Javadcript

series is simply the

most intelligent and
usable series of
guidebooks...”
—Kevin Kelly,

The hook co-founder of Wired
that should
have heen
in the box.

POGUE PRESS" _
O’REILLY" David Sawyer McFarland

vww .allitebooks.cond

http://www.allitebooks.org

9

JavaScript/Web programming

JavaScript: The Missing Manual. A modern Web site

needs to deliver more than just text. Your visitors expect

smart forms, navigation tabs, pop-up help screens, and

interactive picture galleries. JavaScript: The Missing .

Manual gives you exactly the JavaScript know-how you

need to deliver these elements with style and elegance—

even if you're not a programming guru.

Start right by building well-structured
JavaScript programs that work with your
HTML and CSS Web pages.

Customize your code—this book’s step-
by-step tutorials let you add just the features
your Web page calls for.

Develop your own Web site solutions by
examining this book’s live online examples.

Avoid common errors—find out what not
to do along the way.

Save time and effort with prewritten chunks
of code from the jQuery library.

Integrate live data from a Web server or
Google maps using simple Ajax
programming.

US $39.99 CAN $39.99

Why | started

the Missing
Manual series.
People learn best when information is
engaging, clearly written, and funny.
Unfortunately, most computer books read
like dry catalogs. That's why | created the
Missing Manuals. They're entertaining,
unafraid to state when a feature is
useless or doesn't work right, and—oh,

by the way—written by actual writers.
And on every page, we answer the simple

question: “What's this feature for?”

David Pogue is a New York Times
technology columnist, bestselling
author, and creator of the Missing

Manual series.

ISBN: 978-0-596-51589-8 Free online edition POGUE PRESS”

53999 for 45 days with N
1ML i purchase of tis book. O'REILLY*
780596"515898 Details on last page. www.missingmanuals.com

[vww allitebooks.cond

http://www.allitebooks.org

JavaScript

David Sawyer McFarland

POGUE PRESS"
O’REILLY"

Beijing « Cambridge « Farnham + Koln + Sebastopol + Tokyo

M.al litebooks. cor_rl

http://www.allitebooks.org

JavaScript: The Missing Manual
by David Sawyer McFarland

Copyright © 2008 David Sawyer McFarland. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional
sales department: (800) 998-9938 or corporate@oreilly.com.

Printing History:
July 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, the O’Reilly logo, and “The book that should have been
in the box” are registered trademarks of O’Reilly Media, Inc. JavaScript: The Missing Manual, The Missing
Manual logo, Pogue Press, and the Pogue Press logo are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-0-596-51589-8
[LSI] [2011-05-12]

M.al litebooks. cogl

http://safari.oreilly.com
mailto:corporate@oreilly.com
http://www.allitebooks.org

Table of Contents

The Missing Credits ... xi
Introduction 1
Part One: Getting Started with JavaScript
Chapter 1: Writing Your First JavaScript Program ... 19
Introducing Programming 19
What's a Computer Program? 21
How to Add JavaScript to a Page 22
External JavaScript Files 24
Your First JavaScript Program 26
Writing Text on a Web Page 29
Attaching an External JavaScript File 29
Tracking Down Errors 32
The Firefox JavaScript Console 34
Displaying the Internet Explorer Error Dialog Box 35
Accessing the Safari Error Console 36
Chapter 2: The Grammar of JavaScript... 39
Statements 39
Commands 40
Types of Data 40
Numbers 41
Strings a4
Booleans 42

vww.allitebooks.cond

http://www.allitebooks.org

Variables 43

Creating a Variable 43
Using Variables 46
Working with Data Types and Variables 47
Basic Math 48
The Order of Operations 49
Combining Strings 49
Combining Numbers and Strings 50
Changing the Values in Variables 51
Tutorial: Using Variables to Create Messages 53
Tutorial: Asking for Information 54
Arrays 56
Creating an Array 58
Accessing Items in an Array 59
Adding Items to an Array 61
Deleting Items from an Array 63
Adding and Deleting with splice() 64
Tutorial: Writing to a Web Page Using Arrays 67
Comments 7
When to Use Comments 72
Comments in this Book 73
Chapter 3: Adding Logic and Control to Your Programs 75
Making Programs React Intelligently 75
Conditional Statement Basics 77
Adding a Backup Plan 79
Testing More Than One Condition 81
More Complex Conditions 82
Nesting Conditional Statements 85
Tips for Writing Conditional Statements 85
Tutorial: Using Conditional Statements 86
Handling Repetitive Tasks with Loops 90
While Loops 90
Loops and Arrays 92
For Loops 94
Do/While Loops 96
Functions: Turn Useful Code Into Reusable Commands 97
Mini-Tutorial 99
Giving Information to Your Functions 100
Retrieving Information from Functions 102
Keeping Variables from Colliding 103
Tutorial: A Simple Quiz 106

JAVASCRIPT: THE MISSING MANUAL

vww.allitebooks.cond

http://www.allitebooks.org

Chapter 4: Working with Words, Numbers, and Dates........................ 113

A Quick Object Lesson 113
Strings 116
Determining the Length of a String 116
Changing the Case of a String 116
Searching a String: indexOf() Technique 117
Extracting Part of a String with slice() 118
Finding Patterns in Strings 120
Creating and Using a Basic Regular Expression 121
Building a Regular Expression 121
Grouping Parts of a Pattern 125
Useful Regular Expressions 126
Matching a Pattern 131
Replacing Text 132
Trying Out Regular Expressions 133
Numbers 134
Changing a String to a Number 134
Testing for Numbers 136
Rounding Numbers 137
Formatting Currency Values 137
Creating a Random Number 138
Dates and Times 140
Getting the Month 140
Getting the Day of the Week 141
Getting the Time 141
Creating a Date Other Than Today 145
Tutorial 146
Overview 146
Writing the Function 147
Chapter 5: Dynamically Modifying Web Pages.............cccoeneurenresnnsenses 155
Modifying Web Pages: An Overview 155
Understanding the Document Object Model 157
Selecting a Page Element 158
Adding Content to a Page 162
The Moon Quiz Revisited 164
The Problem with the DOM 168
Introducing JavaScript Libraries 169
Getting Started with jQuery 170
Selecting Page Elements (Revisited) 172
Basic Selectors 173
Advanced Selectors 176
jQuery Filters 178
Understanding jQuery Selections 179

TABLE oF CONTENTS

vww.allitebooks.cond

http://www.allitebooks.org

Adding Content to a Page 181
Replacing and Removing Selections 183
Setting and Reading Tag Attributes 185
Classes 185
Reading and Changing CSS Properties 186
Changing Multiple CSS Properties at Once 188
Reading, Setting, and Removing HTML Attributes 189
Creative Headlines 190
Acting on Each Element in a Selection 193
Anonymous Functions 193
this and $(this) 194
Automatic Pull Quotes 196
Overview 196
Programming 197

Chapter 6: Action/Reaction: Making Pages Come Alive with Events. 201

What Are Events? 201
Mouse Events 203
Document/Window Events 204
Form Events 205
Keyboard Events 206

Using Events with Functions 207
Inline Events 207
The Traditional Model 208
The Modern Way 209
The jQuery Way 210

Tutorial: Highlighting Table Rows 212

More jQuery Event Concepts 218
Waiting for the HTML to Load 218
jQuery Events 220
The Event Object 222
Stopping an Event’s Normal Behavior 223
Removing Events 224

Advanced Event Management 225

Tutorial: A One-Page FAQ 227
Overview of the Task 228
The Programming 228

Chapter 7: Improving Your Images 233

Swapping Images 233
Changing an Image’s src Attribute 234
Preloading Images 235
Rollover Images 236

Tutorial: Adding Rollover Images 238
Overview of the Task 238
The Programming 239

JAVASCRIPT: THE MISSING MANUAL

vww.allitebooks.cond

http://www.allitebooks.org

jQuery Effects 242

Basic Showing and Hiding 243
Fading Elements In and Out 244
Sliding Elements 245
Animation 246
Tutorial: Photo Gallery with Effects 248
Overview of Task 248
The Programming 249
Advanced Gallery with jQuery lightBox 254
The Basics 255
Customizing lightBox 257
Tutorial: lightBox Photo Gallery 261
Animated Slideshows with Cycle 263
The Basics 263
Customizing the Cycle Plug-in 265
Tutorial: An Automated Slideshow 268

Part Two: Building Web Page Features

Chapter 8: Improving Navigation 275
Some Link Basics 275
Selecting Links with JavaScript 275
Determining a Link's Destination 276
Don't Follow That Link 277
Opening External Links in a New Window 278
Creating New Windows 281
Window Properties 282
Opening Pages in a Window on the Page 286
Customizing the Look of a Greybox Window 290
Tutorial: Opening a Page Within a Page 290
Tutorial: Making Bigger Links 294
Overview 295
The Programming 296
Animated Navigation Menus 300
The HTML 301
The CSS 303
The JavaScript 303
The Tutorial 304
Chapter 9: Enhancing Web Forms 309
Understanding Forms 309
Selecting Form Elements 31
Getting and Setting the Value of a Form Element 313
Determine Whether Buttons and Boxes Are Checked 314
Form Events 315

TABLE oF CONTENTS

vww.allitebooks.cond

vii

http://www.allitebooks.org

Adding Smarts to Your Forms 320
Focus the First Field in a Form 321
Disabling and Enabling Fields 322
Hiding and Showing Form Options 323

Tutorial: Basic Form Enhancements 324
Focusing a Field 325
Disabling Form Fields 325
Hiding Form Fields 328

Form Validation 330
jQuery Validation Plug-in 331
Basic Validation 333
Advanced Validation 336
Styling Error Messages 342

Validation Tutorial 343
Basic Validation 343
Advanced Validation 346
Validating Checkboxes and Radio Buttons 349
Formatting the Error Messages 352

Chapter 10: Expanding Your Interface 355

Hiding Information with Accordion Panels 355
Customizing an Accordion 358
Accordion Tutorial 360

Organizing Information in Tabbed Panels 364
Formatting Tabs and Panels 368
Customizing the Tabs Plug-in 370
Tabbed Panels Tutorial 372

Tooltips 376
Tooltips Using the Title Attribute 377
Tooltips Using Another Web Page 379
Tooltips Using Hidden Content 380
Controlling the Display of Tooltips 382
Formatting Tooltips 386
Cluetip Tutorial 388

Creating Sortable Tables 394
Styling the Table 396
Tablesorter Tutorial 397

Part Three: Ajax: Communicating with the Web Server
Chapter 11: Introducing Ajax 403

What Is Ajax? 404

Ajax: The Basics 406
Pieces of the Puzzle 406
Talking to the Web Server 408

viii JavAScrIpT: THE MISSING MANUAL

vww.allitebooks.cond

http://www.allitebooks.org

Ajax the jQuery Way 411

Using the load() Function 411
Tutorial: The load() Function 413
The get() and post() Functions 418
Formatting Data to Send to the Server 419
Processing Data from the Server 423
Tutorial: Using the get() Function 426
JSON 432
Accessing JSON Data 434
Complex JSON Objects 435
Chapter 12: Basic Ajax Programming 439
Tabs Plug-in 439
Changing the Loading Text and Icon 441
Ajax Tabs Tutorial 443
Adding Google Maps to Your Site 445
Setting a Location for the Map 449
Other jMap Options 450
Adding Markers and HTML Bubbles 451
Get Driving Directions 453
jMaps Tutorial 455

Part Four: Troubleshooting, Tips, and Tricks

Chapter 13: Troubleshooting and Debugging . 463
Top JavaScript Programming Mistakes 463
Non-Closed Pairs 463
Quotation Marks 467
Using Reserved Words 468
Single Equals in Conditional Statements 468
Case-Sensitivity 470
Incorrect Path to External JavaScript File 470
Incorrect Paths Within External JavaScript Files 47
Disappearing Variables and Functions 472
Debugging with Firebug 473
Installing and Turning On Firebug 473
Viewing Errors with Firebug 474
Using console.log() to Track Script Progress 475
Tutorial: Using the Firebug Console 477
More Powerful Debugging 482
Debugging Tutorial 486

TABLE oF CONTENTS

Chapter 14: Going Further with JavaScript 493

Putting It All Together 493

Using External JavaScript Files 493

Writing More Efficient JavaScript 496

Put Preferences in Variables 496

Ternary Operator 498

The Switch Statement 499

Using the jQuery Object Efficiently 501

Creating Fast-Loading JavaScript 502

Using YUI Compressor for Windows 504

Using YUI Compressor for Mac 505
Part Five: Appendix

Appendix A: JavaScript ReSOUICEScccoemreemmreesmsemmsessssessssasessasesens 509

11 L= G 517

JAVASCRIPT: THE MISSING MANUAL

The Missing Credits

About the Author

David Sawyer McFarland is president of Sawyer McFarland Media,
Inc., a Web development and training company in Portland,
Oregon. He’s been building Web sites since 1995, when he designed
his first Web site—an online magazine for communication profes-
sionals. He’s served as webmaster at the University of California at
Berkeley and the Berkeley Multimedia Research Center, and oversaw a complete
CSS-driven redesign of Macworld.com.

In addition to building Web sites, David is also a writer, trainer, and instructor.
He’s taught Web design at UC Berkeley Graduate School of Journalism, the Cen-
ter for Electronic Art, the Academy of Art College, Ex’Pressions Center for New
Media, and Portland State University. He’s written articles about the Web for Practi-
cal Web Design, MX Developer’s Journal, Macworld magazine, and CreativePro.com.

He welcomes feedback about this book by email: missing@sawmac.com. (If you’re
seeking technical help, however, please refer to the sources listed in Appendix A.)

About the Creative Team

Nan Barber (editor) has worked with the Missing Manual series since its incep-
tion—long enough to remember booting up her computer from a floppy disk.
Email: nanbarber@oreilly.com.

Nellie McKesson (production editor) is a graduate of St. John’s College in Santa
Fe, New Mexico. She currently lives in Jamaica Plain, Mass., and spends her spare
time making t-shirts for her friends to wear (mattsaundersbynellie.etsy.com). Email:
nellie@oreilly.com.

Tony Ruscoe (technical reviewer) is a Web developer living in Sheffield, England.
His first computer programs were written in Sinclair BASIC on his ZX Spectrum
in the mid-1980s. He’s been using JavaScript since 1997 when he started to develop
websites and web applications. He currently maintains his personal website (http://
ruscoe.net) and a site dedicated to researching his surname (http://ruscoe.name).

Lisa Hasko (technical reviewer) is a nonprofit humanitarian aid worker with a
background in project management for an independent film Web site. Aside from
freelancing in her spare time, she is a traveler, social connector, and changeaholic.
Email: lisa.hasko@gmail.com.

xi

http://ruscoe.net
http://ruscoe.net
http://ruscoe.name
lisa.hasko@gmail.com

xii

Marni Derr (tech reviewer) is a technical writer and Web developer. When not
working on computer-related books or client sites, she is madly giving fiction writ-
ing a go. She maintains a community blog for technical writers and developers at
http://writingyourdreams.com. Email: marni.derr@writerslatte.com.

Acknowledgements

Many thanks to all those who helped with this book, including Marni Derr, Tanya
Symes, Tony Ruscoe, and Lisa Hasko, whose watchful eyes saved me from poten-
tially embarrassing mistakes. Thanks also to my many students at Portland State
University who have sat through my long JavaScript lectures and struggled
through my programming assignments. Also, we all owe a big debt of gratitude to
John Resig and the jQuery team for creating the best tool yet for making Java-
Script fun.

Finally, thanks to David Pogue for getting me started; Nan Barber for making my
writing sharper and clearer; my wife, Scholle, for putting up with an author’s
crankiness; and my son, Graham, who’s glad I'm done with this book so he and I
can finally get back to playing Indiana Jones and the Legos of Doom. (Hey Kate,
welcome to the world!)

The Missing Manual Series

Missing Manuals are witty, superbly written guides to computer products that
don’t come with printed manuals (which is just about all of them). Each book fea-
tures a handcrafted index; cross-references to specific pages (not just chapters);
and RepKover, a detached-spine binding that lets the book lie perfectly flat with-
out the assistance of weights or cinder blocks.

Recent and upcoming titles include:

Access 2007: The Missing Manual by Matthew MacDonald

AppleScript: The Missing Manual by Adam Goldstein

AppleWorks 6: The Missing Manual by Jim Elferdink and David Reynolds
CSS: The Missing Manual by David Sawyer McFarland

Creating Web Sites: The Missing Manual by Matthew MacDonald

Digital Photography: The Missing Manual by Chris Grover and Barbara Brundage
Dreamweaver 8: The Missing Manual by David Sawyer McFarland
Dreamweaver CS3: The Missing Manual by David Sawyer McFarland
eBay: The Missing Manual by Nancy Conner

Excel 2003: The Missing Manual by Matthew MacDonald

Excel 2007: The Missing Manual by Matthew MacDonald

JAVASCRIPT: THE MISSING MANUAL

Acknowledgements

Facebook: The Missing Manual by E.A. Vander Veer

FileMaker Pro 8: The Missing Manual by Geoff Coffey and Susan Prosser
FileMaker Pro 9: The Missing Manual by Geoff Coffey and Susan Prosser
Flash 8: The Missing Manual by E.A. Vander Veer

Flash CS3: The Missing Manual by E.A. Vander Veer and Chris Grover
FrontPage 2003: The Missing Manual by Jessica Mantaro

Google Apps: The Missing Manual by Nancy Conner

The Internet: The Missing Manual by David Pogue and J.D. Biersdorfer
iMovie 6 & iDVD: The Missing Manual by David Pogue

iMovie *08 & iDVD: The Missing Manual by David Pogue

iPhone: The Missing Manual by David Pogue

iPhoto ’08: The Missing Manual by David Pogue

iPod: The Missing Manual, Sixth Edition by J.D. Biersdorfer

Mac OS X: The Missing Manual, Tiger Edition by David Pogue

Mac OS X: The Missing Manual, Leopard Edition by David Pogue
Microsoft Project 2007: The Missing Manual by Bonnie Biafore

Office 2004 for Macintosh: The Missing Manual by Mark H. Walker and Franklin
Tessler

Office 2007: The Missing Manual by Chris Grover, Matthew MacDonald, and E.A.
Vander Veer

Office 2008 for Macintosh: The Missing Manual by Jim Elferdink

PCs: The Missing Manual by Andy Rathbone

Photoshop Elements 6: The Missing Manual by Barbara Brundage
Photoshop Elements 6 for Mac: The Missing Manual by Barbara Brundage
PowerPoint 2007: The Missing Manual by E.A. Vander Veer

QuickBase: The Missing Manual by Nancy Conner

QuickBooks 2008: The Missing Manual by Bonnie Biafore

Quicken 2008: The Missing Manual by Bonnie Biafore

Switching to the Mac: The Missing Manual, Tiger Edition by David Pogue and
Adam Goldstein

Switching to the Mac: The Missing Manual, Leopard Edition by David Pogue

THE M1ssiNG CREDITS

xifi

xiv

Wikipedia: The Missing Manual by John Broughton
Windows XP Home Edition: The Missing Manual, Second Edition by David Pogue

Windows XP Pro: The Missing Manual, Second Edition by David Pogue, Craig
Zacker, and Linda Zacker

Windows Vista: The Missing Manual by David Pogue

Windows Vista for Starters: The Missing Manual by David Pogue
Word 2007: The Missing Manual by Chris Grover

Your Brain: The Missing Manual by Matthew MacDonald

JAVASCRIPT: THE MISSING MANUAL

Introduction

Not too long ago, the Web was a pretty boring place. Constructed from plain old
HTML, Web pages displayed information and not much else. Folks would click a
link and then wait for a new Web page to load—and that was about as interactive
as it got.

These days, most Web sites are almost as responsive as the programs on a desktop
computer, reacting immediately to every mouse-click. And it’s all thanks to the
subject of the book you’re holding—TJavaScript.

What Is JavaScript?

JavaScript is a programming language that lets you supercharge your HTML with
animation, interactivity, and dynamic visual effects.

JavaScript can make Web pages more useful by supplying immediate feedback. For
example, a JavaScript-powered shopping cart page can instantly display a total
cost, with tax and shipping, the moment a visitor selects a product to buy. Java-
Script can produce an error message immediately after someone attempts to sub-
mit a Web form that’s missing necessary information.

JavaScript’s main selling point is its immediacy. It lets Web pages respond instantly
to the actions of someone interacting with a page—clicking a link, filling out a
form, or merely moving the mouse around the screen. JavaScript doesn’t suffer
from the frustrating delay associated with server-side programming languages like
PHP, which rely on communication between the Web browser and the Web server.

Introduction

Because it doesn’t rely on constantly loading and reloading Web pages, JavaScript
lets you create Web pages that feel and act more like desktop programs than Web
pages.

If you’ve visited Google Maps (http://maps.google.com/), you’ve seen JavaScript in
action. Google Maps lets you view a map of your town (or pretty much anywhere
else for that matter), zoom in to get a detailed view of streets and bus stops, or
zoom out to get a birds-eye view of how to get across town, the state, or the nation.
While there were plenty of map sites before Google, they always required reload-
ing multiple Web pages (a usually slow process) to get to the information you
wanted. Google Maps, on the other hand, works without page refreshes—it
responds immediately to your choices.

The programs you create with JavaScript can range from the really simple (like
popping up a new browser window with a Web page in it) to full blown Web
applications like Google Docs (http://docs.google.com/), which let you create pre-
sentations, edit documents, and create spreadsheets using your Web browser with
the feel of a program running directly on your computer.

A Bit of History

Invented by Netscape back in 1995, JavaScript is nearly as old as the Web itself.
While JavaScript is well respected today, it has a somewhat checkered past. It used
to be considered a hobbyist’s programming language, used to add less-than-useful
effects messages scrolling across the bottom of a Web browser’s status bar like a
stock-ticker, or animated butterflies following mouse movements around the page.
In the early days of JavaScript, it was easy to find thousands of free JavaScript pro-
grams (also called scripts) online, but many of those scripts frequently didn’t work
in all Web browsers, and at times even crashed browsers.

Note: JavaScript has nothing to do with the Java programming language. JavaScript was originally named
LiveScript, but the marketing folks at Netscape decided they'd get a lot more publicity if they tried to asso-
ciate the language with the then-hot Java.

In the early days, JavaScript also suffered from incompatibilities between the two
prominent browsers, Netscape Navigator and Internet Explorer. Because Netscape
and Microsoft tried to outdo each other’s browsers by adding newer and (ostensi-
bly) better features, the two browsers often acted in very different ways, making it
difficult to create JavaScript programs that worked well in both.

Note: After Netscape introduced JavaScript, Microsoft introduced jScript, their own version of JavaScript
included with Internet Explorer.

JAVASCRIPT: THE MISSING MANUAL

http://maps.google.com/
http://docs.google.com/

Fortunately the worst of those days is nearly gone and contemporary browsers like
Firefox, Safari, and Internet Explorer 7 have standardized much of the way they
handle JavaScript, making it easier to write JavaScript programs that work for most
everyone. (There are still a few incompatibilities among current Web browsers, so
you’ll need to learn a few tricks for dealing with cross-browser problems. You’ll
learn how to overcome browser incompatibilities in this book.)

In the past several years, JavaScript has undergone a rebirth, fueled by high-profile
Web sites like Google, Yahoo, and Flickr, which use JavaScript extensively to create
interactive Web applications. There’s never been a better time to learn JavaScript.
With the wealth of knowledge and the quality of scripts being written, even if
you’re a beginner you can add sophisticated interaction to your Web site—without
becoming a computer scientist.

JavaScript Is Everywhere

JavaScript isn’t just for Web pages, either. It’s proven to be such a useful program-
ming language that if you learn JavaScript you can create Yahoo Widgets and
Apple’s Dashboard Widgets, write programs for the iPhone, and tap into the
scriptable features of many Adobe programs like Acrobat, Photoshop, Illustrator,
and Dreamweaver. In fact, Dreamweaver has always offered clever JavaScript pro-
grammers a way to add their own commands to the program.

In addition, the programming language for Flash—ActionScript—is based on
JavaScript, so if you learn the basics of JavaScript you’ll be well prepared to take on
Flash programming projects.

JavaScript Doesn’t Stand Alone

JavaScript isn’t any good without the two other pillars of Web design—HTML and
CSS. Many programmers talk about the three languages as forming the “layers” of
a Web page: HTML provides the structural layer, organizing content like pictures
and words in a meaningful way; CSS (Cascading Style Sheets) provides the presen-
tational layer, making the content in the HTML look good; and JavaScript adds a
behavioral layer, bringing a Web page to life so it interacts with Web visitors.

In other words, to master JavaScript you need to have a good understanding of
both HTML and CSS.

Tip: For a full-fledged introduction to HTML and CSS, check out Head First HTML with CSS and XHTML
by Elisabeth Freeman and Eric Freeman. For an in-depth presentation of the tricky subject of Cascading
Style Sheets, pick up a copy of CSS: The Missing Manual by David Sawyer McFarland (both O'Reilly).

INTRODUCTION

Introduction

Introduction

HTML: The Barebones Structure

HTML (Hypertext Markup Language) uses simple commands called tags to define
the various parts of a Web page. For example, this HTML code creates a simple
Web page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">

<html>

<head>

<title>Hey, I am the title of this Web page.</title>

</head>

<body>

Hey, I am some body text on this Web page.

</body>

</html>

It may not be exciting, but this example has all the basic elements a Web page
needs. This page begins with a few lines that state what type of document the page
is and which standards it conforms to. This document type declaration—doctype
for short—also points the Web browser to a file on the Internet that contains defi-
nitions for that type of file. HTML actually comes in different versions, and you
use a different doctype with each. In this case, the doctype for this page indicates
that the page is an HTML document that uses a “strict” version of HTML 4.01.

In essence, the doctype tells the Web browser how to display the page. In Internet
Explorer, the doctype can even affect how CSS and JavaScript work. With an
incorrect or missing doctype, you may end up banging your head against a wall as
you discover lots of cross-browser differences with your scripts. In other words,
always include a doctype in your HTML.

There are four types of HTML commonly used today: HTML 4.01 Transitional,
HTML 4.01 Strict, XHTML 1.0 Transitional, and XHTML 1.0 Strict. All four are
very much alike, with just slight differences in how tags are written and what tags
and attributes are allowed. Most Web page editing programs add an appropriate
doctype when you create a new Web page, but if you want examples of how each is
written, you can find templates for the different types of pages at www.
webstandards.org/learn/reference/templates.

It doesn’t really matter which type of HTML you use. All current Web browsers
understand each doctype and can display Web pages using any of the four docu-
ment types without problem. Which doctype you use isn’t nearly as important as
making sure a page validates correctly, as described in the box on page 6.

JAVASCRIPT: THE MISSING MANUAL

vww.allitebooks.cond

http://www.webstandards.org/learn/reference/templates
http://www.webstandards.org/learn/reference/templates
http://www.allitebooks.org

Note: XHTML was once heralded as the next big thing for Web designers. Although you'll still find peo-
ple who think you should only use XHTML, the winds of change have turned. Most browser manufactur-
ers aren't very excited about the progress (and complexity) of future versions of XHTML, and have instead
turned their attention to HTML 5. You can find out more at www.digital-web.comyarticles/html5_xhtmi2_
and_the_future_of_the_web.

How HTML Tags Work

In the example on the the previous page, as in the HTML code of any Web page
you look at, you’ll notice that most commands appear in pairs that surround a
block of text or other commands. Sandwiched between brackets, these tags are
instructions that tell a Web browser how to display the Web page. Tags are the
“markup” part of the Hypertext Markup Language.

The starting (opening) tag of each pair tells the browser where the instruction
begins, and the ending tag tells it where the instruction ends. Ending or closing tags
always include a forward slash (/) after the first bracket symbol (<). For example,
the tag <p> marks the start of a paragraph, while </p> marks its end.

For a Web page to work correctly, you must include at least these three tags:

+ The <html> tag appears once at the beginning of a Web page (after the doc-
type) and again (with an added slash) at the end. This tag tells a Web browser
that the information contained in this document is written in HTML, as
opposed to some other language. All of the contents of a page, including other
tags, appear between the opening and closing <html> tags.

If you were to think of a Web page as a tree, the <html> tag would be its trunk.
Springing from the trunk are two branches that represent the two main parts of
any Web page—the head and the body.

The head of a Web page, surrounded by <head>> tags, contains the title of the
page. It may also provide other, invisible information (such as search key-
words) that browsers and Web search engines can exploit.

In addition, the head can contain information that’s used by the Web browser
for displaying the Web page and for adding interactivity. You put Cascading
Style Sheets, for example, in the head of the document. The head of the docu-
ment is also where you often include JavaScript programming and links to Java-
Script files.

The body of a Web page, as set apart by its surrounding <body> tags, contains
all the information that appears inside a browser window: headlines, text,
pictures, and so on.

Within the <body> tag, you commonly find the following tags:

* You tell a Web browser where a paragraph of text begins with a <p> (opening
paragraph tag), and where it ends with a </p> (closing paragraph tag).

INTRODUCTION

Introduction

http://www.digital-web.com/articles/html5_xhtml2_and_the_future_of_the_web
http://www.digital-web.com/articles/html5_xhtml2_and_the_future_of_the_web

Introduction

+ The tag emphasizes text. If you surround some text with it and its
partner tag, , you get boldface type. The HTML snippet
Warning! tells a Web browser to display the word “Warning!” in bold

type.

+ The <a> tag, or anchor tag, creates a hyperlink in a Web page. When clicked, a
hyperlink—or link—can lead anywhere on the Web. You tell the browser where
the link points by putting a Web address inside the <a> tags. For instance, you
might type Click here!.

The browser knows that when your visitor clicks the words “Click here!” it
should go to the Missing Manual Web site. The href part of the tag is called an
attribute and the URL (the Uniform Resource Locator or Web address) is the
value. In this example, http://www.missingmanuals.com is the value of the href
attribute.

UP TO SPEED

Validating Web Pages

As mentioned on page 4, a Web page’s doctype identifies valid or not. If there are any errors, the validator tells you
which type of HTML or XHTML you used to create the Web what the error is and on which line of the HTML file it occurs.
page. The rules differ subtly depending on type: For exam-
ple, unlike HTML 4.01, XHTML doesn't let you have an
unclosed <p> tag, and requires that all tag names and
attributes be lowercase (<a> not <A>, for example.)
Because different rules apply to each variant of HTML, you
should always validate your \Web pages.

If you use Firefox, you can download the HTML Validator
plug-in from http,//users.skynet.be/mgueury/mozilla. This
plug-in lets you validate a page directly in your Web
browser; just open a page (even a page directly off of your
computer) and the validator will point out any errors in
your HTML. There's a similar plug-in for Safari, called Safari
An HTML validator is a program that makes sure a Web Tidy, which you can find at http;//zappatic.net/safaritidy.

page is written correctly. It checks the page’s doctype and
then analyzes the code in the page to see whether it
matches the rules defined by that doctype. For example, the
validator flags mistakes like a misspelled tag name or an
unclosed tag. The World Wide Web Consortium (W3C), the
organization that's responsible for many of the technolo-
gies used on the Web, has a free online validator at http;//
validator.w3.org. You can copy your HTML and paste it into
a Web form, upload a Web page, or point the validator to
an already existing page on the Web; the validator then
analyzes the HTML and reports back whether the page is

Valid HTML isn't just good form, it's also necessary to make
sure your JavaScript programs work correctly. A lot of Java-
Script involves manipulating a Web page’s HTML: identify-
ing a particular form field, for example, or placing new
HTML (like an error message) in a particular spot. In order
for JavaScript to access and manipulate a Web page, the
HTML must be in proper working order. Forgetting to close
a tag, using the same ID name more than once, or improp-
erly nesting your HTML tags can make your JavaScript code
behave erratically or not at all.

CSS: Adding Style to Web Pages

HTML used to be the only language you needed to know. You could build pages
with colorful text and graphics and make words jump out using different sizes,
fonts, and colors. But today, visitors expect more from our Web sites, so you need

6 JAVASCRIPT: THE MISSING MANUAL

http://validator.w3.org
http://validator.w3.org
http://users.skynet.be/mgueury/mozilla
http://zappatic.net/safaritidy

to turn to a newer, more flexible technology—Cascading Style Sheets (CSS)—to
give your pages visual sophistication. CSS is a formatting language that lets you
make text look good, build complex page layouts, and generally add style to your
site.

Think of HTML as merely the language you use to structure a page. It helps iden-
tify the stuff you want the world to know about. Tags like <h1> and <h2> denote
headlines and assign them relative importance: a heading 1 is more important than
a heading 2. The <p> tag indicates a basic paragraph of information. Other tags
provide further structural clues: for example, a tag identifies a bulleted list (to
make a list of recipe ingredients more intelligible, for example).

CSS, on the other hand, adds design flair to well-organized HTML content, mak-
ing it more beautiful and easier to read. Essentially, a CSS style is just a rule that
tells a Web browser how to display a particular element on a page. For example,
you can create a CSS rule to make all <h1> tags appear 36 pixels tall, in the Ver-
dana font, and the color orange. CSS can do more powerful stuff, too, like add
borders, change margins, and even control the exact placement of a page element.

When it comes to JavaScript, some of the most valuable changes you make to a
page involve CSS. You can use JavaScript to add or remove a CSS style from an
HTML tag, or dynamically change CSS properties based on a visitor’s input or
mouse clicks. For example, you can make a page element appear or disappear sim-
ply by changing the CSS display property. To animate an item across the screen,
you change the CSS position properties dynamically using JavaScript.

Anatomy of a Style

A single style that defines the look of one element is a pretty basic beast. It’s essen-
tially a rule that tells a Web browser how to format something—turn a headline
blue, draw a red border around a photo, or create a 150-pixel-wide sidebar box to
hold a list of links. If a style could talk, it would say something like, “Hey Browser,
make this look like that.” A style is, in fact, made up of two elements: the Web page
element that the browser formats (the selector) and the actual formatting instruc-
tions (the declaration block). For example, a selector can be a headline, a paragraph
of text, a photo, and so on. Declaration blocks can turn that text blue, add a red
border around a paragraph, position the photo in the center of the page—the
possibilities are endless.

Note: Technical types often follow the lead of the W3C and call CSS styles rules. This book uses the
terms “style” and “rule” interchangeably.

Of course, CSS styles can’t communicate in nice clear English. They have their own
language. For example, to set a standard font color and font size for all paragraphs
on a Web page, you’d write the following:

p { color: red; font-size: 1.5em; }

INTRODUCTION

Introduction

Introduction

This style simply says, “Make the text in all paragraphs—marked with <p> tags—
red and 1.5 ems tall.” (An em is a unit or measurement that’s based on a browser’s
normal text size.) As Figure I-1 illustrates, even a simple style like this example
contains several elements:

+ Selector. The selector tells a Web browser which element or elements on a page
to style—like a headline, paragraph, image, or link. In Figure I-1, the selector
(p) refers to the <p> tag, which makes Web browsers format all <p> tags using
the formatting directions in this style. With the wide range of selectors that CSS
offers and a little creativity, you can gain fine control of your pages’ formatting.
(Selectors are so important, you'll find a detailed discussion of them starting on
page 172.)

+ Declaration Block. The code following the selector includes all the formatting
options you want to apply to the selector. The block begins with an opening
brace ({) and ends with a closing brace (}).

+ Declaration. Between the opening and closing braces of a declaration, you add
one or more declarations, or formatting instructions. Every declaration has two
parts, a property and a value, and ends with a semicolon.

* Property. CSS offers a wide range of formatting options, called properties. A
property is a word—or a few hyphenated words—indicating a certain style
effect. Most properties have straightforward names like font-size, margin-top,
and background-color. For example, the background-color property sets—you
guessed it—a background color.

Note: If you need to brush up on your CSS, grab a copy of CSS: The Missing Manual.

+ Value. Finally, you get to express your creative genius by assigning a value to a
CSS property—by making a background blue, red, purple, or chartreuse, for
example. Different CSS properties require specific types of values—a color (like
red, or #FF0000), a length (like 18px, 2in, or 5em), a URL (like images/
background.gif), or a specific keyword (like top, center, or bottom).

Selector Declaration block Figure I-1
| Declaration Declaration A style (or rule) is made of two main parts: a
f f selector, which tells Web browsers what to
(P) { Golor :red) (f ont-size:1.5 emD }) format, and a declaration block, which lists
i i i i the formatting instructions that the browsers
use to style the selector.

Property Value Property Value

You don’t need to write a style on a single line as pictured in Figure I-1. Many
styles have multiple formatting properties, so you can make them easier to read by
breaking them up into multiple lines. For example, you may want to put the selector

8 JAVASCRIPT: THE MISSING MANUAL

and opening brace on the first line, each declaration on its own line, and the clos-
ing brace by itself on the last line, like so:

po{
color: red;
font-size: 1.5em;

}

It’s also helpful to indent properties, with either a tab or a couple of spaces, to visi-
bly separate the selector from the declarations, making it easy to tell which is
which. And finally, putting one space between the colon and the property value is
optional, but adds to the readability of the style. In fact you can put as much white
space between the two as you want. For example color:red, color: red, and color: red
all work.

Software for JavaScript Programming

To create Web pages made up of HTML, CSS, and JavaScript, you need nothing
more than a basic text editor like Notepad (Windows) or Text Edit (Mac). But
after typing a few hundred lines of JavaScript code, you may want to try a pro-
gram better suited to working with Web pages. This section lists some common
programs, both free and those you can buy.

Note: There are literally hundreds of tools that can help you create Web pages and write JavaScript pro-
grams, so the following is by no means a complete list. Think of it as a greatest-hits tour of the most popular
programs that JavaScript fans are using today.

Free Programs

There are plenty of free programs out there for editing Web pages and style sheets.
If you're still using Notepad or Text Edit, give one of these a try. Here’s a short list
to get you started:

+ Notepad++ (Windows, http://notepad-plus.sourceforge.net) is a coder’s friend. It
highlights the syntax of JavaScript and HTML code, and lets you save macros
and assign keyboard shortcuts to them so you can automate the process of
inserting the code snippets you use most.

« HTML-Kit (Windows, www.chami.com/html-kit) is a powerful HTML/XHTML
editor that includes lots of useful features, like the ability to preview a Web page
directly in the program (so you don’t have to switch back and forth between
browser and editor), shortcuts for adding HTML tags, and a lot more.

+ CoffeeCup Free HTML Editor (Windows, www.coffeecup.com/free-editor) is the
free version of the commercial ($49) CoffeeCup HTML editor.

INTRODUCTION

Introduction

http://notepad-plus.sourceforge.net
http://www.chami.com/html-kit
http://www.coffeecup.com/free-editor

Introduction

* TextWrangler (Mac, www.barebones.com/products/textwrangler) is free software
that’s actually a pared-down version of BBEdit, the sophisticated, well-known
text editor for the Mac. TextWrangler doesn’t have all of BBEdit’s built-in
HTML-tools, but it does include syntax-coloring (highlighting tags and proper-
ties in different colors so it’s easy to scan a page and identify its parts), FTP
support (so you can upload files to a Web server), and more.

Commercial Software

Commercial Web site development programs range from inexpensive text editors
to complete Web site construction tools with all the bells and whistles:

+ EditPlus (Windows, www.editplus.com) is an inexpensive ($30) text editor that
includes syntax-coloring, FTP, auto-completion, and other wrist-saving features.

+ CoffeCup (Windows, www.coffeecup.com) is a combination text and visual edi-
tor ($30). You can either write straight HTML code or use a visual interface to
build your pages.

+ skEdit (Mac, www.skti.org) is a cheap ($25) Web page editor, complete with
FTP/SFTP support, code hints, and other useful features.

+ textMate (Mac, http://macromates.com) is the new darling of Mac program-
mers. This text editor ($63) includes many timesaving features for JavaScript
programmers like “auto-paired characters,” which automatically plops in the
second character of a pair of punctuation marks (for example, the program
automatically inserts a closing parenthesis after you type an opening parenthesis).

BBEdit (Mac, www.barebones.com/products/bbedit). This much-loved Mac text
editor ($125) has plenty of tools for working with HTML, XHTML, CSS, Java-
Script, and more. Includes many useful Web building tools and shortcuts.

Dreamweaver (Mac and Windows, www.macromedia.com/software/
dreamweaver) is a visual Web page editor ($399.) It lets you see how your page
looks in a Web browser. The program also includes a powerful text-editor for
writing JavaScript programs and excellent CSS creation and management tools.
Check out Dreamweaver: The Missing Manual for the full skinny on how to use
this powerful program.

Expression Web Designer (Windows, www.microsoft.com) is Microsoft’s new
entry in the Web design field ($299). It replaces FrontPage and includes many
professional Web design tools, including excellent CSS features.

About This Book

Unlike a piece of software such as Microsoft Word or Dreamweaver, JavaScript
isn’t a single product developed by a single company. There’s no support depart-
ment at JavaScript headquarters writing an easy-to-read manual for the average
Web developer. While you’ll find plenty of information on sites like Mozilla.org

JAVASCRIPT: THE MISSING MANUAL

http://www.barebones.com/products/textwrangler
http://www.editplus.com
http://www.coffeecup.com
http://www.skti.org
http://macromates.com
http://www.barebones.com/products/bbedit
http://www.macromedia.com/software/dreamweaver
http://www.macromedia.com/software/dreamweaver
http://www.microsoft.com

(see, for example, http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_
Reference) or Ecmascript.org (www.ecmascript.org/docs.php), there’s no definitive
source of information on the JavaScript programming language.

Because there’s no manual for JavaScript, people just learning JavaScript often
don’t know where to begin. And the finer points regarding JavaScript can trip up
even seasoned Web pros. The purpose of this book, then, is to serve as the manual
that should have come with JavaScript. In this book’s pages, you’ll find step-by-
step instructions for using JavaScript to create highly interactive Web pages.

JavaScript: The Missing Manual is designed to accommodate readers who have
some experience building Web pages. You’'ll need to feel comfortable with HTML
and CSS to get the most from this book, since JavaScript often works closely with
HTML and CSS to achieve its magic. The primary discussions are written for
advanced-beginner or intermediate computer users. But if you’re new to building
Web pages, special boxes called Up to Speed provide the introductory information
you need to understand the topic at hand. If you’re an advanced Web page jockey,
on the other hand, keep your eye out for similar shaded boxes called Power Users’
Clinic. They offer more technical tips, tricks, and shortcuts for the experienced
computer fan.

Note: This book periodically recommends other books, covering topics that are too specialized or tan-
gential for a manual about using JavaScript. Sometimes the recommended titles are from Missing Manual
series publisher O'Reilly Media—but not always. If there's a great book out there that's not part of the
O'Reilly family, we'll let you know about it.

This Book’s Approach to JavaScript

JavaScript is a real programming language: It doesn’t work like HTML or CSS, and
it has its own set of (often complicated) rules. It’s not always easy for Web design-
ers to switch gears and start thinking like computer programmers, and there’s no
one book that can teach you everything there is to know about JavaScript.

The goal of JavaScript: The Missing Manual isn’t to turn you into the next great
programmer. This book is meant to familiarize Web designers with the ins and
outs of JavaScript and then move on to advanced tools for adding really useful
interactivity to a Web site as quickly and easily as possible.

In this book, you’ll learn the basics of JavaScript and programming; but just the
basics won’t make for very exciting Web pages. It’s not possible in 400 pages to
teach you everything about JavaScript that you need to know to build sophisticated,
interactive Web pages. Instead, this book shows you how to use professional (and
free) JavaScript code that will liberate you from all of the minute, time-consuming
details of creating JavaScript programs that run well across different browsers.

You’ll learn the basics of JavaScript, and then jump immediately to advanced Web
page interactivity with a little help—OK, a lot of help—from some very sophisti-
cated but easy-to-use JavaScript helper programs. Think of it this way: You could

INTRODUCTION

Introduction

http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://developer.mozilla.org/en/docs/Core_JavaScript_1.5_Reference
http://www.ecmascript.org/docs.php

Introduction

12

build a house by cutting down and milling your own lumber, constructing your
own windows, doors and doorframes, manufacturing your own tile, and so on.
That “do it yourself” approach is common to a lot of JavaScript books. But who
has that kind of time? This book’s approach is more like building a house by tak-
ing advantage of already built pieces and putting them together using basic skills.
The end result will be a beautiful and functional house built in a fraction of the
time it would take you to learn every step of the process.

And even if you want to learn every step of the process, this book is the best place
to start. It points out other useful and more advanced JavaScript books so you can
continue your programming education after you’re done with this book (but only
if you want to!).

About the Outline

JavaScript: The Missing Manual is divided into four parts, each containing several
chapters:

+ Part 1, Getting Started with JavaScript starts at the very beginning. You’ll learn
the basic building blocks of JavaScript as well as get some helpful tips on com-
puter programming in general. This section teaches you how to add a script to a
Web page, store and manipulate information, and add smarts to a program so it
can respond to different situations. You’ll also learn how to communicate with
the browser window, store and read cookies, respond to various events like
mouse clicks and form submissions, and modify the HTML of a Web page.

Part 2, Building Web Page Features, provides many real-world examples of
JavaScript in action. You’ll learn how to create pop-up navigation bars, enhance
HTML tables, and build an interactive photo gallery. Youw’ll make your Web
forms more usable by adding form validation (so visitors can’t submit forms
missing information), add a calendar widget to make selecting dates easy, and
change form options based on selections a Web visitor makes. Finally, you’ll
create interesting user interfaces with tabbed panels, accordion panels and pop-
up dialog boxes that look great and function flawlessly.

Part 3, Ajax: Communicating with the Web Server, covers the technology that
single-handedly made JavaScript one of the most glamorous Web languages to
learn. In this section, you’ll learn how to use JavaScript to communicate with a
Web server so your pages can receive information and update themselves based
on information provided by a Web server—without having to load a new Web

page.

Tip: You'll find step-by-step instructions for setting up a Web server on your computer so you can take
advantage of the cool technology (discussed in Part 3) on this book’s companion Web page. See “Living
Examples” on the next page for details.

JAVASCRIPT: THE MISSING MANUAL

+ Part 4, Troubleshooting, Tips, and Tricks, helps you with those times when
nothing seems to be working: your perfectly crafted JavaScript program just
doesn’t seem to do what you want (or worse, it doesn’t work at all!). You’ll
learn the most common errors new programmers make as well as techniques
for discovering and fixing bugs in your programs. In addition, you’ll learn a few
tips to make your programming more efficient and your scripts run faster.

At the end of the book, an appendix provides a detailed list of references to aid you
in your further exploration of the JavaScript programming language.

Living Examples

This book is designed to get your work onto the Web faster and more profession-
ally; it’s only natural, then, that half the value of this book also lies on the Web.

As you read the book’s chapters, you’ll encounter a number of living examples—
step-by-step tutorials that you can build yourself, using raw materials (like graph-
ics and half-completed Web pages) that you can download from either www.
sawmac.com/javascript/ or from this book’s “Missing CD” page at www.
missingmanuals.com/cds. You might not gain very much from simply reading these
step-by-step lessons while relaxing in your porch hammock. But if you take the
time to work through them at the computer, you’ll discover that these tutorials
give you unprecedented insight into the way professional designers build Web

pages.

You’ll also find, in this book’s lessons, the URLs of the finished pages, so that you
can compare your work with the final result. In other words, you won’t just see
pictures of JavaScript code in the pages of the book; you’ll find the actual, working
Web pages on the Internet.

About MissingManuals.com

At www.missingmanuals.com, you’ll find articles, tips, and updates to JavaScript:
The Missing Manual. In fact, we invite and encourage you to submit such correc-
tions and updates yourself. In an effort to keep the book as up to date and accu-
rate as possible, each time we print more copies of this book, we’ll make any
confirmed corrections you've suggested. We’ll also note such changes on the Web
site, so that you can mark important corrections into your own copy of the book, if
you like. (Go to http://missingmanuals.com/feedback, choose the book’s name from
the pop-up menu, and then click Go to see the changes.)

Also on our Feedback page, you can get expert answers to questions that come to
you while reading this book, write a book review, and find groups for folks who
share your interest in JavaScript.

INTRODUCTION

Introduction

http://www.sawmac.com/javascript
http://www.sawmac.com/javascript
http://www.missingmanuals.com/cds
http://www.missingmanuals.com/cds
http://www.missingmanuals.com
http://missingmanuals.com/feedback

Introduction

14

While you’re there, sign up for our free monthly email newsletter. Click the “Sign
Up for Our Newsletter” link in the left-hand column. You’ll find out what’s hap-
pening in Missing Manual land, meet the authors and editors, get bonus video and
book excerpts, and so on.

The Very Basics

To use this book, and indeed to use a computer, you need to know a few basics.
This book assumes that you’re familiar with a few terms and concepts:

+ Clicking. This book gives you three kinds of instructions that require you to use

your computer’s mouse or trackpad. To click means to point the arrow cursor at
something on the screen and then—without moving the cursor at all—to press
and release the clicker button on the mouse (or laptop trackpad). To right-click
means to do the same thing with the right mouse button. To double-click, of
course, means to click twice in rapid succession, again without moving the cur-
sor at all. And to drag means to move the cursor while pressing the button.

Tip: If you're on a Mac and don't have a right mouse button, you can accomplish the same thing by
pressing the Control key as you click with the one mouse button.

When you’re told to 8-click something on the Mac, or Ctrl-click something on
a PC, you click while pressing the 8 or Ctrl key (both of which are near the
Space bar).

Menus. The menus are the words at the top of your screen or window: File, Edit,
and so on. Click one to make a list of commands appear, as though they’re writ-
ten on a window shade you’ve just pulled down.

Keyboard shortcuts. If you're typing along in a burst of creative energy, it’s
sometimes disruptive to have to take your hand off the keyboard, grab the
mouse, and then use a menu (for example, to use the Bold command). That’s
why many experienced computer mavens prefer to trigger menu commands by
pressing certain combinations on the keyboard. For example, in the Firefox
Web browser, you can press Ctrl-+ (Windows) or 8-+ (Mac) to make text on a
Web page get larger (and more readable). When you read an instruction like
“press 38-B,” start by pressing the 8 key; while it’s down, type the letter B, and
then release both keys.

Operating-system basics. This book assumes that you know how to open a pro-
gram, surf the Web, and download files. You should know how to use the Start
menu (Windows) and the Dock or menu (Macintosh), as well as the Control
Panel (Windows), or System Preferences (Mac OS X).

If you’ve mastered this much information, you have all the technical background
you need to enjoy JavaScript: The Missing Manual.

JAVASCRIPT: THE MISSING MANUAL

vww.allitebooks.cond

http://www.allitebooks.org

About - These - Arrows

Throughout this book, and throughout the Missing Manual series, you’ll find sen-
tences like this one: “Open the System — Library — Fonts folder.” That’s short-
hand for a much longer instruction that directs you to open three nested folders in
sequence, like this: “On your hard drive, yow’ll find a folder called System. Open
that. Inside the System folder window is a folder called Library; double-click it to
open it. Inside that folder is yet another one called Fonts. Double-click to open it,
too.”

Similarly, this kind of arrow shorthand helps to simplify the business of choosing
commands in menus, as shown in Figure I-2.

Introduction

http:/fwww.cosmofarmer. com/

QZI . Et Toolbars 4
v Status Bar
x Disable~

' : | Reload Ctrl+R

Page Style 4
Character Encoding 4

rms~ &9 Images~ @ Information~ =] Miscellaneous~

EH

partment farming -

Sidebar 4

Decrease Ctrl+-

Normal Ctrl+0

Ctrl+U
F11
View Source Chart

Page Source

Full Screen

Figure I-2
L g.LIE In this book, arrow
Fle Edit Go Bookmarks Tools Help notations help simplify

menu instructions. For
example, View — Text
Size — Increase is a more
compact way of saying,
“From the View menu,
choose Text Size; from the
submenu that then
appears, choose
Increase.”

Safari® Books Online

«o) When you see a Safari® Books Online icon on the cover of your
Safa r favorite technology book, that means the book is available
Bosksonne’ online through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-Books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current infor-
mation. Try it free at http://safari.oreilly.com.

INTRODUCTION

http://safari.oreilly.com.

Part One:
Getting Started with
JavaScript

Chapter 1: Writing Your First JavaScript Program

Chapter 2: The Grammar of JavaScript

Chapter 3: Adding Logic and Control to Your Programs

Chapter 4: Working with Words, Numbers, and Dates

Chapter 5: Dynamically Modifying Web Pages

Chapter 6: Action/Reaction: Making Pages Come Alive with Events

Chapter 7: Improving Your Images

CHAPTER

1

Writing Your First
JavaScript Program

By itself, HTML doesn’t have any smarts: It can’t do math, it can’t figure out if
someone has correctly filled out a form, and it can’t make decisions based on how
a Web visitor interacts with it. Basically, HTML lets people read text, look at pic-
tures, and click links to move to other Web pages with more text and pictures. In
order to add intelligence to your Web pages so they can respond to your site’s
visitors, you need JavaScript.

JavaScript lets a Web page react intelligently. With it, you can create smart Web
forms that let visitors know when they’ve forgotten to include necessary informa-
tion; you can make elements appear, disappear, or move around a Web page (see
Figure 1-1); you can even update the contents of a Web page with information
retrieved from a Web server—without having to load a new Web page. In short,
JavaScript lets you make your Web sites more engaging and effective.

Introducing Programming

For a lot of people, the word “computer programming” conjures up visions of
super-intelligent nerds hunched over keyboards, typing nearly unintelligible
gibberish for hours on end. And, honestly, some programming is just like that.
Programming can seem like complex magic that’s well beyond the average mortal.
But many programming concepts aren’t difficult to grasp, and as programming
languages go, JavaScript is relatively friendly to nonprogrammers.

Introducing
Programming

20

8eoe Amazon.com: dreamweaver Flylll’e 1-1:
@ & % B (e [Bhp:/ fwww.amazon.com/s/ref=nb_ss_gw/103-99: v | = (G~ Google Q) ¢ JavaScript lets Web
© Disable + £ Cookies * (] €55 *] Forms = (3] Images » @ Information + () Miscellaneous = ./ Outline v & 7 Resize v J* Toals + pages respond to visitors.
Hello. Signiin o get personalized recommendations. New customer? We've been remodeling. Come take a On Amazon.com,
amazoncom senee _ — mousing over the “Gifts
~— .
‘Your Amazon.com mToday'_r.[lea\s\:I Gifts & Wish Lists K Gift Certificates Your Account | Help B . e
(e, Search for Wish Lists \ and Wish Lists” link
Shop All Departments @ Search e
LA = . opens a tab that floats
s i 5 w
Category “dreamweaver" e |] @ above the other content
Any Category Related Searches: dreamweaver 8, i Gift Guides Lists & Registries on the page and offers
Books (3,494) oy e .
Software (150 e 7 e » Gifts by Price » Wish Lists additional options.
Home & Garde » Gifts by Relationship » Baby Registry
» Gifts for Kids & Teens » Wedding Registry
Sports & Outdoors
P2 Dawnloads (21) ' Dreamweaver :Jreamwea » Gifts by Personality » Gift Organizer
Music (13) ' €83 i » Gifts by Occasion » Shopping List
Electronics (7) o Buy new: # g all Gift Guides
} = Get it by Mon:
Apparel (5) - y : — T
Gffice Products (41 B one-day shipg @ oiftcentral naide the b
Health & Personal Care (4) L 'gite for
VHS (2) Yookl
Musical Instruments (2} Books: See all 3,494 items
Video Games (1)
Everything Else (1] 2 Adobe Dreamweaver C53 by Adobe
DVD (1) . (DVD-ROM - April 20, 2007) (Windows Vista Business /
Enterprise / Home Premium / Ultimate / XP)
Buy new: $399:60 $398.99 33 Used & new from $378.00
Listmania! Get it by Monday, Nov 5 if you order in the next 22 hours and choose |
one-day shipping. k4
Eligible for FREE Super Saver Shipping. v
[E= Done B o

Still, JavaScript is more complex than either HTML or CSS, and programming
often is a foreign world to Web designers; so one goal of this book is to help you
think more like a programmer. Throughout this book you’ll learn fundamental
programming concepts that apply whether you’re writing JavaScript, ActionScript,
or even writing a desktop program using C++. More importantly, you'll learn how
to approach a programming task so you’ll know exactly what you want to do
before you start adding JavaScript to a Web page.

Many Web designers are immediately struck by the strange symbols and words
used in JavaScript. An average JavaScript program is sprinkled with symbols ({ } []
;> () 1=) and full of unfamiliar words (var, null, else if). It’s like staring at a foreign
language, and in many ways learning a programming language is a lot like learning
another language. You need to learn new words, new punctuation, and under-
stand how to put them together so you can communicate successfully.

In fact, every programming language has its own set of key words and characters,
and its own set of rules for putting those words and characters together—the
language’s syntax. Learning JavaScript’s syntax is like learning the vocabulary and
grammar of another language. You’ll need to memorize the words and rules of the
language (or at least keep this book handy as a reference). When learning to speak
a new language, you quickly realize that placing an accent on the wrong syllable
can make a word unintelligible. Likewise, a simple typo or even a missing punctua-
tion mark can prevent a JavaScript program from working, or trigger an error in a
Web browser. You’ll make plenty of mistakes as you start to learn to program—
that’s just the nature of programming.

JAVASCRIPT: THE MISSING MANUAL

Introducing
Programming

UP TO SPEED

The Client Side vs. The Server Side

JavaScript is a client-side language, which (in English) written in the Java programming language, that run in a
means that it works inside a Web browser. The alternative Web browser. They also tend to start up slowly and have
type of Web programming language is called a server-side been known to crash the browser.

language, which you'll find in pages built around PHP, .NET,
ASP, ColdFusion, Ruby on Rails, and other Web server tech-
nologies. Server-side programming languages, as the name
suggests, run on a Web server. They can exhibit a lot of
intelligence by accessing databases, processing credit
cards, and sending email around the globe. The problem
with server-side languages is that they require the Web
browser to send requests to the Web server, forcing visitors
to wait until a new page arrives with new information.

Flash is another plug-in based technology that offers
sophisticated animation, video, sound, and lots of interac-
tive potential. In fact, it's sometimes hard to tell if an inter-
active Web page is using JavaScript or Flash. For example,
Google Maps could also be created in Flash (in fact, Yahoo
Maps was at one time a Flash application, until Yahoo re-
created it using JavaScript.) A quick way to tell the differ-
ence: Right-click on the part of the page that you think
might be Flash (the map itself, in this case); if it is, you'll see
Client-side languages, on the other hand, can react imme- a pop-up menu that includes “About the Flash Player.”

diately and change what a visitor sees in his Web browser
without the need to download a new page. Content can
appear or disappear, move around the screen, or automat-
ically update based on how a visitor interacts with the page.
This responsiveness lets you create Web sites that feel more
like desktop programs than static Web pages. But JavaScript
isn't the only client-side technology in town. You can also
use plug-ins to add programming smarts to a Web page.
Java applets are one example. These are small programs,

Ajax, which you'll learn about in Part 3 of this book, brings
both client-side and server-side together. Ajax is a method
for using JavaScript to talk to a server, retrieve information
from the server, and update the Web page without the
need to load a new Web page. Google Maps uses this tech-
nique to let you move around a map without forcing you to
load a new Web page.

At first, you’ll probably find JavaScript programming frustrating—you’ll spend a
lot of your time tracking down errors you made when typing the script. Also, you
might find some of the concepts related to programming a bit hard to follow at
first. But don’t worry: If you’ve tried to learn JavaScript in the past and gave up
because you thought it was too hard, this book will help you get past the hurdles
that often trip up folks new to programming. (And if you do have programming
experience, this book will teach you JavaScript’s idiosyncrasies and the unique
concepts involved in programming for Web browsers.)

What's a Computer Program?

When you add JavaScript to a Web page, you're writing a computer program.
Granted, most JavaScript programs are much simpler than the programs you use
to read email, retouch photographs, and build Web pages. But even though Java-
Script programs (also called scripts) are simpler and shorter, they share many of
the same properties of more complicated programs.

