
www.allitebooks.com

http://www.allitebooks.org

Jenkins Essentials

Continuous Integration – setting up the stage for a
DevOps culture

Mitesh Soni

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Jenkins Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1220715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-347-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Mitesh Soni

Reviewers
Anthony Dahanne

Michael Peacock

Devin Young

Commissioning Editor
Nadeem N. Bagban

Acquisition Editors
Indrajit Das

Rebecca Youé

Content Development Editor
Shubhangi Dhamgaye

Technical Editor
Mitali Somaiya

Copy Editors
Janbal Dharmaraj

Kevin McGowan

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Disha Haria

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Author

Mitesh Soni is currently working as a technical specialist at IGATE. He is an SCJP,
SCWCD, and VCP. While he has interest in DevOps and Cloud computing, his real
passion is to play with kids, play with his camera, and capture photographs at Indroda
Park. He loves programming in Java, and he finds design patterns fascinating. He
lives in the capital of Mahatma Gandhi's home state. He loves to spend time alone and
loves walking at Punit Van. He believes that without a sense of urgency, desire loses
its value. He has earlier authored Learning Chef by Packt Publishing (https://www.
packtpub.com/networking-and-servers/learning-chef).

I want to say thanks and express my gratitude for everything
I've been blessed with. I would like to thank Jigisha-Nitesh,
dada-dadi, my teachers, friends, and family members who have
always supported me. Special thanks to Vishwajit for encouraging
me to work on Jenkins. I would like to thank Jyoti Namjoshi
for encouraging me to write articles and for her guidance and
valuable support in what I do. I would also like to thank the IGATE
senior management for providing opportunities to explore latest
technology trends and work on them extensively.

www.allitebooks.com

https://www.packtpub.com/networking-and-servers/learning-chef
https://www.packtpub.com/networking-and-servers/learning-chef
http://www.allitebooks.org

About the Reviewers

Anthony Dahanne has been a Java software developer for 10 years. His favorite
topics include web apps, building tools, continuous integration and, of course, core
Java development.

Passionate in delivering valuable software, you'll often see Anthony at start up
events or user groups in Montreal.

Working for Terracotta, he is part of the management and monitoring team that
makes the products easily monitorable with REST APIs and builds a nice UI.

He is the author of Instant Spring for Android Starter by Packt Publishing.

I'd like to thank my family for their support and patience while I'm
busy discovering new software technologies!

Michael Peacock is an experienced software developer and team lead from
Newcastle, UK, with a degree in software engineering from Durham University.

After spending a number of years running his own web agency and subsequently
working directly for a number of software start-ups, he now runs his own software
development agency, working on a range of projects for an array of different clients.

He is the author of Creating Development Environments with Vagrant, PHP 5 Social
Networking, PHP 5 E-Commerce Development, Drupal 7 Social Networking, Selling Online
with Drupal e-Commerce, and Building Websites with TYPO3 all by Packt Publishing.
Other books he has been involved with include Advanced API Security, Mobile Web
Development, Jenkins Continuous Integration Cookbook, and Drupal for Education and
E-Learning, for which he acted as a technical reviewer.

www.allitebooks.com

http://www.allitebooks.org

He has also presented at a number of user groups and technical conferences,
including PHP UK Conference, Dutch PHP Conference, ConFoo, PHPNE, PHPNW,
and CouldConnect Santa Clara.

You can follow him on Twitter at @michaelpeacock or find out more about him
through his website at www.michaelpeacock.co.uk.

I'd like to thank the team at Packt Publishing for their help
and support.

Devin Young graduated with a BS in sports management from The Ohio State
University and somehow wound up working as a software engineer shortly
afterwards. He specializes in DevOps and is particularly fond of automation and
real-time applications. He grew up as a competitive jump roper, leading him to
create the mobile app RopeRacer, which was launched on iOS in March 2015. The
app has become a success in the world of jump rope and is now used in tournaments
around the United States.

I would like to thank my family and coworkers for always putting
up with me and my soon-to-be wife, Christen, for letting me
be nerdy.

www.allitebooks.com

www.michaelpeacock.co.uk
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 v
Chapter 1: Exploring Jenkins	 1

Introduction to Jenkins and its features	 2
Features	 3

Installation of Jenkins on Windows and CentOS	 4
Installing Jenkins on Windows	 4
Installation of Jenkins on CentOS	 7
Installation of Jenkins as a web application	 9

A jump-start tour of the Jenkins dashboard	 10
How to change configuration settings in Jenkins	 12
What is the deployment pipeline?	 15
Self-test questions	 16
Summary	 17

Chapter 2: Installation and Configuration of Code Repository
and Build Tools	 19

An overview of a build in Jenkins and its requirements	 20
Installing Java and configuring environment variables	 20

Configure environment variables	 22
Installing, configuring, and operating SVN on CentOS and Windows	 23

Installing SVN on CentOS	 23
Configuring SVN	 24
SVN operations	 26
Import a directory into SVN	 26
Check out from SVN	 27

VisualSVN Server on Windows	 28
Integrating Eclipse with code repositories	 36
Installing and configuring Ant	 38
Installing Maven	 39

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Configuring Ant, Maven, and JDK in Jenkins	 40
Installing and configuring Git	 41
Creating a new build job in Jenkins with Git	 44
Self-test questions	 48
Summary	 48

Chapter 3: Integration of Jenkins, SVN, and Build Tools	 49
Creating and configuring a build job for a Java application with Ant	 50

Dashboard View Plugin	 50
Creating and configuring a build job for a Java application	 52

Creating and configuring a build job for a Java application
with Maven	 58
Build execution with test cases	 62
Self-test questions	 66
Summary	 66

Chapter 4: Implementing Automated Deployment	 67
An overview of continuous delivery and continuous deployment	 68
Installing Tomcat	 68
Deploying a war file from Jenkins to Tomcat	 70
Self-test questions	 76
Summary	 77

Chapter 5: Hosted Jenkins	 79
Exploring Jenkins in OpenShift PaaS	 80
Exploring Jenkins in the Cloud – CloudBees	 84
An overview of CloudBees Enterprise Plugins	 94

Workflow Plugin	 94
Checkpoints Plugin	 94
Role-based Access Control Plugin	 95
High Availability Plugin	 95
VMware ESXi/vSphere Auto-Scaling Plugin	 95

Jenkins case studies from CloudBees	 96
Apache jclouds	 96

Challenge	 96
Solution	 96
Benefits	 97

Table of Contents

[iii]

Global Bank	 97
Challenge	 97
Solution	 97
Benefits	 98

Service-Flow	 98
Challenge	 98
Solution	 98
Benefits	 98

Self-test questions	 99
Summary	 99

Chapter 6: Managing Code Quality and Notifications	 101
Integration with Sonar	 101
Exploring Static Code Analysis Plugins	 110

Checkstyle Plugin	 110
FindBugs Plugin	 111
Compiler Warnings Plugin	 111
DRY Plugin	 113
PMD Plugin	 113
Task Scanner Plugin	 113
CCM Plugin	 113
Android Lint Plugin	 113
OWASP Dependency-Check Plugin	 114

E-mail notifications on build status	 114
Self-test questions	 115
Summary	 115

Chapter 7: Managing and Monitoring Jenkins	 117
Managing Jenkins master and slave nodes	 118
Jenkins monitoring with JavaMelody	 123
Managing disk usage	 125
Build monitoring with Build Monitor Plugin	 127
Managing access control and authorization	 129
Maintaining roles and project-based security	 133
Audit Trail Plugin – an overview and usage	 137
Self-test questions	 139
Summary	 139

Table of Contents

[iv]

Chapter 8: Beyond Basics of Jenkins – Leveraging
"Must-have" Plugins	 141

Extended Email Plugin	 142
Workspace cleanup Plugin	 144
Pre-scm-buildstep Plugin	 146
Conditional BuildStep Plugin	 148
EnvInject Plugin	 150
Build Pipeline Plugin	 152
Self-test questions	 156
Summary	 157

Index	 159

[v]

Preface
DevOps is a buzz word in 2015 and will be for the coming years as per market trends
by various research firms. In DevOps culture, business owners, development teams,
operations teams, and QA teams collaborate to deliver outcome in a continuous and
effective manner. It enables the organizations to more quickly grab opportunities and
reduce the time taken to include customer feedback into new feature development or
innovation. The end goal of DevOps is to reduce the time between the initial concept
and the end result of the concept in the form of production ready applications.
DevOps targets application delivery, new feature development, bug fixing, testing,
and maintenance releases. It improves efficiency, security, reliability, predictability,
and faster development and deployment cycles. It covers all SDLC phases from
development, test, operations, and release.

Continuous integration (CI) and continuous delivery (CD) are a significant part of
the DevOps culture. Jenkins is a fully featured technology platform that enables
users to implement CI and CD. This helps users to deliver better applications by
automating the application delivery life cycle. CI includes automation of build, test
and package processes. CD includes the application delivery pipeline across different
environments. Jenkins enables the user to utilize continuous integration services
for software development in an agile environment. Continuous integration systems
are a vital part of the agile team because they help enforce the principles of agile
development. Continuous Integration is a significant part of the DevOps culture,
and hence, many open source and commercial tools for continuous delivery utilize
Jenkins or provide integration points. Jenkins enables agile teams to focus on work
and innovations by automating the build, artifact management, and deployment
processes, rather than worrying about manual processes. It can be used to build
freestyle software projects based on Apache Ant and Maven 2 / Maven 3 projects.
It can also execute Windows batch commands and shell scripts.

Preface

[vi]

There are a number of ways to install Jenkins, and it can be used across different
platforms such as Windows and Linux. Jenkins is available in the form of native
packages of Windows, FreeBSD, OpenBSD, Red Hat, Fedora, CentOS, Ubuntu,
Debian, Mac OS X, openSUSE, Solaris, OpenIndiana, Gentoo, or in the form of
WAR file. The quickest and easiest way to use Jenkins is to use the WAR file. It can
be easily customized with the use of plugins. There are different kinds of plugins
available to customize Jenkins based on specific needs. Categories of plugins include
source code management (that is, Git Plugin, CVS Plugin, and Bazaar Plugin),
build triggers (that is, Accelerated Build Now Plugin and Build Flow Plugin), build
reports (that is, CodeScanner Plugin and Disk Usage Plugin), authentication and user
management (that is, Active Directory Plugin and Github OAuth Plugin), cluster
management and distributed build (that is, Amazon EC2 Plugin and Azure Slave
Plugin), and so on.

Jenkins is very popular among its users as it allows them to manage and control
phases such as build, test, package, and static code analysis. It has won InfoWorld
Bossies Award, 2011; O'Reilly Open Source Award, 2011; ALM&SCM; and so on.
The main users of Jenkins are NASA, Linkedin, eBay, and Mozilla Foundation.

The following are some features that make Jenkins very popular:

•	 An open source tool with a web-based GUI.
•	 A Java-based continuous build system—easy to write plugins.
•	 Highly configurable tool—a plugin-based architecture that provides support

to many technology, repositories, build tools, and test tools.
•	 The Jenkins user community is large and active. It has more than 1,000 open

source plugins.
•	 This supports CI for .Net, iOS, Android, and Ruby development.
•	 This supports common SCM systems such as SVN, CVS, Git, and so on.
•	 This supports common test frameworks such as Junit, Selenium, and so on.

Jenkins speeds up the application development process through automation across
different phases such as build, test, code analysis, and so on. It also enables users to
achieve end-to-end automation for an application delivery life cycle.

Preface

[vii]

What this book covers
Chapter 1, Exploring Jenkins, describes in detail the basics of continuous integration
and provides an overview of Jenkins. This chapter also describes installation and
configuration of Jenkins. It takes a jump-start tour through some of the key features
of Jenkins and plugin installations as well. It will also cover the deployment pipeline
and the rest of the chapters will cover implementing it.

Chapter 2, Installation and Configuration of Code Repository and Build Tools, describes in
detail on how to prepare runtime environment for application life cycle management
and configure it with Jenkins—an open source continuous integration tool. It will
cover how to integrate Eclipse and code repository such as SVN and Git to create a
base for continuous integration in the deployment pipeline, which is explained in
Chapter 1, Exploring Jenkins.

Chapter 3, Integration of Jenkins, SVN, and Build Tools, describes in detail on how to
create and configure build jobs for Java applications, and how to run build jobs and
unit test cases. It covers all aspects of running a build to create a distribution file or
WAR file for deployment.

Chapter 4, Implementing Automated Deployment, covers one step forward in the
deployment pipeline by deploying artifacts in the local or remote application server.
It will give insight into automated deployment and continuous delivery process, and
also cover how to deploy applications on a public cloud platform using Jenkins.

Chapter 5, Hosted Jenkins, describes how to use Jenkins on Platform as a Service (PaaS)
model, which is provided by popular PaaS providers such as Red Hat OpenShift and
CloudBees. Considering CloudBees, it also covers details on how various customers
are using Jenkins based on their requirements. This chapter will explore details on
how to use Cloud-related plugins in Jenkins for an effective use of Jenkins.

Chapter 6, Managing Code Quality and Notifications, covers how to integrate static code
analysis behavior into Jenkins. Code quality is an extremely vital feature that impacts
an application's effectiveness, and by integrating it with Sonar, CheckStyle, FindBug,
and other tools, you can get an insight into problematic portions of code.

Preface

[viii]

Chapter 7, Managing and Monitoring Jenkins, gives an insight into management
of Jenkins nodes and monitoring them with Java Melody to provide details on
utilization of resources. It also covers how to monitor build jobs configured for Java
applications and managing those configurations by keeping its backup. This chapter
discusses the basic security configuration that is available in Jenkins for better access
control and authorization.

Chapter 8, Beyond Basics of Jenkins – Leveraging "Must-have" Plugins, covers the
advanced usage of Jenkins that are extremely useful in specific scenarios.
Scenario-based use cases and usage of specific plugins that help development
and operations teams are covered here for better utilization of Jenkins.

