 17: Data and Persistence

 objectStore.createIndex("experience", "experience", {unique: false});
 objectStore.createIndex("name", "name", {unique: true});

 transaction.oncomplete = function(event) {
 console.log('data finished');
 };

 var objectStore = transaction.objectStore("reader");
 for (var i in data) {
 var req = objectStore.add(data[i]);
 req.onsuccess = function(event) {
 console.log('data added');
 };
 }
 };

 request.onerror = function(event) {
 console.log(event.target.errorCode);
 };

 request.onsuccess = function(event) {
 console.log('datastore created');
 };

 document.onclick=function() {
 var request = db.transaction(["reader"])
 .objectStore("reader").get(2);
 request.onsuccess = function(event){
 console.log("Name : "+request.result.name);
 } ;
 }
</script>

</body>

</html>

Discussion
IndexedDB is the specification the W3C and others agreed to when exploring solutions
to large data management on the client. Though it is transaction-based, and supports
the concept of a cursor, it isn’t a relational database system. It works with JavaScript
objects, each of which is indexed by a given key, whatever you decide the key to be.

IndexedDB can be both asynchronous and synchronous, but only the asynchronous
API has been implemented at this time. It can be used for larger chunks of data in a
traditional server or cloud application, but is also helpful for offline web application
use.

Most implementations of IndexedDB don’t restrict data storage size, but if you store
more than 50 MB in Firefox, the user will need to provide permission. Chrome creates

17.6. Persisting Larger Chunks of Data on the Client Using IndexedDB | 521

a pool of temporary storage, and each application can have up to 20% of it. Other agents
have similar limitations. All of the main browsers support IndexedDB, except Opera
Mini, though the overall support may not be identical.

As the solution demonstrates, the IndexedDB API methods trigger both success and
error callback functions, which you can capture using traditional event handling, or as
callback, or assign to a function. Mozilla describes the pattern of use with IndexedDB:

1. Open a database.

2. Create an object store in upgrading database.

3. Start a transaction and make a request to do some database operation, like adding
or retrieving data.

4. Wait for the operation to complete by listening to the right kind of DOM event.

5. Do something with the results (which can be found on the request object).

Starting from the top in the solution, a data object is created with three values to add to
the datastore. The database is deleted if it exists, so that the example can be run multiple

times. Following, a call to open() opens the database, if it exists, or creates it, if not.
Because the database is deleted before the example is run, it’s re-created. The name and
version are both necessary, because the database can be altered only if a new version of
the database is opened.

A request object (IDBOpenDBRequest) is returned from the open() method, and
whether the operation succeeds or not is triggered as events on this object. In the code,

the onsuccess event handler for the object is captured to provide a message to the
console about the success. You can also assign the database handle to a global variable

in this event handler, but the code assigns this in the next event handled, the upgrade

needed event.

The upgradeneeded event handler is only invoked when a database doesn’t exist for a
given database name and version. The event object also gives us a way to access the

IDBDatabase reference, which is assigned to the global variable, db. The existing trans‐
action can also be accessed via the event object passed as argument to the event handler,
and it’s accessed and assigned to a local variable.

The event handler for this event is the only time you’ll be able to create the object store

and its associated indexes. In the solution, a datastore named reader is created, with its

key set to an autoincrementing id. Two other indexes are for the datastore’s name and

experience fields. The data is also added to the datastore in the event, though it could
have been added at a separate time, say when a person submits an HTML form.

Following the upgradeneeded event handler, the success and error handlers are coded,

just to provide feedback. Last but not least, the document.onclick event handler is used

522 | Chapter 17: Data and Persistence

to trigger a database access. In the solution, a single data instance is accessed via the
database handler, its transaction, the object store, and eventually, for a given key. In the

solution, we went after the second object. When the query is successful, the name field
is accessed and the value is printed out. Rather than accessing a single value, we can also
use a cursor, but I’ll leave that for your own experimentation.

The resulting printouts to the console are, in order:

data added
data finished
datastore created
Name : Cindy Johnson

I am ambivalent about IndexedDB. On the one hand, mobile application development
based on web technologies needs a more sophisticated data storage mechanism than
those discussed earlier in the chapter. On the other hand, it’s a complex and not neces‐
sarily intuitive interface, leaving plenty of room to make typos that result in difficult-
to-discover errors.

Still, IndexedDB is here to stay, so it’s worth our time becoming familiar with how it
works. Enjoy.

17.7. Accessing Data in the Cloud Using Dropbox
Datastores

Problem
You have data in your application that you want to sync between all variations of your
app: whether in a web page, an Android app, or a Node service.

Solution
Use a cloud-based datastore system, such as Google Drive, Amazon S3, or a Dropbox
Datastore. For this recipe, I’m focusing on Dropbox.

To utilize Dropbox data storage in your application, you have to create a new app first.
When you create the new app, Dropbox will ask if you’re creating a Drop-in app or a
Dropbox API app. Pick the latter.

Next, you’ll be asked if you want to store “Files and datastores”, or “datastores, only”.
Pick the “datastores only” option.

Last, the page asks for an app name. Once you provide it, you’re all set. The tabbed page
that opens provides the App key and App secret in the first tab page. You’ll need the
App key for the code in this recipe. For the example, you’ll also need to provide a Redirect

17.7. Accessing Data in the Cloud Using Dropbox Datastores | 523

URI for the OAuth 2.0 authentication purpose. This recipe is based on local development
only, so use:

http://localhost:8080/

The server we’re using is covered in the discussion.

Now, copy and paste or type the following code into an HTML file. Look for DROP

BOX_APP_KEY and change the value to your newly created App key. This is the complete
Dropbox datastore application allowing us to add key/value pairs to the datastore, re‐
view them, remove them individually or update them, or remove all of the key/value
pairs in the default datastore:

<!DOCTYPE html>
<html>

<head>

 <meta charset="utf-8">
 <title>Dropbox Data</title>
 <style>
 button {
 padding: 10px;
 margin: 5px;
 }
 #control {
 margin-bottom: 20px;
 padding: 10px;
 background-color: palegreen;
 width: 300px;
 }
 #inputs {
 margin-bottom: 30px;
 }
 #addval {
 margin-top: 20px;
 }
 </style>
 <script
 src="https://www.dropbox.com/static/api/dropbox-datastores-1.2-latest.js">
 </script>
</head>

<body>

 <div id="control">
 <button id="dblogin" hidden>Login to Dropbox</button>
 <button id="dblogout">Logout and Cleanup</button>

 </div>
 <div id="inputs">
 <label for="newkey">Key:</label>
 <input type="text" id="dskey" name="dskey" />
 <label for="newval">Value:</label>
 <input type="text" id="dsval" name="dsval" />

 <button id="addval">Add Record or Get Value</button>
 <button id="remrec">Remove Record</button>

524 | Chapter 17: Data and Persistence

 <button id="remrecs">Remove All Records</button>
 </div>

 <button id="showvalues">Show Values:</button>
 <div id="result"></div>

 <script>

 var DROPBOX_APP_KEY = 'yourappkey';
 var client = new Dropbox.Client({key: DROPBOX_APP_KEY});

 client.authenticate({ interactive: false });
 if (client.isAuthenticated()) {
 loggedIn();
 } else {
 document.getElementById("dblogin").removeAttribute("hidden");
 }

 document.getElementById('dblogin').onclick=function(e) {
 e.preventDefault();
 client.authenticate(function (err) {
 if (err) {
 console.log('Error: ' + err);
 return;
 }
 loggedIn();
 });
 }

 function loggedIn() {
 document.getElementById('dblogin').setAttribute('hidden',true);
 var datastoreManager =
 new Dropbox.Datastore.DatastoreManager(client);

 datastoreManager.openDefaultDatastore(function (err, datastore) {
 if (err) {
 console.log(err);
 return;
 }

 var valueTable = datastore.getTable('values');

 document.getElementById('addval').onclick=function(e) {
 var val = document.getElementById('dsval').value;
 var key = document.getElementById('dskey').value;

 var records = valueTable.query({'key':key});
 if (records.length > 0) {
 if(val && val.length > 0) {
 records[0].set('value',val);
 } else {
 val = records[0].get('value');

17.7. Accessing Data in the Cloud Using Dropbox Datastores | 525

 document.getElementById('dsval').value = val;
 }
 } else {
 valueTable.insert({'key':key, 'value':val});
 }

 };

 document.getElementById('remrec').onclick=function(e) {
 var key = document.getElementById('dskey').value;
 var records = valueTable.query({'key': key});
 if (records.length > 0) {
 records[0].deleteRecord();
 }
 };

 document.getElementById('remrecs').onclick=function(e) {
 var records = valueTable.query();
 records.forEach(function(record) {
 record.deleteRecord();
 });
 };

 document.getElementById('showvalues').onclick=function(e) {
 var records = valueTable.query();
 var str = '';
 records.forEach(function(record) {
 str+=record.get('value') + ' ';
 });
 document.getElementById('result').innerHTML = str;
 };

 document.getElementById('dblogout').onclick=function(e) {
 document.getElementById('dblogin').removeAttribute('hidden');
 document.getElementById('result').innerHTML = '';
 client.signOut();
 };
 });
 }
 </script>

</body>

</html>

Discussion
Most people think that Dropbox provides file-based cloud services, but like many other
cloud systems, it also provides cloud-based data storage, too. Dropbox provides a set of
Datastore SDKs for various environments:

526 | Chapter 17: Data and Persistence

• iOS

• OS X

• Android

• JavaScript

• Python

• HTTP

In this recipe, we’re focused on the client-side JavaScript SDK, though the HTTP option
would be good if you’re interested in incorporating the data storage capability into a
Node server app.

The Dropbox JavaScript SDK for data storage is available via CDN:

<script

src="https://www.dropbox.com/static/api/dropbox-datastores-1.2-latest.js">
</script>

Dropbox provides two example apps: Click the Box and Lists. I adapted Click the Box
for the application covered in this recipe.

The app uses OAuth 2.0 authorization, which requires us to provide a Redirect URI in
the Dropbox App page. You have to be precise, as you’ll note from Figure 17-8, where
I had to correct my Redirect URI after my first runtime error. You can also remove
Redirect URIs.

Figure 17-8. OAuth requires precision—sloppy coding need not apply

You have two options for the type of Redirect URI you use. You can develop your ap‐

plication locally, and provide a localhost URI for the redirect; or you can serve the
application via a web server that supports SSL (HTTPS). OAuth 2.0 doesn’t require
HTTPS, but because the data between the server and client is sent in plain text, most
resources insist on HTTPS for all endpoint requests and authorization. Not all devel‐
opers have access to SSL certificates, and some aren’t equipped to provide support for

HTTPS, so many resource providers also allow localhost URIs without HTTPS.

17.7. Accessing Data in the Cloud Using Dropbox Datastores | 527

Thankfully, we as Node developers have other options, which I cov‐
er in detail in “Accessing Dropbox using OAuth 2.0 in a Web Page”
on page 432.

The application in the solution, KeyValue, provides buttons to click to login to Dropbox
and authorize, as well as log out and clean up, as shown in Figure 17-9. When the page
is first opened, the Dropbox login button is displayed. However, the next time you access
the page, you’re already still logged in, so this button is hidden. It’s only displayed again
when we click the logout button.

Figure 17-9. Application page when first loaded

Other buttons are used to add and edit key/value pairs, remove a single pair, display all
existing values, and remove all key/value pairs from the datastore.

Returning to the JavaScript in the KeyValue HTML page, the very first action the code

takes is creating a new Dropbox.client, passing the DROPBOX_APP_KEY —our app key

assigned by Dropbox. Once the client is created, the authenticate is called, but with

the option interactive set to false. The authenticate() method is what we use to
trigger the authorization process, but we don’t want to trigger this process if we’re already

authorized. Calling authenticate() with interactive set to false populates the Drop

box.client with information, including whether the application has been authorized
data storage access or not.

528 | Chapter 17: Data and Persistence

In the next line of code, the code tests to see if the client object has been authenticated.

If so, the code calls the function loggedIn(). If not, then the Dropbox login button is

displayed, and the application waits for the user to click the button. The click event

handler function calls authenticate() without the flag, which does trigger the author‐
ization process. The user is taken to the Dropbox authorization page, shown in
Figure 17-10, to authorize the app’s access to the user’s data storage.

Figure 17-10. Dropbox authorization page for authorizing the recipe app

After the user clicks the Allow button in the Dropbox authorization page, she’s returned
to the KeyValue app, where the Login button is now hidden. Now the application is
ready to process requests to add data to the Dropbox data storage.

The highest level of object in the Dropbox data storage schema is the datastore, which
is somewhat comparable to a relational database, at a very trivial level. It can be used by
a single user, or it can be shared among Dropbox users in a work group situation (e.g.,
Dropbox for Business users). It can also be shared publicly. Be aware, though, that by
default the datastore exists in isolation. If Person A uses KeyValue, the data is added to
that person’s own version of the default datastore—not a version shared by all users of
the application (not unless the datastore is specifically shared with other individuals).

17.7. Accessing Data in the Cloud Using Dropbox Datastores | 529

The details on data sharing are covered in the very good Datastore
API for Javascript documentation.

The datastore is managed via the DatastoreManager object instance, created as the first

Dropbox operation in the loggedIn() function. We can create new datastores, but we
can also make use of the default datastore (default, per user, of course). The key/value

app created in the solution makes use of the default datastore, via the datastoreManag

er.openDefaultDatastore() function call, which has one parameter: a callback func‐
tion. Most of the functionality for the app is defined in this callback.

Once the code has access to the default datastore, datastore.getTable() is called for

a table labeled values. What follows is interesting, if you’ve primarily worked with
relational databases. Tables aren’t created, first, before use. Once the code to access the

values table is processed, you won’t find a copy of the table in the datastore. It won’t
exist until an actual record is added to the table. You can check this out yourself by
browsing your app’s datastores, once they’re created, or data has been added. The entry
point is accessible via the App Console, and the browser looks similar to that shown in
Figure 17-11.

Figure 17-11. Browsing among the Dropbox datastores for the KeyValue app

Dropbox doesn’t create tables until a record is added, and doesn’t maintain the shell of
the table when the last record is deleted. It’s more of a virtual grouping, than an actual

physical implementation. When the code calls getTable(), what’s happening is either

530 | Chapter 17: Data and Persistence

https://www.dropbox.com/developers/datastore/docs/js
https://www.dropbox.com/developers/datastore/docs/js

a reference is returned to an existing table (previously created by the addition of a
record), or a reference to a potential table is returned.

What you won’t see in the code at this point is a call to setResolutionRule() on the
table. The method is used to control how conflicts are managed when two sources are
attempting to update the data at the same time. The method has the following format:

table.setResolutionRule('fieldname', 'rule');

Conflict resolution is at the field level, and resolution consists of one of the following
values:

• remote: Remote change is selected to resolve conflicts

• local: Local change is selected to resolve conflicts

• max: Resolves in favor of the largest value, based on type ordering

• min: Resolves in favor of the smallest value, again based on type ordering

• sum: For numeric values, calculates all additions and subtractions to come to a final

value; for nonnumeric, acts like remote

The remote rule is the default and that works for the KeyValue app.

The click event handler for the rest of the buttons are defined next in the solution.

The click event handler function for adding or editing a new key/value pair performs

a datastore query using query() on the KeyValue table. The query() method searches
for data matching the property/value pairs passed as an object to the method, returning
matched records. By the very nature of the approach KeyValue is using, we don’t have
to worry about duplicate records for each key, because if the key matches, the new value
just replaces the existing value.

The code checks if the key value exists. If it does, and the associated input field for the

value isn’t empty, then the record is updated, using the set() method. If the input field

for the value is empty, then the process is treated as a retrieval, and the associated value

field is displayed in the input field. Lastly, if the dskey value doesn’t exist, a new record

is created using insert().

Another approach to retrieve or insert the record is using an identifier and the record

getOrInsert() method, providing all the fields as an object. Right now, the KeyValue
pair is using default generated IDs for the record, as Figure 17-11 demonstrates.

The next click event handler is for the button to remove a record. The function queries

for the record on the dskey, and if the returned array of records has at least one element,

the first record is deleted with deleteRecord(). The code doesn’t check for any others,
because there should be only the one record. However, the code could be modified to
delete all, just in case the delightful unintended consequences happen:

17.7. Accessing Data in the Cloud Using Dropbox Datastores | 531

records.forEach(function(record) {
 record.deleteRecord();
});

The next click handler removes all records for a table by doing a query() with no
parameter, returning all records, and then deleting each. This also, in effect, deletes the
table, because a table is defined by its records.

The button to show all values triggers a full query, traverses all the returned records,
and prints out the values, as demonstrated in Figure 17-12.

Figure 17-12. Showing all stored values currently in the datastore table

The last button is the one to log out of the application, and do general clean up. This
means displaying the login button again, and setting the show values display result to

an empty string. The client.signOut() method “invalidates and forgets the user’s
Dropbox OAuth 2 authorization tokens,” as we’d all hope and expect that it would.

The server running the application is as simple as it can be—a Node server listening for
specific routes, and serving up the appropriate response:

var http = require('http');
var router = require('router');
var route = router();
var fs = require('fs');

route.get('/', function(req, res) {
 fs.readFile(__dirname + '/index.html',
 function (err, data) {

532 | Chapter 17: Data and Persistence

 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }
 res.writeHead(200);
 res.end(data);
 });
});

http.createServer(route).listen(8080); // start the server on port 8080

Be forewarned, though, that the server will only work when run locally (using local

host). A discussion why is covered in the section on the OAuth framework in “Extra:
Setting Up HTTPS for Testing” on page 433.

The Dropbox datastore API is well documented, clean to implement, usable across a
variety of enviroments, and makes a good application cache across devices.

17.7. Accessing Data in the Cloud Using Dropbox Datastores | 533

CHAPTER 18

JavaScript Hits the (Mobile) Road

JavaScript is more than client/server applications on traditional computers. Thanks to
a plethora of Web APIs and new tools, JavaScript is now an integral part of mobile
application development—whether as part of HTML5 applications in mobile browsers
or standalone applications.

The types of mobile environments are increasing, too. Google’s Android joins with
Apple’s iOS, Microsoft’s Windows 8, and even less popular environments such as the
Firefox OS and Chromebook’s OS. Even online store king, Amazon, has introduced a
variation of Android called Fire OS for its own devices.

In this chapter, I’m focusing primarily on variations of Android (including Fire OS) and
HTML5 web apps, with a little exploration into Firefox OS and Chrome-flavored web
apps.

If you’re interested in exercising your JavaScript skills creating iOS
apps, I suggest Apple’s own documentation, or Programming iOS 7
(O’Reilly). And if you’re interested in Windows 8 app development,
Microsoft provides excellent documentation. Microsoft also pro‐
vides a free e-book, Programming Windows 8 Apps with HTML, CSS,
and JavaScript.

18.1. Creating an Installable, Hosted Web App

Problem
You want to create a web app hosted on your server without having to target specific
environments or devices. And you want the app to actually install, not sit there in a
browser.

535

http://bit.ly/1yI3vh7
http://shop.oreilly.com/product/0636920031017.do
http://bit.ly/1E00Rn9
http://bit.ly/1E00R6o
http://bit.ly/1E00R6o

Solution
To create an installable web app, you only need to add some additional material to an
already working web page application.

