
www.allitebooks.com

http://www.allitebooks.org

JavaScript Mobile Application
Development

Create neat cross-platform mobile apps using Apache
Cordova and jQuery Mobile

Hazem Saleh

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

JavaScript Mobile Application Development

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1161014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-417-1

www.packtpub.com

Cover image by Neha Rajappan (neha.rajappan1@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Hazem Saleh

Reviewers
Raymond, Xie Liming

Ranganadh Paramkusam

Juris Vecvanags

Commissioning Editor
Akram Hussain

Acquisition Editor
Richard Harvey

Content Development Editor
Madhuja Chaudhari

Technical Editor
Shashank Desai

Copy Editors
Sayanee Mukherjee

Karuna Narayanan

Project Coordinator
Rashi Khivansara

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

Production Coordinator
Adonia Jones

Cover Work
Adonia Jones

www.allitebooks.com

http://www.allitebooks.org

About the Author

Hazem Saleh has 10 years of experience in Java EE, mobile, and open source
technologies. He has worked as a technical consultant for many clients in Europe
(Sweden), North America (USA and Canada), South America (Peru), Africa (Egypt,
Morocco, and Zambia), and Asia (Qatar, Kuwait, and KSA). He is an Apache
committer and a person who has spent many years of his life writing open source
software. Besides being the author of JavaScript Unit Testing, Packt Publishing, and
Pro JSF and HTML5: Building Rich Internet Components, Apress, and the co-author of
The Definitive Guide to Apache MyFaces and Facelets, Apress, he has also authored many
technical articles. He is also a contributing author recognized by developerWorks and
a technical speaker at both local and international conferences such as ApacheCon
in North America, GeeCon, JSFDays, CONFESS in Vienna, and JavaOne in San
Francisco, Moscow, and Shanghai. Hazem is now working for IBM Egypt as an
advisory software engineer. He is a member of the IBM Mobile Global Center of
Competency (CoC) and an IBM Certified Expert IT specialist (L2).

I would like to thank my wife, Naglaa, for supporting me while
writing this book. She has always motivated me to continue this
long journey until its end. I definitely dedicate this book to her with
love and pleasure. I would also like to thank my wonderful kids,
Nada (4-year-old girl) and Ali (1-year-old boy), for always making
me happy. I would like to thank my mother, father, brother, and
sister for understanding why I was not available during many
weekends as I was writing this book. A special thanks to everyone
in the Apache Cordova community for making the development
of cross-platform mobile apps much less painful than it could be.
Finally, I would like to thank all the technical reviewers and editors
for improving the content of this book.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Raymond, Xie Liming is a software R&D expert with experience of over 16
years working in multiple IT domains, including networking, multimedia IP
communication, insurance, telecom, and mobile apps/games.

Raymond holds a Master's degree in Science from Fudan University. He is also a
PMI-certified Project Management Professional.

He has worked as a senior manager for Softfoundry Singapore, eBaoTech, and the
Ericsson Shanghai R&D center, leading an R&D team working on enterprise- and
carrier-class software. In December 2013, Raymond founded his own company,
RjFun Technologies, that focuses on mobile apps/games and also produces reusable
components for them.

He has rich experience in R&D management and is also a software expert with
hands-on architecting and development skills. He is very active on GitHub and the
Cordova/PhoneGap community, where his nickname is "floatinghotpot".

He now lives with his wife, Jenny, in Shanghai, China.

www.allitebooks.com

http://www.allitebooks.org

Ranganadh Paramkusam holds a degree in Computer Science and Engineering.
He began his career developing cross-platform applications for iOS, Android, and
BlackBerry using PhoneGap, Sencha, and AngularJS. He has developed more than 30
mobile applications. He later started working with native code such as iOS and Java to
create PhoneGap plugins to bring the native UI/UX in hybrid mobile applications.

Ranganadh developed plugins using Google's Native Client (NaCl) and Portable
Native Client (PNaCl) to give a desktop application performance to web applications
and created browser extensions using Google APIs for Google Chrome and Firefox.
His works include a web-based image editor, text editor (a replica of Adobe's Brackets
application), web-based image editor using the HTML5 Canvas element to apply the
enhance, filter, resize, and various other effects, and chat application using Node.js and
MongoDB. He also created an algorithm that synthesizes words and gives responses
made by string patterns, which match and are developed using Python.

Ranganadh acquired the Oracle Certified Associate (OCA) certificate in 2010 and also
certified for the Python language from MIT in 2013. He was awarded with Techno
Geek for the year 2012-13 and Emerging Performer of the year 2013-14 for his works.

He aims at linking JavaScript to low- and medium-level languages, and he works with
the C++, Python, Objective-C, and Java languages. He is currently working as a senior
programmer in the Center Of Excellence (COE) department in Hidden Brains Infotech
Pvt. Ltd., India. He is active on GitHub, the PhoneGap community, and stack overflow.

I would like to thank my family and friends for their support while
working on all this stuff.

www.allitebooks.com

http://www.allitebooks.org

Juris Vecvanags started his career in the IT field in the early '90s. During this time,
he had a chance to work with a broad range of technologies and share his knowledge
with Fortune 500 companies as well as private and government customers.

Before moving to Silicon Valley, he had a well-established web design company
in Europe. He is currently working as a senior solutions engineer for Sencha
Inc., helping customers write better apps both for desktop and emerging mobile
platforms. When it comes to web technologies, his invaluable experience makes him
a trusted advisor and competent reviewer.

Away from the office, you will find him speaking at Meetups in the San Francisco
Bay area and Chicago. The topics include Node.js, ExtJs, and Sencha Touch. He is
passionate about bleeding-edge technologies and everything related to JavaScript.

I would like to thank my family for their constant support while
working on this book.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface	 1
Chapter 1: An Introduction to Apache Cordova	 9

What is Apache Cordova?	 9
The differences between mobile web, hybrid mobile,
and native mobile applications	 11
Why you should use Cordova	 13
Cordova architecture	 15
Overview of Cordova APIs	 26
Summary	 29

Chapter 2: Developing Your First Cordova Application	 31
An introduction to Cordova CLI	 31

Installing Apache Cordova	 32
Generating our Sound Recorder's initial code	 33

The Sound Recorder's initial structure	 34
An insight into the www files	 36

Developing Sound Recorder application	 40
Sound Recorder functionality	 40
Sound Recorder preparation	 43
Sound Recorder details	 43
Recording and playing the audio files back	 50

Building and running Sound Recorder application	 53
Summary	 54

Chapter 3: Apache Cordova Development Tools	 55
Configuring Android development environment	 55

Extending your existing Eclipse IDE	 57
Creating an Android Virtual Device	 60
Importing the Sound Recorder application into Eclipse	 64
Running the Sound Recorder application on a real Android device	 67

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Configuring iOS development environment	 68
Importing the Sound Recorder application into Xcode	 69
Running the Sound Recorder application on a real iOS device	 73

Configuring the Windows Phone development environm 82
Importing the Sound Recorder application into Visual Studio	 84
Running the Sound Recorder application on a real Windows Phone	 87

Summary	 89
Chapter 4: Cordova API in Action	 91

Exploring the Cordova Exhibition app	 91
The Cordova Exhibition app structure	 93
Accelerometer	 96

Demo	 96
The HTML page	 97
View controller	 98
API	 100

Camera	 102
Demo	 102
The HTML page	 103
View controller	 104
API	 106

Compass	 110
Demo	 110
The HTML page	 112
View controller	 113
API	 115

Connection	 118
Demo	 118
The HTML page	 119
View controller	 119
API	 120

Contacts	 121
Demo	 122
The HTML page	 123
View controller	 124
API	 128

Device	 132
Demo	 132
The HTML page	 133
View controller	 133
API	 134

Table of Contents

[iii]

Geolocation	 135
Demo	 136
The HTML page	 137
View controller	 137
API	 139

Globalization	 141
Demo	 142
The HTML page	 143
View controller	 143
API	 145

InAppBrowser	 147
Demo	 148
The HTML page	 149
View controller	 149
API	 150

Summary	 152
Chapter 5: Diving Deeper into the Cordova API	 153

Media, file, and capture	 153
Demo	 154
The HTML page	 155
View controller	 156
API	 161

Notification	 171
Demo	 172
The HTML page	 173
View controller	 173
API	 176

Storage	 179
Demo	 179
The HTML page	 180
View controller	 181
API	 184

Finalizing the Cordova Exhibition app	 185
Cordova events	 189
Summary	 191

Chapter 6: Developing Custom Cordova Plugins	 193
Developing a custom Cordova plugin	 193

Using plugman	 194
Plugin definition	 197
Defining the plugin's JavaScript interface	 201

Table of Contents

[iv]

Developing Android code	 204
Developing iOS code	 209
Developing Windows Phone 8 code	 213
Publishing our plugin to Cordova Registry	 216
Testing our Cordova plugin	 217
Summary	 222

Chapter 7: Unit Testing the Cordova App's Logic	 223
What is Jasmine	 224
Configuring Jasmine	 224
Writing your first Jasmine test	 225
Jasmine Matchers	 231
Jasmine in action – developing Cordova app tests	 232

An overview of the weather application	 232
Developing synchronous code tests	 244
Developing asynchronous code tests	 246
Manually executing tests	 250

Automating tests using Karma	 251
Installing Karma	 251
Karma configuration	 252
Running tests (on mobile devices)	 255
Generating XML JUnit and code coverage reports	 256
Integrating tests with the CI tools	 259

Summary	 260
Chapter 8: Applying it All – the Mega App	 261

Mega App specification/wireframes	 262
Preparing for the Mega App	 266
The Mega App architecture	 267
The Mega App model and API	 269
The Mega App user interface	 280
Finalizing Mega App	 296
Deploying and running Mega App	 299
Start contributing to Mega App	 300
Summary	 301

Index	 303

Preface
Mobile development is one of the hottest trends and an essentiality in today's
software industry. As you might have noticed, almost every popular website today
has its own equivalent mobile application version to allow its current users to access
the website's functions from their mobiles and cater to a large number of users
who don't have personal computers. Adding to this, with the powerful hardware
specification and computing capability of today's smart phones, they have become
real competitors to personal computers, and many people now prefer to use their
smart phones for their daily activities (such as checking the current news, capturing
videos and posting them on Facebook and YouTube, and checking e-mails), instead
of using their personal computers.

Although developing mobile applications is a really interesting thing, it is worth
mentioning that developing them on mobile platforms requires mobile developers
to put in a lot of effort and have a wide skill set. For example, in order to develop
a native mobile application on Android phones and tablets, the developer should
be familiar with the Android SDK and Java programming language. In contrast, if
there is a need to develop the same mobile application on iPhone and iPad devices,
the mobile developer has to be familiar with Xcode and the Objective-C language. A
developer on a Windows Phone, however, will require skills in .NET programming
in order to develop an app.

Preface

[2]

Adding to the previous challenges, and as each mobile platform has its own philosophy
of mobile application development, you will need to handle the different types of
problems that you will face on every platform using different programming languages.
For example, you might face a common problem when reimplementing your Android
application logic (which is written using Java) on the Windows Phone 8 platform. The
problem will most likely be that your code logic, which was sending an SMS directly
from your application code without any interruptions, is not valid anymore, as in the
Windows Phone platform, it is not allowed to send SMS messages from the application
code without launching the default platform SMS application. This means that you will
need to do this logic change in your new code, which is implemented using a different
programming language (a .NET programming language in this case).

All of these challenges will cost you a huge amount of development and testing
effort in order to develop an important mobile application that can work on many
mobile platforms.

All of these previous facts and challenges offered me a great motive to write this
book. This book is about how to efficiently develop mobile applications using
common web technologies, such as HTML, CSS, and JavaScript. After finishing this
book, you should be able to develop your mobile application on different mobile
platforms using only JavaScript, without having to learn the native programming
languages of every mobile platform. This will definitely reduce the development
cost and effort of your cross-platform mobile application, as you will use only
one popular programming language, which is JavaScript. Adding to this, using a
single popular programming language to handle the different problem types of
every mobile platform will allow handling these problems to be in a centralized
place in the code. This increases the readability and maintainability of your mobile
application code across mobile platforms.

In order to achieve this mission, this book focuses on Apache Cordova, a platform
that uses HTML, CSS, and JavaScript to build mobile applications. Apache Cordova
offers a set of APIs that allow the mobile application developer to access native
mobile functions, which will be covered in more detail in Chapter 1, An Introduction
to Apache Cordova.

The Apache Cordova project was originally known as PhoneGap. The PhoneGap
project was started in 2008 by a company called Nitobi, with the goal to simplify
cross-platform mobile development using a team of mobile developers. However,
this framework supported only one platform: Apple iPhone. Fortunately, it then
added Android and BlackBerry support.

Preface

[3]

In 2009, this project won the People's Choice Award at O'Reilly Media's 2009 Web 2.0
Conference, with the framework being used to develop many applications since then.
The PhoneGap team continued working hard on the project to support more mobile
platforms and enhance the project APIs.

In 2011, Adobe announced the acquisition of Nitobi, and the project contributed to
Apache Software Foundation, first called Apache Callback and later renamed to
Apache Cordova. Interestingly enough, Cordova was the name of the street where
the Nitobi offices were located. In this book, Apache Cordova is the project that will
be discussed.

In order to develop neat-looking mobile applications, this book also utilizes jQuery
Mobile. jQuery Mobile is one of the best mobile web application frameworks, and it
allows the web developer to develop web applications that are mobile friendly.

Finally, this book is a practical guide for web developers who need to develop
interactive mobile applications using their current skill set. If you are a native mobile
application developer who wants to develop your mobile applications in much less
time and effort using JavaScript and Apache Cordova, you will also find this book to
be incredibly useful.

What this book covers
Chapter 1, An Introduction to Apache Cordova, teaches you what Apache Cordova
is and the differences between mobile web, mobile hybrid, and mobile native
applications. You will also know why we should use Apache Cordova, along with
the current Apache Cordova architecture, and finally, the chapter offers an overview
of the Apache Cordova APIs.

Chapter 2, Developing Your First Cordova Application, explains how to develop, build,
and deploy your first Sound Recorder mobile application on the Android platform.

Chapter 3, Apache Cordova Development Tools, explains how to configure your Android,
iOS, and Windows Phone development environments. You will also learn how to
support and run your Sound Recorder mobile application on both iOS and Windows
Phone 8 platforms.

Preface

[4]

Chapter 4, Cordova API in Action, dives deep into the Apache Cordova API, and you
will see it in action. You will learn how to work with the Cordova accelerometer,
camera, compass, connection, contacts, device, geolocation, globalization, and
InAppBrowser APIs by exploring the code of the Cordova Exhibition app. The
Cordova Exhibition app is designed and developed to show complete usage
examples of the Apache Cordova core plugins. The Cordova Exhibition app
supports Android, iOS, and Windows Phone 8.

Chapter 5, Diving Deeper into the Cordova API, continues to dive into the Apache
Cordova API by exploring the remaining main features of the Cordova Exhibition
app. You will learn how to work with the Cordova media, file, capture, notification,
and storage APIs. You will also learn how to utilize the Apache Cordova events in
your Cordova mobile app.

Chapter 6, Developing Custom Cordova Plugins, dives deep into Apache Cordova and
lets you create your own custom Apache Cordova plugin on the three most popular
mobile platforms: Android, which uses the Java programming language, iOS, which
uses the Objective-C programming language, and Windows Phone 8, which uses the
C# programming language.

Chapter 7, Unit Testing the Cordova App's Logic, explains how to develop JavaScript
unit tests for your Cordova app logic. You will learn the basics of the Jasmine
JavaScript unit testing framework and understand how to use Jasmine in order to
test both the synchronous and asynchronous JavaScript code. You will learn how to
utilize Karma as a powerful JavaScript test runner in order to automate the running
of your developed Jasmine tests. You will also learn how to generate the test and
code coverage reports from your developed tests. Finally, you will learn how to fully
automate your JavaScript tests by integrating your developed tests with Continuous
Integration tools.

Chapter 8, Applying it All – the Mega App, explores how to design and develop a
complete app (Mega App) using the Apache Cordova and jQuery Mobile APIs. Mega
App is a memo utility that allows users to create, save, and view audible and visual
memos on the three most popular mobile platforms (Android, iOS, and Windows
Phone 8). In order to create this utility, Mega App uses jQuery Mobile to build
the user interface and Apache Cordova to access the device information, camera,
audio (microphone and speaker), and filesystem. In this chapter, you will learn how
to create a portable app that respects the differences between Android, iOS, and
Windows Phone 8.

Preface

[5]

What you need for this book
You should have basic knowledge of the common web technologies (HTML,
CSS, and JavaScript). It is also highly recommended that you learn the basics of
jQuery and jQuery Mobile in order to be familiar with the code examples. A quick
introduction to jQuery and jQuery Mobile can be found at http://www.w3schools.
com/jquery/ and http://www.w3schools.com/jquerymobile/, respectively.

Who this book is for
If you are a web developer, then reading this book to learn how to develop mobile
applications using Apache Cordova is a great option for you, as you don't have to
spend extra time learning JavaScript, CSS, and HTML before reading this book.

If you are a native mobile developer, then spending some time learning about the
common web technologies, namely JavaScript, CSS, and HTML, will add great value
and impact to your work. After acquiring these skills, along with reading this book
to learn about Apache Cordova, you will be able to develop cross-platform mobile
application(s) in much less time and effort as compared to the time and effort you
will need to spend in order to develop the same application(s) on every platform
using the native programming languages.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This js directory also includes the common.js file that includes the common
app utilities."

A block of code is set as follows:

<?xml version='1.0' encoding='utf-8'?>
<widget id="com.jsmobile.soundrecorder" version="0.0.1"
xmlns="http://www.w3.org/ns/widgets" xmlns:cdv="http://cordova.apache.
org/ns/1.0">

http://www.w3schools.com/jquery/
http://www.w3schools.com/jquery/
http://www.w3schools.com/jquerymobile/

Preface

[6]

<name>SoundRecorder</name>
<description>
 A sample Apache Cordova application that responds
to the deviceready event.
</description>
<author email="dev@cordova.apache.org" href="http://cordova.io">
 Apache Cordova Team
</author>
<content src="index.html" />
<access origin="*" />
</widget>

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

 (function() {

 var memoManager = MemoManager.getInstance();
 var recInterval;

 $(document).on("pageinit", "#memoCapture", function(e) {
 $("#saveMemo").on("tap", function(e) {
 e.preventDefault();

 var memoItem = new MemoItem({
 "type": $("#mtype").val(),
 "title": $("#title").val() || "Untitled",
 "desc": $("#desc").val() || "",
 "location": $("#location").val() || "",
 "mtime": $("#mtime").html() || new Date().
toLocaleString(),
 "id": $("#mid").val() || null
 });

 memoManager.saveMemo(memoItem);

 $.mobile.changePage("#memoList");
 });

 // ...
 });
})();

Any command-line input or output is written as follows:

> sudo npm install -g cordova

Preface

[7]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once you
are done, click on the Stop Recording button to finish recording."

Warnings or important notes appear in a box like this

Tips and tricks appear like this

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

www.allitebooks.com

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.allitebooks.org

Preface

[8]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded to our website, or added to any list
of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/support
http://www.packtpub.com/support

An Introduction to
Apache Cordova

In this chapter, we will discover the world of Apache Cordova and cover the
following topics:

•	 What Apache Cordova is
•	 The differences between the different mobile development approaches

(mobile web, hybrid mobile, and native mobile applications)
•	 Why you should use Apache Cordova to develop your mobile applications
•	 The basics of Apache Cordova architecture

Finally, we will have a quick overview of the current APIs of Apache Cordova 3.

What is Apache Cordova?
The Apache Cordova project is an Apache open source project that targets the
creation of native mobile applications using common web technologies such as
HyperText Markup Language (HTML), Cascading Style Sheets (CSS), and
JavaScript. It offers a set of JavaScript APIs, which provide access to a number of
natively built core plugins. Cordova offers many core APIs, some of which grant the
ability to perform the following:

•	 Process the device contact lists
•	 Process files on the device storage
•	 Capture a photo using the device camera
•	 Get a photo from the device gallery
•	 Record voice using the device microphone

An Introduction to Apache Cordova

[10]

•	 Get device direction using the device compass
•	 Retrieve the device locale
•	 Find out the device location
•	 Get the device motion
•	 Get the device connection information

Cordova supports a wide variety of different mobile platforms such as:

•	 Android
•	 iOS
•	 Windows platform:

°° Windows Phone 7 (this support will be removed soon in
Cordova Version 3.7)

°° Windows Phone 8
°° Windows 8

•	 BlackBerry
•	 Tizen
•	 Web OS
•	 Firefox OS
•	 Bada
•	 Ubuntu

The Apache Cordova official API documentation is at http://docs.cordova.io.

You can also refer to the following GitHub repositories to find the source code of
Apache Cordova implementations on the different platforms:

•	 Cordova for Android (https://github.com/apache/cordova-android)
•	 Cordova for iOS (https://github.com/apache/cordova-ios)
•	 Cordova for Windows 8 (https://github.com/apache/cordova-wp8)
•	 Cordova for BlackBerry (https://github.com/apache/cordova-

blackberry)
•	 Cordova for Tizen (https://github.com/apache/cordova-tizen)
•	 Cordova for Web OS (https://github.com/apache/cordova-webos)

http://docs.cordova.io
https://github.com/apache/cordova-android
https://github.com/apache/cordova-ios
https://github.com/apache/cordova-wp8
https://github.com/apache/cordova-blackberry
https://github.com/apache/cordova-blackberry
https://github.com/apache/cordova-tizen
https://github.com/apache/cordova-webos

Chapter 1

[11]

•	 Cordova for Firefox OS (https://github.com/apache/cordova-
firefoxos)

•	 Cordova for Bada (https://github.com/apache/cordova-bada)
•	 Cordova for Ubuntu (https://github.com/apache/cordova-ubuntu)

You will find it very useful to know about GitHub, which is a web-based hosting
service for software development projects that use the Git revision control system.
GitHub offers both paid plans for private repositories and free accounts for open
source projects. The site was launched in 2008 by Tom Preston-Werner, Chris
Wanstrath, and PJ Hyett.

The differences between mobile web,
hybrid mobile, and native mobile
applications
It is very important to understand the differences between mobile web, hybrid
mobile, and native mobile applications. Mobile web application(s) can be accessed
using the web browser and are designed to be responsive. Responsive means that
they can adapt their views in order to be displayed properly on different resolutions
of mobile and tablet devices. Mobile web applications usually require you to be
online in order to use them. They are not real mobile native applications, although
they might have the same look and feel as mobile native applications that use the
CSS technology. Mobile web applications are, in fact, not uploaded to app stores and
do not have the same physical formats of the platform native mobile applications.
They use limited native features of the mobile device, such as geolocation and
storage features.

Although hybrid and native mobile applications have the same physical formats,
they are developed using totally different technologies. Hybrid mobile applications
are developed using common web technologies (HTML, CSS, and JavaScript), while
native mobile applications are developed using the mobile platform programming
language (for example, Java for Android, Objective-C for iOS, and .NET
programming language(s) for Windows Phone).

If you are a native mobile application developer, then in order to develop a single
native application that can work on the different mobile platforms, you will need
to develop your application on one platform and then reimplement its logic on
other platforms. Reimplementing the same logic on every platform that you have
to support is a pain. This is because you will need to use the mobile platform
programming language and handle different types of problems, which you will face
on every platform.

https://github.com/apache/cordova-firefoxos
https://github.com/apache/cordova-firefoxos
https://github.com/apache/cordova-bada
https://github.com/apache/cordova-ubuntu

An Introduction to Apache Cordova

[12]

Hybrid applications have the great advantage of allowing you to use the same code
base (which consists of your HTML, CSS, and JavaScript code) for the different
platforms of your application. This means that you write your application code
once, and then, you can run it everywhere. Of course, you might need to do specific
changes on every platform, but in the end, these changes are mostly minimal.
Adding to this advantage, all of your application logic is implemented using a single
and neat programming language, which is JavaScript.

The time taken to develop hybrid mobile applications, which run across many
mobile platforms, will definitely be shorter. Furthermore, the required resources to
implement a hybrid mobile project will be minimized compared to developing native
mobile applications. This is because hybrid applications use a unified programming
language (JavaScript), while native mobile applications use many non-unified
programming languages (such as Objective-C, Java, and C#), which, by definition,
require a larger team of developers with different skill sets.

Finally, it is worth mentioning that native mobile applications might be a little
bit faster than hybrid applications (assuming that they are implementing the
same set of requirements), because native applications are compiled and native
code is optimized. However, applying the common best practices in your hybrid
applications can definitely increase your application's performance to be as close as
the native application. In this book, you will learn how to boost the performance of
your hybrid mobile application using Apache Cordova and jQuery Mobile.

If you take a look at the following table, you will find that it summarizes the
differences between the three types of mobile applications:

Mobile
web

Hybrid application Native application

Uploaded to app store No Yes Yes
Used technologies JavaScript, CSS, and HTML The native programming

language of the platform
Complexity Normal Normal High
Cross-platform
mobiles support

Yes Yes No

Device native features Partial Full (thanks to
Hybrid application
frameworks such as
Apache Cordova).

Full

Performance
(assuming following
best practices)

Very good Excellent

Chapter 1

[13]

This table summarizes the key differences between mobile web, hybrid mobile, and
native mobile applications.

Apache Cordova is currently one of the most popular frameworks for
building Hybrid applications.

From the developers' perspective, if you are a web developer, then creating
hybrid applications using Apache Cordova is a great option for you as you will not
have to spend time learning JavaScript, CSS, and HTML. Using your existing skill set
with Apache Cordova allows you to develop cross-platform mobile applications in
less time.

If you are a native developer, then spending some time learning the common web
technologies will add great value and have an impact on your work. This is because
after acquiring these skills along with Apache Cordova, you will be able to develop
cross-platform mobile application(s) in less time and effort compared to the time
and effort you would spend in order to develop the same application(s) on every
platform using native programming languages.

Why you should use Cordova
In order to understand the importance of using Apache Cordova, you first need to
understand the current challenges of mobile development, which are summarized
as follows:

•	 Every mobile platform has its own programming philosophy
•	 Every mobile platform has its own set of unique problems
•	 Developing, testing, and maintaining native application(s) on different

mobile platforms is expensive

One of the biggest challenges of current mobile development is that every mobile
platform has its own programming philosophy. There are various programming
languages and tools that are required in order to develop mobile applications on the
different platforms. For example, if you want to develop a native mobile application
on Android, you will need to use Java as the programming language and Eclipse or
IntelliJ (or another equivalent Java IDE) as an Integrated Development Environment
(IDE). On the other hand, if you want to develop a native mobile application in
iOS, you will need to use Objective-C as the programming language and Xcode
or JetBrains AppCode as the programming IDE. Finally, if you want to develop a
Windows platform mobile application, you will need to use a .NET programming
language and Visual Studio as the IDE.

An Introduction to Apache Cordova

[14]

As a result of this previous challenge, developing, testing and maintaining a single
application that has different implementations on mobile platforms is really hard
and costly. You will have many code bases that are usually inconsistent, because
every code base will be written in a different language by developers from different
backgrounds. This is because it is really hard to find a single developer who is aware
of all of these programming languages and tools.

Using an IDE to develop mobile applications is not mandatory. However,
it is recommended as it speeds up the process of application development
and testing.

Adding to these challenges, handling the incompatible behaviors of mobile platforms
is a challenge that cannot be ignored. One of the problems that you might face when
you develop your native Android application on iOS is that you cannot send SMS
messages directly using the platform API without launching the native platform SMS
application to the user. On the other hand, in Android, you can send SMS messages
using the platform API directly from your application code. This means that you will
have the burden of not only implementing your application logic on the different
platforms, but you might also need to implement different workarounds using
different programming languages in order to have a consistent behavior of your
application as much as you can across the mobile platforms.

Using Apache Cordova will reduce the complexity of these challenges. It will give
you the ability to use a single programming language (JavaScript) to write your
application on the different mobile platforms; you won't need to have a big set of
programming languages anymore after using Apache Cordova. Apache Cordova
gives you the ability to have a common code base for all of the implementations of
your application on the different mobile platforms. This means that the complexity of
developing, testing, and maintaining your mobile application will be greatly reduced.

Having a single code base that is developed using JavaScript gives a great flexibility
for mobile developers to handle the unique problems of every mobile platform. This
puts everything neatly in a centralized place in the code. This makes your application
code more readable and maintainable.

Chapter 1

[15]

Cordova architecture
The following diagram includes the main components of an Apache Cordova
application (HTML, CSS, and JavaScript files). It can also contain helper files
(such as application's JSON resource bundle files). Here, HTML files include
JavaScript and CSS files. In order to access a device's native feature, JavaScript
application objects (or functions) call Apache Cordova APIs.

Apache Cordova creates a single screen in the native application; this screen
contains only a single WebView that consumes the available space on the device
screen. Apache Cordova uses the native application's WebView in order to load the
application's HTML and its related JavaScript and CSS files.

It is important to note that WebView is a component that is used to display a web
page or content (basically HTML) in the application window. We can simply say that
it is an embedded mobile web browser inside your native application that allows you
to display the web content.

An Introduction to Apache Cordova

[16]

When the application launches, Apache Cordova loads the application's default
startup page (usually index.html) in the application's WebView and then passes
the control to the WebView, allowing the user to interact with the application.
Application users can interact with the application by doing many things such as
entering data in input fields, clicking on action buttons, and viewing results in the
application's WebView.

Thanks to this technique and because WebView is a native component that provides
web content rendering, users feel that they are interacting with a native application
screen if the application's CSS is designed to have the mobile platform look and feel.

WebView has an implementation in all the major mobile platforms.
For example, in Android, WebView refers to the android.webkit.
WebView class. In iOS, however, it refers to the UIWebView class that
belongs to the System/Library/Frameworks/UIKit framework. In
the Windows Phone platform, meanwhile, it refers to the WebView class
that belongs to the Windows.UI.Xaml.Controls classes.

In order to allow you to access a mobile's native functions such as audio recording
or camera photo capture, Apache Cordova provides a suite of JavaScript APIs that
developers can use from their JavaScript code, as shown in the following diagram:

Chapter 1

[17]

The calls to Apache Cordova JavaScript APIs are translated to the native device API
calls using a special bridge layer. In Apache Cordova, the device native APIs are
accessed from Apache Cordova plugins.

You will learn how to develop your own custom Cordova plugin in
Chapter 6, Developing Custom Cordova Plugins.

The beautiful thing behind this approach is that you can use a unified API interface in
order to perform a specific native function (such as camera photo capturing or audio
recording) transparently across the various mobile platforms. It is important to note
that in order to perform these native functions as a native developer, you will need
to call completely different native APIs that are usually implemented using different
native programming languages. All of the Cordova JavaScript-unified APIs and their
corresponding native code implementations are implemented using plugins. We
will illustrate Cordova plugins in much more detail in Chapter 6, Developing Custom
Cordova Plugins.

If you are interested to know what will happen when a call is performed to a
Cordova JavaScript API, then we can take a look at a complete example for a
Cordova API call under Android and Windows Phone platforms. In order to get a
complete picture, you simply call the following Cordova JavaScript API:

navigator.camera.getPicture(onSuccess, onFail, { quality: 50,
 destinationType: Camera.DestinationType.DATA_URL
});

function onSuccess(imageData) {
 var image = document.getElementById('myImage');
 image.src = "data:image/jpeg;base64," + imageData;
}

function onFail(message) {
 alert('Failed because: ' + message);
}

As shown in preceding code snippet, a simple call to the getPicture() method of
the camera object is performed with the following three parameters:

•	 onSuccesscallback: This parameter is called if the getPicture
operation succeeds.

•	 onFailcallback: This parameter is called if the getPicture operation fails.

www.allitebooks.com

http://www.allitebooks.org

An Introduction to Apache Cordova

[18]

•	 { quality: 50, destinationType: Camera.DestinationType.
DATA_URL }: This is a JavaScript object that contains the configuration
parameters. In our example, only the two parameters, quality, which refers
to the quality of the output picture (it should be a value from 0 to 100),
and destinationType, which refers to the format of the return value, are
specified. It can have one of the three values: DATA_URL, which means that
the format of the returned image will be Base64-encoded string, FILE_URI,
which means that the image file URI will be returned, or NATIVE_URI, which
refers to the image native URI.

As we set destinationType to Camera.DestinationType.DATA_URL, the parameter
of onSuccess will represent the Base-64 encoded string of the captured image.

This simple call to the getPicture() method of the camera object calls the following
Android Java native code. Please note that this code is the actual code for the Apache
Cordova Camera plugin Version 3. If you are a native Android developer, then the
following two code snippets will look very familiar to you:

public void takePicture(int returnType, int encodingType) {
 // Code is omitted for simplicity ...

 // Display camera
 Intent intent = new Intent("android.media.action.IMAGE_CAPTURE");

 // Specify file so that large image is captured and returned
 File photo = createCaptureFile(encodingType);

 intent.putExtra(android.provider.MediaStore.EXTRA_OUTPUT, Uri.
fromFile(photo));
 this.imageUri = Uri.fromFile(photo);

 if (this.cordova != null) {
 this.cordova.startActivityForResult((CordovaPlugin) this,
intent, (CAMERA + 1) * 16 + returnType + 1);
 }
}

Chapter 1

[19]

As shown in the previous code, in order to open a camera in an Android device, you
need to start the "android.media.action.IMAGE_CAPTURE" intent and receive the
result back using the startActivityForResult() API of the Android Activity
class. In order to receive the image capture intent result in Android, your Android
Activity class needs to implement the onActivityResult() callback, as shown in
the following Apache Cordova Android Camera plugin code:

public void onActivityResult(int requestCode, int resultCode, Intent
intent) {
 // Get src and dest types from request code
 int srcType = (requestCode / 16) - 1;
 int destType = (requestCode % 16) - 1;
 int rotate = 0;

 // If CAMERA
 if (srcType == CAMERA) {

 // If image available
 if (resultCode == Activity.RESULT_OK) {
 // ... Code is omitted for simplicity ...

 Bitmap bitmap = null;
 Uri uri = null;

 // If sending base64 image back
 if (destType == DATA_URL) {
 bitmap = getScaledBitmap(FileHelper.
stripFileProtocol(imageUri.toString()));

 // ... Code is omitted for simplicity ...

 this.processPicture(bitmap);
 }

 // If sending filename back
 else if (destType == FILE_URI || destType == NATIVE_
URI) {
 if (this.saveToPhotoAlbum) {
 Uri inputUri = getUriFromMediaStore();

An Introduction to Apache Cordova

[20]

 //Just because we have a media URI doesn't
mean we have a real file, we need to make it
 uri = Uri.fromFile(new File(FileHelper.
getRealPath(inputUri, this.cordova)));
 } else {
 uri = Uri.fromFile(new File(DirectoryManager.
getTempDirectoryPath(this.cordova.getActivity()), System.
currentTimeMillis() + ".jpg"));
 }

 if (uri == null) {
 this.failPicture("Error capturing image - no
media storage found.");
 }

 // ... Code is omitted for simplicity ...
 // Send Uri back to JavaScript for viewing image
 this.callbackContext.success(uri.toString());
 }

 // ... Code is omitted for simplicity ...
 } catch (IOException e) {
 e.printStackTrace();
 this.failPicture("Error capturing image.");
 }
 }

 // If cancelled
 else if (resultCode == Activity.RESULT_CANCELED) {
 this.failPicture("Camera cancelled.");
 }

 // If something else
 else {
 this.failPicture("Did not complete!");
 }
 }
}

If the camera capture operation succeeds, then resultCode == Activity.RESULT_
OK will be true, and if the user requires the result of the captured image as a Base-
64 encoded string, then the captured bitmap image is retrieved and processed in
the processPicture(bitmap) method. As shown in the following code snippet,
processPicture(bitmap) compresses the bitmap image and then converts it to a byte
array, which is encoded to Base-64 array. This is then finally converted to a string that
is returned to the JavaScript Cordova client using this.callbackContext.success().
We will illustrate Android CallbackContext in more detail later in this book.

Chapter 1

[21]

If the user requires the result of the captured image as a file or native URI string,
then the file URI of the image file is retrieved and sent to the JavaScript Cordova
client using this.callbackContext.success().

public void processPicture(Bitmap bitmap) {
 ByteArrayOutputStream jpeg_data = new ByteArrayOutputStream();
 try {
 if (bitmap.compress(CompressFormat.JPEG, mQuality, jpeg_data))
{
 byte[] code = jpeg_data.toByteArray();
 byte[] output = Base64.encode(code, Base64.DEFAULT);
 String js_out = new String(output);
 this.callbackContext.success(js_out);
 js_out = null;
 output = null;
 code = null;
 }
 } catch (Exception e) {
 this.failPicture("Error compressing image.");
 }
 jpeg_data = null;
}

In Android native development, an Android Activity class is
generally a thing that the user can do. The Activity class is also
responsible for the creation of a window for you in which you can
place your User Interface (UI) while using the setContentView()
API. An Android Intent is an abstract description of an operation
to be performed so that it can be used with startActivity or
startActivityForResult to launch an activity, as shown in the
previous example of Camera photo capturing.

If you are using Microsoft Windows Platform 7 or 8, for example, the call to the
getPicture() method of the camera object will call the following Windows Phone
C# native code. Please note that this code is the actual code for Apache Cordova
Camera Windows Phone plugin. If you are a native Windows Phone developer,
the next two code snippets will look very familiar to you:

CameraCaptureTask cameraTask;

public void takePicture(string options)
{
 // ... Code is omitted for simplifying things ...

 if (cameraOptions.PictureSourceType == CAMERA)
 {

An Introduction to Apache Cordova

[22]

 cameraTask = new CameraCaptureTask();
 cameraTask.Completed += onCameraTaskCompleted;
 cameraTask.Show();
 }

 // ... Code is omitted for simplifying things ...
}

As shown in the preceding code, in order to open a camera in a Windows Phone
device, you need to create an instance of CameraCaptureTask and call the Show()
method. In order to receive the image capture result on the Windows Phone
platform, you need to define an event handler that will be executed once the camera
task completes. In the previous code, onCameraTaskCompleted is the event handler
that will be executed once the camera task completes. The following code snippet
shows the onCameraTaskCompleted handler code with its helper methods:

public void onCameraTaskCompleted(object sender, PhotoResult e)
{
 // ... Code is omitted for simplifying things ...
 switch (e.TaskResult)
 {
 case TaskResult.OK:
 try
 {
 string imagePathOrContent = string.Empty;

 if (cameraOptions.DestinationType == FILE_URI)
 {
 // Save image in media library
 if (cameraOptions.SaveToPhotoAlbum)
 {
 MediaLibrary library = new MediaLibrary();
 Picture pict = library.SavePicture(e.
OriginalFileName, e.ChosenPhoto); // to save to photo-roll ...
 }

 int orient = ImageExifHelper.
getImageOrientationFromStream(e.ChosenPhoto);
 int newAngle = 0;

 // ... Code is omitted for simplifying things ...

Chapter 1

[23]

 Stream rotImageStream = ImageExifHelper.
RotateStream(e.ChosenPhoto, newAngle);

 // we should return stream position back after
saving stream to media library
 rotImageStream.Seek(0, SeekOrigin.Begin);

 WriteableBitmap image = PictureDecoder.
DecodeJpeg(rotImageStream);

 imagePathOrContent = this.
SaveImageToLocalStorage(image, Path.GetFileName(e.OriginalFileName));
 }
 else if (cameraOptions.DestinationType == DATA_URL)
 {
 imagePathOrContent = this.GetImageContent(e.
ChosenPhoto);
 }
 else
 {
 // TODO: shouldn't this happen before we launch
the camera-picker?
 DispatchCommandResult(new
PluginResult(PluginResult.Status.ERROR, "Incorrect option:
destinationType"));
 return;
 }

 DispatchCommandResult(new PluginResult(PluginResult.
Status.OK, imagePathOrContent));

 }
 catch (Exception)
 {
 DispatchCommandResult(new PluginResult(PluginResult.
Status.ERROR, "Error retrieving image."));
 }
 break;

 // ... Code is omitted for simplifying things ...
 }
}

An Introduction to Apache Cordova

[24]

If the camera capture operation succeeds, then e.TaskResult == TaskResult.
OK will be true, and if the user requires the result of the captured image as a
Base-64 encoded string, then the captured image is retrieved and processed
in the GetImageContent(stream) method. The GetImageContent(stream)
function, which is shown in the following code snippet, converts the image
to a Base-64 encoded string that is returned to the JavaScript Cordova
client using the DispatchCommandResult() method. We will illustrate the
DispatchCommandResult() method in more detail later on in this book.

If the user requires the result of the captured image as a file URI string, then the file
URI of the image file is retrieved using the SaveImageToLocalStorage() method
(whose implementation is shown in the following code snippet) and is then sent to
the JavaScript Cordova client using DispatchCommandResult():

private string GetImageContent(Stream stream)
{
 int streamLength = (int)stream.Length;
 byte[] fileData = new byte[streamLength + 1];
 stream.Read(fileData, 0, streamLength);

 //use photo's actual width & height if user doesn't provide
width & height
 if (cameraOptions.TargetWidth < 0 &&
cameraOptions.TargetHeight < 0)
 {
 stream.Close();
 return Convert.ToBase64String(fileData);
 }
 else
 {
 // resize photo
 byte[] resizedFile = ResizePhoto(stream, fileData);
 stream.Close();
 return Convert.ToBase64String(resizedFile);
 }
}

private string SaveImageToLocalStorage(WriteableBitmap image,
string imageFileName)
{
 // ... Code is omitted for simplifying things ...

Chapter 1

[25]

 var isoFile =
IsolatedStorageFile.GetUserStoreForApplication();
 if (!isoFile.DirectoryExists(isoFolder))
 {
 isoFile.CreateDirectory(isoFolder);
 }

 string filePath = System.IO.Path.Combine("///" + isoFolder +
"/", imageFileName);

 using (var stream = isoFile.CreateFile(filePath))
 {
 // resize image if Height and Width defined via options
 if (cameraOptions.TargetHeight > 0 && cameraOptions.
TargetWidth > 0)
 {
 image.SaveJpeg(stream, cameraOptions.TargetWidth,
cameraOptions.TargetHeight, 0, cameraOptions.Quality);
 }
 else
 {
 image.SaveJpeg(stream, image.PixelWidth,
image.PixelHeight, 0, cameraOptions.Quality);
 }
 }

 return new Uri(filePath, UriKind.Relative).ToString();
}

As you can see from the examples of Android and Windows Phone Platforms,
in order to implement a photo capture using the device camera on two mobile
platforms, we had to use two different programming languages and deal with
totally different APIs. Thanks to Apache Cordova unified programming JavaScript
interface, you don't even need to know how every mobile platform is handling the
native stuff behind the scene, and you can only focus on implementing your
cross-platform mobile application's business logic with a neat unified code base.

By now, you should have been comfortable with knowing and understanding the
Apache Cordova architecture. In the upcoming chapters of this book, however, we
will explain the bits of Apache Cordova in more detail, and you will acquire a deeper
understanding of the Apache Cordova architecture by creating your own custom
Cordova plugin in Chapter 6, Developing Custom Cordova Plugins.

An Introduction to Apache Cordova

[26]

Overview of Cordova APIs
Currently, Apache Cordova supports the following mobile native functions APIs:

•	 Accelerometer: This allows you to capture the device motion in all
directions (x, y, and z)

•	 Camera: This allows you to use the default camera application in order to
capture photos

•	 Capture: This allows you to capture audio using the device's audio recording
application, capture images using the device's camera application, and
capture video using the device's video recording application

•	 Compass: This allows you to get the direction that the device is pointing to
•	 Connection: This provides you with the information about the device's

cellular and Wi-Fi connection
•	 Contacts: This allows you to access the device's contacts database, create

new contacts in the contacts list, and query the existing device contacts list
•	 Device: This allows you to get the hardware and software information of

the device; for example, it allows you to get the device model, receive the
platform and its version, and finally, receive the device name

•	 Events: This allows you to listen and create handlers for Apache Cordova
life cycle events. These life cycle events are as follows:

°° deviceready: This event fires once Apache Cordova is fully loaded
°° pause: This event fires if the application is put into the background
°° resume: This event fires if the application is resumed from the

background
°° online: This event fires if the application becomes connected to

the Internet
°° offline: This event fires if the application becomes disconnected

from the Internet
°° backbutton: This event fires if the user clicks the device's back

button (some mobile devices have a back button, such as Android
and Windows Phone devices)

°° batterycritical: This event fires if the device's battery power
reaches a critical state (that is, reaches the critical-level threshold)

Chapter 1

[27]

°° batterylow: This event fires if the device battery power reaches
the low-level threshold

°° batterystatus: This event fires if there is a change in the
battery status

°° menubutton: This event fires if the user presses the device's
menu button (the menu button is popular for Android and
BlackBerry devices)

°° searchbutton: This event fires if the user presses the device's search
button (the search button can be found in Android devices)

°° startcallbutton: This event fires when the user presses the start
and end call buttons of the device

°° endcallbutton: This event fires when the user presses the start and
end call buttons of the device

°° volumeupbutton: This event fires when the user presses the volume
up and down buttons of the device

°° volumedownbutton: This event fires when the user presses the
volume up and down buttons of the device

•	 File: This allows you to process files (which is to read, write, and navigate
filesystem directories), and it is based on the W3C file APIs

•	 Geolocation: This allows you to receive the device's location using GPS or
using network signals, and it is based on W3C geolocation APIs

•	 Globalization: This allows you to get the user's locale and perform
locale-specific operations

•	 InAppBrowser: This represents a web browser view that is displayed when
any call to window.open() or a link whose target is set to "_blank" is clicked

•	 Media: This allows for the recording of audio files programmatically, without
using the device default recording application, as well as playing audio files

•	 Notification: This allows the display of audible notifications such as beeps,
the display of tactile notifications such as vibrations, and displaying visual
notifications such as the normal device visual messages to the user

•	 Splashscreen: This allows you to display application splash screen

www.allitebooks.com

http://www.allitebooks.org

An Introduction to Apache Cordova

[28]

•	 Storage: Apache Cordova provides the following storage capabilities:

°° Using the W3C web storage interface which is about LocalStorage
and SessionStorage. It is important to know that local storage is a
permanent storage that exists on your device even if your application
is closed, while session storage is a temporary storage that is erased
when the user session ends, which is when the application is closed.

°° Using the full features of relational databases by supporting Web
SQL on almost all the platforms. For Windows Phone and Windows
Platform, it supports IndexedDB, which is currently a W3C standard.

Although Web SQL is deprecated, it was and still is a powerful
specification for creating and working with relational data.

All of these APIs will be illustrated in far more detail, along with examples, as you
read this book. It is important to note that not all of these APIs are supported in all
the platforms. You will be able to specifically check which ones are not supported in
the following list. Also note that this list applies to Apache Cordova Version 3.4, and
it might be changed later. The following table shows the unsupported APIs on the
different platforms. Please note that X here means unsupported:

Firefox OS Tizen Windows 8 Blackberry 10
Capture API X X X
Compass X
Connection X
Contacts X X
Events X
File X X
Globalization X X X X
InAppBrowser X X
Media X
Notification X
Splashscreen X X
Storage X

Chapter 1

[29]

Summary
In this chapter, you have been given a powerful introduction to Apache Cordova.
You now know what Apache Cordova is, and understand the current challenges
of today's mobile development and how it can reduce the complexities of these
challenges. You should now understand the differences between mobile web, hybrid
mobile, and native mobile applications. You should also know the architecture of
Cordova and how it works behind the scenes with an example of a photo capture
using a camera. Finally, you have an overview of Apache Cordova APIs and what
every API does from a high-level point of view.