What you need for this book
This book assumes that you are familiar with at least Java programming language.
Knowledge of core Java and JEE is essential. Having a strong understanding of
program logic will provide you with the background to be productive with Jenkins
while using plugins of writing commands for shell.

As an application development life cycle will cover lots of tools in general, it is
essential to have some knowledge of repositories such as SVN, Git, and so on;
IDE tools such as Eclipse; and build tools such as Ant and Maven.

Knowledge of code analysis tools will make jobs easier in configuration and
integration; however, it is not extremely vital to perform the exercises given
in the book. Most of the configuration steps are mentioned clearly.

You will be walked through the steps required to install Jenkins on a Windows-
and Linux-based host. In order to be immediately successful, you will need
administrative access to a host that runs a modern version of Linux; CentOS 6.x is
what will be used for demonstration purposes. If you are a more experienced reader,
then a recent release of almost any distribution will work just as well (but you may
be required to do a little bit of extra work that is not outlined in this book). If you do
not have access to a dedicated Linux host, a virtual host (or hosts) running inside of
virtualization software such as VirtualBox or VMware workstation will work.

Additionally, you will need access to the Internet to download plugins that you do
not already have and also have Jenkins installed.

Preface

[ix]

Who this book is for
This book targets developers and system administrators who are involved in the
application development life cycle and are looking to automate it. Developers,
technical leads, testers, and operational professionals are the target readers to
jump-start Jenkins. Readers are aware of the issues faced by the development and
operations team as they are stakeholders in the application life cycle management
process. The reasons to jump-start Jenkins are to understand the importance
of contribution in continuous integration, automated test case execution, and
continuous delivery for an effective application life cycle management.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Commit by executing git commit -m "Initial Commit" –a."

Any command-line input or output is written as follows:

[root@localhost testmit]# service httpd restart

Stopping httpd:

[OK]

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Once the
build has succeeded, verify Workspace in the build job."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[x]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[xi]

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

www.allitebooks.com

http://www.allitebooks.org

[1]

Exploring Jenkins
"Continuous effort—not strength or intelligence—is the key to unlocking
our potential."

—Winston Churchill

Jenkins is an open source application written in Java. It is one of the most popular
continuous integration (CI) tools used to build and test different kinds of projects.
In this chapter, we will have a quick overview of Jenkins, essential features, and its
impact on DevOps culture. Before we can start using Jenkins, we need to install it.
In this chapter, we have provided a step-by-step guide to install Jenkins. Installing
Jenkins is a very easy task and is different from the OS flavors.

We will also learn the basic configuration of Jenkins. We will take a quick tour of
some key sections of the Jenkins UI and plugin installations as well. This chapter
will also cover the DevOps pipeline and how the rest of the chapters will cover
implementing it.

To be precise, we will discuss the following topics in this chapter:

•	 Introduction to Jenkins and its features
•	 Installation of Jenkins on Windows and the CentOS operating system
•	 A jump-start tour of the Jenkins dashboard
•	 How to change configuration settings in Jenkins
•	 What is the deployment pipeline

On your mark, get set, go!

Exploring Jenkins

[2]

Introduction to Jenkins and its features
Let's first understand what continuous integration is. CI is one of the most popular
application development practices in recent times. Developers integrate bug fix,
new feature development, or innovative functionality in code repository. The CI
tool verifies the integration process with an automated build and automated test
execution to detect issues with the current source of an application, and provide
quick feedback.

Jenkins is a simple, extensible, and user-friendly open source tool that provides CI
services for application development. Jenkins supports SCM tools such as StarTeam,
Subversion, CVS, Git, AccuRev and so on. Jenkins can build Freestyle, Apache Ant,
and Apache Maven-based projects.

The concept of plugins makes Jenkins more attractive, easy to learn, and easy to use.
There are various categories of plugins available such as Source code management,
Slave launchers and controllers, Build triggers, Build tools, Build notifies, Build
reports, other post-build actions, External site/tool integrations, UI plugins,
Authentication and user management, Android development, iOS development,
.NET development, Ruby development, Library plugins, and so on.

Jenkins defines interfaces or abstract classes that model a facet of a build system.
Interfaces or abstract classes define an agreement on what needs to be implemented;
Jenkins uses plugins to extend those implementations.

Chapter 1

[3]

To learn more about all plugins, visit https://wiki.jenkins-ci.
org/x/GIAL.
To learn how to create a new plugin, visit https://wiki.jenkins-
ci.org/x/TYAL.
To download different versions of plugins, visit https://updates.
jenkins-ci.org/download/plugins/.

Features
Jenkins is one of the most popular CI servers in the market. The reasons for its
popularity are as follows:

•	 Easy installation on different operating systems.
•	 Easy upgrades—Jenkins has very speedy release cycles.
•	 Simple and easy-to-use user interface.
•	 Easily extensible with the use of third-party plugins—over 400 plugins.
•	 Easy to configure the setup environment in the user interface. It is also

possible to customize the user interface based on likings.
•	 The master slave architecture supports distributed builds to reduce loads on

the CI server.
•	 Jenkins is available with test harness built around JUnit; test results are

available in graphical and tabular forms.
•	 Build scheduling based on the cron expression (to know more about cron,

visit http://en.wikipedia.org/wiki/Cron).
•	 Shell and Windows command execution in prebuild steps.
•	 Notification support related to the build status.

https://wiki.jenkins-ci.org/x/GIAL
https://wiki.jenkins-ci.org/x/GIAL
https://wiki.jenkins-ci.org/x/TYAL
https://wiki.jenkins-ci.org/x/TYAL
https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/
http://en.wikipedia.org/wiki/Cron

Exploring Jenkins

[4]

Installation of Jenkins on Windows and
CentOS

1.	 Go to https://jenkins-ci.org/. Find the Download Jenkins section on
the home page of Jenkins's website.

2.	 Download the war file or native packages based on your operating system.
A Java installation is needed to run Jenkins.

3.	 Install Java based on your operating system and set the JAVA_HOME
environment variable accordingly.

Installing Jenkins on Windows
1.	 Select the native package available for Windows. It will download

jenkins-1.xxx.zip. In our case, it will download jenkins-1.606.zip.
Extract it and you will get setup.exe and jenkins-1.606.msi files.

2.	 Click on setup.exe and perform the following steps in sequence. On the
welcome screen, click Next:

https://jenkins-ci.org/

Chapter 1

[5]

3.	 Select the destination folder and click on Next.
4.	 Click on Install to begin installation. Please wait while the Setup Wizard

installs Jenkins.

Exploring Jenkins

[6]

5.	 Once the Jenkins installation is completed, click on the Finish button.

6.	 Verify the Jenkins installation on the Windows machine by opening
URL http://<ip_address>:8080 on the system where you have
installed Jenkins.

Chapter 1

[7]

Installation of Jenkins on CentOS
1.	 To install Jenkins on CentOS, download the Jenkins repository definition to

your local system at /etc/yum.repos.d/ and import the key.
2.	 Use the wget -O /etc/yum.repos.d/jenkins.repo http://pkg.

jenkins-ci.org/redhat/jenkins.repo command to download repo.

3.	 Now, run yum install Jenkins; it will resolve dependencies and prompt
for installation.

Exploring Jenkins

[8]

4.	 Reply with y and it will download the required package to install Jenkins on
CentOS. Verify the Jenkins status by issuing the service jenkins status
command. Initially, it will be stopped. Start Jenkins by executing service
jenkins start in the terminal.

5.	 Verify the Jenkins installation on the CentOS machine by opening
the URL http://<ip_address>:8080 on the system where you
have installed Jenkins.

Chapter 1

[9]

Installation of Jenkins as a web application
1.	 Download Java Web Archive (.war) (latest and greatest (1.606)) from

http://jenkins-ci.org/.
2.	 Copy jenkins.war into your virtual or physical machine. Open Command

Prompt or a terminal based on the operation system. In our case, we will
copy it into a directory of a CentOS virtual machine.

www.allitebooks.com

http://jenkins-ci.org/
http://www.allitebooks.org

Exploring Jenkins

[10]

3.	 Open Command Prompt and execute the java –jar Jenkins.war
command. Verify the Jenkins installation on the system by opening the
http://<ip_address>:8080 URL on the system where you have
installed Jenkins.

A jump-start tour of the Jenkins
dashboard

1.	 On the Jenkins dashboard, click on Create new jobs or on New Item to create
Freestyle- or Maven-based projects for CI.

Chapter 1

[11]

2.	 To verify system properties, visit http://<ip_address>:8080/systeminfo
or click on Manage Jenkins, and then click on System Information to get
environmental information to assist troubleshooting.

Exploring Jenkins

[12]

How to change configuration settings in
Jenkins

1.	 Click on the Manage Jenkins link on the dashboard to configure system,
security, to manage plugins, slave nodes, credentials, and so on.

2.	 Click on the Configure System link to configure Java, Ant, Maven, and other
third-party products' related information.

Chapter 1

[13]

3.	 Jenkins uses Groovy as its scripting language. To execute the arbitrary script
for administration/trouble-shooting/diagnostics on the Jenkins dashboard,
go to the Manage Jenkins link on the dashboard, click on Script Console,
and run println(Jenkins.instance.pluginManager.plugins).

Exploring Jenkins

[14]

4.	 To verify the system log, go to the Manage Jenkins link on the dashboard
and click on the System Log link or visit http://localhost:8080/log/all.

5.	 To get more information on third-party libraries—version and license
information in Jenkins, go to the Manage Jenkins link on the dashboard
and click on the About Jenkins link.

Chapter 1

[15]

What is the deployment pipeline?
The application development life cycle is a traditionally lengthy and a manual
process. In addition, it requires effective collaboration between development and
operations teams. The deployment pipeline is a demonstration of automation
involved in the application development life cycle containing the automated build
execution and test execution, notification to the stakeholder, and deployment
in different runtime environments. Effectively, the deployment pipeline is a
combination of CI and continuous delivery, and hence is a part of DevOps
practices. The following diagram depicts the deployment pipeline process:

Members of the development team check code into a source code repository.
CI products such as Jenkins are configured to poll changes from the code repository.
Changes in the repository are downloaded to the local workspace and Jenkins
triggers an automated build process, which is assisted by Ant or Maven. Automated
test execution or unit testing, static code analysis, reporting, and notification of
successful or failed build process are also part of the CI process.

Once the build is successful, it can be deployed to different runtime environments
such as testing, preproduction, production, and so on. Deploying a war file in terms
of the JEE application is normally the final stage in the deployment pipeline.

One of the biggest benefits of the deployment pipeline is the faster feedback cycle.
Identification of issues in the application at early stages and no dependencies on
manual efforts make this entire end-to-end process more effective.

Exploring Jenkins

[16]

In the next chapters, we will see how Jenkins can be used for implementing CI
practices in modernizing IT.

To read more, visit http://martinfowler.com/bliki/
DeploymentPipeline.html and http://www.informit.com/
articles/article.aspx?p=1621865&seqNum=2.

Self-test questions
Q1. What is Jenkins?

1.	 A continuous integration product
2.	 A continuous delivery product

Q2. What makes Jenkins extensible?

1.	 Plugins
2.	 Open Source Distribution

Q3. Which command is used to run the Jenkins installation file in the war format?

1.	 java –jar Jenkins.war
2.	 java –j Jenkins.war

Q4. How do we get system information on the Jenkins dashboard?

1.	 Visit http://<ip_address>:8080/manage
2.	 Visit http://<ip_address>:8080/systeminfo

Q5. How do we change global settings for configuration on the Jenkins dashboard?

1.	 Click on the Manage Jenkins link on the dashboard
2.	 Click on the Credentials link on the dashboard

Q6. What is the deployment pipeline?

1.	 Continuous Integration Practices
2.	 Continuous Delivery Practices
3.	 Demonstration of automation involved in the application development

life cycle
4.	 None of the above

http://martinfowler.com/bliki/DeploymentPipeline.html
http://martinfowler.com/bliki/DeploymentPipeline.html
http://www.informit.com/articles/article.aspx?p=1621865&seqNum=2
http://www.informit.com/articles/article.aspx?p=1621865&seqNum=2

Chapter 1

[17]

Q7. Explain the benefits of the deployment pipeline?

1.	 Faster feedback cycle
2.	 Identification of issues in an application at early stages
3.	 No dependencies on manual efforts
4.	 All of the above

Summary
Congratulations! We reached the end of this chapter and hence we have Jenkins
installed on our physical or virtual machine, and you are ready to go to the next
chapter. Till now, we covered the basics of CI and the introduction to Jenkins and
its features. We completed the installation of Jenkins on Windows and CentOS
platforms. We also completed a quick tour of features available in Jenkins's
dashboard. In addition to this, we discussed the deployment pipeline and its
importance in CI.

Now that we are able to use our CI server, Jenkins, we can begin creating a job and
verify how Jenkins works.

[19]

Installation and Configuration
of Code Repository and

Build Tools
"Life is really simple, but we insist on making it complicated"

 – Confucius

We looked at the deployment pipeline in the last chapter in which the source
code repository and automated build form a significant part. SVN, Git, CVS, and
StarTeam are some of the popular code repositories that manage changes to code,
artifacts, or documents, while Ant and Maven are popular build automation tools
for Java applications.