First, create a 128x128 pixel PNG file to add as your application’s icon. In addition, if
you expect your app to work offline, you need to provide an AppCache file. You’ll also

need to provide some meta elements to your primary web page’s head element.

The following HTML page is set up for installation on an Android smartphone or tablet.
The application gets your current location using the Geolocation API, and then gets a
static map image from Google Maps with your location centered in the map:

<!DOCTYPE html>
<html manifest="cache.appcache">
 <head>
 <meta charset="utf-8">
 <title>Where Am I?</title>
 <meta name="mobile-web-app-capable" content="yes">

 <link rel="manifest" href="manifest.json">

<!-- Fallback application metadata for legacy browsers -->

 <meta name="description" content="A Where am I map app">
 <meta name="application_name" content="Where Am I?">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="shortcut icon" sizes="128x128" href="img/icons/icon128x128.png">

<!-- Source files -->

 <link rel="stylesheet" href="/work/where/css/app.css">
 <script src="/work/where/js/map.js"></script>
 <script src="/work/where/js/app.js"></script>
 </head>
 <body>
 <section>
 <h1>Where Am I</h1>
 <p><button id="getmap">Get Map</button></p>
 <div id="out"></div>
 </section>
 </body>
</html>

Discussion
A web app is really any application that can be accessed in a browser on the Web, using
HTML, CSS, graphics, JavaScript, and so on. An installable web app is the same, but
with a few extra elements.

To demonstrate how to create an installable web app, we’ll create a simple web appli‐
cation that uses the Geolocation API to find the individual’s current location, and then

536 | Chapter 18: JavaScript Hits the (Mobile) Road

uses this to get a copy of a static image from Google Maps, with the location centered
in the map.

The application has two JavaScript files: an app.js file to set up the application, and a
map.js file to get the location and the map.

The app.js file just has code to access the window.onload event handler, and then attaches

an event handler function to the web page button’s click event:

 window.onload=function() {
 document.getElementById("getmap").onclick=geoFindMe;
 }

The map.js file has code to call the Geolocation API’s getCurrentPosition() method

to get the current location’s latitude and longitude. The geolocation object that im‐

plements the Geolocation API is accessible from the navigator object. When calling

getCurrentPostion(), two functions are passed to the method: a success and a failure
function. In the success function, the code then uses the position, passed as argument,
to get the current longitude and latitude. These are used to form a REST request for a
static map image from Google Maps. They’re also printed out to the web page, as is an
error message if the Geolocation method fails. The static map image is assigned to a

new img element, which is appended to the page:

function geoFindMe() {
 var output = document.getElementById("out");

 if (!navigator.geolocation){
 output.innerHTML = "<p>Geolocation is not supported by your browser</p>";
 return;
 }

 function success(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;

 output.innerHTML = '<p>Latitude is ' + latitude + '
Longitude is ' +
 longitude + '</p>';

 var img = new Image();
 img.src = "http://maps.googleapis.com/maps/api/staticmap?center=" +
 latitude + "," + longitude + "&zoom=13&size=300x300&sensor=false";

 output.appendChild(img);
 };
 function error() {
 output.innerHTML = "Unable to retrieve your location";
 };

 output.innerHTML = "<p>Locating…</p>";

18.1. Creating an Installable, Hosted Web App | 537

 navigator.geolocation.getCurrentPosition(success, error);
}

The CSS is very simple (defining a yellow background for the page just to jazz it up a
bit):

html, body {
 margin: 0;
 padding: 0.5rem;
}

body {
 font-size: 1rem;
 background: yellow;
}

h1 {
 margin: 0 0 1rem 0;
}

p {
 font-size: inherit;
}

The index.html file should be more than familiar, except for the meta elements, and one

link. The meta elements provide information about the page in a mobile setting, as well

as providing metadata for all environments. The meta element for the viewport provides
instructions for how the application is viewed in a mobile setting. The settings are stan‐

dard for most mobile applications: the width=device-width sets the width of the ap‐

plication to the device’s optimum width, and the initial-scale=1 sets the zoom scale,
and the initial zoom value:

<meta name="description" content="A Where Am I app">
<meta name="application_name" content="Where Am I?">
<meta name="viewport" content="width=device-width, initial-scale=1">

The link for the icon specifies the icon that will represent the application when it’s on
the mobile device’s home screen. Web apps should have, at minimum, one icon that’s
128x128 pixels:

<link rel="shortcut icon" sizes="128x128" href="img/icons/icon128x128.png"

The manifest setting specifies the AppCache file for the application. Mobile devices
can go offline, so it’s important to ensure it works in all environments. Because the app
we’re creating really depends on Internet access, I didn’t spend much time on offline
fallback. The AppCache file I created, cache.appcache, is in the following code:

CACHE MANIFEST

version

538 | Chapter 18: JavaScript Hits the (Mobile) Road

js/map.js
js/app.js
css/app.css
img/icons/icon128x128.png

NETWORK:
*

The resource files have to be listed, and the NETWORK setting allows any network
resource access. The latter is essential, because we can’t specify the RESTful request for
the map image—it changes for every location.

I derived my AppCache file based on advice in the absolutely essen‐
tial and colorfully named A List Apart article “Application Cache is a
DoucheBag”.

The last file, manifest.json, is based on work underway at the W3C to agree on a manifest
file format for web apps. However, support for the file is limited in web apps, which is

why I provide the fallback meta element definitions. Still, providing the file should help
future-proof the app:

{
 "name": "Where Am I?",
 "short_name": "WhereAmI",
 "icons": [{
 "src": "img/icons/icon128x128.png",
 "sizes": "128x128",
 }],
 "start_url": "/work/where/index.html",
 "display": "standalone",
 "orientation": "portrait",
}

The entries should be self explanatory. Icons are listed in an array and described by

attribute; in this case, src and sizes. The start_url ensures the right web page is loaded
to start the app:

The specification for the manifest.json file is at
http://w3c.github.io/manifest/[http://w3c.github.io/manifest/].

It’s linked into the index.html file:

<link rel="manifest" href="manifest.json">

The last unusual page entry is the following:

<meta name="mobile-web-app-capable" content="yes">

18.1. Creating an Installable, Hosted Web App | 539

http://bit.ly/appcache-db
http://bit.ly/appcache-db

Chrome looks for this setting in the head element, to determine whether the application
can run standalone in the mobile environment. It adds an “Add to homescreen” option
to the browser menu when the app is loaded in the Chrome browser. Google insists on
this attribute. A comparable item that Safari uses for the same principle in iOS is:

<meta name="apple-mobile-web-app-capable" content="yes">

Google originally supported this value, but has deprecated it, and warned about its use.

That’s the last of the special settings. Because Chrome is now the default browser in
Android devices (not Kindle Fire OS devices), your app should be installable in Android
with the settings outlined. Once users upload the app and navigate to the app’s directory,
and the app is loaded, they’ll be able to click the “Add to homescreen” option, to in‐
stall it on the home screen, as shown in Figure 18-1.

Figure 18-1. Where Am I? web app installed on Nexus 7 tablet

I use italics with install because unlike native Android apps, the web app isn’t technically
installed in the device. A snapshot of the app is uploaded to the device, stripped of all
browser chrome, and accessible by an icon. Underneath it all, though, it’s still a web
page in a browser. The browser is just not visible.

540 | Chapter 18: JavaScript Hits the (Mobile) Road

Browser-based or not, the app still has access to a considerable number of device-specific
APIs, which I’ll demonstrate later in the chapter.

See Also
For an excellent resource on the constraints of web apps, hosted or packaged, read
“Installing web apps natively” by Dr. Axel Rauschmayer (my go-to guy for all things
JavaScript).

The Where Am I? app gets moved to a native Android app, Firefox OS, Chrome, and
Amazon Fire OS in the next several recipes. First, though, we’re going to take web apps
for a ride in the Amazon Appstore in Recipe 18.2.

18.2. Packaging Web Apps for the Amazon Appstore

Problem
You’ve created a web app that works as a hosted app, but you want to package it for
distribution in Amazon’s Appstore.

Solution
Change to the root directory for your web app, and zip the contents. In Linux, to package
the Where Am I? web app for installing on Fire devices, run the following command:

zip -r where.zip *

You can then test the application using Amazon’s Web App Tester app, which tests hosted
and packaged apps.

Discussion
A web app for Amazon’s Fire universe is probably the simplest of the web app environ‐
ments. At the time this was written you don’t need a manifest.json file, and Amazon
provides a very detailed list of what specifications will and won’t work. In addition, if
you want to support in-app purchases, Amazon also provides a downloadable SDK, as
well as APIs for various other functionality (maps, Amazon login, etc.).

Amazon expects the launch page for both hosted and packaged apps to be index.html.
It has to be at the top level for the directory for the hosted app, and it must be at the top
level of the zipped file. The Where Am I? app covered in Recipe 18.1 has the following
directory structure:

cache.appcache
css/
 app.css
img/

18.2. Packaging Web Apps for the Amazon Appstore | 541

http://bit.ly/1E04dGL

 icons/
 icon128x128.png
 icon16x16.png
 icon48x48.png
 icon60x60.png
 icon.svg
index.html
js/
 app.js
 map.js
manifest.json

Amazon doesn’t require the manifest.json file, and the packaged app doesn’t require
cache.appcache, so both of these can be deleted. References to them should be removed
from the index.html file, and the references to JavaScript and CSS files should be relative
to the index.html file, not to the hosted environment:

<link rel="stylesheet" href="/work/where/css/app.css">
<script src="/work/where/js/map.js"></script>
<script src="/work/where/js/app.js"></script>

The Amazon documentation notes that the application is zipped outside of the project,
but this fails, as the index.html file isn’t at the top level. Instead, change to the project
directory and run the zip command. In Linux:

zip -r where.zip *

Once the package is zipped, it’s ready for testing. Amazon has a test tool, the Amazon
Web App Tester, that you can install on a Fire device. It tests hosted and packaged apps,
both verifying the app and then testing it. It can also install the app locally on the device.
Figure 18-2 shows the results of running a test against two versions of Where Am I?—
one where the index.html is top-level, and one not, which generates an error.

The Where Am I? app works without tweaks because, as Amazon’s Device Component
Support Matrix notes, the Geolocation API is supported in all Fire devices.

The Amazon Web App portal page is the place to start before port‐
ing your app into the Fire environment. The Amazon APIs lists all
the various APIs you can utilize in your app, and the Device Com‐
ponent Support Matrix provides very precise information about what
JavaScript features work in which device.

542 | Chapter 18: JavaScript Hits the (Mobile) Road

https://developer.amazon.com/public
https://developer.amazon.com/public/apis
http://bit.ly/1yI3tFT
http://bit.ly/1yI3tFT

Figure 18-2. Testing two packaged apps in a Fire HDX tablet using Web App Tester

18.3. Building a Basic Android App Using Cordova
(PhoneGap)

Problem
You want to create an Android standalone application, but you definitely aren’t inter‐
ested in getting deep into Java Development.

Solution
Use Cordova, the command-line tool that is the foundation for the more well-known
PhoneGap.

Once Cordova is installed, create a directory for your work. In the directory, run a

command similar to the following, but change the name myapp to your application name:

cordova create myapp com.example.myapp MyApp

Only the first argument for the create command, the name of the project directory, is
required. Make sure you don’t create the directory before running the command. The
second argument is the reverse domain identifier for the project, and the third is the
title for the application. The latter two arguments aren’t required, but if you want to
provide a project title, you do need to provide the reverse domain identifier—the

18.3. Building a Basic Android App Using Cordova (PhoneGap) | 543

arguments are place dependent. Cordova provides default values for both, so I strongly
recommend using your own.

A directory is created and named myapp. In the directory are several directories con‐
taining generated source code, and a config.xml file providing project information. The
directory of interest to you is www, which contains the source files you’ll need to modify
to create your application. The contents should be familiar to you—they’re HTML, CSS,
and JavaScript.

We’re making an Android application, so we need to add support for the Android plat‐
form. In the top work directory, run the following command:

cordova platform add android

A new subdirectory named platforms is created and includes the Android support code.
At this time, you can build the Android application and get the default Cordova Android
application:

cordova build

You can run the application using the Android emulator:

cordova emulate android

Figure 18-3 shows the icon for the the generated application in the emulator, and
Figure 18-4 shows the application after it is opened.

Figure 18-3. Displaying the icon for the default generated Android app

544 | Chapter 18: JavaScript Hits the (Mobile) Road

Figure 18-4. Displaying the default generated Android app

If you have an Android device, attach it via USB to the computer, and run the following
to install and launch the application in the device:

cordova run android

More details on how all this works, and how to finish the full implementation of the
application, are in the discussion.

Discussion
Cordova is the functionality behind the more well-known PhoneGap. When Adobe
purchased the company behind PhoneGap, it split off the platform software and donated
it to the Apache organization to maintain.

Cordova requires Node.js. Once Node is installed (in Windows, Mac, or Linux), you
can install Cordova with the following:

sudo npm install -g cordova

Access documentation for working with Cordova at http://cordo
va.apache.org/.

Cordova is a command-line tool that has the advantage of being fast to learn and simple
to use. Though this recipe is focused on Android, you can install additional platform
support for other devices (which I’ll cover later in the chapter). However, the platforms

18.3. Building a Basic Android App Using Cordova (PhoneGap) | 545

http://cordova.apache.org/
http://cordova.apache.org/

you can develop for depends on the operating system you’re using for your development.
If you’re using a Mac, you can create applications for the following environments:

• iOS

• Amazon’s Fire OS

• Android

• Blackberry 10

• Firefox OS

If you’re using a Linux-based computer:

• Amazon’s Fire OS

• Android

• Blackberry 10

• Firefox OS

And in Windows:

• Amazon’s Fire OS

• Android

• Blackberry 10

• Windows Phone 7

• Windows Phone 8

• Windows 8

• Firefox OS

There are additional constraints for the environments, such as installing Visual Studio
support for developing Windows apps, but for now, we’ll focus on Android.

According to the Cordova Android Platform Guide, you’ll need to install the Android
SDK before developing Android apps. You’ll also need to install the Java JDK (version
6 at the time this was written), as well as Apache Ant.

Chances are you have a Java runtime on your computer, but you’ll need the full Java
Developer Kit (JDK) to work with Android. You can download the Java JDK at its
download page. Apache Ant can be downloaded from the Apache Ant site. It can also
be installed with npm:

npm install ant

Apache Ant is the Java version of Grunt, covered in Recipe 12.14. You don’t have to be
proficient with it to develop in Android. You just need to have the software installed.

546 | Chapter 18: JavaScript Hits the (Mobile) Road

http://bit.ly/1E070Q9
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://bit.ly/TEA7iC
http://bit.ly/TEA7iC
http://ant.apache.org/

You can install an Android installation package that also includes the Eclipse IDE (In‐
tegrated Development Environment), but for now, just install the standalone SDK. You’ll
also need to install support for at least one version of Android. Cordova supports Gin‐
gerbread (version 2.3), and 4.x versions. As a general rule, Cordova only supports ver‐
sions with at least 5% popularity in the distribution dashboard that Google maintains,
as shown in Figure 18-5.

Figure 18-5. Android version distribution as of August 12, 2014

If you’re developing in Windows, use the SDK Manager.exe tool to install the Android
versions, as shown in Figure 18-6.

The Cordova documentation states that you can focus your mobile development two
different ways: cross-platform, or platform specific. If you’re only interested in devel‐
oping Android applications, you might want to check out the IDEs, such as Eclipse, or
Google’s new Android Studio beta. However, if you’re interested in developing apps for
multiple device types, then you’ll want to stick with Cordova, and the Cordova CLI, as
your main development environment. This chapter focuses on the cross-platform
approach.

Cordova comes with an emulator (and the Android SDK also provides access to an
emulator), but if you want to try your app on the real thing, you’ll need to connect your
Android device(s) to your computer via USB cord. You’ll also need to make sure your
device is set up for Android debugging, and that you have the proper drivers installed.

18.3. Building a Basic Android App Using Cordova (PhoneGap) | 547

Figure 18-6. Installing versions of Android from the SDK

To set up USB debugging on your device, if your Android device is running a version
of Android older than 4.0, the developer settings can be accessed via Settings→Appli‐
cations→Development. If you’re running a version between 4.0 and 4.2, access devel‐
oper settings in Settings→Developer. If you’re running a newer version of Android, this
setting is actually hidden. To expose it, access Settings→About Phone, and then tap the
Build number seven times. Yeah, I know—lame. But that’s what you have to do.

In the Developer options window, check the option to enable USB Debugging, as shown
in Figure 18-7.

548 | Chapter 18: JavaScript Hits the (Mobile) Road

Figure 18-7. Checking the option for USB Debugging in Developer settings

You’ll also need to set your PC to recognize your Android device. If you’re using a Mac,
you’re all set, but if you’re using Windows, you’ll need to download a USB device driver
from Google. If you’re developing with Linux, the settings are defined in the Using
Hardware Devices documentation.

Following the Windows route, I plugged in the Android phone, and then in the hardware
manager, right-clicked on the device and chose the option to install the device driver
downloaded from Google. Once the device driver was installed, and USB Debugging
enabled, running the following command installed a debugging version of the Android
app (an APK, with an .apk extension) on the device and launched it:

cordova run Android

Cordova finds the device and handles all of the build and installation for you.

Of course now is when the fun begins, as you design and build your own unique Android
application; but for now, let’s just assume the generated app is the one you want, and
you want to finalize it as a standalone application. To create a standalone application,
you’ll need to digitally sign the APK with a certificate whose private keys are maintained
by the developer. Then, you’ll need to find a way to install the device on your Android
devices.

If you don’t have any other way of creating a self-signed certificate, you can use Keytool,
which is part of the Java SDK. From a Windows command window, I ran the following

18.3. Building a Basic Android App Using Cordova (PhoneGap) | 549

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/device.html
http://developer.android.com/tools/device.html

command, which generates a key for an application named MyApp, stored in re‐
lease.keystore, in a directory I added at the top level of my working environment:

keytool.exe -getkey -v keystore release.keystore
-alias MyApp -keyalg RSA -keysize 2048 -validity 10000

The tool will ask several questions, and prompt you for two passwords. Be sure you back
up the generated key, because if you lose it, you won’t be able to update your application
in the Google Play store.

For more information on signing the Android app, check out “How
do I Create a Self-Signed Certificate for an Android App”, and the
Android documentation on signing your app.

Now that you have your key, you need to provide a way for the build process to know
where to find it. This is where you’ll need to modify the platform installation, even
though Cordova warns against it. However, you’re not modifying an existing source—
you’re just adding an Ant file with the path for the key.

In platforms/android, add a new file named ant.properties, and add the following lines
of code to it:

key.store=/Users/whoareyou/work/keys/release.keystore
key.alias=MyApp

Change the code to match your own environment, and the alias you gave when you
generated the key.

Now, to create a released version of the Android app, run the following:

cordova build --release

The build process will prompt you for the key passwords you provided earlier. A new
released version of your app is created in platforms/android/ant-build, named some‐
thing like MyApp-release.apk.

Now that you have your signed, released version of your Android application, how do
you install it?

