
Shelve in
Web Development /JavaScript

User level:
Beginning–Intermediate

RELATED

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Olsson

www.apress.com

JavaScript Quick Syntax
Reference
JavaScript Quick Syntax Reference is a condensed syntax reference for
the JavaScript language. It presents the essentials of JavaScript in a
well-organized format that can be used as a handy reference. This includes
the latest ECMAScript 5, JSON (JavaScript Object Notation) and DOM
(Document Object Model) specifi cations and implementations.

You won’t fi nd any technical jargon, bloated samples, drawn out history
lessons or witty stories in this book. What you will fi nd is a JavaScript
reference that is concise, to the point and highly accessible. The book
is packed with useful information and is a must-have for any JavaScript
programmer or Web developer. Among the topics covered are:

• What is the lexical structure of the latest JavaScript and
ECMAScript 5

• What are types, values, variables, expressions, operators and
statements

• How to use objects, arrays, functions, classes, and regular
expressions

• What are DOM and JSON and how to use them
• How to effectively implement both client-side and server-side

JavaScript code

9 781430 264934

51999
ISBN 978-1-4302-6493-4

JavaScript Quick Syntax Reference

www.allitebooks.com

http://www.allitebooks.org

JavaScript Quick
Syntax Reference

Mikael Olsson

www.allitebooks.com

http://www.allitebooks.org

JavaScript Quick Syntax Reference

Copyright © 2015 by Mikael Olsson

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4302-6493-4

ISBN-13 (electronic): 978-1-4302-6494-1

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Steve Anglin
Technical Reviewer: Victor Sumner
Editorial Board: Steve Anglin, Mark Beckner, Louise Corrigan, Jonathan Gennick,

Robert Hutchinson, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing, Steve Weiss

Coordinating Editor: Mark Powers
Copy Editor: Karen Jameson
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available
to readers at www.apress.com/9781430264934. For detailed information about how to locate your
book’s source code, go to www.apress.com/source-code/. Readers can also access source code at
SpringerLink in the Supplementary Material section for each chapter.

www.allitebooks.com

http://orders-ny@springer-sbm.com
http://www.springeronline.com
http://rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com/9781430264934
http://www.apress.com/source-code/
http://www.allitebooks.org

iii

Contents at a Glance

About the Author �� xi

About the Technical Reviewer �� xiii

Introduction ��� xv

 ■Chapter 1: Using JavaScript ��� 1

 ■Chapter 2: Variables ��� 5

 ■Chapter 3: Operators �� 9

 ■Chapter 4: Arrays ��� 13

 ■Chapter 5: Strings��� 17

 ■Chapter 6: Conditionals �� 21

 ■Chapter 7: Loops ��� 23

 ■Chapter 8: Functions �� 27

 ■Chapter 9: Objects �� 33

 ■Chapter 10: Document Object Model �� 39

 ■Chapter 11: Events ��� 45

 ■Chapter 12: Cookies ��� 51

 ■Chapter 13: Error Handling ��� 55

 ■Chapter 14: Ajax ��� 59

 ■Chapter 15: jQuery �� 61

Index �� 71

www.allitebooks.com

http://www.allitebooks.org

v

Contents

About the Author �� xi

About the Technical Reviewer �� xiii

Introduction ��� xv

 ■Chapter 1: Using JavaScript ��� 1

Creating a Project �� 1

Embedding JavaScript �� 2

Displaying Text ��� 2

View Source ��� 3

Browser Compatibility ��� 3

Console Window ��� 4

Comments �� 4

Code Hints �� 4

 ■Chapter 2: Variables ��� 5

Declaring Variables �� 5

Dynamic Typing ��� 6

Number Type ��� 6

Bool Type ��� 7

Undefined Type �� 7

Null Type �� 7

Special Numeric Values ��� 8

www.allitebooks.com

http://www.allitebooks.org

■ Contents

vi

 ■Chapter 3: Operators �� 9

Arithmetic Operators ��� 9

Assignment Operators ��� 9

Combined Assignment Operators �� 9

Increment and Decrement Operators �� 10

Comparison Operators ��� 10

Logical Operators �� 11

Bitwise Operators �� 11

Operator Precedence ��� 12

 ■Chapter 4: Arrays ��� 13

Numeric Arrays �� 13

Associative Arrays ��� 14

Multidimensional Arrays �� 15

Array Object ��� 15

 ■Chapter 5: Strings��� 17

Escape Characters �� 17

Strings and Numbers �� 18

String Object ��� 19

 ■Chapter 6: Conditionals �� 21

If Statement ��� 21

Switch Statement �� 22

Ternary Operator ��� 22

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

vii

 ■Chapter 7: Loops ��� 23

While Loop ��� 23

Do-While Loop ��� 23

For Loop �� 24

For-in Loop �� 25

Break and Continue ��� 25

 ■Chapter 8: Functions �� 27

Defining Functions �� 27

Calling Functions ��� 27

Function Parameters ��� 28

Variable Parameter Lists ��� 28

Return Statement �� 29

Argument Passing ��� 29

Function Expressions �� 30

Scope and Lifetime ��� 31

 ■Chapter 9: Objects �� 33

Object Properties ��� 33

Object Methods ��� 34

Object Literals ��� 34

Constructor Functions ��� 35

Inheritance �� 36

Type Checking ��� 36

Object Create ��� 37

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

 ■Chapter 10: Document Object Model �� 39

DOM Nodes �� 39

Selecting Nodes �� 40

Traversing DOM Tree ��� 41

Creating Nodes �� 42

Removing Nodes ��� 43

Attribute Nodes ��� 44

 ■Chapter 11: Events ��� 45

Event Handling �� 45

Event Object �� 46

Event Propagation ��� 47

DOM Events ��� 48

 ■Chapter 12: Cookies ��� 51

Creating Cookies ��� 51

Encoding�� 52

Expiration Date �� 52

Path and Domain ��� 53

 ■Chapter 13: Error Handling ��� 55

Try-Catch ��� 56

Catch Block ��� 56

Finally �� 57

Throwing Exceptions ��� 57

 ■Chapter 14: Ajax ��� 59

Exchanging Data ��� 59

Server Response ��� 60

Ajax Event �� 60

www.allitebooks.com

http://www.allitebooks.org

 ■ Contents

ix

 ■Chapter 15: jQuery �� 61

Including jQuery �� 61

Using jQuery �� 61

Element Selection ��� 62

Collection Traversal ��� 63

DOM Traversal ��� 64

Modifying Attributes �� 65

Creating Elements ��� 67

Moving Elements ��� 67

Ready Method ��� 68

Event Handling �� 69

Ajax ��� 69

Index �� 71

www.allitebooks.com

http://www.allitebooks.org

xi

About the Author

Mikael Olsson is a professional web entrepreneur,
programmer, and author. He works for an R&D
company in Finland where he specializes in software
development. In his spare time he writes books and
creates web sites that summarize various fields of
interest. The books he writes are focused on teaching
their subject in the most efficient way possible, by
explaining only what is relevant and practical without
any unnecessary repetition or theory. The portal to his
online businesses and other websites is Siforia.com.

www.allitebooks.com

http://Siforia.com
http://www.allitebooks.org

xiii

About the Technical
Reviewer

Victor Sumner is a senior software engineer at D2L
Corporation, where he helps to build and maintain
an integrated learning platform. As a self-taught
developer, he is always interested in emerging
technologies and enjoys working on and solving
problems that are outside his comfort zone. When not
at the office, Victor has a number of hobbies, including
photography, horseback riding, and gaming. He lives
in Ontario, Canada, with his wife, Alicia, and their two
children.

xv

Introduction

JavaScript is a programming language primarily used as a client-side scripting language
for controlling how web sites behave. In this environment the language complements
HTML, which describes the structure of web documents; and CSS, the style language that
defines their appearance. When embedded on a web page, JavaScript allows the page to
execute code and respond dynamically to user actions, providing responsiveness and
interactivity in a way not achievable using only HTML.

As the de facto client-side scripting language for the Web, most every browser
includes an engine for running JavaScript source code. Historically, these engines ran
JavaScript code line by line without preliminary compilation, so-called interpretation.
Nowadays modern browsers perform just-in-time (JIT) compilation, which compiles
JavaScript to executable bytecode just as it is about to run. This has significantly improved
the performance of JavaScript, enabling the development of fast web applications, such as
Gmail, that blurs the line between web sites and desktop applications.

The JavaScript language was created in 1995 by Brendan Eich at Netscape under the
name Mocha. It was later renamed to LiveScript and finally to JavaScript within the same
year. Netscape Navigator 2 was the first browser to implement JavaScript in 1996. That
same year Microsoft released a compatible language for Internet Explorer 3, which was
called JScript for trademark reasons. To maintain compatibility across browsers, Netscape
had the language standardized by Ecma International under the name ECMAScript.

The name JavaScript is derived from the Java programming language, as a marketing
ploy by Netscape to capitalize on the popularity of Java. Netscape wanted a simple,
interpreted language that would be easier than Java for nonprofessional programmers
to use on the Web. JavaScript borrows much of its syntax from Java, and the languages
are both object oriented, but they are still two very different languages. In contrast to
Java, JavaScript code does not need to be compiled, and it cannot produce stand-alone
applications.

As a scripting language, JavaScript is designed to run in a host environment, where
the host provides mechanisms for communicating with the outside world. The most
common host environment is the web browser, but JavaScript engines can also be found
in many other environments, such as desktops, databases, embedded systems, and
server-side environments. This book will focus exclusively on the browser environment
since this remains the dominant place in which JavaScript is used.

1

Chapter 1

Using JavaScript

To begin experimenting with JavaScript, you should install an Integrated Development
Environment (IDE) that supports this language. There are many good choices, such as
NetBeans, Eclipse, Visual Studio, and Brackets. In this book we will be using NetBeans,
which is available for free from Netbeans.org.1 To follow along make sure you download
one of the bundles that include HTML 5 support, as this also includes support for
JavaScript.

Alternatively, you can develop using a simple text editor – such as Notepad –
although this is less convenient than using an IDE. If you choose to do so, just create an
empty document with an .html file extension and open it in the editor of your choice.

Creating a Project
After installing NetBeans, go ahead and launch the program. You then need to create a
project, which will manage the HTML source files and other resources of your website.
Go to File ➤ New Project to display the New Project window. From there select the HTML
5 category in the left frame, and then the HTML 5 Application project in the right frame.
Click the Next button and you can configure the name and location of the project. When
you are done, click Finish to let the wizard make your project.

You have now created an HTML 5 project. In the Projects panel (Window ➤ Projects)
you can see that the project consists of a single file called index.html, located in your site’s
root folder. The file contains some basic HTML 5 markup, which can be simplified further
to the markup seen below.

<!doctype html>
<html>
 <head><title>JavaScript Test</title></head>
 <body></body>
</html>

1https://netbeans.org/downloads/.

https://netbeans.org/downloads/

Chapter 1 ■ Using JavasCript

2

Embedding JavaScript
There are two ways of inserting JavaScript into a web document. The first is to place the
code within a script element. A document can have multiple such elements, and each
can enclose any number of JavaScript statements.

<script></script>

The other, more common method is to include the code in an external file and then
link to that file using the src attribute of the script element. This way several documents
can use the same code without having to duplicate it on every page.

<script src="mycode.js"></script>

By convention, the .js extension is used for files that contain JavaScript code. To add
a new file with this name to your NetBeans project, right-click on the Site Root folder in
the Projects panel and select New ➤ JavaScript file. From the dialog box give the source
file the name “mycode.js.” Click Finish and the file will be added to your project and
opened for you.

For the purpose of experimentation, you can inline your code using the first method
of embedding. However, for real world applications, all but the simplest of scripts should
be made external. This makes the code easier to read and maintain, as it separates the
JavaScript code (page behavior) from the HTML markup (page content). As external files
are cached by browsers, this also improves performance of the site.

Displaying Text
As is common when learning a new programming language, the first example JavaScript
code will display a “Hello World” text string. This is accomplished by adding the following
line within the body element of the web document.