This chapter describes in detail how to prepare a runtime environment for life cycle
management with a Java application and configure it with Jenkins. It will cover how
to integrate Eclipse and code repositories such as SVN to create a base for continuous
integration. The following is the list of topics covered in this chapter:

•	 Overview of a build in Jenkins and its requirements
•	 Installing Java and configuring environment variables
•	 SVN installation, configuration, and operations on CentOS and Windows
•	 Installing Ant
•	 Configuring Ant, Maven, and JDK in Jenkins
•	 Integrating Eclipse with code repositories
•	 Installing and configuring Git
•	 Creating a new build job in Jenkins with Git

www.allitebooks.com

http://www.allitebooks.org

Installation and Configuration of Code Repository and Build Tools

[20]

An overview of a build in Jenkins and its
requirements
To explain continuous integration, we are going to use a code repository installed
on a physical machine or laptop while Jenkins is installed on a virtual machine,
as suggested in different ways in Chapter 1, Exploring Jenkins. The following figure
depicts the setup of the runtime environment:

We saw in Chapter 1, Exploring Jenkins, that the Manage Jenkins link on the
dashboard is used to configure the system. Click on the Configure System link to
configure Java, Ant, Maven, and other third-party product-related information. We
can create a virtual machine with Virtual box or the VMware workstation. We need
to install all required software to provide a runtime environment for continuous
integration. We assume that Java is already installed in the system.

Installing Java and configuring
environment variables
If Java is not already installed in the system then you can install it as follows:

Find the Java related packages available in CentOS repository and locate the
appropriate package to install.

[root@localhost ~]# yum search java

Loaded plugins: fastestmirror, refresh-packagekit, security

Chapter 2

[21]

.

.

ant-javamail.x86_64 : Optional javamail tasks for ant

eclipse-mylyn-java.x86_64 : Mylyn Bridge: Java Development

.

.

java-1.5.0-gcj.x86_64 : JPackage runtime compatibility layer for GCJ

java-1.5.0-gcj-devel.x86_64 : JPackage development compatibility layer
for GCJ

java-1.5.0-gcj-javadoc.x86_64 : API documentation for libgcj

java-1.6.0-openjdk.x86_64 : OpenJDK Runtime Environment

java-1.6.0-openjdk-devel.x86_64 : OpenJDK Development Environment

java-1.6.0-openjdk-javadoc.x86_64 : OpenJDK API Documentation

java-1.7.0-openjdk.x86_64 : OpenJDK Runtime Environment

jcommon-serializer.x86_64 : JFree Java General Serialization Framework

.

.

Install the identified package java-1.7.0-openjdk.x86_64

[root@localhost ~]# yum install java-1.7.0-openjdk.x86_64

Loaded plugins: fastestmirror, refresh-packagekit, security

No such command: in. Please use /usr/bin/yum –help

Now install Java package available in the local repositories by executing yum
install command as follows:

[root@localhost ~]# yum install java-1.7.0-openjdk.x86_64

Loaded plugins: fastestmirror, refresh-packagekit, security

Loading mirror speeds from cached hostfile

Setting up Install Process

Resolving Dependencies

--> Running transaction check

---> Package java-1.7.0-openjdk.x86_64 1:1.7.0.3-2.1.el6.7 will be
installed

--> Finished Dependency Resolution

Dependencies Resolved

.

.

Installation and Configuration of Code Repository and Build Tools

[22]

Install 1 Package(s)

Total download size: 25 M

Installed size: 89 M

Is this ok [y/N]: y

Downloading Packages:

java-1.7.0-openjdk-1.7.0.3-2.1.el6.7.x86_64.rpm
| 25 MB 00:00

Running rpm_check_debug

Running Transaction Test

Transaction Test Succeeded

Running Transaction

 Installing : 1:java-1.7.0-openjdk-1.7.0.3-2.1.el6.7.x86_64
1/1

 Verifying : 1:java-1.7.0-openjdk-1.7.0.3-2.1.el6.7.x86_64
1/1

Installed:

 java-1.7.0-openjdk.x86_64 1:1.7.0.3-2.1.el6.7

Complete!

Java is installed successfully from the local repository.

Configure environment variables
The following are the steps to configure the environment variables:

1.	 Set JAVA_HOME and JRE_HOME variables
2.	 Go to /root
3.	 Press Ctrl + H to list hidden files
4.	 Find .bash_profile and edit it by appending the Java path, as shown in the

following screenshot:

Chapter 2

[23]

Installing, configuring, and operating
SVN on CentOS and Windows
Install SVN from the local repository on CentOS.

Installing SVN on CentOS
To install SVN on a CentOS machine, execute the yum install mod_dav_svn
subversion command as follows:

[root@localhost ~]# yum install mod_dav_svn subversion

Loaded plugins: fastestmirror, refresh-packagekit, security

Loading mirror speeds from cached hostfile

Setting up Install Process

Resolving Dependencies

--> Running transaction check

---> Package mod_dav_svn.x86_64 0:1.6.11-7.el6 will be installed

Installation and Configuration of Code Repository and Build Tools

[24]

---> Package subversion.x86_64 0:1.6.11-7.el6 will be installed

--> Processing Dependency: perl(URI) >= 1.17 for package:
subversion-1.6.11-7.el6.x86_64

--> Running transaction check

---> Package perl-URI.noarch 0:1.40-2.el6 will be installed

--> Finished Dependency Resolution

Dependencies Resolved

.

.

Installed:

 mod_dav_svn.x86_64 0:1.6.11-7.el6
subversion.x86_64 0:1.6.11-7.el6

Dependency Installed:

 perl-URI.noarch 0:1.40-2.el6

Complete!

[root@localhost ~]#

Configuring SVN
Create the password file using the htpasswd command. Initially use the -cm
arguments. This creates the file and also encrypts the password with MD5. If you
need to add users, make sure you simply use the -m flag, and not the –c, after the
initial creation.

[root@localhost conf.d]# htpasswd -cm /etc/svn-auth-conf yourusername

New password:

Re-type new password:

Adding password for user yourusername

[root@localhost conf.d]#

[root@localhost conf.d]# htpasswd -cm /etc/svn-auth-conf mitesh

New password:

Re-type new password:

Adding password for user mitesh

[root@localhost conf.d]#

Chapter 2

[25]

Now configure SVN in Apache to integrate both. Edit /etc/httpd/conf.d/
subversion.conf. The location is what Apache will pass in the URL bar.

LoadModule dav_svn_module modules/mod_dav_svn.so

LoadModule authz_svn_module modules/mod_authz_svn.so

#

Example configuration to enable HTTP access for a directory

containing Subversion repositories, "/var/www/svn". Each repository

must be both:

#

a) readable and writable by the 'apache' user, and

#

b) labelled with the 'httpd_sys_content_t' context if using

SELinux

#

#

To create a new repository "http://localhost/repos/stuff" using

this configuration, run as root:

#

cd /var/www/svn

svnadmin create stuff

chown -R apache.apache stuff

chcon -R -t httpd_sys_content_t stuff

#

<Location />

 DAV svn

 SVNParentPath /var/www/svn/

#

Limit write permission to list of valid users.

<LimitExcept GET PROPFIND OPTIONS REPORT>

Require SSL connection for password protection.

SSLRequireSSL

#

Installation and Configuration of Code Repository and Build Tools

[26]

 AuthType Basic

 SVNListParentPath on

 AuthName "Subversion repos"

 AuthUserFile /etc/svn-auth-conf

 Require valid-user

</LimitExcept>

</Location>

Now all configurations are completed. Let's perform operations on SVN.

SVN operations
Create the actual repository to perform SVN operations on the CentOS
virtual machine.

[root@localhost ~] cd /var/www/ -- Or wherever you placed your path above

[root@localhost ~] mkdir svn

[root@localhost ~] cd svn

[root@localhost ~] svnadmin create repos

[root@localhost ~] chown -R apache:apache repos

[root@localhost ~] service httpd restart

Import a directory into SVN
Create a sample folder structure to test SVN operations. Create the mytestproj
directory with sub-directories named main, configurations, and resources.
Create sample files in each sub-directory.

[root@localhost mytestproj]# svn import /tmp/mytestproj/ file:///var/www/
svn/repos/mytestproj -m "Initial repository layout for mytestproj"

Adding /tmp/mytestproj/main

Adding /tmp/mytestproj/main/mainfile1.cfg

Adding /tmp/mytestproj/configurations

Adding /tmp/mytestproj/configurations/testconf1.cfg

Adding /tmp/mytestproj/resources

Adding /tmp/mytestproj/resources/testresources1.cfg

Committed revision 1.

Verify the repository from a web browser: http://localhost/repos.

Chapter 2

[27]

Check out from SVN
To check out source code from the repository, perform the following operations:

1.	 Start httpd service.
[root@localhost testmit]# service httpd restart

Stopping httpd:

[OK]

Starting httpd: httpd: Could not reliably determine the server's
fully qualified domain name, using localhost.localdomain for
ServerName

[OK]

2.	 Check out the source code.
[root@localhost testmit]# svn co http://localhost/repos/mytestproj

Authentication realm: <http://localhost:80> Subversion repos

Password for 'root':

Authentication realm: <http://localhost:80> Subversion repos

Username: mitesh

Password for 'mitesh':xxxxxxxxx

--

ATTENTION! Your password for authentication realm:

 <http://localhost:80> Subversion repos

can only be stored to disk unencrypted! You are advised to
configure your system so that Subversion can store passwords
encrypted, if possible. See the documentation for details.

3.	 You can avoid future appearances of this warning by setting the value of
the store-plaintext-passwords option to either yes or no in /root/.
subversion/servers.

--

Store password unencrypted (yes/no)? no

A mytestproj/main

A mytestproj/main/mainfile1.cfg

A mytestproj/configurations

Installation and Configuration of Code Repository and Build Tools

[28]

A mytestproj/configurations/testconf1.cfg

A mytestproj/options

A mytestproj/options/testopts1.cfg

Checked out revision 1.

VisualSVN Server on Windows
1.	 Download the VisualSVN server from: https://www.visualsvn.com/

server/download/. It allows you to install and manage a fully-functional
Subversion server with Windows.

2.	 Execute VisualSVN-Server-x.x.x-x64.msi and follow the wizard to install
VisualSVN Server.

3.	 Open VisualSVN Server Manager.
4.	 Create a new repository, JenkinsTest.

https://www.visualsvn.com/server/download/
https://www.visualsvn.com/server/download/

Chapter 2

[29]

5.	 Select the regular subversion repository and click on Next >.

6.	 Provide the Repository Name and click on Next >.

www.allitebooks.com

http://www.allitebooks.org

Installation and Configuration of Code Repository and Build Tools

[30]

7.	 Select Single-project repository and click on >.

8.	 Select the Repository Access Permissions based on your requirements and
click on Create.

Chapter 2

[31]

9.	 Review the created repository details and click on Finish.

10.	 Verify the newly created repository in VisualSVN Server Manager.

Installation and Configuration of Code Repository and Build Tools

[32]

11.	 Verify the repository location in the browser, as shown in the
following screenshot:

12.	 Now install SVN client from: http://sourceforge.net/projects/
tortoisesvn/, to perform SVN operations.

Let's create a sample JEE project in Eclipse to illustrate SVN and Eclipse integration.

1.	 Open Eclipse, go to the File menu and click on Dynamic Web Project.

http://sourceforge.net/projects/tortoisesvn/
http://sourceforge.net/projects/tortoisesvn/

Chapter 2

[33]

2.	 It will open a dialog box to create a New Dynamic Web Project.

Installation and Configuration of Code Repository and Build Tools

[34]

3.	 Create the source files and a build file for a simple project.

4.	 Go to Application Directory, right-click on it, select TortoiseSVN, and select
Import from the sub-menu.

Chapter 2

[35]

5.	 Enter the repository URL and click on OK.

6.	 It will add all files from the application to SVN, as shown in the
following screenshot.

Installation and Configuration of Code Repository and Build Tools

[36]

7.	 Verify the import by visiting the SVN repository in a browser as shown:

Integrating Eclipse with code repositories
1.	 Open Eclipse IDE, go to the Help menu and click on Install New Software.
2.	 Add the repository by adding this URL: http://subclipse.tigris.org/

update_1.10.x, then select all packages and click on Next >.

3.	 Review the items to be installed and the Review Licenses in the wizard.
Accept the terms of agreement and click on Finish.

4.	 Restart Eclipse. Go to the Window menu, select Show View, click on Other,
and find the SVN and SVN repositories.

5.	 In the SVN repositories area, right-click and select New; select Repository
Location… from the sub-menu.

http://subclipse.tigris.org/update_1.10.x
http://subclipse.tigris.org/update_1.10.x

Chapter 2

[37]

6.	 Add a new SVN Repository in Eclipse with this URL:
https://<Ip address/ localhost / hostname>/svn/JenkinsTest/.

7.	 Click on Finish.

Installation and Configuration of Code Repository and Build Tools

[38]

8.	 Verify the SVN repository.

Try to integrate SVN, installed on CentOS, with Eclipse IDE, as practice.

Installing and configuring Ant
1.	 Download the Ant distribution from: https://ant.apache.org/

bindownload.cgi and unzip it.
2.	 Set the ANT_HOME and JAVA_HOME environment variables.

https://ant.apache.org/bindownload.cgi
https://ant.apache.org/bindownload.cgi

Chapter 2

[39]

There is an option available in Jenkins to install Ant or Maven automatically. We will
study this in the Configuring Ant, Maven, and JDK in Jenkins section.

Installing Maven
Download the Maven binary ZIP file from https://maven.apache.org/download.
cgi and extract it to the local system where Jenkins is installed.

www.allitebooks.com

https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi
http://www.allitebooks.org

Installation and Configuration of Code Repository and Build Tools

[40]

Configuring Ant, Maven, and JDK in
Jenkins

1.	 Open the Jenkins dashboard in your browser with this URL: http://<ip_
address>:8080/configure. Go to the Manage Jenkins section and click on
Configure System.

2.	 Configure Java, based on the installation shown in the following screenshot:

Chapter 2

[41]

3.	 Configure or install Ant automatically on the same page. Configure Maven
as well.

Installing and configuring Git
Git is a free and open source distributed version control system. In this section,
we will try to install and configure Git.

