
BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

www.apress.com

RE
LA

TE
D

TI
TL

ES

Learn WatchKit for iOS covers the development of
applications for the new Apple Watch using the WatchKit

framework in iOS 8 and the Swift programming language. An
Apple Watch application is an extension to an existing iOS app
and is packaged and submitted to the App Store along with
it. Using a suite of simple examples, Kim Topley, co-author
of Beginning iPhone Development with Swift, introduces
and explains every feature of WatchKit and the associated
technologies that you’ll need to understand to build Apple
Watch applications for iOS 8. The book culminates with
a complete WatchKit application that shows weather
forecast information for various cities around the world on the
Apple Watch.

Featured highlights include:

• How to integrate your Watch app with its hosting iOS
app and how to communicate between them

• How to build a Glance for your WatchKit app to make
the most useful information more easily available to
your users

• How to use handoff and how to handle notifications

• How to build, test and debug your Watch App on the
simulator and on a real watch

This book is for existing iOS developers who want to
understand and use WatchKit to extend their application
onto the Apple Watch. Readers are assumed to have basic
knowledge of iOS development.

US $ 39.99

Shelve in
Mobile Computing

User level:
Beginning–Intermediate

Learn

WatchKit for iOS
Kim Topley

Learn W
atchKit for iOS

Topley

Learn how to make Watch apps with WatchKit and Swift

SOURCE CODE ONLINE

9 781484 210260

53999
ISBN 978-1-4842-1026-0

www.allitebooks.com

http://www.allitebooks.org

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a
Glance

About the Author �� xiii

About the Technical Reviewer ��� xv

Acknowledgments ��� xvii

 ■Chapter 1: Welcome to the Apple Watch �� 1

 ■Chapter 2: Interface Controllers and Layout ��������������������������������� 25

 ■Chapter 3: Watch User Interface Objects �������������������������������������� 67

 ■Chapter 4: More Watch User Interface Objects ��������������������������� 115

 ■Chapter 5: Controller Navigation �� 167

 ■Chapter 6: Tables and Menus ��� 219

 ■Chapter 7: Building a WatchKit App ��� 267

 ■Chapter 8: Glances, Settings, and Handoff ��������������������������������� 361

 ■Chapter 9: Notifications �� 397

Index �� 433

www.allitebooks.com

http://www.allitebooks.org

1

Chapter 1
Welcome to the
Apple Watch
When I learned to program computers more years ago than I care to
remember, the hardware that I used literally filled a room. Ten years later,
it was possible to build a computer that was small enough and cheap
enough to have in your home or on your desk at work. Today, we think
nothing of carrying in our pockets computers that are more powerful than
the ones that were used back in the “good old days” to run a business or
navigate a spacecraft to the moon and back. We use them to schedule
our lives, read books, listen to music, send and receive e-mails, and even
make phone calls. Over the last 15 or so years, several companies have
experimented with the idea of making it possible to wear your phone or
personal computing device instead of carrying it in your pocket. By 2014,
Samsung, Sony, Motorola, and others had taken this idea to its logical
conclusion by developing and marketing a range of smartwatches—devices
that are basically wearable computers packaged as wristwatches—with
varying degrees of success. In 2015, Apple released its own wearable
computing device called the Apple Watch. It remains to be seen whether
it will be as popular as the company’s other consumer products. If it is,
then it represents a major new opportunity for iOS developers to profit by
extending their existing applications to work with the Apple Watch and to
write new applications that make use of its unique features.

As you’ll see in the first few chapters of this book, an Apple Watch
application is really just an extension of an application written to run
on an iPhone, so you’ll need to know how to write iPhone applications.
This book does not teach iPhone programming from scratch—I assume
you already have some experience of developing for iOS using the Swift

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Welcome to the Apple Watch 2

programming language. If you don’t, then you’ll need to first learn the basics
by reading an introductory iOS programming book, such as Beginning
iPhone Development with Swift: Exploring the iOS SDK by David Mark, Jack
Nutting, Kim Topley, Fredrik Olsson, and Jeff LaMarche (Apress, 2014—see
www.apress.com/9781484204108).

Your First Watch Application
Let’s dive straight in and write our first watch application. Like iPhone and
iPad applications, Apple Watch applications are developed using Xcode
and can be debugged using both the iOS simulator and a real device.
At the time of writing (May 2015), the simulator does not let you test the
complete lifecycle of a watch application—for example, the simulator does
not show the home screen of the watch, so you can’t see your application’s
icon and launch it from there. You also can’t configure glances or test how
your application handles local notifications (glances and notifications are
covered in Chapters 8 and 9, respectively). Although the simulator is useful
for debugging, testing on a real device is important before releasing your
application to the App Store.

The classes that you’ll use to build Watch applications are included in
the WatchKit framework, which is included in the iOS SDK starting with
version 8.2. You can build Apple Watch applications with version 6.2 or
higher of Xcode. The examples in this book use version 1.2 of the Swift
language (which was introduced with Xcode 6.3 and is not completely
compatible with the version of the language supported by Xcode 6.2) and
were tested with Xcode 6.3 and 6.4. I assume that you are already an iOS
developer, so you should have Xcode installed. If you don’t have the
most recent version, you can get it from Apple’s developer web site at
https://developer.apple.com/xcode/downloads.

EXAMPLE SOURCE CODE

The source code for the examples in this book can be downloaded from the book’s page on
the Apress website at www.apress.com/9781484210260. Once you have downloaded
the source code archive and unpacked it, you’ll see that each example has a separate
folder with a name that includes the number of the chapter to which it relates. These folders
contain the completed application. You’ll also find folders that contain images and other
resources that you’ll need when following the step-by-step instructions to construct each
example from scratch.

www.allitebooks.com

http://www.apress.com/9781484204108
http://dx.doi.org/10.1007/9781484210260_8
http://dx.doi.org/10.1007/9781484210260_9
https://developer.apple.com/xcode/downloads
http://www.apress.com/9781484210260
http://www.allitebooks.org

CHAPTER 1: Welcome to the Apple Watch

3

Creating a WatchKit Application
Fire up Xcode and let’s create our first WatchKit application. As an
experienced iOS developer, you already know how to create a project
for a new application—just go to the Xcode menu bar and open the New
Project dialog by selecting File ➤ New ➤ Project… and then choose the
appropriate template from the iOS section. Try that now. Unfortunately, you’ll
find that there is no template for a WatchKit application. That’s because you
can’t just build a WatchKit application and release it to the App Store. An
application for the Apple Watch is supposed to be an add-on to an existing
iOS application, so you first have to create an iOS application and then add
a WatchKit application to it. This makes a lot of sense—the Apple Watch is
smaller and less powerful and has a much smaller screen than the iPhone
to which it is paired. It can’t really support full-fledged applications (at least
not yet). Instead, you’ll need to decide which parts of your application’s
functionality, if any, make sense in the context of a watch and implement
those features using WatchKit. Later in this book, you’ll see a practical
example of this—we’ll take an iPhone weather application and add the
ability for the user to view weather forecasts on Apple Watch. However, in
most of the examples in this book, the iOS application does nothing.

So, how do we start writing our add-on WatchKit application? It’s easy. First
we need to create the hosting iOS app. Select File ➤ New ➤ Project… and
then choose Single View Application from the iOS Application section of
the template chooser (see Figure 1-1).

Figure 1-1. Creating a host application for a WatchKit app. Notice there is no WatchKit app
project template

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Welcome to the Apple Watch 4

Click Next and then enter HelloWatch in the Product Name field. Enter the
same values that you would use for other iOS projects in the Organization
Name and Organization Identifer fields. Select Swift as the Language,
Universal for Devices, and leave the Core Data check box unchecked.
Press Next and choose the save location for the project.

To add a WatchKit application to the project, you need to add a new target.
From the menu bar, select File ➤ New ➤ Target…. In the template chooser
that appears, select WatchKit App from the iOS Apple Watch section, as
shown in Figure 1-2, then click Next.

Note You can use Objective-C to write a WatchKit application if you prefer. All
the source code in this book is written in Swift.

Figure 1-2. Adding a WatchKit app target to an iOS application

The next page of the chooser contains various options, most of which have
fixed values derived from the name and identifier of the host application
(see Figure 1-3). Uncheck Include Notification Scene and Include Glance
Scene, leave everything else on this page as it is, and click Finish to add
the WatchKit target.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Welcome to the Apple Watch

5

Xcode prompts you to confirm that you want a scheme that will allow you to
run your WatchKit application to be activated. Check the Do not show this
message again checkbox and then click Activate to activate the scheme.

In addition to this new scheme, Xcode adds two new groups and two new
targets to your project. Let’s take a look at what’s in the new groups. Select
the Project Navigator tab if it’s not already selected (a quick way to do this
is to press 1) and you’ll see that the new groups are called HelloWatch
WatchKit Extension and HelloWatch WatchKit App (see Figure 1-4).

Figure 1-3. Completing the addition of the WatchKit app target

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Welcome to the Apple Watch 6

The HelloWatch Watchkit App group contains a storyboard and an asset
catalog that you’ll use to create the user interface for your WatchKit
application. You’ll notice that it does not contain any .swift files—that’s
because all the code for the application is in the WatchKit Extension, not in
the WatchKit application itself.

Now let’s look at the HelloWorld WatchKit Extension group. As you can see
in Figure 1-4, Xcode created a file called InterfaceController.swift in this
group. Select this file in the Project Navigator so that you can see what it
contains (Figure 1-5).

Figure 1-4. The WatchKit Extension and WatchKit App groups and targets in Xcode

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1: Welcome to the Apple Watch

7

As you can see, InterfaceController is a subclass of the WatchKit
class WKInterfaceController (the names of all of the WatchKit classes
begin with the letters WK). WKInterfaceController is WatchKit’s version
of the UIViewController class in UIKit—it contains the controller code
for your application’s user interface. The Xcode template gives you just a
single controller class that manages the screen that the user sees when
your application launches. For some applications, that’s all you need,
but for more complex applications, WatchKit provides mechanisms that
allow you to navigate from screen to screen, including segues that are
similar to the ones that you are familiar with from UIKit. There is one
WKInterfaceController for each screen in your application, so if your
application requires more than one screen, you’ll need to have more
than one WKInterfaceController. Chapter 5 talks more about interface
controllers, including how to write applications with more than one interface
controller.

Figure 1-5. The skeleton interface controller for a WatchKit application

www.allitebooks.com

http://dx.doi.org/10.1007/9781484210260_5
http://www.allitebooks.org

CHAPTER 1: Welcome to the Apple Watch 8

WATCHKIT DOCUMENTATION AND RESOURCES

There is plenty of documentation available for WatchKit. You can get to the reference page
for any WatchKit class by searching for it in the Xcode documentation window (Window ➤
Documentation and API Reference, or press 0). A quicker way do the same thing if
you have the class name in some code is to hover the mouse over the class name and then
press the (option) key. This opens a pop-up window with brief documentation of the
class, including a link to the full documentation page. The same technique works for method
and property names.

You can find reference information for all of the WatchKit classes online at
https://developer.apple.com/library/ios/documentation/WatchKit/
Reference/WatchKit_framework/index.html and a full list of all of the available
documentation and resources at https://developer.apple.com/watchkit.
You should pay special attention to the Apple Watch Human Interface Guidelines, which
you can find at https://developer.apple.com/watch/human-interface-
guidelines. Finally, there is a lot of useful discussion on the WatchKit forum at
https://forums.developer.apple.com/community/app-frameworks/watchkit.

It is important to note that the code for a WatchKit application runs in the
WatchKit app extension on the iPhone, not on the Apple Watch itself. That’s
so important that I’ll say it again: None of your WatchKit application’s
code runs on the Apple Watch—it executes in an extension on the
paired iPhone. That means you don’t have direct access to the Apple
Watch hardware. Instead, you have to rely on the WatchKit classes to draw
your user interface on the screen, react to user input, tap the user’s wrist
when required, and so on. You can find out more about what your WatchKit
application can and can’t do in the section “Some Things That a WatchKit
Application Can and Can’t Do” at the end of this chapter.

All of your application’s code files will be in the WatchKit Extension group
and will be assigned to the WatchKit Extension target. The exception to this
rule is any code that you need to share between the WatchKit app extension
and the iOS application, which you should put into a shared framework.
I discuss this in detail in Chapter 7.

Caution Do not add any code to the Hello WatchKit App group or
target—all the code for the WatchKit application must be in the group and
target that Xcode created for your WatchKit app’s extension.

https://developer.apple.com/library/ios/documentation/WatchKit/Reference/WatchKit_framework/index.html
https://developer.apple.com/library/ios/documentation/WatchKit/Reference/WatchKit_framework/index.html
https://developer.apple.com/watchkit
https://developer.apple.com/watch/human-interface-guidelines
https://developer.apple.com/watch/human-interface-guidelines
https://forums.developer.apple.com/community/app-frameworks/watchkit
http://dx.doi.org/10.1007/9781484210260_7

CHAPTER 1: Welcome to the Apple Watch

9

Don’t be concerned if you’re not familiar with writing iOS extensions. For the most part,
coding an extension is the same as coding an application. The main thing you need to be
aware of is that some APIs are not available to code running in an extension. I’ll point out
some of the differences as we progress through the book. Usually, you can work around
the limitations by delegating work to your iOS application and you’ll see exactly how to do
that in Chapter 7. You can read about extensions in the App Extension Programming Guide,
which you’ll find at https://developer.apple.com/library/ios/documentation/
General/Conceptual/ExtensibilityPG/index.html.

Building the User Interface
There are three ways to construct the user interface for an iOS application: you
can create it entirely in code, you can build it from nib files, or you can use a
storyboard. By contrast, there is only one way to build the user interface for a
WatchKit application—you have to use the storyboard that Xcode created when
you added the WatchKit application target. Select the Interface.storyboard
file in the WatchKit App target to open it in the editor area. Right now, the
storyboard contains a single empty screen, as shown in Figure 1-6.

Figure 1-6. The WatchKit application’s storyboard and the Object Library

EXTENSION PROGRAMMING

http://dx.doi.org/10.1007/9781484210260_7
https://developer.apple.com/library/ios/documentation/General/Conceptual/ExtensibilityPG/index.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/ExtensibilityPG/index.html

CHAPTER 1: Welcome to the Apple Watch 10

To the right of the editor area, you’ll find the Object Library (use View ➤
Utilities ➤ Show Object Library to make it visible if necessary). While you
are editing a WatchKit application storyboard, the Object Library contains
WatchKit user interface objects, which are roughly equivalent to views in
UIKit. As you can see, there are far fewer of these than there are UIKit views.
Take the opportunity to scroll through the list to see what’s available—
Chapters 3 through 6 talk in detail about them all.

Our first WatchKit application is very simple, consisting of just a label and an
image. Let’s start with the label. Locate a Label object in the Object Library
and drag it over the watch screen in the storyboard. As you do so, the
cursor changes, and a blue outline appears on the watch screen, as shown
on the left in Figure 1-7.

Figure 1-7. Adding a label to the user interface

The outline indicates the area in which you can drop the label. In this case,
because the screen is currently empty, Xcode indicates that you can drop
it anywhere. With the label positioned anywhere over the watch screen,
release the mouse to drop it and you’ll see that it instantly snaps to the
top left corner (see the right image in Figure 1-7). Unlike UIKit, WatchKit
does not have a sophisticated layout mechanism like Auto Layout. In fact,
pretty much all you can do is arrange your user interface objects in a row
or a column. Objects that are added directly to the watch screen (which
are actually being added to the screen’s interface controller) are always
arranged vertically, one above the other. That’s why the label was placed
right at the top of the screen.

Make sure the label is selected, which is indicated by the blue outline and
the white resize handles shown in Figure 1-7. If it’s not currently selected,
just click on it. Now open the Attributes Inspector (View ➤ Utilities ➤
Show Attributes Inspector) to see the attributes of the label that you can
set (see Figure 1-8).

http://dx.doi.org/10.1007/9781484210260_3
http://dx.doi.org/10.1007/9781484210260_3

CHAPTER 1: Welcome to the Apple Watch

11

Use the Attributes Inspector to change the label text from Label to Hello
Watch. Next, use the Font control to change the text font from Body to
Headline. As you can see, the label resizes automatically to fit its new
content. Let’s also horizontally center the text on the screen. A little below
the Text field is a segmented control labeled Alignment, which sets the
position of the text within the label itself. You can click the third segment
from the left to center the text within the label itself, but that doesn’t do what
we want—we actually need to reposition the label relative to the interface
controller. For that, you need to use the controls in the Position section of
the Attributes Inspector. Click the Horizontal selector and choose Center.
You’ll see that the label repositions itself horizontally while remaining at the
top of the screen, as shown in Figure 1-9.

Figure 1-8. Inspecting the attributes of the Label object

CHAPTER 1: Welcome to the Apple Watch 12

Now let’s add an image below the label. Drag an Image object from the
Object Library and drop it onto the storyboard. It doesn’t matter where you
release the mouse as long as it’s over the watch screen and somewhere
below the label—the image will be positioned underneath the label, up
against the left edge of the screen.

The Image object is empty until you give it something to display. In the
1 – HelloWatch Icon folder of the book’s example source code archive,
you’ll find a suitable image. In the Project Navigator, select Image.xcassets
from the HelloWatch WatchKit App group to open the WatchKit app’s asset
catalog and then drag the image into the editor area and drop it (see
Figure 1-10).

Note The images that you plan to use in the WatchKit application should be
added to the asset catalog of the WatchKit application itself. As you’ll see later,
it is possible to programmatically install images from WatchKit extension’s asset
catalog, but images configured in the storyboard must come from the WatchKit
application’s asset catalog.

Figure 1-9. Horizontally centering the label

CHAPTER 1: Welcome to the Apple Watch

13

The image came from a file called SmileyFace@2x.png and it was added
to the 2x section of the entry in the asset catalog. The Apple Watch has
a Retina screen, so all images must be prepared at double the required
point size. In this case, the image is a 206-pixel square, which maps to a
103-point square from the point of view of the WatchKit software.

Back in the storyboard, make sure the Attributes Inspector is open, select
the Image object, and then choose SmileyFace from the Image selector. The
smiley face image appears in the storyboard, but it’s still aligned to the left
of the screen. You can center the image using the Horizontal selector from
the Position section, as you did with the label.

Before running the application, let’s give it a title. To do this, select the
interface controller by clicking it in the Document Outline and then enter
Hello in the Title field in the Attributes Inspector. Press the Return button,
and the title appears at the top left of the watch screen (see Figure 1-11).

Now let’s add an image below the label. Drag an Image object from the
Object Library and drop it onto the storyboard. It doesn’t matter where you
release the mouse as long as it’s over the watch screen and somewhere
below the label—the image will be positioned underneath the label, up
against the left edge of the screen.

The Image object is empty until you give it something to display. In the
1 – HelloWatch Icon folder of the book’s example source code archive,
you’ll find a suitable image. In the Project Navigator, select Image.xcassets
from the HelloWatch WatchKit App group to open the WatchKit app’s asset
catalog and then drag the image into the editor area and drop it (see
Figure 1-10).

Note The images that you plan to use in the WatchKit application should be
added to the asset catalog of the WatchKit application itself. As you’ll see later,
it is possible to programmatically install images from WatchKit extension’s asset
catalog, but images configured in the storyboard must come from the WatchKit
application’s asset catalog.

Figure 1-10. Adding an image to the WatchKit application

CHAPTER 1: Welcome to the Apple Watch 14

Running the Application on the Simulator
When you added the WatchKit application target to your project, Xcode
also added a scheme that you can use to run it on the simulator (or a real
Apple Watch). Open the scheme selector and you’ll see that there are two
schemes for HelloWatch (shown in Figure 1-12).

Figure 1-12. Selecting the scheme to run the WatchKit application

Figure 1-11. Setting the interface controller’s title

The scheme labeled HelloWatch runs the HelloWatch iOS application, which
is just an empty shell because we didn’t add anything to it. The second
scheme, labeled HelloWatch WatchKit App, is the one that you need to
launch the WatchKit application. Select this scheme and then choose one

CHAPTER 1: Welcome to the Apple Watch

15

of the iPhone simulators. You need to select an iPhone simulator because
when you start your WatchKit application, the code in the HelloWatch
WatchKit extension is actually run on the iPhone simulator. In a real
application, the code in the extension would perform initialization and
prepare the interface controller to be displayed. For this simple example, we
don’t need any initialization, so the extension doesn’t do anything useful.

The user interface of the WatchKit application is not displayed on the iPhone
simulator—instead, it’s shown on an external display. To make this possible,
you need to select an appropriate simulated external display. To do that,
with the HelloWatch WatchKit App scheme selected, build and run the
WatchKit application in the usual way using Product ➤ Run from the menu
bar or the keyboard shortcut R. When the iOS simulator starts, select
Hardware ➤ External Displays from its menu bar and you’ll see a menu of
external displays, as shown in Figure 1-13.

Figure 1-13. Choosing an external display for the Apple Watch

Select the 38mm Apple Watch screen and a separate empty window will
open. Now stop and rerun the WatchKit application and you should see
the user interface from your storyboard in this window. Next, select the
42mm screen and run the application again to see how it looks on the larger
screen. The results are shown in Figure 1-14.

CHAPTER 1: Welcome to the Apple Watch 16

As you can see, this simple application works well on both sizes of screen,
although you might prefer to add more vertical spacing to get a more
balanced view on the 42mm screen. In Chapter 2, you’ll see that it is
possible to do that by creating a single design in the storyboard that has
spacing and other attribute values that depend on the size of the screen of
the watch on which the application is run.

Running the Application on an Apple Watch
To run an application on a real Apple Watch, the watch must be paired to
your iPhone and the iPhone must be connected to your computer. You’ll also
need to be a paid-up member of Apple’s iOS Developer program because
Xcode will need to create a provisioning profile that includes the watch.

Before we run our example on the Apple Watch, let’s give it a home
screen icon. You need to provide several icons for a production WatchKit
application. You can see what they are by selecting Images.xcassets in the
HelloWatch WatchKit App group in the Project Navigator and selecting the
AppIcon image set (see Figure 1-15).

Figure 1-14. Running the HelloWatch WatchKit app on the 38mm (left) and 42mm (right) screens

http://dx.doi.org/10.1007/9781484210260_2

CHAPTER 1: Welcome to the Apple Watch

17

For most of the examples in this book, we won’t supply any of these icons,
and for this example, we’re only going to include the home screen icon. You
should, of course, design an appropriate set of icons for any application that
you intend to release to the App Store.

Note You’ll see warnings in Xcode if you don’t supply all the icons that Xcode
thinks you need to include. Click on the warning indicator (the yellow triangle
in the Activity View at the top of the Xcode window) to see which icons are
missing.

Figure 1-15. The full set of application icons for a WatchKit icon

Below each group of icons, you’ll see a description of what each icon is
used for and its size. The slot for the Home Screen icon, which is in the
middle in Figure 1-15, shows that the icon needs to be a 40 pt. square (all
Apple Watch icons are square). Because the Apple Watch screen is a 2x
Retina display (which means that 1 point is equivalent to 2 pixels), you
actually need to create an image that’s 80 pixels square. Some icons need
to be sized differently for the 38mm and 42mm watches. For example, the
Short Look Notification icon (you’ll find out what this is used for in Chapter 9)
is 86 points on the 38mm device and 98 points on the 42mm device.

Tip Apple provides design guidelines for icons (and for all aspects of building
Apple Watch applications) in its document Apple Watch Human Interface
Guidelines, where you’ll find links to a set of resource files that include
Photoshop templates that you can use as the basis for your icon designs.

www.allitebooks.com

http://dx.doi.org/10.1007/9781484210260_9
http://www.allitebooks.org

CHAPTER 1: Welcome to the Apple Watch 18

You’ll find a Home Screen icon for our example in the 1 – HelloWatch Home
Screen Icon folder of the example source code archive. Drop the icon onto
the Home Screen slot of Images.xcassets, and you’re almost ready to run
the application on the watch.

If you haven’t already done so, connect your iPhone to your computer and
make sure that the iPhone is paired with your Apple Watch. You can check
that Xcode has recognized your watch by opening the Devices window
(Window ➤ Devices in the Xcode menu). Select your iPhone in the device
list on the left of the window and you should also see the watch, as shown
in Figure 1-16.

Figure 1-17. Choosing the scheme and target to run the example on your watch

Figure 1-16. The Apple Watch in the Xcode Devices window

To run the application, go the scheme selector in Xcode, select the
HelloWatch WatchKit App scheme, and choose your iPhone as the target
device (see Figure 1-17). Then click the Run button.

CHAPTER 1: Welcome to the Apple Watch

19

The first time you do this, you’ll probably see a dialog box reporting that
Xcode failed to sign the WatchKit application. That’s because you need to
add the watch to your account at the Developer Portal and create a
provisioning profile that includes it. You can do this manually, if you prefer
(you’ll find the identifier for the watch in the Devices screen, as shown in
Figure 1-16), but it’s much easier to allow Xcode to do it for you. Click the
Fix Issue button in the dialog, and Xcode will try again. The HelloWatch
application will be installed on your iPhone, and the watch application will be
sent to the watch—if you have your watch screen unlocked and are showing
the home screen, you’ll see this happen. The application’s icon should
appear on the watch home screen. You can see the application’s icon at the
bottom right in Figure 1-18.

Tip To take a screenshot of the watch, press and hold the side button and
then click the digital crown. The screen should flash, and the screenshot will be
stored in the Camera Roll on the paired iPhone.

Figure 1-18. The HelloWatch application installed on the Apple Watch

CHAPTER 1: Welcome to the Apple Watch 20

Even though you clicked the Run button in Xcode, the application doesn’t
automatically run on the watch—you need to tap on its icon to launch it.
When you do that, you’ll see a launch screen with the application’s name
and a progress indicator for a short while, and then the application’s main
screen appears (see Figure 1-19).

Note Sometimes launching the application for the first time appears to stall.
Wait for a few seconds. If it still doesn’t work, click the digital crown to return to
the home screen and try again.

Figure 1-19. Launching the HelloWatch application on the Apple Watch

CHAPTER 1: Welcome to the Apple Watch

21

The application remains installed until you do one of three things:

	Delete it on the watch by pressing and holding your
finger on the screen and clicking the delete icon that
appears, just as you would to delete an application from
your iPhone. This is not recommended because the
application does not get reinstalled if you run it again
from Xcode. To fix this, delete the application from the
iPhone (or the iPhone simulator) and run it again.

	Open the Apple Watch application on your iPhone, find
the entry for HelloWatch, and switch off the Show App
on Apple Watch setting. You can reinstall the application
just by toggling the switch back to the on position.

	Delete the HelloWatch application from your iPhone.
When you do this, the watch application is uninstalled
from the watch.

For normal development, you don’t need to manually delete the application
from either the watch or the iPhone—if you make changes to the application
and run it again from Xcode, it gets reinstalled automatically.

Congratulations! You just successfully built and ran your first Apple Watch
application. Now let’s take a quick look at what you can and can’t do with
the WatchKit framework.

Some Things That a WatchKit Application Can
and Can’t Do
WatchKit lets you build simple applications for the Apple Watch. You can
create very useful extensions for your iPhone applications, like the weather
application that you’ll build in Chapter 7 of this book. However, you can’t
do everything that the Apple’s own native Apple Watch applications can do.
Here’s a list of some of the things that you can and can’t do with WatchKit:

	Your application can include a glance, which is a single
screen that you can use to present useful information
relating to your application. The user can configure
which glances are available when by swiping up from
the bottom of the Apple Watch screen. Chapter 8 adds
a glance to the weather application from Chapter 7.

	You can handle local and remote notifications from your
iPhone application on the watch, if the user allows it.
You can choose to let the system display the notification
using a default presentation, or you can build one of
your own. We’ll talk more about that in Chapter 9.

http://dx.doi.org/10.1007/9781484210260_7
http://dx.doi.org/10.1007/9781484210260_8
http://dx.doi.org/10.1007/9781484210260_7
http://dx.doi.org/10.1007/9781484210260_9

CHAPTER 1: Welcome to the Apple Watch 22

	You can’t install or run any code on the Apple Watch
itself. Only your storyboard and image resources are
sent to the watch. The application logic is implemented
in an extension that runs on the iPhone and uses
WatchKit APIs to communicate with the software on the
watch.

	WatchKit user interfaces are restricted to very simple
layouts, as you’ll see in Chapter 2. You can’t create
the equivalent of custom UIViews, and there is nothing
equivalent to Core Graphics, so you can’t draw directly
(or indirectly) to the screen.

	Animations in WatchKit are limited to animated image
frames. There is nothing like Core Animation, and
the delay between an operation being performed in
your extension and the result appearing on the watch
means that it is not really feasible to create fluid
animations that are driven from code in the extension.
One consequence of this, along with the lack of direct
drawing on the Apple Watch, is that you can’t really
create a custom watch face.

	There is no way to detect when the user interacts with
the screen—for example, you don’t get notified when
the user taps or swipes across your user interface. You
have to rely on WatchKit user interface objects such as
buttons and sliders to detect the user’s gestures and
translate them into calls to code in your extension.

	Apple Watch has a built-in heart rate sensor, an
accelerometer, a speaker, a microphone, Bluetooth, and
WiFi. Unfortunately, you don’t have direct access to any
of this hardware. You can get speech input through a
specially designed controller that uses the microphone
on the watch, and you can use the Core Location
framework in your application’s extension to present
location-based information to the user. However,
you can’t detect orientation changes, monitor the
user’s movement or heart rate, or play audio on the
watch itself.

That may sound like a lot of restrictions, but as you’ll see as you progress
through this book, you can still build some very useful and appealing WatchKit
applications. You’ll find some of the applications that have already been built
on Apple’s website at https://www.apple.com/watch/app-store-apps.

http://dx.doi.org/10.1007/9781484210260_2
https://www.apple.com/watch/app-store-apps

CHAPTER 1: Welcome to the Apple Watch

23

IMPORTANT NOTE

Sometimes you may find that an example from this book fails to build. Most likely,
you’ll see an error from the link phase of the build. A typical manifestation of the problem
looks like this:

ld: framework not found SharedCode for architecture x86_64
clang: error: linker command failed with exit code 1 (use –v to see
invocation)

This is not a problem with the example source code—it’s an Xcode problem. To fix it, hold
down the option key, select Product ➤ Clean Build Folder. . . from Xcode’s menu then try
again. If this doesn’t work, quit Xcode, restart it and try again. You may have to repeat these
steps more than once, but eventually you will find that the example will build and run.

Summary
In this chapter, you had a first look at the Apple Watch and at the tools in
Xcode that you can use to build applications for it. You also built and ran
a very basic application on the iOS simulator and on a real Apple Watch
(assuming, of course, that you are lucky enough to have one!). Chapter 2
takes a closer look at the components that make up a WatchKit application.
We’ll look in more detail at using the Xcode storyboard editor to design its
user interface.

http://dx.doi.org/10.1007/9781484210260_2

25

Chapter 2
Interface Controllers and
Layout
Chapter 1 introduced the basic building blocks of WatchKit and helped you
create a very simple application. This chapter looks in detail at interface
controllers, the WatchKit equivalent of UIKit’s view controllers. We start
by discussing the lifecycle of an interface controller and how it relates to
the lifecycle of your WatchKit application’s extension. We then cover in
some detail the way in which interface controllers handle layout and the
storyboard tools you can use to construct layouts that adapt to the different
screens of the 38mm and 42mm Apple Watch devices.

Interface Controllers
As you saw in Chapter 1, interface controllers contain the logic for your
WatchKit application. Every interface controller must be configured in the
storyboard and connected to a subclass of WKInterfaceController. Xcode
packages your interface controllers (and any other files in your WatchKit
Extension group in Xcode) as an application extension, which is installed
on the iPhone as part of your iOS application when it is downloaded from
the App Store or run from Xcode. The storyboard and any resources in the
WatchKit App group (usually images or custom fonts) are packaged into a
separate bundle and installed on the Apple Watch that is paired to the user’s
iPhone. In this section, we examine the lifecycle and configuration of an
interface controller.

http://dx.doi.org/10.1007/9781484210260_1
http://dx.doi.org/10.1007/9781484210260_1

CHAPTER 2: Interface Controllers and Layout26

Interface Controller Lifecycle
When the user launches your WatchKit application, its storyboard is loaded
from the WatchKit application bundle (which is stored on the watch), and the
user interface for the controller indicated by the main entry point arrow (see
Figure 1-6 in Chapter 1) is loaded on the watch. On the iPhone, WatchKit
then loads and runs the extension associated with your WatchKit application
(from the WatchKit application’s extension bundle) and initiates the lifecycle
of the interface controller class that is linked to the initial interface controller
that was loaded from the storyboard on the watch.

Let’s examine the interface controller lifecycle by running a WatchKit
application on the simulator. Start by making a copy of the project from
Chapter 1, leaving the project name and everything else unchanged.

Open the project in Xcode and select Interface.storyboard in the
HelloWatch WatchKit App group in the Project Navigator. In the storyboard,
select the interface controller and then open the Attributes Inspector, as
shown in Figure 2-1.

Note As emphasized in Chapter 1, it is important to keep in mind at all times
that the user interface that you design in your storyboard is loaded by Apple’s
software running on the Apple Watch, but the interface controllers and all of the
executable code in your application are part of the extension and execute on the
iPhone, not the Watch.

Note You’ll find the completed version of this project in the folder
2 – Controller Lifecycle in the source code archive.

http://dx.doi.org/10.1007/9781484210260_1
http://dx.doi.org/10.1007/9781484210260_1
http://dx.doi.org/10.1007/9781484210260_1

CHAPTER 2: Interface Controllers and Layout

27

The link between the initial interface controller in the storyboard and the
class that implements it is made by the value of the Class field in the
Custom Class section of the controller’s attributes. Here, the initial interface
controller class is called InterfaceController. Back in the Project Navigator,
you’ll find the source for this class in the file InterfaceController.swift
in the HelloWatch WatchKit Extension group. Select this file and add the
following code shown in bold to it.

class InterfaceController: WKInterfaceController {

 override init() {
 super.init()
 NSLog("InterfaceController init() called")
 }

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 NSLog("awakeWithContext() called with context \(context)")
 }

 override func willActivate() {
 // This method is called when watch view controller
 // is about to be visible to user
 super.willActivate()
 NSLog("willActivate() called")
 }

 override func didDeactivate() {
 // This method is called when watch view controller
 // is no longer visible
 super.didDeactivate()
 NSLog("didDeactivate() called")
 }

}

Figure 2-1. The initial interface controller in the storyboard

CHAPTER 2: Interface Controllers and Layout28

Now select the HelloWatch WatchKit App schema and run the example on
the Apple Watch simulator. You’ll see the following output appear in the
Xcode Console (if this Console is not visible, you can open it by selecting
View ➤ Debug Area ➤ Activate Console in the menu bar):

HelloWatch WatchKit Extension[87630:25575085] InterfaceController init()
called
HelloWatch WatchKit Extension[87630:25575085] awakeWithContext() called with
context nil
HelloWatch WatchKit Extension[87630:25575085] willActivate() called

The first thing that happens is a call to the interface controller’s initializer,
followed by a call to its awakeWithContext() method. You can use either of
these methods to perform one-time initialization. The awakeWithContext()
method has an optional argument of type AnyObject?. In the case of the
initial interface controller, this argument is always nil (as you can see
from the Console output), but when you create an interface controller
programmatically, as you will in Chapter 5, you can use this argument to
pass contextual information that the controller can use to configure itself.
Next, the controller’s willActivate() method is called. This happens just
before the interface controller becomes visible on the Apple Watch.

Apple recommends that you use these methods as follows:

	Use the init() method to perform one-time initialization
of data and user interface objects that does not require
the initial context and the awakeWithContext() method
to incorporate state from the context object, if there is
one. You can use either of these methods to populate
the user interface with initial values that you didn’t set in
the storyboard and to make any necessary adjustments
to the storyboard layout. As you’ll see, however, you
don’t have much control over the layout at run time over
and above what is available in Xcode at design time.

	Use the willActivate() method to allocate resources
and start timers that are required only while the
controller is visible. It is possible to update the user
interface in this method too, but that should be done
only if it has to be done each time the controller
becomes active.

While the user is interacting with your application on the Apple Watch,
its extension will continue to run on the iPhone. However, as soon as the
user switches to another application or lowers his wrist, the extension is
suspended and it may be terminated immediately or at some later time. This
means that you can really only do useful work while the user is interacting
with your application on the watch, which could be only a few seconds.

www.allitebooks.com

http://dx.doi.org/10.1007/9781484210260_5
http://www.allitebooks.org

CHAPTER 2: Interface Controllers and Layout

29

Before your extension is suspended, the active interface controller’s
didDeactivate() method is called to give it an opportunity to release any
resources or stop any timers that it no longer needs. It is not possible to
simulate switching to another application on the simulator, but you can
trigger the execution of the didDeactivate() method for testing purposes by
locking the screen of the iPhone simulator. To do this, click on the simulator
and then select Hardware ➤ Lock from the menu bar, or use the keyboard
shortcut L. You’ll see the following appear in the Console, indicating that
the interface controller is no longer active:

HelloWatch WatchKit Extension[87630:25575085] didDeactivate() called

If you now unlock the iPhone using the slider on the lock screen, the
interface controller is activated again:

HelloWatch WatchKit Extension[87630:25575085] willActivate() called

Notice that the init() and awakeWithContext() methods were not called
when the screen was unlocked. That’s because the interface controller
instance that was in use when the screen was locked was still available
when the screen was unlocked. However, on a real device, it is possible for
the WatchKit application extension to be terminated while it is not active. In
that case, the next time the user interacts with your application, a new
interface controller instance would be created and its init() and
awakeWithContext() methods called before it is activated.

Tip You can use the example application to explore when the extension’s lifecycle
methods are called by running it on a real Apple Watch. Select your iPhone as the
target in the scheme selector, install the application by pressing the Run button, and
then start it by tapping its icon on the home screen. You’ll see the output from the
println() statements in the Xcode console, just as you did when using the simulator.
Try lowering and raising your wrist, letting the display time out and go blank and then
using the digital crown to switch back to the home screen to see what lifecycle events
are generated. You can also place breakpoints in your code in the same way that you
would when debugging an iOS application or when running in the simulator.

Note It is possible to configure the watch so that it does not activate and
deactivate your extension when the user raises and lowers his wrist. In that
case, the extension will be deactivated when the screen times out and goes
blank and will be reactivated (if it hasn’t been terminated) when the user taps
the screen to wake up the watch. This behavior is controlled by the Activate
on Wrist Raise setting in the Settings application on the watch itself. For the
sake of simplicity, this book assumes that this setting is at its default value.

CHAPTER 2: Interface Controllers and Layout30

Navigation and Lifecycle Events
Navigation between interface controllers is another reason for a controller
to be activated or deactivated. Applications that require more than one
interface controller can use either of two different types of navigation
between the controllers. In a page-based application, two or more
controllers are logically placed side-by-side with the user interface of only
one controller on screen at any given time. To navigate between controllers,
the user swipes left or right, just like the home screen of an iPhone or
iPad, or when navigating the pages of a UIPageViewController in UIKit.
By contrast, a hierarchical application has a single root interface controller
onto which other controllers can be pushed to form a stack, like UIKit’s
UINavigationController.

You choose at design time whether your application uses page-based
or hierarchical navigation, and your choice is reflected in the storyboard,
as you’ll see in Chapter 5. Only one navigation style can be used in an
application—it is not possible to use hierarchical navigation style and then
push an interface controller that uses page-based navigation or vice versa.
However, you can present an interface controller that is page-based even if
your application uses hierarchical navigation.

All forms of navigation cause the willActivate() and didDeactivate()
methods of the interface controllers concerned to be called:

	In a page-based application, when the user swipes left
or right, the didDeactivate() method of the outgoing
controller is called, followed by the willActivate()
method of the incoming one.

	In a hierarchical application, when one controller is
pushed on another, the didDeactivate() method of
the controller that is being hidden is called before the
willActivate() method of the controller being pushed.

	When an interface controller is presented, the
didDeactivate() method of the presenting controller is
called, followed by the willActivate() method of the
controller being presented. The sequence is reversed
when the presented view controller is dismissed.

	An interface controller is also deactivated when the
user uses the force touch gesture (a firm press on the
screen) to trigger the controller’s menu, if there is one. It
is reactivated when the menu is closed.

You’ll find a detailed discussion of interface controller navigation in Chapter 5.

http://dx.doi.org/10.1007/9781484210260_5
http://dx.doi.org/10.1007/9781484210260_5

CHAPTER 2: Interface Controllers and Layout

31

Lifecycle of the WatchKit App Extension
The willActivate() and didDeactivate() methods notify events in the
lifecycle of an interface controller, but these methods tell you nothing about
the lifecycle of your WatchKit application’s extension. As noted earlier, the
extension is started whenever it’s required—typically because the user
launched your application—and is suspended (or terminated) when the user
stops interacting with the application.

Unlike iOS applications, there are no lifecycle methods for extensions.
Your extension also does not have a UIApplication object or a
UIApplicationDelegate. This means that there is no way to get control
when the extension is started, suspended or terminated. In the special case
that your application has only one interface controller, you can probably
assume that the extension is about to be suspended if your controller’s
didDeactivate() method is called.

Incidentally, the fact that the WatchKit application’s code executes in
an extension and not as a fully-fledged iOS application has several
consequences for the way in which you code the application. Here are some
things to keep in mind:

	The extension runs only while the user is interacting
with your WatchKit application. This interaction might
last for only a few seconds, so you may not have time
to start and complete long-running activaties, such
as fetching data from the Internet. To do this, you
need the assistance of your iOS application. WatchKit
and iOS provide mechanisms that let you coordinate
activity between your WatchKit extension and the iOS
application, which you’ll use in Chapter 7 to allow
an extension to fetch weather forecast data from the
Internet and display it on the Apple Watch.

	Code in extensions is not allowed to run in background
mode. That means you can’t do things like periodically
refresh cached data by running a background fetch, or
use Core Location to continuously monitor the user’s
position. Again, the solution is to use the techniques
that you’ll see in Chapter 7 to enlist the help of the iOS
application to obtain the data that’s required and share
it with the WatchKit extension.

http://dx.doi.org/10.1007/9781484210260_7
http://dx.doi.org/10.1007/9781484210260_7

CHAPTER 2: Interface Controllers and Layout32

	Extensions of other types (like Today extensions) that
are linked to a UIViewController have access to an
NSExtensionContext object via the view controller’s
extensionContext property. The NSExtensionContext
makes it possible for code in the extension to open
a URL even though it does not have access to a
UIApplication object. The WKInterfaceController
class does not have a similar property, so WatchKit
application extension classes do not have an
NSExtensionContext.

It’s possible for the user to run your WatchKit application without ever
having started the iOS application that installed it—in fact, this is exactly
what happened when you run the example in Chapter 1 on your watch. It’s
also possible for the WatchKit application (and hence your extension) to be
running when the iOS application is not running. This is what happens when
you run the WatchKit app in the iOS simulator.

Debugging the WatchKit App Extension and the
iOS Application Together
Sometimes it is useful to be able to run and debug the WatchKit app and
the iOS application at the same time. If you try to do this by running them
individually in the simulator, you’ll find that you can’t. Try it out for yourself.
If you start the HelloWatch WatchKit application in the usual way and then
try to run the iOS application by using the HelloWatch scheme, Xcode will
tell you that the simulator is already in use. The same thing happens if you
run the iOS application first and then try to start the WatchKit application. To
have both applications available for debugging in the simulator at the same
time, do the following:

 1. Use the HelloWatch WatchKit App scheme to run the
WatchKit app. This installs both applications in the
simulator.

 2. In the home screen of the iOS simulator, find the icon
for the HelloWatch iOS application and tap it. This
launches the iOS application. Now both applications
are running, but the Xcode debugger is connected
only to the WatchKit application extension.

 3. To connect the debugger to the iOS application,
select Debug ➤ Attach to Process from the Xcode
menu bar. Hover the mouse for a few seconds, and a
list of all of the processes running on the simulator will
appear, as shown in Figure 2-2. Click on HelloWatch
to connect the debugger to the iOS application.

http://dx.doi.org/10.1007/9781484210260_1

CHAPTER 2: Interface Controllers and Layout

33

In the Xcode Debug Navigator (which you can open by pressing 6), you
should now see that both the WatchKit application and the iOS application
are available for debugging.

The same technique works when running on real hardware—run the
WatchKit application using Xcode in the usual way, start the iOS application
by tapping its icon on the iPhone home screen, and attach to it using the
Attach To Process menu item shown in Figure 2-2.

Interface Controller Attributes
Interface controllers have ten settable attributes. You’ll find descriptions of
these attributes on the documentation page for the WKInterfaceController
class, which you can find from the Documentation and API Reference
window in Xcode. The rest of this chapter discusses some of these attributes.

Most WatchKit attributes have the following things in common:

	They can only be set in the storyboard. That means they
have fixed values at run time, because you can’t change
them programmatically.

	There is no way to read the current value of an
attribute—you are assumed to know what the current
value is. In the case of attributes that can be changed
at run time, you are expected to keep track of the last
value that you set.

Figure 2-2. Debugging a WatchKit application and its iOS application at the same time

CHAPTER 2: Interface Controllers and Layout34

Why these restrictions? Setting an attribute’s value at run time requires
a message to be sent from the iPhone to the Apple Watch. The
communication channel between these devices is relatively slow, so making
most attributes read-only preserves the available bandwidth for more
important communication. Reading an attribute’s value would be even more
expensive than changing it, because it would require two messages—one
to request the value and another to return it from the watch to the iPhone.
In almost all cases, this would be wasteful because the watch application
extension can simply store the current value locally.

Let’s try setting a couple of the attributes of the WKInterfaceController class.
Open the Interface.storyboard file in the editor and select the interface
controller class in the storyboard editor or the Document Outline. You’ll see all
the attributes you can set in the Attributes Inspector and in Figure 2-3.

Figure 2-3. Interface Controller attributes

Setting the Background Color
The Color attribute sets the background color of the interface controller,
which is, of course, the background color of your application. Initially, the
background is black. Use the Color selector to change the background color
to light gray. The color change is reflected in storyboard as soon as you set
it (see Figure 2-4). Notice that the color of the status bar at the top of the
watch screen does not change—it remains black. There is no way to change
this. In fact, Apple recommends that you use black as the background color
for your application if at all possible to avoid a large contrast between it and
the black edges of the device.

CHAPTER 2: Interface Controllers and Layout

35

You can also use an image to set the background, or a combination of an
image and a color. If you set both, the image is drawn on top of the color
that you specify, which means that the color will only be seen in places
where the image has translucent pixels. You’ll see how to use an image as
the background in Chapter 3, where you’ll also make use of the Mode and
Animate attributes shown in Figure 2-4.

At the top of the Attributes Inspector you’ll see a group containing two
attributes called Identifier and Title. The Identifier attribute can be
used to refer to an interface controller in code, which you’ll need to do when
pushing or presenting that controller, for example. We’ll use this attribute
in Chapter 5. You don’t need to supply an identifier for the initial controller
because you will never need to reference it in code. WatchKit identifies that
this is the initial controller because the Is Initial Controller checkbox
in Figure 2-4 is checked, and the Main arrow next to the controller in the
storyboard is a more obvious visual cue for you.

Setting the Application Title
You used the Title attribute to set the application’s title in Chapter 1. The
title appears at the top left of the status bar. Because space in the status bar
is at a premium, you should try to keep the title short so it doesn’t get
truncated. It’s worth noting, though, that on a real device you would normally

Figure 2-4. Changing the background color of an interface controller

http://dx.doi.org/10.1007/9781484210260_3
http://dx.doi.org/10.1007/9781484210260_5
http://dx.doi.org/10.1007/9781484210260_1

CHAPTER 2: Interface Controllers and Layout36

have more space for the title than you see on the simulator, because the
charging icon that appears in the simulator (see Figure 1-14) would not
normally be present.

You can change the color of the title, but not its font. The title is also the only
interface controller attribute you can set at run time. Let’s try out both of
these features.

There is no attribute that specifically sets the color of the title. Instead, there
is an application-wide attribute called the Global Tint (which you may also
see referred to as the application’s key color). To set this attribute, select the
storyboard in the Project Navigator and then open the File Inspector using
View ➤ Utilities ➤ Show File Inspector from the menu bar or by pressing
1. There’s a selector for the Global Tint attribute in the Interface Builder
Document section. Use it to change the title color to yellow (see Figure 2-5).

Note Try this out for yourself. Change the Title attribute in the Attributes
Inspector and run the application on a watch to see how many characters you
can use. Note, however, that there is less space for the title on the 38mm screen
than there is on the 42mm one.

Figure 2-5. Changing the application title color

CHAPTER 2: Interface Controllers and Layout

37

Now let’s change the title in code. Select InterfaceController.swift in
the Project Navigator and make the changes shown in bold to the init()
method:

override init() {
 super.init()
 NSLog("InterfaceController init() called")

 setTitle("Hi!")
}

When the interface controller is initialized, the new title replaces the value
set in the storyboard. Run the application now and you’ll see the new title,
as shown in Figure 2-6.