CHAPTER 1: WRITING YOUR FIRST JAVASCRIPT PROGRAM 21

How to Add
JavaScript to a Page

22

In a nutshell, any computer program is a series of steps that are completed in a
designated order. Say you want to display a welcome message using the name of
the person viewing a Web page: for example, “Welcome, Bob!” There are several
things you’d need to do to accomplish this task:

1. Ask the visitor his or her name.
2. Get the visitor’s response.
3. Print (that is, display) the message on the Web page.

While you may never want to print a welcome message on a Web page, this exam-
ple demonstrates the fundamental process of programming: determine what you
want to do, then break that task down into each step that’s necessary to get it done.
Every time you want to create a JavaScript program, you must go through the pro-
cess of determining the steps needed to achieve your goal. Once you know the
steps, you're ready to write your program. In other words, youll translate your
ideas into programming code—the words and characters that make the Web
browser behave how you want it to.

FREQUENTLY ASKED QUESTION

Compiled vs. Scripting Languages

JavaScript is called a scripting language. ['ve heard this
term used for other languages like PHP and ColdFusion as
well. What's a scripting language?

Most of the programs running on your computer are writ-
ten using languages that are compiled. Compiling is the
process of turning the code a programmer writes into
instructions that a computer can understand. Once a pro-
gram is compiled, you can run it on your computer, and
since a compiled program has been converted directly to
instructions a computer understands, it will run faster than
a program written with a scripting language. Unfortunately,
compiling a program is a time-consuming process: you
have to write the program, compile it, then test it. If the pro-
gram doesn't work, you have to go through the whole
process again.

A scripting language, on the other hand, is only compiled
when an interpreter (another program that can convert the
script into something a computer can understand) reads it.
In the case of JavaScript, the interpreter is built into the Web
browser. So when your Web browser reads a Web page
with a JavaScript program in it, the Web browser translates
the JavaScript into something the computer understands.
As a result, a scripting language operates more slowly than
a compiled language, since every time it runs the program
must be translated for the computer. Scripting languages
are great for Web developers: Scripts are generally much
smaller and less complex than desktop programs, so the
lack of speed isn't so important. In addition, since they
don't require compiling, creating and testing programs that
use a scripting language is a much faster process.

How to Add JavaScript to a Page

Web browsers are built to understand HTML and CSS and convert those languages
into a visual display on the screen. The part of the Web browser that understands
HTML and CSS is called the layout or rendering engine. But most browsers also
have something called a JavaScript interpreter. That’s the part of the browser that
understands JavaScript and can execute the steps of a JavaScript program. Since

JAVASCRIPT: THE MISSING MANUAL

the Web browser is usually expecting HTML, you must specifically tell the browser
when JavaScript is coming by using the <script> tag.

The <script> tag is regular HTML. It acts like a switch that in effect says “Hey Web
browser, here comes some JavaScript code; you don’t know what to do with it, so
hand it off to the JavaScript interpreter.” When the Web browser encounters the
closing </script> tag, it knows it’s reached the end of the JavaScript program and
can get back to its normal duties.

Much of the time, you’ll add the <script> tag in the <head> portion of the Web
page like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">

<html>

<head>

<title>My Web Page</title>

<script type="text/javascript">

</script>
</head>

The <script> tag’s type attribute indicates the format and the type of script that
follows. In this case, type="text/javascript” means the script is regular text (just like
HTML) and that it’s written in JavaScript. Theoretically, a Web browser could
handle multiple types of scripting languages, but not every browser supports other
languages.

Note: Make sure you include type="text/javascript" in the opening script tag. If you leave it out, your
Web page won't validate (see the box on page 6 for more on validation).

You then add your JavaScript code between the opening and closing <script> tags:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">

<html>

<head>

<title>My Web Page</title>

<script type="text/javascript">

alert('hello world!');

</script>

</head>

You’ll find out what this JavaScript actually does in a moment. For now, turn your
attention to the opening and closing <script> tags. To add a script to your page,
start by inserting these tags. In most cases, you’ll put the <script> tags in the page’s
<head> in order to keep your JavaScript code neatly organized in one area of the
Web page.

CHAPTER 1: WRITING YOUR FIRST JAVASCRIPT PROGRAM

How to Add
JavaScript to a Page

23

How to Add
JavaScript to a Page

24

However, it’s perfectly valid to put <script> tags anywhere inside the HTML of the
page. In fact, as yowll see later in this chapter, there’s a JavaScript command that
lets you write information directly into a Web page. Using that command, you
place the <script> tags in the location on the page (somewhere inside the body)
where you want the script to write its message.

External JavaScript Files

Using the <script> tag as discussed in the previous section lets you add JavaScript
to a single page. But many times you’ll create scripts that you want to share with all
of the pages on your site. For example, you might use a JavaScript program to add
animated, drop-down navigation menus to a Web page. You’ll want that same
fancy navigation bar on every page of your site, but copying and pasting the same
JavaScript code into each page of your site is a really bad idea for several reasons.

First, it’s a lot of work copying and pasting the same code over and over again,
especially if you have a site with hundreds of pages. Second, if you ever decide to
change or enhance the JavaScript code, you’ll need to locate every page using that
JavaScript and update the code. Finally, since all of the code for the JavaScript pro-
gram would be located in every Web page, each page will be that much larger and
slower to download.

A better approach is to use an external JavaScript file. If you’ve used external CSS
files for your Web pages, this technique should feel familiar. An external Java-
Script file is simply a text file that ends with the file extension .js—navigation.js, for
example. The file only includes JavaScript code and is linked to a Web page using
the <script> tag. For example, to add a JavaScript file named navigation.js to your
home page, you might write the following:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">

<html>

<head>

<title>My Web Page</title>

<script type="text/javascript" src="navigation.js"></script>

</head>

The src attribute of the <script> tag works just like the src attribute of an
tag, or an <a> tag’s href attribute. In other words, it points to a file either in your
Web site or on another Web site (see the box on the next page).

Note: \When adding the src attribute to link to an external JavaScript file, don't add any JavaScript code
between the opening and closing <script> tags. If you want to link to an external JavaScript file and add
custom JavaScript code to a page, use a second set of <script> tags. For example:

<script type="text/javascript" src="navigation.js"></script>
<script type="text/javascript">

alert('Hello world!");
</script>

JAVASCRIPT: THE MISSING MANUAL

vww.allitebooks.cond

http://www.allitebooks.org

How to Add
JavaScript to a Page

UP TO SPEED

URL Types

When attaching an external JavaScript file to a Web page,
you need to specify a URL for the src attribute of the
<script>tag. A URL or Uniform Resource Locator is a path
to a file located on the Web. There are three types of paths:
absolute path, root-relative path, and document-relative
path. All three indicate where a Web browser can find a
particular file (like another Web page, a graphic, or a Java-
Script file).

An absolute path is like a postal address—it contains all the
information needed for a Web browser located anywhere
in the world to find the file. An absolute path includes http:
//, the hostname, and the folder and name of the file. For
example: http,//www.cosmofarmer.comy/scripts/site.fs.

A root-relative path indicates where a file is located relative
to a site’s top-level folder—the site’s root folder. A root-
relative path doesn't include http:// or the domain name. It
begins with a / (slash) indicating the site’s root folder—the
folder the home page is in. For example, /scripts/site.fs indi-
cates that the file sites is located inside a folder named
scripts, which is itself located in the site’s top-level folder.
An easy way to create a root-relative path is to take an abso-
lute path and strip off the http:// and the host name. For
example, http,//www.sawmac.com/index.html written as a
root relative URL is /index.html.

A document-relative path specifies the path from the Web
page to the JavaScript file. If you have multiple levels of
folders on your Web site, you'll need to use different paths
to point to the same JavaScript file. For example, suppose
you have a JavaScript file named site.js located in a folder
named scripts in your Web site’s main directory. The
document-relative path to that file will look like one way for
the home page—scripts/site.js—but for a page located inside
a folder named about, the path to the same file would be
different—./scripts/site. js—the ../ means climb up out of the
about folder, while the /scripts/sitejs means go to the
scripts folder and get the file site,s.

Here are some tips on which URL type to use:

+ If you're pointing to a file that's not on the same
server as the Web page, you must use an absolute
path. It's the only type that can point to another
Web site.

Root-relative paths are good for JavaScript files
stored on your own site. Since they always start at
the root folder, the URL for a JavaScript file will be
the same for every page on your Web site, even
when Web pages are located in folders and subfold-
ers on your site. However, root-relative paths don't
work unless you're viewing your Web pages through
a Web server—either your Web server out on the
Internet, or a Web server you've set up on your own
computer for testing purposes. In other words, if
you're just opening a Web page off your computer
using the browser's File — Open command, the
Web browser won't be able to locate, load, or run
JavaScript files that are attached using a root relative
path.

Document-relative paths are the best when you're
designing on your own computer without the aid of
a Web server. You can create an external JavaScript
file, attach it to a Web page, and then check the
JavaScript in a Web browser simply by opening the
Web page off your hard drive. Document-relative
paths work fine when moved to your actual, living,
breathing Web site on the Internet, but you'll have
to rewrite the URLS to the JavaScript file if you move
the Web page to another location on the server. In
this book, we'll be using document-relative paths,
since they will let you follow along and test the tuto-
rials on your own computer without a \Web server.

CHAPTER 1: WRITING YOUR FIRST JAVASCRIPT PROGRAM

Your First
JavaScript Program

26

You can (and often will) attach multiple external JavaScript files to a single Web
page. For example, you might have created one external JavaScript file that con-
trols a drop-down navigation bar, and another that lets you add a nifty slideshow
to a page of photos (you’ll learn how to do that on page 263). On your photo gal-
lery page, you’d want to have both JavaScript programs, so you’d attach both files.

In addition, you can attach external JavaScript files and add a JavaScript program
to the same page like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.o0rg/TR/
html4/strict.dtd">

<html>

<head>

<title>My Web Page</title>

<script type="text/javascript" src="navigation.js"></script>
<script type="text/javascript" src="slideshow.js"></script>
<script type="text/javascript">

alert('hello world!');

</script>

</head>

Just remember that you must use one set of opening and closing <script> tags for
each external JavaScript file. You’ll create an external JavaScript file in the tutorial
that starts on page 29.

You can keep external JavaScript files anywhere inside your Web site’s root folder
(or any subfolder inside the root). Many Web developers create a special directory
for external JavaScript files in the site’s root folder: common names are js (mean-
ing JavaScript) or libs (meaning libraries).

Note: Sometimes the order in which you attach external JavaScript files matters. As you'll see later in this
book, sometimes scripts you write depend upon code that comes from an external file. That's often the
case when using JavaScript libraries (JavaScript code that simplifies complex programming tasks). You'll
see an example of a JavaScript library in action in the tutorial on page 29.

Your First JavaScript Program

The best way to learn JavaScript programming is by actually programming.
Throughout this book, you’ll find hands-on tutorials that take you step-by-step
through the process of creating JavaScript programs. To get started, you’ll need a
text editor (see page 9 for recommendations), a Web browser, and the exercise files
located at www.sawmac.com/javascript (see the note on the next page for complete
instructions).

JAVASCRIPT: THE MISSING MANUAL

http://www.sawmac.com/javascript

Note: The tutorials in this chapter require the example files from this book’s Web site, www.sawmac.
comyjavascript. Click the “Download tutorials” link to download them. (The tutorial files are stored as a
single Zip file.)

Windows users should download the Zip file and double-click it to open the archive. Click the Extract All
Files option, and then follow the instructions of the Extraction Wizard to unzip the files and place them on
your computer. Mac users, just double-click the file to decompress it. After you've downloaded and
decompressed the files, you should have a folder named MM_JAVASCRIPT on your computer, containing
all of the tutorial files for this book.

To get your feet wet and provide a gentle introduction to JavaScript, your first pro-
gram will be very simple:

1. In your favorite text editor, open the file I1.1.html.

This file is located in the chapter01 folder in the MM_JAVASCRIPT folder you
downloaded from www.sawmac.com/javascript. It’s a very simple HTML page,
with an external cascading style sheet to add a little visual excitement.

2. Click in the empty line just before the closing </head> tag and type:

<script type="text/javascript">

This code is actually HTML, not JavaScript. It informs the Web browser that
the stuff following this tag is JavaScript.

3. Press the Return key to create a new blank line, and type:

alert('hello world');

You’ve just typed your first line of JavaScript code. The JavaScript alert() func-
tion, is a command that pops open an Alert box and displays the message that
appears inside the parentheses—in this case hello world. Don’t worry about all
of the punctuation (the parentheses, quotes, and semicolon) just yet. You’ll
learn what they do in the next chapter.

4. Press the Return key once more, and type </script>. The code should now look
like this:

<link href="../css/global.css" rel="stylesheet" type="text/css">
<script type="text/javascript">

alert('hello world');

</script>

</head>

In this example, the stuff you just typed is shown in boldface. The two HTML
tags are already in the file; make sure you type the code exactly where shown.

CHAPTER 1: WRITING YOUR FIRST JAVASCRIPT PROGRAM

Your First
JavaScript Program

27

http://www.sawmac.com/javascript
http://www.sawmac.com/javascript
http://www.sawmac.com/javascript

Your First
JavaScript Program

28

5. Launch a Web browser and open the 1.1.html file to preview it.

A TJavaScript Alert box appears (see Figure 1-2). Notice that the page is blank
when the alert appears. (If you don’t see the Alert box pictured in Figure 1-2,
you probably mistyped the code listed in the previous steps. Double-check your
typing and read the Tip below.)

"3 Seript 1.1 - Mozilla Firefox Figure 1 2
File Edit View History Bookmarks Tools Help) The Jal{aSCI‘lptA/ert bOX
- (@ €3 {2} |0 fiesiiisasiaveDesktop avasaiptitests oo site/tutorialsfchapter | ¥ | B [[Gl=ceoce (%) Is a quick way to grab

someone’s attention. It's

@ Disable- & Cookies~ [€55~] Forms= [#] Images- @ Information~ () Miscellaneous~ = Outfine= § 4 Resize & Tools™ 2 View Source= one of the sim, plest

JavaScript commands to
learn and use.

[JavaScript Application]

hello world

6. Click the Alert box’s OK button to close it.

When the Alert box disappears, the Web page appears in the browser window.

Tip: When you first start programming, you'll be shocked at how often your JavaScript programs don't
seem to work...at all. For new programmers, the most common cause of nonfunctioning programs is
simple typing mistakes. Always double-check to make sure you spelled commands (like alert in the first
script) correctly. Also, notice that punctuation frequently comes in pairs (the opening and closing paren-
theses, and single-quote marks from your first script, for example). Make sure you include both opening
and closing punctuation marks when they're required.

Although this first program isn’t earth-shatteringly complex (or even that interest-
ing), it does demonstrate an important concept: A Web browser will run a Java-
Script program the moment it reads in the JavaScript code. In this example, the
alert() command appeared before the Web browser displayed the Web page,
because the JavaScript code appeared before the HTML in the <body> tag. This
concept comes into play when you start writing programs that manipulate the
HTML of the Web page—as you’ll learn in Chapter 5.

Note: You'll frequently see the word “execute” used in place of “run.” For example, “the Web browser
executed the JavaScript program” means the same thing as “the Web browser ran the JavaScript program.”

JAVASCRIPT: THE MISSING MANUAL

Writing Text on a Web Page

The last script popped up a dialog box in the middle of your monitor. What if you
want to print a message directly onto a Web page using JavaScript? There are many
ways to do so, and you’ll learn some sophisticated techniques later in this book.
However, you can achieve this simple goal with a built-in JavaScript command,
and that’s what you’ll do in your second script:

1. In your text editor, open the file 1.2.html.

While <script> tags usually appear in the <head> of a Web page, you can put
them and JavaScript programs directly in the body of the Web page.

2. Directly below “<h1>Writing to the document window</h1>”, type the fol-
lowing code:

<script type="text/javascript">
document.write('<p>Hello world!</p>");
</script>

Like the alert() function, document.write() is a JavaScript command that liter-
ally writes out whatever you place between the opening and closing parenthe-
ses. In this case, the HTML <p>Hello world!</p> is added to the page: a
paragraph tag and two words.

3. Save the page, and open it in a Web browser.

The page opens and the words “Hello world!” appear below the red headline
(see Figure 1-3).

Note: The tutorial files you downloaded also include the completed version of each tutorial. If you can't
seem to get your JavaScript working, compare your work with the file that begins with complete_ in the
same folder as the tutorial file. For example, the file complete_1.2.htm/ contains a working version of the
script you added to file 7.2.html.

The two scripts you just created may leave you feeling a little underwhelmed with
JavaScript...or this book. Don’t worry. It’s important to start out with a full
understanding of the basics. You’ll be doing some very useful and complicated
things using JavaScript in just a few chapters. In fact, in the remainder of this chap-
ter you’ll get a taste of some of the advanced features you’ll be able to add to your
Web pages after you’ve worked your way through the first two parts of this book.

Attaching an External JavaScript File

As discussed on page 24, you’ll usually put JavaScript code in a separate file if you
want to use the same scripts on more than one Web page. You can then instruct a
Web page to load that file and use the JavaScript inside it. External JavaScript files

CHAPTER 1: WRITING YOUR FIRST JAVASCRIPT PROGRAM

Attaching an
External JavaScript
File

29

Attaching an
External JavaScript
File

Figure 1-3:
() i‘ E g |@ file:///Macintosh¥%20HD Users /dave /Desktop/javascript/te ¥ | =[Gl Geogle Q) ¢ Wow. This :scrlpt may not
= 5 be something to
* @ information = (% Miscellaneous v ./ Outline v [Resize v * Tools » {] View .
document.write home

about—ha, ha, JavaScript
humor- but it does
demonstrate that you
Writing to the document window can use JavaScript to add
Hello world! content to a Web page, a
trick that comes in handy
when you want to display
messages (like Welcome
back to the site, Dave’)
after a Web page has
downloaded.

“Building Interactive Web Sites with JavaScript”

30

also come in handy when you’re using someone else’s JavaScript code. In particu-
lar, there are collections of JavaScript code called libraries, which provide useful
JavaScript programming: Usually, these libraries make it easy for you to do some-
thing that’s normally quite difficult to do. You’ll learn more about JavaScript
libraries on page 169, and, in particular, the JavaScript library this book uses—
jQuery.

But for now, you’ll get experience attaching an external JavaScript file to a page,
and writing a short program that does some amazing things:

1. In your text editor, open the file 1.3.html.

This page has a basic HTML table, containing data on a handful of products
(see Figure 1-4). HTML tables are like spreadsheets: They organize data into
rows and columns. One problem with tables that contain lots of rows and col-
umns is that it’s easy to lose your place as you read across a row. One helpful
visual effect many designers use is to put a background color on every other
row, making it much easier to quickly scan across a row of data. To do this, you
create a CSS class style that defines a background color or image, then apply
that class to every other table row using HTML like this: <tr class="even">.
Now, that’s a lot of repetitive work, and you can ruin it just by inserting a new
row in the middle of the table. Fortunately, there’s a quick JavaScript solution
to this common design problem.

2. Click in the blank line between the <link> and closing </head> tags near the
top of the page, and type:

<script type="text/javascript" src="../js/jquery.js"></script>

JAVASCRIPT: THE MISSING MANUAL

Attaching an
External JavaScript

File

Figure 1-4:

(2 Script 1.3 - Windows Internet Explorer, (=3
@7@4 |8 1\.PSF\ HomeiDesktopljavascriptitssts|book_stelfutoriaklchapterDLL 3 heml & [#2][] [sive Sosrch |[2]- A plaln HTML table can
be hard to read if there

3 ot view Fovorites Tools Help & snaglt (=
" & [@smtla]

are lots of columns, rows,
and data. While scanning
across a long row of
data, it’s easy to lose
your place and view data
from a different row.

B - B - # - [Page - @ETock -

Striped Tables

Product

Cost

Inventory Status

Weight (in Ibs.)

Ultra-Glow Hair Spray
Anodyne 3000

Big Foot Hair Dryer
Cat Out of The Hat
Tickle Me Elmo
Mens Watch
Leather Briefcase
Lorem lpsum

Dolor Sat

Chicken Gumbo

Another Product

Hat for Cat

5$20.00
5495.00
555.00
515.00

$67.00
$350.00
$150.00
55.00
57.50
$15.00
$3.00
55.00

in stock
back arder
in stock
back order
in stock
in stock
in stack
in stock
back order
in stock
in stock

back arder

.5

“Building Interactive Web Sites with JavaSeript”

[o Trusted sites

W 100w v

This code links a file named jquery.js, that’s contained in a folder named js, to
this Web page. When a Web browser loads this Web page, it also downloads the
jquery.js JavaScript file and runs the code inside it.

Next, you’ll add your own JavaScript programming to this page.
3. Press Return to create a new blank line, and then type:

<script type="text/javascript">

HTML tags usually travel in pairs—an opening and closing tag. To make sure
you don’t forget to close a tag, it helps to close the tag immediately after typing
the opening tag, and then fill in the stuff that goes between the tags.

4. Press return twice to create two blank lines, and then type:
</script>
This ends the block of JavaScript code. Now yow’ll add some programming.
5. Click the empty line between the opening and closing script tags and type:

$(document).ready(function() {

You’re probably wondering what the heck that is. You’ll find out all the details
of this code on page 218, but in a nutshell, this line takes advantage of the pro-
gramming that’s inside the jquery.js file to make sure that the browser executes
the next line of code at the right time.

CHAPTER 1: WRITING YOUR FIRST JAVASCRIPT PROGRAM 31

Tracking Down
Errors

32

6. Hit return to create a new line, and then type:

$('table.striped tr:even').addClass('even');

This line does the magic of adding a background to every other row of the table.
Specifically, it does so by adding a CSS class of .even to every even row of the
table. In the CSS style sheet attached to this page, the .even class style sets a blue
color for the background property. When you apply this class to a table row,
that row gets a blue background.

7. Hit Return one last time, and then type:
1

This code closes up the JavaScript code, much like a closing </script> tag indi-
cates the end of a JavaScript program. Don’t worry too much about all those
weird punctuation marks—you’ll learn how they work in detail later in the
book. The main thing you need to make sure of is to type the code exactly as it’s
listed here. One typo, and the program may not work.

The final code you added to the page should look like the bolded text below:

<link href="../css/global.css" rel="stylesheet" type="text/css">
<script type="text/javascript" src="../js/jquery.js"></script>
<script type="text/javascript">

$(document) .ready(function() {

$('table.striped tr:even').addClass('even');

H

</script>

</head>

8. Save the HTML file, and open it in a Web browser.

You should now see a table in which every other row has a blue background
(see Figure 1-5).

As you can see, it doesn’t take a whole lot of JavaScript to do some amazing things
to your Web pages. Thanks to JavaScript libraries like jQuery, you’ll be able to create
sophisticated, interactive Web sites without being a programming wizard yourself.
However, it does help to know the basics of JavaScript and programming. In the
next three chapters, we’ll cover the very basics of JavaScript so that you’re comfort-
able with the fundamental concepts and syntax that make up the language.

Tracking Down Errors

The most frustrating moment in JavaScript programming comes when you try to
view your JavaScript-powered page in a Web browser...and nothing happens. It’s
one of the most common experiences for programmers. Even very experienced
programmers don’t always get it right the first time they write a program, so figur-
ing out what went wrong is just part of the game.

JAVASCRIPT: THE MISSING MANUAL

Tracking Down
Errors

row.

Striped Tables

| Product

Ultra-Glow Hair Spray

“Building Interactive Web Sites with JavaScript”
(8 Trusted sites 0% v

(2 Script 1.3 - Windows Internet Explorer BEE) Figure 1-5:
G\‘?"\ﬂ |8 1\.PSF\ HomeiDesktopljavascriptitsstsibook_steltutoriakichapterDLicomplete 1 3.html) [#2][] [tive sesrch [[2]-] JavaScrlpt can s:mpllfy
Fie Edt Yiew Favortes Tools Help & snaglt B common dESlgn tasks like

% & [@sems = o changing the background
color of every other table

Most Web browsers are set up to silently ignore JavaScript errors, so you usually
won’t even see a “Hey this program doesn’t work!” dialog box. (Generally, that’s a
good thing, since you don’t want a JavaScript error to interrupt the experience of
viewing your Web pages.)

So how do you figure out what’s gone wrong? There are many ways to track errors
in a JavaScript program. Youll learn some advanced debugging techniques in
Chapter 13, but the most basic method is to consult the Web browser. Most Web
browsers keep track of JavaScript errors and record them in a separate window
called a JavaScript console. When you load a Web page that contains an error, you
can then view the console to get helpful information about the error, like which
line of the Web page it occurred in and a description of the error.

However, not all consoles are created equal. Internet Explorer’s JavaScript console
is notoriously cryptic and often misleading. If you suspect errors, you’ll find the
most helpful JavaScript console in Firefox. Often, you can find the answer to the
problem, fix the JavaScript, and then the page will work in Firefox and other
browsers as well. The console helps you weed out the basic typos you make when
you first start programming, like forgetting closing punctuation, or mistyping the
name of a JavaScript command. But since scripts sometimes work in one browser
and not another, this section shows you how to turn on the JavaScript console in
all major browsers, so you can track down problems in each.

CHAPTER 1: WRITING YOUR FIRST JAVASCRIPT PROGRAM

33

Tracking Down
Errors

34

The Firefox JavaScript Console

Firefox’s JavaScript console is the best place to begin tracking down errors in your
code. Not only does the console provide fairly clear descriptions of errors (no
descriptions are ever that clear when it comes to programming), it also identifies
the line in your code where the error occurred.

For example, in Figure 1-6 the console identifies the error as a missing closing
parenthesis after an argument list (you’ll learn exactly what an argument list is on
page 101). The console also identifies the name of the file the error is in (complete_
1.3.html in this case) and the line number the error occurs (line 9). Best of all, it
even indicates the line containing the error with an arrow.

Warning: Although the error console draws an arrow pointing to the location where Firefox encoun-
tered the error, that's not always where you made the mistake. Sometimes you need to fix your code
before or after that arrow.

O . : Figure 1-6:
rror Console Firefox’s JavaScript console
: = identifies errors in your
Ll | @ Errors | /1 warnings ({2 Messages x et programs. The console keeps a

list of errors for previous pages

| | Evaluate as well, so pretty soon the list
missing) after argument list can get very long. Just click the
file: /)2 fjavascriptitests fbook, siteftuborialsfchapter0lfcomplete 1.3.html Line: 9 | Clear button to erase all the

I5('table.striped tr:ieven' .addClass('even'): errors listed in the console.

To show the JavaScript console, choose Tools — Error Console. The console is a
free-floating window that you can move around. It not only displays JavaScript
errors but CSS errors as well, so if you’ve made any mistakes in your Cascading
Styles Sheets, you’ll find out about those as well. (Make sure you select the Errors
button at the top of the console; otherwise you might see warnings and messages
that aren’t related to your JavaScript error.)

Tip: Since the error console displays the line number where the error occurred, you may want to use a
text-editor that can show line numbers. That way, you can easily jump from the error console to your text
editor and identify the line of code you need to fix.

Unfortunately, there’s a long list of things that can go wrong in a script, from simple
typos to complex errors in logic. When you’re just starting out with JavaScript pro-
gramming, many of your errors will be the simple typographic sort. For example,
you might forget a semicolon, quote mark, or parentheses, or misspell a JavaScript

JAVASCRIPT: THE MISSING MANUAL

M.al litebooks. cogl

http://www.allitebooks.org

command. You're especially prone to typos when following examples from a book
(like this one). Here are a few errors you may see a lot of when you first start typing
the code from this book:

+ Missing) after argument list. You forgot to type a closing parenthesis at the end
of a command. For example in this code—alert('hello’;—the parenthesis is
missing after 'hello’.

Unterminated string literal. A string is a series of characters enclosed by quote
marks (you’ll learn about these in greater detail on page 41). For example,
'hello’ is a string in the code alert('hello');. It’s easy to forget either the opening
or closing quote.

Missing } in compound statement. In addition to parentheses and quote marks,
you’ll often use other types of punctuation in your programs, like the { } sym-
bols (which are called braces). As with other errors of this kind, you just need to
make sure you include both the opening and closing brace.

XXX is not defined. If you misspell a JavaScript command—aler('hello'),—
youll get an error saying that the (misspelled) command isn’t defined: for
example, “aler is not defined.”

Syntax error. Occasionally, Firefox has no idea what you were trying to do and
provides this generic error message. A syntax error represents some mistake in
your code. It may not be a typo, but you may have put together one or more
statements of JavaScript in a way that isn’t allowed. In this case, you need to
look closely at the line the error was found on and try to figure out what mis-
take you made—unfortunately, these types of errors often require experience
with and understanding of the JavaScript language to fix.

As you can see from the list above, many errors youw’ll make simply involve forget-
ting to type one of a pair of punctuation marks—like quote marks or parentheses.
Fortunately, these are easy to fix, and as you get more experience programming,
you’ll eventually stop making them almost completely (no programmer ever does).

Displaying the Internet Explorer Error Dialog Box

The Internet Explorer console uses a disruptive error dialog box. If you turn the
console on, yowll get an annoying error dialog box each time IE encounters an
error (see Figure 1-7). To turn it on anyway, choose Tools — Internet Options.
Click the Advanced tab, and then turn on the “Display a notification about every
script error” checkbox. When you’re tired of those annoying error dialogs appear-
ing on every site you visit, repeat these steps to hide the console.

Fortunately, there’s a more selective (and less obnoxious) way to view errors in IE:
when IE encounters a JavaScript error, a small yellow alert (!) triangle appears in
the bottom-left corner of the browser. (It’s circled in Figure 1-7.) Just click this
icon, and the dialog box appears.

CHAPTER 1: WRITING YOUR FIRST JAVASCRIPT PROGRAM

Tracking Down
Errors

35

Tracking Down
Errors

T EEE Figure 1-7:
5 ; The Internet Explorer error

(13 M |@z:\1avasmpt\tests\buuk_sute\tutunals\chapteru1\cump\ete_1.3.htm\ V‘ 2| % |LWE search | P ! . !
@t [B dialog box lists JavaScript
nagl

_— - _| errors that occur on a page.
W @i = f - B - e - G- | Sometimes, the actual error
is hidden; if so, click Show
Details.

A Internet Explorer

SCI'IDt] orfunctioning propery. In the future, you can display this message by N& MANUAL. . -

Problems with this Web page might prevent it from being displayed property
& double-clicking the waming icon displayed in the status bar.

[Aways display this message when a page contains erors.

Stri ped T4 Ok Hide Details <<
Product ht (in Ibs.)
Line: 9
Ultra-Glow Hair Sp§ || char 44 u
Anodyne 3000 Eror: Expected T
Code:D
Big Foot Hair Dryer| | URL: file:///Z: fjavascripttests/bonk_site/tutorials/chaptesD] Acomplets_1 3.kl
Cat Out of The Hat|
Previous Nest
Tickle Me Elmo
Mens Watch $350.00 in stock .5
Leather Briefcase $150.00 in stock 7
Lorem Ipsum $5.00 in stock .25
Dolor Sat $7.50 back order .25
~
= I 2
‘j__‘bnne o Trusted sites 100% T

Internet Explorer’s error console, unfortunately, is usually not very helpful. Not
only are the error messages often cryptic, the line number the console identifies as
the location of the error usually isn’t correct.

Accessing the Safari Error Console

Safari 3’s error console is available from the Develop menu: Develop — Show Error
Console (on the Mac you can use the keyboard shortcut Option-8-C). However,
the Debug menu isn’t normally turned on when Safari is installed, so there are a
couple of steps to get to the JavaScript console. The process is slightly different,
depending on whether you’re using the Mac or Windows version of Safari.

On a Mag, choose Safari — Preferences and click the Advanced button. Check the
“Show Develop menu in menu bar” box and close the Preferences window.

Note: If you're using Safari 2 on a Mac, the Develop menu is actually called the Debug Menu. To enable
this menu for Safari 2, you must launch the Terminal application (Applications — Utilities — Terminal). In
the Terminal window, type the following:

defaults write com.apple.Safari IncludeDebugMenu 1

36 JAVASCRIPT: THE MISSING MANUAL

Tracking Down
Errors

On Windows, you need to edit a file named Defaults.plist, which is located at C:\
Program Files\Safari\Safari.Resources\Defaults.plist. Use a plain text editor, like
WordPad, and add the text shown in bold to the end of the file, just before the
closing </dict> tag. The last four lines of the file should look like the following:

<key>IncludeDebugMenu</key>
<true />

</dict>

</plist>

When you restart Safari, the Develop menu will appear between the Bookmarks
and Window menus in the menu bar at the top of the screen. Select Develop —
Show Error Console to open the console (see Figure 1-8).

O O O Web Inspector — file:// [Users /dave {Documents/02_writing /javascript_... Figure 1-8:
The Safari Error
| J | Clear | (Q- Search | Console displays
¥ DOCUMENTS 9 SyntaxError: Parse error the name of the
ﬁ!e:,',f."Usefs.;'da\fe."Documents {02 _writing fjavascript_mm/tutorial_ java;SCHPt error,
testing/chapter01/complete_1.3.html {line 34) the file name (and

= complete_1.3.html o

- [Usersdave/Document...

location) and the
line on which

» STYLESHEETS Safari
encountered the
» IMAGES error. Each tab or
browser window
has its own error
console, so if
you've already
opened the
console for tab,
you need to
choose Develop —

you wish to see an

error for another
" Network

» SCRIPTS

tab or window.

= I 4

CHAPTER 1: WRITING YOUR FIRST JAVASCRIPT PROGRAM 37

CHAPTER

2

The Grammar of
JavaScript

Learning a programming language is a lot like learning any new language: There
are words to learn, punctuation to understand, and a new set of rules to master.
And just as you need to learn the grammar of French to speak French, you must
become familiar with the grammar of JavaScript to program JavaScript. This chap-
ter covers the concepts that all JavaScript programs rely on.

If you’ve had any experience with JavaScript programming, many of these con-
cepts may be old hat, so you might just skim this chapter. But if you’re new to
JavaScript, or you’re still not sure about the fundamentals, this chapter introduces
you to basic (but crucial) topics.

Statements

A JavaScript statement is a basic programming unit, usually representing a single
step in a JavaScript program. Think of a statement as a sentence: Just as you string
sentences together to create a paragraph (or a chapter, or a book), you combine
statements to create a JavaScript program. In the last chapter you saw several
examples of statements. For example:

alert('Hello World!');

This single statement opens an alert window with the message “Hello World!” in
it. In many cases, a statement is a single line of code. Each statement ends with a
semicolon—it’s like a period at the end of a sentence. The semicolon makes it clear
that the step is over and that the JavaScript interpreter should move onto the next
action.

39

40

Note: Officially, putting a semicolon at the end of a statement is optional, and some programmers leave
them out to make their code shorter. Don't be one of them. Leaving off the semicolon makes reading
your code more difficult and, in some cases, causes JavaScript errors. If you want to make your JavaScript
code more compact so that it downloads more quickly, see page 502.

The general process of writing a JavaScript program is to type a statement, enter a
semicolon, press Return to create a new, blank line, type another statement, fol-
lowed by a semicolon, and so on and so on until the program is complete.

Commands

JavaScript and Web browsers let you use various commands to make things hap-
pen in your programs and on your Web pages. For example, the alert() command
you encountered earlier makes the Web browser open a dialog box and display a
message. These commands are usually called functions or methods, and are like
verbs in a sentence. They get things done.

Some commands, like alert() or document.write(), which you encountered on
page 29, are specific to Web browsers. In other words, they only work with Web
pages, so you won’t find them when programming in other environments that use
JavaScript (like, for example, when scripting Adobe applications like Acrobat or
Dreamweaver or in Flash’s JavaScript-based ActionScript).

Other commands are universal to JavaScript and work anywhere JavaScript works.
For example, isNaN() is a command that checks to see if a particular value is a
number or not—this command comes in handy when you want to check if a visi-
tor has correctly supplied a number for a question that requires a numerical
answer (for example, “How many widgets would you like?”). You’ll learn about
isNaN() and how to use it in Chapter 4 on page 137.

JavaScript has many different commands, which you’ll learn about throughout this
book. One quick way to identify a command in a program is by the use of paren-
theses. For example, you can tell isNaN() is a command, because of the parentheses
following isNaN.

In addition, JavaScript lets you create your own functions, so you can make your
scripts do things beyond what the standard JavaScript commands offer. You’ll
learn about functions in Chapter 3, starting on page 97.

Types of Data

You deal with different types of information every day. Your name, the price of
food, the address of your doctor’s office, and the date of your next birthday are all
information that is important to you. You make decisions about what to do and
how to live your life based on the information you have. Computer programs are

JAVASCRIPT: THE MISSING MANUAL

no different. They also rely on information to get things done. For example, to cal-
culate the total for a shopping cart, you need to know the price and quantity of
each item ordered. To customize a Web page with a visitor’s name (“Welcome
Back, Kotter”), you need to know his or her name.

Programming languages usually categorize information into different types, and
treat each type in a different way. In JavaScript, the three most common types of
data are number, string, and Boolean.

Numbers

Numbers are used for counting and calculating; you can keep track of the number
of days until summer vacation, or calculate the cost of buying two tickets to a
movie. Numbers are very important in JavaScript programming: you can use num-
bers to keep track of how many times a visitor has visited a Web page, to specify
the exact pixel position of an item on a Web page, or to determine how many
products a visitor wants to order.

In JavaScript, a number is represented by a numeric character; 5, for example, is
the number five. You can also use fractional numbers with decimals, like 5.25 or
10.3333333. JavaScript even lets you use negative numbers, like —130.

Since numbers are frequently used for calculations, your programs will often
include mathematical operations. You’ll learn about operators on page 48, but just
to provide an example of using JavaScript with numbers, say you wanted to print
the total value of 5 plus 15 on a Web page; you could do that with this line of code:

document.write(5 + 15);

This snippet of JavaScript adds the two numbers together and prints the total (20)
onto a Web page. There are many different ways to work with numbers, and you’ll
learn more about them starting on page 134.

Strings

To display a name, a sentence, or any series of letters, you use strings. A string is
just a series of letters and other symbols enclosed inside of quote marks. For exam-
ple, 'Welcome Hal', and “You are here” are both examples of strings. You used a
string in the last chapter with the alert command—alert('Hello World!");.

A string’s opening quote mark signals to the JavaScript interpreter that what fol-
lows is a string—just a series of symbols. The interpreter accepts the symbols liter-
ally, rather than trying to interpret the string as anything special to JavaScript like a
command. When the interpreter encounters the final quote mark, it understands
that it has reached the end of the string and continues onto the next part of the
program.

You can use either double quote marks ("hello world") or single quote marks
('hello world') to enclose the string, but you must make sure to use the same type of
quote mark at the beginning and end of the string (for example, "this is not right'

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT

Types of Data

a1

isn’t a valid string because it begins with a double-quote mark but ends with a single-
quote.)

So, to pop-up an alert box with the message Warning, warning! you could write:
alert('Warning, warning!');

or
alert("Warning, warning!");

You’ll use strings frequently in your programming—when adding alert messages,
when dealing with user input on Web forms, and when manipulating the contents
of a Web page. They’re so important that you’ll learn a lot more about using
strings starting on page 116.

FREQUENTLY ASKED QUESTION

Putting Quotes into Strings

When | try to create a string with a quote mark in it, my
program doesn’t work. Why is that?

In JavaScript, quote marks indicate the beginning and end
of a string, even when you don't want them to. When the
JavaScript interpreter encounters the first quote mark, it
says to itself, “Ahh, here comes a string.” When it reaches a
matching quote mark, it figures it has come to the end of
the string. That's why you can't create a string like this: ""He
said, "Hello."". In this case, the first quote mark (before the
word “He") marks the start of the string, but as soon as the
JavaScript interpreter encounters the second quote mark
(before the word “Hello”), it figures that the string is over,
so you end up with the string "He said, " and the Hello.
part, which creates a JavaScript error.

There are a couple of ways to get around this conundrum.
The easiest method is to use single quotes to enclose a
string that has one or more double quotes inside it. For
example, 'He said, "Hello."" is a valid string—the single
quotes create the string, and the double quotes inside are
a part of the string. Likewise, you can use double quotes to
enclose a string that has a single quote inside it: "This isn't
fair" for example.

Another method is to tell the JavaScript interpreter to just
treat the quote mark inside the string literally—that is, treat
the quote mark as part of the string, not the end of the
string. You do this using something called an escape char-
acter. If you precede the quote mark with a backward slash
(\), the quote is treated as part of the string. You could
rewrite the above example like this: "He said, |"Hello.| "".
In some cases, an escape character is the only choice. For
example: 'He said, "This isn\'t fair."' Because the string is
enclosed by single quotes, the lone single quote in the
word “isn't” has to have a backward slash before it: isn|t.

You can even escape quote marks when you don't neces-
sarily have to—as a way to make it clear that the quote mark
should be taken literally. For example. ‘He said, "Hello.""
Even though you don't need to escape the double quotes
(since single quotes surround the entire string) some pro-
grammers do it anyway so that it's clear to them that the
quote mark is just a quote mark.

Whereas numbers and strings offer infinite possibilities, the Boolean data type is
simple. It is either one of two values: true or false. You’ll encounter Boolean data
types when you create JavaScript programs that respond intelligently to user input

42 JAvAScrIPT: THE MISSING MANUAL

and actions. For example, if you want to make sure a visitor supplied an email
address before submitting a form, you can add logic to your page by asking the
simple question: “Did the user type in a valid email address?” The answer to this
question is a Boolean value: either the email address is valid (true) or it’s not
(false). Depending on the answer to the question, the page could respond in differ-
ent ways. For example, if the email address is valid (true), then submit the form; if
it is not valid (false), then display an error message and prevent the form from
being submitted.

You’ll learn how Boolean values come into play when adding logic to your pro-
grams in the box on page 80.

Variables

You can type a number, string, or Boolean value directly into your JavaScript pro-
gram, but these data types work only when you already have the information you
need. For example, you can make the string “Hi Bob” appear in an alert box like
this:

alert('Hi Bob');

But that statement only makes sense if everyone who visits the page is named Bob.
If you want to present a personalized message for different visitors, the name needs
to be different depending on who is viewing the page: 'Hi Mary,' 'Hi Joseph,' 'Hi
Ezra,' and so on. Fortunately, all programming languages provide something
known as a variable to deal with just this kind of situation.

A variable is a way to store information so that you can later use and manipulate it.
For example, imagine a JavaScript-based pinball game where the goal is to get the
highest score. When a player first starts the game, her score will be zero, but as she
knocks the pinball into targets, the score will get bigger. In this case, the score is a
variable since it starts at 0 but changes as the game progresses—in other words, a
variable holds information that can vary. See Figure 2-1 for an example of another
game that uses variables.

Think of a variable as a kind of basket: you can put an item into a basket, look
inside the basket, dump out the contents of a basket, or even replace what’s inside
the basket with something else. However, even though you might change what’s
inside the basket, it still remains the same basket.

Creating a Variable

Creating a variable is a two-step process that involves declaring the variable and
naming it. In JavaScript to create a variable named score you would type:

var score;

The first part, var, is a JavaScript keyword that creates, or, in programming-speak,
declares the variable. The second part of the statement, score, is the variable’s name.

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT

43

806

Real World Racer: A Google Maps Racing Game (=) Flyl"'e 2-1:

«- ¢

ﬁ_‘ E tag T hup://www.thomasscott.net/realworldrace ¥ | =

T coone a @ The game Real World

© Disable * £ Cookies v [€55 v [Forms v [Images v @ Information v () Miscellaneous v /' Outline v |, J Resize v

Racer (www.thomasscott.
net/realworldracer)
merges JavaScript with
Google Maps technology
to let you race your way
along any road in the
world. The game tracks
your speed, time, and the
number of checkpoints
you've crossed (in the
top-right box). These are
all examples of variables
since they change value
as the game goes on.

a4

What you name your variables is up to you, but there are a few rules you must follow
when naming variables:

* Variable names must begin with a letter, $, or _. In other words, you can’t
begin a variable name with a number or punctuation: so Ithing, and &thing
won’t work, but score, $score, and _score are fine.

Variable names can only contain letters, numbers, $, and _. You can’t use
spaces or any other special characters anywhere in the variable name: fish¢>chips
and fish and chips aren’t legal, but fish_n_chips and plan9 are.

Variable names are case-sensitive. The JavaScript interpreter sees uppercase
and lowercase letters as distinct, so a variable named SCORE is different from a
variable named score, which is also different from variables named sCoRE and
Score.

Avoid keywords. Some words in JavaScript are specific to the language itself:
var for example is used to create a variable, so you can’t name a variable var. In
addition, some words, like alert, document, and window, are considered special
properties of the Web browser. You’ll end up with a JavaScript error if you try
to use those words as variable names. You can find a list of some reserved words
in Table 2-1. Not all of these reserved words will cause problems in all browsers,
but it’s best to steer clear of these names when naming variables.

JAVASCRIPT: THE MISSING MANUAL

M.al litebooks. cor_rl

http://www.allitebooks.org

Table 2-1. Some words are reserved for use by JavaScript and the Web browser. Avoid using them as
variable names.

JavaScript keywords Reserved for future use Reserved for browser
break abstract alert
case boolean blur
catch byte closed
continue char document
default class focus
delete const frames
do debugger history
else double innerHeight
finally enum innerWidth
for export length
function extends location
if final navigator
in float open
instanceof goto outerHeight
new implements outerWidth
return import parent
switch int screen
this interface screenX
throw long screenY
try native statusbar
typeof package window
var private
void protected
while public
with short

static

super

synchronized

throws

transient

volatile

In addition to these rules, aim to make your variable names clear and meaningful.
Naming variables according to what type of data you’ll be storing in them makes it
much easier to look at your programming code and immediately understand
what’s going on. For example, score is a great name for a variable used to track a

player’s game score. The variable name s would also work, but the single letter “s
doesn’t give you any idea about what’s stored in the variable.

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT

a5

46

Likewise, make your variable names easy to read. When you use more than one
word in a variable name, either use an underscore between words or capitalize the
first letter of each word after the first. For example, imagepath isn’t as easy to read
and understand as image_path or imagePath.

Tip: If you want to declare a bunch of variables at one time, you can do it in a single line of code like this:
var score, players, game_time;

This line of code creates three variables at once.

Using Variables

Once a variable is created, you can store any type of data that you’d like in it. To
do so, you use the = sign. For example, to store the number 0 in a variable named
score, you could type this code:

var score;
score = 0;

The first line of code above creates the variable; the second line stores the number
0 in the variable. The equal sign is called an assignment operator, because it’s used
to assign a value to a variable. You can also create a variable and store a value in it
with just a single JavaScript statement like this:

var score = 0;

You can store strings, numbers and Boolean values in a variable:

var firstName = 'Peter’;
var lastName = 'Parker’;
var age = 22;

var isSuperHero = true;

Tip: To save typing, you can declare multiple variables with a single var keyword, like this:
var x, y, z;
You can even declare and store values into multiple variables in one JavaScript statement:

var isSuperHero=true, isAfraidOfHeights=false;

Once you’ve stored a value in a variable, you can access that value simply by using
the variable’s name. For example, to open an alert dialog box and display the value
stored in the variable score, you’d type this:

alert(score);

Notice that you don’t use quotes with a variable—that’s just for strings, so the code
alert('score') will display the word “score” and not the value stored in the variable
score. Now you can see why strings have to be enclosed in quote marks: the Java-
Script interpreter treats words without quotes as either special JavaScript objects
(like the alert() command) or a variable name.

JAVASCRIPT: THE MISSING MANUAL

Working with Data
Types and Variables

FREQUENTLY ASKED QUESTION

Spaces, Tabs, and Carriage Returns in JavaScript

JavaScript seems so sensitive about typos. How do | know var formName = "signup';
when I'm supposed to use space characters, and when I'm var formRegistration
not allowed to? =

'newsletter’;
You must put a space between keywords: varscore=0, for
example, doesn't create a new variable named score. The
JavaScript interpreter needs the space between var and
score to identify the var keyword: var score=0. However,
space isn't necessary between keywords and symbols like
the assignment operator (=) or the semicolon that ends a
statement.

Of course, just because you can insert extra space, doesn't
mean you should. The last two examples are actually
harder to read and understand because of the extra space.
So the general rule of thumb is add extra space if it makes
your code easier to understand. You'll see examples of how
space can make code easier to read with arrays (page 58)
and with JavaScript Object Literals (page 188).

JavaScript interpreters ignore extra space, so you're free to
insert extra spaces, tabs and carriage returns to format your
code. For example, you don't need a space on either side
of an assignment operator, but you can add them if you

find it easier to read. Both of the lines of code below work: VELE GEILS = 'zo?th'
mith';

One important exception to the above rules: you can't
insert a carriage return inside a string; in other words you
can't split a string over two lines in your code like this:

var formName="signup'; . . .
var formRegistration = 'newsletter' ; Inserting a carriage return (pressing the Enter or Return

key) like this produces a JavaScript error and your program

In fact, you can insert as many spaces as you'd like, and won't run.

even insert carriage returns within a statement. So both of
the following statements also work:

Note: You only need to use the var keyword once—when you first create the variable. After that, you're
free to assign new values to the variable without using var.

Working with Data Types and Variables

Storing a particular piece of information like a number or string in a variable is
usually just a first step in a program. Most programs also manipulate data to get
new results. For example, add a number to a score to increase it, multiply the
number of items ordered by the cost of the item to get a grand total, or personal-
ize a generic message by adding a name to the end: “Good to see you again, Igor.”
JavaScript provides various operators to modify data. An operator is simply a sym-
bol or word that can change one or more values into something else. For example,
you use the + symbol—the addition operator—to add numbers together. There
are different types of operators for the different data types.

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT 47

Working with Data
Types and Variables

48

Basic Math

JavaScript supports basic mathematical operations such as addition, division, sub-
traction, and so on. Table 2-2 shows the most basic math operators and how to use
them.

Table 2-2. Basic math with JavaScript

Operator What it does How to use it
+ Adds two numbers 5+25

- Subtracts one number from another 25-5

* Multiplies two numbers 5%10

/ Divides one number by another 15/5

You may be used to using an x for multiplication (4 X 5, for example), but in Java-
Script, you use the * symbol to multiply two numbers.

You can also use variables in mathematical operations. Since a variable is only a
container for some other value like a number or string, using a variable is the same
as using the contents of that variable.

var price = 10;
var itemsOrdered = 15;
var totalCost = price * itemsOrdered;

The first two lines of code create two variables (price and itemsOrdered) and store a
number in each. The third line of code creates another variable (totalCost) and
stores the results of multiplying the value stored in the price variable (10) and the
value stored in the itemsOrdered variable. In this case, the total (150) is stored in
the variable totalCost.

This sample code also demonstrates the usefulness of variables. Suppose you write
a program as part of a shopping cart system for an e-commerce Web site.
Throughout the program, you need to use the price of a particular product to
make various calculations. You could code the actual price throughout the pro-
gram (for example, say the product cost 10 dollars, so you type 10 in each place in
the program that price is used). However, if the price ever changes, you’d have to
locate and change each line of code that uses the price. By using a variable, on the
other hand, you can set the price of the product somewhere near the beginning of
the program. Then, if the price ever changes, you only need to modify the one line
of code that defines the product’s price to update the price throughout the program:

var price = 20;
var itemsOrdered = 15;
var totalCost = price * itemsOrdered;

There are lots of other ways to work with numbers (you’ll learn a bunch starting
on page 134), but you’ll find that you most frequently use the basic math opera-
tors listed in Table 2-2.

JAVASCRIPT: THE MISSING MANUAL

The Order of Operations

If you perform several mathematical operations at once—for example, you total
up several numbers then multiply them all by 10—you need to keep in mind the
order in which the JavaScript interpreter performs its calculations. Some opera-
tors take precedence over other operators, so they’re calculated first. This fact can
cause some unwanted results if you’re not careful. Take this example:

4+ 5 * 10

You might think this simply is calculated from left to right: 4 + 5is 9 and 9 * 10 is
90. It’s not. The multiplication actually goes first, so this equation works out to 5 *
10 is 50, plus 4 is 54. Multiplication (the * symbol) and division (the / symbol) take
precedence over addition (+) and subtraction (-).

To make sure that the math works out the way you want it, use parentheses to
group operations. For example, you could rewrite the equation above like this:

(4 +5) *10

Any math that’s performed inside parentheses happens first, so in this case the 4 is
added to 5 first and the result, 9, is then multiplied by 10. If you do want the multi-
plication to occur first, it would be clearer to write that code like this:

4 + (5%10);

Combining Strings

Combining two or more strings to make a single string is a common programming
task. For example, if a Web page has a form that collects a person’s first name in
one form field and his last name in a different field, you need to combine the two
fields to get his complete name. What’s more, if you want to display a message let-
ting the user know his form information was submitted, you need to combine the
generic message with the person’s name: “John Smith, thanks for your order.”

Combining strings is called concatenation, and you accomplish it with the + operator.
Yes, that’s the same + operator you use to add number values, but with strings it
behaves a little differently. Here’s an example:

var firstName = 'John';
var lastName = 'Smith';
var fullName = firstName + lastName;

In the last line of code above, the contents of the variable firstName are combined
(or concatenated) with the contents of the variable lastName—the two are literally
joined together and the result is placed in the variable fullName. In this example,
the resulting string is “JohnSmith”—there isn’t a space between the two names,
since concatenating just fuses the strings together. In many cases (like this one),
you need to add an empty space between strings that you intend to combine:

var firstName = 'John';
var lastName = 'Smith';

[

var fullName = firstName + + lastName;

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT

Working with Data
Types and Variables

a9

Working with Data
Types and Variables

50

The "' in the last line of this code is a single quote, followed by a space, followed by
a final single quote. This code is simply a string that contains an empty space.
When placed between the two variables in this example, it creates the string "John
Smith". This last example also demonstrates that you can combine more than two
strings at a time; in this case, three strings.

Combining Numbers and Strings

Most of the mathematical operators only make sense for numbers. For example, it
doesn’t make any sense to multiply 2 and the string 'eggs'. If you try this example,
you’ll end up with a special JavaScript value NaN, which stands for “not a number.”
However, there are times when you may want to combine a string with a number.
For example, say you want to present a message on a Web page that specifies how
many times a visitor has been to your Web site. The number of times she’s visited
is a number, but the message is a string. In this case, you use the + operator to do
two things: convert the number to a string and concatenate it with the other string.
Here’s an example:

var numOfVisits = 101;
var message = 'You have visited this site ' + numOfVisits + ' times.';

In this case, message contains the string “You have visited this site 101 times.” The
JavaScript interpreter recognizes that there is a string involved, so it realizes it
won’t be doing any math (no addition). Instead, it treats the + as the concatena-
tion operator, and at the same time realizes that the number should be converted
to a string as well.

This example may seem like a good way to print words and numbers in the same
message. In this case, it’s obvious that the number is part of a string of letters that
makes up a complete sentence, and whenever you use the + operator with a string
value and a number, the JavaScript interpreter converts the number to a string.

That feature, known as automatic type conversion, can cause problems, however.
For example, if a visitor answers a question on a form (“How many pairs of shoes
would you like?”) by typing a number (2, for example), that input is treated like a
string—"2". So you can run into a situation like this:

var numOfShoes = '2';
var numOfSocks = 4;
var totalItems = numOfShoes + numOfSocks;

You’d expect the value stored in totalltems to be 6 (2 shoes + 4 pairs of socks).
Instead, because the value in numOfShoes is a string, the JavaScript interpreter
converts the value in the variable numOfSocks to a string as well, and you end up
with the string 24" in the totalltems variable. There are a couple of ways to prevent
this error.

JAVASCRIPT: THE MISSING MANUAL

First, you add + to the beginning of the string that contains a number like this:

var numOfShoes

D
var numOfSocks = 4;

var totalltems = +numOfShoes + numOfSocks;

Adding a + sign before a variable (make sure there’s no space between the two)
tells the JavaScript interpreter to try to convert the string to a number value—if the
string only contains numbers like '2', you’ll end up with the string converted to a
number. In this example, you end up with 6 (2 + 4). Another technique is to use
the Number() command like this:

var numOfShoes

P
var numOfSocks = 4;

var totalltems = Number(numOfShoes) + numOfSocks;

Number() converts a string to a number if possible. (If the string is just letters and
not numbers, you get the NaN value to indicate that you can’t turn letters into a
number.)

In general, yowll most often encounter numbers as strings when getting input
from a visitor to the page; for example, when retrieving a value a visitor entered
into a form field. So, if you need to do any addition using input collected from a
form or other source of visitor input, make sure you run it through the Number()
command first.

Changing the Values in Variables

Variables are useful because they can hold values that change as the program
runs—a score that changes as a game is played, for example. So how do you
change a variable’s value? If you just want to replace what’s contained inside a vari-
able, assign a new value to the variable. For example:

var score = 0;
score = 100;

However, you'll frequently want to keep the value that’s in the variable and just
add something to it or change it in some way. For example, with a game score you
never just give a new score, you always add or subtract from the current score. To
add to the value of a variable, you use the variable’s name as part of the operation
like this:

var score = 0;
score = score + 100;

That last line of code may appear confusing at first, but it uses a very common
technique. Here’s how it works: All of the action happens to the right of the = sign
first; that is, the score + 100 part. Translated, it means “take what’s currently stored
in score (0) and then add 100 to it.” The result of that operation is then stored back
into the variable score. The final outcome of these two lines of code is that the vari-
able score now has the value of 100.

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT

Working with Data
Types and Variables

Working with Data
Types and Variables

52

The same logic applies to other mathematical operations like subtraction, division,
or multiplication:

score = score - 10;
score = score * 10;
score = score / 10;

In fact, performing math on the value in a variable and then storing the result back
into the variable is so common that there are shortcuts for doing so with the four
main mathematical operations, as pictured in Table 2-3.

Table 2-3. Shortcuts for performing math on a variable

Operator What it does How to use it The same as

+= Adds value on the right side of score += 10; score = score + 10;
equal sign to the variable on the
left.

-= Subtracts value on the right side | score -= 10; score = score - 10;

of the equal sign from the vari-
able on the left.

*= Multiplies the variable onthe left | score *= 10; score = score * 10
side of the equal sign and the
value on the right side of the
equal sign.

/= Divides the value in the variable | score /= 10 score = score / 10
by the value on the right side of
the equal sign.

+ Placed directly after a variable score++ score = score + 1
name, ++ adds 1 to the variable.

-- Placed directly after a variable score-- score = score - 1
name, -- subtracts 1 from the
variable.

The same rules apply when concatenating a string to a variable. For example, say
you have a variable with a string in it and want to add another couple of strings
onto that variable:

var name = 'Franklin';
var message = 'Hello';
message = message + ' ' + name;

As with numbers, there’s a shortcut operator for concatenating a string to a vari-
able. The += operator adds the string value to the right of the = sign to the end of
the variable’s string. So the last line of the above code could be rewritten like this:

[

message += + name;

You’ll see the += operator frequently when working with strings, and throughout
this book.

JAVASCRIPT: THE MISSING MANUAL

Tutorial: Using Variables to Create Messages

In this tutorial, you’ll use variables to print (that is, write) a message onto a Web
page.

Note: To follow along with the tutorials in this chapter you need to download the tutorial files from this
book’s companion Web site: www.sawmac.com/missing/js. See the note on page 27 for details.

1. In a text editor, open the file 2.1.html in the chapter02 folder.

This page is just a basic HTML file with a simple CSS-enhanced design. It
doesn’t yet have any JavaScript. You’ll use variables to write a message onto a
Web page.

2. Locate the <h1> tag (a little over half way down the file) and add the opening
and closing <script> tags, so that the code looks like this:

<h1>Using a Variable</h1>
<script type="text/javascript">

</script>

This HTML should be familiar by now: it simply sets the page up for the script
you’re about to write.

3. In between the <script> tags type:

var firstName = 'Cookie';
var lastName = 'Monster';

You've just created your first two variables—firstName and lastName—and
stored two string values into them. Next you’ll add the two strings together, and
print the results to the Web page.