You can copy it over via the USB cord to a subdirectory on your Android device, but
you may run into an odd parsing error if you do so. That’s because of permission prob‐
lems with the app, and the subdirectory where you loaded the app. You can use a file
manager app to change these, but a simpler approach is to upload the APK file to Google
Drive, Dropbox, or whatever cloud service you use with all your devices. Not only is
this the simplest way to access your app, you can access the app with all your devices.
Upload the Android app to your cloud drive, open up a reference to the drive in your
Android device, and click on the app. The device will then begin the installation process.

550 | Chapter 18: JavaScript Hits the (Mobile) Road

http://bit.ly/1E08Bpd
http://bit.ly/1E08Bpd
http://bit.ly/1E08wSf

You also have to enable sideloading for your Android device, which
means loading apps from unknown sources. Check the option to
enable sideloading in Settings→Security.

Congratulations, you just created your first standalone Android app.

18.4. Porting Where Am I? to Android

Problem
Web apps are all well and good, but you’d really like to package your web app function‐
ality into a standalone Android app.

Solution
Now that we’re set and ready to create all sorts of havoc in the Android world, let’s take
a shot at porting the Where Am I? geolocation app, developed as a web app in
Recipe 18.1, into a native Android app.

Create a new directory in the work environment and call it vanilla, as in a plain vanilla
Android app. In this directory, create a new Cordova project with the following com‐
mand—changing the domain in the reverse domain to your own (or preferred) domain:

create whereami com.yourdomain.whereami WhereAmI

Next, change into the newly created whereami directory, and add support for Android:

cordova platform add android

The source files that the platform depends on are located in the top-level www directory.
We’re going to delete most of the generated code, because we want to create an interface
as close as possible to the one we created for the web app.

The generated files and directories for the source files are:

www/
 css/
 index.css
 img/
 logo.png
 js/
 index.js
 index.html

We can use the generated logo.png file, or copy the logo128x128.png file from the web
app over, and rename it logo.png. It’s your call what you’d prefer to do.

18.4. Porting Where Am I? to Android | 551

I deleted most of the CSS in index.css, and added a few minor edits, resulting in the
following:

body {
 -webkit-touch-callout: none;
 -webkit-text-size-adjust: none;
 -webkit-user-select: none;
 background-color:yellow;
 font-family:'HelveticaNeue-Light',
 'HelveticaNeue', Helvetica, Arial, sans-serif;
 font-size:18px;
 height:100%;
 margin-left: 100px;
 padding:0px;
 text-transform:uppercase;
 width:100%;
}

button {
 padding: 10px;
}

I did the same with the index.html file. I removed portions, and added both the but

ton and output div element, as well as a link to the new map.js file:

<!DOCTYPE html>

<html>

 <head>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />
 <meta name="viewport" content="user-scalable=no,
 initial-scale=1, maximum-scale=1, minimum-scale=1,
 width=device-width,
 height=device-height, target-densitydpi=device-dpi" />
 <link rel="stylesheet" type="text/css" href="css/index.css" />
 <meta name="msapplication-tap-highlight" content="no" />
 <title>Where Am I?</title>
 </head>
 <body>
 <h1>Where Am I?</h1>
 <button id="getmap">Get Map</button>
 <div id="out"></div>
 <script src="cordova.js"></script>
 <script type="text/javascript" src="js/map.js"></script>
 <script type="text/javascript" src="js/index.js"></script>
 <script type="text/javascript">
 app.initialize();
 </script>
 </body>
</html>

552 | Chapter 18: JavaScript Hits the (Mobile) Road

The index.js file was primarily a skeleton interface to several device—specific events. I
left most of the skeleton, but trimmed out the comments and added the code to attach

an event handler function to the button’s click event into the onDeviceReady event
handler:

var app = {
 // Application Constructor
 initialize: function() {
 this.bindEvents();
 },
 bindEvents: function() {
 document.addEventListener('deviceready', this.onDeviceReady, false);
 },
 onDeviceReady: function() {
 app.receivedEvent('deviceready');
 document.getElementById('getmap').onclick=geoFindMe;
 console.log('device is ready');
 },
 receivedEvent: function(id) {
 console.log('Received Event: ' + id);
 }
};

The deviceready event is called after Cordova is loaded, so the app can call Cordova
JavaScript functions safely at this point. It’s a good place to put our listener for the

button’s click event.

The map.js file is an exact copy of the map.js file created in Recipe 18.1:

function geoFindMe() {
 console.log('in geoFindMe');
 var output = document.getElementById("out");

 if (!navigator.geolocation){
 output.innerHTML = "<p>Geolocation is not supported by your browser</p>";
 return;
 }

 function success(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;

 output.innerHTML = '<p>Latitude is ' + latitude + '°
Longitude is '
 + longitude + '°</p>';

 var img = new Image();
 img.src = "http://maps.googleapis.com/maps/api/staticmap?center="
 + latitude + ","
 + longitude + "&zoom=13&size=300x300&sensor=false";

 output.appendChild(img);
 };

18.4. Porting Where Am I? to Android | 553

 function error() {
 output.innerHTML = "Unable to retrieve your location";
 };

 output.innerHTML = "<p>Locating…</p>";

 navigator.geolocation.getCurrentPosition(success, error);
}

We’re done with the source files, but not the configuration. Because we’re working with
Geolocation, there is one other change we have to make. Back in the root directory for
the application, add the Geolocation plugin:

cordova plugin add
 https://git-wip-us.apache.org/repos/asf/cordova-plugin-geolocation.git

Now, we’re ready to build:

cordova build

To run the Android app in your device, make sure USB debugging is set up in the device,
and connect it with a USB cable. Run the following command:

cordova run android

As an alternative, we can also run the app in an emulator:

cordova emulate android

The new app should load into the device/emulator. Once loaded, click the “Get Map”
button and the map should display in the page, as shown in Figure 18-8.

554 | Chapter 18: JavaScript Hits the (Mobile) Road

Figure 18-8. The Where Am I? app displayed in a Nexus 7 tablet

Once you’re satisfied, you can complete the rest of the steps to sign and package the app
into a release APK, to send to friends and family.

Discussion
Existing web apps can be ported into a standalone Android app using Cordova. Once
the project is created, modify the existing JavaScript, CSS, and index.html files to in‐
corporate your web app functionality and look and feel. You can keep or delete as much
of the generated content in the pages as you want. The important takeaway from the
solution is that depending on what resources your web app accesses, you may need to
take a couple of extra steps (adding a plugin and modifying the manifest and con‐
fig.xml files to add permissions).

What underlies Cordova’s web interface is Android’s WebView component. This is a
component that allows native Android developers (those working in Java) to embed a
web app into their applications. WebView is based on Webkit, for older versions of
Android, and Chromium, starting with KitKat (version 4.4).

18.4. Porting Where Am I? to Android | 555

Extra: Adding jQuery Mobile Support to a Cordova Android App
I’m not a web designer, as is probably apparent from my example screenshots in the
book. If I want to publicly publish web pages or apps, I either use existing template/
themes, or use a library like jQuery Mobile to provide a more polished interface. Thanks
to Cordova’s WebView component platform, and the underlying Webkit/Chromium
engine, what works in a browser like Chrome should work (with some constraints) in
Cordova apps, and that includes incorporating support for jQuery Mobile.

To use jQuery Mobile, download the necessary JavaScript and CSS files, and add them
as a separate subdirectory in your Cordova app’s www directory. To demonstrate, we’ll
add jQuery Mobile support to Where Am I? and see if we can’t jazz it up a little. At the
time this was written, the additions of the jQuery Mobile files resulted in the following
directory structure under www/:

css/
 index.css
img/
 logo.png
js/
 index.js
 map.js
lib
 jquery/
 css/
 /images
 ...
 jquery.mobile-1.2.0.min.css
 js/
 jquery.mobile-1.2.0.min.js
 jquery-1.8.2.min.js

The exact versions of the files will most likely be different when you try the example,
but they’re included in the examples as a snapshot. The images subdirectoy has all the
possible images for the UI, so I haven’t listed the files. You do need this subdirectory, or
the application fails.

I’m not modifying the existing JavaScript files (index.js or map.js) at this time, but you
can adapt them to use jQuery syntax. For now, I’m focused on adapting the HTML file.
In the file, we’ll add the jQuery JavaScript and CSS files. We’ll also adjust the HTML to

take advantage of jQuery Mobile’s data- attribute names. The modified HTML file is
displayed in Example 18-1. The minor modifications in the local CSS file is to add in
the Where Am I? yellow background, and ensure the sections align nicely.

556 | Chapter 18: JavaScript Hits the (Mobile) Road

Example 18-1. The modified index.html incorporating jQuery Mobile structures

<!DOCTYPE html>

<html>

 <head>
 <title>Where Am I?</title>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="css/index.css">
 <link rel="stylesheet" href="lib/jquery/css/jquery.mobile-1.2.0.min.css" />
 <style>
 .ui-page, .ui-content { background-color: yellow; height: 100%}
 </style>
 <script src="lib/jquery/js/jquery-1.8.2.min.js"></script>
 <script src="lib/jquery/js/jquery.mobile-1.2.0.min.js"></script>
 </head>
 <body>
 <div data-role="page">
 <div data-role="header">
 <h1>Adventures in Geolocation</h1>
 </div><!-- /header -->
 <div data-role="content">
 <h1>Where Am I?</h1>

 <button id="getmap">Click Me!</button>
 <div id="out"></div>

 </div><!-- /content -->
 <div data-role="footer" data-position="fixed">
 <h4>Wherever you go, there you are</h4>
 </div><!-- /footer -->
 </div><!-- /page -->

 <script type="text/javascript" src="cordova.js"></script>
 <script type="text/javascript" src="js/map.js"></script>
 <script type="text/javascript" src="js/index.js"></script>
 <script>
 app.initialize();
 </script>
 </body>
</html>

I built the example for both Android and Amazon Fire OS. Figure 18-9 shows the app
loaded into my HTC smartphone.

18.4. Porting Where Am I? to Android | 557

Figure 18-9. Screenshot of Where Am I? modified to use jQuery Mobile for interface
improvements

See Also
The basic Android app of Where Am I? just created is also the basis for creating a version
to run in a Kindle Fire device, covered in Recipe 18.7.

JavaScript Completely Out of the Box
There’s another dimension to JavaScript development and that’s the new open source
hardware, DIY, and wearables. Yes, you can use JavaScript to build an air-quality control
sensor. Or to control the pattern of LEDs sewn into a jacket, causing it to indicate how
close you are to your target location. Or to operate a motion sensor and camera to create
your own critter cam. Or…well, you get the point. The possibilities are endless.

But there are some topics that just can’t be squished into single recipes, though I’ve tried
a time or two in this book. The DIY, open source hardware development has preliminary

558 | Chapter 18: JavaScript Hits the (Mobile) Road

requirements and prerequisites beyond just being able to write the JavaScript. Not unless
you want to fry your brand new microcontroller. Or the attached computer.

Most of the DIY microcomputers and microcontrollers do have built-in support for
JavaScript (typically via Node.js), or there are libraries that bridge the gap between the
native language and JavaScript. And with the new generation of wearables hitting the
street, I expect we’ll see a lot more of JavaScript out of the box.

18.5. Creating a Geolocation Firefox OS App

Problem
You want to try your hand at developing a Firefox OS app using the Geolocation API,
but don’t know where to start.

Solution
Creating a Firefox OS app is little different than creating a basic web application. The
primary difference is a manifest file, and some design and API issues. Best of all, you
can create and test your Firefox OS directly in your existing development environment.

Earlier in the chapter, we created a simple Geolocation app called “Where Am I?” as
both web app, and standalone Android app. We’ll now port it to the Firefox OS envi‐
ronment. The details for porting the Where Am I? web app, created in Recipe 18.1, to
a Firefox OS app are covered in the discussion.

Discussion
To create an app, you create a web page with all the functionality, graphics, and style‐
sheets it needs. It requires some additional files, such as a README.md file and a
manifest.webapp that defines the type of application, its name, and how to launch the
app, but they’re just plain text. All the files other than any graphics (with the exception
of SVG files) can be created with your favorite editor, including the README.md file
(the structure of which is discussed in “Extra: The README File and Markdown Syn‐
tax” on page 336).

You can use text, but starting with Firefox version 33, you can use the new WebIDE to
not only test your Firefox OS apps, but create the individuals files as well. It can shorten
the development time considerably, and is one of the better focused development tools
I’ve used.

To start the WebIDE, look for the option for it in the Firefox Developer menu. Once
opened, it asks what kind of project to build (a plain privileged template, or a wizard
tool that will help you set up permissions), and the name of the project. For this recipe,

18.5. Creating a Geolocation Firefox OS App | 559

we’re creating a simple app that will get information about the user’s geolocation. The
Geolocation API requires a hosted app in the Firefox environment, where the files to

support the application are installed on a web server. For this example, it’s called Where

AmI, and Figure 18-10 shows the WebIDE after the project has been created.

Figure 18-10. WhereAmI project generated in the Firefox WebIDE

Notice in the WebIDE that the tool automatically generates some basic files, including
the icons. Mozilla requires one 128x128 pixel icon, and also recommends a second,
larger 512x512 pixel icon with all Firefox OS apps. What the files are named isn’t im‐
portant, as they’ll be linked as icons in the manifest.webapp file. At this point, we can
use the generated icon, or we can use the icon we created for Recipe 18.1.

Following is the directory structure and files generated by the tool:

css/
 app.css
data/
 en-US.properties
 es.properties
 locales.ini
img/
 icons/
 icon.svg
 icon128x128.png
 icon16x16.png

560 | Chapter 18: JavaScript Hits the (Mobile) Road

 icon48x48.png
 icon60x60.png
js/
 libs/
 l10.js
 app.js
index.html
LICENSE
manifest.webapp
README.md

The index.html file is where the application structure is created, and the LICENSE is
licensing information. The manifest.webapp file is very similar to the package.json files
used with Node applications and modules and the manifest.json file created in
Recipe 18.1. In it, you’ll list out the Firefox OS developer, how to launch the application,
the icon names, permissions, and so on. I’ll cover it later in this section.

The Geolocation code I’m using is an exact replication of the code I used in
Recipe 18.1. This does demonstrate why it’s essential to split your business logic out
from your code to deal with the device mechanics—reuse!

function geoFindMe() {
 var output = document.getElementById("out");

 if (!navigator.geolocation){
 output.innerHTML = "<p>Geolocation is not supported by your browser</p>";
 return;
 }

 function success(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;

 output.innerHTML = '<p>Latitude is ' + latitude + '
' +
 'Longitude is ' + lngitude + '</p>';
 output.innerHTML = '<p>Latitude is ' + latitude + '
' +
 'Longitude is ' + lngitude + '</p>';

 var img = new Image();
 img.src = "http://maps.googleapis.com/maps/api/staticmap?center=" +
 latitude + "," + longitude + "&zoom=13&size=300x300&sensor=false";

 output.appendChild(img);
 };

 function error() {
 output.innerHTML = "Unable to retrieve your location";
 };

 output.innerHTML = "<p>Locating¦</p>";

18.5. Creating a Geolocation Firefox OS App | 561

 navigator.geolocation.getCurrentPosition(success, error);
}

The main entry point for the application is the app.js file. Most of it is commentary,

which I stripped out. I also added the click event handler function to the app button:

window.addEventListener('DOMContentLoaded', function() {
 'use strict';

 var translate = navigator.mozL10n.get;
 navigator.mozL10n.once(start);

 function start() {

 var message = document.getElementById('message');
 document.getElementById("getmap").onclick=geoFindMe;

 message.textContent = translate('message');

 }

});

Another JavaScript file created for the app is is in js/libs/l10n.js, which provides locali‐
zation capability for the app. It’s part of the infrastructure for the frontend for the Firefox
OS, known as Gaia. The message text in app.js is translated using the l10n.js library. The
message itself is included in another file, en-US.properties, in the data directory for the

app. It includes the title for the app, the description, and the message referenced in
app.js. I modified the contents to the following:

app_title = Where am I?
app_description.innerHTML = It lives!
message = Being snoopy like a good app

The title that shows on the page for the app is defined in the app_title property, which

might surprise you because you’re assuming the title really comes in with the h1 header
in the HTML page. The generated HTML with my own minor modification (the addi‐

tion of a button) is shown here—this time I’m leaving in the generated comments, as
they’re quite useful:

<!DOCTYPE html>
<html>

 <head>
 <meta charset="utf-8">
 <title>Where Am I?</title>
 <meta name="description" content="A Where Am I app">

 <!--
 viewport allows you to control how mobile browsers will

 render your content.

 width=device-width tells mobile browsers to render your content

562 | Chapter 18: JavaScript Hits the (Mobile) Road

 across the full width of the screen, without being zoomed out

 (by default it

 would render it at a desktop width, then shrink it to fit.)

 Read more about it here:

 https://developer.mozilla.org/Mozilla/Mobile/Viewport_meta_tag

 -->

 <meta name="viewport" content="width=device-width">
 <link rel="stylesheet" href="css/app.css">

 <!--
 Inline JavaScript code is not allowed for privileged and certified apps,

 due to Content Security Policy restrictions.

 You can read more about it here: https://developer.mozilla.org/Apps/CSP

 Plus keeping your JavaScript separated from your HTML is always a

 good practice!

 We're also using the 'defer' attribute. This allows us to tell the

 browser that it should not wait for this file to load before continuing

 to load the rest of resources in the page. Then, once everything has

 been loaded, it will parse and execute the deferred files.

 Read about defer:

 https://developer.mozilla.org/Web/HTML/Element/script#attr-defer

 -->

 <script type="text/javascript" src="js/map.js" defer></script>
 <script type="text/javascript" src="js/app.js" defer></script>

 <!--
 The following two lines are for loading the localisations library

 and the localisation data-so people can use the app in their

 own language (as long as you provide translations).

 -->

 <link rel="prefetch" type="application/l10n" href="data/locales.ini" />
 <script type="text/javascript" src="js/libs/l10n.js" defer></script>
 </head>
 <body>
 <section>
 <h1 data-l10n-id="app_title">Where Am I</h1>
 <p><button id="getmap">Show my location</button></p>
 <div id="out"></div>
 </section>
 </body>
</html>

Note the reference to the l10n.js library, as well as the retrieval of another data file,
locales.ini, listing the supported locales. In the generated application, U.S. English is the
default language.

18.5. Creating a Geolocation Firefox OS App | 563

Read more about Mozilla’s Firefox OS localization in “Localizing the
Firefox OS Boilerplate App” and about Gaia in the Mozilla Wiki.

The process that triggers the map to load involves clicking the button, and the associated
code in app.js:

 document.getElementById("getmap").onclick=geoFindMe;

The CSS is the same CSS for the web app:

html, body {
 margin: 0;
 padding: 0.5rem;
}

body {
 font-size: 1rem;
 background: yellow;
}

h1 {
 margin: 0 0 1rem 0;
}

p {
 font-size: inherit;
}

The directory structure for the app is the same as that listed earlier, except for the ad‐
dition of the map.js file. That leaves us the last file to discuss, the manifest.webapp file,
which pulls it all together.