In the next chapter, you will start the real work with Apache Cordova by developing
your first Apache Cordova application from scratch.

Developing Your First
Cordova Application

In the previous chapter, you had a powerful introduction to Apache Cordova. In this
chapter, you will develop, build, and deploy your first Apache Cordova application
from scratch. The application you will develop is a Sound Recorder utility that you
can use to record your voice or any sound and play it back. In this chapter, you will
learn about the following topics:

•	 Generating your initial Apache Cordova project artifacts by utilizing the
Apache Cordova Command-line Interface (CLI)

•	 Developing and building your mobile application from the initial Cordova
generated code

•	 Deploying your developed mobile application to a real Android mobile
device to see your application in action

An introduction to Cordova CLI
In order to create, develop, build, and test a Cordova application, you first need to
use the Cordova CLI. Using this, you can create new Apache Cordova project(s),
build them on mobile platforms such as iOS, Android, Windows Phone, and so on,
and run them on real devices or within emulators. Note that in this chapter, we will
focus on deploying our Sound Recorder application in Android devices only.

In the next chapter, we will learn how to deploy our Sound Recorder
application in iOS and Windows Phone devices.

Developing Your First Cordova Application

[32]

Installing Apache Cordova
Before installing Apache Cordova CLI, you need to make sure that you install the
following software:

•	 Target platform SDK: For Android, you can download its SDK from
http://developer.android.com/sdk/index.html (for other platforms,
you need to download and install their corresponding SDKs)

•	 Node.js: This is accessible at http://nodejs.org and can be downloaded
and installed from http://nodejs.org/download/

If you want to know more about the details of configuring Android, iOS,
and Windows Phone environments in your development machine, refer
to Chapter 3, Apache Cordova Development Tools.

After installing Node.js, you should be able to run Node.js or node package manager
(npm) from the command line. In order to install Apache Cordova using npm,
run the following command (you can omit sudo if you are working in a Windows
environment):

> sudo npm install -g cordova

It's worth mentioning that npm is the official package manager for Node.js and it is
written completely in JavaScript. npm is a tool that allows users to install Node.js
modules, which are available in the npm registry.

The sudo command allows a privileged Unix user to execute a command
as the super user, or as any other user, according to the sudoers file.
The sudo command, by default, requires you to authenticate with a
password. Once you are authenticated, you can use the command without
a password, by default, for 5 minutes.

After successfully installing Apache Cordova (Version 3.4.0), you should be able
to execute Apache Cordova commands from the command line, for example, the
following command will show you the current installed version of Apache Cordova:

> cordova -version

In order to execute the Cordova commands without any problem, you also need to
have Apache Ant installed and configured in your operating system.

You can download Apache Ant from http://ant.apache.org. The complete
instructions on how to install Ant are mentioned at https://ant.apache.org/
manual/install.html.

http://developer.android.com/sdk/index.html
http://nodejs.org
http://nodejs.org/download/
http://ant.apache.org
https://ant.apache.org/manual/install.html
https://ant.apache.org/manual/install.html

Chapter 2

[33]

Generating our Sound Recorder's initial code
After installing Apache Cordova, we can start creating our Sound Recorder project
by executing the following command:

> cordova create soundRecorder com.jsmobile.soundrecorder SoundRecorder

After successfully executing this command, you will find a message similar to the
following one (note that the location path will be different on your machine):

Creating a new cordova project with name "SoundRecorder" and id
"com.jsmobile.soundrecorder" at location "/Users/xyz/projects/
soundRecorder"

If we analyze the cordova create command, we will find that its first parameter
represents the path of your project. In this command, a soundRecorder directory
will be generated for your project under the directory from which the cordova
create command is executed. The second and third parameters are optional.
The second parameter, com.jsmobile.soundrecorder, provides your project's
namespace (it should be noted that in Android projects, this namespace will be
translated to a Java package with this name), and the last parameter, SoundRecorder,
provides the application's display text. You can edit both these values in the config.
xml configuration file later, which will be illustrated soon.

The following screenshot shows our SoundRecorder project's generated artifacts:

Developing Your First Cordova Application

[34]

The Sound Recorder's initial structure
As shown in the preceding screenshot, the generated Apache Cordova project
contains the following main directories and files:

•	 www: This directory includes your application's HTML, JavaScript, and
CSS code. You will also find the application's starting page (index.html),
along with various subdirectories, which are as follows:

°° css: This directory includes the default Apache Cordova
application's CSS file (index.css)

°° js: This directory includes the default Apache Cordova application's
JavaScript file (index.js)

°° img: This directory includes the default Apache Cordova
application's logo file (logo.png)

•	 config.xml: This file contains the application configuration. The following
code snippet shows the initial code of the config.xml file:
<?xml version='1.0' encoding='utf-8'?>
<widget id="com.jsmobile.soundrecorder" version="0.0.1"
 xmlns="http://www.w3.org/ns/widgets"
 xmlns:cdv="http://cordova.apache.org/ns/1.0">
 <name>SoundRecorder</name>
 <description>
 A sample Apache Cordova application that responds to the
deviceready event.
 </description>
 <author email="dev@cordova.apache.org" href="http://cordova.
io">
 Apache Cordova Team
 </author>
 <content src="index.html" />
 <access origin="*" />
</widget>

As shown in the preceding config.xml file, config.xml contains the
following elements that are available on all the supported Apache
Cordova platforms:

°° The <widget> element's id attribute represents the application's
namespace identifier as specified in our cordova create command,
and the <widget> element's version attribute represents its full
version number in the form of major.minor.patch.

Chapter 2

[35]

°° The <name> element specifies the application's name.
°° The <description> and <author> elements specify the application's

description and author, respectively.
°° The <content> element (which is optional) specifies the application's

starting page that is placed directly under the www directory. The
default value is index.html.

°° The <access> element(s) defines the set of external domains that the
application is allowed to access. The default value is *, which means
that the application is allowed to access any external server(s).

Specifying the <access> element's origin to * is fine during application
development, but it is considered a bad practice in production due
to security concerns. Note that before moving your application to
production, you should review its whitelist and declare its access to
specific network domains and subdomains.

There is another element that is not included in the default config.xml, and
this is the <preference> element. The <preference> element(s) can be used
to set the different preferences of the Cordova application and can work
on all or a subset of the Apache Cordova-supported platforms. Take the
example of the following code:
<preference name="Fullscreen" value="true" />

If the Fullscreen preference is set to true, it means that the application will
be in fullscreen mode on all Cordova-supported platforms (by default, this
option is set to false). It is important to note that not all preferences work on
all Cordova-supported platforms. Consider the following example:
<preference name="HideKeyboardFormAccessoryBar" value="true"/>

If the HideKeyboardFormAccessoryBar preference is set to true, then the
additional helper toolbar, which appears above the device keyboard, will be
hidden. This preference works only on iOS and BlackBerry platforms.

•	 platforms: This directory includes the application's supported platforms.
After adding a new platform using Apache Cordova CLI, you will find a
newly created directory that contains the platform-specific generated code
under the platforms directory. The platforms directory is initially empty
because we have not added any platforms yet. We will add support to the
Android platform in the next step.

Developing Your First Cordova Application

[36]

•	 plugins: This directory includes your application's used plugins. If you
aren't already aware, a plugin is the mechanism to access the device's native
functions in Apache Cordova. After adding a plugin (such as the Media
plugin) to the project, you will find a newly created directory under the
plugins directory, which contains the plugin code. Note that we will add
three plugins in our Sound Recorder application example.

•	 merges: This directory can be used to override the common resources under
the www directory. The files placed under the merges/[platform] directory
will override the matching files (or add new files) under the www directory for
the specified platform (the [platform] value can be iOS, Android, or any
other valid supported platform).

•	 hooks: This directory contains scripts that can be used to customize Apache
Cordova commands. A hook is a piece of code that executes before and/or
after the Apache Cordova command runs.

An insight into the www files
If we look in the www directory, we will find that it contains the following three files:

•	 index.html: This file is placed under the application's www directory, and it
contains the HTML content of the application page

•	 index.js: This file is placed under the www/js directory, and it contains a
simple JavaScript logic that we will illustrate soon

•	 index.css: This file is placed under the www/css directory, and it contains
the style classes of the HTML elements

The following code snippet includes the most important part of the index.html page:

<div class="app">
 <h1>Apache Cordova</h1>
 <div id="deviceready" class="blink">
 <p class="event listening">Connecting to Device</p>
 <p class="event received">Device is Ready</p>
 </div>
</div>
<script type="text/javascript" src="cordova.js"></script>
<script type="text/javascript" src="js/index.js"></script>
<script type="text/javascript">
 app.initialize();
</script>

Chapter 2

[37]

The index.html page has a single div "app", which contains a child div
"deviceready". The "deviceready" div has two paragraph elements, the
"event listening" and "event received" paragraphs. The "event received"
paragraph is initially hidden as indicated by index.css:

.event.received {
 background-color:#4B946A;
 display:none;
}

In the index.html page, there are two main JavaScript-included files, as follows:

•	 cordova.js: This file contains Apache Cordova JavaScript APIs
•	 index.js: This file contains the application's simple logic

Finally, the index.html page calls the initialize() method of the app object.
Let's see the details of the app object in index.js:

var app = {
 initialize: function() {
 this.bindEvents();
 },
 bindEvents: function() {
 document.addEventListener('deviceready', this.onDeviceReady,
false);
 },
 onDeviceReady: function() {
 app.receivedEvent('deviceready');
 },
 receivedEvent: function(id) {
 var parentElement = document.getElementById(id);
 var listeningElement = parentElement.querySelector('.
listening');
 var receivedElement =
parentElement.querySelector('.received');

 listeningElement.setAttribute('style', 'display:none;');
 receivedElement.setAttribute('style', 'display:block;');

 console.log('Received Event: ' + id);
 }
};

www.allitebooks.com

http://www.allitebooks.org

Developing Your First Cordova Application

[38]

The initialize() method calls the bindEvents() method, which adds an
event listener for the 'deviceready' event. When the device is ready, the
onDeviceReady() method is called, and this in turn calls the receivedEvent()
method of the app object.

In the receivedEvent() method, the "event listening" paragraph is hidden and
the "event received" paragraph is shown to the user. This is to display the Device
is Ready message to the user once Apache Cordova is fully loaded.

It is important to note that you must not call any Apache Cordova
API before the 'deviceready' event fires. This is because the
'deviceready' event fires only once Apache Cordova is fully loaded.

Now you have an Apache Cordova project that has common cross-platform code,
so we need to generate a platform-specific code in order to deploy our code on a
real device. To generate Android platform code, you need to add the Android
platform as follows:

> cd soundRecorder

> cordova platform add android

In order to add any platform, you need to execute the cordova platform
command from the application directory. Note that in order to execute the
cordova platform command without problems, you need to perform the
following instructions:

•	 Have Apache Ant installed and configured in your operating system as
described in the Installing Apache Cordova section

•	 Make sure that the path to your Android SDK platform tools and the tools
directory are added to your operating system's PATH environment variable

After executing the cordova platform add command, you will find a new
subdirectory Android added under the soundRecorder/platforms directory.
In order to build the project, use the following command:

> cordova build

Finally, you can run and test the generated Android project in the emulator by
executing the following command:

> cordova emulate android

You might see the ERROR: No emulator images (avds) found message flash if no
Android AVDs are available in your operating system. So, make sure you create one!

Chapter 2

[39]

Refer to the Creating an Android virtual device section in Chapter 3, Apache
Cordova Development Tools, to know how to create an Android AVD.

The following screenshot shows our Sound Recorder application's initial screen:

It is recommended that you make your code changes in the root www directory,
and not in the platforms/android/assets/www directory (especially if you are
targeting multiple platforms) as the platforms directory will be overridden every
time you execute the cordova build command, unless you are willing to use
Apache Cordova CLI to initialize the project for a single platform only.

Developing Your First Cordova Application

[40]

Developing Sound Recorder application
After generating the initial application code, it's time to understand what to do next.

Sound Recorder functionality
The following screenshot shows our Sound Recorder page:

Chapter 2

[41]

When the user clicks on the Record Sound button, they will be able to record their
voices; they can stop recording their voices by clicking on the Stop Recording
button. You can see this in the following screenshot:

Developing Your First Cordova Application

[42]

As shown in the following screenshot, when the user clicks on the Playback button,
the recorded voice will be played back:

Chapter 2

[43]

Sound Recorder preparation
In order to implement this functionality using Apache Cordova, we need to add the
following plugins using the indicated commands, which should be executed from
the application directory:

•	 media: This plugin is used to record and play back sound files:
 > cordova plugin add https://git-wip-us.apache.org/repos/asf/
cordova-plugin-media.git

•	 device: This plugin is required to access the device information:
 > cordova plugin add https://git-wip-us.apache.org/repos/asf/
cordova-plugin-device.git

•	 file: This plugin is used to access the device's filesystem:

 > cordova plugin add https://git-wip-us.apache.org/repos/asf/
cordova-plugin-file.git

In order to apply these plugins to our Apache Cordova project, we need to run the
cordova build command again from the project directory, as follows:

> cordova build

Sound Recorder details
Now we are done with the preparation of our Sound Recorder application.
Before moving to the code details, let's see the hierarchy of our Sound Recorder
application, as shown in the following screenshot:

Developing Your First Cordova Application

[44]

The application's www directory contains the following directories:

•	 css: This directory contains the custom application CSS file(s)
•	 img: This directory contains the custom application image file(s)
•	 js: This directory contains the custom application JavaScript code
•	 jqueryMobile: This directory (which is a newly added one) contains jQuery

Mobile framework files

Finally, the index.html file contains the application's single page whose
functionality was illustrated earlier in this section.

It is important to note that Apache Cordova does not require you to
use a JavaScript mobile User Interface (UI) framework. However, it is
recommended that you use a JavaScript mobile UI framework in addition
to Apache Cordova. This is in order to facilitate building the application
UI and speed up the application development process. The jQuery Mobile
framework is one of the best mobile UI frameworks, and as such will be
used in all the Apache Cordova applications developed in this book.

Let's see the details of the index.html page of our Sound Recorder application.
The following code snippet shows the included files in the page:

<link rel="stylesheet" type="text/css" href="css/app.css" />
<link rel="stylesheet" href="jqueryMobile/jquery.mobile-1.4.0.min.
css">
<script src="jqueryMobile/jquery-1.10.2.min.js"></script>
<script src="jqueryMobile/jquery.mobile-1.4.0.min.js"></script>
...
<script type="text/javascript" src="cordova.js"></script>
<script type="text/javascript" src="js/app.js"></script>

In the preceding code, the following files are included:

•	 app.css: This is the custom style file of our Sound Recorder application
•	 The files required by the jQuery Mobile framework, which are:

°° jquery.mobile-1.4.0.min.css

°° jquery-1.10.2.min.js

°° jquery.mobile-1.4.0.min.js

•	 cordova.js: This is the Apache Cordova JavaScript API's file
•	 app.js: This is the custom JavaScript file of our Sound Recorder application

Chapter 2

[45]

It is important to know that you can download the jQuery Mobile framework files
from http://jquerymobile.com/download/.

The following code snippet shows the HTML content of our application's single
page, whose id is "main":

<div data-role="page" id="main">
 <div data-role="header">
 <h1>Sound Recorder</h1>
 </div>
 <div data-role="content">
 <div data-role="fieldcontain">
 <h1>Welcome to the Sound Recorder Application</h1>
 <p>Click 'Record Sound' button in order to start
recording. You will be able to see
 the playback button once the sound recording
finishes.

</p>
 <input type="hidden" id="location"/>
 <div class="center-wrapper">
 <input type="button" id="recordSound" data-
icon="audio" value="Record Sound" class="center-button" data-
inline="true"/>
 <input type="button" id="playSound" data-
icon="refresh" value="Playback" class="center-button" data-
inline="true"/>

 </div>

 <div data-role="popup" id="recordSoundDialog" data-
dismissible="false" style="width:250px">
 <div data-role="header">
 <h1>Recording</h1>
 </div>

 <div data-role="content">
 <div class="center-wrapper">
 <div id="soundDuration"></div>
 <input type="button" id="stopRecordingSound"
value="Stop Recording"
 class="center-button" data-
inline="true"/>
 </div>
 </div>
 </div>
 </div>
 </div>

http://jquerymobile.com/download/

Developing Your First Cordova Application

[46]

 <div data-role="footer" data-position="fixed">
 <h1>Powered by Apache Cordova</h1>
 </div>
</div>

Looking at the preceding code, our Sound Recording page ("main") is defined by
setting a div's data-role attribute to "page". It has a header defined by setting a
div's data-role to "header". It has content defined by setting a div's data-role to
"content", which contains the recording and playback buttons.

The content also contains a "recordSoundDialog" pop up, which is defined by
setting a div's data-role to "popup". The "recordSoundDialog" pop up has a
header and content. The pop-up content displays the recorded audio duration in
the "soundDuration" div, and it has a "stopRecordingSound" button that stops
recording the sound.

Finally, the page has a footer defined by setting a div's data-role to "footer",
which contains a statement about the application.

Now, it's time to learn how we can define event handlers on page HTML elements
and use the Apache Cordova API inside our defined event handlers to implement
the application's functionality.

The following code snippet shows the page initialization code:

(function() {

 $(document).on("pageinit", "#main", function(e) {
 e.preventDefault();

 function onDeviceReady() {
 $("#recordSound").on("tap", function(e) {
 // Action is defined here ...
 });

 $("#recordSoundDialog").on("popupafterclose",
function(event, ui) {
 // Action is defined here ...
 });

 $("#stopRecordingSound").on("tap", function(e) {
 // Action is defined here ...
 });

 $("#playSound").on("tap", function(e) {
 // Action is defined here ...

Chapter 2

[47]

 });
 }

 $(document).on('deviceready', onDeviceReady);

 initPage();
 });

 // Code is omitted here for simplicity

 function initPage() {
 $("#playSound").closest('.ui-btn').hide();
 }
})();

In jQuery Mobile, the "pageinit" event is called once during page initialization.
In this event, the event handlers are defined and the page is initialized. Note that
all of the event handlers are defined after the 'deviceready' event fires. The event
handlers are defined for the following:

•	 Tapping the "recordSound" button
•	 Closing the "recordSoundDailog" dialog
•	 Tapping the "stopRecordingSound" button
•	 Tapping the "playSound" button

In initPage(), the "playSound" button is hidden as no voice has been recorded yet.
As you noticed, in order to hide an element in jQuery Mobile, you just need to call
its hide() method. We can now see the details of each event handler; the next code
snippet shows the "recordSound" tap event handler:

var recInterval;
$("#recordSound").on("tap", function(e) {
 e.preventDefault();

 var recordingCallback = {};

 recordingCallback.recordSuccess = handleRecordSuccess;
 recordingCallback.recordError = handleRecordError;

 startRecordingSound(recordingCallback);

 var recTime = 0;

www.allitebooks.com

http://www.allitebooks.org

Developing Your First Cordova Application

[48]

 $("#soundDuration").html("Duration: " + recTime + " seconds");

 $("#recordSoundDialog").popup("open");

 recInterval = setInterval(function() {
 recTime = recTime + 1;
 $("#soundDuration").html("Duration: "
+ recTime + " seconds");
 }, 1000);
});

The following actions are performed in the "recordSound" tap event handler:

1.	 A call to the startRecordingSound(recordingCallback) function is
performed. The startRecordingSound(recordingCallback) function is
a helper function that starts the sound recording process using the Apache
Cordova Media API. Its recordingCallback parameter represents a JSON
object, which has the recordSuccess and recordError callback attributes.
The recordSuccess callback will be called if the recording operation is
a success, and the recordError callback will be called if the recording
operation is a failure.

2.	 Then, the "recordSoundDialog" dialog is opened and its "soundDuration"
div is updated every second with the duration of the recorded sound.

The following code snippet shows the startRecordingSound(recordingCallba
ck), stopRecordingSound(), and requestApplicationDirectory(callback)
functions:

var BASE_DIRECTORY = "CS_Recorder";
var recordingMedia;	

function startRecordingSound(recordingCallback) {
 var recordVoice = function(dirPath) {
 var basePath = "";

 if (dirPath) {
 basePath = dirPath + "/";
 }

 var mediaFilePath = basePath + (new Date()).getTime() +
".wav";

 var recordingSuccess = function() {

Chapter 2

[49]

 recordingCallback.recordSuccess(mediaFilePath);
 };
 recordingMedia = new Media(mediaFilePath,
recordingSuccess, recordingCallback.recordError);

 // Record audio
 recordingMedia.startRecord();
 };

 if (device.platform === "Android") {
 var callback = {};

 callback.requestSuccess = recordVoice;
 callback.requestError = recordingCallback.recordError;

 requestApplicationDirectory(callback);
 } else {

 recordVoice();
 }
}

function stopRecordingSound() {
 recordingMedia.stopRecord();
 recordingMedia.release();
}

function requestApplicationDirectory(callback) {
 var directoryReady = function (dirEntry) {
 callback.requestSuccess(dirEntry.toURL());
 };

 var fileSystemReady = function(fileSystem) {
 fileSystem.root.getDirectory(BASE_DIRECTORY, {create:
true}, directoryReady);
 };

 window.requestFileSystem(LocalFileSystem.PERSISTENT, 0,
fileSystemReady, callback.requestError);
}

The next section illustrates the preceding code snippet.

Developing Your First Cordova Application

[50]

Recording and playing the audio files back
In order to record the audio files using Apache Cordova, we need to create a Media
object, as follows:

recordingMedia = new Media(src, mediaSuccess, mediaError);

The Media object constructor has the following parameters:

•	 src: This refers to the URI of the media file
•	 mediaSuccess: This refers to the callback that will be invoked if the media

operation (play/record or stop function) succeeds
•	 mediaError: This refers to the callback that will be invoked if the media

operation (again a play/record or stop function) fails

In order to start recording an audio file, a call to the startRecord() method of the
Media object must be performed. When the recording is over, a call to stopRecord()
of the Media object method must be performed.

In startRecordingSound(recordingCallback), the function gets the current
device platform by using device.platform, as follows:

•	 If the current platform is Android, then a call to requestApplicationDirec
tory(callback) is performed in order to create an application directory (if
it is not already created) called "CS_Recorder" under the device's SD card
root directory using the Apache Cordova File API. If the directory creation
operation succeeds, recordVoice() will be called by passing the application
directory path as a parameter. The recordVoice() function starts recording
the sound and saves the resulting audio file under the application
directory. Note that if there is no SD card in your Android device, then the
application directory will be created under the app's private data directory
(/data/data/[app_directory]), and the audio file will be saved under it.

•	 In the else block which refers to the other supported platforms (Windows
Phone 8 and iOS, which we will add using Cordova CLI in the next chapter),
recordVoice() is called without creating an application-specific directory.
At the time of writing this book, in iOS and Windows Phone 8, every
application has a private directory, and applications cannot store their files
in any place other than this directory, using the Apache Cordova APIs. In
the case of iOS, the audio files will be stored under the tmp directory of
the application's sandbox directory (the application's private directory).
In the case of Windows Phone 8, the audio files will be stored under the
application's local directory.

Chapter 2

[51]

Note that using the native Windows Phone 8 API (Window.
Storage), you can read and write files in an SD card with some
restrictions. However, until the moment you cannot do this using
Apache Cordova; hopefully this capability will soon be supported
by Cordova (http://msdn.microsoft.com/en-us/library/
windows/apps/xaml/dn611857.aspx).

•	 In recordVoice(), it starts creating a media file using the Media object's
startRecord() function. After calling the media file's stopRecord() function
and after the success of the recording operation, recordingCallback.
recordSuccess will be called by recordingSuccess. The
recordingCallback.recordSuccess function calls handleRecordSuccess,
passing the audio file's full path mediaFilePath as a parameter.

•	 The following code snippet shows the handleRecordSuccess function:
function handleRecordSuccess(currentFilePath) {

 $("#location").val(currentFilePath);
 $("#playSound").closest('.ui-btn').show();
}

•	 The handleRecordSuccess function stores the recorded audio filepath in the
"location" hidden field, which is used later by the playback button, and
shows the "playSound" button.

•	 In requestApplicationDirectory(callback), which is called in case of
Android, it does the following:

°° Calls window.requestFileSystem in order to request the device
filesystem before performing any file operation(s)

°° Calls fileSystem.root.getDirectory when the filesystem is ready
in order to create our custom application directory

°° When our custom application directory is created successfully, the
path of the created directory, or the existing directory, is passed to
recordVoice() that was illustrated earlier

•	 In the other application actions, the following code snippet shows the
"stopRecordingSound" tapping and "recordSoundDialog" closing
event handlers:

$("#recordSoundDialog").on("popupafterclose", function(event, ui)
{
 clearInterval(recInterval);
 stopRecordingSound();
});

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/dn611857.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/dn611857.aspx

Developing Your First Cordova Application

[52]

$("#stopRecordingSound").on("tap", function(e) {
 $("#recordSoundDialog").popup("close");
});

function stopRecordingSound(recordingCallback) {
 recordingMedia.stopRecord();
 recordingMedia.release();
}

In the "stopRecordingSound" tapping event handler, it closes the open
"recordSoundDialog" pop up. Generally, if "recordSoundDialog" is closed
by the "stopRecordingSound" button's tapping action or by pressing special
device keys, such as the back button in Android devices, then the recording timer
stops as a result of calling clearInterval(recInterval), and then it calls the
stopRecordingSound() function to stop recording the sound.

The stopRecordingSound() function calls the Media object's stopRecord() method,
and then releases it by calling the Media object's release() method. The following
code snippet shows the "playSound" tap event handler:

var audioMedia;
var recordingMedia;

$("#playSound").on("tap", function(e) {
 e.preventDefault();

 var playCallback = {};

 playCallback.playSuccess = handlePlaySuccess;
 playCallback.playError = handlePlayError;

 playSound($("#location").val(), playCallback);
});

function playSound(filePath, playCallback) {
 if (filePath) {
 cleanUpResources();

 audioMedia = new Media(filePath, playCallback.playSuccess,
playCallback.playError);

 // Play audio
 audioMedia.play();
 }
}

Chapter 2

[53]

function cleanUpResources() {
 if (audioMedia) {
 audioMedia.stop();
 audioMedia.release();
 audioMedia = null;
 }

 if (recordingMedia) {
 recordingMedia.stop();
 recordingMedia.release();
 recordingMedia = null;
 }
}

In the "playSound" tap event handler, it calls the playSound(filePath,
playCallback) function by passing the audio file location, which is stored
in the "location" hidden field and playCallback.

The playSound(filePath, playCallback) function uses the Media object's play()
method to play back the saved audio file after releasing used Media objects. Note that
this is a requirement to avoid running out of system audio resources.

This is all you need to know about our Sound Recorder application. In order to see
the complete application's source code, you can download it from the book page or
get it from GitHub at https://github.com/hazems/soundRecorder.

Building and running Sound Recorder
application
Now, after developing our application code, we can start building our application
using the following cordova build command:

> cordova build

In order to run the application in your Android mobile or tablet, just make sure you
enable USB debugging in your Android device. Then, plug your Android device
into your development machine and execute the following command from the
application directory:

> cordova run android

https://github.com/hazems/soundRecorder

Developing Your First Cordova Application

[54]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Congratulations! After running this command, you will see the Sound Recorder
application deployed in your Android device; you can now start testing it on your
real device.

In order to learn how to enable USB debugging in your Android device,
refer to the Configuring the Android development environment section in
Chapter 3, Apache Cordova Development Tools.

Summary
In this chapter, you developed your first Apache Cordova application. You now
know how to use the Apache Cordova Device API at a basic level. You also know
how to use the Media and File APIs along with jQuery Mobile to develop the Sound
Recorder application. You now understand how to use Apache Cordova CLI in
order to manage your Cordova mobile application. In addition, you know how to
create a Cordova project, add a new platform (in our case, Android), build your own
Cordova mobile application, and deploy your Cordova mobile application to the
emulator, and most importantly, to a real device!

In the next chapter, we will show you how to prepare your Android, iOS, and
Windows Phone development environments. Along with this, you will see how to
make our Sound Recorder application works on Windows Phone 8 and iOS.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Apache Cordova
Development Tools

In the previous chapter, you developed, built, and deployed your first Apache
Cordova application from scratch. In this chapter, you will learn:

•	 How to configure the Apache Cordova development tools for the most
popular mobile platforms (Android, iOS, and Windows Phone 8) on your
development machine(s)

•	 How to build the Sound Recorder application (which we developed in
Chapter 2, Developing Your First Cordova Application) on these platforms

•	 How to deploy the Sound Recorder application on real Android, iOS,
and Windows Phone 8 devices

•	 How to handle the common issues that you will face when supporting our
Sound Recorder application (which we supported on Android in Chapter 2,
Developing Your First Cordova Application) on the other mobile platforms (iOS
and Windows Phone 8)

Configuring Android development
environment
In order to install Android development environment, we first need to install Java
Development Kit (JDK). JDK 6 or 7 can work perfectly with Android development
tools. In order to get JDK, use the following URLs:

•	 JDK 7 (http://www.oracle.com/technetwork/java/javase/downloads/
jdk7-downloads-1880260.html)

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

Apache Cordova Development Tools

[56]

•	 JDK 6 (http://www.oracle.com/technetwork/java/javaee/downloads/
java-ee-sdk-6u3-jdk-6u29-downloads-523388.html)

Once the download page appears, accept the license and then download the JDK
installer that matches your operating system, as shown in the following screenshot.
After downloading the JDK installer, follow the steps of the JDK installer in order to
properly install JDK.

Downloading JDK 1.7

If you want to have an Android development environment installed quickly on your
machine, you can download Android Developer Tools (ADT) Bundle. The ADT
Bundle includes the essential Android SDK components and a version of the Eclipse
IDE with a built-in ADT to start developing your Android applications. You can
download it from http://developer.android.com/sdk/index.html.

http://www.oracle.com/technetwork/java/javaee/downloads/java-ee-sdk-6u3-jdk-6u29-downloads-523388.html
http://www.oracle.com/technetwork/java/javaee/downloads/java-ee-sdk-6u3-jdk-6u29-downloads-523388.html
http://developer.android.com/sdk/index.html

Chapter 3

[57]

You can start downloading the ADT Bundle by clicking on the Download the SDK
button, as shown in the following screenshot:

Downloading the ADT Bundle

Extending your existing Eclipse IDE
If you have an existing Eclipse IDE and you would prefer to use it as your
Android development IDE, then you will need to configure things by yourself,
start the configuration process by downloading the Android SDK tools from
http://developer.android.com/sdk/index.html#download.

After downloading the Android SDK tools, and in order to start developing Android
applications, you need to download at least one Android platform and the latest
SDK platform tools using SDK Manager, as follows:

1.	 Open SDK Manager. If you use Linux or Mac, you can open a terminal and
navigate to the tools directory under the Android SDK root directory and
execute the following command:
> android sdk

If you use Windows, then open the SDK Manager.exe file under the Android
SDK root directory.

www.allitebooks.com

http://developer.android.com/sdk/index.html#download
http://www.allitebooks.org

Apache Cordova Development Tools

[58]

2.	 After opening SDK Manager, follow these steps:

1.	 Select the latest tools packages (Android SDK Tools, Android SDK
Platform-tools, and Android SDK Build-tools).

2.	 Select the latest version of Android (as shown in the following
screenshot, it is Version 4.4.2 at the time of writing this book).

3.	 Select Android Support Library that is located under the
Extras folder.

4.	 Finally, click on the Install button, and after the process is complete,
you will find the packages installed on your machine.

Android SDK Manager

Now, your Android environment is ready to develop your Android applications.
However, in order to develop Android applications from your existing Eclipse IDE,
Android provides an Eclipse plugin called ADT. This plugin provides a neat and
integrated environment that you can use to develop your Android applications. ADT
allows you to create new Android projects easily, build your Android application
user interface, test and debug your Android applications, and export your
application for distribution.

Chapter 3

[59]

In order to install ADT in your Eclipse IDE, follow these steps:

1.	 Open Eclipse.
2.	 Choose Install New Software from the Help menu.
3.	 Click on the Add button.
4.	 In the Add Repository dialog, enter ADT for the name and the URL

https://dl-ssl.google.com/android/eclipse/ for the location.
5.	 Click on OK.
6.	 In the Available Software dialog, select Developer Tools and click on Next,

as shown in the following screenshot:

Installing the ADT plugin for Eclipse

7.	 The tools list to be downloaded will be shown to you. Then, click on Next.
8.	 Accept the license agreements, and finally, click on Finish.

Sometimes, you will see a security warning telling you that you are
installing software that contains unsigned content. Just ignore this
message and click on OK, and then restart your Eclipse when the
installation completes.

Apache Cordova Development Tools

[60]

After restarting Eclipse, you need to specify the Android SDK path for Eclipse.
You can do this by:

•	 Selecting the Preferences option from Window menu (in Windows or Linux),
or by selecting Preferences from Eclipse menu in Mac

•	 Selecting the Android preference and specifying the SDK location, as shown
in the following screenshot:

Configuring the Android SDK location in Eclipse

Creating an Android Virtual Device
In order to test your Android application in an emulator, you need to create
an Android Virtual Device (AVD). An AVD represents the Android emulator
device configuration that allows you to model the different configurations of
Android-powered devices. In order to create an AVD easily, you can use the
graphical AVD Manager. To start AVD Manager from the command line, you
can run the following command from the tools directory under the root of the
Android SDK directory:

> android avd

Chapter 3

[61]

After executing this command, the Android Virtual Device Manager window will
appear, as shown in the following screenshot:

Android Virtual Device Manager

Note that while using Eclipse, you can also start AVD Manager by selecting
Android Virtual Device Manager from the Window menu.

As shown in the preceding screenshot, using the AVD Manager, you can:

•	 Create a new AVD
•	 Delete an AVD
•	 Repair an AVD
•	 Check the details of an AVD
•	 Start running an AVD

Apache Cordova Development Tools

[62]

In order to create a new AVD to test your Android applications, follow these steps:

1.	 Click on New.
2.	 Enter the details of your AVD, as shown in the following screenshot:

Creating a new Android Virtual Device (AVD)

As shown in the preceding screenshot, the following information is provided:

°° AVD Name
°° Device
°° Target
°° CPU/ABI (where ABI stands for Application Binary Interface)
°° Skin

Chapter 3

[63]

°° Front Camera
°° Back Camera
°° Memory Options
°° Internal Storage
°° SD Card

3.	 Then, click on OK.

After this, you can start launching your AVD by clicking on the Start button; wait until
your Android emulator is up and running, as shown in the following screenshot:

Android emulator start up screen

Apache Cordova Development Tools

[64]

A best practice is to download the system images for all versions of Android
that your application needs to support and test your application on them using
the Android emulator. Another thing you need to consider is to select an AVD
platform target that is greater than or equal to the API level used to compile your
Android application.

Importing the Sound Recorder application in
to Eclipse
Now, we have everything in place. We can now import our Sound Recorder Android
application in our Eclipse IDE and start running it from the IDE. In order to import
our project into Eclipse, follow these steps:

1.	 Before starting to import the project into your Eclipse IDE, and in order to
avoid getting errors after importing the project into your IDE, make sure that
our Sound Recorder project directories and subdirectories have Read and
Write access for your user (that is, not read-only access).

2.	 Select the Import option from the File menu.
3.	 Select Existing Android Code into workspace from the Android menu.
4.	 In Import Projects, browse to the ${path_to_soundRecorder}/platforms/

android directory in Root Directory, as shown in the following screenshot:

Importing the Sound Recorder project into Eclipse

Chapter 3

[65]

5.	 Click on Finish.

By default, your HTML, CSS, and JavaScript Android resources under ${project_
root}/assets are not shown in Eclipse; this shows your Android web resources.

1.	 Right-click on the project and then select Properties.
2.	 Select Resource Filters from the Resources dropdown.
3.	 Delete all the Exclude all rules, as shown in the following screenshot:

Viewing the Android project assets/www files

Now, you can view all the project assets/www files from the Eclipse workspace.

Do not forget that it is not recommended to edit the files under
the platforms directory of your project as the cordova build
command can overwrite your changes with the original resources
in the root www directory. You can edit files under the platforms
directory only if you want to use Apache Cordova to generate the
initial artifacts of your project.

Apache Cordova Development Tools

[66]

Before running our Sound Recorder Android project, make sure that the project is
built by selecting Build All from Project menu (or select your project and choose
Build project from the Project menu, or just select the Build Automatically option
from the Project menu).

Now, you can run our Sound Recorder Android project from Eclipse by selecting the
project and then selecting Android Application from the Run as menu, as shown in
the following screenshot:

Running the Sound Recorder project in your Android emulator using Eclipse

You will have the option to select the emulator you want to run your project on,
as shown in the following screenshot:

Chapter 3

[67]

Selecting the Android emulator to run the project on

After selecting the Android emulator and clicking on the OK button, your selected
Android emulator will be launched and your application will be installed on it for
you to start testing.

Running the Sound Recorder application on
a real Android device
In order to test your Android application on your Android mobile or tablet using the
Eclipse IDE, just make sure that you enable USB debugging on your Android device.
You can enable the USB debugging option on your device by clicking on Developer
Options from the device Settings and then checking the USB debugging option, as
shown in the following screenshot:

Enabling USB debugging on your Android device

Apache Cordova Development Tools

[68]

Plug in your Android device to your development machine and then select Android
Application again from the Run as menu. At this time, you will find your device
available under the running Android device option in the Android Device Chooser
dialog; select it, and you will find our Sound Recorder application deployed and
launched in your device to start testing.

Configuring iOS development
environment
Creating iOS development environment is a straightforward process if you meet the
requirements. In order to have an iOS development environment, you need to:

•	 Have a Mac machine that runs OS X Mountain Lion (10.8) or higher versions
•	 Install Xcode on your Mac machine
•	 Install the iOS SDK on your Mac machine

Xcode is the official Apple IDE that allows you to develop applications for Mac,
iPhone, and iPad. Xcode has a lot of great features, some of which are:

•	 Source code editor
•	 Assistant editor
•	 User-interface builder
•	 iOS simulator
•	 Static code analyzer
•	 A powerful built-in open source low-level virtual machine (LLVM) compiler

for C, C++, and Objective-C
•	 The Live Issues feature, which highlights the common coding mistakes while

coding your application, without the need to build your project
•	 Complete support for SCM systems (subversion and Git source control)

You can download the latest version of Xcode from the Apple App Store on your
Mac machine. You will find the iOS SDK included with Xcode, so there is no need to
download anything other than Xcode.

Chapter 3

[69]

In order to download the latest version of Xcode, follow these steps:

1.	 Open the App Store application on your Mac machine.
2.	 In the search field of App Store, type in Xcode and press enter.
3.	 Download Xcode, and after completing the download, you will find it under

your applications directory. The following screenshot shows the Xcode icon:

The Xcode icon

If you have an earlier version of OS X (less than 10.8), you need to upgrade it.
In order to download Xcode, you need OS X Version 10.8 (or higher).

Importing the Sound Recorder application
into Xcode
Now, it is time to make our Sound Recorder application support iPad and
iPhone devices. The following command adds iOS platform support for our
Sound Recorder application:

> cordova platform add ios

Then, build our application in the iOS platform using the following Cordova
build command:

> cordova build ios

Open your Xcode environment, click on Open other, and then select the
SoundRecorder.xcodeproj file under the platforms/ios directory to open
our Sound Recorder iOS project.

Apache Cordova Development Tools

[70]

You will find our Sound Recorder application open in Xcode. In order to run our
project on an iPhone (or iPad) emulator, click on the Build and run button after
selecting the iPhone emulator, as shown in the following screenshot:

Running the Sound Recorder application in Xcode

After clicking on the Build and run button, the iPhone emulator will be launched
with our Sound Recorder application and you can start using it.

Chapter 3

[71]

An important point that you have to be aware of is that if you are deploying your
application on iOS 7, and because of a bug in Apache Cordova 3.4, you will find
an overlay between your application and the device status bar, as shown in the
following screenshot:

Apache Cordova 3.4 bug with iOS 7

Apache Cordova Development Tools

[72]

In order to fix this issue (which I hope to be fixed soon in the next releases of Apache
Cordova 3.x), one of the possible workarounds is to hide the status bar by adding and
setting two properties in our SoundRecorder-info.plist file, which is located under
the Resources directory of our application, as shown in the following screenshot:

Adding properties to the SoundRecorder-info.plist file

The two properties and values are:

•	 The Status bar is initially hidden property set to the YES value
•	 The View controller-based status bar appearance property set to the

NO value

In order to add a property to the *-info.plist file, you can select
the information list property in Xcode and then click on Add Row.

Chapter 3

[73]

After setting these two properties, click on the Build and run button again to see the
fixed screen in iOS 7, as shown in the following screenshot:

The Sound Recorder application fixed in iOS 7

Running the Sound Recorder application on
a real iOS device
In order to deploy our Sound Recorder application on a real iOS device
(iPhone or iPad), you will need to follow these 20 steps carefully:

1.	 Sign up for the iOS developer program at https://developer.apple.com/
programs/ios/. There are two available enrollment types:

°° Individual: Select this enrollment type if you are an individual
°° Company/Organization: Select this enrollment type if you represent

a company

Sign up to the Individual program if you just want to develop
applications in App Store. Note that at the time of writing this
book, this will cost you 99 USD per year.

https://developer.apple.com/programs/ios/
https://developer.apple.com/programs/ios/

Apache Cordova Development Tools

[74]

2.	 Generate a Certificate Signing Request (CSR) using the Keychain Access
application, which you can get from the /Applications/Utilities
directory. In order to generate the certificate signing request, follow
these steps:

1.	 Navigate to Keychain Access | Certificate Assistant | Request
a Certificate From a Certificate Authority, as shown in the
following screenshot:

Creating a CSR using Keychain Access

2.	 In the Certificate Assistant window, enter your e-mail address, click
on the Saved to disk radio button, and check the Let me specify key
pair information checkbox. Then, click on Continue.

3.	 In the Key Pair Information window, choose 2048 bits as the key size
and RSA as the algorithm. Then, click on Continue.

4.	 Use the default filename to save the certificate request to your disk,
and click on Save.

By default, the generated certificate request file has the filename
with the following extension CertificateSigningRequest.
certSigningRequest.

Chapter 3

[75]

3.	 Now, we need to use the iOS member center (https://developer.apple.
com/membercenter/) in order to create the application ID, register your iOS
device, generate a development certificate, and create a provision profile.

4.	 Click on the Certificates, Identifiers & Profiles link, as shown in the
following screenshot. You will be introduced to the overview page,
where you can click on the Identifiers link.

Managing certificates, identifiers, and profiles from the member center

https://developer.apple.com/membercenter/
https://developer.apple.com/membercenter/

Apache Cordova Development Tools

[76]

5.	 Select App IDs from Identifiers. Register your application ID by entering
an application name and the application bundle identifier (you can get the
bundle identifier from the SoundRecorder-info.plist file), as shown in
the following screenshot. Then, click on Continue.

Registering your application ID

6.	 You will be introduced to the confirmation page. Click on Submit to confirm
your application ID.

Chapter 3

[77]

7.	 Select All from Devices. Register your iOS device by entering the device
name and the device's Unique Identifier (UDID), as shown in the following
screenshot. Then, click on Continue.

Registering your iOS device

In order to get your iOS device's UDID, you can get it after connecting
your iOS device to iTunes. Select your device from the left-hand side
menu of iTunes and then click on Serial Number; you will find it changed
to Identifier (UDID) with the device UDID.

8.	 You will be introduced to the review page. Click on Register to register
your device.

Apache Cordova Development Tools

[78]

9.	 Select Development in Certificates to create your development certificate
file. Read the introduction page and click on Continue.

10.	 In the second step of the development certificate creation process, choose the
CSR file that we created in step 2 and click on the Generate button, as shown
in the following screenshot:

Generating your development certificate

11.	 In the last step of the development certificate creation process, click on the
Download button to download the development certificate to your machine.

Chapter 3

[79]

12.	 Select All from the Provision Profiles to create a provision profile, which
will be installed on your iOS device. Choose the iOS App Development
option from Development, as shown in the following screenshot, and then
click on Continue:

Selecting the iOS App Development provisioning profile

13.	 In the second step of the development provisioning profile creation
process, select App ID, which we created in step 5, and then click on the
Continue button.

Apache Cordova Development Tools

[80]

14.	 In step 3 of the development provisioning profile creation process, select the
Development certificate checkbox that we created in step 10, as shown in the
following screenshot, and then click on the Continue button:

Selecting the certificate to include in the provisioning profile

15.	 In step 4 of the development provisioning profile creation process, select
your iOS device checkbox, which you registered in step 8, and then click on
the Continue button.

16.	 In step 5 of the development provisioning profile creation process, enter your
preferred profile name (for example, SoundRecorderProfile) and then click
on the Generate button.

17.	 In the last step of the development provisioning profile creation process,
click on the Download button to download the provisioning profile to your
machine.

18.	 Now that we have created and downloaded both the development
certificate and the provisioning profile, we need to install them. Double-click
on the .cer file that you downloaded in step 11 to install it onto a keychain
on your Mac machine. If you are prompted with the Add Certificates dialog,
click on OK.

Chapter 3

[81]

19.	 In order to install the downloaded provisioning profile to your iOS device,
connect your iOS device to your Mac, open the organizer application from
your Xcode by selecting Organizer from Window menu, and then click on
the Add button and select the .mobileprovision file. You should find that
this profile is a valid one, as shown in the following screenshot:

Adding a mobile provisioning profile to an iOS device

20.	 Finally, you can deploy your application on your iOS device by selecting
your iOS device from the active scheme dropdown and clicking on the Build
and run button, as shown in the following screenshot. After clicking on the
button, you will find our Sound Recorder application finally launched on
your iOS device.

Apache Cordova Development Tools

[82]

Deploying our Sound Recorder application to a real iOS device

When running your iOS application on a real device for the first time, you will
receive the prompt message codesign wants to sign using key "-----" in your
keychain. If you see this message, click on the Always allow button.

Configuring the Windows Phone
development environment
In order to configure your Windows Phone 8 development environment, you will
need the following:

•	 Windows 8 operating system or any higher compatible Windows versions.
•	 Windows Phone SDK 8.0, which includes a standalone Visual Studio Express

2012 for Windows Phone, Windows Phone emulators, and other useful tools
to profile Windows Phone applications. The Windows Phone SDK can also
work as an add-in to the Visual Studio 2012 Professional, Premium,
or Ultimate editions.

Chapter 3

[83]

In order to download Windows Phone SDK 8.0, go to http://www.microsoft.com/
en-us/download/details.aspx?id=35471.

Visual Studio for Windows Phone is the official Microsoft IDE
for Windows Phone development. It is a complete development
environment to create Windows Phone applications and has many
features, some of which are as follows:

•	 Source code editor
•	 User-interface builder
•	 Templates for Windows Phone projects
•	 Testing and debugging features on Windows Phone emulators

or real Windows Phone devices
•	 Simulation, monitoring, and profiling capabilities for Windows

Phone applications

After getting the Windows Phone 8.0 SDK, installing it onto your Windows machine
is a very straightforward process. Launch the SDK installer and follow these steps:

1.	 Provide the path in which the SDK will be installed.
2.	 Check the I agree to license terms and conditions option.
3.	 Click on the Install button, and you will see the status of the SDK installation

on your Windows machine, as shown in the following screenshot. After
installation completes, you might be asked to reboot your operating system.