4. Below the two variable declarations type:

document.write('<p>");

As you saw in Chapter 1, the document.write() command adds text directly to a
Web page. In this case, you’re using it to write HTML tags to your page. You
supply the command a string—'<p>'—and it outputs that string just as if you
had typed it into your HTML code. It’s perfectly OK to supply HTML tags as
part of the document.write() command. In this case, the JavaScript is adding the
opening tag for a paragraph to hold the text you’re going to print on the page.

Note: There are more efficient methods than documentwrite() to add HTML to a Web page. You'll
learn about them on page 181.

5. Press Return and type the following JavaScript:

[

document.write(firstName + + lastName);

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT

Tutorial: Using
Variables to Create

Messages

http://www.sawmac.com/missing/js

Tutorial: Asking for
Information

54

Here you use the values stored in the variables you created in step 3. The +
operator lets you put several strings together to create one longer string, which
the document.write() command then writes to the HTML of the page. In this
case, the value stored in firstName—'Cookie'—is added to a space character,
and then added to the value of lastName—'Monster'. The results are one string:
'Cookie Monster'.

6. Press return again and type document.write('</p>');.

The finished script should look like this:

<script type="text/javascript">
var firstName = 'Cookie';

var lastName = 'Monster’;
document.write('<p>");

0

document.write(firstName + ' ' + lastName);
document.write('</p>");

</script>

7. Preview the page in a Web browser to enjoy the fruits of your labor (see
Figure 2-2).

The words “Cookie Monster” should appear below the headline “Using a Vari-
able.” If you don’t see anything, there’s probably a typo in your code. Compare
the script above with what you typed and check page 34 for tips on debugging a
script using Firefox.

8. Return to your text editor and change the second line of the script to read:

var lastName = 'Jar’';

Save the page and preview it in a Web browser. Voila, the message now reads:
Cookie Jar. (The file complete_2.1.html has a working copy of this script.)

Tutorial: Asking for Information

In the last script, you saw how to create variables, but you didn’t get to experience
how variables can respond to the user and produce unique, customized content. In
this next tutorial, you’ll learn how to use the prompt() command to gather input
from a user and change the display of the page based on that input.

1. In a text editor, open the file 2.2.html in the chapter02 folder.

To make your programming go faster, the <script> tags have already been
added to this file. You’ll notice that there are two sets of <script> tags: one in
the head and one in the body. The JavaScript you’re about to add will do two
things. First, it will open up a dialog box that asks the user to type in an answer
to a question; second, in the body of the Web page, a customized message using
the user’s response will appear.

JAVASCRIPT: THE MISSING MANUAL

vww.allitebooks.cond

http://www.allitebooks.org

Tutorial: Asking for
Information

(2 Script 2.1 - Windows Internet Explorer =19 Fiyl”'e 2-2;

g:_;,v | & v psFiHomelp T ook hapter0Zlcompl ive Searcl - While Wl'ltlng “Cookie
* & [@saman - - (ke - 3100s - 7| Monster” might not
| exactly be the reason you
picked up a book on
JavaScript, this script
does demonstrate an

Using a Variable important concept: how
Cookie Monster to create and use
variables in JavaScript.

“Building Interactive Web Sites with JavaScript”

[

[@ Trusted sites H100% -

2. Between the first set of <script> tags in the document head, type the bolded
code:

<script type="text/javascript">
var name = prompt('What is your name?', '');
</script>

The prompt() command produces a dialog box similar to the alert() com-
mand. However, instead of just displaying a message, the prompt() command
can also retrieve an answer (see Figure 2-3). In addition, to use the prompt()
command, you supply two strings separated by a comma between the parenthe-
ses. Figure 2-3 shows what happens to those two strings: the first string appears
as the dialog’s question (“What is your name?” in this example).

The second string appears in the field the visitor types into. This example uses
what’s called an empty string, which is just two single quote marks (' ') and
results in a blank text field. However, you can supply a useful instruction like
“Please type both your first and last names” for the second string, and it will
appear in the field. Unfortunately, a visitor will need to first delete that text
from the text field before entering his own information.

The prompt() command returns a string containing whatever the visitor typed
into the dialog box. In this line of JavaScript code, that result is stored into a
new variable named name.

Note: Many commands return a value. In plain English, that just means the command supplies some
information after it's done. You can choose to ignore this information or store it into a variable for later
use. In this example, the prompt()) command returns a string that you store in the variable name.

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT 55

prompt('What is your name?', "); Figure 2-3:

The prompt() command is
one way to retrieve user
input. It works by providing
two strings to the command-
one to appear as the

What is your name? question, and another that

¢ pre-fills the prompt box with
text.

(Cancel :]E oK j

56

3. Save the page and preview it in a Web browser.

When the page loads, you’ll see a dialog box. Notice that nothing else hap-
pens—you don’t even see the Web page—until you fill out the dialog box and
click OK. You’ll also notice that nothing much happens after you click OK—
that’s because, at this point, you've merely collected and stored the response;
you haven’t used that response on the page. You’ll do that next.

4. Return to your text editor. Locate the second set of <script> tags and add the
code in bold:

<script type="text/javascript">
document.write('<p>Welcome ' + name + '</p>');
</script>

Here you take advantage of the information supplied by the visitor. As with the
script on page 53, you're combining several strings—an opening paragraph tag
and text, the value of the variable, and a closing paragraph tag—and printing
the results to the Web page.

5. Save the page and preview it in a Web browser.

When the Prompt dialog appears, type in a name and click OK. Notice that the
name you type appears in the Web page (Figure 2-4). Reload the Web page and
type a new name—it changes! Just like a good variable should.

Arrays

Simple variables, like the ones you learned about in the previous section, only hold
one piece of information, such as a number or a string value. They’re perfect when
you only need to keep track of a single thing like a score, an age, or a total cost.
However, if you need to keep track of a bunch of related items—like the names of
all of the days in a week, or a list of all of the images on a Web page—simple variables
aren’t very convenient.

JAVASCRIPT: THE MISSING MANUAL

B Figure 2-4:
3 Script 2.2 - Mozilla Firefox Thge power

File Edit “iew Hiskary Bookmarks Tools Help of

i ~ _ _ _ _ - variables:
<_| v v @ {igd] ||:| filesiiid PSFY Home,Deskkopfjavascript/tests fbook_siteftutorialsichapter0z2/complet: this page
customizes
its message
based on a
visitor’s
response.

’ Getting Starked ET; Latest Headlines

Using a Variable, Part 11

Welcome Dave

For example, say you’ve created a JavaScript shopping cart system that tracks items
a visitor intends to buy. If you wanted to keep track of all of the items the visitor
adds to her cart using simple variables you’d have to write code like this:

var item1 = 'Xbox 360';
var item2 = 'Tennis shoes';
var item3 = 'Gift certificate';

But what if they wanted to add more items than that? You’d have to create more
variables—item4, item5, and so on. And, because you don’t know how many items
the visitor might want to buy, you really don’t know how many variables you’ll
have to create.

Fortunately, JavaScript provides a better method of tracking a list of items, called
an array. An array is a way of storing more than one value in a single place. Think
of an array like a shopping list. When you need to go to the grocery store, you sit
down and write a list of items to buy. If you just went shopping a few days earlier,
the list might only contain a few items; but if your cupboard is bare, your shop-
ping list might be quite long. Regardless of how many items on the list, though,
there’s still just a single list.

Without an array, you have to create a new variable for each item in the list. Imag-
ine, for example, that you couldn’t make a list of groceries on a single sheet of
paper, but had to carry around individual slips of paper—one for each item that
you’re shopping for. If you wanted to add another item to buy, you’d need a new
slip of paper; then you’d need to keep track of each slip as you shopped (see
Figure 2-5). That’s how simple variables work. But with an array you can create a
single list of items, and even add, remove, or change items at anytime.

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT 57

Iliiiiillllllllll

58

an array simple variables Figure 2-5:
An array provides a simple, organized way to
potatoes track a list of related items. Adding another
. item to the list is just like writing a new item at
milk potatoes the bottom of the list.
eggs
bread ego®
cheese milk
bread
cheese
Creating an Array

To create and store items in an array, you first declare the array’s name (just as you
would a variable) and then supply a list of comma separated values: each value rep-
resents one item in the list. As with variables, what you name your array is up to
you, but you need to follow the same naming rules listed on page 44. To indicate
an array, you put the list of items between opening and closing brackets—[]. For
example, to create an array containing abbreviations for the seven days of the
week, you could write this code:

var days = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'];

The brackets—/[]—are very important; they tell the JavaScript interpreter that it’s
dealing with an array. You can create an empty array without any elements like
this:

var playlList = [];

Creating an empty array is the equivalent of declaring a variable as described on
page 43. You'll create an empty array when you don’t add items to the array until
the program is running. For example, the above array might be used to track songs
that someone selects from a list on a Web page—you don’t know ahead of time
which songs the person will choose, so you declare an empty array and later fill it
with items as the person selects music. (Adding items to an array is described on

page 61.)

Note: When looking through other people’s JavaScript programs (or other JavaScript books), you may
encounter another way to create an array using the Array keyword, like this:

var days = new Array('Mon', 'Tues', 'Wed');

This method is valid, but the method used in this book (called an array literal) requires less typing and
less code.

JAVASCRIPT: THE MISSING MANUAL

You can store any mix of values in an array. In other words, numbers, strings, and
Boolean values can all appear in the same array:

var prefs = [1, 223, 'www.oreilly.com', false];

Note: You can even store arrays and other objects as elements inside an array. This can help store complex
data. You'll see an example of this advanced topic on page 108.

The array examples above show the array created on a single line. However, if
you’ve got a lot of items to add, or the items are long strings, trying to type all of
that on a single line can make your program difficult to read. Another option
many programmers use is to create an array over several lines, like this:

var authors = ['Ernest Hemingway',
'Charlotte Bronte',
'Dante Alighieri’,
'Emily Dickinson'

I

As mentioned in the box on page 47, a JavaScript interpreter skips extra space and
line breaks, so even though this code is displayed on five lines, it’s still just a single
statement, as indicated by the final semicolon on the last line.

Tip: To make the names line up as above, you'd type the first line — var authors = [*Ernest Heming-
way’,—hit Return, then press the space key as many times as it takes to line up the next value—"Charlotte
Bronte’,.

Accessing Items in an Array

You can access the contents of a simple variable just by using the variable’s name.
For example alert(lastName) opens an alert box with the value stored in the vari-
able lastName. However, because an array can hold more than one value, you can’t
just use its name alone to access the items it contains. A unique number, called an
index, indicates the position of each item in an array. To access a particular item in
an array, you use that item’s index number. For example, say you've created an
array with abbreviations for the days of the week, and want to open an alert box
that displayed the first item. You could write this:

var days = ['Mon', 'Tues', 'Wed', 'Thurs', 'Fri', 'Sat', 'Sun'];

alert(days[0]);

This code opens an alert box with ‘Mon’ in it. Arrays are zero-indexed, meaning
that the first item in an array has an index value of 0, and the second item has an
index value of 1: in other words, subtract one from the item’s spot in the list to get
its index value—the fifth item’s index is 5 — 1; that is 4. Zero-indexing is pretty
confusing when you first get started with programming, so Table 2-4 shows how
the array days (from the above example) is indexed, the values it contains and how
to access each value.

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT

Table 2-4. Items in an array must be accessed using an index number that's the equivalent to their place
in the list minus 1

Index value Item To access item
0 Mon days[0]
1 Tues days[1]
2 Wed days[2]
3 Thurs days[3]
4 Fri days[4]
5 Sat days[5]
6 Sun days[6]

You can change the value of an item in an array by assigning a new value to the
index position. For example, to put a new value into the first item in the array
days, you could write this:

days[0] = 'Monday';

Because the index number of the last item in an array is always one less than the
total number of items in an array, you only need to know how many items are in
an array to access the last item. Fortunately, this is an easy task since every array
has a length property, which contains the total number of items in the array. To
access the length property, add a period followed by length after the array’s name:
for example, days.length returns the number of items in the array named days (if
you created a different array, playList, for example, you’d get its length like this:
playList.length). So you can use this tricky bit of JavaScript to access the value
stored in the last item in the array:

days[days.length-1]

This last snippet of code demonstrates that you don’t have to supply a literal num-
ber for an index (for example, the 0 in days[0]). You can also supply an equation
that returns a valid number: in this case days.length — I is a short equation: it first
retrieves the number of items in the days array (that’s 7 in this example) and sub-
tracts 1 from it. So, in this case, days[days.length-1] translates to days[6].

You can also use a variable containing a number as the index:
var i = 0;

alert(days[i]);

The last line of code is the equivalent of alert(days[0]);. You’ll find this technique
particularly useful when working with loops as described in the next chapter (page
90).

JAVASCRIPT: THE MISSING MANUAL

Adding Items to an Array

Say you’ve created an array to track items that a user clicks on a Web page. Each
time the user clicks the page, an item is added to the array. JavaScript supplies sev-
eral ways to add contents to an array.

Adding an item to the end of an array

To add an item to the end of an array, you can use the index notation from page
59, using an index value that’s one greater than the last item in the list. For exam-
ple, say you’ve have created an array named properties:

var properties = ['red', '14px', 'Arial'];

At this point, the array has three items. Remember that the last item is accessed
using an index that’s one less than the total number of items, so in this case, the
last item in this array is properties[2]. To add another item, you could do this:

properties[3] = 'bold';

This line of code inserts 'bold’ into the fourth spot in the array, which creates an
array with four elements: ['red’, '14px', 'Arial', 'bold']. Notice that when you add
the new item, you use an index value that’s equal to the total number of elements
currently in the array, so you can be sure you’re always adding an item to the end
of an array by using the array’s length property as the index. For example, you can
rewrite the last line of code like this:

properties[properties.length] = 'bold';

You can also use an array’s push() command, which adds whatever you supply
between the parentheses to the end of the array. As with the length property, you
apply push() by adding a period to the array’s name followed by push(). For
example, here’s another way to add an item to the end of the properties array:

properties.push('bold");
Whatever you supply inside the parentheses (in this example the string 'bold’) is

added as a new item at the end of the array. You can use any type of value, like a
string, number, Boolean, or even a variable.

One advantage of the push() command is that it lets you add more than one item
to the array. For example, say you want to add three values to the end of an array
named properties, you could do that like this:

properties.push('bold', 'italic', 'underlined');

Note: push(), unshift(), and the other commands associated with arrays are technically called array
methods. In this book, when you see the word method, you can just think of it as a command that accom-
plishes a task.

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT

62

Adding an item to the beginning of an array

If you want to add an item to the beginning of an array, use the unshift() com-
mand. Here’s an example of adding the ‘bold’ value to the beginning of the properties
array:

var properties = ['red', '14px', 'Arial'];

properties.unshift('bold"');

After this code runs, the array properties contains four elements: ['bold', 'red’,
'14px', 'Arial']. As with push(), you can use unshift() to insert multiple items at the
beginning of an array:

properties.unshift('bold', 'italic', 'underlined');

Note: Make sure you use the name of the array followed by a period and the method you wish to
use. In other words, push('new item') won't work. You must first use the array’s name (whatever
name you gave the array when you created it) followed by a period, then the method like this:
authors.push('Stephen King'),.

Choosing how to add items to an array

So far, this chapter has shown you three ways to add items to an array. Table 2-5
compares these techniques. Each of these commands accomplishes similar tasks, so
the one you choose depends on the circumstances of your program. If the order
that the items are stored in the array doesn’t matter, then any of these methods
work. For example, say you have a page of product pictures, and clicking one pic-
ture adds the product to a shopping cart. You use an array to store the cart items.
The order the items appear in the cart (or the array) doesn’t matter, so you can use
any of these techniques.

However, if you create an array that keeps track of the order in which something
happens, then the method you choose does matter. For example, say you’ve cre-
ated a page that lets visitors create a playlist of songs by clicking song names on the
page. Since a playlist lists songs in the order they should be played, the order is
important. So if each time the visitor clicks a song, the song’s name should go at
the end of the playlist (so it will be the last song played), then use the push()
method.

Table 2-5. Various ways of adding elements to an array

Method Originalarray Example code Resultingarray Explanation

Jlength var p = p[p.length]=4 [0,1,2,3,4] Adds one value

property [0,1,2,3] to the end of an
array.

push() var p = p.push(4,5,6) | [0,1,2,3,4,5,6] Adds one or

[0,1,2,3] more items to

the end of an
array.

JAVASCRIPT: THE MISSING MANUAL

Table 2-5. Various ways of adding elements to an array (continued)

Method Originalarray Example code Resultingarray Explanation
unshift() var p = p.unshift(4,5) | [4,5,0,1,2,3] Adds one or
[0,1,2,3] more item to
the beginning
of an array.

The push() and unshift() commands return a value (see the Note on the page 55).
To be specific, once push() and unshift() complete their tasks, they supply the
number of items that are in the array. Here’s an example:

var p = [0,1,2,3];
var totalltems = p.push(4,5);

After this code runs, the value stored in totalltems is 6, because there are six items
in the p array.

POWER USERS’ CLINIC

Creating a Queue

The methods used to add items to an array—push() and
unshift()—and the methods used to remove items from an
array—pop() and shift()—are often used together to pro-
vide a way of accessing items in the order they were cre-
ated. A classic example is a musical playlist. You create the
list by adding songs to it; then, as you play each song, it's
removed from the list. The songs are played in the order
they appear in the list, so the first song is played and then
removed from the list. This arrangement is similar to a line
at the movies. When you arrive at the movie theater, you
take your place at the end of the line; when the movie’s
about to begin, the doors open and the first person in line
is the first to get in.

In programming circles, this concept is called FIFO for “First
In, First Out.” You can simulate this arrangement using
arrays and the push() and shift() commands. For example
say you had an array named playlist. To add a new song to
the end of the list you'd use push() like this:

playlist.push('Yellow Submarine');

To get the song that's supposed to play next, you get the
first item in the list like this:

nowPlaying = playlist.shift();

This code removes the first item from the array and stores
itin a variable named nowPlaying. The FIFO concept is use-
ful for creating and managing queues such as a playlist, a
to-do list, or a slideshow of images.

Deleting Items from an Array

If you want to remove an item from the end or beginning of an array, use the pop()
or shift() commands. Both commands remove one item from the array: the pop()
command removes the item from the end of the array, while shift() removes one
item from the beginning. Table 2-6 compares the two methods.

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT 63

64

Table 2-6. Two ways of removing an item from an array

Method Original array Example code Resultingarray Explanation
pop() var p = p-pop() [0,1,2] Removes the last
[0,1,2,3] item from the
array.
shift() var p = p-shift() [1,2,3] Removes the first
[0,1,2,3] item from the
array.

As with push() and unshift(), pop() and shift() return a value once they’ve com-
pleted their tasks of removing an item from an array. In fact, they return the value
that they just removed. So, for example, this code removes a value and stores it in
the variable removedItem:

var p = [0,1,2,3];

var removedItem = p.pop();

The value of removedItem after this code runs is 3 and the array p now contains
[0,1,2].

Note: This chapter's files include a Web page that lets you interactively test out the different array com-
mands. It's named array_methods.htm/ and it's in the tutorials — chapter02 folder. Open the file in a
Web browser and click the various buttons on the Web page to see how the array methods work. (By the
way, all the cool interactivity of that page is all thanks to JavaScript.)

Adding and Deleting with splice()

The techniques in the previous sections for adding and removing array items only
work for the beginning and end of arrays. What if you want to insert an item in the
middle of an array, or remove the item that’s in the third position in the array? For
example, say you write a program that lets visitors create slideshows by selecting
images from a Web page. You could store their selections (for example, informa-
tion about each image such as the src attribute) in an array. However, the visitor
may want to edit his selections—perhaps remove one of the pictures he previously
selected.

JavaScript provides one command—splice()—that lets you add items to an array
and delete items from an array. It’'s a powerful command and a little hard to
understand, so we’ll explain it in stages.

Deleting items with splice()

To remove items from an array, tell the splice() command where it should begin
deleting (the index number of the first item to remove) and how many items it
should delete. For example, say you create an array named fruits like this:

var fruit=['apple','pear’, 'kiwi', 'pomegranate’];

JAVASCRIPT: THE MISSING MANUAL

This code creates an array of four items. To remove 'pear' and 'kiwi' from the
array, you need to tell splice() to begin with the second item (which has an index
of 1, remember) and delete two items like this:

fruit.splice(1,2);

The result as diagrammed in Figure 2-6, is an array with just two strings—'apple’
and 'pomegranate'—Ileft.

Beginning index Number of items to delete Figure 2-6:
The splice() method requires two pieces of
Fruit 13 (1,2); information to delete elements from an
ruit.spiicelL, | d array: the index value of where to start
hacking away, and the number of elements
to remove.
Index Value
0 'apple'
1 'pear'
2 'kiwi!'
3 'pomegranate’
Results
Index Value
0 'apple'!
1 'pomegranate’

Adding items with splice()

The splice() command does double duty: it can also add items in the middle of an
array. To use splice() in this way, provide the index value where the new items
should be located, 0 to indicate that you don’t want to delete any items, then the
list of items to insert: one or more values separated by commas. For example, say
you start out with the fruit array again:

var fruit=['apple', 'pear’, 'kiwi', 'pomegranate’];

If you want to add two items in between ‘pear’ and ‘kiwi’ in this list, you can use
splice() like this:

fruit.splice(2,0, 'grape’, 'orange');
This code adds two strings—'grape' and 'orange'—starting at index 2. In other

words, 'grape’ becomes the third item in the list, 'orange' the fourth, and 'kiwi' and
'‘pomegranate’ are moved to the end. You can see this diagrammed in Figure 2-7.

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT 65

Index to insert into Items to add Figure 2-7:
‘ | Add items in the middle of an array using
: | lice(). The first number you provide
: : 1 o 1) . sp . : . youp e .
fruit.splice(2,0, grape’, orange J; splice() represents the index position in the
L array where the new items will go. Make
sure the second number is a 0; otherwise,
Index Value you'll also delete elements from the array
0 "apple’ as you insert new items.
1 'pear’
2 'kiwi'!
3 'pomegranate’
Results
Index Value
0 'apple'
1 'pear’
2 'grape'’
3 'orange'
4 "kiwi!
5 'pomegranate’

Replacing items with splice()

If you want to get really tricky, you can add and delete elements from an array in a
single operation. This maneuver can come in handy when you want to replace one
or more elements in an array with new items, for example, if someone wants to
replace one song in a playlist with another song.

The process is the same as for adding an item, but instead of specifying 0 for the
second piece of information that you supply splice(), you indicate the number of
items you wish to remove. So, if you start with the fruit array again:

var fruit=['apple','pear’, 'kiwi', 'pomegranate’];
Say you want to replace both 'kiwi' and 'pomegranate’ with 'grape’ and 'orange’,
you can write this statement:

fruit.splice(2,2, 'grape', 'orange');
In this case, the first 2 identifies which index position to start at, the second 2 spec-

ifies how many items to remove, and the other items indicate what should replace
the deleted items. See Figure 2-8 for a clear picture of the process.

66 JAVASCRIPT: THE MISSING MANUAL

Tutorial: Writing to
a Web Page Using

Beginning index Number of items to delete Figure 2-8:
When you want to replace items in an array with
ltems to add new items, you can turn to the splice() method.
fruit.splice(2,2,}grape','orange{);
Index Value
0 'apple'
1 'pear’
2 'kiwi'
3 'pomegranate’
Results
Index Value
0 'apple'
1 'pear’!
2 'grape'
3 'orange'

Tutorial: Writing to a Web Page Using
Arrays

You’'ll use arrays in many of the scripts in this book, but to get a quick taste of
creating and using arrays, try this short tutorial.

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 2.3.html in the chapter02 folder.

You’ll start by simply creating an array containing four strings. As with the pre-
vious tutorial, this file already contains <script> tags in both the head and body
regions.

2. Between the first set of <script> tags, type the bolded code:

<script type="text/javascript">
var authors = ['Ernest Hemingway',
'Charlotte Bronte',
'Dante Alighieri',
'Emily Dickinson'
15

</script>

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT 67

Tutorial: Writing to
a Web Page Using

This code comprises a single JavaScript statement, but it’s broken over five
lines. To create it, type the first line—var authors = ['Ernest Hemingway',—hit
Return, then press the Space bar until you line up under the ' (about 16 spaces),
and then type 'Charlotte Bronte',.

Note: Most HTML editors use a monospaced font like Courier or Courier New for your HTML and Java-
Script code. In a monospaced font, each character is the same width as every other character, so it's easy
to line up columns (like all the author names in this example). If your text editor doesn't use Courier or
something similar, you may not be able to line up the names perfectly.

As mentioned on page 59, when you create an array with lots of elements, you
can make your code easier to read if you break it over several lines. You can tell
it’s a single statement since there’s no semicolon until the end of line 5.

This line of code creates an array named authors and stores the names of 4
authors (4 string values) into the array. Next, you’ll access an element of the
array.

3. Locate the second set of <script> tags, and add the code in bold:

<script type="text/javascript">
document.write('<p>The first author is ');
document.write(authors[0] + '</p>');
</script>

The first line starts a new paragraph with some text and an opening
tag—just plain HTML. The next line prints the value stored in the first item of
the authors array and prints the closing and </p> tags to create a
complete HTML paragraph. To access the first item in an array, you use a 0 as
the index—authors[0]—instead of 1.

At this point, it’s a good idea to save your file and preview it in a Web browser.
You should see “The first author is Ernest Hemingway” printed on the screen.
If you don’t, you may have made a typo either when you created the array in
step 2 or 3.

Note: Remember to use the Firefox Error Console described on page 34 to help you locate the source of
any JavaScript errors.

4. Return to your text editor and add the two lines of bolded code below to your
script:

document.write('<p>The last author is ');
document.write(authors[4] + '</p>');

This step is pretty much the same as the previous one, except that you’re print-
ing a different array item. Save the page and preview it in a browser. You’ll see
“undefined” in place of an author’s name (see Figure 2-9). Don’t worry; that’s

JAVASCRIPT: THE MISSING MANUAL

Tutorial: Writing to
a Web Page Using

intentional. Remember that an array’s index values begin at 0, so the last item is
actually the total number of items in the array minus 1. In this case, there are
four strings stored in the authors array, so that last item would actually be
accessed with authors[3].

Note: If you try to read the value of an item using an index value that doesn't exist, you'll end up with
the JavaScript “undefined” value. All that means is that there's no value stored in that index position.

Fortunately, there’s an easy technique for retrieving the last item in an array no
matter how many items are stored in the array.

¢~ Script 2.3 - Windows Internet Explorer Flylll'e 2-9:

— If you try to access an
%ﬂ - |@ 1. PSFY. Home'\Deskkopljavascripkitestsi book_site\tutarials\chapter02ycompleke_2.3. himl hd ‘ |ﬁ| |5| I@ array element that
W & | @saptas = o - doesn’t exist, then you'll
end up with the value
“undefined.”

Secript 2.3

Creating Arrays

The first author is Ernest Hemingway

The last author is undefined

5. Return to your text editor and edit the code you just entered. Erase the 4 and
add the bolded code in its place:

document.write('<p>The last author is ');
document.write(authors[authors.length-1] + '</p>');

As you’ll recall from page 60, an array’s length property stores the number of
items in the array. So the total number of items in the authors array can be
found with this code authors.length. At this point in the script, that turns out to
be 4.

Knowing that the index value of the last item in an array is always 1 less than
the total number of items in an array, you just subtract one from the total to get
the index number of the last item: authors.length-1. You can provide that little
equation as the index value when accessing the last item in an array:
authors[authors.length-1].

You’ll finish up by adding one more item to the beginning of the array.

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT 69

Tutorial: Writing to
a Web Page Using

70

6. Add another line of code after the ones you added in step 5:

authors.unshift('Stan Lee');

As you read on page 62, the unshift() method adds one or more items to the
beginning of an array. After this line of code runs the authors array will now be
['Stan Lee', 'Ernest Hemingway',

Finally, you’ll print out the newly added item on the page.
7. Add the three more lines (bolded below) so that your final code looks like this:

document.write('<p>The first author is ');
document.write(authors[0] + '</p>");
document.write('<p>The last author is ');
document.write(authors[authors.length-1] + '</p>');
authors.unshift('Stan Lee');

document.write('<p>I almost forgot ');
document.write(authors[0]);

document.write('</p>');

Save the file and preview it in a Web browser. You should see something like
Figure 2-10. If you don’t, remember the error console in Firefox can help you
locate the error (page 34).

000 Script 2.3 Figure 2-10:
- Pl OK, Stan Lee may not be
@ lupal E TAG @ file:///Users/dave /Desktop/javascript/tests/book_¢ ¥ | |- youridea ofaliterary
© Disable » /& Cookies * [] CS5 v [Forms v [H] Images * @ Information = () Miscellaneous + glant, but at least he’s

helping you learn how
arrays work.

Creating Arrays

The first author is Ernest Hemingway

The last author is Emily Dickinson

I almost forgot Stan Lee

JAVASCRIPT: THE MISSING MANUAL

Comments

There are times when you’re in the midst of programming and you feel like you
understand everything that’s going on in your program. Every line of code makes
sense, and better yet, it works! But a month or two later, when your boss or a client
asks you to make a change or add a new feature to that cool script you wrote, you
might find yourself scratching your head the moment you look at your once-familiar
JavaScript: what’s that variable for? Why’d I program it like that? What’s going on
in this section of the program?

It’s easy to forget how a program works and why you wrote your code the way you
did. Fortunately, most programming languages provide a way for programmers to
leave notes for themselves or other programmers who might look through their
code. JavaScript lets you leave comments throughout your code. If you've used
HTML or CSS comments, these should feel familiar. A comment is simply a line or
more worth of notes: the JavaScript interpreter ignores them, but they can provide
valuable information on how your program works.

The syntax for JavaScript comments is the same as for CSS. To create a single line
comment, precede the comment with double forward slashes:

// this is a comment

You can also add a comment after a JavaScript statement:

var price = 10; // set the initial cost of the widget

The JavaScript interpreter executes everything on this line until it reaches the //,
and then it skips to the beginning of the next line.

You can also add several lines worth of comments by beginning the comments
with /* and ending them with */. The JavaScript interpreter ignores all of the text
between these two sets of symbols. For example, say you want to give a description
of how a program works at the beginning of your code. You can do that like this:
/*
JavaScript Slideshow:
This program automates the display of
images in a pop-up window.
*/

You don’t need to leave the /* and */ on their own lines, either. In fact, you can
create a single line JavaScript comment with them:

/* this is a single line comment */

In general, if you want to just write a short, one-line comment, use //. For several
lines of comments, use the /* and */ combination.

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT

n

72

When to Use Comments

Comments are an invaluable tool for a program that’s moderately long or com-
plex and that you want to keep using (and perhaps changing) in the future. While
the simple scripts you’ve learned so far are only a line or two of code, you’ll even-
tually be creating longer and much more complex programs. To make sure you
can quickly figure out what’s going on in a script, it’s a good idea to add com-
ments to help you understand the overall logic of the program and to explain any
particularly confusing or complex bits.

Tip: Adding lots of comments to a script makes the script larger (and slower to download). However, as
you'll learn on page 502, there are ways to make JavaScript files smaller and faster.

Many programmers add a block of comments at the beginning of an external Java-
Script file. These comments can explain what the script is supposed to do, identify
the date the script was created, include a version number for frequently updated
scripts, and provide copyright information.

For example, at the beginning of the jQuery library’s JavaScript file, you’ll find
this comment:

/*
* jOQuery 1.2.6 - New Wave Javascript

* Copyright (c) 2008 John Resig (jquery.com)
* Dual licensed under the MIT (MIT-LICENSE.txt)
* and GPL (GPL-LICENSE.txt) licenses.

* $Date$
* $Rev: 5685 $
*/

At the beginning of the script, you might also include instructions on how to use
the script: variables that might need to be set, anything special you might need to
do to your HTML to make the script work, and so on.

You should also add a comment before a series of complex programming steps.
For example, say you write a script that animates an image across a visitor’s
browser window. One part of that script is determining the image’s current posi-
tion in the browser window. This can take several lines of complex programming;
it’s a good idea to place a comment before that section of the program, so when
you look at the script later, you’ll know exactly what that part of the program does:

// determine x and y positions of image in window

The basic rule of thumb is to add comments anywhere you’ll find them helpful later.
If a line of code is painfully obvious, you probably don’t need a comment. For exam-
ple, there’s no reason to add a comment for simple code like alert(‘hello’), because
it’s pretty obvious what it does (opens an alert box with the word “hello” in it).

JAVASCRIPT: THE MISSING MANUAL

Comments in this Book

Comments are also very helpful when explaining JavaScript. In this book, com-
ments frequently explain what a line of programming does or indicate the results
of a particular statement. For example, you might see a comment like the follow-
ing to show the results of an alert statement:

var a = 'Bob’;
var b = 'Smith';
alert(a+ ' ' +b); // 'Bob Smith';

The third line ends with a comment that indicates what you should see when you
preview this code in a Web browser. If you want to test the code that you read in
this book by adding it to a Web page and viewing it in a Web browser, you can
leave out comments like these when typing the code into a Web page. These types
of comments are intended simply to help you understand what’s happening in the
code as you read along with the book.

As you start to learn some of the more complex commands available in JavaScript,
you’ll begin to manipulate the data in variables. You’ll often see comments in this
book’s code to display what should be stored in the variable after the command is
run. For example, the charAt() command lets you select a character at a specific
point in a string. When you read about how to use that command in this book,
you might see code like this:

var x = "Now is the time for all good programmers.";
alert(x.charAt(2)); // 'w'

The comment // 'w' that appears at the end of the second line indicates what you
should see in an alert dialogue if this code were actually run in a Web browser.
(And, yes, 'W' is correct. Strings are like arrays in that the first letter in a string has
an index position of 0. So charAt(2) retrieves the third character from the string.
Sometimes programming just hurts your brain.)

CHAPTER 2. THE GRAMMAR OF JAVASCRIPT

73

CHAPTER

3

Adding Logic and
Control to Your
Programs

So far you've learned about some of JavaScript’s basic building blocks. But simply
creating a variable and storing a string or number in it doesn’t accomplish much.
And building an array with a long list of items won’t be very useful unless there’s
an easy way to work your way through the items in the array. In this chapter, you’ll
learn how to make your programs react intelligently and work more efficiently by
using conditional statements, loops, and functions.

Making Programs React Intelligently

Our lives are filled with choices: “What should I wear today?”, “What should I eat
for lunch?”?, “What should I do Friday night?”, and so on. Many choices you make
depend on other circumstances. For example, say you decide you want to go to the
movies on Friday night. You’ll probably ask yourself a bunch of questions like “Are
there any good movies out?”, “Is there a movie playing at the right time?”, “Do I
have enough money to go to the movies (and buy a $17 bag of popcorn)?”

Suppose there is a movie that’s playing at just the time you want to go. You then
ask yourself a simple question: “Do I have enough money?” If the answer is yes,
you’ll head out to the movie. If the answer is no, you won’t go. But on another Fri-
day, you do have enough money, so you go to the movies. This scenario is just a
simple example of how the circumstances around us affect the decisions we make.

JavaScript has the same kind of decision-making feature called conditional state-
ments. At its most basic, a conditional statement is a simple yes or no question.

75

Making Programs
React Intelligently

If the answer to the question is yes, your program does one thing; if the answer is
no, it does something else. Conditional statements are one of the most important
programming concepts: they let your programs react to different situations and
behave intelligently. You’ll use them countless times in your programming, but
just to get a clear picture of their usefulness here are a few examples of how they
can come in handy:

+ Form validation. When you want to make sure someone filled out all of the
required fields in a form (“Name,” “Address,” “E-mail”, and so on), you’ll use
conditional statements. For example, if the Name field is empty, don’t submit
the form.

* Drag and drop. If you add the ability to drag elements around your Web page,
you might want to check where the visitor drops the element on the page. For
example, if he drops a picture onto an image of a trash can, you make the photo
disappear from the page.

+ Evaluating input. If you pop-up a window to ask a visitor a question like
“Would you like to answer a few questions about how great this Web site is?”,
you’ll want your script to react differently depending on how the visitor answers
the question.

Figure 3-1 shows an example of an application that makes use of conditional
statements.

HEH| Figure 3-1:

B (4] [x] [seoen I21 It takes a lot of work to

@O =

00 [+ viort ofSltae: Kor (Tum Trvee) f - B - Brree - Qoo - have fun. A JavaScri Ipt‘

Solitaire | Decks | Background | Options 00:26 Score: O 1 move [loginl [register]

based game like Solitaire
(http://worldofsolitaire.
com) demonstrates how
a program has to react
differently based on the
conditions of the
program. For example,
when a player drags and
drops a card, the
program has to decide if
the player dropped the
card in a valid location or
not, and then perform
different actions in each
case.

created b
Last Updated: Tue December 4 2007

76

JAVASCRIPT: THE MISSING MANUAL

Conditional Statement Basics

Conditional statements are also called “if/then” statements, because they perform a
task only if the answer to a question is true: “If I have enough money then I’ll go to
the movies.” The basic structure of a conditional statement looks like this:

if (condition) {
// some action happens here

}

There are three parts to the statement: if indicates that the programming that fol-
lows is a conditional statement; the parentheses enclose the yes or no question,
called the condition (more on that in a moment); and the curly braces ({ }) mark
the beginning and end of the JavaScript code that should execute if the condition is
true.

Note: In the code listed above, the “// some action happens here” is a JavaScript comment. It's not code
that actually runs; it's just a note left in the program, and, in this case, points out to you, the reader, what's
supposed to go in that part of the code. See page 71 for more on comments.

In many cases, the condition is a comparison between two values. For example, say
you create a game that the player wins when the score is over 100. In this program,
youll need a variable to track the player’s score and, at some point, you need to
check to see if that score is more than 100 points. In JavaScript, the code to check if
the player won could look like this:

if (score » 100) {
alert('You won!');

}

The important part is score > 100. That phrase is the condition, and it simply tests
whether the value stored in the score variable is greater than 100. If it is, then a
“You won!” dialog box appears; if the player’s score is less than or equal to 100,
then the JavaScript interpreter skips the alert and moves onto the next part of the
program. In addition to > (greater than), there are several other operators used to
compare numbers (see Table 3-1).

Tip: Type two spaces (or press the tab key once) before each line of JavaScript code contained within a
pair of braces. The spaces (or tab) indent those lines and makes it easier to see the beginning and ending
brace and to figure out what code belongs inside the conditional statement. Two spaces is a common
technique, but if four spaces make your code easier for you to read, then use four spaces. The examples
in this book always indent code inside braces.

More frequently, you’ll test to see if two values are equal or not. For example, say
you create a JavaScript-based quiz, and one of the questions asks, “How many

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS

Making Programs
React Intelligently

77

Making Programs
React Intelligently

78

moons does Saturn have?” The person’s answer is stored in a variable named
answer. You might then write a conditional statement like this:

if (answer == 31) {
alert('Correct. Saturn has 31 moons.');

}

The double set of equal signs (==) isn’t a typo; it instructs the JavaScript inter-
preter to compare two values and decide whether they’re equal. Remember, in
JavaScript, a single equal sign is the assignment operator that you use to store a
value into a variable:

var score = 0; //stores 0 into the variable score

Because the JavaScript interpreter already assigns a special meaning to a single
equal sign, you need to use two equal signs whenever you want to compare two
values to determine if they’re equal or not.

You can also use the == (called the equality operator) to check to see if two strings
are the same. For example, say you let the user type a color into a form, and if they
type 'red’, then you change the background color of the page to red. You could use
the conditional operator for that:

if (enteredColor == 'red') {
document.body.style.backgroundColor="red";
}

Note: In the code above, don't worry right now about how the page color is changed. You'll learn how
to dynamically control CSS properties using JavaScript on page 186.

You can also test to see if two values aren’t the same using the inequality operator:

if (answer != 31) {
alert("Wrong! That's not how many moons Saturn has.");

}

The exclamation mark translates to “not”, so != means “not equal to.” In this
example, if the value stored in answer is not 31, then the poor test taker would see
the insulting alert message.

Table 3-1. Use these comparison operators to test values as part of a conditional statement

Comparison operator What it means

Equal to. Compares two values to see if they're the same. Can be
used to compare numbers or strings.

= Not equal to. Compares two values to see if they're not the same.
Can be used to compare numbers or strings.

JAVASCRIPT: THE MISSING MANUAL

Table 3-1. Use these comparison operators to test values as part of a conditional statement (continued)

Comparison operator What it means

> Greater than. Compares two numbers and checks if the number
on the left side is greater than the number on the right. For exam-
ple, 2> 1 is true, since 2 is a bigger number than 1, but 2 >3 is
false, since 2 isn't bigger than 3.

< Less than. Compares two numbers and checks if the number on
the left side is less than the number on the right. For example, 2<3
is true, since 2 is a smaller number than 3, but 2 < 1 is false, since 2
isn't less than 1.

>= Greater than or equal to. Compares two numbers and checks if
the number on the left side is greater than or the same value as the
number on the right. For example, 2 >=2 is true, since 2 is the
same as 2, but 2 >=3 is false, since 2 isn't a bigger number 3, nor is
it equal to 3.

<= Less than or equal to. Compares two numbers and checks if the
number on the left side is greater than or the same value as the
number on the right. For example, 2 <=2 is true, since 2 is the
same as 2, but 2 <=1 is false, since 2 isn't a smaller number than 1,
nor is 2 equal to 1.

The code that runs if the condition is true isn’t limited to just a single line of code
as in the previous examples. You can have as many lines of JavaScript between the
opening and closing curly braces as you’d like. For example, as part of the Java-
Script quiz example, you might keep a running tally of how many correct answers
the test-taker gets. So, when the Saturn question is answered correctly, you also
want to add 1 to the test-taker’s total. You would do that as part of the conditional
statement:

if (answer == 31) {
alert('Correct. Saturn has 31 moons.');
numCorrect = numCorrect + 1;

}

And you could add additional lines of JavaScript code between the braces as well—
any code that should run if the condition is true.

Adding a Backup Plan

But what if the condition is false? The basic conditional statement in the previous
section doesn’t have a backup plan for a condition that turns out to be false. In the
real world, as you’re deciding what to do Friday night and you don’t have enough
money for the movies, you’d want to do something else. An if statement has its
own kind of backup plan, called an else clause. For example, say as part of the

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS

Making Programs
React Intelligently

79

Making Programs
React Intelligently

POWER USERS’ CLINIC

The Return of the Boolean

On page 42, you learned about the Boolean values—true
and false. Booleans may not seem very useful at first, but
you'll find out they're essential when you start using condi-
tional statements. In fact, since a condition is really just a
yes or no question, the answer to that question is a Boolean
value. For example, check out the following code:

var x = 4;

if (x==14){
//do something

}

The first line of code stores the number 4 into the variable
x. The condition on the next line is a simple question: is the
value stored in x equal to 4? In this case, it is, so the Java-
Script between the curly braces runs. But here’s what really
happens in between the parentheses: the JavaScript inter-
preter converts the condition into a Boolean value; in pro-
gramming-speak, the interpreter evaluates the condition. If
the condition evaluates to true (meaning the answer to the
question is yes), then the code between the braces runs.
However, if the condition evaluates to false, then the code
in the braces is skipped.

One common use of Booleans is to create what's called a
flag—a variable that marks whether something is true. For
example, when validating a form full of visitor submitted
information, you might start by creating a valid variable
with a Boolean value of true—this means you're assuming,
at first, that they filled out the form correctly. Then, you'd
run through each form field, and if any field is missing infor-
mation or has the wrong type of information, you change
the value in valid to false. After checking all of the form
fields, you test what's stored in valid, and if it's still true, you
submit the form. If it's not true (meaning one or more form
fields were left blank), you display some error messages
and prevent the form from submitting:

var valid = true;
// lot of other programming gunk happens
in here
// if a field has a problem then you set
valid to false
if (valid) {
//submit form
} else {
//print lots of error messages

}

JavaScript testing script, you want to notify the test-taker if he gets the answer
right, or if he gets it wrong. Here’s how you can do that:

if (answer == 31) {

alert('Correct. Saturn has 31 moons.');

numCorrect = numCorrect + 1;

} else {

alert("Wrong! That's not how many moons Saturn has.");

}

This code sets up an either/or situation; only one of the two messages will appear.
If the number 31 is stored in the variable answer, then the “correct” alert appears;
otherwise, the “wrong” alert appears.

To create an else clause, just add “else” after the closing brace for the conditional
statement followed by another pair of braces. You add the code that should exe-
cute if the condition turns out to be false in between the braces. Again, you can
have as many lines of code as you’d like as part of the else clause.

80 JAVASCRIPT: THE MISSING MANUAL

Testing More Than One Condition

Sometimes you’ll want to test several conditions and have several possible out-
comes: think of it like a game show where the host says, “Would you like the prize
behind door #1, door #2, or door #3?” You can only pick one. In your day-to-day
activities, you also are often faced with multiple choices like this one.

For example, return to the “What should I do Friday night?” question. You could
expand your entertainment options based on how much money you have and are
willing to spend. For example, you could start off by saying, “If I have more than
$50 I'll go out to a nice dinner and a movie (and have some popcorn too).” If you
don’t have $50, you might try another test: “If I have $35 or more, I’ll go to a nice
dinner.” If you don’t have $35, then you’d say, “If I have $12 or more, I'll go to the
movies.” And finally, if you don’t have $12, you might say, “Then I'll just stay at
home and watch TV.” What a Friday night!

JavaScript lets you perform the same kind of cascading logic using else if state-
ments. It works like this: you start with an if statement, which is option number 1;
you then add one or more else if statements to provide additional questions that
can trigger additional options; and finally, you use the else clause as the fallback
position. Here’s the basic structure in JavaScript:

if (condition) {

// door #1

} else if (condition2) {
// door #2

} else {

// door #3

}

This structure is all you need to create a JavaScript “Friday night planner” pro-
gram. It asks visitors how much money they have, and then determines what they
should do on Friday (sound familiar?). You can use the prompt() command that
you learned about on page 55 to collect the visitor’s response and a series of if/else
if statements to determine what he should do:

var fridayCash = prompt('How much money can you spend?', '');
if (fridayCash >= 50) {

alert('You should go out to a dinner and a movie.');

} else if (fridayCash >= 35) {

alert('You should go out to a fine meal.');

} else if (fridayCash »>= 12) {

alert('You should go see a movie.');

} else {

alert('Looks like you'll be watching TV.');

}

Here’s how this program breaks down step-by-step: The first line opens a prompt
dialog asking the visitor how much he can spend. Whatever the visitor types is

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS

Making Programs
React Intelligently

Making Programs
React Intelligently

82

stored in a variable named fridayCash. The next line is a test: Is the value the visi-
tor typed 50 or more? If the answer is yes, then an alert appears telling him to go
get a meal and see a movie. At this point, the entire conditional statement is done.
The JavaScript interpreter skips the next else if statement, the following else if state-
ment, and the final else clause. With a conditional statement, only one of the out-
comes can happen, so once the JavaScript interpreter encounters a condition that
evaluates to true, then it runs the JavaScript code between the braces for that con-
dition and skips everything else within the conditional statement.

Suppose the visitor typed 25. The first condition, in this case, wouldn’t be true,
since 25 is a smaller number than 50. So the JavaScript interpreter skips the code
within the braces for that first condition and continues to the else if statement: “Is
25 greater than or equal to 35?” Since the answer is no, it skips the code associated
with that condition and encounters the next else if. At this point, the condition
asks if 25 is greater than or equal to 12; the answer is yes, so an alert box with the
message, “You should go see a movie” appears and the program ends, skipping the
final else clause.

Tip: There's another way to create a series of conditional statements that all test the same variable, as in
the fridayCash example. Switch statements do the same thing, and you'll learn about them on page 499.

More Complex Conditions

When you’re dealing with many different variables, you’ll often need even more
complex conditional statements. For example, when validating a required email
address field in a form, you’ll want to make sure both that the field isn’t empty and
that the field contains an email address (and not just random typed letters). Fortu-
nately, JavaScript lets you do these kinds of checks as well.

Making sure more than one condition is true

You’ll often need to make decisions based on a combination of factors. For exam-
ple, you may only want to go to a movie if you have enough money and there’s a
movie you want to see. In this case, you’ll go only if two conditions are true; if
either one is false, then you won’t go to the movie. In JavaScript, you can combine
conditions using what’s called the logical AND operator, which is represented by
two ampersands (&&). You can use it between the two conditions within a single
conditional statement. For example, if you want to check if a number is between 1
and 10, you can do this:

if (a< 108 a>1){
//the value in a is between 1 and 10
alert("The value " + a + " is between 1 and 10");

}

JAVASCRIPT: THE MISSING MANUAL

In this example, there are two conditions: a < 10 asks if the value stored in the vari-
able a is less than 10; the second condition, a > 1, is the same as “Is the value in a
greater than 1?” The JavaScript contained between the braces will run only if both
conditions are true. So if the variable a has the number 0 stored in it, the first con-
dition (a < 10) is true (0 is less than 10), but the second condition is false (0 is not
greater than 1).

You’re not limited to just two conditions. You can connect as many conditions as
you need with the && operator:

if (b>0 8& a>0 &8 c>0) {
// all three variables are greater than 0

}

This code checks three variables to make sure all three have a value greater than 0.
If just one has a value of 0 or less, then the code between the braces won’t run.

Making sure at least one condition is true

Other times yowll want to check a series of conditions, but you only need one to
be true. For example, say you've added a keyboard control for visitors to jump
from picture to picture in a photo gallery. When the visitor presses the N key, the
next photo appears. In this case, you want her to go to the next picture when she
types either n (lowercase) or, if she has the Caps Lock key pressed, N (uppercase).
You’re looking for a kind of either/or logic: either this key or that key was pressed.
The logical OR operator, represented by two pipe characters (||), comes in handy:

if (key == 'n" || key == 'N") {

//move to the next photo
}

Tip: To type a pipe character, press Shift\. The key that types both backslashes and pipe characters is
usually located just above the Return key.

With the OR operator, only one condition needs to be true for the JavaScript that
follows between the braces to run.

As with the AND operator, you can compare more than two conditions. For exam-
ple, say you’ve created a JavaScript racing game. The player has a limited amount
of time, a limited amount of gas, and a limited number of cars (each time he
crashes he loses one car). To make the game more challenging, you want it to come
to an end when any of these three things runs out:

if (gas <= 0 || time <= 0 || cars <= 0) {
//game is over

}

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS

Making Programs
React Intelligently

Making Programs
React Intelligently

84

When testing multiple conditions, it’s sometimes difficult to figure out the logic of
the conditional statement. Some programmers group each condition in a set of
parentheses to make the logic easier to grasp:

if ((key == 'n") || (key == 'N")) {
//move to the next photo

}

To read this code, simply treat each grouping as a separate test; the results of the
operation between parentheses will always turn out to be either true or false.

Negating a condition

If you’re a Superman fan, you probably know about Bizarro, an anti-hero who
lived on a cubical planet named Htrae (Earth spelled backwards), had a uniform
with a backwards S, and was generally the opposite of Superman in every way.
When Bizarro said “Yes,” he really meant “No”; and when he said “No,” he really
meant “Yes.”

JavaScript programming has an equivalent type of character called the NOT opera-
tor, which is represented by an exclamation mark (/). You’ve already seen the NOT
operator used along with the equal sign to indicate “not equal to”: !=. But the NOT
operator can be used by itself to completely reverse the results of a conditional
statement; in other words, it can make false mean true, and true mean false.

You use the NOT operator when you want to run some code based on a negative
condition. For example, say you've created a variable named valid that contains a
Boolean value of either true or false (see the box on page 80). You use this variable
to track whether a visitor correctly filled out a form. When the visitor tries to sub-
mit the form, your JavaScript checks each form field to make sure it passes the
requirements you set up (for example, the field can’t be empty and it has to have
an email address in it). If there’s a problem, like the field is empty, you could then
set valid to false (valid = false).

Now if you want to do something like print out an error and prevent the form
from being submitted, you can write a conditional statement like this:

if (! valid) {
//print errors and don't submit form

}

The condition ! valid can be translated as “if not valid,” which means if valid is
false, then the condition is true. To figure out the results of a condition that uses the
NOT operator, just evaluate the condition without the NOT operator, then reverse
it. In other words, if the condition results to true, the ! operator changes it to false,
so the conditional statement doesn’t run.

As you can see the NOT operator is very simple to understand (translated from
Bizarro-speak: it’s very confusing, but if you use it long enough, youw’ll get used to
it).

JAVASCRIPT: THE MISSING MANUAL

Nesting Conditional Statements

In large part, computer programming entails making decisions based on informa-
tion the visitor has supplied or on current conditions inside a program. The more
decisions a program makes, the more possible outcomes and the “smarter” the
program seems. In fact, you might find you need to make further decisions after
you’ve gone through one conditional statement.

Suppose, in the “What to do on Friday night?” example, you want to expand the
program to include every night of the week. In that case, you need to first deter-
mine what day of the week it is, and then figure out what to do on that day. So you
might have a conditional statement asking if it’s Friday, and if it is, you’d have
another series of conditional statements to determine what to do on that day:

if (dayOfWeek == 'Friday') {

var fridayCash = prompt('How much money can you spend?', '');
if (fridayCash >= 50) {

alert('You should go out to a dinner and a movie.');
} else if (fridayCash >= 35) {

alert('You should go out to a fine meal.');

} else if (fridayCash >= 12) {

alert('You should go see a movie.');

} else {

alert('Looks like you'll be watching TV.');

}
}

In this example, the first condition asks if the value stored in the variable dayOf-
Week is the string 'Friday'. If the answer is yes, then a prompt dialog appears, gets
some information from the visitor, and another conditional statements is run. In
other words, the first condition (dayOfWeek == 'Friday') is the doorway to
another series of conditional statements. However, if dayOfWeek isn’t 'Friday',
then the condition is false and the nested conditional statements are skipped.

Tips for Writing Conditional Statements

The example of a nested conditional statement in the last section may look a little
scary. There are lots of (), {}, elses, and ifs. And if you happen to mistype one of
the crucial pieces of a conditional statement, your script won’t work. There are a
few things you can do as you type your JavaScript that can make it easier to work
with conditional statements.

+ Type both of the curly braces before you type the code inside them. One of the
most common mistakes programmers make is forgetting to add a final brace to
a conditional statement. To avoid this mistake, type the condition and the

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS

Making Programs
React Intelligently

Tutorial: Using
Conditional

Statements

braces first, then type the JavaScript code that executes when the condition is
true. For example, start a conditional like this:

if (dayOfWeek=='Friday') {

}

In other words, type the if clause and the first brace, hit Return twice, and then
type the last brace. Now that the basic syntax is correct, you can click in the
empty line between the braces and add JavaScript.

+ Indent code within braces. You can better visualize the structure of a condi-
tional statement if you indent all of the JavaScript between a pair of braces:

if (a <108 a> 1) {
alert("The value " + a +

}

is between 1 and 10");

By using several spaces (or pressing the Tab key) to indent lines within braces,
it’s easier to identify which code will run as part of the conditional statement. If
you have nested conditional statements, indent each nested statement:

if (a <108 a> 1) {
//first level indenting for first conditional
alert("The value " + a + "
if (a==5) {
//second level indenting for 2nd conditional
alert(a + " is half of ten.");
}
}

is between 1 and 10");

+ Use == for comparing equals. When checking whether two values are equal,
don’t forget to use the equality operator, like this:

if (name == 'Bob') {
A common mistake is to use a single equal sign, like this:
if (name = 'Bob') {

A single equal sign stores a value into a variable, so in this case, the string 'Bob'
would be stored in the variable name. The JavaScript interpreter treats this step
as true, so the code following the condition will always run.

Tutorial: Using Conditional Statements

Conditional statements will become part of your day-to-day JavaScript toolkit. In
this tutorial, you’ll try out conditional statements to control how a script runs.

Note: See the note on page 27 for information on how to download the tutorial files.

86 JAVASCRIPT: THE MISSING MANUAL

Tutorial: Using
Conditional

Statements

1. In a text editor, open the file 3.1.html in the chapter03 folder.

You’ll start by simply prompting the visitor for a number. This file already con-
tains <script> tags in both the head and body regions.

2. Between the first set of <script> tags, in the page’s <head> section, type the
code in bold:

<script type="text/javascript">
var luckyNumber = prompt('What is your lucky number?','');
</script>

This line of code opens a JavaScript prompt dialog box, asks a question, and
stores whatever the visitor typed into the luckyNumber variable. Next, you’ll add
a conditional statement to check what the visitor typed into the prompt dialog
box.

3. Locate the second set of <script> tags down in the body of the page, and add
the code in bold:

<script type="text/javascript">
if (luckyNumber == 7) {
</script>

Here’s the beginning of the conditional statement; it simply checks to see if the
visitor typed 7.

4. Press Return twice and type the closing brace, so that the code looks like this:

<script type="text/javascript">
if (luckyNumber == 7) {

}

</script>

The closing brace ends the conditional statement. Any JavaScript you add
between the two braces will only run if the condition is true.

Tip: As mentioned on page 85, it's a good idea to add the closing brace before writing the code that runs
as part of the conditional statement.

5. Click into the empty line above the closing brace. Hit the Space bar twice and
type:
document.write("Hey, 7 is my lucky number too!");
The two spaces before the code indent the line so you can easily see that this

code is part of the conditional statement. The actual JavaScript here should feel
familiar by now—it simply writes a message to the page.

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS 87

Tutorial: Using
Conditional

Statements

6. Save the file and preview it in a Web browser. Type 7 when the prompt dialog
appears.

You should see the message “Hey, 7 is my lucky number too!” below the head-
line when the page loads. If you don’t, go over your code and make sure you
typed it correctly (see page 32 for tips on dealing with a broken script). Reload
the page, but this time type a different number. This time, nothing appears
underneath the headline. You’ll add an else clause to print another message.

7. Return to your text editor, and add the bolded text to your page:

<script type="text/javascript">

if (luckyNumber == 7) {

document.write("Hey, 7 is my lucky number too!");
} else {
document.write("The number

}

</script>

+ luckyNumber + " is lucky for you!");

The else clause provides a backup message, so that if the visitor doesn’t type 7,
she’ll see a different message that includes her lucky number. To round out this
exercise, you'll add an else if statement to test more values and provide another
message.

8. Add the two bolded lines below to your script:

<script type="text/javascript">

if (luckyNumber == 7) {

document.write("Hey, 7 is my lucky number too!");

} else if (luckyNumber == 13 || luckyNumber == 24) {
document.write("Wooh. "
} else {
document.write("The number

}

</script>

+ luckyNumber + "? That's an unlucky number!");

+ luckyNumber + " is lucky for you!");

At this point, the script first checks to see if 7 is stored in the variable luckyNumber;
if luckyNumber holds a value other than 7, then the else if kicks in. This condi-
tional statement is made up of two conditions, luckyNumber == 13 and lucky-
Number == 24. The ||, called the logical OR operator, makes the entire condi-
tional statement turn out to be true if either of the conditions are true. So if the
visitor types in 13 or 24, a “That’s an unlucky number” message is printed to the

page.

Tip: You add the logical OR operator by typing Shift-\ twice to get ||.

Preview the page in a Web browser, and type 13 when the prompt dialogue
appears. Press the browser’s reload button, and try different numbers as well as

88 JAVASCRIPT: THE MISSING MANUAL

Tutorial: Using
Conditional

Statements

letters or other characters. You’ll notice that if you type a word or other non-
number character the final else clause kicks in, printing a message like, “The
number asdfg is lucky for you!” Since that doesn’t make a lot of sense, you’ll
pop up another prompt dialog box if your visitor enters a nonnumber the first
time.