Figure 2-6. Setting the application title in code

CHAPTER 2: Interface Controllers and Layout38

In general, if an attribute value can be changed at run time, you can set its
value whenever the controller is active, not just when it’s being initialized.
However, there are a couple of things to keep in mind:

	As noted earlier, changing an attribute value requires the
iPhone to send a message containing the new value to
the Apple Watch. This takes time and communication
bandwidth, so you should take care to do this only when
necessary. In particular, try to avoid setting the attribute
to its current value. However, because you can’t read
the current values of attributes, you need to keep track
of the last value you set, so it should be easy to detect
whether the current and new values are the same.

	If you change the values of several attributes, WatchKit
may combine the changes into a single message to
minimize the overhead. However, you should not rely
on this.

Interface Controller Layout
Layout in WatchKit is much simpler than it is in UIKit. Whereas UIKit allows
you complete control over the size and position of any view, WatchKit only
allows interface objects to be arranged in rows or columns. Also, even
though you can specify the size of most user interface objects, you don't
have fine-grained control over positioning.

Once you’ve designed the layout you want in the storyboard, WatchKit takes
care of constructing the user interface at run time. The only real problem
you’re likely to encounter with layout is the need to support the two slightly
different screen sizes shown in Figure 2-7.

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: Interface Controllers and Layout

39

The overall screen size of the 42mm device is 156 pts by 195 pts, a little
taller and wider than the 38mm device, which is 136 pts by 170 pts. The
status bar of the 42mm device is also a couple of points taller than that of
the smaller version.

Notice that the dimensions in Figure 2-7 are all given in points (pts). Like all
the most recent iPhones and iPads, the Apple Watch has a Retina screen,
so you need to think in terms of (logical) points instead of hardware pixels.
The display scale factor is 2, so a point maps to 2 pixels along each axis.
Throughout this book, whenever we refer to sizes and coordinates, we use
points, not pixels, unless explicitly stated to the contrary.

You can get the display scale factor and the screen dimensions at run time
from the WKInterfaceDevice class. Let’s try that out. In the Project Navigator,
select InterfaceController.swift and add the following code shown in
bold to the willActivate() method:

override func willActivate() {
 // This method is called when watch view controller
 // is about to be visible to user

Note A UIKit application can choose to increase the available screen space
by hiding the iPhone’s status bar. A WatchKit application does not have this
luxury—you can’t hide or reduce the height of the status bar.

Figure 2-7. Dimensions of the 42mm and 38mm Apple Watch Screens

CHAPTER 2: Interface Controllers and Layout40

 super.willActivate()
 NSLog("willActivate() called")

 let device = WKInterfaceDevice.currentDevice()
 NSLog("Scale: \(device.screenScale)")
 NSLog("Screen bounds: \(device.screenBounds)")
 NSLog("Content frame: \(contentFrame)")
}

The currentDevice() type method returns the WKInterfaceDevice instance
for the Apple Watch that’s paired to the iPhone. Once you have that, you
can use the screenScale and screenBounds properties to get the display
scale (as a CGFloat) and the screen bounds (as a CGRect). To get the bounds
of the area available to the interface controller (which is the part with the
gray background in Figure 2-7), you use the contentFrame property of
WKInterfaceController. Here’s what you’ll see in the console if you run this
code on the 42mm screen:

HelloWatch WatchKit Extension[93510:27376874] Scale: 2.0
HelloWatch WatchKit Extension[93510:27376874] Screen bounds:
(0.0,0.0,156.0,195.0)
HelloWatch WatchKit Extension[93510:27376874] Content frame:
(0.0,21.0,156.0,174.0)

On the 38mm device, the results look like this:

HelloWatch WatchKit Extension[7538:28690257] Scale: 2.0
HelloWatch WatchKit Extension[7538:28690257] Screen bounds:
(0.0,0.0,136.0,170.0)
HelloWatch WatchKit Extension[7538:28690257] Content frame:
(0.0,19.0,136.0,151.0)

You can see that the values match the dimensions shown in Figure 2-7.

Spacing, Insets, and Screen-Dependent Layout
Although the size differences between the 38mm and 42mm screens are
relatively small, it’s still important to take them into account when designing your
application. This is well illustrated by the unused space at the bottom of the
screenshot on the left in Figure 2-7. Clearly, we need to improve this example
to make better use of the larger screen. In fact, there is scope to improve the
layout for both devices. We’ll start by improving the layout on the 38mm device
and then fine-tune the result to get the best result for the 42mm screen.

While we’re making these changes, it would be useful to see both layouts
at the same time. We can do that by previewing the results in the Assistant
Editor. Start by showing the Assistant Editor using View ➤ Assistant
Editor ➤ Show Assistant Editor in the menu bar. Then in the jump bar at
the top, select Preview followed by Interface.storyboard (Preview)
(see Figure 2-8).

CHAPTER 2: Interface Controllers and Layout

41

At this point, you’ll see a preview of the 38mm screen in the Asssistant
Editor, as shown on the left in Figure 2-9.

Figure 2-8. Opening a preview of the storyboard in the Assistant Editor

Figure 2-9. Previewing the 38mm screen and adding a preview of the 42mm device

To add the 42mm device, click the + icon at the bottom left of the preview
area and select Apple Watch 42mm. You should now have previews of both
screen sizes, side by side, as shown on the right in Figure 2-9.

CHAPTER 2: Interface Controllers and Layout42

Changing Row Spacing
The first thing we’re going to do is add some vertical space between the
Hello Watch label and the image. Try to do this by dragging the image
down a little ways in the storyboard—you’ll find that you can drag the image
around, but as soon as you release the mouse, it jumps right back to where
it started. That’s because WatchKit doesn’t support placement of user
interface objects at arbitrary coordinates. Recall that the interface objects in
an interface controller are always organized vertically, in rows. To separate
them, you need to add some more spacing between rows by setting the
interface controller’s Spacing attribute. To do that, select the interface
controller in the storyboard or in the Document Outline and open the
Attributes Inspector. You’ll find Spacing at the bottom of the list of available
properties (see Figure 2-3). Change the value to 10 (this value is, of course,
measured in points) and you’ll see the vertical separation between the label
and the image increase on both devices (see Figure 2-10).

Figure 2-10. Increasing the space between rows of the interface controller layout

The spacing is applied between each pair of rows, so if we had another
label below the image, that label would have moved downward by the same
distance relative to the image—you can’t set different spacing for each pair
of rows.

CHAPTER 2: Interface Controllers and Layout

43

Setting the Interface Controller Insets
Notice that this change did not affect the distance between the top of
the interface controller and the label. To change that, we need to adjust
the value of the interface controller’s Insets attribute, which determines
how much space at the top, bottom, left, and right of the controller is not
available for layout. Changing this attribute effectively creates an empty
border around the edge of the interface controller, like the margins on the
pages of a book.

We’d like to add 8 points of space above the label, which means we need
to set the interface controller’s top inset to 8, leaving the other values
unchanged. In the Attributes Inspector, change the value in the Insets
selector from Default to Custom and four input fields containing the current
inset values appear. Change the value in the Top field to 8 (see the left of
Figure 2-11), and you’ll see that the label moves further away from the top of
the screen, as shown on the right in Figure 2-11.

Figure 2-11. Setting the interface controller’s top inset

Making an Attribute Value Depend on Screen Size
With these changes, the user interface looks more balanced on the 38mm
screen, but there is still a problem on the 42mm device—there is too much
empty space around the image. The most obvious ways to deal with this are
to use a larger image when the application is running on the larger screen
or to stretch the existing one to take up the additional space. Stretching an

CHAPTER 2: Interface Controllers and Layout44

image reduces its quality, so it’s better to create a larger version and use
that when the application is running on the 42mm device. Together, Xcode
and WatchKit make it very easy to do that.

In the Project Navigator, select Images.xcassets in the Hello WatchKit App
group and then drag and drop the file SmileyFaceLarge@2x.png from the
folder 2 – Controller Lifecycle Icon in the example source code archive
onto the asset catalog editor. You should now have two smiley face icons
in the asset catalog. Next, select the image object in the storyboard, open
the Attributes Inspector, and click in the Image field. You’ll see that there
are now two images to choose from. We need to use SmileyFace when the
application is running on the 38mm device, but SmileyFaceLarge for the
42mm screen. To do that, click on the small + sign to the left of the Image
field to open a pop-up that lets you add screen size customizations for the
Image attribute, as shown on the left in Figure 2-12.

Figure 2-12. Selecting a larger smiley face image for the 42mm screen

Select the Apple Watch 42 mm option, and a new selector labeled 42mm
appears below the existing one, as shown on the right in Figure 2-12. From
this new selector, choose SmileyFaceLarge. Now the SmileyFaceLarge
image will be used on the 42mm device, and the original SmileyFace image
otherwise. Look back at the preview area and you’ll see that the 42mm
device is using the larger image, whereas the 38mm device still has the
smaller one (see Figure 2-13). Run the application on the simulator with both
screen sizes to verify that this really works.

http://mailto:SmileyFaceLarge@2x.png/

CHAPTER 2: Interface Controllers and Layout

45

You may have noticed that the selector that was added for the 42mm screen
doesn’t have a + icon—it has a cross icon instead, as you can see on the
right in Figure 2-12. The X icon lets you delete the 42mm version of the
selector, reverting the layout to just a single image for both screen sizes.
This is a general pattern that applies everywhere in the Attributes Inspector
for a WatchKit interface controller or user interface object: whenever you
add an input field for a specific screen size, you get a delete control to allow
you to remove it again.

All of the settable properties in the Attributes Inspector have a + icon, which
means that you can set different values for any of them based on the
screen size.

Note There is another way to arrange for the 38mm and 42mm devices to use
different images without having to configure them separately in the Attributes
Inspector. You’ll see how to do that when we discuss menus in Chapter 6. Either
method works, and you can use whichever you prefer.

Figure 2-13. The HelloWatch application, customized for both screen sizes

http://dx.doi.org/10.1007/9781484210260_6

CHAPTER 2: Interface Controllers and Layout46

Making Layout Depend on the Screen Size
WatchKit layouts are almost completely static and can only be built in a
storyboard—there is no way to add or remove user interface objects at
run time. If you’re used to the flexibility that UIKit gives you, this probably
comes as something of a shock. There are a couple of things you can do to
customize your layout:

	You can create separate designs for the 38mm and
42mm devices and have WatchKit choose the correct
one at run time.

	You can make a user interface object that is already
defined in the storyboard appear or disappear by setting
its hidden or alpha attribute.

Let’s see how to customize the layout based on the screen size; Chapter 4
talks more about using the hidden and alpha attributes.

The key to making the layout depend on the screen size is the control at the
bottom of the storyboard editor that is currently labeled Any Screen Size.
You can see this control at the bottom of the screenshot in Figure 1-6. If
you click this control, a pop-up appears with the three choices shown in
Figure 2-14.

http://dx.doi.org/10.1007/9781484210260_4

CHAPTER 2: Interface Controllers and Layout

47

When Any Screen Size is selected, you see the parts of the design that are
common to both screen sizes. It’s recommended that you do most of your
design in this mode and then make adjustments for a specific screen size by
selecting either Apple Watch 38 mm or Apple Watch 42 mm. Let’s see how this
works by adding a separator between the label and the image, but only for
the 42mm screen.

Start by selecting Apple Watch 42 mm and then find a separator object in
the Object Library. Drag the separator onto the storyboard and drop it in the
space between the label and the image, as shown in Figure 2-15.

Figure 2-14. Selecting the screen size for the design in the storyboard

CHAPTER 2: Interface Controllers and Layout48

The preview shows that the separator appears only for the 42mm device.
You can also see, though, that the image no longer fits on the screen. We
can fix that by removing some of the additional space we added between
the rows of the layout. Earlier we set the interface controller’s Spacing
attribute to 10 points, which means that there is now a gap of this size both
above and below the separator. To make the image fit on the screen again,
we need to change the Spacing attribute value for the 42mm device to 5
points. To do that, select the interface controller in the storyboard and open
the Attributes Inspector. Click the + icon next to the Spacing attribute and
select Apple Watch 42 mm to create a second input field and then set its
value to 5. Check the preview and you’ll see that the image moves back up
onto the screen. Notice also that the 38mm screen layout does not change
(see Figure 2-16).

Figure 2-15. Adding a separator to the design for the 42mm device

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: Interface Controllers and Layout

49

This looks better, but it’s not quite perfect—there’s still too much space
above the label at the top of the screen. We can reduce that by changing
the value of the top inset. Make sure the interface controller is selected in
the storyboard, click the + icon next to the Top attribute in the Attributes
Inspector, and select Apple Watch 42 mm. This adds extra input fields for
each of the four inset values. Change the value of the 42mm Top input field
from 8 to 4 and you’ll see that everything the 42mm layout in the preview
moves up, as shown in Figure 2-17. Notice again that the 38mm layout was
not affected.

Figure 2-16. Adjusting row spacing for the 42mm device

CHAPTER 2: Interface Controllers and Layout50

Now set the screen size selector back to Any Screen Size.

The tools that Xcode provides for adapting your design so that it works well
for both screens sizes are both powerful and easy to use. It’s worthwhile
spending some time experimenting to see what you can do with them.

Controlling Position
As you have seen, the interface controller has a very simple layout policy—it
arranges the objects that it contains in a single-column grid, with one row
per object. You have also seen that you can modify this behavior slightly by
using the interface controller’s Insets and Spacing attributes. In this section,
you’ll see how to get better control over the sizes of your interface objects
and their positions within their respective rows.

Caution Remember to always set the screen size selector back to Any
Screen Size when you have finished making adjustments. If you forget to
do that, you’ll find that any additional changes you make will only apply to the
device that is selected.

Figure 2-17. Adjusting insets for the 42mm device

CHAPTER 2: Interface Controllers and Layout

51

Let’s start by creating a new project. Use the Single View Application project
template and name the project Position And Size. Then add a WatchKit
application to it, just as you did when creating the Hello Watch application in
Chapter 1. Remember to deselect the option to include a notification scene,
since we don’t need one for this example.

Open the Position And Size WatchKit App group in the Project Navigator
and select the file Interface.storyboard. Next, drag three labels from the
Object Library onto the interface controller. Given what you have learned so
far, it should not surprise you to find that the labels arrange themselves into
three rows at the top of the interface controller. Now select each label in turn
and use the Attributes Inspector to change their Text attributes to Label1,
Label2, and Label3. Alternatively, double-click the labels in the storyboard
and change the text in-place. At this point, your storyboard should look like
Figure 2-18.

Note From this point onward, when creating a new project, unless otherwise
specified, use the Single View Application template and uncheck the Notification
scene check box—we won’t need to handle notifications until Chapter 9.

Figure 2-18. Preparing to experiment with layout

http://dx.doi.org/10.1007/9781484210260_1
http://dx.doi.org/10.1007/9781484210260_9

CHAPTER 2: Interface Controllers and Layout52

The positions of the labels are determined by their Horizontal and
Vertical attributes, which you’ll find in the Position group in the Attributes
Inspector (see Figure 2-18). Initially, these attributes are set to Left and Top
respectively, which is why the labels are grouped together at the top left of
the layout. Use the Attributes Inspector to change the Horizontal attribute
of Label2 to Center and of Label3 to Right. Changing this attribute causes
the interface controller to move the affected labels to the center and right of
their rows, as shown on the left in Figure 2-19.

Figure 2-19. Using the Horizontal attribute to position labels within a row

The labels’ positions are actually calculated relative not to the screen, but to
the interface controller’s insets. You can see this by selecting the interface
controller in the storyboard, changing the Insets selector to Custom, and
then setting the Top, Bottom, Left, and Right attributes to 8, 8, 16, and 8
respectively. With this change, the area in which the labels are positioned is
reduced, and, because the left inset is greater than the right, its horizontal
center no longer coincides with the horizontal center of the screen. As a
result, Label1 and Label3 move away from the edges of the screen, and
Label2 is no longer centered on the screen, although it is still centered in the
available layout area (see the screenshot on the right in Figure 2-19).

The Vertical attribute has a similar effect on the position of an interface
object along the vertical axis. Change the Vertical attribute of Label2 to
Center and of Label3 to Bottom to get the result shown in Figure 2-20.

CHAPTER 2: Interface Controllers and Layout

53

Drag another label onto the storyboard and drop it onto the interface
controller. As noted earlier, whenever an interface object is created, its
Vertical attribute defaults to Top. As a result, this label gets placed at the
top of the layout, just below Label1, which has the same Vertical attribute
value, as shown on the left in Figure 2-21.

Figure 2-20. Using the Vertical attribute to position labels vertically

Figure 2-21. The Vertical attributes results in objects being positioned in groups

Now change the Vertical attribute of the new label to Center. As you can
see on the right in Figure 2-21, it is repositioned just above Label2, and
Label2 itself moves down a little way. What’s happening here? As it turns
out, interface objects that have the same Vertical attribute value are
grouped together and then the group is positioned based on the attribute
value. So in this case, the group consisting of the new label and Label2 is
vertically centered. Finally, delete the new label from the layout by selecting
it and pressing the Delete key, since we don’t need it any more.

CHAPTER 2: Interface Controllers and Layout54

Adjusting Size
So much for position—what about size? The size of an object is determined
by its Width and Height attributes. As you can see in Figure 2-18, these both
default to Size To Fit Content, which does exactly what it says. There are
two other possible values: Fixed and Relative to Container. Let’s look at
what these do.

Change the Width attribute of Label1 to Fixed and you’ll see that an input field
appears, initialized with the value 100, as shown on the left in Figure 2-22.

Figure 2-22. Manually setting the width and height of label

You can now manually set the label’s width either by using the input field or
by dragging the label’s outline in the storyboard. You can do the same with
the Height attribute. On the right of Figure 2-22, the label’s width and height
have both been set to 72. Notice that the increased height of Label1 causes
Label2 to move downward so that it’s no longer vertically centered. It is,
however, as close to the vertical center as it can be.

The value Relative To Container lets you set the width or height of the
object as a proportion of the available horizontal or vertical space in the
interface controller. We’ll illustrate this setting by sharing the interface
controller’s vertical space equally between the three labels. To do this, first
select Label1 and change its Height attribute to Relative To Container.
A new input field appears, into which you can enter a value between 0 and
1. Enter the value 0.333 to allocate a third of the available height to this
label. Do the same with the other two labels and you should get the result
shown in Figure 2-23.

CHAPTER 2: Interface Controllers and Layout

55

Below the first input field there is another one labeled Adjustment. You
can use this field to increase or decrease the allocated width or height by
a specified number of points—use a positive value to increase it and a
negative value to decrease it. Try this out by selecting Label3 and entering -16
in the Adjustment field and you’ll see that the height of the label is reduced
accordingly, as shown on the left in Figure 2-24. Now change the Adjustment
value to 32 and the label’s height will be increased by 32 points above its
originally allocated value, as shown on the right in Figure 2-24.

Figure 2-23. Using Relative To Container to allocate vertical space equally between the
three labels

Note The available vertical space does not include the space required by
the interface controller’s insets Top and Bottom attributes, as you can see by
selecting the interface controller and changing the value of these attributes.

CHAPTER 2: Interface Controllers and Layout56

As you can see from its outline, Label3’s height is now so large that it no
longer fits on the screen. If you run this example in the simulator, you’ll find
that Label3 is clipped (see Figure 2-25), but if you click the mouse over the
simulated screen and drag upwards, you can scroll to bring Label3 completely
into view. This demonstrates that it is possible to produce a layout that is
taller than the screen. On a real device, the user can scroll vertically either
by swiping up and down with a finger or by turning the digital crown. Note,
however, that Apple Watch does not support horizontal scrolling, so you
should ensure that your layout fits within the width of the screen.

Figure 2-24. The effect of the Adjustment field

CHAPTER 2: Interface Controllers and Layout

57

The width and height of a user interface object can be changed at run time.
You’ll see an example that does this in Chapter 3.

Groups
You now know almost everything there is to know about WatchKit
layout. There’s only one important thing left to discuss: groups. A group
(represented by the WKInterfaceGroup class) is a user interface object that
acts as a container for other user interface objects, much like the interface
controller does. However, whereas an interface controller allows only vertical
layout, a group lets you choose whether you want its nested objects to be
laid out vertically or horizontally. A group is itself a user interface object, so
you can nest a group inside another group.

In the rest of this chapter, you’ll see how to use groups to create more
interesting user interfaces than can be created with just an interface
controller. In Chapter 3, you’ll see some of the other features that groups
share with interface controllers, including the ability to use an animated
image for the background.

Start by creating a new project called Groups and add a WatchKit target
to it. Figure 2-26 shows the simple application we are going to create to
experiment with groups.

Figure 2-25. The screen can be scrolled vertically to show all of Label3

http://dx.doi.org/10.1007/9781484210260_3
http://dx.doi.org/10.1007/9781484210260_3

CHAPTER 2: Interface Controllers and Layout58

Using a Group to Create a Horizontal Layout
We’re going to start by creating a layout consisting of two labels and a
separator arranged horizontally, like the one on the left in Figure 2-26.
You can’t achieve this with just an interface controller, because interface
controllers do not support horizontal layout. Once we’ve done that, we’ll
replace the label on the left with a nested group containing two labels and a
separator arranged vertically, as shown on the right in Figure 2-26. Layouts
like this that combine horizontal and vertical layout are very common and
always require the use of nested groups.

As always, start by selecting Interface.storyboard in the Project Navigator
and open the Object Library. Locate a Group object in the library then drag
and drop it onto the interface controller. By default, the group takes up a
position at the top of the interface controller, as shown in Figure 2-27 (as
an exercise, check the group’s attributes in the Attributes Inspector to see
why it is positioned and sized as it is). We need to make it occupy all of the
available space on the screen.

Figure 2-26. Using groups to create a layout with both rows and columns

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 2: Interface Controllers and Layout

59

To make the group fill all of the available space on the screen, change the
Height attribute from Size To Fit Content to Relative to Container. The
height value is automatically set to 1, and the group resizes to fill all of the
available space, as shown in Figure 2-28.

Note If you look carefully at the outline of the group in Figure 2-27, you’ll see
that it has rounded corners. You can make the corners more or less rounded
by setting the Radius attribute, which you can see in Figure 2-27. By default,
the corner radius is 6 points. All the corners have the same radius. Rounded
corners can enhance the visual appeal of your layout, especially if you change
the group’s background color or use a background image (see Chapter 3), since
these effects are both clipped by the corners.

Figure 2-27. Adding a group to the layout

http://dx.doi.org/10.1007/9781484210260_3

CHAPTER 2: Interface Controllers and Layout60

The group has an attribute called Layout that determines whether it arranges
nested objects horizontally or vertically. To achieve the layout shown on
the left in Figure 2-26, we need a horizontal layout, so we need to set this
attribute to Horizontal. It turns out that this is the default (as you can see
in the Attributes Inspector in Figure 2-28), so we don’t actually need to do
anything.

Now let’s add two labels and a separator to the group. Drag first a label,
then a separator, and then another label and drop them on the group.
You’ll see that these objects are arranged horizontally (because the Layout
attribute has the value Horizontal) and that they are initially aligned on the
left of the group, as shown in Figure 2-29.

Figure 2-28. Changing the size of the group

CHAPTER 2: Interface Controllers and Layout

61

We need to make a couple of adjustments to this layout—we need to move
the separator to the center and then align the labels both horizontally and
vertically in their respective areas. You do this by setting the Position and
Size attributes of all three objects to appropriate values. Start with the
following steps:

	Select the label on the left and change its Text property
to Left.

	Change the label’s Width attribute to Relative to
Container and change the width value from 1 to 0.49.
This allocates 49% of the available width to this label
and resizes it to fill that space.

	Change the label’s Vertical position attribute from Top
to Center. This moves the label down from the top of the
group to the vertical center.

	Finally, we need to move the text to the center of the label.
To do that, find the segmented control for the Alignment
property and click the third segment from the left.

At this point, your layout should look like Figure 2-30. If it doesn’t, go back
and correct it.

Note Notice that in this example, the separator is drawn as a vertical line,
whereas in our HelloWatch example it was horizontal (see Figure 2-15). You
don’t need to set an attribute to get this behavior—the separator figures out
what it needs to do automatically.

Figure 2-29. Adding two labels and a separator to the group

CHAPTER 2: Interface Controllers and Layout62

Next, we need to do the same thing for the label on the right. Select it and
do the following:

	Change its Text property to Right.

	Change its Width attribute to Relative to Container
and change the width value from 1 to 0.49. Notice that
when you do this, the separator moves over to the
center of the layout.

	Change its Vertical position attribute from Top to
Center.

	Click the third segment from the left in the Alignment
property to center the text in the label.

That’s it—your layout should now look like the left screenshot in Figure 2-26.
Run the application on the simulator to see that it looks correct on both the
38mm and 42mm devices.

Figure 2-30. Adjusting the position of the first label

CHAPTER 2: Interface Controllers and Layout

63

You may be wondering where the magic 49% width value that we used to
set the width of the labels came from. Why not 47% or 48%? It turns out
that there is no scientific way to get the correct value. I got the 49% value by
experimentation.

Notice that we didn’t need to specify the separator’s width—it automatically
gets the 2% of the screen width that is left over. In fact, we can’t specify the
width of a vertical separator because it does not have a Width attribute—
you can verify this by selecting the separator and checking the available
attributes in the Attributes Inspector.

Using a Nested Group
Now we’re going to change the layout a little to make it look like the
screenshot on the right in Figure 2-26. The label on the left in our current
layout needs to be replaced by a vertical layout containing another two labels
and a separator. Whenever you see layout in two different directions like this,
you can be sure that there is a nested group involved, because on their own,
groups and interface controllers only support layout along one axis.

Start by deleting the left label from the layout. When you do this, the
separator and the other label will jump over to the left. Next, we need to
place a new group object on the left of the separator. It’s quite difficult to
do this by dragging the group over the interface controller, because the
space into which you are trying to drop it is very small. Instead, it’s easier
to use the Document Outline (which is the hierarchical control to the left of
the storyboard) to position the group. Start by making sure that the icon
for the existing group in the Document Outline is expanded so you can see
both the separator and the label. Next, grab a group object from the Object
Library, drag it over the Document Outline, and drop it when the blue line
that indicates its position is between the existing group and the separator,
as shown on the left in Figure 2-31.

CHAPTER 2: Interface Controllers and Layout64

Initially, as you can see on the right in Figure 2-31, the group takes up all the
available width but does not fill all the vertical space. To fix this, make sure
the group is selected in the storyboard and do the following in the Attributes
Inspector:

	Change the value of the group’s Width attribute from
1 to 0.49. This allocates to it the same width that was
previously allocated to the label that was deleted. The
separator and the second label should now reappear.

	Change the Height attribute to Relative to Container.
Because the default height value is 1, the group
expands to fill the left column of the layout.

Your layout should now look like Figure 2-32.

Figure 2-31. Positioning the second group to the left of the separator

Figure 2-32. Although you can’t see it, the left column is occupied by a nested group

CHAPTER 2: Interface Controllers and Layout

65

As you saw earlier, the default value of a group’s Layout attribute is
Horizontal. We need a vertical layout, so, with the group selected in the
storyboard, change the Layout attribute in the Attributes Inspector to
Vertical. Next, drag a label, a separator, and another label into the new
group. Then change the Text attributes of the top and bottom labels to
Top and Bottom respectively. At this point, your storyboard should look like
Figure 2-33.

Figure 2-33. Adding the three objects for the left side of the layout

The remaining steps are very similar to the ones we used to create the first
part of the layout. You should find them very straightforward:

	Select the top label and change its Width attribute to
Relative to Container. Do the same for the bottom
label. This causes both labels to expand to fill all the
horizontal space in the group.

	Use the Alignment field for both labels to center their
text.

	Change the Height attributes of both the top and
bottom labels to Relative to Container and set the
height value to 0.49. The vertical space is now divided
equally between the two labels, leaving space for the
separator between them.

CHAPTER 2: Interface Controllers and Layout66

You have now completed the layout shown on the right in Figure 2-26. Feel
free to change any of the attributes of the groups or the labels to see how
the layout is affected. If you are feeling a little more adventurous, design a
layout of your own that requires nested groups and see if you can reproduce
it in the storyboard.

Summary
This chapter focused entirely on interface controllers and layout. You have
seen how user interaction with the Apple Watch causes your interface
controllers to be activated or deactivated, and how the fact that your
application’s code runs in an extension affects what it is able to do. We
concentrate much more on these topics in the chapters that follow. You also
saw how layout is handled in WatchKit and how much simpler it is than its
iOS equivalent.

Now that you know how to create a WatchKit application and how to
position things on the screen, it’s time to find out more about the relatively
small selection of user interface objects that WatchKit offers. We cover the
most basic of these in Chapter 3, followed by some more complex ones in
Chapter 4. Finally, we discuss tables, which are almost as useful in WatchKit
as they are in iOS, in Chapter 6.

Tip Interface controllers and groups do not allow you to position user objects
so that they overlap each other. However, you can sometimes get a similar
effect by using the fact that you can assign an image to the background of an
interface controller or a group, as you’ll see in Chapter 3.

http://dx.doi.org/10.1007/9781484210260_3
http://dx.doi.org/10.1007/9781484210260_4
http://dx.doi.org/10.1007/9781484210260_6
http://dx.doi.org/10.1007/9781484210260_3

67

Chapter 3
Watch User Interface
Objects
In Chapter 2, you learned how to add user interface objects to your
storyboard and how to use features of the WKInterfaceController and
WKInterfaceGroup classes to control the size and positioning of those
objects. In this chapter, we discuss in some detail two user interface objects
that you’ll use very frequently—WKInterfaceLabel and WKInterfaceImage.
Along the way, you’ll find out more about how to control the layout of text,
how to use the built-in fonts and custom fonts, and how to work with both
static and animated images.

Overview
All of the WatchKit user interface objects are based on the
WKInterfaceObject class, which declares a small number of common
attributes. You have already seen some of the attributes that are used
in layout, such as Width, Height, Horizontal, and Vertical. You’ll find
the documentation for all these attributes in the reference page for the
WKInterfaceObject class on the Apple developer website or in the Xcode
documentation set for WatchKit.

Most of the attributes of WKInterfaceObject can only be set in the
storyboard. There are a few exceptions that can be modified at run time—
specifically, there are six attributes that provide accessibility information and
four attributes that let you change the size or visibility of the object, which
we’ll use in the course of this chapter and the next. For reasons discussed

http://dx.doi.org/10.1007/9781484210260_2

CHAPTER 3: Watch User Interface Objects68

in Chapter 2, all of the attributes of WKInterfaceObject are write-only, so it is
your responsibility to record the last value that you set if you need to make
use of it later.

Table 3-1 lists the user interface objects that are available, together with the
chapter that discusses them.

Table 3-1. WatchKit User Interface Objects

Class Description Reference

WKInterfaceButton A push button that triggers an action when
pressed.

Chapter 4

WKInterfaceDate Displays the current date and/or time. Chapter 4

WKInterfaceGroup A container that positions user interface
objects either horizontally or vertically.

Chapter 2

WKInterfaceImage Displays a static or animated image. Chapter 3

WKInterfaceLabel Displays single- or multi-line text. Chapter 3

WKInterfaceMap A map showing a region around a given point. Chapter 4

WKInterfaceSeparator A straight line providing visual separation
between regions of a layout

Chapter 2

WKInterfaceSlider An input control that allows the user to
choose a value from a bounded range.

Chapter 4

WKInterfaceSwitch A control that has an on/off state allowing the
user to make a choice from two alternatives.

Chapter 4

WKInterfaceTable A single-column, multi-row table that allows
dynamic content to be displayed.

Chapter 6

WKInterfaceTimer Displays a timer that counts down or up. Chapter 4

One important item that’s missing from Table 3-1 is a text input control.
That’s because there is no user interface object that lets the user enter
text—instead, there is a separate interface controller that you present
whenever you need text input. The controller allows the user to select from
a fixed set of suggestions, choose an emoji icon, or speak the required text.
Chapter 5 covers text input.

The only way to add a user interface object to your application is to drag it
from the Xcode Object Library to your storyboard. When (for example) you
drag a Label object onto the storyboard, Xcode includes the object and its
attribute values in the compiled version of the storyboard, and an instance
of the WKInterfaceLabel class is created in the WatchKit extension at run
time as part of the initialization of the user interface controller. The mapping
from storyboard object to user interface object class is fixed, so you cannot

www.allitebooks.com

http://dx.doi.org/10.1007/9781484210260_2
http://dx.doi.org/10.1007/9781484210260_4
http://dx.doi.org/10.1007/9781484210260_4
http://dx.doi.org/10.1007/9781484210260_2
http://dx.doi.org/10.1007/9781484210260_3
http://dx.doi.org/10.1007/9781484210260_3
http://dx.doi.org/10.1007/9781484210260_4
http://dx.doi.org/10.1007/9781484210260_2
http://dx.doi.org/10.1007/9781484210260_4
http://dx.doi.org/10.1007/9781484210260_4
http://dx.doi.org/10.1007/9781484210260_6
http://dx.doi.org/10.1007/9781484210260_4
http://dx.doi.org/10.1007/9781484210260_5
http://www.allitebooks.org

CHAPTER 3: Watch User Interface Objects

69

substitute your own classes. This means you cannot subclass any of the
WKInterfaceObject classes to modify their behavior or create completely
new, custom user interface objects. You can check this for yourself by
opening the HelloWatch project from Chapter 1, clicking the Hello Watch
label, and opening the Identity Inspector. You’ll see that the object class is
WKInterfaceLabel, but the selector is read-only, so you can’t replace it with
your own subclass (see Figure 3-1).

Figure 3-1. The class selector for an object in the storyboard is read-only

Labels
Labels are used to display text. You can set the label’s text and text color
attributes both in the storyboard and at run time, and there are several other
attributes that can only be set in the storyboard.

Text Layout
We need a new project to work with, so create one, name it Labels, and
add a Watch App target to it. Select the file Interface.storyboard in the
WatchKit App group and then drag a label from the Object Library and drop
it on the interface controller in the storyboard. Now open the Attributes
Inspector and you’ll see the attributes you can use to configure a label, as
shown in Figure 3-2.

http://dx.doi.org/10.1007/9781484210260_1

CHAPTER 3: Watch User Interface Objects70

The label is initially sized to exactly fit the text that it’s displaying. That’s
because its Width and Height attributes are both set to Size To Fit
Content, which is usually the setting you want. You can change the text by
using the Text field in the Attributes Inspector or by double-clicking the label
in the storyboard and typing directly into it (as you’ll see later in this chapter,
you can also change the text at run time). Change the text to something
else, such as Hello World, and you’ll see that the label grows so that the
text fits exactly (if you are using the Text field in the Attributes Inspector,
you’ll need to press the Return key to install the new text). Now change the
Width attribute to Relative to Container, and the label expands to fit the
whole width of the interface controller.

When the text is narrower than the label, you can use the Alignment attribute
to determine where it’s placed relative to the label’s bounds. By default,
it’s aligned to the leading edge of the label. You can use the Alignment
segmented control to change the value of this attribute. The segments in the
Alignment control, which is shown in Figure 3-3, map to leading alignment,
left alignment, center alignment, justify, and right alignment respectively. In
Figure 3-3, the text has been centered in the label.

Figure 3-2. Label attributes with their initial values

CHAPTER 3: Watch User Interface Objects

71

Change the text to This text is too wide to fit and you’ll see that when the
text is wider than the available space, it is truncated and ellipses are added
to indicate that this has happened, as shown on the left in Figure 3-4.

Figure 3-3. Changing the text alignment

CHAPTER 3: Watch User Interface Objects72

Figure 3-4. Text truncation and font scaling

Tip There is no attribute that controls the vertical positioning of the text.
If the label height is greater than that required to display it, the text is vertically
centered in the space allocated to the label.

If you need all the text to be visible and, as is the case here, you can’t
increase the width of the label, there are three things you can do: change
the font, use font scaling, or allow the text to flow onto two or more lines.
Changing to a different font is discussed later in this chapter, so let’s look at
the other two options.

Font scaling allows the label to automatically change the font size to reduce
the width of the text until it fits. You can set the minimum font scaling factor
using the Min Scale attribute in the Attributes Inspector. The default value is
1, which does not allow any reduction in font size. In this case, to make the
text fit on the 38mm device, you need to set the Min Scale attribute to 0.7,
as shown on the right in Figure 3-4.

If the text still doesn’t fit after the font has been scaled to its minimum
permitted size, it is displayed at the smallest font size, with ellipses.

Caution The WatchKit documentation says that setting a Min Scale value of 0
is equivalent to using the value 0.8. At the time of writing, however, the value 0
causes the text to scale down by as much as is necessary to make it fit, which
may result in very small text!

CHAPTER 3: Watch User Interface Objects

73

If your layout permits it, you can allow a label to grow vertically to
accommodate its content. To do that, you need to change the value of
the Lines attribute. By default, this attribute has value 1, allowing only a
single line of text. Use a positive value to allow the label to grow to a fixed
maximum number of lines, or 0 to allow as many lines as are required to
fit all of the text. Change the value of the Lines attribute in the Attributes
Inspector to 2, and the text overflows onto a second line, as shown on
the left in Figure 3-5. Notice that the text alignment (in this case, center
alignment) applies to each line of text.

Figure 3-5. Allowing a label to flow onto more than one line

If you compare Figure 3-5 with Figure 3-4, you’ll see that font scaling is no
longer in effect. If you add enough additional text so that two lines are no
longer enough, as shown on the right in Figure 3-5, you’ll see that the text is
truncated again and no font scaling takes place. Font scaling applies only to
single-line labels. To make the text fit again, change the Lines attribute to 3.
If you need to set the text at run time and you don’t know how long it will be,
consider changing this attribute to 0, allowing the label to use as many lines
as it needs, subject to other layout constraints (for example, you might have
fixed the label’s height to 0.5 of the the interface controller’s height).
Whether or not this is practical depends on the details of your layout.

Tip You can enter text that contains embedded newlines in the Text attribute
field by typing Control-Return for each newline. Of course, the text is displayed
correctly only if the Lines attribute is set appropriately.

CHAPTER 3: Watch User Interface Objects74

Text, Text Color, and Attributed Text
You can set the Text and Text Color attributes of a label either in the
storyboard or at run time. Let’s add some code to set both attributes
programmatically. To set the attributes of a user interface object at run
time, we need to create an outlet for it in the interface controller class. You
do that in the same way as you would create an outlet for a UIKit object.
Select Interface.storyboard in the Project Navigator so that the storyboard
is open in the editor, then open the Assistant Editor (press Return)
and use its jump bar to open InterfaceController.swift. You can do
this by selecting Automatic from the jump bar, or by selecting Manual and
explicitly choosing InterfaceController.swift. Now Control-drag from
the label in the storyboard to the line just above the declaration of the
awakeWithContext() method in InterfaceController.swift and release the
mouse button. In the pop-up that appears (see Figure 3-6), give the outlet
the name label and press Connect.

Figure 3-6. Creating an outlet for the label

You should now have an outlet for the label in your class file:

import WatchKit
import Foundation

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var label: WKInterfaceLabel!

We’re going to add some code to this class that displays the current
time in yellow text whenever the view controller is activated. To do that,
we’ll need an NSDateFormatter object. Add the code shown in bold to
InterfaceController.swift:

CHAPTER 3: Watch User Interface Objects

75

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var label: WKInterfaceLabel!
 private var formatter: NSDateFormatter

 override init() {
 formatter = NSDateFormatter()
 formatter.dateStyle = .NoStyle
 formatter.timeStyle = .ShortStyle
 super.init()
 }

You can use an NSDateFormatter instance more than once, so we create it in
the init() method and assign it to an instance variable. The date formatter
is initialized to give us a short form of the time, with no date. Now whenever
the interface controller is activated, we can use it to format the time. Add the
code in bold to the willActivate() method:

override func willActivate() {
 // This method is called when watch view
 // controller is about to be visible to user
 super.willActivate()

 let timeString = formatter.stringFromDate(NSDate())
 label.setText(timeString)
 label.setTextColor(UIColor.yellowColor())
}

Notice that we used methods called setText() and setTextColor() to set
the label’s attributes. That’s because the attributes are not properties of the
WKInterfaceLabel class, so we can’t use the label.textColor form that you
are probably familiar with from your experience with UIKit. The same is true
of all WatchKit attributes.

Now if you run the WatchKit application, you’ll see the current time appear
in yellow, as shown in Figure 3-7. If you lock the simulator’s screen, leave
it locked for a minute, and then unlock it, you’ll see the time update. That’s
because we are updating the label in the willActivate() method.

CHAPTER 3: Watch User Interface Objects76

In reality, you should consider saving the last value that you wrote to both
the Text and Text Color attributes and update them only if the new value is
different. That’s too complicated for this simple example, but in a more
complex application, you should seriously consider whether doing so would
improve the perceived performance of your application.

When you call setTextColor(), the color is applied to all of the label’s
text. If you need to change the color of part of the text, create an
NSMutableAttributedString and use the NSForegroundColorAttributeName
attribute to set the color for the required range or ranges. The rest of the text
will use the default color. You need to use the setAttributedText() method

Caution You can only update attributes of a user interface controller or a user
interface from the time when the willActivate() method is called to the
time when the controller is deactivated and didDeactivate() is called. Any
changes made to attributes at other times (including in didDeactivate())
have no effect. It is easy to make this mistake, especially when using
hierarchical or presented controllers (both of which are discussed in Chapter 5).

Figure 3-7. Setting a label’s text and text color at run time

http://dx.doi.org/10.1007/9781484210260_5

CHAPTER 3: Watch User Interface Objects

77

instead of setText() when using an attributed string. To see this in action,
make the changes shown in bold to the willActivate() method:

override func willActivate() {
 // This method is called when watch view
 // controller is about to be visible to user
 super.willActivate()

 let timeString = formatter.stringFromDate(NSDate())
 label.setText(timeString)
 label.setTextColor(UIColor.yellowColor())

 let plainText: NSString = "Red text, Green text"
 let text = NSMutableAttributedString(string: plainText as String)

 let redRange = plainText.rangeOfString("Red")
 let greenRange = plainText.rangeOfString("Green")
 text.addAttribute(NSForegroundColorAttributeName,
 value: UIColor.redColor(), range: redRange)
 text.addAttribute(NSForegroundColorAttributeName,
 value: UIColor.greenColor(), range: greenRange)
 label.setAttributedText(text)
}

This code creates an NSMutableAttributedString initialized with the plain
text Red text, Green text, then gets NSRange objects that correspond to
the substrings Red and Green, and sets the foreground color for these ranges
to red and green respectively. If you run this example, you should get the
result shown Figure 3-8—except, of course, that you can’t see the actual
colors used if you are reading the printed version of this book.

Figure 3-8. Using the WKInterfaceLabel setAttributedText() method

CHAPTER 3: Watch User Interface Objects78

The setAttributedText() method doesn’t limit you to just changing text
color—you can use it to adjust fonts (as you’ll see later in this chapter) and
to apply most of the other attributes that you can use with UIKit text views.
If you’re not familiar with attributed strings, read the Attributed String
Programming Guide and the reference pages for NSAttributedString,
NSMutableAttributedString, and the NSAttributedString UIKit Additions
Reference, all of which can be found from the Xcode Documentation and
API Reference window.

Fonts
You can change the font of a label (and all the other user interface
components that display text) by setting the Font property in the Attributes
Inspector. The preferred approach is to use one of the standard text style
fonts in the Text Styles section of the pop-up for the Font attribute, shown
on the left in Figure 3-9.

Caution If you call both setText() and setAttributedText(),
whichever method is called second wins. Similarly, if you call setTextColor()
before calling setAttributedText(), the color set with setTextColor()
applies only to those characters that do not have their foreground set in the
attributed string, whereas if you call setAttributedText() and then
setTextColor(), the colors in the attributed string are overwritten.

Figure 3-9. Choosing a font in the Attributes Inspector

CHAPTER 3: Watch User Interface Objects

79

Using the Standard Text Styles
You can open the list of standard text styles by clicking on the T button in
the Font input field and then clicking in the font selector. As you can see in
Figure 3-9, there are six text styles to choose from. You should use the style
that best represents the role that the text plays in your user interface.
Generally, text should be Body style, unless it clearly falls into one of the
other categories. If you are familiar with Dynamic Text in iOS, you’ll already
have realized that these styles are the same ones that are available to iOS
applications that support Dynamic Text. If you select a text style, you’ll see
that the Family, Style, and Size fields in the font pop-up (shown on the right
in Figure 3-9) are all disabled. That’s because a text style corresponds to a
fixed combination of all of these attributes, so there is no need to specify
them explicitly. These fields are, however, used when working directly with
system or customs fonts, as you’ll see shortly.

We need a new project to experiment with fonts, so go ahead and create
one using the Single View Application template, name it Fonts, and add a
WatchKit application target to it. Open the WatchKit App storyboard in the
editor, drag six labels from the Object Library, and drop them onto the user
interface controller. Change the Width attribute of each label to Relative to
Container and the Alignment attribute to Center.

When you’ve done this, you should have six labels that stretch across
the entire width of the screen and with centered text, as shown on the
left in Figure 3-10.

Note The Dynamic Text feature in iOS allows users to have some control
over the size of the fonts used by applications that use it. Instead of specifying
fixed font names and sizes, a conforming application uses a font style such
as Headline, Body, and so on. At run time, iOS uses the font style together
with the user’s preferences to choose an actual font and text size. It’s good
practice to use this feature whenever possible, and it is the default for WatchKit
applications.

Tip There’s an easy way to set an attribute of several user interface
components to the same value. Select all the labels by holding down the Shift
key while clicking each of them in turn and then set the attribute values in the
Attribute Inspector. The same value will be set for all of the labels.

CHAPTER 3: Watch User Interface Objects80

Now change the text of the top label to Headline and apply the Headline
text style to it. Repeat for all the other labels, but instead of Headline, use
Subhead, Body, Caption 1, Caption 2, and Footnote for both the text and
the text style. You should now be able to see all the standard text styles
together (see the screenshot on the right in Figure 3-10).

Using the System and System Italic Fonts
If you need more flexibility than the six fixed standard text styles, you can
use the System and System Italic fonts instead. When you choose either of
the system fonts, you’re actually using the same font as the one used by
the standard text styles, but you are allowed to modify the Style and Size
attributes. Select the Headline label in the storyboard, open the pop-up for
the Font attribute, choose System from the System section, and then open
the Style selector, shown in Figure 3-11.

Figure 3-10. Using the built-in text styles

CHAPTER 3: Watch User Interface Objects

81

You’ll see that there are nine choices, each of which corresponds to a
different font weight, ranging from Black (the most heavyweight) to Ultra
Light. Experiment with each of these to see how they affect the appearance
of the text. The top three labels in Figure 3-12 have the Black, Medium, and
Thin styles.

Figure 3-11. The style values for the system fonts

Figure 3-12. Applying different styles and sizes

If you need italic text, choose System Italic instead of System. The bottom
three labels in Figure 3-12 all use a System Italic font, and I’ve also used
the Size attribute to change the size of the text. Experiment with different
font styles and sizes to see what’s available.

CHAPTER 3: Watch User Interface Objects82

Using a Custom Font
The font that’s used when you choose a standard text style or specify the
System or System Bold font is called San Francisco. It was developed by
Apple specifically for the Apple Watch and is optimized for readability on
very small devices. Unlike iOS, which has a large collection of fonts, San
Francisco is the only font that you can use on the watch, unless you create
one of your own or use a (properly licensed) third-party font. One place to
get fonts that you can freely use is the Google Fonts web site at
google.com/fonts. In the source code archive for this book, you’ll find a
folder called 3 – Tangerine Font containing two fonts downloaded from
Google Fonts that we are going to use to illustrate how to include custom
fonts in your WatchKit application.

To import custom fonts, you first need to add them to the Fonts WatchKit
App group and target in Xcode. To do this, select both fonts in the
3 – Tangerine Font folder in the Finder, then drag and drop them into the
Fonts WatchKit App group in Xcode. In the pop-up that appears when you
drop the fonts, select Copy items if needed and check Fonts WatchKit App
in the Add to Targets list, as shown in Figure 3-13.

Note Custom fonts cannot not be used in Glances (see Chapter 8) or
Notifications (Chapter 9).

Figure 3-13. Adding custom fonts to a WatchKit application

http://dx.doi.org/10.1007/9781484210260_8
http://dx.doi.org/10.1007/9781484210260_9

CHAPTER 3: Watch User Interface Objects

83

Next, the fonts need to be added to the Info.plist file, which you’ll find in
the Font WatchKit App’s Supporting Files folder. Select it so that it opens
in the editor.

Hover your mouse over the left column of the last row of the table in the
editor, and two buttons labeled + and – appear. Press the + button to add
a new row, and a pop-up opens to allow you to select a key. Choose Fonts
provided by application (see Figure 3-14).

Caution Be sure to select the correct Info.plist file. There are three files
called Info.plist in your Xcode project—make sure you select the one in the
Font WatchKit App.