<script>
 document.write("Hello World");
</script>

This code statement uses the write method that belongs to the document object.
The method accepts text as its argument, delimited by double quotes. These concepts will
be explored further in later chapters.

Statements in JavaScript are separated by semicolons. The semicolon may be
omitted if the statement is followed by a line break, as this is also interpreted as a
statement separator.

document.write("Hello World")

Chapter 1 ■ Using JavasCript

3

The full web document should now look like this.

<!doctype html>
<html>
 <head><title>JavaScript Test</title></head>
 <body>
 <script>
 document.write("Hello World");
 </script>
 </body>
</html>

To view the page, open the HTML file with a web browser. In NetBeans, this is done
by clicking Run ➤ Run Project (F6), or by clicking the green arrow on the toolbar. You can
select your preferred browser from Run ➤ Set Project Browser. When the document is
viewed in the browser, the script is executed as soon as the page loads and the text string
is displayed.

View Source
While you have the browser opened, you can view the source code that makes up the
page by pressing Ctrl + U. This shortcut works in all major browsers, including Chrome,
Firefox, and Internet Explorer (IE). The source code window reveals the HTML markup,
as well as the unparsed JavaScript code.

Viewing the source code of web pages in this way provides a great way to learn from
other web developers. Whenever you find an interesting feature on a web page – whether
it is made with HTML, CSS, JavaScript or another language – the page source will often
reveal how it was created.

Browser Compatibility
JavaScript is most often run on the client-side, inside the browser, as opposed to the
server-side. For the code to be executed it is therefore required that the client views the
document in a browser that supports JavaScript.

Since JavaScript is the most popular client-side scripting language, it works with
virtually all browsers in use today. However, the client may choose to disable JavaScript,
so there is no way to guarantee that client-side code is executed. Even so, most web sites
today use JavaScript, and many rely on it to function correctly.

HTML provides the noscript element to specify alternative content for browsers that
do not support JavaScript or that have it disabled.

<noscript>
Please enable JavaScript for full functionality of this site.
</noscript>

Chapter 1 ■ Using JavasCript

4

Console Window
Most browsers have a development console available that allows you to view information
from your JavaScript code for debugging purposes. To print information to this console,
the log method of the console object is used.

<script>
 console.log("Hello Console");
</script>

The process for bringing up the console is the same in Chrome, Firefox, and Internet
Explorer. You right-click on the page and select Inspect Element. This brings up the
development window from where you can find the Console tab. In Internet Explorer, you
will need to launch the development window first and then refresh the page in order to
view the console output.

Comments
Comments are used to clarify code to developers and they have no effect on the parsing
of the code. JavaScript has the standard notations for single-line (//) and multiline (/**/)
comments, as used by many other languages.

<script>
 // single-line comment
 /* multi-line
 comment */
</script>

As in HTML, whitespace characters – such as spaces, tabs, and comments – are
generally ignored in JavaScript. This allows you a lot of freedom in how to format your
code. The formatting you use is a matter of preference. Choose a style that makes sense to
you and aim to keep it consistent.

Code Hints
If you are unsure of what a specific object contains, or what arguments a function takes,
you can take advantage of code hints in some IDEs, such as NetBeans. The code hint
window is brought up by pressing Ctrl + Space and provides quick access to any code
entities you are able to use within the current context. This is a powerful feature that you
should learn to make good use of.

5

Chapter 2

Variables

Variables are containers used for storing data, such as numbers or strings, so that they
can be used multiple times in a script.

Declaring Variables
To create a variable the var keyword is used followed by a name, called the identifier.
A common naming convention for variables is to have each word initially capitalized,
except for the first one.

var myVar;

A value can be assigned to a variable by using the equals sign, which is called the
assignment operator (=). This is called assigning or initializing the variable.

myVar = 10;

The declaration and assignment can be combined into a single statement. When a
variable is assigned a value it then becomes defined.

var myVar = 10;

There is a shorthand way of creating multiple variables in the same statement by
using the comma operator (,).

var myVar = 10, myVar2 = 20, myVar3;

Once a variable has been declared, it can be used by referencing the variable’s name.
For example, the value of a variable can be printed to a web document by passing the
identifier to the document.write method.

document.write(myVar); // "10"

Chapter 2 ■ Variables

6

Keep in mind that variable identifiers are case sensitive, so uppercase and lowercase
letters have different meanings. Identifiers in JavaScript can include letters, dollar signs ($),
underscore characters (_), and numbers, but they cannot start with a number. They also
cannot contain spaces or special characters, and must not be a reserved keyword.

var _myVar32; // allowed
var 32Var; // incorrect (starts with number)
var my Var; // incorrect (contains space)
var var@32; // incorrect (contains special character)
var var; // incorrect (reserved keyword)

Dynamic Typing
JavaScript is a dynamically typed language. Therefore, the data type of a variable does not
need to be specified, and any variable can hold any data type.

var myType = "Hi"; // string type
myType = 1.5; // number type

Furthermore, the value of a variable will be converted automatically as needed,
depending on the context in which it is used.

// Number type evaluated as string type
console.log(myType); // "1.5"

Because of these implicit type conversions, knowing the underlying type of a variable
is not always necessary. Nevertheless, it is useful to know about the data types JavaScript
works with in the background. These six types are as follows: Number, Bool, String,
Object, Undefined, and Null.

Number Type
JavaScript has a single type for both integer and floating-point numbers. Integers can be
expressed by using decimal (base 10), octal (base 8), or hexadecimal (base 16) notation.
A leading zero on an integer value indicates it is octal, and a leading 0x (or 0X) indicates
hexadecimal. Hexadecimal integers can include digits 0–9 and letters A–F, while octal
integers can include only the digits 0–7. The following integer literals all represent the
same number, which in decimal notation is 10.

var dec = 10; // decimal notation
var oct = 012; // octal notation
var hex = 0xA; // hexadecimal notation

Chapter 2 ■ Variables

7

Floating-point numbers can be represented with either decimal or exponential
(scientific) notation. The exponential notation is used by adding E (or e) followed by the
decimal exponent.

var num = 1.23;
var exp = 3e2; // 3*10^2 = 300

Keep in mind that all numbers in JavaScript are stored as double-precision floating-
point numbers behind the scenes.

Bool Type
The bool type can store a Boolean value, which is a value that can only be either true or
false. These values are specified with the true and false keywords.

var myBool = true;

Boolean values are commonly used together with conditional and looping
statements, which will be looked at in later chapters.

Undefined Type
JavaScript has a value called undefined that is used to indicate the absence of a value.
This is the value a declared variable receives if it is not given an initial value.

var myUndefined;
console.log(myUndefined); // "undefined"

The data type used for storing this value is also named undefined. This can be shown
by using the typeof operator, which retrieves a string representation of a type.

console.log(typeof myUndefined); // "undefined"

Bear in mind that an undefined variable is not the same as an undeclared variable.
Any attempt to access an undeclared variable will result in a ReferenceError exception
being thrown, halting execution of the script.

console.log(myUndeclared); // throws a ReferenceError

Null Type
The type and value null represents an object with no value. In contrast to undefined,
which can result from language-level behavior, the value null is always set through code.
It is often used as a function return value that indicates an exception or error condition.

var myNull = null;
console.log(myNull); // "null"

Chapter 2 ■ Variables

8

Although null is a data type, the typeof operator will evaluate this type as an object.
This is considered to be a mistake in the language specification.

console.log(typeof myNull); // "object"

In Boolean contexts both null and undefined are evaluated as false. The following
example uses the not operator (!) to coerce these values to the Boolean type. This
operator inverts a Boolean result and is therefore used twice to retrieve the original
value’s Boolean representation.

console.log(!!null); // "false"
console.log(!!undefined); // "false"

Conversely, in numeric contexts null behaves as 0 while undefined causes the whole
expression to evaluate as NaN.

console.log(null * 5); // "0"
console.log(undefined * 5); // "NaN"

Special Numeric Values
JavaScript has three special numeric values: Infinity, -Infinity, and NaN. These values
are used to signal that some exception happened during a calculation. For instance, the
following calculations result in these three values.

console.log(1 / 0); // "Infinity"
console.log(-1 / 0); // "-Infinity"
console.log(0 / 0); // "NaN"

The value NaN is short for Not-A-Number and denotes an unrepresentable numeric
value. It is the return value typically used when math operations fail. For instance, taking
the square root out of -1 results in NaN. This calculation can be performed using the sqrt
method of the global Math object.

var myNaN = Math.sqrt(-1);
console.log(myNaN); // "NaN"
console.log(typeof myNaN); // "number"

Attempting to evaluate a non-numeric value in a numeric context will also result
in NaN.

console.log("Hi" * 3); // "NaN"

NaN has the odd property of comparing unequally to any other value, including another
NaN value. To determine whether a value is NaN, the global isNaN function can be used.

console.log(NaN == NaN); // "false"
console.log(isNaN(myNaN)); // "true"

www.allitebooks.com

http://www.allitebooks.org

9

Chapter 3

Operators

An operator is a symbol that makes the script perform a specific mathematical or logical
manipulation. The operators in JavaScript can be grouped into five types: arithmetic,
assignment, comparison, logical, and bitwise operators.

Arithmetic Operators
The arithmetic operators include the four basic arithmetic operations, as well as the
modulus operator (%) that is used to obtain the division remainder.

x = 3 + 2; // 5 - addition
x = 3 - 2; // 1 - subtraction
x = 3 * 2; // 6 - multiplication
x = 3 / 2; // 1.5 - division
x = 3 % 2; // 1 - modulus (division remainder)

Assignment Operators
The second group is the assignment operators. Most important, the assignment
operator (=) itself, which assigns a value to a variable.

x = 0; // assignment

Combined Assignment Operators
A common use of the assignment and arithmetic operators is to operate on a variable and
then to save the result back into that same variable. These operations can be shortened
with the combined assignment operators.

x += 5; // x = x+5;
x -= 5; // x = x-5;
x *= 5; // x = x*5;
x /= 5; // x = x/5;
x %= 5; // x = x%5;

Chapter 3 ■ OperatOrs

10

Increment and Decrement Operators
Another common operation is to increment or decrement a variable by one. This can be
simplified with the increment (++) and decrement (--) operators.

x++; // x = x+1;
x--; // x = x-1;

Both of these can be used either before or after a variable.

x++; // post-increment
x--; // post-decrement
++x; // pre-increment
--x; // pre-decrement

The result on the variable is the same whichever is used. The difference is that the
post-operator returns the original value before it changes the variable, while the pre-operator
changes the variable first and then returns the value.

x = 5; y = x++; // y=5, x=6
x = 5; y = ++x; // y=6, x=6

Comparison Operators
The comparison operators compare two values and return either true or false. They are
mainly used to specify conditions, which are expressions that evaluate to either true
or false.

x = (2 == 3); // false - equal to
x = (2 === 3); // false - identical
x = (2 !== 3); // true - not identical
x = (2 != 3); // true - not equal to
x = (2 > 3); // false - greater than
x = (2 < 3); // true - less than
x = (2 >= 3); // false - greater than or equal to
x = (2 <= 3); // true - less than or equal to

The strict equality operators, === and !==, are used for comparing both type and
value. These are necessary because the regular equal to (==) and not equal to (!=)
operators will automatically perform a type conversion before they compare the operands.

x = (1 == "1"); // true (same value)
x = (1 === "1"); // false (different types)

It is considered good practice to use strict comparison when the type conversion
feature of the equal to operation is not needed.