Installing Windows Phone SDK 8.0

http://www.microsoft.com/en-us/download/details.aspx?id=35471
http://www.microsoft.com/en-us/download/details.aspx?id=35471

Apache Cordova Development Tools

[84]

Importing the Sound Recorder application
into Visual Studio
Now, it is time to make our Sound Recorder application compatible on Windows
Phone 8. The following command adds Windows Phone 8 platform support to our
Sound Recorder application:

> cordova platform add wp8

Open your Visual Studio IDE and then follow these steps:

1.	 Select Open File from the File menu and then select the SoundRecorder.
sln file under the platforms/wp8 directory to open our Sound Recorder
Windows Phone 8 project.

2.	 Select Build Solution from the Build menu.
3.	 In order to run your project in the Windows Phone 8 emulator, click

on the Run button by selecting a target emulator, as shown in the
following screenshot:

Running a Windows Phone 8 project in the Visual Studio IDE

Chapter 3

[85]

After clicking on the Run button, the Windows Phone 8 emulator will be launched
with our Sound Recorder application and you can start working with it, as shown
in the following screenshot:

First run of our Sound Recorder application in WP8

If you notice in the preceding screenshot, there are two problems that occur when we
run the application in a WP8 emulator:

•	 The header title is truncated
•	 The jQuery Mobile application footer is not aligned with the bottom of

the page

The first problem appears because jQuery Mobile set the CSS overflow property of its
header and title to hidden. In order to fix this issue, we need to change this behavior
by setting the overflow property to visible in the css/app.css file, as shown in the
following code:

.ui-header .ui-title {
 overflow: visible !important;
}

Apache Cordova Development Tools

[86]

In order to fully align the application footer in both portrait and landscape modes of
Windows Phone 8, you need to hide the system tray by setting shell:SystemTray.
IsVisible="False" instead of shell:SystemTray.IsVisible="True" in
MainPage.xaml (which is located under the platforms/wp8 directory), as shown
in the following code snippet:

<phone:PhoneApplicationPage
 x:Class="com.jsmobile.soundrecorder.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 ...
 xmlns:shell="clr-namespace:Microsoft.Phone.
Shell;assembly=Microsoft.Phone"
 shell:SystemTray.IsVisible="False" ...>
 ...
</phone:PhoneApplicationPage>

After performing these two fixes, we can rerun our Sound Recorder application;
we will find that the screen is now fine, as shown in the following screenshot:

Fixed Sound Recorder application in WP8

Chapter 3

[87]

Running the Sound Recorder application on
a real Windows Phone
Now, it is time to deploy our Sound Recorder application on a real Windows
Phone 8 device. In order to do this, you have to unlock your Windows Phone for
development using the Windows Phone Developer Registration tool. In order to
use and run this tool, note the following prerequisites:

•	 A registered Windows Phone developer account. You can create your
registered Windows Phone developer account from https://dev.
windowsphone.com/en-us/join. Note that creating a Windows Phone
developer account is not free and the exact cost that you will pay depends
on your country and region.

•	 A Microsoft account associated with your Windows Phone developer account.
•	 Connect your Windows Phone to your Windows machine and make sure that:

°° The mobile screen is unlocked
°° The date and time of your mobile are correct

Now, you can launch the Windows Phone Developer Registration tool by switching
to Windows' All Apps view and select Windows Phone Developer Registration
under Windows Phone SDK 8.0. When the tool starts, follow these steps in order
to unlock your Windows Phone for development:

1.	 Make sure that the tool status displays the Identified Windows Phone 8
device message.

https://dev.windowsphone.com/en-us/join
https://dev.windowsphone.com/en-us/join

Apache Cordova Development Tools

[88]

2.	 Click on the Register button to unlock your phone for development. If your
phone is already registered, you will see an Unregister button, as shown in
the following screenshot:

The Windows Phone Developer Registration tool

3.	 After clicking on the Register button, you will be introduced to the Sign
In dialog box to enter your Microsoft account information (e-mail and
password); you can then click on Sign In.

4.	 After clicking on Sign In, and assuming that you met all the prerequisites,
your Windows Phone will be successfully unlocked for development, and
you will be able to deploy your Windows Phone 8 application to it.

Chapter 3

[89]

Now, in order to deploy our Sound Recorder application to your Windows Phone 8
device, select your Windows Phone8 device from the target device list and click on
the Run button, as shown in the following screenshot:

Running the Sound Recorder application in WP8

After clicking on the Run button, you can enjoy testing our Sound Recorder
application on your Windows Phone 8 device.

Summary
After reading and applying the steps mentioned in this chapter, you will have the
three most popular mobile platform development environments (Android, iOS, and
Windows Phone 8) installed on your machine(s). You can now build your Apache
Cordova applications using these development tools and deploy your applications
on their emulators. In this chapter, you learned how to deploy your Apache Cordova
application on real devices of all these popular mobile platforms in detail. Finally,
you learned the common problems and solutions that occur when you decide to
support your Apache Cordova application on iOS and Windows Phone 8. In the next
chapter, you will start learning how to use the different APIs provided by Apache
Cordova in detail.

Cordova API in Action
In this chapter, we will start taking a deep dive in Apache Cordova API and see
Apache Cordova API in action. You will learn how to work with the Cordova
accelerometer, camera, compass, connection, contacts, device, geolocation,
globalization, and the InAppBrowser APIs. This chapter as well as the next one
illustrates a Cordova mobile app, Cordova Exhibition (which is developed using
Apache Cordova and jQuery Mobile), that explores the main features of the Apache
Cordova API in order to give you real-life usage examples of the Apache Cordova
API in Android, iOS, and Windows Phone 8.

Exploring the Cordova Exhibition app
The Cordova Exhibition app aims at showing the main features of the Apache
Cordova API. The demo shows practical examples of the following Apache
Cordova API plugins:

•	 Accelerometer
•	 Camera
•	 Compass
•	 Connection
•	 Contacts
•	 Device
•	 Geolocation
•	 Globalization
•	 InAppBrowser
•	 Media, file, and capture
•	 Notification
•	 Storage

Cordova API in Action

[92]

As well as Apache Cordova, the Cordova Exhibition app uses jQuery Mobile in order
to create the app's user interface. The Cordova Exhibition app is supported on the
following platforms:

•	 Android
•	 iOS
•	 Windows Phone 8

The following screenshot shows the home page of the Cordova Exhibition app.
The home page displays a list from which users can choose the feature they
want to try.

The Cordova Exhibition home page

In this chapter and the next one, we will explore each feature individually in its
own section.

Chapter 4

[93]

The Cordova Exhibition app structure
In order to create the Cordova Exhibition app from the Command-line Interface
(CLI), we run the following cordova create command:

> cordova create cordova-exhibition com.jsmobile.cordovaexhibition
CordovaExhibition

In order to add Android, iOS, and Windows Phone 8 support from the CLI, we run
the usual cordova platform add commands from the app directory as follows:

> cd cordova-exhibition

> cordova platform add android

> cordova platform add ios

> cordova platform add wp8

In order to add the different plugins to our Cordova Exhibition app, we use the usual
cordova plugin add command (we will show the details of every plugin URL in its
corresponding section).

To build and run the Cordova Exhibition app in your emulators and devices, you can
follow the same steps that we used in Chapter 3, Apache Cordova Development Tools, to
build and run the Sound Recorder application.

The complete source code of our Cordova Exhibition app with all of the
three supported platforms can be downloaded from the book's web page,
or you can access the code directly from GitHub at https://github.
com/hazems/cordova-exhibition.

https://github.com/hazems/cordova-exhibition
https://github.com/hazems/cordova-exhibition

Cordova API in Action

[94]

Now, let's understand the structure of our Cordova Exhibition code. The following
screenshot shows our Cordova Exhibition app's hierarchy:

The Cordova Exhibition application's structure

Chapter 4

[95]

The www directory contains the following files and subdirectories:

•	 css: This directory contains the custom app's Cascading Style Sheet (CSS).
•	 img: This directory contains the custom app's images.
•	 jqueryMobile: This directory contains the files of the jQuery Mobile

framework and used plugins (the jQuery Mobile page params plugin and
jQuery validation plugin).

•	 js: This directory contains all the custom app's JavaScript code. It has the
following two subdirectories:

°° api: This directory contains the app managers that interact with
the Apache Cordova API in order to decouple the Cordova API
from the app event handlers. This gives us the ability to change the
implementation of our app API without changing our app event
handlers and, at the same time, the ability to keep our app event
handlers small.

°° vc: This directory contains the app view controllers that register and
implement the event handlers of every page and their user interface
components. Event handlers usually call the app managers (the app
API) in order to access the device's native features and, finally, they
display the results in the app page.

The js directory also includes common.js file, which has common utilities. Finally,
under the www directory, the index.html file contains all the app pages. The index.
html file will be illustrated in Finalizing the Cordova Exhibition app section in Chapter 5,
Diving Deeper into the Cordova API.

It is important to note that not all Cordova features are supported
across all platforms. In order to know the unsupported features,
check out the last part in the Overview of Cordova API section in
Chapter 1, Introduction to Apache Cordova.

Cordova API in Action

[96]

Accelerometer
The accelerometer plugin provides access to the device's accelerometer in order
to get the delta in movement relative to the current device's orientation in the
x, y, and z axes.

In order to use the accelerometer in our Apache Cordova project, we need to use the
following cordova plugin add command:

> cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-device-motion.git

Demo
In order to access the accelerometer demo, you need to click on the accelerometer list
item. You will be introduced to the Accelerometer page. You can then click on the
Start Watch Acceleration button in order to start watching the accelerometer. You
will then be able to get the acceleration information in the x, y, and z axes, as shown
in the following screenshot:

The Accelerometer page in action

Chapter 4

[97]

You can click on the Stop Watch Acceleration button to stop watching the
accelerometer at any time.

The HTML page
The following code snippet shows the "accelerometer" page:

<div data-role="page" id="accelerometer">
 <div data-role="header">
 <h1>Accelerometer</h1>
 <a href="#" data-role="button" data-rel="back" data-
icon="back">Back
 </div>
 <div data-role="content">
 <h1>Welcome to the Accelerometer Gallery</h1>
 <p>Click 'Start Watch Acceleration' button below to start
watch acceleration.</p>
 <input type="button" id="startWatchAcceleration"
value="Start Watch Acceleration"/>
 <input type="button" id="stopWatchAcceleration"
value="Stop Watch Acceleration"/>
 <div id="acceleration">
 </div>
 </div>
</div>

As shown in the preceding "accelerometer" page code snippet, it contains
the following:

•	 A page header that includes a back button
•	 Page content that includes the following main elements:

°° "startWatchAcceleration": This button is used to start
watching acceleration

°° "stopWatchAcceleration": This button is used to stop
watching acceleration

°° "acceleration": This div is used to display the acceleration result

Cordova API in Action

[98]

View controller
The following code snippet shows the page view controller JavaScript object,
which includes the event handlers of the page (accelerometer.js):

(function() {
 var accelerometerManager = AccelerometerManager.getInstance();
 var watchID;

 $(document).on("pageinit", "#accelerometer", function(e) {
 e.preventDefault();

 $("#startWatchAcceleration").on("tap", function(e) {
 e.preventDefault();

 enableStartWatchAccelerationButton(false);

 var callback = {};

 callback.onSuccess = onSuccess;
 callback.onError = onError;

 watchID = accelerometerManager.
startWatchAcceleration(callback);
 });

 $("#stopWatchAcceleration").on("tap", function(e) {
 e.preventDefault();

 enableStartWatchAccelerationButton(true);

 accelerometerManager.stopWatchAcceleration(watchID);
 });

 initPage();
 });

 $(document).on("pagebeforehide", "#accelerometer", function(e) {
 accelerometerManager.stopWatchAcceleration(watchID);
 enableStartWatchAccelerationButton(true);
 });

 function initPage() {
 $("#stopWatchAcceleration").closest('.ui-btn').hide();
 }

Chapter 4

[99]

 function onSuccess(acceleration) {
 $("#acceleration").html("Acceleration X: " + acceleration.x +
"
" +
 "Acceleration Y: " + acceleration.y + "
" +
 "Acceleration Z: " + acceleration.z + "
" +
 "Timestamp: " + acceleration.timestamp + "
");
 }

 function onError() {
 $("#acceleration").html("An error occurs during watching
acceleration.");
 }

 function enableStartWatchAccelerationButton(enable) {
 if (enable) {
 $("#startWatchAcceleration").button("enable");
 $("#stopWatchAcceleration").closest('.ui-btn').hide();
 } else {
 $("#startWatchAcceleration").button("disable");
 $("#stopWatchAcceleration").closest('.ui-btn').show();
 }

 $("#startWatchAcceleration").button("refresh");
 }

})();

The "pageinit" event handler, which is called once in the page initialization, registers
the "startWatchAcceleration" tap event handler. The "startWatchAcceleration"
tap event handler does the following:

•	 It disables the "startWatchAcceleration" button and shows the
"stopWatchAcceleration" button by calling enableStartWatchAccelerat
ionButton(false)

•	 It starts watching the acceleration by calling accelerometerManager.star
tWatchAcceleration(callback), specifying a callback object that contains
the following:

°° The onSuccess callback that will be called if the operation succeeds
°° The onError callback that will be called if the operation fails

Cordova API in Action

[100]

The accelerometerManager.startWatchAcceleration(callback) function
returns watchID, which will be used in order to stop watching the acceleration.

The "pageinit" event handler, which is called once in the page initialization, registers
the "stopWatchAcceleration" tap event handler. The "stopWatchAcceleration"
tap event handler does the following:

•	 It hides the "stopWatchAcceleration" button and enables the
"startWatchAcceleration" button by calling
enableStartWatchAccelerationButton(true)

•	 It stops watching the acceleration by calling accelerometerManager.
stopWatchAcceleration(watchID) and specifying watchID, which
we get from the accelerometerManager.startWatchAcceleration
(callback) call

The "pageinit" event handler also calls initPage() in order to hide the
"stopWatchAcceleration" button at the beginning. In onSuccess(acceleration),
which will be called if accelerometerManager.startWatchAcceleration(callb
ack) succeeds, the x, y, and z acceleration is shown with the current timestamp. In
onError(), which will be called if accelerometerManager.startWatchAccelerati
on(callback) fails, an error message is displayed.

Finally, in order to stop watching acceleration before leaving the page,
accelerometerManager.stopWatchAcceleration() is called in the
"pagebeforehide" event, which will be called every time we transition
away from the page.

API
The following code snippet shows the accelerometer manager JavaScript object that
interacts with the Apache Cordova Accelerometer API (AccelerometerManager.js).
Note that the manager files are always included in the index.html file before the view
controller files so that the manager objects can be used by view controller objects:

var AccelerometerManager = (function () {
 var instance;

 function createObject() {
 return {
 startWatchAcceleration: function (callback) {
 return navigator.accelerometer.
watchAcceleration(callback.onSuccess,
callback.onError,

Chapter 4

[101]

{frequency: 2000});
 },
 stopWatchAcceleration: function (watchID) {
 if (watchID) {
 navigator.accelerometer.clearWatch(watchID);
 }
 }
 };
 };

 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

 return instance;
 }
 };
})();

As you can see, AccelerometerManager is a singleton object that has the following
two methods, as highlighted in the preceding code:

•	 startWatchAcceleration(callback): This uses the Cordova navigator.
accelerometer.watchAcceleration() method to watch acceleration. The
navigator.accelerometer.watchAcceleration(accelerometerSucce
ss, accelerometerError,[accelerometerOptions]) method has the
following parameters:

°° accelerometerSuccess: This will be called if the operation succeeds
with an object that contains the current acceleration along the
x, y, and z axes and the timestamp. In AccelerometerManager,
accelerometerSuccess is set to callback.onSuccess.

°° accelerometerError: This will be called if the operation fails.
In AccelerometerManager, accelerometerError is set to
callback.onError.

°° accelerometerOptions: This is an optional parameter that
holds the accelerometer's configuration. It has a frequency
attribute to specify how often to retrieve acceleration in
milliseconds. In AccelerometerManager, the frequency
parameter is set to 2000 milliseconds (note that this parameter
is 10000 milliseconds by default).

Cordova API in Action

[102]

•	 stopWatchAcceleration(watchID): This uses the Cordova navigator.
accelerometer.clearWatch() method to remove watching acceleration.
navigator.accelerometer.clearWatch(watchID) has the following
parameter:

°° watchID: This represents the ID returned by navigator.
accelerometer.watchAcceleration().

We are now done with the Accelerometer functionality in our Cordova Exhibition
app. However, before exploring the Camera functionality, note that the navigator.
accelerometer object has also the method shown in the following table:

Method name Description
navigator.accelerometer.
getCurrentAcceleration

(accelerometerSuccess, accelerometerError)

This method retrieves
the current acceleration
along the x, y, and z
axes. Acceleration values
are returned to the
accelerometerSuccess
callback function.

Camera
The camera plugin provides access to the device's camera in order to take pictures.
This plugin also allows you to pick images from the device's image library.

In order to use the camera in our Apache Cordova project, we need to use the
following cordova plugin add command:

> cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-camera.git

Demo
In order to access the camera demo, you need to click on the camera list item. You
will be introduced to the Camera page. You can click on the Get Picture button
in order to select whether to get a picture from the device's gallery or the device's
camera. If you choose the Camera menu item, the default camera application of the
device will be launched for you to capture a picture. If you choose the Gallery menu
item, the device's gallery will be opened for you to pick an image. After getting the
image from the camera or the gallery, you will be able to view the image on the
Camera page, as shown in the following screenshot:

Chapter 4

[103]

A selected image is shown on the camera page

The HTML page
The following code snippet shows the "camera" page:

<div data-role="page" id="camera">
 <div data-role="header">
 <h1>Camera</h1>
 <a href="#" data-role="button" data-rel="back" data-
icon="back">Back
 </div>
 <div data-role="content">
 <h1>Welcome to the Camera Gallery</h1>
 <p>Click 'Get Picture' button below</p>
 <div class="center-wrapper">
 <input type="button" id="getPicture" data-
icon="camera" value="Get Picture"

Cordova API in Action

[104]

 class="center-button" data-inline="true"/>
 </div>

 <div style="width: 100%;">

 </div>

 <div data-role="popup" id="pictureTypeSelection">
 <ul data-role="listview" data-inset="true" style="min-
width:210px;">
 <li data-role="divider" data-theme="a">Get Picture
From
 <a id="pictureFromGallery"
href="#">Gallery
 <a id="pictureFromCamera"
href="#">Camera

 </div>
 </div>
</div>

As shown in the preceding "camera" page code snippet, it contains the following:

•	 A page header that includes a back button
•	 Page content that includes the following main elements:

°° "getPicture": This button is used to get a picture
°° "imageView": This is used in order to display the selected or

captured image
°° "pictureTypeSelection": This div element is a pop up that will be

displayed to allow the user to select whether to get a picture from the
camera or from the gallery

View controller
The following code snippet shows the page view controller JavaScript object that
includes the action handlers of the page (camera.js):

(function() {
 var cameraManager = CameraManager.getInstance();

 $(document).on("pageinit", "#camera", function(e) {
 e.preventDefault();

Chapter 4

[105]

 $("#imageView").hide();

 $("#getPicture").on("tap", function(e) {
 e.preventDefault();

 $("#pictureTypeSelection").popup("open");
 });

 $("#pictureFromGallery").on("tap", function(e) {
 e.preventDefault();
 $("#pictureTypeSelection").popup("close");

 getPhoto(true);
 });

 $("#pictureFromCamera").on("tap", function(e) {
 e.preventDefault();
 $("#pictureTypeSelection").popup("close");

 getPhoto(false);
 });
 });

 function getPhoto(fromGallery) {
 var callback = {};

 callback.onSuccess = onSuccess;
 callback.onError = onError;

 cameraManager.getPicture(callback, fromGallery);
 }

 function onSuccess(fileURI) {
 $("#imageView").show();
 $("#imageView").attr("src", fileURI);
 }

 function onError(message) {
 console.log("Camera capture error");
 }
})();

Cordova API in Action

[106]

The "pageinit" event handler registers the following event handlers:

•	 "getPicture" tap event handler: This opens the "pictureTypeSelection"
pop up to allow the user to select the way to get a picture

•	 "pictureFromGallery" tap event handler: This closes the currently opened
"pictureTypeSelection" pop up and calls getPhoto(true) to pick a photo
from the device's gallery

•	 "pictureFromCamera" tap event handler: This closes the currently opened
"pictureTypeSelection" pop up and calls getPhoto(false) to capture a
photo using the device's camera

The getPhoto(fromGallery) method can get a photo (from the gallery or using
the camera) by calling cameraManager.getPicture(callback, fromGallery)
and specifying the following parameters:

•	 The callback object that contains the following attributes:
°° onSuccess: This callback will be called if the operation succeeds.

It receives the fileURI of the picked image as a parameter, this
allows the callback to display the picked image in "imageView".

°° onError: This callback will be called if the operation fails.

•	 The fromGallery parameter informs cameraManager.getPicture() to get
the photo from the device's gallery if it is set to true, and if fromGallery is
set to false, then it informs cameraManager.getPicture() to get the photo
using the device's camera

API
The following code snippet shows the camera manager JavaScript object that
interacts with the Apache Cordova Camera API (CameraManager.js):

var CameraManager = (function () {
 var instance;

 function createObject() {
 var fileManager = FileManager.getInstance();

 return {
 getPicture: function (callback, fromGallery) {
 var source = Camera.PictureSourceType.CAMERA;

Chapter 4

[107]

 if (fromGallery) {
 source = Camera.PictureSourceType.PHOTOLIBRARY;
 }

 navigator.camera.getPicture(callback.onSuccess,
 callback.onError,
 {
 quality: 80,
 destinationType:
Camera.DestinationType.FILE_URI,
 sourceType: source,
 correctOrientation: true
 });
 }
 };
 };

 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

 return instance;
 }
 };
})();

As you can see, CameraManager is a singleton object that has a single method as
highlighted in the preceding code. The getPicture(callback, fromGallery)
function uses the Cordova navigator.camera.getPicture() method to get a picture.

The navigator.camera.getPicture(cameraSuccess, cameraError,
[cameraOptions]) function has the following parameters:

•	 cameraSuccess: This callback will be called if the operation succeeds. It
receives a parameter that represents a file URI, or a native URI, or a
Base-64 encoded string based on the specified cameraOptions parameter.
In CameraManager, cameraSuccess is set to callback.onSuccess.

•	 cameraError: This parameter will be called if the operation fails. In
CameraManager, cameraError is set to callback.onError. Note that
CameraError receives a string that represents the error description.

•	 cameraOptions: This is an optional parameter that holds the camera's
configuration.

Cordova API in Action

[108]

The cameraOptions parameter has many attributes. The attributes in the following
table are used by our CameraManager object:

Attribute name Description
quality This represents the quality of the saved image. It is expressed in

a range of 0-100, where 100 is typically the full resolution with
no loss due to file compression. In our CameraManager object,
the quality is set to 80.
As per the Cordova documentation, setting the quality below
50 is recommended to avoid memory errors on some iOS
devices. Setting the quality to 80 has always given me a good
picture quality and has worked fine with me in my Cordova
projects; however, if you find any memory errors because of
the navigator.camera.getPicture() method, then please
set the quality below 50 and rebuild/rerun the project again in
your iOS device.

destinationType This represents the type of the operation's returned value. It can
have one of the following values:

•	 Camera.DestinationType.DATA_URL: This means
that the returned value will be a Base64-encoded string
that represents the image

•	 Camera.DestinationType.FILE_URI: This means
that the returned value will be a file URI of the image

•	 Camera.DestinationType.NATIVE_URI: This means
that the returned value will be a native URI of the image

In our CameraManager object, destinationType is set
to Camera.DestinationType.FILE_URI, which means
that the success callback of the navigator.camera.
getPicture() method will receive the image file URI.

sourceType This represents the source of the picture. It can have one of the
following values:

•	 Camera.PictureSourceType.PHOTOLIBRARY

•	 Camera.PictureSourceType.CAMERA

•	 Camera.PictureSourceType.SAVEDPHOTOALBUM

In our CameraManager object, sourceType is set to Camera.
PictureSourceType.PHOTOLIBRARY if fromGallery is set
to true. If fromGallery is set to false, then sourceType is
set to Camera.PictureSourceType.CAMERA.

correctOrientation If this is set to true, then it will rotate the image to correct it for
the orientation of the device during capture.

Chapter 4

[109]

We are now done with the Camera functionality in our Cordova Exhibition app.
However, before exploring the compass functionality, note that the navigator.
camera.getPicture() function's CameraOptions parameter has also the attributes
shown in the following table:

Attribute name Description
allowEdit If set to true, this will allow the user to edit an image before

selection.
cameraDirection This represents the type of camera to use (front facing or back

facing). It can have one of the following values:
•	 Camera.Direction.BACK

•	 Camera.Direction.FRONT

encodingType This represents the returned image file's encoding; it can have one
of the following values:

•	 Camera.EncodingType.JPEG

•	 Camera.EncodingType.PNG

mediaType This represents the type of media to select from. It only works
when PictureSourceType is set to PHOTOLIBRARY or
SAVEDPHOTOALBUM.
It can have one of the following values:

•	 Camera.MediaType.PICTURE: This allows the selection
of only pictures

•	 Camera.MediaType.VIDEO: This allows the selection of
only videos

•	 Camera.MediaType.ALLMEDIA: This allows the
selection of all media types

popoverOptions This represents the popover location in iPad. It works only for
iOS.

saveToPhotoAlbum If set to true, then this will save the image to the photo album on
the device after capture.

targetWidth This represents the width in pixels to scale image. It must be used
with targetHeight.

targetHeight This represents the height in pixels to scale image. It must be used
with targetWidth.

Cordova API in Action

[110]

The navigator.camera object has also the method shown in the following table:

Method name Description
navigator.camera.
cleanup(cameraSuccess,
cameraError)

This forces the removal of the intermediate
image files that are kept in temporary storage
after calling the camera.getPicture()
method. This API applies only when the
value of Camera.sourceType is Camera.
PictureSourceType.CAMERA and the value
of Camera.destinationType is Camera.
DestinationType.FILE_URI. This works
only on iOS.
In iOS, the temporary images in /tmp might
be deleted when exiting the application. Using
this API will force an instant cleanup of the
temporary images.

Compass
The compass plugin provides access to the device's compass in order to detect
the direction (heading) that the device is pointed to (the compass measures the
heading in degrees from 0 to 359.99, where 0 represents north). In order to use the
compass in our Apache Cordova project, we need to use the following cordova
plugin add command:

>cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-device-orientation.git

Demo
In order to access the compass demo, you need to click on the Compass list item.
You will be introduced to the Compass page. Then, you can click on the Start Watch
Heading button in order to start watching the compass heading. You will be able to
get the heading value, as shown in the following screenshot:

Chapter 4

[111]

The Compass page in action

You can click on the Stop Watch Heading button to stop watching the compass
heading at any time.

Cordova API in Action

[112]

The HTML page
The following code snippet shows the "compass" page:

<div data-role="page" id="compass">
 <div data-role="header">
 <h1>Compass</h1>
 <a href="#" data-role="button" data-rel="back" data-
icon="back">Back
 </div>
 <div data-role="content">
 <h1>Welcome to the Compass Gallery</h1>
 <p>Click 'Start Watch Heading' button below to start watch
heading using your device's compass.</p>
 <input type="button" id="startWatchHeading" value="Start
Watch Heading"/>
 <input type="button" id="stopWatchHeading" value="Stop
Watch Heading"/>

 <div id="compassHeading">
 </div>
 </div>
</div>

As shown in the preceding "compass" page code snippet, it contains the following:

•	 A page header that includes a back button
•	 Page content that includes the following main elements:

°° "startWatchHeading": This button is used to start watching the
compass heading

°° "stopWatchHeading": This button is used to stop watching the
compass heading

°° "compassHeading": This div is used to display the compass
heading result

Chapter 4

[113]

View controller
The following code snippet shows the page view controller JavaScript object that
includes the event handlers of the page (compass.js):

(function() {
 var compassManager = CompassManager.getInstance();
 var watchID;

 $(document).on("pageinit", "#compass", function(e) {
 e.preventDefault();

 $("#startWatchHeading").on("tap", function(e) {
 e.preventDefault();

 enableStartWatchHeadingButton(false);

 var callback = {};

 callback.onSuccess = onSuccess;
 callback.onError = onError;

 watchID = compassManager.startWatchHeading(callback);
 });

 $("#stopWatchHeading").on("tap", function(e) {
 e.preventDefault();

 enableStartWatchHeadingButton(true);

 compassManager.stopWatchHeading(watchID);
 });

 initPage();
 });

Cordova API in Action

[114]

 $(document).on("pagebeforehide", "#compass", function(e) {
 compassManager.stopWatchHeading(watchID);
 enableStartWatchHeadingButton(true);
 });

 function initPage() {
 $("#stopWatchHeading").closest('.ui-btn').hide();
 }

 function onSuccess(heading) {
 $("#compassHeading").html("Heading: " +
heading.magneticHeading);
 }

 function onError(error) {
 $("#compassHeading").html("An error occurs during watch
heading: " + error.code);
 }

 function enableStartWatchHeadingButton(enable) {

 if (enable) {
 $("#startWatchHeading").button("enable");
 $("#stopWatchHeading").closest('.ui-btn').hide();
 } else {
 $("#startWatchHeading").button("disable");
 $("#stopWatchHeading").closest('.ui-btn').show();
 }

 $("#startWatchHeading").button("refresh");
 }

})();

The "pageinit" event handler registers the "startWatchHeading" tap event
handler. The "startWatchHeading" tap event handler does the following:

•	 It disables the "startWatchHeading" button and
shows the "stopWatchHeading" button by calling
enableStartWatchHeadingButton(false)

Chapter 4

[115]

•	 It starts to watch the heading by calling compassManager.
startWatchHeading(callback) and specifying the callback object
parameter, which contains the following attributes:

°° onSuccess: This callback will be called if the operation succeeds
°° onError: This callback will be called if the operation fails

The compassManager.startWatchHeading(callback) function returns watchID
that we will be using in order to stop watching the compass heading.

The "pageinit" event handler also registers the "stopWatchHeading" tap event
handler. The "stopWatchHeading" tap event handler does the following:

•	 It hides the "stopWatchHeading" button and enables the
"startWatchHeading" button by calling enableStartWatchHeadingButton
(true)

•	 It stops watching the heading by calling compassManager.
stopWatchHeading(watchID) and specifying watchID parameter, which we
get from the compassManager.startWatchHeading(callback) call

The "pageinit" event handler also calls initPage() in order to hide the
"stopWatchHeading" button at the beginning.

In onSuccess(heading), which will be called if compassManager.
startWatchHeading(callback) succeeds, heading.magneticHeading (which
represents the heading in degrees) is displayed in the "compassHeading" div. In
onError(), which will be called if compassManager.startWatchHeading(callback)
fails, an error message is displayed in the "compassHeading" div. Finally, in order to
make sure to stop watching the heading before leaving the page, compassManager.
stopWatchHeading() is called in the "pagebeforehide" event.

API
The following code snippet shows the compass manager JavaScript object that
interacts with the Apache Cordova Compass API (CompassManager.js):

var CompassManager = (function () {
 var instance;

 function createObject() {
 return {

Cordova API in Action

[116]

 startWatchHeading: function (callback) {
 return navigator.compass.watchHeading(callback.
onSuccess,
 callback.onError,
 {frequency:
2000});
 },
 stopWatchHeading: function (watchID) {
 if (watchID) {
 navigator.compass.clearWatch(watchID);
 }
 }
 };
 };

 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

 return instance;
 }
 };
})();

As you can see in the preceding code, CompassManager is a singleton object that has
the following two methods, as highlighted in the code:

•	 startWatchHeading(callback): This uses the Cordova navigator.
compass.watchHeading() method to watch the compass heading. The
navigator.compass.watchHeading(compassSuccess, compassError,
[compassOptions]) method has the following parameters:

°° compassSuccess(heading): This callback will be called if the
operation succeeds. It receives an object (heading) that contains the
current heading's information as a parameter. In CompassManager,
compassSuccess is set to callback.onSuccess.

°° compassError: This callback will be called if the operation fails. In
CompassManager, compassError is set to callback.onError.

Chapter 4

[117]

°° compassOptions: This is an optional parameter that holds the
compass' configuration. It has a frequency attribute to specify
how often to retrieve the compass heading in milliseconds. In
CompassManager, the frequency parameter is set to 2000 milliseconds
(note that this parameter is 100 milliseconds by default).

•	 stopWatchHeading(watchID): This uses the Cordova navigator.compass.
clearWatch() method to remove the compass heading. The navigator.
compass.clearWatch(watchID) method has the following parameter:

°° watchID: This represents the ID returned by navigator.compass.
watchHeading().

This compassOptions object (which is passed as the last parameter to navigator.
compass.watchHeading method) has the attributes shown in the following table:

Attribute name Description
frequency This represents the frequency of compass heading retrieval in

milliseconds. By default, it is 100 milliseconds.
filter This represents the change in degrees that is required in order

to initiate a watchHeading success callback. It is not supported
in Android, Windows Phone 7 and 8, Tizen, Firefox OS, and
Amazon Fire OS.

The heading object (which is passed as a parameter to the compassSuccess callback)
has the attributes shown in the following table:

Attribute name Description
magneticHeading This represents the heading in degrees from 0 to 359.99 at a single

point of time.
trueHeading This represents the heading relative to the geographic North Pole

in degrees from 0 to 359.99 at a single point of time. A negative
value indicates that the true heading cannot be determined.

headingAccuracy This is the deviation in degrees between the reported heading
and the true heading.

timestamp This is the time in which the compass heading was retrieved.

Cordova API in Action

[118]

We are now done with the Compass functionality in our Cordova Exhibition
app. However, before exploring the Connection functionality, note that the
navigator.compass object has also the method shown in the following table:

Method name Description
navigator.compass.
getCurrentHeading
(compassSuccess, compassError,
compassOptions)

This retrieves the information of the current
compass heading. When the operation
succeeds, the heading information is passed
to the compassSuccess callback as a
parameter.

Connection
The connection plugin provides information about the connection type of the device.
In order to use the connection plugin in our Apache Cordova project, we need to use
the following cordova plugin add command:

> cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-network-information.git

Demo
In order to access the connection demo, you can click on the Connection list item.
You will be introduced to the Connection page. You can click on the Get Connection
Type button in order to know the current connection type of your device, as shown
in the following screenshot:

Getting the device's connection type

Chapter 4

[119]

The HTML page
The following code snippet shows the "connection" page:

<div data-role="page" id="connection">
 <div data-role="header">
 <h1>Connection</h1>
 <a href="#" data-role="button" data-rel="back" data-
icon="back">Back
 </div>
 <div data-role="content">
 <h1>Welcome to the Connection Gallery</h1>
 <p>Click 'Get Connection Type' button below to know the
connection type.</p>
 <input type="button" id="getConnectionType" value="Get
Connection Type"/>

 <div id="connectionType">
 </div>
 </div>
</div>

As shown in the preceding "connection" page code snippet, it contains
the following:

•	 A page header that includes a back button
•	 Page content that includes only one button, "getConnectionType",

and one div, "connectionType", to display the connection type

View controller
The following code snippet shows the page view controller JavaScript object that
includes the action handlers of the page (connection.js):

(function() {
 var connectionManager = ConnectionManager.getInstance();
 $(document).on("pageinit", "#connection", function(e) {
 e.preventDefault();

 $("#getConnectionType").on("tap", function(e) {
 e.preventDefault();

 $("#connectionType").html("Current Connection: " +
connectionManager.getCurrentConnection());
 });
 });
})();

Cordova API in Action

[120]

The "pageinit" event handler registers the "getConnectionType" tap event
handler. In the "getConnectionType" tap event handler, it displays the current
connection of the device, which is retrieved by calling the connectionManager.
getCurrentConnection() method.

API
The following code snippet shows the connection manager JavaScript object that
interacts with the Apache Cordova Connection API (ConnectionManager.js):

var ConnectionManager = (function () {
 var instance;

 function createObject() {
 return {
 getCurrentConnection: function () {
 var connectionType = navigator.connection.type;

 switch(connectionType) {
 case Connection.UNKNOWN:
 return "Unknown connection";
 case Connection.ETHERNET:
 return "Ethernet connection";
 case Connection.WIFI:
 return "WiFi connection";
 case Connection.CELL_2G:
 return "Cell 2G connection";
 case Connection.CELL_3G:
 return "Cell 3G connection";
 case Connection.CELL_4G:
 return "Cell 4G connection";
 case Connection.CELL:
 return "Cell generic connection";
 case Connection.NONE:

Chapter 4

[121]

 return "No network connection";
 default:
 return "Un-recognized connection";
 }
 }
 };
 };
 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

 return instance;
 }
 };
})();

As you can see, ConnectionManager is a singleton object that has a single method as
highlighted in the code. The getCurrentConnection() method uses the Cordova
navigator.connection.type property in order to get the currently active network
connection (Ethernet, Wi-Fi, cell 2G, cell 3G, and so on).

Contacts
The contacts plugin provides access to the device's contacts database in order to
find and create contacts. In order to use the contacts plugin in our Apache Cordova
project, we need to use the following cordova plugin add command:

> cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-contacts.git

Cordova API in Action

[122]

Demo
In order to access the contacts demo, you can click on the Contacts list item. You will
be introduced to the Contacts page. You can search for contacts by typing in the search
field (you have to type at least three characters), as shown in the following screenshot:

Searching for contacts

You can click on any of the filtered contacts, and you will be introduced to
the Contact Details page in order to check the contact details, as shown in the
following screenshot:

Chapter 4

[123]

Viewing contact details

The HTML page
The following code snippet shows the "contacts" page:

<div data-role="page" id="contacts">
 <div data-role="header">
 <h1>Contacts</h1>
 <a href="#" data-role="button" data-rel="back" data-
icon="back">Back
 </div>
 <div data-role="content">
 <ul data-role="listview" id="contactList" data-
filter="true" data-filter-placeholder="Enter 3+ chars to search
...">

 </div>
</div>

Cordova API in Action

[124]

As shown in the preceding "contacts" page code snippet, it contains the following:

•	 A page header that includes a back button.
•	 Page content that includes a jQuery Mobile list view element ("contactList")

that is defined by setting the data-role attribute to "listview". Setting the
data-filter attribute to true tells jQuery Mobile to provide a search field for
our list view. Finally, the placeholder attribute informs the user to enter at
least three characters in order to search for contacts.

When the user clicks on any of the filtered contacts, the user will be introduced to the
"contactDetails" page. The following code snippet shows the "contactDetails"
page:

<div data-role="page" id="contactDetails">
 <div data-role="header">
 <h1>Contact Details</h1>
 <a href="#" data-role="button" data-rel="back" data-
icon="back">Back
 </div>
 <div data-role="content">
 <div id="contactInfo"></div>
 </div>
</div>

As shown in the preceding "contact details" page code snippet, it contains
the following:

•	 A page header that includes a back button
•	 Page content that includes a "contactInfo" div to display information on

contact details

View controller
The following code snippet shows the contacts page view controller JavaScript object
that includes the event handlers of the page (contacts.js):

(function() {
 var contactsManager = ContactsManager.getInstance();

 $(document).on("pageinit", "#contacts", function(e) {
 e.preventDefault();

 $("#contactList").on("filterablebeforefilter", function
(e, data) {
 e.preventDefault();

Chapter 4

[125]

 var filterText = data.input.val();

 if (filterText && filterText.length > 2) {
 var callback = {};

 callback.onSuccess = function (contacts) {
 updateContactsList(contacts);
 };

 callback.onError = function (error) {
 $("#contactList").empty();
 $("Error displaying contacts").
appendTo("#contactList");
 };

 contactsManager.getAllContacts(callback,
filterText);
 }
 });
 });

 function updateContactsList(contacts) {
 $("#contactList").empty();

 if (jQuery.isEmptyObject(contacts)) {
 $("No Contacts Available").
appendTo("#contactList");
 } else {
 var i;

 //Display the top 50 elements
 for (i = 0; i < contacts.length || i < 50; ++i) {
 if (contacts[i]) {
 $("<a href='#contactDetails?contact=" +
encodeURIComponent(JSON.stringify(contacts[i])) + "'>" +
 contacts[i].name.formatted +
"").appendTo("#contactList");
 }
 }
 }

 $("#contactList").listview('refresh');
 }
})();

Cordova API in Action

[126]

As highlighted in the preceding code snippet, the "pageinit" event handler
registers the "filterablebeforefilter" event handler on the "contactList" list
view in order to create our custom contacts filter. In the "filterablebeforefilter"
event handler, the current filter text entered by the user is retrieved by calling
data.input.val(). In order to minimize the search space, the filter text has to be
at least three characters. If the filter text's length exceeds two characters, then a call
to the contactsManager.getAllContacts(callback, filterText) method is
performed in order to get all the contacts that match the entered filter text.

In order to call the contactsManager.getAllContacts(callback, filterText)
method, we specified a callback object that contains two attributes: the onSuccess
attribute (which represents a success callback) and the onError attribute (which
represents a failure callback). The onSuccess callback receives the filtered contacts
list and then calls the updateContactsList() method in order to update the current
contacts list view with the new filtered contacts list. The onError callback just
displays an error message to the user. The second parameter filterText represents
the input filter text.

The updateContactsList(contacts) method clears the "contactList" list
view, and if the contacts list (contacts) is not empty, contacts are appended to
the "contactList" list view, and finally, the "contactList" list view is refreshed
with new updates.

You might notice that every contact item in the list view is linked to the
"contactDetails" page and passes the item's contact object as a parameter
(after converting the contact object to an encoded JSON string).

Thanks to the jQuery Mobile page parameters plugin (which can be downloaded
from https://github.com/jblas/jquery-mobile-plugins/tree/master/page-
params) and its inclusion in the index.html file, we can pass parameters between
pages easily using "#pageID?param1=value1¶m2=value2 ...etc.

However, in our application, in the js/common.js file (which contains common
utilities across all of the app pages and is included after the plugin, that is, the
jqm.page.params.js file), we added a small utility over the plugin in order to
retrieve page parameters at any event of the "to" page. In order to implement this,
we create an event handler for the "pagebeforechange" event in order to get the
passed parameter(s), as shown in the following code snippet:

$(document).bind("pagebeforechange", function(event, data) {
 $.mobile.pageData = (data && data.options &&
data.options.pageData)
 ? data.options.pageData : null;
});

https://github.com/jblas/jquery-mobile-plugins/tree/master/page-params
https://github.com/jblas/jquery-mobile-plugins/tree/master/page-params

Chapter 4

[127]

By checking data.options.pageData, we can determine whether there are
any passed parameters from the "from" page to the "to" page, thanks to the
page parameters plugin. After getting the passed parameters, we set them in
$.mobile.pageData, which can be accessible from any event in the "to" page.
If there are no passed parameters, then $.mobile.pageData will be set to null.

The following code snippet shows contactDetails.js, which is the view controller
of the "contactDetails" page:

(function() {
 $(document).on("pageshow", "#contactDetails", function(e) {
 e.preventDefault();

 var contactDetailsParam = $.mobile.pageData.contact ||
null;
 var contactDetails = JSON.parse(decodeURIComponent(contactDet
ailsParam));
 var i;
 var numbers = "";

 if (contactDetails.phoneNumbers) {
 for (i = 0; i < contactDetails.phoneNumbers.length; ++i)
{
 numbers = "<a href='tel:" + contactDetails.
phoneNumbers[i].value + "'>" +
 contactDetails.phoneNumbers[i].value +
"
";
 }
 } else {
 numbers = "NA
";
 }

 $("#contactInfo").html("<p>" +
 "Name: " + contactDetails.name.formatted +
"

" +
 "Phone(s): " + "
" +
 numbers +
 "</p>");
 });
})();

Cordova API in Action

[128]

In the "pageshow" event handler of the "contactDetails" page, contactDetails
is retrieved using $.mobile.pageData.contact and then decoded and parsed
to be converted to a JavaScript object. Finally, the contact names and numbers are
acquired from contactDetails using contactDetails.name.formatted and
contactDetails.phoneNumbers and are displayed in the "contactInfo" div.

The jQuery Mobile "pageshow" event is triggered on the "to" page
after the transition completes.

API
The following code snippet shows the contacts manager JavaScript object that wraps
the Apache Cordova Contacts API (ContactsManager.js):

var ContactsManager = (function () {
 var instance;

 function createObject() {
 return {
 getAllContacts: function (callback, filterText) {
 var options = new ContactFindOptions();

 options.filter = filterText || "";
 options.multiple = true;

 var fields = ["id", "name", "phoneNumbers"];

 navigator.contacts.find(callback.onSuccess, callback.
onError, fields, options);
 }
 };
 };

 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

 return instance;
 }
 };
})();

Chapter 4

[129]

As you can see, ContactsManager is a singleton object that has a single method as
highlighted in the preceding code. The getAllContacts(callback, filterText)
method uses the Cordova navigator.contacts.find() method to retrieve contacts.

The navigator.contacts.find(contactSuccess, contactError,
contactFields, contactFindOptions) method has the following parameters:

•	 contactSuccess: This callback will be called if the operation succeeds. It
receives the retrieved contacts array as a parameter. In ContactsManager,
contactSuccess is set to callback.onSuccess.

•	 contactError: This callback will be called if the operation fails. In
ContactsManager, contactError is set to callback.onError.

•	 contactFields: This object specifies the fields of every contact object in the
returned result of navigator.contacts.find(). In ContactsManager, we
specified the ["id", "name", "phoneNumbers"] contact fields.

•	 contactFindOptions: This is an optional parameter that is used to
filter contacts.

The contactFindOptions parameter has the attributes shown in the following table:

Attribute name Description
filter This represents the search string used to filter contacts. In

ContactsManager, the value is set to filterText.
multiple This specifies whether the find operation returns multiple

contacts. By default, it is false. In our ContactsManager, it is
set to true.

We are now done with the Contacts functionality in the Cordova Exhibition
app. However, before exploring the device's API functionality, note that the
navigator.contacts.find() method's contactFields parameter can have one
or more attribute(s) from the Contact object, whose attributes are specified in the
following table:

Attribute name Description
id This represents a globally unique identifier for the

contact. It is used in our contacts example.
displayName This represents the name of this contact.
name This represents a ContactName object that contains all

the components of a name, which will be illustrated later.
It is used in our contacts example.

nickname This represents the contact's nickname.

Cordova API in Action

[130]

Attribute name Description
phoneNumbers This represents a ContactField array of all the

contacts' phone numbers. It is used in our contacts
example. The ContactField object will be illustrated
later.

Emails This represents a ContactField array of all the
contacts' e-mail addresses.

addresses This represents a ContactAddress array of all the
contacts' addresses. It will be illustrated later.

ims This represents a ContactField array of all the
contacts' IM addresses.

organizations This represents a ContactOrganization array of all
the contacts' organizations. It will be illustrated later.

birthday This represents the contact's birthday.
note This represents a note about the contact.
photos This represents a ContactField array of the

contacts' photos.
categories This represents a ContactField array of all the

user-defined categories associated with the contact.
urls This represents a ContactField array of web pages

associated with the contact.