Figure 3-14. Adding custom fonts to the Info.plist file

The value of this key needs to be an array of strings, where each string is
the name of a custom font file. Click the exposure triangle on the newly
added row and you’ll see that it already has one array entry called Item 0.
Double-click the value column for the Item 0 row and enter the file name
Tangerine_Bold.ttf. To add a second row, hover the mouse over Item 0
and click the + button that appears. The new row is given the key Item 1.
Change its value to Tangerine_Regular.ttf. Your Info.plist file should now
look like Figure 3-15.

CHAPTER 3: Watch User Interface Objects84

The two custom fonts are now available for use in the storyboard. Select
Interface.storyboard in the Project Navigator and then select the top label
in the interface controller. Then in the Attributes Inspector, click the T in the
Font attribute field to open the font chooser pop-up again. Click in the Font
selector to open the next pop-up and choose Custom, as shown on the left
in Figure 3-16. The font chooser pop-up is now populated with the two
custom fonts you just added. The Family field should be pre-populated with
Tangerine, and the Style field should contain Bold. If you click in the Style
field, you’ll see that the regular variant of the font is also available. Leave
Bold selected and change the Size field to 20, as shown on the right in
Figure 3-16. Click Done to close the pop-up. Use the Text attribute field to
change the label’s text from Black to Tangerine Bold.

Figure 3-16. Selecting the Tangerine Bold font

Figure 3-15. Custom fonts added to the Info.plist file

Now select the second label in the interface controller and use the same
steps to change its font to Tangerine Regular and its title from Medium to
Tangerine Regular. When you’ve done this, the new text and fonts should
appear in the storyboard editor. When you run the application on the
simulator, you should get the result shown in Figure 3-17.

CHAPTER 3: Watch User Interface Objects

85

Setting Fonts in Code
A font that you set in the storyboard applies to all of the label’s text. If you
want to use a different font for parts of the text, you need to create an
attributed string and apply the NSFontAttributeName attribute to those parts
of the text for which the font should be changed. The value of the attribute is
a UIFont object for the font to be applied. Any regions of the text for which
the NSFontAttributeName attribute is not set continue to use the font set in
the storyboard.

Before we can start experimenting with setting fonts programmatically,
we need to create outlets for some of the labels in the storyboard.
Select Interface.storyboard in the Project Navigator and then open
InterfaceController.swift in the Assistant Editor, just as you did in “Text,
Text Color, and Attributed Text” earlier in this chapter. Control-drag from
the top label (with text Tangerine Bold) to the top of the class definition and
create an outlet called label1. Repeat with the three labels below it to create
outlets called label2, label3, and label4. You should now have the outlets,
shown in bold in the following code, at the top of the class definition:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var label1: WKInterfaceLabel!
 @IBOutlet weak var label2: WKInterfaceLabel!
 @IBOutlet weak var label3: WKInterfaceLabel!
 @IBOutlet weak var label4: WKInterfaceLabel!

Figure 3-17. Custom fonts in the simulator

CHAPTER 3: Watch User Interface Objects86

To get a font that represents one of the standard text styles, use the UIFont.
preferredFontForTextStyle() method, passing the required text style as the
argument. You can find a list of constants that represent the available text
styles (which are the same as the ones that you can select for the Font field
in the Attributes Inspector and which are shown in Figure 3-10) in the Text
Styles section of the documentation page for the UIFontDescriptor class
at developer.apple.com/library/ios/documentation/UIKit/Reference/
UIFontDescriptor_Class/index.html.

Add the following code in bold to the awakeWithContext() method in
InterfaceController.swift to apply the Headline and Footnote styles to
parts of the text in the topmost label:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 let headlineFont = UIFont.preferredFontForTextStyle(
 UIFontTextStyleHeadline)
 let footnoteFont = UIFont.preferredFontForTextStyle(
 UIFontTextStyleFootnote)
 let text1 = NSMutableAttributedString(string: "Tangerine Bold")
 text1.addAttribute(NSFontAttributeName,
 value: headlineFont, range: NSMakeRange(0, 3))
 text1.addAttribute(NSFontAttributeName,
 value: footnoteFont, range: NSMakeRange(3, 3))
 label1.setAttributedText(text1)
}

You can see the result of running this code in Figure 3-18. The first three
characters of the label are in the Headline text style, and the next three are
in the Footer style. The rest of the text uses the font set in the storyboard.

Figure 3-18. Adding standard text styles programmatically

You can get a variant of the system font with a given size and weight by using
the UIFont.systemFontOfSize() and UIFont.systemFontOfSize(_:weight:)
methods. The first method returns a font that has regular weight, whereas the
second returns a font with the weight specified using one of the Font Weight
constants defined in the documentation of the UIFontDescriptor class. To
see how these methods work, add the following code shown in bold to the
awakeWithContext() method:

CHAPTER 3: Watch User Interface Objects

87

 label1.setAttributedText(text1)

 let regularFont = UIFont.systemFontOfSize(24)
 let heavyFont = UIFont.systemFontOfSize(24, weight: UIFontWeightHeavy)
 let text2 = NSMutableAttributedString(string: "Tangerine Regular")
 text2.addAttribute(NSFontAttributeName,
 value: regularFont, range: NSMakeRange(0, 3))
 text2.addAttribute(NSFontAttributeName,
 value: heavyFont, range: NSMakeRange(3, 3))
 label2.setAttributedText(text2)
}

This code gets a 24-point system font of regular weight and applies it to the
first three characters of the second label and then uses a heavy variant of
the same font for the next three characters, as shown in Figure 3-19.

Figure 3-19. Setting system fonts with different weights in code

Figure 3-20. Adding custom fonts to the extension’s target

How about custom fonts? You can use a custom font in an attributed string
provided that you first add it to the Fonts WatchKit Extension target and
to the Fonts WatchKit Extension’s Info.plist file, as well as to the Fonts
WatchKit App target and Info.plist file. Because we’ve already added
the Tangerine fonts to the Fonts WatchKit App target, adding them to the
Fonts WatchKit Extension target is a simple matter of checking a couple
of boxes. In the Project Navigator, select both Tangerine_Bold.ttf and
Tangerine_Regular.ttf and then open the File Inspector (1) and check
Fonts WatchKit Extension in the Target Membership section, as shown in
Figure 3-20.

CHAPTER 3: Watch User Interface Objects88

Adding the fonts to the Fonts WatchKit Extension’s Info.plist file is also
straightforward—you can either follow the same steps that we used earlier
or you can do the following:

	Open the Info.plist file in the Fonts WatchKit App
group.

	Select the row containing the Fonts provided by
application key.

	Copy it (C) to the clipboard.

	Open the Info.plist file in the Fonts WatchKit
Extension group.

	Paste the Fonts provided by application key and its
associated values from the clipboard (V).

To get a UIFont object for a custom font, use the initializer that
requires a font name and a size. Add the following code in bold to the
awakeWithContext() method to set the font of the third label to Tangerine
Bold with size 20 points:

 label2.setAttributedText(text2)

 let text3 = NSMutableAttributedString(string: "Tangerine Bold (Code)")
 if let tangerineBoldFont = UIFont(name: "Tangerine-Bold", size: 20) {
 text3.addAttribute(NSFontAttributeName,
 value: tangerineBoldFont, range: NSMakeRange(0, 21))
 }
 label3.setAttributedText(text3)
}

Take note of the line of code that was used to create the UIFont instance:

if let tangerineBoldFont = UIFont(name: "Tangerine-Bold", size: 20) {

The init(_:size:) initializer is failable because a font with the given name
may not exist. To protect against the possibility that the font is not found, the
code that uses it is bracketed in an if let statement.

Note Custom fonts always need to be included in the WatchKit App target
and its Info.plist file. This allows you to refer to them in the storyboard and
results in them being installed on the watch with your application. If you need to
refer to them in code, you must also add them to the WatchKit Extension
target and its Info.plist file.

CHAPTER 3: Watch User Interface Objects

89

The value of the name argument is the font’s PostScript name, which is not
necessarily the same as its file name. The easiest way to get the PostScript
name of a font is to use the OS X FontBook application. Here are the steps:

	Start the FontBook application, located in the
Applications folder of your Mac.

	In the left column, select User (see Figure 3-21).

	In the menu, select File ➤ Add Fonts... or press O.

	Navigate to and select the files Tangerine_Bold.ttf and
Tangerine_Regular.ttf and click Open.

	The Tangerine font family should now appear in the
FontBook window. Select it and click the exposure
triangle, then click on Bold.

The details of the Tangerine Bold font appear in the right-hand section of the
FontBook window (see Figure 3-21). The font’s PostScript name appears at
the top—in this case, it is Tangerine-Bold.

Figure 3-21. Using FontBook to get the PostScript name of a font

If you run the example now, you’ll see that the third label is using the
Tangerine Bold font, as shown in Figure 3-22.

CHAPTER 3: Watch User Interface Objects90

You can use the UIFont methods boldSystemFontOfSize() and
italicSystemFontOfSize() to get bold and italic variants of the system font
with a given size. What if you want a variant that’s both bold and italic? How
could you get a bold and italic variant of a font that represents a text style,
such as Body? There are no methods that directly return either of those
fonts, but there is a way to get them: create a font descriptor that describes
the font you need and then create a font from it. Of course, this only works
if the font is one that is available on the watch. The following code shown in
bold, which you should add to the awakeWithContext() method, illustrates
how this is done:

 label3.setAttributedText(text3)

 let desc =
 UIFontDescriptor.preferredFontDescriptorWithTextStyle(
 UIFontTextStyleBody)
 let italicBoldDesc = desc.fontDescriptorWithSymbolicTraits(
 .TraitItalic | .TraitBold)
 let italicBoldBody = UIFont(descriptor: italicBoldDesc!, size: 0)
 let text4 = NSAttributedString(string: "Italic Bold Body",
 attributes: [NSFontAttributeName: italicBoldBody])
 label4.setAttributedText(text4)
}

The preferredFontDescriptorWithTextStyle() method of the
UIFontDescriptor class returns a font descriptor for the font that maps to a
given text style—in this case, Body. We need a bold and italic variant of this
font. Bold and italic are both examples of symbolic traits that can be added
to a font descriptor; you can find the full list of possible traits in the Symbolic
Font Traits section of the documentation page for UIFontDescriptor.
The fontDescriptorWithSymbolicTraits() method creates and returns
a new font descriptor that has the specified traits added to those in the
source descriptor. Traits are represented by integer raw values of the

Figure 3-22. Using the Tangerine Bold font in code

CHAPTER 3: Watch User Interface Objects

91

UIFontDescriptorSymbolicTraits enumeration that can be OR’ed together
to form a bitmask of all the required traits. Here, we pass the argument
.TraitItalic|.TraitBold to request both the italic and bold traits. To get
a font from the resulting font descriptor, we use a UIFont initializer that
accepts the font descriptor and the required font size:

let italicBoldBody = UIFont(descriptor: italicBoldDesc!, size: 0)

A size value of 0 means that the font should have the size specified by the
font descriptor, which in this case means the size of the Body text style font.
Having obtained the font, we apply it to an attributed string, which we use to
set the text of the fourth label. Run the example and you’ll see that the label
has the correct font (see Figure 3-23).

Figure 3-23. Using a UIFontDescriptor to derive one font from another

Here, we started with a font descriptor for a particular font. If instead you
already have a font that you want to use as a starting point, you can get its
font descriptor and then derive a new font from that, like this:

let bodyFont = UIFont.preferredFontForTextStyle(
 UIFontTextStyleBody) // Get Body font
let desc = bodyFont.fontDescriptor() // Get Body font descriptor
let italicBoldDesc = desc.fontDescriptorWithSymbolicTraits(
 .TraitItalic | .TraitBold)

Images
They say a picture is worth a thousand words, and that’s certainly true when
you need to fit those words onto the small screen of an Apple Watch. You’re
likely to need to use images frequently, often in places where you might use
words in an iOS application, simply because there’s not enough room for
a lot of text. WatchKit has an interface object that displays an image, and

CHAPTER 3: Watch User Interface Objects92

you can also use an image as the background of an interface controller or
a group. Images are also the only way to create animations on the watch,
since there is no equivalent of the Core Animation framework in iOS.

Using an Image as a Background
Let’s first look at using an image as a background for an interface controller.
Create a new project called ControllerImage and add a WatchKit application
target to it. In the Project Navigator, select Images.xcassets in the
ControllerImage WatchKit App group and drag the image SmallSun@2x.png
from the folder 3 – Images in the example source code archive into the assets
catalog. The image file contains a 128 × 128-pixel graphic of the Sun. Because
the Apple Watch has a Retina display, the image file name has the usual @2x
suffix, and WatchKit treats it as a 64-point square. If you created an image of
this size and omitted the @2x suffix, WatchKit would assume that the image is
intended to be 128 × 128 points, which is probably not what you intended.

We added the image to the WatchKit application’s assets catalog because
we’re going to reference it from the storyboard. Images in this asset catalog
can be used in the storyboard and are installed on the watch along with the
application. You can’t reference images that are part of the WatchKit App
extension or the iOS application from the storyboard, although it is possible
to access those images at run time, as you’ll see in the section “Sending
Images to the Apple Watch” later in this chapter.

In the Project Navigator, select Interface.storyboard. Select the interface
controller in the storyboard editor and open the Attributes Inspector (4).
In the Interface Controller section, you’ll see four fields that you can use
to configure the controller’s background, as shown in Figure 3-24. We’ll
discuss three of these attributes here and cover the Animate attribute in the
section “Animating Images” later in this chapter.

Figure 3-24. Configuring the background of an interface controller

http://mailto:SmallSun@2x.png/

CHAPTER 3: Watch User Interface Objects

93

Xcode adds references to all the images in the WatchKit App’s assets
catalog to the Background selector. Click to open it and choose SmallSun,
which is the only entry. Next, use the Color selector to change the
controller’s background color to blue. The image appears as the controller’s
background in the storyboard, drawn over the blue color specified in the
Color selector, as shown in Figure 3-25.

Figure 3-25. Using an image as the interface controller’s background

You’ll get the same result if you run the Controller WatchKit App on the
simulator and you should also be able to see more clearly that the image
is fuzzy—it has lost its sharp edges. That’s because the original image is
64 × 64 points, but WatchKit has scaled it up to fill the background of the
controller. The scaling happens because the controller’s Mode attribute is
set to Scale To Fill, which is the default (see Figure 3-24). To get the best
results, you should supply a background image that’s the same size as the
interface controller itself and set the Mode attribute to Center. In fact, you’ll
probably need to create two slightly different images, one sized for the
38mm watch, the other for the 42mm version, and use the + icon to the left
of the Background selector to specify the correct image for each device.

If you open the Mode selector, you’ll see that there are 13 possible selections.
Experiment with each of them to see the effect that they have on the
position and scaling of the image. Figure 3-26 shows four of these modes.

CHAPTER 3: Watch User Interface Objects94

The image on the left in Figure 3-26 uses the Center mode, which preserves
the original size of the image and centers it in the available space. There
are eight other modes that preserve the image size but give rise to different
positioning. One example is Top, which is the mode used for the second
image in Figure 3-26.

The Aspect Fit, Aspect Fill, and Scale To Fill modes all resize the image
in some way. Aspect Fit and Aspect Fill preserve the image’s aspect ratio,
whereas Scale To Fill does not. The third image in Figure 3-26 uses
Aspect Fit, which resizes the image so that the smaller axis, in this case the
horizontal axis, is filled, while ensuring the whole image remains visible. As
you can see, there are gaps above and below the image on the vertical axis.
Aspect Fill, used for the rightmost image in Figure 3-26, scales the image
so that both axes are filled with the image. In this case, the result is that the
left and right edges of the image are clipped. The Scale To Fit mode scales
the image so that it exactly fits the screen, without preserving the aspect
ratio. If you look carefully at Figure 3-25, where this mode is used, you’ll see
that the Sun is no longer circular because the image has been stretched
more along the vertical axis than along the horizontal axis.

Note The Redraw mode behaves the same as Scale To Fill, so it’s not
really of any use in WatchKit applications. Its origin is with the contentMode
property of the UIView class in UIKit, where Redraw is used by custom views
that need to redraw their content whenever the view itself is resized.

Figure 3-26. Four different background image modes

CHAPTER 3: Watch User Interface Objects

95

Now let’s use an image as the background for a group. Create another new
project called GroupImage and add a WatchKit App extension to it. Select the
asset catalog in the GroupImage WatchKit App group in the Project Navigator
and drag the files SpeechBubble38mm@2x.png and SpeechBubble42mm@2x.png
into it. We’ll use these images as the background for a group on the 38mm
and 42mm devices, respectively. The application we’re aiming to create is
shown in Figure 3-27.

Figure 3-27. Using an image as the background for a group

We’ll create the user interface in Figure 3-27 by adding a label containing the
text to a group and adding the group to the interface controller. The speech
bubble is the group’s background image.

Let’s start by adding the group. Select Interface.storyboard in the Project
Navigator, open the Object Library, and drag and drop a group onto the
interface controller. The group positions itself at the top of the interface
controller, but we need it to cover all of the available space. With the group
selected, open the Attributes Inspector and change the group’s Height
attribute to Relative to Container. The group should now take up the
whole screen.

Next, click the + icon next to the Background field, and add an extra field for
the 42mm device. Click in the Background field and select SpeechBubble38mm,
then repeat with the 42mm device field, selecting SpeechBubble42mm instead.
Change the Mode attribute to Center so that the image is centered in the

http://mailto:SpeechBubble38mm@2x.png/
http://mailto:SpeechBubble42mm@2x.png/

CHAPTER 3: Watch User Interface Objects96

group and is given its actual size. If you want to see how this looks on both
devices, create a preview for both screen sizes as you did in Chapter 2, or
switch the control at the bottom of the storyboard to select each screen
size, remembering to switch back to Any Screen Size when you are finished.

At this point, a preview for both devices would look like Figure 3-28.

Caution As noted in Chapter 2, when designing, you should keep the
storyboard in Any Screen Size mode whenever possible. It’s easy to forget
to do this and accidentally create some or all of your design with the storyboard
targeted for just one device. If you find that some of your design doesn’t appear
on both devices, this is the first thing to check for.

Figure 3-28. Creating a speech bubble using a group background image

Note Although you can’t see it in this example, an image used as the
background for a group will be clipped by the group’s rounded corners. This is a
useful technique to use if you actually want to make an image that has square
corners appear to have rounded corners.

Now let’s add the label. Drag a label from the Object Library and drop it onto
the group in the storyboard. Then change its Width and Height attributes to
Relative to Container, so that it covers the whole group. Change the Text
Color attribute to black, the Alignment attribute to Center, and the Lines

http://dx.doi.org/10.1007/9781484210260_2
http://dx.doi.org/10.1007/9781484210260_2

CHAPTER 3: Watch User Interface Objects

97

attribute to 0 to allow the text to flow onto as many lines as required. Next,
type some text into the Text field—something like “That’s one small step for
man, one giant leap for mankind”—and press Return. Your preview should
now look like Figure 3-29.

Figure 3-29. Adding text to the speech bubble

You are almost finished. All that remains to be done is to arrange for the
text to be completely inside the speech bubble. To do that, you need to
arrange for the group to move the edges of the label so that they’re over
the background image. That’s the function of the group’s Insets attribute.
Select the group in the storyboard (or in the Document Outline) and change
the value of its Insets attribute in the Attributes Inspector to Custom. Change
both the Left and Right values to 16 to move the left and right edges of
the text inside the bubble. To adjust the vertical position, change the Bottom
attribute to 14. This moves the text up to the correct position for the 38mm
device, but it’s still not quite correct for the 42mm screen. To fix that, click
the + icon next to the Bottom attribute and add a field for the 42mm device
and then change its value to 26. Run the application on the simulator to
confirm that you get the result shown in Figure 3-27.

The Image Interface Object
You can add images to your user interface by using the WKInterfaceImage
class. An instance of this class is created at run time when you include
an image object from the Object Library in your storyboard. Let’s see how
this works by using an image in conjunction with a label. Create a new
project called ImageAndLabel and add a WatchKit App target to it. Select the
asset catalog in the ImageAndLabel WatchKit App target and drag the file
VerySmallSun@2x.png from the folder 3 – Images onto it.

http://mailto:VerySmallSun@2x.png/

CHAPTER 3: Watch User Interface Objects98

Next, open Interface.storyboard in the storyboard editor, drag a group
from the Object Library, and drop it onto the interface controller. We’ll be
using the group to place an image and a label next to each other. Find an
image object in the Object Library and drag it into the group. The group
resizes to match the size of the image object, which is currently set to a
default value. Now drag a label from the Object Library and drop it onto the
right edge of the group—you’ll see a blue vertical bar appear when the label
is in the right place. Your layout should now look like Figure 3-30.

Figure 3-30. Building a group from an image and a label—part 1

Figure 3-31. Building a group from an image and a label—part 2

Select the image object and open the Attributes Inspector. You’ll see that
image objects have attributes called Image and Mode that work just like those
of the group and interface controller objects. Click the Image selector and
choose VerySmallSun. Immediately, the image appears in the storyboard,
and the image object resizes itself to match the image size. Next, select
the label and change its Text attribute to Sunny. You should now have a
storyboard that looks like Figure 3-31.

CHAPTER 3: Watch User Interface Objects

99

This is almost what we want. The only problem is that the text is not properly
aligned with the label. That’s because the label’s height is set from that of
the text that it contains. To fix that, select the label and change its Height
property to Relative to Container. Now the label’s height matches that of
the image, giving a much nicer result (see Figure 3-32). You can also adjust
the horizontal distance between the label and the image by changing the
value of the Spacing attribute of the group.

Figure 3-32. Building a group from an image and a label—complete

Animation
Animating WatchKit objects is not as simple as animating UIKIt views
because WatchKit does not have an equivalent of the iOS Core Animation
framework. If you need to animate something, you have only two choices:

	Set up a timer in your extension. When the timer fires,
change the value of an interface object attribute.

	Use an animated image.

Using a timer has the advantage that you can animate any attribute of any
user interface object that you can set at run time, although, as you have
seen, there aren’t many of these. The downside of this approach is that each
animation step requires a message to be sent from the iPhone to the Apple
Watch, which takes time and uses up network bandwidth. It’s unlikely that
this approach will lead to a completely smooth animation. Animated images,
on the other hand, are animated on the watch itself (provided that the image
frames are installed on the watch) and are therefore more efficient and will
almost certainly give a better visual result. The disadvantage is that watch-
based animation only works with images. Let’s look at both techniques.

CHAPTER 3: Watch User Interface Objects100

Animation Using a Timer
Create a new project called ManualAnimation and add a WatchKit App
target to it. Open the WatchKit App’s asset catalog and drag the file
VeryLargeSun@2x.png from the 3 – Images folder onto it. We’re going to
manually animate this image from zero size up to a 120-point square in
increments of 10 points and then animate it back down to zero size and
repeat the cycle.

To create this animation, we’re going to use a group that covers the whole
interface controller, in the center of which we’ll add an image object. We’ll
then animate the width and height of that image object, which will cause
the image itself to grow or shrink while staying centered on the interface
controller.

Start by dragging a group from the Object Library onto the interface
controller and set its Height property to Relative to Container. Next, drag
an image object and drop it onto the group and then set its Horizontal and
Vertical attributes to Center, so that it’s centered in the group. Use the
Image selector to set the image to VeryLargeSun and set the value of the
Mode attribute to Scale to Fit, so that the image content is scaled to fit the
changing size of the image object.

Next, show the Assistant Editor (Return) and use its jump bar to open
InterfaceController.swift. Control-drag from the image object in the
storyboard to the top of the class definition to create an outlet to the image
called image and then add these additional lines of code shown in bold:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var image: WKInterfaceImage!
 private var timer: NSTimer?
 private var size: CGFloat = 0.0
 private var expanding = true
 private let delta: CGFloat = 10

The size variable will hold the current size of the image object, in points.
We’ll update this variable every time the NSTimer, referenced by the timer
variable, fires. We’ll use the expanding variable to keep track of whether we
are increasing or decreasing the image width. The delta value is the amount
(in points) by which we will adjust the image size each time the timer fires.

Next, add code in bold to the willActivate() method:

override func willActivate() {
 super.willActivate()

 size = delta
 image.setWidth(size)
 image.setHeight(size)
 expanding = true

http://mailto:VeryLargeSun@2x.png/

CHAPTER 3: Watch User Interface Objects

101

 timer = NSTimer.scheduledTimerWithTimeInterval(0.1,
 target: self, selector: "timerFired:",
 userInfo: nil, repeats: true)
}

Here, we are setting the initial width and height of the image to the delta
value by calling its setWidth() and setHeight() methods. Because the
image is always going to be square, we only need a single variable to keep
track of its size. We then create an NSTimer that will call the timerFired()
method in this class repeatedly every 0.1 seconds and schedule it on the run
loop of the main thread. Because we have created and scheduled a timer,
we need to invalidate it when the interface controller is deactivated. To do
that, add the following code to the didDeactivate() method:

override func didDeactivate() {
 super.didDeactivate()
 timer?.invalidate()
 timer = nil
}

Finally, we need to implement the code that’s executed when the timer fires.
Add the following method to the InterfaceController class:

func timerFired(timer: NSTimer) -> Void {
 let maxSize: CGFloat = 120.0
 let delta: CGFloat = 10.0
 if (expanding) {
 if (size >= maxSize) {
 expanding = false
 size -= delta;
 } else {
 size += delta
 }
 } else {
 if (size <= delta) {
 expanding = true
 size += delta
 } else {
 size -= delta
 }
 }
 image.setWidth(size)
 image.setHeight(size)
}

This code either adds a delta to or subtracts a delta from the size variable,
depending on the value of the expanding variable, and flips the expanding
state if size reaches its maximum or minimum value. The new size value is
then used to set the image’s width and height.

CHAPTER 3: Watch User Interface Objects102

If you run this code on the simulator, you’ll see that the image does indeed
start from a very small size and grow to its maximum, then shrinks again,
and so on. You’ll probably notice immediately that the animation is not very
smooth and you may also find that it appears to be skipping frames. If you
run this on a real watch, you’ll see that the result is slightly better. However,
as noted earlier, animating images from the WatchKit extension is not a
particularly good idea—it’s usually better to use WatchKit’s support for
animation images on the watch itself, which we’ll now discuss.

Animating Images
In the example you have just seen, we started with a single graphic of the
Sun and gave the impression of an animation by drawing it at different sizes,
from 10 points up to full size and back to 10 points again. At each stage,
WatchKit had to scale the image to match the size of the WKInterfaceImage
object on which it was being drawn. This is inefficient and wastes battery
power. There is a much better way to do this: create a separate image for
each frame of the animation, install the images on the watch, and have
WatchKit perform the animation by displaying the frames one after the other.
Let’s see how that works.

Create a new project called ImageAnimation1 and add a WatchKit App
extension to it. Then open the asset catalog in the ImageAnimation1
WatchKit App group and then drag the 12 images that you’ll find in the
folder 3 – Sun Image Frames into the asset catalog. Each image contains
one frame of the animation that’s similar to the one that we created in the
previous example. In the first frame, which comes from the file sun0@2x.png,
the Sun has zero size. In the second frame (in the file sun1@2x.png) it has
grown to 20 points (or 40 pixels), in the third frame (which comes from the
file sun2@2x.png), it’s 40 points across, and so on until frame 7 (sun6@2x.png),
when it reaches its maximum size of 120 points. In frame 8, the size is
reduced to 100 points, and finally in frame 11 it’s back to 20 points. Notice
the naming convention that has been applied to the file name—sunX@2x.png,
where X is the frame number from 0 to 11 inclusive. When WatchKit sees
a sequence of image file names like this, it assumes that they form the
frames of an animation. If you assign the base name of the image sequence
(by which is meant the part of the file name that appears before the frame
number) to a WKInterfaceImage object, or as the background image of an
interface controller or a group, WatchKit automatically displays the image
frames in sequence and repeats the animation until you explicitly stop it
by calling the stopAnimating() method, an example of which you’ll see in
“Programmatic Control of Image Animation” later in this chapter.

http://mailto:sun0@2x.png/
http://mailto:sun1@2x.png/
http://mailto:sun2@2x.png/
http://mailto:name%E2%80%94sunX@2x.png/

CHAPTER 3: Watch User Interface Objects

103

Open the storyboard and drag an image from the Object Library onto the
interface controller. Then, in the Attributes Inspector, change its Width and
Height attributes to Relative to Container so that it occupies all of the
available space. To make the image object display the animation, type the
base name of the image files (sun) into the Image field. You’ll need to be
careful when doing this, because Xcode will try to autocomplete the name
to sun0. If it does this, delete the trailing 0 (if you open the pop-up for the
Image input field, you’ll see that it contains the names of all 12 image frames,
but not the base name of the animation sequence). Next, set the Mode
attribute to Center. This is necessary because otherwise the image frames
would be scaled to the full size of the image object, which is not what we
want. Set the Animate attribute to Yes to reveal the Duration field. Set the
Duration attribute to 1 to specify that the animation sequence would take
one second, after which it is repeated until you explicitly stop it. Finally,
leave the Animate on Load check box checked so that the animation starts
automatically when the user interface controller is loaded. If you uncheck
this box, you’ll need to explicitly start the animation yourself. You’ll see how
to do that shortly.

The correct attribute settings for the image object are shown in Figure 3-33.

Figure 3-33. An image object configured to perform an image animation

Tip It’s important to note that the image frames are installed in the asset
catalog of the WatchKit App, not the WatchKit extension. This follows the same
rule that applies to custom fonts—resources that are referenced from the
storyboard must be packaged with the WatchKit app, whereas those that are
used by your code must be in the WatchKit extension.

CHAPTER 3: Watch User Interface Objects104

Run the application and you’ll see the animation running. You should notice
that it is much smoother than the one in the previous example and it does
not skip frames. That’s because the animation is being performed on the
watch, with no intervention from the extension running on the iPhone.

Programmatic Control of Image Animation
If you don’t want an animation to begin when the interface controller is
loaded, you can use API provided by the WKInterfaceImage class to start it
at a later point. Let’s modify the example to do that. First, select the image
object in the storyboard and uncheck Animate on Load in the Attributes
Inspector. If you run the example again now, you’ll see just the first frame of
the animation, which is empty.

Open InterfaceController.swift in the Assistant Editor and Control-drag
from the image object in the storyboard to the top of the class to create an
outlet called image, like this:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var image: WKInterfaceImage!

Now add the following code shown in bold to the willActivate() and
didDeactivate() methods in InterfaceController.swift:

override func willActivate() {
 super.willActivate()

 image.startAnimating()
}

override func didDeactivate() {
 super.didDeactivate()

 image.stopAnimating()
}

Run the example again and you’ll see that the animation starts when
the interface controller becomes visible and, although you can’t see this
happening, it stops when interface controller is deactivated. When you
explicitly start the animation in this way, it uses the Duration attribute set in the
storyboard and repeats forever. If you need more control over the animation,
you can use the startAnimatingWithImagesInRange(_:duration:repeatCou
nt:) method, which allows you to choose which frames are to be animated,
how long each animation sequence should take, and how many times it should
be repeated. Make the following change to the willActivate() method:

CHAPTER 3: Watch User Interface Objects

105

override func willActivate() {
 super.willActivate()

 image.startAnimating()
 image.startAnimatingWithImagesInRange(
 NSMakeRange(0, 12), duration: 5,
 repeatCount: 0)
}

This code runs the first 12 frames of the animation (which is actually the
whole animation) over a period of 5 seconds (instead of the 1 second
configured in the storyboard) and repeats it indefinitely (which is the
meaning of a repeatCount of zero).

Now try this:

override func willActivate() {
 super.willActivate()

 image.startAnimatingWithImagesInRange(
 NSMakeRange(0, 12), duration: 5,
 repeatCount: 0)
 image.startAnimatingWithImagesInRange(
 NSMakeRange(0, 6), duration: 1,
 repeatCount: 1)
}

Now you’ll see only the first 6 frames of the animation over a period of 1
second, with no repeats (a repeatCount of 1 means to run the animation
once)—the animation stops when the sixth frame has been drawn.

You don’t have to start from the first animation frame. This code runs the last
6 frames twice, over half a second:

override func willActivate() {
 super.willActivate()

 image.startAnimatingWithImagesInRange(
 NSMakeRange(0, 6), duration: 1,
 repeatCount: 1)
 image.startAnimatingWithImagesInRange(
 NSMakeRange(6, 6), duration: 0.5,
 repeatCount: 2)
}

CHAPTER 3: Watch User Interface Objects106

If you want to run some or all of your animation backwards, use a negative
time value, like this:

override func willActivate() {
 super.willActivate()

 image.startAnimatingWithImagesInRange(
 NSMakeRange(6, 6), duration: 0.5,
 repeatCount: 2)
 image.startAnimatingWithImagesInRange(
 NSMakeRange(6, 6), duration: -5,
 repeatCount: 1)
}

When the duration is negative, the frames specified by the range argument
are animated in reverse order, so the preceding code runs frames 11, 10, 9,
8, 7, and 6 over a period of 5 seconds (the absolute value of the duration)
and then stops (because repeatCount is 1). You can repeat the cycle any
number of times by setting repeatCount to the required value.

As noted earlier, you can also use an image as the background of a group or
an interface controller. Use the Background property to set the background
image (animated or single frame) and, in the case of a group, you can use
methods with the same names as the ones you have just seen to start and
stop animation of the image.

Dynamic Image Content
Packaging images in the WatchKit application bundle is the most efficient
approach, but it’s not always possible. You might need to display an image
downloaded from the Internet or a graphic containing data that’s been
processed by the owning iOS application. In cases like this, you need to be
able to send images to the watch at run time and have them appear in your
WatchKit application’s user interface.

Sending Images to the Watch
The easiest way to incorporate an image at run time is to use the
setImage() and setImageData() methods of the WKInterfaceImage class
or the setBackgroundImage() and setBackgroundImageData() methods of
WKInterfaceGroup. These methods let you supply the image to be used as
either a UIImage object or as data encoded in one of the supported image
formats. Invoking one of these methods with a non-nil argument replaces
any existing image, while passing nil removes the image. Depending
on how the Width and Height attributes of the WKInterfaceImage or
WKInterfaceGroup object are configured, changing or removing the image
content might cause the host object to change size.

CHAPTER 3: Watch User Interface Objects

107

Let’s explore how these methods work by sending an image at run time to
an image object on the watch. To keep things simple, and because it makes
no difference to the way in which the WKInterfaceImage API is used, instead
of fetching the image data over the network or creating it on the fly, we’ll use
an image that’s in the WatchKit extension’s bundle.

By now, you should be getting used to creating simple WatchKit applications
and you should be very familiar with what we’re about to do. Start by
creating a new project called ImageUpload and adding a WatchKit application
target to it. Open Interface.storyboard in the storyboard editor, drag an
image object from the Object Library, drop it onto the interface controller.
Set the image object’s Horizontal and Vertical attributes to Center, so that
its center is pegged to the center of the interface controller’s visible area and
its Mode object to Center. We don’t need to worry about setting the image
object’s size, because it will automatically resize itself to fit the size of the
image when it’s installed. We’re going to install the image when the interface
controller is created, so we need an outlet for the image object. Open
InterfaceController.swift in the Assistant Editor and then Control-drag
from the image object in the storyboard to the top of the class definition to
create an outlet called image.

Because we’re going to send an image to the watch by using code in the
WatchKit extension, the image needs to be in the extension’s asset catalog,
not the asset catalog in the WatchKit application. Open the WatchKit
extension’s asset catalog by clicking it in the Project Navigator and drag the
file VeryLargeSun@2x.png from the folder 3 – Images onto it.

To send the image to the watch, add the following code in bold to the
awakeWithContext() method of InterfaceController.swift:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 let sunImage = UIImage(named: "VeryLargeSun")
 image?.setImage(sunImage)
}

The UIImage(named:) initializer loads the image by name from the WatchKit
application’s asset catalog and creates a UIImage object wrapping it.
To make the image appear in the user interface, you just need to call the
setImage() method of the WKInterfaceImage object.

Run the example now and you’ll see the image appear on the screen. When
you call setImage(), WatchKit sends the image data from the iPhone to
the watch. This process takes time, so there may be a small delay before it
appears on the screen. This delay will be incurred every time the interface
controller is created—but, as you’ll see shortly, there is a way to minimize
this delay once the interface controller has been created for the first time.

http://mailto:VeryLargeSun@2x.png/

CHAPTER 3: Watch User Interface Objects108

If you have raw image data instead of a UIImage object, you can either create
a UIImage from it or you can send the data directly to the watch using the
setImageData() method of WKInterfaceImage or the setBackgroundImageData()
method of WKInterfaceGroup. We’ll illustrate the second approach by using
image data loaded from a file in the extension’s bundle. In reality, of course, you
would be more likely to get the image data from the Internet or to create it using
Core Graphics APIs. Drag the file SmallSun@2x.png from the folder 3 – Images
and drop it in the WatchKit Extension group in the Project Navigator, ensuring
that the image is added to that WatchKit Extension target.

To load the data and send it to the watch, replace the code in
awakeWithContext() with the following code in bold:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 let sunImage = UIImage(named: "VeryLargeSun")
 image?.setImage(sunImage)
 if let url = NSBundle.mainBundle().URLForResource(
 "SmallSun@2x", withExtension: "png") {
 let data = NSData(contentsOfURL: url)
 image?.setImageData(data)
 }
}

We load the image data by getting a URL for its location in the main bundle
and then using the URL to initialize an NSData object. Once we have the
data, we use the setImageData() method to send it to the watch. Because
the image data may (theoretically) be absent, the URL may be nil, so we
wrap the code where the NSData object is initialized and used in an if let
construction. Run the example again and you’ll see a slightly smaller Sun
appear in the space occupied by the image object.

Everything that you have just seen also applies to the setBackgroundImage()
and setBackgroundImageData() methods of WKInterfaceGroup. As an
exercise, you should replace the WKInterfaceImage object in the storyboard
with a WKInterfaceGroup and modify the code in awakeWithContext() to
verify that these two methods work as described. Ensure that you set the
Mode attribute of the group to Center to avoid distortion of the image.

Caution Because this code is running in the WatchKit extension, its main
bundle is the extension’s bundle. By contrast, the main bundle for code
executing in the iOS application is the application’s own bundle, which is built
from code and resources in the iOS application’s target. Do not confuse these
two different bundles.

http://mailto:SmallSun@2x.png/

CHAPTER 3: Watch User Interface Objects

109

Caching Images on the Watch
Sending images to the watch is expensive. If you’re likely to need to use the
same image more than once, you can have it cached on the watch so that
subsequent uses do not incur the overhead of transmitting the image data
from the paired iPhone. The API to manage the image cache is provided
by the WKInterfaceDevice class. To see how this API works, create a new
project called CachingImages and, as usual, add a WatchKit extension to
it. Follow the same steps that we used to create the ImageUpload project
in the previous section: drag an image onto the storyboard, center it, set
its Mode attribute to Center, and create an outlet for it called image in the
InterfaceController class.

Installing an image in the cache is almost the same as programmatically
installing it in a WKInterfaceImage object or as the background of a group or
interface controller—the image needs to be in the WatchKit extension bundle
and it needs to be loaded into either a UIImage or NSData object. Open the
WatchKit extension’s asset catalog and drag the file VeryLargeSun@2x.png
from the folder 3 – Images into it. Add the following code shown in bold to
the awakeWithContext() method of InterfaceController.swift:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 let device = WKInterfaceDevice.currentDevice()
 let cacheKey = "CachedVeryLargeSun"
 if device.cachedImages[cacheKey] == nil {
 if let sunImage = UIImage(named: "VeryLargeSun") {
 if !device.addCachedImage(sunImage, name: cacheKey) {
 println("Unable to add image to cache");
 }
 }
 }
 image?.setImageNamed(cacheKey)

 println(device.cachedImages)
}

What we’re aiming to do with this code is install the image in the watch
image cache under the name CachedVeryLargeSun and then use the
setImageNamed() method of WKInterfaceImage to display the cached copy of
the image. The cache is persistent over restarts of the watch application, so
once the image is installed, it remains available until you explicitly remove it.
The first two lines get a reference to the WKInterfaceDevice instance for the
paired watch and declare the name under which the image will be cached:

 let device = WKInterfaceDevice.currentDevice()
 let cacheKey = "CachedVeryLargeSun"

CHAPTER 3: Watch User Interface Objects110

Next, we check whether the image is already cached:

 if device.cachedImages[cacheKey] == nil {

The cachedImages property of WKInterfaceDevice is a map in which the keys
are the names of the cached images and the value stored for each key is
the size of the corresponding image. To test whether the image is already
present, we look for the key CachedVeryLargeSun and skip the image upload
if we find it. If the key is not found, we attempt to load the image and add it
to the cache:

 if let sunImage = UIImage(named: "VeryLargeSun") {
 if !device.addCachedImage(sunImage, name: cacheKey) {
 println("Unable to add image to cache");
 }
 }

The WKInterfaceDevice addCachedImage(_:name:) method (and likewise
addCachedImageWidthData(_:name:)) adds the image to the cache using
the given name, or replaces it if it’s already present. Here, we have already
ensured that the image is not in the cache so that we wouldn’t waste time
uploading it again. Each application can store up to five megabytes of
image data in the cache. If adding the image would exceed the capacity of
the cache, the operation fails, and addCachedImage(_:name:) returns false.
In this example, we just print a message to the console if this happens (of
course, it won’t because we are only adding a single small image). In a
real application, you need to keep track of what’s in the cache and remove
images that you no longer need, or remove all cached images, when there is
no spare capacity.

Finally, we install the image from the cache in the WKInterfaceImage object
using its setImageNamed() method and print the content of the cache to the
console using the cachedImages property of WKInterfaceDevice:

 }
 image?.setImageNamed(cacheKey)

 println(device.cachedImages)
}

If you run this example, you’ll see the Sun image on the screen and the
following output will appear in the Xcode console, indicating that there is a
single cached image called CachedVeryLargeSun of size 5843 bytes:

[CachedVeryLargeSun: 5843]

CHAPTER 3: Watch User Interface Objects

111

To remove an image from the cache, use the removeCachedImageWithName()
method as shown in the following code, which removes the Sun image:

 device.removeCachedImageWithName("CachedVeryLargeSun")

To remove all images that are cached by your WatchKit application, use
removeAllCachedImages():

 device.removeAllCachedImages()

Caching Image Animations
The example you have just seen demonstrates how to cache single-frame
images on the watch. You can also create and cache image animations,
although you need to use a slightly different technique than the one we used
when specifying the animation in the storyboard in the section “Animating
Images” earlier in this chapter. There, we added 12 image frames called
sun0, sun1, and so forth to the WatchKit application’s asset catalog, added a
WKInterfaceImage object to the storyboard, set its image name attribute to sun,
and told it to animate the image sequence. Let’s try to do a similar thing while
caching the images on the watch. We’re going to find that it doesn’t work and
then we’re going to modify the code to do something different that does work.

Create another WatchKit app project called ImageAnimation2 with a centered
image on the storyboard and an outlet for it in the InterfaceController.
swift file by following the same steps as you did to create the
CachingImages example. Instead of adding the large Sun image to the
WatchKit extension’s asset catalog, add the 12 image frames from the folder
3 – Sun Image Frames. Now add the following code shown in bold to the
awakeWithContext() method of InterfaceController.swift:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 let device = WKInterfaceDevice.currentDevice()
 for i in 0...11 {
 if let image = UIImage(named: "sun\(i).png") {
 device.addCachedImage(image, name: "sun\(i)")
 }
 }
 println(device.cachedImages)

 image.setImageNamed("sun")
 image.startAnimating()
}

CHAPTER 3: Watch User Interface Objects112

The for loop in this code installs each of the 12 image frames in the
watch image cache and then prints the cache content to the console for
verification. Then, by analogy to what we did with the storyboard version
of this example, we use sun as the name of the image to be displayed and
tell the image to start animating. If you run this example, you won’t see an
animating image, but you will see the following output in the console:

[sun11: 2613, sun6: 5303, sun2: 3204, sun9: 3760, sun5: 4932, sun1: 2613,
sun8: 4451, sun10: 3204, sun0: 1905, sun4: 4451, sun7: 4932, sun3: 3760]
ImageAnimation2 WatchKit Extension[18508:6717336] Unable to find image named
"sun" on Watch

This confirms that the images were cached correctly. However, it seems that
WatchKit cannot animate a sequence of image frames from the image cache in
the same way as it does when the images are in the WatchKit application bundle.

Fortunately, there is a way around this. Instead of uploading the individual
frames, we construct an animated image in the WatchKit extension, cache it
on the watch, and tell the WKInterfaceImage object to animate it. To do that,
remove all the code that you added to the awakeWithContext() method and
replace it with the following code in bold:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 let device = WKInterfaceDevice.currentDevice()
 let cacheKey = "AnimatedSun"
 if device.cachedImages[cacheKey] == nil {
 var images = Array<UIImage>()
 for i in 0...11 {
 if let image = UIImage(named: "sun\(i).png") {
 images.append(image)
 }
 }
 let animatedImage =
 UIImage.animatedImageWithImages(images, duration: 1.0)
 device.addCachedImage(animatedImage, name: cacheKey)
 }

 image.setImageNamed(cacheKey)
}

The first part of this code checks whether the animated image is already
installed in the image cache. If it’s not, it loads the 12 image frames into an
array and then combines them into an animated image by using the UIImage
animatedImageWithImages(_:duration:) method, specifying that each cycle
of the animation should take one second. The animated image (which is

CHAPTER 3: Watch User Interface Objects

113

also a UIImage object) is then uploaded in the WatchKit image cache. The
last line of code installs the image in the WKInterfaceImage object. To start
and stop the animation, add the following code to the willActivate() and
didDeactivate() methods:

override func willActivate() {
 super.willActivate()
 image.startAnimating()
}

override func didDeactivate() {
 super.didDeactivate()
 image.stopAnimating()
}

Run the example to see the Sun image animating.

The startAnimating() method plays the whole animation in the forward
direction and repeats it indefinitely. To play only a part of the animation, play
it backwards, or change the repeat count or the duration, use the startAn
imatingWithImagesInRange(_:duration:repeatCount:) method, which we
discussed in the section “Programmatic Control of Image Animation” earlier
in this chapter. As an example, replace the startAnimating() call with the
following:

image.startAnimatingWithImagesInRange(NSMakeRange(0, 6),
 duration: 5, repeatCount: 2)

Run the example again and you’ll see the first part of the animation played
twice, each time over a period of five seconds instead of the one second
specified in the image itself.

Summary
In this chapter, you saw how to use all the features of the WatchKit
WKInterfaceLabel and WKInterfaceImage classes. You also learned how to
work with the Apple Watch system font and how to install and use fonts of
your own. Everything you read about fonts in this chapter also applies to
the other user interface objects that use text, some of which are covered
in the next chapter. The second half of the chapter covered the use of both
static and animated images and how to use an image as the background
of a group or an interface controller. The next chapter covers most of the
remaining user interface objects. After reading it, you should be able to
create a simple WatchKit application including some basic user interaction.

115

Chapter 4
More Watch User
Interface Objects
In Chapter 3, we looked at two of the simplest user interface objects:
WKInterfaceLabel and WKInterfaceImage. This chapter covers six more,
starting with three objects (buttons, sliders, and switches) the user can
interact with that cause code in your WatchKit Extension to be invoked
when their state changes. We’ll also look in detail at three more objects you
can use to present information to the user: the WKInterfaceDate object,
which displays dates and times, the WKInterfaceTimer object, which is
a count-down or count-up timer, and WKInterfaceMap, a simple, non-
interactive map. By the time you reach the end of this chapter, you will have
seen all the objects you can use to build WatchKit user interfaces (except
tables, which are covered in Chapter 6).

Buttons
Buttons allow the user to interact with your WatchKit application. A button
is linked to an action method in the interface controller, so that when the
user clicks on the button, the action method is called. As you’ll see in
Chapter 5, a button can also be used as the trigger for a segue that causes
a transition to another interface controller. Buttons are instances of the
WKInterfaceButton class.

http://dx.doi.org/10.1007/9781484210260_3
http://dx.doi.org/10.1007/9781484210260_6
http://dx.doi.org/10.1007/9781484210260_5

CHAPTER 4: More Watch User Interface Objects116

Creating and Configuring Buttons
Create a new project called Buttons and add a WatchKit application target
to it. Select Interface.storyboard in the Buttons WatchKit App target to
open it in the editor. Then locate a button object in the Object Library and
drag it onto the interface controller. You’ll see that the button expands to fill
all of the available width. That’s because Apple recommends that, whenever
possible, you use only one button per row. To encourage this, when you
drop a button onto a storyboard, its Width attribute is set to Relative to
Container with a value of 1, as shown in Figure 4-1.

Figure 4-1. A button object

CHAPTER 4: More Watch User Interface Objects

117

In the storyboard, the button looks transparent and rectangular, but that’s
not the case. Select the interface controller in the storyboard, change its
Background attribute to blue, and then run the example on the simulator. You
should see that the button actually has a translucent white background and
rounded corners (see Figure 4-2).