Chapter 3 ■ OperatOrs

11

Logical Operators
The logical operators are often used together with the comparison operators. Logical and
(&&) evaluates to true if both the left and right sides are true, and logical or (||) is true if
either the left or right side is true. For inverting a Boolean result there is the logical not (!)
operator. Note that for both "logical and" and "logical or," the right-hand side will not be
evaluated if the result is already determined by the left-hand side.

x = (true && false); // false - logical and
x = (true || false); // true - logical or
x = !(true); // false - logical not

Bitwise Operators
The bitwise operators can manipulate the individual bits that make up an integer.
For example, the right shift operator (>>) moves all bits except the sign bit to the right,
whereas zero-fill right shift (>>>) moves all bits right including the sign bit. Both of these
operators evaluate the same for positive numbers.

x = 5 & 4; // 101 & 100 = 100 (4) - and
x = 5 | 4; // 101 | 100 = 101 (5) - or
x = 5 ^ 4; // 101 ^ 100 = 001 (1) - xor
x = 4 << 1; // 100 << 1 =1000 (8) - left shift
x = 4 >> 1; // 100 >> 1 = 010 (2) - right shift
x = 4 >>>1; // 100 >>> 1 = 010 (2) - zero-fill right shift
x = ~4; // ~00000100 = 11111011 (-5) - invert

The bitwise operators also have combined assignment operators.

x=5; x &= 4; // 101 & 100 = 100 (4) - and
x=5; x |= 4; // 101 | 100 = 101 (5) - or
x=5; x ^= 4; // 101 ^ 100 = 001 (1) - xor
x=4; x <<= 1; // 100 << 1 =1000 (8) - left shift
x=4; x >>= 1; // 100 >> 1 = 010 (2) - right shift
x=4; x >>>=1; // 100 >>> 1 = 010 (2) - right shift

Keep in mind that JavaScript numbers are stored as double precision floating-point
numbers. However, the bitwise operations need to operate on integers and therefore
numbers are temporarily converted to 32-bit signed integers when bitwise operations
are performed.

Chapter 3 ■ OperatOrs

12

Operator Precedence
In JavaScript, expressions are normally evaluated from left to right. However, when an
expression contains multiple operators, the precedence of those operators decides the
order that they are evaluated in. The order of precedence can be seen in the following
table, where the operator with the lowest precedence will be evaluated first. This same
order also applies to many other languages, such as PHP and Java.

Pre Operator Pre Operator

1 () [] . x++ x-- 8 &

2 ! ~ ++x --x 9 ^

3 * / % 10 |

4 + - 11 &&

5 << >> >>> 12 ||

6 < <= > >= 13 = op=

7 == != === !=== 14 ,

To give an example, multiplication binds harder than addition and will therefore be
evaluated first in the following line of code.

x = 4 + 3 * 2; // 10

This can be clarified by enclosing the part of the expression that will be evaluated
first in parentheses. As seen in the table, parentheses have the lowest precedence of all
operators.

x = 4 + (3 * 2); // 10

13

Chapter 4

Arrays

An array is a data structure used for storing a collection of values. JavaScript arrays can be
grouped into three kinds: numeric, associative, and multidimensional. The distinction
between these arrays is only conceptual, as JavaScript considers them all to be array objects.

Numeric Arrays
Numeric arrays store each element in the array with a numeric index. An empty array can
be created using the array constructor in the following way.

var a = new Array(); // empty array

To add elements to the array you can reference them one at a time by placing the
element's index inside square brackets. Assigning a value to an element automatically
creates space for that element and increases the capacity of the array. Note that the array
index starts with zero.

a[0] = 1;
a[1] = 2;
a[2] = 3;

The initial capacity of an array can be specified by passing a single numeric
parameter to the array constructor. This can be used to improve performance in cases
where the number of elements that the array will hold is known in advance.

var b = new Array(3);

Passing more than one argument, or a non-numeric argument, to the array
constructor will instead assign those values to the first elements of the array.

var c = new Array(1, 2, 3);

Chapter 4 ■ arrays

14

Another method for creating an array is to include the element values inside square
brackets, a so-called array literal. This is the shortest and most commonly used way to
create arrays.

var d = [1, 2, 3];

Leaving out the values from the array literal provides a shortcut for creating an
empty array.

var e = []; // empty array

The content of an array is accessed by referencing the index of the desired element
inside the square brackets.

var f = [1, 2, 3];
document.write(f[0] + f[1] + f[2]); // "6"

If the referenced element does not exist, an object of the undefined type is returned.

document.write(f[3]); // "undefined"

Note that just as regular variables the elements inside of an array can store any data
type or combination thereof.

var mixed = [0, 3.14, "string", true];

Associative Arrays
The associative array uses a key string to identify an element instead of a numeric index.
To create one, first declare an empty array and then assign values to the desired keys.

var g = new Array();
g["name"] = "Peter";
g["age"] = 25;

When accessing these elements it is important to remember the key names since
these arrays cannot be accessed with an index.

document.write(g["name"] + " is " + g["age"]); // "Peter is 25"

Arrays in JavaScript are objects and their elements are object properties. Therefore,
elements of associative arrays can alternatively be referenced using the dot notation.

var h = new Array();
h.name = "Peter";
h.age = 25;
document.write(h.name + " is " + h.age); // "Peter is 25"

Chapter 4 ■ arrays

15

Numeric elements cannot be accessed in this way and must be referenced using the
bracket notation.

h[0] = 1;

It is possible to mix numeric and associative elements in the same array as JavaScript
makes no distinction between them. In fact, indices are stored as key strings behind the
scenes and may alternatively be referenced as such.

h["0"] = 1;

Multidimensional Arrays
Arrays can be made multidimensional by adding arrays as elements to another array.

var m = [["00","01"], ["10","11"]];

Multidimensional arrays can have any number of dimensions, but more than two
dimensions are rarely needed. For each extra dimension another set of square brackets
is added.

document.write(m[1][1]); // "11"

Unlike many other languages, multidimensional arrays in JavaScript do not need to
have the same length of all sub-arrays. The dimensions can also be changed later in the
script as the array capacity is automatically adjusted.

m[1][2] = "12";

Array Object
The array object provides access to a number of members useful for manipulating arrays.
One such member is the length property, which retrieves or sets the current capacity of
the array.

var x = [1, 2, 3];
var len = x.length; // 3
x.length = 2; // deletes third element
document.write(x[2]); // "undefined"

Chapter 4 ■ arrays

16

Code hints in your IDE provide a list of the members available to the array object.
To give an example, the pop method removes the last element from the array, and push
appends one or more elements to the end of the array.

var y = [1, 2];
y.push(3); // add element to end of array

y.pop(); // remove last element

17

Chapter 5

Strings

A string consists of a series of characters delimited by either double quotes or single
quotes. Which notation to use is a matter of preference.

var s1 = "Hello";
var s2 = ' World';

There are two operators that can operate on strings. For combining strings there
is the plus sign (+), which is called the concatenation operator in this context. It has an
accompanying assignment operator (+=) that appends a string to the end of a string
variable.

var greeting = s1 + s2; // "Hello World"
s1 += s2; // "Hello World"

To break a line within a string, a backslash must be added. This character escapes
the newline character that in JavaScript normally means the end of a statement.
The backslash and line break are both removed from the value of the string.

greeting = "Hello \
World";

Escape Characters
Escape characters are used to write special characters, such as new lines and tabs. These
characters are always preceded by a backslash “\”. For instance, to insert a single-quote
mark inside a single-quoted string the mark needs to be preceded with a backslash.

var s = 'It\'s'; // "It's"

Chapter 5 ■ StringS

18

The following table lists the escape characters available in JavaScript.

Character Meaning Character Meaning

\n newline \f form feed

\t horizontal tab \v vertical tab

\' single quote \" double quote

\b backspace \r carriage return

\\ backslash

In addition to these escape characters there are also notations for referencing the
Unicode and Latin-1 encoded character sets. Unicode characters are expressed as "\u"
followed by a 4-digit hexadecimal number. Latin-1 characters can be represented either
as a three-digit octal number or a two-digit hexadecimal number starting with “\x”. This is
illustrated below where the new line character is represented in four different ways.

var line = '\n'; // escape code
 line = '\012'; // octal Latin-1
 line = '\x0A'; // hexadecimal Latin-1
 line = '\u000A'; // hexadecimal Unicode

Strings and Numbers
In an expression that involves both a string and a numeric value, the concatenation
operator will convert the number to a string. Other numeric operators will attempt to
convert the string to a number if possible, or else evaluate as NaN.

"5" + 5; // "55"
"5" - 5; // 0
"a" - 5; // NaN

A numeric value that is represented as a string can be converted to a whole number
using the parseInt function.

parseInt("5") + 5; // 10

Similarly, parseFloat can be used to convert a string to a floating-point number. For
both these functions only the first number in the string is returned, or else the method
returns NaN if the first character is not a number.

parseFloat("3.14"); // 3.14
parseFloat("Hi"); // NaN

www.allitebooks.com

http://www.allitebooks.org

Chapter 5 ■ StringS

19

Alternatively, the unary addition operator (+) may be used to perform the string to
numeric conversion, by placing the addition sign just before the string.

+"5" + 5; // 10

String Object
All strings in JavaScript are string objects. As such they provide quick access to properties
and methods that are useful when performing common string operations. For example,
the number of characters in a string can be determined using the length property.

var a = "Hello";
var len = a.length; // 5

Your IDE provides code hints as you type the dot to access the members of a string
object, giving you a full list of the available members. For instance, the toLowerCase
method converts the string to lowercase letters. The resulting string is returned without
changing the original string.

var lower = a.toLowerCase(); // "hello"

JavaScript interprets any piece of text as an instance of the string object. Therefore,
it is possible to call methods directly on string constants just as it can be done on
string variables.

var upper = "abc".toUpperCase(); // "ABC";

21

Chapter 6

Conditionals

Conditional statements are used to execute different code blocks based on different
conditions.

If Statement
The if statement only executes if the expression inside the parentheses is evaluated
to true. In JavaScript, this does not have to be a Boolean expression. It can be any
expression, in which case zero, null, NaN, empty strings, and undefined variables are
evaluated as false, and all other values are true.

if (x < 1) {
 document.write("x < 1");
}

To test for other conditions, the if statement can be extended by any number of
else if clauses. Each additional condition will only be tested if the preceding conditions
are false.

else if (x > 1) {
 document.write("x > 1");
}

For handling all other cases there can be one else clause at the end, which will
execute if all previous conditions are false.

else {
 document.write("x == 1");
}

The curly brackets can be left out if only a single statement needs to be executed
conditionally. However, it is considered good practice to always include them since they
improve code readability.

Chapter 6 ■ Conditionals

22

if (x < 1)
 document.write("x < 1");
else if (x > 1)
 document.write("x > 1");
else
 document.write("x == 1");

Switch Statement
The switch statement checks for equality between an expression and a series of case
labels, and then passes execution to the matching case. The expression can be of any type
and will be matched against the case labels using strict comparison (===). Switches may
contain any number of case clauses, and it can end with a default label for handling all
other cases.

switch (x) {
 case 0: document.write("x is 0"); break;
 case 1: document.write("x is 1"); break;
 default: document.write("x is not 0 or 1"); break;
}

Note that the statements after each case label end with the break keyword to skip the
rest of the switch. If the break is left out, execution will fall through to the next case, which
can be useful if several cases need to be evaluated in the same way.

Ternary Operator
In addition to the if and switch statements there is the ternary operator (?:), which
provides a shortcut for a single if else statement. This operator takes three expressions.
If the first one is true, then the second expression is evaluated and returned; and if it is
false, the third one is evaluated and returned.

// Ternary operator expression
y = (x === 1) ? 1 : 2;

In JavaScript, this operator can also be used as a stand-alone code statement, and
not just as an expression.

// Ternary operator statement
(x === 1) ? y = 1 : y = 2;

The programming term expression refers to code that evaluates to a value, whereas a
statement is a code segment that ends with a semicolon or a closing curly bracket.

23

Chapter 7

Loops

The loop statements are used to execute a code block several times. JavaScript has four
kinds of loops: while, do-while, for, and for-in. As with the conditional if statement,
the curly brackets for these loops can be omitted if there is only one statement in the
code block.

While Loop
The while loop runs through the code block only if its condition is true, and will continue
looping for as long as the condition remains true.

var i = 0;
while (i < 10) {
 document.write(i++); // 0-9
}

The loop here will print out the numbers 0 to 9. Bear in mind that the condition is
only checked at the start of each iteration.