1.	 Open the terminal in the CentOS-based system and execute the command
yum install git in the terminal.

2.	 Once it is successfully installed, verify the version with the command
git --version.

3.	 Provide information about the user with the git config command so that
commit messages will be generated with the correct information attached.

Installation and Configuration of Code Repository and Build Tools

[42]

4.	 Provide the name and e-mail address to embed into commits.
5.	 To create a workspace environment, create a directory called git in the home

directory and then create a subdirectory inside of that called development.
Use mkdir -p ~/git/development ; cd ~/git/development in
the terminal.

6.	 Copy the AntExample1 directory into the development folder.
7.	 Convert an existing project into a workspace environment by using the

git init command.
8.	 Once the repository is initialized, add files and folders.

Chapter 2

[43]

9.	 Commit by executing git commit -m "Initial Commit" –a.

10.	 Verify the Git repository

Installation and Configuration of Code Repository and Build Tools

[44]

11.	 Verify the project in the Git repository.

Creating a new build job in Jenkins
with Git

1.	 On the Jenkins dashboard, click on Manage Jenkins and select Manage
Plugins. Click on the Available tab and write github plugin in the
search box.

2.	 Click the checkbox and click on the button, Download now and install
after restart.

3.	 Restart Jenkins.

Chapter 2

[45]

4.	 Create a new Freestyle project. Provide Item name and click on OK.

5.	 Configure Git in the Source Code Management section.

Installation and Configuration of Code Repository and Build Tools

[46]

6.	 Add the Invoke Ant build step by clicking on Add build step.

7.	 Execute the build.

Chapter 2

[47]

8.	 Click on Console Output to see the progress of the build.

9.	 Once the build has succeeded, verify Workspace in the build job.

10.	 Done!

Installation and Configuration of Code Repository and Build Tools

[48]

Self-test questions
Q1. Where to set the JAVA_HOME and JRE_HOME environment variables?

1.	 /root/ .bash_profile

2.	 /root/ .env_profile

3.	 /root/ .bash_variables

4.	 /root/ .env_variables

Q2. Which are valid SVN operations?

1.	 svn import /tmp/mytestproj/

2.	 svn co http://localhost/repos/mytestproj

3.	 Both the above

Q3. Where do you configure Java and Ant in Jenkins?

1.	 Go to the Manage Jenkins section and click on Configure System
2.	 Go to the Manage Jenkins section and click on Global Configuration

Summary
Hooray! We have reached the end of this chapter. We have covered how to prepare
an environment for continuous integration by setting up a local CentOS repository,
installing code repositories such as SVN on CentOS and Windows, and build tool
Ant. We have also seen detailed instructions on how to configure repositories and
build tools in Jenkins. Finally, we have covered how to integrate the Integrated
Development Environment with code repositories so that efficient development
and ease of commit operations can take place to facilitate the deployment
pipeline process.

[49]

Integration of Jenkins, SVN,
and Build Tools

"The barrier to change is not too little caring; it is too much complexity"

 – Bill Gates

We have seen how to set up an environment to use Jenkins for continuous
integration, and we have also configured build tools in Jenkins. The integration of
Eclipse with SVN will help developers to easily perform operations on repositories.

Now we are ready to create our first build job for continuous integration.
This chapter describes in detail how to create and configure build jobs for Java
applications using build tools such as Ant and Maven; how to run build jobs, unit
test cases. It covers all aspects of running a build to create a distribution file or war
file for deployment, as well as a Dashboard View plugin to provide a customized
display of build jobs and test results based on preferences. The following are the
main points which are covered in this chapter:

•	 Creating and configuring a build job for a Java application with Ant
•	 Creating and configuring a build job for a Java application with Maven
•	 Build execution with test cases

www.allitebooks.com

http://www.allitebooks.org

Integration of Jenkins, SVN, and Build Tools

[50]

Creating and configuring a build job for a
Java application with Ant
Before creating and configuring a build job for a Java application, we will install a
Dashboard View plugin to better manage builds, and display the results of builds
and tests. We have already seen how to create a basic job in Chapter 2, Installation
and Configuration of Code Repository and Build Tools.

Dashboard View Plugin
This plugin presents a new view that provides a portal-like view for Jenkins build
jobs. Download it from https://wiki.jenkins-ci.org/display/JENKINS/
Dashboard+View. It is good for showing results and trends. In addition, it also
allows the user to arrange display items in an effective manner. On the Jenkins
dashboard, go to the Manage Jenkins link and click on Manage Plugins and install
the Dashboard View plugin. Verify the installation by clicking on the Installed tab.

https://wiki.jenkins-ci.org/display/JENKINS/Dashboard+View
https://wiki.jenkins-ci.org/display/JENKINS/Dashboard+View

Chapter 3

[51]

On the Jenkins dashboard, click on the plus button to create a new view. Provide a
View name and select the type of view; in our case Dashboard, then click on OK.

Provide a Name and select Jobs that need to be included in the view, as shown in the
following screenshot:

Integration of Jenkins, SVN, and Build Tools

[52]

In the View configuration, click on Add Dashboard Portlet to right column, and
select Test Statistics Grid. Add Test Statistics Chart. This will display test results
in the form of statistics and chart representations of test results.

Creating and configuring a build job for a
Java application
Click on New Item on the dashboard to create a new build for a Java application
which uses Ant as a build tool. Enter Item name, and select Freestyle project.
Click OK.

Chapter 3

[53]

It will open the configuration for a new build job. In Source Code Management,
select Subversion. Provide the Repository URL and Credentials. In Chapter 2,
Installation and Configuration of Code Repository and Build Tools, we installed
Subversion and also added the source code to SVN.

Provide the URL you use in your browser to access the source code repository.

Integration of Jenkins, SVN, and Build Tools

[54]

If Credentials are not available in the box, click on the Add button. Provide Scope,
Username, Password, and Description, and click on Add to make it available on the
list box available in the build job configuration. Scope determines where credentials
can be used. For example system scope restricts credential usage to the object with
which the credential is associated. It provides better confidentiality than global
scope. Global scope credentials are available to the object with which the credential
is associated and all objects that are children of that object.

In the build job configuration, go to the Build Triggers section and select the Poll
SCM radio button. Provide the schedule detail in the * * * * * form, as shown in the
following figure. It will poll the repository every minute to verify changes committed
into the repository by developers.

Chapter 3

[55]

The Schedule field follows cron syntax, MINUTE HOUR Day Of the Month
MONTH Day Of the Week.

For example, H * * * * to poll once per hour, H/15 * * * * to poll every fifteen minutes.

Once Build Triggers and Source Code Management configurations are completed,
we need to provide build tool-related details, so Jenkins can use them to execute once
the build is triggered. Click on the Add build step and select Invoke Ant. From the
drop-down menu, select Ant, configured in Chapter 2, Installation and Configuration
of Code Repository and Build Tools and provide Targets with the name you want to
execute from the build.

Integration of Jenkins, SVN, and Build Tools

[56]

Click on the Apply and Save buttons to finalize the configuration. Click on the Build
Now button on the Jenkins dashboard. It will check out all the latest available code in
the source code repository against the local workspace on the machine where Jenkins
is installed, as shown in the following figure. In the build history section of a specific
job, click on build number, and then click on Console Output.

Once the checkout process is completed, the build file execution, based on the
targets, will start, and the build execution will be successful if all dependencies and
files required for the build execution are available in the local workspace, as shown
in the following figure:

Chapter 3

[57]

To verify the local workspace, go to the view you created, select build job and then
click on Workspace. Verify that all files and folders are available, as provided by the
source code repository.

Integration of Jenkins, SVN, and Build Tools

[58]

Creating and configuring a build job for a
Java application with Maven
Click on New Item on the dashboard to create a new build for a Java application
which uses Maven as a build tool. Enter the Item name and select Maven project
from the list.

Chapter 3

[59]

It will open the configuration for the new build job. In Source Code Management,
select Subversion. Provide Repository URL and Credentials. In Chapter 2, Installation
and Configuration of Code Repository and Build Tools we installed Subversion, and added
the source code to SVN.

Integration of Jenkins, SVN, and Build Tools

[60]

In the build job configuration, go to the Build Triggers section and select the
Poll SCM radio button. Provide the schedule detail in * * * * * form, as shown in
following figure. It will poll the repository every minute to verify changes committed
into the repository by developers. Add the Maven build step. Provide the name of
the build file; by default it is pom.xml. Provide Goals and Options and, if you keep it
empty, then it will execute the default goal.

Click on Build Now to execute the build job or commit the updated code to the
repository, and the build will be executed automatically based on our configuration
in Build Triggers.

Chapter 3

[61]

It will check out all the latest available code in the source code repository against
the local workspace on the machine where Jenkins is installed, as shown in the
following figure.

Integration of Jenkins, SVN, and Build Tools

[62]

Once the checkout process is completed, the build file execution based on the goals
will start, and the build execution will be successful if all dependencies and files
required for the build execution are available in the local workspace, as shown in
the following figure.

Build execution with test cases
Jenkins allows JUnit-format test results to be published on the dashboard. We need
not install any specific plugin for this. If we have test cases already written in JUnit,
then it is easy to execute them. Make sure to create a goal or task in the build file for
test case execution. In Build Job configuration, click on Post-build Actions and select
Publish JUnit test result report. Provide the location for the Test report XMLs files
and save the build job configuration.

Chapter 3

[63]

Execute the build by clicking on Build Now. Once the build has finished, click on the
Test Result link on the dashboard.

Click on the package link to get detailed test results on the summary page.

Click on the class link to get detailed test results on the page.

Integration of Jenkins, SVN, and Build Tools

[64]

Verify all tests name, the duration, and the status, as shown in the following figure:

Verify by clicking on the individual link of each test case on the Jenkins dashboard.

We have already configured the Dashboard View plugin to display the Test Statistics
Chart and the Test Trend Chart.

Verify the number of successful, failed or skipped tests, as well as the percentage on
the customized view, as shown in the following screenshot.

Chapter 3

[65]

Verify the Test Trend Chart on the Dashboard View.

Integration of Jenkins, SVN, and Build Tools

[66]

Self-test questions
Q1. What is the objective of installing the Dashboard View plugin?

1.	 To have a portal-like view for Jenkins build jobs
2.	 To run test cases related to Jenkins build jobs
3.	 To display build results

Q2. Which are the fields available to create credentials for SVN?

1.	 Scope, Username, Password, Description
2.	 Scope, Username, Password
3.	 Username, Password, Description

Q3. What is the meaning of * * * * * in the Schedule of Build Trigger section?

1.	 Poll SCM Every Day
2.	 Poll SCM Every Hour
3.	 Poll SCM Every Minute
4.	 Poll SCM Every Second

Q4. What are the names of build files in Ant and Maven respectively?

1.	 pom.xml, build.xml
2.	 build.xml, pom.xml
3.	 pom.xml, root.xml
4.	 ant.xml, maven.xml

Summary
We are again at the part of the chapter that gives us a sense of achievement. In this
chapter, we have covered how to customize the Jenkins dashboard and display
test results based on the build job on the dashboard. We have also created our first
build job for a sample Java application. We used build tools such as Ant and Maven
for executing build and create artifacts. Finally, we have seen how test cases can be
executed, and results can be displayed on the Jenkins portal.

In the next chapter, we will deploy the application to application server directly from
Jenkins, and we will also cover an introduction to deploying applications on Amazon
Web Services.

[67]

Implementing Automated
Deployment

"Simplicity is prerequisite for reliability"

– Edsger Dijkstra

We have covered the concept of continuous integration, and we also know how
to implement it using Jenkins. Now is the time to move to the next step in the
application deployment pipeline, that is automated deployment. We will first
understand the concept of continuous delivery and continuous deployment,
before automated deployment into a Tomcat application server.

This chapter will take one step forward in the deployment pipeline by deploying
artifacts in a local or remote application server. It will give an insight into the
automated deployment and continuous delivery process.

•	 Overview of continuous delivery and continuous deployment
•	 Deploying a file from Jenkins to a Tomcat server

Implementing Automated Deployment

[68]

An overview of continuous delivery and
continuous deployment
Continuous delivery is the extension of Continuous Integration practices.
Application artifacts are production-ready in automated fashion but not deployed in
production. Continuous deployment is the extension of continuous delivery, where
changes in the application are finally deployed in production. Continuous delivery
is a must for DevOps practices. Let's understand how to deploy application artifacts
using Jenkins in the following sections.

For more details on continuous delivery and continuous
deployment, visit:
http://continuousdelivery.com/2010/08/continuous-
delivery-vs-continuous-deployment/

http://martinfowler.com/books/continuousDelivery.html

Installing Tomcat
Tomcat is an open source web server and servlet container developed by the Apache
Software Foundation (ASF). We will use Tomcat to deploy web applications.

1.	 Go to https://tomcat.apache.org and download Tomcat. Extract all the
files to a relevant folder in your system.

2.	 Change the port number in conf/server.xml from 8080 to 9999.
 <Connector port="9999" protocol="HTTP/1.1"

 connectionTimeout="20000"

 redirectPort="8443" />

3.	 Open the terminal or Command Prompt based on your operating system.
Go to the tomcat directory. Go to the bin folder, and run startup.bat or
startup.sh. The following is an example of startup.bat on Windows.

http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
http://martinfowler.com/books/continuousDelivery.html
https://tomcat.apache.org

Chapter 4

[69]

4.	 Open your browser and visit http://localhost:9999. We can also access
the Tomcat home page by using the IP address http://<IP address>:9999.

Implementing Automated Deployment

[70]

Deploying a war file from Jenkins to
Tomcat
We will use the Deploy plugin available at https://wiki.jenkins-ci.org/x/
CAAjAQ to deploy a war file into a specific container.

The Deploy plugin takes the war/ear file, and deploys it to a running local or remote
application server at the end of a build.