For the WhereAmI application, I modified the manifest.webapp file to the following:

 "version": "0.1.0",
 "name": "WhereAmI",
 "description": "A snoopy app that wants to know where you are",
 "launch_path": "/work/whereami/index.html",
 "icons": {
 "16": "/work/whereami/img/icons/icon16x16.png",
 "48": "/work/whereami/img/icons/icon48x48.png",
 "60": "/work/whereami/img/icons/icon60x60.png",
 "128": "/work/whereami/img/icons/icon128x128.png"
 },
 "developer": {
 "name": "Shelley Powers",
 "url": "http://burningbird.net"
 },
 "type": "web",

564 | Chapter 18: JavaScript Hits the (Mobile) Road

http://mzl.la/1E0cGcT
http://mzl.la/1E0cGcT
https://wiki.mozilla.org/Gaia

 "permissions": {
 "geolocation": {
 "description": "Needed to tell the user where they are"
 }
 },
 "installs_allowed_from": [
 "*"
],
 "default_locale": "en"
}

There are a couple of key takeaways from the file. First, because this application is web

hosted, the type property for the app is set to web. In addition, all of the resources have
to have an absolute URL location. Relative URLs can be used in the HTML file, but not
the manifest.webapp file. Another edit I made to the generated manifest.webapp was to

add a permissions property for the Geolocation. It’s necessary for the application to
work, and triggers the prompt for permission in order to ask the app user for his geo‐
location.

To try the app, we need to install simulator versions. We can do this by clicking on the
“Select Runtime” option in the upper-right corner of the WebIDE. I installed all of the
simulators, but you may want to only select the newest. Once the simulators are installed,
we’ll also access this option to run one of the simulators. Before we do, though, we’ll
need to install the files on a web host; Mozilla only allows Geolocation access from
hosted apps.

The whole directory is copied to a web server, and now we’re ready to try it out in the
WebID using the newest simulator. From the “Project” menu opion, select the “Open
Hosted App…” option. This opens up a window to type in the URL for the newly up‐
loaded Firefox OS app directory. As long as there’s no error in the setup, the app is loaded
as valid. Run the app by clicking the Play arrow, which pops up the Firefox OS simulator.
When you click the button the get the location, you’ll first have to give permission to
share your location with the app, as shown in Figure 18-11.

18.5. Creating a Geolocation Firefox OS App | 565

Figure 18-11. Getting permission from the user to access the person’s current location

The app with a map loaded with my current location is shown in Figure 18-12.

Figure 18-12. The WhereAmI app in the Firefox OS simulator with a location loaded

It seems like a lot of work, but the WebIDE takes care of most of the work for you. And
if you run into problems, it also provides the debugging tools you need. If you run the
app in the simulator and it fails or doesn’t act as you expected, pause the application by

566 | Chapter 18: JavaScript Hits the (Mobile) Road

clicking the Pause button (a double quote in a circle) in the WebIDE. Pausing the app
triggers the WebIDE to open an excellent debugger, as shown in Figure 18-13.

Figure 18-13. Opening a debugger in the WebIDE

Extra: Using Cordova to Generate a Firefox OS App
An alternative approach to using the WebIDE to create the Firefox OS app is to use
Cordova.

Follow the instructions covered in Recipe 18.3 to create a new app, using the following:

cordova create findme net.burningbird.findme FindMe

Next, change to the newly created findme subdirectory, and add support for the Firefox
OS platform:

cordova platform add firefox0s

Lastly, run the prepare command to finish the generation:

cordova prepare

The generated set of Web-based component files are located in /platforms/firefoxos/
www. The files work in the older App Manager that Mozilla provided for working with
Firefox OS apps, but at the time this was written, they didn’t work directly with the
WebIDE. If you load it as is, you’ll get an error because the manifest.webapp file doesn’t

use an absolute URL for the launch property. It needs to be modified to:

18.5. Creating a Geolocation Firefox OS App | 567

 "launch_path": "/index.html",

Now the app can be loaded into the WebIDE, though you’ll get a warning about no icon
files. Figure 18-14 shows the app loaded and ready for modifying.

Figure 18-14. Running the Cordova-generated Firefox OS app in simulator

See Also
Mozilla provides a ton of helpful pages for creating Firefox OS apps, but I recommend
beginning with the following:

• The Mozilla Developer Network App Center

• The Firefox OS Quickstart guide

• Mozilla’s WebIDE introduction

• “Using geolocation”

• “Firefox OS device APIs”

For working with Cordova and Firefox OS:

• Apache Cordova’s “Firefox OS Platform Guide”

• “Cordova support for Firefox OS”

• “Cordova Firefox OS plugin reference”

568 | Chapter 18: JavaScript Hits the (Mobile) Road

https://developer.mozilla.org/en-US/Apps
http://mzl.la/1DGAncV
http://mzl.la/1DGApla
http://mzl.la/1DGAq8B
http://mzl.la/1DGAuW2
http://bit.ly/1DGAFQW
http://mzl.la/1DGAKnM
http://mzl.la/1DGALrX

18.6. Porting the Geolocation App to a
Google Chrome App

Problem
You’re interested in porting the Where Am I? app to the Google Chrome environment,
but don’t know how.

Solution
Creating a Chrome OS app is simple. The steps, as defined in Google’s starter docu‐
mentation, are as follows:

1. Create a manifest file.

2. Create a background JavaScript file to build the app’s interface.

3. Create icons.

4. Launch that puppy.

Discussion
Creating a Chrome app is simple, but it’s made more so with a new Chrome Dev Editor
(CDE), still in beta at the time this was written. It’s installed as a Chrome App, and
accessible via the equally new Chrome App Launcher.

Download the CDE from http://bit.ly/1z2EyL0. You’ll need to access
the resource page with Chrome.

When you start the application the first time, it asks for the location of the top-level
work directory. It then asked for a new project name, and project type. I entered
“WhereAmI” as project name, and selected “JavaScript Chrome App”, as project type.
The tool generated the following directory structure and files:

assets/
 icon_16.png
 icon_128.png
background.js
index.html
main.js
manifest.json
styles.css

18.6. Porting the Geolocation App to a Google Chrome App | 569

https://developer.chrome.com/apps/first_app
https://developer.chrome.com/apps/first_app
http://bit.ly/1z2EyL0

The icons are self-explanatory, as are the styles.css and index.html files. As with the earlier
recipes, if you want to emulate the Where Am I? web app created in Recipe 18.1, copy
the icon from that app to the Chrome directory and name it accordingly.

The background.js file is where the application launching code is included, and is re‐
quired for all Chrome apps. For the Where Am I? app, the code is:

/**

 * Listens for the app launching, then creates the window.

 *

 * @see http://developer.chrome.com/apps/app.runtime.html

 * @see http://developer.chrome.com/apps/app.window.html

 */

chrome.app.runtime.onLaunched.addListener(function(launchData) {
 chrome.app.window.create(
 'index.html',
 {
 id: 'mainWindow',
 bounds: {width: 800, height: 600}
 }
);
});

The code adds an event listener for a Launched event, and creates the actual app window.

There’s also a onRestarted event handler, which is called when the app is restarted—
this is important if you’re working with data and application state.

The second JavaScript file is main.js, and contains the following very simple code:

window.onload = function() {
 document.querySelector('#greeting').innerText =
 'Hello, World! It is ' + new Date();
};

Traditional “Hello, World” behavior, with a Date twist.

Because we’re porting the Where Am I? app created in Recipe 18.1, I need to modify
some of the files, and add a new one for the map functionality. The first thing to modify
is the stylesheet. The one generated by the CDE is a placeholder only, so in addition to
adding in the yellow background color, I need to copy all of the CSS generated for the
Firefox OS app to the new Chrome app:

html, body {
 margin: 0;
 padding: 0.5rem;
}

body {
 font-size: 1rem;
 background: yellow;
}

570 | Chapter 18: JavaScript Hits the (Mobile) Road

h1 {
 margin: 0 0 1rem 0;
}

p {
 font-size: inherit;
}

Of course, a published app would have more CSS, but this works for now.

There is no “save” feature in the CDE: saving happens when you
switch to another file.

Next up, we’ll modify the HTML file to add both an output div element and a button,

as well as move the main.js file to the head element, and add map.js:

<!DOCTYPE html>
<html>

<head>

 <title>WhereAmI</title>
 <link rel="stylesheet" href="styles.css">
 <script src="main.js"></script>
 <script src="map.js"></script>
</head>

<body>

 <h1>Where Am I</h1>
 <p><button id="getmap">Show my location</button></p>
 <div id="out"></div>
</body>

</html>

You might notice that the background.js file isn’t listed. That’s because it creates the app
window, and is processed before the window is opened. In main.js, delete the existing

code, and add the button onclick event handler:

window.onload = function() {
 document.getElementById("getmap").onclick=geoFindMe;
};

Last, create the map.js file by right-clicking the file listing area in the CDE and selecting
“New file…” from the options. The map.js code is exactly the same as that used in the
web app, Firefox OS, and Android app, so I’ll forgo duplicating it here.

Just like with the Firefox OS app, we need to get permission for accessing Geolocation
in the app to the manifest file. Before we move on, we must make one more change.

18.6. Porting the Geolocation App to a Google Chrome App | 571

Open the manifest.json file in the CDE and modify the name, short_name, and descrip

tion properties, and add permissions:

{
 "manifest_version": 2,
 "name": "Where Am I?",
 "short_name": "WhereAmI",
 "description": "So, where are you?",

 "version": "0.0.1.0",

 "icons": {
 "16": "assets/icon_16.png",
 "128": "assets/icon_128.png"
 },

 "app": {
 "background": {
 "scripts": ["background.js"]
 }
 },
 "permissions": ["geolocation"]
}

You’re now ready to try the application. Click the Play button, located next to the file
listing horizontal tab bar towards the top of the page. At the time I wrote this, I received
an error when I played the app, as shown in Figure 18-15. I believe this was because of
the use of the new Chrome App Launcher, and the CDE was expecting the app to be
installed directly in Chrome.

572 | Chapter 18: JavaScript Hits the (Mobile) Road

Figure 18-15. Chrome error that displays when first launching the Chrome app

If you look at the Chrome App Launcher window, though, you’ll see the newly installed
app, as shown in Figure 18-16.

18.6. Porting the Geolocation App to a Google Chrome App | 573

Figure 18-16. New WhereAmI app installed in Chrome App Launcher window

Launching the app and clicking the button demonstrates that the Geolocation API call
has worked. The longitude and latitude values are displayed in the page, but where’s the
map?

To debug the new app, right-click the background and choose the “Inspect Element”
option from the menu. In the Developer Tools window that opens, select the Console,
and then click the map button again. Here’s the error that displays:

Refused to load the image
'http://maps.googleapis.com/maps/api/staticmap?center=38.574735499999996,
-90.3349295&zoom=13&size=300x300&sensor=false' because it violates the
following Content Security Policy directive: "img-src 'self' data:
chrome-extension-resource:".

Why the map doesn’t display is where we get into a major difference between the Chrome
App environment and the Firefox OS app environment. The Chrome App environment
operates under a restricted Content Security Policy (CSP), which among other things,
does not allow us to load external web content. This includes loading a new image.

574 | Chapter 18: JavaScript Hits the (Mobile) Road

To load external content, Chrome provides the webview tab, which acts like a sandboxed
iframe. And to load an external image, you have to indulge in a bit of fudging to get the
app to work.

Read more about Chrome’s CSP and view the workarounds in “Build
a ToDo Chrome App”, and debugging in “Tutorial: Debugging”.

We’ll have to make an XHR (XMLHttpRequest) for the image, get the result as a blob,
and then assign it to the image. We’ll add the following function to the map.js file:

var loadImage = function(uri) {
 var xhr = new XMLHttpRequest();
 xhr.responseType = 'blob';
 xhr.onload = function() {
 document.getElementById("img1").src
 = window.URL.createObjectURL(xhr.response);
 }
 xhr.open('GET', uri, true);
 xhr.send();
}

And modify the success() function to incorporate a call to the function:

function success(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;

 output.innerHTML = '<p>Latitude is ' + latitude + '
Longitude is ' +
 longitude + '</p>';

 var img = new Image();
 img.id = "img1";
 var src = "http://maps.googleapis.com/maps/api/staticmap?center=" +
 latitude + "," + longitude + "&zoom=13&size=300x300&sensor=false";

 output.appendChild(img);
 loadImage(src);
 };

We’ll also have to modify the manifest.json file to add a new permissions entry:

 "permissions": ["geolocation","<all_urls>"]

Running the app again and clicking the button not only loads the latitude/longitude
pair, but also the map, as shown in Figure 18-17 (with the window manually downsized).

18.6. Porting the Geolocation App to a Google Chrome App | 575

http://bit.ly/1DGC4ae
http://bit.ly/1DGC4ae
http://bit.ly/1DGC8Hb

Figure 18-17. Chrome App with both geolocation and Google map image displayed

Extra: Chrome Apps and Cordova
As with the Firefox OS app, you can also use Cordova to generate the Chrome app.
However, instead of using the Cordova installation created earlier in the chapter, we’re
using a variation Google created that works specifically with Chrome Apps.

Assuming Node.js is installed, install the Chrome/Cordova CLI using npm:

npm install -g cca

Because we already have an existing, working Chrome app, when we create the new
project (which we’ll call WhereAmI2), we’ll use the option to copy files from an existing
project. In my Chrome working directory, I typed:

cca create WhereAmI2 --copy-from WhereAmI/manifest.json

Providing the relative path to the original project’s manifest.json file. The CLI copies all
of the files from the original project. To create the Android implementation of the app,

change to the newly created WhereAmI2 directory, and run the prepare command:

cca prepare

To run the app in an emulator, type the following:

576 | Chapter 18: JavaScript Hits the (Mobile) Road

cca emulate Android

To run in an attached Android device:

cca run Android

The process is relatively quick and painless. There are some caveats about what’s sup‐

ported. Earlier, I mentioned the webview element, for external resources. Unfortunately,
it’s not supported in a Chrome app that’s ported to Cordova.

An excellent guide on porting a Chrome app to the mobile environ‐
ment is Create Chrome Apps for Mobile Using Apache Cordova.

The Blurred Lines Between Chrome and Android
Thanks to the Cordova plugin, we can now port our Chrome apps to Android, but what
about the reverse? Running all the many Android apps in Chrome?

Late in the summer of 2014, Google introduced the beta of the App Runtime for Chrome,
which provides an Android runtime within Chrome. The company ported a set of pop‐
ular Android apps, but not long after instructions popped up for sideloading any An‐
droid app to Chrome. Of course, at the time this was written, the instructions were for
experienced mobile developers, but by the time you read this, I expect the process will
be simplified, officially sanctioned, and well documented.

But why stop at Android on Chrome? Why not Android everywhere?

Barely a week after the original sideloading hack was published, the original developer,
who goes by vladikoff on GitHub, developed applications that allow Android apps to be
run in Windows, Linux, or the Mac.

The world of mobile apps has now become the world of apps.

18.7. Publishing Your Geolocation App in the Kindle Fire
OS Environment

Problem
Your Geolocation app Where Am I? has now been ported to Firefox OS, Chrome, and
Android, but what about running it in the Amazon Fire OS environment?

18.7. Publishing Your Geolocation App in the Kindle Fire OS Environment | 577

https://github.com/MobileChromeApps/mobile-chrome-apps
http://bit.ly/1DGCE86
http://bit.ly/1DGCE86
https://github.com/vladikoff/chromeos-apk

Solution
Developing a Fire OS Android app for Amazon Kindle is very similar to developing an
Android app. What’s needed is one of the files in the Amazon WebView SDK, awv_in‐
terface.jar. Once you download the SDK, extract the file, and add it to the Cordova
installation. In Windows, c:\Users\username\.cordova\lib\amazon-fireos\cordova
\3.5.0\framework\libs is the location for the file. If you’re unsure of where to put the file,
when you add the Fire OS platform support to an app without having copied the file,
run the following:

cordova platform add amazon-fireos

You’ll get an error pointing out the location where Cordova expects to find the file.

Once it’s installed, and the platform is added, you’re ready to develop. We’ll cover porting
Where Am I? to Amazon Fire OS in the discussion.

Discussion
Amazon’s Fire OS is, first and foremost, Android. Therefore, the app is ported to plain
vanilla Android, first (see Recipe 18.4). Once it’s working in Android, we can just add
support for the Fire OS and build the new version.

Assuming that you have a working Android app of Where Am I?, to set up Cordova for
Amazon Fire OS, you first need to copy the file from the Amazon WebView SDK, as
noted in the solution. Once you have copied the file, then add the platform:

cordova platform add amazon-fireos

The source code files for the Fire OS version of Where Am I? are the exact same source
code files for the vanilla Android version created in Recipe 18.4. The files and app
structure are:

www/
 css/
 index.css
 img/
 logo.png
 js/
 index.js
 map.js
 index.html

Now, we’re ready to build.

cordova build

There is no Amazon Fire OS emulator in Cordova, so we’ll need to test the app directly
in a Kindle Fire device. We have to enable the Amazon Debug Bridget (ADB) in the
device, first. How to do so depends on your device generation. I’m using a first-

578 | Chapter 18: JavaScript Hits the (Mobile) Road

generation Kindle Fire HDX, and the option is available in Settings→Device. As for
other devices, Amazon’s documentation states:

On a 4th generation Fire tablet, tap Device Options, then Developer Options.
- or - On a 3rd generation Kindle Fire tablet, tap Device, then Developer
 Options.
- or - On a 2nd generation Kindle Fire tablet, tap Security.

Just switch USB debugging on. As the documentation notes, when not testing on the
device, you should turn USB debugging off. This is true for all devices you’re testing on.

The hardest part of setting up the Amazon Kindle device is setting up the device driver.
You first have to install the device driver into the computer, from the executable file
located in the Android SDK extras directory. Before you can do so, you have to run the
SDK manager and add support for Amazon devices. This requires setting up an Android
user add-on site, so that you’ll be given the option of adding support for an Amazon
Fire OS device.

Then, once you’ve done all of this, now you’re ready to install the device driver for the
device. If the computer has already installed a device driver, you’ll need to delete it, and
then add the ADB device driver. Lastly, you’ll need to detect the tablet through the ADB.

Rather than detail all of this, which seems to change every few months or so, I’m going
to point you to Amazon’s detailed documentation. Check out the instructions in the
pages accessible from the following links:

• “Setting Up the ADB Driver for Kindle Fire Devices”

• “Connecting Your Fire Tablet for Testing”

Once you’ve worked through the painful driver setup, loading the app in the Kindle is
a piece of cake:

cordova run amazon-fireos

And your app is now running in Kindle Fire OS.

I was also able to run the vanilla Android app in the Kindle Fire OS. You can easily test
whether your non-Fire OS Android app works in Fire OS by accessing Amazon’s de‐
veloper portal public web page, and dragging your APK file to the box labeled “Drag
and drop your APK here”. The site first tests for compatibility, and then actually tests
the app against both a Fire phone and various Fire tablets, as shown in Figure 18-18.

18.7. Publishing Your Geolocation App in the Kindle Fire OS Environment | 579

http://bit.ly/1DGD3ay
http://bit.ly/1DGD7ah
https://developer.amazon.com/public
https://developer.amazon.com/public

Figure 18-18. Testing standard Android standalone app in Amazon’s developer portal

You can also sign up for a developer account with Amazon, and test your APK with the
resources that Amazon provides to developers.