Do-While Loop
The do-while loop works in the same way as the while loop, except that it checks the
condition after the code block. It will therefore always run through the code block at least
once. Note that this loop ends with a semicolon.

var j = 0;
do {
 document.write(j++); // 0-9
} while (j < 10);

Chapter 7 ■ Loops

24

For Loop
The for loop runs through a code block a specific number of times. It uses three
parameters. The first one initializes a counter and is always executed once before the
loop. The second parameter holds the condition for the loop and is checked before each
iteration. The third parameter contains the increment of the counter and is executed at
the end of each iteration.

for (var k = 0; k < 10; k++) {
 document.write(k); // 0-9
}

This loop has several variations since either one of the parameters can be left out.
For example, if the first and third parameters are left out, it behaves in the same way as
the while loop.

var k;
for (; k < 10;) {
 document.write(k++); // 0-9
}

The first and third parameters can also be split into several statements using the
comma operator (,).

for (var k = 0, m = 0; k < 10; k++, m--) {
 document.write(k+m); // 000... (10x)
}

The length property retrieves the number of elements in an array. Together with the
for loop it can be used to iterate through an array.

var a = [1, 2, 3];
for (var i = 0; i < a.length; i++) {
 document.write(a[i]); // "123"
}

If there is no need to keep track of iterations the for-in loop provides a shorter
syntax for traversing arrays.

Chapter 7 ■ Loops

25

For-in Loop
The for-in loop provides an easy way of iterating through elements in an array or
through properties in an object. On each iteration the key or index of the next property
is assigned to the variable, and the loop continues to iterate until it has gone through all
members of the object.

var colors = ["red","green","blue"];
for (i in colors) {
 document.write(colors[i] + " "); // "red green blue"
}

Break and Continue
There are two jump statements that can be used inside loops: break and continue.
The break keyword ends the loop structure and continue skips the rest of the current
iteration and continues at the beginning of the next iteration.

for (var i = 0; i < 10; i++)
{
 if (i == 2) continue; // start next iteration
 else if (i == 5) break; // end loop
 document.write(i); // "0134"
}

To break out of a loop above the current one, the outer loop must first be labeled by
adding a name followed by a colon before that outer loop. With this label in place it can now
be used as an argument to the break statement, telling it which loop to break out of. This also
works with the continue keyword, in order to skip to the next iteration of the named loop.

myloop:
for (var i = 0; i < 10; i++)
{
 var j = 0;
 while (++j < 10)
 {
 break myloop; // end for loop
 }
}

27

Chapter 8

Functions

Functions are reusable code blocks that will only execute when called. They allow
developers to divide their scripts into smaller parts that are easier to understand and reuse.

Defining Functions
To create a function the function keyword is used followed by a name, a set of parentheses,
and a code block. The naming convention for functions is the same as for variables – to use
a descriptive name with each word initially capitalized, except for the first one.

function myFunc()
{
 document.write("Hello World");
}

This function simply displays a text string to the web document. A function code
block can contain any JavaScript code, including other function definitions.

Calling Functions
Once defined a function can be called (invoked) from anywhere on the document, by
typing its name followed by a set of parentheses. Function names are case sensitive, so
the capitalization of letters needs to be consistent.

myFunc(); // "Hello World"

A function can be called even if the function definition appears later in the script.
This is because declarations in JavaScript are processed before code is executed.

foo(); // ok
function foo() {}

Chapter 8 ■ FunCtions

28

Function Parameters
The parentheses that follow the function’s name are used for passing arguments to the
function. To do this the corresponding parameters must first be added to the function’s
parameter list. These parameters can then be used in the function as regular variables.

function sum(a, b) {
 var sum = a + b;
 console.log(sum);
}

A function can be defined to take any number of arguments. When the function is
called the arguments are provided in the form of a comma-separated list. In this example,
the function accepts two numeric arguments and displays their sum.

sum(2, 3); // "5"

Like variables, function parameters do not have types specified in their declarations.
Therefore no type checking is automatically performed, and function arguments are not
limited to any specific data type.

Variable Parameter Lists
It is permitted to call a function with a different number of arguments than it has been
defined to accept. If a function is called with fewer arguments, then the remaining
parameters will be set to undefined.

function say(message) {
 console.log(message);
}
say(); // "undefined"

When a function is called with more parameters than in its definition, the extra
parameters will be nameless. It is possible to reference these extra parameters through
the array-like arguments object, which contains all parameters passed to the function.

function say() {
 console.log(arguments[0]);
}
say("Hello"); // "Hello"

The arguments object can be used to create varadic functions, which are functions
able to handle different numbers of arguments. To give an example, any number of
arguments can be passed to the following function. The function iterates through the
arguments and combines them into a string that it prints to the console.

Chapter 8 ■ FunCtions

29

function combine() {
 var result = "";
 for (var i = 0; i < arguments.length; i++) {
 result += arguments[i];
 }
 console.log(result);
}
combine(1, 2, 3); // "123";

Return Statement
Return is a jump statement that causes the function to exit and return the specified value
to the place where the function was called. To illustrate, the following function returns the
sum of its two arguments. This function can, in turn, be passed as an argument to another
function, where it will evaluate to the resulting number.

function getSum(a, b) {
 return a + b; // exit function and return value
}
console.log(getSum(1, 2)); // "3"

The return statement can also be used as a way to exit a function before the end
block is reached without returning any specific value. Functions without a return value
will implicitly return undefined.

function foo() {
 return; // exit function
}
console.log(foo()); // "undefined"

Just like variables and parameters, return values are not type checked. Functions
need to be properly documented for users of the functions to know what their inputs and
outputs are supposed to be.

Argument Passing
Arguments are passed to functions by value. For primitive types this means that only a
copy of the value is passed to the function. Therefore, changing the parameter in any way
will not affect the original variable.

function set(y) {
 y = 1;
}
var x = 0;
set(x); // copy of value passed
console.log(x); // "0"

Chapter 8 ■ FunCtions

30

When an object type is used as an argument it is the reference to that object that is
passed. This allows the function to make changes to the original object’s properties.

function addFruit(basket) {
 basket[0] = "Apple";
}
var fruits = [];
addFruit(fruits); // copy of reference passed
console.log(fruits[0]); // "Apple"

Assigning a new object to the parameter will not affect the original object outside the
function. This is because the assignment changes the value of the parameter rather than
the value of one of the object’s properties.

function makeFruit(basket) {
 basket = ["Apple"];
}
var fruits = [];
makeFruit(fruits);
console.log(fruits[0]); // "undefined"

Function Expressions
Functions in JavaScript are objects, specifically function objects. As such they can be
assigned to variables and passed to other functions just like any other object. When a
function is used in this way it is called a function expression, as opposed to a function
declaration. A function expression can be assigned to a variable using the normal
assignment syntax, including the semicolon.

var say = function foo(message)
{
 console.log("Hello " + message);
};

When calling a function object the name of the variable is referenced instead of the
function’s name.

say("World"); // "Hello World"

The function name can be used inside the function to refer to itself, but the name is
otherwise unnecessary. As such the name is typically omitted. The function expression
then becomes known as an anonymous function.

www.allitebooks.com

http://www.allitebooks.org

Chapter 8 ■ FunCtions

31

var say = function(message)
{
 console.log("Hello " + message);
};

Functional expressions are usually used as callback functions that are either passed
into or returned from other functions. They allow code to be written very concisely since
the function can be inlined without having to define it somewhere else. To illustrate, the
following example uses the window.setTimeout function, which takes another function
along with a number as its arguments. The number specifies how many milliseconds it
will wait before the function argument is called.

// Call anonymous function after one second
window.setTimeout(function() { console.log("Hello") }, 1000);

Scope and Lifetime
The scope of a variable refers to the region of code within which it is possible to use
that variable. Variables in JavaScript may be declared either globally or locally. A global
variable is declared outside of any functions and is accessible from anywhere in the
document. A local variable, on the other hand, is declared inside of a function and will
only be accessible within that function.

var globalVar = 0; // global variable

function foo() {
 var localVar = 0; // local variable
}

The lifetime of a local variable is limited. Whereas a global variable will remain
allocated for the duration of the script, a local variable will be destroyed when its function
has finished executing.

console.log(globalVar); // "0"
foo();
console.log(localVar); // throws a ReferenceError

When two variables in scope have the same name, there is a name conflict. More
inner scopes take precedence, so the innermost scope takes the highest precedence,
while the outermost scope takes the lowest.

var a = "global";

function foo() {
 var a = "local"; // overshaddows global variable
 console.log(a);
}

Chapter 8 ■ FunCtions

32

foo(); // "local"
console.log(a); // "global"

In contrast to many other languages, code blocks in JavaScript do not have their own
scope. A variable defined in a control structure code block – such as a loop or conditional
statement – will therefore not be destroyed when the block ends.

if(true) {
 var x = 10; // global variable
}

console.log(x); // "10"

There is an alternative way of creating variables by assigning a value to an
undeclared variable without the use of the var keyword. This will implicitly declare the
variable as a global variable, even if it is declared within a function.

function foo() {
 a = 5; // global variable
}
foo();
console.log(a); // "5"

Mistakenly introducing or overriding global variables in this way is a common source
of bugs. It is therefore recommended to always explicitly declare variables with the var
keyword.

var a = 10;
foo(); // replaces value of global variable
console.log(a); // "5"

Like function declarations, explicit variable declarations are also processed before
the script is executed. Variables can therefore be referenced in the code before they are
declared.

console.log(a); // "undefined"
var a = "defined";
console.log(a); // "defined"

This behavior is different for implicitly declared variables, because such variables do
not exist until the code assigning them a value is run.

console.log(b); // throws a ReferenceError

b = "defined"; // never executes

33

Chapter 9

Objects

An object is a collection of named values known as properties. Properties can be either
variables that hold the state of the object, or functions that define what the object can do.
The appeal of objects is that they provide functionality while hiding their inner workings.
All you need to know is what an object can do for you, not how it does it.

Object Properties
An empty object can be created using the new directive in the following explicit manner.

var box = new Object();

Properties for an object are created automatically when they are assigned to, using
either the dot notation or the array notation.

box.x = 2;
box["y"] = 3;

Likewise, properties can be referenced in one of these two ways.

console.log(box.x); // "2"
console.log(box["y"]); // "3"

A property can be removed from its object with the delete directive. This cannot be
done with regular variables, only with object properties.

box.z = 1; // add property
delete box.z; // delete property

To check if an object contains a property, the in operator can be used. The property
name is then specified as a string.

console.log("x" in box); // "true"
console.log("z" in box); // "false"

Chapter 9 ■ ObjeCts

34

Object Methods
A function can be added to an object in the form of a property. Such a function is referred
to as a method. When referencing a function declaration the parentheses are left out.

box.getArea = myArea;
function myArea() { return this.x * this.y; }

The this keyword used here is a reference to the object that currently owns the
function. In case the function is called outside an object context, the keyword will instead
refer to the window object. To prevent such out-of-context calls, it is better to inline
the function using a function expression. This also prevents the function’s name from
unnecessarily cluttering up the global namespace.

box.getArea = function() { return this.x * this.y; };

Once bound to the object the method can be invoked in the familiar way. The this
keyword will here refer to the box object, which had the properties x and y defined earlier.

console.log(box.getArea()); // "6"

Object Literals
A shorter way to create an object is to use an object literal, which is delimited by a set of
curly brackets. When creating an empty object the brackets are empty.

var box = {};

The advantage of using an object literal is that the properties can be set when the
object is created, by including them within the curly brackets. Each name-value pair of a
property is separated by a colon, and each property in turn is separated by a comma.

var box = {
 x: 2,
 y: 3,
 getArea: function() { return this.x * this.y; }
};

Object literals are useful if only a single instance of an object is needed. If more than
one instance is required a function constructor can be used instead.