Figure 4-2. Buttons have a translucent white background and rounded corners

You can change the background color and the color of the text in the
Attributes Inspector. Referring back to Figure 4-1, the Color attribute
below the Title attribute sets the color of the text, while the other Color
attribute, below the Background attribute, changes its background color.
The Background attribute itself allows you to add an image to the button’s
background. Typically you would use a background image to give the
button a distinctive appearance. It isn’t possible to control the mode used
to display the image—it is always scaled to fit the button’s width and height.
There is also no way to change the radius of the button’s rounded corners.

You can set the button’s title and font in the storyboard using the Title
attribute and Font attribute respectively. The title can also be changed at
run time using the setTitle() method or the setAttibutedTitle() method,
which lets you set the title using an NSAttributedString. These methods
work in the same way as the setText() and setAttributedText() methods
of the WKInterfaceLabel class, discussed in Chapter 3. Unlike labels, the
text in a button is always horizontally centered.

http://dx.doi.org/10.1007/9781484210260_3

CHAPTER 4: More Watch User Interface Objects118

Actions and State
To respond to a button press, you need to link the button to an action in
your interface controller. Select the button in the storyboard and then open
the Assistant Editor (). The file InterfaceController.swift should
appear in the Assistant Editor; if it does not, use the jump bar to open it.
Control-drag from the button to the line just above the final closing brace in
InterfaceController.swift and release the mouse button. In the
pop-up that appears, change the Connection type to Action and the Name to
buttonClicked, as shown in Figure 4-3.

Figure 4-3. Creating an action method for a button

Click Connect, and the following code shown in bold will be added to
InterfaceController.swift:

 @IBAction func buttonClicked() {
 }
}

Notice that the buttonClicked() method does not have any arguments, so
you don’t get a reference to the button that was clicked. If you have multiple
buttons in your user interface, you’ll need to create a separate action
method for each button. This is different to UIKit, where you can use a single

CHAPTER 4: More Watch User Interface Objects

119

action method to respond to clicks from any number of buttons. Make
the following change shown in bold to the buttonClicked() method and
then run the example and click the button—you should see the text Button
clicked appear in the Xcode console:

 @IBAction func buttonClicked() {
 println("Button clicked")
 }
}

By default, buttons are enabled, which means they respond to clicks. If you
don’t want a button to be enabled, perhaps because you need the user
to supply some information before the button’s action can be perfomed,
call the setEnabled() method with argument false. To enable the button
again, call setEnabled(true). To see how this works, drag another button
from the Object Library and drop it on the storyboard below the first one.
Control-drag from both buttons to the top of the InterfaceController
class in the Assistant Editor to create outlets called button1 for the top
button and button2 for the second button. Create an action method called
button2Clicked() for the second button using the same steps that you used
to create the button1Clicked() method.

We’re going to use the second button to control the enabled state of the
first. Select the second button in the storyboard and set its Title attribute to
Disable Button 1, to indicate what will happen when the button is clicked.
We can’t get the enabled state of a button at run time, so we’ll need to
keep track of it in our interface controller. To do that, add a variable called
button1Enabled to the InterfaceController class:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var button1: WKInterfaceButton!
 @IBOutlet weak var button2: WKInterfaceButton!
 var button1Enabled = true

The variable is initialized to true because buttons are enabled by default.
Now add the following code shown in bold to the button2Clicked() method:

@IBAction func button2Clicked() {
 button1Enabled = !button1Enabled
 button1.setEnabled(button1Enabled)
 button2.setTitle(button1Enabled ? "Disable Button 1"
 : "Enable Button 1")
}

CHAPTER 4: More Watch User Interface Objects120

Select the interface controller in the storyboard, set its Color attribute back
to Default, and then run the example. You’ll see both buttons, with the top
button initially enabled, as shown on the left in Figure 4-4.

Now click the bottom button to disable the top button, as shown on the
right in Figure 4-4. You should see a slight change in its background color
(the background color of the interface controller was changed to make this a
little easier to see), and it no longer responds when clicked. Click the bottom
button again to re-enable it.

Figure 4-4. Enabling and disabling a button

Using a Group as the Content of a Button
Select either of the buttons in the previous example and look at its Content
attribute in the storyboard (see Figure 4-1). By default, this is set to Text,
but there is another value: Group. When you select this value, the button’s
title disappears, to be replaced by an empty group. The button no longer
looks like a button, but it still responds to taps. You can add user interface
objects to this group to make almost any region of your user interface a
tappable area. You could, for example, add an image and a label to create
a layout similar to that shown in Figure 3-1 nested inside a button. In this
section, we’ll create a button with a nested image and use it to show how to
use the hidden and alpha attributes of user interface objects—which were
mentioned in Chapter 2 but not covered in detail—to make parts of your
layout appear and disappear. The application we’re going to create initially
consists of four buttons, as shown on the left in Figure 4-5.

http://dx.doi.org/10.1007/9781484210260_2

CHAPTER 4: More Watch User Interface Objects

121

When one of the buttons is tapped, it disappears, revealing part of an image
that’s hidden behind the buttons, as shown on the right in Figure 4-5. If you
tap a different button, the first button reappears, and the button you just
tapped vanishes, to show another part of the image.

Start by creating a new project called ImageButtons and add a WatchKit
application target to it. Select the asset catalog in the ImageButtons
WatchKit App target and drag the two images from the folder 4 – Button
Images into it. These images are the application’s background and the
question mark image that we’ll use for the buttons.

The layout shown in Figure 4-5 is a grid of four equal squares. To create it,
we’re going to add two groups to the interface controller, one above the
other, each covering half of the available height. We’re then going to split
each of these groups into two horizontally to form the four grid squares.
Drag a group from the Object Library and drop it onto the interface controller
in the storyboard. In the Attributes Inspector, change the group’s Height
attribute to Relative to Container and set the associated value to 0.5, so
that the group covers the top half of the interface controller, as shown at the
top in Figure 4-6.

Figure 4-5. Embedding an image in a group inside a button

CHAPTER 4: More Watch User Interface Objects122

We need another group for the second row. We could drag it from the
Object Library to the storyboard and set its Height attribute, just as we did
with the first row, but there is an easier way. Because the second group
has the same attribute values as the first one, we can use a shortcut by
just making a copy of the group we just added. To do that, hold down the
 key (the option key), drag the first group downward, and drop it into
the empty space. You should now have two equal rows, as shown on the
bottom in Figure 4-6.

When we add the buttons to these groups, we need them to completely
cover the interface controller. At the moment, they won’t because there is a
small vertical gap between the two rows, which you can see in Figure 4-6. This
is caused by the Spacing attribute of the interface controller, which leaves a
4-point vertical gap between its child objects. Select the interface controller
in the storyboard and change the Spacing attribute to 0 (zero) to remove
the vertical gap. While you have the interface controller selected, use its

Figure 4-6. Creating two rows of equal height

CHAPTER 4: More Watch User Interface Objects

123

Background attribute to set BackgroundImage as its background and change
the Mode attribute to Center. You should now be able to see (Figure 4-7) the
background image behind the two groups that we just added. The image is
visible because groups are transparent by default.

Figure 4-7. The background image behind the two group rows

The idea is for the background image to be hidden by the four buttons.
Let’s add a couple of buttons to the bottom row to make sure this is going
to work. Drag a button from the Object Library and drop it onto the bottom
row. Initially, it expands to fill the whole row. Set its Width attribute value
to 0.5 and its Height attribute to Relative to Container. The button now
covers the bottom left corner of the interface controller, but you can still see
the image through it, because buttons are translucent by default. To fix that,
set the button’s background color to black. We need another copy of the
button to cover the bottom right corner, so –drag a copy of the first button
and drop it to the right of the first one. If you look carefully at the storyboard,
you’ll see a small gap between the two buttons. To remove that, select the
bottom group and set its Spacing attribute to 0. You may find it difficult to
select the group in the storyboard, so select it in the Document Outline
(the tree structure to the left of the storyboard editor) instead. Now run the
example on the simulator to see how it looks (see Figure 4-8).

CHAPTER 4: More Watch User Interface Objects124

As you can see, this doesn’t quite work—some parts of the background are
visible at the bottom corners and the bottom center. That’s because the buttons
and the group they are nested in have rounded corners. Unfortunately, you can’t
change the radius of the buttons’ corners, but you can change the radius of the
rounded corners of a group. To make sure that every pixel of the background
is covered, we’re going to nest each button inside a group of its own and make
sure those groups have squared-off corners. We’ll also set the background
color of those groups to black, so that they hide everything that’s behind them.
That’s not quite enough, though—those groups will be nested inside the top and
bottom groups that are already present and which also have rounded corners,
which will clip their content. To stop that happening, we need to make sure our
existing groups have square corners too. To do that, delete both of the buttons
you just added and select both groups. Then in the Attributes Inspector, change
the Radius attribute to 0, which makes the corners square instead of circular
arcs. With both groups still selected, set the Spacing property for both of them to
0 so there is no horizontal gap between the groups that will hold the buttons.

Now let’s add the first of the four groups that we need as background for
each button. Drag one group from the Object Library and drop it in the top
group. Sets its Width attribute value to 0.5 so that it covers half the width of
the top row and change its Height attribute to Relative to Container so
that its height is the same as that of the top row. Set its Radius attribute to 0
to eliminate the rounded corners and the Color attribute to black to hide the
interface controller’s background image. At this point, the storyboard and
Attributes Inspector should look like Figure 4-9.

Figure 4-8. The background image partially hidden by two buttons

CHAPTER 4: More Watch User Interface Objects

125

The next step is to add a button to the group. Drag a button from the Object
Library, drop it into the group, and then use the Attributes Inspector to
change its Height value to Relative to Container. The result will be that the
button now completely fills the space occupied by the group. Now we need
to add the question mark image to the button. To do that, first change the
Content attribute of the button from Text to Group and look at the Document
Outline. You’ll see that there is a disclosure triangle next to the button. Click
that triangle and you’ll see that there is a group nested inside the button, as
shown in Figure 4-10.

Figure 4-9. Adding the first button background group

CHAPTER 4: More Watch User Interface Objects126

Now drag an image object from the Object Library and drop it onto the area
occupied by the button. As you can see in the Document Outline, the image
is actually added to the button’s nested group. Change its Horizontal and
Vertical attributes to Center to center it in the button. Now change its
Image attribute to QuestionMark and you should have a button with a nested
question mark image, as shown in Figure 4-11.

Figure 4-10. Adding an image to a button—part 1

Figure 4-11. Adding an image to a button—part 2

Now you need to make three copies of the group that contains the button.
To do that, first select the group in the Document Outline. Make sure you
select the group that is the immediate parent of the button, as shown in
Figure 4-12.

CHAPTER 4: More Watch User Interface Objects

127

With the correct group selected, go back to the storyboard and -drag the
group and its content to the right and drop it. You should now have two
copies of the button in the top row. Repeat the process to create another
two copies of the button and its enclosing group in the bottom row. When
you’ve done that, your Document Outline and storyboard should look like
Figure 4-13.

Figure 4-12. Making three copies of the image button—stage 1

CHAPTER 4: More Watch User Interface Objects128

With the storyboard complete, we now need to implement the simple logic
of this application. When the user taps any of the four buttons, we need
to make that button disappear and make sure that the other three buttons
are visible. To hide a button and make the background image visible, we
actually need to hide the group that the button is wrapped in. To do that, we
need outlets for all four of those groups. Open InterfaceController.swift
in the Assistant Editor and Control-drag from the group that contains the
first button (the button at the top in the Document Outline in Figure 4-13) to
the top of the class definition. Then release the mouse button and create an
outlet called group1. Figure 4-14 shows the process of creating this outlet—
be sure that you select and drag from the correct group—it must be the
group that is the immediate parent of the button.

Figure 4-13. Making three copies of the image button—completed

CHAPTER 4: More Watch User Interface Objects

129

This line shown in bold should have been added to the interface
controller class:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var group1: WKInterfaceGroup!

Repeat this process for the group wrapping the second button on the
top row, naming the outlet group2. Do the same for the group wrapping
the leftmost button on the bottom row (naming it group3) and the group
wrapping the rightmost button on the bottom row (naming it group4), giving
you four outlets:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var group1: WKInterfaceGroup!
 @IBOutlet weak var group2: WKInterfaceGroup!
 @IBOutlet weak var group3: WKInterfaceGroup!
 @IBOutlet weak var group4: WKInterfaceGroup!

Figure 4-14. Creating an outlet for the group wrapping the first button

CHAPTER 4: More Watch User Interface Objects130

As you’ll see shortly, it is more convenient to keep the references to these
groups in an array so that we can reference them by index. To do that, add
the following array definition immediately below the outlets:

 @IBOutlet weak var group4: WKInterfaceGroup!
 lazy var groups: [WKInterfaceGroup] =
 [self.group1, self.group2, self.group3, self.group4]

We also need to create an action method in the interface controller for each
of the four buttons. Again, it is easier to use the Document Outline than the
storyboard when doing this, to ensure that you are dragging from the correct
source object. In the Document Outline, select the topmost button and
Control-drag to the line above the closing brace in InterfaceController.
swift, as shown in Figure 4-15.

Note You may be wondering why we aren’t using an outlet collection instead
of four individual outlets that are then collected into an array. That would be
the ideal solution, but at the time of writing, Xcode does not support outlet
collections for WatchKit applications. Should outlet collections become available,
the code can easily be converted by deleting group1 to group4, changing
the declaration of groups to look like this: @IBOutlet weak var groups:
[WKInterfaceGroup]! Then connect each of the groups in the storyboard
directly to the groups outlet collection, in the same order as they are currently
connected to the individual outlets. The rest of the code would remain unchanged.

CHAPTER 4: More Watch User Interface Objects

131

Release the mouse button, change the Connection type to Action, and
use button1Clicked as the method name. Do the same thing for the
second button down, naming the action method button2Clicked. Repeat
for the third and fourth buttons, using the names button3Clicked and
button4Clicked respectively. You should now have four empty action
methods in the interface controller:

 @IBAction func button1Clicked() {
 }
 @IBAction func button2Clicked() {
 }
 @IBAction func button3Clicked() {
 }
 @IBAction func button4Clicked() {
 }
}

In the button1Clicked() method, we need to make the group wrapping
the top left button disappear and we need to make sure that the other
three groups are visible (since we could already have pressed one of the
others buttons). There are two WKInterfaceObject methods that affect the
visibility of an interface object: setHidden() and setAlpha(). Let’s try the
more obvious of the two first. Add the following code shown in bold to the
button1Clicked() method:

Figure 4-15. Creating an action method for first button

CHAPTER 4: More Watch User Interface Objects132

@IBAction func button1Clicked() {
 groups[0].setHidden(true)
 groups[1].setHidden(false)
 groups[2].setHidden(false)
 groups[3].setHidden(false)
}

Run the example and click on the top left button. You should get the result
shown in Figure 4-16.

Figure 4-16. Making the wrong button disappear

It looks like the wrong button has disappeared, but that’s not actually what
has happened. When you make an interface object invisible, the group (or
interface controller) no longer allocates space for it. In this case, we made
the top-left button invisible, so the group that manages the top row of the
layout allocated its space to the other button in that row. In other words,
the button that you see at the top left in Figure 4-16 is actually the one
that was initially at the top right. We need to hide the group for the top
left button but still have the group for the row allocate space for it. That’s
exactly what setAlpha() does when called with argument 0. The setAlpha()
method changes the translucency of the object on which it is called—just
like changing the alpha value of a UIColor or CGColorRef. When called with
argument 1, it makes the object completely opaque, which is the default
state. When called with argument 0, it makes the object invisible. Values

CHAPTER 4: More Watch User Interface Objects

133

between 0 and 1 cause the pixels of the object to be blended with those
of its background, with smaller values causing more of the background
to show through. With this in mind, change the implementation of the
button1Clicked() method to this:

@IBAction func button1Clicked() {
 groups[0].setAlpha(0)
 groups[1].setAlpha(1)
 groups[2].setAlpha(1)
 groups[3].setAlpha(1)
}

Now run the example again and click on the top left button. This time
it should disappear, leaving the other three buttons intact, as shown in
Figure 4-17.

Figure 4-17. Making the correct button disappear

The implementation of the other three action methods is very similar. In fact,
we can save some code by observing that in the action method for button N,
we need to set the alpha value for group N to 0, and for all the other groups

CHAPTER 4: More Watch User Interface Objects134

to 0, and that this code can easily be factored out into a common method.
To do this, modify the InterfaceController.swift class as shown in bold in
the following code snippet:

 @IBAction func button1Clicked() {
 hideButton(0)
 }

 @IBAction func button2Clicked() {
 hideButton(1)
 }

 @IBAction func button3Clicked() {
 hideButton(2)
 }

 @IBAction func button4Clicked() {
 hideButton(3)
 }

 private func hideButton(index: Int) -> Void {
 for i in 0..<groups.count {
 groups[i].setAlpha(i == index ? 0 : 1)
 }
 }
}

If you now run the application, you’ll see that if you click any of the buttons,
it disappears. Click any other button and that button disappears while the
hidden one reappears. This should make clear the distinction between
setHidden() and setAlpha()—use the former when you want the object’s
layout space to be reused by other objects and the latter when you do not.
Of course, you can also use setAlpha() with a value between 0 and 1 if you
just want to make an object translucent.

Sliders
The slider allows the user to choose a value from a given bounded range.
The minimum and maximum values are set in the storyboard and cannot
be changed, but the current value and the number of available values in the
slider’s range can be changed at run time. Let’s experiment a little with the
slider control. Create a new project called Sliders and add a WatchKit app
target to it. Select Interface.storyboard in the Project Navigator. Then locate
a slider in the Object library and drag one onto the storyboard, as shown in
Figure 4-18, where you can also see the slider’s configurable attributes.

CHAPTER 4: More Watch User Interface Objects

135

The slider has a bar and two buttons that the user can tap to change the
slider’s value, which is a floating-point number. Tapping to the left of the
slider’s center or on the minus button decrements the value by one step;
tapping to the right or on the plus button increments by one step. The slider
does not respond to dragging.

As you can see in Figure 4-18, the default minimum value is 0, and the
default maximum is 3. The Steps attribute determines how much the value
changes by each time the user taps. To calculate the step value, subtract
the minimum from the maximum and divide by the value of the Steps
attribute. In this case, each tap changes the slider’s value by (3 – 0) / 3 = 1.

You can track the slider’s value as it changes by linking it to an action
method in your interface controller. Open InterfaceController.swift
in the Assistant Editor, Control-drag from the slider in the storyboard
to the bottom of class, and release the mouse button. In the pop-up
that appears, change the Connection to Action and set the name to
onSliderValueChanged. Then add a line of code to print the current value, as
shown in bold:

@IBAction func onSliderValueChanged(value: Float) {
 println("Slider value is \(value)")
}

Figure 4-18. A slider and its configurable attributes

CHAPTER 4: More Watch User Interface Objects136

When the slider value changes, this method is called with the new value.
Run the example and tap on the + and – buttons, or to the left and right of
the center of the slider, to see the value change in the console. As you tap,
the slider bar is filled with more or less green color to reflect the new value,
with each step represented by one colored segment. You can increase the
number of steps, and therefore the number of segments, by changing the
Steps attribute in the Attributes Inspector. Changing this value to 6 doubles
the number of segments, as shown on the left in Figure 4-19.

Figure 4-19. A slider with 6 steps and with its Continuous attribute off (on the left) and on (on
the right)

With Steps set to 6, the slider value changes by 0.5 for each tap. If you need
to change the number of steps at run time, you can do so by calling the
setNumberOfSteps() method with an integer argument specifying the new
step count.

You can change the slider’s current value by calling setValue() with a new
value. These changes are not reported to your action method and they don’t
need to be multiples of the step value either. Here, for example, even though
the step value is 0.5, it is perfectly legal to call setValue(2.25). If you try to
set a value that’s larger than the maximum or smaller than the minimum, you
get the maximum or minimum instead.

If you prefer to see a solid bar instead of discrete segments, check the
Continuous checkbox in the slider’s attributes. You can also change the
color used to draw the slider bar by setting the Color attribute. Check the
Continuous checkbox and change the Color attribute to yellow; then run the
example again to get the result shown on the right in Figure 4-19.

CHAPTER 4: More Watch User Interface Objects

137

A solid bar and the subtle animation that takes place when you tap it give
the impression that the value is varying continuously, but in fact the effect
is entirely visual—as you can easily verify, in this example the value still
changes in steps of 0.5.

You can change the images used for the + and – buttons by setting the Max
Image and Min Image attributes. Open the WatchKit app’s asset catalog and
drag the image files SliderMax@2x.png and SliderMin@2x.png from the folder
4 – Slider Images onto it. Now set the Max Image attribute to SliderMax and
the Min Image attribute to SliderMin. Then run the example again to get the
result shown in Figure 4-20.

Figure 4-20. Using custom images for the slider’s buttons

You can disable a slider if you don’t want the user to be able to change its
value. To demonstrate that, let’s add a switch to our example application.

Switches
A switch gives the user a way to make a yes or no choice. You can set the
state of the switch, its title, and its title color both in the storyboard and at
run time, and you can enable or disable it. To track the current state of the
switch, you need to link it to an action method in your interface controller.

http://mailto:SliderMax@2x.png/
http://mailto:SliderMin@2x.png/

CHAPTER 4: More Watch User Interface Objects138

Locate a switch in the Object Library and drag it onto the storyboard,
dropping it underneath the slider. In the Attributes Inspector, change the
Title attribute to Enable Slider. You’ll notice when you do this that the title
automatically wraps, and slider’s height increases to accommodate it. The
Color attribute sets the color of the title, while the Tint attribute changes
the fill color of the switch itself. Figure 4-21 shows the switch with its default
green tint on the left and with a blue tint on the right.

Figure 4-21. Changing the tint color of a switch

The title can be set at run time using the setTitle() and
setAttributedTitle() methods, which work just like the setText()
and setAttributedText() methods of WKInterfaceLabel that Chapter 3
discusses in detail.

To link the switch to the interface controller, open InterfaceController.
swift in the Assistant Editor and Control-drag from the switch to
a point just below the onSliderValueChanged() method. Release
the mouse button, change the Connection type to Action, and use
onSwitchValueChanged as the method name. The action method gets the
current value of the switch as its argument, as a boolean value. We want
to use this value to set the enabled property of the slider, so we also need
an outlet for the slider. Control-drag from the slider to the top of the class
to add an outlet called slider and then add the code shown in bold to the
onSwitchValueChanged() method:

http://dx.doi.org/10.1007/9781484210260_3

CHAPTER 4: More Watch User Interface Objects

139

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var slider: WKInterfaceSlider!

 // Code removed

 @IBAction func onSliderValueChanged(value: Float) {
 println("Slider value is \(value)")
 }

 @IBAction func onSwitchValueChanged(value: Bool) {
 println("Switch value is \(value)")
 slider.setEnabled(value)
 }
}

Now run the example and toggle the switch to see the slider change
between its enabled and disabled states, as shown in Figure 4-22. It’s worth
running this example just to see the subtle animation that occurs when the
slider changes state.

Figure 4-22. Using a switch to control the enabled state of a slider

You can change the state of the switch programmatically by calling the
setOn() method. As with the slider, these state changes are not reported to
the switch’s action method. Let’s link the value of the slider to the state of
the switch, so that the switch is on when the slider value is less than 2 and
off when it’s greater than or equal to 2. We’ll need an outlet for the switch,
which you can create in the usual way by Control-dragging from the switch
in the storyboard to the top of the class and naming the outlet switch:

CHAPTER 4: More Watch User Interface Objects140

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var slider: WKInterfaceSlider!
 @IBOutlet weak var `switch`: WKInterfaceSwitch!

Now add the following line of code in bold to the onSliderValueChanged()
method:

@IBAction func onSliderValueChanged(value: Float) {
 println("Slider value is \(value)")
 `switch`.setOn(value < 2)
}

Run the example to check that the state of the switch changes as expected
when you change the value of the slider.

Displaying the Date and Time
Displaying the time and date is something that’s likely to be very important
for watch applications. The WKInterfaceDate class provides an analog
display of the current date, the current time, or both. In the storyboard, you
can choose exactly how you want the date and time to be formatted and
you can control the layout of the text using the same options you saw in the
discussion of the WKInterfaceLabel class in Chapter 3. Note that you can’t
set the date and time to be displayed—WKInterfaceDate always uses the
current time. However, as you’ll see, you can change the way in which the
time is interpreted by setting the Timezone and Calendar attributes.

Note You can see that Xcode automatically quoted the outlet name, because
switch is a Swift language keyword and we’re using it here as the name of an
instance variable.

Note Despite its name, WKInterfaceDate handles display of both date and
time. Do not confuse it with the WKInterfaceTimer class (discussed in the
next section), which is a count-down or count-up timer that has nothing to do
with the current date and time.

http://dx.doi.org/10.1007/9781484210260_3

CHAPTER 4: More Watch User Interface Objects

141

Basic Usage
Create a new project called DateDisplay, add a WatchKit application target
to it, and then select Interface.storyboard in the Project Navigator. Find a
date object in the Object Library and drag it onto the storyboard. Initially, the
WKInterfaceDate object displays a fixed date and time in short format, but
if you run the example on the simulator, you’ll see that it shows the current
date and time, as shown in Figure 4-23. The displayed date and time update
automatically as the time changes.

The attributes you can use to configure WKInterfaceDate are shown in
Figure 4-24.

Figure 4-23. Default date and time display in the storyboard (left) and on the simulator (right)

CHAPTER 4: More Watch User Interface Objects142

As you can see, the attributes are divided into two groups. The lower group
is concerned with controlling how the date/time text is displayed. They are
the same as those provided by WKInterfaceLabel and you can use them
to change the color and font, font scaling, and horizontal alignment, and
to allow the text to wrap onto subsequent lines. Given the limited amount
of space available on the watch screen, it’s likely that you’ll need more
than one line when using anything but the most compact date and time
representations. The upper group contains the formatting options for the
date and time. By default, both the date and time are shown in short format
(which is what you see in Figure 4-23). The Preview attribute is somewhat
misnamed because (at least at the time of writing) it doesn’t update when
you change the formatting options. However, this field is editable, so you
can use it to change the date and time that’s used in the storyboard and in
the preview pane in the Assistant Editor.

The selectors for the Date and Time attributes let you individually control the
formatting for the date and time parts respectively. Choosing the value None
in either selector causes the corresponding part to be omitted—to display
only the time, for example, set the Date attribute to None. The other possible
values and the results that they produce are shown in Table 4-1.

Figure 4-24. Storyboard attributes for the WKInterfaceDate class

CHAPTER 4: More Watch User Interface Objects

143

You can use the project that we just created to experiment with these
settings. As noted earlier, in most cases, to get a usable result you’ll need to
change the Lines attribute to at least 2, or to 0 to allow the WKInterfaceDate
object to take as much vertical space as it needs. Some typical examples
are shown in Figure 4-25.

Figure 4-25. Various date and time formats

Table 4-1. Date and Time Formatting Options

Format Date Example Time Example

Short 9/9/14 1:09 PM

Medium Sep 9, 2014 1:09:00 PM

Long September 9, 2014 1:09:00 PM EDT

Full Tuesday, September 9, 2014 1:09:00 PM Eastern Daylight Time

The screenshot on the left has the Date attribute set to None and Time set to
Short, to show just the time. Similarly, in the center screenshot, Time is None
and Date is Medium. In the final screenshot, Date is Long and Time is Medium;
note that in this case (and also when Date is Full), the parts are linked by
the word at. When the Date format is Short or Medium, a comma separator is
used instead.

CHAPTER 4: More Watch User Interface Objects144

Custom Formatting
If the standard date and time formatting options don’t give you what you
need, you can supply a custom formatting string using formatting patterns
described in Apple’s Data Formatting Guide, which you’ll find at
https://developer.apple.com/library/ios/documentation/Cocoa/
Conceptual/DataFormatting/Articles/dfDateFormatting10_4.html#//
apple_ref/doc/uid/TP40002369-SW1.

Suppose, for example, that you want to show just the day of the week and
the current time. There is no combination of standard date and time options
that let you do this, but it can be done with a custom format pattern. Start
by selecting the WKInterfaceDate object in the storyboard and set its Format
attribute to Custom. This reveals an input field that you can use to set the
pattern, as shown in Figure 4-26.

Figure 4-26. Setting a custom date and time format in the storyboard

The format string in this example is made up of three parts:

	'EEEE' produces the day of the week in long form—for
example, Sunday. To get the abbreviated version, use
fewer letters, such as EEE, which gives Sun.

	'hh:mm' gives the current time in hours and minutes,
separated by a colon. A lower case h formats the time
according to a 12-hour clock. Use H to use a 24-hour
clock.

	'a' is replaced by either AM or PM, depending on the time
of day.

You’ll find a reference to the document that describes all of the formatting
characters that are accepted, and their meanings, in the Data Formatting
Guide. If you run this example, you’ll get the result shown in Figure 4-27.

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/DataFormatting/Articles/dfDateFormatting10_4.html#//apple_ref/doc/uid/TP40002369-SW1
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/DataFormatting/Articles/dfDateFormatting10_4.html#//apple_ref/doc/uid/TP40002369-SW1
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/DataFormatting/Articles/dfDateFormatting10_4.html#//apple_ref/doc/uid/TP40002369-SW1

CHAPTER 4: More Watch User Interface Objects

145

Changing the Timezone and Calendar
By default, the text representation of the current time shown by
WKInterfaceDate is based on the user’s configured timezone. That means that
if the user is on the east coast of the United States, the time that she sees is
correct for the EST timezone, whereas if she is on the west coast, she sees
the time as it is in the PST timezone. Usually, this is exactly what you want.
But if you need to display the time as it would be in a different timezone, you
can do so by setting the TimeZone attribute using the setTimeZone() method.

To see how this works, make sure Interface.storyboard is selected in the
Project Navigator, open InterfaceController.swift in the Assistant Editor,
and Control-drag from the WKInterfaceDate object in the storyboard to the
top of InterfaceController.swift to create an outlet called date. Next,
change the format string to 'EEEE, hh:mm: a zzz' to add the timezone to
the formatted result. Finally, add the following code shown in bold to the
awakeWithContext() method and run the example again:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 let timezone = NSTimeZone(abbreviation: "CST")
 date.setTimeZone(timezone)
}

Figure 4-27. Using a custom date and time format

CHAPTER 4: More Watch User Interface Objects146

You should now see the time as it would be in Central Standard Time, as
shown in Figure 4-28. (If you happen to be in the CST timezone, use some
other timezone abbreviation, such as EST instead.)

Figure 4-28. Switching to a different display timezone

Notice that the displayed timezone is CDT, not CST. That’s because, at
the time of writing, daylight savings is active, so the prevailing timezone is
actually CDT.

Calling setTimeZone() with a nil argument restores the user’s default
timezone.

In some cases, you may want to change the calendar used to convert the
time into individual day, month, and year components. Again, by default,
the active calendar is set by the user. Much of the world uses the Gregorian
calendar, but you may want to show the date and time relative to, say, the
Hebrew calendar. You can do this by setting the Calendar attribute using the
setCalendar() method.

CHAPTER 4: More Watch User Interface Objects

147

You can find a list of the available calendars on the documentation page for
the NSLocale class. As an example, add the following code shown in bold to
the awakeWithContext() method to use the Hebrew calendar:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 let timezone = NSTimeZone(abbreviation: "CST")
 date.setTimeZone(timezone)

 date.setCalendar(NSCalendar(identifier: NSCalendarIdentifierHebrew))
}

Now change the Format attribute back to Standard and the Date and Time
attributes to Medium. Then run the example again to see the date and time
relative to the Hebrew calendar (Figure 4-29).

Figure 4-29. Using the Hebrew calendar

To revert to the user’s default calendar, call setCalendar(nil).

CHAPTER 4: More Watch User Interface Objects148

Displaying a Timer
The WKInterfaceTimer class implements a count-up or count-down timer.
Understanding how this object works really ought to be simple, but it
seems (at least to me) to be somewhat counterintuitive. The easiest way to
explain what this class does is to set up an example and experiment with
it, so create a new project called Timer and add a WatchKit extension to it.
Select Interface.storyboard in the Project Navigator and then drag a Timer
object from the Object Library and drop it onto the interface controller. Like
WKInterfaceDate, WKInterfaceTimer acts like a label and you can set all the
usual label options. Change the Width attribute to Relative to Container,
set Lines to 0 so that the content can wrap onto as many lines as it needs
to, and set the Alignment to Center. At this point, your storyboard and
Attributes Inspector should look like Figure 4-30.

Figure 4-30. The WKInterfaceTimer object

CHAPTER 4: More Watch User Interface Objects

149

Timer Formatting Options
Before we look at the timer’s behavior, let’s examine the formatting options
that are available. Formatting is set using the controls in the top three
sections of the Attribute Inspector. First, you can use the Preview attribute
to set a time interval that’s used only so that you can see the effect of your
selected formatting options in the storyboard. The value you set here is not
used at run time. By default, this attribute is set to 3599 seconds and it’s
displayed as 0:59:59, as shown in Figure 4-30. The Units checkboxes in the
second group specify which time units are displayed. The Format control in
the top group determines how they are formatted. Open the Format selector
and you’ll see that there are five options available: Positional, Abbreviated,
Short, Full, and Spelled Out. Experiment with these to see what they do.
The Positional option is used in Figure 4-30, and Figure 4-31 shows the
Abbreviated (left), Short (center), and Spelled Out (right) options.

Figure 4-31. Three of the available timer formatting options

Toggle the Units checkboxes to show or hide the various parts of the
time. Changing the visible units may have an effect on the way the value
is displayed. For example, change the Format attribute to Abbreviated and
clear all the Unit checkboxes apart from Second. Because the hour and
minute values can no longer be shown, the preview value must be displayed
as 3,599s instead of 59 m 59s, leading to the result shown in Figure 4-32.

CHAPTER 4: More Watch User Interface Objects150

Timer Behavior
Now let’s talk about what WKInterfaceTimer actually does. It does two
things: it counts time and it updates its display. These two things are
actually independent of each other. Here’s how it works:

	The time-counting behavior starts once you set the
Date attribute. You can do this by calling the setDate()
method.

	If you call setDate() with a time that’s in the future, the
timer counts down until it reaches that time, then stops.

	If you call setDate() with the current time or a time
that’s in the past, the timer counts up from that time and
does not stop.

	If you don’t call setDate() at all, that’s equivalent to
calling it with the current time, and the timer counts up
from zero and does not stop.

That all sounds straightforward, so let’s try it out to see how it works. Set
the Format attribute to Positional. Then select the Second, Minute, and
Hour checkboxes and run the example on the simulator. You’ll see the result
shown on the left in Figure 4-33.

Figure 4-32. The effect of changing the Units attribute

CHAPTER 4: More Watch User Interface Objects

151

The timer displays 0:00:00 and doesn’t change. When, as here, you don’t
call setDate(), the timer initializes itself to count up from the current time,
but it actually displays the difference between the current time and the initial
time. The initial time is the current time, so the difference is zero, and that’s
the value that is displayed.

The timer display isn’t changing because the Enabled attribute is false in the
storyboard. Check the Enabled attribute, which you’ll find in the top group of
attributes in the Attributes Inspector (see Figure 4-30) and run the example
again. This time, you’ll see the timer counting upwards from 0:00:00, as
shown in the second screenshot in Figure 4-33.

Now let’s try setting the Date attribute. We’ll first need to create an outlet
for the timer object. Open InterfaceController.swift in the Assistant
Editor, Control-drag from the timer in the storyboard to the top of the class
to create an outlet called timer, and then add the following code shown in
bold to the willActivate() method:

override func willActivate() {
 super.willActivate()
 timer.setDate(NSDate(timeIntervalSinceNow: 60))
}

We’ve initialized the timer with a time that is one minute in the future. As I
said earlier, the timer deals with the difference between the time that was
set and the current time. Here, the difference is one minute, so that’s what
the timer initially displays. Because the time is in the future, it then counts
down—effectively, you are asking the timer to count down to the future time
that you set. After seven seconds, you’ll see the result shown in the third
screenshot in Figure 4-33. Once the timer reaches zero (at the time that you
set with setDate()), it stops.

Figure 4-33. The WKInterfaceTimer class in action

CHAPTER 4: More Watch User Interface Objects152

Now change the code in willActivate() as shown here and run the
example again:

override func willActivate() {
 super.willActivate()
 timer.setDate(NSDate(timeIntervalSinceNow: -120))

}

This time, the date that’s set is two minutes in the past. The timer now
initializes itself to show two minutes, but this time it counts up, as shown on
the right in Figure 4-33—you’ve asked it to count forward from the past time
that you set.

Once you’ve remembered the relationship between the time difference and
the counting direction, this all seems reasonable. But that’s not the end
of the story. Remember that the timer didn’t update itself until we set the
Enabled attribute? You may have thought that’s because the timer doesn’t
start unless Enabled is true, but that’s not the case. It starts as soon as its
Date attribute is set—what the Enabled attribute actually controls is whether
the timer updates itself on the screen. When we first ran this example, the
time display did not update because Enabled was false, but the timer was
still running.

Let’s modify our example to make it easier to see that the timer updates
itself independently of what you see on the screen. Make sure Interface.
storyboard is selected in the Project Navigator and drag three buttons onto
the storyboard, placing them one above the other and below the timer.
Change the button titles to Start, Stop, and Reset, as shown in Figure 4-34.

CHAPTER 4: More Watch User Interface Objects

153

Now Control-drag from the Start, Stop, and Reset buttons in turn to the
InterfaceController class in the Assistant Editor to create action methods
called onStart(), onStop(), and onReset() respectively and add the code
shown in bold here to these methods:

 @IBAction func onStart() {
 timer.start()
 }

 @IBAction func onStop() {
 timer.stop()
 }

 @IBAction func onReset() {
 timer.setDate(NSDate(timeIntervalSinceNow: -120))
 }

}

Finally, select the timer object in the storyboard, uncheck its Enabled
attribute in the Attributes Inspector, and run the example again.

Figure 4-34. Using buttons to control a WKInterfaceTimer object

CHAPTER 4: More Watch User Interface Objects154

When the application starts, you’ll see that the timer shows 0:02:00 and it’s
not updating, because Enabled is false. However, the timer is still counting
upwards and you can see that this is true by pressing the Start button to
call the timer’s start() method. The start() method does not start the
timer—it starts timer updates to the screen (it’s the run-time equivalent of
setting Enabled to true). If you wait one minute before you press Start, you’ll
see that the timer skips from 0:02:00 to 0:03:00, demonstrating that it was
running even through the display was not changing. Now if you press the
Stop button, the timer’s stop() method is called. Like start(), this does not
stop the timer—it just stops the screen updates. So press Stop, wait a few
seconds, and press Start again, and you’ll see the time jump forward when
the display starts updating again.

The Reset button causes the Date attribute to be reset to its initial value.
If you press this button, you’ll see the time value on the screen update
immediately, even if you’ve pressed the Stop button, but the timer is still
running, and the display won’t update until you press Start.

WKInterfaceTimer is a purely visual object—there is no way to get its current
value, and you can’t link it to an action method in your interface controller. If
you initialize a timer to count down and you want to know when it’s reached
zero, the best you can do is to set an NSTimer in your extension and take
any required action when it fires. Keep in mind, though, that there may be a
slight time difference between the timer reaching zero and your extension’s
timer firing—and, if the user stops interacting with your application, your
extension may be terminated and the timer will be destroyed with it.

WatchKit Maps
The WatchKit WKInterfaceMap object is a highly simplified version of
MapKit’s MKMapView control. Like MKMapView, it displays a map, and you can
add annotations to it, but unlike MKMapView it is almost completely static—
for example, you can’t pan and zoom the map. The only interaction that it
supports is a touch, which opens the watch’s native Map application.

Displaying a Map
Create a new project called Map and add a WatchKit extension to it. Select
Interface.storyboard in the Project Navigator and then drag and drop a
Map object from the Object Library onto the interface controller. Although the
WKInterfaceMap object does not have built-in support for zooming, we can
still implement it ourselves and we’re going to do that here to illustrate the
effect of setting different size values for the map’s Region attribute. Drag a
slider from the Object Library and drop it below the map. At this point, your
storyboard should be as shown on the left in Figure 4-35.

CHAPTER 4: More Watch User Interface Objects

155

We’d like to show as much of the map as the screen size will allow, but,
as you can see, there is currently a gap below the slider. We need to move
the slider to the bottom of the screen and then resize the map to occupy
the rest of the space. We can move the slider to the bottom of the screen
by selecting it and setting its Vertical position attribute to Bottom. Making
the map occupy all the remaining space is not quite so simple, however.
WatchKit does not have auto layout, so there is no way to link the bottom of
the map to the top of the slider—instead, we have to do it manually. So use
the mouse to select the map in the storyboard and drag its lower edge down
until it meets the top edge of the slider. You’ll know you’ve reached this point
because the slider will start moving downwards—when this happens, nudge
the bottom of the map up a little so that the map and slider together exactly
fill the screen, as shown in the center in Figure 4-35. Unfortunately, that’s
not all you need to do. The design in the storyboard will work on the 38mm
Watch, but not on the larger version. Use the control at the bottom of the
storyboard editor to switch the layout display from Any Screen Size to Apple
Watch 42 mm and you’ll see that there’s still a gap between the map and the
slider, as shown on the right in Figure 4-35. As before, drag the bottom of
the map down until it reaches the slider and then set the storyboard back to
Any Screen Size.

Your layout now works for both screen sizes, which you can confirm by
running the example on the simulator. When you do that, you’ll see that
the map is blank, as it is in Figure 4-35. The map doesn’t show anything
until you set the location and size of the area that you’d like it to display.
You can do that using either the setRegion() or setVisibleMapRect()
method. Which of these methods you use depends on whether you prefer
to think in terms of degrees of latitude and longitude, or the more abstract

Figure 4-35. Using a map with a slider

CHAPTER 4: More Watch User Interface Objects156

map units. Personally, I prefer the former, so we’ll use the setRegion()
method in this example. You can read about map units in Apple’s Location
and Maps Programming Guide, which you’ll find at https://developer.
apple.com/library/mac/documentation/UserExperience/Conceptual/
LocationAwarenessPG/Introduction/Introduction.html.

To configure the map, we need an outlet for the WKInterfaceMap object. With
the storyboard selected in the Project Navigator, open InterfaceController.
swift in the Assistant Editor and Control-drag from the map in the
storyboard to the top of the InterfaceController class to create an outlet
called map. While we’re here, we’ll also add an action method for the slider.
Control-drag from the slider to the bottom of the InterfaceController class
and add an action method called onSliderValueChanged().

Setting the Map Region
To set the location and size of the region that we want the map to display,
we need to create an MKCoordinateRegion structure. MKCoordinateRegion
is part of the MapKit framework and it uses two other structures:
MKCoordinateSpan specifies the size of an area, and CLLocationCoordinate2D
is part of the Core Location framework and represents a coordinate
pair. Let’s add to our interface controller a variable that represents the
coordinates of the center of the region displayed by the map and the scale
factor that we want to use. Initially, this will be 1, but later we’ll link it to the
value of the slider, so that we can zoom in to show more and more detail.
Add the following lines shown in bold to InterfaceController.swift:

import WatchKit
import Foundation
import CoreLocation
import MapKit

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var map: WKInterfaceMap!
 private var coords: CLLocationCoordinate2D!
 private var scaleFactor = 1.0

What do we use for the location coordinates? Of course, it depends on what
we want to show in the map. The most natural thing to do would be to use
the user’s current location, and we’ll do that later in this section, but for now
let’s just use a hard-coded value so that we can get something working. Add
this code in bold to the awakeWithContent() method:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/LocationAwarenessPG/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/LocationAwarenessPG/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/LocationAwarenessPG/Introduction/Introduction.html

CHAPTER 4: More Watch User Interface Objects

157

 // Configure interface objects here.
 coords = CLLocationCoordinate2DMake(37.33233141,-122.03121860)
}

The CLLocationCoordinate2dMake() function returns a
CLLocationCoordinate2d object for a point given its latitude and longitude.
The values we’re using here are not random—they are the coordinates
of Apple’s HQ building. Now lets add a method that uses the coords and
scaleFactor variables to set the map’s visible region:

func updateMap() -> Void {
 if coords != nil {
 let areaSize = 1 / scaleFactor
 let region = MKCoordinateRegionMake(coords!,
 MKCoordinateSpanMake(areaSize, areaSize))
 map.setRegion(region)
 }
}

The MKCoordinateRegionMake function requires two arguments: the
coordinates of the center of the region and an MKCoordinateSpan object that
specifies the region’s latitude and longitude deltas. Initially, we want the map
to show an area that covers 1 degree of latitude and 1 degree of longitude.
However, we’d like to be able to change this using the slider, so we’ve
incorporated the value of the scaleFactor variable:

 let areaSize = 1 / scaleFactor

We initialized the scaleFactor variable to 1, so areaSize starts out being 1
as well. As we increase the value of scaleFactor, the value of areaSize will
get smaller, meaning that the area covered by the map will also get smaller.
Because the map’s size is constant, however, it will display progressively
smaller areas in the same space, in effect zooming in on the center
coordinate.

Finally, add the following line of code to the willActivate() method to
configure the map when the interface controller is shown and then run the
example. You should get the result shown in Figure 4-36.

override func willActivate() {
 super.willActivate()
 updateMap()
}

CHAPTER 4: More Watch User Interface Objects158

A one degree-square region covers a lot of territory! What we’d really like to
do is use a pinch gesture to zoom in to see Apple’s HQ, but the map doesn’t
support that, and the slider is currently not connected. Let’s fix that now.

Select the slider in the storyboard, open the Attributes Inspector, and set its
attributes, as shown in Figure 4-37.

Figure 4-37. Configuring the slider to allow the map to be zoomed

Figure 4-36. California on the Apple Watch simulator

CHAPTER 4: More Watch User Interface Objects

159

These settings allow the slider to range in value from 0 to 10 through 10
intermediate steps, starting from 0. Now add the following code shown in
bold to the onSliderValueChanged() method:

@IBAction func onSliderValueChanged(value: Float) {
 scaleFactor = pow(2, Double(value))
 updateMap()
}

The effect of this code is to double (or halve) the value of the scaleFactor
variable each time the value of the slider increases (or decreases) by one
step. Once we’ve set the new value, we call updateMap() to calculate the
new span of the region to be displayed and redraw the map. Now run the
example and you’ll see that as you change the slider value, the map zooms
in or out to let you see more or less detail. Figure 4-38 shows a couple of
examples at different levels of zoom.

Figure 4-38. Using a slider to zoom the map

You’ll notice that the map zooms quite slowly. Updating map tiles is an
expensive process, so although this makes an interesting example, you may
not want to allow the user to do much of this in a real application.

CHAPTER 4: More Watch User Interface Objects160

Adding an Annotation
You can add an annotation to a map by specifying the coordinates of the
location to be annotated. You can choose to use a standard pin annotation
with a choice of color (red, green, or purple) or you can create a custom
annotation with an image of your own. Let’s add a green pin to our map to
mark the exact location of Apple’s campus. To do that, add the following
code in bold to the awakeWithContext() method:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 coords = CLLocationCoordinate2DMake(37.33233141,-122.03121860)
 map.addAnnotation(coords, withPinColor: .Green)
}

Run the example and you’ll see the green pin, as shown in Figure 4-39
where the map has been zoomed in to show the Apple campus.

Figure 4-39. Adding an annotation to the map

CHAPTER 4: More Watch User Interface Objects

161

To create a custom annotation, use the addAnnotation(_:withImage:cent
erOffset:) or addAnnotation(_:withImageNamed:centerOffset:) method.
The former requires the image in the form of a UIImage object which is
sent from the iPhone to the Watch at run time, whereas the latter uses
an image that’s either in the WatchKit App bundle or has been preloaded
into the image cache on the watch. The centerOffset argument lets you
control the exact point of the image that’s placed over the annotated
location. You can remove all annotations from the map by calling the
removeAllAnnotations() method.

Using Core Location to Get the User’s Location
To close our discussion of the WKInterfaceMap class, we’re going to enhance
the Map application to show the user’s current location—or whatever the
simulator is configured to return when asked for the user’s location. Doing
this won’t demonstrate anything new about WKInterfaceMap itself (in fact, all
we’re going to be doing is setting the coords variable in a different way), but
it does illustrate something important about writing extensions which we’ll
revisit in Chapter 7: sometimes, the extension needs to get help from its
owning application.