9. Return to your text editor, and locate the first set of <script> tags in the
<head> of the page. Add the code in bold:

<script type="text/javascript">

var luckyNumber = prompt('What is your lucky number?','');
luckyNumber = parseInt(luckyNumber, 10);

</script>

This line of code runs the value of luckyNumber through a function named
parselnt(). This JavaScript command takes a value and tries to convert it to an
integer, which is a whole number like 1, 5, or 100. You’ll learn about this com-
mand in the next chapter, on page 135, but for now just realize that if the visi-
tor types in text like “ha ha,” the parselnt() command won’t be able to convert
that to a number; instead, the command will provide a special JavaScript value,
NaN, which stands for “not a number.” You can use that information to pop-
up another prompt dialog box if a number isn’t entered the first time.

10. Add the bolded code to your script:

<script type="text/javascript">

var luckyNumber = prompt('What is your lucky number?','');
luckyNumber = parseInt(luckyNumber);

if (isNaN(luckyNumber)) {

luckyNumber = prompt('Please, tell me your lucky number.','');

}

</script>

Here again, a conditional statement comes in handy. The condition
isNaN(luckyNumber) uses another JavaScript command that checks to see if
something is a number. Specifically, it checks to see if the value in luckyNumber
is not a number. If the value isn’t a number (for example, the visitor types askls-
dkl), a second prompt appears and asks the question again. If the visitor did
type a number, the second prompt is skipped.

Save the page and preview it in a Web browser again. This time, type a word and
click OK when the prompt dialog box appears. You should then see a second
prompt. Type a number this time. Of course, this script assumes the visitor made
an honest mistake by typing a word the first time, but won’t make the same mis-
take twice. Unfortunately, if the visitor types a word in the second prompt, you
end up with the same problem—youw’ll learn how to fix that in the next section.

Note: You'll find a completed version of this tutorial in the chapter03 tutorial folder: complete_3.1.html.

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS 89

Handling Repetitive
Tasks with Loops

Handling Repetitive Tasks with Loops

Sometimes a script needs to repeat the same series of steps over and over again. For
example, say you have a Web form with 30 text fields. When the user submits the
form, you want to make sure that none of the fields are empty. In other words, you
need to perform the same set of actions—check to see if a form field is empty—30
times. Since computers are good at performing repetitive tasks, it makes sense that
JavaScript includes the tools to quickly do the same thing repeatedly.

In programming-speak, performing the same task over and over is called a loop,
and because loops are so common in programming JavaScript offers several differ-
ent types. All do the same thing, just in slightly different ways.

While Loops

A while loop repeats a chunk of code as long as a particular condition is true; in
other words, while the condition is true. The basic structure of a while loop is this:

while (condition) {
// javascript to repeat

}

The first line introduces the while statement. As with a conditional statement, you
place a condition between the set of parentheses that follow the keyword while.
The condition is any test you’d use in a conditional statement, such as x > 10 or
answer == ‘yes’. And just like a conditional statement, the JavaScript interpreter
runs all of the code that appears between the opening and closing braces if the con-
dition is true.

However, unlike a conditional statement, when the JavaScript interpreter reaches
the closing brace of a while statement, instead of continuing to the next line of the
program, it jumps back to the top of the while statement and tests the condition a
second time. If the condition is again true, the interpreter runs JavaScript between
the braces a second time. This process continues until the condition is no longer
true; then the program continues to the next statement following the loop (see
Figure 3-2).

while

X =

}

if condition is true

(x < 10) {
document .write (x +
X + 1;

// return to top and test again

// continue program

Figure 3-2:

A while loop runs the JavaScript code between
curly braces as long as the test condition (x < 10 in
this case) is true.

if condlition is false

"
") ;

90

JAVASCRIPT: THE MISSING MANUAL

Handling Repetitive
Tasks with Loops

Say you want to print the numbers 1 to 5 on a page. One possible way to do that is

like this:
document.write('Number 1
');
document.write('Number 2
');
document.write('Number 3
');
document.write('Number 4
');
document.write('Number 5
');

Notice that each line of code is nearly identical: only the number changes from line
to line. In this situation, a loop provides a more efficient way to achieve the same
goal:

var num = 1;

while (num <= 5) {

document.write('Number ' + num + '
');
num = num + 1;

}

The first line of code—var num = I;,—isn’t part of the while loop: it sets up a vari-
able to hold the number to be printed to the page. The second line is the start of
the loop. It sets up the test condition. As long as the number stored in the variable
num is less than or equal to 5, the code between the braces runs. When the test
condition is encountered for the first time, the value of num is 1, so the test is true
(1 is less than 5), and the document.write() command executes, writing ‘Number
1
’ to the page (the
 is just an HTML line break to make sure each line
prints onto a separate line on the Web page).

Tip: A more compact way to write num = num +1 (which just adds one to the current number stored in
the variable num) is like this:

num++

This shorthand method also adds one to the variable num (see Table 2-3 on page 52 for more information.)

The last line of the loop—num = num + 1—is very important. Not only does it
increase the value of num by 1 so the next number (2, for example) will print, but
it also makes it possible for the test condition to eventually turn out to be false.
Because the JavaScript code within a while statement repeats as long as the condi-
tion is true, you must change one of the elements of the condition so that the con-
dition eventually becomes false in order to stop the loop and move onto the next
part of the script. If the test condition never turns out to be false, you end up with
what’s called an infinite loop—a program that never ends. Notice what would hap-
pen if you left that line out of the loop:

var num = 1;
while (num <= 5) { // this is an endless loop
document.write('Number ' + num + '
');

}

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS 91

Handling Repetitive
Tasks with Loops

92

The first time through this loop, the test would ask: Is 1 less than or equal to 5?
The answer is yes, so document.write() runs. At the end of the loop (the last brace),
the JavaScript interpreter goes back to the beginning of the loop and tests the con-
dition again. At this point, num is still 1, so the condition is true again and the
document.write() executes. Again, the JavaScript interpreter returns to the begin-
ning of the loop and tests the condition a third time. You can see where this goes:
an endless number of lines that say “Number 1.”

This simple example also shows some of the flexibility offered by loops. Say, for
example, you wanted to write the numbers 1-100, instead of just 1-5. Instead of
adding lots of additional lines of document.write() commands, you just alter the
test condition like this:

var num = 1;
while (num <= 100) {
document.write('Number

+ num + '
');
num = num + 1;

}

Now the loop will execute 100 times, writing 100 lines to the Web page.

Loops and Arrays

You'll find loops come in handy when dealing with a common JavaScript ele-
ment—an array. As you recall from page 56, an array is a collection of data. You
can think of an array as a kind of shopping list. When you go shopping, you actu-
ally perform a kind of loop: You walk around the store looking for an item on your
list and, when you find it, you put it into your cart; then you look for the next item
on your list, put it into the cart, and so on, and so on until you’ve gone through
the entire list. Then you’re done (this is the same as exiting the loop) and go to the
check out counter (in other words, move to the next step of your “program”).

You can use loops in JavaScript to go through items in an array and perform a task
on each item. For example, say you’re building a program that generates a calen-
dar (see Figure 3-3). The calendar is completely generated using JavaScript, and
you want to print the name of each day of the week on the calendar. You might
start by storing the names of the weeks into an array like this:

var days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday'l];

Note: The .1 symbol that appears in the code above indicates that this line of JavaScript code belongs on
a single line. Since the width of this book’s pages sometimes prevents a single line of code from fitting on
a single printed line, this book uses the 1 symbol to indicate code that should appear together on a sin-
gle line. If you were going to type this code into a text editor, you'd type it as one long line (and leave out
the).

JAVASCRIPT: THE MISSING MANUAL

Handling Repetitive

Tasks with Loops

000 MaoMonth (v0.10) Figure 3'3-'_
| | a]»] |E\ \g| \E\ € http:/ /www.moomonth.com/demo/index.html ~(Q- mochi-kit calendar @) | MooMonth is a ffee,
[0 .Macv Amazenv Magicy Bookmarkletsy Sawmaccom~v jQueryv Archive Bookmark css-wiki Microformats » open-source JGVGSCI'Ipt
calendar system: www.
December 2007
moomonth.com/demo.

25 26 27 28 29 30 1

See It will work with | See it will work with | See it will work with | See it will work with | See it will work with | See it will work with | See it will work with
text that wraps. text that wraps. text that wraps text that wraps. text that wraps. text that wraps. text that wraps.

2 3 4 5 6 7 8

See Itwill work with | See itwill work with | See it will work with | See itwill work with | See twill work with | See itwill work with | See it will work with
text that wraps. text that wraps. text that wraps. text that wraps. text that wraps. text that wraps. text that wraps.

9 10 11 12 13 14 15
See it will work with | See it will work with | See it will work with | See it will work with | See it will work with | See itwill work with | See it will work with
text that wraps. text that wraps. text that wraps. text that wraps. text that wraps, text that wraps. text that wraps.

16 17 18 1¢ 20 21 22

See it will work with | See it will work with | See it will work with | See it will work with | See it will work with | See itwill work with | See it will work with
text that wraps. text that wraps. text that wraps. text that wraps. iext that wraps. text that wraps. text that wraps.

23 24 25 26 27 28 29

See itwill work with | See itwill work with | See it will work with | See itwill work with | See itwill work with | See itwill work with | See itwill work with
text that wraps. text that wraps. text that wraps. text that wraps. text that wraps. text that wraps. text that wraps.

30 31 2 3 4 5

See itwill work with | See it will work with | See it will work with | See itwill work with | See it will work with | See itwill work with | See it will work with
text that wraps. 1ext that wraps. toxt that wraps text that wraps text that wraps text that wraps. text that wraps

You can then loop through each item in the array and print it to the page. Remem-
ber that you access one item in an array using the item’s index value. For example,
the first item in the days array above (Monday), is retrieved with days[0]. The sec-
ond item is days[1], and so on.

Here’s how you can use a while loop to print each item in this array:

var counter = 0;

while (counter < days.length) {
document.write(days[counter] + ', ');
counter++;

}

The first line—var counter = O—sets up (or initializes in programmer-speak) a
counter variable that’s used both as part of the test condition, and as the index for
accessing array items. The condition—counter < days.length—just asks if the cur-
rent value stored in the counter variable is less than the number of items in the
array (remember, as described on page 60, the number of items in an array is
stored in the array’s length property). In this case, the condition checks if the
counter is less than 7 (the number of days in the week). If counter is less than 7
then the loop begins, the day of the week is written to the page (followed by a

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS 93

Handling Repetitive
Tasks with Loops

comma and a period), and the counter is incremented by 1 (counter++ is the same
as counter = counter + 1 [see the Tip on page 91]). After the loop runs, it tries the
test again; the loop continues to run until the test turns out to be false. This pro-
cess is diagrammed in Figure 3-4.

94

var counter = 0; Figure 3-4: o
while (counter < days.length) { For this Iqop, the condition is
document .write (days [counter] + ' ") ; (estf;dstlmes. The Igsttest asks
) ! ! if 7 is less than 7. It isn't, so the
counter++; while statement is completed,
} and the JavaScript interpreter
skips the loop and continues
counter value counter value with t.he next part Of.the script.
before test condition | loop? | days [counter] | gfier counterss The final result of this script will
be “Monday, Tuesday,
0 0 < 7| yes days [0] 1 Wednesday, Thursday, Friday,
1 1 < 7| yes days[1] 2 Saturday, Sunday”.
2 2 < 7| yes days [2] 3
3 3 < 7| vyes days [3] 4
4 4 < 7| yes days[4] 5
5 5 < 7| yes days [5] 6
6 6 < 7| yes days[6] 7
7 7 < 7| no
For Loops

JavaScript offers another type of loop, called a for loop, that’s a little more compact
(and a little more confusing). For loops are usually used for repeating a series of
steps a certain number of times, so they often involve some kind of counter vari-
able, a conditional test, and a way of changing the counter variable. In many cases,
a for loop can achieve the same thing as a while loop, with fewer lines of code. For
example, here’s the while loop shown on page 92:

var num 1;

while (num <= 100) {

document.write('Number ' + num + '
');

num

}

You can achieve the same effect using a for loop with only three lines of code:

num + 1;

for (var num=1; num<=100; num++) {
document.write('Number '

}

At first, for loops might look a little confusing, but once you figure out the differ-
ent parts of the for statement, they aren’t hard. Each for loop begins with the key-
word for, followed by a set of parentheses containing three parts, and a pair of

+ num + '
');

JAVASCRIPT: THE MISSING MANUAL

curly braces. As with while loops, the stuff inside curly braces (document.
write('Number ' + num + '
'); in this example) is the JavaScript code that exe-
cutes as part of the loop.

Table 3-2 explains the three parts inside the parentheses, but in a nutshell, the first
part (var num=1;) initializes a counter variable. This step only happens once at the
very beginning of the statement. The second part is the condition, which is tested
to see if the loop is run; the third part is an action that happens at the end of each
loop—it usually changes the value of the counter, so that the test condition even-
tually turns out to be false and the loop ends.

Table 3-2. Understanding the parts of a for loop

Parts of loop What it means When it’s applied

for Introduces the for loop

var num = 1; Set variable num to 1 Only once; at the very beginning of

the statement.

num <= 100; Is num less than or equal to 100? If | At beginning of the statement and
yes, then loop again. If not, then before each time through the loop
skip loop and continue script

num++ Add 1 to variable num. Same as num | At end of each time through loop
= num +1

Since for loops provide an easy way to repeat a series of steps a set number of
times, they work really well for working through the elements of an array. The
while loop in Figure 3-4, which writes each item in an array to the page, can be
rewritten using a for loop, like this:

var days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',
'Friday', 'Saturday', 'Sunday'];
for (var i=0; i<days.length; i++) {
document.write(days[i] + ', ');

Tip: Seasoned programmers often use a very short name for counter variables in for loops. In the code
above, the letter / acts as the name of the counter. A one-letter name (i, j, and z are common) is fast to
type; and since the variable isn't used for anything except running the loop, there’s no need to provide a
more descriptive name like counter.

The examples so far have counted up to a certain number and then stopped the
loop, but you can also count backwards. For example, say you want to print the
items in an array in reverse order (in other words, the last item in the array prints
first). You can do this:

var example = ['first','second','third', 'last'];
for (var j = example.length ; j > 0; j--) {
document.write(example[j-1] + '
");

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS

Handling Repetitive
Tasks with Loops

95

Handling Repetitive
Tasks with Loops

96

In this example, the counter variable j starts with the total number of items in the
array (4). Each time through the loop, you test to see if the value in j is greater than
0; if it is, the code between the curly braces is run. Then, 1 is subtracted from j (j--),
and the test is run again. The only tricky part is the way the program accesses the
array item (example[j-1]). Since arrays start with an index of 0, the last item in an
array is one less than the total number of items in the array (as explained on page
59). Here j starts with the total number of items in the array, so in order to access
the last item, you must subtract 1 from j to get the proper item.

Do/While Loops

There’s another, less common type of loop, known as a do/while loop. This type of
loop works nearly identically to a while loop. Its basic structure looks like this:

do {
// javascript to repeat
} while (condition) ;

In this type of loop, the conditional test happens at the end, after the loop has run.
As a result, the JavaScript code within the curly braces always run at least once.
Even if the condition isn’t ever true, the test isn’t run until after the code runs
once.

There aren’t too many cases where this comes in handy, but it’s very useful when
you want to prompt the user for input. The tutorial you did earlier in this chapter
(page 86) is a good example. That script asks visitors to type in a number. It
includes a bit of a fail-safe system, so that if they don’t type a number, the script
asks them one more time to type a number. Unfortunately, if someone’s really
stubborn and types something other than a number the second time, a nonsensi-
cal message is printed to the page.

However, with a do/while loop, you can continually prompt the visitor for a number
until she types one in. To see how this works, you’ll edit the page you completed
on page 89:

1. In a text editor, open the 3.1.html page you completed on page 89.

(If you didn’t complete that tutorial, you can just open the file complete_3.1.
html.) You’'ll replace the code near the top of the page with a do/while loop.

2. Locate the code between the <script> tags in the <head> of the page, and
delete the code in bold below:

var luckyNumber = prompt('What is your lucky number?','');
luckyNumber = parseInt(luckyNumber, 10);

if (isNaN(luckyNumber)) {

luckyNumber = prompt('Please, tell me your lucky number.','');

}

The code you deleted provided the second prompt dialog box. You won’t need
that anymore. Instead, you’ll wrap the code that’s left inside a do/while loop.

JAVASCRIPT: THE MISSING MANUAL

Functions: Turn
Useful Code Into

Reusable Commands

3. Place the cursor before the first line of code (the line that begins with var
luckyNumber) and type:

do {

This code creates the beginning of the loop. Next, you’ll finish the loop and add
the test condition.

4. Click at the end of the last line of JavaScript code in that section and type:
} while (isNaN(luckyNumber));. The completed code block should look like this:

do {

var luckyNumber = prompt('What is your lucky number?','');
luckyNumber = parseInt(luckyNumber, 10);

} while (isNaN(luckyNumber));

Save this file and preview it in a Web browser. Try typing text and other non-
numeric symbols in the prompt dialog. That annoying dialog continues to appear
until you actually type a number.

Here’s how it works: the do keyword tells the JavaScript interpreter that it’s about
to enter a do/while loop. The next two lines are then run, so the prompt appears
and the visitor’s answer is converted to a whole number. It’s only at this point that
the condition is tested. It’s the same condition as the script on page 89: it just
checks to see if the input retrieved from the visitor is “not a number.” If the input
isn’t a number, the loop repeats. In other words, the prompt will keep reappearing
as long as a nonnumber is entered. The good thing about this approach is that it
guarantees that the prompt appears at least once, so if the visitor does type a num-
ber in response to the question, there is no loop.

Functions: Turn Useful Code Into Reusable
Commands

Imagine that at work you’ve just gotten a new assistant to help you with your every
task (time to file this book under “fantasy fiction”). Suppose you got hungry for a
piece of pizza, but since the assistant was new to the building and the area, you had
to give him detailed directions: “Go out this door, turn right, go to the elevator,
take the elevator to the first floor, walk out of the building...” and so on. The assis-
tant follows your directions and brings you a slice. A couple hours later you're
hungry again, and you want more pizza. Now, you don’t have to go through the
whole set of directions again— “Go out this door, turn right, go to the eleva-
tor...”. By this time, your assistant knows where the pizza joint is, so you just say,
“Get me a slice of pizza,” and he goes to the pizza place and returns with a slice.

In other words, you only need to provide detailed directions a single time; your
assistant memorizes those steps and with the simple phrase “Get me a slice” he
instantly leaves and reappears a little while later with a piece of pizza. JavaScript
has an equivalent mechanism called a function. A function is a series of program-
ming steps that you set up at the beginning of your script—the equivalent of

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS 97

Functions: Turn
Useful Code Into

Reusable Commands

98

providing detailed directions to your assistant. Those steps aren’t actually run
when you create the function; instead, they’re stored in the Web browser’s mem-
ory, where you can call upon them whenever you need those steps performed.

Functions are invaluable for efficiently performing multiple programming steps
repeatedly: for example, say you create a photo gallery Web page filled with 50
small thumbnail images. When someone clicks one of the small photos, you might
want the page to dim, a caption to appear, and a larger version of that image to fill
the screen (you’ll learn to do just that on page 254). Each time someone clicks an
image, the process repeats, so on a Web page with 50 small photos, your script
might have to do the same series of steps 50 times. Fortunately, you don’t have to
write the same code 50 times to make this photo gallery work. Instead, you can
write a function with all the necessary steps, and then, with each click of the

thumbnail, you run the function. You write the code once, but run it any time you
like.

The basic structure of a function looks like this:

function functionName() {
// the JavaScript you want to run

}

The keyword function lets the JavaScript interpreter know you’re creating a func-
tion—it’s similar to how you use if to begin an if/else statement or var to create a
variable. Next you provide a function name; as with a variable, you get to choose
your own function name. Follow the same rules listed on page 44 for naming vari-
ables. In addition, it’s common to include a verb in a function name like calculateTax,
getScreenHeight, updatePage, or fadelmage. An active name makes it clear that it
does something and makes it easier to distinguish between function and variable
names.

Directly following the name, you add a pair of parentheses, which are another
characteristic of functions. After the parentheses, there’s a space followed by a
curly brace, one or more lines of JavaScript and a final, closing curly brace. As with
if statements, the curly braces mark the beginning and end of the JavaScript code
that make up the function.

Tip: As with jf/else statements, functions are more easily read if you indent the JavaScript code between
the curly braces. Two spaces (or a tab) at the beginning of each line are common.

Here’s a very simple function to print out the current date in a format like “Sun
May 12 2008

function printToday() {

var today = new Date();
document.write(today.toDateString());
}

JAVASCRIPT: THE MISSING MANUAL

The function’s name is printToday. It has just two lines of JavaScript code that
retrieve the current date, convert the date to a format we can understand (that’s
the toDateString() part), and then print the results to the page using our old friend
the document.write() command. Don’t worry about how all of the date stuff
works—you’ll find out in the next chapter.

Programmers usually put their functions at the beginning of a script, which sets up
the various functions that the rest of the script will use later. Remember that a
function doesn’t run when it’s first created—it’s like telling your assistant how to
get to the pizza place without actually sending him there. The JavaScript code is
merely stored in the browser’s memory, waiting to be run later, when you need it.

But how do you run a function? In programming-speak you call the function
whenever you want the function to perform its task. Calling the function is just a
matter of writing the function’s name, followed by a pair of parentheses. For
example, to make our printToday function run, you’d simply type:

printToday();
As you can see, making a function run doesn’t take a lot of typing—that’s the

beauty of functions. Once they’re created, you don’t have to add much code to get
results.

Note: \When calling a function, don't forget the parentheses following the function. That's the part that
makes the function run. For example, printToday won't do anything, but printToday() executes the function.

Mini-Tutorial

Because functions are such an important concept, here’s a series of steps for you to
practice creating and using a function on a real Web page:

1. In a text editor, open the file 3.2.html.
You’ll start by adding a function in the head of the document.

2. Locate the code between the <script> tags in the <head> of the page, and type
the following code:

function printToday() {
var today = new Date();
document.write(today.toDateString());

}
The basic function is in place, but it doesn’t do anything yet.
3. Save the file and preview it in a Web browser.

Nothing happens. Well, actually something does happen; you just don’t see it.
The Web browser read the function statements into memory, and was waiting
for you to actually call the function, which you’ll do next.

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS

Functions: Turn
Useful Code Into

Reusable Commands

99

Functions: Turn
Useful Code Into

Reusable Commands

4. Return to your text editor and the 3.2.html file. Locate the <p> tag that begins
with “Today is”, and between the two tags, add the following bolded
code:

<p>Today is <script type="text/javascript"sprintToday();.
</script></p>

Note: Remember, when you see the character, that just means the full line of code wouldn't fit across
the page of this book. You just type the code on one line in your text editor. Don't start a new line, and
don't attempt to type a I character.

Save the page and preview it in a Web browser. The current date is printed to the
page. If you wanted to print the date at the bottom of the Web page as well, all
you’d need to do is call the function a second time.

Giving Information to Your Functions

Functions are even more useful when they receive information. Think back to your
assistant—the fellow who fetches you slices of pizza. The original “function”
described on page 97 was simply directions to the pizza parlor and instructions to
buy a slice and return to the office. When you wanted some pizza, you “called” the
function by telling your assistant “Get me a slice!” Of course, depending on how
you’re feeling, you might want a slice of pepperoni, cheese, or olive pizza. To make
your instructions more flexible, you can tell your assistant what type of slice you’d
like. Each time you request some pizza, you can specify a different type.

JavaScript functions can also accept information, called parameters, which the
function uses to carry out its actions. For example, if you want to create a function
that calculates the total cost of a person’s shopping cart, then the function needs to
know how much each item costs, and how many of each item was ordered.

To start, when you create the function, place the name of a new variable inside the
parentheses—this is the parameter. The basic structure looks like this:

function functionName(parameter) {
// the JavaScript you want to run

}

The parameter is just a variable, so you supply any valid variable name (see page 44
for tips on naming variables). For example, let’s say you want to save a few key-
strokes each time you print something to a Web page. You create a simple func-
tion that lets you replace the Web browser’s document.write() function with a
shorter name:

function print(message) {
document.write(message);

}

JAVASCRIPT: THE MISSING MANUAL

The name of this function is print and it has one parameter, named message. When
this function is called, it receives some information (the message to be printed)
and then it uses the document.write() function to write the message to the page. Of
course, a function doesn’t do anything until it’s called, so somewhere else on your
Web page, you can call the function like this:

print('Hello world.");

When this code is run, the print function is called and some text—the string 'Hello
world.'—is sent to the function, which then prints “Hello World.” to the page.
Technically, the process of sending information to a function is called “passing an
argument.” In this example, the text—'Hello world.'—is the argument.

Even with a really simple function like this, the logic of when and how things work
can be a little confusing if you're new to programming. Here’s how each step
breaks down, as shown in the diagram in Figure 3-5:

1. The function is read by the JavaScript interpreter and stored in memory. This
step just prepares the Web browser to run the function later.

2. The function is called and information—“Hello world.”—is passed to the
function.

3. The information passed to the function is stored in a new variable named mes-
sage. This step is equivalent to var message = 'Hello World.';

4. Finally, the function runs, printing the value stored in the variable message to
the Web page.

Functions: Turn
Useful Code Into

Reusable Commands

Figure 3-5:
o function print (message)
document .write (message) ; o

eprint (| '"Hello world! ’I) i

When working with functions, you usually create the
function before you use it. The print() function here is
created in the first three lines of code, but the code inside
} the function doesn't actually run until the last line.

A function isn’t limited to a single parameter, either. You can pass any number of
arguments to a function. You just need to specify each parameter in the function,
like this:

function functionName(parameter1, parameter2, parameter3) {
// the JavaScript you want to run

}

And then call the function with the same number of arguments in the same order:

functionName(argumentl, argument2, argument3);

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS

Functions: Turn
Useful Code Into

Reusable Commands

102

In this example, when functionName is called, argumentl is stored in parameterl,
argument2 in parameter2, and so on. Expanding on the print function from above,
suppose in addition to printing a message to the Web page, you want to specify an
HTML tag to wrap around the message. This way, you can print the message as a
headline or a paragraph. Here’s what the new function would look like:

function print(message,tag) {

document.write('<' + tag + '>

}

The function call would look like this:

+ message +'</' + tag + '>');

print('Hello world.', 'p');

In this example, you're passing two arguments—'Hello world.' and 'p'—to the
function. Those values are stored in the function’s two variables—message and tag.
The result is a new paragraph—<p>Hello world.</p>—printed to the page.

You’re not limited to passing just strings to a function either: you can send any
type of JavaScript variable or value to a function. For example, you can send an
array, a variable, a number, or a Boolean value as an argument.

Retrieving Information from Functions

Sometimes a function simply does something like write a message to a page, move
an object across the screen, or validate the form fields on a page. Other times,
youw’ll want to get something back from a function: after all, the “Get me a slice of
pizza” function wouldn’t be much good if you didn’t end up with some tasty pizza
at the end. Likewise, a function that calculates the total cost of items in a shopping
cart isn’t very useful unless the function lets you know the final total.

Some of the built-in JavaScript functions we’ve already seen return values. For
example the prompt() command (see page 55) pops up a dialog box with a text
field, whatever the user types in to the box is returned. As you've seen, you can
then store that return value into a variable and do something with it:

var answer = prompt('What month were you born?', '');

The visitor’s response to the prompt dialog is stored in the variable answer; you
can then test the value inside that variable using conditional comments or do any
of the many other things JavaScript lets you do with variables.

To return a value from your own functions, you use return followed by the value
you wish to return:

function functionName(parameteri, parameter2) {
// the JavaScript you want to run
return value;

}

JAVASCRIPT: THE MISSING MANUAL

For example, say you want to calculate the total cost of a sale including sales tax.
You might create a script like this:

var TAX = .08; // 8% sales tax

function calculateTotal(quantity, price) {
var total = quantity * price * (1 + TAX);
var formattedTotal = total.toFixed(2);
return formattedTotal;

}

The first line stores the tax rate into a variable named TAX (which lets you easily
change the rate simply by updating this line of code). The next three lines define
the function. Don’t worry too much about what’s happening inside the function—
you’ll learn more about working with numbers in the next chapter. The important
part is the fourth line of the function—the return statement. It returns the value
stored in the variable formattedTotal.

To make use of the return value you usually store it inside a variable, so in this
example, you could call the function like this:

var saleTotal = calculateTotal(2, 16.95);
document.write('Total cost is: $' + saleTotal);

In this case, the values 2 and 16.95 are passed to the function. The first number
represents the number of items purchased, and the second their individual cost.
The result is returned from the function and stored into a new variable—sale-
Total—which is then used as part of a document.write() command to print the
total cost of the sale including tax.

You don’t have to store the return value into a variable, however. You can use the
return value directly within another statement like this:

document.write('Total: $' + calculateTotal(2, 16.95));

In this case, the function is called and its return value is added to the string 'Total:
$', which is then printed to the document. At first, this way of using a function
may be hard to read, so you might want to take the extra step of just storing the
function’s results into a variable and then using that variable in your script.

Tip: A function can only return one value. If you want to return multiple items, store the results in an
array and return the array.

Keeping Variables from Colliding

One great advantage of functions is that they can cut down the amount of pro-
gramming you have to do. You’ll probably find yourself using a really useful func-
tion time and time again on different projects. For example, a function that helps
calculate shipping and sales tax could come in handy on every order form you cre-
ate, so you might copy and paste that function into other scripts on your site or on
other projects.

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS

Functions: Turn
Useful Code Into

Reusable Commands

Functions: Turn
Useful Code Into

Reusable Commands

One potential problem arises when you just plop a function down into an already
created script. What happens if the script uses the same variable names as the func-
tion? Will the function overwrite the variable from the script, or vice versa? For
example:

var message = 'Outside the function';
function warning(message) {
alert(message);
}
warning('Inside the function'); // 'Inside the function'
alert(message); // 'Outside the function'

Notice that the variable message appears both outside the function (the first line of
the script) and as a parameter in the function. A parameter is really just a variable
that’s filled with data when the function’s called. In this case, the function call—
warning('Inside the function'),—passes a string to the function and the function
stores that string in the variable message. It looks like there are now two versions of
the variable message. So what happens to the value in the original message variable
that’s created in the first line of the script?

You might think that the original value stored in message is overwritten with a new
value, the string 'Outside the function'; it’s not. When you run this script, you’ll
see two alert dialogues: the first will say “Inside the function” and the second
“Outside the function.” There are actually two variables named message, but they
exist in separate places (see Figure 3-6).

var message

function wa

alert (mes
1

warning(LIn

alert (messa

= |‘Outside the function'|; Figure 3-6: . .
A function parameter is only visible inside the
) function, so the first line of this function—function
rning (message) { warning(message)—will create a new variable
sage) ; named message that can only be accessed inside
the function. Once the function is done, that
2lde he fuasihdem. |) : variable disappears.
ge) ;

104

The JavaScript interpreter treats variables inside of a function differently than vari-
ables declared and created outside of a function. In programming-speak, each
function has its own scope. A function’s scope is like a wall that surrounds the
function—variables inside the wall aren’t visible to the rest of the script outside the
wall. Scope is a pretty confusing concept when you first learn about it, but it’s very
useful. Because a function has its own scope, you don’t have to be afraid that the
names you use for parameters in your function will overwrite or conflict with vari-
ables used in another part of the script.

JAVASCRIPT: THE MISSING MANUAL

So far, the only situation we’ve discussed is the use of variables as parameters. But
what about a variable that’s created inside the function, but not as a parameter,
like this:

var message = 'Outside the function';
function warning() {

var message ='Inside the function';
alert(message);

}

warning(); // 'Inside the function'
alert(message); //'Outside the function'

Here, the code creates a message variable twice—in the first line of the script, and
again in the first line inside the function. This situation is the same as with param-
eters—Dby typing var message inside the function, you’'ve created a new variable
inside the function’s scope. This type of variable is called a local variable, since it’s
only visible within the walls of the function—the main script and other functions
can’t see or access this variable.

However, variables created in the main part of a script (outside a function) exist in
global scope. All functions in a script can access variables that are created in its
main body. For example, in the code below, the variable message is created on the
first line of the script—it’s a global variable, and it can be accessed by the function.

var message = 'Global variable';
function warning() {
alert(message);

}
warning(); // 'Global variable'

This function doesn’t have any parameters and doesn’t define a message variable,
so when the alert(message) part is run, the function looks for a global variable
named message. In this case, that variable exists, so an alert dialog with the text
“Global variable” appears.

There’s one potential gotcha with local and global variables—a variable only exists
within the function’s scope if it’s a parameter, or if the variable is created inside the
function with the var keyword. Figure 3-7 demonstrates this situation. The top
chunk of code demonstrates how both a global variable named message and a func-
tion’s local variable named message can exist side-by-side. The key is the first line
inside the function—var message ='Inside the function';. By using var, you create a
local variable.

Compare that to the code in the bottom half of Figure 3-7. In this case, the func-
tion doesn’t use the var keyword. Instead, the line of code message="Inside the
function'; doesn’t create a new local variable; it simply stores a new value inside the
global variable message. The result? The function clobbers the global variable,
replacing its initial value.

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS

Functions: Turn
Useful Code Into

Reusable Commands

Tutorial: A Simple
Quiz

Local variable in function Figure 3-7:
There’s a subtle yet crucial
S—— - 'Outside the function'; difference when assigning values to

variables within a function. If you

. . want the variable to only be

function warning() { accessible to the code inside the
var ='Inside the function'; function, make sure to use the var

keyword to create the variable
alert (); //'Inside the function' Inside thefunction (top). If you

} don't use var, you're just storing a
new value inside the global
variable (bottom).

warning () ;

alert () ; //'Outside the function'

Global variable in function

var= 'Outside the function';

function warning() {
message ='Inside the function';

@m ; //'Inside the function'

warnlng >

alert (); //'Inside the function'

The notion of variable scope is pretty confusing, so the preceding discussion may
not make a lot of sense for you right now. But just keep one thing in mind: if the
variables you create in your scripts don’t seem to be holding the values you expect,
you might be running into a scope problem. If that happens, come back and reread
this section.

Tutorial: A Simple Quiz

Now it’s time to bring together the lessons from this chapter and create a com-
plete program. In this tutorial, you’ll create a simple quiz system for asking ques-
tions and evaluating the quiz-taker’s performance. First, this section will look at a
couple of ways you could solve this problem, and discuss efficient techniques for
programming.

As always, the first step is to figure out what exactly the program should do. There
are a few things you want the program to accomplish:

+ Ask questions. If you're going to quiz people, you need a way to ask them ques-
tions. At this point, you know one simple way to get feedback on a Web page:
the prompt() command. In addition, you’ll need a list of questions; since arrays
are good for storing lists of information, you’ll use an array to store your quiz
questions.

JAVASCRIPT: THE MISSING MANUAL

+ Let quiz-taker know if she’s right or wrong. First, you need to determine if the
quiz-taker gave the right answer: a conditional statement can take care of that.
Then, to let the quiz taker know if she’s right or wrong, you can use the alert()
command.

+ Print the results of the quiz. You need a way to track how well the quiz-taker’s
doing—a variable that keeps track of the number of correct responses will work.
Then, to announce the final results of the quiz, you can either use the alert()
command or the document.write() method.

There are many ways to solve this problem. Some beginning programmers might
take a blunt-force approach and repeat the same code to ask each question. For
example, the JavaScript to ask the first two questions in the quiz might look like
this:

var answerl=prompt('How many moons does Earth have?','');
if (answerl == 1) {

alert('Correct!"');

} else {

alert('Sorry. The correct answer is 1');

}

var answer2=prompt('How many moons does Saturn have?','');
if (answer2 == 31) {

alert('Correct!"');

} else {

alert('Sorry. The correct answer is 31');

}

This kind of approach seems logical, since the goal of the program is to ask one
question after another. However, it’s not an efficient way to program. Whenever
you see the same steps written multiple times in a program, it’s time to consider
using a loop or a function instead. We'll create a program that does both: uses a
loop to go through each question in the quiz, and a function that performs the
question asking tasks:

1. In a text editor, open the file 3.3.html.

You’ll start by setting up a few variables that can track the number of correct
answers and the questions for the quiz.

2. Locate the code between the <script> tags in the <head> of the page, and type
the following code:

var score = 0;
This variable stores the number of answers the quiz-taker gets right. At the

beginning of the quiz, before any questions have been answered, you set the
variable to 0. Next, yowll create a list of questions and their answers.

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS

Tutorial: A Simple
Quiz

107

Tutorial: A Simple
Quiz

3. Hit Return to add a new line and type var questions = [

You’ll be storing all of the questions inside an array, which is really just a vari-
able that can hold multiple items. The code you just typed is the first part of an
array statement. You’ll be typing the array over multiple lines as described on
page 59.

. Press Return twice to add two new lines and type J;. Your code should now

look like this:

var score = 0;
var questions = [

I

Since the quiz is made up of a bunch of questions, it makes sense to store each
question as one item in an array. Then, when you want to ask the quiz ques-
tions, you simply go through each item in the list and ask the question. How-
ever, every question also has an answer, so you need a way to keep track of the
answers as well.

One solution is to create another array—answers[], for example—that holds all
of the answers. To ask the first question, look for the first item in the questions
array, and to see if the answer is correct, look in the first item of the answers
array. However, this has the potential drawback that the two lists might get out
of sync: for example, you add a question in the middle of the questions array,
but put the answer at the beginning of the answers array. At that point, the first
item in the questions array no longer matches the first item in the answers
array.

A Detter alternative is to use a nested array or (if you really want to sound scary
and out-of-this-world) a multidimensional array. All this really means is that
you create an array that includes the question and the answer, and you store
that array as one item in the questions array. In other words, you create a list
where each item in the list is another list.

. Click in the empty line between the [and J; and add the code in bold below:

var questions = [
['How many moons does Earth have?', 1],

I

The code ['How many moons does Earth have?', 1] is an array of two items. The
first item is a question, and the second item is the answer. This array is the first
item in the array questions. You don’t give this array a name, since it’s nested
inside another array. The comma at the end of the line marks the end of the first
item in the questions array and indicates that another array item will follow.

JAVASCRIPT: THE MISSING MANUAL

Tutorial: A Simple
Quiz

6. Hit Return to create a new, empty line and add the following two bolded lines
to the script:

var questions = [

['How many moons does Earth have?', 1],
['How many moons does Saturn have?',31],
['How many moons does Venus have?', 0]

1

These are two more questions for the quiz. Note that after the last item in an
array, you don’t type a comma. Setting up all of your questions in a single array
provides for a lot of flexibility. If you want to add another question to the list,
just add another array containing a new question and answer.

Now that the basic variables for the quiz are set up, it’s time to figure out how
to ask each question. The questions are stored in an array, and you want to ask
each question in the list. As you’ll recall from page 92, a loop is a perfect way to
go through each item in an array.

7. Click after the J; (the end of the answers array) and hit Return to create a new,
empty line and add the following code:

for (var i=0; i<cquestions.length; i++) {

This line is the first part of a for loop (page 94). It does three things: First, it cre-
ates a new variable named i and stores the number 0 in it. This variable is the
counter that keeps track of the number of times through the loop. The second
part—i<questions.length—is a condition, as in an if/else statement. It tests to see
if the value in 7 is less than the number of items in the questions array—if that’s
true, the loop runs again. As soon as i is equal to or greater than the total num-
ber of items in the array, the loop is over. Finally, i++ changes the value of i
each time through the loop—it adds 1 to the value of i.

Now it’s time for the core of the loop—the actual JavaScript that’s performed
each time through the loop.

8. Hit Return to create a new, empty line and add the following line of code:

askQuestion(questions[i]);

Instead of putting all of the programming code for asking the question in the
loop, you’ll merely run a function that asks the questions. The function (which
you’ll create in a moment) is named askQuestion(). Each time through the
loop, youw’ll send one item from the questions array to the function—that’s the
questions[i] part. Remember that you access an item in an array using an index
value, so questions[0] is the first item in the array, questions[1] is the second
item, and so on.

By creating a function that asks the questions, you make a more flexible pro-
gram. You can move and reuse the function to another program if you want.
Finally, you’ll finish the loop code.

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS 109

Tutorial: A Simple
Quiz

9.

10.

11.

12.

Hit Return to create a new, empty line and type } to indicate the end of the
loop. The finished loop code should look like this:

for (var i=0; i<questions.length; i++) {
askQuestion(questions[i]);

}

Yes, that’s all there is to it—just a simple loop that calls a function with every
question in the quiz. Now, youw’ll create the heart of the quiz, the askQuestion()
function.

Create an empty line before the for loop you just added.

In other words, you’ll add the function between the two statements that define
the basic variables at the beginning of the script and the loop you just added.
It’'s OK to define functions anywhere in your script, but most programmers
place functions near the beginning of the program. In many scripts, global vari-
ables—Ilike score and questions in this script—are defined first, so that you can
see and change those easily; functions appear next, since they usually form the
core of most scripts; and finally the step-by-step actions like the loop appear
last.

Add the following code:

function askQuestion(question) {

}

This code indicates the body of the function—it’s always a good idea to type
both the beginning and ending curly braces of a function and then add the
script within them. That way, you won’t accidentally forget to add the closing
curly brace.

This function receives a single argument and stores it in a variable named ques-
tion. Note that this isn’t the same as the questions[] array you created in step 6.
In this case, the question variable will actually be filled by one item from the
questions[] array. As you saw in step 8, one item from that array is actually
another array containing two items, the question and the answer.

Add the line in bold below:

function askQuestion(question) {
var answer = prompt(question[0],'');

}

This should look familiar—your old friend the prompt() command. The only
part that might feel new is question[0]. That’s how you access the first element
in the array question. In this example, the function receives one array, which
includes a question and answer: for example, the first array will be ['How many
moons does Earth have?', 1]. So question[0] accesses the first item—'How many
moons does Earth have'—which is passed to the prompt() command as the
question that will appear in the prompt dialog box.

JAVASCRIPT: THE MISSING MANUAL

13.

Your program stores whatever the quiz-taker types into the prompt dialog in
the variable answer. Next, you’ll compare the quiz-taker’s response with the
question’s actual answer.

Complete the function by adding the code in bold below:

function askQuestion(question) {
var answer = prompt(question[0],""');
if (answer == question[1]) {
alert('Correct!');

score++;
} else {
alert('Sorry. The correct answer is ' + question[1]);
}
}
This code is just a basic iffelse statement. The condition—answer == ques-

tion[1]— checks to see if what the user entered (answer) is the same as the
answer, which is stored as the second item in the array (question[1]). If they
match, then the quiz-taker was right: an alert appears to let her know she got it
right, and her score is increased by one (score++). Of course, if she doesn’t
answer correctly, an alert appears displaying the correct answer.

At this point, the quiz is fully functional. If you save the file and load it into a
Web browser, you’ll be able to take the quiz. However, you haven’t yet pro-
vided the results to the quiz-taker so she can see how many she got correct.
You’ll add a script in the <body> of the Web page to print out the results.

14. Locate the second pair of <script> tags near the bottom of the Web page and

15.

type:

var message = 'You got ' + score;
Here, you create a new variable and store the string 'You got ' plus the quiz-
taker’s score. So if she got all three right, the variable message would be 'You got
3". To make the script easier to read, youwll build up a longer message over several
lines.
Press return and type:

message += ' out of ' + questions.length;
This adds ' out of ' and the total number of questions to the message string, so

at this point, the message will be something like “You got 3 out of 3”. Now to
finish up the message and print it to the screen.

16. Add the bolded lines of code to your script:

var message = 'You got ' + score;

message += ' out of ' + questions.length;
message += ' questions correct.';
document.write(message);

CHAPTER 3: ADDING Logic AND CoNTROL TO YOUR PROGRAMS

Tutorial: A Simple
Quiz

Tutorial: A Simple
Quiz

Save the page, and open it in a Web browser. Take the quiz and see how well
you do (see Figure 3-8). If the script doesn’t work, remember to try some of the
troubleshooting techniques mentioned on page 32. You can also compare your
script with a completed, functional version in the file complete_3.3.html.

Try adding additional questions to the questions[] array at the beginning of the
script to make the quiz even longer.

Figure 3-8:

- @ % 11‘ E! @1 @ tile:f/Macintosha20HD UsersdaveDeskrop fjavascriptytes v | > ([C]+ Google The I'esults Ofyour Slmple

quiz program. After you
learn more about how to
manipulate a Web page
on page 155, try to

* @ nformation ~ (71 Miscellaneous * ./ Outline = _ J Resize = 4% Tools +

Soripti3.3 rewrite this quiz program
A Simple Quiz so that the questions
You got 1 out of 3 questions correct. appear dir ectly within the
web page, and the score
is dynamically updated

after each answer. In
other words, you'll soon
learn how to ditch that
clunky prompt()
command.

“Building Interactive Web Sites with JavaScript”

112

JAVASCRIPT: THE MISSING MANUAL

CHAPTER

4

Working with Words,
Numbers, and Dates

Storing information in a variable or an array is just the first step in effectively using
data in your programs. As you read in the last chapter, you can use data to make
decisions in a program (“Is the score 0?”). You’'ll also frequently manipulate data
by either searching through it (trying to find a particular word in a sentence, for
example), manipulating it (rounding a number to a nearest integer), or reformat-
ting it to display properly (formatting a number like 430 to appear in the proper
monetary format, like $430.00).

This chapter will show you how to accomplish common tasks when working with
strings and numbers. In addition, it’ll introduce the JavaScript Date object, which
lets you determine the current date and time on a visitor’s computer.

A Quick Object Lesson

So far in this book, you’ve learned that you can write something to a Web page
with the document.write() command, and to determine how many items are in an
array, you type the name of the array followed by a period and the word “length,”
like so: days.length. You’re probably wondering what those periods are about.
You’ve made it through three chapters without learning the particulars of this fea-
ture of JavaScript syntax, and it’s time to address them.

You can conceptualize many of the elements of the JavaScript language, as well as
elements of a Web page, as objects. The real world, of course, is filled with objects
too, such as a dog or a car. Most objects are made up of different parts: a dog has a
tail, a head, and four legs; a car has doors, wheels, headlights, a horn, and so on.
An object might also do something—a car can transport passengers, a dog can

A Quick Object
Lesson

114

bark. In fact, even a part of an object can do something: for example, a tail can
wag, and a horn can honk. Table 4-1 illustrates one way to show the relationships
between objects, their parts, and actions.

Table 4-1. A simplified view of the world

Actions
dog bark
tail wag
car transport
horn honk

The world of JavaScript is also filled with objects: a browser window, a document,
an array, a string, and a date are just a few examples. Like real-world objects, Java-
Script objects are also made up of different parts. In programming-speak, the parts
of an object are called properties. The actions an object can perform are called
methods, which are basically functions (like the ones you created in the previous
chapter) that are specific to an object (see Table 4-2).

Note: You can always tell a method from a property because methods end in parentheses: write(), for
example.

Each object in JavaScript has its own set of properties and methods. For example,
the array object has a property named length, and the document object has a
method named write(). To access an object’s property or execute one of its meth-
ods, you use dot-syntax—those periods! The dot (period) connects the object with
its property or method. For example, document.write() means “run the write()
method of the document object.” If the real world worked like that, you’d have a
dog wag his tail like this: dog.tail. wag(') (of course, in the real world, a doggy treat
works a lot better).

Table 4-2. Some methods and properties of an array object (see page 56 for more information on
arrays)

An array object Property Method
['Bob', Jalia', 'Sonia'] length
push()
pop()
shift()

And just as you might own several dogs in the real world, your JavaScript pro-
grams can have multiple versions of the same kind of object. For example, say you
create two simple variables like this:

var first name = 'Jack’;
var last name = 'Hearts';

JAVASCRIPT: THE MISSING MANUAL

You’ve actually created two different string objects. Strings (as you’ll see in this
chapter) have their own set of properties and methods, which are different from
the methods and properties of other objects, like arrays. When you create an object
(also called creating an instance of that object) you can access all of the properties
and methods for that object. You’ve actually been doing that in the last few chap-
ters without even realizing it. For example, you can create an array like this:

var names = ['Jack', 'Queen', 'King'];

The variable names is an instance of an array object. To find out the number of
items in that array, you access that array’s length property using dot notation:

names.length

Likewise, you can add an item to the end of that array by using the array object’s
push() method like this (see page 61 for a refresher on array methods):

names.push('Ace');

Whenever you create a new variable and store a value into it, you're really creating
a new instance of a particular type of object. So each of these lines of JavaScript
create different types of JavaScript objects:

var first name = 'Bob'; // a string object

var age = 32; // a number object

var valid = false; // a Boolean object

var data = ['Julia', 22, true]; // an array object composed of other objects

In fact, when you change the type of information stored in a variable, you change
the type of object it is as well. For example, if you create a variable named data that
stores an array, then store a number in the variable, you’ve changed that variable’s
type from an array to a number object:

var data = ['Julia', 22, true]; // an array object composed of other objects
data = 32; //changes to number object

The concepts of objects, properties, methods, and dot-syntax may seem a little
weird at first glance. However, since they are a fundamental part of how JavaScript
works, you’ll get used to them pretty quickly.

Tip: As you continue reading this book, keep in mind these few facts:

« The world of JavaScript is populated with lots of different types of objects.
« Each object has its own properties and methods.

+ You access an object's property or activate an object’s method using dot-syntax: document.write(), for
example.

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES

A Quick Object
Lesson

Strings

Strings are the most common type of data you’ll work with: input from form
fields, the path to an image, a URL, and HTML that you wish to replace on a page
are all examples of the letters, symbols, and numbers that make up strings. Conse-
quently, JavaScript provides lot of methods for working with and manipulating
strings.

Determining the Length of a String

There are times when you want to know how many characters are in a string. For
example, say you want to make sure that when someone creates an account on
your top secret Web site, they create a new password that’s more than 6 letters but
no more than 15. Strings have a length property that gives you just this kind of
information. Add a period after the name of the variable, followed by length to get
the number of characters in the string: name.length.

For example, to make sure a password has the proper number of characters, you
could use a conditional statement to test the password’s length like this:

var password = 'sesame’;

if (password.length <= 6) {
alert('That password is too short.');

} else if (password.length > 15) {
alert('That password is too long.');

}

Note: In the above example, the password is just directly assigned to the variable var password = ‘ses-
ame’. In a real world scenario, you'd get the password from a form field, as described on page 312.

Changing the Case of a String

JavaScript provides two methods to convert strings to all uppercase or all lower-
case, so you can change 'hello' to 'HELLO' or 'NOT" to 'not'. Why, you might ask?
Converting letters in a string to the same case makes comparing two strings easier.
For example, say you created a Quiz program like the one from last chapter (see
page 106) and one of the questions is “Who was the first American to win the Tour
De France?” You might have some code like this to check the quiz-taker’s answer:

var correctAnswer = 'Greg LeMond';
var response = prompt('Who was the first American to win the Tour De.
France?', '');
if (response == correctAnswer) {
// correct
} else {
// incorrect

JAVASCRIPT: THE MISSING MANUAL

The answer is Greg LeMond, but what if the person taking the quiz typed Greg
Lemond? The condition would look like this: 'Greg Lemond' == 'Greg LeMond'".
Since JavaScript treats uppercase letters as different than lowercase letters, the low-
ercase ‘m’ in Lemond wouldn’t match the 'M' in LeMond, so the quiz-taker would
have gotten this question wrong. The same would happen if her key-caps key was
down and she typed GREG LEMOND.

To get around this difficulty, you can convert both strings to the same case and
then compare them:

if (response.toUpperCase() == correctAnswer.toUpperCase()) {
// correct

} else {
// incorrect

}

In this case, the conditional statement converts both the quiz-taker’s answer and
the correct answer to uppercase, so 'Greg Lemond' becomes 'GREG LEMOND'
and 'Greg LeMond' becomes 'GREG LEMOND'.

To get the string all lowercase, use the toLowerCase() method like this:

var answer = 'Greg LeMond';
alert(answer.tolLowerCase()); // 'greg lemond'

Note that neither of these methods actually alters the original string stored in the
variable—they just return that string in either all uppercase or all lowercase. So in
the above example, answer still contains 'Greg LeMond' even after the alert
appears. (In other words, these methods work just like a function that returns
some other value as described on page 102.)

Searching a String: indexOf{() Technique

JavaScript provides several techniques for searching for a word, number, or other
series of characters inside a string. Searching can come in handy, for example, if
you want to know which Web browser a visitor is using to view your Web site.
Every Web browser identifies information about itself in a string containing a lot
of different statistics. You can see that string for yourself by adding this bit of Java-
Script to a page and previewing it in a Web browser:

<script type="text/javascript">
alert(navigator.userAgent);
</script>

Navigator is one of a Web browser’s objects, and userAgent is a property of the
navigator object. The userAgent property contains a long string of information; for
example, on Internet Explorer 7 running on Windows XP, the userAgent property
is: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1). So, if you want to see if
the Web browser was IE 7, you can just search the userAgent string for “MSIE 7”.

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES

117

One method of searching a string is the indexOf() method. Basically, after the
string you add a period, indexOf() and supply the string you’re looking for. The
basic structure looks like this:

string.indexOf('string to look for')

The indexOf() method returns a number: if the search string isn’t found, the
method returns —1. So if you want to check for Internet Explorer, you can do this:

var browser = navigator.userAgent; // this is a string
if (browser.indexOf('MSIE') != -1) {
// this is Internet Explorer

}

In this case, if indexOf(') doesn’t locate the string '"MSIE' in the userAgent string, it
will return —1, so the condition tests to see if the result is not (/=) —1.

When the indexOf() method does find the searched for string, it returns a number
that’s equal to the starting position of the searched for string. The following exam-
ple makes things a lot clearer:

var quote = 'To be, or not to be.'
var searchPosition = quote.indexOf('To be'); // returns 0

Here, indexOf{)searches for the position of "To be' inside the string "To be, or not
to be." The larger string begins with "To be', so indexOf(') finds 'To be' at the first
position. But in the wacky way of programming, the first position is considered 0,
the second letter (o) is at position 1, and the third letter (a space in this case) is 2
(as explained on page 59, arrays are counted in the same way).

The indexOf() method searches from the beginning of the string. You can also
search from the end of the string by using the lastIndexOf() method. For example,
in the Shakespeare quote, the word 'be" appears in two places, so you can locate the
first 'be' using indexOf() and the last 'be' with lastIndexOf():

var quote = "To be, or not to be."
var firstPosition = quote.indexOf('be'); // returns 3
var lastPosition = quote.lastIndexOf('be'); // returns 17

The results of those two methods are pictured in Figure 4-1. In both cases, if 'be'
didn’t exist anywhere in the string, the result would be —1, and if there’s only one
instance of the searched-for word, indexOf() and lastIndexOf() will return the
same value—the starting position of the searched for string within the larger
string.

Extracting Part of a String with slice()

To extract part of a string, use the slice() method. This method returns a portion
of a string. For example, say you had a string like “http://www.sawmac.com” and

JAVASCRIPT: THE MISSING MANUAL

quote.indexOf ('be') ; Figure 4-1:

The indexOf() and lastindexOf() methods search for a particular
string inside a larger string. If the search string is found, its position in

Tlo| |blel,| |olr| Inlolt| |tlo| |ble|.| the larger string is returned.

12|13|14|15|16|17|18(19

’_T

quote.lastIndexOf ('be') ;

°
—
N
w
-
«
)
<
)
©
m
o
"
B

you wanted to eliminate the http:// part. One way to do this is to extract every
character in the string that follows the http:// like this:

var url = 'http://www.sawmac.com';
var domain = url.slice(7); // www.sawmac.com

The slice() method requires a number that indicates the starting index position for
the extracted string (see Figure 4-2). In this example—url.slice(7)—the 7 indicates
the eighth letter in the string (remember, the first letter is at position 0). The
method returns all of the characters starting at the specified index position to the
end of the string.

hit|t|p|:|/|/|w|w|w|. [s|awm|alc|. [clo the way to the end of the string.

7|8 11]|12|13|14|15|16]17|18|19

83

°
"
N
w
I
n
o
©
=
o

url.slice(7); Figure 4-2:
f If you don't supply a second argument to the slice() method, it just
extracts a string from the specified position (7 in this example) all

You can also extract a specific number of characters within a string by supplying a
second argument to the slice() method. Here’s the basic structure of the slice()
method:

string.slice(start, end);

The start value is a number that indicates the first character of the extracted string;
the end value is a little confusing—it’s not the position of the last letter of the
extracted string; it’s actually the position of the last letter + 1. For example, if you
wanted to extract the first five letters of the string "To be, or not to be.', you would
specify 0 as the first argument, and 5 as the second argument. As you can see in
Figure 4-3, 0 is the first letter in the string, and 5 is the sixth letter, but the last
letter specified is not extracted from the string. In other words, the character speci-
fied by the second argument is never part of the extracted string.

Tip: If you want to extract a specific number of characters from a string, just add that number to the start-
ing value. For example, if you want to retrieve the first 10 letters of a string, the first argument would be 0
(the first letter) and the last would be 0 + 10 or just 10: slice(0,10).

You can also specify negative numbers, for example quote.slice(-6,-1). A negative
number counts backwards from the end of the string, as pictured in Figure 4-3.

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES

Finding Patterns in
Strings

var quote=’To be, or not to be.’; Figure4-3:
The slice() method extracts a portion of a string. The

quote.slice(0,5); actual string is not changed in any way. For instance, the
i | string contained in the quote variable in this example isn't
changed by quoteslice(0,5). The method simply returns
T|lo| |ble|,| [olxr| mlolt| |Elo| |ble]- the extracted string, which you can store inside a variable,
R 5| Rl e > e display in an alert box, or even pass as an argument to a

A A 654321 function.
quote.slice(7,13);

quote.slice(-6,-1);

Tip: If you want, say, to extract a string that includes all of the letters from the 6th letter from the end of
the string all the way to the end, you leave off the second argument:

quote.slice(-6);

Finding Patterns in Strings

Sometimes you wish to search a string, not for an exact value, but for a specific
pattern of characters. For example, say you want to make sure when a visitor fills
out an order form, he supplies a phone number in the correct format. You’re not
actually looking for a specific phone number like 503-555-0212. Instead you’re
looking for a general pattern: 3 numbers, a hyphen, three numbers, another
hyphen, and four numbers. You’d like to check the value the visitor entered, and if
it matches the pattern (for example, it’s 415-555-3843, 408-555-3782, or 212-555-
4828, and so on) then everything’s OK. But if it doesn’t match that pattern (for
example, the visitor typed 823lkjxdfglkj) then you’d like to post a message like
“Hey buddy, don’t try to fool us!”

JavaScript lets you use regular expressions to find patterns within a string. A regular
expression is a series of characters that define a pattern that you wish to search for.
As with many programming terms, the name “regular expression” is a bit mislead-
ing. For example, here’s what a common regular expression looks like:

/M -\w.]+@([a-zA-Z0-9][-a-zA-Z0-9]+\.)+[a-zA-Z]{2,4}$/

Unless you’re a super-alien from Omicron 9, there’s nothing very regular-looking
about a regular expression. To create a pattern you use characters like *, +, ?, and \
w, which are translated by the JavaScript interpreter to match real characters in a
string like letters, numbers, and so on.

Note: Pros often shorten the name regular expression to regex.

120 JAVASCRIPT: THE MISSING MANUAL

Creating and Using a Basic Regular Expression

To create a regular expression in JavaScript, you must create a regular expression
object, which is a series of characters between two forward slashes. For example, to
create a regular expression that matches the word 'hello’, you’d type this:

var myMatch = /hello/;

Just as an opening and closing quote mark creates a string, the opening / and clos-
ing / create a regular expression.

There are several string methods that take advantage of regular expressions (you’ll
learn about them starting on page 131), but the most basic method is the search()
method. It works very much like the indexOf(') method, but instead of trying to
find one string inside another, larger string, it searches for a pattern (a regular
expression) inside a string. For example, say you want to find "To be' inside the
string "To be or not to be.' You saw how to do that with the indexOf(') method on
page 117, but here’s how you can do the same thing with a regular expression:

var myRegEx = /To be/; // no quotes around regular expression
var quote = 'To be or not to be.';
var foundPosition = quote.search(myRegEx); // returns 0

If the search() method finds a match, it returns the position of the first letter
matched, and if it doesn’t find a match, it returns —1. So in the above example, the
variable foundPosition is 0, since “To be’ begins at the very beginning (the first let-
ter) of the string.