Chapter 9 ■ ObjeCts

35

Constructor Functions
Objects can be created from a constructor function. They provide features that classes
provide in other languages, by allowing multiple instances of an object to be created
from a single set of definitions. By convention, functions intended to be used as object
constructors start with a capital letter, as a reminder of their purpose.

function Box(x, y) {
 this.x = x;
 this.y = y;
 this.getArea = function() { return this.x * this.y; };
}

To instantiate one or more objects from this constructor the function is called with
the new directive. Just like any other function, a constructor can accept arguments, as seen
in this example.

var b1 = new Box(1, 2);
var b2 = new Box(3, 4);

Each object instance contains its own set of properties, which can hold values that
are different from those of other instances.

console.log(b1.x); // "1"
console.log(b2.x); // "3"

The constructor function previously defined includes a function declared within
another function. Such a nested function can access variables defined in its parent function,
as it forms a so-called closure that includes the scope of the outer function. An advantage of
this object creation pattern is that it provides information hiding. For instance, the following
example has a method that uses a local variable to record how many times the method has
been called. This feature is similar to private properties in class-based languages, as the
local variable is only visible from within the constructor function.

function Counter(x, y) {
 var count = 0;
 this.printCount = function() { console.log(count++); };
}

var c = new Counter();
c.printCount(); // "0";
c.printCount(); // "1";

A small disadvantage of this object creation pattern is that each instance will have
its own printCount method, which increases the memory consumed by each object. An
alternative pattern that avoids this is to make use of inheritance to add the method to the
object’s prototype instead.

Chapter 9 ■ ObjeCts

36

Inheritance
An object can inherit properties from another object. This provides a way for objects to
reuse code from other objects. The specialized object is commonly called the child, and
the more general object is called the parent.

In JavaScript, inheritance is achieved through a prototypical inheritance model. In
this model each object has an internal property that acts as a link to another object, called
its prototype. Consider the following object.

var myObj = new Object();

This object inherits properties from the built-in Object constructor. When a property
is requested that the object does not directly contain, JavaScript will automatically search
up the inheritance chain until either the requested property is found or the end of the
chain is reached.

// Add a property to myObj
myObj.x = 5;
// Call a method from Object
myObj.hasOwnProperty("x"); // true

The last link in the chain is always the built-in Object constructor, whose prototype link
in turn is null, which marks the end of the chain. A reference to the object’s prototype link
can be retrieved using the __proto__ property. This is not to be confused with the prototype
property of the constructor function, which is the literal object representation of the function
that gets assigned to __proto__ when a new instance of that function is created.

myObj.__proto__ === Object.prototype; // true
myObj.__proto__.__proto__ === null; // true

Inheritance is achieved by expanding the prototype chain. This can be done in
the constructor function, by setting the prototype property to the object that is to be
inherited.

function Parent() { this.a = "Parent"; }
function Child() { }
Child.prototype = new Parent();
var child = new Child();
console.log(child.a); // "Parent"

Type Checking
You can manually confirm the type of an object by comparing its __proto__ link to the
prototype property of a constructor function.

child.__proto__ === Child.prototype; // true

Chapter 9 ■ ObjeCts

37

JavaScript also provides the instanceof operator. This operator navigates through
the prototype chain and returns true if the left-side object points to the right-side
constructor anywhere in the prototype chain.

child instanceof Child; // true
child instanceof Parent; // true
child instanceof Object; // true

Object Create
Another way to perform inheritance is through the Object.create method. This method
provides a simpler way to implement inheritance, by allowing an object to directly inherit
from another object without the use of an additional construction function.

var p = new Parent();
var c1 = Object.create(p); // inherit from p

An optional second argument to the method allows you to initialize properties for
the object using a special notation.

var c2 = Object.create(p, { name: { value: "Child 2" } });
console.log(c2.name); // "Child 2"

The prototype property of an object can be used to dynamically add properties
to the prototype. This causes all objects linking to that prototype to inherit the new
properties.

Parent.prototype.x = "new property";
console.log(c2.x); // "new property"

As shown in this chapter, JavaScript offers a lot of flexibility when it comes to creating
and using objects. The choice of which method to use often comes down to a matter of
preference.

39

Chapter 10

Document Object Model

The Document Object Model or DOM is a programming interface that describes all
elements of a web document and how they are related to each other. It is through this
interface that JavaScript code can interact with the web document.

DOM Nodes
In the DOM model, the content of the web document is represented in a tree-like
structure consisting of nodes. By knowing how these nodes are organized, it becomes
possible to change any part of the document dynamically. Consider the following HTML
markup.

<p>My paragraph</p>

This markup creates two nodes in the DOM tree: an element node and a text node.
Element nodes can have children, and the text node here is a child of the paragraph
element. Conversely, the paragraph node is the parent of the text node. Moving on to the
next example, there are four nodes.

<div id="mydiv">
 <!-- My comment -->
</div>

The div element node contains three nodes: two text nodes and one comment node.
The extra text nodes come from the whitespace (spaces, tabs, and newlines) found before
and after the comment in this example. All four of these nodes are invisible when viewing
the web page.

Each element can have an optional id attribute, as applied to the div element in this
example. Because this attribute must be unique, it provides a convenient way of selecting
a specific node in the DOM tree. Note that attributes are also considered to be nodes by
the DOM specification; however, when it comes to navigating the DOM tree, the attribute
nodes are instead viewed as properties of element nodes.

Chapter 10 ■ DoCument objeCt moDel

40

Selecting Nodes
The document object represents the web document and provides several ways to access the
DOM tree and retrieve node references. The most common way is to use the getElementById
method. This method returns a reference to the element with the specified unique id. Using
this method the div element node from the previous example can be retrieved.

var mydiv = document.getElementById("mydiv");

Elements can also be selected by their tag name with the getElementsByTagName
method. This method retrieves an array-like collection of all elements of that type.

var mydivs = document.getElementsByTagName("div");

Another less common way of selecting elements is through the class attribute.
As multiple elements can share the same class name, this method also returns a
collection. It is supported in all modern browsers excluding IE<9.

var myclasses = document.getElementsByClassName("myclass");

The getElementById method can only be invoked from the document object, but
the other two methods may alternatively be called from a specific node in the DOM tree
to only search the children of that node. For instance, the following code retrieves all
element nodes beneath the body element.

var myelements = document.body.getElementsByTagName("*");

In addition to the body node, the document object also has properties for retrieving
references to the html and head nodes.

var htmlnode = document.documentElement;
var headnode = document.head;
var bodynode = document.body;

Element nodes can also be located using the querySelector method. This method
returns the first element that matches the specified CSS selector, which in this case is the
first element with its class attribute set to myclass.

var mynode = document.querySelector(".myclass");

Similarly, the querySelectorAll method retrieves a collection of all element nodes
that match the given CSS query. Both of these query methods are supported by all
modern browsers, excluding IE<9.

var mynodes = document.querySelectorAll(".myclass");

If no elements are found, null is returned. This behavior is consistent across all DOM
methods.

Chapter 10 ■ DoCument objeCt moDel

41

Traversing DOM Tree
Once a node is selected, there are a number of properties that allows the DOM tree to be
traversed relative to that node. The following list can be used to illustrate.

<ul id="mylist">
 First
 Second
 Third

A reference to this unordered list node is here retrieved by its id.

var mylist = document.getElementById("mylist");

Element nodes below this node are available through the children collection. The
first list item can also be retrieved using the firstElementChild property.

var first = mylist.children[0];
first = mylist.firstElementChild;

Likewise, the last node can be accessed through either the children collection or the
lastElementChild property.

var third = mylist.children[2];
third = mylist.lastElementChild;

The DOM tree can be navigated left and right to neighboring nodes using the
previousElementSibling and nextElementSibling properties. Siblings in this case refers
to nodes that share the same parent.

var second = first.nextElementSibling;
second = third.previousElementSibling;

These four properties – firstElementChild, lastElementChild,
nextElementSibling, and previousElementSibling – are supported by all modern
browsers, except IE<9. For full browser support, the following properties can be used
instead: firstChild, lastChild, nextSibling, and previousSibling. Bear in mind that
these properties also take text and comment nodes into account, not just element nodes.

The parentNode property references the parent node. Together with the other
properties, they allow the DOM tree to be traversed in all four directions: up, down, left,
and right.

mylist = first.parentNode;

www.allitebooks.com

http://www.allitebooks.org

Chapter 10 ■ DoCument objeCt moDel

42

The children collection contains only element nodes. An exception to this is in
IE versions prior to 9, where this collection also includes comment nodes. If all node
types are needed, the childNodes collection is used instead. This collection contains all
node children, including element, text, and comment nodes. Once more IE<9 behaves
differently from other browsers, by not including whitespace-only text nodes in the
childNodes collection.

mylist.childNodes[0]; // whitespace text node
mylist.childNodes[1]; // li node
mylist.childNodes[2]; // whitespace text node

For element nodes both the nodeName and tagName properties contain the name of
the tag in uppercase letters. They can be used to test the tag name of an element node.

if (mydiv.nodeName == "DIV")
 console.log(mydiv.tagName); // "DIV"

While the tagName property is meant specifically for element nodes, the nodeName
property is useful for any node type. For instance, comment nodes evaluate to
"#comment" and text nodes to "#text".

mylist.childNodes[0].nodeName; // #text
mylist.childNodes[1].nodeName; // LI
mylist.childNodes[2].nodeName; // #text

Creating Nodes
Nodes in the DOM can be dynamically added, removed, or changed. To illustrate, a new
list item will be added to the previous list. The first step is to create the element and text
nodes, using the createElement and createTextNode methods respectively.

var myitem = document.createElement('li');
var mytext = document.createTextNode("New list item");

The text node is then added to the element node, using the appendChild method on
the list item node.

myitem.appendChild(mytext);

Next, the list item node is added to the unordered list using the same method. This
causes the new list item to appear on the page.

mylist.appendChild(myitem);

Chapter 10 ■ DoCument objeCt moDel

43

The appendChild method adds its node argument as the last child of the element
node it is called from. To insert the node somewhere else, the insertBefore method is
used. This method takes a second node argument, before which the new node is inserted.

mylist.insertBefore(myitem, mylist.children[0]);

A node cannot be in two places at the same time, so this action removes the node
previously added to the end of the list and instead places it in the beginning. To add
another similar node the element can first be copied using the cloneNode method. This
method takes a Boolean argument, which specifies whether the element’s descendant
nodes will also be copied.

var newitem = myitem.cloneNode(false);

This node is next added to the end of the list, but because it was cloned without its
descendants it has no text node and so it appears as an empty list element in the document.

mylist.appendChild(newitem);

As shown before, the text node can be created and linked using the createTextNode
and appendChild methods. A shorter alternative is to instead modify the innerHTML
property, which represents the HTML content of the element.

newitem.innerHTML = "Another new list item";

This property allows for both element and text nodes to be created automatically.
Another similar property that is useful to know of is textContent. This property
represents the content of the element stripped of any HTML tags.

newitem.textContent; // "Another new list item"
newitem.innerHTML; // "Another new list item"

Removing Nodes
A node can be removed using the removeChild method. This method returns a reference
to the removed node: in this case, the last child in the list. Keep in mind that catching
return values in JavaScript is optional.

var removedNode = mylist.removeChild(mylist.lastElementChild);

Another way to remove a node is to replace it with a different node. This is done with
the replaceChild method, which also returns the replaced node. The following code
replaces the first child of the list with the previously removed node.

mylist.replaceChild(removedNode, mylist.firstElementChild);

Chapter 10 ■ DoCument objeCt moDel

44

Attribute Nodes
Attribute nodes are accessible through their containing element, as opposed to being child
nodes of that element. To illustrate, here is a paragraph with an id attribute for easy selection.

<p id="myid">My paragraph</p>

Its element node is selected in the familiar way.

var mypara = document.getElementById("myid");

The setAttribute method adds an attribute to the referenced element, or replaces
its value if it already exists. It takes two arguments: the attribute and the value.

mypara.setAttribute("class","myclass");

To retrieve the value for an attribute, the getAttribute method is used. Before
the attribute is retrieved a check to make sure it exists is here performed using the
hasAttribute method.

if (mypara.hasAttribute("class"))
 console.log(mypara.getAttribute("class")); // "myclass"

Attributes are automatically synchronized with properties of the element node. This
provides a less verbose way to set and get attributes. Properties and their corresponding
attributes share the same name, except for the class attribute whose property is called
className. This is because class is a reserved keyword in JavaScript.

console.log(mypara.id); // "myid"
console.log(mypara.className); // "myclass"

CSS properties for an element can be changed dynamically using the style attribute.
One way to do so is to modify the attribute directly. This will overwrite any inline styles
previously set through this attribute.

mypara.setAttribute("style", "background-color: yellow;");

To instead add a new style to the element, properties of the style object can be
changed. These properties have the same name as their corresponding CSS property,
except that any hyphens are removed and each word after the first one is capitalized.

mypara.style.backgroundColor = "yellow";

To revert a style change you just need to clear that property by setting it to an empty
string.

mypara.style.backgroundColor = "";

45

Chapter 11

Events

Events are occurrences that take place in the interaction between the user, the web page,
and the browser. Event handling enables a script to detect and react to these occurrences,
allowing the web page to become interactive.