The ContactName object has the attributes shown in the following table:

Attribute name Description
formatted This represents the complete name of the contact.
familyName This represents the contact's family name.
givenName This represents the contact's given name.
middleName This represents the contact's middle name.
honorificPrefix This represents the contact's prefix (such as Mr or Mrs).
honorificSuffix This represents the contact's suffix.

Chapter 4

[131]

The ContactField object has the attributes shown in the following table:

Attribute name Description
type This represents a string that indicates what type of field it is.
value This represents the value of the field, for example, a phone number.
pref If this is set to true, it means that this ContactField object

contains the user's preferred value.

The ContactAddress object has the attributes shown in the following table:

Attribute name Description
type This represents a string that indicates what type of field it is.
pref If this is set to true, it means that this ContactAddress

object contains the user's preferred value.
formatted This represents the formatted full address for display.
streetAddress This represents the full street address.
locality This represents the city or locality.
region This represents the state or region.
postalCode This represents the zip code or postal code.
country This represents the country name.

The ContactOrganization object has the attributes shown in the following table:

Attribute name Description
type This represents a string that indicates what type of field it is, for

example, "home".
pref If this is set to true, it means that this ContactOrganization

contains the user's preferred value.
name This represents the contact's organization name.
department This represents the contact's department name inside the

organization.
title This represent the contact's title in the organization.

The navigator.contacts object has also the method shown in the following table:

Method name Description
navigator.contacts.
create(properties)

This is used to return a Contact object that you can use, for
example, to save a contact in the device contacts database by
calling the save() method of the Contact object.

Cordova API in Action

[132]

Device
The device plugin defines a global device object that describes the device's hardware
and software. It is very important to note that the device object is available after
the "deviceready" event occurs. In order to use the device plugin in our Apache
Cordova project, we need to use the following cordova plugin add command:

> cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-device.git

Demo
In order to access the device demo, you can click on the Device list item. You will be
introduced to the Device page. You can click on the Get Device Info button in order
to get your device information, as shown in the following screenshot:

Getting device information

Chapter 4

[133]

The HTML page
The following code snippet shows the "device" page:

<div data-role="page" id="device">
 <div data-role="header">
 <h1>Device</h1>
 <a href="#" data-role="button" data-rel="back" data-
icon="back">Back
 </div>
 <div data-role="content">
 <h1>Welcome to the Device Gallery</h1>
 <p>Click 'Get Device Info' button below to get the device
information.</p>
 <input type="button" id="getDeviceInfo" value="Get Device
Info"/>

 <div id="deviceInfo">
 </div>
 </div>
</div>

As shown in the preceding "device" page code snippet, it contains the following:

•	 A page header that includes a back button
•	 Page content that includes a "getDeviceInfo" button to get the device

information and a "deviceInfo" div in order to display device information

View controller
The following code snippet shows the "device" page view controller JavaScript
object that includes the event handlers of the page (device.js):

(function() {
 var deviceManager = DeviceManager.getInstance();

 $(document).on("pageinit", "#device", function(e) {
 e.preventDefault();

 $("#getDeviceInfo").on("tap", function(e) {
 e.preventDefault();

 $("#deviceInfo").html(deviceManager.getDeviceInfo());
 });
 });
})();

Cordova API in Action

[134]

As shown in the preceding code snippet, the "pageinit" event handler registers the
"tap" event handler on the "getDeviceInfo" button. In the "tap" event handler of
the "getDeviceInfo" button, the device information is displayed in the "deviceInfo"
div and retrieved by calling the deviceManager.getDeviceInfo() method.

API
The following code snippet shows the device manager JavaScript object that uses the
Apache Cordova device object (DeviceManager.js):

var DeviceManager = (function () {
 var instance;

 function createObject() {
 return {
 getDeviceInfo: function () {
 return "Device Model: " + device.model + "
" +
 "Device Cordova: " + device.cordova + "
" +
 "Device Platform: " + device.platform + "
" +
 "Device UUID: " + device.uuid + "
" +
 "Device Version: " + device.version + "
";
 }
 };
 };

 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

Chapter 4

[135]

 return instance;
 }
 };
})();

The DeviceManager object is a singleton object that has a single method as
highlighted in the preceding code. The getDeviceInfo() function uses the
Cordova device object to retrieve the device information.

The DeviceManager object uses the attributes of the device object, as shown in the
following table:

Attribute name Description
model This represents the device's model name.
cordova This represents the version of Apache Cordova that runs on

this device.
platform This represents the device's operating system name.
uuid This represents the device's Universally Unique Identifier

(UUID).
version This represents the device's operating system version.

Geolocation
The geolocation plugin provides information about the device's current location that
can be retrieved via Global Positioning System (GPS), network signals, and GSM/
CDMA cell IDs. Note that there is no guarantee that the API returns the device's
actual location.

In order to use the geolocation plugin in our Apache Cordova project, we need to use
the following cordova plugin add command:

> cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-geolocation.git

Cordova API in Action

[136]

Demo
In order to access the geolocation demo, you can click on the Geolocation list item.
You will be introduced to the Geolocation page. You can click on the Get Current
Position button in order to get your device's current position, as shown in the
following screenshot:

Getting the device's position

Chapter 4

[137]

The HTML page
The following code snippet shows the "geolocation" page:

<div data-role="page" id="geolocation">
 <div data-role="header">
 <h1>Geolocation</h1>
 <a href="#" data-role="button" data-rel="back" data-
icon="back">Back
 </div>
 <div data-role="content">
 <h1>Welcome to the Geolocation Gallery</h1>
 <p>Click 'Get Current Position' button below to know where
you are.</p>
 <input type="button" id="getCurrentPosition" value="Get
Current Position"/>

 <div id="position">
 </div>
 </div>
</div>

As shown in the preceding "geolocation" page code snippet, it contains
the following:

•	 A page header that includes a back button
•	 Page content that includes a "getCurrentPosition" button to get the

device's current position and a "position" div in order to display it

View controller
The following code snippet shows the "geolocation" page view controller
JavaScript object that includes the event handlers of the page (geolocation.js):

(function() {
 var geolocationManager = GeolocationManager.getInstance();

 $(document).on("pageinit", "#geolocation", function(e) {
 e.preventDefault();

 $("#getCurrentPosition").on("tap", function(e) {
 e.preventDefault();

 var callback = {};

Cordova API in Action

[138]

 callback.onSuccess = onSuccess;
 callback.onError = onError;

 geolocationManager.getCurrentPosition(callback);
 });
 });

 function onSuccess(position) {
 console.log("position is retrieved successfully");

 $("#position").html("Latitude: " +
position.coords.latitude + "
" +
 "Longitude: " +
position.coords.longitude);
 }

 function onError(error) {
 $("#position").html("Error code: " + error.code + ",
message: " + error.message);
 }
})();

As shown in the preceding code snippet, the "pageinit" event handler registers
the "tap" event handler on the "getCurrentPosition" button. In the "tap" event
handler of the "getCurrentPosition" button, the device's current position is
retrieved by calling the geolocationManager.getCurrentPosition() method.

The geolocationManager.getCurrentPosition(callback) method takes a
callback object as a parameter that contains two attributes (onSuccess and
onError) that refer to the following callbacks:

•	 onSuccess(position): This callback will be called if the operation succeeds.
It receives a position object (which represents the device's current position) as
a parameter. Inside the success callback, the position's longitude and latitude
information are displayed in the "position" div.

•	 onError(error): This callback will be called if the operation fails. It receives
an error object that contains the error information (error code and error
message) as a parameter.

Chapter 4

[139]

API
The following code snippet shows the geolocation manager JavaScript object that
interacts with the Apache Cordova geolocation API (GeolocationManager.js):

var GeolocationManager = (function () {
 var instance;

 function createObject() {
 return {
 getCurrentPosition: function (callback) {
 navigator.geolocation.getCurrentPosition(callback.
onSuccess,
callback.onError,
 {
timeout: 15000,
enableHighAccuracy: true
 });
 }
 };
 };

 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

 return instance;
 }
 };
})();

As shown, GeolocationManager is a singleton object that has a single method,
getCurrentPosition(callback), as highlighted in the preceding code. This
method uses the Cordova navigator.geolocation.getCurrentPosition()
method in order to retrieve the device's current position.

Cordova API in Action

[140]

The navigator.geolocation.getCurrentPosition(geolocationSuccess,
[geolocationError], [geolocationOptions]) method has the following
parameters:

•	 geolocationSuccess: This represents the successful callback that will be
called when the operation succeeds. It receives a Position object that holds
the current position information as a parameter. In GeolocationManager,
geolocationSuccess is set to callback.onSuccess.

•	 geolocationError: This is an optional parameter that represents the
error callback that will be called when the operation fails. It receives a
PositionError object that holds the error information (the code that
represents the error code and the message that represents the error message)
as a parameter. In GeolocationManager, geolocationError is set to
callback.onError.

•	 geolocationOptions: This is an optional parameter that represents the
geolocation options.

The geolocationOptions object has the attributes shown in the following table:

Attribute name Description
enableHighAccuracy If this attribute is set to true, it informs the plugin to use

more accurate methods in order to get the current position,
such as satellite positioning. In GeolocationManager.
getCurrentPosition(), enableHighAccuracy is set to
true.

timeout This represents the time in milliseconds after which
the operation times out. In GeolocationManager.
getCurrentPosition(), timeout is set to 15000.

maximumAge This is the maximum time in milliseconds for cached position.

The Position object has the attributes shown in the following table:

Attribute name Description
coords This represents a Coordinates object that represents

coordinates of the position.
timestamp This represents the creation timestamp of coords.

Chapter 4

[141]

The Coordinates object has the attributes shown in the following table:

Attribute name Description
latitude This represents the position's latitude. It is used in our

geolocation example.
longitude This represents the position's longitude. It is used in our

geolocation example.
altitude This represents the height of the position in meters above

the ellipsoid.
accuracy This represents the accuracy level of the latitude and longitude

coordinates in meters.
altitudeAccuracy This represents the accuracy level of the altitude coordinate

in meters.
heading This represents the direction of travel, specified in degrees,

counting clockwise relative to true north.
speed This represents the current ground speed of the device,

specified in meters per second.

Note that navigator.geolocation has the following two more methods:

•	 watchPosition(geolocationSuccess, [geolocationError],
[geolocationOptions]): This can watch for changes in the device's current
position. It returns a watch ID that should be used with clearWatch() to
stop watching for changes in position.

•	 clearWatch(watchID): This can stop watching the changes to the device's
position referenced by the watchID parameter.

We are now done with the geolocation functionality in the Cordova Exhibition app.

Globalization
The globalization plugin can be used in order to get the user locale and language and
to perform operations specific to the user's locale and time zone.

In order to use the globalization plugin in our Apache Cordova project, we need to
use the following cordova plugin add command:

> cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-globalization.git

Cordova API in Action

[142]

Demo
In order to access the globalization demo, you can click on the Globalization list
item. You will be introduced to the Globalization page. You can click on the Get
Locale Name button in order to get the user's locale name or the Get Preferred
Language button in order to get the user's preferred language, as shown in the
following screenshot:

Getting the user's locale and preferred language

Chapter 4

[143]

The HTML page
The following code snippet shows the "globalization" page:

<div data-role="page" id="globalization">
 <div data-role="header">
 <h1>Globalization</h1>
 <a href="#" data-role="button" data-rel="back" data-
icon="back">Back
 </div>
 <div data-role="content">
 <h1>Welcome to the Globalization Gallery</h1>
 <p>Click the buttons below to explore globalization.</p>
 <input type="button" id="getLocaleName" value="Get Locale
Name"/>
 <input type="button" id="getPreferredLanguage" value="Get
Preferred Language"/>

 <div id="globInfo">
 </div>
 </div>
</div>

As shown in the preceding "globalization" page code snippet, it contains
the following:

•	 A page header that includes a back button
•	 Page content that includes a "getLocaleName" button to get the user locale,

a "getPreferredLanguage" button to get the user preferred language, and a
"globInfo" div in order to display the results

View controller
The following code snippet shows the "globalization" page view controller
JavaScript object that includes the event handlers of the page (globalization.js):

(function() {
 var globalizationManager = GlobalizationManager.getInstance();

 $(document).on("pageinit", "#globalization", function(e) {
 e.preventDefault();

Cordova API in Action

[144]

 $("#getLocaleName").on("tap", function(e) {
 e.preventDefault();

 var callback = {};

 callback.onSuccess = handleLocaleSuccess;
 callback.onError = handleLocaleError;

 globalizationManager.getLocaleName(callback);
 });

 $("#getPreferredLanguage").on("tap", function(e) {
 e.preventDefault();

 var callback = {};

 callback.onSuccess = handleLangSuccess;
 callback.onError = handleLangError;

 globalizationManager.getPreferredLanguage(callback);
 });
 });

 function handleLocaleSuccess(locale) {
 $("#globInfo").html("Locale Name: " + locale.value +
"
");
 }

 function handleLocaleError() {
 $("#globInfo").html("Unable to get Locale name
");
 }

 function handleLangSuccess(language) {
 $("#globInfo").html("Preferred language name: " +
language.value + "<br/");
 }

 function handleLangError() {
 $("#globInfo").html("Unable to get preferred language
name
");
 }
})();

Chapter 4

[145]

As shown in the preceding code snippet, the "pageinit" event handler registers
the "tap" event handler on the "getLocaleName" button. In the "tap" event
handler of the "getLocaleName" button, the user locale is retrieved by calling the
globalizationManager.getLocaleName() method.

The globalizationManager.getLocaleName(callback) method takes a callback
object as a parameter that contains two attributes (onSuccess and onError) that
refer to the following callbacks in order:

•	 handleLocaleSuccess(locale): This callback will be called if the operation
succeeds; it receives a locale object that represents the user's current locale
as a parameter. In the success callback, the locale value is displayed in the
"globInfo" div.

•	 handleLocaleError(): This callback will be called if the operation fails.

The "pageinit" event handler also registers the "tap" event handler on
the "getPreferredLanguage" button. In the "tap" event handler of the
"getPreferredLanguage" button, the user's preferred language is retrieved by
calling the globalizationManager.getPreferredLanguage() method.

The globalizationManager.getPreferredLanguage(callback) method takes a
callback object as a parameter that contains two attributes (onSuccess and onError)
that refer to the following callbacks in order:

•	 handleLangSuccess(language): This callback will be called if the operation
succeeds; it receives a language object that represents the user's preferred
language as a parameter. In the success callback, the preferred language
value is displayed in the "globInfo" div.

•	 handleLangError(): This callback will be called if the operation fails.

API
The following code snippet shows the globalization manager JavaScript object that
interacts with the Apache Cordova Globalization API (GlobalizationManager.js):

var GlobalizationManager = (function () {
 var instance;

 function createObject() {
 return {
 getLocaleName: function (callback) {
 navigator.globalization.getLocaleName(callback.
onSuccess, callback.onError);
 },

Cordova API in Action

[146]

 getPreferredLanguage: function (callback) {
 navigator.globalization.getPreferredLanguage(callback.
onSuccess,
callback.onError);
 }
 };
 };

 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

 return instance;
 }
 };
})();

As shown, GlobalizationManager is a singleton object that has two methods as
highlighted in the preceding code. The first one is getLocaleName(callback),
which uses the Cordova navigator.globalization.getLocaleName() method in
order to retrieve the user's current locale.

The navigator.globalization.getLocaleName(successCallback,
errorCallback) method has the following parameters:

•	 successCallback: This represents the successful callback that will be
called when the operation succeeds. It receives a locale object that holds
the current locale information as a parameter. In GlobalizationManager,
sucessCallback is set to callback.onSuccess.

•	 errorCallback: This represents the error callback that will be called
when the operation fails. It receives a GlobalizationError object that
holds the error information (the code that represents the error code
and the message that represents the error message) as a parameter. In
GlobalizationManager, errorCallback is set to callback.onError.

Chapter 4

[147]

The second method is getPreferredLanguage(callback) that uses the Cordova
navigator.globalization.getPreferredLanguage() method in order to retrieve
the user's preferred language.

The navigator.globalization.getPreferredLanguage(successCallback,
errorCallback) method has the following parameters:

•	 successCallback: This represents the successful callback that will be
called when the operation succeeds. It receives a language object that
holds the user's preferred language information as a parameter. In
GlobalizationManager, sucessCallback is set to callback.onSuccess.

•	 errorCallback: This represents the error callback that will be called when
the operation fails. It receives a GlobalizationError object that holds
the error information (the code that represents the error code and the
message that represents the error message). In GlobalizationManager,
errorCallback is set to callback.onError.

The navigator.globalization object has more methods that you can
check out in the Apache Cordova documentation at https://github.
com/apache/cordova-plugin-globalization/blob/master/
doc/index.md.

We are now done with the globalization functionality in the Cordova Exhibition app.

InAppBrowser
The InAppBrowser plugin can provide a web browser view that is displayed
when calling the window.open() function or when opening a link formed as
.

In order to use the InAppBrowser plugin in our Apache Cordova project, we need to
use the following cordova plugin add command:

> cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-inappbrowser.git

https://github.com/apache/cordova-plugin-globalization/blob/master/doc/index.md
https://github.com/apache/cordova-plugin-globalization/blob/master/doc/index.md
https://github.com/apache/cordova-plugin-globalization/blob/master/doc/index.md

Cordova API in Action

[148]

Demo
In order to access the InAppBrowser demo, you can click on the InAppBrowser list
item. You will be introduced to the InAppBrowser page. As shown in the following
screenshot, you can click on the Open and Close web page button in order to open
the http://www.google.com/ web page using InAppBrowser. Note that the opened
web page will be closed after 10 seconds.

Opening an external page using InAppBrowser

http://www.google.com/

Chapter 4

[149]

The HTML page
The following code snippet shows the "inAppBrowser" page:

<div data-role="page" id="inAppBrowser">
 <div data-role="header">
 <h1>InAppBrowser</h1>
 <a href="#" data-role="button" data-rel="back" data-
icon="back">Back
 </div>
 <div data-role="content">
 <h1>Welcome to the InAppBrowser Gallery</h1>
 <p>Click the button below to open the inAppBrowser which
will close after 10 seconds.</p>

 <input type="button" id="openGoogleSearchPage" value="Open
and Close web page"/>
 </div>
</div>

As shown in the preceding "inAppBrowser" page code snippet, it contains
the following:

•	 A page header that includes a back button
•	 Page content that includes a "openGoogleSearchPage" button to open a web

page (http://www.google.com/) and close it after 10 seconds

View controller
The following code snippet shows the InAppBrowser page view controller JavaScript
object that includes the event handlers of the page (inAppBrowser.js):

(function() {
 var inAppBrowserManager = InAppBrowserManager.getInstance();

 $(document).on("pageinit", "#inAppBrowser", function(e) {
 e.preventDefault();

 $("#openGoogleSearchPage").on("tap", function(e) {
 e.preventDefault();

 var windowRef = inAppBrowserManager.openWindow("http://
www.google.com");

http://www.google.com/

Cordova API in Action

[150]

 //Close the window after 10 seconds...
 window.setTimeout(function() {
 console.log("It is over. Time to close the
window...");
 inAppBrowserManager.closeWindow(windowRef);
 }, 10000);
 });
 });
})();

As shown in the preceding code snippet, the "pageinit" event handler registers
the "tap" event handler on the "openGoogleSearchPage" button. In the "tap"
event handler of the "openGoogleSearchPage" button, a new window is opened by
calling the inAppBrowserManager.openWindow() method that specifies the URL to
open "http://www.google.com/".

When the window.setTimeout() function is executed after 10 seconds using
windowRef, which is returned from the inAppBrowserManager.openWindow()
method, the opened window is closed by calling inAppBrowserManager.
closeWindow(windowRef).

API
The following code snippet shows InAppBrowserManager.js:

var InAppBrowserManager = (function () {
 var instance;

 function createObject() {
 return {
 openWindow: function (url) {
 var windowRef = window.open(url, '_blank',
'location=no');

 return windowRef;
 },
 closeWindow: function (windowRef) {
 if (windowRef) {
 windowRef.close();
 }
 }
 };
 };

Chapter 4

[151]

 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

 return instance;
 }
 };
})();

As shown in the preceding code, InAppBrowserManager is a singleton object that has
two simple methods, as highlighted in the preceding code:

•	 openWindow(url): This is used to open a new window by calling the
window.open() method. The window.open(url, target, options)
method has the following parameters:

°° url: This represents the URL to be loaded.
°° target: This represents the target in which to load the URL.

It can be _self (default value), which means that the URL
opens in the Cordova WebView if it is in the white list; otherwise,
it opens in InAppBrowser or _blank (a specified value by
InAppBrowserManager). This _blank means that the URL opens in
InAppBrowser or _system, which means that the URL opens in the
web browser of the system.

°° options: This represents the options for the InAppBrowser. It
is a string that must not have any empty spaces, and it consists
of key/value pairs, where key represents a feature's name and
value represents a feature's value. The separator between any two
features in the options string must be a comma. A location string
is one of the available features that can be used in the options
string. It specifies whether the location bar will be shown or not. In
InAppBrowserManager, the location feature is set to no to hide the
location bar, as it is by default set to yes.

Cordova API in Action

[152]

window.open() returns a reference to the InAppBrowser window. This can be used
to close the opened window later.

•	 closeWindow(windowRef): This is used to close an opened window
by calling the close() method of the reference to the InAppBrowser
window (the windowRef object).

InAppBrowser has more methods that you can check out in the Apache
Cordova documentation at https://github.com/apache/cordova-
plugin-inappbrowser/blob/master/doc/index.md.

We are now done with the InAppBrowser functionality in the Cordova Exhibition app.

Summary
In this chapter, we covered a lot of information regarding the Apache Cordova
API. You saw the Apache Cordova API in action by exploring some features of the
Cordova Exhibition app. You learned how to work with the Cordova accelerometer,
camera, compass, connection, contacts, device, geolocation, globalization, and
InAppBrowser APIs. In the next chapter, we will continue our look at the Apache
Cordova API by exploring the remaining features of the Cordova Exhibition app.

https://github.com/apache/cordova-plugin-inappbrowser/blob/master/doc/index.md
https://github.com/apache/cordova-plugin-inappbrowser/blob/master/doc/index.md

Diving Deeper into the
Cordova API

In this chapter, we will continue our journey in the Apache Cordova API by exploring
the remaining main features of the Cordova Exhibition app. You will learn how to
work with Cordova's media, file, capture, notification, and storage APIs. You will also
learn how to utilize the Apache Cordova events in your Cordova mobile app.

Media, file, and capture
The media plugin provides the ability to record and play back audio files on a device.

In order to use the media plugin in our Apache Cordova project, we need to use the
following cordova plugin add command:

> cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-media.git

The capture plugin provides access to the device's audio, image, and video capture
capabilities. In order to use the capture plugin in our Apache Cordova project, we
need to use the following cordova plugin add command:

> cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-media-capture.git

The file plugin provides access to the device's filesystem. In order to use the file
plugin in our Apache Cordova project, we need to use the following cordova
plugin add command:

> cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-file.git

Diving Deeper into the Cordova API

[154]

Demo
In order to access the media, file, and capture demo, you can click on the Media, File,
and Capture list item, respectively. You will then be introduced to the Media / File /
Capture page. You can click on the Record Sound button in order to start recording.
Once you complete recording, you can click on the Stop Recording button, as shown
in the following screenshot, and you will be able to play back your recorded sound
by clicking on the Playback button:

Record your voice

You also have the option to click on Record Sound Externally, which will open your
device's default recording application in order to perform recording. Once you are
done, you will return to the page, and then, you can use the Playback button to play
back your recorded sound again.

Chapter 5

[155]

The HTML page
The following code snippet shows the media page ("mediaFC"):

<div data-role="page" id="mediaFC">
 <div data-role="header">
 <h1>Media / Capture</h1>
 <a href="#" data-role="button" data-rel="back" data-
icon="back">Back
 </div>
 <div data-role="content">
 <h1>Welcome to the Media / Capture Gallery</h1>
 <p>Click 'Record Sound' or 'Record Sound Externally'
button below to start recording your voice.</p>
 <input type="hidden" id="location"/>
 <div class="center-wrapper">
 <input type="button" id="recordSound" data-
icon="audio" value="Record Sound"/>
 <input type="button" id="recordSoundExt" data-
icon="audio" value="Record Sound Externally"/>
 <input type="button" id="playSound" data-
icon="refresh" value="Playback"/>

 </div>

 <div data-role="popup" id="recordSoundDialog" data-
dismissible="false" style="width:250px">
 <div data-role="header">
 <h1>Recording</h1>
 </div>

 <div data-role="content">
 <div class="center-wrapper">
 <div id="soundDuration"></div>
 <input type="button" id="stopRecordingSound"
value="Stop Recording"
 class="center-button" data-
inline="true"/>
 </div>
 </div>
 </div>
 </div>
</div>

Diving Deeper into the Cordova API

[156]

As shown in the preceding "mediaFC" page, it contains the following:

•	 A page header that includes a back button
•	 Page content that includes the following elements:

°° "recordSound": This button is used to record sound using
our app interface. Clicking on this button will show the
"recordSoundDialog" pop up to allow the user to stop the recording
when the operation is finished.

°° "recordSoundExt": This button is used to record sound externally
using the device's default recording app.

°° "playSound": This button is used to play the recorded sound.
°° "recordSoundDialog": This is a custom pop up that will be shown

when the user clicks on the "recordSound" button. It contains the
"stopRecordingSound" button, which is used to stop recording
sound when the recording is finished.

View controller
The following code snippet shows the first main part of the "mediaFC" page view
controller JavaScript object:

(function() {
 var mediaManager = MediaManager.getInstance(), recInterval;

 $(document).on("pageinit", "#mediaFC", function(e) {
 e.preventDefault();

 $("#recordSound").on("tap", function(e) {
 e.preventDefault();

 disableActionButtons();

 var callback = {};

 callback.onSuccess = handleRecordSuccess;
 callback.onError = handleRecordError;

 mediaManager.startRecording(callback);

 var recTime = 0;

Chapter 5

[157]

 $("#soundDuration").html("Duration: " + recTime + "
seconds");

 $("#recordSoundDialog").popup("open");

 recInterval = setInterval(function() {
 recTime = recTime + 1;
 $("#soundDuration").html("Duration:
" + recTime + " seconds");
 }, 1000);
 });

 $("#recordSoundExt").on("tap", function(e) {
 e.preventDefault();

 disableActionButtons();

 var callback = {};

 callback.onSuccess = handleRecordSuccess;
 callback.onError = handleRecordError;

 mediaManager.recordVoiceExternally(callback);
 });

 $("#recordSoundDialog").on("popupafterclose", function(e,
ui) {
 e.preventDefault();

 clearInterval(recInterval);
 mediaManager.stopRecording();
 });

 $("#stopRecordingSound").on("tap", function(e) {
 e.preventDefault();

 $("#recordSoundDialog").popup("close");
 });

 $("#playSound").on("tap", function(e) {
 e.preventDefault();

 disableActionButtons();

Diving Deeper into the Cordova API

[158]

 var callback = {};

 callback.onSuccess = handlePlaySuccess;
 callback.onError = handlePlayError;

 mediaManager.playVoice($("#location").val(),
callback);
 });

 initPage();
 });

 $(document).on("pagebeforehide", "#mediaFC", function(e) {
 mediaManager.cleanUpResources();
 enableActionButtons();
 });

 // code is omitted for simplicity ...
})();

The "pageinit" event handler registers the "tap" event handler on the
"recordSound", "recordSoundExt", "playSound", and "stopRecordingSound"
buttons.

In the "tap" event handler of the "recordSound" button:

•	 Sound recording and playing buttons are disabled by calling the
disableActionButtons() method

•	 In order to start recording sound:

°° A call to mediaManager.startRecording(callback) is performed
specifying a callback parameter with the success and error callbacks

°° The "recordSoundDialog" pop up is shown, and its
"soundDuration" div is updated every second with the current
recording duration using the window's setInterval() method

In the "tap" event handler of the "recordSoundExt" button:

•	 Sound recording and playing buttons are disabled by calling the
disableActionButtons() method

•	 In order to start recording sound externally, a call to mediaManager.
recordVoiceExternally(callback) is performed specifying a callback
parameter with the success and error callbacks

Chapter 5

[159]

In the "tap" event handler of the "stopRecordingSound" button, it closes the
"recordSoundDialog" pop up in order to trigger the "popupafterclose" event of
the "recordSoundDialog" pop up in the "popupafterclose" event handler of the
"recordSoundDialog" pop up:

•	 The recording timer is stopped using the window's clearInterval()
method

•	 In order to stop recording sound, a call to mediaManager.stopRecording()
is performed

In the "tap" event handler of the "playSound" button:

•	 Sound recording and playing buttons are disabled by calling the
disableActionButtons() method

•	 In order to start playing the recorded sound, a call to mediaManager.
playVoice(filePath, callback) is performed specifying a filePath
parameter with the media file location to play (media file location is stored in
the "location" hidden field when the recording operation succeeds) and a
callback parameter with the success and error callbacks

The "pageinit" event handler also calls initPage(), whose code will be shown
in the following code snippet. Finally, in the "pagebeforehide" event handler,
which will be called every time, we are transitioning away from the page. A call to
mediaManager.cleanUpResources() is performed in order to stop any playing
sounds and clean up any used media resources when the media page is left.

The following code snippet shows the second main part of the "mediaFC" page view
controller, which mainly includes the callback handlers and the initPage() method:

(function() {
 // code is omitted here for simplicity

 function initPage() {
 $("#playSound").closest('.ui-btn').hide();
 }

 function handleRecordSuccess(filePath) {
 $("#location").val(filePath);
 enableActionButtons();
 $("#playSound").closest('.ui-btn').show();
 }

 function handleRecordError(error) {
 console.log("An error occurs during recording: " +
error.code);

Diving Deeper into the Cordova API

[160]

 enableActionButtons();
 }

 function handlePlaySuccess() {
 console.log("Sound file is played successfully ...");
 enableActionButtons();
 }

 function handlePlayError(error) {
 if (error.code) {
 console.log("An error happens when playing sound file
...");
 enableActionButtons();
 }
 }

 // Code is omitted here for simplicity ...
})();

As shown in the preceding code, we have the following methods:

•	 initPage(): This is called in the "pageinit" event. It initially hides the
"playSound" button.

•	 handleRecordSuccess(filePath): This represents the success callback of
mediaManager.startRecording(callback) and mediaManager.recordVoi
ceExternally(callback). It does the following:

°° It receives filePath of the recorded file as a parameter and saves it
in the "location" hidden field in order to be used by the playback
operation

°° It enables the sound recording ("recordSound" and
"recordSoundExt") and playback ("playsound") buttons

°° It shows the "playSound" button

•	 handleRecordError(error): This represents the error callback of
mediaManager.startRecording(callback) and mediaManager.recordVoi
ceExternally(callback). It does the following:

°° It receives an error object as a parameter and the error code is
logged in the console

°° It enables the sound recording and playback buttons

Chapter 5

[161]

•	 handlePlaySuccess(): This represents the success callback of
mediaManager.playVoice(filePath, callback). It does the following:

°° It logs a successful message in the console
°° It enables the sound recording and playing buttons

•	 handlePlayError(error): This represents the error callback of
mediaManager.playVoice(filePath, callback). It does the following:

°° It logs an error message in the console
°° It enables the sound recording and playing buttons

API
The following code snippet shows the first part of MediaManager.js that interacts
with the Cordova media and capture APIs:

var MediaManager = (function () {
 var instance;

 function createObject() {
 var fileManager = FileManager.getInstance();
 var recordingMedia;
 var audioMedia;

 return {
 startRecording : function (callback) {
 var recordVoice = function(dirEntry) {
 var basePath = "";

 if (dirEntry) {
 basePath = dirEntry.toURL() + "/";
 }

 var mediaFilePath = basePath + (new Date()).
getTime() + ".wav";

 var recordingSuccess = function() {
 callback.onSuccess(mediaFilePath);
 };

 recordingMedia = new Media(mediaFilePath,
recordingSuccess, callback.onError);

Diving Deeper into the Cordova API

[162]

 // Record audio
 recordingMedia.startRecord();
 };

 if (device.platform === "Android") {
 var cb = {};

 cb.requestSuccess = recordVoice;
 cb.requestError = callback.onError;

 fileManager.requestApplicationDirectory(cb);
 } else {
 recordVoice();
 }
 },
 stopRecording : function () {
 if (recordingMedia) {
 recordingMedia.stopRecord();
 recordingMedia.release();

 recordingMedia = null;
 }
 },
 playVoice : function (filePath, callback) {
 if (filePath) {
 this.cleanUpResources();

 audioMedia = new Media(filePath,
callback.onSuccess, callback.onError);

 // Play audio
 audioMedia.play();
 }
 },
 recordVoiceExternally: function (callback) {
 // code is omitted for simplicity ...
 },
 cleanUpResources : function () {
 // code is omitted for simplicity ...
 }
 };
 };

Chapter 5

[163]

 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

 return instance;
 }
 };
})();

As you can see in the preceding highlighted code, MediaManager is a singleton object
that has five methods. In order to record audio files using Apache Cordova, we can
create a Media object as follows:

recordingMedia = new Media(src, [mediaSuccess], [mediaError],
[mediaStatus]);

The Media object constructor has the following parameters in order:

•	 src: This refers to the URI of the media file
•	 mediaSuccess: This is an optional parameter that refers to the callback,

which will be called if the media operation (play/record or stop function)
succeeds

•	 mediaError: This is an optional parameter that refers to the callback, which
will be called if the media operation (play/record or stop function) fails

•	 mediaStatus: This is an optional parameter that executes to indicate
status changes

In order to start recording an audio file, a call to the startRecord() method of
the Media object must be performed. When the recording is finished, a call to the
stopRecord() method of the Media object must be performed. Now, let's check out
the details of the MediaManager methods:

•	 startRecording(callback): This starts the audio recording by doing
the following:

°° Getting the current device platform by calling device.platform.

Diving Deeper into the Cordova API

[164]

°° If the current platform is Android, then a call to fileManager.
requestApplicationDirectory(cb) is performed in order to create
an application directory (if it hasn't already been created) under the
device SD card's root directory using the fileManager object. If the
directory creation operation succeeds, then cb.requestSuccess
will be called, in this case, and the application directory path will be
passed as a parameter. The recordVoice() method starts recording
the sound and saves the result audio file under the application
directory. Note that if there is no SD card in your Android device,
then the application directory will be created under the app's private
data directory (/data/data/[app_directory]), and the audio file
will be saved under it.

°° In the else block, which refers to the other supported platforms
(Windows Phone 8 and iOS), recordVoice() is called without
creating an application-specific directory. As you know from Chapter 2,
Developing Your First Cordova Application, in iOS and Windows Phone 8,
every application has a private directory, and applications cannot store
their files in any place other than this directory using Apache Cordova
APIs. In the case of iOS, the application audio files will be stored under
the tmp directory of the application sandbox directory (the application
private directory). In the case of Windows Phone 8, the audio files will
be stored under the application's local directory. As you know from
Chapter 2, Developing Your First Cordova Application, using the Windows
Phone 8 native API (Window.Storage), you can read and write files in
an SD card with some restrictions; however, until this moment, you
cannot do this using the Apache Cordova API.

°° In recordVoice(), startRecording(callback) starts creating
a media file using the Media object's (recordingMedia)
startRecord() method. After calling the recordingMedia object's
stopRecord() method and if the recording operation succeeds,
then callback.onSuccess will be called and the audio file's full
path, mediaFilePath will be passed as a parameter. If the recording
operation fails, then callback.onError will be called.

•	 stopRecording(): This stops the audio recording by doing the following:
°° Calling stopRecord() of recordingMedia in order to stop recording
°° Calling release() of recordingMedia in order to release the

underlying operating system's audio resources

Chapter 5

[165]

•	 playVoice(filePath, callback): This plays an audio file by doing
the following:

°° Cleaning up resources before playing the audio file by calling the
cleanUpResources() method, which will be shown in the following
code snippet

°° Creating a Media object (audioMedia) specifying filePath as the
media source, callback.onSuccess as the media success callback,
and callback.onError as the media error callback

°° Calling the play() method of the audioMedia object

The following code snippet shows the second part of MediaManager.js:

var MediaManager = (function () {
 var instance;

 function createObject() {
 // ...
 return {
 // ...
 recordVoiceExternally: function (callback) {
 var onSuccess = function (mediaFiles) {
 if (mediaFiles && mediaFiles[0]) {
 var currentFilePath =
mediaFiles[0].fullPath;

 if (device.platform === "Android") {
 var fileCopyCallback = {};

 fileCopyCallback.copySuccess =
function(filePath) {
 callback.onSuccess(filePath);
 };

 fileCopyCallback.copyError =
callback.onError;

 fileManager.copyFileToAppDirectory(current
FilePath, fileCopyCallback);
 } else {
 callback.onSuccess(currentFilePath);
 }
 }
 };

Diving Deeper into the Cordova API

[166]

 navigator.device.capture.captureAudio(onSuccess,
callback.onError, {limit: 1});
 },
 cleanUpResources : function () {
 if (audioMedia) {
 audioMedia.stop();
 audioMedia.release();
 audioMedia = null;
 }

 if (recordingMedia) {
 recordingMedia.stop();
 recordingMedia.release();
 recordingMedia = null;
 }
 }
 };
 };
 // ...
})();

In order to record the audio files using the device's default audio recording app,
we can use the captureAudio method of Cordova's capture object as follows:

navigator.device.capture.captureAudio(captureSuccess,
captureError, [options])

The captureAudio() method has the following parameters:

•	 captureSuccess: This will be called when the audio capture operation is
performed successfully. It receives an array of MediaFile as a parameter.
As shown in the following table, these are the attributes of MediaFile:

Attribute name Description
name This is the name of the file
fullPath This is the full path of the file, including

the name
type This is the file's mime type
lastModifiedDate This is the date and time when the file

was last modified
size This is the file size in bytes

Chapter 5

[167]

•	 captureError: This will be called when the audio capture operation fails.
It receives a CaptureError object as a parameter. The CaptureError object
has a code attribute, which represents the error code.

•	 options: This represents the options of capture configuration. The following
table shows the options attributes:

Attribute name Description
limit This is the maximum number of audio clips

that the device user can record in a single
capture operation. The value must be greater
than or equal to 1 (defaults to 1).

duration This is the maximum duration in seconds of
an audio sound clip.

The preceding code snippet shows the other methods of the MediaManager object
as follows:

•	 recordVoiceExternally(callback): This starts audio recording using the
device's default recording app by doing the following:

°° In order to start audio recording using the device's default recording
app, navigator.device.capture.captureAudio(onSuccess,
callback.onError, {limit: 1}) is called. This means that
onSuccess is set as the success callback, callback.onError is set as
the error callback, and finally, options is set to {limit: 1} in order
to limit the maximum number of audio clips that the device user can
record in a single capture to 1.

°° In the onSuccess callback, if the current platform is Android, then
a call to fileManager.copyFileToAppDirectory(currentFilePa
th, fileCopyCallback) is performed in order to copy the recorded
file to the app directory using the fileManager object. If the copy
operation succeeds, then the original recordVoiceExternally()
method's callback.onSuccess(filePath) will be called in this case
and the new copied file path under the app directory (filePath) will
be passed as a parameter.

°° If the current platform is not Android (in our case, Windows
Phone 8 and iOS), callback.onSuccess(currentFilePath) will
be called and the current filepath (currentFilePath) will be passed
as a parameter.

•	 cleanUpResources(): This makes sure that all resources are cleaned up by
calling stop() and release() methods of all the Media objects.

Diving Deeper into the Cordova API

[168]

As the current implementation of the media plugin does not adhere to
the W3C specification for media capture, a future implementation is
considered for compliance with the W3C specification, and the current
APIs might be deprecated.

Before going into the details of the FileManager.js file, note that the Media
object has more methods that you can check out in the Apache Cordova
Documentation at https://github.com/apache/cordova-plugin-media/blob/
master/doc/index.md.

Cordova Capture also has more objects and methods that you can look at in the
Apache Cordova Documentation at https://github.com/apache/cordova-
plugin-media-capture/blob/master/doc/index.md.

The following code snippet shows the first part of FileManager.js, which is used
by MediaManager.js:

var FileManager = (function () {
 var instance;

 function createObject() {
 var BASE_DIRECTORY = "CExhibition";
 var FILE_BASE = "file:///";

 return {
 copyFileToAppDirectory: function (filePath, cb) {
 var callback = {};

 callback.requestSuccess = function (dirEntry) {
 if (filePath.indexOf(FILE_BASE) != 0) {
 filePath = filePath.replace("file:/",
FILE_BASE);
 }

 window.resolveLocalFileSystemURL(filePath,
function(file) {
 var filename = filePath.replace(/^.*[\\\/]/,
'');

 var copyToSuccess = function (fileEntry) {
 console.log("file is copied to: " +
fileEntry.toURL());
 cb.copySuccess(fileEntry.toURL());
 };

https://github.com/apache/cordova-plugin-media/blob/master/doc/index.md
https://github.com/apache/cordova-plugin-media/blob/master/doc/index.md
https://github.com/apache/cordova-plugin-media-capture/blob/master/doc/index.md
https://github.com/apache/cordova-plugin-media-capture/blob/master/doc/index.md

Chapter 5

[169]

 file.copyTo(dirEntry, filename,
copyToSuccess, cb.copyError);
 }, cb.copyError);
 };

 callback.requestError = function (error) {
 console.log(error);
 };

 this.requestApplicationDirectory(callback);
 },
 requestApplicationDirectory: function (callback) {
 var fileSystemReady = function(fileSystem) {
 fileSystem.root.getDirectory(BASE_DIRECTORY,
{create: true}, callback.requestSuccess);
 };

 window.requestFileSystem(LocalFileSystem.PERSISTENT,
0,
fileSystemReady, callback.requestError);
 }
 };
 };

 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

 return instance;
 }
 };
})();

As you can see in the preceding highlighted code, FileManager is a singleton
object that has two methods. In order to work with directories or files using Apache
Cordova, we first need to request a filesystem using the requestFileSystem()
method as window.requestFileSystem(type, size, successCallback,
errorCallback).

Diving Deeper into the Cordova API

[170]

The window.requestFileSystem method has the following parameters in order:

•	 type: This refers to the local filesystem type
•	 Size: This indicates how much storage space, in bytes, the application

expects to need
•	 successCallback: This will be called if the operation succeeds, and it will

receive a FileSystem object as a parameter
•	 errorCallback: This will be called if an operation error occurs

In order to create a directory after getting the FileSystem object, we can use the
getDirectory() method of the DirectoryEntry object as fileSystem.root.
getDirectory(path, options, successCallback, errorCallback).

The directoryEntry.getDirectory method takes the following parameters:

•	 path: This is either a relative or absolute path of the directory in which we
can look up or create a directory

•	 options: This refers to an options JSON object that specifies the create
directory using {create: true} or exclusively creates the directory using
{create: true, exclusive: true}

•	 successCallback: This will be called if the operation succeeds, and it
receives the new or existing DirectoryEntry as a parameter

•	 errorCallback: This will be called if an operation error occurs

If you look at the first method requestApplicationDirectory(callback) of the
FileManager object, you will find that it creates a directory called "CExhibition"
if it has not already been created (in the case of an Android device with an SD card,
"CExhibition" will be created under the SD card root).

In order to get an Entry object of a specific URI to perform a file or directory
operation, we need to use resolveLocalFileSystemURL() as window.
resolveLocalFileSystemURL(uri, successCallback, errorCallback).

The window.resolveLocalFileSystemURL method takes the following parameters:

•	 uri: This is a URI that refers to a local file or directory
•	 successCallback: This will be called if the operation succeeds, and it will

receive an Entry object that corresponds to the specified URI (it can be
DirectoryEntry or FileEntry) as a parameter

•	 errorCallback: This will be called if an operation error occurs

Chapter 5

[171]

In order to copy a file, we need to use the copyTo() method of the Entry object as
fileEntry.copyTo(parent, newName, successCallback, errorCallback) the
Entry object.

The fileEntry.copyTo method takes the following parameters:

•	 parent: This represents the directory to which the entry will be copied
•	 newName: This represents the new name of the copied file, and it defaults to

the current name
•	 successCallback: This will be called if the operation succeeds, and it will

receive the new entry object as a parameter
•	 errorCallback: This will be called if an operation error occurs

If you look at the second method copyFileToAppDirectory (filePath, cb)
of the FileManager object, you will find that it creates an app directory called
"CExhibition" if it has not already been created. Then, it copies the file specified
in filePath under the app directory using the copyTo() method of the fileEntry
object. Finally, if the copy operation succeeds, then the cb.copySuccess() callback
will be called and the new copied file path will be passed as a parameter.

The Cordova file has more objects and methods that you can have a look
at in the Apache Cordova Documentation at https://github.com/
apache/cordova-plugin-file/blob/master/doc/index.md.

Now, we are done with the media, file, and capture functionalities in the Cordova
Exhibition app.

Notification
The notification plugin provides the ability to create visual, audible, and tactile
device notifications. In order to use the notification plugin in our Apache Cordova
project, we need to use the following cordova plugin add command:

> cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-vibration.git

> cordova plugin add https://git-wip-us.apache.org/repos/asf/cordova-
plugin-dialogs.git

https://github.com/apache/cordova-plugin-file/blob/master/doc/index.md
https://github.com/apache/cordova-plugin-file/blob/master/doc/index.md

Diving Deeper into the Cordova API

[172]

Demo
In order to access the notification demo, you can click on the Notification list item.
You will be introduced to the Notification page. You can click on one of the available
buttons to see, hear, and feel the different available notifications. The following
screenshot shows the result of clicking on the Show Prompt button, which shows a
prompt dialog to have the user input:

The notification prompt

You also have the option to show an alert message and confirmation dialog. You can
vibrate the device by clicking on the Vibrate button, and finally, you can make the
device beep by clicking on the Beep button.

Chapter 5

[173]

The HTML page
The following code snippet shows the "notification" page:

<div data-role="page" id="notification">
 <div data-role="header">
 <h1>Notification</h1>
 <a href="#" data-role="button" data-rel="back" data-
icon="back">Back
 </div>
 <div data-role="content">
 <h1>Welcome to the Notification Gallery</h1>
 <p>Click the buttons below to check notifications.</p>
 <input type="button" id="showAlert" value="Show Alert"/>
 <input type="button" id="showConfirm" value="Show
Confirm"/>
 <input type="button" id="showPrompt" value="Show Prompt"/>
 <input type="button" id="vibrate" value="Vibrate"/>
 <input type="button" id="beep" value="Beep"/>

 <div id="notificationResult">
 </div>
 </div>
</div>

The preceding "notification" page contains the following:

•	 A page header that includes a back button.
•	 Page content that includes five buttons: "showAlert" to show an alert,

"showConfirm" to show a confirmation dialog, "showPrompt" to show a
prompt dialog, "vibrate" to vibrate the device, and finally, "beep" to make
the device beep. It also has a "notificationResult" div to display the
notification result.