It supports the following containers:

•	 Tomcat: 4.x/5.x/6.x/7.x
•	 JBoss: 3.x/4.x
•	 Glassfish: 2.x/3.x

To deploy a war file in a Websphere container, use the Deploy WebSphere plugin
available at https://wiki.jenkins-ci.org/x/UgCkAg.

To deploy a war file in a Weblogic container, use the WebLogic Deployer plugin
available at https://wiki.jenkins-ci.org/x/q4ahAw.

1.	 On the Jenkins dashboard, go to the Manage Jenkins link and then click on
Manage Plugins and install Deploy plugin.

https://wiki.jenkins-ci.org/x/CAAjAQ
https://wiki.jenkins-ci.org/x/CAAjAQ
https://wiki.jenkins-ci.org/x/UgCkAg
https://wiki.jenkins-ci.org/x/q4ahAw

Chapter 4

[71]

2.	 Wait until the installation of Deploy Plugin is complete.

3.	 Go to the Jenkins dashboard and select any build job. Click on the Configure
link of the selected build job.

4.	 Click on the Add post-build action button on the configuration page of
the relevant job and select Deploy war/ear to container, as shown in the
following figure.

Implementing Automated Deployment

[72]

5.	 It will add Deploy war/ear to a container in the Post-build Actions section.
Provide a war file path that is relative to the workspace, and select Tomcat 7.x
as the container from the available list box, as shown in the following figure.

6.	 Provide Manager user name and Manager password; in tomcat-users.xml,
and uncomment the following:
<!--
 <role rolename="tomcat"/>
 <role rolename="role1"/>
 <user username="tomcat" password="tomcat" roles="tomcat"/>
 <user username="both" password="tomcat" roles="tomcat,role1"/>
 <user username="role1" password="tomcat" roles="role1"/>
-->

7.	 Add the following in the uncommented section:
<role rolename="manager-script"/>
<user username="mitesh51" password="*********" roles="manager-
script"/>

8.	 Restart Tomcat, visit http://localhost:9999/manager/html, and enter a
username and password. Use the same username and password in Jenkins
for Manager credentials.

Chapter 4

[73]

9.	 Click on Build Now.

Implementing Automated Deployment

[74]

10.	 Once the build is complete, verify the console output of the deployment of
the application in the Tomcat application server.

11.	 Verify the webapps directory in the Tomcat installation directory.

Chapter 4

[75]

12.	 Verify the Tomcat manager, and check the status of an application in the
Tomcat application server.

Implementing Automated Deployment

[76]

13.	 If the Tomcat server is installed on a remote server, then use the IP address in
the Tomcat URL, as shown in the following figure:

We only need to change the Tomcat URL in case of remote deployment.

Self-test questions
Q1. Continuous delivery and continuous deployment are the same.

1.	 True
2.	 False

Q2. How do you enable Tomcat manager access?

1.	 Start Tomcat
2.	 Modify server.xml
3.	 Modify tomcat-users.xml
4.	 Modify web.xml

Chapter 4

[77]

Summary
Well done! We are at the end of the chapter; let's summarize what we have covered.
We have understood the concept of continuous delivery and continuous deployment.
The main concept we have covered here is the deployment of application artifacts in
the specific application server after the build is successful.

In the next chapter, we will learn how to manage Jenkins on Cloud, and look at some
case studies.

[79]

Hosted Jenkins
"Productivity is being able to do things that you were never able to do before"

–Franz Kafka

We have understood the concepts of continuous delivery and continuous
deployment. We have also seen how to deploy the war file from Jenkins to the
Tomcat server. Now, we will see how hosted Jenkins can be leveraged. Different
service providers offer Jenkins as a service. We will see how OpenShift and
CloudBees provide Jenkins to users.

This chapter describes details on how to use hosted Jenkins, which is provided by
popular PaaS providers, such as Red Hat OpenShift and CloudBees. This chapter
also covers details on how various customers are using Jenkins based on their
requirements. This chapter will explore details on how to use Cloud-related
plugins in Jenkins for effective usage of Jenkins. We will cover the following
topics in this chapter:

•	 Exploring Jenkins in OpenShift PaaS
•	 Exploring Jenkins in the Cloud – CloudBees
•	 An overview of CloudBees Enterprise Plugins
•	 Jenkins case studies from CloudBees

Hosted Jenkins

[80]

Exploring Jenkins in OpenShift PaaS
OpenShift Online is a public PaaS—application development and hosting platform
from Red Hat. It automates the process of provisioning and deprovisioning,
management, and scaling of applications. This supports command-line client tools
and a web management console to launch and manage applications easily. The
Jenkins app is provided by OpenShift Online. OpenShift Online has a free plan.

1.	 To sign up for OpenShift Online, visit https://www.openshift.com/app/
account/new.

2.	 Once you sign up, you will get the welcome screen at
https://openshift.redhat.com/app/console/applications.

3.	 Click on Create your first application now.

https://www.openshift.com/app/account/new
https://www.openshift.com/app/account/new
https://openshift.redhat.com/app/console/applications

Chapter 5

[81]

4.	 Choose a type of application, in our case, select Jenkins Server.

Hosted Jenkins

[82]

5.	 Give Public URL for your Jenkins server, as shown in the
following screenshot:

6.	 Click on Create Application.

Chapter 5

[83]

7.	 Click on visit app in the browser.

8.	 Access the Jenkins in the web browser. Then, log in with the provided
credentials in the OpenShift dashboard.

Hosted Jenkins

[84]

9.	 The following is the screenshot of the Jenkins dashboard:

Exploring Jenkins in the
Cloud – CloudBees
DEV@cloud is a hosted Jenkins service in a secure, multi-tenanted environment
managed by CloudBees. It runs a specific version of Jenkins, along with a selected
version of plugins which are well supported with that version. All updates and
patches are managed by CloudBees, and limited customization is available.

1.	 Go to https://www.cloudbees.com/products/dev and subscribe.

https://www.cloudbees.com/products/dev

Chapter 5

[85]

2.	 Once we complete subscription process, we will get the dashboard of
CloudBees, as shown in following screenshot. Click on Builds.

3.	 We will get the Jenkins dashboard, as shown in the following screenshot:

Hosted Jenkins

[86]

4.	 Click on Manage Jenkins to configure and install plugins.

Before configuring a build job, we need to store the source
code of an application in the repository service provided by
CloudBees. Click on Ecosystem, and then click on Repositories.

Chapter 5

[87]

5.	 Click on the subversion repositories or Add Repository, and get the URL of
the repository.

6.	 Click on the application folder to import it into the subversion repository
provided by CloudBees. Use TortoiseSVN or any SVN client to import
the code.

Hosted Jenkins

[88]

7.	 Provide the URL of a repository we copied from CloudBees, and click on OK.

8.	 Provide authentication information (the username and password are same as
our CloudBees account).
Click on OK.

Chapter 5

[89]

The import process will take some time based on the size of the source files.

9.	 Verify the Repository URL on the browser, and we will find the recently
imported project in it.

Hosted Jenkins

[90]

10.	 Verify the Jenkins dashboard after the successful import operation.

11.	 Click on New Item on the Jenkins dashboard. Select Freestyle project,
and provide a name for a new build job. Click on OK.

Chapter 5

[91]

12.	 The configuration page will allow us to configure various settings specific to
the build job.

13.	 Configure the Subversion repository in the build job.

Hosted Jenkins

[92]

14.	 Click on Apply, and then click on Save.

15.	 Click on Build Now.

Chapter 5

[93]

Verify Console Output.

Then, it will compile the source files, and create a war file based on the
build.xml file, as this is an Ant-based project.

Hosted Jenkins

[94]

16.	 Verify the Jenkins dashboard for a successful build.

An overview of CloudBees Enterprise
Plugins
The following are some important CloudBees Enterprise Plugins:

Workflow Plugin
It is a complex task to manage software delivery pipelines, and developer and
operations teams need to manage complex jobs that can take days to complete.
The Workflow plugin supports complex pipelines. The plugin uses Groovy DSL
for workflows, and it also provides the facility to pause and restart jobs, to and
from both master and slave failures.

To read more on this, visit https://www.cloudbees.com/products/cloudbees-
jenkins-platform/team-edition/features/workflow-plugin.

Checkpoints Plugin
Let's consider a scenario where a long running build job fails almost at its end phase.
This can hamper delivery schedules. The Checkpoints plugin provides the facility to
restart workflows at checkpoints. Hence, it eliminates delays due to master and slave
failures. In addition, it can help to survive Jenkins and infrastructure failures.

https://www.cloudbees.com/products/cloudbees-jenkins-platform/team-edition/features/workflow-plugin
https://www.cloudbees.com/products/cloudbees-jenkins-platform/team-edition/features/workflow-plugin

Chapter 5

[95]

To read more on this, visit https://www.cloudbees.com/products/jenkins-
enterprise/plugins/checkpoints-plugin.

Role-based Access Control Plugin
Authentication and authorization plays a significant role in the security aspect. The
authorization strategy can help to control access to Jenkins jobs effectively. It is also
essential to set permissions at the project level and visibility. The Role-based Access
Control (RBAC) plugin provided by CloudBees provides the following features:

•	 To define various security roles
•	 To assign rules to groups
•	 To assign roles globally or at an object level
•	 To delegate management of groups for specific objects to users

To read more about the Role-based Access Control Plugin, visit https://www.
cloudbees.com/products/jenkins-enterprise/plugins/role-based-access-
control-plugin.

High Availability Plugin
The downtime of Jenkins master caused by software or hardware affects the entire
product team. It is vital to bring Jenkins master up in quick time, and this will take
many hours. The High Availability plugin eliminates downtime due to master
failures, by keeping multiple masters as backups. A backup master automatically
boots up when the failure of the master is detected. This plugin makes failure
detection and recovery an automatic process and not manual.

To read more on this, visit https://www.cloudbees.com/products/jenkins-
enterprise/plugins/high-availability-plugin.

VMware ESXi/vSphere Auto-Scaling Plugin
Let's consider a scenario where you need multiple slaves for Jenkins running in
your existing infrastructure to utilize underutilized capacity of your virtualized
infrastructure based on VMware. The VMware vCenter Auto-Scaling plugin allows
you to create slave machines that are available in your VMware-based virtualized
infrastructure. It is possible to configure pools of virtual machines that have identical
and multiple VMs.

https://www.cloudbees.com/products/jenkins-enterprise/plugins/checkpoints-plugin
https://www.cloudbees.com/products/jenkins-enterprise/plugins/checkpoints-plugin
https://www.cloudbees.com/products/jenkins-enterprise/plugins/role-based-access-control-plugin
https://www.cloudbees.com/products/jenkins-enterprise/plugins/role-based-access-control-plugin
https://www.cloudbees.com/products/jenkins-enterprise/plugins/role-based-access-control-plugin
https://www.cloudbees.com/products/jenkins-enterprise/plugins/high-availability-plugin
https://www.cloudbees.com/products/jenkins-enterprise/plugins/high-availability-plugin

Hosted Jenkins

[96]

The following actions are allowed on VMs:

•	 Power on
•	 Power off/suspend
•	 Revert to the last snapshot

To read more, visit https://www.cloudbees.com/products/jenkins-
enterprise/plugins/vmware-esxivsphere-auto-scaling-plugin.

To find details on all plugins provided by CloudBees, visit https://www.
cloudbees.com/products/jenkins-enterprise/plugins.

Jenkins case studies from CloudBees
We will cover some case studies from CloudBees, where Jenkins is used effectively.

Apache jclouds
Apache jclouds is an open source multi-cloud toolkit that provides the facility to
manage workloads on multiple clouds. It was created on the Java platform, and
provides complete control to use cloud platform-specific features to create and
manage applications. It provides seamless portability across various cloud platforms.
Apache jclouds support 30 cloud providers and cloud software stacks such as Joyent,
Docker, SoftLayer, Amazon EC2, OpenStack, Rackspace, GoGrid, Azure, and Google.
Apache jclouds has a remarkable user base such as CloudBees, Jenkins, Cloudify,
cloudsoft, Twitter, Cloudswitch, enStratus, and so on.

Challenge
The jclouds community uses Jenkins CI for continuous integration. Day by day,
it was getting more difficult to manage and maintain Jenkins, and it was a costly
affair. Managing Jenkins was a time-consuming and tedious task. Most of the time
developers were involved in the managing of Jenkins, and not in writing the code
to make jclouds more effective.

Solution
The jclouds team explored PaaS offerings available in the market and considered
CloudBees, which will help them to eliminate infrastructure management and
maintenance. It was recognized by the jclouds team that it is easy to shift the Jenkins
CI work to DEV@cloud and immediately gain productivity benefits from developers.
Almost 4 hours were saved weekly from the maintenance activity of Jenkins.

https://www.cloudbees.com/products/jenkins-enterprise/plugins/vmware-esxivsphere-auto-scaling-plugin
https://www.cloudbees.com/products/jenkins-enterprise/plugins/vmware-esxivsphere-auto-scaling-plugin
https://www.cloudbees.com/products/jenkins-enterprise/plugins
https://www.cloudbees.com/products/jenkins-enterprise/plugins

Chapter 5

[97]

Benefits
•	 100% focus on software development, by eliminating activities such as

server reboots, server sizing, software updates, and patches, as they are
automatically performed from within the CloudBees service

•	 33% increase in developer productivity
•	 Technical support from CloudBees for Jenkins CI issues

To read more about this case study, visit https://www.cloudbees.com/casestudy/
jclouds.

Global Bank
Global Bank is one of the top Global Financial Institutions. It offers corporate and
investment banking services, private banking services, credit card services and
investment management. It has a substantial international presence.

Challenge
Global Bank's existing process was suffering from a fragmented build process,
non-approved software versions, and a lack of technical support. There was a pool
of central control or management, and standardization of the process. Build assets
were not accessible all the time. There was a need for secure automated process for
application build services with audit capabilities. Jenkins provided standardization
along with other benefits of a centralized management with robustness and
the availability of useful plugins. After using open source Jenkins, the financial
institution faced other challenges that were not available in open source Jenkins.
More features were needed for approvals, security, backup, and audit.