Event Handling
There are three steps to handling an event. First, you need to locate the element that will
receive the event. Events always take place in the context of element nodes inside the
DOM tree. In this example the event will occur when the following hyperlink is clicked.

My link

The next step is to create an event handler, which is the code that will execute when
the event occurs. This event handler typically consists of a function, which in this case
displays an alert box with a message for the user.

function myEventHandler() {
 alert("Event triggered");
}

Finally, the last step is to register the event handler for the particular event that is to
be handled. Here the link element node is selected, and the event handler is registered to
its onclick event in the following way.

var mylink = document.getElementById("mylink");
mylink.onclick = myEventHandler;

When the user clicks on this link, the event handler is called and the alert box pops
up. Once the box is closed, the default event handler takes over and the link is followed
through as normal. To remove the event handler, the property is set to null.

mylink.onclick = null;

http://www.google.com/

Chapter 11 ■ events

46

This is called the traditional model for event registration. Another, shorter
registration method is the inline model, which uses event attributes to attach the event
handler directly to the HTML element that produces the event.

My link

Note that the parentheses for the event handler are included in the inline model but
not the traditional one. An even less verbose way of using this model is to also inline the
function.

My link

An inlined event handler can contain more than one statement. In the following
example, a return false statement is added to the event handler. This prevents the default
browser action from taking place, which in this case means that the link will no longer be
followed.

<a href=" http://www.google.com" onclick="alert('Event triggered'); return
false">My link

Both the traditional and inline models are supported by all modern browsers. The
traditional model is generally preferable, as it allows event handlers to be added, changed,
and removed through code, and it completely separates the JavaScript from the HTML.

W3C standardized a third model for registering events in the DOM level 2
specification. In this W3C model, an event handler is added using the addEventListener
method. This method takes three arguments: the event type, the event handler, and a
Boolean value that will be looked at later.

mylink.addEventListener("click", myEventHandler, false);

Note that in the W3C model the “on” prefix of the event is left out, so “onclick”
becomes just “click.” To remove an event handler the removeEventListener is used with
the same three arguments.

mylink.removeEventListener("click", myEventHandler, false);

The main advantage of the W3C model is that more than one event handler can be
registered to the same event and for the same element node. A disadvantage is that it is not
supported in IE<9, making it less cross-browser compatible than the other two methods.

Event Object
When an event is triggered, the browser passes an argument to the event handler
representing the event as an object. This object can be accessed by adding a parameter to
the event handler.

function myEventHandler(e) { }

http://www.google.com/
http://www.google.com/
http://www.google.com/

Chapter 11 ■ events

47

This object is the W3C method for accessing event information. IE<9 passes no event
object argument and instead has a global window.event object, which represents the last
triggered event. For cross-browser compatibility, the following line can be added to the
beginning of the handler to make sure the correct event object is retrieved in all browsers.

function myEventHandler(e) {
 if (!e) var e = window.event;
}

The event object provides additional information about the event through its properties.
Different events have different properties, but all event objects have the type property.
This property holds a string identifying the event, such as “click” for the onclick event.

console.log(e.type); // "click"

Most events also have a target, which is a reference to the element node that
triggered the event. In the previous example this refers to the anchor element.

console.log(e.target.tagName); // "A"

On IE<9, the event object has a srcElement property instead of the target property.
The cross-browser compatible way of retrieving the target is seen here.

var target = e.target || e.srcElement;

Event Propagation
Most DOM events have event propagation, meaning that an event triggered on an inner
element will also trigger for outer elements. To illustrate, here is a paragraph element
nested inside a div element.

<div id="outer">Outer element
 <p id="inner">Inner element</div>
</div>

The following code registers click events for both of these elements using the
traditional model.

var inner = document.getElementById("inner");
inner.onclick = function() { alert("Inner"); }
var outer = document.getElementById("outer");
outer.onclick = function() { alert("Outer"); }

After an event triggers on the inner element, it then continues to trigger any event
handlers attached to parents in nesting order. Therefore, clicking on the inner element
will here display the “Inner” message first, followed by the “Outer” message. This default
event order is called bubbling.

Chapter 11 ■ events

48

The reverse event order is called capturing. IE<9 has only the bubbling order,
but all other modern browsers process event handlers first by capturing and then by
bubbling. To register an event handler for the capturing phase, the last argument of
addEventListener is set to true. In the following example, the numbers will be printed in
order when the paragraph element is clicked.

outer.addEventListener("click", function() { console.log("1"); }, true);
inner.addEventListener("click", function() { console.log("2"); }, true);
inner.addEventListener("click", function() { console.log("3"); }, false);
outer.addEventListener("click", function() { console.log("4"); }, false);

When an event handler is triggered, it has the opportunity to prevent further event
propagation by calling the stopPropagation method on the event object. In IE<9, the
event’s cancelBubble property needs to be set to true instead. The following is a cross-
browser compatible way of stopping an event from propagating.

function cancelEvent(e) {
 if (!e) var e = window.event;
 e.cancelBubble = true;
 if (e.stopPropagation) e.stopPropagation();
}

DOM Events
There are many DOM events supported by modern browsers. Here is a list of the most
common events you are likely to deal with.

Event Name Description

onClick Triggers when the user clicks an element. Can be applied to any visible
element.

onLoad Triggers on the window when the page has finished loading. Elements
requiring external objects, such as , <link>, and <iframe>,
also have this event.

onMouseOver Triggers when the user moves the mouse pointer onto an element.

onMouseOut Triggers when the user moves the mouse pointer out of an element.

onSubmit Triggers on <form> element when a form is submitted.

onFocus Triggers when an element gains input focus. Most often used with
form elements.

onBlur Triggers when input focus is lost. Most often used with form elements.

Chapter 11 ■ events

49

The onload event is useful for initialization actions that require the whole document
to be loaded. Remember that script blocks are run immediately when they appear in the
document. They are therefore unable to directly change elements that appear later in the
document, as illustrated in the following example.

<script>document.getElementById("para").style.color = "red";</script>
<p id="para">My paragraph</p>

The onload event provides a way to solve this by moving the initialization code to
an event handler registered to that event. With this code in place the paragraph text is
colored red once the document is loaded.

function colorText() {
 document.getElementById("para").style.color = "red";
}
window.addEventListener("load", colorText, false);

Notice that the onload event is registered for the window object, which represents
the browser window. This is the top-most object in the DOM hierarchy to which the
document object belongs, as well as all global code and variables.

To give another example, the onMouseOver and onMouseOut events are commonly
used to create image rollover effects. The following sample code illustrates this by
switching the displayed image when the user moves the mouse pointer over it.

<img src="pic1.png" id="rollover"
onmouseover = "document.getElementById('rollover').src='pic2.png'"
onmouseout = "document.getElementById('rollover').src='pic1.png'">

51

Chapter 12

Cookies

A cookie is a piece of data sent from a web site and stored locally on the user’s computer.
They provide a persistent storage space, allowing web sites to remember users as they
move between pages or return to the site.

Creating Cookies
Cookies are created by assigning a name-value pair to the document.cookie object. They
are limited to storing string values only.

document.cookie = "cookie1=mycookie";

The same object is used for retrieving the cookie string.

console.log(document.cookie); // "cookie1=mycookie"

To modify a cookie, you just need to assign it a new value. This will overwrite the
previous cookie.

document.cookie = "cookie1=first";

When another name-value pair is assigned to the cookie object, another cookie is
automatically created.

document.cookie = "cookie2=second";

Referencing the cookie object retrieves a string containing a semicolon-separated
list of all cookies.

console.log("document.cookie"); // "cookie1=first;cookie2=second"

Chapter 12 ■ Cookies

52

Each name-value pair can be extracted from the cookie string by using the split
method of the string object. The method returns an array containing the split values,
which are split according to the separator character specified as the argument.

var dataList = document.cookie.split(";");
console.log(dataList[0]); // "cookie1=first"
console.log(dataList[1]); // "cookie2=second"

Using split once more can separate the name from the value.

var pair = dataList[0].split("=");
console.log(pair[0] + " is " + pair[1]); // "cookie1 is first"

Encoding
The name-value pair of a cookie may not contain whitespace, commas, or semicolons. To
ensure these characters are not included, the global escape method can be used to URL
encode the string.

document.cookie = "cookie1=" + escape("Foo Bar");

In URL encoded form the space is replaced with %20.

console.log(document.cookie); // "cookie1=Foo%20Bar"

When reading the cookie string back the unescape method is used to undo the
encoding.

console.log(unescape(document.cookie)); // "cookie1=Foo Bar"

Expiration Date
In addition to the name-value pair a cookie string can contain other information, such as
when the cookie should expire. By default, the life span of a cookie is limited to the current
browser session. This session ends when the user closes the window, after which the
browser deletes the cookie. An expiration date is set in the following way, using the built-in
Date object and its toGMTString method. This cookie is set to expire after one hour, by
adding this number of milliseconds to the value returned by the getTime method.

var mycookie = "cookie1=first";
var date = new Date();
date.setTime(date.getTime() + (60*60*1000));
document.cookie = mycookie + ";expires=" + date.toGMTString();

www.allitebooks.com

http://www.allitebooks.org

Chapter 12 ■ Cookies

53

This expiration date also provides a means for deleting cookies. This is done by
re-creating the same cookie with an old expiration date—in this example, one day
in the past.

var name = "cookie1";
var date = new Date();
date.setDate(date.getDate() - 1);
document.cookie = name + '=;expires=' + date.toGMTString();

Note that only the name of the cookie is needed to identify which cookie is to be
overwritten. The value part is therefore left blank.

Path and Domain
In order to access a cookie, the document must be in the same domain and have the same
path as specified by the cookie. By default the path is the location of the folder containing
the document that created the cookie. The following example illustrates how to make the
cookie visible to all paths in a given domain.

var mycookie = "cookie1=first";
var path = "path=/";
document.cookie = mycookie + ";" + path;

The domain defaults to the host part of the document’s location, such as
www.example.com. To make the cookie available to other subdomains of this domain, the
www part can be left out, as in the following example.

var domain = "domain=.example.com";
document.cookie = mycookie + ";" + domain + ";" + path;

The domain, path, and expires options may appear in any order. Keep in mind that
it is not possible to retrieve these optional parameters from a cookie once they have
been set.

55

Chapter 13

Error Handling

An error is a mistake in the code that the developer needs to fix or handle. For instance,
the following line of code triggers a syntax error because of a missing parenthesis.

console.log("Hi";

When an error is encountered, the browser halts execution of the script. Most
browsers do not inform the user when an error occurs. Instead, information about the
error can be found in the browser’s developer console. This information includes the
filename, line number, and a description of the error, as the one seen below.

SyntaxError: missing) after argument list

While syntax errors are easy to find and resolve, other errors can be harder to
discover as they may only occur in certain situations. Furthermore, some errors may
happen for reasons beyond the developer’s control. For instance, a function may be
unavailable if it is defined by an external file and that file fails to load. This triggers a
reference error.