As you’ll recall from page 117, indexOf() method works in the same way. You
might be thinking that if the two methods are the same, why bother with regular
expressions? The benefit of regular expressions is that they can find patterns in a
string, so they can make much more complicated and subtle comparisons than the
indexOf() method, which always looks for a match to an exact string. For exam-
ple, you could use the indexOf() method to find out if a string contains the Web
address http://www.missingmanuals.com/, but you’d have to use a regular expres-
sion to find any text that matches the format of a URL—exactly the kind of thing
you want to do when verifying if someone supplied a Web address when posting a
comment to your blog.

However, to master regular expressions, you need to learn the often confusing
symbols required to construct a regular expression.

Building a Regular Expression

While a regular expression can be made up of a word or words, more often you’ll
use a combination of letters and special symbols to define a pattern that you hope
to match. Regular expressions provide different symbols to indicate different types
of characters. For example, a single period (.) represents a single character, any
character, while \w matches any letter or number (but not spaces, or symbols like $
or %). Table 4-3 provides a list of the most common pattern-matching characters.

CHAPTER 4: WORKING WITH WORDS, NUMBERS, AND DATES

Finding Patterns in
Strings

121

http://www.missingmanuals.com/

Finding Patterns in
Strings

122

Note: If this entire discussion of “regular” expressions is making your head hurt, you'll be glad to know
this book provides some useful regular expressions (see page 126) that you can copy and use in your
own scripts (without really knowing how they work).

Learning regular expressions is a topic better presented by example, so the rest of
this section walks you through a few examples of regular expressions to help you
wrap your mind around this topic. Assume you want to match five numbers in a
row—>perhaps to check if there’s a U. S. Zip code in a string:

1. Match one number.

The first step is simply to figure out how to match one number. If you refer to
Table 4-3, you’ll see that there’s a special regex symbol for this, \d, which
matches any single number.

2. Match five numbers in a row.

Since \d matches a single number, a simple way to match five numbers is with
this regular expression: \d\d\d\d\d. (Page 124, however, covers a more com-
pact way to write this.)

3. Match only five numbers.

A regular expression is like a precision-guided missile: It sets its target on the
first part of a string that it matches. So, you sometimes end up with a match
that’s part of a complete word or set of characters. This regular expression
matches the first five numbers in a row that it encounters. For example, it will
match 12345 in the number 12345678998. Obviously, 12345678998 isn’t a Zip
code, so you need a regex that targets just five numbers.

The \b character (called the word boundary character) matches any nonletter or
nonnumber character, so you could rewrite your regular expression like this:
\b\d\d\d\d\d\b. You can also use the A character to match the beginning of a
string and the $ character to match the end of a string. This trick comes in
handy if you want the entire string to match your regular expression. For exam-
ple, if someone typed “kjasdflkjsdf 88888 lksadflkjsdkfjl” in a Zip code field on
an order form, you might want to ask the visitor to clarify (and fix) their Zip
code before ordering. After all, you're really looking for something like 97213
(with no other characters in the string). In this case, the regex would be AM\d\d\

d\d\d$.

Note: 7ip codes can have more than five numbers. The ZIP + 4 format includes a dash and four addi-
tional numbers after the first five, like this: 97213-1234. For a regular expression to handle this possibility,
see page 126.

JAVASCRIPT: THE MISSING MANUAL

4. Put your regex into action in JavaScript.

Assume you've already captured a user’s input into a variable named zip, and
you want to test to see if the input is in the form of a valid five-number Zip
code:

var zipTest = /"\d\d\d\d\d$/; //create regex
if (zip.search(zipTest) == -1) {

alert('This is not a valid zip code');
} else {

// is valid format

}

Table 4-3.

Character Matches

\w

\W
\d
\D
\s
\S

A

\b

Any one character—will match a letter, number, space, or other symbol

Any word character including a-z, A-Z, the numbers 0-9, and the underscore
character: _.

Any character that's not a word character. It's the exact opposite of \w.
Any digit 0-9.

Any character except a digit. The opposite of \d.

A space, tab, carriage return, or new line.

Anything but a space, tab, carriage return, or new line.

The beginning of a string. This is useful for making sure no other characters
come before whatever you're trying to match.

The end of a string. Use $ to make sure the characters you wish to match are at
the end of a string. For example, /com$/ matches the string "com", but only
when it's the last three letters of the string. In other words, /com$/ would match
"com" in the string "Infocom," but not 'com' in 'communication'.

A space, beginning of the string, end of string, or any nonletter or number char-
acter such as +,=, or . Use \b to match the beginning or ending of a word, even
if that word is at the beginning or ending of a string.

Any one character between the brackets. For example, [aeiou] matches any one
of those letters in a string. For a range of characters, use a hyphen: [a-z]
matches any one lower case letter; [0-9] matches any one number (the same as

\d)

Any character except one in brackets. For example, [aeiouAEIOU] will match
any character that isn't a vowel. [* 0-9] matches any character that's not a num-
ber (the same as \D).

Either the characters before or after the | character. For example, a|b will match
either a or b, but not both. (See page 130 for an example of this symbol in action.)

Used to escape any special regex symbol (,.\,/, for instance) to search for a lit-
eral example of the symbol in a string. For example, . in regex-speak means
“any character,” but if you want to really match a period in a string you need to
escape it, like this: \, .

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES

Finding Patterns in
Strings

123

Finding Patterns in
Strings

124

The regex example in these steps works, but it seems like a lot of work to type \d
five times. What if you want to match 100 numbers in a row? Fortunately, Java-
Script includes several symbols that can match multiple occurrences of the same
character. Table 4-4 includes a list of these symbols. You place the symbol directly
after the character you wish to match.

For example, to match five numbers, you can write \d{5}. The \d matches one
number, then the {5} tells the JavaScript interpreter to match five numbers. So
\d{100} would match 100 digits in a row.

Let’s go through another example. Say you wanted to find the name of any GIF file
in a string. In addition, you want to extract the file name and perhaps use it some-
how in your script (for example, you can use the match() method described on
page 131). In other words, you want to find any string that matches the basic pat-
tern of a GIF file name, such as logo.gif, banner.gif or ad.gif.

1. Identify the common pattern between these names.

To build a regular expression, you first need to know what pattern of charac-
ters you're searching for. Here, since you’re after GIFs, you know all the file
names will end in .gif. In other words, there can be any number of letters or
numbers or other characters before .gif.

2. Find .gif.

Since you’re after the literal string '.gif', you might think that part of the regular
expression would just be .gif. However, if you check out Table 4-3, you’ll see
that a period has special meaning as a “match any character” character. So .gif
would match “.gif,” but it would also match “tgif.” A period matches any single
character so in addition to matching a period, it will also match the “t” in tgif.
To create a regex with a literal period, add a slash before it; so \. translates to
“find me the period symbol”. So the regex to find .gif would be \.gif.

3. Find any number of characters before .gif.

To find any number of characters, you can use .*, which translates to “find one
character (.) zero or more times (*).” That regular expression matches all of the
letters in any string. However, if you used that to create a regular expression like
.*\.gif, you could end up matching more than just a file name. For example, if
you have the string 'the file is logo.gif', the regex .*\.gif will match the entire
string, when what you really want is just logo.gif. To do that, use the \S charac-
ter, which matches any nonspace character: \S*\.gif matches just logo.gif in the
string.

4. Make the search case-insensitive.

There’s one more wrinkle in this regular expression: it only finds files that end
in .gif, but .GIF is also a valid file extension, so this regex wouldn’t pick up on a
name like logo.GIF. To make a regular expression ignore the difference between

JAVASCRIPT: THE MISSING MANUAL

upper and lowercase letters, you use the i argument when you create the regu-
lar expression:

/\S*\.gif/i

Notice that the i goes outside of the pattern and to the right of the / that defines
the end of the regular expression pattern.

5. Put it into action:

var testString = 'The file is logo.gif'; // the string to test
var gifRegex = /\S*\.gif/i; // the regular expression

var results = testString.match(gifRegex);

var file = results[o]; // logo.gif

This code pulls out the file name from the string. (You’ll learn how the match()
method works on page 131.)

Grouping Parts of a Pattern

You can use parentheses to create a subgroup within a pattern. Subgroups come
in very handy when using any of the characters in Table 4-4 to match multiple
instances of the same pattern.

Table 4-4. Characters used for matching multiple occurrences of the same character or pattern

Character Matches

? Zero or one occurrences of the previous item, meaning the previous item is
optional, but if it does appear, it can only appear once. For example the regex
colou?r will match both “color” and “colour,” but not “colouur.”

+ One or more occurrences of the previous item. The previous item must appear
at least once.

* Zero or more occurrences of the previous item. The previous item is optional
and may appear any number of times. For example, . * matches any number of
characters.

{n} An exact number of occurrences of the previous item. For example \d{3} only

matches three numbers in a row.

{n, } The previous item n or more times. For example, a{2,} will match the letter “a”
two or more times: that would match “aa” in the word “aardvark” and “aaaa”
in the word “aaaahhhh.”

{n,m} The previous item at least n times but no more than m times. So \d{3,4} will
match three or four numbers in a row (but not two numbers in a row, nor five
numbers in a row).

For example, say you want to see if a string contains either “Apr” or “April”—both
of those begin with “Apr,” so you know that you want to match that, but you can’t
just match “Apr,” since you’d also match the “Apr” in “Apricot” or “Aprimecorp.”
So, you must match “Apr” followed by a space or other word ending (that’s the \b
regular expression character described in Table 4-3) or April followed by a word

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES

Finding Patterns in
Strings

125

Finding Patterns in
Strings

126

ending. In other words, the “il” is optional. Here’s how you could do that using
parentheses:

var sentence = 'April is the cruelest month.';
var aprMatch = /Apr(il)?\b/;
if (sentence.search(aprMatch) != -1) {

// found Apr or April
} else {

//not found
}

The regular expression used here—/Apr(il)?\b/—makes the “Apr” required, but
the subpattern—(il)—optional (that ? character means zero or one time). Finally,
the \b matches the end of a word, so you won’t match “Apricot” or “Aprilshowers.”
(See the box on page 133 for another use of subpatterns.)

Tip: You can find a complete library of regular expressions at www.regexiib.com. At this Web site, you'll
find a regular expression for any situation.

Useful Regular Expressions

Creating a regular expression has its challenges. Not only do you need to under-
stand how the different regular expression characters work, but you then must fig-
ure out the proper pattern for different possible searches. For example, if you want
to find a match for a Zip code, you need to take into account the fact that a Zip
code may be just five numbers (97213) or 5+4 (97213-3333). To get you started on
the path to using regular expressions, here are a few common ones.

Note: If you don't feel like typing these regular expressions (and who could blame you), you'll find them
already set up for you in a file named example_regex.txt in the chapter04 folder that's part of the tutorial
download. (See page 27 for information on downloading the tutorial files.)

U.S. Zip code

Postal codes vary from country to country, but in the United States they appear as
either five numbers, or five numbers followed by a hyphen and four numbers.
Here’s the regex that matches both those options:

\d{5}(-\d{a})?

Tip: For regular expressions that match the postal codes of other countries visit http,//regexiib.com/
Search.aspx?k=postal+code.

That regular expression breaks down into the following smaller pieces:

+ \d{5} matches five digits, as in 97213.

JAVASCRIPT: THE MISSING MANUAL

http://www.regexlib.com
http://regexlib.com/Search.aspx?k=postal+code
http://regexlib.com/Search.aspx?k=postal+code

+ () creates a subpattern. Everything between the parentheses is considered a sin-
gle pattern to be matched. You’ll see why that’s important in a moment.

+ -\d{4} matches the hyphen followed by four digits, like this: -1234.

+ ? matches zero or one instance of the preceding pattern. Here’s where the
parentheses come in: (-\d{4}) is treated as a single unit, so the ? means match
zero or one instance of a hyphen followed by four digits. Because you don’t
have to include the hyphen + four, that pattern might appear zero times. In
other words, if you're testing a value like 97213, you’ll still get a match because
the hyphen followed by four digits is optional.

Tip: To make sure an entire string matches a regular expression, begin the regex with * and end it with
$. For example, if you want to make sure that someone only typed a validly formatted Zip code into a Zip
code form field, use the regex ~ \d{5}(-|d{4})?S. to prevent a response like “blah 97213 blah blah.”

U.S. phone number

U.S. phone numbers have a three-digit area code followed by seven more digits.
However, people write phone numbers in many different ways, like 503-555-1212,
(503) 555-1212, 503.555.1212, or just 503 555 1212. A regex for this pattern is:

\C@OABEH?[- JOA{BEH -.1(\d{4})

Tip: For regular expressions that match the phone number format of other countries, visit http;//regexlib.
comySearch.aspx?’k=phone+number.

This regex looks pretty complicated, but if you break it down (and have a good
translation like the following) it comes out making sense:

+ \('matches a literal opening parenthesis character. Because parentheses are used
to group patterns (see the Zip code example previously), the opening parenthe-
ses has special meaning in regular expressions. To tell the JavaScript interpreter
to match an actual opening parenthesis, you need to escape the character (just
like escaping the quotes discussed on page 42) with the forward slash character.

+ ? indicates that the (character is optional, so a phone number without paren-
theses like 503-555-1212 will still match.

+ (\d{3}) is a subpattern that matches any three digits.
+ \)? matches an optional closing parenthesis.

« [-.] will match either a space, hyphen, or period. (Note that normally you have
to escape a period like this \. in order to tell the JavaScript interpreter that you
want to match the period character and not treat it as the special regular expres-
sion symbol that matches any character; however, when inside brackets, a
period is always treated literally.)

+ (\d{3}) is another subpattern that matches any three digits.

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES

Finding Patterns in
Strings

127

http://regexlib.com/Search.aspx?k=phone+number
http://regexlib.com/Search.aspx?k=phone+number

Finding Patterns in
Strings

128

+ [-.] will match either a space, hyphen or period.

+ (\d{4}) is the last subpattern, and it matches any four digits.

Note: Subpatterns are patterns that appear inside parentheses, as in (d{3}) in the phone number regu-
lar expression above. They come in very handy when you use the replace(), method as described in the
box on page 133.

Email address

Checking for a valid email address is a common chore when accepting user input
from a form. A lot of people try to get away without trying to provide a valid email
using a response like “none of your business,” or people just mistype their email
address (missing@sawmac.commm for example). The following regex can check to
see if a string contains a properly formatted email address:

[-\w.]+@([A-20-9][-A-20-9]+\.)+[A-2]{2,4}

Note: This regex doesn't check to see if an address is somebody’s real, working email address, it just
checks that it's formatted like a real email address.

This regex breaks down like this:

* [-\w.]+ matches a hyphen, any word character, or a period one or more times.
So it will match “bob,” “bob.smith,” or “bob-smith.”

+ @ is the @ sign you find in an email address: missing@sawmac.com.

* [A-z0-9] matches one letter or number.

+ [-A-z0-9]+ matches one or more instances of a letter, number, or hyphen.
+ \. is a period character so it would match the period in sawmac.com.

* + matches one or more instances of the pattern that includes the above three
matches. This character allows for subdomain names like bob@mail.sawmac.
com.

+ [A-z]{2,4} is any letter 2, 3, or 4 times. This matches the com in .com, or uk in .uk.

Note: The emalil regex listed above doesn't match all technically valid email addresses. For example,
#S90& /=21 _"{|} ~ @example.com is technically a valid email address, but the regex described here
won't match it. It's designed to find email addresses that people would actually use. If you really want to
be accurate, you can use the following regex. Type this expression on a single line:

JA\WHESHBN k4N /=27 {] 3. - 1+@(2: [a-z\d][a-2z\d-]*(?:\.[a-z\d][a-Zz\d-]*) ?)+\.
(?:[a-z][a-z\d-]+)$/1

JAVASCRIPT: THE MISSING MANUAL

missing@sawmac.commm

Date

A date can be written in many different ways; for example, 09/28/2008, 9-28-2007,
09 28 2007, or even 09.28.2007. (And those are just formats for the United States.
In other part of the world, the day appears before the month like 28.09.2007.)
Because your visitors may enter a date in any one of these formats, you need a way
to check to see if they supplied a validly formatted date. (In the box on page 133,
you’ll learn how to convert any of these formats into a single, standard format, so
that you can make sure all the dates you receive on a form are formatted correctly.)

Here’s the regex that checks for a correctly entered date:

([o1]\d)[-\/ .1([0123]12\d)[-\/ .1(\d{4})

+ () surrounds the next two regex patterns to group them. Together they form
the number for the month.

+ [01]? matches either 0 or 1 and the ? makes this optional. This is for the first
number in a month. Obviously it can’t be bigger than 1—there’s no 22 month.
In addition, if the month is January through September, you might just get 5
instead of 05. That’s why it’s optional.

+ \d matches any number.

« [-V/ .] will match a hyphen, a forward slash, a period, or a space character.
These are the acceptable separators between the month and day, like 10/21, 10 21,
10.21, or 10-21.

+ () is the next subpattern, which is meant to capture the day of the month.

+ [0123]? matches either 0, 1, 2, or 3 zero or more times. Since there’s no 40th day
of the month, you limit the first number of the month to one of these four dig-
its. This pattern is optional (as determined by the ? character), because some-
one might just type 9 instead of 09 for the ninth day of the month.

+ \d matches any digit.

 [-\/.] is the same as above.

+ () captures the year.

+ \d{4} matches any four digits, like 1908 or 2880.

Web address

Matching a Web address is useful if you’re asking a visitor for his Web site address
and you want to make sure he’s supplied one, or if you want to scan some text and
identify every URL listed. A basic regular expression for URLs is:

((\bhttps?:\/\/) | (\bwww\.))\S*

This expression is a little tricky because it uses lots of parentheses to group differ-
ent parts of the expression. Figure 4-4 can help guide you through this regular

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES

Finding Patterns in
Strings

129

Finding Patterns in
Strings

expression. One set of parentheses (labeled 1) wraps around two other parentheti-
cal groups (2 and 3). The | character between the two groups represents “or”. In
other words, the regular expression needs to match either 2 or 3.

+ (is the start of the outer group (1 in Figure 4-4).

+ (is the start of inner group (2 in Figure 4-4).

+ \b matches the beginning of a word.

* http matches the beginning of a complete Web address that begins with http.

+ s?is an optional s. Since a Web page may be sent via a secure connection, a valid
Web address may also begin with https.

* :\/\/ matches ://. Since the forward slash has meaning in regular expressions,
you need to precede it by a backslash to match the forward slash character.

+) is the end of the inner group (2 in Figure 4-4). Taken all together, this group
will match either http:// or https://.

matches either one or the other group (2 or 3 in Figure 4-4).
+ (is the start of second inner group (3 in Figure 4-4).

+ \b matches the beginning of a word.

« www\. matches www..

+) is the end of the second inner group (3 in Figure 4-4). This group will capture
a URL that is missing the http:// but begins with www.

+) is the end of the outer group (1 in Figure 4-4). At this point, the regular
expression will match text that begins with http://, https://, or www.

+ \§* matches zero or more nonspace characters.

This expression isn’t foolproof (for example, it would match a nonsensical URL
like http://#$*%&*@*), but it’s relatively simple, and will successfully match real
URLs like http://www.sawmac.com/missing/js/index.html.

o Figure 4-4:
You can group expressions using parentheses and look for

((\bhttps?\:\/\/

T

l either one of two expressions by using the | (pipe) character.
For example, the outer expression (1) will match any text that
\bwww\ .)) \S* matches either 2 or 3.

2]

130

Tip: To see if a string only contains a URL (nothing comes before or after the URL), use the * and
$ characters at the beginning and end of the regular expression and remove the |b characters:

" ((https?:\/) () |S”S.

JAVASCRIPT: THE MISSING MANUAL

http://www.sawmac.com/missing/js/index.html

Matching a Pattern

The search() method described on page 121 is one way to see if a string contains a
particular regular expression pattern. The match() method is another. You can use
it with a string to not only see if a pattern exists within the string, but to also cap-
ture that pattern so that you can use it later in your script. For example, say you
have a text area field on a form for a visitor to add a comment to your site. Per-
haps you want to check if the comments include a URL, and if so, get the URL for
further processing.

The following code finds and captures a URL using match():

// create a variable containing a string with a URL

var text='my web site is www.missingmanuals.com';

// create a regular expression

var urlRegex = /((\bhttps?:\/\/)|(\bwww\.))\S*/

// find a match for the regular expression in the string
var url = text.match(urlRegex);

alert(url[o]); // www.missingmanuals.com

First, the code creates a variable containing a string that includes the URL www.
missingmanuals.com. Next, a regular expression matches a URL (see page 129 for
the details on this regex). Finally, it runs the match() method on the string. The
match(') function is a string method, so you start with the name of a variable con-
taining a string, add a period, followed by match(). You pass the match() method
a regular expression to match.

In the above example, the variable url holds the results of the match. If the regular
expression pattern isn’t found in the string, then the result is a special JavaScript
value called null. If there is a match, the script returns an array—the first value of
the array is the matched text. For instance, in this example, the variable url con-
tains an array, with the first array element being the matched text. In this case,
url[0] contains www.missingmanuals.com (see page 56 for more on arrays).

Tip: In JavaScript, a null value is treated the same as false, so you could test to see if the match()
method actually matched something like this:

var url = text.match(urlRegex);
if (! url) {

//no match
} else {

//match

}

Matching every instance of a pattern

The match() method works in two different ways, depending on how you’ve set up
your regular expression. In the above example, the method returns an array with
the first matched text. So, if you had a long string containing multiple URLs, only

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES

Finding Patterns in
Strings

131

http://www.missingmanuals.com
http://www.missingmanuals.com
http://www.missingmanuals.com

Finding Patterns in
Strings

132

the first URL is found. However, you can also turn on a regular expression’s global
search property to search for more than one match in a string.

You make a search global by adding a g at the end of a regular expression when
you create it (just like the i used for a case-insensitive search, as discussed on page
125):

var urlRegex = /((\bhttps?:\/\7)|(\bwww\.))\S*/g

Notice that the g goes outside of the ending / (which is used to enclose the actual
pattern). This regular expression performs a global search; when used with the
match(') method, it searches for every match within the string and will return an
array of all matched text—a great way to find every URL in a blog entry, for exam-
ple, or every instance of a word in a long block of text.

You could rewrite the code from page 131 using a global search, like this:

// create a variable containing a string with a URL

var text='there are a lot of great web sites like
www.missingmanuals.com and http://www.oreilly.com';

// create a regular expression with global search

var urlRegex = /((\bhttps?:\/\7)|(\bwww\.))\S*/g

// find a match for the regular expression in the string

var url = text.match(urlRegex);

alert(urlfo]);

alert(url[1]); // http://www.oreilly.com

You can determine the number of matches by accessing the length property of the
resulting array: url.length. This example will return the number 2, since two URLs
were found in the tested string. In addition, you access each matched string by
using the array’s index number (as described on page 59); so in this example,
url[0] is the first match and url[1] is the second.

Replacing Text

You can also use regular expression to replace text within a string. For example, say
you have a string that contains a date formatted like this: 10.28.2008. However,
you want the date to be formatted like this: 10/28/2008. The replace() method can
do that. It takes this form:

string.replace(regex, 'replace');

The replace() method takes two arguments: the first is a regular expression that
you wish to find in the string; the second is a string that replaces any matches to
the regular expression. So, to change the format of 10.28.2008 to 10/28/2008, you
could do this:

var date='10.28.2008"; // a string

var replaceRegex = /\./g // a regular expression

var date = date.replace(replaceRegex, '/'); // replace . with /
alert(date); // 10/28/2008

B W N =

JAVASCRIPT: THE MISSING MANUAL

Finding Patterns in
Strings

Line 1 creates a variable and stores the string '10.28.2008' in it. In a real program,
this string could be input from a form. Line 2 creates the regular expression: the /
and / marks the beginning and end of the regular expression pattern; the \. indi-
cates a literal period; and the g means a global replace—every instance of the
period will be replaced. If you left out the g, only the first matched period would be
replaced, and you’d end up with '10 /28.2008'". Line 3 performs the actual replace-
ment—changing each . to a /, and stores the result back into the date variable.
Finally the newly formed date—10/28/2008—is displayed in an alert box.

POWER USERS’ CLINIC

Using Subpatterns to Replace Text

The replace() method not only can replace matched text
(like the . in 10.28.2008) with another string (like /), but it
can also remember subpatterns within a regular expression
and use those subpatterns when replacing text. As
explained in the Note on page 128, a subpattern is any part

This example uses the regular expression described on
page 129 to match a date. Notice the groups of patterns
within parentheses—for example, (f07]?|d). Each subpat-
tern matches one part of the date. The replace() method
remembers matches to those subpatterns, and can use

of a regular expression enclosed in parentheses. For exam-
ple the (il) in the regular expression /Apr(il)?\b/ is a subpat-
tern.

them as part of the replacement string. In this case, the
replacement string is $1/52/53". A dollar sign followed by a
number represents one of the matched subpatterns. $1, for
example, matches the first subpattern—the month. So this
replacement string translates to “put the first subpattern
here, followed by a /, followed by the second subpattern
match, followed by another /, and finally followed by the
last subpattern.”

The use of the replace() method demonstrated on page
132 changes 10.28.2008 to 10/27/2008. But what if you
also want to put other formatted dates like 10 28 2008 or
10-28-2008 into the same 10/27/2008 format? Instead of
writing multiple lines of JavaScript code to replace periods,
spaces, and hyphens, you can create a general pattern to
match any of these formats:

var date='10-28-2008";

var regex = /([01]2\d)[-\/
\/ .1(\d{4})/;

date = date.replace(regex, '$1/$2/$3');

.1([0123]2\d)[-

Trying Out Regular Expressions

As mentioned on page 126, youll find sample regular expressions in the example_
regex.txt file that accompanies the Chapter 4 tutorial files. In addition, you’ll find a
file named regex_tester.html. You can open this Web page in a browser and try
your hand at creating your own regular expressions (see Figure 4-5). Just type the
string you’d like to search in the “String to Search” box, and then type a regular
expression in the box (leave out the beginning and ending / marks used when cre-
ating a regex in JavaScript and just type the search pattern). You can then select the
method you’d like to use—Search, Match, or Replace—and any options, like case-
insensitivity or global search. Click the Run button and see how your regex works.

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES 133

000

Regular Expression Tester

< Figure 4-5:

(S

ﬁ_‘ E | | @ htto:/ftutorials.local/chapter04/regex _tester.htm

T+ Googe Q) This sample page,

© Disable ~ £ Cookies » (] €SS v [£] Forms ~ [i] Images » @ Information = () Miscellaneous * ./ Outline ~ | { Resize » 4 Tools v [&] View Sout

included with the tutorial
files, lets you test out
regular expressions using

Regular Expression Tester

different methods—like
Search or Match—and try
different options such as

Test
STRING TO SEARCH

case-insensitive or global
searches.

the date was 10-28-2008

REGULAR EXPRESSION TO USE
|(l01]?\d)l—\f Q012314)-\/ J(\c{4h

METHOD TO USE
 Search ¢ Match ¢ Replace

OPTIONS
I~ Case Insensitive [~ Global

iRun

Results (Matched text in red)

Regex: ([o1]\d)[-\/ .1([o123]2\d)[-\/ .](\d{4})
Found at position 13 in string:

the date was 10-28-2008

-

NI

B jQuery 121 & Getvideo @ JB vslow
— - —

134

Numbers

Numbers are an important part of programming. They let you perform tasks like
calculating a total sales cost, determining the distance between two points, or sim-
ulating the roll of a die by generating a random number from 1 to 6. JavaScript
gives you many different ways of working with numbers.

Changing a String to a Number
When you create a variable, you can store a number in it like this:

var a = 3.25;

However, there are times when a number is actually a string. For example, if you
use the prompt() method (page 55) to get visitor input, even if someone types 3.25,
you’ll end up with a string that contains a number. In other words, the result will
be '3.25' (a string) and not 3.25 (a number). Frequently, this method doesn’t cause
a problem, since the JavaScript interpreter usually converts a string to a number
when it seems like a number is called for. For example:

var a = '3';

var b = '4';
alert(a*b); // 12

JAVASCRIPT: THE MISSING MANUAL

In this example, even though the variables a and b are both strings, the JavaScript
interpreter converts them to numbers to perform the multiplication (3 x4) and
return the result: 12.

However, when you use the + operator, the JavaScript interpreter won’t make that
conversion, and you can end up with some strange results:

var a = ;

'3
var b = '4
alert(a+b); // 34

In this case, both a and b are strings; the + operator not only does mathematical
addition, it also combines (concatenates) two strings together (see page 49). So
instead of adding 3 and 4 to get 7, in this example, you end up with two strings
fused together: 34.

When you need to convert a string to a number, JavaScript provides several ways:
* Number(') converts whatever string is passed to it into a number, like this:

var a = '3';
a = Number(a); // a is now the number 3

So the problem of adding two strings that contain numbers could be fixed like
this:

var a = '3';

var b = '4';
var total = Number(a) + Number(b); // 7

A faster technique is the + operator, which does the same thing as Number().
Just add a + in front of a variable containing a string, and the JavaScript inter-
preter converts the string to a number.

var a = '3';
var b = '4';
var total = +a + +b // 7

The downside of either of these two techniques is that if the string contains any-
thing except numbers, a single period or a + or — sign at the beginning of the
string, you’ll end up with a nonnumber, or the JavaScript value NaN, which
means “not a number” (see page 50).

« parselnt() tries to convert a string to a number as well. However, unlike
Number(), parselnt() will try to change even a string with letters to a number,
as long as the string begins with numbers. This command can come in handy
when you get a string like '20 years' as the response to a question about some-
one’s age:

var age = '20 years';
age = parselnt(age,10); //20

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES

135

136

The parselnt() method looks for either a number or a + or — sign at the begin-
ning of the string and continues to look for numbers until it encounters a non-
number. So in the above example, it returns the number 20 and ignores the
other part of the string, ' years'.

Note: You're probably wondering what the 10 is doing in parselnt(age, 10),. JavaScript can handle Octal
numbers (which are based on 8 different digits 0-7, unlike decimal numbers which are based on 10 differ-
ent digits 0-9); when you add the, 70 to parselnt(), you're telling the JavaScript interpreter to treat what-
ever the input is as a decimal number. That way, JavaScript correctly interprets a string like ‘08" in a
prompt window or form field—decimally. For example, in this code age would be equal to 0:

var age = '08 years';
age = parselnt(age);

However, in the following code the variable age would hold the value 8:

var age = '08 years';
age = parselnt(age,10);

In other words, always add the, 70 when using the parselnt() method.

This method is also helpful when dealing with CSS units. For example, if you
want to find the width of an element on a page (you’ll learn how to do that on
page 186), you often end up with a string like this: 200px’ (meaning 200 pixels
wide). Using the parselnt() method, you can retrieve just the number value and
then perform some operation on that value.

« parseFloat() is like parselnt(), but you use it when a string might contain a dec-
imal point. For example, if you have a string like '4.5 acres' you can use
parseFloat() to retrieve the entire value including decimal places:

var space = '4.5 acres';
space = parseFloat(space); // 4.5

If you used parselnt() for the above example, you’d end up with just the num-
ber 4, since parselnt() only tries to retrieve whole numbers (integers).

Which of the above methods you use depends on the situation: If your goal is to
add two numbers, but they’re strings, then use Number() or + operator. However,
if you want to extract a number from a string that might include letters, like
'200px' or '1.5em’, then use parselnt() to capture whole numbers (200, for exam-
ple) or parseFloat() to capture numbers with decimals (1.5, for example).

Testing for Numbers

When using JavaScript to manipulate user input, you often need to verify that the
information supplied by the visitor is of the correct type. For example, if you ask
for people’s years of birth, you want to make sure they supply a number. Likewise,
when you’re performing a mathematical calculation, if the data you use for the cal-
culation isn’t a number, then your script might break.

JAVASCRIPT: THE MISSING MANUAL

To verify that a string is a number, use the isNaN(') method. This method takes a
string as an argument and tests whether the string is “not a number.” If the string
contains anything except a plus or minus (for positive and negative numbers) fol-
lowed by numbers and an optional decimal value, it’s considered “not a number,”
so the string '-23.25' is a number, but the string '24 pixels' is not. This method
returns either true (if the string is not a number) or false (if it is a number). You
can use isNaN() as part of a conditional statement like this:

var x = '10'; // is a number
if (isNaN(x)) {

// is NOT a number
} else {

// it is a number

}

Rounding Numbers

JavaScript provides a way to round a fractional number to an integer—for exam-
ple, rounding 4.5 up to 5. Rounding comes in handy when you’re performing a
calculation that must result in a whole number. For example, say you’re using
JavaScript to dynamically set a pixel height of a <div>> tag on the page based on the
height of the browser window. In other words, the height of the <div> is calcu-
lated using the window’s height. Any calculation you make might result in a deci-
mal value (like 300.25), but since there’s no such thing as .25 pixels, you need to
round the final calculation to the nearest integer (300, for example).

You can round a number using the round() method of the Math object. The
syntax for this looks a little unusual:

Math.round(number)

You pass a number (or variable containing a number) to the round() method, and
it returns an integer. If the original number has a decimal place with a value below
.5, the number is rounded down; if the decimal place is .5 or above, it is rounded
up. For example, 4.4 would round down to 4, while 4.5 rounds up to 5.

var decimalNum = 10.25;

var roundedNum = Math.round(decimalNum); // 10

Note: JavaScript provides two other methods for rounding numbers Math.ceil() and Math.floor().
You use them just like Math.round(), but Math.ceil() always rounds the number up (for example,
Math.ceil(4.0001) returns 5), while Math.floor() always rounds the number down: Math.floor(4.99999)
returns 4. To keep these two methods clear in your mind, think a ceifing is up, and a floor is down.

Formatting Currency Values

When calculating product costs or shopping cart totals, you’ll usually include the
cost, plus two decimals out, like this: 9.99. But even if the monetary value is a
whole number, it’'s common to add two zeros, like this: 10.00. And a currency

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES

137

138

value like 8.9 is written as 8.90. Unfortunately, JavaScript doesn’t see numbers that
way: it leaves the trailing zeros off (10 instead of 10.00, and 8.9 instead of 8.90, for
example).

Fortunately, there’s a method for numbers called toFixed(), which lets you con-
vert a number to a string that matches the number of decimal places you want. To
use it, add a period after a number (or after the name of a variable containing a
number), followed by toFixed(2):

var cost = 10;
var printCost = '$' + cost.toFixed(2); // $10.00

The number you pass the foFixed() method determines how many decimal places
to go out to. For currency, use 2 to end up with numbers like 10.00 or 9.90; if you
use 3, you end up with 3 decimal places, like 10.000 or 9.900.

If the number starts off with more decimal places than you specify, the number is
rounded to the number of decimal places specified. For example:

var cost = 10.289;
var printCost = '$' + cost.toFixed(2); // $10.29

In this case, the 10.289 is rounded up to 10.29.

Note: The tofixed() method only works with numbers. So if you use a string, you end up with an error:

var cost='10";//a string
var printCost="$"' + cost.toFixed(2);//error

To get around this problem, you need to convert the string to a number as described on page 134, like
this:

var cost='10";//a string
cost = +cost;
var printCost="$" + cost.toFixed(2);//$10.00

Creating a Random Number

Random numbers can help add variety to a program. For example, say you have an
array of questions for a quiz program (like Script 3.3 on page 106). Instead of ask-
ing the same questions in the same order each time, you can randomly select one
question in the array. Or, you could use JavaScript to randomly select the name of
a graphic file from an array and display a different image each time the page loads.
Both of these tasks require a random number.

JavaScript provides the Math.random() method for creating random numbers.
This method returns a randomly generated number between 0 and 1 (for exam-
ple .9716907176080688 or .10345038010895868). While you might not have much
need for numbers like those, you can use some simple math operations to generate
a whole number from 0 to another number. For example, to generate a number
from 0 to 9, you’d use this code:

Math.floor(Math.random()*10);

JAVASCRIPT: THE MISSING MANUAL

This code breaks down into two parts. The part inside the Math.floor() method—
Math.random()*10—generates a random number between 0 and 10. That will
generate numbers like 4.190788392268892; and since the random number is
between 0 and 10, it never is 10. To get a whole number, the random result is
passed to the Math.floor() method, which rounds any decimal number down to
the nearest whole number, so 3.4448588848 becomes 3 and .1111939498984
becomes 0.

If you want to get a random number between 1 and another number, just multiply
the random() method (case issue) by the uppermost number and add one to the
total. For example, if you want to simulate a die roll to get a number from 1 to 6:

var roll = Math.floor(Math.random()*6 +1); // 1,2,3,4,5 or 6

Randomly selecting an array element

You can use the Math.random() method to randomly select an item from an array.
As discussed on page 59, each item in an array is accessed using an index number.
The first item in an array uses an index value of 0, and the last item in the array is
accessed with an index number that’s 1 minus the total number of items in the
array. Using the Math.random() method makes it really easy to randomly select an
array item:

var people = ['Ron','Sally','Tricia','Bob']; //create an array
var random = Math.floor(Math.random() * people.length);
var rndPerson = people[random]; //

The first line of this code creates an array with four names. The second line does
two things: First, it generates a random number between 0 and the number of
items in the array (people.length)—in this example, a number between 0 and 4.
Then it uses the Math.floor() method to round down to the nearest integer, so it
will produce the number 0, 1, 2, or 3. Finally, it uses that number to access one ele-
ment from the array and store it in a variable named rndPerson.

A function for selecting a random number

Functions are a great way to create useful, reusable snippets of code (page 97). If
you use random numbers frequently, you might want a simple function to help
you select a random number between any two numbers—for example, a number
between 1 and 6, or 100 and 1,000. The following function is called using two
arguments; The first is the bottom possible value (1 for example), and the second
is the largest possible value (6 for example):

function rndNum(from, to) {
return Math.floor((Math.random()*(to - from + 1)) + from);
}

To use this function, add it to your Web page (as described on page 98), and then
call it like this:

var dieRoll = rndNum(1,6); // get a number between 1 and 6

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES

139

Dates and Times

140

Dates and Times

If you want to keep track of the current date or time, turn to JavaScript’s Date
object. This special JavaScript object lets you determine the year, month, day of the
week, hour, and more. To use it, you create a variable and store a new Date object
inside it like this:

var now = new Date();

The new Date() command creates a Date object containing the current date and
time. Once created, you can access different pieces of time and date information
using various date-related methods as listed in Table 4-5. For example, to get the
current year use the getFullYear() method like this:

var now = new Date();
var year = now.getFullYear();

Note: new Date() retrieves the current time and date as determined by each visitor's computer. In other
words, if someone hasn't correctly set their computer’s clock, then the date and time won't be accurate.

Table 4-5. Methods for accessing parts of the Date object

Method What it returns

getFullyear() The year: 2008, for example.

getMonth() The month as an integer between 0 and 11: 0 is January and 11 is December.

getDate() The day of the month—a number between 1 and 31.

getDay() The day of the week as a number between 0 and 6. 0 is Sunday, and 6 is
Saturday.

getHours () Number of hours on a 24-hour clock (i.e. a number between 0 and 23). For
example, 11p.m. is 23.

getMinutes() Number of minutes between 0 and 59.

getSeconds () Number of seconds between 0 and 59.

getTime() Total number of milliseconds since January 1, 1970 at midnight (see box on
page 142).

Getting the Month

To retrieve the month for a Date object, use the getMonth() method, which
returns the month’s number:

var now = new Date();
var month = now.getMonth();

However, instead of returning a number that makes sense to us humans (as in 1
meaning January), this method returns a number that’s one less. For example,

JAVASCRIPT: THE MISSING MANUAL

January is 0, February is 1, and so on. If you want to retrieve a number that
matches how we think of months, just add 1 like this:

var now = new Date();
var month = now.getMonth()+1;//matches the real month

There’s no built-in JavaScript command that tells you the name of a month. Fortu-
nately, JavaScript’s strange way of numbering months comes in handy when you
want to determine the actual name of the month. You can accomplish that by first
creating an array of month names, then accessing a name using the index number
for that month:

var months = ['January','February', 'March’,'April’, 'May’,
"June', 'July', 'August’, 'September’,
'October’, 'November', 'December'];

var now = new Date();

var month = months[now.getMonth()];

The first line creates an array with all twelve month names, in the order they occur
(January—December). Remember that to access an array item you use an index
number, and that arrays are numbered starting with 0 (see page 59). So to access
the first item of the array months, you use months[0]. So, by using the getMonth()
method, you can retrieve a number to use as an index for the months array and
thus retrieve the name for that month.

Getting the Day of the Week

The getDay() method retrieves the day of the week. And as with the getMonth()
method, the JavaScript interpreter returns a number that’s one less than what
you’d expect: 0 is considered Sunday, the first day of the week, while Saturday is 6.
Since the name of the day of the week is usually more useful for your visitors, you
can use an array to store the day names and use the getDay() method to access the
particular day in the array, like this:

var days = ['Sunday', 'Monday", 'Tuesday', 'Wednesday',
'Thursday', 'Friday', 'Saturday'];

var now = new Date();

var dayOfleek = days[now.getDay()];

In the tutorial on page 146, you’'ll see use both the getDay() and getMonth() tech-
niques to create a useful function for creating a human-readable date.

Getting the Time

The Date object also contains the current time, so you can display the current time
on a Web page or use the time to determine if the visitor is viewing the page in the
a.m. or p.m. You can then do something with that information, like display a
background image of the sun during the day, or the moon at night.

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES

141

Dates and Times

POWER USERS’ CLINIC

The Date Object Behind the Scenes

JavaScript lets you access particular elements of the Date
object, such as the year or the day of the month. However,
the JavaScript interpreter actually thinks of a date as the
number of milliseconds that have passed since midnight on
January 1, 1970. For example, Wednesday, July 2, 2008 is
actually 1214982000000 to the JavaScript interpreter.

That isn't a joke: As far as JavaScript is concerned, the
beginning of time was January 1, 1970. That date (called
the “Unix epoch”) was arbitrarily chosen in the 70s by pro-
grammers creating the Unix operating system, so they
could all agree on a way of keeping track of time. Since
then, this way of tracking a date has become common in
many programming languages and platforms.

Whenever you use a Date method like getFullYear(), the
JavaScript interpreter does the math to figure out (based on
how many seconds have elapsed since January 1, 1970)
what year it is. If you want to see the number of millisec-
onds for a particular date, you use the getTime() method:

var sometime = new Date();
var msElapsed = sometime.getTime();

Tracking dates and times as milliseconds makes it easier to
calculate differences between dates. For example, you can
determine the amount of time until next New Year's day by
first getting the number of milliseconds that will have
elapsed from 1/1/1970 to when next year rolls around and
then subtracting the number of milliseconds that have
elapsed from 1/1/1970 to today:

// milliseconds from 1/1/1970 to today
var today = new Date();

// milliseconds from 1/1/1970 to next new
year

var nextYear = new Date(2009, 0, 1);

// calculate milliseconds from today to
next year

var timeDiff = nextYear - today;

The result of subtracting two dates is the number of milli-
seconds difference between the two. If you want to convert
that into something useful, just divide it by the number of
milliseconds in a day (to determine how many days) or the
number of milliseconds in an hour (to determine how
many hours), and so on.

var second = 1000; // 1000 milliseconds in
a second
var minute
minute

var hour = 60*minute; // 60 minutes in an
hour

var day = 24*hour; // 24 hours in a day
var totalDays = timeDiff/day; // total
number of days

60*second; // 60 seconds in a

(In this example, you may have noticed a different way to
create a date: new Date(2009,0,1). You can read more
about this method on page 145.)

You can use the getHours(), getMinutes(), and getSeconds() methods to get the
hours, minutes, and seconds. So to display the time on a Web page, add the follow-
ing in the HTML where you wish the time to appear:

var now = new Date();

var hours = now.getHours();
var minutes = now.getMinutes();
var seconds = now.getSeconds();

document.write(hours + + minutes + + seconds);

This code produces output like 6:35:56 to indicate 6 a.m., 35 minutes, and 56 sec-
onds. However, it will also produce output that you might not like, like 18:4:9 to
indicate 4 minutes and 9 seconds after 6 p.m. One problem is that most people

142 JAvAScrIPT: THE MISSING MANUAL

reading this book, unless they’re in the military, don’t use the 24-hour clock. They
don’t recognize 18 as meaning 6 p.m. An even bigger problem is that times should
be formatted with two digits for minutes and seconds (even if they’re a number
less than 10), like this: 6:04:09. Fortunately, it’s not difficult to adjust the above
script to match those requirements.

Changing hours to a.m. and p.m.

To change hours from a 24-hour clock to a 12-hour clock, you need to do a cou-
ple of things. First, you need to determine if the time is in the morning (so you can
add ‘am’ after the time) or in the afternoon (to append ‘pm’). Second, you need to
convert any hours greater than 12 to their 12-hour clock equivalent (for example,
change 14 to 2 p.m.).

Here’s the code to do that:

1 var now = new Date();

2 var hour = now.getHours();
3 if (hour < 12) {

4 meridiem = 'am';

5 } else {

6 meridiem = "pm';

7}

8 hour = hour % 12;

9 if (hour==0) {

10 hour = 12;

nm o}

12 hour = hour + ' ' + meridiem;

Note: The column of numbers at the far left is just line numbering to make it easier for you to follow the
discussion below. Don't type these numbers into your own code!

Lines 1 and 2 grab the current date and time and store the current hour into a vari-
able named hour. Lines 3—7 determine if the hour is in the afternoon or morning;
if the hour is less than 12 (the hour after midnight is 0), then it’s the morning
(a.m.); otherwise, it’s the afternoon (p.m.).

Line 8 introduces a mathematical operator called modulus and represented by a
percent (%) sign. It returns the remainder of a division operation. For example, 2
divides into 5 two times (2 X2 is 4), with 1 left over. In other words, 5 % 2 is 1. So
in this case, if the hour is 18, 18 % 12 results in 6 (12 goes into 18 once with a
remainder of 6). 18 is 6 p.m., which is what you want. If the first number is smaller
than the number divided into it (for example, 8 divided by 12), then the result is
the original number. For example, 8 % 12 just returns 8; in other words, the mod-
ulus operator doesn’t change the hours before noon.

CHAPTER 4: WORKING WITH WORDS, NUMBERS, AND DATES

143

IIiiiiiIiiiIiiiiiilllll

144

Lines 9-11 take care of two possible outcomes with the modulus operator. If the
hour is 12 (noon) or 0 (after midnight), then the modulus operator returns 0. In
this case, hour is just set to 12 for either 12 p.m. or 12 a.m.

Finally, line 12 combines the reformatted hour with a space and either “am” or
“pm”, so the result is displayed as, for example, “6 am” or “6 pm”.

Padding single digits

As discussed on page 142, when the minutes or seconds values are less than 10, you
can end up with weird output like 7:3:2 p.m. To change this output to the more
common 7:03:02 p.m., you need to add a 0 in front of the single digit. It’s easy with
a basic conditional statement:

1 var minutes = now.getMinutes();
2 if (minutes<10) {

3 minutes = '0' + minutes;

4

}

Line 1 grabs the minutes in the current time, which in this example could be 33 or
3. Line 2 simply checks if the number is less than 10, meaning the minute is a sin-
gle digit and needs a 0 in front of it. Line 3 is a bit tricky, since you can’t normally
add a 0 in front of a number: 0 + 2 equals 2, not 02. However, you can combine
strings in this way so '0' + minutes means combine the string '0' with the value in
the minutes variable. As discussed on page 50, when you add a string to a number,
the JavaScript interpreter converts the number to a string as well, so you end up
with a string like '08'.

You can put all of these parts together to create a simple function to output times
in formats like 7:32:04 p.m., or 4:02:34 a.m., or even leave off seconds altogether
for a time like 7:23 p.m.:

function printTime(secs) {
var sep = ':'; //seperator character
var hours,minutes,seconds,time;
var now = new Date();
hours = now.getHours();
if (hours < 12) {
meridiem = 'am';
} else {
meridiem = 'pm';
}
hours = hours % 12;
if (hours==0) {
hours = 12;

JAVASCRIPT: THE MISSING MANUAL

time = hours;
minutes = now.getMinutes();
if (minutes<10) {
minutes = '0' + minutes;
}
time += sep + minutes;
if (secs) {
seconds = now.getSeconds();
if (seconds<10) {
seconds = '0' + seconds;
}
time += sep + seconds;
}
return time + ' ' + meridiem;

}

You’ll find this function in the file printTime.js in the chapter04 folder in the Tuto-
rials. You can see it in action by opening the file time.html (in that same folder) in
a Web browser. To use the function, either attach the printTime.js file to a Web
page (see page 23), or copy the function into a Web page or another external Java-
Script file (page 22). To get the time, just call the function like this: printTime(),
or, if you want the seconds displayed as well, printTime(true). The function will
return a string containing the current time in the proper format.

Creating a Date Other Than Today

So far, you’ve seen how to use new Date() to capture the current date and time on
a visitor’s computer. But what if you want to create a Date object for next Thanks-
giving or New Year’s? JavaScript lets you create a date other than today in a few
different ways. You might want to do this if you’d like to do a calculation between
two dates: for example, “How many days until the new year?” (Also see the box on
page 142.)

When using the Date() method, you can also specify a date and time in the future
or past. The basic format is this:

new Date(year,month,day,hour,minutes,seconds,milliseconds);

For example, to create a Date for noon on New Year’s Day 2010, you could do this:

var ny2010 = new Date(2010,0,1,12,0,0,0);

This code translates to “create a new Date object for January 1, 2010 at 12 o’clock,
0 minutes, 0 seconds, and 0 milliseconds.” You must supply at least a year and
month, but if you don’t need to specify an exact time, you can leave off millisec-
onds, seconds, minutes, and so on. For example, to just create a date object for
January 1, 2010, you could do this:

var ny2010 = new Date(2010,0,1);

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES

145

146

Note: Remember that JavaScript uses 0 for January, 1 for February, and so on, as described on page 141.

Creating a date that's one week from today

As discussed in the box on page 142, the JavaScript interpreter actually treats a date
as the number of milliseconds that have elapsed since Jan 1, 1970. Another way to
create a date is to pass a value representing the number of milliseconds for that
date:

new Date(milliseconds);

So another way to create a date for January 1, 2010 would be like this:

var ny2010 = new Date(1262332800000);

Of course, since most of us aren’t human calculators, you probably wouldn’t think
of a date like this. However, milliseconds come in very handy when you’re creat-
ing a new date that’s a certain amount of time from another date. For example,
when setting a cookie using JavaScript, you need to specify a date at which point
that cookie is deleted from a visitor’s browser. To make sure a cookie disappears
after one week, you need to specify a date that’s one week from today.

To create a date that’s one week from now, you could do the following:

var now = new Date(); // today

var nowMS = now.getTime(); // get # milliseconds for today
var week = 1000*60*60*24*7; // milliseconds in one week
var onelWleekFromNow = new Date(nowMS + week);

The first line stores the current date and time in a variable named now. Next, the
getTime() method extracts the number of milliseconds that have elapsed from Jan-
uary 1, 1970 to today. The third line calculates the total number of milliseconds in
a single week (1000 milliseconds * 60 seconds * 60 minutes * 24 hours * 7 days).
Finally, the code creates a new date by adding the number of milliseconds in a
week to today.

Tutorial

To wrap up this chapter, you’ll create a useful function for outputting a date in
several different human-friendly formats. The function will be flexible enough to
let you print out a date, as in “January 1, 2009,” “1/1/09,” or “Monday, February 2,
2009.” In addition, you’ll use some of the date and string methods covered in this
chapter to build this function.

Overview

As with any program you write, it’s good to start with a clear picture of what you
want to accomplish and the steps necessary to get it done. For this program, you
want to output the date in many different formats, and you want the function to
be easy to use.

JAVASCRIPT: THE MISSING MANUAL

In other programming languages (like PHP or .NET), it’s common to use special
characters or fokens to symbolize elements of a date that are formatted in a specific
way. In PHP, for example, a lowercase [used with that language’s date function
outputs the name of a month, like “January.”

In this program, you’ll use a similar approach by assigning special tokens to different
parts of a date (see Table 4-6). The function will accept a date and a string contain-
ing these tokens, and return a human-friendly date.

For example, you’ll be able to call your function like this:

dateString(new Date(), '%N/%D/%Y');

This code returns a string, like '01/25/2009'. In other words, the function replaces
each token in the supplied string with a properly formatted part of the date. Note
that the tokens listed in Table 4-6 aren’t any special JavaScript mojo; they’re just
arbitrary characters that the author decided to use. You could just as easily change
the function in this tutorial to accept different formatted tokens, like #YEAR#
instead of %Y, or #DAY# instead of %D.

Table 4-6. Tokens for the date-formatting function

Token Replaced with

%Y Four digit year: 2009

%y Last two digits of year: 09

%M Full month name: January

%m Abbreviated month name: Jan

%N Number of month, with leading zero if necessary: 01
%n Number of month without leading zero: 1

% Full name of weekday: Monday

%w Abbreviated name of weekday: Mon

%D Day of month with leading zero if necessary: 05

%d Day of month without leading zero: 5

Wiriting the Function

Now it’s time to get down to coding and create your function. If you're still a little
unsure of what a function is and how it works, turn to page 97 for a refresher.

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 4.1.html in the chapter04 folder.

You’ll start by beginning the function definition.

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES

147

148

2. Between the first set of <script> tags in the page’s <head> section, type the

code in bold:

<script type="text/javascript">
function dateString(date,string) {
</script>

This code creates a new function named dateString(), which accepts two pieces
of information (arguments) and stores them in variables named date and string
(see page 99 for more on creating functions). The date variable will hold a Java-
Script Date object, while the string variable will hold a string containing the special
tokens like %D.

It’s always a good idea to close any opening braces immediately, so you don’t
forget later.

. Press Return twice to create two empty lines, and then type }.

This closing brace marks the end of the function. All the code you enter
between the braces makes up the steps in the function.

This function will have two parts: the first part will get the different parts of the
date in the proper formats; the second part of the function will then replace any
tokens in the supplied string with correctly formatted parts of the date. First,
you’ll determine the year.

. Click in the empty line above the closing brace you just typed and add the code

in bold below:

<script type="text/javascript">
function dateString(date,string) {
var year=date.getFullYear();

}

</script>

This creates a new variable and stores the date’s full, four-digit year in it. Next
you’ll get the date’s month and modify it for a few different format options.

. Hit Return to create a new, blank line, and then add the following code:

var month=date.getMonth();
var realMonth=month+1;

The first line of code retrieves the number of the date’s month. Remember that
JavaScript assigns a number that’s one less than you’d normally use for a
month. For example, January is 0. So, the next line creates a variable named
realMonth, which is simply the month plus 1. In other words, if the month is
January, the realMonth variable will hold the number 1. Next, you’ll take care of
the case when the month has to be two digits long: 11 or 08, for example.

JAVASCRIPT: THE MISSING MANUAL

6. Press Return, and type:

var fillMonth = realMonth;
if (realMonth<10) {
fillMonth = '0' + realMonth;

}

First, you declare a new variable named fillMonth, and store the current
month’s value in it. This conditional statement adds zero in front of the value in
realMonth, if realMonth is less than 10 and stores that value in fillMonth. This is
the variable you’ll use if you want to format a date like this: 08/10/2008.

Now you’ll get the name of the month.

7. Hit Return and then add the following code:

var months = ['January','February', 'March','April’, 'May',
"June', 'July’, 'August’, 'September’,
'October', "November', 'December'];

var monthName=months[month];

The first line creates an array that stores the name of each month of the year. To
get the proper name, you can use the value stored in the month variable as the
index. For example, if the month is January, then the month variable will be 0:
months[0] is the first item in the array, or the string 'January' (see page 141 for a
detailed explanation).

Next, you'll retrieve the day of the month.
8. Hit Return and then type:

var day=date.getDate();

var fillDate=day;

if (day<10) {
fillDate="'0" + day;

}

The first line just gets the day of the month: if it’s January 5, then the date will
be 5. The rest of the code above works like step 6, and adds a zero in front of
any date that is less than 10, so 5 becomes 05.

Now you’ll get the day of the week.

9. Hit Return, and then add the following code:

var weekday=date.getDay();

var weekdays = ['Sunday', 'Monday', 'Tuesday','Wednesday', 4
'Thursday', 'Friday', 'Saturday'];

var dayName=weekdays[weekday];

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES 149

10.

11.

These three lines of code retrieve the name of the date’s day of the week. The
method is similar to step 7: the names of the days of the week are stored in an
array, then the correct name is retrieved using an index value retrieved from the
getDay() method. For example, if the day of the week is Sunday, getDay() returns
0, and weekdays[0] returns the string 'Sunday'.

At this point, the function has collected all of the different parts of a date that
you might need (year, month, and so on) and stored them into separate vari-
ables. Now, youw’ll replace the tokens inside the string that was passed to the
function with properly formatted date elements. First, you’ll tackle the year.

Hit Return, and then type:

string = string.replace(/%Y/g,year);

Remember that string is a variable that’s created at the beginning of the func-
tion (see step 2), and it’s filled with a string full of tokens that the function will
replace with formatted date parts. The heart of the process of replacing those
tokens is the replace() method, which takes a regular expression and replaces
any matches with another string (see page 132). So string.replace() tells the
JavaScript interpreter to execute the replace() method on the contents con-
tained in the string variable.

The first argument sent to replace() is a regular expression: /%Y/g. The first /
marks the beginning of the regular expression pattern; %Y is the pattern to
match. In other words, if the string contains the two characters %Y anywhere
inside it, then there’s a match. The second / marks the end of the regex pattern,
and the final g indicates that the replacement should be global. In other words,
every instance of %Y should be replaced, not just the first one (see page 132 for
a discussion of the g flag in regular expressions). The second argument—year—
is the variable created in step 4.

To break down this code into plain English: Replace every instance of %Y with
the value stored in the variable year and store the results back into string. In
other words, this line will replace %Y with something like 2009. If the charac-
ters %Y aren’t found in the string, then the string remains unchanged.

Next, you’ll insert an abbreviated two-digit year when requested.
Hit Return, and type:
string = string.replace(/%y/g,year.toString().slice(-2));

The token %y is to be replaced with just the last two digits of the year: 08, for
example. This line of code uses the same replace() method described in step 10,
but the replacement string (the year) is reduced to the last two digits using the
slice() method described on page 118.

The rest of the lines of code in this function are all just variations on this theme:
replace a token with one of the parts of the date.

JAVASCRIPT: THE MISSING MANUAL

12. Hit Return and then type this code:

string = string.replace(/%M/g,monthName);

string = string.replace(/%m/g,monthName.slice(0,3));
string = string.replace(/%N/g,fillMonth);

string = string.replace(/%n/g,realMonth);

string = string.replace(/%W/g,dayName);

string = string.replace(/%w/g,dayName.slice(0,3));
string = string.replace(/%D/g,fillDate);

string = string.replace(/%d/g,day);

These lines of code replace various tokens with the different formatted date ele-
ments created in the first part of this function. Once the program does all of the
replacing, it returns the revised string.

13. Press Return, and then type return string;

The complete function should look like this:

function dateString(date,string) {
var year=date.getFullYear();
var month=date.getMonth();
var realMonth=month+1;
var fillMonth=realMonth;
if (realMonth<10) {
fillMonth = ‘0’ + realMonth;
}
var months = ['January', 'February','March', 'April’, 'May’,
‘June', 'July', 'August', 'September’,
'October’, 'November', 'December’];
var monthName=months[month];
var day=date.getDate();
var fillDate=day;
if (day<10) {
fillDate='0"' + day;
}
var weekday=date.getDay();
var weekdays = ['Sunday', 'Monday', 'Tuesday','Wednesday',
'Thursday', 'Friday", 'Saturday'];
var dayName=weekdays[weekday];
string = string.replace(/%Y/g,year); //2008
string = string.replace(/%y/g,year.toString().slice(-2)); //08
string = string.replace(/%M/g,monthName); //January
string = string.replace(/%m/g,monthName.slice(0,3)); //Jan
string = string.replace(/%N/g,fillMonth); //01

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES 151

152

14.