Again, most Android apps will work on Fire OS right out of the box, but I found the
user interface was superior with the Fire OS flavored version, so you’ll want to create a
Fire OS specific version of the Android app if you want to support Amazon’s devices.
Once you have the debugger drive set up, it’s incredibly simple to add the Fire OS plugin,
and tweak the design to ensure a best look in a Fire device.

18.8. Debugging Your Android or Amazon Fire OS App

Problem
You uploaded your Android app to the device, and nothing happens. You know how to
debug in a browser, but how do you debug in an Android device?

580 | Chapter 18: JavaScript Hits the (Mobile) Road

Solution
Standard Android apps and those created for the Fire OS environment both have de‐
bugging capabilities. See the discussion for more details.

Discussion
To debug a vanilla Android app, load the app into the Android device. Open a Chrome
browser and type “chrome:\\inspect” into the location bar. Make sure the “Discover USB
devices” option is checked in the page, and look for your device in the list. Most likely
you’ll see several different apps, but look at the bottom of the list, under the WebView
listing associated with the reverse domain you’ve given the app. Click the “inspect” link
underneath the app. A Developer Tools window opens with the files for the app you’re
debugging, as shown in Figure 18-19. You can now debug the app as you would debug
any other JavaScript application.

Figure 18-19. Debugging the Android app in Chrome

To debug an Amazon Fire OS app, you’ll use the ADB command-line instructions, which
is why it’s so important to make sure the device is properly set up, first. You have several
different command options, but the one I found to be the most helpful is the command
that lists log data. To run it, in a Command window or terminal, type the following
command:

adb logcat

18.8. Debugging Your Android or Amazon Fire OS App | 581

Log data is printed to the screen, including errors in the Android app. Once the app is
loaded, initiate action that is triggering the problem behavior, and any errors should
show up immediately in the log data. I was able to discover that I hadn’t correctly in‐
stalled the Geolocation plugin when I first ran the Fire OS app on my Kindle Fire HDX
by viewing the log file.

Thankfully, there’s a simple fix. I just made sure I had the proper plugin the next go
around, rebuilt the apps, and then launched the Fire OS app again. Relaunching an app
closes the existing one, and replaces it with the new before popping it open.

If the log file isn’t helpful, you can also use the Android Debug Monitor, located in the
tools directory of the Android SDK. In Windows, it’s a .bat file, and double-clicking the
file loads the debugger.

The Debugger is really geared to native Android development, but you can view the log
file more easily, though the verbosity of the tool can interfere with catching the data you
need, as displayed in Figure 18-20.

Figure 18-20. Where Am I? loaded in an Amazon Fire HDX tablet being debugged in
Android Debug Monitor

582 | Chapter 18: JavaScript Hits the (Mobile) Road

Extra: Taking a Screenshot
You can use the Android Debug Monitor to take screenshots of the attached Android
device (which is so much more handy than a complicated button combination that
messes up the display).

When the app is loaded in the device, open the Android Debug Monitor, and click the
little camera icon to take a screenshot. The screenshot capability works with standard
Android devices, as well as the Amazon Fire OS devices.

Read more about the Android ADB in the “Android Debug Bridge”
documentation.

18.9. Getting Information About the Device

Problem
You’re ready to try your hand at mobile development, and are curious about what device
functionality you can access from an Android app developed using Cordova.

Solution
Cordova provides a set of APIs for accessing information about the device. The docu‐
mentation also clearly explains what is necessary in order to integrate the functionality
into the app.

As an example, one of the plugins is the Device plugin that provides information about
the device. To use it, you install the plugin in the following manner:

cordova plugin add org.apache.cordova.device

Then you can use the API in the Android app:

function onDeviceReady() {
 var element = document.getElementById('deviceProperties');
 element.innerHTML = 'Device Name: ' + device.name + '
' +
 'Device Cordova: ' + device.cordova + '
' +
 'Device Platform: ' + device.platform + '
' +
 'Device UUID: ' + device.uuid + '
' +
 'Device Model: ' + device.model + '
' +
 'Device Version: ' + device.version + '
';
 window.addEventListener("batterystatus", updateBatteryStatus, false);
 }

But you’re not restricted to just plugin functionality. Remember that the Cordova app
is based on the Android WebView component, which is based on Chromium/Webkit

18.9. Getting Information About the Device | 583

http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html

(depending on the Android version). What works in Chrome should work in a Cordova
app. For instance, if you’re curious about the state of the battery, you can use the fol‐
lowing, even though you haven’t installed the Cordova battery plugin:

function updateBatteryStatus(battery) {
 var element = document.getElementById('battery');
 var batterystate;
 if (battery.isPlugged) {
 batterystate = "Device is plugged in";
 } else {
 batterystate = "Device is not plugged in";
 }

 element.innerHTML = 'Battery: ' + battery.level + '
' +
 batterystate;
 }

Discussion
Cordova provides a set of plugins that allow us to manipulate or get information about
the device:

• Battery Status: Status about the battery

• Camera: Takes photos from the default device camera

• Contacts: Gets information about the device owner’s contacts

• Device: Provides basic information about the device (used in solution)

• Device Motion: Accesses the device’s accelerometer, and has the ability to get mo‐
tion information in the x, y, and z direction

• Device Orientation: Accesses the device’s compass and measures the direction in
which the device is pointed in degrees from 0 to 359.99 (north is 0)

• Dialogs: Our old friends alert, confirm, and prompt, with the addition of beep

• FileSystem: Accesses the native filesystem in the device

• File Transfer: Uploads or downloads files

• Geolocation: Demonstrated in the Where Am I? apps

• Globalization: Localization of the device

• InAppBrowser: Opens a web browser view in the app (does not have access to the
Cordova plugins)

• Media: Undergoing changes, but will eventually allow media files

• Media Capture: Allows access to audio and video capabilities

• Network Information: Accesses information about the network

• Splashscreen: Shows and hides the application splash screen

584 | Chapter 18: JavaScript Hits the (Mobile) Road

• Vibration: Vibrates the device

• StatusBar: Shows, hides, and configures the status bar

As you can see, you can have a lot of fun with your Cordova apps. Each plugin has
different requirements, both to install and to use in Cordova.

When accessing Cordova documentation, make sure you’re look‐
ing at the correct version of the documentation. The documenta‐
tion page features a dropdown at the top-right side of the page. Select
the Cordova version you’re using from the list.

You can find which version of Cordova you’re using by typing:

cordova --version

Accessing the functionality is quite simple. Example 18-2 is the HTML page for a Cor‐
dova application accessing various information from the device.

Example 18-2. Android app querying the device for various information

<!DOCTYPE html>
<html>

 <head>
 <title>Device Properties Example</title>

 </head>
 <body>
 <p id="deviceProperties">Loading device properties...</p>
 <p id="battery">Getting information about battery...</p>
 <p id="compass">Getting compass heading...</p>
 <p id="accel">Getting Accelerometer information...</p>

 <script type="text/javascript" charset="utf-8" src="cordova.js"></script>
 <script type="text/javascript" charset="utf-8">

 // Wait for device API libraries to load
 //
 document.addEventListener("deviceready", onDeviceReady, false);

 // device APIs are available
 //
 function onDeviceReady() {
 var element = document.getElementById('deviceProperties');
 element.innerHTML = 'Device Name: ' + device.name + '
' +
 'Device Cordova: ' + device.cordova + '
' +
 'Device Platform: ' + device.platform + '
' +
 'Device UUID: ' + device.uuid + '
' +
 'Device Model: ' + device.model + '
' +
 'Device Version: ' + device.version + '
';

18.9. Getting Information About the Device | 585

 window.addEventListener("batterystatus", updateBatteryStatus, false);
 }

 function updateBatteryStatus(battery) {
 var element = document.getElementById('battery');
 var batterystate;
 if (battery.isPlugged) {
 batterystate = "Device is plugged in";
 } else {
 batterystate = "Device is not plugged in";
 }

 element.innerHTML = 'Battery: ' + battery.level + '
' +
 batterystate;
 }

 function onCompassSuccess(heading) {
 document.getElementById('compass').innerHTML = 'Heading: '
 + heading.magneticHeading;
 };

 function onCompassError(error) {
 document.getElementById('compass').innerHTML = 'CompassError: ' + error.code;
 };

 if (navigator.compass) {
 navigator.compass.getCurrentHeading(onCompassSuccess, onCompassError);
 } else {
 document.getElementById('compass').innerHTML = 'compass not supported';
 }

 function onSuccess(acceleration) {
 document.getElementById('accel').innerHTML ='Acceleration X: '
 + acceleration.x + '\n' +
 'Acceleration Y: ' + acceleration.y + '\n' +
 'Acceleration Z: ' + acceleration.z + '\n' +
 'Timestamp: ' + acceleration.timestamp + '\n';
 };

 function onError() {
 alert('onError!');
 };

 if (navigator.accelerometer) {
 navigator.accelerometer.getCurrentAcceleration(onSuccess, onError);
 } else {
 document.getElementById('accel').innerHTML = 'accelerometer not supported';
 }
 </script>
 </body>
</html>

586 | Chapter 18: JavaScript Hits the (Mobile) Road

Running the app in my Android tablet, I received the following response:

Device name: undefined
Device Cordova: 3.5.1
Device Platform: Android
Device UUID: (device's unique ID)
Device Model: Nexus 7
Device Version: 4.4.4

Battery: 75
Device is plugged in

compass not supported
accelerometer not supported

Not all functionality is going to work in all devices. I know for a fact that I have support
for both the compass and acceleromter.

Cordova, like mobile devices, is a work in progress.

Extra: Discover Your Android’s Capabilities
There are several apps you can download from Google Play that allow you to explore
what sensors your Android device has. You’ll never look at that little, flat thing the same
when you realize exactly how many sensors most tablets and smartphone have.

18.9. Getting Information About the Device | 587

APPENDIX A

Up and Running in jsBin and jsFiddle

Most of the examples are JavaScript code snippets, rather than HTML files with script
elements. The snippets can be copied directly into jsBin or jsFiddle or, for the most part,
run using Node. In this Appendix, I’ll briefly cover the information you’ll need to run
the examples successfully.

The Console Is Your Friend
Formally, we should use unit testing for determing application state, but I’ve not found

it to be as friendly or helpful as a good old print out of data. In the past, we used alert()
to print out values, but now we have the console.

All the main browsers (i.e., Internet Explorer, Firefox, Chrome, Opera, and Safari) have
access to a console, as does Node. Here’s a quick cheatsheet:

• To access the console in Chrome, access the Chrome customize menu, then select
Tools→JavaScript Console.

• To access the console in Opera, click Tools in the menu, then open up Opera Drag‐
onfly and select the Console.

• In Safari, enable the Develop menu in Safari’s Advanced preferences to access the
Console.

• The Internet Explorer console can be accessed by pressing F12, or selecting “F12
Developer Tools” from the Settings menu.

• In Firefox, access the console by selecting Developer from the Firefox settings menu,
and then choosing “Browser Console”.

• In Node, output to the console prints to the standard output.

589

I used console.log() all throughout the book, but there are other methods you can
use. Among my other favorites are the following:

• console.assert(express, object): If the expression is false, the message is writ‐
ten to the console along with a stack trace (for some user agents)

• console.count(label): Logs the number of times called

• console.error(object): Outputs an error message (and a stack trace with some
user agents)

• console.time(label): Starts a timer with the label

• console.timeEnd(label): Stops the timer associated with the label and prints out
the elapsed time

• console.trace(): Prints out a stack trace

• console.dir(object): Prints out an interactive listing of object properties

There are additional methods, but you can see the value of the console for more than
printing out a message.

Both Mozilla and Chrome provide documentation of the console
methods, though the support isn’t identical in both.

jsBin and jsFiddle: Online JavaScript Playgrounds
There are several HTML/CSS/JavaScript playgrounds (sites where you can test out code
snippets), but I use two: jsBin and jsFiddle. Both sites are free to use, though jsBin now
has a paid option providing additional functionality. Both sites provide the same basic
types of functionality, though how they provide it does differ.

Most of my work is done in jsBin because I like the layout better. I like simple collapsible
panels that can be closed, making room for the others. I also appreciate jsBin providing
a Console panel, as shown in Figure A-1.

590 | Appendix A: Up and Running in jsBin and jsFiddle

http://mzl.la/1DGFhGY
http://bit.ly/console_api

Figure A-1. Screenshot of jsBin showing a console panel with content

All jsBin “bins” are automatically saved. If you want to access previous bins, you need
to set up an account in order to access the history. Otherwise, you can save the link that’s
automatically created for each. Once you have the contents of a a bin where you want
it, you can use it as a template for future bins, clone it, or download it, and jsBin will
create a clean HTML file that includes just the HTML, JavaScript, and CSS you provide.
This latter capability is a particularly nice feature, and one I used with building example
files.

jsFiddle also provides storage of “fiddles,” as this playground calls them. Instead of using
collapsible panels, jsFiddle separates HTML, CSS, JavaScript, and a result page, into four
separate frames that can be resized, but not collapsed. If you need console access, you’ll
also need to use your browser’s console, as jsFiddle doesn’t provide one. An example of
typical JavaScript testing with jsFiddle is shown in Figure A-2.

jsBin and jsFiddle: Online JavaScript Playgrounds | 591

Figure A-2. Screenshot of jsFiddle showing an example of use for testing JavaScript

Both jsBin and jsFiddle provide access to various popular framework and utility Java‐
Script libraries you can include in your effort. Many popular libraries, such as jQuery
and Underscore, are included.

One major difference between the two playgrounds is jsBin incorporates JSHint into
the application automatically, while jsFiddle provides it as a selectable option. The issue
with jsBin’s incorporation is JSHint operates as you type, which means you’re constantly
getting immediate errors and warnings for code you’re still adding. Frankly, it’s exces‐
sively irritating. However, the jsBin creator, Remy Smart, notes that you can shut JSHint
off using the browser console and typing in:

jsbin.settings.jshint = false;

jsBin provides a video detailing how to change editor settings. Note that Firefox’s native
JavaScript console doesn’t seem to allow direct input, but Firebug’s JavaScript console
does.

The jsBin harness also seems to be more complex than jsFiddle, and did seem to interfere
with some of the testing. However, because you can download a working example that’s
stripped clean, you can ensure clean testing source.

Both tools provide sufficient documentation for using their respective playgrounds.

To run the book code examples in either, just copy the complete HTML (if the example
is packaged as an HTML file) into the panel labeled “HTML”, or copy the JavaScript (if
that’s what’s provided) into the JavaScript panels. Note that Node examples will not work

592 | Appendix A: Up and Running in jsBin and jsFiddle

https://www.youtube.com/embed/pzFqaRJwNQ8

in either tool, and any use of XMLHttpRequest is unlikely to work because of cross-
domain restrictions. In addition, examples that require external script libraries that are
not linked directly to a CDN and aren’t included in either tool’s set of libraries won’t
work, either. You’ll need to run these examples directly from your browser, and from
your example subdirectory.

jsBin and jsFiddle: Online JavaScript Playgrounds | 593

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
!= operator, 12
!== operator, 12
$ (dollar sign), 172, 193, 197, 320
* (universal selector), 112, 123
* (wildcard), 449, 456
+ (plus sign), 17
:nth-child() pseudoclass, 122
; (semicolon), 195
== operator, 12
=== operator, 12, 144
_ (underscore character), 87, 181
_defineGetter method, 93
_defineSetter method, 93
{ } (curly brackets), 144

A
aboutAudio() event handler, 236
abstraction layers, 173
Access-Control-Allow-Methods header value,

450, 456
Access-Control-Allow-Origin header value, 449
accessibility

automatically updated regions, 163, 221
highlighting errors, 156–162
importance of, 143

accessor descriptors, 93
accidental closures, 74

accordion widget, 133
accounting libraries, 169
Accounting.js library, 169
add() function, 168
advanced math libraries, 170
Agile development paradigm, 148
Ajax

automatic page updates with, 218–220
making requests to other domains, 209–212
processing JSON from requests, 212
Promise object and, 270
PUT requests in, 450–453
sending binary data through, 453
XML document handling, 199

alert boxes, 157
alert role, 142
algorithms

recursive, 65–68
specifying patterns in, 122

alternative testing, 153
Amazon Appstore, 541
Amazon Fire apps

debugging, 580–583
geolocation, 577–580
packaging, 541

Amazon Web App
portal page, 542
tester app, 541

595

Android apps
building using Cordova, 543–551
geolocation, 536, 551–559
Google APIs for, 374
testing emulators, 149
vs. Chrome apps, 577

Android devices
default browser in, 540
discovering capabilities of, 587

Android SDK, 546
angle brackets, 25
AngularJS, 413
anonymous closures, 320
anonymous functions

definition of term, 61
function keyword and, 63
using in array methods, 54
using with timers, 29
wrapping functions in, 193
wrapping global variables with, 82

Apache Ant, 546
Apache, running with Node, 300–302
ApacheBench, 467
apikey, 210
app.js file, 537
AppCache files, 536
appendChild() method, 125
appendFile() function, 279
Application-Only Authentication, 379
apply() method, 27, 45
Appstore, packaging web apps for, 541
arc() method, 224
arcs, calculating length of, 39
arguments object, 75
ARIA alert role, 142, 157
ARIA live regions, 163
arity, 77
Array.prototype.slice() method, 75
Array.reduce() function, 64
arrays

anonymous functions and, 54
applying functions against elements, 48
associative, 54–58
converting function arguments into, 75
converting NodeLists to, 76
converting sets to, 253
creating, 98
creating filtered, 52
extracting portions of, 48

flattening 2-dimensional, 45
literal vs. object instance, 45
reducing, 64
removing artifacts from, 9
removing/replacing elements, 46
returning new arrays with functions, 51
reversing elements in, 67
searching through, 43
simplifying code in, 58–59
storing form element names/values, 54–58
traversing query results, 50
validating contents of, 52

artifacts, removing, 9
ASP.Net Color Blindness simulator, 243
assert module, 344
assertion tests, 146, 147
async attribute, 315
Async module, 293–296
asynchronous control management, 295
asynchronous functions, 280
Asynchronous Module Definition (AMD), 311,

316
asynchronous processing, 270–272, 289
attribute selectors, 157
audio files, 235
authentication, 423
authorization frameworks, 422–435
automatically updated regions, 218–220

B
back buttons, 502
Backbone.js, 416
background processes, 303
bar charts, 470–475
Basket.js, 314
behavior-driven development (BDD), 148
best practices (see accessibility; testing)
bezierCurveTo() method, 224
bidirectional communication, 458–464, 478
bind() method, 79, 100–103
bitwise operators, 144
blob response type, 453
block setting, 133
Bower, 338
browser notifications, 360
Browser Object Model (BOM) (see Web API)
browser requests, responding, 273–276
browser testing libraries, 166
browser testing services, 149

596 | Index

Browserify, 340
BrowserStack, 151

C
caching, 80
calculations, caching, 80
calculus functions, 170
call stack, 68
call() method, 75
callback function

arguments supported, 9, 44
definition of term, 70
forEach() method and, 49
modifying arrays with, 51
nested, 293
preventing code blocking with, 68–71

CamelCase notation, 120
Canvas element

adding video filter effects via, 241–245
dynamic line charts, 222–226
integrating with SVG, 233
vs. SVG, 235