View controller
The following code snippet shows the "notification" page view controller
JavaScript object, which includes the event handlers of the page (notification.js):

(function() {
 var notificationManager = NotificationManager.getInstance();

 $(document).on("pageinit", "#notification", function(e) {
 e.preventDefault();

Diving Deeper into the Cordova API

[174]

 $("#showAlert").on("tap", function(e) {
 e.preventDefault();

 notificationManager.showAlert("This is an Alert",
onOk, "Iam an Alert", "Ok");
 });

 $("#showConfirm").on("tap", function(e) {
 e.preventDefault();

 notificationManager.showConfirm("This is a
confirmation", onConfirm, "Iam a confirmation", "Ok,Cancel");
 });

 $("#showPrompt").on("tap", function(e) {
 e.preventDefault();

 notificationManager.showPrompt("What is your favorite
food?", onPrompt, "Iam a prompt", ["Ok", "Cancel"], "Pizza");
 });

 $("#vibrate").on("tap", function(e) {
 e.preventDefault();

 notificationManager.vibrate(2000);
 });

 $("#beep").on("tap", function(e) {
 e.preventDefault();

 notificationManager.beep(3);
 });

 });

 function onOk() {
 $("#notificationResult").html("You clicked Ok
");
 }

 function onConfirm(index) {
 $("#notificationResult").html("You clicked " + ((index ==
1) ? "Ok":"Cancel") + "
");
 }

Chapter 5

[175]

 function onPrompt(result) {
 if (result.buttonIndex == 1) {
 $("#notificationResult").html("You entered: " +
result.input1);
 }
 }
})();

As shown in the preceding code snippet, the "pageinit" event handler registers
the "tap" event handlers on the "showAlert", "showConfirm", "showPrompt",
"vibrate", and "beep" buttons.

In the "tap" event handler of the "showAlert" button, an alert is shown by
calling the notificationManager.showAlert(message, callback, title,
buttonName) method specifying the message to display ("This is an Alert"), the
callback to be called when the dialog is dismissed (onOk), the dialog title ("Iam an
Alert"), and finally, the button name (Ok). In onOk, the "You clicked Ok" message
is displayed in the "notificationResult" div.

In the "tap" event handler of the "showConfirm" button, a confirmation dialog is
shown by calling the notificationManager.showConfirm(message, callback,
title, buttonLabels) method specifying the message to display ("This is
a confirmation"), the callback to be called when the dialog is dismissed or if
any of the confirmation dialog buttons is clicked (onConfirm), the dialog title
("I am a confirmation"), and finally, the button labels, which are represented
using a comma-separated string that specify button labels ("Ok,Cancel"). In
onConfirm(index), the clicked button is displayed in the notificationResult
div using the received index callback parameter, which represents the index of the
pressed button. Note that index uses one-based indexing, which means that the "Ok"
button has the index 1 and the "Cancel" button has the index 2.

In the "tap" event handler of the "showPrompt" button, a confirmation dialog is
shown by calling the notificationManager.showPrompt(message, callback,
title, buttonLabels, defaultText) method specifying the message to display
("What is your favorite food?"), the callback to be called when any of the
prompt dialog buttons is clicked (onPrompt), the dialog title ("Iam a prompt"),
the button labels, which are represented as an array of strings that specify button
labels (["Ok", "Cancel"]), and finally, the default input text ("Pizza"). In
onPrompt(result), result.buttonIndex represents the button index (which is
one-based indexing) that is clicked. If the "Ok" button (which has the index 1) is
clicked, then the user input is obtained using result.input1.

Diving Deeper into the Cordova API

[176]

In the "tap" event handler of the "vibrate" button, the device is vibrated by
calling the notificationManager.vibrate(milliseconds) method specifying
milliseconds to vibrate the device (2,000 milliseconds).

In the "tap" event handler of the "beep" button, the device is made to beep by
calling the notificationManager.beep(times) method specifying the times to
repeat the beep (three times).

API
The following code snippet shows NotificationManager.js:

var NotificationManager = (function () {
 var instance;

 function createObject() {
 return {
 showAlert: function (message, callback, title,
buttonName) {
 navigator.notification.alert(message, callback,
title, buttonName);
 },
 showConfirm: function (message, callback, title,
buttonLabels) {
 navigator.notification.confirm(message, callback,
title, buttonLabels);
 },
 showPrompt: function (message, callback, title,
buttonLabels, defaultText) {
 navigator.notification.prompt(message, callback,
title, buttonLabels, defaultText);
 },
 beep: function (times) {
 navigator.notification.beep(times);
 },
 vibrate: function (milliseconds) {
 navigator.notification.vibrate(milliseconds);
 }
 };
 };

 return {
 getInstance: function () {
 if (!instance) {

Chapter 5

[177]

 instance = createObject();
 }

 return instance;
 }
 };
})();

As shown, NotificationManager is a singleton object that does a simple wrapping
for the Cordova Notification API. It has the following methods:

•	 showAlert(message, callback, title, buttonName): This shows
an alert by calling the navigator.notification.alert() method.
The navigator.notification.alert(message, callback, [title],
[buttonName]) method has the following parameters:

°° message: This represents the alert message
°° Callback: This represents the callback to be called when the alert

is dismissed
°° Title: This is an optional parameter that represents the alert title

(the default value is "Alert")
°° buttonName: This represents the button name (the default value

is "Ok")

•	 showConfirm(message, callback, title, buttonLabels): This shows
a confirmation dialog by calling the navigator.notification.confirm()
method. The navigator.notification.confirm(message, callback,
[title], [buttonLabels]) method has the following parameters:

°° message: This represents the dialog message.
°° callback(index): This represents the callback to be called when the

user presses one of the buttons in the confirmation dialog. It receives
an index parameter that represents the pressed button's index, which
starts from 1.

°° title: This is an optional parameter that represents the dialog title
(the default value is "Confirm").

°° buttonLabels: This is an optional parameter that represents a
comma-separated string that specifies button labels (the default value
is "Ok", Cancel").

Diving Deeper into the Cordova API

[178]

•	 showPrompt(message, callback, title, buttonLabels,
defaultText): This shows a prompt dialog by calling the navigator.
notification.prompt() method. The navigator.notification.
prompt(message, promptCallback, [title], [buttonLabels],
[defaultText]) method has the following parameters:

°° Message: This represents the dialog message.
°° promptCallback(results): This represents the callback to be called

when the user presses one of the buttons in the prompt dialog. It
receives a results parameter that has the following attributes:
buttonIndex, which represents the pressed button's index, which
starts from 1 and input1, which represents the text entered by the
user in the prompt dialog box.

°° title: This is an optional parameter that represents the dialog title
(the default value is "Prompt").

°° buttonLabels: This is an optional parameter that represents a
string array, which specifies button labels (the default value is
["OK","Cancel"]).

°° defaultText: This is an optional parameter that represents the
default text input value of the prompt dialog (the default value is
an empty string).

•	 beep(times): This makes the device beeps by calling the navigator.
notification.beep() method. The navigator.notification.
beep(times) method has the following parameter:

°° times: This represents the number of times to repeat the beep.

•	 vibrate(milliseconds): This vibrates the device by calling the navigator.
notification.vibrate() method. The navigator.notification.
vibrate(milliseconds) method has the following parameter:

°° milliseconds: This represents the milliseconds to vibrate the device.

Now, we are done with the notification functionality in the Cordova Exhibition app.

Chapter 5

[179]

Storage
The Cordova Storage API provides the ability to access the device storage options
based on three popular W3C specifications:

•	 Web Storage API Specification, which allows you to access data using simple
key/value pairs (which we will demonstrate in our "Storage" demo).

•	 Web SQL Database Specification, which offers full-featured database
tables, which can be accessed using SQL. Note that this option is only
available in Android, iOS, BlackBerry 10, and Tizen and not supported on
other platforms.

•	 IndexedDB Specification is an API for the client-side storage and high
performance. It searches on the stored data using indexes. Note that this
option is available in Windows Phone 8 and BlackBerry 10.

Demo
In order to use the Storage API, there is no need for a CLI command to run, as it is
built in Cordova. In order to access the Storage demo, you can do it by clicking on
the Storage list item. You will be introduced to the Storage page. On the Storage
page, the users can enter their names and valid e-mails and then click on the Save
button in order to save the information, as shown in the following screenshot:

Saving user information

Diving Deeper into the Cordova API

[180]

You can exit the app and then open the Storage page again; you will find that your
saved information is reflected in the Name and Email fields. At any point, you can
click on the Reload button in order to reload input fields with your saved data.

The HTML page
The following code snippet shows the "storage" page:

<div data-role="page" id="storage">
 <div data-role="header">
 <h1>Storage</h1>
 <a href="#" data-role="button" data-rel="back" data-
icon="back">Back
 </div>
 <div data-role="content">
 <h1>Welcome to the Storage Gallery</h1>
 <p>Persist your information using Cordova Web Storage
API.</p>
 <form id="storageForm">
 <div class="ui-field-contain">
 <label for="userName">Name</label>
 <input type="text" id="userName" name="userName"></
input>
 </div>
 <div class="ui-field-contain">
 <label for="userEmail">Email</label>
 <input type="text" id="userEmail" name="userEmail"></
input>
 </div>

 <div class="center-wrapper">
 <input type="button" id="saveInfo" data-
icon="action" value="Save" data-inline="true"/>
 <input type="button" id="reloadInfo" data-
icon="refresh" value="Reload" data-inline="true"/>
 </div>

 <ul id="storageMessageBox">

 <div id="storageResult">
 </div>
 </form>
 </div>
</div>

Chapter 5

[181]

The preceding "storage" page contains the following:

•	 A page header that includes a back button
•	 Page content that includes the "storageForm" form, which includes the

following elements:

°° "userName": This is the user's name text field
°° "userEmail": This is the user's email text field
°° "saveInfo": This button is used to persist user information
°° "reloadInfo": This button is used to reload saved user information

in the "userName" and "userEmail" fields
°° "messageBox": This is an unordered list that displays form

validation errors
°° "storageResult": This is a div that displays the storage

operation result

View controller
The following code snippet shows the "storage" page view controller JavaScript
object that includes the event handlers of the page (storage.js):

(function() {
 var storageManager = StorageManager.getInstance();
 var INFO_KEY = "cordovaExhibition.userInfo";

 $(document).on("pageinit", "#storage", function(e) {
 e.preventDefault();

 $("#saveInfo").on("tap", function(e) {
 e.preventDefault();

 if (! $("#storageForm").valid()) {
 return;
 }

 storageManager.set(INFO_KEY, JSON.stringify({
 userName:
$("#userName").val(),
 userEmail:
$("#userEmail").val()
 })

Diving Deeper into the Cordova API

[182]

);

 $("#storageResult").html("User Information are saved");
 });

 $("#reloadInfo").on("tap", function(e) {
 e.preventDefault();

 reloadUserInfo();

 $("#storageResult").html("Reloading completes");
 });
 });

 $(document).on("pageshow", "#storage", function(e) {
 e.preventDefault();

 $("#storageForm").validate({
 errorLabelContainer: "#storageMessageBox",
 wrapper: "li",
 rules: {
 userName: "required",
 userEmail: {
 required: true,
 email: true
 }
 },
 messages: {
 userName: "Please specify user name",
 userEmail: {
 required: "Please specify email",
 email: "Please enter valid email"
 }
 }
 });

 reloadUserInfo();
 });

 function reloadUserInfo() {
 var userInfo = JSON.parse(storageManager.get(INFO_KEY));

 populateFormFields(userInfo);
 }

Chapter 5

[183]

 function populateFormFields(userInfo) {
 if (userInfo) {
 $("#userName").val(userInfo.userName);
 $("#userEmail").val(userInfo.userEmail);
 }
 }
})();

As shown in the preceding highlighted code snippet, the "pageinit" event handler
registers the "tap" event handlers on the "saveInfo" and "reloadInfo" buttons.

In order to validate our "storage" form, we use the jQuery validation
plugin, which can be found at http://jqueryvalidation.org.
In order to use the plugin, all we need to do is include the jquery.
validate.min.js file below the jquery.js file that will be shown
in the index.html file in Finalizing the Cordova Exhibition App section.
After including the jQuery validation plugin JS file, we can simply use
the plugin by defining the validation rules on the form fields using the
form's validate() method and then validate the form using the form's
valid() method, as shown in the "storage" page view controller code.

In the "tap" event handler of the "saveInfo" button:

•	 The "storageForm" is validated using the $("#storageForm").valid()
method.

•	 If the form is valid, then both the "userName" and "userEmail" valid input
text values are set as attributes in a JSON object, which is converted to a
string using JSON.stringify(). Finally, the stringified JSON object is
persisted in the device storage by calling the storageManager.set(key,
value) specifying key to be INFO_KEY and the value to be the stringified
JSON object.

In the "tap" event handler of the "reloadInfo" button:

•	 The user information is retrieved by calling reloadUserInfo(). The
reloadUserInfo() method calls storageManager.get(INFO_KEY) in order
to get the stored stringified JSON object and then use JSON.parse() in
order to convert the stringified JSON object to a JSON object (userInfo).

•	 Using populateFormFields(userInfo), userInfo is populated to both
"userName" and "userEmail" input text elements.

http://jqueryvalidation.org

Diving Deeper into the Cordova API

[184]

In the "pageshow" event of the "storage" page, our "storageForm" form validation
is constructed by specifying the options parameter of the form's validate()
method as follows:

•	 errorLabelContainer: This is set to "storageMessageBox" to display the
validation errors

•	 wrapper: This is set to "li" to wrap the error messages in list items
•	 rules object is set as follows:

°° userName: This is set to required
°° userEmail: This is set to be an e-mail and required

•	 messages object specifies userName and userEmail validation
error messages

Finally, in the "pageshow" event of the "storage" page, reloadUserInfo() is
called to reload the user information in the "userName" and "userEmail" input
text elements.

API
The following code snippet shows StorageManager.js that does a simple wrapping
for two localStorage methods:

var StorageManager = (function () {
 var instance;

 function createObject() {
 return {
 set: function (key, value) {
 window.localStorage.setItem(key, value);
 },
 get: function (key) {
 return window.localStorage.getItem(key);
 }
 };
 };

 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

Chapter 5

[185]

 return instance;
 }
 };
})();

As you can see in the preceding highlighted code, StorageManager is a singleton
object that has the following methods:

•	 set(key, value): This persists the key/value pair in the local storage by
calling the window.localStorage.setItem(key, value) method

•	 get(key): This gets the stored value using the passed key parameter by
calling the window.localStorage.getItem(key) method

The complete W3C Web Storage specification is available at
http://www.w3.org/TR/webstorage/, and you can also look at
the W3C Web SQL Database specification at http://dev.w3.org/
html5/webdatabase/. Finally, you can look at the W3C IndexedDB
specification at http://www.w3.org/TR/IndexedDB/.

Now, we are done with the storage functionality in the Cordova Exhibition app.

Finalizing the Cordova Exhibition app
The last part we need to check is index.html; the following code snippet shows this
part, which is the most important, of the index.html page:

<!DOCTYPE html>
<html>
 <head>
 <!-- omitted code ... -->
 <link rel="stylesheet" type="text/css" href="css/app.css"
/>
 <link rel="stylesheet" href="jqueryMobile/jquery.mobile-
1.4.0.min.css">

 <script src="jqueryMobile/jquery-1.10.2.min.js"></script>
 <script src="jqueryMobile/jquery.mobile-
1.4.0.min.js"></script>

 <script>
 var deviceReadyDeferred = $.Deferred();
 var jqmReadyDeferred = $.Deferred();

http://www.w3.org/TR/webstorage/
http://dev.w3.org/html5/webdatabase/
http://dev.w3.org/html5/webdatabase/
http://www.w3.org/TR/IndexedDB/

Diving Deeper into the Cordova API

[186]

 $(document).ready(function() {
 document.addEventListener("deviceready", function() {
 deviceReadyDeferred.resolve();
 }, false);
 });

 $(document).on("mobileinit", function () {
 jqmReadyDeferred.resolve();
 });

 $.when(deviceReadyDeferred, jqmReadyDeferred).
then(function () {

 //Now everything loads fine, you can safely go to the
app home ...
 $.mobile.changePage("#features");
 });
 </script>

 <script src="jqueryMobile/jqm.page.params.js"></script>
 <script src="jqueryMobile/jquery.validate.min.js"></script>
 <script src="js/common.js"></script>

 <title>Cordova Exhibition</title>
 </head>
 <body>
 <div id="loading" data-role="page">
 <div class="center-screen">Please wait ...</div>
 </div>

 <!-- Other pages are placed here ... -->

 <script type="text/javascript" src="cordova.js"></script>

 <!-- API JS files -->
 <script type="text/javascript" src="js/api/
AccelerometerManager.js"></script>
 <script type="text/javascript" src="js/api/FileManager.js"></
script>
 <script type="text/javascript" src="js/api/CameraManager.
js"></script>
 <script type="text/javascript" src="js/api/CompassManager.
js"></script>
 <script type="text/javascript" src="js/api/ConnectionManager.
js"></script>

Chapter 5

[187]

 <script type="text/javascript" src="js/api/ContactsManager.
js"></script>
 <script type="text/javascript" src="js/api/DeviceManager.
js"></script>
 <script type="text/javascript" src="js/api/GeolocationManager.
js"></script>
 <script type="text/javascript" src="js/api/
GlobalizationManager.js"></script>
 <script type="text/javascript" src="js/api/
InAppBrowserManager.js"></script>
 <script type="text/javascript" src="js/api/MediaManager.js"></
script>
 <script type="text/javascript" src="js/api/
NotificationManager.js"></script>
 <script type="text/javascript" src="js/api/StorageManager.
js"></script>

 <!-- View controller files -->
 <script type="text/javascript" src="js/vc/accelerometer.js"></
script>
 <script type="text/javascript" src="js/vc/camera.js"></script>
 <script type="text/javascript" src="js/vc/compass.js"></
script>
 <script type="text/javascript" src="js/vc/connection.js"></
script>
 <script type="text/javascript" src="js/vc/contacts.js"></
script>
 <script type="text/javascript" src="js/vc/contactDetails.
js"></script>
 <script type="text/javascript" src="js/vc/device.js"></script>
 <script type="text/javascript" src="js/vc/geolocation.js"></
script>
 <script type="text/javascript" src="js/vc/globalization.js"></
script>
 <script type="text/javascript" src="js/vc/inAppBrowser.js"></
script>
 <script type="text/javascript" src="js/vc/media.js"></script>
 <script type="text/javascript" src="js/vc/notification.js"></
script>
 <script type="text/javascript" src="js/vc/storage.js"></
script>
 </body>
</html>

Diving Deeper into the Cordova API

[188]

As shown in the preceding code, index.html includes the following:

•	 App custom CSS file (app.css)
•	 jQuery Mobile library files
•	 A jQuery Page Params plugin file (jqm.page.params.js)
•	 A jQuery Validation plugin file (jquery.validate.min.js)
•	 A Common JS (common.js) file, app manager JS files, and finally, app view

controller JS files

The preceding highlighted code shows you how to make sure that Apache Cordova
and jQuery Mobile are loaded correctly (using the jQuery Deferred object) before
proceeding to the app pages. Doing this step is important to make sure that our app's
code will not access any API that is not ready yet to avoid any unexpected errors. If
Apache Cordova and jQuery Mobile are loaded correctly, then the user will leave
the "loading" page and will be forwarded to the app's home page (the "features"
page) to start exploring the Cordova features.

To learn the jQuery Deferred object by example, check out http://
learn.jquery.com/code-organization/deferreds/examples/.

It's worth mentioning that in order to boost the performance of jQuery Mobile 1.4
with Apache Cordova, it is recommended that you disable transition effects. The
common.js file applies this tip in the Cordova Exhibition app as follows:

$.mobile.defaultPageTransition = 'none';

$.mobile.defaultDialogTransition = 'none';

$.mobile.buttonMarkup.hoverDelay = 0;

Finally, in order to exit the application when the user clicks on the back button
(which exists in the Android and Windows Phone 8 devices) on the app's home page,
common.js also implements this behavior, as shown in the following code snippet:

var homePage = "features";

//Handle back buttons decently for Android and Windows Phone 8 ...
function onDeviceReady() {
 document.addEventListener("backbutton", function(e){

 if ($.mobile.activePage.is('#' + homePage)){
 e.preventDefault();
 navigator.app.exitApp();

http://learn.jquery.com/code-organization/deferreds/examples/
http://learn.jquery.com/code-organization/deferreds/examples/

Chapter 5

[189]

 } else {
 history.back();
 }
 }, false);
}

$(document).ready(function() {
 document.addEventListener("deviceready", onDeviceReady,
false);
});

We create an event listener on the device's "backbutton" after Cordova is loaded.
If the user clicks on the back button, we check whether the user is on the home page
using $.mobile.activePage.is(). If the user is on the home page, then the app
exits using navigator.app.exitApp(); otherwise, we simply use history.back()
to forward the user to the previous page.

The complete source code of our Cordova Exhibition app with all the
three supported platforms can be downloaded from the book's web page,
or you can access the code directly from GitHub at https://github.
com/hazems/cordova-exhibition.

Cordova events
Cordova allows listening and creating handlers for its life cycle events. The following
table shows the description of these events:

Event name Description
Deviceready This fires once Apache Cordova is fully loaded. Once this

event fires, you can safely make calls to the Cordova API.
Pause This fires if the application is put into the background.
Resume This fires if the application is resumed from the

background.
Online This fires if the application becomes connected to the

Internet.
offline This fires if the application becomes disconnected from

the Internet.
backbutton This fires if the user clicks on the device's back button

(some devices such as Android and Windows Phone
devices have a back button).

https://github.com/hazems/cordova-exhibition
https://github.com/hazems/cordova-exhibition

Diving Deeper into the Cordova API

[190]

Event name Description
batterycritical This fires if the device's battery power reaches a critical

state (that is, reached the critical-level threshold).
batterylow This fires if the device's battery power reaches the low-

level threshold.
batterystatus This fires if there is a change in the battery status.
menubutton This fires if the user presses the device's menu button

(the menu button is popular in Android and BlackBerry
devices).

searchbutton This fires if the user presses the device's search button
(the search button can be found in Android devices).

startcallbutton This fires when the user presses the start call button of the
device.

endcallbutton This fires when the user presses the end call button of the
device.

volumeupbutton This fires when the user presses the volume up button of
the device.

volumedownbutton This fires when the user presses the volume down button
of the device.

Access to all of the events, which are not related to the battery status, are
enabled by default. In order to use the events related to the battery status,
use the following CLI cordova plugin add command:

> cordova plugin add https://git-wip-us.apache.org/repos/
asf/cordova-plugin-battery-status.git

We can create our Cordova event listener using the document.addEventListener()
method once DOM is loaded as follows:

document.addEventListener("eventName", eventHandler, false)

Let's see an example; let's assume that we have the following div element in our
HTML page, which displays the log of our Cordova app pause and resume events:

<div id="results"></div>

Chapter 5

[191]

In our JavaScript code, once the DOM is loaded, we can define our Cordova event
listeners for the "pause" and "resume" events once the "deviceready" event is
triggered, as follows:

function onPause() {
 document.getElementById("results").innerHTML += "App is paused
...
";
};

function onResume() {
 document.getElementById("results").innerHTML += "App is
resumed ...
";
};

function onDeviceReady() {
 document.addEventListener("pause", onPause, false);
 document.addEventListener("resume", onResume, false);
};

$(document).ready(function() {
 document.addEventListener("deviceready", onDeviceReady,
false);
});

Summary
In this chapter, you learned how to utilize the most important features in Apache
Cordova API by understanding the Cordova Exhibition app. You learned how to
work with Cordova media, file, capture, notification, and storage APIs. You also
learned how to utilize the Apache Cordova events in your mobile app. In the next
chapter, you will learn the advanced part of Apache Cordova, which is building your
own custom Cordova plugin on the different mobile platforms (Android, iOS, and
Windows Phone 8).

Developing Custom
Cordova Plugins

In this chapter, we will continue to deep dive into Apache Cordova. You will
learn how to create your own custom Cordova plugin on the three most popular
mobile platforms: Android (using the Java programming language), iOS (using
the Objective-C programming language), and Windows Phone 8 (using the C#
programming language).

Developing a custom Cordova plugin
Before going into the details of the plugin, it is important to note that developing
custom Cordova plugins is not a common scenario if you are developing Apache
Cordova apps. This is because the Apache Cordova core and community custom
plugins already cover many of the use cases that are needed to access device's native
functions. So, make sure of two things:

•	 You are not developing a custom plugin that already exists in the Apache
Cordova core plugins, which were illustrated in the previous two chapters.

•	 You are not developing a custom plugin whose functionality already exists in
other good Apache Cordova custom plugin(s) that have been developed by
the Apache Cordova development community. Building plugins from scratch
can consume precious time from your project; otherwise, you can save time
by reusing one of the available good custom plugins.

Developing Custom Cordova Plugins

[194]

Another thing to note is that developing custom Cordova plugins is an advanced
topic. It requires you to be aware of the native programming languages of the mobile
platforms, so make sure you have an overview of Java, Objective-C, and C# (or at
least one of them) before reading this chapter. This will be helpful in understanding
all the plugin development steps (plugin structuring, JavaScript interface definition,
and native plugin implementation).

Now, let's start developing our custom Cordova plugin. It can be used in order to
send SMS messages from one of the three most popular mobile platforms (Android,
iOS, and Windows Phone 8). Before we start creating our plugin, we need to define
its API. The following code listing shows you how to call the sms.sendMessage
method of our plugin, which will be used in order to send an SMS across platforms:

var messageInfo = {
 phoneNumber: "xxxxxxxxxx",
 textMessage: "This is a test message"
};

sms.sendMessage(messageInfo, function(message) {
 console.log("success: " + message);
}, function(error) {
 console.log("code: " + error.code + ", message: " +
error.message);
});

The sms.sendMessage method has the following parameters:

•	 messageInfo: This is a JSON object that contains two main attributes:
phoneNumber, which represents the phone number that will receive the SMS
message, and textMessage, which represents the text message to be sent.

•	 successCallback: This is a callback that will be called if the message is sent
successfully.

•	 errorCallback: This is a callback that will be called if the message is not sent
successfully. This callback receives an error object as a parameter. The error
object has code (the error code) and message (the error message) attributes.

Using plugman
In addition to the Apache Cordova CLI utility, you can use the plugman utility in
order to add or remove plugin(s) to/from your Apache Cordova projects. However,
it's worth mentioning that plugman is a lower-level tool that you can use if your
Apache Cordova application follows a platform-centered workflow and not a
cross-platform workflow. If your application follows a cross-platform workflow,
then Apache Cordova CLI should be your choice.

Chapter 6

[195]

If you want your application to run on different mobile platforms (which is a
common use case if you want to use Apache Cordova), it's recommend that you
follow a cross-platform workflow. Use a platform-centered workflow if you want
to develop your Apache Cordova application on a single platform and modify your
application using the platform-specific SDK.

Besides adding and removing plugins to/from a platform-centered workflow, the
Cordova projects plugman can also be used:

•	 To create basic scaffolding for your custom Cordova plugin
•	 To add and remove a platform to/from your custom Cordova plugin
•	 To add user(s) to the Cordova plugin registry (a repository that hosts the

different Apache Cordova core and custom plugins)
•	 To publish your custom Cordova plugin(s) to the Cordova plugin registry
•	 To unpublish your custom plugin(s) from the Cordova plugin registry
•	 To search for plugin(s) in the Cordova plugin registry

In this section, we will use the plugman utility to create the basic scaffolding of
our custom SMS plugin. In order to install plugman, you need to make sure that
Node.js is installed on your operating system. Then, to install plugman, execute
the following command:

> npm install -g plugman

After installing plugman, we can start generating our initial custom plugin artifacts
using the plugman create command as follows:

> plugman create --name sms --plugin_id com.jsmobile.plugins.sms --
plugin_version 0.0.1

It is important to note the following parameters:

•	 --name: This specifies the plugin name (in our case, sms)
•	 --plugin_id: This specifies an ID for the plugin (in our case, com.jsmobile.

plugins.sms)
•	 --plugin_version: This specifies the plugin version (in our case, 0.0.1)

The following are two parameters that the plugman create command can accept
as well:

•	 --path: This specifies the directory path of the plugin
•	 --variable: This can specify extra variables such as author or description

Developing Custom Cordova Plugins

[196]

After executing the previous command, we will have initial artifacts for our custom
plugin. As we will be supporting multiple platforms, we can use the plugman
platform add command. The following two commands add the Android and iOS
platforms to our custom plugin:

> plugman platform add --platform_name android

> plugman platform add --platform_name ios

In order to run the plugman platform add command, we need to run it from the
plugin directory. Unfortunately, for Windows Phone 8 platform support, we need to
add it manually later to our plugin.

Now, let's check the initial scaffolding of our custom plugin code. The following
screenshot shows the hierarchy of our initial plugin code:

Hierarchy of our initial plugin code

As shown in the preceding screenshot, there is one file and two parent directories.
They are as follows:

•	 plugin.xml file: This contains the plugin definition.
•	 src directory: This contains the plugin native implementation code for

each platform. For now, it contains two subdirectories: android and ios.
The android subdirectory contains sms.java. This represents the initial
implementation of the plugin in Android.ios subdirectory contains sms.m,
which represents the initial implementation of the plugin in iOS.

•	 www directory: This mainly contains the JavaScript interface of the plugin. It
contains sms.js, which represents the initial implementation of the plugin's
JavaScript API.

Chapter 6

[197]

We will need to edit these generated files (and maybe, refactor and add new
implementation files) in order to implement our custom SMS plugin. The details of
our SMS plugin definition, JavaScript interface, and native implementations will be
illustrated in detail in the upcoming sections.

Plugin definition
First of all, we need to define our plugin structure. In order to do so, we need to
define our plugin in the plugin.xml file. The following code listing shows our
plugin.xml code:

<?xml version='1.0' encoding='utf-8'?>
<plugin id="com.jsmobile.plugins.sms" version="0.0.1"
 xmlns="http://apache.org/cordova/ns/plugins/1.0"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <name>sms</name>
 <description>A plugin for sending sms messages</description>
 <license>Apache 2.0</license>
 <keywords>cordova,plugins,sms</keywords>

 <js-module name="sms" src="www/sms.js">
 <clobbers target="window.sms" />
 </js-module>

 <platform name="android">
 <config-file parent="/*" target="res/xml/config.xml">
 <feature name="Sms">
 <param name="android-package" value="com.jsmobile.
plugins.sms.Sms" />
 </feature>
 </config-file>

 <config-file target="AndroidManifest.xml" parent="/manifest">
 <uses-permission android:name="android.permission.SEND_
SMS" />
 </config-file>

 <source-file src="src/android/Sms.java"
 target-dir="src/com/jsmobile/plugins/sms" />
 </platform>

 <platform name="ios">
 <config-file parent="/*" target="config.xml">

Developing Custom Cordova Plugins

[198]

 <feature name="Sms">
 <param name="ios-package" value="Sms" />
 </feature>
 </config-file>

 <source-file src="src/ios/Sms.h" />
 <source-file src="src/ios/Sms.m" />

 <framework src="MessageUI.framework" weak="true" />
 </platform>

 <platform name="wp8">
 <config-file target="config.xml" parent="/*">
 <feature name="Sms">
 <param name="wp-package" value="Sms" />
 </feature>
 </config-file>

 <source-file src="src/wp8/Sms.cs" />
 </platform>

</plugin>

The plugin.xml file defines the plugin structure and contains a top-level element
<plugin> , which contains the following attributes:

•	 xmlns: This attribute represents the plugin namespace which is
http://apache.org/cordova/ns/plugins/1.0

•	 id: This attribute represents the plugin ID; in our case, it is
com.jsmobile.plugins.sms

•	 version: This attribute represents the plugin version number, 0.0.1

The <plugin> element contains the following subelements:

•	 <name>: This element represents the plugin name; in our case, it is sms.
•	 <description>: This element represents the plugin description; in our case,

it is "A plugin for sending sms messages".
•	 <licence>: This element represents the plugin license; in our case, it is

Apache 2.0.
•	 <keywords>: This element represents the keywords of the plugin; in our case,

it is cordova,plugins,sms.

Chapter 6

[199]

•	 <js-module>: This element represents the plugin JavaScript module, and
it corresponds to a JavaScript file. It has a name attribute that represents the
JavaScript module name (in our case, "sms"). It also has an src attribute
that represents the JavaScript module file. The src attribute references a
JavaScript file in the plugin directory that is relative to the plugin.xml file
(in our case, "www/sms.js"). The <clobbers> element is a subelement of
<js-module>. It has a target attribute, whose value, in our case, is "window.
sms". The <clobbers target="window.sms" /> element mainly inserts
the smsExport JavaScript object that is defined in the www/sms.js file and
exported using module.exports (the smsExport object will be illustrated
in the Defining the plugin's JavaScript interface section) into the window object
as window.sms. This means that our plugin users will be able to access our
plugin's API using the window.sms object (this will be shown in detail in the
Testing our Cordova plugin section).

A <plugin> element can contain one or more <platform> element(s). A <platform>
element specifies a platform-specific plugin's configuration. It has mainly one
attribute name that specifies the platform name (android, ios, wp8, bb10, wp7, and
so on). The <platform> element can have the following sub-elements:

•	 <source-file>: This element represents the native platform source code
that will be installed and executed in the plugin-client project. The <source-
file> element has the following two main attributes:

°° src: This attribute represents the location of the source file relative to
plugin.xml.

°° target-dir: This attribute represents the target directory (that is
relative to the project root) in which the source file will be placed
when the plugin is installed in the client project. This attribute is
mainly needed in Java platform (Android), because a file under the
x.y.z package must be placed under x/y/z directories. For iOS and
Windows platforms, this parameter should be ignored.

•	 <config-file>: This element represents the configuration file that will be
modified. This is required for many cases; for example, in Android, in order
to send an SMS from your Android application, you need to modify the
Android configuration file for asking to have the permission to send an SMS
from the device. The <config-file> element has two main attributes:

°° target: This attribute represents the file to be modified and the path
relative to the project root.

°° parent: This attribute represents an XPath selector that references the
parent of the elements to be added to the configuration file.

Developing Custom Cordova Plugins

[200]

•	 <framework>: This element specifies a platform-specific framework that the
plugin depends on. It mainly has the src attribute to specify the framework
name and weak attributes to indicate whether the specified framework should
be weakly linked.

Given this explanation for the <platform> element and getting back to our plugin.
xml file, you will notice that we have the following three <platform> elements:

•	 Android (<platform name="android">) performs the following operations:
°° It creates a <feature> element for our SMS plugin under the root

element of the res/xml/config.xml file to register our plugin in the
Android project. In Android, the <feature> element's name attribute
represents the service name, and its "android-package" parameter
represents the fully qualified name of the Java plugin class:
<feature name="Sms">
 <param name="android-package"
value="com.jsmobile.plugins.sms.Sms" />
</feature>

°° It modifies the AndroidManifest.xml file to add the <uses-
permission android:name="android.permission.SEND_SMS" />
element (to have permission to send an SMS in Android platform)
under the <manifest> element.

°° Finally, it specifies the plugin's implementation source file, "src/
android/Sms.java", and its target directory, "src/com/jsmobile/
plugins/sms" (we will explore the contents of this file in the
Developing Android code section).

•	 iOS (<platform name="ios">) performs the following operations:
°° It creates a <feature> element for our SMS plugin under the root

element of the config.xml file to register our plugin in the iOS
project. In iOS, the <feature> element's name attribute represents
the service name, and its "ios-package" parameter represents the
Objective-C plugin class name:
<feature name="Sms">
 <param name="ios-package" value="Sms" />
</feature>

°° It specifies the plugin implementation source files: Sms.h (the header
file) and Sms.m (the methods file). We will explore the contents of
these files in the Developing iOS code section.

Chapter 6

[201]

°° It adds "MessageUI.framework" as a weakly linked dependency for
our iOS plugin.

•	 Windows Phone 8 (<platform name="wp8">) performs the following
operations:

°° It creates a <feature> element for our SMS plugin under the root
element of the config.xml file to register our plugin in the Windows
Phone 8 project. The <feature> element's name attribute represents
the service name, and its "wp-package" parameter represents the C#
service class name:
<feature name="Sms">
 <param name="wp-package" value="Sms" />
</feature>

°° It specifies the plugin implementation source file, "src/wp8/Sms.cs"
(we will explore the contents of this file in the Developing Windows
Phone 8 code section).

This is all we need to know in order to understand the structure of our custom plugin;
however, there are many more attributes and elements that are not mentioned here,
as we didn't use them in our example. In order to get the complete list of attributes
and elements of plugin.xml, you can check out the plugin specification page in the
Apache Cordova documentation at http://cordova.apache.org/docs/en/3.4.0/
plugin_ref_spec.md.html#Plugin%20Specification.

Defining the plugin's JavaScript interface
As indicated in the plugin definition file (plugin.xml), our plugin's JavaScript
interface is defined in sms.js, which is located under the www directory. The
following code snippet shows the sms.js file content:

var smsExport = {};

smsExport.sendMessage = function(messageInfo, successCallback,
errorCallback) {
 if (messageInfo == null || typeof messageInfo !== 'object') {
 if (errorCallback) {
 errorCallback({
 code: "INVALID_INPUT",

http://cordova.apache.org/docs/en/3.4.0/plugin_ref_spec.md.html#Plugin%20Specification
http://cordova.apache.org/docs/en/3.4.0/plugin_ref_spec.md.html#Plugin%20Specification

Developing Custom Cordova Plugins

[202]

 message: "Invalid Input"
 });
 }

 return;
 }

 var phoneNumber = messageInfo.phoneNumber;
 var textMessage = messageInfo.textMessage || "Default Text
from SMS plugin";

 if (! phoneNumber) {
 console.log("Missing Phone Number");

 if (errorCallback) {
 errorCallback({
 code: "MISSING_PHONE_NUMBER",
 message: "Missing Phone number"
 });
 }

 return;
 }

 cordova.exec(successCallback, errorCallback, "Sms",
"sendMessage", [phoneNumber, textMessage]);
};

module.exports = smsExport;

The smsExport object contains a single method, sendMessage(messageInfo,
successCallback, errorCallback). In the sendMessage method, phoneNumber
and textMessage are extracted from the messageInfo object. If a phone number
is not specified by the user, then errorCallback will be called with a JSON error
object, which has a code attribute set to "MISSING_PHONE_NUMBER" and a message
attribute set to "Missing Phone number". After passing this validation, a call is
performed to the cordova.exec() API in order to call the native code (whether it
is Android, iOS, Windows Phone 8, or any other supported platform) from Apache
Cordova JavaScript.

Chapter 6

[203]

It is important to note that the cordova.exec(successCallback, errorCallback,
"service", "action", [args]) API has the following parameters:

•	 successCallback: This represents the success callback function that will be
called (with any specified parameter(s)) if the Cordova exec call completes
successfully

•	 errorCallback: This represents the error callback function that will be called
(with any specified error parameter(s)) if the Cordova exec call does not
complete successfully

•	 "service": This represents the native service name that is mapped to a
native class using the <feature> element (in sms.js, the native service name
is "Sms")

•	 "action": This represents the action name to be executed, and an action is
mapped to a class method in some platforms (in sms.js, the action name is
"sendMessage")

•	 [args]: This is an array that represents the action arguments (in sms.js, the
action arguments are [phoneNumber, textMessage])

It is very important to note that in cordova.exec(successCallback,
errorCallback, "service", "action", [args]), the
"service" parameter must match the name of the <feature> element,
which we set in our plugin.xml file in order to call the mapped native
plugin class correctly.

Finally, the smsExport object is exported using module.exports. Do not forget
that our JavaScript module is mapped to window.sms using the <clobbers
target="window.sms" /> element inside <js-module src="www/sms.js">
element, which we discussed in the plugin.xml file. This means that in order to call
the sendMessage method of the smsExport object from our plugin-client application,
we use the sms.sendMessage() method.

In the upcoming sections, we will explore the implementation of our custom
Cordova plugin in Android, iOS, and Windows Phone 8 platforms.

Developing Custom Cordova Plugins

[204]

Developing Android code
As specified in our plugin.xml file's platform section for Android, the
implementation of our plugin in Android is located at src/android/Sms.java.
The following code snippet shows the first part of the Sms.java file:

package com.jsmobile.plugins.sms;

import org.apache.cordova.CordovaPlugin;
import org.apache.cordova.CallbackContext;
import org.apache.cordova.PluginResult;
import org.apache.cordova.PluginResult.Status;
import org.json.JSONArray;
import org.json.JSONException;
import org.json.JSONObject;

import android.app.Activity;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.content.IntentFilter;
import android.content.pm.PackageManager;
import android.telephony.SmsManager;

public class Sms extends CordovaPlugin {
 private static final String SMS_GENERAL_ERROR =
"SMS_GENERAL_ERROR";
 private static final String NO_SMS_SERVICE_AVAILABLE =
"NO_SMS_SERVICE_AVAILABLE";
 private static final String SMS_FEATURE_NOT_SUPPORTED =
"SMS_FEATURE_NOT_SUPPORTED";
 private static final String SENDING_SMS_ID = "SENDING_SMS";

 @Override
 public boolean execute(String action, JSONArray args,
CallbackContext callbackContext) throws JSONException {
 if (action.equals("sendMessage")) {
 String phoneNumber = args.getString(0);
 String message = args.getString(1);

 boolean isSupported = getActivity().getPackageManager().ha
sSystemFeature(PackageManager.
FEATURE_TELEPHONY);

Chapter 6

[205]

 if (! isSupported) {
 JSONObject errorObject = new JSONObject();

 errorObject.put("code", SMS_FEATURE_NOT_SUPPORTED);
 errorObject.put("message", "SMS feature is not
supported on this device");

 callbackContext.sendPluginResult(new
PluginResult(Status.ERROR, errorObject));
 return false;
 }

 this.sendSMS(phoneNumber, message, callbackContext);

 return true;
 }

 return false;
 }

 // Code is omitted here for simplicity ...

 private Activity getActivity() {
 return this.cordova.getActivity();
 }
}

In order to create our Cordova Android plugin class, our Android plugin class must
extend the CordovaPlugin class and must override one of the execute() methods
of CordovaPlugin. In our Sms Java class, the execute(String action, JSONArray
args, CallbackContext callbackContext) execute method, which has the
following parameters, is overridden:

•	 String action: This represents the action to be performed, and it matches
the specified action parameter in the cordova.exec() JavaScript API

•	 JSONArray args: This represents the action arguments, and it matches the
[args] parameter in the cordova.exec() JavaScript API

•	 CallbackContext callbackContext: This represents the callback context
used when calling back into JavaScript

Developing Custom Cordova Plugins

[206]

In the execute() method of our Sms class, the phoneNumber and message
parameters are retrieved from the args parameter. Using getActivity().
getPackageManager().hasSystemFeature(PackageManager.FEATURE_TELEPHONY),
we can check whether the device has a telephony radio with data communication
support. If the device does not have this feature, this API returns false, so we create
errorObject of the JSONObject type that contains an error code attribute ("code")
and an error message attribute ("message") that inform the plugin user that the SMS
feature is not supported on this device. The plugin tells the JavaScript caller that the
operation failed by calling callbackContext.sendPluginResult() and specifying
a PluginResult object as a parameter (the PluginResult object's status is set to
Status.ERROR, and message is set to errorObject).

As indicated in our Android implementation, in order to send a plugin
result to JavaScript from Android, we use the callbackContext.
sendPluginResult() method specifying the PluginResult status
and message. Other platforms (iOS and Windows Phone 8) have much a
similar way, as we will see in the upcoming sections.

If an Android device supports sending SMS messages, then a call to the
sendSMS() private method is performed. The following code snippet shows
the sendSMS() method:

private void sendSMS(String phoneNumber, String message, final
CallbackContext callbackContext) throws JSONException {
 PendingIntent sentPI =
PendingIntent.getBroadcast(getActivity(), 0, new
Intent(SENDING_SMS_ID), 0);

 getActivity().registerReceiver(new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 switch (getResultCode()) {
 case Activity.RESULT_OK:
 callbackContext.sendPluginResult(new
PluginResult(Status.OK, "SMS message is sent successfully"));
 break;
 case SmsManager.RESULT_ERROR_NO_SERVICE:
 try {
 JSONObject errorObject = new JSONObject();

Chapter 6

[207]

 errorObject.put("code", NO_SMS_SERVICE_AVAILABLE);
 errorObject.put("message", "SMS is not sent
because no service is available");

 callbackContext.sendPluginResult(new
PluginResult(Status.ERROR, errorObject));
 } catch (JSONException exception) {
 exception.printStackTrace();
 }
 break;
 default:
 try {
 JSONObject errorObject = new JSONObject();

 errorObject.put("code", SMS_GENERAL_ERROR);
 errorObject.put("message", "SMS general error");

 callbackContext.sendPluginResult(new
PluginResult(Status.ERROR, errorObject));
 } catch (JSONException exception) {
 exception.printStackTrace();
 }

 break;
 }
 }
 }, new IntentFilter(SENDING_SMS_ID));

 SmsManager sms = SmsManager.getDefault();

 sms.sendTextMessage(phoneNumber, null, message, sentPI, null);
}

In order to understand the sendSMS() method, let's look into the method's last
two lines:

SmsManager sms = SmsManager.getDefault();
sms.sendTextMessage(phoneNumber, null, message, sentPI, null);

SmsManager is an Android class that provides an API to send text messages. Using
SmsManager.getDefault() returns an object of SmsManager. In order to send a
text-based message, a call to sms.sendTextMessage() should be performed.

Developing Custom Cordova Plugins

[208]

The sms.sendTextMessage (String destinationAddress, String scAddress,
String text, PendingIntent sentIntent, PendingIntent deliveryIntent)
method has the following parameters:

•	 destinationAddress: This represents the address (phone number) to send
the message to.

•	 scAddress: This represents the service center address. It can be set to null to
use the current default SMS center.

•	 text: This represents the text message to be sent.
•	 sentIntent: This represents a PendingIntent, which broadcasts when the

message is successfully sent or failed. It can be set to null.
•	 deliveryIntent: This represents a PendingIntent, which broadcasts when

the message is delivered to the recipient. It can be set to null.

As shown in the preceding code snippet, we specified a destination address
(phoneNumber), a text message (message), and finally, a pending intent (sendPI) in
order to listen to the message-sending status.

If you return to the sendSMS() code and look at it from the beginning, you will
notice that sentPI is initialized by calling PendingIntent.getBroadcast(), and in
order to receive the SMS-sending broadcast, a BroadcastReceiver is registered.

When the SMS message is sent successfully or fails, the onReceive() method of
BroadcastReceiver will be called, and the result code can be retrieved using
getResultCode(). The result code can indicate:

•	 Success when getResultCode() is equal to Activity.RESULT_OK. In this
case, a PluginResult object is constructed with status = Status.OK and
message = "SMS message is sent successfully", and it is sent to the
client using callbackContext.sendPluginResult().

•	 Failure when getResultCode() is not equal to Activity.RESULT_OK. In
this case, a PluginResult object is constructed with status = Status.
ERROR and message = errorObject (which contains the error code
and error message), and it is sent to the client using callbackContext.
sendPluginResult().

These are the details of our SMS plugin implementation in Android platform. Now,
let's move to the iOS implementation of our plugin.