15.

16.

string = string.replace(/%n/g,realMonth); // 1
string = string.replace(/%W/g,dayName); //Monday

(
(
string = string.replace(/%w/g,dayName.slice(0,3)); //Mon
string = string.replace(/%D/g,fillDate); //05

string = string.replace(/%d/g,day); // 5

return string;

}

Now that the function is complete, you can use it to print many differently for-
matted dates to a page.

Locate the second set of <script> tags down in the body of the page, and add
the code in bold:

<script type="text/javascript">
var today = new Date();
</script>

This code creates a new variable named today and stores a Date object with the
current date and time in it. You’ll use that Date object to call the newly created
function

Press Return and then type:
var message = dateString(today, 'Today is %W, %M %d, %Y');

Here you call the function by passing the Date object created previously as well
as the string '"Today is %W, %M %d, %Y". Basically, the function takes the date,
extracts different parts of the date, and then looks for and replaces any special
token values in the string. You can refer to Table 4-6 to see what each of these
tokens is replaced with, but, in a nutshell, this line of code will return a string
like "Today is Sunday, January 6, 2008' and store it into the variable message.
Finally, you just need to print that string to the page.

Hit Return one last time, and then type document.write(message);

The final script should look like this.

<script type="text/javascript">

var today = new Date();

var message = dateString(today, 'Today is %W, %M %d, %Y');
document.write(message);

</script>

Save the file and preview it in a Web browser. The result should look some-
thing like Figure 4-6. The file complete_4.1.html contains the finished version of
this tutorial. In addition, you’ll find a slightly more advanced version of this
function in the file dateString.js. That function supports one other token, %O,
which returns the date plus the correct ordinal for the date: 1st, 2nd, or 3rd,
instead of 1, 2, or 3.

JAVASCRIPT: THE MISSING MANUAL

000 Script 4.1 < Figure 4-6:

- - @ % ﬁ E @ (& hitp:/ftutorlals.local /chapter04 fcomplete_4. 1.html v | (TG~ Google Q) 3 The dateStrlng() function
© Disable * £ Cookles + (] €SS + (] Forms (4] Images = @ Information = () Miscellaneous = ./ Outline + § & Resize = 4 Tools + {2 View you created in this
tutorial lets you output a
date in many different
formats. Try rewriting the

Script 4.1 . .
code in step 16 using
Today’s Date different tokens listed in
Today is Sunday, January 6, 2008 Table 4-6 to pr oduce
dates in different
formats.

“Building Interactive Web Sites with JavaScript”

CHAPTER 4. WORKING WITH WORDS, NUMBERS, AND DATES 153

CHAPTER

5

Dynamically Modifying
Web Pages

JavaScript gives you the power to change a Web page before your very eyes. Using
JavaScript, you can add pictures and text, remove content, or change the appear-
ance of an element on a page instantly. In fact, dynamically changing a Web page is
the hallmark of the newest breed of JavaScript-powered Web sites. For example,
Google Maps (http://maps.google.com/) provides access to a map of the world;
when you zoom into the map or scroll across it, the page gets updated without the
need to load a new Web page. Similarly, when you mouse over a movie title at Net-
flix (www.netflix.com) an information bubble appears on top of the page provid-
ing more detail about the movie (see Figure 5-1). In both of these examples,
JavaScript is changing the HTML that the Web browser originally downloaded.

The first four chapters of this book covered many of the fundamentals of the Java-
Script programming language—the keywords, concepts, and syntax of JavaScript.
Now that you have a handle on how to write a basic JavaScript program and add it
to a Web page, it’s time to see what JavaScript programming is all about. This
chapter, and the next one on JavaScript events, together show you how to create
the great interactive effects you see on the Web these days.

Modifying Web Pages: An Overview

In this chapter, you’ll learn how to alter a Web page using JavaScript. You’ll add
new content, HTML tags and HTML attributes, and also alter content and tags
that are already on the page. In other words, you’ll use JavaScript to generate new
HTML and change the HTML that’s already on the page.

http://maps.google.com/
http://www.netflix.com

Modifying Web

Pages: An Overview

4% & el [nto:/iwww.netfiix.com/Brows eSelection

viE

@ Disable ~ & Cookies v [] CS§ ~ [Forms

NETELIN

m Browse Selection
Browse Selection

You'l be able to choose from over 90,000 DVD fitles - from classics to new relea:
You can also watch a variety of familiar movies, TV episodes, and more instantly

additional charge.
90,000+ DVD Titles

New Releases (see more)

Images * @ Information + (%) Miscellaneous v ./ Outline v | | Resize * J¥ Tools * {£] ViewSou

Start Your FREE Trial Free Trial Info

Buy / Redeem Gift | Member Sign In

6,000+ Instant Watchii

No Reservations (2007)

In this remake of the award-winning
European romantic comedy Mostly Martha,
Catherine Zeta~Jones plays Kate, an
emotionally fragile chef whose ife Is turned
upside down when she becomes guardian of
her niece (Abigail Breslin). Used to absolute
control — bath in her kitchen (which she rules
with an iron hand)and at home — Kate now
faces chaos on all fronts, as both the child
and her new sous chef (Aaron Eckhart) wark

Figure 5-1:

JavaScript can make Web
pages simpler to scan
and read, by only
showing content when
it's needed. At
Netflix.com, movie
descriptions are hidden
from view, but revealed
when the mouse travels
over the movie title or
thumbnail image.

their way into her heart.
2 Days in Paris 3:10 to Yuma Gone Baby Gone No Resarvations
| = I "y Starring: Catherine Zeta-Jones, Aaron
| Eckhart
Director: Scoft Hicks
Genre: Comedy
MPAA: PG

T A kA 3.7 Customer Average

Artinn 2 A
[EZ http:/ fwww.netflix.comMovie/No_Reservations/ 70058017 @, Getvideo & W vSlow 64855]

Whenever you change the content or HTML of a page—whether you’re adding a
navigation bar complete with pop-up menus, creating a JavaScript-driven slide
show, or simply adding alternating stripes to table rows (like you did in the tuto-
rial in Chapter 1)—you’ll perform two main steps.

1. Identify an element on a page.

An element is any existing tag, and before you have to do anything with that
element, you need to identify it in your JavaScript (which you’ll learn how to do
in this chapter). For example, to add a color to a table row, you first must iden-
tify the row you wish to color; to make a pop-up menu appear when you mouse
over a button, you need to identify that button. Even if you simply want to use
JavaScript to add text to the bottom of a Web page, you need to identify a tag to
insert the text either inside, before, or after that tag.

2. Do something with the element.

OK, “do something” isn’t a very specific instruction. That’s because there’s
nearly an endless number of things you can do with an element to alter the way
your Web page looks or acts. In fact, most of this book is devoted to teaching
you different things to do to page elements. Here are a few examples:

+ Add/remove a class attribute. In the example on page 30, you used Java-
Script to assign a class to every other row of a table. The JavaScript didn’t
actually “color” the row; it merely applied a class, and the Web browser used
the information in the CSS style sheet to change the appearance of the row.

+ Change a property of the element. When animating a <div> across a page,
for example, you change that element’s position on the page.

156 JAVASCRIPT: THE MISSING MANUAL

+ Add new content. If, while filling out a Web form, a visitor incorrectly fills
out a field, it’s common to make an error message appear— “Please supply
an email address,” for example. In this case, you're adding content some-
where in relation to that form field.

+ Remove the element. In the Netflix example pictured in Figure 5-1, the pop-
up bubble disappears when you mouse off the movie title. In this case, Java-
Script removes that pop-up bubble from the page.

+ Extract information from the element. Other times, you’ll want to know
something about the tag you’ve identified. For example, to validate a text
field, you need to identify that text field, then find out what text was typed
into that field—in other words, you need to get the value of that field.

The first step above—identifying an element on a page—is mainly what this chapter
is about. To understand how to identify and modify a part of a page using Java-
Script you first need to get to know the Document Object Model.

Understanding the Document Object Model

When a Web browser loads an HTML file, it displays the contents of that file on
the screen (appropriately styled with CSS, of course). But that’s not all the Web
browser does with the tags, attributes, and contents of the file: it also creates and
memorizes a “model” of that page’s HTML. In other words, the Web browser
remembers the HTML tags, their attributes, and the order in which they appear in
the file—this representation of the page is called the Document Object Model, or
DOM for short.

The DOM provides the information needed for JavaScript to communicate with
the elements on the Web page. The DOM also provides the tools necessary to navi-
gate through, change, and add to the HTML on the page. The DOM itself isn’t
actually JavaScript—it’s a standard from the World Wide Web Consortium (W3C)
that most browser manufacturers have adopted and added to their browsers. The
DOM lets JavaScript communicate with and change a page’s HTML.

To see how the DOM works, take look at this very simple Web page:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">

<html>

<head>

<title>A web page</title>

</head>

<body class="home">

<h1 id="header">A headline</h1>

<p>Some important text</p>
</body>

</html>

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Understanding the
Document Object

Model

157

Understanding the
Document Object

Model

On this and all other Web sites, some tags wrap around other tags—like the
<html> tag, which surrounds all other tags, or the <body> tag, which wraps
around the tags and contents that appear in the browser window. You can repre-
sent the relationship between tags with a kind of family tree (see Figure 5-2). The
<html> tag is the “root” of the tree—like the great-great-great granddaddy of all of
the other tags on the page—while other tags represent different “branches” of the
family tree; for example, the <head> and <body> tags, which each contain their
own set of tags.

A web page

Figure 5-2:

The basic nested structure of an HTML
page, where tags wrap around other
tags, is often represented in the form of a
family tree, where tags that wrap around
other tags are called ancestors, and tags
inside other tags are called descendents.

body class="home”

hl id="header”

A headline strong text

important

In addition to HTML tags, Web browsers also keep track of the text that appears
inside a tag (for example, “A headline” inside the <h1> tag in Figure 5-2), as well
as the attributes that are assigned to each tag (the class attribute applied to the
<body> and <h1> tags in Figure 5-2). In fact, the DOM treats each of these—tags
(also called elements), attributes, and text—as individual units called nodes.

Selecting a Page Element

A Web browser thinks of a Web page simply as an organized collection of tags, tag
attributes, and text, or, in DOM-talk, a bunch of nodes. So for JavaScript to manip-
ulate the contents of a page, it needs a way to communicate with a page’s nodes.
There are two main methods for selecting nodes: getElementByld() and
getElementsByTagName().

getElementByld()

Getting an element by ID means locating a single node that has a unique ID
applied to it. For example, in Figure 5-2, the <h1> tag has an ID attribute with the
value of header. The following JavaScript selects that node:

document.getElementById(" header")
In plain English, this line means, “Search this page for a tag with an ID of 'header’

assigned to it.” The document part of document.getElementByld('header') is a key-
word that refers to the entire document. It’s not optional, so you can’t type

JAVASCRIPT: THE MISSING MANUAL

getElementByld() by itself. The command getElementByld() is the method name (a
command for the document) and the 'header' part is simply a string (the name of
the ID you’re looking for) that’s sent to the method as an argument. (See page 101
for the definition of an argument.)

Note: The getFlementByld() method requires a single string—the name of a tag's ID attribute. For example:
document.getElementById("header")

However, this doesn't mean you have to provide a literal string to the method: you can also pass a vari-
able that contains a string with the sought after ID:

var lookFor = 'header’;
var foundNode = document.getElementById(lookFor);

Frequently, you’ll assign the results of this method to a variable to store a refer-
ence to the particular tag, so you can later manipulate it in your program. For
example, say you want to use JavaScript to change the text of the headline in the
HTML pictured on page 157. You can do this:

var headLine = document.getElementById('header');
headlLine.innerHTML = 'JavaScript was here!’;

The getElementByld() command returns a reference to a single node, which in this
example is stored in a variable named headline. Storing the results of
getElementByld() in a variable is very convenient; it lets you refer simply to the
variable name each time you wish to manipulate that tag, rather than the much
more longwinded document.getElementByld('idName'). For example, the second
line of code uses the variable to access the tag’s innerHTML property: headline.
innerHTML (you’ll learn what innerHTML is on page 163).

getElementsByTagName()

Sometimes, youw’ll want more than just the single element that getElementByld()
provides. For example, maybe you’d like to find every link on a Web page and do
something to those links—like force every link that points outside your site to
open in a new window. In that case, you need to get a list of elements, not just one
element marked with an ID. The command getElementsByTagName() does the
trick.

This method works similarly to getElementByld() but instead of providing the
name of an ID, you supply the name of the tag you're looking for. For example, to
find all of the links on a page, you write this:

var pagelinks = document.getElementsByTagName('a");
Translated, this means, “Search this document for every <a> tag and store the

results in a variable named pageLinks.” The getElementsByTagName() method
returns a list of nodes, instead of just a single node. In that sense, the list acts a lot

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Understanding the
Document Object

Model

Understanding the
Document Object

Model

like an array: You can access a single node using the same index notation, find the
total number of elements using the length property, and loop through the list of
elements using a for loop (see page 94).

For example, the first item in the pageLinks variable from the code above is
pageLinks[0]—the first <a> tag on the page—and pageLinks.length is the total
number of <a> tags on the page.

Tip: 1t's easy to make a typo with these two methods. Most commonly, beginners (and pros) will capital-
ize both letters of /d. Only the first letter is capitalized. Likewise, Flements is plural in
getFlementsByTagName()—don't forget the s:

document.getElementById('banner');
document.getElementsByTagName('a');

You can also use getElementByld() and getElementsByTagName() together. For
example, say you have a Web page containing a <div> tag, and that <div> tag has
an ID of ‘banner’ applied to it. If you want to find out how many links were in just
that <div>, you can use getElementByld() to retrieve the <div>, and then use
getElementsByTagName() to search the <div>. Here’s how it works:

var banner = document.getElementById('banner");
var bannerLinks = banner.getElementsByTagName('a');
var totalBannerlinks = bannerlLinks.length;

While searching for an element with an ID is one method of searching within the
document (document.getElementByld()), you can find tags of a particular type by
searching the entire document (document.getElementsByTagName()) or by search-
ing the tags within a particular node. For example, in the above code, the variable
banner contains a reference to a <div> tag, so the code banner.getElementsByTag-
Name('a') only searches for <a> tags inside that <div>.

Selecting nearby nodes

As mentioned earlier, text is also considered a node, so the text “A headline” inside
the <h1> tag on page 157 is a separate node from the <h1> tag that surrounds it.
In other words, if you select that <hl> tag using the techniques you’ve just
learned, you've just selected that tag and not the text inside. So, what if you want
to get at that text? Unfortunately, the way the DOM provides to do so involves a
rather roundabout technique: You have to start at the <h1> node, move to the text
node, and then get the value of the text node.

To understand how this process works, you need to understand how tags are
related to each other. If you've spent some time working with Cascading Style
Sheets, you’re probably familiar with descendent selectors—one of the most power-
ful tools in CSS. In a nutshell, a descendent selector lets you format a particular tag
based on its relationship to another tag. Thus, using a descendent selector, you can
make a paragraph (<p>) tag look one way when it’s in the sidebar of a page, and
look another way when that same tag is in the footer of the page.

JAVASCRIPT: THE MISSING MANUAL

Descendent selectors rely on the kind of relationship pictured in Figure 5-2; if a tag
is inside another tag, it’s called a descendent. The <h1> tag in the sample HTML
on page 157 is a descendent of the <body> tag, and, because it’s also inside the
<html> tag, it’s a descendent of that tag as well. Tags that wrap around other tags are
called ancestors; so in Figure 5-2, the <p> tag is an ancestor of the tag.

The DOM also thinks of tags that wrap around other tags as being related, but the
DOM only provides access to the “immediate family.” That is, the DOM can access
a “parent” node, “child” node, or “sibling” node. Figure 5-3 demonstrates these
relationships: If a node is directly inside another node, like the text “Some” inside
the <p> tag, then it’s a child; a node that directly surrounds another node, like the
 tag surrounding the text “important”, is a parent. Nodes that share the
same parent, like the two text nodes—“Some” and “text”—and the tag
are like brothers and sisters, so they’re called siblings.

Understanding the
Document Object

Model

parent Figure 5-3:

There are no first cousins, great aunts, or even
grandparents in the current DOM standard. The DOM
only recognizes parents, children, and sibling

Some text children e
relationships between tags.
important
parent
important ———— child
Some text siblings

The DOM provides several methods of accessing nearby nodes:

+ .childNodes is a property of a node. It contains a list of all nodes that are direct
children of that node. The list of nodes works just like the list that’s returned by
the getElementsByTagName() method (see page 159). For example, suppose you
add the following JavaScript to the HTML file on page 157:

var headline = document.getElementById('header');
var headlineKids = headline.childNodes;

The variable headlineKids will contain a list of all nodes that are children of the
tag that has the ID of ‘headline’ (the <h1> tag in this example). In this case,
there’s only one child, the text node containing the text “A headline.” So, if you
want to know what the text inside that node is, add an additional line of code,
like this:

var headlineText = headlineKids[0].nodeValue;

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Understanding the
Document Object

Model

162

The first child in the list is headlineKids[0]—since there is only one child for the
headline (see Figure 5-2), it’s also the only node in the list. To get the text inside
a text node, you access the nodeValue property. (On the other hand, there’s also
an easier way to do so, as you’ll see on page 181.)

.parentNode is a node property that represents the direct parent of a particular
node. For example, if you wanted to know what tag wraps around the <h1> tag
in Figure 5-2, you could write this:

var headline = document.getElementById(" header');
var headlineParent = headline.parentNode;

The variable headlineParent is a reference to the <body> tag in this case.

.nextSibling and .previousSibling are properties that point to the node that
comes directly after the current node, or the node that comes before. For exam-
ple, in Figure 5-2, the <hl> and <p> tags are siblings: the <p> tag comes
directly after the ending </h1> tag.

var headline = document.getElementById(" header');
var headlineSibling = headline.nextSibling;

The variable headlineSibling is a reference to the <p> tag that follows the <h1>
tag. If you try to access a sibling node that doesn’t exist, JavaScript returns the
value of null (see the Tip on page 131). For example, you can check to see if a
node has a previousSibling like this:

var headline = document.getElementById(" header');
var headlineSibling = headline.prevSibling;
if (! headlineSibling) {
alert('This node does not have a previous sibling!');
} else {
// do something with the sibling node
}

As you can see, it takes a fair amount of gymnastics to move around a page’s DOM
structure. For instance, to get all of the text inside the <p> tag in Figure 5-2, you’d
have to get a list of all of the <p> tags children, and then go through each child
node and look for text. In the case of the tag pictured in Figure 5-2,
you’d have to look at its child nodes to get the text inside it! Fortunately, there’s a
much easier way to work with the DOM, as you’ll see on page 169.

Adding Content to a Page

JavaScript programs frequently need to add, delete, or change content on a page.
For example, in the quiz program you wrote in Chapter 3 (page 106), you used the
document.write() method to add the test-taker’s final score to the page. On the
Netflix site (Figure 5-1), a description appears on the page when a visitor mouses
over a movie title.

JAVASCRIPT: THE MISSING MANUAL

Note: In earlier chapters you used the document.write() command to add JavaScript-generated content
to a page (see page 29 for an example). That command is easy to learn and use, but very limited in what
it can do—for example, documentwrite(') lets you add new content, but not alter what's already on the
page. Furthermore, that command works when the page loads, so you can't use it to add content to a
page later (for example, when a visitor clicks a button or types into a form field).

Adding content using the DOM is a big chore. It involves creating each node of the
content you require, and then injecting the results into the page. In other words, if
you want to add a <div> tag with a couple of other tags and some text, you have to
create each node individually and place them in the proper relation to each other.
Fortunately, browser manufacturers have provided a much simpler method: the
innerHTML property.

The innerHTML property isn’t a standard part of the DOM. It was first imple-
mented in Internet Explorer, but all current, JavaScript-savvy Web browsers sup-
port it. Basically, innerHTML represents all of the HTML inside of a node. For
example, if you look at the HTML code on page 157, the <p> tag wraps around
other HTML. So the innerHTML for that <p> tag node is Some impor-
tant text. Here’s how you use JavaScript to access that HTML:

//get a list of all <p> tags on page

var pTags = document.getElementsByTagName('p');
//get the first <p> tag on page

var theP = pTags[0];

alert(theP.innerHTML);

In this case, the variable theP represents the node for the first paragraph on the
page. The last line of code opens an alert box that displays all of the code inside
that tag. For example, adding this JavaScript to the HTML on page 157 would
make an alert box appear with the text “Some important text”.

Note: innerHTML is a proposed part of the new HTML 5 standard that is being developed at the W3C
(see www.w3.0rg/TR/html5).

Not only can you find out what’s inside a node using innerHTML, you can also
change the contents inside the node by setting the innerHTML property:

var headLine = document.getElementById('header');
headlLine.innerHTML = 'JavaScript was here!';

In this example, the contents inside the tag with an ID of 'header' is changed to
“JavaScript was here!” You aren’t limited to just text either: you can set the
innerHTML property to complete chunks of HTML, including tags and tag
attributes. You’ll see an example of this in the next section.

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Understanding the
Document Object

Model

http://www.w3.org/TR/html5

Understanding the
Document Object

Model

The Moon Quiz Revisited

In Chapter 3, you created a JavaScript program that used the prompt() command
to ask quiz questions, and the document.write() command to write the test-taker’s
results to the page. In this short tutorial, you’ll rewrite that script to take advan-
tage of the DOM techniques you’ve learned in this chapter.

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 5.1.html in the chapter05 folder.

This file is the completed version of tutorial 3.3 from page 112. The first step is
to get rid of the JavaScript in the body of the page.

2. Locate the HTML, and delete the JavaScript that’s bolded in this code:

<p>
<script type="text/javascript">
var message = 'You got ' + score;
message += ' out of ' + questions.length;
message += ' questions correct.’;
document.write(message);
</script>
</p>

You're left with an empty paragraph. When the quiz program runs, the test-
taker’s results will appear inside this paragraph. To make it easy to later select
this tag, you’ll add an ID attribute to the <p> tag.

3. Add id="quizResults" to the <p> tag. The final HTML should look like this:

<h1>A Simple Quiz Revisited</h1>
<p id="quizResults"></p>
</div>

Next, you'll create a function that goes through the list of questions, and then
prints the results on the page.

4. Locate the for loop in the block of JavaScript near the top of the page. Add the
following bolded code around the loop:

function doQuiz() {
//go through the list of questions and ask each one
for (var i=0; i<questions.length; i++) {
askQuestion(questions[i]);
}
}

164 JAVASCRIPT: THE MISSING MANUAL

Don’t forget the closing brace on the last line; it marks the end of the new func-
tion. At this point, you've just turned the original for loop (which looped
through each item in the questions array) into a function. You’ll find out why
you want a function here in a moment.

Next, you’ll build the results message; it’s the same code as in the finished
3.3.html tutorial.

. Between the closing brace for the loop and the closing brace of the new func-
tion, add the following three lines of JavaScript:

var message = 'You got ' + score;
message += ' out of ' + questions.length;
message += ' questions correct.';

This code is straight from Tutorial 3.3, so, if you don’t feel like typing, you can
copy from that tutorial and past the code into this page. At this point, you
haven’t done much different from Tutorial 3.3—give your visitor a quiz and
report the results. Now it’s time to use the DOM. You'll start by getting a refer-
ence to the empty <p> tag on the page.

. Hit Return to add a new blank after the three lines of code you just added, and
then type:

var resultArea = document.getElementById('quizResults');

This line searches the document for a tag with an ID of 'quizResults'—you cre-
ated that in step 3—and stores a reference to that tag in a variable named
resultArea. Now you can place the results message there.

. Hit Return again, and type resultArea.innerHTML = message;. The complete
code for the function should now look like this:

function doQuiz() {
//go through the list of questions and ask each one
for (var i=0; i<questions.length; i++) {
askQuestion(questions[i]);
}
var message = 'You got ' + score;
message += ' out of ' + questions.length;
message += ' questions correct.';
var resultArea = document.getElementById('quizResults"');
resultArea.innerHTML = message;

}

This final line of the function assigns the contents of the variable message to the
innerHTML property of the <p> tag. In other words, it simply writes the mes-
sage into that paragraph just like the document.write() command. The
innerHTML approach is simpler, since you don’t need to add a second block of
JavaScript code in the main body of the page as you do when using the docu-
ment.write() command.

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Understanding the
Document Object

Model

Understanding the
Document Object
Model

Remember, functions don’t run until the program calls them (see page 99). So
even though you’ve finished setting up a function that asks the quiz questions
and writes the test-taker’s results onto the page, your program won’t actually
ask the questions until the doQuiz(') function runs. You’'ll add the code for that
now.

8. Locate the closing </script> tag (below all of the JavaScript code on this page,
inside the <head>) and add the code in bold below:

window.onload=doQuiz;
</script>

Welcome to the wonderful world of JavaScript events. The line of code you
added in this step instructs the JavaScript interpreter to run the doQuiz() func-
tion after the page finishes loading. The onload part is what’s called an event
handler. An event is the moment when something happens in the Web browser
or on the page. When the page finishes loading, for example, the load event
happens. When a visitor moves her mouse over a link, a mouseover event
occurs. An event handler assigns a function to the event—in other words, tells
the browser what to do when the event occurs. You’ll learn all about events in
the next chapter.

So, why can’t you just run the quiz before the page loads? After all, that’s what you
did in Tutorial 3.3 on page 106. If you open your completed 3.3.html file (or the
supplied complete_3.3.html file in the chapter03 tutorial folder) in a Web browser,
you’ll see something different about how that quiz works. Notice that the page is
completely blank while the quiz questions are being asked (top image in
Figure 5-4). That’s because the JavaScript code on that page runs as soon as the
JavaScript interpreter encounters the for loop. It doesn’t wait until the HTML is
read and displayed by the Web browser, so the Web browser has to wait until all of
the questions have been asked and answered before displaying the HTML.

Now, save the 5.1.html file you’ve just finished, and preview it in a Web browser.
See how the browser draws the page before the questions are asked (bottom image
in Figure 5-4)? That’s what the window.onload=doQuiz does. It instructs the Java-
Script interpreter to wait until the page is loaded and drawn to the screen before
running the quiz. Not only does this method look a bit better—a completely blank
Web page is a little distracting—but you must do it this way when you use the
DOM to manipulate a page’s content.

Think of it this way: the JavaScript code comes before the HTML on the page.
When the code is loaded, the browser is unaware of any of the HTML that follows
it. So the paragraph tag into which the program writes the final results—“You got
3 out of 3 questions right”—doesn’t yet exist for the Web browser. If you tried to
run the JavaScript code immediately (before the HTML is loaded), the Web
browser would spit out an error at the moment the program tried to get the <p>
tag and write the message into it—again, because that <p> tag doesn’t yet exist to
the JavaScript interpreter.

JAVASCRIPT: THE MISSING MANUAL

Understanding the
Document Object

Model
A Script 3.3 - IE 6 {Microsoft Internet Explorer) F'y"’e 5-4:
M . When you run a
File Edit ‘“iew Favorites Tools Help .
.’GVGSCprt program

@Back b Q E] @ @ psaarch *Favontes Q‘Medla @ @v & v - before apageloads, the

page won't appear until
after the program is
completed. In the page
pictured at the top of this
image, the JavaScript

Address |@ 1. PSPy Mac\UsersidavelDocumentsi00_websitestjavascript_tutorialsihtdocsichapter03icomph V‘ Go Links **

Explorer User Prompt X must finish asking each
. uestion of the quiz
Script Prompt; _ q
How marny moons does Earth have? = before the browser
Cancel | displays any of the Web
] page. However, if you
use the onload event,

you can have the Web
browser load and display
a Web page and then
run your JavaScript
program (bottom
image).

| @ Trusted sites

a Opening page File:/ 1. PSFY,. MaciUsersidave)\Documentsi 0 :}

‘A Script 5.1 - IE 6 {Microsoft Internet Explorer)
File Edit ‘iew Favorites Tools Help pﬂ

@Back < Q Ia @ Ldj pSearch *Favorites Q‘Media @ @v & v -

Explorer User Prompt

Script Prompt:

How many moons does Earth have?

3] i}] |
&] Dore | | @ Trusted sites —I

That’s why, in step 4, you put the loop, the results message, and the steps that
select the <p> tag and write the message into that paragraph into a function. The
function lets you wait until Web browser has read and stored the Web page and its
HTML into its memory and only then execute all of the steps that create the quiz.

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs 167

Understanding the
Document Object

Model

Finally, you may be wondering why the function doesn’t have any parentheses
after it in the line window.onload=doQuiz. As you read on page 98, you always
include the parentheses when calling a function, like this: doQuiz(). The short
answer is that when you include the (), the function runs immediately—in other
words, if you had typed window.onload=doQuiz(), the quiz would run immedi-
ately, not after the page loads. However, window.onload=doQuiz merely points to
the function and doesn’t run it. The function only runs after the page loads. Con-
fusing? Certainly, but that’s how JavaScript works. You’ll learn about this topic in
more depth on page 218.

The Problem with the DOM

The Document Object Model is a powerful tool for JavaScript programmers, but it
has some shortcomings. As you saw on page 160, moving from node to node in the
DOM is a time-consuming process. Also, the DOM only supplies a couple of ways
to get to tags—Dby ID name and by tag name. It doesn’t provide an easy way, for
example, to find all tags with a specific class name—a useful task if you want to
manipulate a bunch of related elements (for example, make all images with a class
of slideshow part of a JavaScript-driven photo slideshow).

A further complication is that the major browsers interpret the DOM differently.
The techniques presented in the earlier pages of this chapter are all cross-browser
compatible, but other parts of the DOM standard aren’t. For example, Internet
Explorer handles events differently from other browsers; the same HTML can pro-
duce more text nodes in Firefox and Safari than in Internet Explorer; and IE
doesn’t always retrieve HTML tag attributes in the same way as Firefox, Safari, or
Opera. In addition, different browsers treat white space (like tabs and spaces) in
HTML differently—in some cases treating white space like additional text nodes
(Firefox and Safari) and in other cases ignoring that white space (Internet
Explorer). And those are just a few of the differences between how the most com-
mon Web browsers handle the DOM.

Overcoming cross-browser JavaScript problems is such a huge task for JavaScript
programmers that an entire (very boring) book could be dedicated to the subject.
In fact, many JavaScript books spend a lot of time showing you the code needed to
make the various browsers behave themselves. But life is too short—you’d rather
be building interactive user interfaces and adding cool effects to your Web sites,
instead of worrying about how to get your script to work identically in Internet
Explorer, Firefox, Safari, and Opera. That’s why this book skips a lot of the mind-
numbing details required to make basic DOM functions work across browsers.
Instead, it takes advantage of some very advanced, free JavaScript programming
that you can use to build JavaScript-driven pages that will work well in all brows-
ers in a fraction of the time. You’ll start learning where to find this free JavaScript
in the next section.

JAVASCRIPT: THE MISSING MANUAL

Introducing JavaScript Libraries

Many JavaScript programs have to deal with the same set of Web page tasks again
and again: selecting an element, adding new content, hiding and showing content,
modifying a tag’s attributes, determining the value of form fields, and making pro-
grams react to different user interactions. The details of these basic actions can
turn out to be quite complicated—especially if you want the program to work in
all major browsers. Fortunately, JavaScript libraries offer a way to leap-frog past
many time-consuming programming details.

A JavaScript library is simply a collection of JavaScript code that provides simple
solutions to many of the mundane, day-to-day details of JavaScript. You can think
of a library as a collection of prewritten JavaScript functions that you add to your
Web page. These functions make it easy to complete common tasks. In many cases,
you can replace many lines of your own JavaScript programming (and the hours
required to test them) with a single function from a JavaScript library. A sizable
chunk of your programming has already been done for you! There are lots of Java-
Script libraries out there and many of them are in use on major Web sites such as
Yahoo, NBC, Amazon, Digg, CNN, Apple, Microsoft, Twitter, and many more.

This book uses the popular jQuery library (www.jquery.com). There are other Java-
Script libraries (see the box on page 170), but jQuery has many advantages:

+ Relatively small file size. A minimized version of the library is only 55K, and a
more fully compressed version weighs in at only 30K.

+ Friendly to Web designers. jQuery doesn’t assume you’re a computer scientist.
It takes advantage of knowledge about CSS that most Web designers already
have.

« It’s tried and true. jQuery is used on thousands of sites, including many popu-
lar, highly trafficked Web sites like Digg, Dell, the Onion, Warner Bros.
Records, NBC, and Newsweek. Even Google uses it in some places. The fact that
jQuery is so popular is a testament to how good it is.

« It’s free. Hey, you can’t beat that!

+ Large developer community. As you read this, scores of people are working on
the jQuery project—writing code, fixing bugs, adding new features, and updat-
ing the Web site with documentation and tutorials. A JavaScript library created
by a single programmer (or one supplied by a single author) can easily disap-
pear if the programmer (or author) grows tired of the project. jQuery, on the
other hand, should be around a long time, supported by the efforts of program-
mers around the world. It’s like having a bunch of JavaScript programmers
working for you for free.

* Plug-ins, plug-ins, plug-ins. jQuery lets other programmers create plug-ins—
add-on JavaScript programs that work in conjunction with jQuery to make cer-
tain tasks, effects, or features incredibly easy to add to a Web page. In this book,

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Introducing
JavaScript Libraries

http://www.jquery.com

Introducing
JavaScript Libraries

you’ll learn about plug-ins that make validating forms, adding drop-down navi-
gation menus, and building interactive slideshows a half-hour’s worth of work,
instead of a two-week project. There are literally hundreds of other plug-ins
available for jQuery.

You’ve actually used jQuery in this book already. In the tutorial for Chapter 1
(page 30), you added just a few lines of JavaScript code to quickly and easily add
stripes to alternating rows in a table.

UP TO SPEED

Other Libraries

JQuery isn't the only JavaScript library in town. There are
many, many others. Some are designed to perform specific
tasks, and others are all-purpose libraries aimed at solving
every JavaScript task under the sun. Here are a few of the
most popular:

Yahoo User Interface Library (htip;//developer.yahoo.
com/yui/) is a project of Yahoo, and indeed the company
uses it throughout its site. Yahoo programmers are con-
stantly adding to and improving the library, and they pro-

manipulating the DOM easier, to simplifying the task of
communicating with a Web server using Ajax. It's often
used in combination with a visual effects library named
scriptaculous (http;//script.aculo.us/), which adds anima-
tion and other user interface goodies.

Dojo Toolkit (htp,//dojotoolkitorg/) is another library
that's been around a long time. It's a very powerful and very
large collection of JavaScript files that tackle nearly every
JavaScript task around.

i i he YUl site. . .
R SR IO T UL Mootools (htfp;//mootools.net/) is another popular library

Prototype (http,//www.prototypejs.org/) was one of the with good documentation and a great looking Web site.
first JavaScript libraries available. Weighing in at a hefty

124K, it lets you do all sorts of things from selecting making

Getting Started with jQuery

The first step in using jQuery is downloading it—the jquery.js file is a single Java-
Script file that you link to a Web page to use. The tutorial files you downloaded for
this book at www.sawmac.com/js/ include the jQuery library file, but since the
jQuery team updates the library on a regular basis, you can always find the latest
version at http://docs.jquery.com/Downloading jQuery, listed under the Current
Release headline (circled in Figure 5-5).

The jQuery file comes in three versions on the download site. Which file you pick
depends on how you want to use it:

* Uncompressed. The uncompressed jQuery file has the largest file size (the
uncompressed version of jQuery 1.2.6, for example, is 97.8K) You shouldn’t use
this file on your Web site, but it’s helpful if you want to learn how the jQuery
library is put together. The code includes lots of comments (page 71) that help
make clear what the different parts of the file do. (But in order to understand
the comments, you need to know a lot about JavaScript.)

170 JAVASCRIPT: THE MISSING MANUAL

http://developer.yahoo.com/yui/
http://developer.yahoo.com/yui/
http://www.prototypejs.org/
http://script.aculo.us/
http://dojotoolkit.org/
http://mootools.net/
http://www.sawmac.com/js/
http://docs.jquery.com/Downloading_jQuery,

Introducing

JavaScript Libraries

aA6 Downloading jQuery - jQuery JavaScript Librar ;Zg"re 5'5';1 Script file
— . e external JavaScript file for
= @ 4 Bl B m Brw ssdocs jauery.com/Downloading jauery the jQuery library coreies in
@ Disable v 2 Cookies v [] CSS *] Forms v [H| Images v (@ Information v :_:__'J Miscellaneous + 7 ¢ three ﬂGVOI’S. Make sure to
Plugins = Uncompressed (good for debugging and to understand what is behind the r dOW{)IOG_d the minified
= Plgn ?Emsmw If you're interested in downloading Plugins &7 developed by jQuery contributors versrop, It'OffEI’S the l'JESt
= Authoring combination of file size and
jQuery is provided under the following MIT and GPL licenses.
Support performance.
u Mailing List and Chat DOWnload jQUery
® Submit New Bug
About [Query This is the recommended version of jQuery to use for your application. The cod
= Contributors browsers.
= History of jQuery The minified version, while having a larger file size than the packed version, is

= Sites Using jQuery deployments. The packed version requires non-trivial client-side processing tin

= Browser Compatibility

= Licensing Current Release
® Donate = 1.2.6 (Release Notes)
Search Minified @&, Packed gp, Uncompressed @&
Pas
Go Search I

1.2.5 (Release Notes)
Minified &, Packed g, Uncompressed g
1.2.4 (Release Notes)
= Upload file Minified g, Packed g7, Uncompressed @@
= Special pages 1.2.3 (Release Notes)
= Printable version Minified g7, Packed 7, Uncompressed @
1.2.2 (Release Notes)

Toolbox
= What links here
= Related changes

= Permanent link

,ﬁ Dane

+ Packed. The packed version of jQuery provides the smallest file size (the packed
version of jQuery 1.2.6 is only 30.3K). It provides all the same functions as the
uncompressed version, but the JavaScript code has been put through a clever
compression program (http://dean.edwards.name/packer/) that’s reduced the
number of characters needed in the file. The downside of a packed JavaScript
file is that the visitor’s Web browser has to “unpack” the file each time it’s
run—meaning it’s slightly slower than an unpacked version.

* Minified. The minified jQuery file uses a simpler compression method than a
packed file, but the file is a bit larger (the minified version of jQuery 1.2.6 is 54.
5K). However, since the minified version doesn’t need to be unpacked each
time it’s run, this file (once it’s downloaded) performs a bit faster than the
packed version. Also, since a Web browser usually caches the downloaded
jQuery file, file size isn’t the most important issue. The Web browser only needs
to download the file from your site once, then, when a visitor goes to another
page on your site, the browser simply uses the previously downloaded jQuery
file. Because the minified version has fairly small file size and runs quickly, this
book uses it in the tutorials.

Once you download the jQuery file, put it somewhere in your site, such as the site’s
root folder. Some Web designers create a separate folder just for JavaScript files (js
or libs are common names) and store the jQuery file as well as any other .js files in
it.

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs 171

http://dean.edwards.name/packer/

Selecting Page
Elements (Revisited)

172

Tip: The jQuery file you download from jQuery.com includes the version number and compression
type—for example, jquery-1.2.6.minjs is the minified version of jQuery 1.2.6. You can rename this to
something simpler like jquery126,s or just jquery.Js.

To use the file, you must attach it to your Web page. It’s just an external .js file, so
you attach it just like any external JavaScript file, as described on page 24. For
example, say you’ve stored the jquery.js file in a folder named js in your site’s root
folder. To attach the file to your home page, you’d add the following script tag to
the head of the page:

<script type="text/javascript" src="js/jquery.js"></script>

Once you’ve attached the jQuery file, you're ready to add your own scripts that
take advantage of jQuery’s advanced functions. For example, you can attach
another external JavaScript file with your own programming in it, or add a second
<script> tag to the Web page and start programming:

<script type="text/javascript" src="js/jquery.js"></script>
<script type="text/javascript">

// your script goes here
</script>

Selecting Page Elements (Revisited)

As you saw on page 158, the DOM provides two primary methods for selecting
an element on a Web page—document.getElementByld() and document.
getElementsByTagName(). Unfortunately, these two methods don’t provide the
control needed to make more subtle kinds of selections. For example, if you want
to select every <a> tag with a class of navButton, you first need to select every tag,
and then go through each and find only the ones that have the proper class name.
Or (as you did in the tutorial in Chapter 1) you may want to select every other row
in a table.

Fortunately, jQuery offers a very powerful technique for selecting and working on
a collection of elements—CSS Selectors. That’s right, if you’re used to using Cas-
cading Style Sheets to style your Web pages, you're ready to use jQuery. A CSS
selector is simply the instruction that tells a Web browser which tag the style
applies to. For example, h1 is a basic element selector, which applies a style to every
<h1> tag, while .copyright, is a class selector, which styles any tag that has a class
attribute of copyright like this:

<p class="copyright">Copyright, 2009</p>

With jQuery, you select one or more elements using a special command called the
jQuery object. The basic syntax is like this:

$('selector")

JAVASCRIPT: THE MISSING MANUAL

You can use nearly all CSS 2.1 and many CSS 3 selectors when you create a jQuery
object (even if the browser itself doesn’t understand the particular selector—like IE
with certain CSS 3 selectors). For example, if you want to select a tag with a spe-
cific ID of banner in jQuery, you can write this:

$('#banner")

The #banner is the CSS selector used to style a tag with the ID name banner—the #
part indicates that you’re identifying an ID. Of course, once you select one or more
elements, you’ll want to do something with them—jQuery provides many tools for
working with elements. For example, say you want to change the HTML inside an
element; you can write this:

$('#tbanner").html('<h1>JavaScript was here</h1>');

You’'ll learn more about how to work with page elements using jQuery starting on
page 181, and throughout the rest of this book. But first, you need learn more
about using jQuery to select page elements.

Basic Selectors

Basic CSS selectors like IDs, classes, and element selectors make up the heart of
CSS. They’re a great way to select a wide range of elements using jQuery.

Because reading about selectors isn’t the best way to gain an understanding of
them, this book includes an interactive Web page so you can test selectors. In the
chapter05 folder of the book’s tutorial files, you’ll find a file named selectors.html.
Open the file in a Web browser. You can test various jQuery selectors by typing
them into the selector box and clicking Apply (see Figure 5-6).

Note: See page 27 for information on where to find the tutorial files for this book.

ID selectors

You can select any page element that has an ID applied to it using jQuery and a
CSS ID selector. For example, say you have the following HTML in a Web page:

<p id="message">Special message</p>
To select that element using the old DOM way, you’d write this:

var messagePara = document.getElementById('message');

The jQuery method looks like this:

var messagePara = $('#message');

Unlike with the DOM method, you don’t just use the ID name ('message’); you
have to use the CSS-syntax for defining an ID selector ('#message’). In other words,
you include the pound sign before the ID name, just as if creating a CSS style for
that ID.

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Selecting Page
Elements (Revisited)

173

Selecting Page
Elements (Revisited)

Figure 5-6:

The file selectors.html,
provided with this book’s
tutorial files, lets you try
out jQuery selectors. Just
type a selector in the
Selector form field
(circled), and then click
Apply. The page converts

jQuery Selector Test Bed

Type a jQuery selector in the field below to see what Heading 3
elements jQuery selects: Quis nostrud exercitation ut

labore et dolore magna aliqua.

Sed do eusmod tempr your selector into a

Heading 3 JQuery object, and any
jQuery code: $('h2") Qs nostrud evercitation ut elements that match the
Elements found: 5 f::uﬁ;?i?:&;z!ﬁn Se’ ector you typ ed turn

red. Below the field is the
JQuery code used to select
the item, as well as the
total number or elements
selected. In this case, h2 is
the selector, and all <h2>
tags on the page (there
are five on this page) are
highlighted in red (which
looks surprisingly like
grey here).

1Ds [Checkbox

Felector T try S e o Crectod
« bod ' p

@ Radiot O Radio2

(‘Submit)

= input[type=text

= :disabled

“Building Interactive Web Sites with JavaScript”

174

Element selectors

jQuery also has its own replacement for the getElementsByTagName() method.
Just pass the tag’s name to jQuery. For example, using the old DOM method to
select every <a> tag on the page, you’d write this:

var linkslList = document.getElementsByTagName('a"');
With jQuery, you’d write this:

var linkslList = $('a');

Note: |Query supports an even wider range of selectors than are listed here. Although this book lists
many useful ones, you can find a complete list of jQuery selectors at http,//docs.jquery.com/Selectors.

Class selectors

The DOM doesn’t have any built-in method to find all elements with a particular
class attribute, which unfortunately is a common task for JavaScript program-
mers. For example, suppose you want to create a navigation bar that includes
drop-down menus; when a visitor mouses over one of the main navigation but-
tons, you want a drop-down menu to appear. You need to use JavaScript to con-
trol those menus, and you need a way to program each of the main navigation
buttons to open a drop-down menu when someone mouses over the button.

JAVASCRIPT: THE MISSING MANUAL

http://docs.jquery.com/Selectors.

Selecting Page
Elements (Revisited)

Note: Because finding all elements with a particular class name is such a common task, some browsers
(like the latest versions of Firefox and Safari) have added that feature. But since not all browsers have a
built-in way to find elements of a specific class, a library like jQuery, which takes the different browsers
into account, is invaluable.

One technique is to add a class—like navButton—to each of the main navigation
bar links, and then use JavaScript to search for links with just that class name and
apply all of the magical menu-opening power to those links (you’ll learn how to do
that, by the way, on page 300). This scheme may sound confusing now, but the
important point for now is that to make this navigation bar work, you need a way
to select only the links with a specific class name.

Fortunately, jQuery provides an easy method to select all elements with the same
class name. Just use a CSS class selector like this:

$(".submenu")

Again, notice that you write the CSS class selector just like, well, a CSS class selec-
tor, with the period before the class name. Once you select those tags, you can
manipulate them using jQuery. For example, to hide all tags with the class name of
.submenu, you’d write this:

$(".submenu').hide();

You’ll learn more about the jQuery hide() function on page 243, but for now this
example gives you a bit of an idea of how jQuery works.

UP TO SPEED

Understanding CSS

Cascading Style Sheets are a big topic in any discussion of
JavaScript. To get the most out of this book, you need to
have at least some background in Web design and know a
bit about CSS and how to use it. CSS is the most important
tool a Web designer has for creating beautiful Web sites, so
if you don’t know much about it, now's the time to learn.
Not only will CSS help you use jQuery, but you'll find that
you can use JavaScript in combination with CSS to easily
add interactive visual effects to a Web page.

If you need some help getting up to speed with CSS, there
are plenty of resources at your disposal:

For a basic overview on CSS, try the HTML Dog CSS Tutori-
als www.htmldog.com/quides/. You'll find basic, intermedi-
ate, and advanced tutorials at the site.

You can also pick up a copy of CSS: The Missing Manual,
which provides thorough coverage of CSS (including many
hands-on tutorials just like the ones in this book).

Most of all, when working with jQuery, it's very important
to understand CSS selectors—the instructions that tell a
Web browser which tag a CSS rule applies to. To get a han-
dle on selectors, the resources in this box are very good.
There are also a few places to go if you just want a refresher
on the different selectors that are available:

* http;//css.maxdesign.com.au/selectutorial/

* http;//www.456bereastreet.comy/archive/200601/
css_3_selectors_explained/

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

175

http://www.htmldog.com/guides/
http://css.maxdesign.com.au/selectutorial/
http://www.456bereastreet.com/archive/200601/css_3_selectors_explained/
http://www.456bereastreet.com/archive/200601/css_3_selectors_explained/

Selecting Page
Elements (Revisited)

176

Advanced Selectors

jQuery also lets you use more complicated CSS selectors to accurately pinpoint the
tags you wish to select. Don’t worry too much about mastering these right now:
Once you've read a few more chapters and gained a better understanding of how
jQuery works and how to use it to manipulate a Web page, you’ll probably want to
turn back to this section and take another look.

+ Descendent selectors provide a way to target a tag inside another tag (see
“Selecting nearby nodes” on page 160). For example, say you've created an
unordered list of links and added an ID name of navBar to the list’s tag
like this: <ul id="navBar">. The jQuery expression $(‘a’) selects all <a> tags on
the page. However, if you want to select only the links inside the unordered list,
you use a descendent selector like this:

$('#navBar a')
Again, this syntax is just basic CSS: a selector, followed by a space, followed by

another selector. The selector listed last is the target (in this case, a), while each
selector to the left represents a tag that wraps around the target.

Child selectors target a tag that’s the child of another tag. A child tag is the
direct descendent of another tag. For example, in the HTML diagrammed in
Figure 5-2, the <hl> and <p> tags are children of the <body> tag, but the
 tag is not (since it’s wrapped by the <p> tag). You create a child selec-
tor by first listing the parent element, followed by a >, and then the child ele-
ment. For example, to select <p> tags that are the children of the <body> tag,
you’d write this:

$('body > p")

Adjacent sibling selectors let you select a tag that appears directly after another
tag. For example, say you have an invisible panel that appears when you click a
tab. In your HTML, the tab might be represented by a heading tag (say <h2>),
while the hidden panel is a <div> tag that follows the header. To make the
<div> tag (the panel) visible, you’ll need a way to select it. You can easily do so
with jQuery and an adjacent sibling selector:

$("h2 + div")

To create an adjacent sibling selector, just add a plus sign between two selectors
(which can be any type of selector: IDs, classes, or elements). The selector on
the right is the one to select, but only if it comes directly after the selector on the
left.

Attribute selectors let you select elements based on whether the element has a
particular attribute, and even check to make sure the attribute matches a spe-
cific value. With an attribute selector, you can find tags that have the alt
attribute set, or even match an tag that has a particular alt text value. Or
you could find every link tag that points outside your site, and add code to just
those links, so they’ll open in new windows.

JAVASCRIPT: THE MISSING MANUAL

You add the attribute selector after the name of the element whose attribute
you’re checking. For example, to find tags that have the alt attribute set,
you write this:

$("imglalt]")
There are a handful of different attribute selectors:

« [attribute] selects elements that have the specified attribute assigned in the
HTML. For example, $(a[href]) locates all <a> tags that have an href
attribute set. Selecting by attribute lets you exclude named anchors——that are simply used as an in-page link.

[attribute=value] selects elements that have a particular attribute with a spe-
cific value. For example, to find all text boxes in a form, you can use this:

$("input[type=text]")

Since most form elements share the same tag—<input>—the only way to
tell the type of form element is to check its type attribute (selecting form ele-
ments is so common that jQuery includes specific selectors just for that pur-
pose, as described on page 311).

[attribute’N=value] matches elements with an attribute that begins with a spe-
cific value. For example, if you want to find links that point outside your site,
you can use this code:

$('alhrefr=http://]")
Notice that the entire attribute value doesn’t have to match just the begin-
ning. So hrefA=http:// matches links that point to http://www.yahoo.com,

http://www.google.com, and so on. Or you could use this selector to identify
mailto: links like this:

$('a[hrefr=mailto:]")

[attribute$=value] matches elements whose attribute ends with a specific
value, which is great for matching file extensions. For example, with this
selector you can locate links that point to PDF files (maybe to use JavaScript
to add a special PDF icon, or dynamically generate a link to Adobe.com so
your visitor can download the Acrobat Reader program). The code to select
links that point to PDF files looks like this:

$('a[href$=.pdf]")

[attribute*=value] matches elements whose attribute contains a specific value
anywhere in the attribute. For example, you can find any type of link that
points to a particular domain. For example, here’s how to find a link that
points to missingmanuals.com:

$('a[href*=missingmanuals.com]")

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Selecting Page
Elements (Revisited)

177

http://www.yahoo.com
http://www.google.com

Selecting Page
Elements (Revisited)

178

This selector provides the flexibility to find not only links that point to http://
www.missingmanuals.com, but also http://missingmanuals.com and http://
www.missingmanuals.com/library.html.

Note: jQuery has a set of selectors that are useful when working with forms. They let you select ele-
ments such as text fields, password fields, and selected radio buttons. You'll learn about these selectors on
page 311.

jQuery Filters

jQuery also provides a way to filter your selections based on certain characteris-
tics. For example, the :even filter lets you select every even element in a collection
of elements (you used this filter in the tutorial on page 30 to highlight every other
row in a table). In addition, you can find elements that contain particular tags, spe-
cific text, elements that are hidden from view, and even elements that do not match
a particular selector. To use a filter, you add a colon followed by the filter’s name
after the main selector. For example, to find every even row of a table, write your
jQuery selector like this:

$("tr:even')

This code selects every even <tr> tag. To narrow down the selection, you may want
to just find every even table row in a table with class name of striped. You can do
that like this:

$('.striped tr:even')
Here’s how :even and other filters work:

« teven and :odd select every other element in a group. These filters work a little
counter-intuitively; just remember that a jQuery selection is a list of all ele-
ments that match a specified selector. In that respect, they’re kind of like arrays
(see page 56). Each element in a jQuery selection has an index number—
remember that index values for arrays always start at 0 (see page 59). So, since :
even filters on even index values (like 0, 2, and 4), this filter actually returns the
first, third, and fifth items (and so on) in the selection—in other words, it’s
really selecting every other odd element! The :odd filter works the same except it
selects every odd index number (1, 3, 5, and so on).

You can use :not() to find elements that don’t match a particular selector type.
For example, say you want to select every <a> tag except ones with a class of
navButton. Here’s how to do that:

$("a:not(.navButton)"');
You give the :not() function the name of the selector you wish to ignore. In this

case, .navButton is a class selector, so this code translates to “not with the class
of .navButton.” You can use :not() with any of the jQuery filters and with most

JAVASCRIPT: THE MISSING MANUAL

http://www.missingmanuals.com
http://www.missingmanuals.com
http://missingmanuals.com
http://www.missingmanuals.com/library.html
http://www.missingmanuals.com/library.html

jQuery selectors; so, for example, to find every link that doesn’t begin with
http://, you can write this:

$('a:not([hrefr=http://])")

* :has(') finds elements that contain another selector. For example, say you want
to find all tags, but only if they have an <a> tag inside them. You’d do that
like this:

$('1lizhas(a)")

This setup is different from a descendent selector, since it doesn’t select the <a>;
it selects tags, but only those tags with a link inside them.

+ :contains() finds elements that contain specific text. For example, to find every
link that says “Click Me!” you can create a jQuery object like this:

$('a:contains(Click Me!)")

« :hidden locates elements that are hidden, which includes elements that either
have the CSS display property set to none (which means you won’t see them on
the page), elements you hide using jQuery’s hide() function (discussed on page
243), or hidden form fields. (This selector doesn’t apply to elements whose CSS
visibility property is set to invisible.) For example, say you've hidden several
<div> tags; you can find them and then make them visible using jQuery, like
this:

$('div:hidden").show();

This line of code has no effect on <div> tags that are currently visible on the
page. (Yowll learn about jQuery’s show(') function on page 243.)

« wvisible is the opposite of :hidden. It locates elements that are visible on the page.

Understanding jQuery Selections

When you select one or more elements using the jQuery object—for example
$('#navBar a')—you don’t end up with a traditional list of DOM nodes, like the
ones you get if you use getElementByld() or getElementsByTagName(). Instead,
you get a special jQuery-only selection of elements. These elements don’t under-
stand the traditional DOM methods; for example, you can’t use the innerHTML
property (page 163) with a jQuery object like this:

$('#banner").innerHTML = 'New text'; // won't work

In fact, if you learned about DOM methods in another book, you’ll find that none
of them work with the jQuery object as-is. That may seem like a major drawback,
but nearly all of the properties and methods of a normal DOM node have jQuery
equivalents, so you can do anything the traditional DOM can do—only usually
much faster and with fewer lines of code.

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Selecting Page
Elements (Revisited)

179

Selecting Page
Elements (Revisited)

There are, however, two big conceptual differences between how the DOM works
and how jQuery selections work. jQuery was built to make it a lot easier and faster
to program JavaScript. One of the goals of the library is to let you do a lot of stuff
with as few lines of code as possible. To achieve that, jQuery uses two unusual
principles.

Automatic loops

Normally, when you’re using the DOM and you select a bunch of nodes, you then
need to create a loop (page 90) to go through each node selected and do some-
thing to that node. For example, if you want to select all the images in a page then
hide them—something you might do if you want to create a JavaScript-driven
slideshow—you must first select the images and then create a loop to go through
the list of images.

Because looping through a collection of elements is so common, jQuery functions
have that feature built right in. In other words, when you apply a jQuery function
to a selection of elements, you don’t need to create a loop yourself, since the func-
tion does it automatically.

For example, to select all images inside a <div> tag with an ID of slideshow and
then hide those images, you write this in jQuery:

$('#slideshow img').hide();

The list of elements created with $(“#slideshow img’) might include 50 images. The
hide(') function automatically loops through the list, hiding each image individu-
ally. This setup is so convenient (imagine the number of for loops you won’t have
to write) that it’s surprising that this great feature isn’t just part of the DOM.

Chaining functions

Sometimes you’ll want to perform several operations on a selection of elements.
For example, say you want to set the width and height of a <div> tag (with an ID
of popUp) using JavaScript. Normally, you’d have to write at least two lines of
code. But jQuery lets you do so with a single line:

$("#popUp") .width(300).height(300);

jQuery uses a unique principle called chaining, which lets you add functions one
after the other. Each function is connected to the next by a period, and operates on
the same jQuery collection of elements as the previous function. So the code above
changes the width of the element with the ID popUp, and changes the height of the
element. Chaining jQuery functions lets you concisely carry out a large number of
actions. For example, say you not only want to set the width and height of the
<div> tag but also want to add text inside the <div> and make it fade into view
(assuming it’s not currently visible on the page). You can do that very succinctly
like this:

$("#popUp") .width(300).height(300).text('Hi!").fadeIn(1000);

JAVASCRIPT: THE MISSING MANUAL

This code applies four jQuery functions (width(), height(), text(), and fadeln()) to
the tag with an ID name of popUp.

Tip: Along line of chained jQuery functions can be hard to read, so some programmers break it up over
multiple lines like this:
$("#popUp"') .width(300)

.height(300)

.text('Message")

.fadeIn(1000);
As long as you only add a semicolon on the /ast line of the chain, the JavaScript interpreter treats the lines
as a single statement.

The ability to chain functions is pretty unusual and is a specific feature of jQuery—
in other words, you can’t add non-jQuery functions (either ones you create or
built-in JavaScript functions) in the chain.

Adding Content to a Page

jQuery provides many functions for manipulating elements and content on a page,
from simply replacing HTML, to precisely positioning new HTML in relation to a
selected element, to completely removing tags and content from the page.

Note: An example file, content_functions.html, located in the chapter05 tutorial folder lets you take each
of these jQuery functions for a test drive. Just open the file in a Web browser, type some text in the text
box, and click any of the “Run It" boxes to see how each function works.

To study the following examples of these functions, assume you have a page with
the following HTML:

<div id="container">
<div id="errors">
<h2>Errors:</h2>
</div>
</div>

« .html() works like the DOM’s innerHTML property. It can read the current
HTML inside an element as well as replace the current contents with some
other HTML. You use the html() function in conjunction with a jQuery selection.

To retrieve the HTML currently inside the selection, just add .html() after the
jQuery selection. For example, you can run the following command using the
HTML snippet at the beginning of this section:

alert($('#terrors').html());

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Adding Content to a
Page

Adding Content to a
Page

182

This code creates an alert box with the text “<h2>Errors:</h2>” in it. When you
use the html() function in this way, you can make a copy of the HTML inside a
specific element and paste it into another element on a page.