CanvasPixelArray, 244
capturing parentheses, 19, 22–24
carriage return (\r), 15
CDATA (character data), 227
center, finding, 37
certificates, self-signed, 434, 549
chaining, 9, 103–105, 168, 173, 471
change event, 214
chart.js library, 476
charts

bar, 470–475
dynamic, 221–226
radar, 476
zoomable, 226

childNodes property, 108
child_process module, 297–299
circles, fitting within page elements, 37
circular arcs, calculating length of, 39
circular references, 74
class keyword, 266–270
class property, 119
classes, creating/extending, 266–270
clear() method, 254, 256
clearImmediate() method, 289
CLI (Command-Line Interface) tools, 302
click events, 128, 537
Client Credentials Grant, 379, 424

client-server communication
advanced

cross-domain requests, 447–449
implementing PUT requests in Ajax,

450–453
sending binary data through Ajax, 453
sharing cookies across domains, 455–458
testing WebSockets apps, 466–468
two-way communication, 458–464
unloading/zipping files, 464

basic
automatic page updates, 218–220
cross-domain requests, 209–212
extracting XML information, 201–205
parsing/modifying JSON, 206
populating selection lists, 214–217
processing JSON from Ajax requests, 212
XML document handling, 199

client-side dependencies, 338
closures, 73, 87, 320
cloud servers, 301
code

compressing, 187
conditional statements and, 50
delivering via CDNs, 192
documentation of, 184, 189
functional vs. imperative programming, 64
highlighting problems in, 143
increasing reliability of, 64
nested, 293
object-oriented programming, 85
open source, 189
packaging for reuse, 182–184, 187
performance testing, 152–156
preventing blocking, 68–71
programming approaches, 148
reducing using Array.reduce() function, 64
reducing using loose equality, 13
sharing across environments, 329–333
simplifying using chaining, 9, 103–105, 168,

173, 471
simplifying using destructuring assignment,

58–59
snippet playgrounds, 590
testing with REPL, 284–287
validation of, 7
watching for changes in, 304

codePointAt() method, 42
collaboration, open source code for, 189

Index | 597

collapsible sections, 133
collections, 253

(see also arrays)
color animations, 174
color blindness, 243
color-fade effect, 142
Color.vision.simulate, 243
command-line functionality, 297, 307–309
Commander module, 308
CommonJS, 311, 328
compiler optimizations, 155, 187
compression, 464
computed styles, 121
concat() method, 45
conditional statements, 49
connection.escape() function, 519
console, accessing, 589
console.log() function, 4
constructor objects

associated data types, 5
definition of term, 4

constructor property, 91
contains() method, 42
content delivery network (CDN), 192
content management system (CMS), 312
contentDocument+ property, 231
controlled dependencies, 316
cookies

alternatives to, 505, 514
drawbacks of, 506
manipulating, 507
session-specific, 510
sharing across domains, 455–458
vs. sessionStorage, 506

copyright symbol, 14
Cordova

accessing device information, 583
adding jQuery Mobile support, 556
Android Platform Guide, 546
Android versions supported, 547
building Android apps with, 543–551
cross-platform development with, 547
generating Chrome apps with, 576
generating Firefox OS apps, 567
platforms supported in, 545

Create-Read-Update-Delete (CRUD), 355
createAttribute() method, 120
createElement() method, 124, 128, 138
createInterface() method, 287

createTextNode() method, 126, 128, 138
credentialed requests, 455
credit card validation, 500
cross-browser testing, 150, 249
cross-domain communication, 209, 447–449,

455–458
Cross-Origin Resource Sharing (CORS)

benefits of, 447
binary data support in, 454
browser support for, 448
enabling, 448

cross-platform development, 547
CSS Object Model (CSSOM), 315
CSS Preprocessors, 395
CSS properties

accessing, 121
attribute selectors, 157
changing, 119
display, 136
filtering, 242
highlighting fields with, 156
testing for browser support, 166
visibility, 136

CSS-style selector strings, 116
CSS3, vs. jQuery plugins, 175
ctx.beginPath() method, 222
cURL command line tool, 356
curly brackets ({ }), 144
currency format, 169
currentStyle() method, 121
currentTime attribute, 239
currying, 79
curves, drawing, 224

D
D3, 470–475
daemon, 303
data

accessing Dropbox datastores, 523–533
accessing JSON-formatted, 351–354
encapsulating, 97–100
extracting from XML trees, 201–205
getting terminal input, 287
graphing changing data, 478–482
multivariate, 476
persisting across functions, 72
persisting using HTML5, 502–505
persisting using IndexedDB, 520–523
querying MySQL databases, 517–519

598 | Index

reading/writing to files, 278–283
sending as binary, 453
serving formatted, 276
shadowing form element entries, 513–517
storing session information, 505–513
types of, 4
updating in place, 447
validating form data, 495–502

data visualizations
advances in, 469
converting graphics to text, 489
cropping uploaded images, 491–494
D3 tool, 470–475
radar charts, 476
screenshots, 483–488
scrolling timelines, 478–482
SVG bar charts, 470–475

data–dojo–config attribute, 323
Date object

converting ISO 8601 format to, 25–28
expanding functionality with libraries, 170
tracking elapsed time with, 31
using arithmetic operators with, 31

datetime functions, 170
debugging

Amazon Fire apps, 580–583
Amazon Web App Tester app, 541
Android USB set up, 548
Kindle Fire apps, 580–583
using Chrome developer tools, 109, 155

decimal values, converting to hexadecimal, 32
declarative functions, 61, 175
default parameters, 83
default web server ports, 275
defer attribute, 316
define keyword, 318
defineProperty() method, 92, 97
degrees, converting to radians, 36
delete() method, 256
dependencies, managing, 319, 338
deprecated methods

CanvasPixelArray, 244
Proxy.create(), 264
_defineGetter, 93
_defineSetter, 93

destructuring assignments, 58–59
details element, 135
development mode, 391
Device Component Support Matrix, 542

device functionality, determining, 583–587
dict pattern, 57
display property, 136
document databases, 398
Document Object Model (DOM), 108, 175
document.createElement() method, 125
document.getElementById() method, 108, 235
document.getElementsByTagName() method,

110–116
document.querySelectorAll() method, 34
Dojo modules, 323
dollar sign ($), 172, 193, 197, 320
DOM pruning, 127
done() function, 169
drawImage() method, 242
Dropbox

accessing datastores, 523–533
OAuth authorization, 422–435

Drupal, 312
duplex streams, 465

E
EACCES error (permission denied), 301
Eclipse IDE, 547
ECMAScript 5

Array.reduce() function, 64
filter() method, 52
index methods, 44
ISO 8601 date support, 28
JSON parsing, 206
Object.create() method, 91
Object.preventExtensions() method, 94, 96
partial applications, 79
strict mode, 33, 95
trim() method, 88

ECMAScript 6
browser/environment support for, 249
class keyword, 266–270
default parameters, 83
destructuring assignment, 58–59
enabling browser support for, 59
find() method, 44
findIndex() method, 44
generator function, 261
iterator protocol, 260
let keyword, 250–252
Map object, 255–258
modularization support, 311
new constructs in, 249

Index | 599

Node.js and, 283
Promise object, 270–272
Proxy object, 263–266
Set object, 253
shims for string extras, 40–42
static methods in, 36
Symbol object, 258
tail call optimization, 67

ECMAScript Next (see ECMAScript 6)
edge mode, 251
EJS template system, 394
elements

accessing HTML, 234
accessing/tracing, 107–109
applying functions against, 48
applying functions to, 51
assigning variables to, 58–59
computed styles, 121
conserving space on forms, 133
finding common attributes, 123
finding type of, 108
hiding, 136
img, 453
modifying SVG, 231
removing child, 127
removing/replacing, 46
reversing in arrays, 67
setting style attribute, 119–122
sliding animation for, 174
storing names/values, 54–58
unique identifiers for, 107
validating, 52

Ember.js, 418
empty strings, 10
Emscripten, 490
emulating tools, 149
encrypted files, 240
Encrypted Media Extensions (EME), 240
ended event, 236
endsWith() method, 42
environment variable, 391
ePub XHTML files

creating mini readers, 365
outputting to web pages, 362

equal test, 146
equality operators, 12, 144
errors

displaying visual cues for, 140, 158
EACCES (permission denied), 301

eliminating with proper tail calls, 68
highlighting accessibly, 156–162
RangeError, 68, 264
reducing with functional programming, 64
reference, 62
resulting from strict mode, 33, 95
TypeError, 95, 264
undefined, 10, 62

escape sequences, 14
Etre Color Blindness Simulator, 243
eval() function, 168
eval() method, 144
even argument, 122
event handlers

aboutAudio(), 236
non-blocking, 71
onblur, 156
onsuccess, 522
upgradeneeded, 522
window.onload, 233, 537

event hooks, 196
event loop, 289–293
event notification, 360
events

change, 214
click, 128, 537
ended, 236
mouseout, 137
mouseover, 137
onchange, 156
onload, 233
play, 236
ready, 172
storage, 515
timer, 70
touch, 167
visibility change, 362
window.onpopstate, 505

every() method, 52
Experimental JavaScript flag, 59
Express framework

converting Express into MVC, 396–409
using Express-Generator, 388–395

extends keyword, 267
external libraries, building on jQuery, 171–173

F
factorials, 66
fades, 141

600 | Index

feature detection, 167
Fibonacci Sequence, 66
File API, 362–370
file descriptors, 295
files

app.js, 537
encrypted, 240
loading JS files, 312–315
loading locally in browsers, 362–365
map.js, 537
outputting ePub XHTML to web pages, 362
reading using web workers, 367
reading/writing data, 278–283
unloading/zipping, 464

fill attribute, 228
filter() method, 52
find() method, 44
find/replace, 18
findIndex() method, 44
Firefox apps

generation using Cordova, 567
geolocation, 559–568

first-class objects, definition of term, 61
fixed positioning, 132
fn property, 193
fold effect, 174
forEach() method, 9, 49, 50, 54
foreignObject+ element, 234
Forever tool, 302
form data

creating collapsible sections, 133–136
highlighting errors accessibly, 156–162
populating selection lists, 214–217
shadowing element entries, 513–517
storing names/values, 54–58
validating, 495–502

Formidable module, 464
frameworks

AngularJS, 413
Backbone.js, 416
converting Express into MVC, 396–409
definition of term, 387
Ember.js, 418
examples of, 387
Express-Generator, 388–395
Handlebars.js, 418
micro-frameworks, 166
OAuth, 422–435
selecting a SPA, 410–421

successful coexistence of, 197
Web Components, 436–445

fs module, 278–283
full-duplex communication, 460
function closures, 29, 72
function constructor, 61
function expression, 61–63
function factory, 78
function keyword, 63
Function object, 61
Function.prototype.bind() method, 79
functional programming, 64, 85
functional recursion, 66
functions

anonymous, 29, 54, 61, 63, 82, 193
applying against elements, 48
asynchronous, 280
callback, 44, 68–71, 293
controlling scope, 100–103
converting arguments into arrays, 75
creating, 61
creating as an expression, 63
declarative, 61, 175
default parameters, 83
encapsulating, 97–100
higher order, 64
implementing recursive algorithms, 65–68
inner and outer, 72
literal, 61, 63, 65–68
memoization, 80, 181
named, 54
naming, 63
passing as arguments to other functions, 63
placing/hoisting, 61
pure, 65
reducing redundancy with, 77–79
returning new arrays with, 51
state remembering, 72–75
transforming, 208
unscoped, 101
using function closures with timers, 29
yielding, 261

G
Gaia, 562
garbage collection, 255
generator function, 261
geocoding services, 374

Index | 601

geolocation apps
Android, 551–559
Firefox, 559–568
geocoding services, 374
Google Chrome, 569–577
installable, 535–541
Kindle Fire, 577–580

getAttribute() method, 121
getAuthorization() method, 425
getBoundingClientRect() method, 138
getComputedStyle() method, 121
getCurrentPosition() method, 537
getElementsByTagName() method, 111, 124,

235
getElementsByTagNameNS() method, 112, 235
getImageData() method, 241
getInstance() function, 186
getItem() function, 509, 514
getRandomNumber() function, 100
getSVGDocument() method, 231
getValues() method, 91
Ghostlab, 150, 301
GitHub, 166, 190, 312
global flag (g), 16, 19, 20
global methods

parseFloat(), 36
parseInt(), 36

global objects, 285
global variables, 82
Google APIs

acquiring, 373
cost of, 373
documentation, 374
geocoding services, 374
Google Maps, 371–378
selecting, 374
server access to, 374

Google Chrome apps
generating with Cordova, 576
geolocation, 569–577
standalone capable setting, 540
vs. Android apps, 577

Google Code, 189
Google Maps, 536
graphics

converting to text, 489
working with, 37

Grunt, 345, 546

H
Handlebars.js, 418
Harmony application, 283
has() method, 253
head elements, 536
head.load() function, 314
head.ready() function, 314
HeadJS, 313
headless applications, 483
hexadecimal sequence (2 digits), 15
hexadecimal values, converting to, 32
Highcharts library, 225
higher order functions, 64
history.pushState() method, 502
history.replaceState() method, 502
hoisting, 61
hotlinking, 192
HTML5

asynchronous script loading, 315
audio element, 235, 239
collapse/display form elements with, 135
encrypted files, 240
forms validation techniques, 501
persisting data with, 502–505
replacing tags with named entities, 25
template element, 436
testing for browser support, 166
video element, 236, 237, 241
vs. jQuery plugins, 175

HTTP long-polling, 461
HTTP methods, 306
http.createServer() object, 274
http.IncomingMessage object, 274
http.ServerResponse object, 274

I
id property, 92
identifiers, unique, 107, 259
idGettr web service, 210
ImageMagick, 297, 491–494
images

accessing, 110–116
creating in Canvas, 222
cropping uploaded, 491–494
discovering in articles, 116–118
sending as binary data, 453
video, 242

img element, 453

602 | Index

Immediately-Invoked Function Expression
(IIFE)
encapsulating objects in, 185
global namespace clutter and, 313
library sharing and, 330
singletons and, 100
using RequireJS with jQuery, 320
wrapping variables/functions with, 82

imperative programming, 64
IndexedDB, 520–523
indexOf() method, 7, 43, 46
inflection rules, 420
inheritance, 88, 90, 107
init() function, 186
insertBefore() method, 124
instantiation, vs. declaration, 62
integration testing, 344
iOS apps, 149, 535
IP addresses, specifying, 276
iptables rule, 302
ISO 8601 format, 25–28
iterator protocol, 260

J
Jade, 393
Java Developer Kit (JKD), 546
JIT (Just-In-Time) compiler optimizations, 155
jQuery

building on framework, 171–173
converting libraries to plug-ins, 193
using plugins, 174–176
using with RequireJS, 319
versions available, 172

jQuery Mobile, 556
jQuery Validation Engine, 497, 499
jQuery.hotkeys plugin, 177
jQuery.payment library, 500
JS Bin, 144
jsBin, 590
jsFiddle, 144, 590
JSHint, 143
JSLint, 45, 144
JSON

accessing data RESTfully, 351–354
converting objects to filtered/transformed

strings, 208
parsing/modifying, 206
processing from Ajax requests, 212

JSON.stringify() method, 208

JsonClient, 356
JSONP (JSON with padding), 209–212
jsPerf, 153
just-in-time behavioral modification, 263

K
key/value pairs, creating unique, 255–258
keyboard shortcuts, 177–180
Keypress library, 177
keys() method, 54
Keytool, 549
Kindle Fire apps

debugging, 580–583
default browser and, 540
geolocation, 577–580
packaging, 541

L
l10n.js library, 562
lastIndex property, 22
lastIndexOf() method, 43
latitude/longitude pairs, 376
layers of abstraction, 173
leading spaces, removing, 9
length property, 4, 10
let keyword, 250–252, 283
libraries

accounting, 169
advanced math/statistics, 170
basic utility, 180
benefits of using, 165
building on jQuery framework, 171–173
chart making, 225, 476
chart.js, 476
combining several, 195–198
converting to AMD format, 316
converting to jQuery plug-ins, 193
converting to Node modules, 327
creating vs. using existing, 165, 182
datetime functions, 170
expanding Math object capability with, 168
hosting, 189–192
hotlinking to, 192
keyboard shortcut support, 177–180
loading with script loaders, 312–315
locating, 165
minifying, 187
mylib.js, 317

Index | 603

Ocrad.js, 489
one.js, 317
packaging code with, 182–184
polyfills, 167
private data member support, 185
RequireJS, 318
reusability of, 187
sharing across environments, 329–333
SVG creation/animation, 230
testing for features with, 166
two.js, 317
using external, 171–173
using jQuery plugins, 174–176
using RequireJS with other libraries, 319–

323
well-designed, 195
wrapping for easy swapping, 173

Lightbox 2 library, 184
line charts, dynamic, 221–226
line feeds, 14, 24
lint tools, 143
Linux, packaging web apps in, 541
lists

applying striped theme to, 122
extracting from Strings, 7–10
populating from servers, 214–217

literal functions, 61, 63, 65–68
literals

associated data types, 5
definition of term, 4
vs. objects and primitives, 3–7

live regions, 163
Load Impact, 467
load testing, 153, 466
localization, 562
localStorage, 513–517
long option, 308
long-polling, 461
loose coupling, 311
loose equality, 12

M
makeIterator() function, 260
Map object, 255
map() method, 51
map.js file, 537
Markdown syntax, 336
markup, escaping, 25

Math object
converting degrees to radians, 36
expansion libraries for, 168

Math.js library, 168
mathematics libraries, 170
matrix math functions, 170
media elements, 235, 239, 241
memoization, 80, 181
memory leaks, 255
meta elements, 536
meta-programming API, 264
method chaining, 9, 103–105, 168, 173, 471
methods, adding new, 88
micro-frameworks, 166
middleware, 390
minification, 187
mixins, 395
mobile application development, 535–587

accessing device functionality, 583–587
Amazon Appstore, 541
cross-platform approach, 547
debugging Amazon Fire apps, 580–583
debugging Android apps, 580–583
environments covered, 535
geolocation apps for Chrome, 569–577
geolocation apps for Firefox, 559–568
geolocation apps for Kindle Fire, 577–580
installable web apps, 535–541
iOS apps, 535
simulators for, 149
standalone Android apps, 551–559
testing emulators, 149
using Cordova, 543–551

mobile-like notifications, 360
Mocha, 343
Model-View-Controller (MVC) pattern

basics of, 387
converting Express site into MVC app, 396–

409
Express framework, 388
separation of concerns in, 396

Modernizr.load tool, 166
modularization

accessing multiple environments, 329–333
basis of, 311
benefits of, 311
converting JS to AMD format, 316
converting libraries to Node modules, 327
creating installable Node modules, 333–337

604 | Index

dependency management with Bower, 338
Dojo modules, 323
installing/maintaining Node with npm, 325
loading scripts asynchronously, 315
loading scripts with script loaders, 312–323
locating modules with npm, 326
running tasks with Grunt, 345
static methods, 36
support in ES 6, 311
systems using, 311
unit testing Node modules, 342–345
using modules in browsers, 340
using RequireJS with jQuery, 319–323

module pattern, 322
modulo operator, 122
Moment.js library, 170
MongoDB, 398
mouseout event, 137
mouseover event, 137
Mousetrap library, 177–180
multidimensional arrays, 45
multiply() function, 168
multithreading, 70, 289
multivariate data points, 476
mylib.js library, 317
MySQL databases, querying, 517–519