// Uncaught ReferenceError: missingFunc is not defined
missingFunc();

One way to prevent the execution of the script from halting is to check that the
function exists before calling it, which can be done in the following manner.

if (typeof missingFunc === "function") {
 missingFunc(); // safe to use function
}

Chapter 13 ■ error handling

56

Suppose this error occurs in a function and that the function cannot continue as a
result. The function then needs to signal its caller that it has failed. This is typically done
by returning null or an error code from the function.

function foo() {
 if (typeof missingFunc === "function") {
 missingFunc(); // safe to use function
 }
 else { return null; }
}

This is often the best way for a function to handle an error, or exception, as the
caller typically has the context necessary for deciding how to respond to the exception.
However, sometimes there may be multiple stacked function calls that make this approach
more cumbersome. As each function returns to its caller, the context of the exception is
gradually lost, and the last function that gets a null value returned does not have any idea
of what went wrong. To solve this JavaScript provides the try-catch statement.

Try-Catch
The try-catch statement consists of a try block containing the code that may cause an
exception, and a catch clause for handling it. If the try block executes successfully the
program will continue running after the try-catch statement, but if an exception occurs,
execution will then be passed to the catch block.

try {
 missingFunc();
}
catch(e) {}

With this statement, exception handling code is only necessary at the point that
knows how to handle the error. The functions in between the error and the exception
handler do not need to concern themselves with the exception.

Catch Block
The catch clause defines an exception object. This object can be used to obtain more
information about the exception, such as a description of the exception from the message
property.

catch(e) {
 // "missingFunc is not defined"
 console.log(e.message);
}

Chapter 13 ■ error handling

57

Note that JavaScript does not provide a direct way for selectively catching exceptions.
All potential exceptions need to be handled in the same catch block. Also keep in mind
that syntax errors cannot be caught.

Finally
As the last clause in the try-catch statement, a finally block can be added. This block
is used to clean up resources allocated in the try block and will always execute whether
there is an exception or not.

try {
 missingFunc();
}
catch(e) { }
finally {
 console.log("Always executed");
}

Throwing Exceptions
User-defined exceptions can be generated with the throw statement. When this statement
is reached, the function stops executing and the exception propagates up the caller stack
until it is caught by a try-catch statement, or else handled by the browser.

function bar()
{
 if (typeof missingFunc === "function") {
 missingFunc();
 }
 else { throw new Error("missingFunc(): Function missing"); }
}

The throw keyword can be followed by whatever it is the function wants to signal. In
this example, the Error constructor is used to create an exception value. This standard
type is often used for creating user-defined exceptions. It takes a description of the error
as a string argument. This argument is available through the error object’s message
property.

try {
 bar();
}
catch(e) {
 // "missingFunc(): Function missing"
 console.error(e.message);
}

Chapter 13 ■ error handling

58

Error objects also contain a name property. This property has the value “Error” for
objects created with the Error constructor.

console.error(e.name); // "Error"

To make it easier to identify exceptions it can be preferable to throw custom error
objects. This is especially useful when the code in the try clause can throw more than
one type of exception. In the following code sample, an object literal is thrown with
customized name and message properties. The name property can be examined in the
catch clause to determine how the exception should be handled.

throw {
 name: 'CustomError',
 message: 'Error description'
}

59

Chapter 14

Ajax

Asynchronous JavaScript and XML, or Ajax, is a methodology for exchanging data
with the server in the background, without having to do a full page refresh. This allows
elements of a page to be updated based on user events, without disrupting what the
user is doing on the page, thereby enabling the development of highly responsive web
applications.

Exchanging Data
An Ajax request is made using the XMLHttpRequest object. The first step to making a
request is to create an instance of this object.

var myRequest = new XMLHttpRequest();

To handle the server’s response, an event handler is attached to the onload event of
this object. The response is retrieved here with the responseText property and displayed
in the console.

myRequest.addEventListener('load', myHandler);
function myHandler() {
 console.log(this.responseText);
}

The request is initialized using the object’s open method, which is called with three
arguments: the retrieval method, the URL, and a Boolean value. The retrieval method is
commonly either “GET” or “POST.” The “GET” method is typically used when fetching
data and “POST” when sending data. The URL location is where the server data is
available. This can be any text file, such as an HTML or XML document, or a server-side
script that generates a text response. The last argument specifies if the request will be
processed asynchronously, which is generally preferred, or if the send method should
wait until the response is received.

var url = "mytext.txt";
myRequest.open("GET", url, true);

Chapter 14 ■ ajax

60

With the request ready it can now be sent using the send method. If information is
to be submitted to a script on the server, this data is specified as an argument to the send
method.

myRequest.send();

To follow along and test this Ajax request, you can place a text file called mytext.txt
with some sample text in the same folder as your web document. Bear in mind that Ajax is
subject to the same-origin policy of JavaScript, which means the specified location must
be on the same server from where the script is loaded.

Server Response
When the server response is received, the HTTP status code should be checked to make
sure the request was successful. The status code is available through the status property,
and a successful request is indicated by the number 200. Other status codes signal a
problem with the response, such as 404, which means the file was not found.

function myHandler() {
 if (this.status === 200)
 console.log(this.responseText);
}

The response is retrieved here using the responseText property, which returns the
response as a text string. If the response is XML data instead, it can be retrieved as an
XML object using the responseXML property. Such an object can be traversed using the
standard DOM methods.

Ajax Event
The state of an Ajax request can be retrieved from the readyState property of the
XMLHttpRequest object. This state is represented as a number from 0 to 4, where the
response is fully received when the state reaches 4. A function can be attached to the
onreadystatechange property to respond to each state change event. This can be used to
update the user on the progress of the request.

myRequest.onreadystatechange = stateObserver;
function stateObserver() {
 switch(this.readyState) {
 case 0: console.log("Request not sent"); break;
 case 1: console.log("Request sent"); break;
 case 2: console.log("Response header received"); break;
 case 3: console.log("Downloading data"); break;
 case 4: console.log("Response data received"); break;
 }
}

61

Chapter 15

jQuery

The jQuery framework is a widely used JavaScript library designed to simplify DOM
manipulation and eliminate browser incompatibilities.

Including jQuery
To include jQuery you can place the following reference in the <head> section of your web
document. This loads the latest version of jQuery from Google’s Hosted Libraries service,
which at the time of writing is version 1.11.3.

<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.
js"></script>

If you prefer to have a local copy of the script file, it can be obtained from jquery.com.
However, linking to jQuery from a content delivery network (CDN), such as the link
above, offers performance benefits. The CDN servers hosting jQuery are spread globally,
reducing latency, and visitors who already have a cached copy from the same source will
not have to download it again.

Using jQuery
When the jQuery script is included, it adds a single object named jQuery to the global
namespace. This object provides access to the utility methods of the jQuery framework.
Many of these methods are aimed at simplifying highly used JavaScript functionality,
such as the isArray, isPlainObject, and isFunction methods, which provide easy ways
to check if the passed argument is of one of these types.

jQuery.isArray([1, 2]); // true
jQuery.isPlainObject({}); // true
jQuery.isFunction(function() {}); // true

The jQuery object is typically referenced through its dollar sign ($) alias, because it
is shorter to type and brevity is a key feature of jQuery. The jQuery methods can therefore

https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js
https://ajax.googleapis.com/ajax/libs/jquery/1.11.3/jquery.min.js

Chapter 15 ■ jQuery

62

be called with an even shorter syntax. Here the type method is used, which returns the
type of its argument as a string.

$.type(null); // "null"
$.type([1, 2]); // "array"

In instances such as these, the type method is more specific than the typeof
operator.

typeof(null); // "object"
typeof([1, 2]); // "object"

Element Selection
Access to and manipulation of DOM elements requires that the target elements are first
selected, a process which jQuery greatly simplifies. Suppose a web document contains
the following element that we want to select.

<p id="myid">My paragraph</p>

The jQuery object can be used as a function, which takes a single argument
and returns a jQuery collection. If the argument is a CSS selector, the object returns
a collection containing any DOM elements that match that selector. This provides a
convenient way to select the paragraph.

var selection = $("#myid");

Compare this with the more verbose DOM method for selecting elements by their id.

var domNode = document.getElementById("myid");

An important difference between these selection methods is that the DOM method
returns a reference to the DOM element, whereas the jQuery method returns a jQuery
collection. The collection acts as a wrapper around the underlying DOM elements,
providing easier-to-use methods for performing actions on those elements. If you want to
use native DOM methods, the jQuery collection can be unwrapped to a raw DOM node
using either the square bracket notation or the get method.

domNode = selection[0];
domNode = selection.get(0);

Conversely, a DOM element can be wrapped into a jQuery collection by passing it to
the jQuery object.

var selection = $(domNode);

Chapter 15 ■ jQuery

63

A jQuery collection is like an array that contains zero or more DOM elements. If
no elements match the provided selector, or if no selector is provided, the returned
collection is empty.

var empty = $();

The number of elements selected can be retrieved using the length property. In this
case the length of the collection is zero.

console.log(empty.length); // "0"

If the selector matches more than one element, the returned collection will contain
all matched elements. Consider the following div elements.

<div class="myclass" id="div1">First</div>
<div class="myclass" id="div2">Second</div>

Selecting these elements by their class name returns a collection with two elements.

var divs = $(".myclass");
console.log(divs.length); // "2"

A new selection can be added to a collection using the add method.

var div1 = $("#div1");
divs = div1.add("#div2");

Likewise, the not method takes one or more matched elements out of a collection.

var div2 = divs.not("#div1");

It is interesting to note that jQuery method calls are chainable, as they all return
jQuery collections. The following line adds all div elements to an empty collection, and
then removes the div2 element, leaving only the div1 element remaining.

var div1 = $().add("div").not("#div2");

Collection Traversal
Once selected, a collection can be manipulated through the methods of that collection
object. To illustrate, the list below containing three list items will be used.

<ul id="mylist">
 Item 1
 Item 2
 Item 3

www.allitebooks.com

http://www.allitebooks.org

Chapter 15 ■ jQuery

64

The following query matches these list items and returns them as a collection.

var items = $("#mylist li");

This items collection now contains three jQuery elements. To extract a single
element from this collection the eq method can be used with the element’s index as its
argument.

var first = items.eq(0);
var second = items.eq(1);

Providing a negative argument retrieves an element counted from the end of the
collection instead.

var third = items.eq(-1);

Shortcut methods are available for retrieving the first or last element of a collection.

first = items.first();
third = items.last();

Alternatively, these method names can be used as suffixes when selecting the
elements.

first = $("#mylist li:first");
second = $("#mylist li:eq(1)");
third = $("#mylist li:last");

There are several other index-related selectors, or filters, that allow for very precise
selection queries. For example, the odd, even, lt (less than) and gt (greater than) filters.

var first_third = $("#mylist li:even");
second = $("#mylist li:odd");
first = $("#mylist li:lt(1)");
third = $("#mylist li:gt(1)");

DOM Traversal
The DOM tree can be traversed relative to elements in a collection. Using the previous list
example, the second list item here is selected as a starting point.

var second = $("#mylist li:eq(1)");

Chapter 15 ■ jQuery

65

From this element the DOM can be navigated sideways to sibling elements using the
next and prev methods.

var third = second.next();
var first = second.prev();

To move up in the hierarchy the parent method is provided. In this case the
unordered list element is selected.

var list = second.parent();

The children method can be used for moving downwards in the tree. It here returns
all three list items as a collection.

var items = list.children();

To select all siblings of an element, the siblings method is available. Bear in mind
that the original element is not included among the siblings.

var first_third = second.siblings();

If a collection contains more than one element, most collection methods affect all
elements in the set. For instance, calling next on a collection consisting of the first and
second list elements will return a collection containing the second and last list elements.

var first_second = $("#mylist li:lt(2)");
var second_third = first_second.next();

Modifying Attributes
The attr method is provided to access and modify the attributes of the selected elements.
To illustrate, consider the following HTML.

<p id="myid" class="myclass">First paragraph</p>
<p class="myclass">Second paragraph</p>

When called with an attribute name, the attr method retrieves the current value of
that attribute. If the collection contains more than one element, as in this case, only the
attribute value for the first element in the set is retrieved.

$(".myclass").attr("id"); // "myid"

Chapter 15 ■ jQuery

66

To add or change the value of an attribute, the name of that attribute and its new
value is passed to the method. Since this collection contains two elements, both of them
will be assigned the new attribute value.