« If you supply a string as an argument to .htmli(), you replace the current con-
tents inside the selection:

$('"tterrors').html('<p>There are four errors in this form</p>");

This line of code replaces all of the HTML inside an element with an ID of
errors. It would change the example HTML snippet to:

<div id="container">
<div id="errors">
<p>There are four errors in this form</p>
</div>
</div>

Notice that it replaces the <h2> tag that was already there. You can avoid
replacing that HTML using other functions listed below.

Note: jQuery also has a function named text() that works just like Atml(), except that any HTML tags
that are passed to text() are encoded so that <p> is translated to &/t;p>:—use it if you want you to actu-
ally display the brackets and tag names on the page. For example, you can use it to display example HTML
code for other people to view.

+ append() adds HTML as the last child element of the selected element. For
example, say you select a <div> tag, but instead of replacing the contents of the
<div>, you just want to add some HTML before the closing </div> tag. The
.append() function is a great way to add an item to the end of a bulleted ()
or numbered () list. As an example, say you run the following code on a
page with the HTML listed at the beginning of this section:

$('#terrors').append('<p>There are four errors in this form</p>');

After this function runs, you end up with HTML like this:

<div id="container">
<div id="errors">
<h2>Errors:</h2>
<p>There are four errors in this form</p>
</div>
</div>

Notice that the original HTML inside the <div> remains the same, and the new
chunk of HTML is added after it.

« prepend() is just like append(), but adds HTML directly after the opening tag
for the selection. For example, say you run the following code on the same
HTML listed previously:

$('#terrors').prepend('<p>There are four errors in this form</p>');

JAVASCRIPT: THE MISSING MANUAL

After this prepend() function, you end up with the following HTML:

<div id="container">
<div id="errors">
<p>There are four errors in this form</p>
<h2>Errors:</h2>
</div>
</div>

Now the newly added content appears directly after the <div>’s opening tag.

« If you want to add HTML just outside of a selection, either before the selected
element’s opening tag or directly after the element’s closing tag, use the before()
or after() functions. For example, it’s common practice to check a text field in a
form to make sure that the field isn’t empty when your visitor submits the
form. Assume that the HTML for the field looks like the following before the
form is submitted:

<input type="text" name="userName" id="userName">

Now suppose that when the visitor submits the form, this field is empty. You
can write a program that checks the field and then adds an error message after
the field. To add the message after this field (don’t worry right now about how
you actually check that the contents of form fields are correct—you’ll find out
on page 330), you can use the .affer() function like this:

$('#tuserName').after('User name required');

That line of code makes the Web page show the error message, and the HTML
component would look like this:

<input type="text" name="userName" id="userName">
User name required

The .before() function simply puts the new content before the selected element.

Replacing and Removing Selections

At times you may want to completely replace or remove a selected element. For
example, say you've created a pop-up dialog box using JavaScript (not the old-
fashioned alert() method, but a more professional-looking dialog box that’s
actually just an absolutely-positioned <div> floating on top of the page). When the
visitor clicks the “Close” button on the dialog box, you naturally want to remove
the dialog from the page. To do so, you can use the jQuery remove() function. Say
the pop-up dialog had an ID of popup; you can use the following code to delete it:

$("#popup').remove();

The .remove() function isn’t limited to just a single element. Say you want to
remove all tags that have a class of error applied to them; you can do this:

$("'span.error').remove();

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Adding Content to a
Page

Adding Content to a
Page

HELPFUL TOOL ALERT

View Source Chart Provides Clear View

One problem with using JavaScript to manipulate the DOM
by adding, changing, deleting, and rearranging HTML code
is that it's hard to figure out what the HTML of a page looks
like when JavaScript is finished. For example, the View
Source command available in every browser only shows
the Web page file as it was downloaded from the Web
server. In other words, you see the HTML before it was
changed by JavaScript, which can make it very hard to fig-
ure out if the JavaScript you're writing is really producing
the HTML you're after. For example, if you could see what
the HTML of your page looks like after your JavaScript adds
10 error messages to a form page, or after your JavaScript
program creates an elaborate pop-up dialog box complete
with text and form fields, it would be a lot easier to see if
you're ending up with the HTML you want.

Fortunately, there are a couple of Firefox extensions
that can help with this dilemma. The View Source
Chart extension (http;//jennifermadden.comy/scripts/
ViewRenderedSource.html) shows you the current state of
the DOM whenever you open the View Source Chart win-
dow. In other words, if you open the View Source Chart
window after JavaScript has added or changed a bunch of
HTML, you'll see the new JavaScript-enhanced HTML.

To use the extension, open Firefox, visit the URL above, and
install the extension. Then, when you want to view the cur-
rent state of a page’s HTML, choose View Source Chart
from Firefox's View menu. When you open the window, it
shows the current state of the HTML. If you then do some-
thing on the Web page that once again changes the DOM
using JavaScript (like click an image or try to submit a
form), you need to close the View Source Chart window
and open it again to see the just-created HTML.

Another extension, the Web Developer Toolbar (http;//
chrispederick.com/work/web-developer/), provides a simi-
lar tool. Using Firefox, visit the URL listed and install the
extension. After Firefox restarts, you'll see a new toolbar of
options (there are /ots of useful tools for Web developers).
If you choose View Source — View Generated Source,
you'll see the JavaScript-modified DOM. However, the
HTML this tool displays isn't as well formatted as the View
Source Chart extension, so it's a bit harder to read.

You can also completely replace a selection with new content. For example, sup-
pose you have a page with photos of the products your company sells. When a visi-
tor clicks on an image of a product, it’s added to a shopping cart. You might want
to replace the tag with some text when the image is clicked (“Added to
cart,” for example). You’ll learn how to make particular elements react to events
(like an image being clicked) in the next chapter, but for now just assume there’s
an tag with an ID of product101 that you wish to replace with text. Here’s
how you do that with jQuery:

$("#product101").replace('<p>Added to cart</p>');

This code removes the tag from the page and replaces it with a <p> tag.

Note: |Query also includes a function named clone() that lets you make a copy of a selected element.
You'll see this function in action in the tutorial on page 199.

184 JAVASCRIPT: THE MISSING MANUAL

http://jennifermadden.com/scripts/ViewRenderedSource.html
http://jennifermadden.com/scripts/ViewRenderedSource.html
http://chrispederick.com/work/web-developer/
http://chrispederick.com/work/web-developer/

Setting and Reading Tag Attributes

Adding, removing, and changing elements isn’t the only thing jQuery is good at—
and it’s not the only thing you’ll want to do with a selection of elements. You’ll
often want to change the value of an element’s attribute—add a class to a tag, for
example, or change a CSS property of an element. You can also get the value of an
attribute—for instance, what URL does a particular link point to?

Classes

Cascading Style Sheets are a very powerful technology, letting you add all sorts of
sophisticated visual formatting to your HTML. One CSS rule can add a colorful
background to a page, while another rule might completely hide an element from
view. You can create some really advanced visual effects simply by using JavaScript
to remove, add, or change a class applied to an element. Because Web browsers
process and implement CSS instructions very quickly and efficiently, simply add-
ing a class to a tag can completely change that tag’s appearance—even make it
disappear from a page.

For example, in the tutorial on page 30, you wrote a JavaScript program that
changed the background color of every other row in a table. Well, actually what
you did was write a program that added a particular class to every other row in the
table. CSS actually handled the coloring of the row’s background.

jQuery provides several functions for manipulating a tag’s class attribute:

* addClass() adds a specified class to an element. You add the addClass() after a
jQuery selection and pass the function a string, which represents the class name
you wish to add. For example, to add the class externalLink to all links pointing
outside your site, you can use this code:

$('a[hrefr=http://]").addClass('externallink');
This code would take HTML like this:

And change it to the following:

For this function to be of any use, you’ll need to create a CSS class style before-
hand and add it to the page’s style sheet. Then, when the JavaScript adds the
class name, the Web browser can apply the style properties from the previously
defined CSS rule.

Note: When using the addClass() and removeClass() functions, you only supply the class name—leave
out the period you normally use when creating a class selector. For example, addClass(‘externallink') is
correct, but addClass(".externallink') is wrong.

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Setting and Reading
Tag Attributes

Setting and Reading
Tag Attributes

This jQuery function also takes care of issues that arise when a tag already has a
class applied to it—the addClass() function doesn’t eliminate the old classes
already applied to the tag; the function just adds the new class as well.

Note: Adding multiple class names to a single tag is perfectly valid and frequently very helpful. Check out
http,//webdesign.about.com/od/css/qt/tipcssmulticlas.htm for more information on this technique.

« removeClass() is the opposite of addClass(). It removes the specified class from
the selected elements. For example, if you wanted to remove a class named
highlight from a <div> with an ID of alertBox, you’d do this:

$('#alertBox').removeClass(highlight');

Finally, you may want to foggle a particular class—meaning add the class if it
doesn’t already exist, or remove the class if it does. Toggling is a popular way to
show an element in either an on or off state. For example, when you click a
radio button, it’s checked (on); click it again, and the checkmark disappears

(off).

Say you have a button on a Web page that, when clicked, changes the <body>
tag’s class. By so doing, you can add a complete stylistic change to a Web page
by crafting a second set of styles using descendent selectors. When the button is
clicked again, you want the class removed from the <body> tag, so that the page
reverts back to its previous appearance. For this example, assume the button the
visitor clicks to change the page’s style has an ID of changeStyle and you want to
toggle the class name altStyle off and on with each click of the button. Here’s
the code to do that:

$("#changeStyle').click(function() {
$('body').toggleClass('altStyle');
b;

At this point, don’t worry about the first and third lines of code above; those
have to do with events (Chapter 6), which let scripts react to actions—Ilike click-
ing the button—that happen on a page. The bolded line of code demonstrates
the toggleClass(') function; it either adds or removes the class altStyle with each
click of the button.

Reading and Changing CSS Properties

jQuery’s css() function also lets you directly change CSS properties of an element,
so instead of simply applying a class style to an element, you can immediately add
a border or background-color, or set a width or positioning property. You can use
the css() function in three ways: to find the current value for an element’s CSS
property, to set a single CSS property on an element, or to set multiple CSS prop-
erties at once.

186 JAVASCRIPT: THE MISSING MANUAL

http://webdesign.about.com/od/css/qt/tipcssmulticlas.htm

To determine the current value of a CSS property, pass the name of the property to
the css() function. For example, say you want to find the background color of a
<div> tag with an ID of main:

var bgColor = $('#main').css('background-color');
After this code runs, the variable bgColor will contain a string with the element’s

background-color value (jQuery returns either 'transparent’ if no color is set, or an
RGB color value like this: 'rgh(255, 255, 0)").

Note: jQuery may not always return CSS values the way you expect. For example, jQuery doesn't under-
stand shorthand CSS properties like font, margin, padding, or border. Instead, you have to use the spe-
cific CSS propetties like font-face, margin-top, padding-bottom, or border-bottom-width to access styles
that can be combined in CSS shorthand. In addition, jQuery translates all unit values to pixels, so even if
you use CSS to set the <body> tag's font-size to 150%, jQuery returns a pixel value when checking the
font-size property.

The ¢ss(') function also lets you set a CSS property for an element. To use the func-
tion this way, you supply two arguments to the function: the CSS property name
and a value. For example, to change the font size for the <body> tag to 200% size,
you can do this:

$('body"').css('font-size', '200%");
The second argument you supply can be a string value, like '200%', or a numeric

value, which jQuery translates to pixels. For example, to change the padding inside
all of the tags with a class of .pullquote to 100px, you can write this code:

$(".pullquote').css('padding',100);

In this example, jQuery sets the padding property to 100 pixels.

Note: When you set a CSS property using jQuery's .css() function, you can use the CSS shorthand
method. For example, here's how you could add a black, one-pixel border around all paragraphs with a
class of highlight:

$('p.highlight').css('border', 'ipx solid black');

It’s often useful to change a CSS property based on its current value. For example,
say you want to add a “Make text bigger” button on a Web page, so when a visitor
clicks the button, the page’s font-size doubles. To make that happen, you read the
value, and then set a new value. In this case, you first determine the current font-
size and then set the font-size to twice that value. It’s a little trickier than you
might think. Here’s the code, and a full explanation follows:

var baseFont = $('body').css('font-size');
baseFont = parseInt(baseFont,10);
$('body").css('font-size',baseFont * 2);

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Setting and Reading
Tag Attributes

187

Setting and Reading
Tag Attributes

The first line retrieves the <body> tag’s font-size value—the returned value is in
pixels and is a string like this: '16px’. Since you want to double that size—multiply-
ing it by 2—you must convert that string to a number by removing the “px” part
of the string. The second line accomplishes that using the JavaScript parselnt()
method discussed on page 135. That function essentially strips off anything follow-
ing the number, so after line two baseFont contains a number, like 16. Finally, the
third line resets the font-size property by multiplying the baseFont value by 2.

Note: This code affect the page’s type size only if the other tags on the page—paragraphs, headlines, and
so on—have their font-size set using a relative value like ems or percentages. If the other tags use absolute
values like pixels, changing the <body> tag's font size won't affect them.

Changing Multiple CSS Properties at Once

If you want to change more than one CSS property on an element, you don’t need
to resort to multiple uses of the .css() function. For example, if you want to
dynamically highlight a <div> tag (perhaps in reaction to an action taken by a visi-
tor), you can change the <div> tag’s background color and add a border around it,
like this:

$('#highlightedDiv').css('background-color", '#FF0000");
$('#highlightedDiv').css('border’, '2px solid #FE0037');

Another way is to pass what’s called an object literal to the .css() function. Think of
an object literal as a list of property name/value pairs. After each property name,
you insert a colon (:) followed by a value; each name/value pair is separated by a
comma, and the whole shebang is surrounded by braces—{}. Thus, an object lit-
eral for the two CSS property values above looks like this:

{ 'background-color' : '#FF0000', 'border' : '2px solid #FE0037' }

Because an object literal can be difficult to read if it’s crammed onto a single line,
many programmers break it up over multiple lines. The following is functionally
the same as the previous one-liner:

{

'background-color' : '#FF0000',
'border' : '2px solid #FE0037'

}

The basic structure of an object literal is diagrammed in Figure 5-7.

Warning: \When creating an object literal, make sure to separate each name/value pair by adding a
comma after the value (for instance, in this example the comma goes after the value '#FF0000". However,
the last property/value pair should not have a comma after it, since no property/value pair follows it. If you
do add a comma after the last value, some Web browsers (including Internet Explorer) will generate an
error.

JAVASCRIPT: THE MISSING MANUAL

Reading, Setting,
and Removing HTML

Attributes

Beginning of object Figure 5-7:

Separates property from value

pair from the next pair

A JavaScript object literal provides a way to create a list
of properties and values. JavaScript treats the object
{ literal as a single block of information—just as an array

'background-color' @ '#FF0000'g is a list of values. You'll use an object literal like this
) border' @ '2px solid #FE0037 frequently when setting options for jQuery plugins.
Property Value
End of object Separates one property/value

To use an object literal with the css() function, just pass the object to the function
like this:

$('#thighlightedDiv').css({
"background-color' : '#FF0000',
"border' : '2px solid #FE0037'

1)

Study this example closely, because it looks a little different from what you’ve seen
so far, and because you’ll be encountering lots of code that looks like it in future
chapters. The first thing to notice is that this code is merely a single JavaScript
statement (essentially just one line of code)—you can tell because the semicolon
that ends the statement doesn’t appear until the last line. The statement is broken
over four lines to make the code easier to read.

Next, notice that the object literal is an argument (like one piece of data) that’s
passed to the ¢ss() function. So in the code css({, the opening parenthesis is part of
the function, while the opening { marks the beginning of the object. The three
characters in the last line break down like this: } is the end of the object and the
end of the argument passed to the function;) marks the end of the function, the
last parenthesis in css(); and ; marks the end of the JavaScript statement.

And if all this object literal stuff is hurting your head, you’re free to change CSS
properties one line at a time, like this:

$('#highlightedDiv').css('background-color', '#FF0000");
$('#highlightedDiv').css('border', '2px solid #FE0037");

Reading, Setting, and Removing HTML
Attributes

Since changing classes and CSS properties using JavaScript are such common tasks,
jQuery has built-in functions for them. But the addClass() and ¢ss() functions are
really just shortcuts for changing the HTML class and style attributes. jQuery
includes general-purpose functions for handling HTML attributes—the attr() and
removeAttr() functions.

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Creative Headlines

190

The attr() function lets you read a specified HTML attribute from a tag. For exam-
ple, to determine the current graphic file a particular points to, you pass
the string 'src’ (for the tag’s src property) to the function:

var imageFile = $('#banner img').attr('src');

The attr() function returns the attributes value as it’s set in the HTML. This code
returns the src property for the first tag inside another tag with an ID of
banner, so the variable imageFile would contain the path set in the page’s HTML:
for instance, 'images/banner.png' or 'http://www.thesite.com/images/banner.png'.

Note: \When passing an attribute name to the .attr() function, you don't need to worry about the case of
the attribute name—href, HREF, or even HrEf will work.

If you pass a second argument to the attr() function, you can set the tag’s
attribute. For example, to swap in a different image, you can change an
tag’s src property like this:

$('#tbanner img').attr('src', ' images/newImage.png');

If you want to completely remove an attribute from a tag, use the removeAttr()
function. For example, this code removes the bgColor property from the <body>
tag:

$('body"').removeAttr('bgColor');

Creative Headlines

In this tutorial, you’ll use jQuery in combination with CSS to create a unique
headline effect (see Figure 5-8). The basic concept is to overlay a transparent PNG
image on top of each headline. The PNG acts as a kind of mask that covers parts of
the headlines. In this example, an image made of fading horizontal lines will lie
over several headlines to give the appearance that the text itself has stripes.

The key to this effect is to add an empty tag inside each headline’s tag.
Using CSS, you can format this tag so that it sets on top of the headline
and displays a transparent image inside it.

Note: See the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 5.2.html in the chapter05 folder.
The first step is to link to the jQuery library file.
2. In the empty line, just before the closing </head> tag, add:

<script type="text/javascript" src="../js/jquery.js"></script>

JAVASCRIPT: THE MISSING MANUAL

Creative Headlines

,C_ Script 5.2 - Windows Internet Explorer,

S AT M |"_.é'|,'|,.PSF'|,.Mac'|,Users'l,da V| || % |LiveSearch
ﬁ? '1":11‘? [@ScriptS.Z l ‘ ﬁ b @ < @Page - &

=

et, porttitor in, nunc. Vivamus metus.

THED

cool

Tauris imperdiet nisi ut pede. Vivamus nisi lorem, euismo

Mauris imperdiet nisi ut pede. Vivamus nisi lorem, euismo:

et, porttitor in, nunc. Vivamus metus.

Mauris imperdiet nisi ut pede. Vivamus nisi lorem, euismon

et, porttitor in, nunc. Vivamus metus.

Sy

b

E;E /" Trusted sites

&, 100%

-

Figure 5-8:

With some clever CSS
and a little JavaScript, it’s
easy to add visual flair to
headlines and text. To
see more examples of
this effect and read more
about how it works,
check out www.
webdesignerwall.com/
tutorials/css-gradient-
text-effect and http://
cssglobe.com/lab/
textgradient

This line of code loads the jQuery library file. This line must appear before any
other JavaScript code that uses a jQuery function, so it’s a good idea to always
list this line before any other <script> tags on the page.

Next, you’'ll start your own JavaScript.
3. Press return to create a new blank line and type:

<script type="text/javascript">

While you’re here, it’s a good idea to close the <script> tag as well.

4. Press return twice and type </script>.
Now you’ll get started with some jQuery.
5. Add the code that’s bolded below to your page:

<script type="text/javascript" src="../js/jquery.js"></script>

<script type="text/javascript">
$(document) .ready(function() {

}s;

</script>

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

191

Creative Headlines

192

You encountered this code before in the tutorial on page 30. You’ll learn about
this strange-looking stuff in detail in the next chapter, but in a nutshell, this
code makes sure that the HTML for the page has loaded before your JavaScript
program runs. That’s very important when using JavaScript to manipulate a
Web page, because if JavaScript tries to add, delete, or rearrange HTML before
the page’s HTML has loaded, you’ll end up with an error.

Now you’ll create a jQuery selection object.

. Between the two lines of code you just added, type $('#main h2') so your code

now looks like this:

<script type="text/javascript" src="../js/jquery.js"></script>
<script type="text/javascript">
$(document).ready(function() {
$('#main h2')
1;

</script>

The #main h2 is a CSS descendent selector that matches every <h2> tag that
appears inside another tag with an ID of #main, so this code selects every <h2>
tag within the main area of the page. Now you’ll do something with those tags.

. Type .prepend(''); so that your finished

code looks like this:

<script type="text/javascript" src="../js/jquery.js"></script>
<script type="text/javascript">

$(document).ready(function() {

$('#main h2').prepend('");

1

</script>

The .prepend() function adds content just after the opening tag of the matched
element. In other words, this code will add an empty tag inside each
<h2> tag, transforming the HTML from, for example, <h2>A Mysterious Head-
line</h2> to <h2>A Mysterious Headline</h2>.

. Save the page and preview it in a Web browser.

The three big, bold, and blue headlines should look like Figure 5-8 (you can
find all of the finished code in the file complete_5.2.html). The real secret of this
technique isn’t really JavaScript or jQuery, but the CSS. In a nutshell, each
 tag added to the headlines has a CSS style applied to it that turns the
span into a 36-pixel-tall box that floats above and over the headlines. A trans-
parent image is tiled inside that box, creating a mask that blocks part of each
headlines text (note the .headEffect class style defined in the internal style sheet
near the top of the document).

JAVASCRIPT: THE MISSING MANUAL

So, you may be asking, if the effect is really a CSS effect, why use JavaScript? With-
out JavaScript, you’d need to manually add the tags inside each headline
you wanted the effect for. That’s a lot of extra work, not to mention extra code
added to your Web page. What’s more, if you grew tired of this effect (is that even
possible?), you’d have to search all of your pages and remove the no-longer-
needed tags. This way, you just have a little JavaScript code to remove.

Acting on Each Element in a Selection

As discussed on page 180, one of the unique qualities of jQuery is that most of its
functions automatically loop through each item in a jQuery selection. For exam-
ple, to make every on a page fade out, you only need one line of JavaScript
code:

$('img").fadeOut();

The .fadeOut() function causes an element to disappear slowly, and when attached
to a jQuery selection containing multiple elements, the function loops through the
selection and fades out each element. There are plenty of times when you’ll want to
loop through a selection of elements and perform a series of actions on each ele-
ment. jQuery provides the .each() function for just this purpose.

For example, say you want to list of all of the external links on your page in a bibli-
ography box at the bottom of the page, perhaps titled “Other Sites Mentioned in
This Article.” (OK, you may not ever want to do that, but just play along.) Any-
way, you can create that box by:

1. Retrieving all links that point outside your site.
2. Getting the HREEF attribute of each link (the URL).
3. Adding that URL to the other list of links in the bibliography box.

jQuery doesn’t have a built-in function that performs these exact steps, but you
can use the each() function to do it yourself. It’s just a jQuery function, so you slap
it on at the end of a selection of jQuery elements like this:

$('selector').each();

Anonymous Functions

To use the each() function, you pass a special kind of argument to it—an anony-
mous function. The anonymous function is simply a function containing the steps
that you wish to perform on each selected element. It’s called anonymous because,
unlike the functions you learned to create on page 97, you don’t give it a name.
Here’s an anonymous function’s basic structure:

function() {
//code goes here

}

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Acting on Each
Elementina
Selection

193

Acting on Each
Element in a

Selection

Because there’s no name, you don’t have a way to call the function. Instead, you
use the anonymous function as an argument that you pass to another function
(strange, confusing, but true!). Here’s how you incorporate an anonymous func-
tion as part of the each(') function:

$('selector").each(function() {
// code goes in here

b

Figure 5-9 diagrams the different parts of this construction. The last line is particu-
larly confusing, since it includes three different symbols that close up three parts of
the overall structure. The } marks the end of the function (that’s also the end of the
argument passed to the each() function); the) is the last part of the each() func-
tion; and ; indicates the end of a JavaScript statement. In other words, the Java-
Script interpreter treats all of this code as a single instruction.

Start of each() function Anonymous function Figure 5-9:
JjQuery’s each() function lets you loop

$('selector') .each(function() —Sﬁ glr]rl/:;n()gutsnffun ction through a selection of page elements and
// your code goes in here perform a series of tasks on each
)X element. The key to using the function is
L End of statement understanding anonymous functions.

End of each() function
End of anonymous function

Now that the outer structure’s in place, it’s time to put something inside the anony-
mous function: all of the stuff you want to happen to each element in a selection.
The each() function works like a loop—meaning the instructions inside the anony-
mous function will run once for each element you've retrieved. For example, say
you have 50 images on a page and add the following JavaScript code to one of the
page’s scripts:

$('img").each(function() {
alert('I found an image');

};

Fifty alert dialog boxes with the message “I found an image” would appear. (That’d
be really annoying, so don’t try this at home.)

this and $(this)

When using the each() function, you’ll naturally want to access or set attributes of
each element—for example, to find the URL for each external link. To access the
current element through each loop, you use a special keyword called this. The this
keyword refers to whatever element is calling the anonymous function. So the first
time through the loop, this refers to the first element in the jQuery selection, while
the second time through the loop, this refers to the second element.

194 JAVASCRIPT: THE MISSING MANUAL

The way jQuery works, this refers to a traditional DOM element, so you can access
traditional DOM properties like innerHTML (page 163) or childNodes (page 161).
But, as you’ve read in this chapter, the special jQuery selection lets you tap into all
of the wonderful jQuery functions. So to convert this to its jQuery equivalent, you
write $(this).

At this point, you’re probably thinking that all of this this stuff is some kind of
cruel joke intended to make your head swell. It’s not a joke, but it sure is confus-
ing. To help make clear how to use $(this), take another look at the task described
at the beginning of this section—creating a list of external links in a bibliography
box at the bottom of a page.

Assume that the page’s HTML already has a <div> tag ready for the external links.
For example:

<div id="bibliography">

<h3>Web pages referenced in this article</h3>

<ul id="biblList">

</div>

The first step is to get a list of all links pointing outside your site. You can do so
using an attribute selector (page 177):
$('alhrefr=http://1")
Now to loop through each link, we add the each(') function:
$('a[hrefr=http://]").each()

Then add an anonymous function:

$("'a[hrefr=http://]").each(function() {

1);

The first step in the anonymous function is to retrieve the URL for the link. Since
each link has a different URL, you must access the current element each time
through the loop. The $(this) keyword lets you do just that:

$("a[hrefr=http://]").each(function() {
var extLink = $(this).attr('href');
b;

The code in the middle, bolded line does several things: First, it creates a new vari-
able (extLink) and stores the value of the current element’s href property. Each
time through the loop, $(this) refers to a different link on the page, so each time
through the loop, the extLink variable changes.

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Acting on Each
Elementina
Selection

195

Automatic Pull
Quotes

196

After that, it’s just a matter of appending a new list item to the tag (see the
HTML on page 195), like this:

$('a[hrefr=http://]").each(function() {
var extlink = $(this).attr('href');
$('#bibList').append('<1i>' + extLink + '</1i>');
1)
You’ll use the $(this) keyword almost every time you use the each(') function, so in

a matter of time, $(this) will become second nature to you. To help you practice
this concept, you’ll try it out in another tutorial.

Note: The example script used in this section is a good way to illustrate the use of the S(this) keyword,
but it probably isn't the best way to accomplish the task of writing a list of external links to a page. First, if
there are no links, the <div> tag (which was hardcoded into the page’s HTML) will still appear, but it'll be
empty. In addition, if someone visits the page without JavaScript turned on, he won't see the links, but will
see the empty box. A better approach is to use JavaScript to create the enclosing <div> tag as well. You
can find an example of that in the file bibliography.htm! accompanying the tutorials for this chapter.

Automatic Pull Quotes

In the final tutorial for this chapter, you’ll create a script that makes it very easy to
add pull quotes to a page (like the one pictured in Figure 5-10). A pull quote is a
box containing an interesting quote from the main text of a page. Newspapers,
magazines, and Web sites all use these boxes to grab readers’ attention and empha-
size an important or interesting point. But adding pull quotes manually requires
duplicating text from the page and placing it inside a <div> tag, tag, or
some other container. Creating all that HTML takes time and adds extra HTML
and duplicate text to the finished page. Fortunately, with JavaScript you can
quickly add any number of pull quotes to a page, adding just a small amount of
HTML.

Overview
The script you’re about to create will do several things:

1. Locate every tag containing a special class named pq (for pull quote).

The only work you have to do to the HTML of your page is to add tags
around any text you wish to turn into a pull quote. For example, suppose
there’s a paragraph of text on a page and you want to highlight a few words
from that paragraph in pull quote box. Just wrap that text in the , tag
like this:

...and that's how I discovered the Loch Ness monster.

JAVASCRIPT: THE MISSING MANUAL

Automatic Pull
Quotes

Figure 5-10:

Adding pull quotes
manually to the HTML of
apage is a pain.
Especially when you can
Just use JavaScript to
Auto-Pull Quotes automate the process.

800 Script 5.3

(& http: //tutorials Jocal/ chapter0s /complete_S.3.htm|

Vestibulum semper

Vestibulum semper tincidunt sem. Vestibulum ante ipsum pnm]s in
faueibus orei luctus et ultrices posuere cubilia Curae; Doneepuly
Jjusto non fringilla dapibus, sapien tortor curs
nisi tincidunt sapien. Sed nisl. Fusce
venenatis, libero porta porta fringilla, Fusce venenatis,
sapien odio tincidunt sem, id aliquam teflus | libero porta porta
sapien sit amet quam. Vivamus justo fringilla, sapien odio
aliquam vitae, eleifend et, lobortis quis tincidunt sem, id
eros. Ut felis arcu, mollis ut, interdum aliquam tellus sapien
molestie, vehicula a, sapien. Sed nisi n sit amet quam.
bibendum vel, adipiscing sed, p]a(',erat quis)
augue. Nullam ut nibh sed orci tempor

Sed vitae diam. Curabitur sed velit convallis orci luctus viverra. Qu]sque et
quam non tortor ultrices rutrum. Nulla porttitor mauris sed nune. Donec

2. Duplicate each tag.

Each pull quote box is essentially another span tag with the same text inside it,
0 you can use JavaScript to just duplicate the current tag.

3. Remove the pq class from the duplicate and add a new class pullquote.

The formatting magic—the box, larger text, border, and background color—
that makes up each pull quote box isn’t JavaScript’s doing. The page’s style
sheet contains a CSS class selector, .pullguote, that does all of that. So by simply
using JavaScript to change the duplicate tags’ class name, you completely
change the look of the new tags.

4. Add the duplicate tag to the page.

Finally, you add the duplicate tag to the page. (Step 2 just makes a copy
of the tag in the Web browser’s memory, but doesn’t actually add that tag to the
page vet. This gives you the opportunity to further manipulate the duplicated
tag before displaying it for the person viewing the page.)

Programming

Now that you have an idea of what you’re trying to accomplish with this script, it’s
time to open a text editor and make it happen.

Note: Sce the note on page 27 for information on how to download the tutorial files.

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs 197

Automatic Pull
Quotes

1. In a text editor, open the file 5.3.html in the chapter05 folder.

The page already contains the code to link the jquery.js file to the page, as well as
a <script> tag, including that strange $(document).ready stuff you encountered
in step 5 on page 191.

2. Click in the empty line between after the $(document).ready stuff, and then
add the code that’s in bold below:

<script type="text/javascript" src="../js/jquery.js"></script>
<script type="text/javascript">
$(document).ready(function() {

$("span.pq’)

1

</script>

N o o BN =

Note: The line numbers to the left of each line of code are just for your reference. Don't actually type
them as part of the script on the Web page.

The $('span.pq’) is a jQuery selector that locates every tag with a class of
pq applied to it. Next youw’ll add the code needed to loop through each of these
 tags and do something to them.

3. Add the bolded code below on lines 4 and 6:

1 <script type="text/javascript" src="../js/jquery.js"></script>
2 <script type="text/javascript">

3 $(document).ready(function() {

4 $("'span.pq").each(function() {

5

6 }s;

71

8 «/script>

As discussed on page 193, .each() is a jQuery function that lets you loop through a
selection of elements. The function takes one argument, which is itself a function.

Next you’ll start to build the function that will apply to each matching
tag on this page: the first step is creating a copy of the .

4. Add the code listed in bold on line 5 below to the script:

<script type="text/javascript" src="../js/jquery.js"></script>
<script type="text/javascript">
$(document).ready(function() {
$('span.pq').each(function() {
var quote=$(this).clone();
D;
b;

</script>

0 N OO U1 AN =

198 JAVASCRIPT: THE MISSING MANUAL

This function starts by creating a new variable named quote, which contains a
“clone” (just a copy) of the current (see page 194 if you forgot what
$(this) means). The jQuery .clone() function duplicates the current element,
including all of the HTML within the element. In this case, it makes a copy of
the tag, including the text inside the that will appear in the pull
quote box.

Cloning an element copies everything, including any attributes applied to it. In
this instance, the original had a class named pq. You’ll remove that class
from the copy.

5. Add the two lines of code listed in bold on lines 6 and 7 below to the script:

© VW O N O U BB NN =

<script type="text/javascript" src="../js/jquery.js"></script>
<script type="text/javascript">
$(document).ready(function() {
$('span.pq").each(function() {

var quote=$(this).clone();

quote.removeClass('pq');
quote.addClass('pullquote');
1;
D

</script>

As discussed on page 186, the removeClass() function removes a class name
from a tag, while the .addClass() function adds a class name to a tag. In this
case, we're replacing the class name on the copy, so you can use a CSS class
named .pullquote to format the as a pull quote box.

Finally, you’ll add the to the page.

6. Add the bolded line of code (line 8 below) to the script:

- O VW O N OO Ul B NN =

<script type="text/javascript" src="../js/jquery.js"></script>
<script type="text/javascript">
$(document).ready(function() {
$('span.pq").each(function() {

var quote=$(this).clone();

quote.removeClass('pq');

quote.addClass('pullquote');
$(this).before(quote);
1;
D

</script>

This line is the final piece of the function—up until this line, you’ve just been
manipulating a copy of the in the Web browser’s memory. No one
viewing the page would see it until the copy is actually added to the DOM.

CHAPTER 5. DYnaMIcALLY MODIFYING WEB PAGEs

Automatic Pull
Quotes

199

Automatic Pull
Quotes

200

In this case, you're inserting the copy of the tag, just before the one in
your HTML. In essence, the page will end up with HTML sort of like this:

...and that's how I discovered the Loch Ness monster.
 ...and that's how I discovered the Loch Ness
monster.

Although the text looks like it will appear duplicated side by side, the CSS for-
matting makes the pull quote box float to the right edge of the page.

Note: To achieve the visual effect of a pull quote box, the page has a CSS style that uses the CSS float
property. The box is moved to the right edge of the paragraph in which the text appears, and the other
text in the paragraph wraps around it. If you're unfamiliar with this technique, you can learn about the CSS
float property at http,//css.maxdesign.com.au/floatutorialy.

At this point, all of the JavaScript is complete. However, you won’t see any pull
quote boxes until you massage the HTML a bit.

7. Find the first <p> tag in the page’s HTML. Locate a sentence and wrap around it. For example:

Nullam ut nibh sed orci tempor rutrum.
You can repeat this process to add pull quotes to other paragraphs as well.
8. Save the file and preview it in a Web browser.

The final result should look something like Figure 5-10. If you don’t see a pull
quote box, make sure you added the tag in step 12 correctly. Also,
check out the tips on page 32 for fixing a malfunctioning program. You can find
a completed version of this tutorial in the file complete_5.3.html.

JAVASCRIPT: THE MISSING MANUAL

http://css.maxdesign.com.au/floatutorial/

CHAPTER

6

Action/Reaction:
Making Pages Come
Alive with Events

When you hear people talk about JavaScript, you usually hear the word “interac-
tive” somewhere in the conversation: “JavaScript lets you make interactive Web
pages.” What they’re really saying is that JavaScript lets your Web pages react to
something a visitor does: moving a mouse over a navigation button produces a
menu of links; selecting a radio button reveals a new set of form options; clicking a
form’s submit button alerts you to form fields that were left blank.

All the different visitor actions that a Web page can respond to are called events.
JavaScript is an event-driven language: without events, your Web pages wouldn’t be
able to respond to visitors or do anything really interesting. It’s like your desktop
computer. Once you start it up in the morning, it doesn’t do you much good until
you start clicking files, making menu selections, and moving your mouse around
the screen.

What Are Events?

Web browsers are programmed to recognize basic actions like the page loading,
someone moving a mouse, typing a key, or resizing the browser window. Each of
the things that happens to a Web page is an event. To make your Web page interac-
tive, you write programs that respond to events. In this way, you can make a <div>
tag appear or disappear when a visitor clicks the mouse, a new image appear when
she mouses over a link, or check the contents of a text field when she clicks a
form’s Submit button.

201

What Are Events?

An event represents the precise moment when something happens. For example,
when you click a mouse, the precise moment you release the mouse button, the
Web browser signals that a click event has just occurred. The moment that the Web
browser indicates that an event has happened is when the event fires, as program-
mers put it.

Web browsers actually fire several events whenever you click the mouse button.
First, as soon as you press the mouse button, the mousedown event fires, then
when you let go of the button the mouseup event fires, and finally the click event
fires (see Figure 6-1).

Note: Understanding when and how these events fire can be tricky. To let you test out different event
types, this chapter includes a demo Web page with the tutorial files. Open events.htm/ (in the chapter06
folder) in a Web browser. Then move the mouse, click, and type to see some of the many different events
that constantly occur on a Web page (see Figure 6-1).

@ @

Figure 6-1:
While you may not be
aware of it, Web browsers

E ag| | & hup:/ ftutorials. localfchapter06 /events.hml# ¥ | > (|G|~ Google Q) &

> = >

moUsemove
mausemove
mauseover
mousecut
mousemove
mouseup
mousemove
mauseover
mausecut
focus

focus

keyup
keydown
keyup
keypress
keydown
keyup

Y

EPEEPEPEEPEFTUTTOOEE

Disable Cookies v [] CSS + Forms v [Images * Information * () Miscellaneous + Outline + 2 Resize v Tools
ey

Event Monitor (dean

click
mouseup
mousedawn

are constantly firing off
events whenever you
type, mouse around, or
click. The events.html file
(included with the tutorial
files for this chapter)
shows you many of these
events in action. For
example, clicking a link

Eve nts (active) _stop Propagation
Click Me

Click events: &

Tags responding:
A, P, DIV, DIV, BODY, HTML

Click Events (circled) fires the
BRElickIondoubleclick
mousedown Tags responing: A mousedown, mouseup,
and click events.

Mouse Events
mouseover
mousemove

X:630 Y:255
mouseout

Key Events
keydown

Key a
keyCode 224
which 224
altKey false
ctrikey false
metakey true
shiftkey false

keypress
a Key
keyCode 224 keyCode 0O
which 224 which 107
altKey false altKey false
ctrikey false ctriKey false
metaKey false metaKey false
shiftKey false shiftkey false

keyup
Key

Blur/Focus (tab to links or form elements)
focus blur

<t

€))
{[Z pone [y & Getvideo @ Evs\uw 0.244s |

“r
as

202

JAVASCRIPT: THE MISSING MANUAL

Preparing a Web page to respond to an event is a two-stage process:
1. Identify the page element that you wish to respond to an event.

While the entire document can respond to a mouse click anywhere on a Web
page, it’s more common to attach events to particular page elements like spe-
cific links, form fields, or even a particular paragraph of text. For example, if
you want a menu to pop up when a visitor moves his mouse over a navigation
link, you need to attach the mouseover event to that particular link. After all, it
wouldn’t make much sense for the pop-up menu to appear whenever the
mouse passes over just any part of the page.

This step of the process—selecting a page element—is easy (you learned how to
do it in the last chapter).

2. Assign an event and define a function to run when the event occurs.

There are several methods of assigning a function to respond to an event (as
you’ll learn starting on page 207). But the basic idea is that you create a func-
tion that runs whenever the event fires. For example, you can write a function
that makes a previously hidden <div> appear (a <div> containing links that are
part of a menu, for example), and then assign that function to respond to the
mouseover event of a particular link. Then, when the visitor mouses over the
link, the function runs and makes the <div> appear.

You’ll learn how to assign events to page elements on page 207, but before you do,
you should learn about the events available to most Web browsers. The following
sections cover events that work in all currently shipping browsers.

Mouse Events

Ever since Steve Jobs introduced the Macintosh in 1984, the mouse has been a crit-
ical device for all personal computers. Folks use it to open applications, drag files
into folders, select items from menus, and even to draw. Naturally, Web browsers
provide lots of ways of tracking how a visitor uses a mouse to interact with a Web

page:

+ click. The click event fires after you click and release the mouse button. You’ll
commonly assign a click event to a link: for example, a link on a thumbnail
image when clicked can display a larger version of that image. However, you’re
not limited to just links. You can also make any tag on a page respond to an
event—even just clicking anywhere on the page.

Note: The dick event can also be triggered on links via the keyboard. If you tab to a link, then press the
Enter (Return) key, the click event fires.

CHAPTER 6: ACTION/REACTION: MAKING PAGES COME ALIVE WITH EVENTS

What Are Events?

203

What Are Events?

204

+ dblclick. When you press and release the mouse button twice, a double-click
(dblclick) event fires. It’s the same action you use to open a folder or file on your
desktop. Double-clicking a Web page isn’t a usual Web-surfer action, so if you
use this event, you should make clear to visitors where they can double-click
and what will happen after they do. Also note that a double-click event is the
same thing as two click events, so don’t assign click and double-click events to
the same tag. Otherwise, the function for the click will run twice before the
double-click function runs.

mousedown. The mousedown event is the first half of a click—the moment
when you click the button before releasing it. This event is handy for dragging
elements around a page. You can let visitors drag items around your Web page
just like they drag icons around their desktop—by clicking on them (without
releasing the button) and moving them, then releasing the button to drop them.

mouseup. The mouseup event is the second half of a click—the moment when
you release the button. This event is handy for responding to the moment when
you drop an item that has been dragged.

mouseover. When you move your mouse over an element on a page, a
mouseover event fires. You can assign an event handler to a navigation button
using this event and have a submenu pop up when a visitor mouses over the
button. (If you’re used to the CSS :hover pseudo-class, then you know how this
event works.)

mouseout. Moving a mouse off an element triggers the mouseout event. You
can use this event to signal when a visitor has moved her mouse off the page, or
to hide a pop-up menu when the mouse travels outside the menu.

+ mousemove. Logically enough, the mousemove event fires when the mouse
moves—which means this event fires all of the time. You use this event to track
the current position of the cursor on the screen. In addition, you can assign this
event to a particular tag on the page—a <div> for example—and respond only
to movements within that tag.

Note: Some \Web browsers, like Internet Explorer support many events (http;//msdn2.microsoft. com/en-
us/library/ms533051(V/S.85).aspx), but most browsers share just a handful of events.

Document/Window Events

The browser window itself understands a handful of events that fire from when the
page loads to when the visitor leaves the page:

+ load. The load event fires when the Web browser finishes downloading all of a
Web page’s files: the HTML file itself, plus any linked images, Flash movies, and
external CSS and JavaScript files. Web designers have traditionally used this
event to start any JavaScript program that manipulated the Web page. How-
ever, loading a Web page and all its files can take a long time if there are a lot of

JAVASCRIPT: THE MISSING MANUAL

http://msdn2.microsoft.com/en-us/library/ms533051(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/ms533051(VS.85).aspx

What Are Events?

graphics or other large linked files. In some cases, this meant the JavaScript
didn’t run for quite some time after the page was displayed in the browser. For-
tunately, jQuery offers a much more responsive replacement for the load event,
as described on page 218.

« resize. When you resize your browser window by clicking the maximize but-
ton, or dragging the browser’s resize handle, the browser triggers a resize event.
Some designers use this event to change the layout of the page when a visitor
changes the size of his browser. For example, after a visitor resizes his browser
window, you can check the window’s width—if the window is really wide, you
could change the design to add more columns of content to fit the space.

Note: Internet Explorer, Opera, and Safari fire multiple resize events as you resize the window, whereas
Firefox only fires the resize event a single time after you've let go of the resize handle.

« scroll. The scroll event is triggered whenever you drag the scroll bar, or use the
keyboard (up/down/home/end and so on keys) or mouse scroll wheel to scroll a
Web page. If the page doesn’t have scrollbars, no scroll event is ever triggered.
Some programmers use this event to help figure out where elements (after a
page has scrolled) appear on the screen.

unload. When you click a link to go to another page, close a browser tab, or
close a browser window, a Web browser fires an unload event. It’s like the last
gasp for your JavaScript program and gives you an opportunity to complete one
last action before the visitor moves on from your page. Nefarious programmers
have used this event to make it very difficult to ever leave a page. Each time a
visitor tries to close the page, a new window appears and the page returns. But
you can also use this event for good: for example, a program can warn a visitor
about a form they’ve started to fill out but haven’t submitted, or the program
could send form data to the Web server to save the data before the visitor exits
the page.

Note: Safari and Internet Explorer fire unload events whenever you click a link to leave a page or even
just close a window or tab with the page. Opera and Firefox let you click the window’s close button with-
out firing the unload event.

Form Events

In the pre-JavaScript days, people interacted with Web sites mainly via forms cre-
ated with HTML. Entering information into a form field was really the only way
for visitors to provide input to a Web site. Because forms are still such an impor-
tant part of the Web, you’ll find plenty of form events to play with.

+ submit. Whenever a visitor submits a form, the submit event fires. A form
might be submitted by clicking the Submit button, or simply by hitting the
Enter (Return) key while the cursor is in a text field. Youw’ll most frequently use

CHAPTER 6: ACTION/REACTION: MAKING PAGES COME ALIVE WITH EVENTS 205

What Are Events?

206

the submit event with form validation—to make sure all required fields are
correctly filled out before the data is sent to the Web server. You’ll learn how to
validate forms on page 330.

reset. Although not as common as they used to be, a Reset button lets you undo
any changes you’ve made to a form. It returns a form to the state it was when
the page was loaded. You can run a script when the visitor tries to reset the
form by using the reset event. For example, if the visitor has made some changes
to the form, you might want to pop up a dialog box that asks “Are you sure you
want to delete your changes?” The dialog could give the visitor a chance to click
a “No” button and prevent the process of resetting (erasing) the form.

change. Many form fields fire a change event when their status changes: for
instance, when someone clicks a radio button, or makes a selection from a
drop-down menu. You can use this event to immediately check the selection
made in a menu, or which radio button was selected.

focus. When you tab or click into a text field, it gives the field focus. In other
words, the browser’s attention is now focused on that page element. Likewise,
selecting a radio button, or clicking a checkbox, gives those elements focus. You
can respond to the focus event using JavaScript. For example, you could add a
helpful instruction inside a text field —“Type your full name.” When a visitor
clicks in the field (giving it focus), you can erase these instructions, so he has an
empty field he can fill out.

blur. The blur event is the opposite of focus. It’s triggered when you exit a cur-
rently focused field, by either tabbing or clicking outside the field. The blur
event is another useful time for form validation. For example, when a person
types her email address in a text field, then tabs to the next field, you could
immediately check what she’s entered to make sure it’s a valid email address.

Note: Focus and blur events also apply to links on a page. When you tab to a link, a focus event fires;
when you tab (or click) off the link, the blur event fires.

Keyboard Events

Web browsers also track when visitors use their keyboard, so you can assign com-
mands to keys or let your visitors control a script by pressing various keys. For
example, pressing the Space bar could start and stop a JavaScript animation.

Unfortunately, the different browsers handle keyboard events differently, even
making it hard to tell which letter was entered! (You’ll find one technique for iden-
tifying which letter was typed on a keyboard in the tip on page 223.)

+ keypress. The moment you press a key, the keypress event fires. You don’t have
to let go of the key, either. In fact, the keypress event continues to fire, over and
over again, as long as you hold the key down.

JAVASCRIPT: THE MISSING MANUAL

+ keydown. The keydown event is like the keypress event—it’s fired when you
press a key. Actually, it’s fired right before the keypress event. In Firefox and
Opera, the keydown event only fires once. In Internet Explorer and Safari, the
keydown event behaves just like the keypress event—it fires over and over as
long as the key is pressed.

+ keyup. Finally, the keyup event is triggered when you release a key.

Using Events with Functions

To take advantage of events, you need to tell the Web browser to run a function
when a particular event happens to a specific tag. For example, to make a row in a
table change color when a visitor mouses over it, you attach a mouseover event to
the table row and assign a function to the event (the function provides the instruc-
tions to change the row’s color). There are several ways to accomplish this.

Inline Events

The simplest way to run a function when an event fires is called inline event regis-
tration. If you’ve ever tried JavaScript programming before, you’re probably famil-
iar with this technique, which lets you assign an event handler directly to the
HTML of your page. For example, to make an alert box appear when you mouse
over a particular link, you write this:

A link

In this case, the event is mouseover and the event handler is called onmouseover.
You add the event handler directly to the HTML of the tag and assign a command
to the handler (in this example, an alert() command). Event handler names are
created by simply adding the word on to the beginning of the event, so a mouseover
event handler is written as onmouseover, a click event handler as onclick, and so on.

Note: You can think of on as “when” so onmouseover just means “when the mouse moves over” the
element.

You can even use the inline technique to call a previously created function, like
this:

<body onload="startSlideShow()">

The line of code above calls a function (that’s been defined somewhere else on the
page) named startSlideShow() after the page and all its required files have loaded.

Adding an event handler directly to a HTML tag is certainly convenient, and lots of
programmers use this technique. However, it’s not the best way to go. When you
add inline event handlers, you end up sprinkling JavaScript throughout your
HTML. For example, if you have several buttons that each do something when
clicked, you need to manually add inline event handlers to the each button in the

CHAPTER 6: ACTION/REACTION: MAKING PAGES COME ALIVE WITH EVENTS

Using Events with
Functions

207

Using Events with
Functions

HTML. This arrangement can make future updates to your site a real chore, since
you’ll have to scan your HTML carefully to find all of the JavaScript code you need
to update. Most professional JavaScript programmers aim to separate JavaScript
from HTML as much as possible (see the box below). You’ll learn how to do this
next.

UP TO SPEED

Don‘t Let JavaScript Get in the Way

208

If you've been building Web pages for a long time, you'll
remember that in the days before CSS, you had to style all
of your pages using various HTML tags. So to change the
look of text, you'd add additional HTML to a page like this:

<font face="Arial, Helvetica, sans-serif"
size="2" color="#EEFF00">

The stylish text.

When CSS came around, you learned how to put all of your
style information in a style sheet located in either the
<head> of the page or in a separate, external CSS file. Sud-
denly, your HTML was free from a lot of extra markup.
HTML was reserved for content and structure, while format-
ting was controlled by CSS that was defined in a single loca-

Most professional JavaScript programmers argue that put-
ting your JavaScript code directly inside a tag—for example,
<a href="page.htm!" onmouseover="alert('where you
going?");"">a link-is akin to those bad old days before
CSS. It clutters up your HTML with JavaScript, adding extra
code to your HTML and making it hard to separate out the
content and structure (HTML) from the page’s behavior
(JavaScript).

Fortunately, without much effort you can keep all of your
JavaScript code confined to an external file or just inside
<script> tags in the <head> of the page. jQuery's event
functions (page 210) or even the so-called “traditional
model” of event handlers (below) are much better than
using inline event registration.

tion (a style sheet).

The Traditional Model

Any Web browser that understands JavaScript can take advantage of another tech-
nique for assigning an event handler to a tag. There’s no official name for this tech-
nique, but most programmers call it the traditional model. It lets you assign an
event handler to a page element without having to muck around in the HTML
within the body of a page. This method involves identifying the page element you
wish to add the event to, then assigning an event handler to the element.

Note: You used the traditional model of assigning an event to an element in one of the tutorials from
the previous chapter. See step 8 on page 166.

For example, say you wanted to have an alert box appear after the page loads. You
could do that by adding the following code either within <script> tags in the
<head> of the page or in an external JavaScript file (page 24).

function message() {
alert("Welcome...");

}

window.onload=message;

JAVASCRIPT: THE MISSING MANUAL

The first three lines create a simple function named message. When a program calls
this function, it opens an alert box with “Welcome...” inside it. The event magic
happens in line four, where the onload event handler is assigned to the window
object—that is, when the page loads (see page 204 for more on the load event), the
function is called.

Notice that the function is assigned to the onload event handler much like a value
is assigned to a variable. The equal sign in window.onload=message; essentially
stores a reference to the function in the event handler. That’s why there are no
parentheses after the function’s name: message instead of message(). When paren-
theses appear after a function name, you're telling the function to run immedi-
ately. So the code window.onload=message() actually calls the function before the
page loads. By omitting the parentheses, you’re letting the onload event handler
know which function to call when the time comes—when the page finishes loading.

The Modern Way

The two previously described methods of responding to events on a Web page
have been around since Netscape Navigator 3 (that’s a long time), and all Web
browsers understand them. There’s one main drawback to those techniques,
though—you can only assign a single function per event per tag. For example, only
one function can respond to the onload event handler, so in the code below the
second event handler essentially erases the first:

window.onload=message;
window.onload=setUpPage;

In this example, only the setUpPage() function will run when the page loads. This
gotcha may not sound like too big a problem, since you can just combine the com-
mands in the two functions into a single function. But when you’re placing scripts
on pages that already have JavaScript on them, scripts can easily end up erasing
each other’s event handlers. The danger gets worse when you start to include
scripts from other programmers—Ilike JavaScript libraries or the cool jQuery plug-
ins you’ll be learning about in future chapters.

To deal with this and other problems associated with the old event handler meth-
ods, the W3C introduced a new innovation called event listeners. The underlying
concept is pretty much the same as event handlers: select an element (a link, for
example), and assign a function that runs when a particular event (like mouseover)
occurs. Any page element can have multiple event listeners, so you can assign mul-
tiple functions to the same event for the same tag.

Firefox, Safari, and Opera all use the W3C’s event listener model...and then there’s
Microsoft Internet Explorer, which long ago went off on its own path for dealing
with events. Internet Explorer has a completely different model for how events
work and a unique syntax for assigning functions to respond to events. For the
longest time, this meant that if a JavaScript programmer wanted her programs to
work in all browsers, she had to learn two different techniques for handling the
same task, and write different sets of code to make sure a site worked in all browsers.

CHAPTER 6: ACTION/REACTION: MAKING PAGES COME ALIVE WITH EVENTS

Using Events with
Functions

209

Using Events with
Functions

Fortunately, you don’t have to worry about browser differences when using events
if you use a JavaScript library, like jQuery, which creates a single way for handling
events that works in all current Web browsers.

UP TO SPEED

The Mixed-Up World of Events

Much to the frustration of Web programmers everywhere,
Internet Explorer implements events in a way that's very dif-
ferent from all other Web browsers. This situation has
forced JavaScript programmers to come up with two differ-
ent methods to get the same job done.

Most Web browsers let you assign an event listener to an ele-
ment using the method supported by the W3C. Using the
addEventListener() method, you can assign both an event
and a function to respond to the event to any element on a
Web page. Internet Explorer, on the other hand, has the

In addition, while all browsers let you inspect an event—that
is, find out information about the event, such as whether a
key was pressed or the mouse position when the event
fired—IE handles the event object (see page 222) differently
than everybody else.

Fortunately, when you use a JavaScript library like jQuery,
you don't usually have to worry about any of these differ-
ences—all the cross-browser madness is resolved by the
programming in the library, so you only have to learn one
way to accomplish the same goal for all browsers.

attachEvent() method to accomplish the same thing.

The jQuery Way

Many JavaScript books spend a lot of time talking about how Internet Explorer
handles events differently than Firefox, Safari, and Opera. In fact, a lot of Java-
Script books dedicate an entire chapter to dealing with the way IE and other
browsers handle events. In the end, most JavaScript books just provide boilerplate
code to make events work across browsers, and this book won’t bore you with the
details of the two different event models—see the box above for some information
if you’re curious. This section cuts to the chase, providing a simple, cross-browser
compatible method for attaching events to elements using jQuery.

As you learned in the last chapter, JavaScript libraries like jQuery solve a lot of the
problems with JavaScript programming—including pesky browser incompatibili-
ties. In addition, libraries often simplify basic JavaScript-related tasks. jQuery
makes assigning events and event helpers (the functions that deal with events) a
breeze. Here’s the basic process:

1. Select one or more elements.

The last chapter explained how jQuery lets you use CSS selectors to choose the
parts of the page you want to manipulate. When assigning events, you want to
select the elements that the visitor will interact with. For example, what will a
visitor click—a link, a table cell, an image? If you're assigning a mouseover
event, what page element does a visitor mouse over to make the action happen?

210 JAVASCRIPT: THE MISSING MANUAL

Using Events with
Functions

2. Assign an event.

In jQuery, most DOM events have an equivalent jQuery function. So to assign
an event to an element, you just add a period, the event name, and a set of
parentheses. So, for example, if you want to add a mouseover event to every link
on a page, you can do this:

$('a").mouseover();

To add a click event to a element with an ID of menu, you’d write this:
$("#menu').click();

You can use any of the event names listed on pages 203-207 (and a couple of
jQuery-only events discussed on page 220).

After adding the event, you still have some work to do. In order for something
to happen when the event fires, you must provide a function for the event.

3. Pass a function to the event.

Finally, you need to define what happens when the event fires. To do so, you
pass a function to the event. The function contains the commands that will run
when the event fires: for example, making a hidden <div> tag visible or high-
lighting a moused-over element.

You can pass a previously defined function’s name like this:
$('#start').click(startSlideShow);
As mentioned on page 209, when you assign a function to an event, you omit

the () that you normally add to the end of a function’s name to call it. In other
words, the following won’t work:

$('#start').click(startSlideShow())

You can also pass an anonymous function to the event. You read about anony-
mous functions on page 193—they’re basically a function without a name. The
basic structure of an anonymous function looks like this:

function() {
// your code here

}

The basic structure for using an anonymous function with an event is pictured
in Figure 6-2.

Note: To learn more about how to work with jQuery and events, visit http,//docs jquery.com/Events.

Here’s a simple example. Assume you have a Web page with a link that has an ID
of menu applied to it. When a visitor moves his mouse over that link, you want a
hidden list of additional links to appear—assume that the list of links has an ID of

CHAPTER 6: ACTION/REACTION: MAKING PAGES COME ALIVE WITH EVENTS 211

http://docs.jquery.com/Events

Tutorial:
Highlighting Table

Rows

Selection Event Anonymous function Figure 6-2:
Beginning of In jQuery, an event works like a function, so you
$('a') .mouseover (function () {—an onymous function can pass an argument to the event. You can
// your code goes in here think of an anonymous function, then, as really
) just an argument-like a single piece of data
L End of statement that’s passed to a function. If you think of it that

way, it's easier to see how all of the little bits of
punctuation fit together. For example, in the last
End of anonymous function line, the } marks the end of the function (and the
end of the argument passed to the mouseover
function); the) is the end of the mouseover()
function, and the semicolon is the end of the
entire statement that began with the selector

$('a).

End of mouseover() function

submenu. So what you want to do is add a mouseover event to the menu, and then
call a function that shows the submenu. The process breaks down into four steps:

1. Select the menu:
$("#menu")
2. Attach the event:
$("#menu') .mouseover();
3. Add an anonymous function:

$("#menu") .mouseover (function() {

1

4. Add the necessary actions (in this case, it’s showing the submenu):

$("#menu") .mouseover (function() {
$('#submenu').show();

1

A lot of people find the crazy nest of punctuation involved with anonymous func-
tions very confusing (that last }); is always a doozy). And it is confusing, but the
best way to get used to the strange world of JavaScript is through lots of practice,
so the following hands-on tutorial should help reinforce the ideas just presented.

Note: The show() function is discussed on page 243.