Chapter 6

[209]

Developing iOS code
As specified in our plugin.xml file's platform section for iOS, the implementation of
our plugin in iOS is located at the src/ios/Sms.h and src/ios/Sms.m Objective-C
files. The following code snippet shows the Sms.h file (the header file):

#import <Cordova/CDV.h>
#import <MessageUI/MFMessageComposeViewController.h>

@interface Sms : CDVPlugin <MFMessageComposeViewControllerDelegate> {
}

@property(strong) NSString* callbackID;
- (void)sendMessage:(CDVInvokedUrlCommand*)command;
@end

The preceding code declares an Sms class that extends CDVPlugin. It is important to
note that in order to create a Cordova iOS plugin class, our Objective-C plugin class
must extend the CDVPlugin class. In our Sms class declaration, there is a declared
callbackID property of the NSString type and a declared sendMessage method,
which returns void and takes CDVInvokedUrlCommand as a parameter. Now, let's
move on to the Sms class implementation. The following code snippet shows the first
part of the Sms.m file:

#import "Sms.h"

@implementation Sms

- (void)sendMessage:(CDVInvokedUrlCommand*)command
{
 CDVPluginResult* pluginResult = nil;
 NSString* phoneNumber = [command.arguments objectAtIndex:0];
 NSString* textMessage = [command.arguments objectAtIndex:1];

 self.callbackID = command.callbackId;

 if (![MFMessageComposeViewController canSendText]) {
 NSMutableDictionary* returnInfo = [NSMutableDictionary
dictionaryWithCapacity:2];

 [returnInfo setObject:@"SMS_FEATURE_NOT_SUPPORTED"
forKey:@"code"];
 [returnInfo setObject:@"SMS feature is not supported on
this device" forKey:@"message"];

Developing Custom Cordova Plugins

[210]

 pluginResult = [CDVPluginResult
resultWithStatus:CDVCommandStatus_ERROR
messageAsDictionary:returnInfo];

 [self.commandDelegate sendPluginResult:pluginResult
callbackId:command.callbackId];

 return;
 }

 MFMessageComposeViewController *composeViewController =
[[MFMessageComposeViewController alloc] init];
 composeViewController.messageComposeDelegate = self;

 NSMutableArray *recipients = [[NSMutableArray alloc] init];

 [recipients addObject:phoneNumber];

 [composeViewController setBody:textMessage];
 [composeViewController setRecipients:recipients];

 [self.viewController presentViewController:composeViewController
animated:YES
completion:nil];
}
// Code is omitted from here for simplicity
@end

In our Sms class implementation, we have the Objective-C instance method,
 - (void)sendMessage:(CDVInvokedUrlCommand*)command, which maps to
the action parameter in the cordova.exec() JavaScript API.

In the sendMessage() method of our Sms class, the phoneNumber and message
parameters are retrieved from the command.arguments parameter (phoneNumber is
located at index 0 and message is located at index 1).

The MFMessageComposeViewController class provides a standard system user
interface to compose text messages. Unlike Android, we cannot send SMS messages
directly in iOS devices from our plugin code without using the default device's
(iPhone or iPad) SMS application. In iOS, all we can do from our plugin code is use
the MFMessageComposeViewController class to launch the SMS application with
the SMS recipient and SMS message and listen for the user actions to know
if the user sent or, cancelled, or failed to send the message. However, before
interacting with the MFMessageComposeViewController class, we need to check
whether the current iOS device is capable of sending text messages. This can be
done using the canSendText method of MFMessageComposeViewController as
[MFMessageComposeViewController canSendText].

Chapter 6

[211]

If the iOS device does not have the feature to send text messages (which means that
[MFMessageComposeViewController canSendText] returns NO), we will create a
returnInfo object (that is of the NSMutableDictionary type), which contains two
entries: one for the error code and the other one for the error message that tells the
plugin user that the SMS feature is not supported on this device. Our plugin tells the
JavaScript caller that the operation failed by calling the sendPluginResult method
(of self.commandDelegate), which has the following signature:

- (void)sendPluginResult:(CDVPluginResult*)result
callbackId:(NSString*)callbackId;

To this method, we pass a CDVPluginResult object (whose status is
CDVCommandStatus_ERROR, and message is returnInfo) and callbackId, which is
set to command.callbackId.

If your iOS device supports sending SMS messages, then a composeViewController
object (of the MFMessageComposeViewController type) is created and
initialized with recipients as the message recipients and textMessage as the
message body. Then, we present composeViewController modally using the
presentModalViewController method of self.viewController. It is important to
highlight this line:

composeViewController.messageComposeDelegate = self;

This line tells composeViewController to send the message-related notifications
to our Sms class. In order to receive these notifications, our Sms class needs
to implement the messageComposeViewController method that has the following
signature:

- (void)messageComposeViewController:
(MFMessageComposeViewController *)controller
didFinishWithResult:(MessageComposeResult)result

The messageComposeViewController class has the following parameters:

•	 Controller: This represents the message composition view controller that
returns the result

•	 Result: This represents a result code that indicates how the user chose
to complete the message composition (cancels or sends successfully or fails
to send)

Developing Custom Cordova Plugins

[212]

The following code snippet shows the implementation of
messageComposeViewController in our Sms class:

- (void)messageComposeViewController:(MFMessageComposeViewController
*)controller didFinishWithResult:(MessageComposeResult)result {
 BOOL succeeded = NO;
 NSString* errorCode = @"";
 NSString* message = @"";

 switch(result) {
 case MessageComposeResultSent:
 succeeded = YES;
 message = @"Message sent";
 break;
 case MessageComposeResultCancelled:
 message = @"Message cancelled";
 errorCode = @"SMS_MESSAGE_CANCELLED";
 break;
 case MessageComposeResultFailed:
 message = @"Message Compose Result failed";
 errorCode = @"SMS_MESSAGE_COMPOSE_FAILED";
 break;
 default:
 message = @"Sms General error";
 errorCode = @"SMS_GENERAL_ERROR";
 break;
 }

 [self.viewController dismissViewControllerAnimated:YES
completion:nil];

 if (succeeded == YES) {
 [super writeJavascript:[[CDVPluginResult
resultWithStatus:CDVCommandStatus_OK messageAsString:message]
 toSuccessCallbackString:self.
callbackID]];
 } else {
 NSMutableDictionary* returnInfo = [NSMutableDictionary
dictionaryWithCapacity:2];

 [returnInfo setObject:errorCode forKey:@"code"];
 [returnInfo setObject:message forKey:@"message"];

Chapter 6

[213]

 [super writeJavascript:[[CDVPluginResult
resultWithStatus:CDVCommandStatus_ERROR
messageAsDictionary:returnInfo]
 toErrorCallbackString:self.
callbackID]];
 }
}

The messageComposeViewController method is called when the user taps on one of
the buttons to dismiss the message composition interface. In the implementation of the
messageComposeViewController method, the following two actions are performed:

•	 Dismiss the view controller by calling the dismissViewControllerAnimated
method of self.viewController.

•	 Check whether the result parameter is equal to MessageComposeResultSent
(which means that the user sent the message successfully) in order to
send a CDVPluginResult with status = CDVCommandStatus_OK and
message = "Message sent" to the plugin client. If the result is not equal to
MessageComposeResultSent, then a CDVPluginResult is sent with status =
CDVCommandStatus_ERROR and message = returnInfo (which contains two
entries: one entry for the error code and the other one for the error message
that contains the error details such as "Message cancelled" or "Message
Compose Result failed") to the plugin client.

These are the details of our SMS plugin implementation in iOS platform. Next, let's
move to the Windows Phone 8 implementation of our plugin.

Developing Windows Phone 8 code
As specified in our plugin.xml file's platform section for Windows Phone 8
(wp8), the implementation of our plugin in wp8 is located at src/wp8/Sms.cs.
The following code snippet shows Sms.cs code:

using System;
using Microsoft.Phone.Tasks;
using WPCordovaClassLib.Cordova;
using WPCordovaClassLib.Cordova.Commands;
using WPCordovaClassLib.Cordova.JSON;

namespace WPCordovaClassLib.Cordova.Commands
{
 public class Sms : BaseCommand
 {

Developing Custom Cordova Plugins

[214]

 public void sendMessage(string options)
 {
 string[] optValues = JsonHelper.Deserialize<string[]>(options);
 String number = optValues[0];
 String message = optValues[1];

 SmsComposeTask sms = new SmsComposeTask();

 sms.To = number;
 sms.Body = message;

 sms.Show();

 /*Since there is no way to track SMS application events in
WP8, always send Ok status.*/
 DispatchCommandResult(new PluginResult(PluginResult.Status.OK,
"Success"));
 }
 }
}

In order to create our Cordova wp8 C# plugin class, our wp8 plugin C# class (Sms)
must extend the BaseCommand class. In our Sms class, we have the C# method,
public void sendMessage(string options), which maps to the action parameter
in the cordova.exec() JavaScript API. The sendMessage() action method must
follow these rules:

•	 The method must be public
•	 The method must return void
•	 Its argument is a string (not an array as you might expect as the cordova.

exec() method's args parameter is originally an array)

Chapter 6

[215]

In the sendMessage() method of our Sms class, in order to get the original
arguments' array, we need to use the JsonHelper.Deserialize() method to
deserialize the string parameter to an array. After performing this deserialization,
the number and message parameters are retrieved from the result array (optValues).

After getting the number and message parameters, all we can do is create an sms
object from SmsComposeTask and then set the (To and Body) attributes to the
(number and message) parameters. After that, we call the Show() method of the
sms object, which will show the wp8 SMS application.

Unfortunately in wp8, you cannot send an SMS message directly using the wp8
API. In order to send an SMS message in wp8, you have to use the default SMS
application using SmsComposeTask, which does not give you any ability to know
what the user did (this means that you will not know whether the user sent an SMS
successfully or not or even whether the user cancels sending the SMS).

The wp8 API is more restrictive than iOS API in SMS sending. In iOS, you
cannot send an SMS directly using the iOS API, but the iOS API gives us
the ability to know what the user did. This gives us the ability to send
successful or failing plugin results to the plugin client in the case of our
iOS implementation.

Finally, and because our plugin is now blind once the Show() method of
SmsComposeTask is called, our plugin assumes that sending SMS is completed
successfully and sends a PluginResult object, whose status = PluginResult.
Status.OK and message = "Success", to the plugin client in order to have a
consistent behavior across the different platforms. Consistent behavior here means
that when the users call our API from JavaScript in any supported platform, our API
has to always respond to their calls with either successful or failed responses.

These are the details of our SMS plugin implementation on Windows Phone 8
platform. Now, let's publish our plugin to the Cordova Registry to be used by the
Apache Cordova community.

Developing Custom Cordova Plugins

[216]

Publishing our plugin to Cordova
Registry
After completing our plugin implementation, we can publish our SMS plugin to the
Apache Cordova Registry. Before publishing our custom SMS plugin, let's revise our
final SMS plugin structure. The following screenshot shows the final structure of our
custom SMS plugin:

Hierarchy of our final plugin structure

As shown in the preceding screenshot, the final structure has the following
main additions:

•	 A new wp8 directory under the src directory; it has our wp8 plugin
implementation

•	 A markdown README.md file that explains the purpose of the plugin and
an example of its usage

Now, after understanding the final structure of our custom SMS plugin, we can now
publish our plugin to the Apache Cordova Registry. In order to do this, just execute
the following plugman publish command specifying our SMS plugin directory:

> plugman publish sms

After executing this command successfully, you will be notified that our
com.jsmobile.plugins.sms@0.0.1 plugin has been published successfully.

Chapter 6

[217]

By uploading our custom plugin to the Apache Cordova Registry, the Apache
Cordova community can now use our plugin by just using the normal Cordova
CLI's plugin add command as follows:

> cordova plugin add com.jsmobile.plugins.sms

In order to make the source code of our plugin accessible, we published its source
code on GitHub, and it can be downloaded from https://github.com/hazems/
cordova-sms-plugin.

Publishing our custom plugin to GitHub gives our plugin consumers the ability
to add our custom plugin to their projects by specifying the plugin GitHub URL
as follows:

> cordova plugin add https://github.com/hazems/cordova-sms-plugin.git

In the next section, we will create our test Cordova application, which will test the
functionality of our plugin across the different platforms (Android, iOS, and wp8).

Testing our Cordova plugin
Now, it is time to create our test Cordova application, "SmsApp". In order to
create our test Cordova application, we can execute the following cordova
create command:

> cordova create smsApp com.jsmobile.sms.app SmsApp

Then, we can add Android, iOS, and wp8 from the application directory as follows:

> cordova platform add android

> cordova platform add ios

> cordova platform add wp8

The following code snippet shows the jQuery Mobile page (index.html), which
allows the user to enter a phone number and message. The user can then click on the
Send button to send an SMS.

<html>
<head>
 <!-- meta data and jQuery mobile includes are omitted for
saving space -->
 <script src="jqueryMobile/jquery.validate.min.js"></script>
 <title>SMS App</title>
</head>
<body>

https://github.com/hazems/cordova-sms-plugin
https://github.com/hazems/cordova-sms-plugin

Developing Custom Cordova Plugins

[218]

 <div data-role="page" id="sms">
 <div data-role="header">
 <h1>Send SMS</h1>
 </div>
 <div data-role="content">
 <h1>Send SMS now</h1>
 <p>Enter mobile number and mobile message and click
"send" button.</p>

 <form id="smsForm">
 <div class="ui-field-contain">
 <label for="phoneNo">Phone Number</label>
 <input type="text" id="phoneNo"
name="phoneNo"></input>
 </div>
 <div class="ui-field-contain">
 <label for="textMessage">Message</label>
 <input type="text" id="textMessage"
name="textMessage"></input>
 </div>
 <input type="submit" id="sendSMS" data-icon="action"
value="Send"></input>
 <ul id="messageBox">
 <div id="result">
 </div>
 </form>
 </div>
 </div>

 <script type="text/javascript" src="cordova.js"></script>
 <script type="text/javascript" src="js/sms.js"></script>
</body>
</html>

As shown in the preceding highlighted code, we are utilizing the jQuery validation
plugin. This is why we included the jquery.validate.min.js file. The "smsForm"
form element contains the following elements:

•	 "phoneNo": It includes a label and an input text to enter phone number
•	 "textMessage": It includes a label and an input text to enter text message.
•	 "sendSMS": It is a button to send an SMS message
•	 "messageBox": This is an unordered list used to display validation errors
•	 "result": This div is used to display the SMS operation result

Chapter 6

[219]

Finally, we included sms.js. The sms.js file includes the implementation for the
event handlers of "smsForm". The following code snippet shows the sms.js file's code:

(function() {
 $(document).on("pageinit", "#sms", function(e) {
 e.preventDefault();

 function onDeviceReady() {
 console.log("Apache Cordova is loaded ...");

 $("#sendSMS").on("tap", function(e) {
 e.preventDefault();

 if (! $("#smsForm").valid()) {
 return;
 }

 var messageInfo = {
 phoneNumber: $("#phoneNo").val(),
 textMessage: $("#textMessage").val()
 };

 sms.sendMessage(messageInfo, function() {
 $("#result").html("Message is sent successfully
...");
 }, function(error) {
 $("#result").html("Error code: " + error.code +
", Error message: " + error.message);
 });
 });
 }

 document.addEventListener("deviceready", onDeviceReady,
false);
 });

 $(document).on("pageshow", "#sms", function(e) {
 e.preventDefault();

 $("#smsForm").validate({
 errorLabelContainer: "#messageBox",
 wrapper: "li",
 rules: {
 textMessage: "required",

Developing Custom Cordova Plugins

[220]

 phoneNo: {
 required: true,
 number: true
 }
 },
 messages: {
 textMessage: "Please specify text message",
 phoneNo: {
 required: "Please specify Phone number",
 number: "Phone number is numeric only"
 }
 }
 });
 });
})();

As shown in the preceding code, in the "pageinit" event of the "sms" page, the
"tap" event handler of the "sendSMS" button is registered after Apache Cordova is
loaded. In the implementation of the "sendSMS" button's tap event handler:

•	 The "smsForm" is validated using $("#smsForm").valid().
•	 If the form is valid, then, as shown in the preceding highlighted code, the

messageInfo object is constructed using the phoneNumber and textMessage
attributes. The phoneNumber and textMessage attributes are initialized with
the "phoneNo" and "textMessage" input text values.

•	 A call to sms.sendMessage(messageInfo, successCallback,
errorCallback) is performed with the following parameters in order:

°° The messageInfo object.
°° The success callback function that will be called when an SMS

is successfully sent. The success callback function displays the
"Message is sent successfully ..." message inside the
"result" div.

°° The error callback function that will be called when sending SMS
fails. The failure callback function displays both the error code and
error message inside the "result" div.

Chapter 6

[221]

In the "pageshow" event of the "sms" page, our form validation is specified
as follows:

•	 errorLabelContainer: This is set to "messageBox" to display the validation
errors inside

•	 wrapper: This is set to "li" to wrap the error messages in list items
•	 rules: This is set as follows:

°° textMessage is set to required
°° phoneNumber is set to number and required

•	 messages: This is set to textMessage and phoneNumber validation
errors messages

Now, let's build and run our SMS app in order to observe how our custom SMS
plugin will behave across the different platforms (Android, iOS, and Windows
Phone 8). When the user enters a valid phone number and a text message and then
clicks on the Send button, the following will happen:

•	 In Android, an SMS will be sent directly from our Android SMS app without
any intervention from the platform's default SMS app.

•	 In iOS, the user will be forwarded to the default iOS SMS app initialized with
the phone number and text message from our custom SMS plugin. Once the
user clicks on the Send or even Cancel button, the user will get back to our
SMS app with the correct result displayed.

•	 In Windows Phone 8, the user will be forwarded to the default Windows
Phone 8 SMS app initialized with the phone number and text message from
our custom SMS plugin. Unfortunately, due to wp8 API limitations, when
the user clicks on the Send or even Cancel button, we will not be able to
detect what happens. This is why when you click on your wp8 device's back
button to get back to our SMS app, you will find our SMS application always
displaying the success message, which is not always correct due to the
current wp8 API limitations.

The complete source code of "SmsApp" can be downloaded from the
book's web page or from GitHub (https://github.com/hazems/
cordova-sms-plugin-test).

https://github.com/hazems/cordova-sms-plugin-test
https://github.com/hazems/cordova-sms-plugin-test

Developing Custom Cordova Plugins

[222]

Summary
This chapter showed you how to design and develop your own custom Apache
Cordova plugin using JavaScript and Java for Android, Objective-C for iOS, and
finally, C# for Windows Phone 8. In the next chapter, you will learn how to develop
JavaScript tests for your Cordova app's logic using Jasmine. You will also learn how
to automate the Jasmine tests that you will develop, using Karma and Jenkins CI.

Unit Testing the Cordova
App's Logic

In this chapter, you will learn how to develop JavaScript unit tests for your Cordova
app logic. In this chapter, you will:

•	 Learn the basics of the Jasmine JavaScript unit testing framework
•	 Use Jasmine in order to test both synchronous and asynchronous

JavaScript code
•	 Utilize Karma as a powerful JavaScript test runner in order to automate

the running of your developed Jasmine tests
•	 Generate test and code coverage reports from your developed tests
•	 Automate your JavaScript tests by integrating your developed tests with

Continuous Integration (CI) tools

Unit Testing the Cordova App's Logic

[224]

What is Jasmine
Jasmine is a powerful JavaScript unit testing framework. It provides a clean
mechanism to test synchronous and asynchronous JavaScript code. It is a
behavior-driven development framework that provides descriptive test cases,
which focus on business value more than on technical details. As it is written
in a simple, natural language, Jasmine tests can be read by nonprogrammers and
provide a clear description when a single test succeeds or fails and the reason
behind its failure.

Behavior-driven development (BDD) is an agile software development
technique introduced by Dan North; it focuses on writing descriptive
tests from a business perspective. BDD extends TDD by writing test
cases that test the software behavior (requirements) in a natural language
that anyone (does not necessarily have to be a programmer) can read
and understand. The names of the unit tests are complete sentences that
usually start with the word "should," and they are written in the order of
their business value.

Configuring Jasmine
In order to configure Jasmine, the first step is to download the framework from
https://github.com/pivotal/jasmine/tree/master/dist. In this download
link, you will find the latest releases of the framework.

At the time of writing this book, the latest release is v2.0 that we will use
in this chapter.

After unpacking jasmine-standalone-2.0.0.zip, you will find the following
directories and files, as shown in the following screenshot:

Jasmine Standalone 2.0 directories and files

https://github.com/pivotal/jasmine/tree/master/dist

Chapter 7

[225]

The src directory contains the JavaScript source files that you want to test. The spec
directory contains the JavaScript test files, while the SpecRunner.html file is the test
cases' runner HTML file. The lib directory contains the framework files.

In order to make sure that everything is running okay, click on the SpecRunner.html
file; you should see specs passing, as shown in the following screenshot:

Jasmine specs passing

Note that this structure is not rigid; we can modify it to serve the organization of our
app, as we will see in the Jasmine in action – developing Cordova app tests section.

Writing your first Jasmine test
Before writing our first Jasmine test, we need to understand the difference between
a suite and a spec (test specification) in Jasmine. Jasmine suite is a group of test cases
that can be used to test a specific behavior of the JavaScript code. In Jasmine, the
test suite begins with a call to the describe Jasmine global function that has two
parameters. The first parameter represents the title of the test suite, while the second
parameter represents a function that implements the test suite.

A Jasmine spec represents a test case inside the test suite. In Jasmine, the test case
begins with a call to the Jasmine global function it that has two parameters. The
first parameter represents the title of the spec and the second parameter represents a
function that implements the test case.

Unit Testing the Cordova App's Logic

[226]

A Jasmine spec contains one or more expectations. Every expectation represents
an assertion that can be either true or false. In order to pass the specs, all of the
expectations inside the spec have to be true. If one or more expectations inside a
spec is false, then the spec fails. The following code listing shows an example of a
Jasmine test suite and a spec with an expectation:

describe("A sample suite", function() {
 it("contains a sample spec with an expectation", function() {
 expect(true).toEqual(true);
 });
});

Let's move to the SimpleMath JavaScript object, which is described in the following
code snippet. The SimpleMath JavaScript object is a simple mathematical utility that
performs the mathematical operations: factorial, Signum, and average:

SimpleMath = function() {
};

SimpleMath.prototype.getFactorial = function (number) {

 if (number < 0) {
 throw new Error("There is no factorial for negative numbers");
 }
 else if (number == 1 || number == 0) {

 // If number <= 1 then number! = 1.
 return 1;
 } else {

 // If number > 1 then number! = number * (number-1)!
 return number * this.getFactorial(number-1);
 }
}

SimpleMath.prototype.signum = function (number) {
 if (number > 0) {
 return 1;
 } else if (number == 0) {
 return 0;
 } else {
 return -1;
 }
}

Chapter 7

[227]

SimpleMath.prototype.average = function (number1, number2) {
 return (number1 + number2) / 2;
}

The SimpleMath object is used to calculate the factorial of numbers. In mathematics,
the factorial of a non-negative integer n, denoted by n!, is the product of all the
positive integers less than or equal to n, for example, 4! = 4 x 3 x 2 x 1 = 24.

The SimpleMath object calculates the factorial number using the getFactorial
recursive function. It throws an error when the parameter passed to the
getFactorial method is a negative number, because there is no factorial value for
negative numbers.

Adding to calculating factorial, SimpleMath can get the Signum of any number using
the signum method. In mathematics, the Signum function is a mathematical function
that extracts the sign of a real number.

Finally, SimpleMath can calculate the average of two numbers using the average
method. The average value of two numbers can be calculated by dividing the sum
of the two numbers by 2.

Now, let's start writing the specs using Jasmine. First of all, in order to test the
getFactorial method, let's look at the following three test scenarios. We will
calculate the factorial of:

•	 A positive number
•	 Zero
•	 A negative number

The following code snippet shows how to calculate the factorial of a positive number
3, zero, and a negative number -10:

describe("SimpleMath", function() {
 var simpleMath;

 beforeEach(function() {
 simpleMath = new SimpleMath();
 });

 describe("when SimpleMath is used to find factorial",
function() {
 it("should be able to find factorial for positive number",
function() {
 expect(simpleMath.getFactorial(3)).toEqual(6);
 });

Unit Testing the Cordova App's Logic

[228]

 it("should be able to find factorial for zero", function()
{
 expect(simpleMath.getFactorial(0)).toEqual(1);
 });

 it("should be able to throw an exception when the number
is negative", function() {
 expect(
 function() {
 simpleMath.getFactorial(-10)
 }).toThrow();
 });
 });
 //...
});

The describe keyword declares a new test suite called "SimpleMath". beforeEach
is used for initialization of the specs inside the suite, that is, beforeEach is called
once before the run of each spec in describe. beforeEach, simpleMath object is
created using new SimpleMath().

In Jasmine, it is also possible to execute the JavaScript code after running each spec in
describe using the afterEach global function. Having beforeEach and afterEach
in Jasmine allows the developer not to repeat the set up and finalization code for
each spec.

After initializing the simpleMath object, you can either create a direct spec using
the "it" keyword or create a child test suite using the describe keyword. For the
purpose of organizing the example, we create a new describe function for each
group of tests with similar functionalities. This is why we create an independent
"describe" function to test the functionality of getFactorial provided by the
SimpleMath object.

In the first test scenario of the getFactorial test suite, the spec title is "should be
able to find factorial for positive number", and the expect() function
calls simpleMath.getFactorial(3) and expects it to be equal to 6. If simpleMath.
getFactorial(3) returns a value other than 6, then the test fails.

We have many other options (matchers) to use instead of toEqual; we will show
them in the Jasmine Matchers section.

Chapter 7

[229]

In the second test scenario of the getFactorial test suite, the expect() function
calls simpleMath.getFactorial(0) and expects it to be equal to 1. In the final test
scenario of the getFactorial test suite, the expect() function calls simpleMath.
getFactorial(-10) and expects it to throw an exception using the toThrow
matcher. The toThrow matcher succeeds if the function of the expect() function
throws an exception when executed.

After finalizing the getFactorial suite test, we come to a new test suite that tests
the functionality of the signum method provided by the SimpleMath object, as
shown in the following code snippet:

describe("when SimpleMath is used to find signum", function() {
 it("should be able to find the signum for a positive number",
function() {
 expect(simpleMath.signum(3)).toEqual(1);
 });

 it("should be able to find the signum for zero", function() {
 expect(simpleMath.signum(0)).toEqual(0);
 });

 it("should be able to find the signum for a negative number",
function() {
 expect(simpleMath.signum(-1000)).toEqual(-1);
 });
});

We have three test scenarios for the signum method. The first test scenario is getting
the Signum of a positive number, the second test scenario is getting the Signum
of zero, and the last test scenario is getting the Signum of a negative number. As
validated by the specs, the signum method has to return 1 for a positive number (3),
0 for zero, and finally, -1 for a negative number (-1000). The following code snippet
shows the average test suite:

describe("when SimpleMath is used to find the average of two
values", function() {
 it("should be able to find the average of two values",
function() {
 expect(simpleMath.average(3, 6)).toEqual(4.5);
 });
});

Unit Testing the Cordova App's Logic

[230]

In the average spec, the test ensures that the average is calculated correctly by trying
to calculate the average of two numbers, 3 and 6, and expecting the result to be 4.5.

Now, after writing the suites and specs, it is time to run our JavaScript tests. In order
to run the tests, follow these steps:

1.	 Place the simpleMath.js file in the src folder.
2.	 Place the simpleMathSpec.js file in the spec folder.
3.	 Edit the SpecRunner.html file, as shown by the highlighted code in the

following code snippet:

<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">
 <title>Jasmine Spec Runner v2.0.0</title>

 <link rel="shortcut icon" type="image/png"
href="lib/jasmine-2.0.0/jasmine_favicon.png">
 <link rel="stylesheet" type="text/css"
href="lib/jasmine-2.0.0/jasmine.css">

 <script type="text/javascript" src="lib/jasmine-
2.0.0/jasmine.js"></script>
 <script type="text/javascript" src="lib/jasmine-
2.0.0/jasmine-html.js"></script>
 <script type="text/javascript" src="lib/jasmine-
2.0.0/boot.js"></script>

 <!-- include source files here... -->
 <script type="text/javascript" src="src/simpleMath.js"></
script>

 <!-- include spec files here... -->
 <script type="text/javascript" src="spec/simpleMathSpec.
js"></script>
 </head>
 <body>
 </body>
</html>

Chapter 7

[231]

As shown in the highlighted lines, <script type="text/javascript" src="spec/
simpleMathSpec.js"></script> is added under the include spec files omment
, while <script type="text/javascript" src="src/simpleMath.js"></
script> is added under the include source files comment. After clicking on the
SpecRunner.html file, you will see our developed JavaScript tests succeed.

Jasmine Matchers
In the first Jasmine example, we used the toEqual and toThrow Jasmine Matchers.
In the following table, some of the other built-in matchers provided by Jasmine are
explained briefly:

Matcher Description
expect(x).toBe(y) The toBe matcher passes if x is of the same type

and value of y. The toBe matcher uses === to
perform this comparison.

expect(x).toBeDefined() The toBeDefined matcher is used to ensure that
x is defined.

expect(x).toBeUndefined() The toBeUndefined matcher is used to ensure
that x is undefined.

expect(x).toBeNull() The toBeNull matcher is used to ensure that x is
null.

expect(x).toBeTruthy() The toBeTruthy matcher is used to ensure that x
is truthy.

expect(x).toBeFalsy() The toBeFalsy matcher is used to ensure that x
is falsy.

expect(x).toContain(y) The toContain matcher is used to check whether
the x string or array value contains y. A valid y
value can be a substring of x or an item of x.

expect(x).toBeLessThan(y) The toBeLessThan matcher is used to ensure
that x is less than y.

expect(x).toBeGreaterThan(y) The toBeGreaterThan matcher is used to ensure
that x is greater than y.

expect(x).toMatch(y) The toMatch matcher is used to check whether x
matches a string or regular expression (y).

Adding to built-in matchers, you can create your own Jasmine custom
matcher. To create your own Jasmine custom matcher, check the Jasmine
2.0 custom matcher documentation page at http://jasmine.github.
io/2.0/custom_matcher.html.

http://jasmine.github.io/2.0/custom_matcher.html
http://jasmine.github.io/2.0/custom_matcher.html

Unit Testing the Cordova App's Logic

[232]

Jasmine in action – developing Cordova
app tests
Now, let's see Jasmine in action. In the following sections, we will illustrate a
Cordova mobile app (weather application), which we will develop its tests using
Jasmine. We will see how to test both the synchronous and asynchronous JavaScript
code of the app, automate running our developed Jasmine tests using Karma, run
our tests on the mobile device browser, generate test and code coverage reports, and
finally, fully automate our tests by integrating our developed tests with CI tools.

An overview of the weather application
The main purpose of the weather application is to allow its users to know the
current weather information of a specified place. It has two main views; the first
view represents First Time login, which appears to the users for their first login
time, as shown in the following screenshot:

Weather application's first time login

Chapter 7

[233]

After entering the valid information and clicking on the Login button, the user will
be forwarded to the weather information page. On the weather information page, the
user can enter the place information and then click on the Weather Info button to get
the current weather information, as shown in the following screenshot:

Again, pretty obvious

After entering valid information on the First Time login page and clicking on the
Login button, if the user exits the app and opens it again, the user will automatically
be forwarded to the weather information page with his/her name displayed in the
welcome message.

In order to create weather application from CLI, we run the following cordova
create command:

> cordova create weather com.jsmobile.weather Weather

We run the usual cordova platform add commands from the app directory to add
the platforms we want to support as follows:

> cd weather

> cordova platform add ios

Unit Testing the Cordova App's Logic

[234]

Finally, we can build our app using the cordova build command as follows:

> cordova build

Now, let's examine the structure of our weather application code. The following
screenshot shows our weather application hierarchy:

The www directory contains the following files and subdirectories:

•	 css: This directory contains the custom application's Cascading Style Sheet
(CSS).

•	 jqueryMobile: This directory contains the jQuery Mobile framework files.
•	 js: This directory contains all the application JavaScript code. It has two

subdirectories:
°° api: This directory contains the app services.

Chapter 7

[235]

°° vc: This directory contains the app view controllers, which register
and implement the event handlers of every page and its user interface
components. An event handler usually calls one or more app services
in order to perform an action and optionally display the returned
results on an app page.

•	 tests: This directory contains the tests of app services, which are
implemented using Jasmine.

The js directory also includes common.js file, which includes the common app
utilities. Under the www directory, the index.html file contains all of the app pages,
and finally, the img directory can contain any app's custom images.

The index.html file contains the following pages:

•	 "landing": This page displays a loading message to the user in the app
startup and forwards the user to either the First Time login page if the user
has not logged in to the app before or to the weather information page if the
user is already registered.

•	 "login": This page displays a form that includes the username and e-mail
input fields and a Login button. The "login" page allows the users to enter
their information while they are accessing the app for the first time. If the
users enter valid information on the "login" page and clicks on the Login
button, the users will not be introduced to this page during their next visit.

•	 "weather": This page allows the user to enter information about a place
and then click on the Weather Info button to find out the current weather
information of the place entered.

The following code snippet shows the "login" page:

<div data-role="page" id="login">
 <div data-role="header" data-position="fixed">
 <h1>First Time login</h1>
 </div>
 <div data-role="content">
 <p>Enter your name and email address</p>
 <form id="loginForm">
 <div class="ui-field-contain">
 <label for="userName">Name</label>
 <input type="text" id="userName"></input>
 </div>
 <div class="ui-field-contain">
 <label for="userEmail">Email</label>

Unit Testing the Cordova App's Logic

[236]

 <input type="text" id="userEmail"></input>
 </div>

 <input type="button" id="loginUser" data-icon="action"
value="Login"/>

 <div id="loginFormMessages" class="error"></div>
 </form>
 </div>
 <div data-role="footer" data-position="fixed">
 <h1>Powered by Apache Cordova</h1>
 </div>
</div>

As shown in the preceding "login" page, it contains the following:

•	 A page header and page footer
•	 Page content that includes the following main elements:

°° "userName": This input field is used to enter the username
°° "userEmail": This input field is used to enter the user's e-mail
°° "loginUser": This button is used to save the user information and

then go to the weather information page
°° "loginFormMessages": This div is used to display the error

messages on the login page

The following code snippet shows the "login" page view controller JavaScript object
that includes the event handlers of the page (login.js):

(function() {
 var userService = UserService.getInstance();

 $(document).on("pageinit", "#login", function(e) {
 e.preventDefault();

 $("#loginUser").on("tap", function(e) {
 e.preventDefault();

 try {
 userService.saveUser({
 'name': $("#userName").val(),
 'email': $("#userEmail").val(),
 });

Chapter 7

[237]

 $.mobile.changePage("#weather");
 } catch (exception) {
 $("#loginFormMessages").html(exception.message);
 }
 });
 });
})();

The "pageinit" event handler that is called once in the initialization of the page
registers the "loginUser" tap event handler, which:

•	 Saves the entered user information by calling the saveUser() method of
the userService object, specifying the user object with the name and email
attributes. The name and email attributes are populated with the "userName"
and "userEmail" input field values, respectively.

•	 Forwards the user to the "weather" page.

If an exception occurs while saving the user information, the "loginFormMessages"
div is populated with the exception message.

The following code snippet shows the UserService JavaScript object, which
interacts with the Web Storage API to save and retrieve the user information
(UserService.js):

var UserValidationException = function(code, message) {
 this.code = code;
 this.message = message;
}

var UserService = (function () {
 var instance;
 var USER_KEY = "WEATHER_USER";

 function isValidEmail(email) {
 var regex = /^([a-zA-Z0-9_.+-])+\@(([a-zA-Z0-9-])+\.)+([a-
zA-Z0-9]{2,4})+$/;

 return regex.test(email);
 }

 function createObject() {
 return {
 saveUser: function (user) {

Unit Testing the Cordova App's Logic

[238]

 if (!user.name || !user.email || user.name.trim().
length == 0 || user.email.trim().length == 0) {
 console.log("You need to specify both user name
and email!");

 throw new UserValidationException("EMPTY_FIELDS",
"You need to specify both user name and email!");
 }

 if (user.name.trim().length > 6) {
 console.log("User name must not exceed 6
characters!");

 throw new UserValidationException("MAX_LENGTH_
EXCEEDED", "User name must not
exceed 6 characters!");
 }

 if (! isValidEmail(user.email)) {
 console.log("Email is invalid!");

 throw new UserValidationException("INVALID_
FORMAT", "Email is invalid!");
 }

 window.localStorage.setItem(USER_KEY,
JSON.stringify(user));
 },
 getUser:function() {
 var user = window.localStorage.getItem(USER_KEY);

 if (user) {
 user = JSON.parse(user);
 }

 return user;
 }
 };
 };

 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

Chapter 7

[239]

 return instance;
 }
 };
})();

As you can see, UserService is a singleton object that has two methods, as
highlighted in the preceding code:

•	 saveUser(user): This uses the window.localStorage.setItem() method
to save the user information in the Local Storage:

°° window.localStorage.setItem(USER_KEY, JSON.
stringify(user)): This has the two parameters in order: USER_KEY,
which is a string that represents the Local Storage item name, and
JSON.stringify(user), which returns the user object JSON string.
This parameter represents the Local Storage item value.

°° If any of the user object information is invalid, then an exception of
the UserValidationException type is thrown.

•	 getUser():This uses the window.localStorage.getItem() method to get
the user information string from the Local Storage and then parses it as a
JSON object using JSON.parse().

We are now done with the "login" page; let's check out the "weather" page.
The following code snippet shows the "weather" page:

<div data-role="page" id="weather">
 <div data-role="header" data-position="fixed">
 <h1>Weather Info</h1>
 </div>
 <div data-role="content">
 <h2>Welcome ,</h2>
 <form id="weatherForm">
 <div class="ui-field-contain">
 <label for="location">Location</label>
 <input type="text" id="location"></input>
 </div>
 <input type="button" id="getWeatherInfo" data-
icon="action" value="Weather Info"/>

 <div id="weatherResult">
 </div>
 </form>
 </div>
</div>

Unit Testing the Cordova App's Logic

[240]

As shown in the preceding "weather" page, it contains the following:

•	 A page header
•	 Page content that includes the following main elements:

°° "user": This span is used to display the username
°° "location": This input field is used to enter the location information
°° "getWeatherInfo": This button is used to get the current weather

information of the location entered in the "location" input field
°° "weatherResult": This div is used to display the current weather

information

The following code snippet shows the page view controller JavaScript object,
which includes the event handlers of the page (weather.js):

(function() {
 var weatherService = WeatherService.getInstance();
 var userService = UserService.getInstance();

 $(document).on("pageinit", "#weather", function(e) {
 e.preventDefault();

 $("#getWeatherInfo").on("tap", function(e) {
 e.preventDefault();

 $("#location").blur(); //Hide keyboard

 $.mobile.loading('show');

 var successCallback = function(result) {
 $.mobile.loading('hide');
 $("#weatherResult").removeClass("error");

 var result = "<img class='center' src='" +
result.icon + "'>
"
 + "Temperature: " + result.temperature
+ "
"
 + "Humidity: " + result.humidity +
"
"
 + "Description: " + result.description
+ "
";

 $("#weatherResult").html(result);
 };

Chapter 7

[241]

 var errorCallback = function(errorMessage) {
 $.mobile.loading('hide');
 $("#weatherResult").addClass("error");
 $("#weatherResult").html(errorMessage);
 };

 weatherService.getWeatherInfo($("#location").val(),
successCallback, errorCallback);
 });
 });

 $(document).on("pageshow", "#weather", function(e) {
 $("#user").html(userService.getUser().name || "");
 });

})();

The "pageinit" event handler registers the "getWeatherInfo" tap event handler.
The "getWeatherInfo" tap event handler gets the current weather information
by calling the getWeatherInfo() method of the weatherService object with the
following parameters in order:

•	 $("#location").val(): This is the user's location entered in the
"location" input text

•	 successCallback: This is the successful callback that will be called if the
weather information query operation succeeds

•	 errorCallback: This is the error callback that will be called if the weather
information query operation fails

In successCallback, the result object, which holds the current weather
information, is received as a parameter, and its main information is displayed
in the "weatherResult" div.

In errorCallback, errorMessage is displayed in the "weatherResult" div.

In our weather page, we use $.mobile.loading to show and hide the
jQuery Mobile loading dialog. The jQuery Mobile loading dialog can be
used to give the user the impression that there is an operation in progress.

The "pageshow" event handler displays the username (which is retrieved using
userService.getUser().name) in the "user" span.

Unit Testing the Cordova App's Logic

[242]

The following code snippet shows the WeatherService JavaScript object,
which interacts with the weather API provided by OpenWeatherMap (http://
openweathermap.org) to get the current weather information for a specified
location (WeatherService.js):

var WeatherService = (function () {
 var instance;
 var BASE_ICON_URL = "http://openweathermap.org/img/w/";

 function createObject() {
 return {
 getWeatherInfo: function (locationText, successCallback,
errorCallback) {
 if (!location || locationText.trim().length == 0) {
 errorCallback("You have to specify a location!");
 }

 $.ajax({
 url: "http://api.openweathermap.org/data/2.5/
weather?q=" +
escape(locationText),
 success: function(response) {
 console.log(response);

 // If response code != 200 then this is an
error
 if (response.cod != 200) {
 errorCallback(response.message);
 return;
 }

 successCallback({
 'temperature': (response.main.temp -
273.15).toFixed(1) + " °C",
 'pressure': response.main.pressure,
 'humidity': response.main.humidity + "%",
 'description': (response.weather[0]) ?
(response.weather[0].description) : "NA",
 'icon': (response.weather[0]) ?
BASE_ICON_URL+ (response.weather[0].icon) + ".png" : ""
 });
 }
 });
 }
 };

http://openweathermap.org
http://openweathermap.org

Chapter 7

[243]

 };

 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

 return instance;
 }
 };
})();

As you can see, WeatherService is a singleton object that has a single method,
as highlighted in the preceding code. The getWeatherInfo(locationText,
successCallback, errorCallback) method which makes an Ajax call using
$.ajax to http://api.openweathermap.org/data/2.5/weather, specifying
q (the query parameter) with locationText. If the operation response code
(response.cod) is not equal to 200 (this means that the operation was not performed
successfully), then errorCallback is called with the response message specified by
response.message. If the operation response code (response.cod) is equal to 200
(this means that the operation was performed successfully), then successCallback
is called with a resulting JSON object that contains temperature, pressure, humidity,
description, and icon information.

Finally, let's check the code of the "landing" page, which is used to decide the
weather application initial page. The following code snippet shows the "landing"
page HTML content:

<div id="landing" data-role="page">
 <div class="center-screen">Please wait ...</div>
</div>

The following code snippet shows the page view controller JavaScript object of the
"landing" page, which is located in landing.js:

(function() {
 var userService = UserService.getInstance();

 $(document).on("pageinit", "#landing", function(e) {
 e.preventDefault();

 function onDeviceReady () {
 console.log("Apache Cordova is loaded");

Unit Testing the Cordova App's Logic

[244]

 var home = '#login';

 if (userService.getUser()) {
 home = '#weather';
 }

 $.mobile.changePage(home);
 }

 document.addEventListener("deviceready", onDeviceReady,
false);
 });
})();

The "pageinit" event handler of the landing page tries to get the user information
using the getUser() method of userService once Cordova is loaded. If there is
an object that is not returned as null from the getUser() method, then the initial
page is chosen to be the "weather" page; else, the initial page is chosen to be the
"login" page.

After exploring the weather application code, let's see how we can develop Jasmine
tests for weather app services.

Developing synchronous code tests
It is the time to develop Jasmine tests for the synchronous JavaScript code
(UserService) in our weather app services. First of all, in order to test the
UserService object, let's basically consider the following four test scenarios:

•	 Test that UserService will not save a user with an empty user name
•	 Test that UserService will not save a user with an invalid e-mail
•	 Test that UserService will not save a user with a username of more

than six characters
•	 Test that UserService will save a user with a valid username and e-mail,

and load the saved user properly when requested

The following code snippet shows UserServiceSpec.js, which includes the test
scenarios mentioned earlier:

describe("UserService", function() {
 var userService;

 beforeEach(function() {
 userService = UserService.getInstance();

Chapter 7

[245]

 });

 it("should NOT be able to save a user with an empty user
name", function() {
 var user = {
 'name': ' ',
 'email': 'hazems@apache.org'
 };

 expect(function() {
 userService.saveUser(user);
 }).toThrow();
 });

 it("should NOT be able to save a user with invalid email",
function() {
 var user = {
 'name': 'Hazem',
 'email': 'Invalid_Email'
 };

 expect(function() {
 userService.saveUser(user);
 }).toThrow();
 });

 it("should NOT be able to save a user with a user name more
than 6 characters", function() {
 var user = {
 'name': 'LengthyUserName',
 'email': 'hazems@apache.org'
 };

 expect(function() {
 userService.saveUser(user);
 }).toThrow();
 });

 it("should be able to save and load a valid user", function()
{
 var originalUser = {
 'name': 'Hazem',
 'email': 'hazems@apache.org'
 };

Unit Testing the Cordova App's Logic

[246]

 userService.saveUser(originalUser);

 var user = userService.getUser();

 expect(user).toEqual(originalUser);
 });
});

We have a test suite called "UserService", which has fours specs. In beforeEach,
the userService object is created using UserService.getInstance().

In the first test scenario of the "UserService" test suite, the spec title is "should
NOT be able to save a user with an empty user name". The spec creates
a user object with an empty username and then passes the created user object to
userService.saveUser(). Finally, the spec expects userService.saveUser() to
throw an exception using the toThrow matcher.

In the second test scenario of the "UserService" test suite, the spec title is "should
NOT be able to save a user with invalid email". The spec creates a user
object specifying an invalid e-mail ('Invalid_Email') and then passes the created
user object to userService.saveUser(). Finally, the spec expects userService.
saveUser() to throw an exception using the toThrow matcher.

In the third test scenario of the "UserService" test suite, the spec title is "should
NOT be able to save a user with a user name more than 6 characters".
The spec creates a user object specifying a username whose length is more than
six characters ('LengthyUserName') and then passes the created user object to
userService.saveUser(). Finally, the spec expects userService.saveUser() to
throw an exception using the toThrow matcher.

In the final test scenario of the "UserService" test suite, the spec title is "should
be able to save and load a valid user". The spec creates a user object
(originalUser) with a valid username and e-mail. The spec then passes the
originalUser object to userService.saveUser() to save the user. After
saving originalUser, the spec then retrieves the saved user object by calling
userService.getUser(). Finally, the spec makes sure that the retrieved user
object is identical to originalUser using the toEqual matcher.

Developing asynchronous code tests
Before developing Jasmine tests for the asynchronous JavaScript code in our
weather app services, you need to understand how we can test asynchronous
operations in Jasmine.

Chapter 7

[247]

Since Jasmine 2.0, testing asynchronous JavaScript code in Jasmine is a very simple
task. In order to develop asynchronous operation Jasmine tests, you need to know that:

•	 Jasmine provides an optional single parameter (usually named done) for
specs (and also for beforeEach and afterEach).

•	 A spec will not complete until done is called. This means that if done is
included as a parameter of a spec, then done has to be called when the
asynchronous operation completes in all cases (whether the operation
succeeds or fails). Note that if done is included as a parameter in
beforeEach, then the spec after beforeEach will not start until done
is called in beforeEach.