Solution
To overcome existing challenges, Global Bank evaluated and selected CloudBees
Jenkins Enterprise, considering the additional plugins for high availability, backup,
security, and job organization, and the ability to obtain technical support for open
source Jenkins and open source Jenkins plugins. Global Bank utilized technical
support from CloudBees for setting up CloudBees Jenkins Enterprise.

https://www.cloudbees.com/casestudy/jclouds
https://www.cloudbees.com/casestudy/jclouds

Hosted Jenkins

[98]

Benefits
•	 RBAC Plugin provides security and additional enterprise-level functionality.

The Folders plugin offers version control and ensures that only approved
software versions are shared.

•	 Half a day of development time is saved per application, by eliminating the
need of monitoring the local instance of the build for each application.

•	 Availability of technical support capabilities.

To read more, visit https://www.cloudbees.com/casestudy/global-bank.

Service-Flow
Service-Flow provides online integration services, to connect the disparate IT
service management tools used by organizations and various stakeholders. It
provides features to create ticket automatically, ticket information exchange, and
ticket routing. It has adapters for many ITSM tools such as ServiceNow and BMC,
as well as Microsoft Service Manager Fujitsu, Atos, Efecte, and Tieto.

Challenge
Service-Flow wanted to build its own service without using any of the generic
integration tools for achieving agility. Service-Flow had several requirements,
such as focus on agility, which required a platform for rapid development and
frequent incremental updates, support for Jenkins, control over data, reliability,
and availability.

Solution
Service-Flow used the CloudBees platform to build and deploy its ITSM integration
service. DEV@cloud has been utilized by establishing the version control repository,
coding first Java classes, setting up some basic Jenkins jobs, running unit tests,
executing integration tests, and other quality checks. The Service-Flow service is in
the cloud with a rapidly growing customer base by adding new features using the
CloudBees platform.

Benefits
•	 Development time reduced by 50 percent with production release in

three months
•	 Updates deployed multiple times a week without service downtime
•	 Availability of 99.999 percent achieved in production

https://www.cloudbees.com/casestudy/global-bank

Chapter 5

[99]

To read more, visit https://www.cloudbees.com/casestudy/service-flow.

For more case studies, visit https://www.cloudbees.com/customers.

Self-test questions
Q1. What is true about Workflow Plugin provided by CloudBees?

1.	 To pause and restart jobs, to and from both master and slave failures
2.	 To manage software delivery pipelines
3.	 It uses Groovy DSL for workflows
4.	 All of the above

Q2. What are the features of RBAC Plugin provided by CloudBees?

1.	 To define various security roles
2.	 To assign rules to groups
3.	 To assign role globally or at an object level
4.	 All of the above

Q3. What actions can be performed by VMware ESXi/vSphere Auto-Scaling Plugin
provided by CloudBees?

1.	 Power on
2.	 Power off/suspend
3.	 Revert to the last snapshot
4.	 All of the above

Summary
The interesting thing about the ending of a chapter is: each chapter that is ending
leads you to a new beginning. We know how to configure, manage, and use Jenkins
on Cloud service models such as PaaS, RedHat OpenShift, and CloudBees. We also
covered some interesting enterprise plugins from CloudBees, which add a lot of
flexibility and value. In the last section, we have all provided details on various case
studies on how Jenkins proved to be beneficial to a lot of organizations, and how
they leveraged functionality of Jenkins to gain a competitive edge.

https://www.cloudbees.com/casestudy/service-flow
https://www.cloudbees.com/customers

[101]

Managing Code Quality and
Notifications

"Limit your burden by making very small incremental changes"

–Anonymous

We saw how various customers are using Jenkins on Cloud, based on their
requirements. We also saw cloud-based offerings from Red Hat OpenShift and
CloudBees, and case studies to understand how Jenkins is used effectively. Now,
it is time to know about additional aspects of code quality inspection and notification
on build failure.

This chapter will teach you how to integrate static code analysis behavior into
Jenkins. Code quality is an extremely vital feature that impacts application's
effectiveness and by integrating it with sonar, Checkstyle, FindBugs, and other
tools, the user gets an insight into problematic portions of code.

•	 Integration with Sonar
•	 Exploring Static code analysis Plugins
•	 E-mail Notifications on Build status

Integration with Sonar
Quality of code is one of the important facets of DevOps culture. It provides
quality checks that highlight the level of reliability, security, efficiency, portability,
manageability, and so on. It helps to find bugs or possibility of bugs in the source
code and sets culture to align with coding standards in the organization.

Managing Code Quality and Notifications

[102]

SonarQube is the open source platform for continuous inspection of code quality. It
supports Java, C#, PHP, Python, C/C++, Flex, Groovy, JavaScript, PL/SQL, COBOL,
Objective-C, Android development, and so on. It provides reports on coding
standards, code coverage, complex code, unit tests, duplicated code, potential
bugs, comments, design and architecture.

1.	 Go to http://www.sonarqube.org/downloads/, and download
SonarQube 5.1.

2.	 Extract files, and it will look similar to the following screenshot:

http://www.sonarqube.org/downloads/

Chapter 6

[103]

3.	 Go to the bin folder to run SonarQube based on the operating system on
which you want to run Sonar.

4.	 Select a folder based on your platform, in our case, we are installing it on
CentOS, and so we will select linux-x86-64.

Managing Code Quality and Notifications

[104]

5.	 Open the terminal and go to the SonarQube home directory; go to
bin/linux-x86-64/ and run sonar.sh. We need to use parameters
with sonar.sh, as shown in the following usage:
[root@localhost linux-x86-64]# ./sonar.sh

Usage: ./sonar.sh { console | start | stop | restart | status |
dump }

6.	 Visit http://localhost:9000/ or http://<IP address>:9000/.

Chapter 6

[105]

7.	 Explore Rules in the SonaQube dashboard.

8.	 Verify Settings in the SonaQube dashboard.

9.	 Create sonar-project.properties, and save it in a repository where the
project is stored:
must be unique in a given SonarQube instance
sonar.projectKey=Ant:project
this is the name displayed in the SonarQube UI
sonar.projectName=Ant project
sonar.projectVersion=1.0
sonar.sources=src

Managing Code Quality and Notifications

[106]

10.	 Install the SonarQube plugin in Jenkins. To know more on this, visit
https://wiki.jenkins-ci.org/display/JENKINS/SonarQube+plugin.

11.	 Click on Manage Jenkins and go to Configure System. Go to the SonarQube
section, and configure SonarQube in Jenkins.

https://wiki.jenkins-ci.org/display/JENKINS/SonarQube+plugin

Chapter 6

[107]

12.	 Add Build step to Invoke Standalone SonarQube Analysis in a build Job.

13.	 Run the build job, and if you get a certificate error, execute the svn export
command to solve the certificate issue.

Managing Code Quality and Notifications

[108]

14.	 Execute the svn export command to solve certificate issue on a virtual
machine where SonarQube and Jenkins are installed, as shown in the
following screenshot:

15.	 Run the build job.

Chapter 6

[109]

16.	 Verify the Sonar execution steps in the console.

17.	 Refresh the dashboard of SonarQube, and we will be able to see details on the
recently executed build in SonarQube, as shown in the following screenshot:

Managing Code Quality and Notifications

[110]

18.	 To get more details on code verification, click on the project, and we will be
able to get details on Lines of Code, Duplications, Complexity, and so on.

Explore more things on SonarQube and Jenkins integration, as in the following steps.

Exploring Static Code Analysis Plugins
Static Code Analysis Plugins provide utilities for the static code analysis plugins.
Jenkins interprets the result files of several static code analysis tools with the use of
different plugins for configuration and parsing. We can have more flexibility with
these plugins to build exactly what you want.

To install any of these plugins, go to the Jenkins dashboard, click on Manage
Jenkins, and select the Manage Plugins link. Go to the Available tab, find the
respective plugin, and select it. Click on Download now, and install after restart.

All these results are visualized by the same backend. The following plugins use the
same visualization:

Checkstyle Plugin
The Checkstyle plugin generates the report for an open source static code analysis
program, Checkstyle.

To know more about the Checkstyle plugin, visit https://wiki.jenkins-ci.org/
display/JENKINS/Checkstyle+Plugin.

https://wiki.jenkins-ci.org/display/JENKINS/Checkstyle+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Checkstyle+Plugin

Chapter 6

[111]

FindBugs Plugin
The FindBugs plugin is supported by the Static Analysis Collector plugin that shows
the results in aggregated trend graphs, health reporting, and builds stability.

To learn more about this, visit https://wiki.jenkins-ci.org/display/JENKINS/
FindBugs+Plugin.

Compiler Warnings Plugin
The Compiler Warnings plugin generates the trend report for compiler warnings in
the console log, or in log files.

To know more, visit https://wiki.jenkins-ci.org/display/JENKINS/
Warnings+Plugin.

To publish the combined results of Checkstyle, FindBugs, and compiler warnings
plugins, go to the Build section of any job, and click on Add post-build action and
select Publish combined analysis results.

We can also see these results with the use of the Dashboard View plugin.

https://wiki.jenkins-ci.org/display/JENKINS/FindBugs+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/FindBugs+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Warnings+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Warnings+Plugin

Managing Code Quality and Notifications

[112]

In the configuration of a Dashboard view, click on Edit View and select checkboxes
in the Number of warnings section. Add Dashboard Portlets in different sections for
Checkstyle, Compiler, and Findbug.

Verify the view after all the changes and running build jobs.

Chapter 6

[113]

The following plugins are also useful.

DRY Plugin
The DRY plugin shows the duplicate code blocks in your project. It only shows the
results of duplicate code checker tools.

To know more, visit https://wiki.jenkins-ci.org/display/JENKINS/
DRY+Plugin.

PMD Plugin
The PMD plugin scans the pmd.xml files in the build workspace, and reports warnings.

To know more, visit https://wiki.jenkins-ci.org/display/JENKINS/
PMD+Plugin.

Task Scanner Plugin
The Task Scanner plugin scans the workspace files for open tasks and provides a
trend report.

To know more, visit https://wiki.jenkins-ci.org/display/JENKINS/
Task+Scanner+Plugin.

CCM Plugin
The CCM plugin provides details on cyclomatic complexity for .NET code.

To know more, visit https://wiki.jenkins-ci.org/display/JENKINS/
CCM+Plugin.

Android Lint Plugin
The Android Lint plugin parses the output from the Android lint tool.

To know more, visit https://wiki.jenkins-ci.org/display/JENKINS/
Android+Lint+Plugin.

https://wiki.jenkins-ci.org/display/JENKINS/DRY+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/DRY+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/PMD+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/PMD+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Task+Scanner+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Task+Scanner+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/CCM+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/CCM+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Android+Lint+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Android+Lint+Plugin

Managing Code Quality and Notifications

[114]

OWASP Dependency-Check Plugin
The Dependency-Check Jenkins Plugin features the ability to perform a dependency
analysis build.

To know more, visit https://wiki.jenkins-ci.org/display/JENKINS/
OWASP+Dependency-Check+Plugin.

E-mail notifications on build status
To send an e-mail notification based on build status, we need to configure SMTP
details. Click on Manage Jenkins, and go to Configure System. Go to the E-mail
Notification section.

Go to build Job configuration, and click on Add post-build action. Select E-mail
Notification. Provide the recipients list and save.

Run the build job, and a broken build will result in an e-mail notification in
the mailbox.

https://wiki.jenkins-ci.org/display/JENKINS/OWASP+Dependency-Check+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/OWASP+Dependency-Check+Plugin

Chapter 6

[115]

Self-test questions
Q1. Which languages are supported by SonarQube?

1.	 Java
2.	 C#
3.	 PHP
4.	 Python
5.	 C/C++
6.	 JavaScript
7.	 All of the above

Q2. Which among these is not a Static Code Analysis plugin?

1.	 DRY Plugin
2.	 PMD Plugin
3.	 Task Scanner Plugin
4.	 FindBugs Plugin
5.	 None of the above

Summary
Here again, we are at the end of another chapter. We need to remember that every
new beginning comes from some other beginning's end. To summarize, we learned
how to manage code quality of applications configured, and how to use notification
features to send information to developers based on the failed build. We also covered
some static code analysis plugins in short, to get some idea about it. In the next
chapter, we will learn how to manage and monitor Jenkins.

[117]

Managing and
Monitoring Jenkins

"Fall in the beginning + Fall often + Learn to recover quickly = Faster time
to market"

 – Anonymous

We learned Sonar integration with Jenkins, an overview of static code analysis
plugins, and notification of build status in the last chapter. Now, it's time to focus
on management and monitoring of Jenkins.

This chapter gives insight into management of Jenkins nodes and monitoring of them
with Java Melody to provide details on utilization of resources. It also covers how to
manage and monitor build jobs. This chapter describes basic security configuration
in detail that is available in Jenkins for a better access control and authorization.
The following is the list of topics that we will cover in this chapter:

•	 Managing Jenkins master and slave nodes
•	 Jenkins monitoring with JavaMelody
•	 Managing disk usage
•	 Build job-specific monitoring with the Build Monitor plugin
•	 Managing access control and authorization
•	 Maintaining role and project-based security
•	 Managing an admin account
•	 Audit Trail Plugin—an overview and usage

Managing and Monitoring Jenkins

[118]

Managing Jenkins master and slave
nodes
A master represents basic installation of Jenkins and handles all tasks for the build
system. It can satisfy all user requests and has the capacity to build projects on its
own. A slave is a system that is set up to reduce the burden of build projects from
the master but delegation behavior depends on the configuration of each project.
Delegation can be configured specifically to build job.