To get the user’s location, you need to use the Core Location standard
location service. Before you can do that, you need to get the user’s
permission to do so. When you make the API call to get that permission,
iOS displays a pop-up on the iPhone (not on the watch) to which the user
can respond either yes or no. You can certainly make this API call from your
WatchKit Extension (and I encourage you to try it once you’ve seen the
code shortly), but Apple strongly recommends that you don’t. The reason
is simple: the pop-up appears immediately, whatever the user is doing. If
the user is actually using the iPhone to do something else, the appearance
of an unrelated pop-up requesting permission to use his location might be
surprising and, in these days where everyone is security-aware, downright
suspicious. Or, more likely, the user is using your WatchKit app and looking
at the watch, with the iPhone on a table somewhere or in a pocket, and
the pop-up will go unnoticed. The recommended approach is for your
iOS application to ask for permission to use the user’s location at some
convenient point in its lifecycle, when the user is actually interacting with it.
Once the iOS application has permission, any extension in that application
inherits it.

Let’s start by adding the code to get the user’s permission to use Core
Location services to the iOS application. Because this is just an example
and the iOS application isn’t doing anything useful, we’ll do this in
the simplest possible way, by adding the code to the view controller’s

http://dx.doi.org/10.1007/9781484210260_7

CHAPTER 4: More Watch User Interface Objects162

viewDidLoad() method. In a real application, you would find a more natural
place to put this code. Select the file ViewController.swift on the Map
group in the Project Navigator and add the code shown in bold to it:

import UIKit
import CoreLocation

class ViewController: UIViewController, CLLocationManagerDelegate {
 private var locationMgr: CLLocationManager!

 override func viewDidLoad() {
 super.viewDidLoad()

 if CLLocationManager.locationServicesEnabled()
 && CLLocationManager.authorizationStatus() ==
.NotDeterminded {
 locationMgr = CLLocationManager()
 locationMgr.delegate = self
 locationMgr.requestWhenInUseAuthorization()
 }
 }

 func locationManager(manager: CLLocationManager!,
 didChangeAuthorizationStatus status: CLAuthorizationStatus) {
 println("Location manager auth status changed to \(status.
rawValue)")
 }

}

The code in the viewDidLoad() method first checks that location services
have not been disabled and that permission to use the user’s location
has not already been requested (and possibly denied). It then creates an
instance of CLLocationManager, makes the view controller its delegate,
and requests permission to use location services while the application
itself is in use. Asking for in-use permission is enough if your application
just needs to know the user’s current location while it is active, because
the application is deemed to be active if only the extension is running. The
result of the request is delivered at some later point to the view controller’s
implementation of the locationManager(_:didChangeAuthorizationStatus:)
method, where we just print the result to the console.

Before running this example, open the application’s Info.plist file and
add a new key called NSLocationWhenInUseUsageDescription, as shown
in Figure 4-40.

CHAPTER 4: More Watch User Interface Objects

163

Figure 4-41. Requesting permission to use Core Location services

The value of this key is a message that is shown to the user in the
permission request pop-up. If this key is not present, the permission request
is not made. Run the iOS application in the simulator by using the Map
scheme in the Scheme selector in Xcode and click Allow in the pop-up that
appears (see Figure 4-41).

Figure 4-40. This key in the Info.plist file is required before a request for permission to use
Core Location services can be made

You should see the following message in the Xcode console, indicating that
permission has been granted:

Location manager auth status changed to 4

Now let’s add the code that we need in the WatchKit extension. To
be notified of the user’s location, the extension needs to create a
CLLocationManager instance, become its delegate, and then ask it to start
reporting the user’s position. To do this, open InterfaceController.swift
and make the changes shown in bold:

class InterfaceController: WKInterfaceController, CLLocationManagerDelegate
{
 private var locationMgr: CLLocationManager!
 @IBOutlet weak var map: WKInterfaceMap!
 private var coords: CLLocationCoordinate2D!
 private var lastCoords: CLLocationCoordinate2D!
 private var scaleFactor = 1.0

CHAPTER 4: More Watch User Interface Objects164

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

// coords = CLLocationCoordinate2DMake(37.33233141,-122.03121860)
// map.addAnnotation(coords, withPinColor: .Green)
 locationMgr = CLLocationManager()
 locationMgr.delegate = self
 }

This code is similar to the code we added to the iOS application. In
the interface controller’s awakeWithContext() method, we create a
CLLocationManager instance and make the interface controller its delegate.
We also remove the code that we used earlier to hard-code the location to
be used in the map. We also added a variable called lastCoords that we’ll
use later.

Next, we need to start receiving location updates. We only need to know
the user’s location when we are active, so the appropriate place to request
location updates is in the willActivate() method:

 override func willActivate() {
 super.willActivate()
// updateMap()
 if CLLocationManager.authorizationStatus()
 == .AuthorizedWhenInUse {
 locationMgr.startUpdatingLocation()
 }
 }

Notice that we only ask for location updates if the user has granted
permission for us to receive them. By the way, it’s possible for the user to
revoke this permission at any time. We don’t handle that case here, but in
a real application you would need to consider what you should do if that
happens.

We need to stop receiving updates when our interface controller is not
active. To do that, add the code in bold to the didDeactivate() method:

 override func didDeactivate() {
 super.didDeactivate()
 locationMgr.stopUpdatingLocation()
 }

CHAPTER 4: More Watch User Interface Objects

165

Location updates are delivered to the delegate’s locationManager(_:didUp
dateLocations:) method. Add the following implementation of that method
to InterfaceController.swift:

func locationManager(manager: CLLocationManager!,
 didUpdateLocations locations: [AnyObject]!) {
 if let location =
 locations[locations.count - 1] as? CLLocation {
 lastCoords = coords
 coords = location.coordinate
 if coords != nil && (lastCoords == nil
 || coords?.latitude != lastCoords?.latitude
 || coords?.longitude != lastCoords?.longitude) {
 updateMap()
 }
 }
}

The locations array that is passed to this method contains one or more
CLLocation objects, each representing the user’s location at some time in
the recent past. The newest position is the one at the end of the list, so we
retrieve it, checking that it is indeed a CLLocation object, and get the user’s
coordinates from its coordinate property. We then use this value to update the
coords property and call updateMap() to set the region to be drawn by the map.

It’s possible that we’ll get frequent updates that report the same user
location. The map performs a fade animation whenever its Region attribute
is changed, so if we were to update it each time we get a new location,
it would appear to flash. To minimize this effect, we save each reported
location in the lastCoords property and only update the map if the new
location differs from what is stored in lastCoords.

Now if you run this example on the simulator, you’ll see that the map shows
whatever location the simulator is configured to return in response to
location update requests. You can change this location from the simulator’s
Debug ➤ Locations menu. If you run this on a device, you should be able to
watch your own position updating on the map as you move.

CHAPTER 4: More Watch User Interface Objects166

Summary
In this chapter, you saw how to use three different types of user interface
object that can be linked to action methods in your WatchKit extension-
buttons, sliders, and switches. You also saw how to use the date object to
format dates and times, how to use the timer object to display a countdown,
and how to display location information in a map. In the course of learning
how to use the map, you discovered that, because of restrictions on what
extensions can do, it is sometimes necessary for a WatchKit application
to get help from its owning iOS application. This is a topic that Capter 7
discusses in much greater detail.

You have now seen almost all of the WatchKit user interface objects and
how to use them to build simple applications that have only one screen.
Most applications, however, are more sophisticated than that. In the next
chapter, you’ll see how to build applications that require more than one
screen and how to navigate from screen to screen.

167

Chapter 5
Controller Navigation
Over the course of the last three chapters, you have been introduced to
the building blocks that you can use to create a simple, single-screen
application. This chapter takes the next logical step and looks at how to
create multi-screen applications. In UIKit, each screen is built around a view
controller, and similarly in WatchKit, each screen is mapped to an interface
controller. UIKit offers you several ways to combine view controllers—for
example, you can use a UITabBarController to create a tabbed user
interface, a UINavigationController to build a hierarchical application, or a
UIPageViewController if your application has pages of similar information
that you want to be able to swipe through. You are completely free to mix
all these different view controllers together or create navigation schemes of
your own if you need to.

WatchKit is not nearly as flexible. In fact, your choices are very limited.
At design time, you can take one of two approaches:

	You can create a root interface controller and then
push additional controllers onto it, much like UIKit’s
UINavigationController.

	You can build your application as a set of sibling pages,
like UIKit’s UIPageViewController.

Once you’ve made your choice, you have to stick with it. You can’t create
an application that mixes the hierarchical navigation style with the paged
style—it’s all hierarchical, or all paged-based. To make that clearer, here are

CHAPTER 5: Controller Navigation168

a couple of things that you are allowed to do in UIKIt that you can’t do with
WatchKit:

	If you choose the hierarchical style, none of the interface
controllers that you push are allowed to be paged-based.

	Similarly, if you choose the page-based style, none of
the pages can be a hierarchical interface controller.

The only exception to these rules comes when you present an interface
controller. A presented interface controller must be either a single object
or be part of a paged-based interface, but it can be presented by both
hierarchical and page-based interface controllers. Interface controller
navigation is the subject of the first part of this chapter, followed by a
discussion of interface controller presentation.

Hierarchical Navigation
To build a hierarchical interface, you start with a root controller and then
push another controller onto it. WatchKit animates the new interface
controller onto the screen, replacing the existing one. The new controller
can push further controllers if required, although it’s unlikely that a WatchKit
application will need to create a deep hierarchy of screens. Later, you can
pop controllers off of the stack one by one, or remove them all at the same
time and jump directly back to the root controller.

You can either push a new controller manually or create a segue in the
storyboard and let WatchKit take care of it for you. This section illustrates
both approaches.

Manual Controller Navigation
Let’s start by creating a project that we can use to explore hierarchical
navigation. Call the project HierarchicalNavigation, add a WatchKit target
to it, and select Interface.storyboard in the Project Navigator to open
the storyboard in the editor. As with all of our earlier examples, we have
a single interface controller—the root controller—which is the entry point
to the WatchKit application. In this example, we’re going to add a second
controller that we’ll push onto the root controller to create a very simple
hierarchical user interface.

CHAPTER 5: Controller Navigation

169

Creating the Second Interface Controller
To create the second controller, we need to do two things: first, add an
interface controller object to the storyboard, and then create a
WKInterfaceController subclass that will contain the controller’s logic.
Locate an interface controller object in the Object Library, drag it onto the
storyboard, and drop it somewhere near the root controller. Next, select the
HierarchicalNavigation WatchKit Extension group in the Project Navigator.
Click File ➤ New ➤ File… in Xcode’s menu or press N to open the New File
dialog. In the iOS Source section, select Cocoa Touch Class and click Next.
On the next page, name the class ImageController and make it a subclass of
WKInterfaceController. Click Next and save the new class file in your
project, making sure it’s part of the HierarchicalNavigation WatchKit
Extension group and the target of the same name. You should now have two
interface controller files in your project—InterfaceController.swift and
ImageController.swift—and the second one should be open in the editor.

Now we need to link the new controller in the storyboard to the class that
we just created for it. Select Interface.storyboard in the Project Navigator,
click on the interface controller that you added earlier, and open the Identify
Inspector (3). To create the link, click the Class selector in the Custom
Class section of the Identity Inspector and select ImageController, as
shown in Figure 5-1.

Note At this point, you may notice that Xcode is complaining that you have an
unreachable controller in your storyboard. Don’t worry about this—we’ll fix it
shortly.

Figure 5-1. Linking the interface controller class to the controller in the storyboard

CHAPTER 5: Controller Navigation170

The application you’re going to build is shown in Figure 5-2.

On the left is the root interface controller, which contains two buttons and a
label. Tapping either of the buttons pushes the second interface controller,
which displays an image that depends on which button was pressed and
another pair of buttons with which you can either like or dislike the image.
When one of these buttons is pressed, the interface controller will be
popped, revealing the root view controller again, with its label updated to
show whether you liked the image or not.

This is a very simple application, but it illustrates the basic features of an
application that uses hierarchical navigation, namely:

	How you trigger the switch from one interface controller
to another.

	How you pass information from the root interface
controller to the pushed controller.

	How you return from the pushed controller to the root
controller.

	How you pass information back to the root controller.

Figure 5-2. Using hierarchical interface controller navigation

CHAPTER 5: Controller Navigation

171

Building the Controllers’ User Interfaces
Before we look in detail at each of these aspects of the application, we
first need to create the user interfaces for both controllers. By now, you
should find this to be very straightforward. Start by dragging two buttons
and a label from the Object Library and dropping them onto the root view
controller, with the label at the bottom, and then do the following:

	Change the title of the top button to Image 1 and of the
bottom button to Image 2.

	Open the Attributes Inspector (4), select the label,
and change its Vertical attribute to Bottom and its
Width attribute to Relative to Container. This makes
the width of the label match that of the interface
controller and moves it to the bottom. Change the label
text to Press a Button, its Alignment to center, and its
Lines attribute to 0.

	The label is too close to the bottom of the screen, so
let’s move it up a little. To do that, select the interface
controller, change its Insets attribute to Custom, and
then set the Bottom attribute to 8.

At this point, the root interface controller should be as shown on the left in
Figure 5-3.

Now let’s populate the second interface controller. Here, we want an image
at the top and two buttons underneath, arranged as shown in Figure 5-2. An
interface controller positions its child objects vertically, so to create a single

Figure 5-3. Constructing the interface controllers

CHAPTER 5: Controller Navigation172

row containing two buttons side-by-side, we need to add a horizontal group
underneath the image and place the buttons in that group. Here are the
steps required to create the layout shown on the right in Figure 5-3:

 1. Drag an image object from the Object Library, drop it
onto the second interface controller, and then drop a
group underneath it.

 2. Select the group and change its Vertical attribute to
Bottom.

 3. Drag a button from the Object Library and drop
it inside the group. We need to make the button
occupy half the width of the group, so select it and
change the value in the input field below the Width
attribute from 1.0 to 0.5. Change its Title attribute
to Like.

 4. Now drag a second button and drop it to the right of
the first one. Change its Width attribute to 0.5 and
change its Title attribute to Dislike. You should
now have two buttons of equal width.

 5. Select the image object and change its Mode attribute
to Aspect Fit so that the image will be scaled to
fit the space available, but without any distortion.
Also change the Width attribute to Relative to
Container.

 6. Finally, drag the bottom of the image down until
it just touches the top of the group containing the
buttons. Switch the storyboard to Apple Watch 42 mm
and do the same again. Switch the storyboard back
to Any Screen Size.

You also need to give the second interface controller an identifier so you
can refer to it when you navigate from the main interface controller. Select
the ImageController in the storyboard or in the Document Outline. In the
Attributes Inspector, locate the Identifier field in the Interface Controller
section and enter the name ImageController. You can use any name you
like here, as long as you use the same name when writing the code to push
the interface controller, which we’ll see shortly.

CHAPTER 5: Controller Navigation

173

The second interface controller should now be as shown on the right in
Figure 5-3.

Finally, we need a couple of images to display when the second interface
controller is pushed. You’ll find these in the 5 – Navigation Example Images
folder of the example source code archive. Open the asset catalog in the
HierarchicalNavigation WatchKit App Group and drag the files image1@2x.
png and image2@2x.png into it. That completes the initial storyboard for this
application.

Creating Outlets and Action Methods
Now you need to create the outlets and action methods that connect the
user interface objects in the storyboard to the two interface controllers. Let’s
start with the root controller. Here, you need an action method for each of
the buttons and an outlet for the label:

	Open InterfaceController.swift in the Assistant
Editor and Control-drag from the top button in the root
controller to the bottom of the class definition to create
an action method called onImage1ButtonClicked().
Repeat with the other button to create an action method
called onImage2ButtonClicked(). We need two action
methods because we need to know which button was
pressed. As you have already seen, WatchKit action
methods do not have an argument that indicates which
object triggered them, so you can’t connect more than
one button (or slider, switch etc) to the same action
method if you need to know which button was pressed,
as we do in this case.

	Control-drag from the label to the top of the class
definition and create an outlet called label.

Note Now that you’ve given this interface controller a name, the Xcode
warning about an unreachable controller should go away. You didn’t need to give
the first interface controller a name, because it’s tagged as the initial controller
and gets loaded automatically when the application starts running.

http://mailto:image1@2x.png/
http://mailto:image1@2x.png/
http://mailto:image2@2x.png/

CHAPTER 5: Controller Navigation174

At this point, the InterfaceController class should be as shown in the
following code, with the code just added in bold. You should also add the
println() statements in the willActivate() and didDeactivate() methods:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var label: WKInterfaceLabel!

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 }

 override func willActivate() {
 super.willActivate()
 println("InterfaceController willActivate() called")
 }

 override func didDeactivate() {
 super.didDeactivate()
 println("InterfaceController didDeactivate() called")
 }

 @IBAction func onImage1ButtonClicked() {
 }

 @IBAction func onImage2ButtonClicked() {
 }
}

Now select the second interface controller in the storyboard and open
ImageController.swift in the Assistant Editor. Control-drag from the image
object to the top of the class definition to create an outlet called image.
Then Control-drag from the two buttons in turn to create action methods
called onLikeButtonClicked() and onDislikeButtonClicked(). The changes
to the ImageController class are shown in bold in the following code. As
before, add the println() calls in the awakeWithContext(), willActivate(),
and didDeactivate() methods:

class ImageController: WKInterfaceController {
 @IBOutlet weak var image: WKInterfaceImage!

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
 println("ImageController awakeWithContext() called: \(context)")
 }

CHAPTER 5: Controller Navigation

175

 override func willActivate() {
 super.willActivate()
 println("ImageController willActivate() called")
 }

 override func didDeactivate() {
 super.didDeactivate()
 println("ImageController didDeactivate() called")
 }

 @IBAction func onLikeButtonClicked() {
 }

 @IBAction func onDislikeButtonClicked() {
 }
}

Navigating to the Second Interface Controller
When the user clicks either of the buttons on the screen of the initial
interface controller, we need to push an instance of the second interface
controller and tell it which image should be displayed. We do that by
calling the pushControllerWithName(_:context:) method of the main
interface controller. The first argument of this function is the name of the
interface controller to be pushed, which is the identifier (ImageController)
that we assigned to that controller in the storyboard. The second
argument is an object that gets passed to the pushed interface controller’s
awakeWithContext() method. You can use this object to pass any
information that the controller needs to do its job. We need to tell the
controller which image to display, so we can simply pass it the image name,
like this:

pushControllerWithName("ImageController", context: "image1")

Let’s try that out. Make the following changes to the
onImage1ButtonClicked() and onImage2ButtonClicked() methods in
InterfaceController.swift:

 @IBAction func onImage1ButtonClicked() {
 pushControllerWithName("ImageController", context: "image1")
 }

 @IBAction func onImage2ButtonClicked() {
 pushControllerWithName("ImageController", context: "image2")
 }
}

CHAPTER 5: Controller Navigation176

Now make sure that the Xcode console is visible (C), run the application,
and click either of the buttons. You should see that the original interface
controller is replaced by an instance of the ImageController, although the
image is currently missing and the two buttons at the bottom of the screen
don’t do anything. Also, at the top left of the screen, you’ll see a < symbol.
If you click this, the ImageController is removed, and the original interface
controller reappears. Let’s take a look at exactly what happened here. Run
the application again and pay attention to the console output. When the
application starts, you’ll see that InterfaceController is activated:

InterfaceController willActivate() called

Now press one of the buttons to push ImageController and you’ll see the
following output in the console:

ImageController awakeWithContext() called: Optional(image1)
ImageController willActivate() called
InterfaceController didDeactivate() called

When the button was pressed, the pushControllerWithName(_:context:)
method was called with the name argument set to ImageController. WatchKit
looked in the storyboard for an interface controller with this identifier and found
the ImageController class. It then created an instance of ImageController
and called its init() method (which we did not override) followed by its
awakeWithContext() method, passing it the value of the context argument
of the pushControllerWithName(_:context:) call, which is the image name.
Notice that the context is wrapped in an Optional, because the argument
type is AnyObject? to allow a nil context to be passed if required. Finally, the
ImageController instance is activated, and the original controller is deactivated
because it is no longer visible.

Now press the < symbol at the top left of the screen and you’ll see that the
original controller is activated and the outgoing controller is deactivated:

InterfaceController willActivate() called
ImageController didDeactivate() called

So far, so good. Now we need to install the correct image in the
WKInterfaceImage object in the second interface controller. Because we
pass the image name as the context object, all we need to do is make use
of it. To do that, add the code shown in bold to the awakeWithContext()
method of the ImageController class:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
 println("ImageController awakeWithContext() called: \(context)")

CHAPTER 5: Controller Navigation

177

 if let imageName = context as? String {
 image.setImageNamed(imageName)
 }
}

Run the application again, press one of the buttons, and you should now
see an image when the second interface controller appears, as shown back
in Figure 5-2.

Returning to the First Interface Controller
When the user presses the Like or Dislike button, we need to return to the
initial interface controller and display the result, which depends on which
button was pressed, in the label at the bottom of the screen. There are two
problems with this:

	To return to the initial interface controller, we need to call
the popController() method of ImageController (or,
because the initial interface controller is the root of the
hierarchy, we could also call popToRootController()).
This method does not accept any arguments, so there is
no way to use it to pass back any information.

	You have already seen that you can return to the first
interface controller by pressing the < symbol at the
top left of the screen. When this happens, WatchKit
itself calls popController() without notifying any
application code, meaning there is no way to know that
ImageController is being removed from the screen
until it has been deactivated. There is no way to disable
this, so you can’t stop the user returning to the initial
controller without pressing either the Like or Dislike
button.

Let’s first tackle the problem of how to tell the initial interface controller
which button was pressed. There are several ways to share information
between interface controllers. I illustrate one approach here, and you’ll see
another in a discussion of how to work with page-based user interfaces.

We can’t pass any information with the popController() method, but we
could call a method in the initial interface controller to tell it which button
was pressed, if we had a reference to the controller available. Unfortunately,
there is no way to get such a reference from code executing in the second
interface controller, but we could pass the reference as part of the context
information when we push the second interface controller. The downside
to this is that the second interface controller needs to know the type of the
interface controller that activated it, or at least know that it conforms to a

CHAPTER 5: Controller Navigation178

protocol with a method that would be used to return results. Although that
would work for this simple example, in general it is not a good pattern to
adopt. It would be better to just pass the second controller some code, in
the form of a closure, that it can execute just before it is removed from the
screen. Passing a closure decouples the second controller from whatever
pushed it—all it needs to know is the signature of the closure.

With this approach, we need to use the context to pass both the name of
the image and the closure. Instead of passing a string as the context, we’ll
define a class to contain both pieces of information and pass that as the
second argument to pushControllerWithName(_:context:). In fact, we can
also include in the context class a title for the second interface controller to
display. Where should this class be declared? You could make it a top-level
class, but it seems more logical to declare it inside the second interface
controller, since it is something that you need to know about to make use of
that controller and therefore is part of its API. To do that, add the following
code shown in bold to the top of the ImageController class:

class ImageController: WKInterfaceController {
 class ImageControllerContext {
 let imageName: String
 let title: String
 let callback: (liked: Bool) -> Void

 init(imageName: String, title: String,
 callback: (liked: Bool) -> Void) {
 self.imageName = imageName
 self.title = title
 self.callback = callback
 }
 }
 var context: ImageControllerContext?
 @IBOutlet weak var image: WKInterfaceImage!

The ImageControllerContext class contains the name of the image, the
title that should be displayed, and the closure that should be called to return
the result to whatever activated the controller. The context variable is used
to save the context information until it’s time to call the callback method.
The callback closure has a single boolean argument that will be true if the
user pressed the Like button and false for Dislike.

CHAPTER 5: Controller Navigation

179

Let’s start using the new context type. First, modify the awakeWithContext()
method of ImageController to handle the change of type of its context
argument:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
 println("ImageController awakeWithContext() called: \(context)")

 if let imageName = context as? String {
 image.setImageNamed(imageName)
 }
 if let contextStructure = context as? ImageControllerContext {
 self.context = contextStructure
 setTitle(contextStructure.title)
 image.setImageNamed(contextStructure.imageName)
 }
}

Next, add code to the onLikeButtonClicked() and
onDislikeButtonClicked() methods to invoke the callback function and pop
the second interface controller when either button is pressed:

 @IBAction func onLikeButtonClicked() {
 context?.callback(liked: true)
 popController()
 }

 @IBAction func onDislikeButtonClicked() {
 context?.callback(liked: false)
 popController()
 }
}

Finally, modify InterfaceController to pass an instance of
ImageControllerContext when pushing the second interface controller.
Make the following changes to the InterfaceController class:

 @IBAction func onImage1ButtonClicked() {
 pushControllerWithName("ImageController", context: "image1")
 pushImageControllerWithImageName("image1", title: "Image 1")
 }

 @IBAction func onImage2ButtonClicked() {
 pushControllerWithName("ImageController", context: "image2")
 pushImageControllerWithImageName("image2", title: "Image 2")
 }

CHAPTER 5: Controller Navigation180

 private func pushImageControllerWithImageName(imageName: String,
 title: String) {
 let context = ImageController.ImageControllerContext(
 imageName: imageName, title: title,
 callback: { (liked) in
 self.label.setText(liked ? "Liked \(title)"
 : "Disliked \(title)")
 })
 pushControllerWithName("ImageController", context: context)
 }
}

When either the Image 1 or Image 2 button is pressed, the pushImageCon
trollerWithName(:title:) method is called. This method constructs an
ImageControllerContext object initialized with the name of the image to
display, a title, and the closure to call when the user presses the Like or
Dislike button. It then pushes the second interface controller, passing the
ImageControllerContext object as the context.

Now run the example again. Press either the Image 1 or Image 2 button to
push the second interface controller. Notice that the title is now set to the
value set in the ImageControllerContext object. Press Like or Dislike and
you’ll see that the first controller reappears as expected, but the label at the
bottom of the screen is unchanged—it has apparently not been updated by
the closure in the pushImageControllerWithName(:title:) method. Place a
breakpoint in the closure and try again, to convince yourself that the closure
is being called with the correct argument. The breakpoint will be hit, so why
doesn’t this work?

The problem is that the closure is called while the initial interface controller
is not active—it was deactivated when the second controller was pushed
and it won’t be activated again until some time after the popController()
call completes. While an interface controller is inactive, you can’t update any
of its user interface objects. As a result, the call to the WKInterfaceLabel’s
setText() method to change the label’s text is ignored. How do we fix this?
We have to defer the update by storing the new value for the label’s Text
attribute so that we can update it in the willActivate() method. To do that,
add the following code shown in bold to the InterfaceController class:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var label: WKInterfaceLabel!
 var labelText: String?

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 }

CHAPTER 5: Controller Navigation

181

 override func willActivate() {
 super.willActivate()
 println("InterfaceController willActivate() called")
 if labelText != nil {
 label.setText(labelText!)
 labelText = nil
 }
 }

The labelText variable will hold the new text for the label. If its value is
not nil when willActivate() is called, we update the label and clear the
variable. The variable’s type is String? because it needs to be nil when the
willActivate() method is called as the interface controller is being shown
for the first time. Now we need to change the closure in the pushImageCont
rollerWithName(:title:) method to set the labelText variable instead of
trying to update the label directly:

private func pushImageControllerWithImageName(imageName: String,
 title: String) {
 let context = ImageController.ImageControllerContext(
 imageName: imageName,
 title: title, callback: { (liked) in
 self.label.setText(liked ? "Liked \(title)"
 : "Disliked \(title)")
 self.labelText = liked ? "Liked \(title)"
 : "Disliked \(title)"
 })
 pushControllerWithName("ImageController", context: context)
}

Run the example again and this time you’ll see that the label on the initial
interface controller updates correctly (see Figure 5-4).

CHAPTER 5: Controller Navigation182

Figure 5-4. The result of passing data from one interface controller to another

Structuring interface controllers so that they update themselves in this way
is something that you’ll need to do any time you pass information from one
controller to another, if the new information results in a change to something
in the user interface and it is received while the controller is not active.

We’ve dealt with the first of the two issues we identified earlier—namely,
how to pass a result back from an interface controller to the controller that
pushed it. The second problem we need to deal with is what to do when the
user dismisses the pushed controller by pressing the < symbol. In this case,
there is no way to invoke the callback function, so the label on the initial
screen will not be updated—try it and see. We’d prefer to update the label
to say something like “Neither liked nor disliked”. Although we can’t do this
when the second controller is popped, we can achieve the same effect by
assigning this value to the labelText variable before the second controller
is pushed. This works because if neither the Like nor the Dislike button is
pressed, the labelText variable will not be overwritten and its value will be
used to update the label when the first controller is reactivated. To do this,
make the change shown in bold:

private func pushImageControllerWithImageName(imageName: String,
 title: String) {
 let context = ImageController.ImageControllerContext(
 imageName: imageName,
 title: title, callback: { (liked) in
 self.labelText = liked ? "Liked \(title)"
 : "Disliked \(title)"
 })
 labelText = "Neither liked nor disliked"
 pushControllerWithName("ImageController", context: context)
}

CHAPTER 5: Controller Navigation

183

Run the example one more time, press the Image 1 or Image 2 button, and
then press the < symbol at the top left of the second interface controller’s
screen to dismiss it. You should see the label on the first screen update
correctly, as shown in Figure 5-5.

Using a Segue to Push a Controller
You’ve seen how easy it is to manually push an interface controller by calling
the pushControllerWithName(_:context:) method. There is another way to
do the same thing—you can create a segue in your storyboard and let
WatchKit push the target controller for you. Let’s do that now. You’ll need
to make some changes to both the storyboard and the main interface
controller, so first take a copy of the HierarchicalNavigation project to use
as a starting point.

We’re currently triggering the transition to the second view controller from
action methods that are connected to the Image 1 and Image 2 buttons.
What we’re now going to do is create a segue from each of those buttons
to the second interface controller—but before we do that, we need to unlink
the buttons from their action methods. Open Interface.storyboard and

Note In the example source code archive, you’ll find the code for this section
in the folder 5 – SegueNavigation, although the Xcode project is still called
HierarchicalNavigation.

Figure 5-5. Handling the case where the user dismisses the pushed interface controller without
pressing one of our buttons

CHAPTER 5: Controller Navigation184

right click on the Image 1 button. In the pop-up that appears, you’ll see the
linkage from the button to onImage1ButtonClicked() method in the interface
controller (see Figure 5-6).

Click the small x button to remove the link. Do the same for the Image
2 button. Next, open InterfaceController.swift and delete the
onImage1ButtonClicked() and onImage2ButtonClicked() methods because
they are no longer required.

Now let’s create the segues. Go back to Interface.storyboard and select
the main interface controller. Control-drag from the Image 1 button over to
the second interface controller. Release the mouse button and you’ll see
a pop-up that offers you the choice of creating a push or modal segue, as
shown in Figure 5-7.

Figure 5-6. Unlinking the buttons from their action methods

Figure 5-7. Creating a push segue from a button to an interface controller

The section “Presenting an Interface Controller” later in this chapter
discusses modal segues. Here, we need a push segue, so click on push to
create one. Repeat the process by dragging from the Image 2 button to the
second interface controller. When you’re done, your storyboard should look
like Figure 5-8.

CHAPTER 5: Controller Navigation

185

Although we’re not yet finished, we already have enough to see the segues
in action. Run the application and click one of the buttons. You should see
that the second interface controller is pushed, but there is no image and no
title. If you look at the Xcode console, you’ll see why:

InterfaceController willActivate() called
ImageController awakeWithContext() called: nil
ImageController willActivate() called
InterfaceController didDeactivate() called

The second interface controller’s awakeWithContext() method was called
with a nil argument, but it’s expecting an ImageControllerContext object.
In the first version of this application, we created this object in the button’s
action method and passed it to the pushControllerWithName(_:context:)
method. Now, however, the action method doesn’t exist, and WatchKit is
calling pushControllerWithName(_:context:) for us, passing a nil context.
What we need to be able to do is give it the context object. We can do
that by overriding the contextForSegueWithIdentifier() method, which is
defined like this:

func contextForSegueWithIdentifier(_ segueIdent: String) -> AnyObject?

The segueIdent argument allows us to distinguish between the two segues
that originate from our interface controller. Our implementation of this
method needs to create and return an ImageControllerContext object
populated with the appropriate values for the segue that has been triggered.
Before we implement this method, though, we need to assign identifiers to
our segues.

In the storyboard, click the segue from the Image 1 button and open the
Attributes Inspector. In the Identifier field, type Image1, as shown in
Figure 5-9.

Figure 5-8. Two push segues to the same interface controller

CHAPTER 5: Controller Navigation186

Next, do the same with the other segue, assigning it the identifier Image2.
Save the storyboard file.

Now select InterfaceController.swift in the Project Navigator and add the
following code shown in bold:

 override func contextForSegueWithIdentifier(segueIdent: String)
 -> AnyObject? {
 labelText = "Neither liked nor disliked”
 var imageName: String!
 var title: String!

 switch segueIdent {
 case "Image1":
 imageName = "image1"
 title = "Image 1"

 case "Image2":
 imageName = "image2"
 title = "Image 2"

 default:
 println("Invalid segue ideintifier: \(segueIdent)")
 abort()
 }

 let context = ImageController.ImageControllerContext(
 imageName: imageName,
 title: title, callback: { (liked) in
 self.labelText = liked ? "Liked \(title)"
 : "Disliked \(title)"

Figure 5-9. Assigning an identifier to a push segue

CHAPTER 5: Controller Navigation

187

 })
 return context
 }

 private func pushImageControllerWithImageName(imageName: String,
 title: String) {
 let context = ImageController.ImageControllerContext(
 imageName: imageName,
 title: title, callback: { (liked) in
 self.labelText = liked ? "Liked \(title)"
 : "Disliked \(title)"
 })
 labelText = "Neither liked nor disliked"
 pushControllerWithName("ImageController", context: context)
 }
}

Our override of the contextForSegueWithIdentifier() method uses a switch
statement to set the imageName and title variables based on the identifier of
the segue that has been triggered and then uses the values of these variables
to create an ImageControllerContext object. We are actually using exactly
the same code to create the ImageControllerContext object that is in the
pushImageControllerWithImageName(_:title:) method from our previous
example—in fact, you can simply copy that code directly into the new
method and then delete pushImageControllerWithImageName(_:title:), as
shown in the preceding code. Notice that we also set the labelText variable
to “Neither liked nor disliked” in this method. Previously, we did that while
handling the button click, but we now need to do it here because it’s the only
point at which we have control while the segue from the first to the second
interface controller is in progress.

Place a breakpoint on the contextForSegueWithIdentifier() method and
run the example again. When you click either of the buttons, you’ll see
that this method is called with the correct segue identifier as its argument.
Restart the application and you should find that the image and title are now
displayed properly.

Whether you use the pushControllerWithName(_:context:) method or
configure a segue in your storyboard is really just a matter of taste. As
you can see, there is very little to choose between them in terms of code
size and complexity. It makes no difference to the pushed controller either,
as you can see from this example, because we didn’t need to modify the
ImageController class at all to switch from manually pushing it to using a
segue. Lastly, notice that we still need to use the popController() method
to manually return to the initial interface controller—WatchKit does not have
the concept of an unwind segue.

CHAPTER 5: Controller Navigation188

Page-Based Navigation
Some applications are naturally hierarchical, while others work better if they
are implemented as a series of sibling pages that the user can navigate
through by swiping left and right. WatchKit supports page-based navigation
with either a fixed set of pages, which you can construct in the storyboard,
or with a variable collection of pages that is constructed at run time. You’ll
see examples of both in this section.

Constructing a Page-Based Application in the
Storyboard
Let’s create a simple application that lets the user page through a fixed
set of images. Create a new Xcode project called FixedPageNavigation
and add a WatchKit extension to it. Now select Images.xcassets in the
FixedPageNavigation WatchKit App group in the Project Navigator and drag
the images from the folder 5 – Fixed Page Navigation Images into it. These
are the same two images that we used in the previous example.

Select Interface.storyboard to reveal the initial interface controller. Drag a
label from the Object Library and drop it on the controller. In the Attributes
Inspector, change the label’s text to Swipe to View Images and change the
Lines attribute to 0 to allow the text to flow onto a second line. We want the
label’s text to be horizontally centered near the top of the screen, so change
the Alignment attribute to Center, the Horizontal attribute to Center, leave
the Vertical attribute set to Top and change the Width attribute to Relative
to Container.

Next, we need to add one interface controller for each image. Drag a
new interface controller from the Object Library and drop it to the right of
the main controller. Then drag an image object and drop it onto the new
controller. Select the image object and change the Image attribute to image1,
the Mode attribute to Aspect Fit, the Width to Relative to Container with
the default value of 1, and the Height to Relative to Container with a value
of 0.8. At this point, your storyboard should look like Figure 5-10.

CHAPTER 5: Controller Navigation

189

We need another identical interface controller to display the second image.
We could create it manually by following the same steps again, but there is a
quicker way. In the Document Outline (the area to the left of the storyboard),
click on the interface controller that you just created and then Option-drag
downwards, as shown on the left in Figure 5-11.

This action creates a copy of the interface controller with the image.
Drop the copy by releasing the mouse button, and it will position itself
underneath the second controller in the Document Outline, as shown on the
right in Figure 5-11. Although you now have three interface controllers, only
two are visible on the storyboard. That’s because the interface controller
you just created is positioned right on top of the one that you copied it
from. Click on the new image controller in the storyboard and drag it a little
way to the right. Then select its image and change its Image attribute in
the Attributes Inspector to image2. Your storyboard should now look like
Figure 5-12.

Figure 5-10. Constructing a page-based application, part 1

Figure 5-11. Making a copy of an interface controller

CHAPTER 5: Controller Navigation190

Now we need to link these three controllers together using next page
segues, so that the user can swipe horizontally to navigate between them.
To create a next page segue between the first two controllers, Control-drag
from the first controller to the second one, making sure that you start
dragging somewhere outside the label in the first view controller. As the
mouse moves over the second controller, its outline will highlight in blue, as
shown in Figure 5-13.

Tip If you can’t get the second controller to highlight, you probably started the
drag in the label instead of the controller itself. Try dragging from the controller’s
title area instead.

Figure 5-12. Constructing a page-based application, part 2

Figure 5-13. Creating a next page segue between two interface controllers—step 1

When you release the mouse button, a pop-up appears, offering to create a
next page segue (see Figure 5-14). Click on the pop-up, and the segue will
be created.

CHAPTER 5: Controller Navigation

191

To add the second segue, Control-drag from the second controller to the
third, again making sure you start the drag operation inside the controller
but not on the image. Release the mouse button and create the seque as
you did before. You should now have a page segue between each pair of
controllers, as shown in Figure 5-15.

Figure 5-14. Creating a next page segue between two interface controllers—step 2

Figure 5-15. All three controllers are now linked with next page segues

Now run the application and swipe from right to left. As you do so, the
second interface controller is dragged in from the right side of the screen, as
shown in Figure 5-16, followed by the third one, and you can swipe left to
return to the initial controller.

CHAPTER 5: Controller Navigation192

Figure 5-16. Swiping from right to left to reveal the second interface controller

Note It’s not possible to create a segue from the third interface controller
back to the first one, to allow the user to cycle through the pages by continually
swiping to the right. Try it and see. Xcode will let you add the segue, but you’ll
get an error because you have created a relationship cycle. To get rid of the
segue, select it and press the Delete key.

As you can see, it’s easy to create a fixed page layout in the storyboard. We
didn’t even need to create interface controller subclasses for this simple
example. There are, however, some things that you can’t do by using
this approach. For example, you can’t determine the number of pages at
run time and you can’t pass context information to any of the interface
controllers. To do either of these things, you need to write some code. Let’s
now look at how you can do both of these things by creating the page
linkage at run time.

CHAPTER 5: Controller Navigation

193

Using Pages Constructed at Run Time
Static user interfaces are easy to build, but they only get you so far. In this
section, we’re going to build an application that lets the user page through
a set of images and either like or dislike them. This time, we’re going to
define the linkage between the pages in code instead of in the storyboard.
This technique is useful if you don’t know until runtime how many pages you
need or what needs to be displayed on those pages. We’ll also see how to
programmatically move between pages and how to jump from anywhere
back to the initial page (or to any other page).

Figure 5-17 shows three screenshots from this application.

Figure 5-17. The main page and the image page of the dynamic page navigation application

Note At the bottom of Figure 5-16, you see three white circles that correspond
to the three interface controllers. You can’t control where these circles appear
and you can’t change their color or size. Depending on your user interface, you
may or may not be able to let its content flow all the way to the bottom of the
screen behind the white circles without making it difficult or impossible for the
user to see them. Here, we made sure that the images do not cover the whole
screen so that the circles are easily seen. This is important, because they may
be the only visual cue that tells the user that there is more to be seen to the
right or left of the current screen.

The screenshot on the left shows the application in its initial state. The six
dots at the bottom indicate that there are five more pages. Each of the
following pages contains an image and a pair of Like and Dislike buttons,
as shown in the center in Figure 5-17. To get from the initial page to the first
image, the user has to swipe to the left. Subsequently, when the user clicks
either the Like or Dislike button for an image, the application automatically

CHAPTER 5: Controller Navigation194

moves to the next page, but if the user chooses to swipe to the left or right
instead of pressing a button, it is assumed that he neither likes nor dislikes
the image. When the last image has been viewed, pressing the Like or
Dislike button causes the application to return to the initial page, where
the totals of likes, dislikes, and pages that the user swiped through are
displayed, as shown on the right in Figure 5-17.

Creating the Storyboard
This application has two interface controllers: the initial controller, which is
the one on the left and right in Figure 5-17, and the controller in the center
of the figure that displays an image. We’re going to display five different
images, so we need five image controller pages in addition to the page for
the initial controller—but unlike our previous example, we only need to build
one instance of the image interface controller in the storyboard because
we’re going to tell WatchKit to create five different instances of it at run time
and link them together, with the initial controller as the first page. Let’s get
started by creating the project and building the storyboard.

Create a new project called DynamicPageNavigation and add a WatchKit App
target to it. Then open the DynamicPageNavigation WatchKit App’s asset
catalog and drag the five images from the 5 - Dynamic Page Navigation
Images folder into it. Now select Interface.storyboard in the Project
Navigator to open the storyboard. The main interface controller has two
parts: the label that tells the user to swipe to show the first image, seen on
the left in Figure 5-17, and another label that summarizes the users likes and
dislikes, shown on the right in that same figure. Only one of these labels will
be visible at any given time.

To create the initial controller interface, drag two labels from the Object
Library and drop them onto the controller. Select both labels (hold down the
Shift key while clicking first one, then the other) and then, in the Attributes
Inspector, set the Alignment attribute to Center, the Lines attribute to 0,
and the Width attribute to Relative to Container. Now select the top label
only, set its Text attribute to Swipe to Begin, and change its Font attribute
to Headline. Select the bottom label and set its Vertical attribute to Center
and make sure its Height attribute has value Size To Fit Content.

Next, we need to create outlets for the two labels. To do that, open
InterfaceController.swift in the Preview Assistant. Then Control-drag
from the top label to the top of the class definition to create an outlet called

CHAPTER 5: Controller Navigation

195

startLabel and from the bottom label to the class definition to create an
outlet called summaryLabel. At this point, the top of the InterfaceController
class definition should look like this:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var startLabel: WKInterfaceLabel!
 @IBOutlet weak var summaryLabel: WKInterfaceLabel!

 override func awakeWithContext(context: AnyObject?) {

To complete the user interface for the initial controller, you need to make
the bottom label disappear. To do that, select it in the storyboard and
check its Hidden attribute in the Attributes Inspector. You should also clear
the text from its Text attribute, because we’re going to set its content
programmatically later.

The second interface controller for this application is the same as the
one we built for our hierarchical navigation example. Drag an interface
controller from the Object Library to the storyboard and then follow the
steps for building the second interface controller in the section “Building the
Controllers’ User Interfaces” earlier in this chapter to create the interface
shown on the right in Figure 5-3. Return here after setting the interface
controller’s identifier to ImageController.

We need an interface controller subclass to manage the controller’s
user interface. Create a new subclass of WKInterfaceController called
ImageController in the DynamicPageNavigation WatchKit Extension group.
Link it to the interface controller by selecting the second interface controller
in the storyboard, opening the Identity Inspector, and setting its Class
attribute to ImageController. You’re also going to need an outlet for the
image object and action methods for the two buttons. To do that, select
ImageController in the storyboard and then open the ImageController class
in the Assistant Editor. Control-drag from the image object to the top of the
class definition to create an outlet called image and then Control-drag from
each button in turn to the bottom of the class definition to create action
methods called onLikeButtonClicked() and onDislikeButtonClicked()
respectively, just as you did for the hierarchical navigation example earlier in
this chapter.

Building the Controller Linkage in Code
When the application starts, the user will see the main interface controller.
Swiping right should reveal an instance of the image controller showing
the first image. Swiping right again should show another image controller
instance with the second image. And so on. For our previous example, we
created the linkage between the controllers in the storyboard. This time,

CHAPTER 5: Controller Navigation196

we’re going to do the same thing in code, which has the advantage that you
can determine the number of pages and the page order at run time instead
of at design time. That’s perfect if you need to display content based on
information that can’t be known in advance, perhaps because you need to
connect to a server to get it.

To do that, you’ll use the reloadRootControllersWithNames(_:contexts:)
method of WKInterfaceController. This method requires two arguments:
an array of interface controller identifiers and an array of context objects.
When this method is called, each identifier in the first array is used to find
a controller definition in the storyboard. An instance of that controller is
created, and the corresponding object in the second array is passed to its
awakeWithContext() method. The two arrays must have the same number of
elements, and the order of identifiers in the first array determines the page
order of the controllers.

For this example, we need the main controller to appear first, followed
by five instances of the image controller, so the identifier array must be
initialized with the main controller’s identifier and five instances of the image
controller’s identifier. We assigned an identifier to the image controller
when we added it to the storyboard, but the main controller doesn’t yet
have one. Let’s fix that now—select the main interface controller in the
storyboard ad then use the Attributes Inspector to set its Identifier
attribute to MainController. Now add the following code shown in bold to
the awakeWithContext() method of the InterfaceController class:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 if context == nil {
 var identifiers = ["MainController"]
 var contexts = [0]

 for pageNumber in 1…pageCount {
 identifiers.append("ImageController")
 contexts.append(pageNumber)
 }

 WKInterfaceController.reloadRootControllersWithNames(
 identifiers, contexts: contexts)
 }
}

This code initializes the identifiers array with the identifier for the main
controller followed by five instances of the image controller’s identifier. At the
same time, we initialize the contexts array with the number of each page,

CHAPTER 5: Controller Navigation

197

counting the main controller as page zero. We do this to allow each page
controller instance to display its page index in its title and select the image
to be displayed—although, as you’ll see shortly, we’ll need to give it more
information than that when we implement the functionality of the Like and
Dislike buttons.

You may be wondering why we need the if context == nil test in this
code. When the application starts, an instance of the main interface
controller is created, and its init() and awakeWithContext() methods
are called. In the latter method, we call reloadRootControllersWithNa
mes(_:contexts:), which causes an instance of each controller in the
identifiers array to be created. That means that a second instance of the
main controller will be created (because its identifier is the first element of
the array), and its init() and awakeWithContext() method will be called,
executing the preceding code again. This triggers a never-ending sequence
in which we perpetually replace the main controller and every page
controller instance with new ones. We can avoid this problem by noting that
when the main controller is created from the storyboard as the application is
launched, the context argument passed to awakeWithContext() is nil, but
when it’s created as a result of our call to reloadRootControllersWithName
s(_:contexts:), its awakeWithContext() method is called with the value 0
(since that’s the first value in the contexts array).

Next, we need to add some code to the ImageController’s
awakeWithContext() method. Select ImageController in the Project
Navigator and add the following code shown in bold:

class ImageController: WKInterfaceController {
 @IBOutlet weak var image: WKInterfaceImage!

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 let pageIndex = context! as! Int
 setTitle("Page \(pageIndex)")
 image.setImageNamed("image\(pageIndex)")
 }

The context object that we’re passing to this controller is an Int that
represents the controller’s page index, from 1 to 5. We use this value to set
the controller’s title and install the correct image for the page. You should
now be able to run the application and see the initial controller, as shown on
the left in Figure 5-17, and then scroll right to reveal each of the five images
in turn.

CHAPTER 5: Controller Navigation198

At this point, the Like and Dislike buttons don’t do anything. We need them
to register whether the user likes or dislikes the image on the current page,
and we also want them to automatically scroll right to reveal the next page,
or return to the main page if the user is already viewing the last image. Let’s
implement these features separately.

Implementing the Like and Dislike Counts
When the user presses the Like or Dislike button, we need to record that
he or she likes or dislikes the image on the current page. When we return
to the main controller, we want to display how many likes and dislikes there
are and on how many pages the user did not press either button. To store
this information, we’ll create another class, which we’ll call the SharedModel
class, where we’ll keep a set containing the page indices of the images that
the users liked and another set with the page indices of the images that the
user disliked. We’ll create a single instance of this class in the main interface
controller and pass it as part of the context information to each image
controller.