Tutorial: Highlighting Table Rows

So far the tutorials you’ve completed for this book have been almost entirely free
of events (although in the first tutorial in Chapter 5 (page 164), you used the load
event to trigger a function). In this chapter, you finally get to pull out the tech-
niques that let your pages take the most advantage of JavaScript and really respond
to visitors.

212 JAVASCRIPT: THE MISSING MANUAL

Tutorial:
Highlighting Table

Rows

In this tutorial, you’ll expand on the exercise from Chapter 1, in which you used
JavaScript to add alternating colored rows to a table. Now yow’ll add some interac-
tivity to the table, so that when a visitor mouses over a row, that row is highlighted
(see Figure 6-3). In essence, you have to do two things:

1. Add a mouseover event to each row in the table.

2. Assign a function to that event that changes the background color of that row.

£= Script 6.1 - Windows Internet Explorer [M=1E3] Figlll'e 6-3:

G- BRI] 47 3¢ (e v 2-|| While Web browsers

% & [@spres — BB & - oee- g~ ?| Offer lots of different
events, responding to a
mouseover event is one
of the most common.

Striped Tables

Product Cost Inventory Status Weight (in Ibs.)

Ultra-Glow Hair Spray $20.00 in stock .5
Anodyne 3000 5495.00 back order
Big Foot Hair Dryer 5$55.00 in stock
Cat Out of The Hat 515.00 back order
Tickle Me Elmo 567.00 in stock

Leather Briefcase $150.00 in stock
Lorem Ipsum 55.00 in stock
Dolor Sat 57.50 back arder
Chicken Gumbo $15.00 in stock
Another Product $3.00 in stock
Hat for Cat $5.00 back order

“Building Interactive Web Sites with JavaScript”

Done [+/ Trusted stes 100% T

You’'ll use jQuery to tackle this problem, following the three-step process outlined
on page 210.

Note: Sce the note on page 27 for information on how to download the tutorial files.

1. In a text editor, open the file 6.1.html in the chapter06 folder.

This file is the completed version of the 1.3.htmil file you created on page 30. It
already has the jQuery.js file linked to it, and the <script> tags to which you’ll
add more programming:

<script type="text/javascript" src="../js/jquery.js"></script>
<script type="text/javascript">
$(document).ready(function() {

$('table.striped tr:even').addClass('even');

1)s

</script>

CHAPTER 6: ACTION/REACTION: MAKING PAGES COME ALIVE WITH EVENTS 213

Tutorial:
Highlighting Table

Rows

The first step is to create a jQuery selector to identify the elements to which you
wish to add the mouseover event. In this case, that action will happen when a
visitor mouses over one of the table rows, so you need to create a selector to tar-
get those rows.

2. Add the code in bold below to the script:

<script type="text/javascript" src="../js/jquery.js"></script>
<script type="text/javascript">
$(document).ready(function() {
$('table.striped tr:even').addClass('even');
$('table.striped tbody tr')
1;

</script>

The particular CSS selector used here—table.striped thody tr—certainly isn’t the
only selector you could use. A far simpler selector would be tr alone, like this:
$('tr'). That would work fine with the HTML on this page; however, the simple
tr selector selects every table row, so if you happen to have other tables on the
page (for a calendar, for example, or even for your page layout) the rows in
those tables would also be highlighted!

The selector you use here targets only the rows inside a table with the class
striped applied to it—that’s the table.striped part. In addition, you limit the
selection to just table rows within a tbody tag. This way, you make sure to not
highlight a table row that appears in the table head, so the row of column names
that appear at the top of this table won’t be highlighted when you mouse over
them.

Next, you’ll add the event.

3. Directly after the code you just entered, type .mouseover(); so the code looks
like this:

$('table.striped tbody tr').mouseover();

As described under “Automatic Loops” on page 180, jQuery has a nifty feature
built into each of its functions—like the mouseover() function here. Every
jQuery function automatically loops through all of the elements in the selec-
tion, so in this case, the mouseover event will be attached to every table row in
the jQuery selection.

Note: Step 3 is deceptively simple...thanks to jQuery. Without jQuery, you'd first have to write a really
complicated function to retrieve each of the table rows. You'd then have to create a loop (see page 90) to
attach the event to each element—and remember, you'd have to attach the event differently depending
upon whether the Web browser was Internet Explorer or Firefox, Safari, or Opera (page 210). In other
words, this one line of code represents the dozens of lines you don't have to write yourself.

214 JAVASCRIPT: THE MISSING MANUAL

Tutorial:
Highlighting Table
Rows

Next you’ll add an anonymous function as an argument for the mouseover()
function.

4. Click between the two parentheses in mouseover() and type function() {. Hit
Return (or Enter) twice, and then type a }. The code should now look like this:

$('table.striped tbody tr').mouseover(function() {

b

The anonymous function holds the actual programming that the browser will
run when the event is triggered—highlighting a table row, the heart of the effect
we’re after.

5. Click in the empty line between the anonymous function’s opening and clos-
ing brace, hit the Space bar twice, and then type $(this).

The two spaces, while not required, indent the code and help indicate that this
line of code is a part of the anonymous function, making the code easier to
read.

As mentioned on page 194, $(this) is a way to refer to the page element that’s
currently being worked on. Since this code is looping through a long list of table
rows, you need a way to assign an action to each particular row so you can tell
the Web browser “when a visitor mouses over this specific row, highlight this
specific row.”

6. Directly after $(this), type .addClass(‘highlight’); so the code looks like this:

$('table.striped tbody tr').mouseover(function() {
$(this).addClass('highlight');
b;

You can read more about jQuery’s addClass() function on page 185. On page
32, you used the same function to stripe table rows; it simply applies a CSS class
to the element. If you want, you can use JavaScript to add some crazy highlight
effect, but it’s usually faster to simply assign a CSS style that you’ve previously
created. In this case, the page has a CSS style sheet with a class style named high-
light, with a yellow background color. So when you mouse over a row, its back-
ground color changes to yellow.

Tip: The nice thing about using a CSS class style instead of just pure JavaScript to highlight the table row
is that if you want to change the appearance of the highlight—for example, use a different font, change the
font color or size—you simply add additional CSS formatting properties to the style. You don't have to do
anything at all to the JavaScript.

CHAPTER 6: ACTION/REACTION: MAKING PAGES COME ALIVE WITH EVENTS 215

Tutorial:
Highlighting Table
Rows

216

7.

Save the page and preview it in a Web browser. When you do, make sure you
move your mouse over the table rows.

The rows’ background color should change to a yellowish color when you
mouse over them,; if it doesn’t, double-check your code for any typos. The only
problem is that the yellowish background color doesn’t go away! To make the
row revert back to its old background color, you must add a mouseout event.

. Add the bolded code (shown on lines 6-8 below), so the finished script looks

like this:

$(document).ready(function() {
$('table.striped tr:even').addClass('even');
$('table.striped tbody tr').mouseover(function() {
$(this).addClass("'highlight');
}s
$("table.striped tbody tr').mouseout(function() {
$(this).removeClass('highlight');
b;
b

This new code should look familiar now—it’s basically the opposite of the
mouseover function. That is, the class is removed when you move your mouse
off the row.

Save the page and preview it in a Web browser. The rows should now revert to
their old style when you mouse off them. The program works fine, but it’s
slightly inefficient. Notice that for both the mouseover and mouseout functions
you have the same jQuery object: $('table.striped thody tr').

The jQuery object is really a kind of function that runs through the HTML of a
page and finds all elements that match the given CSS selector. Each time you
call the jQuery object, jQuery has to search the page. Depending on how com-
plicated a CSS selector you use, creating the jQuery object can take some time,
and while jQuery is fast, there’s no need to waste time creating the same selec-
tion twice. A method that’s more efficient (meaning your script will be a tad
faster) is to store any jQuery object you use multiple times into a variable. The
next steps show you how.

. Insert a blank line just below line 2 (see numbered code in step 8 above), and

type:
var rows = $('table.striped tbody tr');
This line of code creates a variable, rows, which holds a jQuery object contain-

ing all of the rows you want to add events to. All you need to do is replace two
other jQuery objects with the variable name.

JAVASCRIPT: THE MISSING MANUAL

Tutorial:
Highlighting Table

Rows

10.On lines 4 and 8, replace $('table.striped tbody tr') with rows. The finished code

should look like this:
$(document).ready(function() {

$('table.striped tr:even').addClass('even');

1

2

3 var Tows = $('table.striped tbody tr')
4 rows .mouseover (function() {

5 $(this).addClass('highlight");

6 1

7 rows .mouseout (function() {

8 $(this).removeClass('highlight');

9 1

10 });

Now jQuery has to search the page’s HTML only once to find the desired table
rows; the results get stored in a variable that can be used any number of times.
(jQuery provides another technique for applying multiple functions to the same
jQuery object, called chaining. See the box below for more detail.)

Save the page and preview it in a Web browser.

POWER USERS’ CLINIC

Efficient Programming with jQuery Chaining

As discussed on page 180, jQuery lets you use a technique
known as chaining to string together a series of functions
and apply them to a single jQuery object. For example, say
you want to change the text inside a currently hidden DIV
with an ID of popup, and make the DIV fade into view. You
can do that with two lines of code like these:

$("#popUp').text('Hil");

$("#tpopUp") . fadeIn(2000);

Or, using chaining, on a single line, like this:

$('#popUp").text('Hi!").fadeIn(1000);

Chaining also means you don't have to use a temporary
variable like you did in step 10 above to store a jQuery
object that you want to apply several functions to. Instead,
you can simply chain the two events from that example—
mouseover and mouseout—onto the single jQuery object.

You can replace lines 3-9 in step 10 with code like this:

$('table.striped tbody tr')
.mouseover (function() {
$(this).addClass('highlight");
)

.mouseout (function() {
$(this).removeClass('highlight');
D;

This code is a little scary looking, for sure, but, believe it or
not, it works. Even though the code spans seven lines, it's
really just a single JavaScript statement (notice the semico-
lon at the end). To make reading the statement clearer, the
events.mouseover() and.mouseout() are placed on their
own lines. Since JavaScript mostly ignores white space (see
page 47), breaking the code into multiple lines is perfectly
legal (see the Tip on page 181 for more on this technique).

CHAPTER 6: ACTION/REACTION: MAKING PAGES COME ALIVE WITH EVENTS

217

More jQuery Event
Concepts

218

More jQuery Event Concepts

Because events are a critical ingredient for adding interactivity to a Web page,
jQuery includes some special jQuery-only functions that can make your program-
ming easier and your pages more responsive.

Waiting for the HTML to Load

When a page loads, a Web browser tries immediately to run any scripts it encoun-
ters. So scripts in the head of a page might run before the page fully loads—you
saw an example of this in the last chapter in the top image of Figure 5-4. Unfortu-
nately, this phenomenon often causes problems. Since a lot of JavaScript program-
ming involves manipulating the contents of a Web page—displaying a pop-up
message when a particular link is clicked, hiding specific page elements, adding
stripes to the rows of a table, and so on—you’ll end up with JavaScript errors if
your program tries to manipulate elements of a page that haven’t yet been loaded
and displayed by the browser.

The most common way to deal with that problem has been to use the load event to
wait until a page is fully downloaded and displayed before executing any Java-
Script. You used that technique in the last chapter in the revised quiz program: In
step 8 on page 166, you added the onload event handler to the page to make sure
the function doQuiz didn’t run until the page had loaded.

Unfortunately, waiting until a page fully loads before running JavaScript code can
create some pretty strange results. The load event only fires after all of a Web
page’s files have downloaded—meaning all images, movies, external style sheets,
and so on. As a result, on a page with lots of graphics, the visitor might actually be
staring at a page for several seconds while the graphics load before any JavaScript
runs. If the JavaScript makes a lot of changes to the page—for example, styles table
rows, hides currently visible menus, or even controls the layout of the page—visitors
will suddenly see the page change before their very eyes.

Fortunately, jQuery comes to the rescue. Instead of relying on the load event to
trigger a JavaScript program, jQuery has a special function named ready() that
waits just until the HTML has been loaded into the browser and then runs the
page’s scripts. That way, the JavaScript can immediately manipulate a Web page
without having to wait for slow-loading images or movies. (That’s actually a com-
plicated and useful feat—another reason to use a JavaScript library.)

You’ve already used the ready() function in a few of the tutorials in this book. The
basic structure of the function goes like this:

$(document).ready(function() {
//your code goes here

1

JAVASCRIPT: THE MISSING MANUAL

Basically, all of your programming code goes inside this function. In fact, the
ready() function is so fundamental, you’ll probably include it on every page on
which you use jQuery. You only need to include it once, and it’s usually the first
and last line of a script. You must place it within a pair of opening and closing
<script> tags (it is JavaScript, after all) and after the <script> tag that adds jQuery
to the page.

So, in the context of a complete Web page, the function looks like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/
html4/strict.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Page Title</title>

<script type="text/javascript"” src="js/jquery.js"></script>

<script type="text/javascript">

$(document) .ready(function() {

// all of your JavaScript goes in here.

}); // end of ready() function
</script>

</head>

<body>

The Web page content...
</body>

</html>

As you’ve already seen, the }); appears frequently when using anonymous func-
tions (page 193). See step 4 on page 215 for an example. Trying to figure out which
statement a particular }); belongs to can be tricky, so it’s a good idea to add a com-
ment at the end makes of the ready() function to easily identify it:

}); // end of ready() function

Tip: Because the ready() function is used nearly anytime you add jQuery to a page, there’s a shorthand
way of writing it. You can remove the S(document).ready part, and just type this: S(function() {// do
something on document ready });

$(function() {

1);

CHAPTER 6: ACTION/REACTION: MAKING PAGES COME ALIVE WITH EVENTS

More jQuery Event
Concepts

219

More jQuery Event
Concepts

220

jQuery Events

jQuery also provides special events for dealing with two very common interactiv-
ity issues—moving the mouse over and then off of something, and switching
between two actions when clicking.

The hover() event

The mouseover and mouseout events are frequently used together. For example,
when you mouse over a button, a menu might appear; move your mouse off the
button, and the menu disappears. Because coupling these two events is so com-
mon, jQuery provides a shortcut way of referring to both. jQuery’s hover() func-
tion works just like any other event, except that instead of taking one function as
an argument, it accepts two functions. The first function runs when the mouse
travels over the element, and the second function runs when the mouse moves off
the element. The basic structure looks like this:

$('#selector').hover(function1, function2);

You'll frequently see the hover() function used with two anonymous functions.
That kind of code can look a little weird; the following example will make it
clearer. Suppose when someone mouses over a link with an ID of menu, you want
a (currently invisible) DIV with an ID of submenu to appear. Moving the mouse
off of the link hides the submenu again. You can use hover() to do that:

$("#menu") .hover (function() {
$("#submenu").show();
}, function() {
$("#submenu').hide();
b;

To make a statement containing multiple anonymous functions easier to read,
move each function to its own line. So a slightly more readable version of the code
above would look like this:

$("#menu") .hover(

function() {
$("#submenu").show();

b
function() {
$("#submenu').hide();
}

)5

Figure 6-4 diagrams how this code works for the mouseover and mouseout events.

JAVASCRIPT: THE MISSING MANUAL

More jQuery Event
Concepts

$ ('#submenu') .hide () ;

}
rosset T M®

)i

Figure 6-4:
mouseover —— JjQuery’s hover() function lets you assign two

functions at once. The first function is run

$ ('#menu') . hover (ITEM 1 when the mouse moves over the element,
function() { while the second function runs when the
$ ('#submenu') . show () ; ITEM 2 mouse moves off the element.
s
function() ITEM 3

If the anonymous function method is just too confusing, you can still use plain old
functions (page 97) to get the job done. First, create a named function to run when
the mouseover event triggers; create another named function for the mouseout
event; and finally, pass the names of the two functions to the hover(') function. In
other words, you could rewrite the code above like this:

function showSubmenu() {
$("#submenu").show();

}

function hideSubmenu() {
$("#submenu').hide();

}

$("#menu") .hover (showSubmenu, hideSubmenu);

If you find this technique easier, then use it. There’s no real difference between the
two, though some programmers like the fact that by using anonymous functions
you can keep all of the code together in one statement, instead of spread out
amongst several different statements.

The toggle() Event

jQuery’s toggle() event works identically to the hover() event, except that instead
of responding to mouseover and mouseout events, it responds to clicks. One click
triggers the first function; the next click triggers the second function. Use this event
when you want to alternate between two states using clicks. For example, you
could make an element on a page appear with the first click and disappear with the
next click. Click again, and the element reappears.

CHAPTER 6: ACTION/REACTION: MAKING PAGES COME ALIVE WITH EVENTS

221

More jQuery Event
Concepts

222

For example, say you want to make the submenu <div> (from the hover() exam-
ples above) appear when you first click the link, then disappear when the link is
next clicked. Just swap “toggle” for “hover” like this:

$("#menu').toggle(

function() {
$("#submenu").show();

b
function() {
$("#submenu').hide();
}

)5

Or, using named functions, like this:

function showSubmenu() {
$("#submenu').show();

}

function hideSubmenu() {
$("#submenu').hide();

}

$('#menu').toggle(showSubmenu, hideSubmenu);

The Event Object

Whenever a Web browser fires an event, it records information about the event
and stores it in what’s called an event object. The event object contains information
that was collected when the event occurred, like the vertical and horizontal coordi-
nates of the mouse, the element on which the event occurred, or whether the Shift
key was pressed when the event was triggered.

In jQuery, the event object is available to the function assigned to handling the
event. In fact, the object is passed as an argument to the function, so to access it,
you just include a parameter name with the function. For example, say you want to
find the X and Y position of the cursor when the mouse is clicked anywhere on a
page.
$(document).click(function(evt) {
var xPos = evt.pageX;
var yPos = evt.pageY;

alert('X:' + xPos +

1

The important part here is the evt variable. When the function is called (by click-
ing anywhere in the browser window) the event object is stored in the evt variable.
Within the body of the function, you can access the different properties of the
event object using dot syntax—for example, evt.pageX returns the horizontal loca-
tion of the cursor (in other words, the number of pixels from the left edge of the
window). (The chapter06 tutorials folder contains a file named coordinates.html,
which will let you see a version of this code in action.)

Y:' + yPos);

JAVASCRIPT: THE MISSING MANUAL

Note: In this example, evt is just a variable name supplied by the programmer. It's not a special Java-
Script keyword, just a variable used to store the event object. You could use any name you want such as
event or simply e.

The event object has many different properties, and (unfortunately) the list of
properties varies from browser to browser. Table 6-1 lists some common properties.

Table 6-1. Every event produces an event object with various properties that you can access within the
function handling the event

Event property Description

pageX The distance (in pixels) of the mouse pointer from the left edge of the
browser window.

pageY The distance (in pixels) of the mouse pointer from the top edge of the
browser window.

screenX The distance (in pixels) of the mouse pointer from the left edge of the
monitor.

screenY The distance (in pixels) of the mouse pointer from the top edge of the
monitor.

shiftKey Is true if the shift key is down when the event occurs.

which Use with the keypress event to determine the numeric code for the key
that was pressed (see tip below).

target The object that was the “target” of the event—for example, for a click()
event, the element that was clicked.

data AjQuery object used with the bind() function to pass data to an event han-
dling function (see page 225).

Tip: If you access the event object’s which property with the keypress() event, you'll get a numeric code
for the key pressed. If you want the specific key that was pressed (a, K, 9, and so on), you need to run the
which property through a JavaScript method that converts the key number to the actual letter, number, or
symbol on the keyboard:

String.fromCharCode(evt.which)

Stopping an Event’s Normal Behavior

Some HTML elements have preprogrammed responses to events. A link, for exam-
ple, when clicked usually loads a new Web page; a form’s Submit button when
clicked sends the form data to a Web server for processing. Sometimes you don’t
want the Web browser to go ahead with its normal behavior. For example, when a
form is submitted (the submit() event), you might want to stop the form data
from being sent if the person filling out the form left out important data.

You can prevent the Web browser’s normal response to an event with the
preventDefault() function. This function is actually a part of the event object (see
the previous section), so you’ll access it within the function handling the event. For

CHAPTER 6: ACTION/REACTION: MAKING PAGES COME ALIVE WITH EVENTS

More jQuery Event
Concepts

223

More jQuery Event
Concepts

224

example, say a page has a link with an ID of menu. The link actually points to
another menu page (so that visitors with JavaScript turned off will be able to get to
the menu page). However, you've added some clever JavaScript, so when a visitor
clicks the link, the menu appears right on the same page. Normally, a Web browser
would follow the link to the menu page, so you need to prevent its default behavior,
like this:

$("#menu').click(function(evt){
// clever javascript goes here
evt.preventDefault(); // don't follow the link

1

Another technique is simply to return the value false at the end of the event func-
tion. For example, the following is functionally the same as the code above:

$("#menu').click(function(evt){
// clever javascript goes here
return false; // don't follow the link

1

Removing Events

At times, you might want to remove an event that you had previously assigned to a
tag. jQuery’s unbind() function lets you do just that. To use it, first create a jQuery
object with the element you wish to remove the event from. Then add the unbind()
function, passing it a string with the event name. For example, if you want to pre-
vent all tags with the class tabButton from responding to any click events, you can
write this:

$(".tabButton').unbind("'click");

Take a look at a short script to see how the unbind(') function works.

$('a").mouseover(function() {
alert('You moved the mouse over me!');

b;

$('#disable").click(function() {
$('a").unbind('mouseover');

1

Lines 1-3 add a function to the mouseover event for all links (<a> tags) on the
page. Moving the mouse over the link opens an alert box with the message “You
moved your mouse over me!” However, because the constant appearance of alert
messages would be annoying, lines 4-6 let the visitor turn off the alert. When the
visitor clicks a tag with an ID of disable (a form button, for example), the mouseover
events are unbound from all links, and the alert no longer appears.

(=2 S - N I

Note: For more information on jQuery’s unbind() function, visit http,//docs.jquery.com/Events/unbind.

JAVASCRIPT: THE MISSING MANUAL

http://docs.jquery.com/Events/unbind

Advanced Event
Management

POWER USERS’ CLINIC

Stopping an Event in Its Tracks

Both Internet Explorer and the W3C event model supported
by Firefox, Safari, and Opera let an event pass beyond the
element that first receives the event. For example, say
you've assigned an event helper for click events on a partic-
ular link; when you click the link, the click event fires and a
function runs. The event, however, doesn't stop there. Each
ancestor tag can also respond to that same click. So if
you've assigned a click event helper for a <div> tag that the
link is inside, the function for that <div> tag’s event will run
as well.

This concept, known as event bubbling, means that more
than one element can respond to the same action. Here's
another example: say you add a click event to an image so
when the image is clicked, a new graphic replaces it. The
image is inside a <div> tag to which you've also assigned a
click event. In this case, an alert box appears when the
<div> s clicked. Now when you click the image, both func-
tions will run. In other words, even though you clicked the
image, the <div> also receives the click event.

You probably won't encounter this situation too frequently,
but when you do, the results can be disconcerting. Suppose
in the example in the previous paragraph, you don't want
the <div> to do anything when the image is clicked. In this
case, you have to stop the click event from passing on to the

<div> tag without stopping the event in the function that
handles the click event on the image. In other words, when
the image is clicked, the function assigned to the image’s
click event should swap in a new graphic, but then stop the
click event.

jQuery provides a function called stopPropagation() that
prevents an event from passing onto any ancestor tags. The
function is a method of the event object (see page 222), so
you access it within an event-handling function:

$('#theLink").click(function(evt) {
// do something
evt.stopPropagation(); // stop the
event from continuing

1;

You can see how event bubbling works in the events.htm/
file in the chapter06 tutorial folder. The right sidebar has
two links. One, when clicked, doesn't stop the event, so
you'll see a list of all of the tags that receive the click event
and can respond to the event. The second link uses the
stopPropagation() function, so the click event only affects
that one link. For more information on controlling event
bubbling with jQuery, visit http;//docs.jquery.com/Events_
9%28Guide.

Advanced Event Management

You can live a long, happy programming life using just the jQuery event methods
and concepts discussed on the previous pages. But if you really want to get the

most out of jQuery’s event-handling techniques, then you’ll want to learn about
the bind() function.

Note: If your head is still aching from the previous section, you can skip ahead to the tutorial on page
227 until you've gained a bit more experience with event handling.

The bind() method is a more flexible way of dealing with events than jQuery’s
event-specific functions like click() or mouseover(). It not only lets you specify an
event and a function to respond to the event, but also lets you pass additional data
for the event-handling function to use. This lets different elements and events (for

CHAPTER 6: ACTION/REACTION: MAKING PAGES COME ALIVE WITH EVENTS 225

http://docs.jquery.com/Events_%28Guide
http://docs.jquery.com/Events_%28Guide

Advanced Event
Management

226

example a click on one link, or a mouseover on another image) pass different
information to the same event-handling function—in other words, one function
can act differently based on which event is triggered.

The basic format of the bind() function is the following:

$('#selector').bind('click', myData, functionName);

The first argument is a string containing the name of the event (like click, mouseover,
or any of the other events listed on page 204). The second argument is the data you
wish to pass to the function—either an object literal or a variable containing an
object literal. An object literal (discussed on page 188) is basically a list of property
names and values:

{
firstName : 'Bob’,
lastName : 'Smith'

}

You can store an object literal in a variable like so:

var linkVar = {message:'Hello from a link'};

The third argument passed to the bind() function is another function—the one
that does something when the event is triggered. The function can either be an
anonymous function or named function—in other words, this part is the same as
when using a regular jQuery event, as described on page 211.

Note: Passing data using the bind() function is optional. If you want to use bind() merely to attach an
event and function, then leave the data variable out;

$('selector').bind('click', functionName);
This code is functionally the same as:

$('selector').click(functionName);

Suppose you wanted to pop up an alert box in response to an event, but you
wanted the message in the alert box to be different based on which element trig-
gered the event. One way to do that would be to create variables with different
object literals inside, and then send the variables to the bind() function for differ-
ent elements. Here’s an example:

var linkVar = { message:'Hello from a link'};

var pVar = { message:'Hello from a paragraph};

function showMessage(evt) {
alert(evt.data.message);

}

$('a').bind('click',1linkVar,showMessage);

$('p').bind("'mouseover',pVar, showMessage);

JAVASCRIPT: THE MISSING MANUAL

Figure 6-5 breaks down how this code works. It creates two variables, linkVar on
the first line and pVar on the second line. Each variable contains an object literal,
with the same property name, message, but different message text. A function,
showMessage(), takes the event object (see page 222) and stores it in a variable
named evt. That function runs the alert() command, displaying the message prop-
erty (which is itself a property of the event object’s data property). Keep in mind
that message is the name of the property defined in the object literal.

Tutorial: A One-
Page FAQ

var @1inkvar - Figure 6-5:

var epVar =

{ message:'Hello from a link'};

{ message:'Hello from a paragraph};

JjQuery’s bind() function lets you pass

ofunction showMessage (evt) {

S('a').bind('click', 01inkVar,

alert (evt.data.message) ;

oshowMessage) ;

data to the function responding to the
event. That way, you can use a single
named function for several different
elements (even with different types of
events), while letting the function use
data specific to each event helper.

$S('p') .bind ('mouseover', OpVar, oshowMessage) g

(2 BIND() - Windows Int... [:J@@
(Bl

=1a0]

o Alink /
raph

(2 BIND() - Windows Int.... [[BIX]
Windows Internet Explorer rz]

A paragraph

Windows Internet Explorer @

] Hello from a paragraph 2
e

J Trusted sites H100% v J Truste

Tutorial: A One-Page FAQ

“Frequently Asked Questions” pages are a common sight on the Web. They can
help improve customer service by providing immediate answers 24/7. Unfortu-
nately, most FAQ pages are either one very long page full of questions and complete
answers, or a single page of questions that link to separate answer pages. Both solu-
tions slow down the visitors’ quest for answers.

In this tutorial, you’ll solve this problem by creating a JavaScript-driven FAQ page.
All of the questions will be visible when the page loads, so it’s easy to locate a given
question. The answers, however, are hidden until the question is clicked—then the
desired answer fades smoothly into view (see Figure 6-6).

CHAPTER 6: ACTION/REACTION: MAKING PAGES COME ALIVE WITH EVENTS

227

Tutorial: A One-
Page FAQ

228

Overview of the Task
The JavaScript for this task will need to accomplish several things:
+ When a question is clicked, the corresponding answer will appear.

* When a question whose answer is visible is clicked, then the answer should
disappear.

In addition, you’ll want to use JavaScript to hide all of the answers when the page
loads. Why not just use CSS? For example, setting the CSS display property to none
for the answers is another way to hide the answers. The problem with this tech-
nique is what happens to visitors who don’t have JavaScript turned on: They won’t
see the answers when the page loads, nor will they be able to make them visible by
clicking the questions. To make your pages viewable to both those with JavaScript
enabled and those with JavaScript turned off, it’s best to use JavaScript to hide any
page content.

Note: See the note on page 27 for information on how to download the tutorial files.

The Programming
1. In a text editor, open the file 6.2.html in the chapter06 folder.

This file already contains a link to the jQuery file, and the $(document).ready()
function (page 218) is in place. First, you’ll hide all of the answers when the
page loads.

2. Click in the empty line after the $(document).ready() function, and then type
$(".answer').hide();.

The text of each answer is contained within a <div> tag with the class of answer
applied to it. This one line of code selects each <div> and hides it (the hide()
function is discussed on page 243). Save the page and open it in a Web browser.
The answers should all be hidden.

The next step is determining which elements you need to add an event listener
to. Since the answer appears when a visitor clicks the question, you must select
every question in the FAQ. On this page, each question is a <h2> tag in the
page’s main body.

3. Press return to create a new line and add the code in bold below to the script:

<script type="text/javascript" src="../js/jquery.js"></script>
<script type="text/javascript">
$(document).ready(function() {
$('.answer').hide();
$('#main h2'")
}); // end of ready()
</script>

JAVASCRIPT: THE MISSING MANUAL

6.

0 N oA NN =

S 0y = O v

That’s a basic descendent selector used to target every <h2> tag inside an ele-
ment with an ID of main (so it doesn’t affect the <h2> tag in the left sidebar).
Now it’s time to add an event. The click event is a good candidate; however, you
can better meet your requirements—that clicking the question either shows or
hides the answer—using the jQuery toggle() function (see page 221). This func-
tion lets you switch between two different functions with each mouse click.

. Immediately following the code you typed in step 2 (on the same line), type

.toggle(.

This code marks the beginning of the toggle() function, which takes two anony-
mous functions (page 193) as arguments. The first anonymous function runs
on the first click, the second function runs on the next click. You’ll get the basic
structure of these functions in place first.

. Press Return to create a new line, and then type:

function() {

}

This code is the basic shell of the function and represents the first argument
passed to the toggle() function. You’ll add the basic structure for the second
function next.

Add the code in bold, so that your script looks like this:

<script type="text/javascript" src="../js/jquery.js"></script>
<script type="text/javascript">
$(document).ready(function() {
$(".answer').hide();
$('#main h2').toggle(
function() {

s
function() {

}
); // end of toggle()

}); // end of ready()
</script>

Be sure you don’t leave out the comma at the end of line 8 above. Remember
that the two functions here act like arguments passed to a function (page 100).
When you call a function, you separate each argument with a comma, like this:
prompt('Question’, 'type here'). In other words, the comma on line 8 separates
the two functions. (You can leave out the comment on line 12—// end of tog-
gle—if you want. It’s just there to make clear that that line marks the end of the
toggle() function.)

CHAPTER 6: ACTION/REACTION: MAKING PAGES COME ALIVE WITH EVENTS

Tutorial: A One-
Page FAQ

229

Tutorial: A One-
Page FAQ

230

Now it’s time to add the effect you're after: the first time the <h2> tag is clicked,
the associated answer needs to appear. While each question is contained in a
<h2> tag, the associated answer is in a <div> tag immediately following the
<h2> tag. In addition, the <div> has a class of answer applied to it. So what you
need is a way to find the <div> tag following the clicked <h2>.

. Within the first function (marked as line 6 in step 5 above), add $(this)

.next(".answer').fadeln(); to the script.

As discussed on page 194, $(this) refers to the element currently responding to
the event—in this case, a particular <h2> tag. jQuery provides several func-
tions to make moving around a page’s structure easier. The .next() function
finds the tag immediately following the current tag. In other words, it finds the
tag following the <h2> tag. You can further refine this search by passing an
additional selector to the .next() function—the code .next(‘answer’) finds the
first tag following the <h2> that also has the class answer applied to it. Finally,
fadeIn() gradually fades the answer into view (the fadeln() function is dis-
cussed on page 244).

Note: The .next() function is just one of the many jQuery functions that help you navigate through a
page’s DOM. To learn about other helpful functions, visit ttp,//docs.jquery.com/Traversing.

8.

W 0 N O U1 A W N —

Now’s a good time to save the page and check it out in a Web browser. Click
one of the questions on the page—the answer below it should open (if it
doesn’t, double-check your typing and refer to the troubleshooting tips on page
32).

In the next step you’ll complete the second half of the toggling effect—hiding
the answer when the question is clicked a second time.

Add the code bolded on line 10 below:

<script type="text/javascript" src="../js/jquery.js"></script>

<script type="text/javascript">

$(document).ready(function() {

$('.answer').hide();

$('#main h2').toggle(
function() {
$(this).next("'.answer"').fadeIn();
1
function() {

$(this).next('.answer').fadeOut();
}
); // end of toggle()
}); // end of ready()
</script>

JAVASCRIPT: THE MISSING MANUAL

http://docs.jquery.com/Traversing

0 N oA NN =

S Ul NN = O v

Now the answer fades out on a second click. Save the page and give it a try.
While the page functions fine, there’s one nice design touch you can add. Cur-
rently, each question has a small plus sign to the left of it. The plus sign is a
common icon used to mean, “Hey, there’s more here.” To indicate that a visi-
tor can click to hide the answer, replace the plus sign with a minus sign. You
can do it easily by just adding and removing classes from the <h2> tags.

. Add two final lines of code (lines 8 and 12 below). The finished code should

look like this:

<script type="text/javascript" src="../js/jquery.js"></script>
<script type="text/javascript">
$(document).ready(function() {
$(".answer").hide();
$('#main h2').toggle(
function() {
$(this).next(".answer").fadeIn();
$(this).addClass('close');
b
function() {
$(this).next('.answer').fadeOut();
$(this).removeClass('close');
}
); //end toggle
b;

</script>

This code simply adds a class named close to the <h2> tag when it’s clicked the
first time, then removes that class when it’s clicked a second time. The minus
sign icon is defined within the style sheet as a background image. (Once again,
CSS makes JavaScript programming easier.)

Save the page and try it out. Now when you click a question, not only does the
answer appear, but the question icon changes (see Figure 6-6).

CHAPTER 6: ACTION/REACTION: MAKING PAGES COME ALIVE WITH EVENTS

Tutorial: A One-
Page FAQ

231

Tutorial: A One-
Page FAQ

Figure 6-6:
With just a few lines of
- ac| | @ hitp: ftutorials.local/chapter06 /complete_6.2.html Gl~ Google e .
€O Gl bl O CTIEET T AT 2 JavaScript, you can make
@ Disable v [Cookies v [€SS v [Forms images * @ Information () Miscellaneous v ./ Outline v _ J Resize v 4° Tools *] vi

page elements appear or
disappear with a click of
the mouse.

Script 6.2
A One Page FAQ

= |'ve heard that JavaScript is the long-lost fountain of youth. Is this true?

Why, yes it is! Studies prove that learning JavaSeript freshens the mind
and extends life span by several hundred years. (Note: some scientists
disagree with these claims.)

4 Can JavaScript really solve all of my problems?
4 Is there nothing JavaScript can’t do?

Web Sites with

232 JAVASCRIPT: THE MISSING MANUAL

CHAPTER

/

Improving Your Images

Web designers use images to improve a page’s design, decorate navigation bars,
highlight elements on a page—and to show the world what fun they had on their
last vacation. Adding an image to a Web page immediately adds interest and visual
appeal. When you add JavaScript to the mix, however, you can really add excite-
ment by dynamically changing images on a page, presenting an animated photo
gallery, or showing off a series of photos in a self-running slideshow. In this chap-
ter, yowll learn a slew of tricks for manipulating and presenting images on your
Web site.

Swapping Images

Probably the single most common use of JavaScript is the simple image rollover:
when move your mouse over an image, it changes to another image. This basic
technique has been used since the dawn of JavaScript to create interactive naviga-
tion bars whose buttons change appearance when the mouse hovers over them.

But in the past couple of years, more and more designers have turned to CSS to
achieve this same effect (for example, see www.monkeyflash.com/css/image-rollover-
navbar/). However, even if you’re using CSS to create interactive navigation bars,
you still need to understand how to use JavaScript to swap one image for if you
want to create slide shows, image galleries, and adding other types of interactive
graphic effects to a Web page.

233

http://www.monkeyflash.com/css/image-rollover-navbar/
http://www.monkeyflash.com/css/image-rollover-navbar/

Swapping Images

234

Changing an Image’s src Attribute

Every image displayed on a Web page has a src (short for source) attribute that
indicates a path to a graphic file; in other words, it points to an image on a Web
server. If you change this property to point to a different graphic file, the browser
displays the new image instead. Say you have an image on a page and you assign it
an ID of photo. Using the traditional DOM (page 157), you can store a reference to
that image in a variable like this:

var photo = document.getElementById('photo');

In this example, the variable photo is a DOM object—the actual tag in the
page’s HTML. The object has all of the properties of a normal tag, so to
change the src attribute, you can do the following:

photo.src = 'images/newImage.jpg';

This line of code makes the Web browser download the file newlmage.jpg and
replace the current image on the page with it.

Using jQuery, you can achieve the same effect like this:

$('#photo").attr('src','images/newImage.jpg');

Note: \When you change the src property of an image using JavaScript, the path to the image file is
based on the page location, not the location of the JavaScript code. This point can be confusing when you
use an external JavaScript file (page 24) located in a different folder. In the example above, the Web
browser would try to download the file newimage.jpg from a folder named images, which is located in
the same folder as the Web page. That method works even if the code is included in an external file
located in another folder elsewhere on the site. Accordingly, it's often easier to use root relative links
inside external JavaScript files (see the box on page 25 for more information on the different links types).

Changing an image’s src attribute doesn’t change any of the tag’s other
attributes, however. For example, if the alt attribute is set in the HTML, the
swapped-in image has the same alt text as the original. In addition, if the width and
height attributes are set in the HTML, changing an image’s src property makes the
new image fit inside the same space as the original. If the two graphics have differ-
ent dimensions, then the swapped-in image will be distorted.

In a situation like rollover images in a navigation bar, the two images will most
likely be the same size and share the same alf attribute, so you don’t get that prob-
lem. But you can avoid the image distortion problem entirely by simply leaving off
the width and height property of the original image in your HTML. Then when the
new image is swapped in, the Web browser displays the image at the dimensions
set in the file.

JAVASCRIPT: THE MISSING MANUAL

Another solution is to first download the new image, get its dimensions, then
change the src, width, height, and alt attributes of the tag:

var newPhoto = new Image();

newPhoto.src = 'images/newImage.jpg';

var photo = document.getElementById('photo");
photo.src = newPhoto.src;

photo.width = newPhoto.width;

photo.height = newPhoto.height;

[NS B O S

Note: The line numbers on the left aren't part of the code, so don't type them. They're just to make the
code easier to read.

The key to this technique is line 1, which creates a new image object. To a Web
browser, the code new Image()says, “Browser, I'm going to be adding a new image
to the page, so get ready.” The next line tells the Web browser to actually down-
load the new image. Line 3 gets a reference to the current image on the page, and
lines 4-6 swap in the new image and change the width and height to match the
new image.

In jQuery, the code would look like this:

var newPhoto = new Image();
newPhoto.src = 'images/newImage.jpg';
var photo = $('#photo');
photo.attr('src',newPhoto.src);
photo.attr('width',newPhoto.width);
photo.attr('height',newPhoto.height);

(<2 I I N N S

Tip: The jQuery attr() function can set multiple HTML attributes at once. Just pass an object literal (see
page 188) that contains each attribute name and new value. You could write the jQuery code from above
more succinctly, like this:

var newPhoto = new Image();
newPhoto.src = 'images/newImage.jpg';
$("#photo").attr({

src: newPhoto.src,

width: newPhoto.width,

height: newPhoto.height

1);

Preloading Images

There’s one problem with swapping in a new image using the techniques listed above:
when you swap the new file path into the src attribute, the browser has to download
the image. If you wait until someone mouses over an image before downloading the
new graphic, there’ll be an unpleasant delay before the new image appears. In the case
of a navigation bar, the rollover effect will feel sluggish and unresponsive.

CHAPTER 7: IMPROVING YOUR IMAGES

Swapping Images

235

Swapping Images

236

To avoid that delay, preload any images that you want to immediately appear in
response to an action. For example, when a visitor mouses over a button on a navi-
gation bar, the rollover image should appear instantly. Preloading an image simply
means forcing the browser to download the image before you plan on displaying it.
When the image is downloaded, it’s stored in the Web browser’s cache so that any
subsequent requests for that file are served from the visitor’s hard drive instead of
downloaded a second time from the Web server.

Preloading an image is as easy as creating a new image object and setting the
object’s src property. In fact, you already know how to do that:

var newPhoto = new Image();
newPhoto.src

'images/newImage.jpg";

What makes this preloading is that you do it before you need to replace an image
currently on the Web page. One way to preload is to create an array at the begin-
ning of a script containing the paths to all graphics you wish to preload, then loop
through that list, creating a new image object for each one:

var preloadImages = ['images/roll.png’,
'images/flower.png',
'images/cat.jpg'];
var imgs = [];

1
2
3
4
5 for (var i=0; i<preloadImages.length;i++) {
6 imgs[i] = new Image();

7 imgs[i].src = preloadImages[i];

8

}

Lines 1-3 are a single JavaScript statement that creates an array named preload-
Images, containing three values—the path to each graphic file to preload. (As men-
tioned on page 59, it’s often easier to read an array if you place each array item on
its own line.) Line 4 creates a new empty array, imgs, which will store each of the
preloaded images. Lines 5-8 show a basic JavaScript for loop (see page 94), which
runs once for each item in the array preloadlmages. Line 6 creates a new image
object, while line 7 retrieves the file path from the preloadlmages array—that’s the
magic that causes the image to download.

Rollover Images

A rollover image is just an image swap (as discussed on page 234) triggered by the
mouse moving over an image. In other words, you simply assign the image swap to
the mouseover event. For example, say you have an image on the page with an ID
of photo. When the mouse rolls over that image, you want the new image to
appear. You can accomplish that with jQuery like this:

<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript">
var newPhoto = new Image();

B W N =

newPhoto.src = 'images/newImage.jpg';

JAVASCRIPT: THE MISSING MANUAL

$(document).ready(function() {
$('#photo") .mouseover(function() {
$(this).attr('src', newPhoto.src);
b;
b;

5
6
7
8
9
0 </script>

Lines 3 and 4 preload the image that you want to swap in. Line 5 waits until the
HTML has loaded, so the JavaScript can access the HTML for the current photo.
The rest of the code assigns a mouseover event to the image, with a function that
changes the image’s src attribute to match the new photo.

Since rollover images usually revert back to the old image once you move the
mouse off the image, you need to also add a mouseout event to swap back the
image. As discussed on page 220, jQuery provides its own event, called hover(),
which takes care of both the mouseover and mouseout events:

1 <script type="text/javascript" src="jquery.js"></script>
2 <script type="text/javascript">

3 var newPhoto=new Image();

4 newPhoto.src="images/newImage.jpg";

5 $(document).ready(function() {

6 var oldSrc=$('#photo’).attr('src');

7 $('#photo").hover(

8 function() {

9 $(this).attr('src', newPhoto.src);
10 b

11 function() {

12 $(this).attr('src', oldSrc);

13 1

14 });

15 «/script>

The hover() function takes two arguments: the first argument is a function telling
the browser what to do when the mouse moves over the image; the second argu-
ment is a function telling the browser what to do when the mouse moves off the
image. This code also adds a variable, o0ldSrc, for tracking the original src
attribute—the path to the file that appears when the page loads.

You aren’t limited to rolling over just an image, either. You can add a hover()
function to any tag—a link, a form element, even a paragraph. In this way, any tag
on a page can trigger an image elsewhere on the page to change. For example, say
you want to make a photo swap out when you mouseover a page’s <hl> tag.
Assume that the target image is the same as the previous example. You just change
your code as shown here in bold:

1 <script type="text/javascript" src="jquery.js"></script>
2 <script type="text/javascript">
3 var newPhoto = new Image();

CHAPTER 7: IMPROVING YOUR IMAGES

Swapping Images

237

Tutorial: Adding
Rollover Images

4 newPhoto.src = 'images/newImage.jpg';

5 $(document).ready(function() {

6 var oldSrc = $('#photo').attr('src');

7 $('h1").hover(

8 function() {

9 $("'#photo").attr('src', newPhoto.src);

10 b

1 function() {

12 $("#photo").attr('src', oldSrc);
131);

14 });

15 </script>

Tutorial: Adding Rollover Images

In this tutorial, you’ll add a rollover effect to a series of images (see Figure 7-1).
You’ll also add programming to preload the rollover images in order to eliminate
any delay between mousing over an image and seeing the rollover image. In addi-
tion, youll learn a new a technique to make the process of preloading and adding
the rollover effect more efficient.

= Figure 7-1:
it ae (@ http://wirorials.local/chapter07/complete_7.1.himl v | (TG~ Google Q) # Make GI]GVIgatlon bar,
© Disable + [Cookies = [€5 [Forms + 3] Images + (@ Information +) Miscellaneous * ./ Outline + , Resize = 4 Tools v {2] Viev link, or $lmplyaphoto
more visually interactive
with rollovers.

Image Rollovers

Photas by Alin Nan

[E] _http:/ ftutorials.Jocal/ chapter07 /images/large/ orange.jpg L & Getvideo ©

Overview of the Task

The tutorial file 7.1.html (located in the chapter07 tutorial folder) contains a series
of six images (see Figure 7-2). Each image is wrapped by a link that points to a
larger version of the photo, and all of the images are wrapped in a <div> tag with
an ID of gallery. Basically, you’re trying to achieve two things:

+ Preload the rollover image associated with each of the images inside the <div>.

238 JAVASCRIPT: THE MISSING MANUAL

Tutorial: Adding
Rollover Images

« Attach a hover() function to each image inside the <div>. The hover()function
swaps the rollover image when the mouse moves over the image, then swaps
back to the original image when the mouse moves off.

From this description, you can see that both steps are tied to the images inside the
<div>, so one way to approach this problem is to first select the images inside the
<div>, then loop through the selection, preloading each images’ rollover and
attaching a hover() function.

<div id="gallery"> Figure 7-2:

The basic structure of the HTML for this tutorial
includes a <div> tag that surrounds a series of links
with images in them. To make swapping in the new
image easy, its file name is simply a version of the
original image’s file name.

¥

|
I
<a>

Image on page blue.jpg

Rollover image “Y N blue_h.jpg

Note: See the note on page 27 for information on how to download the tutorial files.

The Programming
1. In a text editor, open the file 7.1.html in the chapter07 folder.

This file already contains a link to the jQuery file, and the $(document).ready()
function (page 218). The first step is to select all of the images within the <div>
tag and set up a loop with the jQuery each() function discussed on page 193.

2. Click in the empty line after the $(document).ready() function and type
$('#gallery img').each(function() {.

The selector #gallery img selects all tags within a tag that has the ID gal-
lery. jQuery’s each() function provides a quick way to loop through a bunch of
page elements, performing a series of actions on each element. The each() func-
tion takes an anonymous function (page 193) as its argument. It’s a good idea
to provide the code that completes the function, so you’ll do that next.

CHAPTER 7: IMPROVING YOUR IMAGES 239

Tutorial: Adding
Rollover Images

240

3.

N o o BN =

Press Return twice, and then type }); // end each to close the anonymous func-
tion, end the call to the each() function, and terminate the JavaScript state-
ment. Your code should now look like this:

<script type="text/javascript" src="../js/jquery.js"></script>
<script type="text/javascript">

$(document).ready(function() {

$('#tgallery img').each(function() {

}); // end each
}); // end ready

At this point, the script loops through each of the images in the gallery, but
doesn’t actually do anything yet. The first order of business is to capture the
image’s src property and store it in a variable that you’ll use later on in the
script.

Note: The JavaScript comments—// end each and // end ready—aren't required for this script to work.
However, they do make it easier to identify what part of the script the line goes with.

4. Click inside the empty line (line 5 in step 3) and type var imgFile = $(this).

attr('src');.

As described on page 194, you can use $(this) to refer to the current element in
the loop; in other words, $(this) will refer to each of the image tags in turn. The
jQuery attr(') function (see page 189) retrieves the specified HTML attribute. In
this case, it retrieves the src property of the image and stores it in a variable
named imgFile. For example, for the first image, the src property is images/
small/blue.jpg, which is the path to the image that appears on the page.

You can use that very src value to preload the image.

. Hit Return to create a blank line, and then add the following two lines of code:

var preloadImage = new Image();
var imgExt = /(\.\w{3,4}$)/;
preloadImage.src = imgFile.replace(imgExt,' h$1');

As described on page 236, to preload an image you must first create an image
object. In this case, the variable preloadlmage is created to store the image
object. Next, we preload the image by setting the Image object’s src property.

One way to preload images (as discussed on page 235) is to create an array of
images you wish to preload, then loop through each item in the array, creating
an image object and adding the image’s source to the object.

In this example, you’ll use a more creative (and less labor-intensive method) to
preload images. You just have to make sure you store the rollover image in the
same location as the original image and name it similarly. For this Web page,

JAVASCRIPT: THE MISSING MANUAL

6.
1
2
3
4
5
6
7
8
9

10
11
12
13

each image on the page has a corresponding rollover image with an _h added to
the end of the image name. For example, for the image blue.jpg, there’s a roll-
over image named blue_h.jpg. Both files are stored in the same folder, so the
path to both files is the same.

Here’s the creative part: Instead of manually typing the src of the rollover to
preload it like this, preloadlmage.src="images/small/blue_h.jpg', you can let Java-
Script figure out the src by simply changing the name of the original image’s
source so it reflects the name of the rollover. That’s what the other two lines of
code do. The first line—var imgExt = /(\.\w{3,4}$)/;—creates a regular expres-
sion (see page 121) that matches a period followed by three or four characters at
the end of a string. For example, it will match both .jpeg in /images/small/blue.
jpeg and .gif in /images/orange.gif.

The next line—preloadlmage.src = imgFile.replace(imgExt,’_h$1');—uses the
replace() method (see page 132) to replace the matched text with something
else. Here a .jpg in the path name will be replaced with _h.jpg, so images/small/
blue.jpg is changed to images/small/blue_h.jpg. This technique is a little tricky
since it uses a regular expression subpattern (see the box on page 133 for full
details), so you may want to reread the regular expression section of Chapter 4
(page 121).

Now that the rollover image is preloaded you can assign the hover() event to
the image.

Hit Return and then add the code listed on lines 9—11 below:

<script type="text/javascript" src="../js/jquery.js"></script>
<script type="text/javascript">
$(document).ready(function() {
$('#tgallery img').each(function() {
var imgFile = $(this).attr('src');
var preloadImage = new Image();
var imgkxt = /(\.\w{3,4}$)/;
preloadImage.src = imgFile.replace(imgExt,' h$1');
$(this).hover(

); // end hover
1); // end each
}); // end ready

jQuery’s hover(') function is just a shortcut method of applying a mouseover
and mouseout event to an element (see page 220). To make it work, you pass
two functions as arguments. The first function runs when the mouse moves
over the element—in this case, the image changes to the rollover. The second
function runs when the mouse moves off the element—here, the rollover image
swaps back to the original image.

CHAPTER 7: IMPROVING YOUR IMAGES

Tutorial: Adding
Rollover Images

241

jQuery Effects

242

7. In the empty line (line 9 in step 6), add the following three lines of code:

function() {
$(this).attr('src', preloadImage.src);
I8

This first function simply changes the src property of the current image to the
src of the rollover image. The comma at the end of the last line is required
because the function you just added is acting as the first argument in a call to
the hover(') function—a comma separates each argument passed to a function.

8. Finally, add the second function (lines 12-14 below). The finished script
should look like this:

<script type="text/javascript" src="../js/jquery.js"></script>
<script type="text/javascript">
$(document).ready(function() {
$('#tgallery img').each(function() {
var imgFile = $(this).attr('src');
var preloadImage = new Image();
var imgExt = /(\.\w{3,4}$)/;
preloadImage.src = imgFile.replace(imgExt,' h$1');
$(this).hover(
10 function() {
$(this).attr('src', preloadImage.src);

O 0 N OO U1 B N =

12 b

13 function() {

14 $(this).attr('src', imgFile);
15 }

16); // end hover

17 }); // end each
18 }); // end ready

This second function simply changes the src attribute back to the original
image. In line 5, the path to the image originally on the page is stored in the
variable imgFile. In this function (line 13), you access that value again to set the
src back to its original value. Save the page, view it in a Web browser, and
mouse over each of the black and white images to see them pop into full color.

jQuery Effects

Making elements on a Web page appear and disappear is a common JavaScript
task. Drop-down navigation menus, pop-up tooltips, and automated slideshows all
rely on the ability to show and hide elements when you want to. jQuery supplies a
handful of functions that achieve the goal of hiding and showing elements.

JAVASCRIPT: THE MISSING MANUAL

To use each of these effects, you apply them to a jQuery selection, like any other
jQuery function. For example, to hide all tags with a class of submenu, you can
write this:

$('.submenu').hide();

Each effect function also can take an optional speed setting and a callback func-
tion. The speed represents the amount of time the effect takes to complete, while a
callback is a function that runs when the effect is finished. (See the box on page
246 for details on callbacks.)

To assign a speed to an effect, you supply one of three string values— fast’, 'nor-
mal’, or 'slow—or a number representing the number of milliseconds the effect
takes (1,000 is 1 second, 500 is half of a second, and so on). For example, the code
to make an element fade out of view slowly would look like this:

$('element').fadeOut('slow');

Or if you want the element to fade out really slowly, over the course of 10 seconds:

$('element').fadeOut(10000);

When you use an effect to make an element disappear, the element isn’t actually
removed from the DOM. Its code is still in the browser’s memory, but its display
setting (same as the CSS display setting) is set to none. Because of that setting, the
space taken up by the element is removed, so other content on the page may move
into the position previously taken up by the hidden element. You can see all of the
jQuery effects in action on the effects.html file include in the chapter07 tutorial
folder (see Figure 7-3).

Note: jQuery's User Interface library (see the box on page 361) includes an official set of add-on effects.
It builds on jQuery’s basic features and offers more eye-catching effects, like scaling an item, shaking an
element, bouncing an element, and so on. You can learn more about these additional effects at http;/
docs.jquery.com/Ul/Effects.

Basic Showing and Hiding
jQuery provides three functions for basic hiding and showing of elements:

« show() makes a hidden element visible. It doesn’t have any effect if the element
is already visible on the page. If you don’t supply a speed value, the element
appears immediately. However, if you supply a speed value—show(1000), for
example—the element animates from the top-left corner down to the bottom-
left corner.

« hide() hides a visible element. It doesn’t have any effect if the element is already
hidden, and as with the show() function, if you don’t supply a speed value, the
element immediately disappears. However, with a speed value the element ani-
mates out of view in a kind of shrinking motion.

CHAPTER 7: IMPROVING YOUR IMAGES

jQuery Effects

243

http://docs.jquery.com/UI/Effects
http://docs.jquery.com/UI/Effects

jQuery Effects

+ toggle() switches an element’s current display value. If the element is currently
visible, toggle(') hides the element; if the element is hidden, then toggle() makes
the element appear. This function is ideal when you want to have a single con-
trol (like a button) alternately show and hide an element.

In the tutorial on page 228 of the previous chapter, you saw both the hide() and
toggle(') functions in action. That script uses hide() to make all of the answers on
an FAQ page disappear when the page’s HTML loads, then uses toggle() to alter-
nately show and hide those answers when you click the question.

% & [& Query Effects

/= jQuery Effects - Windaws Internet Explorer I-'igure 7-3:
O - [E v hepter07gfects i 9] 4] ¢ [t Seorch |le-]| You can test out jQuery’s
& - & - [rage - G3os - 7| Visual effects on the

effects.html file located in
the chapter07 tutorials
file. Click the function
text—fadeOut('#photo'),
for example—to see how
text and images look
when they fade out, slide
up, or appear. Some
effects will appear in grey

hide (' #itext') fadeout (' f#itext') sLideup (' fitext')

fadeTo ('#text') slideToggle('#text’)

toggle (' #text')

spsum dolor sit amet, consectetuer adipiscing elit. Vivamus
I elit ac massa. Proin sit amet dui et dui venenatis aliquam.
Vestibulum et metus sed elit convallis convallis. Quisque sem.

to indicate that they don’t
apply to the element. For
example, it doesn’t make

Curabitur mauris libero, nonummy non, commodo id, pretium quis,

justo. Sed convallis eros et odio. Maecenas blandit. Sed at libero sit much sense for the code

amet mauris congue pellentesque. E t'o'make ﬂphOtO' appear
if it's already visible on
the page.

hide('#iphoto') fadeOut (' #phota') sLideUp (' #iphota')

fadeTo (' #iphoto') slideToggle (' #photo’)

toggle (' #photo’)

Done

[+ Trusted sites

244

Fading Elements In and Out

For a more dramatic effect, you can fade an element out or fade it in—in either
case, you're just changing the opacity of the element over time. jQuery provides
three fade-related functions:

* fadeln() makes a hidden element fade into view. First, the space for the ele-
ment appears on the page (this may mean other elements on the page move out

JAVASCRIPT: THE MISSING MANUAL

of the way); then the element gradually becomes visible. This function doesn’t
have any effect if the element is already visible on the page. If you don’t supply a
speed value, the element fades in using the 'normal’ setting (400 milliseconds).

+ fadeOut() hides a visible element by making it fade out of view like a ghost. It
doesn’t have any effect if the element is already hidden, and like the fadeln()
function, if you don’t supply a speed value, the element fades out over the
course of 400 milliseconds.

+ fadeTo() works slightly differently than other effect functions. It fades an image
to a specific opacity. For example, you can make an image fade so that it’s semi-
transparent. Unlike other effects, you must supply a speed value. In addition,
you supply a second value from 0 to 1 that indicates the opacity of the element.
For example, to fade all paragraphs to 75% opacity, you’d write this:

$('p').fadeTo("'noxmal’,.75);

This function changes an element’s opacity regardless of whether the element is
visible or invisible. For example, say you fade a currently hidden element to
50% opacity. If you then show that element using show() or fadeln(), the ele-
ment will appear at 50% opacity. Likewise, if you hide a semitransparent ele-
ment and then make it reappear, its opacity setting is recalled.

If you fade an element to 0 opacity, the element is no longer visible, but the
space it occupied on the page remains. In other words, unlike the other disap-
pearing effects, fading to 0 will leave an empty spot on the page where the ele-
ment is.

Tip: Firefox sometimes makes text on a page temporarily change appearance during a fade-in or -out. To
stop this distraction, you need to set the opacity of the page to just less than 100%. A simple way to do
that is to add a body tag style to a page’s style sheet, like this:

body {
-moz-opacity:.999;
}

Sliding Elements

For a little more visual action, you can also slide an element in and out of view.
The functions are similar to the fading elements in that they make page elements
appear and disappear from view, and may have a speed value:

« slideDown() makes a hidden element slide into view. First, the top of the ele-
ment appears and anything below the element is pushed down as the rest of the
element appears. It doesn’t have any effect if the element is already visible on
the page. If you don’t supply a speed value, the element slides in using the 'nor-
mal’ setting (400 milliseconds).

CHAPTER 7: IMPROVING YOUR IMAGES

jQuery Effects

245

jQuery Effects

246

POWER USERS’ CLINIC

Performing an Action After an Effect Is Completed

Sometimes you want to do something once an effect is For example, say you have an image on a page with an ID
complete. For