1.	 On the Jenkins dashboard, go to Manage Jenkins. Click on Manage
Nodes link. It will provide information on all nodes, as shown in the
following screenshot:

2.	 To create a slave node, click on New Node.

Chapter 7

[119]

3.	 Provide Name, Description, Labels and so on. Select Launch slave
agents via Java Web Start as Launch method. Provide Labels; in our
case, it is java8:

4.	 Click on Save. It will open a page that gives details on how to launch the
slave node.

Managing and Monitoring Jenkins

[120]

5.	 Open terminal on the Windows machine and run javaws
http://192.168.13.128:8080/computer/WindowsNode/slave-agent.
jnlp.

It will open a dialogue box for downloading the application.

6.	 Run Jenkins Remoting Agent.

Chapter 7

[121]

A small window for the Jenkins slave agent will open.

The slave WindowsNode will be connected via the JNLP agent.

7.	 On the Jenkins dashboard, go to Manage Jenkins. Click on the Manage
Nodes link. It will provide information on all nodes, as shown in the
following screenshot. Verify both the nodes in the Build Executor Status
section of the leftmost sidebar.

Managing and Monitoring Jenkins

[122]

8.	 If we want to run a selective build job on to a specific node, then we can
configure it build job-wise, as shown in the following screenshot. Check
Restrict where this project can be run and provide Label Expression
given to the specific node on the job configuration page.

9.	 Click on Build Now to execute build. Verify the console and find building
remotely on WindowsNode we configured in the preceding section.
It will check out the code on slave and perform operations on the specific
node only.

Such configuration is useful where we want to run build job in a specific set of
runtime environment, which is available on the specific node.

Chapter 7

[123]

Jenkins monitoring with JavaMelody
The Monitoring plugin provides monitoring of Jenkins with JavaMelody.
It provides charts of a CPU, memory, system load average, HTTP response time,
and so on. It also provides details of HTTP sessions, errors and logs, actions for GC,
heap dump, invalidate session(s), and so on. Install the Monitoring plugin from the
Jenkins Dashboard.

1.	 On the Jenkins dashboard, click on Manage Jenkins. Click on Monitoring of
Jenkins master, as shown in the following screenshot:

Managing and Monitoring Jenkins

[124]

2.	 It will open the statistics of JavaMelody monitoring, as shown in the
following screenshot. Observe all statistics:

3.	 Scroll down the page and we will find Statistics system errors logs.

Chapter 7

[125]

4.	 To get more information, click on the Details link of any section. Statistics of
HTTP are as shown in the following figure:

5.	 Explore more at https://wiki.jenkins-ci.org/display/JENKINS/
Monitoring to get more details on the Monitoring plugin.

Managing disk usage
1.	 Disk Usage Plugin records disk usage. Install Disk Usage Plugin from the

Jenkins dashboard.

https://wiki.jenkins-ci.org/display/JENKINS/Monitoring
https://wiki.jenkins-ci.org/display/JENKINS/Monitoring

Managing and Monitoring Jenkins

[126]

2.	 Once the plugin is successfully installed, we will get the Disk usage link on
the Manage Jenkins page, as shown in the following screenshot:

3.	 The Disk Usage plugin will show project-wise details for all jobs and all
workspace. It will also display Disk Usage Trend.

To get more details on Disk usage plugin, visit https://wiki.jenkins-ci.org/
display/JENKINS/Disk+Usage+Plugin.

https://wiki.jenkins-ci.org/display/JENKINS/Disk+Usage+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Disk+Usage+Plugin

Chapter 7

[127]

Build monitoring with Build Monitor
Plugin
Build Monitor Plugin provides a detailed view of the status of selected Jenkins jobs.
It provides the status and progress of selected jobs and names of people who might
be responsible for "breaking the build". This plugin supports the Claim plugin, View
Job Filters, Build Failure Analyzer, and CloudBees Folders plugin.

1.	 The Dashboard View plugin will be used for creating a view that provides
details on build job-specific monitoring. Create a new view and select Build
Monitor View.

Managing and Monitoring Jenkins

[128]

2.	 Select Jobs and save the details.

3.	 Click on the newly created view, and we will get a similar type of screen as
given in the following screenshot:

To get more details on plugin, visit https://wiki.jenkins-ci.org/display/
JENKINS/Build+Monitor+Plugin.

https://wiki.jenkins-ci.org/display/JENKINS/Build+Monitor+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Build+Monitor+Plugin

Chapter 7

[129]

Managing access control and
authorization
Jenkins supports several security models, and can integrate with different user
repositories.

1.	 Go to the Jenkins dashboard, click on Manage Jenkins, and click on
Configure Global Security.

2.	 Click on Enable security.

All options will be visible once we enable security, as shown in the
following screenshot:

Managing and Monitoring Jenkins

[130]

3.	 Click on Jenkins' own user database. Click on Save.

4.	 Now, click on the sign up link on the top-right corner. Provide Username,
Password, Full name, and E-mail address.

Chapter 7

[131]

5.	 Click on the log in link on the dashboard.

We will get the Jenkins dashboard with the username in the top-right corner.

Managing and Monitoring Jenkins

[132]

6.	 Click on People to verify all users.

7.	 On the Jenkins dashboard, click on Manage Jenkins. Click on Manage Users.

We can edit user details on the same page. This is a subset of users, which
also contains auto-created users.

Chapter 7

[133]

Maintaining roles and project-based
security
For authorization, we can define Matrix-based security on the Configure Global
Security page.

1.	 Add group or user and configure security based on different sections such as
Credentials, Slave, Job, and so on.

2.	 Click on Save.

We can use multiple users for matrix-based security, as shown in the
following screenshot:

Managing and Monitoring Jenkins

[134]

3.	 Try to access the Jenkins dashboard with a newly added user who has no
rights, and we will find the authorization error.

4.	 Now provide overall read rights; build, read, and workspace rights for job
for newly added users.

5.	 Log in with the newly added user and verify that we can see the dashboard.
We can't see the Manage Jenkins link as we have provided those rights.

Chapter 7

[135]

6.	 Click on any build job. The build link is available as we have given rights but
the configure link is not available as rights were not given for it.

7.	 We can also set Project-based Matrix Authorization Strategy.

Managing and Monitoring Jenkins

[136]

8.	 Go to a specific build jobs' configuration and Enable project-based security.

9.	 Assign rights to different users and log in with the specific username to
verify whether authorization strategy is working or not.

10.	 Verify the build details also, as shown in the following screenshot:

Chapter 7

[137]

We've covered basics of security configuration in Jenkins. Explore more on the
other options as an exercise. In case, authorization is not correctly set, then it can be
corrected by editing config.xml. Consider it as self-study.

Audit Trail Plugin – an overview and
usage
Audit Trail Plugin keeps a log of users who performed particular Jenkins operations,
such as configuring jobs. This plugin adds an Audit Trail section in the main Jenkins
configuration page.

Install the Audit Trail Plugin.

Managing and Monitoring Jenkins

[138]

In Jenkins configuration, configure Loggers, as shown in the following screenshot:

Stop the Jenkins server and start it again. Run any build job and open log files to
verify log records.

To get more details, visit https://wiki.jenkins-ci.org/display/JENKINS/
Audit+Trail+Plugin.

https://wiki.jenkins-ci.org/display/JENKINS/Audit+Trail+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Audit+Trail+Plugin

Chapter 7

[139]

Self-test questions
Q1. What are the different ways to make slave node online?

1.	 Launch an agent from the browser on slave
2.	 Run the slave-agent.jnlp command from the command line
3.	 Run java -jar slave.jar
4.	 All of the above

Q2. For what options does Jenkins monitoring provide charts?

1.	 CPU
2.	 Memory
3.	 System load average
4.	 HTTP response time
5.	 All of the above

Q3. What are the options for Security Realm in Jenkins?

1.	 Delegate to Servlet Container
2.	 Jenkins' own user database
3.	 LDAP
4.	 Unix user/group database
5.	 All of the above

Summary
Whatever good things we build end up building us. In this chapter, we covered
concepts of master and slave nodes, how to monitor build jobs, and reporting of
statistics with management features. We also understood how to secure Jenkins
environment with authentication and authorization configurations by using
role-based security. We saw how the audit trail plugin stores audit details
in Jenkins.

In the next chapter, we will cover some important plugins that add a significant
value to Jenkins. Let's enjoy the last journey before we say goodbye.

[141]

Beyond Basics of
Jenkins – Leveraging
"Must-have" Plugins

"Strength and growth come only through continuous effort and struggle."

- Napoleon Hill

In the last chapter, we covered management and monitoring along with security
aspects in Jenkins. In security, we understood how authentication and authorization
works. Now, it is time to recognize the value added by some important plugins.

This chapter covers advanced usage of Jenkins, which is extremely useful in specific
scenarios. Scenario-based usage of specific plugins that help development and
operations teams are covered here for better utilization of Jenkins. Some of these
plugins are extremely useful in the case of notifications scenario. The following are
the main topics that we will cover in this chapter:

•	 Extended E-mail Plugin
•	 Workspace cleanup Plugin
•	 Pre-scm-buildstep Plugin
•	 Conditional BuildStep Plugin
•	 EnvInject Plugin
•	 Build Pipeline Plugin

Beyond Basics of Jenkins – Leveraging "Must-have" Plugins

[142]

Extended Email Plugin
Email-ext plugin extends functionality of e-mail notifications provided by Jenkins.
It gives more customization in terms of conditions that cause mail notifications and
content generation.

You can install this plugin from the Jenkin's dashboard.

Customization is available in three areas:

•	 Triggers: We can select the conditions that cause an e-mail notification to
be sent

•	 Content: We can specify the content of each triggered email's subject and
body; we can use default environment variables within content

•	 Recipients: We can specify who should receive an e-mail when it is triggered

In the Jenkins dashboard, click on Manage Jenkins and then click on Configure
System. Go to the Extended E-mail Notification section and configure global
email-ext properties that should match the settings for your SMTP mail server.

Chapter 8

[143]

We can also customize the subject, maximum attachment size, default content,
and so on.

Beyond Basics of Jenkins – Leveraging "Must-have" Plugins

[144]

To configure Email-ext specific to build job, enable it in the project configuration
page. Select the checkbox labeled Editable Email Notification in the Post-build
Actions. Configure the comma- (or whitespace-) separated list of global recipients,
subject, and content. In advanced configuration, we can configure pre-send script,
triggers, email tokens, and so on.

The pre-send script feature allows us to write a script that can modify the
MimeMessage object prior to sending the message. Triggers allow us to configure
conditions that must be met to send an e-mail. The Email-ext plugin uses tokens to
allow dynamic data to be inserted into the recipient list, e-mail subject line, or the
body. For more details, visit https://wiki.jenkins-ci.org/display/JENKINS/
Email-ext+plugin.

Workspace cleanup Plugin
The Workspace Cleanup plugin is used to delete the workspace from Jenkins before
the build or when a build is finished and artifacts are saved. If we want to start a
Jenkins build with a clean workspace or we want to clean a particular directory
before each build, then we can effectively use this plugin. Different options are
available for deleting the workspace.

https://wiki.jenkins-ci.org/display/JENKINS/Email-ext+plugin
https://wiki.jenkins-ci.org/display/JENKINS/Email-ext+plugin

Chapter 8

[145]

You can install this plugin from the Jenkins dashboard.

We can apply patterns for files to be deleted based on the status of the build job.
We can add post-build action for workspace deletion.

For more details, visit https://wiki.jenkins-ci.org/display/JENKINS/
Workspace+Cleanup+Plugin.

https://wiki.jenkins-ci.org/display/JENKINS/Workspace+Cleanup+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Workspace+Cleanup+Plugin

Beyond Basics of Jenkins – Leveraging "Must-have" Plugins

[146]

Pre-scm-buildstep Plugin
The Pre-scm-buildstep plugin allows a specific build step to run before SCM
checkouts in case we need to perform any build step action on the workspace
considering any special requirements such as adding a file with some settings for
the SCM, executing some command to create some file, cleanup, or call other scripts
that need to be run before checking out.

You can install this plugin from the Jenkins dashboard.

Select conditional steps from the list, as shown in the following screenshot:

Chapter 8

[147]

Select the conditional steps based on requirement and provide a list of commands
based on operating systems, as shown in the following screenshot:

For more details, visit https://wiki.jenkins-ci.org/display/JENKINS/pre-
scm-buildstep.

https://wiki.jenkins-ci.org/display/JENKINS/pre-scm-buildstep
https://wiki.jenkins-ci.org/display/JENKINS/pre-scm-buildstep

Beyond Basics of Jenkins – Leveraging "Must-have" Plugins

[148]

Conditional BuildStep Plugin
The Buildstep plugin allows us to wrap any number of other build steps, controlling
their execution based on a defined condition.

You can install this plugin from the Jenkins' dashboard.

This plugin defines a few core run conditions such as:

•	 Always/Never: To disable a build step from the job configuration
•	 Boolean condition: To execute the step if a token expands to a representation

of true
•	 Current status: To execute the build step if the current build status is within

the configured/specific range
•	 File exists/Files match: To execute the step if a file exists, or matches

a pattern
•	 Strings match: To execute the step if the two strings are same
•	 Numerical comparison: To execute the build step depending on the result of

comparing two numbers
•	 Regular expression match: This provides a regular expression and a label,

to execute the build step if the expression matches the label

Chapter 8

[149]

•	 Time/Day of week: To execute the build job during a specified period of the
day or day of the week

•	 And/Or/Not: Logical operations to enable the combining and sense
inversion of run conditions

•	 Build cause: To execute the build step depending on the cause of the build,
for example, triggered by timer, user, scm-change, and so on

•	 Script condition: Utilize shell script to decide whether a step should
be skipped

•	 Windows Batch condition: Utilize windows batch to decide whether a step
should be skipped

Select the Conditional step (single) from the Add build step.

Beyond Basics of Jenkins – Leveraging "Must-have" Plugins

[150]

Select the Conditional steps (multiple) from the Add build step. We can add
multiple steps to condition in this conditional step.