Click File ➤ New ➤ File… from Xcode’s menu and then in the iOS Source
section of the new file dialog, select Swift File and click Next. Name the
file Model.swift and save it in the location that Xcode suggests, making
sure that’s it in the DynamicPageNavigation WatchKit Extension group and
target. We’re going to add a couple of classes to this file, starting with the
SharedModel class. Add the following code shown in bold:

import Foundation

class SharedModel {
 private var likedImages = Set<Int>()
 private var dislikedImages = Set<Int>()
 var likedImageCount: Int {
 get {
 return likedImages.count
 }
 }
 var dislikedImageCount: Int {
 get {
 return dislikedImages.count
 }
 }

 func likeImage(pageIndex: Int) {
 likedImages.insert(pageIndex)
 dislikedImages.remove(pageIndex)
 }

CHAPTER 5: Controller Navigation

199

 func dislikeImage(pageIndex: Int) {
 dislikedImages.insert(pageIndex)
 likedImages.remove(pageIndex)
 }
}

This code is very straightforward. The likedImages and dislikedImages
properties hold the page indices of the pages that the user liked and
disliked, respectively. When the user presses the Like button, we’ll call
the likeImage() method, which adds the page index that it’s given to the
likedImages set and removes it from the dislikedImages set (allowing the
user to have a change of heart) and similarly for the Dislike button and the
dislikeImage() method. To find out how many images have been liked (or
disliked), just use the likedImageCount (or dislikedImageCount) computed
property, which simply returns the number of elements in the likedImages
set (or the dislikedImages set).

Now let’s add the code to create an instance of this class and pass it as
part of an image controller’s context information. We’re currently using the
context object to pass a page index and we still need to do that. Since we
can only pass one context object to a controller, we’ll create a new class
to contain both the receiving controller’s page index and the reference to
the SharedModel instance and use an instance of that class as the context
object. Add the following code to the Model.swift file:

class ControllerContext {
 let model: SharedModel
 let pageIndex: Int

 init(model: SharedModel, pageIndex: Int) {
 self.model = model
 self.pageIndex = pageIndex
 }
}

Note It would be really nice if ControllerContext could be a struct
instead of a class, because we wouldn’t have to write an initializer.
Unfortunately, we can’t use a struct as a context object, because a context
has to be of type AnyObject?, which a struct is not.

CHAPTER 5: Controller Navigation200

Next, modify the InterfaceController class as shown here:

class InterfaceController: WKInterfaceController {
 private let pageCount = 5
 @IBOutlet weak var startLabel: WKInterfaceLabel!
 @IBOutlet weak var summaryLabel: WKInterfaceLabel!
 private var model: SharedModel!

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 if context == nil {
 // This case is application launch
 model = SharedModel()

 var identifiers = ["MainController"]
 var contexts = [0]
 var contexts = [ControllerContext(model: model, pageIndex: 0)]

 for pageNumber in 1...pageCount {
 identifiers.append("ImageController")
 contexts.append(pageNumber)
 contexts.append(
 ControllerContext(model: model, pageIndex: pageNumber))
 }

 WKInterfaceController.reloadRootControllersWithNames(
 identifiers, contexts: contexts)
 } else {
 // Created by reloadRootControllersWithNames(_:contexts:)
 let controllerContext = context as! ControllerContext
 model = controllerContext.model
 }
 }

The first two changes add a constant that represents the mumber of pages
and a property that will hold a reference to the SharedModel instance.
Moving on to the awakeWithContext() method, when the application is
launched, we enter the first branch of the if statement, where we now
create an instance of ControllerContext as the context for each image
controller, initialized with the reference to the SharedModel instance and
the controller’s page index. When we call reloadControllersWithNames
(_:contexts:), a new instance of the InterfaceController class will be
created along with the ImageController instances for the image controllers,
and this InterfaceController instance will be discarded. The new
InterfaceController instance needs access to the SharedModel object,

CHAPTER 5: Controller Navigation

201

so we also create a ControllerContext for the main controller and store
it as the first element in the contexts array. The second branch of the if
statement handles this case—all we need to do here is cast the context
object to ControllerContext and initialize the model property from it.

Now we need to move over to the ImageController class and make a small
change there because the context object passed to its awakeWithContext()
method has changed from Int to ControllerContext. Make the code
changes shown here in bold:

class ImageController: WKInterfaceController {
 private var controllerContext: ControllerContext!
 @IBOutlet weak var image: WKInterfaceImage!

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 let pageIndex = context! as! Int
 controllerContext = context! as! ControllerContext
 let pageIndex = controllerContext.pageIndex
 setTitle("Page \(pageIndex)")
 image.setImageNamed("image\(pageIndex)")
 }

Here we cast the context object to type ControllerContext and save it to
the controllerContext property for later use. Then, we get the controller’s
page index from the ControllerContext and use it as we did before. At this
point, you can run the example again and get the same results as before.

What we were really trying to achieve with these latest changes is make
the Like and Dislike buttons work. Now that we have a reference to
the ControllerContext, we can use that reference to get access to the
SharedModel object, which implements the methods that let us change
the sets of liked and disliked images when either of the buttons is
pressed. We’ve already connected the buttons to action methods in the
ImageController class, so let’s go ahead and implement those methods by
adding the code in bold:

 @IBAction func onLikeButtonClicked() {
 controllerContext.model.likeImage(controllerContext.pageIndex)
 }

 @IBAction func onDislikeButtonClicked() {
 controllerContext.model.dislikeImage(controllerContext.pageIndex)
 }
}

CHAPTER 5: Controller Navigation202

As you can see, all you have to do is call the appropriate method of the
SharedModel class to register the user’s opinion of the image on the current
page.

Showing Results in the Initial Interface Controller
We’re now maintaining the liked and disliked image sets correctly, but
there’s no way for us to see the results yet. What we need to do is update
the initial controller’s user interface to show the results when we return to
it. You may remember that we added a label to the storyboard so that we
could display our results. Initially, this label is empty and hidden. We need
to update it and then make it visible when the initial interface controller is
activated. However, we can’t do this on the first activation, because the user
won’t yet have seen any of the images. So we make the first activation a
special case by adding a property that we can check in the willActivate()
method. Switch back to the InterfaceController class and add this
property, as shown here:

class InterfaceController: WKInterfaceController {
 private let pageCount = 5
 @IBOutlet weak var startLabel: WKInterfaceLabel!
 @IBOutlet weak var summaryLabel: WKInterfaceLabel!
 private var model: SharedModel!
 private var firstActivation = true

Now add the code in bold to the willActivate() method:

override func willActivate() {
 super.willActivate()

 if (firstActivation) {
 firstActivation = false
 } else {
 startLabel.setHidden(true)
 summaryLabel.setHidden(false)
 let likedImageCount = model.likedImageCount;
 let dislikedImageCount = model.dislikedImageCount
 let noCommentImageCount =
 pageCount - likedImageCount - dislikedImageCount
 summaryLabel.setText(
 "Likes: \(likedImageCount)\n"
 + "Dislikes: \(dislikedImageCount)\n"
 + "No comment: \(noCommentImageCount)")
 }
}

CHAPTER 5: Controller Navigation

203

The first time this method is called, we simply set firstActivation to
false. On all subsequent calls, we hide the label at the top of the interface
that invites the user to swipe to see the images, and then show the results
summary label and update it using the counts of liked and disliked images
from the model. If the sum of these two values is not the same as the page
count, the user must have swiped past an image without clicking either of
the buttons, and we calculate the number of those pages too.

Now run the application again and swipe through the images, clicking the
Like or Dislike buttons as you go. At the end, keep swiping to the left until
you reach the initial controller, and you should see a summary, as shown on
the right back in Figure 5-17.

Automatically Scrolling between Pages
At this point, the application works, but having to manually swipe to the next
image after pressing the Like or Dislike button is not very user-friendly. So
we’re going to go the extra mile and scroll automatically to the next page
when either button is pressed. To scroll from one controller to the next,
the current controller needs to call the becomeCurrentPage() method of the
next controller. It’s as simple as that. The only problem is that none
of the controllers has a reference to the next controller in the page
sequence, and there is no API that lets you get it. Fortunately, there is a way
to work around this—we can have each image controller store a reference
to itself in the SharedModel object when its awakeWithContext() method
is called. If we save the controller references in an array indexed by page
number, any controller can get a reference to any other controller. If we have
the initial controller do the same thing, we can even make the Like and
Dislike buttons on the last page scroll all the way back to the first page
using the same code that we’ll create to move from controller to controller.

Let’s start by adding the controller’s array to the SharedModel object. To do
that, we need to know how many pages there are going to be. We’ll pass the
page count to the model’s initializer.

Note We could just create an empty array and have each controller append
to that array a reference to itself when its awakeWithContext() method is
called. However, that assumes that the controllers are initialized in page order,
and there is no reason to believe that this will be the case because Apple’s
documentation does not specify any given order of initialization. Instead, we
create an array of the correct size that’s initialized with nils and let each
controller add itself at the correct position in the array.

CHAPTER 5: Controller Navigation204

Open Model.swift and add the two lines shown here in bold to the
SharedModel class to declare the controllers array:

import Foundation
import WatchKit

class SharedModel {
 var controllers: [WKInterfaceController?]
 private var likedImages = Set<Int>()
 private var dislikedImages = Set<Int>()

Next, we add an initializer that allocates the array and initializes it with a nil
value for each page and an extra one, at index 0, for the main controller:

init(pageCount: Int) {
 controllers = Array<WKInterfaceController?>(
 count: pageCount + 1, repeatedValue: nil)
}

func likeImage(pageIndex: Int) {

Now in the InterfaceController class where we create the SharedModel
instance, we supply the page count and install the main interface controller
at index 0 of the controllers array:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 if context == nil {
 // This case is application launch
 model = SharedModel()
 model = SharedModel(pageCount: pageCount)

 var identifiers = ["MainController"]
 var contexts = [ControllerContext(model: model, pageIndex: 0)]

 for pageNumber in 1...pageCount {
 identifiers.append("ImageController")
 contexts.append(
 ControllerContext(model: model, pageIndex: pageNumber))
 }

 WKInterfaceController.reloadRootControllersWithNames(
 identifiers, contexts: contexts)
 } else {

CHAPTER 5: Controller Navigation

205

 // Created by reloadRootControllersWithNames(_:contexts:)
 let controllerContext = context as! ControllerContext
 model = controllerContext.model
 model.controllers[0] = self
 }
}

Notice that we install the initial controller reference in the else branch of the
if, which is entered when the second instance of the controller is created,
because this is the instance that the user will actually see.

In the awakeWithContext() method of each image controller, we need to
assign the controller reference to the correct entry of the controllers array. To
do that, make the change shown here in bold in the ImageController class:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 controllerContext = context! as! ControllerContext
 let pageIndex = controllerContext.pageIndex
 controllerContext.model.controllers[pageIndex] = self

 setTitle("Page \(pageIndex)")
 image.setImageNamed("image\(pageIndex)")
}

With the data structures set up, we now just need a method that lets us
move from the current controller to the next one. Here’s the method we
need—add it to the ImageController class:

func moveToNextPage() {
 let pageIndex = controllerContext.pageIndex
 let totalPages = controllerContext.model.controllers.count
 let nextIndex = (pageIndex + 1) % totalPages
 let nextController =
 controllerContext.model.controllers[nextIndex]!
 nextController.becomeCurrentPage()
}

The controller gets the index of the next controller by adding one to its own
page index, which it gets from its ControllerContext. When we are on the
last page, however, we want to move back to the initial controller. Because
we added a reference to the initial controller at index 0 of the controllers

CHAPTER 5: Controller Navigation206

array, all we need to do is wrap back to 0 when the next page index equals
the total number of pages. That’s what the following line of code does, by
using the modulo operator:

let nextIndex = (pageIndex + 1) % totalPages

Once we have the correct index, we find the next controller by accessing its
entry in the controllers array and then call its becomeCurrentPage() method:

let nextController =
 controllerContext.model.controllers[nextIndex]!
nextController.becomeCurrentPage()

We need to invoke this method when either of the buttons is pressed, so
add calls to the onLikeButtonClicked() and onDislikeButtonClicked()
methods:

@IBAction func onLikeButtonClicked() {
 controllerContext.model.likeImage(controllerContext.pageIndex)
 moveToNextPage()
}

@IBAction func onDislikeButtonClicked() {
 controllerContext.model.dislikeImage(controllerContext.pageIndex)
 moveToNextPage()
}

That’s it! Now run the example again and check that the Like and Dislike
buttons behave as they should. Notice also the nice animation that occurs
to bring the initial controller back into view when you press either button on
the last page.

Presenting an Interface Controller
So far in this chapter, you have seen two forms of interface controller
navigation: hierarchical and page-based. To close the chapter, we’ll look
at the third option: modal presentation. As on iOS, you typically present a
controller when you need to get input from the user before you can continue
with an operation that’s being performed in another controller. When you
present a controller, it animates into view from the bottom of the screen and
completely covers the interface of the controller that presents it. WatchKit
provides a prebuilt interface controller that you can present to get text input
from the user. You can also present your own controller, which can be built
either programmatically or in the storyboard. You’ll see examples of all three
options in this section.

CHAPTER 5: Controller Navigation

207

Getting Text Input
The only way to get text input on the watch is to present WatchKit’s text
input controller using the following WKInterfaceController method:

func presentTextInputControllerWithSuggestions(
 _ suggestions: [AnyObject]?,
 allowedInputMode inputMode: WKTextInputMode,
 completion completion: ([AnyObject]!) -> Void)

The user sees a full-screen presentation that consists of a list of suggested
inputs taken from the suggestions argument (which is optional), a
microphone button to enable spoken input, and possibly a button that
presents a selection of emoji characters. You use the allowedInputMode
argument, of type WKTextInputMode, to control what the input can consist of.
WKTextInputMode is an enumeration with three possible values:

	.Plain allows the user to use the microphone or the
suggestions that appear on the screen.

	.AllowEmoji is the same as .Plain plus non-animating
emoji characters.

	.AllowAnimatedAmoji is the same as .AllowEmoji plus
animated emoji characters.

At some point shortly after the presentTextInputControllerWithSuggest
ions(_:allowedInputMode:completion:) method is called, the presenting
interface controller is deactivated, and the input controller is animated into
view from the bottom of the screen. When the user has finished composing
input or cancelled the interaction, the input controller animates itself off
the screen, the presenting controller is reactivated, and the closure passed
using the completion argument is called to allow the input to be processed.
The user’s input is passed to the completion handler as an array, or nil if the
user cancelled input. If it’s not nil, the array always has one element, which
is either a text string or an NSData object containing an emoji image.

Let’s build a simple application that uses the input controller. Create a
new project called TextInput and add a WatchKit app target to it. Open
Interface.storyboard and drag a label onto the interface controller. Use
the Attributes Inspector to change the label’s Text attribute to Text Appears
Here, its Alignment to center, its Lines attribute to 0, and its Width attribute
to Relative to Container. Drag an image object and drop it below the
label and then set its Horizontal attribute to Center and its Mode attribute to
Center as well. Finally, drag a button onto the storyboard and drop it below
the label, and then change its Title attribute of the top button to Change
Text (see Figure 5-18).

CHAPTER 5: Controller Navigation208

We don’t want the image object to be visible when the application starts
(we’re going to make it visible if the user selects an emoji icon), so select
it in the storyboard and check the Hidden check box in the Attributes
Inspector.

We’re going to link the button to an action method that will present an
input controller that will allow the user to pick one of three pre-defined
text strings that will replace the label’s text, speak some replacement
text of their own using the microphone, or chose an emoji icon. Open
InterfaceController.swift in the Assistant Editor, Control-drag from the
button to the bottom of the class definition and create an action method
called onChangeTextButtonClicked(). We also need outlets for the label and
the image. Control-drag from the label to the top of the class definition and
create an outlet with the name label. Then do the same for the image to
create an outlet called image.

Now let’s add the code that we need to show the text input controller.
Start by adding the three suggested text strings to the top of the
InterfaceController class definition:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var label: WKInterfaceLabel!
 @IBOutlet weak var image: WKInterfaceImage!
 let suggestions = ["Hello, World", "Hello, Watch",
 "To be or not to be, that is the question"]

Next, add the completion method that is called when the input controller is
closed:

@IBAction func onChangeTextButtonClicked() {
}

private func onTextInputComplete(results: [AnyObject]!) -> Void {
 if results != nil && !results.isEmpty {
 if let text = results[0] as? String {

Figure 5-18. Building an application that uses the text input controller

CHAPTER 5: Controller Navigation

209

 label.setText(text)
 image.setHidden(true)
 label.setHidden(false)
 } else if let data = results[0] as? NSData {
 let emojiImage = UIImage(data: data)
 image.setImage(emojiImage)
 image.setHidden(false)
 label.setHidden(true)
 }
 }
}

The results argument would be nil if the user cancelled the interaction.
Otherwise, it contains a string or an NSData object containing an emoji
image. If the array contains a string, we use it to set the text property of the
label and hide the image. If the array contains an NSData object, we convert
it to an image and display it, hiding the label.

Finally, add the code to present the text input controller when the button is
clicked:

@IBAction func onChangeTextButtonClicked() {
 presentTextInputControllerWithSuggestions(suggestions,
 allowedInputMode: .AllowAnimatedEmoji,
 completion: onTextInputComplete)
}

Notice that we’re allowing the user to select an emoji or animated emoji
character as well as provide plain text input.

Run the example and click the Change Text button. You’ll see the text input
controller scroll into view from the bottom, covering the whole screen, as
shown in Figure 5-19.

CHAPTER 5: Controller Navigation210

If you look first at the top of the screen, you’ll see that the presented
controller replaces the title bar with one of its own that contains the text
Cancel and does not show the current time. If you tap anywhere in the title
bar, the controller is dismissed, and the completion method will be called
with a nil argument. If you tap on one of the suggested strings instead,
the input controller disappears and you should see that the label in the
initial interface controller is updated. That’s all you can do in the simulator.
However, if you run this on a real device, you can use the two buttons at the
bottom of the screen.

First tap on the microphone button. This shows the same screen that Siri
uses for voice input, as shown on the left in Figure 5-20.

Figure 5-19. The presented text input controller

Figure 5-20. Microphone input (left) and emoji input (right)

CHAPTER 5: Controller Navigation

211

Dictate some text and press the Done button, and you’ll see the text appear
in the label on the application’s main screen. Now press the Change Text
button again and this time tap the emoji button. You’ll see a new paged
interface controller from which you can choose either an animated or a fixed
emoji icon. Each animated icon has its own page, whereas the static ones
are grouped into a single page, as shown in the center and on the right in
Figure 5-20. Select an icon from either of these pages and you’ll see that it
appears in the image object in the application instead of the label.

Presenting a Controller Programmatically
Presenting a controller programmatically is very similar to the process of
pushing a controller that we covered in the first part of this chapter. You
build the controller in the same way and you pass information to it and get
results from it using the context object passed to its awakeWithContext()
method. The only difference is that you use different methods to present and
dismiss the controller.

As usual, we’ll illustrate the process with an example. Because you’re
already familiar with how to navigate and pass information between interface
controllers, this is just going to be a bare-bones example that demonstrates
the mechanics of controller presentation, and we’re not going to add
anything more to the interface. You’ll see a more complete example of
controller presentation in Chapter 6.

Create a new project called ControllerPresentation and add a WatchKit
App target to it. Open Interface.storyboard and drag a button onto
it. We’re going to use this button to trigger the presentation of a
second interface controller, so change its Title attribute to Present
Controller. We need to link the button to an action method, so open
InterfaceController.swift in the Assistant Editor and Control-drag from
the button to the bottom of the class to create an action method called
onPresentControllerButtonClicked().

Next, drag a second interface controller onto the storyboard. This is the
controller that we are going to present. With the controller selected in the
storyboard, use the Attributes Inspector to set its Identifier attribute to
PresentedController. We’ll use this identifier when we write the code to
present the controller. Now drag a label and a button from the Object Library
and drop them onto the controller. Change the label’s Width attribute to

Tip If you want the user to go directly to dictated input without having to press
the microphone button, present the text input controller with the suggestions
argument set to nil and allowedInputMode set to .Plain.

http://dx.doi.org/10.1007/9781484210260_6

CHAPTER 5: Controller Navigation212

Relative To Container, its Lines attribute to 0, and its Alignment attribute
to Center, and then set the button’s Title attribute to Close.

We need to link the label to an outlet and the Close button to an action
method, but we don’t have an interface controller class for this controller yet.
To fix that, right-click on the ControllerPresentation WatchKit Extension
group in the Project Navigator and select New File… then, in the dialog that
appears, select Cocoa Touch Class from the iOS Source section and click
Next. Name the class PresentedInterfaceController, make it a subclass of
WKInterfaceController, and save it. Open Interface.storyboard again, select
the new interface controller, and change the Class attribute in the Identity
Inspector (3) to PresentedInterfaceController. To create the button’s
action method, open PresentedInterfaceController in the Assistant Editor
and Control-drag from the Close button to the bottom of the class definition.
Name the action method onCloseButtonClicked(). Finally, Control-drag from
the label to the top of the class definition and create an outlet called label.

With both controllers constructed, you can now write the code to have the
first controller present the second. To present a controller, use one of the
following WKInterfaceController methods:

func presentControllerWithName(_ name: String, context: AnyObject?)
func presentControllersWithNames(_ names: [AnyObject],
 contexts: [AnyObject]?)

The first method presents the single controller with the identifier given
by its first argument, passing the second argument as its context.
The second method presents a set of controller pages, where the first
argument is an array of controller identifiers and the second contains
the controller contexts. Because we’re only presenting one controller,
we’ll use the first method. Add the following code shown in bold to the
onPresentControllerButtonClicked() method in the presenting controller in
InterfaceController.swift:

@IBAction func onPresentControllerButtonClicked() {
 presentControllerWithName("PresentedController",
 context: "Presented Controller")
}

To dismiss a presented controller, you call its dismissController() method.
We want the controller to be dismissed when we press the Close button, so
add the following code in bold to the onCloseButtonClicked() method in
PresentedInterfaceController.swift:

@IBAction func onCloseButtonClicked() {
 dismissController()
}

CHAPTER 5: Controller Navigation

213

In a real application, we would probably want to pass some information from
the presented controller back to the presenting controller. To do that, we
would use the mechanism discussed earlier in this chapter—that is, pass a
reference to a closure in the presented controller’s context and invoke the
closure before calling the dismissController() method. We’ll do exactly
that in an example that you’ll see in Chapter 6. In this simple example, of
course, there is nothing to return, and the context is just a string that we’ll
use to set the Text property of the label. To do that, add the following code
to the awakeWithContext() method:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 let text = context! as! String
 label.setText(text)
}

Run the example and you should see the initial controller, as shown on the
left in Figure 5-21.

Figure 5-21. Presenting an interface controller

Click the Present Controller button and the second controller will
animate into view from the bottom of the screen, as shown on the right
in Figure 5-21. If you press the Close button, the presented controller’s
onCloseButtonClicked() method calls dismissController() to dismiss itself.

You can also return to the presented interface controller by touching the title
bar. As you can see in Figure 5-21, when it presents a controller, WatchKit
replaces the title bar of the presenting controller with one that contains a
Cancel label. When the user dismisses the controller by touching the title
bar, you do not get an opportunity to return information to the presented
controller, so this is effectively a cancel operation, as the default title

http://dx.doi.org/10.1007/9781484210260_6

CHAPTER 5: Controller Navigation214

suggests. If necessary, you can change the title bar text in the normal way,
by setting the Title attribute of the presented interface controller in the
storyboard or by calling its setTitle() method.

Presenting a Controller from the Storyboard
You can present a single controller (or set of controller pages) by configuring
a modal segue from the presenting controller to the first (or only) presented
controller in the storyboard. To demonstrate, we’ll convert our last example
to use a segue instead of explicitly calling the presentControllerWithName
(_:context:) method.

Start by taking a copy of the project folder to a new folder called
StoryboardControllerPresentation and open the copied project in Xcode.
Our first task is to remove code and storyboard connections that we don’t
need. Open Interface.storyboard and select the Present Controller
button in the main interface controller. Next, open the Connections Inspector
(5) and click on the small x, on the right side of the connection in
Sent Actions section, to remove the link between the button and the
onPresentControllerButtonClicked() method. We don’t need this method
anymore because WatchKit is going to handle the presentation for us, so
open InterfaceController.swift and remove it.

This example is going to be different from the previous one in two ways.
First, we’ll be presenting two interface controllers instead of one, and
second, we’ll use a segue instead of code to initiate the presentation. Both
of these changes require updates to the storyboard.

Let’s start by adding the second presented controller, which will be a copy
of the first one. To do that, select PresentedController in the storyboard
Document Outline and Option-drag downward, as shown in Figure 5-22,
and then release the mouse button. You should see a second copy of the
controller appear in the Document Outline. If you can’t make this work,
select the controller in the Document Outline and press C followed by V.

Note A presented interface controller can itself present another controller (or
a set of controller pages), but you cannot push a controller onto a presented
controller.

CHAPTER 5: Controller Navigation

215

Figure 5-22. Creating a copy of an interface controller

Even though there are two copies of the presented controller, you can
probably see only one in the storyboard, because the second one is directly
above the first, so use the mouse to drag them apart so you can see them
both. Your storyboard should now look like Figure 5-23.

Figure 5-23. Storyboard with two presented controllers

At this point, you should see that Xcode is reporting an error because
there are two interface controllers with the identifier PresentedController.
Let’s fix that before continuing. Select the presented controller instance
on the left, open the Attributes Inspector, and change its identifier to
PresentedController1. Do the same with the controller on the right, changing
its identifier to PresentedController2. The error should now be gone.

The next step is to link the two presented controllers so that they appear
as pages when they are presented. Control-drag from the first presented
controller to the second one, making sure that the mouse pointer starts at

CHAPTER 5: Controller Navigation216

a point that is in the interface controller itself, not the label or the button.
Release the mouse button and select next page from the pop-up that
appears. If you don’t see a pop-up like the one shown in Figure 5-14, you
started the drag with the mouse in the wrong place.

Now we need to create the segue that will present our two interface
controller pages. To do that, Control-drag from the Present Controller button
in the main controller to the leftmost presented controller and release the
mouse button. Then select modal from the pop-up. With these two segues in
place, your storyboard should look like Figure 5-24.

Figure 5-25. Crash while presenting a controller

Figure 5-24. Storyboard with segues added

At this point, with all the required linkage in place, run the example. When
the initial interface controller appears, press the Present Controller button.
Unfortunately, instead of presenting the second controller, the application
crashes, as shown in Figure 5-25.

What went wrong? The presented controller expects its awakeWithContext()
method to be called with a context object that is the text for its label. In
our previous example, this worked because we explicitly called the pres
entControllerWithName(_:context:) method, passing the label’s text as
the context argument. Now, though, WatchKit is presenting the controller,

CHAPTER 5: Controller Navigation

217

Figure 5-26. Interface controllers presented from a storyboard

so how do we arrange for the presented controller’s awakeWithContext()
method to be called with the correct argument? You may remember a similar
situation earlier in this chapter when we pushed an interface controller
using a push segue in the storyboard. There, the solution was to override
the contextForSegueWithIdentifier() method in the source controller to
return the context object for the pushed controller. The same technique
works when presenting a controller, but here we are actually presenting two
interface controllers, so we need to override this method instead:

func contextsForSegueWithIdentifer(_ segueIdentifier: String)
 -> [AnyObject]?

To fix the problem, open InterfaceController.swift and add the following
code:

override func contextsForSegueWithIdentifier(segueIdentifier: String)
 -> [AnyObject]? {
 return ["Presented Controller #1", "Presented Controller #2"]
}

This method returns two strings, the first of which is used as the context
object for the first presented controller and the other for the second
presented controller. Run the example one more time and press the Present
Controller button. This time, you’ll see the first presented controller appear
(see Figure 5-26).

If you swipe to the right, the second presented controller appears. Pressing
either Close button or tapping the title bar of either controller dismisses both
of them and returns to the initial controller.

CHAPTER 5: Controller Navigation218

Summary
We’ve reached the end of our discussion of interface controller navigation.
There was a quite a lot of material to absorb, but the principles are
straightforward, and the behavior is very similar to what you are used to
when working with UIKit view controllers. As you’ll see, you can also perform
controller navigation from the rows of a WatchKit table. The table is probably
the most powerful WatchKit interface element and it is the subject of the
next chapter, along with menus. So turn the page, and let’s get started.

219

Chapter 6
Tables and Menus
In Chapter 2, you learned that when building WatchKit user interfaces, you
have to know at design time which user interface objects you need and
you must include them all in the storyboard. In some cases, this just isn’t
possible. Suppose, for example, that you wanted to display the results of a
database query in rows, with one row (and hence one group of user interface
objects) for each query result. In general, you can’t know in advance how
many query results there will be. You could try to work around this by adding
a fixed number of groups to the storyboard and then, at run time, hiding
any that you find you don’t need. You might be able to make that approach
work in some cases, but it’s wasteful of scarce resources on the watch and
doesn’t really work if you need to display different query results in different
ways.

Fortunately, there is a better solution: you can use a WatchKit table. Tables
work like vertical groups, except that they let you decide at run time what
nested user interface objects you need. The first part of this chapter will
develop an example that uses several of the features of the table class—
and in Chapter 7 you’ll see how to use tables to build a more complex
application.

The second part of this chapter discusses WatchKit menus. Menus allow
you to save space on the screen by providing a place to keep functionality
that the user does not always need access to. A menu can contain up to
four menu items that act like buttons. It is invisible until the user presses
on the screen with a little more than the usual amount of force. When the
watch detects this Force Touch gesture, it overlays the menu on the screen
allowing the user to see the available actions.

http://dx.doi.org/10.1007/9781484210260_2
http://dx.doi.org/10.1007/9781484210260_7

CHAPTER 6: Tables and Menus220

WatchKit Tables
WatchKit tables are instances of the WKInterfaceTable class. Like
UITableView, WatchKit tables can have rows that are all of the same type
or a mixture of different types. A typical table might have one row type that
is used for table data and another for section headers. You declare the row
types that you need, along with the user interface components that define
their content, in the storyboard. Each row type also needs a row controller
class containing outlets that are linked to its user interface components and
possibly data that is associated with that particular row and action methods
for any active objects (such as buttons) in the row.

Defining a row controller object is very similar to creating a prototype table
cell for a UITableView. However, unlike UITableView, the rows of a WatchKit
table are not created as they are about to appear on the screen. Instead,
a row controller object for every row is created when you configure the
table at run time, usually in the init() or awakeWithContext() method of its
owning user interface controller. WatchKit is forced to do this because using
the UITableView approach of configuring rows as the table scrolls would
require a round trip from the watch to the WatchKit App extension running
on the iPhone for each row, which would lead to very bad performance.
Of course, creating all of the rows immediately means that the memory
required to manage the table is proportional to the total number of rows in
the table, not to the number that are currently visible (as it is in UIKit). As a
result, you really shouldn’t try to create large WatchKit tables. In fact, Apple
recommends that you limit yourself to around 20 rows. If the data you need
to display requires more rows, you need to provide some kind of paging
mechanism to allow the user to see the next block of rows by reconfiguring
the ones that are currently visible.

The first example application for this chapter uses a table to build an
interface that looks a little like the iOS Settings application. We’ll construct
the example step by step, as usual, but let’s first run the completed
version to see what it does, after which it will be easier to understand the
implementation.

Fire up Xcode and open and run the project in the 6 – Configuration Table
folder of the book’s example source code archive. When the application
starts, you see a label and a Configure button, as shown on the left in
Figure 6-1.

CHAPTER 6: Tables and Menus

221

When you press the button, a new controller containing a table and a Save
button is presented, as shown in the middle two screenshots in Figure 6-1.
There are two different types of row in this table: the first and fourth rows
act as section headers for the other six rows, which contain the useful
information in the table. The rows in the first section represent colors and
the rows in the second section represent font styles. The idea is that the
user can tap on a row in the first section to choose a color and a row in the
second column to select a font. The rows that correspond to the current
color and font are indicated by a green check mark. Because there are two
different types of row, the table uses two row controller objects.

Pressing the Save button dismisses the presented controller and applies the
new color and font to the text in the first interface controller, as shown on
the right in Figure 6-1.

This example demonstrates the following:

	How to add a table to an interface controller

	How to specify the number of different row controllers
that a table requires

	How to build the layout for each row controller in the
storyboard

	How to build the table by adding row controller
instances when the table first appears

	How to respond to the user tapping on a table row

	How to pass information to and from a presented
controller, using the techniques from Chapter 5

Let’s get started with this example. Begin, as usual, by creating a new
Xcode project. Name the project Configuration Table and add a WatchKit
application target to it. Now select Interface.storyboard in the Project
Navigator so that we can start building the user interface.

Figure 6-1. Using a WatchKit Table

http://dx.doi.org/10.1007/9781484210260_5

CHAPTER 6: Tables and Menus222

Adding the Controllers and the Table to the
Storyboard
For the main controller, we need a label and a button. Drag a label and a
button from the Object Library and drop them onto the main controller in the
storyboard. Select the button and change its Vertical attribute to Bottom
and its Title attribute to Configure. Select the label and then change its
Width attribute to Relative To Container, its Alignment attribute to Center,
and its Lines attribute to 0. At this point, the main controller should be as
shown on the left in Figure 6-1, apart from the label text, which we’ll set
programmatically. To do that, we’ll need an outlet for the label, so open
InterfaceController.swift in the Assistant Editor and Control-drag from
the label to the top of the class definition to create an outlet called label,
like this:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var label: WKInterfaceLabel!

Now let’s build the second controller. Drag an interface controller from the
Object Library and drop it onto the storyboard. We want to present this
controller when the user taps the Configure button in the main interface
controller, so Control-drag from that button to the new controller, release the
mouse button, and choose modal from the pop-up that appears.

Next, drag a table from the Object Library and drop it onto the second
controller. You’ll notice that the table initially contains one row. That’s a little
misleading; if you were to run the example at this point, you would see an
empty table (try it and see). What the table actually contains is one row
controller prototype. We actually need two row prototypes, so select the
table in the storyboard or in the Document Outline and use the Attributes
Inspector to set its Rows attribute to 2.

Drag a separator and a button from the Object Library and drop them below
the table. Then use the Attributes Inspector to change the button’s Title
attribute to Save. At this point, your storyboard should look like Figure 6-2.

Tip A table’s Rows attribute represents the number of row controllers (row
prototypes) that the table has, not the number of rows that will appear in the
table at run time.

CHAPTER 6: Tables and Menus

223

The initial interface controller in the storyboard is already associated with
the InterfaceController class, which was supplied by the Xcode project
template. We also need a class to contain the logic for the presented
interface controller. Select the Configuration Table WatchKit Extension
group in the Project Navigator and then click on File ➤ New ➤ File... in
the Xcode menu. From the iOS Source section of the dialog that opens,
choose Cocoa Touch Class, press Next, and then name the new class
ConfigurationController, making it a subclass of WKInterfaceController.
Press Next and save the new class, making sure that it goes into the
Configuration Table WatchKit Extension group. In the storyboard, select
the second controller (the one at the bottom in Figure 6-2) and use the
Identity Inspector to set its Class attribute to ConfigurationController.
We’ll add some code to this class in a while, after we’ve configured the rows
for the controller’s table. That code will need an outlet for the table, which
we’ll create now. Select the table in the Document Outline (it’s quite hard to
select it in the storyboard—try it and see) and then open the Assistant Editor.
You should see the ConfigurationController class in the Assistant Editor,
but if you don’t, select it manually from the jump bar. Control-drag from the
table in the Document Outline to the top of the ConfigurationController
class and create an outlet called table:

class ConfigurationController: WKInterfaceController {
 @IBOutlet weak var table: WKInterfaceTable!

Figure 6-2. Building the Configuration Table user interface

CHAPTER 6: Tables and Menus224

Configuring the Table Rows
Next we need to define what each table row looks like and link each
prototype row to its row controller class. We’re going to add user interface
components to both of the prototype rows in the storyboard and then
create outlets for them in their respective row controller classes. We’ll start
by creating the row controller classes themselves. In the Project Navigator,
select the Configuration Table WatchKit Extension group and then
select File ➤ New ➤ File... from the menu. In the pop-up that appears,
select Swift File from the iOS Source group and click Next. Name the file
TableRowControllers.swift and click Create.

We’re going to add two row controller classes to this file: one for the section
headers and another for the other rows (which I’ll refer to as body rows from
now on). Make the following changes to TableRowControllers.swift:

import Foundation
import WatchKit

class HeaderRowController : NSObject {
}

class BodyRowController : NSObject {
 var attributeValue: AnyObject?
}

As you can see, row controller classes are not subclasses of any WatchKit
class—they are just plain NSObjects.

Each body row is associated with a color or a text style, so the
BodyRowController class has a property that we’ll use to store that value.
This property must be declared as optional because the row controller
objects are created by WatchKit as part of the initialization of the table, and
there is no way for you to provide an initial value for the property.

For this example, I chose to make attributeValue of type AnyObject? so
that I can use it to hold either a UIColor or a UIFont object. If you prefer
stronger typing, you could define a separate class for each row type
(e.g. FontBodyRowController and ColorBodyRowController) and declare their

Caution Row controller classes must be subclasses of NSObject.

CHAPTER 6: Tables and Menus

225

properties to be of type UIFont and UIColor respectively. The downside to
that approach is that you would need to add an extra prototype table row in
the storyboard and duplicate the row layout for the color and font rows.

Now let’s finish the storyboard and add the outlets we need to the row
controller classes. Select Interface.storyboard in the Project Navigator and
direct your attention to the Document Outline, shown on the left in Figure 6-2.
In the node tree for the second interface controller (the one that has the
table), you’ll see the Table node. Click the disclosure triangle to reveal a
further two nodes (labeled Table Row Controller), one for each prototype
table row. Expand these nodes and you’ll see that they contain a group. You
can use this group to add the visual content for the corresponding row type.
Let’s do that now, starting with the header rows.

Configuring the Header Rows
Select either of the Table Row Controller nodes, open the Identity
Inspector, and, in the Custom Class section, set the class to
HeaderRowController. Next, open the Attributes Inspector and set the
header row’s Identifier attribute to Header; we’ll use this identifier when
we initialize the table at run time. While we’re here, uncheck the Selectable
attribute since we don’t want the user to be able to select the row header.

The header row is going to display some fixed text, so we need to add a
label to the row controller’s group. Because you have the row controller
selected in the Document Outline, the corresponding table row should be
selected in the storyboard. Drag a label from the Object Library and drop it
into the table row in the storyboard. The label should be added to the row
controller’s group, as shown in Figure 6-3.

Tip Every prototype table row contains a group. You can use the group’s
attributes to customize the appearance of the row. For example, you can set its
background color (as you’ll see in a minute) or change the radius of its rounded
corners.

CHAPTER 6: Tables and Menus226

In the Attributes Inspector, change the label’s Alignment attribute to
Center, its Vertical attribute to Center, and its Width attribute to Relative
to Container. To make the header visually distinct from the body rows,
select its group node in the Document Outline and then use the Attributes
Inspector to change its Color attribute to Light Gray Color. If you look back
to Figure 6-1, you’ll see that the section header rows are smaller than the
body rows. To do that, with the group node still selected, change the Height
attribute to Fixed and enter 24 as the value. If the section header row in the
storyboard does not change height when you do this, you probably have the
label selected instead of the group.

To complete the header row controller class, we need to add an outlet for
the label. Select the label in the Document Outline and then open
TableRowControllers.swift in the Assistant Editor. If this file is not opened
automatically when you open the Assistant Editor, you can open it by
selecting Manual in the jump bar and then navigating to it. Control-drag from
the label in the Document Outline to the HeaderRowController class in the
Assistant Editor and create an outlet called label.

Note You may find that Xcode is unable to create an outlet because it has no
information about the HeaderRowController class. This is an Xcode bug. To
work around it, first try cleaning and rebuilding the project (hold down the
(Option) key, select Product ➤ Clean Build Folder... from the menu,
and then press B).

Figure 6-3. Creating the table header row controller

CHAPTER 6: Tables and Menus

227

Configuring the Body Rows
We’ll use a very similar set of steps to configure the body rows, the main
difference being that these rows require an image for the check mark that
you can see in Figure 6-1 in addition to a label. Select the other Table Row
Controller in the Document Outline and open the Identify Inspector. In
the Custom Class section, set the Class attribute to BodyRowController to
link the row prototype in the storyboard to its row controller class. Next,
in the Attributes Inspector, set the Identifier attribute to Body and leave
the Selectable attribute checked, because we want to respond to the user
tapping a body row by selecting the corresponding color or font.

The row controller’s table row in the storyboard should be selected—if not,
just select the Body node in the Document Outline. Drag a label object from
the Object Library and drop it onto the table row in the storyboard. Then use
the Attributes Inspector to set its Vertical attribute to Center. Next, drag an
image object and drop it onto the table row. Because the group in the table
row is a horizontal one, the image will position itself to the right of the label.
We’d like the image to be right-aligned in the row and to have its vertical
center aligned with that of the label, so use the Attributes Inspector to set its
Horizontal attribute to Right and its Vertical attribute to Center. You’ll find
the check image in a file called CheckMark@2x.png in the 6 - Configuration
Table Images folder of the example source code archive. Select Images.
xcassets in the Project Navigator and drag the image into it. Reselect the
image object in the Document Outline and use the Attributes Inspector to
set the Image attribute to CheckMark and the Mode attribute to Center so that
the check mark image is drawn neatly in the center of the space allocated
for the image object and is not stretched in either direction.

When WatchKit creates the table rows at run time, it will set their heights
based on their content, which means that different rows can have different
heights. You can override the calculated height if you want by changing the
Height attribute of the row’s group object, as we did for the section header
rows, but you should not make the height of any selectable row less than
37.5 pt. for the 38mm watch or 40 pt. for the 48mm watch to ensure that the
rows are always tall enough for the user to be able to select them accurately.
For this example, there is no need to adjust the row heights, so we’ll leave
the Height attribute unchanged.

Finally, we need to create outlets for the label and the image. Open
TableRowControllers.swift in the Assistant Editor. Then Control-drag from
the label to the BodyRowController class to create an outlet called label and
from the image to the BodyRowController class to create an outlet called
checkImage. The storyboard and TableRowControllers.swift file should now
be as shown in Figure 6-4.

CHAPTER 6: Tables and Menus228

Figure 6-4. The completed table body row controller

If you run the application at this point and press the Configure button on the
initial interface controller’s screen, you’ll see that the table in the presented
controller is empty. That’s because, as I said earlier, all we’ve done so far
is define two row prototypes—we haven’t yet given the table any data to
display. We’ll get around to doing that in a while.

Defining the Interface between the Controllers
This application has two interface controllers: the initial controller and the
controller that’s presented when the user presses the Configure button.
When you push or present a controller, you typically need to add some
information to it, and vice versa when control returns to the initial controller.
We’re going to use the same techniques to pass information between
controllers that you saw in Chapter 5—that is, we’ll define an object that’s
passed to the presented controller’s awakeWithContext() method which
contains everything it needs to initialize itself and a closure that it can call to
return information to the initial controller when it’s dismissed.

What information do we need to pass between the controllers? The function
of the presented controller is to allow the user to select a color and a font
that will be applied to the text in the initial controller, so we’ll at least need
to define an object that encapsulates these attributes. We’ll need to use this
object in both controllers, so let’s put its definition in a separate file to make
clear that it is doesn’t belong to either controller.

http://dx.doi.org/10.1007/9781484210260_5

CHAPTER 6: Tables and Menus

229

Select the Configuration Table WatchKit Extension group in the Project
Navigator and click on File ➤ New ➤ File... in the Xcode menu. In the iOS
Source section of the dialog that opens, choose Swift File and click Next.
Name the file TextAttributes.swift, click Next, and save the new file.
Select TextAttributes.swift in the Project Navigator and add the following
code shown in bold to it:

import Foundation
import UIKit

struct TextAttributes {
 let color: UIColor
 let font: UIFont
}

Because this object is just a container for information with no associated
behavior, I’ve made it a structure rather than a class. One nice side effect of
that decision is that you get a free initializer you can use to set the color and
font properties, like this:

let attributes = TextAttributes(color: UIColor.redColor(),
 font: UIFont.preferredFontForTextStyle(UIFontTextStyleBody))

If you look back at Figure 6-1, you’ll see that we allow the user to select
from three fixed colors and three fixed text styles (from which we’ll derive
a font). Rather than hardcode these values in both controllers, we can
conveniently define them all as static properties of the TextAttributes
structure:

struct TextAttributes {
 static let colorNames = ["White", "Yellow", "Green"]
 static let colors = [UIColor.whiteColor(),
 UIColor.yellowColor(), UIColor.greenColor()]
 static let fontNames = ["Body", "Headline", "Footnote"]
 static let fonts = [
 UIFont.preferredFontForTextStyle(UIFontTextStyleBody),
 UIFont.preferredFontForTextStyle(UIFontTextStyleHeadline),
 UIFont.preferredFontForTextStyle(UIFontTextStyleFootnote)
]

 let color: UIColor
 let font: UIFont
}

The colorNames and fontNames arrays contain the values that appear in the user
interface, whereas the colors and fonts arrays contain the actual values that
will be used in the application, in the same order as the corresponding names.

CHAPTER 6: Tables and Menus230

The next step is to define the context object that’s passed to the presented
controller. This object needs to contain the current text color and font
of the label in the main controller’s user interface and a closure that will
be used to return the user’s selected values to the main controller. As
noted back in Chapter 5, the context object should be considered to be
part of the API of the presented controller, so we’ll define it as part of the
ConfigurationController class. Select ConfigurationController.swift in
the Project Navigator and add the following code shown in bold to it:

class ConfigurationController: WKInterfaceController {

 class ControllerContext {
 let textAttributes: TextAttributes
 let callback: (TextAttributes) -> Void

 init(textAttributes: TextAttributes,
 callback: (TextAttributes) -> Void) {
 self.textAttributes = textAttributes
 self.callback = callback
 }
 }

The textAttributes property supplies the current color and font, and the
callback property is the closure that the presented controller will call when
it is dismissed, passing another TextAttributes object with the newly
selected color and font values.

Implementing the Initial Interface Controller
The job of the initial interface controller is to present the configuration
controller when the Configure button is pressed and to set the color
and font of the label’s text when the application starts and when the
configuration controller is dismissed. Let’s look at the second of these tasks
first and we’ll deal with presenting the configuration controller in the next
section.

The label’s initial color and font could be set in any of the controller’s init(),
awakeWithContext(), or willActivate() methods. What about updating
these attributes when the configuration controller is dismissed? At that
point, the configuration controller invokes the callback method that is
passed in its context, which we’ll implement as part of the intial controller.
It would be convenient if we could use the TextAttributes object that we
get with that call to update the label in the callback method, but we can’t,
because when we presented the configuration controller, the initial controller
was deactivated, and, as you know, you can’t update user interface
objects belonging to a controller that’s not active. Instead, we have to

http://dx.doi.org/10.1007/9781484210260_5

CHAPTER 6: Tables and Menus

231

save the new attributes and wait until the initial controller’s willActivate()
method is called. So it turns out that setting the label’s font and color in
the willActivate() method works for both cases (and you may remember
that we did the same thing in an example that involved pushing an interface
controller back in Chapter 5). Let’s add the code to do that.