$(".myclass").attr("title", "mytitle");

More than one attribute can be set at the same time by passing an object to the
method consisting of attribute–value pairs.

$(".myclass").attr({
 lang: "en",
 dir: "rtl"
});

Attributes can be removed using the removeAttr method. If applied to a selection of
multiple elements, each element will have that attribute removed.

$(".myclass").removeAttr("lang");

The css method allows CSS styles to be retrieved or changed through the style
attribute of the element. In the following example the first paragraph is colored red.

$("#myid").css("color", "red");

Passing a single argument to the method retrieves the value of that style property
from the style attribute, or undefined if the property has not been set.

$("#myid").css("color"); // "rgb(255, 0, 0)"

To change the style of an element it is preferable to apply classes that define these
styles in external stylesheets, rather than to modify the style attribute. The addClass
and removeClass methods provide a convenient way to do this, by allowing classes to be
added or removed from the class attribute. Both methods take a single argument, which
is a string specifying one or more classes to be added or removed.

$("#myid").addClass("class1 class2");
$("#myid").removeClass("class2");
$("#myid").attr("class"); // "myclass class1"

The hasClass method determines whether any matched elements are assigned the
specified class. Given the previous HTML, the following code returns true.

$("#myid").hasClass("myclass"); // true

Chapter 15 ■ jQuery

67

Creating Elements
Besides manipulating existing DOM nodes, the jQuery object can also be used to create
new elements by passing HTML markup to it in the form of a string argument. The string
must consist of a single top-level HTML element, but this element may contain any
number of child nodes.

var myDiv = $("<div>My container</div>");

Two methods are provided by jQuery for modifying the content of an element: text
and html. The html method changes the content of the element to the given string.

myDiv = myDiv.html("Hello HTML");

Calling the method without an argument retrieves the HTML content of that
element. If the collection contains more than one element, only the markup of the first
element is returned.

// "Hello HTML"
console.log(myDiv.html());

In contrast, invoking the text method without an argument retrieves the content of
the element stripped of any HTML tags.

// "Hello HTML"
console.log(myDiv.text());

Likewise, when given an argument the text method will escape any HTML in the
string and insert it in the element as plain text content.

myDiv.text("Hello text");

// Hello text
console.log(myDiv.html());

Keep in mind that newly created elements are not automatically included in the
DOM. They exist only as part of their respective jQuery collection.

Moving Elements
An element can be moved around or inserted into the DOM tree using one of the jQuery
insertion methods. To illustrate, take the following two elements.

<div id="content">My content</div>
<div id="container"></div>

Chapter 15 ■ jQuery

68

The append method takes an element as its argument and adds it to the end of each
element of a jQuery collection. In this example, the content element is selected and
moved into the container element as the last child.

$("#container").append($("#content"));

To insert the element as the first child, use the prepend method instead.

$("#container").prepend($("<div>First child</div>"));

The after method places the element immediately before the collection as a sibling.

$("#container").after($("<div>After</div>"));

The before method works the same way, but adds its argument before the collection
as a sibling.

$("#container").before($("<div>Before</div>"));

Upon executing these lines of code the HTML is transformed into the markup
shown below.

<div>Before</div>
<div id="container">
 <div>First child</div>
 <div id="content">My content</div>
</div>
<div>After</div>

Ready Method
In most cases, the appropriate time to run scripts is when the web document has been
loaded and the full DOM hierarchy is available. For this purpose, jQuery provides the
ready method, which takes as its argument a function to be executed upon this event.

function myHandler(e) { console.log("DOM ready"); }
$(document).ready(myHandler);

The document selector may be omitted since the ready method can only be called in
the context of the document.

$(myHandler); // alternative syntax

Bear in mind that the jQuery ready event is different from the DOM load event,
which does not trigger until all external resources, such as images, have been fully loaded.

Chapter 15 ■ jQuery

69

Event Handling
Event handling is simplified with jQuery’s on method. This method attaches an event
handler for an event to the selected elements. To give an example, consider the following
list.

<ul id="mylist">
 Item 1
 Item 2

A click event for these list items can be registered in a single step with the
following code.

$("#mylist li").on("click", myListHandler);

The event handler below uses the this selector to retrieve a reference to the element
where the event occurs, so clicking for instance the first list item will display “Item 1” in
the console.

function myListHandler(e) {
 console.log($(this).text());
}

There are shorthand methods for some events, such as click, change, keypress,
blur, and focus. This provides an alternative syntax for the previous example of
registering an event handler.

$("#mylist li").click(myListHandler);

Adding event handlers through jQuery provides the same benefits as the W3C
method of registering events, allowing multiple event handlers to be attached for the
same element and event. It also has the added benefit of being cross-browser compatible
with IE6-8, unlike the W3C method, both in terms of registering the event successfully
and in passing the correct event object.

Ajax
The steps to using Ajax is greatly simplified with jQuery, to the point of requiring only
a single method for the whole process of initializing, sending, and receiving a server
request. The same example used in Chapter 14 to display the content of a text file from
the server is seen here using jQuery.

http://dx.doi.org/10.1007/978-1-4302-6494-1_14

Chapter 15 ■ jQuery

70

$.ajax({
 url: "mytext.txt",
 type: "GET",
 async: "true",
 success: function(data) {
 console.log(data);
 }
});

The success method specified here gets called if the Ajax request succeeds. Only the
url property must be set for the ajax method. Other properties are optional and can be
left unspecified to use their default values. In this case, the type and async properties are
both using their default values, so they do not need to be specified.

$.ajax({
 url: "mytext.txt",
 success: function(data) {
 console.log(data);
 }
});

There is another, shorter way to accomplish this same task by using the get method.
This method requests server data using an HTTP GET request. It takes two arguments – the
URL and the callback function – to be executed if the request succeeds.

$.get("mytext.txt", function(data, status) {
 console.log(data);
});

Similar to the get method, there is also a post method that sends a server request
using an HTTP POST request. This method includes an extra argument containing the
data to be sent along to the server.

$.post("myscript.php", {
 name: "Alex",
 age: "25"
 }, function(data, status) {
 console.log(data);
});

The jQuery methods of sending Ajax requests automatically adds backward
compatibility for IE<7. Specifically, the ajax method takes into consideration that IE5-6
does not have the XMLHttpRequest object and instead uses an ActiveX object.

71

��������� A
Ajax request

onreadystatechange
property, 60

server response, 60
XMLHttpRequest object, 59

Arithmetic operators, 9
Arrays, 13

associative, 14
constructor, 13
literal, 14
multidimensional, 15
numeric, 13
object, 15

Assignment operators, 9
Associative array, 14

��������� B
Bitwise operators, 11

��������� C
Capturing, 48
Combined assignment

 operators, 9
Comparison operators, 10
Conditional statements

if, 21
switch, 22
ternary operator (?:), 22

Content delivery network (CDN), 61
Cookies

creation, 51
definition, 51
encoding, 52
expiration date, 53
path and domain, 53

��������� D
Decrement and increment operators, 10
Document Object Model (DOM)

appendChild method, 43
attribute nodes, 44
cloneNode method, 43
createTextNode method, 42
definition, 39
element node, 39
getElementById method, 40
lastElementChild property, 41
parentNode property, 41
querySelector method, 40
removeChild method, 43
tagName property, 42
textContent property, 43
text node, 39
unordered list node, 41

Dynamic typing, 6

��������� E
Error handling, 55

catch block, 56
finally block, 57
throw statement, 57
try-catch statement, 56

Escape characters, 18
Event handling, 45

inline models, 46
onclick event, 45
traditional model, 46
W3C model, 46

Events, 45
DOM events, 48
object, 46
propagation, 47
reverse event order, 48

Index

■ index

72

��������� F, G, H
Functions

argument passing, 29
calling, 27
definitions, 27
expressions, 30–31
parameters, 28
return statement, 29
variable parameter lists, 28

��������� I
If statement, 21–22
Increment and decrement operators, 10

��������� J, K
JavaScript, 1

browser compatibility, 3
code hints, 4
comments, 4
console window, 4
display text, 2
embedding, 2
HTML 5 project, 1
view source code, 3

jQuery framework, 61
after method, 68
append method, 68
attr method, 65
CDN servers, 61
collection traversal, 63
css method, 66
DOM elements, 62
DOM traversal, 64
event handling, 69
hasClass method, 66
html method, 67
JavaScript functionality, 61
ready method, 68
removeAttr method, 66
text method, 67
using Ajax, 69

��������� L
Latin-1 characters, 18
Like function, 32
Logical operators, 11
Loop statements, 23

break statement, 25
continue statement, 25
do-while loop, 23
for loop, 24
for-in loop, 25
while loop, 23

��������� M
Multidimensional arrays, 15

��������� N
Not-A-Number (NaN), 8
Numeric arrays, 13

��������� O
Objects, 33

constructor, 35
create method, 37
inheritance, 36
literals, 34
methods, 34
properties, 33
type checking, 36

Operators, 9
arithmetic operators, 9
assignment operators, 9
bitwise operators, 11
combined assignment operators, 9
comparison operators, 10
increment and decrement operators, 10
logical operators, 11
precedence, 12

��������� P, Q, R
parseFloat () function, 18
Precedence operators, 12

��������� S
siblings method, 65
String, 17

assignment operator, 17
concatenation operator, 17
escape characters, 18
numeric value, 18

String object, 19
Switch statement, 22

■ Index

73

��������� T
Ternary operator (?:), 22

��������� U
Unicode characters, 18

��������� V
Variables, 5

bool type, 7
declaration, 5

dynamic typing, 6
floating-point numbers, 7
Infinity and-Infinity, 8
integers, 6
NaN, 8
null type, 7
undefined type, 7

��������� W, X, Y, Z
W3C method, 47, 69

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Using JavaScript
	 Creating a Project
	 Embedding JavaScript
	 Displaying Text
	 View Source
	 Browser Compatibility
	 Console Window
	 Comments
	 Code Hints

	Chapter 2: Variables
	 Declaring Variables
	 Dynamic Typing
	 Number Type
	 Bool Type
	 Undefined Type
	 Null Type
	 Special Numeric Values

	Chapter 3: Operators
	 Arithmetic Operators
	 Assignment Operators
	 Combined Assignment Operators
	 Increment and Decrement Operators
	 Comparison Operators
	 Logical Operators
	 Bitwise Operators
	 Operator Precedence

	Chapter 4: Arrays
	 Numeric Arrays
	 Associative Arrays
	 Multidimensional Arrays
	 Array Object

	Chapter 5: Strings
	 Escape Characters
	 Strings and Numbers
	 String Object

	Chapter 6: Conditionals
	 If Statement
	 Switch Statement
	 Ternary Operator

	Chapter 7: Loops
	 While Loop
	 Do-While Loop
	 For Loop
	 For-in Loop
	 Break and Continue

	Chapter 8: Functions
	 Defining Functions
	 Calling Functions
	 Function Parameters
	 Variable Parameter Lists
	 Return Statement
	 Argument Passing
	 Function Expressions
	 Scope and Lifetime

	Chapter 9: Objects
	 Object Properties
	 Object Methods
	 Object Literals
	 Constructor Functions
	 Inheritance
	 Type Checking
	 Object Create

	Chapter 10: Document Object Model
	 DOM Nodes
	 Selecting Nodes
	 Traversing DOM Tree
	 Creating Nodes
	 Removing Nodes
	 Attribute Nodes

	Chapter 11: Events
	 Event Handling
	 Event Object
	 Event Propagation
	 DOM Events

	Chapter 12: Cookies
	 Creating Cookies
	 Encoding
	 Expiration Date
	 Path and Domain

	Chapter 13: Error Handling
	 Try-Catch
	 Catch Block
	 Finally
	 Throwing Exceptions

	Chapter 14: Ajax
	 Exchanging Data
	 Server Response
	 Ajax Event

	Chapter 15: jQuery
	 Including jQuery
	 Using jQuery
	 Element Selection
	 Collection Traversal
	 DOM Traversal
	 Modifying Attributes
	 Creating Elements
	 Moving Elements
	 Ready Method

	 Event Handling
	 Ajax

	Index