For more details, visit https://wiki.jenkins-ci.org/display/JENKINS/
Conditional+BuildStep+Plugin.

EnvInject Plugin
We know that different environments such as Dev, Test, and Production requires
different configuration.

Install this plugin from the Jenkins dashboard.

https://wiki.jenkins-ci.org/display/JENKINS/Conditional+BuildStep+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Conditional+BuildStep+Plugin

Chapter 8

[151]

The EnvInject plugin provides the facility to have an isolated environment for
different build jobs. The EnvInject plugin injects environment variables at node
startup, before or after a SCM checkout for a run, as a build step for a run, and so
on. Select Inject environment variables to the build process specific to the build job.

For more details, visit https://wiki.jenkins-ci.org/display/JENKINS/
EnvInject+Plugin.

https://wiki.jenkins-ci.org/display/JENKINS/EnvInject+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/EnvInject+Plugin

Beyond Basics of Jenkins – Leveraging "Must-have" Plugins

[152]

Build Pipeline Plugin
Continuous Integration has become a popular practice for application development.
The Build Pipeline plugin provides a pipeline view of upstream and downstream
connected jobs that typically form a build pipeline with the ability to define manual
triggers or approval process. We can create a chain of jobs by orchestrating version
promotion through different quality gates before we deploy it in production.

Install this plugin from the Jenkins dashboard.

We have already installed the Dashboard View plugin. We will create a pipeline
for four build jobs. Let's assume we have four build jobs, as shown in the following
diagram, where the objective of each build job is mentioned:

Chapter 8

[153]

1.	 Create a new view and select Build Pipeline View.

2.	 Provide a description and select the layout from the configuration on the
build pipeline.

3.	 Select an initial job and the number of displayed builds and save the
configuration.

Beyond Basics of Jenkins – Leveraging "Must-have" Plugins

[154]

4.	 In a configuration of the build pipeline, select job to trigger parameterized
build as settle-build job in Post-build Actions. It will be the first build job
in the pipeline.

5.	 In a settle-build job, trigger the parameterized build on the settle-aws-
provisioning job in Post-build Actions.

Chapter 8

[155]

6.	 In a settle-aws-provisioning job, the manual build steps for a
settle-deploy job in Post-build Actions.

7.	 In a settle-aws-provisioning job, trigger the parameterized build on the
settle-deploy job in Post-build Actions. In the settle-deploy build job,
we can write script or execute commands so that it can deploy war file to
newly provisioned virtual machine in the cloud environment.

Beyond Basics of Jenkins – Leveraging "Must-have" Plugins

[156]

8.	 Go to the dashboard view, which we created earlier, and verify the pipeline
created after our configuration in build jobs in the previous section. The new
build pipeline will be created as shown in the following diagram:

For more details, visit https://wiki.jenkins-ci.org/display/JENKINS/
Build+Pipeline+Plugin.

Self-test questions
Q1. In which areas does the Extended E-mail plugin provide customization?

1.	 Triggers
2.	 Content
3.	 Recipients
4.	 All of the above

Q2. The Workspace cleanup plugin provides an option to clean the workspace when
status of build is:

1.	 Success
2.	 Unstable
3.	 Failure
4.	 Not Built
5.	 Aborted
6.	 All of the above

https://wiki.jenkins-ci.org/display/JENKINS/Build+Pipeline+Plugin
https://wiki.jenkins-ci.org/display/JENKINS/Build+Pipeline+Plugin

Chapter 8

[157]

Summary
We learned how to use some important plugins to aid the existing features of Jenkins
to address specific requirements. We covered all basic usage of Jenkins, including
installing runtime environment, creating build jobs, using Jenkins on Cloud,
monitoring, management, security, and additional plugins. For the scope of this
book, this seems sufficient. Next step is about provisioning resources dynamically in
Cloud environment to achieve end to end automation in the DevOps journey.

If you want a happy ending, that depends of course on where you stop your story.
We certainly know where to stop ours!

[159]

Index
A
access control

managing 129-132
Android Lint plugin

about 113
URL 113

Ant
configuring 39
configuring, in Jenkins 40, 41
installing 38
URL 38

Apache jclouds case study
about 96
benefits 97
challenge 96
reference 97
solution 96

Audit Trail Plugin
about 137
installing 137, 138
URL 138

authorization
managing 129-132

B
build

executing, with test cases 62-64
build job

creating in Jenkins, Git used 44-47
build job, Java application

configuring, Ant used 50-57
configuring, Maven used 59-61
creating, Ant used 50-52
creating, Maven used 58

Build Monitor plugin
about 127
build monitoring with 127, 128
URL 128

Build Pipeline plugin
about 152
installing 152-155
URL 156

C
case studies, from CloudBees

about 96
Apache jclouds 96
Global Bank 97
Service-Flow 98

CCM plugin
about 113
URL 113

Checkpoints plugin
about 94
URL 95

Checkstyle plugin
about 110
URL 110

CloudBees
about 84
Jenkins, exploring in 84-94
URL 84

CloudBees Enterprise plugins
Checkpoints plugin 94
High Availability plugin 95
overview 94
Role-based Access Control (RBAC)

plugin 95

[160]

VMware ESXi/vSphere Auto-Scaling
plugin 95

Workflow plugin 94
Compiler Warnings plugin

about 111-113
URL 111

Conditional BuildStep plugin
about 148
installing 148-150
URL 150

continuous delivery 68
continuous deployment 68
continuous integration (CI) tools 1
cron expression

reference 3

D
dashboard, Jenkins 10
Dashboard View Plugin

about 50
installing 50-52
URL 50

deployment pipeline, Jenkins 15
Deploy plugin

about 70
URL 70
using 70

DEV@cloud 84
disk usage

managing 125, 126
Disk Usage plugin

about 125
URL 126

DRY plugin
about 113
URL 113

E
Eclipse

integrating, with code repositories 36-38
e-mail notifications, based on build status

sending 114
EnvInject plugin

about 150
installing 150, 151
URL 151

Extended Email plugin
about 142
configuring 144
installing 142, 143
URL 144

F
FindBugs plugin

about 111
URL 111

G
Git

about 41
configuring 41
installing 41-43

Global Bank case study
about 97
benefits 98
challenge 97
reference 98
solution 97

H
High Availability plugin

about 95
URL 95

I
installation

Jenkins 4
Jenkins, as web application 9, 10
Jenkins on CentOS 7, 8
Jenkins on Windows 4-6

J
Java

environment variables, configuring 22
installing 20-22

JavaMelody
Jenkins monitoring with 123-125

JDK
configuring, in Jenkins 40

[161]

Jenkins
about 1, 2
build 20
CI 2
configuration settings, changing 12-14
dashboard 10
deployment pipeline 15
exploring, in CloudBees 84-94
exploring, in OpenShift PaaS 80-83
features 3
installing 4
installing, as web application 9, 10
installing, on CentOS 7, 8
installing, on Windows 4-6
monitoring, with JavaMelody 123-125
plugins 2
requisites 20
URL 4

M
master nodes

managing 118-122
Maven

configuring, in Jenkins 41
installing 39
URL 39

O
OpenShift Online

about 80
URL 80

OpenShift PaaS
Jenkins, exploring in 80-83

OWASP Dependency-Check Plugin
about 114
URL 114

P
plugins

references 3
PMD plugin

about 113
URL 113

Pre-scm-buildstep plugin
about 146

installing 146
URL 147

project-based security
maintaining 133-137

R
Role-based Access Control (RBAC) plugin

about 95
features 95
URL 95

roles
maintaining 133-137

S
Service-Flow case study

about 98
benefits 98
challenge 98
solution 98

slave nodes
managing 118-122

SonarQube
about 101
integrating with 101-110
URL 102

Static Code Analysis plugins
about 110
Android Lint plugin 113
CCM plugin 113
Checkstyle plugin 110
Compiler Warnings plugin 111-113
DRY plugin 113
exploring 110
FindBugs plugin 111
OWASP Dependency-Check Plugin 114
PMD plugin 113
Task Scanner plugin 113

SVN
configuring 24-26
directory, importing to 26
installing, on CentOS 23
operations 26
source code, checking out 27

SVN client
URL 32

[162]

T
Task Scanner plugin

about 113
URL 113

Tomcat
about 68
installing 68, 69

V
VisualSVN server

installing, on Windows 28-36
URL 28

VMware ESXi/vSphere Auto-Scaling plugin
about 95
URL 96

W
war file

deploying, from Jenkins to Tomcat 70-76
Workflow plugin

about 94
URL 94

Workspace Cleanup plugin
about 144
installing 145
URL 145

Thank you for buying
Jenkins Essentials

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Jenkins Continuous Integration
Cookbook
Second Edition
ISBN: 978-1-78439-008-2 Paperback: 408 pages

Over 90 recipes to produce great result from Jenkins
using pro-level practices, techniques, and solutions

1.	 Explore the use of more than 40 best-of-breed
plug-ins for improving efficiency.

2.	 Secure and maintain Jenkins by integrating
it with LDAP and CAS, which is a Single
Sign-on solution.

3.	 Step-by-step, easy-to-use instructions to
optimize the existing features of Jenkins using
the complete set of plug-ins that Jenkins offers.

Apache Flume: Distributed Log
Collection for Hadoop
Second Edition
ISBN: 978-1-78439-217-8 Paperback: 178 pages

Design and implement a series of Flume agents to
send streamed date into Hadoop

1.	 Construct a series of Flume agents using the
Apache Flume service to efficiently collect,
aggregate, and move large amounts of
event data.

2.	 Configure failover paths and load balancing to
remove single points of failure.

3.	 Use this step-by-step guide to stream logs from
application servers to Hadoop's HDFS.

Please check www.PacktPub.com for information on our titles

Apache Maven Cookbook
ISBN: 978-1-78528-612-4 Paperback: 272 pages

Over 90 hands-on recipes to successfully build and
automate development life cycle tasks following
Maven conventions and best practices

1.	 Understand the features of Apache Maven that
makes it a powerful tool for build automation.

2.	 Full of real-world scenarios covering
multi-module builds and best practices to
make the most out of Maven projects.

3.	 A step-by-step tutorial guide full of
pragmatic examples.

Learning Force.com Application
Development
ISBN: 978-1-78217-279-6 Paperback: 406 pages

Use the Force.com platform to design and develop
real-world, cutting-edge cloud applications

1.	 Design, build, and customize real-world
applications on the Force.com platform.

2.	 Reach out to users through public websites
and ensure that your Force.com application
becomes popular.

3.	 Discover the tools that will help you develop
and deploy your application.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Exploring Jenkins
	Introduction to Jenkins and its features
	Features

	Installation of Jenkins on Windows and CentOS
	Installing Jenkins on Windows
	Installation of Jenkins on CentOS
	Installation of Jenkins as a web application

	A jump-start tour of the Jenkins dashboard
	How to change configuration settings in Jenkins
	What is the deployment pipeline
	Self-test questions
	Summary

	Chapter 2: Installation and Configuration of Code Repository and Build Tools
	An overview of a build in Jenkins and its requirements
	Installing Java and configuring environment variables
	Configure environment variables

	Installing, configuring, and operating SVN on CentOS and Windows
	Installing SVN on CentOS
	Configuring SVN
	SVN operations
	Import a directory into SVN
	Check out from SVN

	VisualSVN Server on Windows

	Integrating Eclipse with code repositories
	Installing and configuring Ant
	Installing Maven
	Configuring Ant, Maven and JDK in Jenkins
	Installing and configuring Git
	Creating a new build job in Jenkins
with Git
	Self-test questions
	Summary

	Chapter 3: Integration of Jenkins, SVN, and Build Tools
	Creating and configuring a build job for a Java application with Ant
	Dashboard view plugin
	Creating and configuring a build job for a Java application

	Creating and configuring a build job for a Java application with Maven
	Build execution with test cases
	Self-test questions
	Summary

	Chapter 4: Implementing Automated Deployment
	An overview of continuous delivery and continuous deployment
	Installing Tomcat
	Deploying a war file from Jenkins to Tomcat
	Self-test questions
	Summary

	Chapter 5: Hosted Jenkins
	Exploring Jenkins in OpenShift PaaS
	Exploring Jenkins in the
Cloud—CloudBees
	An overview of CloudBees Enterprise Plugins
	Workflow Plugin
	Checkpoints Plugin
	Role-based Access Control Plugin
	High Availability Plugin
	VMware ESXi/vSphere Auto-Scaling Plugin

	Jenkins case studies from CloudBees
	Apache jclouds
	Challenge
	Solution
	Benefits

	Global Bank
	Challenge
	Solution
	Benefits

	Service-Flow
	Challenge
	Solution
	Benefits

	Self-test questions
	Summary

	Chapter 6: Managing Code Quality and Notifications
	Integration with Sonar
	Exploring Static Code Analysis Plugins
	Checkstyle Plugin
	FindBugs Plugin
	Compiler Warnings Plugin
	DRY Plugin
	PMD Plugin
	Task Scanner Plugin
	CCM Plugin
	Android Lint Plugin
	OWASP Dependency-Check plugin

	E-mail notifications on build status
	Self-test questions
	Summary

	Chapter 7: Managing and Monitoring Jenkins
	Managing Jenkins master and slave nodes
	Jenkins monitoring with JavaMelody
	Managing disk usage
	Build monitoring with Build Monitor Plugin
	Managing access control and authorization
	Maintaining roles and project-based security
	Audit Trail Plugin – an overview and usage
	Self-test questions
	Summary

	Chapter 8: Beyond Basics of Jenkins – Leveraging "Must-have" Plugins
	Extended Email Plugin
	Workspace cleanup Plugin
	Pre-scm-buildstep Plugin
	Conditional BuildStep Plugin
	EnvInject Plugin
	Build Pipeline plugin
	Self-test questions
	Summary

	Index