Select InterfaceController.swift in the Project Navigator and add the
following code at the top of the class definition:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var label: WKInterfaceLabel!

 private var textAttributes =
 TextAttributes(color: TextAttributes.colors[0],
 font: TextAttributes.fonts[0])
 private var attributesChanged = true
 private var text =
 NSMutableAttributedString(string: "Hello, Watch")

The textAttributes property is initialized with the font and color that
the user will see when the application starts. We could set these in the
storyboard, but doing it this way means we don’t need to remember to
update the storyboard if we ever change the font and color choices. When
the configuration controller is presented and dismissed, we’ll update
this property with the new attributes. The attributesChanged property
tells us whether we actually need to update the label’s attributes in the
willActivate() method. It is possible for the user to open the configuration
controller and not change either the selected color or font, or to use
the Cancel button in the title bar. In that case, we don’t want to waste
time by having WatchKit send a message to the watch that just sets the
label’s attributes to their current values. Finally, the text property is an
NSAttributedString that’s initialized with the label’s text. Why do we need
this? We can set the color attribute of a WKInterfaceLabel object at run time
by calling its setTextColor() method, but there is no method to change the
font. Instead, we have to apply the font that we need to an attributed string
and use the label’s setAttributedText() method to change it. In fact, we’ll
use the attributed string to set both the font and the color. To do that, add
the following code to the willActivate() method:

override func willActivate() {
 if attributesChanged {
 let range = NSMakeRange(0, text.length)
 text.addAttribute(NSForegroundColorAttributeName,
 value: textAttributes.color, range: range)
 text.addAttribute(NSFontAttributeName,
 value: textAttributes.font, range: range)

http://dx.doi.org/10.1007/9781484210260_5

CHAPTER 6: Tables and Menus232

 label.setAttributedText(text)
 attributesChanged = false;
 }
 super.willActivate()
}

This code should be self-explanatory. Notice that we update the attributes
only if the attributesChanged property is true and, having done so, we
reset it to false. This property is initially true (so we’ll set the font and color
when the application starts), and we also need to set it to true when the
presented controller invokes its callback method, provided that either the
color or font is changed. To implement that, add the following method to the
class definition:

func onCallBack(textAttributes: TextAttributes) -> Void {
 if textAttributes.color != self.textAttributes.color
 || textAttributes.font != self.textAttributes.color {
 // Font or color changed
 self.textAttributes = textAttributes
 attributesChanged = true
 }
}

Presenting the Configuration Controller
As you’ve seen, if you run the application and press the Configure button,
the configuration controller is presented. The presentation happens
automatically because we added a modal segue to the Configure button in
the storyboard. However, at this point, we’re not passing context information
to the controller. Because the controller is presented by a segue, we can’t
pass the context object directly to it. Instead, as you saw in Chapter 5, we
need to implement the contextForSegueWithIdentifier() method in the
presenting controller. To do that, add the following code near the bottom of
the InterfaceController class:

override func contextForSegueWithIdentifier(
 segueIdentifier: String) -> AnyObject? {
 return ConfigurationController.ControllerContext(
 textAttributes: textAttributes,
 callback: onCallBack)
}

func onCallBack(textAttributes: TextAttributes) -> Void {

http://dx.doi.org/10.1007/9781484210260_5

CHAPTER 6: Tables and Menus

233

The context object is an instance of the ControllerContext class, which we
initialize with the current text attributes from the controller’s textAttributes
property, and a reference to the onCallBack method, which the presenting
controller will call to pass back the new attributes. To check that this is
working, open ConfigurationController.swift in the editor and add the
following line of code to its awakeWithContext() method:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 println("Context: \(context)")
}

Now run the application and press the Configure button. When the
configuration controller appears, you should see something like this in the
Xcode console:

Context: Optional(Configuration_Table_WatchKit_Extension.
ConfigurationController.ControllerContext)

Implementing the Configuration Controller
Having completed the main interface controller, we now move on to the
configuration controller. This is the point where we finally get to use a
WatchKit table, so let’s look at how the WKInterfaceTable class works
before we start writing code.

Adding Rows to the Color and Font Table
When we constructed the configuration controller in the storyboard, we
added a WKInterfaceTable and two prototype rows, but, as you have
already seen, just doing this does not produce any visible content in the
table. To add content to the table, you need to use one of the following
WKInterfaceTable methods:

func setNumberOfRows(_ numberOfRows: Int,
 withRowType rowType: String)
func setRowTypes(_ rowTypes: [AnyObject])
func insertRowsAtIndexes(_ rows: NSIndexSet,
 withRowType rowType: String)

Use the first method when you want to initialize the table with a number of
rows all of the same type—that is, all created from the same row controller.
The rowType argument should be the identifier assigned to the row controller

CHAPTER 6: Tables and Menus234

in the storyboard. For example, the following code would initialize a table
with three rows all created from the Body prototype row:

table.setNumberOfRows(3, withRowType: "Body")

Add that line of code to the awakeWithContext() method in the
ConfigurationController class, run the example, and press the Configure
button. You’ll see that the table in the presented controller now has three
rows, as shown in Figure 6-5.

Figure 6-5. A table with three rows of the same type

We haven’t yet initialized the three rows with meaningful data, so for the
moment they are just copies of the body prototype. We’ll take care of
initializing the table content shortly. For this example, we need a table with
two different row types—some will be headers, others will be body rows.
To do that, we construct an array containing the identifiers for the row
prototypes in the order in which they should appear in the table and invoke
the second method from the list above. Make the following changes to the
awakeWithContext() method to create a table containing two header rows
and two body rows:

table.setNumberOfRows(3, withRowType: "Body")
let rowTypes = ["Header", "Body", "Header", "Body"]
table.setRowTypes(rowTypes)

The result of running this version of the application is shown in Figure 6-6.

CHAPTER 6: Tables and Menus

235

The setNumberOfRows(_:withRowType:) and setRowTypes() methods remove
any table content before adding the new row types. This is appropriate when
you first create the table, but you should avoid doing this, if possible, if you
need to add or remove rows at run time, because calling either of these
methods causes the table to be rebuilt from scratch. To add a row to an
existing table, use the insertRowsAtIndexes(_:withRowType:) method, and
to remove rows, use the following method:

func removeRowsAtIndexes(_ rows: NSIndexSet)

For our current example, we don’t need to add additional rows or remove
rows at run time, but you’ll see an example that uses these methods later in
this chapter.

The table that we need to create should have two sections, each with
a header. The body rows for the first section need to be initialized with
the color names taken from the colorNames property of TextAttributes
structure. Similarly the rows in the second section should use the font
names from the fontNames property. To do that, make the following changes
to the awakeWithContext() method:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 println("Context: \(context)")
 let rowTypes = ["Header", "Body", "Header", "Body"]
 table.setRowTypes(rowTypes)
 var rowTypes = [String]();

Figure 6-6. A table with header and body rows

CHAPTER 6: Tables and Menus236

 // Color section
 rowTypes.append("Header")
 for _ in 0..<TextAttributes.colors.count {
 rowTypes.append("Body")
 }

 // Font section
 rowTypes.append("Header")
 for _ in 0..<TextAttributes.fonts.count {
 rowTypes.append("Body")
 }
 table.setRowTypes(rowTypes)
}

Run the example again and you’ll see that we are getting closer to our goal
(see Figure 6-7).

Figure 6-7. The configuration table with header and body rows

Configuring the Table Row Content
The next step is to arrange for the correct text to appear in the header
and body rows. When we called setRowTypes(), the table created an
instance of the correct row controller class for each row based on the
row controller identifier in the rowTypes array. Recall that when we defined
the row prototypes in the storyboard, we specified an identifier and the
row controller class name for each prototype. Using this information,
WatchKit knows that for rows of type Header, it needs to create an instance
of the HeaderRowController class and for Body rows it should create

CHAPTER 6: Tables and Menus

237

BodyRowController instances. To initialize the table, we can fetch the row
controller for each row using the following method:

func rowControllerAtIndex(_ index: Int) -> AnyObject?

Once we have a reference to a row controller, we can set its properties using
the outlets we created when we were building the row prototypes. To do
that, add the following code to the awakeWithContext() method:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 var rowTypes = [String]();

 // Color section
 rowTypes.append("Header")
 for _ in 0..<TextAttributes.colors.count {
 rowTypes.append("Body")
 }

 // Font section
 rowTypes.append("Header")
 for _ in 0..<TextAttributes.fonts.count {
 rowTypes.append("Body")
 }
 table.setRowTypes(rowTypes)

 var inColorSection = false
 var sectionStartIndex = -1
 for index in 0..<table.numberOfRows {
 let controller: AnyObject? = table.rowControllerAtIndex(index)
 if let header = controller as? HeaderRowController {
 inColorSection = index == 0;
 sectionStartIndex = index + 1;
 header.label.setText(inColorSection ? "Color" : "Font")
 } else if let body = controller as? BodyRowController {
 let rowInSectionIndex = index - sectionStartIndex
 switch inColorSection {
 case true:
 let color = TextAttributes.colors[rowInSectionIndex]
 body.attributeValue = color
 body.label.setText(
 TextAttributes.colorNames[rowInSectionIndex])
 body.label.setTextColor(color)

CHAPTER 6: Tables and Menus238

 case false:
 let font = TextAttributes.fonts[rowInSectionIndex]
 body.attributeValue = font
 let text = NSAttributedString(
 string: TextAttributes.fontNames[rowInSectionIndex],
 attributes: [NSFontAttributeName: font])
 body.label.setAttributedText(text)
 body.checkImage.setHidden(true)

 default:
 fatalError("Invalid index: \(index)")
 }
 }
 }
}

This code might seem complex, but it’s not as bad as it looks. The for loop
iterates over the table rows from first to the last, using the numberOfRows
property of WKInterfaceTable to find out how many rows there are. At
any given point, we are either in the first section (the color section) or the
second section (the font section) and we use the inColorSection variable
to keep track of this. Initially, this variable is false because we are not in
either section. The sectionStartIndex variable is used to track the index of
the first row in the current section. We initialize it to –1 because we need to
supply an initializer, but the actual value is not important. Now let’s look at
what happens in the loop itself.

First, we get the controller object for the current row using the
rowControllerAtIndex() method, using the loop index as argument:

for index in 0..<table.numberOfRows {
 let controller: AnyObject? = table.rowControllerAtIndex(index)

Next, we attempt to cast the controller to HeaderRowController. If this
works, we know we are dealing with a header row and we have either
entered the color section on the first iteration of the loop or switched to the
font section:

if let header = controller as? HeaderRowController {

Given that we are in a header, we set the inColorSection variable based on
whether we are at index 0 (which means we are in the color section) and we
set the sectionStartIndex variable to the index of the next row:

inColorSection = index == 0;
sectionStartIndex = index + 1;

CHAPTER 6: Tables and Menus

239

Finally, we use the label outlet in the HeaderRowController class to set the
header text to either Color or Font:

header.label.setText(inColorSection ? "Color" : "Font")

That’s all we need to do for header rows. The next section of code deals
with the body rows. We know we are dealing with a body row if we can
successfully cast the row controller object to the type BodyRowController. If
that is the case, then we set the rowInSectionIndex variable to the index of
the current body in the current section:

} else if let body = controller as? BodyRowController {
 let rowInSectionIndex = index - sectionStartIndex

For the first body row in a section, rowInSectionIndex will be 0, for the
second it will be 1, and so on. We’ll use this value to index the arrays in the
TextAttribute class.

We need to set the text of the row controller’s label to either the color or font
name. In addition, in the color section we use the current color as the text
color and in the font section we set the text from the current font. We use
the inColorSection variable to distinguish between these two cases. Here’s
the code that handles rows in the color section:

switch inColorSection {
case true:
 let color = TextAttributes.colors[rowInSectionIndex]
 body.attributeValue = color
 body.label.setText(
 TextAttributes.colorNames[rowInSectionIndex])
 body.label.setTextColor(color)

Note This code makes no assumptions about how many rows there are
in each section, even though we know there are three. By avoiding such
assumptions, we make it possible to add more colors and/or fonts just by
modifying the TextAttributes class.

CHAPTER 6: Tables and Menus240

Notice that as well as setting the color of the label’s text, we also set the row
controller’s attributeValue property to the actual color value. We’ll use this
later when the user selects a new color. The code that handles the rows in
the font section is only a little more complex:

case false:
 let font = TextAttributes.fonts[rowInSectionIndex]
 body.attributeValue = font
 let text = NSAttributedString(
 string: TextAttributes.fontNames[rowInSectionIndex],
 attributes: [NSFontAttributeName: font])
 body.label.setAttributedText(text)

As before, we set the label’s text and the attributeValue property but in this
case, because we want to apply the font to the text, we first convert it to an
attributed string and then use the setAttributedText() method. Run the
example now and you’ll see that the labels in the header and body rows are
now correctly configured (see Figure 6-8).

Figure 6-8. The header and body rows are almost complete

Showing the Initial Color and Font Selection
There is one more thing we need to do: all the body rows are showing
a check mark, but only the rows for the current color and font should
be checked. We can easily fix that by looping over each controller and
hiding the image for the rows that do not contain the selected color or
font. How do we know which color and font are selected? Recall that
the context object that’s passed to the awakeWithContext() method is
of type ControllerContext, and one of the properties of this object is a

CHAPTER 6: Tables and Menus

241

TextAttributes structure that contains the current color and font. It turns
out that we will need to use the ControllerContext and the selected color
and font elsewhere in our controller implementation, so let’s add some
properties for them at the top of the ConfigurationController class:

class ConfigurationController: WKInterfaceController {
 @IBOutlet weak var table: WKInterfaceTable!
 private var selectedColor: UIColor?
 private var selectedFont: UIFont?
 private var controllerContext: ControllerContext?

Now add the code in bold at the end of the awakeWithContext() method:

 // Install the selected color and font and update the
 // check marks in the table.
 if let controllerContext = context as? ControllerContext {
 self.controllerContext = controllerContext
 selectedColor = controllerContext.textAttributes.color
 selectedFont = controllerContext.textAttributes.font
 updateCheckMarks()
 }
}

This code won’t compile yet because we haven’t defined the
updateCheckMarks() method, which is where we’ll actually update the
visibility of the check mark images. That code is in a separate method
because we’ll also need to use it whenever the user taps a table row to
change the color or font selection. Add this method to the end of the class
definition:

// Show or hide the check image for each body row.
private func updateCheckMarks() {
 for index in 0..<table.numberOfRows {
 let controller: AnyObject? = table.rowControllerAtIndex(index)
 var match = false
 if let body = controller as? BodyRowController {
 if let color = body.attributeValue as? UIColor {
 match = color == selectedColor
 } else if let font = body.attributeValue as? UIFont {
 match = font == selectedFont
 }
 body.checkImage.setHidden(!match)
 }
 }
}

CHAPTER 6: Tables and Menus242

This code loops over every row in the table. For each body row, it uses the
type of the attributeValue property to determine whether it is a color row or
a font row and then compares the property value to either the selectedColor
or selectedFont property to determine whether there is a match. If there
is a match, the check mark image is shown—otherwise, it is hidden. With
this change in place, you can now run the application and verify that only
the check marks for the selected color and font are visible, as shown in
Figure 6-9.

Figure 6-9. The check marks in the body rows are correct

Handling Selection Changes
When the user taps on a body row, we need to change the selected color
or font to the one that the user selected and move the check mark from
the previously selected row to the new one. We already have a method
(updateCheckMarks()) that ensures that the check marks match the
selectedColor and selectedFont properties, so we just need to update
these properties when the user taps a body row and then call this method.
When the user selects a row, WatchKit invokes the following method in its
owning interface controller:

func table(_ table: WKInterfaceTable,
 didSelectRowAtIndex rowIndex: Int)

CHAPTER 6: Tables and Menus

243

The rowIndex argument is the index of the row that was tapped and the
table argument refers to the table itself, which is useful if your controller’s
user interface has more than one table. Let’s implement this method. Add
the following code to the ConfigurationController class:

// Handling for row selection change
override func table(table: WKInterfaceTable,
 didSelectRowAtIndex rowIndex: Int) {
 let controller: AnyObject? = table.rowControllerAtIndex(rowIndex)
 if let body = controller as? BodyRowController {
 if let color = body.attributeValue as? UIColor {
 selectedColor = color
 } else if let font = body.attributeValue as? UIFont {
 selectedFont = font
 }
 updateCheckMarks()
 }
}

We use the selected row index to get the row controller object for that
row and attempt to cast it BodyRowController so that we can access its
attributeValue property. In fact, in this example, this method will only ever
be called for taps on body rows, because we unchecked the Selectable
check box in the Attributes Inspector for the header row prototype, so we
could use the forced cast operator (as!) instead of an if let statement
here. Next, we check whether the value of the attributeValue property is a
color or a font and assign it to selectedColor or selectedFont respectively.
Having done that, we call the updateCheckMarks() method to update the
check marks on the screen. That’s all we need to do to handle row selection.
Run the example now and you’ll see that the check marks in both sections
move as you tap rows.

Returning Information to the Initial Controller
The code that we have written so far ensures that the user can see the
selected color and font and keeps the selectedColor and selectedFont
properties up to date as the user makes selections. Now we need to allow
the user to dismiss the configuration controller and return the selection
information to the initial controller. To make this possible, we first need to
link the Save button to an action method in the configuration controller.
Select Interface.storyboard in the Project Navigator to open it in the
editor and then open ConfigurationController.swift in the Assistant
Editor. Control-drag from the Save button in the configuration controller

CHAPTER 6: Tables and Menus244

to the ConfigurationController class and create an action method called
onSaveButtonClicked()—then add the following code to it:

@IBAction func onSaveButtonClicked() {
 if selectedColor != nil && selectedFont != nil {
 let textAttributes =
 TextAttributes(color: selectedColor!, font: selectedFont!)
 controllerContext?.callback(textAttributes)
 dismissController()
 }
}

We first check that both a color and a font are selected. It shouldn’t really be
possible for either selectedColor or selectedFont to be nil unless we have
a bug, but we make the check anyway to avoid a crash on the next line of
code when we construct a TextAttributes object. Next, we invoke the
callback method that the initial controller passed to us via the
ControllerContext object, which we stored in the controllerContext
property. We know that this will actually call the initial controller’s
onCallBack() method, which stores the TextAttributes object and returns.
Finally, we call dismissController() to remove the presented controller and
redisplay the main screen of the application. This causes the initial
controller’s willActivate() method to be called, and the saved
TextAttributes object will be used to update the label, if either the color or
font changed.

Tip To remove a presented controller, call dismissController(). To
remove a controller that you pushed onto a hierarchical controller stack, use
popController() or popToRootController().

That completes our first table-based WatchKit application. If you run it
now, you should be able to change the color and font of the text on the
initial screen. In passing, note that the user does not have to press the Save
button in the presented controller—he could press the Cancel button in the
title bar instead. In that case, WatchKit will dismiss the controller, the initial
controller’s onCallBack() method will not be called, and the label’s color and
font will not change, which is the correct behavior.

CHAPTER 6: Tables and Menus

245

Figure 6-10. A an application that adds and removes table rows

More Table Manipulation
So far, you’ve seen how to create a table and add rows to it and how to
handle row selection events from the table. In this section, you’ll create an
application that adds and removes rows from a table and also illustrates
how to handle events from user interface controls that are part of a table
row. The completed application is shown in Figure 6-10.

When the application starts, it builds a table with three rows (all of the same
type). Each row contains a label with a unique number and a Delete button.
When the button in a row is pressed, that row is deleted from the table. To
implement that, you need to be able to handle an event from a table row
that is not a row selection event. The application also has a New Row button,
which adds a new row to the table and scrolls the table so that the new row
is visible.

Creating the Application Storyboard
Start by creating a new project called UpdatingTable and add a WatchKit
App target to it. Then select Interface.storyboard in the Project Navigator
to open the storyboard in the editor. Drag a table from the Object Library,
drop it onto the interface controller, and then drag and drop a button below
the table. Use the Attributes Inspector to change the button’s Title attribute
to New Row.

CHAPTER 6: Tables and Menus246

All of the table rows in this example are the same, so we only need one
row prototype in the storyboard, which is what we get by default. Each row
requires a label and a button. Drag a label from the Object Library and drop
it onto the table row in the storyboard. In the Attributes Inspector, set the
label’s Vertical attribute to Center so that it aligns itself properly with the
row. Next, drag and drop a button to the right of the label. The button will
initially occupy the whole row, but we need it to take up only as much space
as it needs and to be right-aligned in the row. To arrange that, change the
button’s Title attribute to Delete, its Horizontal attribute to Right, and
its Width attribute to Size To Fit Content. At this point, your storyboard
should look like Figure 6-11.

Creating the Table Row Controller Class
As you know, each prototype row in a table needs a row controller class.
In this example, there is just one prototype row, so we only need one row
controller class. Select the UpdatingTable WatchKit Extension group in
the Project Navigator and then click on File ➤ New ➤ File... in the Xcode
menu. From the iOS Source section in the dialog that appears, select Cocoa
Touch Class and click Next. Set the Class name to RowController and make
it a subclass of NSObject. Then click Next and save the class, making sure
it’s added to the UpdatingTable WatchKit Extension group.

To link the row prototype to its controller class, select the storyboard in
the Project Navigator and then select the Table Row Controller node in
the Document Outline. In the Identity Inspector, set the Class attribute to
RowController. We also need to assign an identifier so that we can refer to
the prototype row when creating the table. To do that, open the Attributes
Inspector and set the Identifier attribute to Row. While you are here,
uncheck the Selectable attribute because we are not going to make use of
table row selection in this example.

Figure 6-11. The completed application storyboard

CHAPTER 6: Tables and Menus

247

Next, we need to complete the definition of the RowController class, so
open the RowController class in the Assistant Editor. Control-drag from the
label in the table row prototype to the RowController class in the Assistant
Editor and create an outlet called label.

We’ll also need to link an action method to the Delete button. Normally, you
would link a button to an action method in its hosting interface controller, but
that does not work for buttons (and other active user interface objects like
sliders etc) in table rows. To handle events from an object in a table row, you
need to connect it to an action method in the table row controller itself, so
Control-drag from the Delete button in the storyboard to the RowController
class and link it to an action method called onDeleteButtonClicked().

There are a couple more things we need to do before we’re finished with the
row controller class. First, we need to fix the compilation error for the outlet
definition. To do that, delete the import of UIKit and replace it with an import
of WatchKit:

import UIKit
import WatchKit

class RowController: NSObject {

Second, we need to add a reference to the interface controller. As you’ll
see shortly, we’ll need this reference when handling events from the Delete
button. Add the line of code shown in bold:

import WatchKit

class RowController: NSObject {
 var controller: InterfaceController?

 @IBOutlet weak var label: WKInterfaceLabel!
 @IBAction func onDeleteButtonClicked() {
 }
}

That’s all we need to do to the RowController class for now, so let’s move
on to the implementation of the interface controller itself.

Note You may find that Xcode won’t let you create this outlet. To fix that, close
and restart Xcode and try again. If that doesn’t work, clean the project build
folder, rebuild the project, and repeat the steps above. Once you create the
outlet, you’ll get a compilation error. We’ll fix that shortly.

CHAPTER 6: Tables and Menus248

Implementing the Interface Controller
Let’s start by creating the linkage needed between the interface controller
and the storyboard. Select Interface.storyboard in the Project Navigator
and open InterfaceController.swift in the Assistant Editor. Expand
the Interface Controller Scene in the Document Outline until you can see
the Table node and then Control-drag from that node to the top of the
InterfaceController class to create an outlet called table. Next, Control-
drag from the New Row button to the bottom of the InterfaceController
class and create an action method called onNewRowButtonClicked(). We’ll
complete the implementation of this method later.

Now let’s add the code to add the initial three rows to the table. As you
saw in the previous example, we do that by first telling the table how to
create the rows we require and then we loop over the individual rows to
initialize them. To do this, add the following code shown in bold to the
InterfaceController class:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var table: WKInterfaceTable!
 private var nextRowNumber = 1
 private var nextInsertIndex: Int!

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 table.setNumberOfRows(3, withRowType: "Row");
 for index in 0..<table.numberOfRows {
 initializeRow(index)
 }
 nextInsertIndex = table.numberOfRows
 }

Each row we create has a number that’s shown in the label. To keep track
of the next available number, we use the nextRowNumber property, which
we initialize to 1. The nextInsertIndex property will be required when we
implement the New Row button. I’ll say more about how it’s used shortly.

The new code in the awakeWithContext() method first calls the table’s
setNumberOfRows() method:

table.setNumberOfRows(3, withRowType: "Row");

This causes the table to add three rows to the table, all of them created
from the Row prototype, which we linked to the RowController class when
we were building the storyboard. Next, iterate over the newly-created rows

CHAPTER 6: Tables and Menus

249

to initialize them and, for a reason I’ll provide later, set the nextInsertIndex
property to the number of rows in the table:

for index in 0..<table.numberOfRows {
 initializeRow(index)
}
nextInsertIndex = table.numberOfRows

The code to initialize a row is encapsulated in the initializeRow() method,
which we haven’t written yet, so that we can reuse it when adding new rows
to the table. Add the implementation of this method at the bottom of the
class definition:

 private func initializeRow(rowIndex: Int) {
 let row = table.rowControllerAtIndex(rowIndex) as! RowController
 row.label.setText("\(nextRowNumber++)")
 row.controller = self
 }
}

Given the index of the row to initialize, this method gets its RowController
object from the table, uses the nextRowNumber variable to initialize the
label, and then increments it. The effect of this is that the first row will
be labeled 1, the second will be labeled 2, and so on. Finally, we set the
RowController’s controller variable to self, which is a reference to the
interface controller itself.

At this point, you can run the example. You should see three table rows, each
with a numbered label and a Delete button, and the New Row button, as shown
in Figure 6-10. None of the buttons does anything yet, so let’s fix that now.

Implementing the Delete Button
When you press the Delete button in any of the table rows, the
onDeleteButtonClicked() method of that row’s RowController object is
called. This method is currently empty. Add the following code shown in
bold to it:

class RowController: NSObject {
 var controller: InterfaceController?
 @IBOutlet weak var label: WKInterfaceLabel!

 @IBAction func onDeleteButtonClicked() {
 controller?.rowDeleteClicked(self)
 }
}

CHAPTER 6: Tables and Menus250

This code just calls a method (that we haven’t yet implemented) in the
interface controller, which will perform the actual deletion of the row. The
deletion is handled in the interface controller because it’s easier to maintain
the code when it’s all in one place and because it needs to update a
property of the interface controller. Add the rowDeleteClicked() method to
the InterfaceController class:

func rowDeleteClicked(rowController: RowController) {
 for index in 0..<table.numberOfRows {
 if let thisRow = table.rowControllerAtIndex(index)
 as? RowController {
 if thisRow == rowController {
 table.removeRowsAtIndexes(NSIndexSet(index: index))
 nextInsertIndex = index
 break
 }
 }
 }
}

This method is called with a reference to the RowController for the row to
be deleted as its argument. To delete the row, we need to call the table’s
removeRowsAtIndexes() method with the index of the row to be deleted. The
row’s controller class doesn’t know its own row index, so we have to get it
by looping over all of the rows in the table until we find the row controller
instance for the row that we are trying to delete. We can’t optimize this by
storing the row’s index in its RowController object, because the indices
change as we add and delete rows. When we find the correct row controller
instance, we do two things:

table.removeRowsAtIndexes(NSIndexSet(index: index))
nextInsertIndex = index

The first line performs the actual deletion. As its name suggests, the
removeRowsAtIndexes() method can actually delete more than one row, but
here we only need to delete one. The second line sets the nextInsertIndex
property to the index of the row we are deleting. The effect of this is that
when we next add a new row, it will be at the old location of this row (or the
next row we delete, if we don’t add a new row before deleting another one).
We could choose to always add new rows at the end of the table, but doing
it this way makes it easy to demonstrate the effect of scrolling to a given
table row, as you’ll see shortly.

Run the example now and you should be able to delete any row by clicking
its Delete button. Notice the nice animation that occurs when you do this.

CHAPTER 6: Tables and Menus

251

Implementing the New Row Button
With the code that we already have in place, it’s easy to implement the
functionality of the New Row button. All we have to do is call the table’s ins
ertRowsAtIndexes(_:withRowTypes:) method with appropriate arguments.
To do that, add the code in bold below to the onNewRowButtonClicked()
method in the InterfaceController class:

@IBAction func onNewRowButtonClicked() {
 table.insertRowsAtIndexes(
 NSIndexSet(index: nextInsertIndex), withRowType: "Row")
 initializeRow(nextInsertIndex)
 table.scrollToRowAtIndex(nextInsertIndex)
 nextInsertIndex = nextInsertIndex + 1
}

The first line of this method creates the new row using the Row prototype
at the location given by the nextInsertIndex property. As you saw earlier,
this property is initialized to the number of rows that are initially created
and it’s updated when any row is deleted. The result is that the new row
is either added at the end of the table, or where the last row was deleted.
Having created the row, we call the initializeRow() method to initialize it
in the same way we initialized the rows that were added to the table in the
awakeWithContext() method. We then call the table’s scrollToRowAtIndex()
method to cause the table to scroll until the newly added row is visible.
Finally, we increment the nextInsertIndex property so that the next new row
will be added immediately after this one.

The application is now complete. Run it and press the New Row button three
times. You’ll see that three new rows, numbered 4, 5, and 6, are added at
the bottom of the table. Now scroll up to the top of the table and click the
Delete button in the first row. The row will be removed, and the other rows
move up to take its place. Finally, scroll down to the New Row button and
click it again. A new row, labeled 7, is added at the top of the table (which
is where the last row was deleted), and the table scrolls automatically to the
top so that you can see it.

Menus
Many of the examples in this book use buttons as a way for the user to
initiate an operation. In the Configuration Table example earlier in this
chapter, a Configure button on the main screen presents a controller to
allow the user the change the color and font of the text on the main screen,
and a Save button in the presented controller allows the user to save the
new configuration. This is fine if there are only a small number of operations

CHAPTER 6: Tables and Menus252

that the user can perform, but given the small size of the Apple Watch
screen and the size of a button, you can easily run out of space. Fortunately,
WatchKit has an alternative: you can use a menu instead of filling the screen
with buttons.

To create a menu, you add one to your interface controller in the storyboard
and then populate it with up to four menu items, each of which triggers an
action in the interface controller, just like a button does. Menu items can be
added to the menu in the storyboard at design time, programmatically at run
time, or both. The menu is initially invisible; it is activated by the force touch
gesture, which is triggered when the user presses on the screen a little more
firmly than normal. In the simulator, you press and hold the mouse button to
get the same effect. Let’s see how menus and menu items work by adding
them to the Configuration Table example.

Adding a Menu to an Interface Controller
Start by making a copy of the Configuration Table example that we
developed in the first part of this chapter, or make a copy of the 6 –
Configuration Table folder in the example source archive and open the
project in Xcode. We’re going to make the following changes to this project:

	Remove the Configure button from the main interface
controller and replace it with a menu item. We’ll also
add a Reset menu item that resets the label’s color and
font to their defaults.

	In the presented controller, add a menu with two menu
items—one that resets the color and font selections in
the configuration table to their initial values and another
that selects a random color and a random font.

So that you can see both techniques at work, we’ll configure the menu for
the main interface controller entirely in the storyboard and for the presented
controller, we’ll add one menu item in the storyboard and the other at run
time.

Note You’ll find the completed version of the example we are about to work on
in the folder 6 – Menus.

CHAPTER 6: Tables and Menus

253

Adding a Menu in the Storyboard
Select Interface.storyboard in the Project Navigator to open the storyboard
in the editor and delete the Configure button in the main interface controller.
When you do this, the segue to the presented controller will also be removed.
We’ll fix that when we add the code that responds to the user clicking the
menu items. Next, drag a menu from the Object Library and drop it onto
the controller. Nothing will change in the storyboard because the menu is
invisible, but you’ll see that a menu node with a single menu item has been
added in the Document Outline, as shown in Figure 6-12.

Figure 6-12. Adding a menu to an interface controller

Figure 6-13. The attributes of a menu item

We actually need two menu items. There are two ways to add another menu
item: either drag one from the Object Library and drop it below the Menu
node in the Document Outline or select the Menu node, open the Attributes
Inspector, and change the Items attribute to 2. Add the second menu item
and then select the topmost Menu Item node in the Document Outline. In the
Attributes Inspector, you’ll see that menu items have two attributes: Title
and Image (see Figure 6-13).

CHAPTER 6: Tables and Menus254

The value of the Title attribute is used as the text that appears below the
menu item. You should keep this as short as possible, since there isn’t much
space available. The text overflows onto a second line, if required, and
truncates if there still isn’t enough space. Change the value from Menu Item
to Configure.

The Image attribute supplies the icon shown above the text. If you click
the selector, you will see that there is a list of standard icons that you can
choose from, plus Custom, which allows you to use an icon of your own.
You can see what all the standard icons look like and how they are intended
to be used in the documentation page for the WKInterfaceController
class in Xcode, or on Apple’s web site at http://developer.apple.
com/library/prerelease/ios/documentation/WatchKit/Reference/
WKInterfaceController_class/index.html#//apple_ref/c/tdef/
WKMenuItemIcon.

There isn’t a standard icon that corresponds to the configure action, so we’ll
just use one that’s close—in this case, we’ll use More. You’ll see in the next
section how to use your own icon.

Select the second Menu Item node in the Document Outline and change its
Title attribute to Reset and its Image attribute to Repeat (again, not exactly
correct, but close enough).

At this point, we have done enough to see what the menu looks like. Run the
example. Then press and hold the mouse button over the watch simulator
screen to reveal the menu (see Figure 6-14).

Figure 6-14. A menu with two menu items

http://developer.apple.com/library/prerelease/ios/documentation/WatchKit/Reference/WKInterfaceController_class/index.html#//apple_ref/c/tdef/WKMenuItemIcon
http://developer.apple.com/library/prerelease/ios/documentation/WatchKit/Reference/WKInterfaceController_class/index.html#//apple_ref/c/tdef/WKMenuItemIcon
http://developer.apple.com/library/prerelease/ios/documentation/WatchKit/Reference/WKInterfaceController_class/index.html#//apple_ref/c/tdef/WKMenuItemIcon
http://developer.apple.com/library/prerelease/ios/documentation/WatchKit/Reference/WKInterfaceController_class/index.html#//apple_ref/c/tdef/WKMenuItemIcon

CHAPTER 6: Tables and Menus

255

At this point, nothing happens when you click either menu item. To fix that,
we need to link them to action methods in the interface controller. Select the
Interface Controller node in the Document Outline and open the Assistant
Editor. You should see the file InterfaceController.swift in the Assistant
Editor, but if not, select it manually using the jump bar. Now Control-drag
from the Configure menu item in the Document Outline to the bottom of
the InterfaceController class in the Assistant Editor and create an action
method called onConfigureClicked(). Repeat the process with the Reset
menu item to create an action method called onResetClicked(). You should
have added two empty methods that look like this:

 @IBAction func onConfigureClicked() {
 }

 @IBAction func onResetClicked() {
 }
}

Now let’s add the implementation for both methods.

In the onConfigureClicked() method, we’ll present the configuration
controller. To do that, we need to invoke the presentControllerWithName(_
:context:) method with the identifier of the configuration controller and the
same context information that was passed during the segue in our earlier
version of this example. The configuration controller doesn’t currently have
an identifier, so let’s first assign it one. To do that, select the configuration
controller in the storyboard, open the Attributes Inspector, and set its
Identifier attribute to Configuration. Now add the following code in bold
to the onConfigureClicked() method in the InterfaceController class:

@IBAction func onConfigureClicked() {
 presentControllerWithName("Configuration",
 context: ConfigurationController.ControllerContext(
 textAttributes: textAttributes,
 callback: onCallBack))
}

The code that creates the ControllerContext object comes from the
contextForSegueWithIdentifier() method. Because we don’t need that
method any more, you can safely delete it. Now run the example, bring up
the menu, and click on the Configure menu item. You’ll see the configuration
controller appear.

The implementation of the onResetClicked() is also very simple. All we need
to do is replace the TextAttributes object in InterfaceController by an
instance that has the default color and font and update the label in the same
way when the controller is activated. Unfortunately, the code that updates

CHAPTER 6: Tables and Menus256

the label is buried in the willActivate() method, so we first need to extract
it. To do that, make the following changes to the InterfaceController class:

override func willActivate() {
 if attributesChanged {
 let range = NSMakeRange(0, text.length)
 text.addAttribute(NSForegroundColorAttributeName,
 value: textAttributes.color, range: range)
 text.addAttribute(NSFontAttributeName,
 value: textAttributes.font, range: range)
 label.setAttributedText(text)
 updateLabelWithAttributes(textAttributes)
 attributesChanged = false;
 }
 super.willActivate()
}

private func updateLabelWithAttributes(attributes: TextAttributes) {
 let range = NSMakeRange(0, text.length)
 text.addAttribute(NSForegroundColorAttributeName,
 value: attributes.color, range: range)
 text.addAttribute(NSFontAttributeName,
 value: attributes.font, range: range)
 label.setAttributedText(text)
}

To install the default color and font when the Reset menu item is clicked,
add the following code to onResetClicked():

@IBAction func onResetClicked() {
 let attributes =
 TextAttributes(color: TextAttributes.colors[0],
 font: TextAttributes.fonts[0])
 textAttributes = attributes // set as the current attributes
 updateLabelWithAttributes(attributes)
}

Run the example again, use the configuration controller to change the label’s
color and font, and then show the menu and click the Reset button. The
color and font should revert to their initial values.

CHAPTER 6: Tables and Menus

257

Adding Menu Items Programmatically
Now let’s implement the menu for the configuration controller. We could
create this menu in the storyboard in the same way we did for the main
controller, but we’re going to construct the menu programmatically instead.
The WKInterfaceController class has four methods that operate on the
controller’s menu:

func addMenuItemWithItemIcon(_ itemIcon: WKMenuItemIcon,
 title title: String, action action: Selector)
func addMenuItemWithImageNamed(_ imageName: String,
 title title: String, action action: Selector)
func addMenuItemWithImage(_ image: UIImage,
 title title: String, action action: Selector)
func clearAllMenuItems()

The first three methods create a new menu item and add it to the menu. As
noted earlier in this chapter, a menu can have up to four menu items. The
difference between these methods is the way in which the icon is supplied.
The first method uses one of the standard icons that come with WatchKit.
The other two methods allow you to use a custom icon (which you can
include in the asset catalog of the WatchKit App itself and reference by
name), or a UIImage object created in the WatchKit extension. As usual, it is
best to include the image in the WatchKit App unless it can only be obtained
at run time. We’ll use the first two methods when adding menu items for this
example. The clearAllMenuItems() method is intended to be used when the
set of available menu items depends on application state. The next section
talks more about this.

Let’s go ahead and write some code. The first thing to note is that when
you create the menu programmatically, you don’t need to drag a Menu from
the Object Library to the storyboard, so we can just head straight to the
ConfigurationController class and start working.

We’re going to add two menu items: one that resets the selected color and
font to their values when the controller was presented and another that
selects a random color and a random font. Let’s handle the reset action first.
Add the following code to the end of the awakeWithContext() method in the
ConfigurationController class:

if let controllerContext = context as? ControllerContext {
 self.controllerContext = controllerContext
 selectedColor = controllerContext.textAttributes.color
 selectedFont = controllerContext.textAttributes.font
 updateCheckMarks()
}

CHAPTER 6: Tables and Menus258

 // Add menu items
 addMenuItemWithItemIcon(.Repeat, title: "Reset",
 action: "onResetClicked")
}

Here, we’re adding a menu item with title Reset, using the Repeat icon, which
is the same one we used for the Reset menu item in the main controller.
The standard icons are defined by the WKMenuItemIcon enumeration, which
you’ll see in the documentation for the WKInterfaceController class. The
last argument is a selector for the action method that will be called when the
menu item is clicked. Add implementation of this method at the end of the
class file:

 func onResetClicked() -> Void {
 let color = controllerContext!.textAttributes.color
 let font = controllerContext!.textAttributes.font
 if color != selectedColor || font != selectedFont {
 selectedColor = color
 selectedFont = font
 updateCheckMarks()
 }
 }
}

All we’re doing here is getting the initial color and font from the controller
context, comparing them to the currently selected color and font, and,
if either of them is different, resetting the selected values and calling
updateCheckMarks() to reflect the change in the table. Run the application and
use the Configure menu item to open the configuration controller. The color
and font are initially White and Body, respectively. Change one or both of these
and then press and hold the mouse button (or force touch on the device) to
bring up the menu that we just created and click the Reset menu item. You
should see the selected color and font change back to White and Body.

FORCE TOUCH AND TABLE SELECTION

If you force touch the screen over one of the table rows, you’ll see that it animates in the
same way as it does when you tap the row to select it. This is a little misleading, because
the row has not been selected, and no selection event is delivered to your interface
controller.

It’s quite common in desktop applications (and even in iOS applications) to have a gesture
that causes an action to be performed that depends on the point on the screen where the
gesture occurred. There is no way to implement this in a WatchKit application because
WatchKit does not provide an API that lets you find out where the user’s finger was when the

CHAPTER 6: Tables and Menus

259

force touch gesture was detected. In fact, your WatchKit application can’t detect the force
touch gesture, or any other user interaction with the screen, such as a swipe. All it can tell is
that one of its menu items was activated. If you want the action triggered by the menu item
to operate on the selected row of a table, you need to add code to your interface controller
to handle table selection events and save the index of the last selected row. Unfortunately,
this does not currently result in a good user experience, because the user first has to tap
the row to select it and then perform the force touch gesture. That’s not at all intuitive, and
it’s made worse by the fact that the selected table row is only highlighted while the user is
tapping it and the fact that the force touch gesture itself gives the incorrect impression that
a row is being selected.

Now let’s implement the Random menu item. This time, we’re going to use
a custom icon instead of one of the standard ones. You need to adhere to
certain conventions when designing a custom menu icon.

First, you need to create separate icons for the 38mm and 42mm Watches.
For the 38mm Watch, the icon must be a 104-pixel square, but you can only
use a 72-pixel square region at the center of the icon. For the 42mm Watch,
the icon must be 120 × 120 pixels, with a useful area of 80 × 80 pixels at the
center. The outer area of the icon must be left blank because WatchKit clips
it at run time so that it appears circular. By staying within the prescribed
region, you ensure no pixels fall outside the clipping area. For this example,
I created suitable icons and put them in the 6 – Menu Images folder of the
example source code archive. Figure 6-15 shows an enlarged view of the
icon for the 42mm Watch.

Figure 6-15. A custom menu item

The icon is a question mark because the result of using the menu item
is that a random color and font are chosen. There is actually a question
mark icon in the standard icon set, but I chose not to use it so that I could
demonstrate how to create a custom icon.

CHAPTER 6: Tables and Menus260

The outer square is 120 × 120 pixels, as required for the 42mm Watch. The
80-pixel inner square is the area that’s available for the icon content. As you
can see, the question mark is entirely contained within this area. The area
outside this region, which is lightly shaded here for the purpose of illustration
but is transparent in the actual icon, is the part of the icon that should be left
blank. The 32mm icon is similar, but smaller.

The second thing to bear in mind is that WatchKit uses the image that you
supply as a template. That means that it ignores all color information. If you
open either of the image files, you’ll see that the question mark is actually
green, but that’s not how it appears on the watch, as you’ll see shortly. In
fact, pixels in the image that are not opaque appear in the icon, but the color
that’s used to draw them is fixed (and outside of your control). It follows that
when designing your icon, everything apart from the pixels that you want to
be visible should be transparent.

Apple provides Photoshop templates that you can use when creating
custom menu icons. You’ll find a link to these templates in the WatchKit
Human Interface Guidelines document at http://developer.apple.com/
watch/human-interface-guidelines/resources.

Now let’s get back to the example application. We need to add the icons
to the WatchKit App’s asset catalog in such a way that we can use a single
name to refer to them independently of which version of the watch the
application is running on. In earlier chapters, we did that by configuring
a different image name for each watch version. Now you’re going to see
another way to do the same thing, which requires a little more work when
setting up the asset catalog. This technique works for all images, not just for
menu item images.

Select Images.xcassets in the WatchKit App group and click the + icon at
the bottom of the list of icon names in the editor area. In the pop-up that
appears, choose New Image Set (see Figure 6-16).

http://developer.apple.com/watch/human-interface-guidelines/resources
http://developer.apple.com/watch/human-interface-guidelines/resources

CHAPTER 6: Tables and Menus

261

Figure 6-16. Adding a new image set to the asset catalog

Figure 6-17. Changing the name and type of the image set

The image set is initially called Image. Double-click on the name in the name
list and change it to RandomMenuIcon. Then right-click on the area to the right
of the name column to open another pop-up menu (see Figure 6-17).

You need to change the selection in the Devices area of the pop-up from
Universal to Apple Watch. To do that, first click on Apple Watch to select
it. The pop-up disappears when you do that, so open it again and click on
Universal to deselect it. You should now see three image slots and the
subtitle Apple Watch, as shown in Figure 6-18.

CHAPTER 6: Tables and Menus262

Now drag the file Random_38mm@2x.png from the folder 6 – Menu Images and
drop it on the 38mm slot, followed by the file Random_42mm@2x.png onto the
42mm slot. The 2x slot is not currently used. According to Apple, you can
use this slot to include an image that will be used if a new Apple Watch
with a different screen size is introduced. You can choose to leave this slot
empty or drag one of the images into it. The finished result should look like
Figure 6-19.

Now let’s add the code to create the Random menu item to the
interface controller. Go back to the awakeWithContext() method of the
ConfigurationController class and add the line of code shown in bold:

 // Add menu items
 addMenuItemWithItemIcon(.Repeat, title: "Reset",
 action: "onResetClicked")
 addMenuItemWithImageNamed("RandomMenuIcon", title: "Random",
 action: "onRandomClicked")
}

Figure 6-18. The image set ready to be configured for Apple Watch

Figure 6-19. The menu icon images in the asset catalog

http://mailto:Random_38mm@2x.png/

CHAPTER 6: Tables and Menus

263

This time, we used the addMenuItemWithImageNamed(_:title:action:)
method to add the menu item and we used the name of the image set
that we just created as the first argument. When this menu item is clicked,
the onRandomClicked() method will be called. Add the following code to
implement this method:

 func onRandomClicked() -> Void {
 let color = TextAttributes.colors[Int(arc4random_uniform(
 UInt32(TextAttributes.colors.count)))]
 let font = TextAttributes.fonts[Int(arc4random_uniform(
 UInt32(TextAttributes.fonts.count)))]
 if color != selectedColor || font != selectedFont {
 selectedColor = color
 selectedFont = font
 updateCheckMarks()
 }
 }
}

Basically this code is using the arc4random_uniform() function to choose a
random index in the range 0 to one less than the number of colors or fonts
and then assigning the corresponding color and font to the selectedColor
and selectedFont properties. Unfortunately, the code is a little convoluted
because Swift does not automatically convert between UInt and UInt32.
Having assigned new colors, the code that updates the selected values and
the table is the same as in the onResetClicked() method.

That completes this example. You should now be able to run the application
and activate the menu in the configuration controller, which should be as
shown in Figure 6-20.

CHAPTER 6: Tables and Menus264

Now if you click the Random menu item, you should see the color and font
selections in the table change pseudo-randomly.

It’s possible to create a menu in the storyboard and then add menu items
to it at run time. Why would you do that? Consider the Reset menu item
in our example. Strictly speaking, it only needs to be available when the
default color and font are not already selected, whereas the Random menu
item should always be present. A convenient way to implement this is to
create the menu in the storyboard with just the Random menu item and add
the Reset menu item programmatically when the selected colors are not the
defaults.

We would also need to remove the Reset menu item when the color and font
are reset either by the Reset menu item itself or because the user selected
both defaults manually. There is no way to remove a specific menu item, but
you can remove all the menu items that were added programmatically by
calling the clearAllMenuItems() method, which has no effect on anything
added to the menu in the storyboard. That’s why you should create menu
items that always need to be present in the storyboard and add those that
sometimes need to be removed at run time. As an exercise, try adding this
feature to the configuration controller. Keep in mind that there is no way to
find out whether a menu item is currently present in the menu (in fact, there
is no class in the WatchKit API that represents either a menu or a menu
item), so you’ll have to use a property to keep track of whether the Reset
menu item is visible or not.

Figure 6-20. A menu with contents added programmatically

CHAPTER 6: Tables and Menus

265

Summary
In this chapter, you learned about the WatchKit tables and menus. Tables
are the only way to create a WatchKit layout that is not completely defined
in the storyboard. The number of rows in a table can be changed at run
time, and each table row can be structured differently, giving you much
greater flexibility than you can achieve by other means. Menus allow you to
conserve space on the small screen of the Watch by giving you a place to
keep functionality that the user does not need permanent access to. You
can define fixed menus in the storyboard or you can create them at run time.
We’ll make good use of both tables and menus in Chapter 7, where we’ll
build a complete, non-trivial WatchKit application from scratch.

http://dx.doi.org/10.1007/9781484210260_7

267

Chapter 7
Building a WatchKit App
It’s finally time to start building a real-world WatchKit application. As I said in
Chapter 1, writing a WatchKit application really means creating an extension
to an existing iPhone application. To make your WatchKit application useful,
you need to find a way to present the information that your iOS application
works with on the Apple Watch, where you have restricted screen space
and are limited to interactions that can take place in the time between the
user opening your application and lowering his arm—most likely just a few
seconds.

Before starting work on your WatchKit app, take some time to decide what
it can usefully do and consider how to present the available information
in such a way that the user can quickly read it, absorb it, and act on it, if
necessary.

In implementation terms, it’s unlikely that your WatchKit application will be
entirely self-contained—at the very least, it will need to get access to the
data that the iOS application itself works with. Fortunately, iOS provides
a variety of mechanisms that allow your WatchKit and iOS applications
to share data. In the first part of this chapter, you’ll get an overview of the
iOS application that we’re going to extend, the design of the WatchKit
app that we’ll be building, the forms of communication with the iOS
application that we’ll need to make it work, and the features of iOS that
make that communication possible. We’ll then look at the gory details of
the implementation. By the time you reach the end of this rather long and
detailed chapter, you’ll have a fully working WatchKit application, to which
you’ll add some extra features in Chapter 8.

http://dx.doi.org/10.1007/9781484210260_1
http://dx.doi.org/10.1007/9781484210260_8

CHAPTER 7: Building a WatchKit App268

The WatchKit Weather Application
Let’s start by looking at the iOS application we’re going to extend onto the
watch. You can try it out for yourself by opening and running the project in
the folder 7 – LWKWeather – Initial in the example source code archive.
Figure 7-1 shows three screenshots from the application.