N
named entities, 25
named functions, 54
namespacing, 97–100, 112
nesting, 293
Netflix-style pop-up windows, 137–140
new operator, 5, 61
next() property, 260
Node

accessing Twitter API, 379–385
assert module, 344
Async module, 293–296
benefits of, 273
callback spaghetti due to, 295
child_process module, 297–299
Commander module, 308
converting libraries to modules, 327
Cordova and, 545
creating command-line utility, 307–309
creating installable modules, 333–337
deployment services for, 301
ensuring application restart, 302

ES 6 functionality in, 283
event loop, 289–293
filesystem management, 278–283
fs module, 278–283
Harmony application, 283
HTTP server, 273–276
installing/maintaining with npm, 325
node.daemon module, 303
nodejs-websocket module, 458, 479
nodemon utility, 304
Numbers module, 170
Readline module, 287
REPL version, 284–287
Request module, 305
require() function, 274
Restify module, 355–359
running with Apache, 300–302
serving formatted data, 276
timers, 289–293
transform streams module, 447
unit testing modules, 342–345
url utility module, 274
using modules in browsers, 340
XMLWriter module, 276

Node Assert, 344
node-mysql module, 517
NodeList

converting to arrays, 76
live collection functionality, 111
returning with document.getElementByTag‐

Name() method, 110
traversing with forEach() method, 50

nodemon utility, 304
nodeName property, 108
nodes

child, 109
definition of term, 108
parent, 108

notifications, mobile-like, 360
npm (Node package manager)

documentation for, 336
installing/maintaining modules with, 325
locating modules with, 326

NSID (unique user identifier), 210
null variables, confirming, 11
Numbers module, 170
numbers, summing in table columns, 33–36

Index | 605

O
OAuth 2.0, 379, 424, 527
OAuth framework, 422–435
object-oriented programming, 85
Object.create() method, 90
Object.defineProperties() method, 91
Object.defineProperty() method, 94
Object.freeze() method, 95
Object.isExtensible() method, 95
Object.preventExtensions() method, 94, 96
Object.seal() method, 96
objects

accessing properties of, 4
browser support for, 249
chaining methods, 103–105
controlling scope, 100–103
converting to JSON-formatted strings, 208
creating from JSON, 206
creating using prototype, 87–90
defining new properties, 92
encapsulating data/functions, 97–100
ES 6 standard, 249–272
global, 285
inheriting functionality, 90
JavaScript’s object-oriented capabilities, 85
JIT behavioral modification to, 263–266
keeping properties private, 86, 185
literal, 97, 182
preventing changes to, 95
preventing extensibility of, 94
Set object, 253
vs. primitives and literals, 3–7
weakly held, 255

Ocrad.js library, 489
octal sequence (3 digits), 15
odd argument, 122
ok test, 146
onblur event handler, 156
onchange event, 156
one-off object, 97, 186
one.js library, 317
onload event, 233
onsuccess event handler, 522
opacity settings, 132
Open Exchange Rates, 169
open source code, 189
open() function, 281
openFile() function, 295
Opera Mobile Classic Emulator, 149

Optical Character Recognition (OCR), 489
optimizations, 155, 187, 319
OPTIONS verb, 450
overlays, adding, 129–132
overrideMimeType() method, 200

P
package.json file, 335
page overlays, adding, 129–132
page state, 502
page updates, 163, 218, 221
Page Visibility API, 362
paragraph element, 126
paragraphs

adding text to, 125
inserting new, 124

parameterized queries, 519
parameters, default, 83
parentNode property, 108
parse() method, 28, 212
parseFloat() function, 34
parseInt() function, 34
partial application, 73, 77–79
Passport system, 423
path() method, 222
patterns

dict pattern, 57
finding/highlighting in strings, 18–22
replacing with new strings, 16
Unicode sequence, 16

performance testing, 152–156, 466
performance, improving with memoization, 80
permissions property, 565
PhantomJS, 483–488
PhoneGap, 543–551
play event, 236
playgrounds, 590
plug-ins

converting libraries to, 193
definition of term, 165
proper word usage, 176
using jQuery, 174–176

plus sign (+), 17
polling, 461
polyfills, 167, 249
pool.escape() function, 519
pop-up windows, 137–140
port 80, 275, 300
preflighting requests, 450

606 | Index

pretty-printing, 209
primitives

definition of term, 4
five types of, 5
vs. objects and literals, 3–7

private data members, 86, 185
privileged methods, 87
processing, asynchronous, 270–272, 289
production mode, 391
profiling, 154
programming

functional vs. imperative, 64
meta-programming APIs, 264

Promise object, 270–272
proper tail calls, 67
properties

accessing, 4
adding using prototype, 87–90
changing CSS, 119
constructor, 91
defining new, 92
keeping private, 86, 185
preventing addition of, 94
preventing redefinition of, 95

property keys, creating unique, 258
property/value pairs, 98
protanopia, 243
protocol-less URL, 192, 313
protocol-relative URL, 192
prototype, 87–90
Prototype.bind, 100–103
prototypical inheritance, 85
proxies, reverse, 300
Proxy object, 263–266
pseudonamespace method, 115
public data members, 86
pure functions, 65
PUT requests, implementing in Ajax, 450–453

Q
quadraticCurveTo() method, 224
queries, parameterized, 519
querySelector() method, 116
querySelectorAll() method, 50, 161
querySelectorALL() method, 116
QUnit, 145

R
radar charts, 476
radians, converting to degrees, 36
radius, finding, 37
RangeError, 68, 264
read() function, 281
readFile() function, 278
Readline module, 287
README files, 336
ready event, 172
rect element, 228
recursive algorithms, 65–68
redundancy, reducing, 77–79
refactoring, 184
reference errors, 62
references, circular, 74
RegExp exec() method, 19, 24
RegExp object, 16, 20, 24
region attributes, 163
regular expressions

basic use of, 17
dynamic creation of, 17
executing with RegExp exec() method, 19
replacing HTML tags with, 25
reversing words with, 23
special characters, 17

removeChild() method, 127
repeat() method, 42
REPL (read-evaluate-print-Loop), 284–287
replace() method, 16, 23
replaceElement() function, 49
replacer functions, 208
Representational State Transfer (REST)

accessing JSON data RESTfully, 351–354
creating RESTful APIs with Restify, 355–359
RESTful API basics, 352
RESTful API examples, 352

Request module, 305
RequestListener function, 274
require keyword, 318
require() function, 274
RequireJS library, 316, 318–323
reserve proxies, 300
responseType, 453
responseXML property, 200
Restify module, 355–359
reviver function, 206
root privileges, 301

Index | 607

rows
adding to tables, 35, 128
deleting from tables, 127

S
same-origin policy, 209
Scalable Vector Graphics (SVG)

accessing from web page script, 231
adding JavaScript to, 227–230
browser support for, 229
creating bar charts with D3, 470–475
fitting circles into div elements, 37
generating/saving on server, 474
integrating with Canvas element, 233
libraries for, 230
scrolling timeline, 481
vs. Canvas element, 235

scope, 72, 100–103
screen scraping, 305
screenshots, 483–488, 583
script elements, 210, 227
script injection, 312, 315
scripts

loading asynchronously, 315
loading with script loaders, 312–315

sections, collapsible, 133
security issues

nodemon tool, 304
private data members, 87
same-origin policy, 209
single domain origin, 448
SQL injection attacks, 519
user-supplied text, 127

selection lists, 214–217
Selectors API, 116–118, 122
self variable, 103
self-signed certificates, 434, 549
semicolon (;), 195
separation of concerns, 396
session information, storing, 505–513
sessionStorage, 505–513
Set object, 253
set() method, 256
setAttribute() method, 119, 122, 133
setImmediate() method, 289
setInterval() method, 29, 289
setItem() function, 509, 514
setTimeout() method, 29, 68, 289
shallow copies, 48

shapes, creating in Canvas, 222
shims

for EC6 string extras, 40–42
for RequireJS, 319

shopping carts, cookie-based, 506
short option, 308
sideloading, 551, 577
signing authority, 433
simulators, 149
single domain origin, 448
Single Page Application (SPA) framework

basics of, 387
selecting, 410–421

singletons, 99, 186
slice() method, 48, 76
sliding animation, 174
social media, 422
Socket.IO module, 462
some() method, 53
source code hosts, 189
Source Forge, 191
spaces, removing, 9
special characters

inserting into strings, 14, 17
XHTML-sensitive, 227

speed testing, 466
splice() method, 46, 253
split() method, 7, 26
spread operator, 253
SQL injection attacks, 519
Squel.js library, 517
standard equality, 7
startsWith() method, 42
state, functions remembering, 72–75, 82
static methods, 36, 42
statistics libraries, 170
storage event, 515
strict equality, 5, 12, 144, 254
strict mode

benefits of, 143
ES6 standard objects and, 251
non-extensible objects, 95
number support in, 32
potential errors due to, 33
triggering, 33, 283

String replace() method, 25
String.prototype methods, 41
string.replace special patterns, 23

608 | Index

strings
checking for existing, nonempty, 10–14
converting objects to JSON formatted, 208
CSS-style selector, 116
determining length of, 4
extracting lists from, 7–10
finding/highlighting patterns in, 18
inserting special characters into, 14
replacing matched substrings in, 16
swapping words in, 22–24

structured programming, 148
style property, 119
Stylus, 395
substr() method, 8
substring() method, 7
substrings

referencing matched, 23
replacing matched, 16

sudo command, 301
summary element, 135
Symbol object, 258

T
tables

adding rows to, 35, 128
deleting rows from, 127
summing numbers in table columns, 33–36

tail call optimization, 67
task runners, 348
tasks

iterating over, 260
running with Grunt, 345

template element, 436
templates, 393
terminal, getting input from, 287
Tesseract OCR, 490
Test-Driven Development (TDD), 148, 344
testing

alternative testing, 153
assertion tests, 146
forms of, 143
highlighting potential code errors, 143
in various environments, 148–152
integration, 344
load testing, 153, 466
performance, 152–156, 466
profiling, 154
TDD vs. waterfall development, 148
unit Node modules, 342–345

unit testing with QUnit, 145
user acceptance testing, 344
WebSockets apps, 466–468
with REPL, 284–287

text
adding to paragraphs, 125
converting graphics to, 489
getting from readable streams, 287
showing/hiding, 174

Text nodes, 126
this keyword, 86, 101
Thor, 468
time zones, 26
time, tracking elapsed, 31
timers

automatic page updates with, 218–220
dynamic updates with, 223
in Node, 289–293
preventing code blocking with, 68–71
using with function closures, 29

TodoMVC, 410–421
toString() function, 280, 518
toString() method, 32, 58
touch events, 167
Traceur, 59, 252, 266–270
trampolines, 68
transform streams module

benefits of, 447
unloading/zipping files, 464

transpilers, 252
traps, 265
trigonometric methods, 36
trim() method, 9, 88
truthy values, 146
Twitter API, 379–385, 424
two.js library, 317
type checking, 6
type conversion, 13
type property, 92
typed arrays, 454
TypeError exceptions, 95, 264
typeof operator, 10

U
UglifyJS, 188
Uint8ClampedArray typed array, 244
undefined errors, 10, 62
underscore character (_), 87, 181
Underscore.js library, 180

Index | 609

undo methods, 127
Unicode sequence, 16
unique identifiers, 107, 259
unique user identifier, 210
unit testing

benefits of, 344
best practices, 146
definition of term, 146
Node modules, 342–345
with QUnit, 145

Universal Module Definition (UMD), 333
universal selector (*), 112, 123
Unix daemon, 303
unscoped function, 101
update notifications, 163, 163
upgradeneeded event handler, 522
url utility module, 274
user acceptance testing, 344
user interface access

accessing images, 110–116
accessing/tracing elements, 107–109
adding page overlays, 129–132
adding text to paragraphs, 125
applying striped themes to lists, 122
creating collapsible form sections, 133–136
creating pop-up windows, 137–140
deleting table rows, 127
discovering images in articles, 116–118
displaying visual cues, 140–142, 158
finding elements sharing attributes, 123
hiding page sections, 136
inserting new paragraphs, 124
jQuery plugins for, 174
setting element style attribute, 119–122
typical approaches, 107
typical UIs, 107

UTC time zones, 26
UTC() method, 27
utility libraries, 180

V
Validate.js, 496, 498
valueOf() function, 169
valueOf() method, 11
var keyword, 86
variables

assigning elements to, 58–59
confirming, 10–14
creating, 5

declaring, 4
effect of scope on, 74
global, 74, 82
returning type of, 10
self, 103

version control software, 189
video

adding filter effects to, 241–245
browser support for, 240
controlling from JavaScript, 237–240
encrypted files, 240

visibility change event, 362
visibility property, 136
visual cues, displaying, 140–142, 158

W
W3C DOM Storage specification, 513
WAI-ARIA (Accessible Rich Internet Applica‐

tions), 156
waterfall project design, 148
waterfall() function, 295
weakly held objects, 255
WeakMap object, 258
WeakSet, 255
Web APIs

accessing JSON data via RESTful, 351–354
creating mini E-Pub readers, 365–370
creating RESTful APIs with Restify, 355–359
definition of, 351
event notification, 360
Google Maps API, 371–378
JavaScript timers and, 29
list of, 351
loading files locally, 362–365
Twitter API, 379–385

Web App Tester, 541
web apps

Android, 551–559
constraints of, 541
installable, 535–541
packaging for Amazon Appstore, 541
packaging in Linux, 541

Web Components framework, 436–445
Custom Elements, 442
HTML Imports, 438
Shadow DOM, 439
template element, 436

web effects
accessing SVG from web page script, 231

610 | Index

adding filter effects to video, 241–245
adding JavaScript to SVG, 227–230
controlling video from JavaScript, 237–240
dynamic line charts, 221–226
integrating SVG and Canvas element, 233
running routines with audio files, 235

Web Notifications API, 360
web resources, accessing, 305
web server ports, 275, 300
web workers, 365–370

reading ePub files with, 369
reading files with, 367

WebKit, 483
WebSockets, 458, 466, 478–482
Where Am I? geolocation app

Android, 551–559
directory structure, 541
Firefox, 559–568
Google Chrome, 569–577
Kindle Fire, 577–580
Nexus 7 tablet, 540

while loops, 49
white space, removing, 9
whitelists, 209
whitespace characters, 17, 109
widgets, 356
wildcard (*), 449, 456

window.onload event handler, 233, 537
window.onpopstate event, 505
Windows 8 apps, 535
withCredentials property, 455
wrapping libraries, 173
write() function, 281
writeFile() function, 278

X
XHMLHttpRequest, 200
XHR polling, 461
XHTML-sensitive characters, 227
XML documents

extracting XML tree information, 201–205
formatting with Node, 276
handling in Ajax applications, 199

XML MIME type, 199
XMLWriter module, 276

Y
yield statements, 262

Z
Zlib module, 464

Index | 611

About the Author
Shelley Powers has been working with, and writing about, web technologies—from the
first release of JavaScript to the latest graphics and design tools—for more than 12 years.
Her recent O’Reilly books have covered the semantic web, Ajax, JavaScript, and web
graphics. She’s an avid amateur photographer and web development aficionado, who
enjoys applying her latest experiments on her many websites.

Colophon
The animal on the cover of JavaScript Cookbook, Second Edition is a little egret (Egretta
garzetta). A small white heron, it is the old world counterpart to the very similar new
world snowy egret. It is the smallest and most common egret in Singapore, and its
original breeding distribution included the large inland and coastal wetlands in warm
temperate parts of Europe, Asia, Africa, Taiwan, and Australia. In warmer locations,
most birds are permanent residents; northern populations, including many European
birds, migrate to Africa and southern Asia. They may also wander north after the
breeding season, which presumably has led to this egret’s range expansion.

The adult little egret is 55–65 cm long with an 88–106 cm wingspan. It weighs 350–550
grams. Its plumage is all white. It has long black legs with yellow feet and a slim black
bill. In the breeding season, the adult has two long nape plumes and gauzy plumes on
the back and breast, and the bare skin between its bill and eyes becomes red or blue.
Juvenile egrets are similar to nonbreeding adults but have duller legs and feet. Little
egrets are the liveliest hunters among herons and egrets, with a wide variety of techni‐
ques: they may patiently stalk prey in shallow waters; stand on one leg and stir the mud
with the other to scare up prey; or, better yet, stand on one leg and wave the other bright
yellow foot over the water’s surface to lure aquatic prey into range. The birds are mostly
silent, but make various croaking and bubbling calls at their breeding colonies and
produce a harsh alarm call when disturbed.

The little egret nests in colonies, often with other wading birds, usually on platforms of
sticks in trees or shrubs, in reed beds, or in bamboo groves. In some locations, such as
the Cape Verde Islands, the species nests on cliffs. In pairs they will defend a small
breeding territory. Both parents will incubate their 3–5 eggs for 21–25 days until hatch‐
ing. The eggs are oval in shape and have a pale, nonglossy, blue-green color. The young
birds are covered in white down feathers, are cared for by both parents, and fledge after
40 to 45 days. During this stage, the young egret stalks its prey in shallow water, often
running with raised wings or shuffling its feet. It may also stand still and wait to ambush
prey. It eats fish, insects, amphibians, crustaceans, and reptiles.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

http://animals.oreilly.com

The cover image is from Cassell’s Natural History. The cover fonts are URW Typewriter
and Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe
Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	The World of JavaScript
	Book Audience
	Book Architecture or Why Is This Book Organized in This Way?
	Part I, Classic JavaScript
	Part II, JavaScript, All Blown Up

	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Part I. Classic JavaScript
	Chapter 1. The JavaScript Not-So-Simple Building Blocks
	1.1. Differentiating Between a JavaScript Object, Primitive, and Literal
	Problem
	Solution
	Discussion
	See Also

	1.2. Extracting a List from a String
	Problem
	Solution
	Discussion
	See Also
	Advanced
	Extra: Simplifying the Code Using Chaining

	1.3. Checking for an Existing, Nonempty String
	Problem
	Solution
	Discussion
	Extra: Loose and Strict Equality Operators
	See Also

	1.4. Inserting Special Characters
	Problem
	Solution
	Discussion

	1.5. Replacing Patterns with New Strings
	Problem
	Solution
	Discussion
	Extra: Regular Expression Quick Primer
	See Also

	1.6. Finding and Highlighting All Instances of a Pattern
	Problem
	Solution
	Discussion
	See Also

	1.7. Swapping Words in a String Using Capturing Parentheses
	Problem
	Solution
	Discussion

	1.8. Replacing HTML Tags with Named Entities
	Problem
	Solution
	Discussion

	1.9. Converting an ISO 8601 Formatted Date to a Date Object Acceptable Format
	Problem
	Solution
	Discussion

	1.10. Using Function Closures with Timers
	Problem
	Solution
	Discussion
	See Also

	1.11. Tracking Elapsed Time
	Problem
	Solution
	Discussion

	1.12. Converting a Decimal to a Hexadecimal Value
	Problem
	Solution
	Discussion
	Extra: Speaking of Strict Mode

	1.13. Summing All Numbers in a Table Column
	Problem
	Solution
	Discussion
	See Also
	Extra: Modularization of Globals

	1.14. Converting Between Degrees and Radians
	Problem
	Solution
	Discussion

	1.15. Find the Radius and Center of a Circle to Fit Within a Page Element
	Problem
	Solution
	Discussion

	1.16. Calculating the Length of a Circular Arc
	Problem
	Solution
	Discussion
	See Also

	1.17. Using ES6 String Extras Without Leaving Users in the Dirt
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. JavaScript Arrays
	2.1. Searching Through an Array
	Problem
	Solution
	Discussion
	See Also
	Extra: Array Literal or Array Object Instance?