•	 If done is not called for 5 seconds by default, then the test will fail; however,
you can change this default timeout interval by setting the jasmine.
DEFAULT_TIMEOUT_INTERVAL variable.

Now, let's develop Jasmine tests for the asynchronous JavaScript code
(WeatherService) in our weather application services to see how to develop Jasmine
tests for asynchronous JavaScript code in action. In order to test the WeatherService
object, let's basically consider the following two test scenarios:

•	 Test that WeatherService will be able to get the weather information for a
valid place

•	 Test that WeatherService will not be able to get the weather information for
an invalid place

The following code snippet shows WeatherServiceSpec.js, which covers the test
scenarios mentioned earlier:

describe("WeatherService", function() {
 var weatherService;
 var originalTimeout;

 beforeEach(function() {
 weatherService = WeatherService.getInstance();
 originalTimeout = jasmine.DEFAULT_TIMEOUT_INTERVAL;
 jasmine.DEFAULT_TIMEOUT_INTERVAL = 8000;
 });

 it("should be able to get weather information for a valid place",
function(done) {
 var successCallback = function(result) {
 expect(result.temperature).not.toBeNull();
 done();
 };

Unit Testing the Cordova App's Logic

[248]

 var errorCallback = function() {
 expect(true).toBe(false); // force failing test manually
 done();
 };

 weatherService.getWeatherInfo("Paris, France",
successCallback, errorCallback);
 });

 it("should NOT be able to get weather information for an invalid
place", function(done) {
 var successCallback = function(result) {
 expect(true).toBe(false); // force failing test manually
 done();
 };

 var errorCallback = function(message) {
 expect(message).not.toBeNull();
 done();
 };

 weatherService.getWeatherInfo("Invalid Place",
successCallback, errorCallback);
 });

 afterEach(function() {
 jasmine.DEFAULT_TIMEOUT_INTERVAL = originalTimeout;
 });
});

We have a test suite called "WeatherService", which has two specs. In
beforeEach, the weatherService object is created using WeatherService.
getInstance(), and jasmine.DEFAULT_TIMEOUT_INTERVAL is set to 8000 to
change the default timeout interval to 8 seconds instead of 5 seconds. In afterEach,
the jasmine.DEFAULT_TIMEOUT_INTERVAL is set to its default timeout value again.

As shown in the preceding highlighted code, in the first test scenario of the
"WeatherService" test suite, the spec title is "should be able to get weather
information for a valid place". The spec calls the weatherService.
getWeatherInfo(locationText, successCallback, errorCallback) method,
specifying the following parameters in order:

•	 locationText: This is set to a valid place, that is, "Paris, France".

Chapter 7

[249]

•	 successCallback: This is set to a successful callback function that takes
result as a parameter. In successCallback(result), the result returned
is validated to have a valid temperature value, and finally, the done
parameter is called.

•	 errorCallback: This is set to an error callback function. In
errorCallback(), the test is forced to fail as this callback should never be
called if weatherService.getWeatherInfo executes successfully. Finally,
the done parameter is called.

In the second test scenario of the "WeatherService" test suite, the spec title
is "should NOT be able to get weather information for an invalid
place". The spec calls the weatherService.getWeatherInfo(locationText,
successCallback, errorCallback) method, specifying the following parameters
in order:

•	 locationText: This is set to an invalid place, that is, "Invalid Place".
•	 successCallback: This is set to a successful callback function that takes

result as a parameter. In successCallback(result), the test is forced
to fail. This is because this successful callback should never be called if
weatherService.getWeatherInfo behaves correctly, as it does not make
sense to get the weather information successfully for an invalid place.
Finally, the done parameter is called.

•	 errorCallback: This is set to an error callback function that takes message
as a parameter. In errorCallback(message), the returned message is
validated to be a non-null value, which means that weatherService.
getWeatherInfo behaves correctly, as it produces an error message when
asked to get the weather information for an invalid place. Finally, the (done)
parameter is called.

It is important to note that JavaScript unit testing can be
implemented using many frameworks and has many details that
cannot be covered completely by a single small chapter. To get
more information about Jasmine (such as mocking asynchronous
operations using Spies and loading HTML fixtures using
jasmine-jquery) and other popular JavaScript Unit testing
frameworks such as YUI Test and QUnit, we recommend that you
read JavaScript Unit Testing, Hazem Saleh, Packt Publishing.

Unit Testing the Cordova App's Logic

[250]

Manually executing tests
After developing Jasmine tests for both the weather application's synchronous and
asynchronous JavaScript code, it is the time to run the developed Jasmine tests from
the SpecRunner.html file. The following code snippet shows the important contents
of the SpecRunner.html file:

<!DOCTYPE HTML>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html;
charset=UTF-8">
 <title>Jasmine Spec Runner v2.0.0</title>

 <script src="../jqueryMobile/jquery-1.10.2.min.js"></script>

 <!-- ... Jasmine files are included here .. -->

 <!-- include source files here... -->
 <script type="text/javascript" src="../js/api/UserService.
js"></script>
 <script type="text/javascript" src="../js/api/WeatherService.
js"></script>

 <!-- include spec files here... -->
 <script type="text/javascript" src="spec/UserServiceSpec.
js"></script>
 <script type="text/javascript" src="spec/WeatherServiceSpec.
js"></script>
 </head>

 <body>
 </body>
</html>

As shown in the preceding highlighted code, besides the Jasmine framework files,
SpecRunner.html also includes the following files:

•	 jquery-1.10.2.min.js, as it is required by WeatherService
•	 JavaScript source files (UserService.js and WeatherService.js)
•	 JavaScript test files (UserServiceSpec.js and WeatherServiceSpec.js)

We can check the results of our developed tests by clicking on the SpecRunner.html
file, and then we will see the tests passing.

Chapter 7

[251]

Automating tests using Karma
Running Jasmine tests manually by running SpecRunner.html on every browser
can be a time-consuming process; this is why automating Jasmine tests is important.
In order to automate Jasmine tests, we can use Karma (http://karma-runner.
github.io).

Karma is one of the best modern JavaScript test runners that can be used to automate
JavaScript tests. Karma is based on Node.js and is distributed as a node package.
Karma provides an easy-to-use command-line interface that we will illustrate in
detail in the following sections.

Karma includes a web server that can capture one or more browser(s), execute
JavaScript tests on the captured browsers, and finally, report the test results of every
browser in the command-line interface. In order to capture a browser in Karma, you
can execute one of the following two methods:

•	 Make the browser(s) that you want to capture visiting Karma server URL
(usually, it is http://${karma_server_ip}:9876/).

•	 In the configuration file, you can specify the browser(s) to launch
automatically when the Karma server starts (check the Karma Configuration
section). Doing this configuration will save a lot of time spent on executing
your JavaScript tests manually on the different browsers.

The following sections will show you how we will use Karma with Jasmine in detail.

Installing Karma
In order to work with Karma, you need to make sure that you have Node.js installed
in your operating system. In order to install Node.js in Windows and Mac, you can
download their installers from http://nodejs.org/download/; for Linux, you can
use the Node Version Manager (NVM) from https://github.com/creationix/
nvm. Currently, Karma works perfectly with the latest stable versions of Node.js
(0.8.x and 0.10.x).

It is recommended that you install Karma and all of its plugins that our project
needs in the project directory. In order to install Karma in our project, execute
the following command directly under the www directory of our weather project:

> npm install karma --save-dev

http://karma-runner.github.io
http://karma-runner.github.io
http://nodejs.org/download/
https://github.com/creationix/nvm
https://github.com/creationix/nvm

Unit Testing the Cordova App's Logic

[252]

Then, we can install karma-Jasmine 2.0 (to run the Jasmine 2.0 code over Karma) and
karma-chrome-launcher (to launch the Chrome browser automatically when requested
by the Karma configuration) plugins from the command-line interface as follows:

> npm install karma-jasmine@2_0 karma-chrome-launcher --save-dev

In order to avoid typing the full path of Karma every time you execute a karma
command, it is recommended that you install Karma CLI globally by executing the
following command:

> npm install -g karma-cli

Karma configuration
We can generate the initial Karma configuration using CLI by executing the
following command and answering the Karma configuration questions:

> karma init config.js
Which testing framework do you want to use?
Press tab to list possible options. Enter to move to the next
question.
> jasmine

Do you want to use Require.js?
This will add Require.js plugin.
Press tab to list possible options. Enter to move to the next
question.
> no

Do you want to capture any browsers automatically?
Press tab to list possible options. Enter empty string to move to the
next question.
> Chrome
>

What is the location of your source and test files?
You can use glob patterns, eg. "js/*.js" or "test/**/*Spec.js".
Enter empty string to move to the next question.
>jqueryMobile/jquery-1.10.2.min.js
>js/api/*.js
> tests/spec/*.js
>

Chapter 7

[253]

Should any of the files included by the previous patterns be excluded
?
You can use glob patterns, eg. "**/*.swp".
Enter empty string to move to the next question.
>

Do you want Karma to watch all the files and run the tests on change ?
Press tab to list possible options.
> yes
Config file generated at "${somePath}/config.js".

The following code snippet shows the generated Karma config.js file:

module.exports = function(config) {
 config.set({
 basePath: '',
 frameworks: ['jasmine'],
 files: [
 'jqueryMobile/jquery-1.10.2.min.js',
 'js/api/*.js',
 'tests/spec/*.js'
],
 exclude: [
],
 preprocessors: {
 },
 reporters: ['progress'],
 port: 9876,
 colors: true,
 logLevel: config.LOG_INFO,
 autoWatch: true,
 browsers: ['Chrome'],
 singleRun: false
 });
};

Unit Testing the Cordova App's Logic

[254]

The following table explains the meaning of the generated configuration
attributes briefly:

Attribute Description
basePath This specifies the base path that will be used to resolve all patterns

in files, exclude attributes. In our case, we specified '', which
means that the current configuration file path is the base path.

frameworks This specifies the frameworks to use. You can use many
frameworks, other than Jasmine, with Karma, such as QUnit and
mocha. In our case, we specified 'jasmine'.

files This specifies the list of files (or file patterns) to load in the
browser. In our case, we specified the jQuery JavaScript file,
'jqueryMobile/jquery-1.10.2.min.js' (as a dependency
needed by the source files), the source files, 'js/api/*.js', and
finally, the test files, 'tests/spec/*.js'.

exclude This specifies the list of files to exclude.
preprocessors This specifies the files that should be preprocessed before serving

them to the browser. We will use this attribute in the code coverage
section.

reporters This specifies the test result reporter to use. In our case, we
specified the 'progress' reporter to show the detailed test
progress (in every browser) in the console. You can specify the
'dots' reporter to ignore these details and replace them with dots
for simplification.

port This specifies the Karma server port.
colors This specifies whether to enable or disable colors in the output.
logLevel This specifies the level of logging. It can have one of the possible

values: config.LOG_DISABLE, config.LOG_ERROR, config.
LOG_WARN, config.LOG_INFO, and config.LOG_DEBUG. In our
case, we specified config.LOG_INFO.

autoWatch If this attribute is set to true, then Karma will watch the files and
execute tests whenever any file changes.

browsers This specifies the browser(s) to launch and capture when the
Karma server starts. In our case, we specify 'Chrome'; we can also
specify the Safari, Firefox, Opera, PhantomJS, and IE browsers.

singleRun Setting this attribute to true means that Karma will start the
specified browser(s), run the tests, and finally exit. Setting this
attribute to true is suitable for a Continuous Integration mode
(check the Integrating tests with Build and CI tools section). In our
case, we set it to false to declare that it is not a single run.

Chapter 7

[255]

Running tests (on mobile devices)
In order to start running our developed Jasmine test using Karma, we can start the
Karma server specifying our configuration file as a parameter as follows:

> karma start config.js

This will automatically start a Chrome browser instance and execute our
developed Jasmine tests on it. Finally, you will find output results like the
following in the console:

INFO [karma]: Karma v0.12.19 server started at http://localhost:9876/
INFO [launcher]: Starting browser Chrome
INFO [Chrome 36.0.1985 (Mac OS X 10.9.2)]: Connected on socket
PF7lhJWBohNMJqOlUdnP with id 78567722
... Some test results information here...
Executed 6 of 6 SUCCESS (1.575 secs / 1.57 secs)

If we want Karma to test our Jasmine code on more browsers, we can simply:

•	 Specify more browsers in the browsers attribute of the configuration file
•	 Install the browser launcher plugin in our app directory

For example, if we want to test our Jasmine code in Firefox, we will do the following:

1.	 In the config.js file, add 'Firefox' to the browser's attribute as follows:
browsers: ['Chrome', 'Firefox']

2.	 Install the Firefox launcher plugin in our app directory as follows:
> npm install karma-firefox-launcher --save-dev

3.	 Run the karma start config.js command again to see the test results in
the CLI for both Chrome and Firefox.

Unit Testing the Cordova App's Logic

[256]

In order to run our tests on a mobile browser, we can make the mobile browser visit
the URL of the Karma server. The following screenshot shows the tests run on an
Android mobile browser.

Running the tests on an Android mobile browser

The following are the test results in the Android browser that are displayed
in the console:

INFO [Android 4.1.2 (Android 4.1.2)]: Connected on socket
Rv85bR0dfNpt5S8ecBnc with id manual-7523
... Some test results information here ...
Android 4.1.2 (Android 4.1.2): Executed 6 of 6 SUCCESS (1.094 secs /
1.02 secs)

Generating XML JUnit and code coverage
reports
Karma, by default, outputs test results in the console. In order to output the test
results in an XML JUnit report, we need to use the Karma JUnit reporter plugin
(https://github.com/karma-runner/karma-junit-reporter).

https://github.com/karma-runner/karma-junit-reporter

Chapter 7

[257]

In order to install Karma JUnit reporter plugin, execute the following command:

> npm install karma-junit-reporter --save-dev

Then, we need to add the plugin configuration in our config.js file, as highlighted
in the following code snippet:

module.exports = function(config) {
 config.set({
 reporters: ['progress', 'junit'],

 // The default configuration
 junitReporter: {
 outputFile: 'test-results.xml',
 suite: ''
 }
 });
};

This means that the JUnit reporter will output the test results in the 'test-results.
xml' file. In order to see the XML JUnit report, execute karma start config.js
again, and you will find the XML JUnit report, as shown in the following code:

<?xml version="1.0"?>
<testsuites>
 ...
 <testsuite name="Chrome 36.0.1985 (Mac OS X 10.9.2)" package=""
timestamp="2014-08-11T10:42:53" id="0" hostname="IBMs-
MacBook-Pro-2.local" tests="6" errors="0" failures="0" time="1.017">
 <properties>
 <property name="browser.fullName" value="Mozilla/5.0
(Macintosh; Intel Mac OS X 10_9_2) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/36.0.1985.125 Safari/537.36"/>
 </properties>
 <testcase name="should NOT be able to save a user with an
empty user name" time="0.004" classname="Chrome 36.0.1985 (Mac OS
X 10.9.2).UserService"/>
 <testcase name="should NOT be able to save a user with
invalid email" time="0.001" classname="Chrome 36.0.1985 (Mac OS X
10.9.2).UserService"/>
 <testcase name="should NOT be able to save a user with a
user name more than 6 characters" time="0" classname="Chrome
36.0.1985 (Mac OS X 10.9.2).UserService"/>

Unit Testing the Cordova App's Logic

[258]

 <testcase name="should be able to save and load a valid
user" time="0.002" classname="Chrome 36.0.1985 (Mac OS X
10.9.2).UserService"/>
 <testcase name="should be able to get weather information
for a valid place" time="0.419" classname="Chrome 36.0.1985 (Mac
OS X 10.9.2).WeatherService"/>
 <testcase name="should NOT be able to get weather
information for an invalid place" time="0.591" classname="Chrome
36.0.1985 (Mac OS X 10.9.2).WeatherService"/>
 <system-out> ... </system-out>
 <system-err/>
 </testsuite>
</testsuites>

Adding to JUnit XML reports, Karma can generate code coverage reports. In order
to generate code coverage using Karma, we can use the Karma coverage plugin
(https://github.com/karma-runner/karma-coverage).

In order to install the Karma coverage plugin, execute the following command:

> npm install karma-coverage --save-dev

Then, we need to add the plugin configuration in our config.js file, as highlighted
in the following code snippet:

module.exports = function(config) {
 config.set({
 // ...
 reporters: ['progress', 'coverage'],
 preprocessors: {
 'js/api/*.js': ['coverage']
 },
 coverageReporter: {
 type : 'html',
 dir : 'coverage/'
 }
 });
};

This previous configuration means that the Karma code coverage plugin will
generate code coverage report(s) for our JavaScript source files, 'js/api/*.js',
and output the code coverage results under the 'coverage' directory in an HTML
format. Note that every browser will have its own directory under the 'coverage'
directory, including its code coverage report. The following screenshot shows the
code coverage report for the Chrome browser:

https://github.com/karma-runner/karma-coverage

Chapter 7

[259]

Code coverage report

As shown in the preceding screenshot, the code coverage is generated for code
statements, branches, and functions.

Integrating tests with the CI tools
Having the ability to execute Karma tests from the command-line interface allows
us to fully automate running Karma tests using CI tools. In order to integrate Karma
tests with Jenkins (a popular CI tool), we need to perform the following steps in the
Jenkins project configuration:

1.	 Select Execute Shell from Add build step (or Execute Windows batch
command if you are using Windows), then specify the location of the shell
file that starts the Karma server and run the tests. The shell file can have the
following commands:
#!/bin/bash

cd weather/www

export PATH=$PATH:/usr/local/bin

karma start config.js --single-run --browsers PhantomJS

The previous shell script code starts the Karma server in a single run mode
and specifies PhantomJS (http://phantomjs.org) as the browser that will
execute JS tests. PhantomJS is a very light-weight, headless browser that can
be a good choice for CI environments. In order to work with PhantomJS in
Karma, we have to install its launcher plugin from CLI as follows:

> npm install karma-phantomjs-launcher --save-dev

http://phantomjs.org

Unit Testing the Cordova App's Logic

[260]

2.	 Select Publish JUnit test result report from Post-build Actions, and in test
report XML, specify the path of the XML JUnit report, 'weather/www/test-
results.xml'. Jenkins fortunately recognizes the JUnit XML format, which
we generate in our JavaScript tests.

After making these main changes and building the Jenkins CI project, we
will find the JavaScript test results shown in the project dashboard after some
builds have been done, as shown in the following screenshot:

JavaScript test results in the Jenkins project dashboard

You can get the complete source code of the weather application
with its JavaScript tests from the book page or from GitHub using
https://github.com/hazems/cordova-js-unit-testing.

Summary
In this chapter, you understood how to develop JavaScript tests for both synchronous
and asynchronous JavaScript code of your Cordova app logic using Jasmine. You
learned how to utilize Karma in order to automate running your JavaScript tests.
You know how to generate test and code coverage reports from your JavaScript tests.
Finally, you learned how to fully automate your JavaScript tests by integrating your
tests with Jenkins as an example of the CI tools. In the next chapter, you will learn
how to design and develop a complete app (Mega App) using Apache Cordova and
the jQuery Mobile API on the three popular mobile platforms (Android, iOS, and
Windows Phone 8).

https://github.com/hazems/cordova-js-unit-testing

Applying it All – the
Mega App

In this chapter, you will learn how to design and develop a complete app (the Mega
App) using Apache Cordova and jQuery Mobile APIs. Mega App is a memo utility
that allows users to create, save, and view audible and visual memos on the three most
popular mobile platforms (Android, iOS, and Windows Phone 8). In order to create
this utility, Mega App uses jQuery Mobile to build the user interface and Apache
Cordova to access the device information, camera, audio (microphone and speaker),
and filesystem. In this chapter, you will learn how to create a portable app that respects
the philosophy differences between Android, iOS, and Windows Phone 8.

Applying it All – the Mega App

[262]

Mega App specification/wireframes
Mega App is a Cordova App that uses some of the Cordova plugins and jQuery
Mobile in order to build a memo utility. It allows you to create your audible memos
(such as talks, lectures, reminders, business meetings, and kids' voices) and also
visual memos using an easy-to-use and responsive user interface. It also allows you
to manage all your memos from a single unified listing. Mega App works on the
Android, iOS, and Windows Phone 8 platforms. The following screenshot shows the
home page of Mega App; it displays a list of the user's audio and visual memos:

Mega App home page

Chapter 8

[263]

In order to create a new memo, click on the New button on the page header, and you
can select to create either "Voice memo" or "Photo memo". When you select creating
a new "Voice memo", you will be introduced to the voice memo page in which you
can enter the voice memo details in the Title and Details fields and click on the
Record button to start recording audio, as shown in the following screenshot:

Creating a new voice memo

Once you are done, click on the Stop Recording button to finish recording. You can
then listen to the recorded voice by clicking on the Playback button. After entering
all the voice-recording information, you can finally click on the Save Memo button
to save your voice memo. After clicking on the Save Memo button, you will be
forwarded to the app's home page to view your saved voice memo in the memo list
(a voice memo is marked with an audio icon at the end of the voice memo item).

Applying it All – the Mega App

[264]

In order to create a new photo memo, click on the New button on the page header
and then select the Photo Memo option; you will be introduced to the photo memo
page in which you can enter the photo memo details in the Title and Details fields
and click on the Get Photo button to get a photo either by capturing it using the
camera or by getting it from the device's gallery.

If you choose to get a photo from Gallery, you will be forwarded to the device's
gallery to pick a picture from there, and if you choose to get a photo from Camera,
then the device's camera app will be launched to allow you to capture a photo. Once
you are done with getting the photo, you can view the photo in the photo memo
page, as shown in the following screenshot:

Creating a new photo memo

Chapter 8

[265]

After entering all the photo memo information, you can click on the Save Memo
button to save your photo memo. After clicking on the Save Memo button, you will
be forwarded to the app's home page to view your saved photo memo in the memo
list (a photo memo is marked with a camera icon at the end of the photo memo item).

It is important to note that at any point in time, you can click on any listing item
(in the app's home page listing), which represents either a voice or a photo memo,
to get its details. The following screenshot shows a detailed saved voice memo:

Editing voice memo details

In the memo details page, you can view and edit the memo information and can also
delete the created memo by clicking on the Remove button.

Finally, in the home page, you have the option to delete all of the created
memos by clicking on the Remove All Memos button and confirming the deletion
of memo items.

Applying it All – the Mega App

[266]

Preparing for the Mega App
In order to create our Mega App's initial files from the Cordova CLI, we run the
cordova create command as follows:

> cordova create megaapp com.jsmobile.megaapp MegaApp

Then, we will add the following Cordova plugins to our project using the cordova
plugin add command:

•	 Camera plugin:
> cordova plugin add https://git-wip-us.apache.org/repos/asf/
cordova-plugin-camera.git

•	 Media plugin:
> cordova plugin add https://git-wip-us.apache.org/repos/asf/
cordova-plugin-media.git

•	 File plugin:
> cordova plugin add https://git-wip-us.apache.org/repos/asf/
cordova-plugin-file.git

•	 Device plugin:
> cordova plugin add https://git-wip-us.apache.org/repos/asf/
cordova-plugin-device.git

•	 Dialogs plugin:

> cordova plugin add https://git-wip-us.apache.org/repos/asf/
cordova-plugin-dialogs.git

As we support three platforms (iOS, Android, and Windows Phone 8), we run the
following cordova platform add command from the app directory to add the
platforms that we want to support:

> cd megaapp

> cordova platform add ios

> cordova platform add android

> cordova platform add wp8

Finally, we can build our app on all the platforms using the following cordova
build command:

> cordova build

Chapter 8

[267]

Do not forget to apply the general Cordova 3.4 app fixes for iOS 7 and
Windows Phone 8, which were illustrated in detail in Chapter 3, Apache
Cordova Development Tools.

The Mega App architecture
As Mega App needs to store audio and image files in the device's storage so that
users can access them later, we need to be aware of the nature of every platform's
filesystem to properly store our app's audio and image files.

In Android, we do not have any restrictions on storing our app files under the device's
SD card root if the SD card is available, so we can save our audio and picture files in
our app's directory under the device's SD card root without any issues.

As a matter of fact, not all Android devices have SD cards. This is
why if your Android device does not have an SD card, then the Mega
App's audio files will be stored under the app's private data directory,
/data/data/[app_directory].

At the time of writing this book, storing app files outside the app directory is
not possible in iOS. iOS places each app (including its preferences and data) in a
Sandbox at the time of installation for security reasons. As part of the Sandboxing
process, the system installs each app in its own Sandbox directory, which acts as the
home for the app and its data. The following screenshot shows the subdirectories for
an iOS app's Sandbox directory:

An iOS app's Sandbox directory content

Applying it All – the Mega App

[268]

As shown in the preceding screenshot, an iOS app's Sandbox directory mainly
contains the following subdirectories:

•	 Documents: This directory can be used to store the user's documents and
app's data files.

•	 Library: This is a directory for the files that are not user data files.
•	 tmp: This directory can be used to store temporary files that you don't need to

persist between launches of your app. Note that iOS might purge files from
this directory when your app is not running.

We will store our app's voice and picture files under the Documents directory of our
iOS app's Sandbox directory.

Besides the shown Sandbox directory content, an iOS app's Sandbox
directory also includes <<AppName>>.app, which represents the bundle
directory that contains the app.

Finally, in Windows Phone 8, we will save our audio and picture files under the app
local directory. Note that using the native Windows Phone 8 API (Window.Storage),
you can read and write files in an SD card with some restrictions, check:
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/dn611857.
aspx. However, at this moment, you cannot do this using Apache Cordova;
hopefully, this capability will be supported soon by Cordova.

Now, let's check the Mega App structure. The following screenshot shows the
structure of our Mega App:

Mega App structure

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/dn611857.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/dn611857.aspx

Chapter 8

[269]

The www directory contains the following files and subdirectories:

•	 css: This directory contains the custom app's Cascading Style Sheets.
•	 jqueryMobile: This directory contains the jQuery Mobile framework files.
•	 js: This directory contains all the app JavaScript code. It has three

subdirectories:

°° api: This directory contains the app's services (managers).
°° model: This directory contains the app's model.
°° vc: This directory contains the app's view controllers, which register

and implement the event handlers of every page and its user
interface elements. An event handler usually calls one or more of the
app's services (specifying a model object or more if needed) in order
to perform an action and optionally display the returned results on
an app page.

This js directory also includes common.js file, which includes the common app
utilities. Under the www directory, the index.html file contains all the app pages,
and finally, the img directory can contain any app custom images.

The details of the most important app files will be illustrated in the next sections of
the chapter.

The Mega App model and API
The Mega App model contains only one JavaScript object that represents the voice
and photo memo data, as shown in the following code snippet:

var MemoItem = function(memoItem) {
 this.id = memoItem.id || "Memo_" + (new Date()).getTime();
 this.title = memoItem.title || "";
 this.desc = memoItem.desc || "";
 this.type = memoItem.type || "voice";
 this.location = memoItem.location || "";
 this.mtime = memoItem.mtime || "";
};

The MemoItem object contains the following attributes:

•	 id: This represents the memo ID (its default value is unique as it includes a
numeric value of the current time in milliseconds)

•	 title: This represents the memo title

Applying it All – the Mega App

[270]

•	 desc: This represents the memo description
•	 type: This represents the memo type, and it can be "voice" or "photo"

(its default value is "voice")
•	 location: This represents the location of the media (audio or photo) file in

the device's filesystem
•	 mtime: This represents the time when the memo was created

We mainly have one service (MemoManager) that is used by the app view controllers.
The MemoManager object contains the API needed to:

•	 Save a memo
•	 Update a memo
•	 Remove a memo
•	 Remove all memos
•	 Get memo details
•	 Get all memos
•	 Record and play a voice
•	 Get a photo from the camera or gallery

The MemoManager object uses FileManager in order to perform the required file
operations, which will be illustrated later.

The following code snippet shows the first part of the MemoManager object:

var MemoManager = (function () {
 var instance;

 function createObject() {
 var MEMOS_KEY = "memos";
 var APP_BASE_DIRECTORY = "Mega";
 var audioMedia;
 var recordingMedia;
 var mediaFileName;

 return {
 getMemos: function () {
 var items = window.localStorage.getItem(MEMOS_KEY);

 if (items) {

Chapter 8

[271]

 memoMap = JSON.parse(items);
 } else {
 memoMap = {};
 }

 return memoMap;
 },
 getMemoDetails: function (memoID) {
 var memoMap = this.getMemos();

 return memoMap[memoID];
 },
 saveMemo: function (memoItem) {
 var memoMap = this.getMemos();

 memoMap[memoItem.id] = memoItem;

 window.localStorage.setItem(MEMOS_KEY, JSON.
stringify(memoMap));
 },
 removeMemo: function(memoID) {
 var memoMap = this.getMemos();

 if (memoMap[memoID]) {
 delete memoMap[memoID];
 }

 window.localStorage.setItem(MEMOS_KEY, JSON.
stringify(memoMap));
 },
 removeAllMemos: function() {
 window.localStorage.removeItem(MEMOS_KEY);
 }

 // code is omitted for simplicity ...
 };
 };

 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

Applying it All – the Mega App

[272]

 return instance;
 }
 };
})();

As shown in the preceding code, the first part of MemoManager is straightforward.
It has the following methods, which are used to save, update, delete, and retrieve
memos:

•	 saveMemo(memoItem): This uses the window.localStorage.setItem()
method to save or update a memo item in the device's Local Storage by
adding (updating) it to the memoMap object. The memoMap object is a JSON
map whose key represents the memo item ID and value represents the memo
item object.

•	 removeMemo(memoID): This removes the memo, whose ID is memoID, from
memoMap and finally saves the updated memoMap object in the device's local
storage using the window.localStorage.setItem() method.

•	 removeAllMemos(): This uses the window.localStorage.removeItem()
method to remove memoMap from the device's local storage.

•	 getMemoDetails(memoID): This gets the memo details from memoMap
using memoID.

•	 getMemos(): This gets all the app's memos by returning the stored memoMap
object. The stored memoMap object is retrieved from the device's local storage
using the window.localStorage.getItem() method.

The following code snippet shows the voice recording and playback parts of
MemoManager:

startRecordingVoice: function (recordingCallback) {
 var recordVoice = function(dirPath) {
 var basePath = "";

 if (dirPath) {
 basePath = dirPath;
 }

 mediaFileName = (new Date()).getTime() + ".wav";

 var mediaFilePath = basePath + mediaFileName;

 var recordingSuccess = function() {
 recordingCallback.recordSuccess(mediaFilePath);
 };

Chapter 8

[273]

 recordingMedia = new Media(mediaFilePath, recordingSuccess,
recordingCallback.recordError);

 // Record audio
 recordingMedia.startRecord();
 };

 if (device.platform === "Android") {

 // For Android, store the recording in the app directory
under the SD Card root if available ...
 var callback = {};

 callback.requestSuccess = recordVoice;
 callback.requestError = recordingCallback.recordError;

 fileManager.requestDirectory(APP_BASE_DIRECTORY, callback);
 } else if (device.platform === "iOS") {

 // For iOS, store recording in app documents directory ...
 recordVoice("documents://");
 } else {

 // Else for Windows Phone 8, store recording under the app
directory
 recordVoice();
 }
},
stopRecordingVoice: function () {
 recordingMedia.stopRecord();
 recordingMedia.release();
},
playVoice: function (filePath, playCallback) {
 if (filePath) {
 this.cleanUpResources();

 audioMedia = new Media(filePath, playCallback.playSuccess,
playCallback.playError);

 // Play audio
 audioMedia.play();
 }
},

Applying it All – the Mega App

[274]

cleanUpResources: function() {
 if (audioMedia) {
 audioMedia.stop();
 audioMedia.release();
 audioMedia = null;
 }

 if (recordingMedia) {
 recordingMedia.stop();
 recordingMedia.release();
 recordingMedia = null;
 }
}

The startRecordingVoice(recordingCallback) method, starts the voice recording
action, checks the current device's platform in order to save the audio file properly:

•	 If the current platform is Android, then it requests the app directory path
("Mega") in order to save the recorded media file under it. In order to do
this, a call to fileManager.requestDirectory(APP_BASE_DIRECTORY,
callback) is performed in order to get the app directory path and optionally
create it if it does not exist under the device's SD card root using the Apache
Cordova file API (or create it under the app's private data directory,
(/data/data/[app_directory], if the SD card is not available). If the app
directory request operation succeeds, then recordVoice(dirPath) will be
called, in this case, and the app directory path (dirPath) will be passed as a
parameter. The recordVoice() function starts recording the voice using the
Media object's startRecord() method. In order to create a Media object, the
following parameters are specified in the Media object constructor:

°° The complete path of the media file (mediaFilePath).
°° recordingSuccess which refers to the callback that will be invoked

if the media operation succeeds. recordingSuccess calls the
original recordingCallback.recordSuccess method specifying
mediaFilePath as a parameter.

°° recordingCallback.recordError which refers to the callback that
will be invoked if the media operation fails.

Chapter 8

[275]

•	 In iOS, recordVoice() is called with "documents://" as the directory path
(dirPath) in order to save our app's media audio file under the Documents
directory of the app's Sandbox directory.

In iOS, if we just specify the audio filename without any path in the
Media object constructor:

var recordingMedia = new Media("test.wav" ...);

Then "test.wav" will be saved under the tmp directory of our iOS app's
Sandbox directory (if you do this, then your app users will be surprised
to find, maybe after a while, that their saved audio files have been deleted
as the tmp directory can be cleaned automatically by iOS, so be aware of
this).
Specifying the "documents://" prefix before the media filename in
the Media object constructor will enforce the Media object to save the
"test.wav" file under the app's Documents directory:

var recordingMedia = new Media("documents://test.wav"
...);

•	 In the final else block that represents the Windows Phone 8 case,
recordVoice() is called without specifying any parameters that tell
the Media object to save the audio file under the app local directory.

As you can see, we have to respect the nature of every supported platform in order
to get the expected results.

The stopRecordingVoice() method simply stops recording the voice by calling
the stopRecord() method of the Media object and finally releases the used media
resource by calling the release() method of the Media object.

The playVoice(filePath, playCallback) method creates a Media object that
points to the file specified in filePath, and then plays the file using the play()
method of the Media object. The cleanUpResources() method makes sure that all of
the used media resources are cleaned up.

The following code snippet shows the photo capturing and picking part of
MemoManager:

getPhoto: function (capturingCallback, fromGallery) {
 var source = Camera.PictureSourceType.CAMERA;

 if (fromGallery) {
 source = Camera.PictureSourceType.PHOTOLIBRARY;
 }

 var captureSuccess = function(filePath) {

Applying it All – the Mega App

[276]

 //Copy the captured image from tmp to app directory ...
 var fileCallback = {};

 fileCallback.copySuccess = function(newFilePath) {
 capturingCallback.captureSuccess(newFilePath);
 };

 fileCallback.copyError = capturingCallback.captureError;

 if (device.platform === "Android") {

 //If it is Android then copy image file to App
directory under SD Card root if available ...
 fileManager.copyFileToDirectory(APP_BASE_DIRECTORY,
filePath, true, fileCallback);
 } else if (device.platform === "iOS") {

 //If it is iOS then copy image file to Documents
directory of the iOS app.
 fileManager.copyFileToDirectory("", filePath, true,
fileCallback);
 } else {

 //Else for Windows Phone 8, store the image file in
the application's isolated store ...
 capturingCallback.captureSuccess(filePath);
 }
 };
 navigator.camera.getPicture(captureSuccess,
 capturingCallback.captureError,
 {
 quality: 30,
 destinationType: Camera.DestinationType.FILE_URI,
 sourceType: source,
 correctOrientation: true
 });
}

The getPhoto(capturingCallback, fromGallery)method, is used to get the
photo by picking it from the device's gallery or by capturing it using the device's
camera, it checks the fromGallery parameter and if it is set to true, then the picture
source type is set to Camera.PictureSourceType.PHOTOLIBRARY, and if it is set to
false, the picture source type will be Camera.PictureSourceType.CAMERA.

Chapter 8

[277]

A photo is obtained by calling the navigator.camera.getPicture() method
specifying the following parameters in order:

•	 captureSuccess: This refers to the callback that will be invoked if the
getPicture() operation succeeds

•	 capturingCallback.captureError: This refers to the callback that will be
invoked if the getPicture() operation fails

•	 In the last parameter, the camera options are set (destinationType is
set to Camera.DestinationType.FILE_URI to get the image file URI,
sourceType is set to the picture source type, quality is set to 30, and finally,
correctOrientation is set to true)

captureSuccess checks the current device's platform to properly save the
picture file:

•	 If the current platform is Android, then it copies the picture file to
the app directory. In order to do this, a call to the fileManager.
copyFileToDirectory(APP_BASE_DIRECTORY, filePath,
true, fileCallback) method is performed. The fileManager.
copyFileToDirectory(dirPath, filePath, enforceUniqueName,
fileCallback) method has the following parameters placed in order:

°° dirPath: This represents the full path of the destination directory to
which the file will be copied.

°° filePath: This represents the full path of the file to be copied.
°° enforceUniqueName: If this parameter is set to true, this will enforce

the copied file to have a new name in the destination directory.
°° fileCallback: This represents a callback object that includes the two

callback attributes (copySuccess, which will be called if the copy file
operation succeeds, and copyError, which will be called if the copy
file operation fails).

If the file-copy operation succeeds, then fileCallback.copySuccess will be
called. In this case, fileCallback.copySuccess calls capturingCallback.
captureSuccess(newFilePath), specifying the new copied file path
(newFilePath) as a parameter.

•	 In iOS, the image file is copied to the app's Documents directory. In order
to do this, a call to fileManager.copyFileToDirectory("", filePath,
true, fileCallback) is performed.

Applying it All – the Mega App

[278]

In iOS, when any photo is captured using the device camera or picked
from the device gallery using navigator.camera.getPicture(), it is
placed under the tmp directory of the iOS app's Sandbox directory. If you
want to access the captured image later, make sure to copy or move the
captured image to the app's Documents directory as shown earlier.

•	 Finally, in the final else block that represents the Windows Phone 8 case,
there is no need to do any file copy, as the image file (captured using the
camera or picked from the device gallery) is automatically placed under the
app local directory.

FileManager is very similar to the FileManager object discussed in Chapter 5,
Diving Deeper into the Cordova API (refer to this chapter if you feel uncomfortable
with the highlighted code in the following code snippet):

var FileManager = (function () {
 var instance;

 function createObject() {
 var FILE_BASE = "file:///";

 return {
 copyFileToDirectory: function (dirPath, filePath,
enforceUniqueName, fileCallback) {
 var directoryReady = function (dirEntry) {
 if (filePath.indexOf(FILE_BASE) != 0) {
 filePath = filePath.replace("file:/", FILE_
BASE);
 }

 window.resolveLocalFileSystemURL(filePath,
function(file) {
 var filename = filePath.replace(/^.*[\\\/]/,
'');

 if (enforceUniqueName) {
 console.log("file name before: " +
filename);
 filename = (new Date()).getTime() +
filename;
 console.log("file name after: " +
filename);
 }

Chapter 8

[279]

 file.copyTo(dirEntry, filename,
function(fileEntry) {
 fileCallback.copySuccess(dirEntry.toURL()
+ filename);
 }, fileCallback.copyError);
 }, fileCallback.copyError);
 };

 var fileSystemReady = function(fileSystem) {
 fileSystem.root.getDirectory(dirPath, {create:
true}, directoryReady);
 };

 window.requestFileSystem(LocalFileSystem.PERSISTENT,
0, fileSystemReady, fileCallback.copyError);
 },
 requestDirectory: function (dirPath, callback) {
 var directoryReady = function (dirEntry) {
 callback.requestSuccess(dirEntry.toURL());
 };

 var fileSystemReady = function(fileSystem) {
 fileSystem.root.getDirectory(dirPath, {create:
true}, directoryReady);
 };

 window.requestFileSystem(LocalFileSystem.PERSISTENT,
0, fileSystemReady, callback.requestError);
 }
 };
 };

 return {
 getInstance: function () {
 if (!instance) {
 instance = createObject();
 }

 return instance;
 }
 };
})();

Now that we are done with the model and API code of our Mega App, the next
section will illustrate the Mega App's pages and view controllers.

Applying it All – the Mega App

[280]

The Mega App user interface
In Mega App, we have three main pages:

•	 "memoList": This page is the app's home page. It displays the different types
of the user memos

•	 "memoCapture": This page is used to create, view, and edit a memo
•	 "about": This page is a simple app about page

The following code snippet shows the "memoList" page:

<div data-role="page" id="memoList">
 <div data-role="header" data-position="fixed" data-tap-
toggle="false">
 <a href="#about" data-role="button" data-icon="info" data-
mini="true">About
 <h1>Memo List</h1>
 <a id="newMemo" data-role="button" data-
icon="plus">New
 </div>
 <div data-role="content">
 <ul data-role="listview" id="memoListView">

 <div data-role="popup" id="memoTypeSelection">
 <ul data-role="listview" data-inset="true"
class="selectionMenu">
 <li data-role="divider">Memo Type
 Voice
Memo
 Photo
Memo

 </div>
 </div>
 <div data-role="footer" data-position="fixed" data-tap-
toggle="false">
 <h1>
 <a href="#" data-role="button" data-icon="delete"
id="removeAllMemos">Remove All Memos
 </h1>
 </div>
</div>

Chapter 8

[281]

As shown in the preceding code, the"memoList" page contains the following:

•	 A page header that includes two buttons: the "newMemo" button to create a
new memo and the "About" button to display the about page.

•	 Page content that includes:
°° "memoListView": This is used to display the different user's

saved memos.
°° "memoTypeSelection": This pop up contains a list view that allows

the user to select the memo type that the user wants to create. You
might notice that every selection item in the list view forwards to
the "memoCapture" page with a newMemo parameter that specifies
whether the new memo's type is "voice" or "photo".

•	 A page footer that includes:

°° "removeAllMemos": This button is used to remove all the memos.

The following code snippet shows the "memoList" page's view controller in
memoList.js:

(function() {
 var memoManager = MemoManager.getInstance();

 $(document).on("pageinit", "#memoList", function(e) {
 $("#removeAllMemos").on("tap", function(e) {
 e.preventDefault();
 memoManager.showConfirmationMessage("Are you sure you
want to remove all the memos?", deleteAllMemos);
 });

 $("#newMemo").on("tap", function(e) {
 e.preventDefault();
 $("#memoTypeSelection").popup("open");
 });

 });

 $(document).on("pageshow", "#memoList", function(e) {
 e.preventDefault();
 updateMemoList();
 });

Applying it All – the Mega App

[282]

 function deleteAllMemos() {
 memoManager.removeAllMemos();
 updateMemoList();
 }

 function updateMemoList() {
 var memos = memoManager.getMemos(), memo;
 var type = "";

 $("#memoListView").empty();

 if (jQuery.isEmptyObject(memos)) {
 $("No Memos Available").
appendTo("#memoListView");
 } else {
 for (memo in memos) {
 if (memos[memo].type == "voice") {
 type = "audio";
 } else if (memos[memo].type == "photo") {
 type = "camera";
 }

 $("<li data-icon='" + type + "'>" +
 memos[memo].title + "").
appendTo("#memoListView");
 }
 }

 $("#memoListView").listview('refresh');
 }
})();

As shown in the preceding highlighted code snippet, the "pageinit" event handler
registers the "tap" event handlers of the "removeAllMemos" and "newMemo" buttons.

In the "tap" event handler of the "removeAllMemos" button, a confirmation message
is shown to the user, and if the user confirms, then a call to the deleteAllMemos()
function is performed. The deleteAllMemos() function calls the removeAllMemos()
method of MemoManager in order to remove all the app memos, and then, it
calls the updateMemoList() method, which updates the memo list view with the
saved memos.

Chapter 8

[283]

The updateMemoList() method simply gets all the saved memos by calling the
memoManager.getMemos() method and then renders every memo item as a list view
item. Every list view item has an icon that is rendered based on its associated memo's
type ("voice" or "photo"). When any list view item is clicked, it forwards to the
"memoCapture" page, passing a memoID parameter in order to allow us to view and
update the current memo details in the "memoCapture" page.

In the "tap" event handler of the "newMemo" button, the "memoTypeSelection" pop
up is opened for the user to select either creating a voice memo or a photo memo.
When a selection item of the "memoTypeSelection" list view is clicked, it forwards
to the "memoCapture" page, passing a newMemo parameter in order to tell the
"memoCapture" page whether the new memo's type is "voice" or "photo".

In the "pageshow" event handler, updateMemoList() is called in order to display all
of the saved memos in the page list view.

The following code snippet shows the "memoCapture" page:

<div data-role="page" id="memoCapture">
 <div data-role="header">
 Home</
a>
 <h1 id="memoCaptureTitle">Your Memo</h1>
 <a href="#" data-role="button" data-rel="back" data-
icon="back">Back
 </div>
 <div data-role="content">
 <input type="hidden" id="mid"/>
 <input type="hidden" id="mtype"/>
 <input type="hidden" id="location"/>

 <div data-role="ui-field-contain">
 <label for="mtime" id="mtime_label">Creation
Time</label>
 <div name="mtime" id="mtime"></div>
 </div>

 <div data-role="ui-field-contain">
 <label for="title">Title</label>
 <input type="text" name="title" id="title"></input>
 </div>

 <div data-role="ui-field-contain">
 <label for="desc">Details</label>

Applying it All – the Mega App

[284]

 <textarea name="desc" id="desc"></textarea>
 </div>

 <div class="center-wrapper">
 <input type="button" id="getPhoto" data-icon="camera"
value="Get Photo" class="center-button" data-inline="true"/>
 <input type="button" id="recordVoice" data-
icon="audio" value="Record" class="center-button" data-
inline="true"/>
 <input type="button" id="playVoice" data-
icon="refresh" value="Playback" class="center-button" data-
inline="true"/>

 </div>

 <input type="button" value="Save Memo" data-icon="check"
id="saveMemo"/>
 <input type="button" id="removeMemo" data-icon="delete"
value="Remove"/>

 <div class="memoPhoto">

 </div>

 <div data-role="popup" id="photoTypeSelection">
 <ul data-role="listview" data-inset="true"
class="selectionMenu">
 <li data-role="divider">Get Photo From
 Gallery
 Camera

 </div>

 <div data-role="popup" id="recordVoiceDialog" data-
dismissible="false" class="recordVoicePopup">
 <div data-role="header">
 <h1>Recording</h1>
 </div>

 <div data-role="content">
 <div class="center-wrapper">
 <div id="voiceDuration"></div>
 <input type="button" id="stopRecordingVoice"
value="Stop Recording" class="center-button" data-inline="true"/>
 </div>
 </div>

Chapter 8

[285]

 </div>
 </div>
</div>

As shown in the preceding code, the "memoCapture" page contains the following:

•	 A page header.
•	 Page content that mainly includes:

°° "title": This is the input field to enter the memo title (it should be
empty when the user creates a new memo and should display the
current memo title when the user opens an existing memo to view
or update it).

°° "desc": This is the text area field to enter the memo description
(it should be empty when the user creates a new memo and should
display the current memo description when the user opens an
existing memo to view or update it).

°° "mtime": This is the div that displays the time when the memo was
created; this field will be displayed only when the user opens an
existing memo to view or update it.

°° "mid": This is the hidden field to store the memo ID.
°° "mtype": This is the hidden field to store the memo type.
°° "location": This is the hidden field to store the memo location.
°° "getPhoto": This button is displayed if the memo type is "photo",

and it opens a "photoTypeSelection" pop up to allow the user to
select a photo source.

°° "photoTypeSelection": This pop up includes a list view to
allow the user to select a photo source ("Camera" or "Gallery").
The "photoTypeSelection" pop up includes two list item links:
"photoFromGallery", which opens the device's gallery for the user
to pick a photo from, and "photoFromCamera", which launches the
camera app for the user to capture a photo.

°° "imageView": This image displays the captured camera image or the
picked gallery image. "imageView" is displayed only if the memo
type is "photo" and there is an available captured or picked image.

°° "recordVoice": This button is displayed if the memo type is
"voice", and it opens the "recordVoiceDialog" dialog to allow the
user to record a voice.

Applying it All – the Mega App

[286]

°° "recordVoiceDialog": This dialog includes a "voiceDuration"
div to display the voice-recording duration progress and a
"stopRecordingVoice" button to stop recording the voice.

°° "playVoice": This button plays a voice; it is displayed if the memo
type is "voice" and there is a recorded voice to play.

°° "saveMemo": This button saves or updates the voice or photo memo.
°° "removeMemo": This button removes a saved memo. Note that this

button will be shown only if the user opens an existing memo to view
or update it.

The following code snippet shows the first part of the "memoCapture" page's view
controller in memoCapture.js:

(function() {

 var memoManager = MemoManager.getInstance();
 var recInterval;

 $(document).on("pageinit", "#memoCapture", function(e) {
 e.preventDefault();

 $("#saveMemo").on("tap", function(e) {
 e.preventDefault();

 var memoItem = new MemoItem({
 "type": $("#mtype").val(),
 "title": $("#title").val() || "Untitled",
 "desc": $("#desc").val() || "",
 "location": $("#location").val() || "",
 "mtime": $("#mtime").html() || new Date().
toLocaleString(),
 "id": $("#mid").val() || null
 });

 memoManager.saveMemo(memoItem);

 $.mobile.changePage("#memoList");
 });

 $("#removeMemo").on("tap", function(e) {
 e.preventDefault();

Chapter 8

[287]

 memoManager.showConfirmationMessage("Are you sure you
want to remove this memo?", removeCurrentMemo);
 });

 $("#recordVoice").on("tap", function(e) {
 e.preventDefault();

 var recordingCallback = {};

 recordingCallback.recordSuccess = handleRecordSuccess;
 recordingCallback.recordError = handleRecordError;

 memoManager.startRecordingVoice(recordingCallback);

 var recTime = 0;

 $("#voiceDuration").html("Duration: " + recTime + "
seconds");

 $("#recordVoiceDialog").popup("open");

 recInterval = setInterval(function() {
 recTime = recTime + 1;
 $("#voiceDuration").
html("Duration: " + recTime + " seconds");
 }, 1000);
 });

 $("#recordVoiceDialog").on("popupafterclose", function(event,
ui) {
 clearInterval(recInterval);
 memoManager.stopRecordingVoice();
 });

 $("#stopRecordingVoice").on("tap", function(e) {
 e.preventDefault();
 $("#recordVoiceDialog").popup("close");
 });

 $("#playVoice").on("tap", function(e) {
 e.preventDefault();

 var playCallback = {};

Applying it All – the Mega App

[288]

 playCallback.playSuccess = handlePlaySuccess;
 playCallback.playError = handlePlayError;

 memoManager.playVoice($("#location").val(),
playCallback);
 });

 $("#getPhoto").on("tap", function(e) {
 e.preventDefault();
 $("#photoTypeSelection").popup("open");
 });

 $("#photoFromGallery").on("tap", function(e) {
 e.preventDefault();
 $("#photoTypeSelection").popup("close");

 getPhoto(true);
 });

 $("#photoFromCamera").on("tap", function(e) {
 e.preventDefault();
 $("#photoTypeSelection").popup("close");

 getPhoto(false);
 });
 });

 function removeCurrentMemo() {
 memoManager.removeMemo($("#mid").val());
 $.mobile.changePage("#memoList");
 }

 function handleRecordSuccess(currentFilePath) {
 $("#location").val(currentFilePath);
 $("#playVoice").closest('.ui-btn').show();
 }

Chapter 8

[289]

 function handleRecordError(error) {
 //log error in the console ...
 }

 function handlePlaySuccess() {
 console.log("Voice file is played successfully ...");
 }

 function handlePlayError(error) {
 //log error in the console ...
 }

 function getPhoto(fromGallery) {
 var capturingCallback = {};

 capturingCallback.captureSuccess = handleCaptureSuccess;
 capturingCallback.captureError = handleCaptureError;

 memoManager.getPhoto(capturingCallback, fromGallery);
 }

 function handleCaptureSuccess(currentFilePath) {
 $("#imageView").attr("src", currentFilePath);
 $("#imageView").show();
 $("#location").val(currentFilePath);
 }

 function handleCaptureError(message) {
 //log error in the console ...
 }

 // code is omitted for simplicity ...
})();

As shown in the preceding highlighted code snippet, the "pageinit" event handler
registers the "tap" event handlers of "saveMemo", "removeMemo", "recordVoice",
"stopRecordingVoice", "playVoice", "getPhoto", "photoFromGallery", and
"photoFromCamera". It also registers the "popupafterclose" event handler of
"recordVoiceDialog".

Applying it All – the Mega App

[290]

The following table illustrates the "tap" event handlers of all of the previous
mentioned UI elements:

UI element Tap event handler description
The "saveMemo" button 1.	 An object of the MemoItem type is created and

initialized with the UI input values of "mtype",
"title", "desc", "location", "mtime", and
"mid".

2.	 A call to memoManager.saveMemo() is
performed; specifying memoItem as a parameter to
save the memo.

3.	 The user is forwarded to the "memoList" page.
The "removeMemo"
button

1.	 A confirmation message pops up for the user to
confirm whether the memo needs to be removed.

2.	 If the user confirms, removeCurrentMemo() is
called.

3.	 In removeCurrentMemo(), a call to
memoManager.removeMemo() is performed;
specifying $("#mid").val() as a parameter that
represents the memo ID to be deleted.

4.	 The user is forwarded to the "memoList" page.

Chapter 8

[291]

UI element Tap event handler description
The "recordVoice"
button

1.	 In order to start recording a voice, a call to
memoManager.startRecordingVoice() is
performed; specifying recordingCallback as a
parameter. The recordingCallback parameter
is an object that has a successful callback and error
callback attributes (recordSuccess, which is set
to handleRecordSuccess, and recordError,
which is set to handleRecordError, respectively).

2.	 The "recordVoiceDialog" pop up is opened
and updated with the recording duration in seconds
using a timer.

3.	 When memoManager.startRecordingVoice()
succeeds, handleRecordSuccess is called
with the currentFilePath parameter
(which represents the path of the audio file). In
handleRecordSuccess, currentFilePath is
saved in the "location" hidden field, and the
"playVoice" button is shown.

4.	 When memoManager.startRecordingVoice()
fails, handleRecordError is called with an
error parameter (which represents the operation
error object). In handleRecordError, the error is
simply logged.

Applying it All – the Mega App

[292]

UI element Tap event handler description
The
"stopRecordingVoice"
button

This closes the "recordVoiceDialog" pop up. Closing
the "recordVoiceDialog" pop up triggers the
"popupafterclose" event of "recordVoiceDialog".
This will execute the "popupafterclose" event handler
of "recordVoiceDialog", which does the following:

•	 Clears the recording duration timer.
•	 Calls memoManager.stopRecordingVoice() to

stop recording the audio.
The "playVoice" button 1.	 In order to play a recorded voice, a call to

memoManager.playVoice() is performed;
specifying the following parameters:

°° $("#location").val(): This function
call gets the location of the audio file to be
played.

°° playCallback: This is an object that
has a success callback and error callback
attributes (playSuccess, which is set to
handlePlaySuccess, and playError,
which is set to handlePlayError,
respectively).

2.	 In handlePlaySuccess and handlePlayError,
the operations are simply logged in the console.

The "getPhoto" button This opens the "photoTypeSelection" pop up to
allow the user to choose the picture source: "Camera" or
"Gallery".

Chapter 8

[293]

UI element Tap event handler description
The
"photoFromGallery"
and "photoFromCamera"
anchors

1.	 This calls getPhoto() specifying the
fromGallery parameter with true in case of
"photoFromGallery" and with false in case of
"photoFromCamera".

2.	 In order to get a photo using a camera or from
the device gallery, a call to memoManager.
getPhoto() is performed; specifying the following
parameters in order:

°° capturingCallback: This is an object
that has a success callback and error
callback attributes (captureSuccess,
which is set to handleCaptureSuccess,
and captureError, which is set to
handleCaptureError, respectively).

°° fromGallery: This determines whether
to get the photo from gallery (if it is set
to true) or using camera (if it is set to
false).

3.	 When memoManager.getPhoto() succeeds,
handleCaptureSuccess is called with
the currentFilePath parameter (which
represents the path of the photo file). In
handleCaptureSuccess, currentFilePath
is saved in the "location" hidden field, and
"imageView" shows the current photo file.

4.	 When memoManager.getPhoto() fails,
handleCaptureError is called with a message
error parameter. In handleCaptureError, the
error is simply logged.

Applying it All – the Mega App

[294]

The following code snippet shows the second part of the "memoCapture" page
view controller:

(function() {
 var memoManager = MemoManager.getInstance();

 // ...

 $(document).on("pageshow", "#memoCapture", function(e) {
 e.preventDefault();

 var memoID = ($.mobile.pageData && $.mobile.pageData.memoID)
? $.mobile.pageData.memoID : null;
 var memoType = ($.mobile.pageData && $.mobile.pageData.
newMemo) ? $.mobile.pageData.newMemo : null;
 var memoItem = null;
 var isNew = true;

 if (memoID) {

 //Update Memo
 memoItem = memoManager.getMemoDetails(memoID);
 isNew = false;

 //Change title
 $("#memoCaptureTitle").html("Edit " + (memoItem.type ?
memoItem.type : "") + " memo");
 } else {

 //Create a new Memo
 memoItem = new MemoItem({"type": memoType});

 //Change title
 $("#memoCaptureTitle").html("New " + (memoType ? memoType
: "") + " memo");
 }

 initFields(memoItem, isNew);
 });

 $(document).on("pagebeforehide", "#memoCapture", function(e) {
 memoManager.cleanUpResources();
 });

Chapter 8

[295]

 function initFields(memoItem, isNew) {
 $("#mid").val(memoItem.id);
 $("#mtype").val(memoItem.type);
 $("#title").val(memoItem.title);
 $("#desc").val(memoItem.desc);
 $("#location").val(memoItem.location);
 $("#mtime").html(memoItem.mtime);

 $("#recordVoice").closest('.ui-btn').hide();
 $("#getPhoto").closest('.ui-btn').hide();
 $("#playVoice").closest('.ui-btn').hide();
 $("#removeMemo").closest('.ui-btn').hide();
 $("#imageView").hide();
 $("#imageView").attr("src", "");

 if (! isNew) {
 $("#removeMemo").closest('.ui-btn').show();
 $("#mtime").show();
 $("#mtime_label").show();
 } else {
 $("#mtime").hide();
 $("#mtime_label").hide();
 }

 if (memoItem.type == "voice") {
 $("#recordVoice").closest('.ui-btn').show();

 if (memoItem.location && memoItem.location.length > 0)
{
 $("#playVoice").closest('.ui-btn').show();
 }
 } else if (memoItem.type == "photo") {
 $("#getPhoto").closest('.ui-btn').show();

 if (memoItem.location && memoItem.location.length > 0)
{
 $("#imageView").show();
 $("#imageView").attr("src", memoItem.location);
 }
 }
 }

 // ...
})();

Applying it All – the Mega App

[296]

It is important to know that the "memoCapture" page works in the following
two modes:

•	 Creating a new memo mode: In this case, a newMemo parameter is sent to the
page from the caller. The newMemo parameter holds the type of new memo
that the caller wants to create.

•	 Editing an existing memo mode: In this case, a memoID parameter is sent
to the page from the caller. The memoID parameter refers to the existing
memo identifier.

As shown in the preceding highlighted code snippet, in the "pageshow" event
handler, both memoID and memoType are retrieved, thanks to the jQuery Mobile
page parameters plugin (for more information about this plugin, refer to Chapter 4,
Cordova API in Action).

If memoID is available, this means that the "memoCapture" page is required to work
in the edit mode, which implies that "memoCapture" needs to:

•	 Get the existing memo details by calling memoManager.
getMemoDetails(memoID)

•	 Change the page title to "Edit xxx" (for example, "Edit photo memo")

If memoID is not available, this means that the "memoCapture" page is in the create
new memo mode, which implies that "memoCapture" needs to:

•	 Create a new MemoItem object by setting the type to memoType
("voice" or "photo")

•	 Change the page title to "New xxx" (for example, "New voice memo")

The fields are then populated with data and are shown based on the current page
mode using the initFields() method.

Finally, the "pagebeforehide" event handler ensures that all the media resources
are cleaned up (before transitioning away from the "memoCapture" page) by calling
memoManager.cleanUpResources().

Finalizing Mega App
The last part that we need to check in Mega App is index.html; the following code
snippet shows the most important part of the index.html page:

<html>
 <head>
 <meta charset="utf-8" />
 <meta name="format-detection" content="telephone=no" />

Chapter 8

[297]

 <meta name="viewport" content="user-scalable=no, initial-
scale=1, maximum-scale=1, minimum-scale=1, width=device-width,
height=device-height, target-densitydpi=device-dpi" />
 <link rel="stylesheet" type="text/css" href="css/app.css"
/>
 <link rel="stylesheet" href="jqueryMobile/jquery.mobile-
1.4.0.min.css">

 <script src="jqueryMobile/jquery-1.10.2.min.js"></script>

 <script>
 var deviceReadyDeferred = $.Deferred();
 var jqmReadyDeferred = $.Deferred();

 $(document).ready(function() {
 document.addEventListener("deviceready", function() {
 deviceReadyDeferred.resolve();
 }, false);
 });

 $(document).on("mobileinit", function () {
 jqmReadyDeferred.resolve();
 });

 $.when(deviceReadyDeferred, jqmReadyDeferred).
then(function () {

 //Now everything loads fine, you can safely go to the
app home ...
 $.mobile.changePage("#memoList");
 });
 </script>

 <script src="jqueryMobile/jquery.mobile-1.4.0.min.js"></
script>
 <script src="jqueryMobile/jqm.page.params.js"></script>

 <title>Mega</title>
 </head>
 <body>
 <div id="loading" data-role="page">
 <div class="center-screen">Please wait ...</div>
 </div>

Applying it All – the Mega App

[298]

	 <!-- App pages omitted here for simplicity ... --->

 <script type="text/javascript" src="cordova.js"></script>

 <!-- Application JS files -->
 <script type="text/javascript" src="js/common.js"></script>
 <script type="text/javascript" src="js/api/FileManager.js"></
script>
 <script type="text/javascript" src="js/api/MemoManager.js"></
script>

 <script type="text/javascript" src="js/model/MemoItem.js"></
script>

 <script type="text/javascript" src="js/vc/memoList.js"></
script>
 <script type="text/javascript" src="js/vc/memoCapture.js"></
script>
 </body>
</html>

As shown in the preceding code, index.html includes the following:

•	 App custom CSS file (app.css)
•	 jQuery Mobile library files
•	 A jQuery Mobile page params plugin file (jqm.page.params.js)
•	 A CommonJS (common.js) file, app managers, and app view controllers'

JS files

The preceding highlighted code makes sure that Apache Cordova and jQuery Mobile
are loaded correctly (using the jQuery Deferred object) before proceeding to the
app pages. If Apache Cordova and jQuery Mobile are loaded correctly, then the
user will leave the "loading" page and be forwarded to the app's home page (the
"memoList" page) to start using the app.

As you know from Chapter 5, Diving Deeper into the Cordova API, in order to boost the
performance of jQuery Mobile 1.4 with Cordova, it is recommended that you disable
the transition effects. The common.js file applies this tip in Mega App, as shown in
the following code snippet:

$.mobile.defaultPageTransition = 'none';
$.mobile.defaultDialogTransition = 'none';
$.mobile.buttonMarkup.hoverDelay = 0;

Chapter 8

[299]

In order to exit the application when the user presses the back button
(which exists on Android and Windows Phone 8 devices) on the app's
home page, common.js also implements this behavior. It uses the same
technique used in the Finalizing the Cordova Exhibition app section in
Chapter 5, Diving Deeper into the Cordova API.

Deploying and running Mega App
Now, we can deploy our Mega App to our Android, iOS, and Windows Phone 8
devices to see the app in action. All of the screenshots that illustrated the Mega App
functionality in the Mega App specification/wireframes section were captured from a
real iPhone 5 device.

The following screenshot shows the deployed Mega App on a real Android Samsung
Galaxy Tab 3 device:

Applying it All – the Mega App

[300]

The following screenshot shows the deployed Mega App on a real Windows
Phone 8 device:

Start contributing to Mega App
This chapter is all about Mega App; however, Mega App still needs some
improvements that you can add to it. They are as follows:

•	 Instead of copying the image files to our app directory when a photo is
captured using a camera or picked from the device gallery, we can move the
picture file completely to avoid file redundancy. In order to do this, we can
simply replace file.copyTo() with file.moveTo() in FileManager and
change the method name to moveFileToDirectory.

Chapter 8

[301]

•	 Instead of only deleting the file reference in the Local Storage when
removing a memo (or memos) as requested by the removeMemo() or
removeAllMemos() methods of MemoManager, we can delete the physical
files as well using the remove() method of the FileEntry Cordova
object and adding this to a new method (deleteFile) of FileManager.
The deleteFile() method will be called by the removeMemo() and
removeAllMemos() methods to make sure that the memo files are completely
removed from the device's filesystem.

This is a good chance for you to improve Mega App by making these updates.
Let's go and download the App source code from GitHub at https://github.com/
hazems/cordova-mega-app and start playing with it. You can also download the
source code of this chapter from the book page on the Packt Publishing website.

Summary
This chapter showed you how to utilize Apache Cordova and jQuery Mobile in
order to design and develop a useful mobile app that respects the nature of different
mobile platforms (iOS, Android, and Windows Phone 8).

https://github.com/hazems/cordova-mega-app
https://github.com/hazems/cordova-mega-app

Index
Symbols
"accelerometer" page

"acceleration" 97
"startWatchAcceleration" 97
"stopWatchAcceleration" 97
about 97

"camera" page
"getPicture" 104
"imageView" 104
"pictureTypeSelection" 104
about 103, 104

"compass" page
"compassHeading" 112
"startWatchHeading" 112
"stopWatchHeading" 112
about 112

"connection" page
"connectionType" 119
"getConnectionType" 119
about 119

"contactDetails" page 124
"contacts" page

"contactList" 124
"listview" 124
about 123

"device" page
"deviceInfo" 133
"getDeviceInfo" 133
about 133

"geolocation" page
"getCurrentPosition" 137
"position" 137
about 137

"getWeatherInfo" tap event handler 241

"globalization" page
"getLocaleName" 143
"getPreferredLanguage" 143
"globInfo" 143

"inAppBrowser" page
"openGoogleSearchPage" 149
about 149

"login" page, weather application
"loginFormMessages" 236
"loginUser" 236
"userEmail" 236
"userName" 236

"loginUser" tap event handler 237
"mediaFC" page

"playSound" 156
"recordSound" 156
"recordSoundDialog" 156
"recordSoundExt" 156
about 155

"memoCapture" page
"desc" 285
"getPhoto" 285
"imageView" 285
"location" 285
"mid" 285
"mtime" 285
"mtype" 285
"photoTypeSelection" 285
"playVoice" 286
"recordVoice" 285
"recordVoiceDialog" 286
"removeMemo" 286
"saveMemo" 286
"title" 285
existing memo mode, editing 296
new memo mode, creating 296

[304]

"memoList" page
"About" button 281
"memoListView" 281
"memoTypeSelection" 281
"newMemo" button 281
"removeAllMemos" 281

"notification" page
"beep" 173
"notificationResult" 173
"showAlert" 173
"showConfirm" 173
"showPrompt" 173
"vibrate" 173
about 173

"pagebeforehide" event handler 159
"pageinit" event handler

"getPicture" 106
"pictureFromGallery" 106
"pictureFromCamera" 106

"sendSMS" button's tap event handler 220
"SmsApp" source code

download link 221
"smsForm" form element

"messageBox" 218
"phoneNo" 218
"result" 218
"sendSMS" 218
"textMessage" 218

"startWatchAcceleration" tap event
handler 99

"startWatchHeading" tap event handler 114
"stopWatchAcceleration" tap event

handler 100
"stopWatchHeading" tap event handler 115
"storage" page 181
"storageForm" form

"messageBox" 181
"reloadInfo" 181
"saveInfo" 181
"storageResult" 181
"userName" 181
"userEmail" 181

"tap" event handler, "beep" button 176
"tap" event handler, "playSound"

button 159

"tap" event handler, "recordSound"
button 158

"tap" event handler, "recordSoundExt"
button 158

"tap" event handler, "reloadInfo"
button 183

"tap" event handler, "saveInfo"
button 183

"tap" event handler, "showConfirm"
button 175

"tap" event handler, "showPrompt"
button 175

"tap" event handler, "stopRecordingSound"
button 159

"tap" event handler, "vibrate" button 176
"tap" event handlers, UI elements

"getPhoto" button 293
"photoFromCamera" 293
"photoFromGallery" 293
"playVoice" button 293
"recordVoice" button 290
"removeMemo" button 290
"saveMemo" button 290
"stopRecordingVoice" button 293

"weather" page, weather application
"getWeatherInfo" 240
"location" 240
"user" 240
"weatherResult" 240
about 239

<config-file> element
parent attribute 200
target attribute 199
about 199

<platform> element
<config-file> 199
<framework> 200
<source-file> 199
about 199
Android (<platform name="android">) 200
iOS (<platform name="ios">) 200
Windows Phone 8 (<platform

name="wp8">) 201
<plugin> elements

<description> 198
<js-module> 199
<keywords> 199

[305]

<licence> 198
<name> 198

<source-file> element
about 199
src attribute 199
target-dir attribute 199

A
Accelerometer API 26
AccelerometerManager

about 101
startWatchAcceleration(callback)

method 101
stopWatchAcceleration(watchID)

method 102
accelerometerManager.

startWatchAcceleration
(callback) function 100

accelerometer plugin, Cordova
Exhibition app

about 96
API 100
demo 96
HTML page 97
using 96
view controller 98

ADT Bundle
about 56
downloading 57
download link 56

Android code, custom Cordova plugin
developing 204-208

Android Developer Tools Bundle. See ADT
Bundle

Android development environment
Android Virtual Device, creating 60-64
configuring 55, 56
existing Eclipse IDE, extending 57-60
installing 55
Sound Recorder application, importing in

Eclipse 64-67
Sound Recorder application, running on

Android device 67, 68
Android SDK tools

download link 57
Android Virtual Device. See AVD

Apache Ant
URL 32

Apache Cordova
about 9
architecture 15-25
features 13, 14
supported mobile platforms 10
URL, for official API documentation 10

Apache Cordova Command-line Interface
(CLI). See Cordova CLI

asynchronous code tests
developing 246-248

AVD
about 60
creating 62-64

B
beep(times) method 178
Behavior-driven development (BDD) 224
bindEvents() method 38

C
Camera API 26
cameraOptions parameter

about 108
allowEdit attribute 109
cameraDirection attribute 109
correctOrientation attribute 108
destinationType attribute 108
encodingType attribute 109
mediaType attribute 109
popoverOptions attribute 109
quality attribute 108
saveToPhotoAlbum attribute 109
sourceType attribute 108
targetHeight attribute 109
targetWidth attribute 109

camera plugin, Cordova Exhibition app
about 102
API 106
demo 102
HTML page 103
view controller 104-106

Capture API 26
captureAudio() method

captureError parameter 167

[306]

captureSuccess parameter 166
options parameter 167

capture plugin, Cordova Exhibition plugin
about 153
demo 154

captureSuccess attributes, captureAudio()
method

lastModifiedDate 166
name 166
size 166
type 166

Cascading Style Sheet (CSS) 95, 234
Certificate Signing Request (CSR) 74
CI tools

Karma tests, integrating with 259, 260
cleanUpResources() method 275
Command-line Interface (CLI) 93
Compass API 26
CompassManager

about 116
startWatchHeading(callback) method 116
stopWatchHeading(watchID) method 117

compassManager.
startWatchHeading(callback)
function 115

compassOptions object
filter attribute 117
frequency attribute 117

compass plugin, Cordova Exhibition app
about 110
API 115
demo 110
HTML page 112
view controller 113

configuration attributes, Karma
autoWatch 254
basePath 254
browsers 254
colors 254
exclude 254
files 254
frameworks 254
logLevel 254
port 254
preprocessors 254
reporters 254
singleRun 254

config.xml directory, Sound Recorder
<access> element 35
<author> element 35
<content> element 35
<description> element 35
<name> element 34
<preference> element 35
<widget> element 34
about 34

Connection API 26
connection plugin, Cordova Exhibition app

about 118
API 120
demo 118
HTML page 119
view controller 119

ContactAddress object
country attribute 131
formatted attribute 131
locality attribute 131
postalCode attribute 131
pref attribute 131
region attribute 131
streetAddress attribute 131
type attribute 131

contactDetails.js 127
ContactField object

pref attribute 131
type attribute 131
value attribute 131

contactFields parameter
addresses attribute 130
birthday attribute 130
categories attribute 130
displayName attribute 129
Emails attribute 130
id attribute 129
ims attribute 130
name attribute 129
nickname attribute 129
note attribute 130
organizations attribute 130
phoneNumbers attribute 130
photos attribute 130
urls attribute 130

contactFindOptions parameter
filter attribute 129

[307]

multiple attribute 129
ContactName object

familyName attribute 130
formatted attribute 130
givenName attribute 130
honorificPrefix attribute 130
honorificSuffix attribute 130
middleName attribute 130

ContactOrganization object
department attribute 131
name attribute 131
pref attribute 131
title attribute 131
type attribute 131

Contacts API 26
contacts plugin, Cordova Exhibition app

about 121
API 128
demo 122
HTML page 123, 124
view controller 124

Coordinates object
about 141
accuracy attribute 141
altitudeAccuracy attribute 141
altitude attribute 141
heading attribute 141
latitude attribute 141
longitude attribute 141
speed attribute 141

Cordova. See Apache Cordova
Cordova APIs

Accelerometer 26
Camera 26
Capture 26
Compass 26
Connection 26
Contacts 26
Device 26
Events 26
File 27
geolocation 27
Globalization 27
InAppBrowser 27
Media 27
Notification 27

overview 26, 28
Splashscreen 27
Storage 28

Cordova Capture
reference link 168

Cordova CLI
about 31
installing 32
prerequisites 32

cordova create command 33
Cordova events

backbutton 189
batterycritical 190
batterylow 190
batterystatus 190
Deviceready 189
endcallbutton 190
menubutton 190
offline 189
Online 189
Pause 189
Resume 189
searchbutton 190
startcallbutton 190
volumedownbutton 190
volumeupbutton 190

cordova.exec(successCallback,
errorCallback,

"service", "action", [args]) API
[args] parameter 203
"action" 203
"service" 203
about 203
errorCallback parameter 203
successCallback parameter 203

Cordova Exhibition app
about 91
accelerometer plugin 96
camera plugin 102
capture plugin 153
compass plugin 110
connection plugin 118
contacts plugin 121
device plugin 132
exploring 91, 92
file plugin 153

[308]

finalizing 185-189
geolocation plugin 135
globalization plugin 141
InAppBrowser plugin 147
life cycle events 189, 190
media plugin 153
notification plugin 171
reference link 93
structure 93-95

Cordova Storage API. See Storage API
custom Cordova plugin

Android code, developing 204-208
developing 193, 194
iOS code, developing 209-213
plugin definition 197, 198
plugin's JavaScript interface,

defining 201-203
plugman, using 194-196
publishing, to Cordova Registry 216, 217
sms.sendMessage method, calling 194
testing 217-221
Windows Phone 8 code,

developing 213-215

D
deleteAllMemos() function 282
Device API 26
DeviceManager object

about 135
cordova attribute 135
model attribute 135
platform attribute 135
uuid attribute 135
version attribute 135

device plugin, Cordova Exhibition app
about 132
API 134
demo 132
HTML page 133
view controller 133, 134

directoryEntry.getDirectory method
errorCallback parameter 170
options parameter 170
path parameter 170
successCallback parameter 170

E
Eclipse

Sound Recorder application,
importing in 64-67

errorLabelContainer 184
Events API

about 26
backbutton event 26
batterycritical event 26
batterylow event 26
batterystatus event 27
deviceready event 26
endcallbutton event 27
menubutton event 27
offline event 26
online event 26
pause event 26
resume event 26
searchbutton event 27
startcallbutton event 27
volumedownbutton event 27
volumeupbutton event 27

execute(String action, JSONArray args,
CallbackContext callbackContext)
method

about 206
CallbackContext callbackContext

parameter 205
JSONArray args parameter 205
String action parameter 205

F
File API 27
fileEntry.copyTo method

errorCallback parameter 171
newName parameter 171
parent parameter 171
successCallback parameter 171

fileManager.copyFileToDirectory(dirPath,
filePath, enforceUniqueName,
fileCallback) method

dirPath parameter 277
enforceUniqueName parameter 277
fileCallback parameter 277
filePath parameter 277

[309]

FileManager.js 168, 169
file plugin, Cordova Exhibition plugin

about 153
demo 154

G
geolocation API 27
GeolocationManager 139
geolocationManager.

getCurrentPosition(callback) method
about 138
onError(error) 138
onSuccess(position) 138

geolocationOptions object
about 140
enableHighAccuracy attribute 140
maximumAge attribute 140
timeout attribute 140

geolocation plugin, Cordova Exhibition app
about 135
API 139
demo 136
HTML page 137
view controller 137, 138

getCurrentConnection() method 121
getPhoto(fromGallery) method 106
getPicture(callback, fromGallery)

function 107
getWeatherInfo() method

$("#location").val() 241
about 241
errorCallback parameter 241
successCallback parameter 241

GitHub repositories
reference links 10, 11

Globalization API 27
globalizationManager.

getLocaleName(callback) method
about 145
handleLocaleError() method 145
handleLocaleSuccess(locale) method 145

globalizationManager.
getPreferredLanguage(callback)
method

about 145
handleLangError() 145

handleLangSuccess(language) 145
globalization plugin, Cordova Exhibition

app
about 141
API 145
demo 142
HTML page 143
view controller 143-145

Global Positioning System (GPS) 135

H
handlePlayError(error) method 161
handlePlaySuccess() method 161
handleRecordError(error) method 160
handleRecordSuccess(filePath) method 160
handleRecordSuccess function 51
heading object

headingAccuracy attribute 117
magneticHeading attribute 117
timestamp attribute 117
trueHeading attribute 117

hooks directory, Sound Recorder 36
hybrid mobile application

comparing, with mobile web and native
mobile applications 11-13

HyperText Markup Language (HTML) 9

I
InAppBrowser API 27
InAppBrowserManager

about 151
closeWindow(windowRef) method 152
openWindow(url) method 151
window.open() method 152

InAppBrowser plugin, Cordova
Exhibition app

about 147
API 150
demo 148
HTML page 149
view controller 149, 150

index.html file, weather application
"landing" page 235
"login" page 236
"weather" page 236

index.html page, www directory 36, 37

[310]

initPage() method 160
Integrated Development

Environment (IDE) 13
iOS app's Sandbox directory, Mega App

Documents 268
Library 268
tmp 268

iOS code, custom Cordova plugin
developing 209-213

iOS developer program
URL 73

iOS development environment
configuring 68, 69
prerequisites 68
Sound Recorder application, importing in

Xcode 69-72
Sound Recorder application, running on

iOS device 73-82

J
Jasmine

about 224
configuring 224, 225
Cordova app tests, developing 232
download link 224
Karma, using with 251
matchers 231
tests, automating with Karma 251
tests, running on mobile device, 255, 256
test, writing 225-231

Jasmine implementation
about 232
asynchronous code tests,

developing 246-249
synchronous code tests,

developing 244-246
tests, executing manually 250
weather application 232-239

Jasmine matchers
toBeDefined matcher 231
toBeFalsy matcher 231
toBeGreaterThan matcher 231
toBeLessThan matcher 231
toBe matcher 231
toBeNull matcher 231
toBeTruthy matcher 231

toBeUndefined matcher 231
toContain matcher 231
toMatch matcher 231

Java Development Kit (JDK) 55
JDK 6

URL 56
JDK 7

URL 55
Jenkins

Karma tests, integrating with 259
jQuery deferred object by example

reference link 188
jQuery Mobile page parameters plugin

download link 126

K
Karma

about 251
code coverage report, generating 258, 259
configuring 252-254
installing 251
tests, integrating with CI tools 259, 260
tests, integrating with Jenkins 259
URL 251
used, for running Jasmine tests 255, 256
using, with Jasmine 251
XML JUnit report, generating 256, 257

Karma coverage plugin
installing 258
URL 258

Karma JUnit reporter plugin
installing 257
URL 256

L
low-level virtual machine (LLVM) 68

M
Media API 27
MediaManager

about 163
cleanUpResources() method 167
playVoice(filePath, callback) method 165
recordVoiceExternally(callback)

method 167

[311]

startRecording(callback) method 163
stopRecording() method 164

MediaManager.js 161, 165
Media object constructor

about 50
mediaError parameter 50, 163
mediaStatus parameter 163
mediaSuccess parameter 50, 163
src parameter 50, 163

media plugin, Cordova Exhibition plugin
about 153
API 161-166
demo 154
HTML page 155, 156
view controller 156-160

Mega App
about 261
API code 279
architecture 267, 268
deploying 299, 300
finalizing 296-298
improvements 300, 301
iOS app's Sandbox directory 268
preparing 266
running 299, 300
specification/wireframes 262-265
user interface 280
www directory 269

Mega App API
MemoItem object 269
MemoManager method 270
MemoManager object 270

Mega App model 269
Mega App user interface

"about" page 280
"memoCapture" page 280, 283-286
"memoList" page 280-283

memoCapture.js 286
MemoItem object

desc attribute 270
id attribute 269
location attribute 270
mtime attribute 270
title attribute 269
type attribute 270

MemoManager object
about 272
getMemoDetails(memoID) method 272
getMemos() method 272
removeAllMemos() method 272
removeMemo(memoID) method 272
saveMemo(memoItem) method 272

merges directory, Sound Recorder 36
messageComposeViewController class

about 211
Controller parameter 211
implementing 213
Result parameter 211

mobile web application
comparing, with hyrbid mobile and native

mobile applications 11-13

N
native mobile application

comparing, with mobile web and hybrid
mobile applications 11-13

navigator.camera.getPicture(cameraSuccess,
cameraError, [cameraOptions])
function

cameraError parameter 107
cameraOptions parameter 107
cameraSuccess parameter 107

navigator.camera.getPicture() method
captureSuccess parameter 277
capturingCallback.captureError

parameter 277
navigator.camera object

navigator.camera.cleanup(cameraSuccess,
cameraError) method 110

navigator.compass object
 navigator.compass.getCurrentHeading

(compassSuccess, compassError,
compassOptions) method 118

navigator.contacts.find(contactSuccess,
contactError, contactFields,
contactFindOptions) method

about 129
contactError parameter 129
contactFields parameter 129
contactFindOptions parameter 129
contactSuccess parameter 129

[312]

navigator.contacts object
navigator.contacts.create(properties)

method 131
navigator.geolocation

clearWatch(watchID) method 141
watchPosition(geolocationSuccess,

[geolocationError],
[geolocationOptions]) method 141

navigator.geolocation.getCurrentPosition
(geolocationSuccess,
[geolocationError],
[geolocationOptions]) method

about 140
geolocationError parameter 140
geolocationOptions parameter 140
geolocationSuccess parameter 140

navigator.globalization.getLocaleName
(successCallback,errorCallback)
method

about 146
errorCallback parameter 146
successCallback parameter 146

navigator.globalization.
getPreferredLanguage
(successCallback,errorCallback)
method

errorCallback parameter 147
successCallback parameter 147

Node.js
URL 32

node package manager (npm) 32
Node Version Manager (NVM)

URL 251
Notification API 27
notification.js 173-175
NotificationManager

about 177
beep(times) method 178
showAlert(message, callback, title,

buttonName) method 177
showConfirm(message, callback, title,

buttonLabels) method 177
showPrompt(message, callback, title,

buttonLabels,
defaultText) method 178
vibrate(milliseconds) method 178

NotificationManager.js 176

notification plugin
about 171
API 176
demo 172
HTML page 173
view controller 173-175

O
onDeviceReady() method 38
OpenWeatherMap

URL 242
openWindow(url) method 151
options attributes, captureAudio() method

duration 167
limit 167

P
PhantomJS

URL 259
platforms directory, Sound Recorder 35
playSound(filePath, playCallback)

function 53
playVoice(filePath, playCallback)

method 275
plugins directory, Sound Recorder 36
plugin.xml file

about 196, 198
id attribute 198
version attribute 198
xmlns attribute 198

plugman
about 194
using 194-196

Position object
about 140
coords attribute 140
timestamp attribute 140

R
receivedEvent() method 38
recordVoice() function 50

S
sendSMS() method 207

[313]

showAlert(message, callback, title,
buttonName) method

about 177
buttonName parameter 177
Callback parameter 177
message parameter 177
Title parameter 177

showConfirm(message, callback, title,
buttonLabels) method

about 177
buttonLabels parameter 177
callback(index) parameter 177
message parameter 177
title parameter 177

showPrompt(message, callback, title,
buttonLabels, defaultText) method

buttonLabels parameter 178
defaultText parameter 178
Message parameter 178
promptCallback(results) parameter 178
title parameter 178

Signum function 227
SimpleMath object 227
smsExport object

sendMessage method 202
SmsManager 207
SmsManager.getDefault() 207
sms.sendMessage method

about 194
errorCallback parameter 194
messageInfo parameter 194
successCallback parameter 194

sms.sendTextMessage (String
destinationAddress, String
scAddress,String text, PendingIntent
sentIntent, PendingIntent
deliveryIntent) method

about 208
deliveryIntent parameter 208
destinationAddress parameter 208
scAddress parameter 208
sentIntent parameter 208
text parameter 208

Sound Recorder application
audio files, playing 50-53
audio files, recording 50-53
building 53, 54

config.xml directory 34
details 43-49
developing 40
functionality 40-42
hooks directory 36
importing, in Eclipse 64-67
importing, in Visual Studio 84, 85
importing, in Xcode 69-72
initial code, generating 33
initial structure 34
merges directory 36
platforms directory 35
plugins directory 36
preparation 43
reference link 53
running 53, 54
running, on Android device 67, 68
running, on iOS device 73-82
running, on Windows Phone 87-89
www directory 34-36

Splashscreen API 27
src directory 196
startRecordingSound(recordingCallback)

function 50
startRecordingVoice(recordingCallback)

method 274
startWatchAcceleration(callback) method

about 101
accelerometerError parameter 101
accelerometerOptions parameter 101
accelerometerSuccess parameter 101

startWatchHeading(callback) method
about 116
compassError parameter 116
compassOptions parameter 117
compassSuccess(heading) parameter 116

stopRecord() function 51
stopRecordingSound() function 52
stopRecordingVoice() method 275
stopWatchAcceleration(watchID) method

about 102
watchID parameter 102

stopWatchHeading(watchID) method
about 117
watchID parameter 117

Storage API
about 28, 179

[314]

demo 179, 180
HTML page 180
StorageManager.js 184
view controller 181-183

storage.js 181-183
StorageManager

about 185
get(key) method 185
set(key, value) method 185

sudo command 32
synchronous code tests

developing 244-246

U
Unique Identifier (UDID) 77
Universally Unique Identifier (UUID) 135
updateMemoList() method 283
UserService object

about 239
getUser() method 239
saveUser(user) method 239

V
vibrate(milliseconds) method 178
Visual Studio

Sound Recorder application,
importing in 84, 85

W
W3C IndexedDB specification

reference link 185
W3C Web Storage specification

reference link 185
weather application

"landing" page 243
"login" page 236
"weather" page 239
code structure 234
creating 233
index.html file 235
js directory 235
overview 232, 233
weather.js 240
www directory 234

WeatherService object 243
weatherService.getWeatherInfo

(locationText,successCallback,
errorCallback) method

errorCallback parameter 249
locationText parameter 248, 249
successCallback parameter 249

Web SQL Database specification
reference link 185

window.localStorage.setItem() method
about 239
JSON.stringify(user) parameter 239
USER_KEY parameter 239

window.open(url, target, options)
method

options parameter 151
target parameter 151
url parameter 151

window.requestFileSystem method
about 169
errorCallback parameter 170
Size parameter 170
successCallback parameter 170
type parameter 170

window.resolveLocalFileSystemURL
method

errorCallback parameter 170
successCallback parameter 170
uri parameter 170

Windows Phone 8 code,
custom Cordova plugin

developing 213-215
Windows Phone development environment

configuring 82, 83
Sound Recorder application, importing

in Visual Studio 84-86
Sound Recorder application, running on

Windows Phone 87-89
Windows Phone SDK 8.0

download link 83
wrapper 184
www directory 196
www directory, Cordova Exhibition app

about 95
api directory 95
css directory 95
img directory 95

[315]

jqueryMobile directory 95
js directory 95
vc directory 95

www directory, Mega App
about 269
api 269
css 269
jqueryMobile 269
js 269
model 269
vc 269

www directory, Sound Recorder
about 36-39
css directory 34
img directory 34
index.css 36
index.html file 36
index.js file 36
js directory 34

www directory, weather application
about 234
api 234
css 234
jqueryMobile 234
js 234
tests 235
vc 235

X
Xcode

about 68
downloading 68
Sound Recorder application,

importing in 69-72

Thank you for buying
JavaScript Mobile Application Development

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around Open Source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each Open Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like
to discuss it first before writing a formal book proposal, contact us; one of our commissioning
editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Creating Mobile Apps with
jQuery Mobile
ISBN: 978-1-78216-006-9 Paperback: 254 pages

Learn to make practical, unique, real-world sites that
span a variety of industries and technologies with the
world's most popular mobile development library

1.	 Write less, do more: learn to apply the
jQuery motto to quickly craft creative sites
that work on any smartphone and even
not-so-smart phones.

2.	 Learn to leverage HTML5 audio and video,
geolocation, Twitter, Flickr, blogs, Reddit,
Google maps, content management system,
and much more.

3.	 All examples are either in use in the real
world or were used as examples to win
business across several industries.

Building Mobile Applications
Using Kendo UI Mobile and
ASP.NET Web API
ISBN: 978-1-78216-092-2 Paperback: 256 pages

Get started with Kendo UI Mobile and learn how
to integrate it with HTTP-based services built using
ASP.NET Web API

1.	 Learn the basics of developing mobile
applications using HTML5 and create an
end-to-end mobile application from scratch.

2.	 Discover all about Kendo UI Mobile, ASP.NET
Web API, and how to integrate them.

3.	 Get your hands dirty in a jiffy with
50+ jsFiddle examples.

Please check www.PacktPub.com for information on our titles

jQuery Mobile First Look
ISBN: 978-1-84951-590-0 Paperback: 216 pages

Discover the endless possibilities offered by jQuery
Mobile for rapid mobile web development

1.	 Easily create your mobile web applications
from scratch with jQuery Mobile.

2.	 Learn the important elements of the framework
and mobile web development best practices.

3.	 Customize elements and widgets to match
your desired style.

jQuery Mobile Web Development
Essentials
Second Edition
ISBN: 978-1-78216-789-1 Paperback: 242 pages

Build mobile-optimized websites using the simple,
practical, and powerful jQuery-based framework

1.	 Create websites that work beautifully on a
wide range of mobile devices.

2.	 Develop your own jQuery Mobile project
with the help of three sample applications.

3.	 Packed with easy-to-follow examples and
clear explanations of how to easily build
mobile-optimized websites.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: An Introduction to
Apache Cordova
	What is Apache Cordova?
	The differences between mobile web, hybrid mobile, and native mobile applications
	Why you should use Cordova
	Cordova architecture
	Overview of Cordova APIs
	Summary

	Chapter 2: Developing Your First Cordova Application
	An introduction to Cordova CLI
	Installing Apache Cordova
	Generating our Sound Recorder's initial code
	The Sound Recorder's initial structure
	An insight into the www files

	Developing Sound Recorder application
	Sound Recorder functionality
	Sound Recorder preparation
	Sound Recorder details
	Recording and playing the audio files back

	Building and running Sound Recorder application
	Summary

	Chapter 3: Apache Cordova Development Tools
	Configuring Android development environment
	Extending your existing Eclipse IDE
	Creating an Android Virtual Device
	Importing the Sound Recorder application in to Eclipse
	Running the Sound Recorder application on
a real Android device

	Configuring iOS development environment
	Importing the Sound Recorder application
into Xcode
	Running the Sound Recorder application on
a real iOS device

	Configuring Windows Phone development environment
	Importing the Sound Recorder application into Visual Studio
	Running the Sound Recorder application on
a real Windows Phone

	Summary

	Chapter 4: Cordova API in Action
	Exploring the Cordova Exhibition app
	The Cordova Exhibition app structure
	Accelerometer
	Demo
	The HTML page
	View controller
	API

	Camera
	Demo
	The HTML page
	View controller
	API

	Compass
	Demo
	The HTML page
	View controller
	API

	Connection
	Demo
	The HTML page
	View controller
	API

	Contacts
	Demo
	The HTML page
	View controller
	API

	Device
	Demo
	The HTML page
	View controller
	API

	Geolocation
	Demo
	The HTML page
	View controller
	API

	Globalization
	Demo
	The HTML page
	View controller
	API

	InAppBrowser
	Demo
	The HTML page
	View controller
	API

	Summary

	Chapter 5: Diving Deeper into the Cordova API
	Media, file, and capture
	Demo
	The HTML page
	View controller
	API

	Notification
	Demo
	The HTML page
	View controller
	API

	Storage
	Demo
	The HTML page
	View controller
	API

	Finalizing the Cordova Exhibition app
	Cordova events
	Summary

	Chapter 6: Developing Custom
Cordova Plugins
	Developing a custom Cordova plugin
	Using plugman
	Plugin definition
	Defining the plugin's JavaScript interface

	Developing Android code
	Developing iOS code
	Developing Windows Phone 8 code
	Publishing our plugin to Cordova registry
	Testing our Cordova plugin
	Summary

	Chapter 7: Unit Testing Cordova
Apps Logic
	What is Jasmine
	Configuring Jasmine
	Writing your first Jasmine test
	Jasmine Matchers
	Jasmine in action – developing Cordova app tests
	An overview of the weather application
	Developing synchronous code tests
	Developing asynchronous code tests
	Manually executing tests

	Automating tests using Karma
	Installing Karma
	Karma configuration
	Running tests (on mobile devices)
	Generate XML JUnit and code coverage reports
	Integrating tests with the CI tools

	Summary

	Chapter 8: Applying it All – the
Mega App
	Mega App specification/wireframes
	Preparing for the Mega App
	The Mega App architecture
	The Mega App model and API
	The Mega App user interface
	Finalizing Mega App
	Deploying and running Mega App
	Start contributing to Mega App
	Summary

	Index