	2.2. Flattening a Two-Dimensional Array with concat() and apply()
	Problem
	Solution
	Discussion

	2.3. Removing or Replacing Array Elements
	Problem
	Solution
	Discussion

	2.4. Extracting a Portion of an Array
	Problem
	Solution
	Discussion

	2.5. Applying a Function Against Each Array Element
	Problem
	Solution
	Discussion
	See Also
	Extra: About That Conditional Statement

	2.6. Traversing the Results from querySelectorAll() with forEach() and call()
	Problem
	Solution
	Discussion
	See Also

	2.7. Applying a Function to Every Element in an Array and Returning a New Array
	Problem
	Solution
	Discussion

	2.8. Creating a Filtered Array
	Problem
	Solution
	Discussion

	2.9. Validating Array Contents
	Problem
	Solution
	Discussion
	Extra: Using Anonymous Functions in Array Methods

	2.10. Using an Associative Array to Store Form Element Names and Values
	Problem
	Solution
	Discussion
	See Also
	Extra: The dict Pattern

	2.11. Using a Destructuring Assignment to Simplify Code
	Problem
	Solution
	Discussion
	Extra: Harmony Flags and Using Traceur
	See Also

	Chapter 3. Functions: The JavaScript Building Blocks
	3.1. Placing Your Function and Hoisting
	Problem
	Solution
	Discussion

	3.2. Passing a Function As an Argument to Another Function
	Problem
	Solution
	Discussion
	Extra: Functional Programming and JavaScript
	See Also

	3.3. Implementing a Recursive Algorithm
	Problem
	Solution
	Discussion
	Advanced: Tail Call Optimization
	See Also

	3.4. Preventing Code Blocking with a Timer and a Callback
	Problem
	Solution
	Discussion

	3.5. Creating a Function That Remembers Its State
	Problem
	Solution
	Discussion
	See Also

	3.6. Converting Function Arguments into an Array
	Problem
	Solution
	Discussion
	See Also
	Extra

	3.7. Reducing Redundancy by Using a Partial Application
	Problem
	Solution
	Discussion
	Advanced: A Partial Function Factory
	Extra: Using bind() to Partially Provide Arguments
	See Also

	3.8. Improving Application Performance with Memoization (Caching Calculations)
	Problem
	Solution
	Discussion
	See Also

	3.9. Using an Anonymous Function to Wrap Global Variables
	Problem
	Solution
	Discussion
	See Also

	3.10. Providing a Default Parameter
	Problem
	Solution
	Discussion

	Chapter 4. The Malleable JavaScript Object
	4.1. Keeping Object Members Private
	Problem
	Solution
	Discussion
	See Also

	4.2. Using Prototype to Create Objects
	Solution
	Discussion

	4.3. Inheriting an Object’s Functionality
	Problem
	Solution
	Discussion

	4.4. Extending an Object by Defining a New Property
	Problem
	Solution
	Discussion
	See Also

	4.5. Preventing Object Extensibility
	Problem
	Solution
	Discussion
	See Also

	4.6. Preventing Any Changes to an Object
	Problem
	Solution
	Discussion

	4.7. Namespacing Your JavaScript Objects
	Problem
	Solution
	Discussion
	Advanced
	See Also

	4.8. Rediscovering this with Prototype.bind
	Problem
	Solution
	Discussion
	Extra: self = this

	4.9. Chaining Your Object’s Methods
	Problem
	Solution
	Discussion

	Chapter 5. JavaScript and Directly Accessing the User Interface
	5.1. Accessing a Given Element and Finding Its Parent and Child Elements
	Problem
	Solution
	Discussion

	5.2. Accessing All Images in the Web Page
	Problem
	Solution
	Discussion
	See Also
	Extra: Namespace Variation

	5.3. Discovering All Images in Articles Using the Selectors API
	Problem
	Solution
	Discussion
	Extra: Namespace Variation and CSS Selectors
	See Also

	5.4. Setting an Element’s Style Attribute
	Problem
	Solution
	Discussion
	Advanced
	Extra: Accessing an Existing Style Setting

	5.5. Applying a Striped Theme to an Unordered List
	Problem
	Solution
	Discussion
	See Also

	5.6. Finding All Elements That Share an Attribute
	Problem
	Solution
	Discussion
	See Also

	5.7. Inserting a New Paragraph
	Problem
	Solution
	Discussion
	See Also

	5.8. Adding Text to a New Paragraph
	Problem
	Discussion

	5.9. Deleting Rows from an HTML Table
	Problem
	Solution
	Discussion

	5.10. Adding a Page Overlay
	Problem
	Solution
	Discussion
	See Also

	5.11. Creating Collapsible Form Sections
	Problem
	Solution
	Discussion
	Extra: JavaScript or HTML5?

	5.12. Hiding Page Sections
	Problem
	Solution
	Discussion
	See Also

	5.13. Creating Hover-Based Pop-Up Info Windows
	Problem
	Solution
	Discussion

	5.14. Displaying a Flash of Color to Signal an Action
	Problem
	Solution
	Discussion
	See Also

	Chapter 6. Preliminary Testing and Accessibility
	6.1. Cleaning Up Your Code with JSHint
	Problem
	Solution
	Discussion
	See Also

	6.2. Unit Testing Your Code with QUnit
	Problem
	Solution
	Discussion
	Extra: Writing Tests First

	6.3. Testing Your Application in Various Environments
	Problem
	Solution
	Discussion
	See Also

	6.4. Performance Testing Different Coding Techniques
	Problem
	Solution
	Discussion
	Extra: About That Use of jsPerf

	6.5. Highlighting Errors Accessibly
	Problem
	Solution
	Discussion
	See Also

	6.6. Creating an Accessible Automatically Updated Region
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Creating and Using JavaScript Libraries
	7.1. Finding the Perfect Library
	Problem
	Solution
	Discussion

	7.2. Testing for Features with Modernizr.load
	Problem
	Solution
	Discussion

	7.3. Going Beyond the Math Object’s Capability
	Problem
	Solution
	Discussion
	Math.js
	Accounting
	Advanced Mathematics and Statistics
	See Also

	7.4. Finding the Number of Days Between Two Dates
	Problem
	Solution
	Discussion

	7.5. Using an External Library: Building on the jQuery Framework
	Problem
	Solution
	Discussion
	See Also

	7.6. Using a jQuery Plugin
	Problem
	Solution
	Discussion
	Extra: Why Not Just Use HTML5 and CSS3 for Managing Visual Effects?
	Extra: Plugin? Or Plug-in?
	See Also

	7.7. Handling Keyboard Shortcuts with Mousetrap
	Problem
	Solution
	Discussion

	7.8. Utilizing the Utility Library Underscore
	Problem
	Solution
	Discussion

	7.9. Packaging Your Code
	Problem
	Solution
	Discussion
	See Also

	7.10. Adding Support for Private Data Members
	Problem
	Solution
	Discussion

	7.11. Minify Your Library
	Problem
	Solution
	Discussion
	See Also

	7.12. Hosting Your Library
	Problem
	Solution
	Discussion
	See Also

	7.13. Serving Code from a CDN
	Problem
	Solution
	Discussion

	7.14. Convert Your Library to a jQuery Plug-in
	Problem
	Solution
	Discussion

	7.15. Safely Combining Several Libraries in Your Applications
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Simplified Client-Server Communication and Data
	8.1. Handling an XML Document Returned via an Ajax Call
	Problem
	Solution
	Discussion
	See Also

	8.2. Extracting Pertinent Information from an XML Tree
	Problem
	Solution
	Discussion
	See Also

	8.3. Parsing and Automatically Modifying JSON
	Problem
	Solution
	Discussion
	See Also

	8.4. Converting an Object to a Filtered/Transformed String with JSON
	Problem
	Solution
	Discussion
	See Also

	8.5. Making an Ajax Request to Another Domain (Using JSONP)
	Problem
	Solution
	Discussion
	See Also

	8.6. Processing JSON from an Ajax Request
	Problem
	Solution

	8.7. Populating a Selection List from the Server
	Problem
	Solution
	Discussion

	8.8. Using a Timer to Automatically Update the Page with Fresh Data
	Problem
	Solution
	Discussion
	See Also

	Chapter 9. Creating Media Rich, Interactive Web Effects
	9.1. Creating a Dynamic Line Chart in Canvas
	Problem
	Solution
	Discussion
	See Also
	Extra: Simplify Your Canvas Charts Using a Library

	9.2. Adding JavaScript to SVG
	Problem
	Solution
	Discussion
	Extra: Using SVG Libraries

	9.3. Accessing SVG from Web Page Script
	Problem
	Solution
	Discussion

	9.4. Integrating SVG and the Canvas Element in HTML
	Problem
	Solution
	Discussion
	Extra: Canvas? Or SVG?

	9.5. Running a Routine When an Audio File Begins Playing
	Problem
	Solution
	Discussion
	See Also

	9.6. Controlling Video from JavaScript with the video Element
	Problem
	Solution
	Discussion

	9.7. Adding Filter Effects to Video via Canvas
	Problem
	Solution
	Discussion

	Part II. JavaScript, All Blown Up
	Chapter 10. The New ECMAScript Standard Objects
	10.1. Using let in Your Browser Application
	Problem
	Solution
	Discussion
	See Also

	10.2. Creating a Collection of Non-Duplicated Values
	Problem
	Solution
	Discussion
	Advanced

	10.3. Creating Unique Key/Value Pairs with Uniquely Different Keys
	Problem
	Solution
	Discussion
	Advanced

	10.4. Creating Absolutely Unique Object Property Keys
	Problem
	Solution
	Discussion

	10.5. Iterating Through Tasks Made Easy
	Problem
	Solution
	Discussion

	10.6. Creating Functions that Gracefully Yield
	Problem
	Solution
	Discussion
	See Also

	10.7. Implementing Just-in-Time Object Behavioral Modifications with Proxies
	Problem
	Solution
	Discussion

	10.8. Creating a True Class and Extending It (with a Little Help from Traceur)
	Problem
	Solution
	Discussion

	10.9. Using Promises for Efficient Asynchronous Processing
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Node: JavaScript on the Server
	11.1. Responding to a Simple Browser Request
	Problem
	Solution
	Discussion
	See Also

	11.2. Serving Up Formatted Data
	Problem
	Solution
	Discussion
	See Also

	11.3. Reading and Writing File Data
	Problem
	Solution
	Discussion
	Advanced

	11.4. Using let and Other ES 6 Additions in Node
	Problem
	Solution
	Discussion

	11.5. Interactively Trying Out Node Code Snippets with REPL
	Problem
	Solution
	Discussion
	Extra: Wait a Second, What global Object?

	11.6. Getting Input from the Terminal
	Problem
	Solution
	Discussion

	11.7. Working with Node Timers and Understanding the Node Event Loop
	Problem
	Solution
	Discussion

	11.8. Managing Callback Hell
	Problem
	Solution
	Discussion

	11.9. Accessing Command-Line Functionality Within a Node Application
	Problem
	Solution
	Discussion
	Extra: Using Child Processes with Windows

	11.10. Running Node and Apache on the Same Port
	Problem
	Solution
	Discussion

	11.11. Keeping a Node Instance Up and Running
	Problem
	Solution
	Discussion

	11.12. Monitoring Application Changes and Restarting
	Problems
	Solution
	Discussion

	11.13. Screen Scraping with Request
	Problem
	Solution
	Discussion

	11.14. Creating a Command-Line Utility with Help From Commander
	Problem
	Solution
	Discussion

	Chapter 12. Modularizing and Managing JavaScript
	12.1. Loading Scripts with a Script Loader
	Problem
	Solution
	Discussion

	12.2. Loading Scripts Asynchronously the HTML5 Way
	Problem
	Solution
	Discussion

	12.3. Converting Your JavaScript to AMD and RequireJS
	Problem
	Solution
	Discussion
	See Also

	12.4. Using RequireJS with jQuery or Another Library
	Problem
	Solution
	Discussion

	12.5. Loading and Using Dojo Modules
	Problem
	Solution
	Discussion

	12.6. Installing and Maintaining Node Modules with npm
	Problem
	Solution
	Discussion

	12.7. Searching for a Specific Node Module via npm
	Problem
	Solution
	Discussion

	12.8. Converting Your Library into a Node Module
	Problem
	Solution
	Discussion
	See Also

	12.9. Taking Your Code Across All Module Environments
	Problem
	Solution
	Discussion
	See Also

	12.10. Creating an Installable Node Module
	Problem
	Solution
	Discussion
	Extra: The README File and Markdown Syntax

	12.11. Packaging and Managing Your Client-Side Dependencies with Bower
	Problem
	Solution
	Discussion

	12.12. Compiling Node.js Modules for Use in the Browser with Browserify
	Problem
	Solution
	Discussion

	12.13. Unit Testing Your Node Modules
	Problem
	Solution
	Discussion

	12.14. Running Tasks with Grunt
	Problem
	Solution
	Discussion
	See Also

	Chapter 13. Fun with APIs
	13.1. Accessing JSON-Formatted Data via a RESTful API
	Problem
	Solution
	Discussion
	See Also

	13.2. Creating a RESTFul API with Restify
	Problem
	Solution
	Discussion
	See Also

	13.3. Enabling a Mobile-Like Notification in the Desktop Browser
	Problem
	Solution
	Discussion
	Extra: Web Notifications and the Page Visibility API

	13.4. Loading a File Locally in the Browser
	Problem
	Solution
	Discussion

	13.5. Creating a Mini E-Pub Reader Using Web Workers and the File API
	Problem
	Solution
	Discussion

	13.6. Exploring Google Maps and Other APIS
	Problem
	Solution
	Discussion
	See Also

	13.7. Accessing Twitter’s API from a Node Application
	Problem
	Solution
	Discussion
	See Also

	Chapter 14. JavaScript Frameworks
	14.1. Using the Express-Generator to Generate an Express Site
	Problem
	Solution
	Discussion
	Extra: Working with Templates
	Extra: Wait…What About Stylus?

	14.2. Converting a Generated Express Site into a Basic MVC App
	Problem
	Solution
	Discussion
	See Also

	14.3. Choosing a SPA Framework: Deconstructing the TodoMVC
	Problem
	Solution
	Discussion
	The ToDo Requirements
	ToDo in AngularJS
	ToDo in Backbone.js
	ToDo in Ember.js
	In Comparison
	See Also

	14.4. Working with the OAuth Framework
	Problem
	Solution
	Discussion
	Authorization Isn’t Authentication
	Twitter Application-Only and OAuth 2.0 Client Credentials Grant
	Full Read/Write Authorization with the Twitter API and OAuth 1.0
	Accessing Dropbox using OAuth 2.0 in a Web Page
	Extra: Setting Up HTTPS for Testing
	See Also

	14.5. Extending the Possible with Web Components
	Problem
	Solution
	Discussion
	See Also

	Chapter 15. Advanced Client-Server Communications and Streams
	15.1. Allowing Cross-Domain Requests
	Problem
	Solution
	Discussion
	See Also

	15.2. Implementing a PUT Request in Ajax
	Problem
	Solution
	Discussion
	Extra: Handling Nonstandard HTTP Request Headers

	15.3. Sending Binary Data Through Ajax and Loading into an Image
	Problem
	Solution
	Discussion
	See Also

	15.4. Sharing HTTP Cookies Across Domains
	Problem
	Solution
	Discussion

	15.5. Establishing Two-Way Communication Between Client and Server
	Problem
	Solution
	Discussion

	15.6. Unloading and Zipping Files Using Transform Streams
	Problem
	Solution
	Discussion

	15.7. Testing the Performance and Capability of Your WebSockets Application
	Problem
	Solution
	Discussion

	Chapter 16. Data Visualizations and Client/Server Graphics
	16.1. Creating an SVG Bar Chart with D3
	Problem
	Solution
	Discussion
	Extra: D3 on the Server
	See Also

	16.2. Mapping Data Point Variations with a Radar Chart
	Problem
	Solution
	Discussion
	See Also

	16.3. Feeding a Scrolling Timeline via WebSocket
	Problem
	Solution
	Discussion
	See Also

	16.4. Generating Screenshots of Generated Web Page Content (PhantomJS)
	Problem
	Solution
	Discussion

	16.5. Converting Graphics to Text (Ocrad.js)
	Problem
	Solution
	Discussion
	See Also

	16.6. Cropping (or Otherwise Modifying) Uploaded Images
	Problem
	Solution
	Discussion

	Chapter 17. Data and Persistence
	17.1. Validating Form Data
	Problem
	Solution
	Discussion
	Extra: What About HTML5 Forms Validation Techniques?
	See Also

	17.2. Persisting Information Using HTML5
	Problem
	Solution
	Discussion

	17.3. Using sessionStorage for Client-Side Storage
	Problem
	Solution
	Discussion
	See Also

	17.4. Creating a localStorage Client-Side Data Storage Item
	Problem
	Solution
	Discussion
	See Also

	17.5. Using Squel.js to Query a MySQL Database
	Problem
	Solution
	Discussion
	See Also
	Extra: Avoiding SQL Injection Attacks

	17.6. Persisting Larger Chunks of Data on the Client Using IndexedDB
	Problem
	Solution
	Discussion

	17.7. Accessing Data in the Cloud Using Dropbox Datastores
	Problem
	Solution
	Discussion

	Chapter 18. JavaScript Hits the (Mobile) Road
	18.1. Creating an Installable, Hosted Web App
	Problem
	Solution
	Discussion
	See Also

	18.2. Packaging Web Apps for the Amazon Appstore
	Problem
	Solution
	Discussion

	18.3. Building a Basic Android App Using Cordova (PhoneGap)
	Problem
	Solution
	Discussion

	18.4. Porting Where Am I? to Android
	Problem
	Solution
	Discussion
	Extra: Adding jQuery Mobile Support to a Cordova Android App
	See Also

	18.5. Creating a Geolocation Firefox OS App
	Problem
	Solution
	Discussion
	Extra: Using Cordova to Generate a Firefox OS App
	See Also

	18.6. Porting the Geolocation App to a Google Chrome App
	Problem
	Solution
	Discussion
	Extra: Chrome Apps and Cordova

	18.7. Publishing Your Geolocation App in the Kindle Fire OS Environment
	Problem
	Solution
	Discussion

	18.8. Debugging Your Android or Amazon Fire OS App
	Problem
	Solution
	Discussion
	Extra: Taking a Screenshot

	18.9. Getting Information About the Device
	Problem
	Solution
	Discussion
	Extra: Discover Your Android’s Capabilities

	Appendix A. Up and Running in jsBin and jsFiddle
	The Console Is Your Friend
	jsBin and jsFiddle: Online JavaScript Playgrounds

	Index
	About the Author