Figure 7-1. The iOS Weather Application

The application displays weather data for a number of cities chosen by the
user. The main screen shows a summary of the current weather and a 5-day
weather forecast for one city, as shown on the left in Figure 7-1. By default,
the application obtains weather information for New York, Chicago, and
Sydney. Press the settings icon in the top part of the display to present a
view controller with a table that shows the cities that are currently configured,
as shown in the center in Figure 7-1. You can drag the rows of this table
around to reorder the pages in the main display. With the configuration
shown in Figure 7-1, the page that is displayed when the application starts
shows the weather for New York City. You can swipe right to view the
weather and forecast for Chicago, one more time for San Francisco, and so
on. You can also use the segmented control at the bottom of the page to
switch the displayed temperature scale between Celsius and Farenheit.

To change the cities that appear in the settings screen, press the Add/Remove
button at the top right to get a full list of available cities. Tap any row to add
or remove the corrresponding city from the active list. When you are finished
with either of the settings screens, press the Done button.

CHAPTER 7: Building a WatchKit App

269

There isn’t much to this application. That’s a deliberate decision—the less
functionality there is, the easier it is to show how you can extend it onto the
watch. There is just enough functionality here to allow me to illustrate most
of the scenarios you are likely to encounter when writing a WatchKit app for
your own iOS application.

Figure 7-2. The WatchKit weather application

As you can see, the WatchKit application is not just a scaled-down version
of the iOS application. When designing a WatchKit application, you need to
think about what features of your iOS application the user is likely to want to
use most frequently and make those easily accessible. For this application,
I decided to show a summary of the weather for all of the user’s chosen cities
when the application starts. Tapping on any row in this initial screen then shows
a slightly more detailed weather summary for the chosen city together with the
weather forecast for today and tomorrow, as shown on the right in Figure 7-2.

Note The forecast data that this application uses is obtained by using an API
provided by openweathermap.org. You can find the details of the API, which is
very simple and free to use, at http://openweathermap.org/api.

To see the completed WatchKit app we’re going to build in this chapter,
open and run the completed project in the 7 – LWKWeather – Final folder.
Figure 7-2 shows a couple screenshots from this application running on the
simulator.

http://openweathermap.org/api

CHAPTER 7: Building a WatchKit App270

The iOS application shows up to five days of forecast information, but the
WatchKit version shows only two days. I made that choice for two reasons.
First, as noted in Chapter 6, Apple recommends that you don’t try to display
too much information in a table. Each day of weather information requires a
row for the date and up to eight more rows for the forecast for each three-
hour segment of the day, making a total of nine rows. To represent a full
five-day forecast would, therefore, means building a table with up to 45
rows. That’s more than double Apple’s recommended 20-row limit. Second,
the user is most likely to want to see the forecast for today and possibly for
tomorrow. It’s much less likely that they’ll want to quickly look at the weather
five days ahead. Of course, if they really want to do that, they can always
open the iOS application on their iPhone. For some applications, it might be
appropriate to give the user a way to bring more information to the watch.
For the sake of simplicity, and because implementing that would not show
any functionality that has not been covered elsewhere in this book, I decided
not to do that for the WatchKit Weather application.

The WatchKit application will not have any equivalent of the settings
screens shown in Figure 7-1. Instead, it will use the same configuration as
the iOS application, and we’ll implement it in such a way as to ensure that
any changes made in the iOS application take effect immediately on the
watch. There are other ways to do this, of course. You could, for example,
include a settings screen in the WatchKit application or add a feature to the
iOS application that lets you maintain separate configurations for the main
application and the WatchKit application. Neither of these is difficult to do,
but neither of them would demonstrate any new WatchKit features either,
so I decided not to show either of those possibilities here. These changes
would, however, make a useful coding exercise should you want to extend
the application yourself.

Sharing the Data Model
It should be obvious from Figures 7-1 and 7-2 that the WatchKit application
will need to use the same data and settings information as its iOS
counterpart. That’s very likely to be true of most WatchKit applications.
Unfortunately, it’s not as simple to share information as you might think
because, as Chapter 1 makes clear, the executable part of a WatchKit
application is implemented in an extension and, at run time, the iOS
application and the extension execute in different processes, as shown in
Figure 7-3.

http://dx.doi.org/10.1007/9781484210260_6
http://dx.doi.org/10.1007/9781484210260_1

CHAPTER 7: Building a WatchKit App

271

The iOS Weather application stores information in files and in its user
defaults (NSUserDefaults) object. An extension can also read information
from files and from user defaults, but as you can see in Figure 7-3, it s file
store and user defaults are separate from those of the iOS application.
Consequently, when the WatchKit extension reads from its file store, it’s
not accessing the same data that the iOS application gets when it reads its
own files. Fortunately, iOS 8 added the concept of app groups, which allow
applications and extensions to share both user defaults and file store. We’ll
make use of an app group to allow our WatchKit app’s extension to read
weather information and settings information that were stored by the iOS
application. I talk more about how this works in the section “Mechanisms for
Sharing” later in this chapter.

Figure 7-3. An iOS application and its WatchKit extension

CHAPTER 7: Building a WatchKit App272

The Weather Application Data Model
Now that we know we can arrange for the iOS application and the WatchKit
extension to use the same data, let’s take a look at the iOS application’s
data model and figure out how much of it needs to be shared.

The weather application uses three different data models: CityModel,
DisplayedCityInfoModel, and WeatherModel. You can find the code for
these models in the City Model, Displayed City Model, and Weather Model
groups in the Xcode Project Navigator. If you’re going to read through the
code as you read this section, make sure you are looking at the version of
the project that contains only the original iOS application, which you’ll find in
the 7 – LWKWeather – Initial folder of the example source code archive.

The City Model
CityModel is a collection of City structures. You’ll find the definition of this
structure and of the CityModel class in the file CityModel.swift. Here’s what
the City structure looks like:

public struct City: Printable {
 // The city code
 public let cityCode: Int

 // The city name
 public let name: String

 // The city timezone name
 public let timezone: String

 // Human-readable description
 public var description: String {
 return "\(name), city code: \(cityCode), TZ: \(timezone)"
 }
}

Not surprisingly, there is one instance of City for each city for which the
application can display weather information. The cityCode property is a
unique number that is used when retrieving forecast data. Because it’s
unique, it’s also used to represent the city in method calls and in other data
structures.

The CityModel class contains a list of all the City structures, sorted by city
name, and a map that can be used to get the City structure for a given city
code. The sorted city list is used to populate the table that you see on the
right in Figure 7-1. Here’s an extract from the definition of the CityModel
class that shows the features of most interest:

CHAPTER 7: Building a WatchKit App

273

// Model that holds information for all available cities.
public class CityModel {
 // List of cities, ordered by name.
 public private(set) var cities: [City] = []

 // Map from city code to city data
 private var citiesByCode: [Int: City] = [:]

 // Gets the city with a given code, if one exists
 public func cityForCode(cityCode: Int) -> City? {
 return citiesByCode[cityCode]
 }

This model is initialized from a file called cities.plist, which contains the
information required to create City structures for a fixed set of cities. You
can change the set of cities that the application works with by modifying
this file. To add a new city, you’ll need to get its city code, which is used in
the openweathermap.org API calls. You’ll find a list of the cities for which you
can get forecast details, together with the city code values to be used for, at
http://openweathermap.org/help/city_list.txt. You’ll also need to know
the city’s timezone, which can easily be found on the Internet.

We need to make sure the cities.plist file is available to the extension so
that it can create its own copy of the CityModel. As you’ll see, that happens
automatically when we arrange for the code that implements the model
to be shared with the extension — a topic covered in the section “Sharing
Code,” later in this chapter.

The Displayed City Model
The displayed city model holds the ids of the cities that the user actually
wants to see forecast information for. This is the list that you see in the
middle in Figure 7-1 and it’s also the list of cities that are checked on the
right in Figure 7-1. In fact, those screens are both concerned with the
management of this model. The model also contains a boolean value that
determines whether temperatures should be displayed in Farenheit (the
default) or Celsius. This value is set from the segmented control that you can
see at the bottom of the center screenshot in Figure 7-1.

You’ll find the implementation of this model in the file
DisplayedCityInfoModel.swift. Here’s an extract from that file that shows
the city list and the temperature display boolean:

public class DisplayedCityInfoModel {
 // The delegate for this model.
 public weak var delegate: DisplayedCityInfoModelDelegate?

http://openweathermap.org/help/city_list.txt

CHAPTER 7: Building a WatchKit App274

 // City codes for the cities that are displayed.
 public var displayedCities: [Int] = [] {
 // Code not shown
 }

 // Whether to display temperatures in celsius
 public var useCelsius: Bool = false {
 // Code not shown
 }

Whenever either the city list or the useCelsius property is changed, a call is
made to a delegate. This feature is used to keep the user interface in step
with the state of the model. The delegate only needs to implement a single
method, which is called when either property changes value:

public protocol DisplayedCityInfoModelDelegate: class {
 func displayedCityInfoDidChange(model: DisplayedCityInfoModel)
}

In the WatchKit weather app, the displayedCities property of this model
determines the cities that appear on the main screen of the application
(shown on the left in Figure 7-2), and the useCelsius property will be used in
the same way as it is in the

iOS application. It follows from this that we’ll need to use this model in the
WatchKit extension and we’ll need to make sure that changes to it made in
the iOS application’s settings screens are notified to the extension as soon
as possible. To do that, we’ll need a way to send a message from the iOS
application to the extension. You’ll see how the model is shared and how
changes are notified in the section “Mechanisms for Sharing,” later in this
chapter.

The Weather Model
The weather model is where the actual weather forecast data is kept. It is
basically a map from city code to the forecast data for that city. Here’s the
basic definition of the model, which comes from the file WeatherModel.swift
in the example source code archive:

public class WeatherModel {
 // Map from city code to the weather for that city.
 public private(set) var weatherByCity = [Int: CityWeather]()

The public private(set) qualifier makes the weather data available to
code in any class, but ensures that it can only be modified by code in the
WeatherModel.swift file. The rest of the classes used in the model are in a

CHAPTER 7: Building a WatchKit App

275

separate file called WeatherData.swift. Figure 7-4 shows the relationships
between the four classes that make up the weather model:

WeatherModel

WeatherDetails

(one per city)

(one per day) DayForecast

dayString

weatherDetails
 [WeatherDetails]

CityWeather
state

reloadTime

startTime
endTime
etc...

cityCode
(one for

each 3 hour
interval)

detailsByDay
 [DayForecast]

weatherByCity
 [Int : CityWeather]

Figure 7-4. The weather model classes

The CityWeather class holds the most recently received weather for a
city. Here’s an extract from the definition of this class (I explain later why it
conforms to the NSCoding protocol):

public class CityWeather: NSObject, NSCoding {
 // Enumeration of weather details states
 public enum WeatherDetailsState: Int {
 case INIT
 case LOADING
 case LOADED
 case ERROR
 }

 // The city code.
 public let cityCode: Int

 // The state of this data
 public internal(set) var state: WeatherDetailsState

CHAPTER 7: Building a WatchKit App276

 // Time at which weather details should be reloaded.
 public internal(set) var reloadTime: NSDate = NSDate()

 // The details for this city, with one entry per day.
 public internal(set) var detailsByDay: [DayForecast] = []

The state property records whether the weather data has been loaded, is
currently being loaded, or has failed to load. Once the weather has been
loaded, it is considered to be valid for a fixed period of time, which defaults
to an hour in the example source code. For development purposes, it is
useful to reduce this time to make the data expire sooner and provoke more
frequent reloads. The reloadTime property is set to the time at which the
weather should be reloaded from the server.

The detailsByDay property holds the forecast data, with one DayForecast
instance for each day. The entries in this array are in ascending order of
date, so the first entry holds today’s forecast, the second is the forecast for
tomorrow, and so on.

The forecast data for each day is held in a DayForecast object, which looks
like this:

public class DayForecast: NSObject, NSCoding {
 // The day for this forecast (e.g. Wednesday, May 27)
 public let dayString: String

 // The weather details for this day.
 public internal(set) var details: [WeatherDetails]

 // Code not shown
}

The dayString property is the date for the forecast, in a form that is
immediately suitable for display. The value is set when the forecast is
received, to avoid having the overhead of formatting a date each time
it is used for display. The details of the forecast for the day are held in
the details array, in ascending time order. The openweathermap.org API
happens to return the forecast in blocks covering three hours, but no use

Note The openweathermap.org API claims to return five days of forecast
data, but in reality it sometimes returns fewer days. The code does not make
any assumptions about how many days it should get—the iOS application
displays as many days as it receives, but the watch application will never
display more than two days of weather.

CHAPTER 7: Building a WatchKit App

277

is made of that fact. In the WeatherDetails object for today, only the parts
of the forecast that are current and in the future are retained, so it can be
assumed that the first entry in this array represents the forecast for the
current time, assuming, of course, that the reload time has not passed, in
which case the data should be regarded as invalid.

The WeatherDetails object has quite a lot of properties, but very little
code. In common with the other objects in the WeatherData.swift file, it
is only concerned with holding data and encoding itself to and decoding
itself from an archive by conforming to the NSCoding protocol. Here are the
properties of the WeatherDetails object, which represent everything that the
application could display about the weather for a city:

public class WeatherDetails: NSObject, NSCoding {
 public enum WeatherCondition: Int {
 case Thunder
 case Drizzle
 case LightRain
 case Rain
 case HeavyRain
 case FreezingRain
 case Showers
 case LightSnow
 case Snow
 case HeavySnow
 case Sleet
 case Mist
 case Haze
 case Fog
 case Clear
 case FewClouds
 case ScatteredClouds
 case BrokenClouds
 case OvercastClouds
 case Other
 }

 // City to which this weather applies.
 public internal(set) var cityCode: Int

 // Start time for weather.
 public internal(set) var startTime: NSDate

 // End time for weather.
 public internal(set) var endTime: NSDate

 // Day string for these details (e.g. Mon Jan 3)
 public internal(set) var dayString: String?

CHAPTER 7: Building a WatchKit App278

 // Time string for these details, relative to the day (e.g. 3PM)
 public internal(set) var timeString: String?

 // Actual or forecast weather
 public internal(set) var weather: WeatherCondition

 // Weather condition summary
 public internal(set) var weatherSummary: String?

 // Weather condition description
 public internal(set) var weatherDescription: String?

 // Name of the location.
 public internal(set) var locationName: String?

 // The lat/long for this weather
 public internal(set) var location: CLLocationCoordinate2D?

 // Temperature in Celcius
 public internal(set) var temperature: Int?

 // Pressure in milllibars
 public internal(set) var pressure: Float?

 // Humidity percentage
 public internal(set) var humidity: Int?

 // Cloud cover percentage
 public internal(set) var clouds: Int?

 // Wind speed, miles per hour
 public internal(set) var windSpeed: Int?

 // Wind direction in degrees: North = 0, East = 90
 public internal(set) var windDirection: Int?

 // Day or night.
 public internal(set) var day: Bool?

 // Code not shown
}

If you refer back to the application screenshots in Figure 7-1, you should
now be able to figure out where everything on that screen comes from.
The name of the city on any given page comes from its City object, which
is obtained from the CityModel given the city’s code. The same city code

CHAPTER 7: Building a WatchKit App

279

is used to get the CityWeather object from the WeatherModel class (using
its weatherByCity property). From here, the current weather information is
obtained by an expression of the form:

cityWeather.detailsByDay.first?.details.first

Refer back to Figure 7-4 to see how this expression is derived from the data
model. The ?. operator handles the possibility that there is not yet any data
available, which is possible while the city’s weather is being loaded for the
first time. This expression returns either nil or a WeatherDetails object for
the current weather, which is used to get the summary (the temperature and
the short description of the current conditions) at the top of the screen in
Figure 7-1.

The weather forecast table, which is below the summary area, has one
section for each DayForecast object in the detailsByDay array. The section
header, which shows the date, comes from the dayString property, and
each row in the section represents a WeatherDetails object taken from the
details array. If you compare what’s on the screen to the properties in the
data model, you should be able to see the correspondence between them.
As you’ll see later, there is a similar relationship between the model content
and the data on the screens of the WatchKit application.

Weather Model Loading
In the iOS application, the weather model is used by the code in the
view controller shown on the left in Figure 7-1. Each instance of this view
controller displays the weather for one city. As discussed in the preceding
section, it gets the CityWeather object for its city from the weather model’s
weatherByCity property. If there is not yet an entry for the city in this map, or
if an entry is present but its reloadTime has passed, the view controller calls
the following method in the model:

public func fetchWeatherForCities(cityCodes: [Int], always: Bool)

This method requests new data for all the cities in the cityCodes array, but it
does not attempt to reload data that is still valid, unless the always argument
is true, in which case new data is always requested.

Note Usually, this method is called with always set to false. When the view
controller knows that the weather data has expired, it sets always to true to
avoid the need for the model to check whether the data is still valid.

CHAPTER 7: Building a WatchKit App280

The fetchWeatherForCities(_:always:) method doesn’t return anything,
because it doesn’t block waiting for new data to arrive. Instead, it locates
the CityWeather object for each city for which it’s going to load new data
(creating it if necessary) and sets its state to LOADING. It then arranges for
the weather information to be loaded asynchronously. The weather
model itself does not include the code to fetch forecast data from the
openweathermap.org server. Instead, it delegates to a loader class that
conforms to the following protocol:

public protocol WeatherModelLoader {
 func fetchWeatherForCities(cityCodes: [Int])
}

The code to request weather data and parse the response into model
objects depends on the data source, so having it encapsulated in a separate
class makes it possible to get weather from different sources without
changing the weather model itself. All that’s necessary is to implement
a suitable WeatherModelLoader and plug it into the model. In fact, the
iOS application does not directly use the WeatherModel class. Instead,
it uses a subclass called AppWeatherModel, which simply overrides the
createWeatherModelLoader() method of WeatherModel to create an instance
of a loader that is specific to the openweathermap.org AP I:

// Creates the loader for the weather data. Returns a loader that fetches
// weather data from openweathermap.org
public override func createWeatherModelLoader()
 -> WeatherModelLoader {
 return OpenWeatherMapLoader(model: self)
}

You’ll find the implementation of the AppWeatherModel and
OpenWeatherMapLoader classes in the file AppWeatherModel.swift. I’m not
going to discuss the details of the weather loader here because they have
nothing to do with writing a WatchKit application, but it’s worth reviewing
them yourself so that you can see exactly what they do. We’ll make use
of the fact that we can create WeatherModel subclasses that use different
loaders when we extend the application onto the watch.

When the loader receives weather data, it calls the following method in the
WeatherModel base class:

public func installNewWeatherForCity(cityCode: Int,
 weatherDetails: [WeatherDetails])

CHAPTER 7: Building a WatchKit App

281

This method builds a CityWeather object from the given city code and
weather details and installs it in the weather model, replacing whatever data
currently exists for that city. In the iOS application, the data would have
been requested by a view controller, and the model needs to notify it that
the data has arrived. It does this by using the default NSNotificationCenter,
sending a notification with the name WeatherModelChanged. The user info
object of the notification is a dictionary containing single key (cityCodes) for
which the value is a list of city codes for which new weather data has been
added to the model. The view controller registers as an observer of these
notifications, so that it can update its view.

It’s possible that the loader will fail to obtain any weather data, perhaps
because the iPhone is not connected to a network or because the server is
down. In that case, the loader calls the following WeatherModel method:

public func notifyWeatherModelLoadFailure(error: NSError,
 cityCodes: [Int]?)

This method changes the state of the CityWeather objects for the cities in
the cityCodes argument to ERROR and posts a notification with name
WeatherModelLoadFailed and the same user info dictionary as for the
WeatherModelChanged notification. The expectation is that the receiving view
controllers will update their views to show that there is no current weather
available.

The design of the weather model allows the view controller implementation
to be very simple. It needs to first register for notifications and then call
the model’s fetchWeatherForCities(_:always:) method to get some data.
When this method returns, the view controller can assume that there is a
CityWeather object for the city or cities for which it requested data and
that the state property of that object indicates that the content is valid
(value is LOADED), in error (ERROR), or that the forecast data is still being

Note You may be wondering why the WeatherModel class uses
notifications while the DisplayedCityInfoModel class uses a delegate.
The reason is that only one client needs to be notified of changes in the
DisplayedCityInfoModel, whereas the WeatherModel has multiple
different clients (one view controller for each city for which weather is being
displayed), so it could not have a single delegate. Of course, it’s possible to
create a delegate that delivers notifications to a set of other delegates, but
that’s effectively what NSNotificationCenter does, so it’s an ideal fit for the
requirements of the WeatherModel class.

CHAPTER 7: Building a WatchKit App282

obtained (LOADING). The view controller can use the CityWeather object
to make an initial update of its view, and can update it further whenever
it receives notifications. You can see exactly how this works by looking
at the implementation of the CityWeatherViewController class (in the file
CityWeatherViewController.swift), which is responsible for displaying the
weather pages like the one shown on the left in Figure 7-1.

The overall sequence of events, from initial request to update of the view
controller’s view, is shown in Figure 7-5.

View
View

Controller

Update
view

Notify
View

Controller

Notify
WeatherModel-

Changed

Request city
data

from loader

Parse and install
data in model,

save to file
store

NSNotifi-
cationCente

Requestcity data
from model

AppWea-
therModel

Network
request

Network
reply

OpenWeather-
Maploader

Figure 7-5. Obtaining weather data and updating the view

I mentioned earlier that the reloadTime property of every CityWeather
object is set to indicate when new weather data should be requested.
Whose responsibility should it be to fetch new data? One approach would
be to give that task to the model. Doing it that way would ensure that the
model is always as up-to-date as it can be, but there is a disadvantage:
data would be reloaded even if it’s not currently required. For example,
when the user opens the application for the first time, the initial set of view

CHAPTER 7: Building a WatchKit App

283

controllers requests weather data for New York, Chicago, and Sydney. Now
suppose the user replaces Sydney with San Francisco. The data for Sydney
has been loaded and remains valid, but will eventually expire. In these
circumstances, there is little point in refreshing it, because it’s not going to
be displayed anywhere. Instead of reloading expired data itself, the model
relies on its clients (the view controllers) to request updated data when
they need it, thus ensuring that it only spends the time loading forecasts
that are actually going to be used. To honor its side of this contract, the
view controller creates an NSTimer, setting its expiry time to the value of the
reloadTime property of the CityWeather object for the city that it’s linked to
and requests new data when the timer fires. You can see the details in the
CityWeatherViewController class.

Weather Model Persistence
If the forecast data were only held in memory, it would be lost when the
application is terminated, and when the application is next launched, it
would have to reload everything from scratch. If the relaunch occurs within
an hour, that’s a waste of time and network resources, because the forecast
data that was fetched earlier might still be valid. To avoid that, the content
of the WeatherModel is saved to the application’s file store whenever it’s
modified and is reloaded when the application starts.

You can see the persisted data by running the application on an iPhone
and using the Devices window to look at the application’s container. To do
that, select Window ➤ Devices from Xcode’s menu, select your iPhone in the
Devices column of the window that opens, and then select the LWKWeather
application from the Installed Apps list. Below this list, you’ll find a settings
icon. Click it to open a pop-up menu and select Show Container. In the
sheet that appears, you’ll see the content of the application’s file store.
Navigate to the Library/Caches directory and you’ll see another directory
inside it called LWKWeather. This is where the WeatherModel class saves its
content. Open this folder and you’ll see several files, as shown in Figure 7-6.

CHAPTER 7: Building a WatchKit App284

Each file contains an archived copy of the CityWeather object for one city,
created by using the NSKeyedArchiver class, which is why the CityWeather,
DayForecast, and WeatherDetails classes need to conform to the NSCoding
protocol. The name of the file is its city code, so in Figure 7-6, the model has
saved weather for Sydney (city code 2147714), Chicago (4887398), and New
York (5128581).

To reload the model when the application starts, the WeatherModel class
traverses all the files in the LWKWeather directory, opening them and
unarchiving their content to get back a CityWeather object, which is then
added to its weatherByCity dictionary. You can see the details of this
process in the loadWeatherModel() method of the WeatherModel class. Try
adding and removing cities in the settings pages of the application to see
how the files in the sandbox are affected. You’ll notice that removing a
city from display does not remove its saved weather file, because it’s still
possible to reuse the data if the user adds a city back before its expiry time
is reached. In fact, in the current implementation, the data files are never
removed. That’s not really a problem, because the files are small (around
20K) and there can be at most one for each available city.

Figure 7-6. The weather model in the application’s container

CHAPTER 7: Building a WatchKit App

285

Mechanisms for Sharing
You’ve now seen all the data that the iOS application uses. Now let’s look
at the iOS features that we’ll use to share this data with the WatchKit
application.

Sharing Weather Data
Because the WatchKit application displays information derived from the
same weather model that the iOS application uses, we need to make that
model accessible to it. As you’ve already seen, the iOS application persists
the weather model in files in its local file store. We need the WatchKit
extension to be able to access the same persisted information, but you can
see by referring back to Figure 7-3 that this is not possible, because the
extension does not have access to files stored in the iOS application’s file
store. You can fix this using an app group. When you create an app group,
you also create a container that is shared between all of the applications and
extensions that have access to that group, in effect transforming Figure 7-3
into Figure 7-7.

Figure 7-7. Using an app group to provide a container that is shared by the iOS application and
the WatchKit extension

CHAPTER 7: Building a WatchKit App286

To create this setup, we need to create an app group, give the iOS
application and the WatchKit extension permission to use it, and change
the WeatherModel code so that it persists its state into a file in the shared
container instead of in the iOS application’s private container. You’ll see how
to do all these things when we start implementing the WatchKit application
a little later in this chapter. Before we can do that, we need to decide how
to control access to the shared weather data files—specifically, whether we
should allow both the application and the extension to write new data to the
shared container.

To make this decision, we need to work out how the WatchKit extension
will get the data that it needs. Let’s assume that we implement an interface
controller in the extension in the same way as the view controller in the
application—that is, it will ask the weather model for data when it needs
it and will rely on the model to either return the data immediately or fetch
it from the openweathermap.org server and notify it when the data is
available. With this design, the sequence of events will be the same as
shown in Figure 7-5—except that the network request will be made from
the extension, the reply will be processed by the extension instead of the
iOS application, and the forecast data that the extension has fetched will be
persisted to the shared container by the extension, making it available to the
iOS application as well.

That sounds OK, but actually there is a problem. Fetching weather data over
the network takes time, but the extension can only guarantee to be active
while the user is viewing the application on the watch. If we make a network
request from the extension, it’s possible that the reply will arrive after the
user stops using the application, at which point the extension will have
been suspended and may even have been terminated. If the extension is
terminated, it won’t be able to handle the reply, so next time the user looks
at the application, the forecast will still be out of date and the extension will
simply try again to get new data.

This is a problem that you will often face when implementing WatchKi t
applications: the extension needs to get some data that isn’t immediately
available and needs to wait for the response, or it needs to do something
that an extension isn’t permitted to do (or that Apple recommends that it
doesn’t do), such as requesting permission to access the user’s location.
The best way to handle problems like this is to have the iOS application,
which is not subject to the same restrictions and time constraints, do the
work instead. To make that possible, the WatchKit framework includes
a method that the extension can use to make a call to its owning iOS
application, starting it if necessary, and to receive a reply from it at some
point in the future. We’ll use that mechanism to have the AppWeatherModel

CHAPTER 7: Building a WatchKit App

287

class in the application load weather data on behalf of the extension and
then write it to the file in the shared container, from where the extension can
read it and incorporate it into its own in-memory copy of the weather model.
The sequence of events would be something like this:

1. At startup, the extension loads the persisted state of
the model from the shared container to get the most
recent snapshot of forecast data. This data could be
current, or it could be partly or completely expired.

2. When an interface controller needs the weather data
for a city, it first checks the weatherByCity dictionary
in its in-memory copy of the model. If the data that it
needs is available and current, nothing else needs to
be done.

3. Otherwise, the interface controller calls the model’s
fetchWeatherForCities(_:always:) method, just
like the view controller in the iOS application does.
In the AppWeatherModel, this method delegates to a
method in the loader class that sends a message to
the openweathermap.org server. But in the extension’s
implementation of the model, we’ll make use of
the fact that we can plug in our own loader by
implementing one that passes the request from the
extension to the iOS application.

4. When the iOS application receives the request, it
immediately returns the data if it’s present, but if not,
it makes a call to the AppWeatherModel fetchWeathe
rForCities(_:always:) method, which causes the
data to be requested asynchronously from the server.

5. When the data arrives, AppWeatherModel does
its usual thing: it updates its in-memory model,
writes the new data to the shared container, and
posts a notification using NSNotificationCenter.
The code in the iOS application that received the
request from the extension in step 4 observes
WeatherModelChanged notifications and sends a
message back to the extension to tell it that new
weather data is available when one is received.

CHAPTER 7: Building a WatchKit App288

6. On receipt of this message, the weather model in
the extension reads the new data from the shared
container and updates its own in-memory state. In
so doing, it causes a notification to be posted.

7. The notification is received by the interface controller,
which can now update the screen.

For the moment, I’ve glossed over the details of sending a request from
the extension to the iOS application (step 3) and how to send a message
back to the extension (step 5). Later in this chapter, I cover the iOS features
we’ll use to do those things. Meanwhile, we’ve now answered the design
question that we posed earlier in this section about management of the
shared container file store: the iOS application will be responsible for writing
new forecast data to the shared container, and the extension will just read
from it when required.

Sharing Displayed City Info
We decided earlier that the cities that appear on the WatchKit application’s
main screen (on the left in Figure 7-2) should be the same ones that the iOS
application displays. That means the WatchKit extension needs to load the
data in the DisplayedCityInfoModel and be notified when the user changes
it. The iOS application persists this model in its NSUserDefaults object,
which is in its private container and is not accessible to the extension.
Fortunately, every shared container also contains an NSUserDefaults object
(see Figure 7-7), so to make the DisplayedCityInfoModel available to the
extension, we can change the iOS application to persist it in this shared
NSUserDefaults object. That still leaves the problem of how to notify the
extension when the content of the DisplayedCityInfoModel changes, which
happens when the user adds cities to, removes cities from, or changes the
order of items in the displayed city list using the settings screens in Figure 7-1.
It may seem that this should not be a problem, because NSUserDefaults
posts a notification when its content changes. Unfortunately, that notification
does not work for shared NSUserDeaults objects. Instead, we’ll use the same
mechanism to send a notification from the application to the extension that
we use to report updates to the weather model.

Sharing Code
I’ve mentioned how we’re going to share the persisted state of the weather
application’s data model, but I haven’t yet discussed how we’re going to
share the code. We need to use the same classes and structures in the iOS
application and the WatchKit extension. That’s not quite trivial because they

CHAPTER 7: Building a WatchKit App

289

are compiled and linked by two different targets in Xcode, and these targets
produce two distinct executables. To share the weather model, we need to
arrange for the code that we need to share to appear in both executables.
There are a couple of less-than-ideal ways we can do this:

1. We could simply copy and paste the code from the
iOS application target into the WatchKit extension
target.

2. We could leave the code where it is and simply add
the code files to the WatchKit extension target. That
will give us what we need: the model classes will be
compiled twiced and will be linked into both
executables.

The first option is obviously bad, but what about the second one? That
would ensure that we wouldn’t have any code duplication and it would,
without doubt, work for some applications. But for this application there
is still a problem. The problem occurs because the iOS application and
the extension need to share not only the code of the weather model
classes, but also their archived forms. That’s an issue because the archiver
(NSKeyedArchiver) includes in an archive the full class name for every class
that it saves. The full name of a class includes its module name, which is
(at least by default) the name of the Xcode target from which it was compiled.
That means that classes archived by the iOS application, which is compiled
from the LWK Weather target, will have names like LWKWeather.CityWeather.
When the archive is read by the WatchKit extension, the unarchiver
(NSKeyedUnarchiver) will try to unpack the data and create classes with
the module name LWKWeather. It won’t find any such classes, because the
versions that are linked into the extension were compiled from a target
called LWK Weather WatchKit Extension and have names like LWK_Weather_
WatchKit_Extension.CityWeather. There is a way to work around this, but
there’s also a better way that doesn’t require any kind of workaround: you
can use an embedded framework. The ability to use embedded frameworks
was added in iOS 8, and Xcode makes it really easy to do. You’ll see the

Tip Wondering how to assign one source file to more than one Xcode target?
It’s easy. Just select the file in the Project Navigator and then open the File
Inspector (1). In the Target Membership section, you’ll see a list of all the
targets together with a check box. To assign the file to a target, just select the
target’s check box.

CHAPTER 7: Building a WatchKit App290

details during the course of the implementation, but the basic idea is that
the framework has a target of its own, and we’ll move all the code we
want to share into that target. The classes and structures in the framework
target are all in the same module, so they’ll have a unique full class name,
which neatly solves the archiving problem. It’s also better for maintenance
and understanding, because all the shared code is conveniently grouped
together in the Xcode Project Navigator. We’ll also move the cities.plist
file to the framework target so that it’s copied to both the application and
extension bundles, because they both need access to it.

Sending a Request to an iOS Application
I mentioned that there are a couple of iOS features that we’re going to use
to communicate between the iOS application and the WatchKit extension
without showing you the details. Now it’s time to look at the details and finally
write some code that we’ll eventally use in the WatchKit weather application.

Let’s start with sending a request from the extension to the iOS application. To
do that, we’ll use the following method of the WKInterfaceController class:

class func openParentApplication(
 _ userInfo: [NSObject : AnyObject],
 reply reply: (([NSObject : AnyObject]!,NSError!) -> Void)?
) -> Bool

The request is sent in the userInfo dictionary. You can include anything in
this dictionary as long as it could be stored in a property list file. In practice,
that means you’ll need to convert anything other than numbers, strings, and
dates (and arrays and dictionaries containing those types) to an NSData object,
typically by implementing NSCoding and using an NSKeyedArchiver. The reply
argument is a function (or closure) that accepts a map of key/value pairs that
make up the response to the request and an NSError object that can be set to
indicate an error. The openParentApplication(_:reply:) method returns true
if the request was successfully sent to the application and false if not.

Here’s how the process works:

1. If (and only if) the iOS application is not running when
the request is made, it is started in the background
and its application delegate’s application(_:will
FinishLaunchingWithOptions:) and application(_:
didFinishLaunchingWithOptions:) methods are
called, as usual. There is nothing in the options
dictionary that indicates that the application is being
started to service a WatchKit extension request.

CHAPTER 7: Building a WatchKit App

291

2. The application delegate’s application(_:handle
WatchKitExtensionRequest:reply:) method is called
and receives the request that the extension passed
to openParentApplication(_:reply:)

3. The application should do whatever is necessary to
complete the request and then, either immediately or
some time later, it must call the reply closure that was
passed to the application delegate’s application(_:
handleWatchKitExtensionRequest:reply:) method.
The application has a finite period of time within which
it must reply, or the request will time out.

4. At some point, the closure or function that the
WatchKit extension passed as the reply argument to
openParentApplication(_:reply:) will be called, in
the extension’s main thread. If the application did not
reply in a timely manner, the reply closure is called
with the error argument set to an appropriate value.
But if a reply was received, error will be nil.

That all sounds straightforward. But as you’ll see, you need to be careful
when writing the code that runs in the iOS application.

Let’s write a simple example that demonstrates how this works. We’re
going to build a user interface with a button and a label. When the button
is clicked, the WatchKit extension calls the iOS application with a request
containing the current date and time. The iOS application adds 30 seconds
to the date and time that it received and sends it back to the extension as its
reply, where it will be used to set the text attribute of the label.

Open Xcode and create a new Single View application called Messaging
and add a WatchKit application target to it. Select Interface.storyboard
and drag a button and a label onto it. Change the Title attribute of the
button to Call Application, then set the Width attribute of the label to
Relative to Container, its Alignment attribute to Center, its Text attribute
to No Reply Yet, and its Lines attribute to 0. Open InterfaceController.
swift in the Assistant Editor and Control-drag from the button to create an
action method called onButtonClicked() and from the label (which is most
easily located in the Document Outline) to create an outlet called label.
That’s everything you need to do to hook the storyboard up to the interface
controller.

CHAPTER 7: Building a WatchKit App292

When the button is clicked, we need to open the iOS application and send
it a dictionary containing the key time and the current time (as an NSDate
object) as its value. We’ll also need to provide a method or closure that
will be called when the reply is received. Add the following code to the
onButtonClicked() method in InterfaceController.swift:

@IBAction func onButtonClicked() {
 let userInfo = ["time" : NSDate()]
 let result = WKInterfaceController.openParentApplication(userInfo,
 reply: { (response, error) in
 if let error = error {
 self.label.setText("Error: \(error)")
 println("\(error)")
 } else if let time: NSDate = response["time"] as? NSDate {
 self.label.setText("\(time)")
 } else {
 self.label.setText("No time received")
 }
 }
)
 println("Result = \(result)")
}

This code builds the request in the userInfo dictionary and uses openPare
ntApplication(_:reply:) to send it to the iOS application. When the reply
closure is called, it first checks whether there was an error. If not, it gets the
return value from the response dictionary and uses it to set the label’s Text
attribute. If there was an error, the label shows an error message, which is
also written to the Xcode console.

We haven’t written the code that handles the request in the iOS application
yet, but it’s interesting to see what happens if we try this code right
now. Run the WatchKit application in the simulator and click the button.
Immediately, you’ll see the text Result = true in the Xcode console,
indicating that the request was sent successfully. After a very brief pause,
you’ll also see an error message in the console and in the WatchKit app:

Error Domain=com.apple.watchkit.errors Code=2 "The UIApplicationDelegate
in the iPhone App never called reply() in -[UIApplicationDelegate appli
cation:handleWatchKitExtensionRequest:reply:]" UserInfo=0x60800006db40
{NSLocalizedDescription=The UIApplicationDelegate in the iPhone App never
called reply() in -[UIApplicationDelegate application:handleWatchKit
ExtensionRequest:reply:]}

That’s pretty clear—the iOS application didn’t reply to the request. In this
case, that’s obviously because we haven’t implemented the request handler
yet, but you may find that you see this message even if you have a request

CHAPTER 7: Building a WatchKit App

293

handler. When that happens, you can be pretty sure there is a bug in your
code. The most common reason for seeing this message unexpectedly is
that the iOS application crashed while handling the request. You can
diagnose that by setting breakpoints in your request handler, or, if you’re
testing on a real watch, you might also find some useful information in the
iPhone device log. You can look at the log in Xcode by opening the Devices
window (Window ➤ Devices) and selecting the iPhone in the Devices column
on the left.

Now let’s switch over to the iOS application and implement the request
handler. As I said earlier, the request is delivered to the application delegate
in its application(_:handleWatchKitExtensionRequest:reply:) method.
Open AppDelegate.swift in Xcode and add the following code to it:

func application(application: UIApplication,
 handleWatchKitExtensionRequest userInfo: [NSObject : AnyObject]?,
 reply: (([NSObject : AnyObject]!) -> Void)!) {
 var result = [NSObject : AnyObject]()

 NSLog("application(_:handleWatchKitExtensionRequest) was called")
 if let startTime = userInfo?["time"] as? NSDate {
 let endTime = startTime.dateByAddingTimeInterval(30)
 result["time"] = endTime
 }

 NSLog("Reply is \(result)")

 reply(result)
}

This code is very straightforward. The result variable is the dictionary that
will be sent as the response to the request. Initially it’s empty, but if the
userInfo dictionary from the request contains a key called time and its value
is an NSDate object, a value with the same key and an updated NSDate value
is stored in the result dictionary. The result dictionary is then returned to
the extension by calling the reply closure that’s passed in.

Caution Sometimes when the iOS application fails to respond, the extension
does not see any reply at all to the openParentApplication(_:always:)
method. In my experience, this only happens when running on a real watch—I
have never seen this when using the simulator.

CHAPTER 7: Building a WatchKit App294

Run the updated example on the simulator or an a real watch, press the
Call Application button, and you should shortly see the label update with a
time value.

DEBUGGING THE REQUEST HANDLER CODE IN THE IOS APPLICATION

What if your request handler has a bug? How would you diagnose it? In the preceding code,
I included some NSLog() statements to indicate when the request handler is called and
when it sends its reply. When you run the example, you won’t see that output in Xcode.
Whether you run the example on the simulator or on a watch, the Xcode console shows the
output from the WatchKit extension, not the iOS application. However, there is a way to see
the output from the NSLog() statements in the iOS application. On the simulator, you can
do that by opening the simulator log file by selecting Debug ➤ Open System Log...
from the simulator’s menu. It’s important to note, however, that this only works if you use
NSLog() for logging—Swift’s println() function does not send output to the simulator
log. If you’re running on a real iPhone and Watch, you can view the output by opening the
Xcode Devices window and selecting the iPhone. You’ll see the NSLog() output among all
the other console messages at the bottom of the screen.

If logging is not enough to help you figure out what’s wrong with the code in the iOS
application, you can attach the Xcode debugger to it by starting the WatchKit application in
the normal way and then launching the iOS application, attaching the Xcode debugger to it,
and setting breakpoints if necessary, as you saw in the section “Debugging the WatchKit App
Extension and the iOS Application Together” in Chapter 2. This technique works on both the
simulator and a real device.

The code in the application(_:handleWatchKitExtensionRequest:reply:)
method is enough to demonstrate how a request handler is supposed to
work, but it is over-simplified and it may not always work. In reality, it’s
unlikely that the iOS application will be able to send an immediate reply to

Note Keep in mind that the extension and the iOS application are executing in
different processes, so the call to the application(_:handleWatchKit
ExtensionRequest:reply:) method is not made directly from the
extension’s openParentApplication(_:always:) call. Similarly, when
the iOS application calls the reply closure, this does not directly call the reply
handler in the extension.

http://dx.doi.org/10.1007/9781484210260_2

CHAPTER 7: Building a WatchKit App

295

the WatchKit extension. Most likely, it’ll have to do some asynchronous work
and send the reply later. Let’s change the example code to do that. Make
the changes shown in bold:

func application(application: UIApplication,
 handleWatchKitExtensionRequest userInfo: [NSObject : AnyObject]?,
 reply: (([NSObject : AnyObject]!) -> Void)!) {
 var result = [NSObject : AnyObject]()

 NSLog("application(_:handleWatchKitExtensionRequest) was called")
 if let startTime = userInfo?["time"] as? NSDate {
 let endTime = startTime.dateByAddingTimeInterval(30)
 result["time"] = endTime
 dispatch_async(dispatch_get_global_queue(
 DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), {
 NSLog("Handling request in background thread")
 NSThread.sleepForTimeInterval(1)

 let endTime = startTime.dateByAddingTimeInterval(30)
 result["time"] = endTime

 NSLog("Reply is \(result)")
 reply(result)
 })
 return
 }

 NSLog("Reply is \(result)")

 reply(result)
}

Now instead of sending a reply immediately, the handler uses dispatch_
async() to send the reply from a background thread and, to increase the
realism a little, puts the thread to sleep for a second before doing so. Run
this modified version of the example and you’ll find that it still works on the
simulator, but you may find that it sometimes doesn’t work on the watch.
The problem is that iOS starts your application in the background to service
the extension’s request and an application that’s in the background could
be suspended or terminated at any time, including while it’s waiting to get
data from the network that it needs before it can reply to your request.
To avoid that, Apple suggests that you tell iOS that your application
needs background time by immediately calling the UIApplication
beginBackgroundTaskWithExpirationHandler() method. When your handler

CHAPTER 7: Building a WatchKit App296

has finished its work, it must call the endBackgroundTask() method. To put
that into practice, make the changes shown in bold to the request handler:

func application(application: UIApplication,
 handleWatchKitExtensionRequest userInfo: [NSObject : AnyObject]?,
 reply: (([NSObject : AnyObject]!) -> Void)!) {
 var taskId: UIBackgroundTaskIdentifier = 0
 taskId = application.beginBackgroundTaskWithExpirationHandler({
 // Called if the handler does not call endBackgroundTask()
 // before the allocated background time expires.
 reply(nil)
 })
 var result = [NSObject : AnyObject]()

 NSLog("application(_:handleWatchKitExtensionRequest) was called")
 if let startTime = userInfo?["time"] as? NSDate {
 dispatch_async(dispatch_get_global_queue(
 DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), {
 NSLog("Handling request in background thread")
 NSThread.sleepForTimeInterval(1)

 let endTime = startTime.dateByAddingTimeInterval(30)
 result["time"] = endTime

 NSLog("Reply is \(result)")
 reply(result)

 self.endTaskIn2Seconds(application, taskId: taskId)
 })
 return
 }

 reply(result)

 endTaskIn2Seconds(application, taskId: taskId)
}

private func endTaskIn2Seconds(application: UIApplication,
 taskId: UIBackgroundTaskIdentifier) {
 let endTaskTime = dispatch_time(DISPATCH_TIME_NOW,
 Int64(2 * NSEC_PER_SEC))
 dispatch_after(endTaskTime, dispatch_get_main_queue(), {
 application.endBackgroundTask(taskId)
 })
}

The first thing that the application(_:handleWatchKitExtensionRequest:
reply:) method does is call beginBackgroundTaskWithExpirationHandler().
This ensures that the iOS application will have a period of time in the

CHAPTER 7: Building a WatchKit App

297

background where it is not in danger of being terminated before it completes
its work. To balance this, we need to call the endBackgroundTask() method
whenever we leave the handler, passing it the background task id that
we got when we started the background task. I added a method called
endTaskIn2Seconds(_:taskId) to take care of that. This method waits for
two seconds before ending the background task. This delay is a workaround
(suggested by Apple) for a timing problem: it turns out that if we end the
task immediately, it’s possible that the reply message will not be sent to the
watch. This risk exists even if we are able to send a reply immediately, as
we did in the first version of this code. For that reason, you should always
include this workaround in your request handler.

Sending a Notification to the WatchKit Extension
If you look back at our discussion of how we plan to load data in the
iOS application on request from the WatchKit extension, which you
can find in the earlier section “Sharing Weather Data,” you’ll see that at
step 5, when the iOS application receives new weather data, it needs
to send a notification to the extension. Normally, notifications are sent
using the NSNotificationCenter class. That won’t work in this case
because the application and the extension are in different processes, but
NSNotificationCenter only works when the sender and receiver are in the
same process. To send this notification, we’ll need to use the lower-level
CFNotificationCenter API from Core Foundation. Here’s a summary of how
that API works—refer to the documentation page for CFNotificationCenter
in the Xcode API Reference for the details:

	To add an observer for a notification, use the
CFNotificationAddObserver() function to link the
notification (by name and source) to a callback function.

	To send a notification, call the
CFNotificationCenterPostNotification() or
CFNotificationCenterPostNotificationWithOptions()
function, supplying the notification name and some
associated data, among other things.

This is very similar to the way that NSNotificationCenter works, so you
are probably wondering why we should use this lower-level, C language
API instead. The reason is that it allows us to use a notification center—the
Darwin notification center—that can deliver notifications between processes,
which is exactly what we need. All we need to do is pass a reference to the

CHAPTER 7: Building a WatchKit App298

Darwin notification center when registering our observer and when posting
notifications. Getting the Darwin notification center reference is just one line
of code:

let center = CFNotificationCenterGetDarwinNotifyCenter()

The downside is that we need to work with a C-language API. Using C code
from Swift is usually very easy, but in this case, there is a problem with the
CFNotificationCenterAddObserver() function. Here’s the declaration of that
function:

func CFNotificationCenterAddObserver(
 _ center: CFNotificationCenter!,
 _ observer: UnsafePointer<Void>,
 _ callBack: CFNotificationCallback,
 _ name: CFString!,
 _ object: UnsafePointer<Void>,
 _ suspensionBehavior: CFNotificationSuspensionBehavior)

The problem is the callBack argument, which supplies a reference to the
function to be called when a notification is received. It’s declared like this:

typealias CFNotificationCallback =
 CFunctionPointer<((CFNotificationCenter!,
 UnsafeMutablePointer<Void>,
 CFString!,
 UnsafePointer<Void>, CFDictionary!) -> Void)>

This declaration says that CFNotificationCallback is a pointer to a C
function. Unfortunately, there is no way to convert a Swift function or method
reference to a C function pointer. However, we can declare a C function
in an Objective-C source file, so we can solve this problem by writing an
Objective-C wrapper class that we can call from our Swift code instead of
trying to interface directly with the Darwin notification center. Let’s do that now
and, as we do so, prove to ourselves that we can use the Darwin notification
center to send a message from an iOS application to a WatchKit extension.

Create a new Single View Application project called DarwinBridge and add
a WatchKit target to it. We’re going to build a simple user interface on the
iPhone that consists of just a button. When the button is pressed, we’ll send
a Darwin notification center notification to the WatchKit extension. When the
notification is received, we’ll display some text on the screen of the watch.
Before we write the code to do this, let’s build the user interfaces we’ll need.

We’ll start with the iOS application. Select Main.storyboard in the Project
Navigator and drag a button onto the storyboard, placing it somewhere near
the center. Change the button’s text to Send Notification. With the button

CHAPTER 7: Building a WatchKit App

299

selected, click the Pin icon at the bottom right of the storyboard and, in the
pop-up that opens, check Horizontal Center in Container and Vertical
Center in Container. Then click the Add 2 Constraints button. Next, click
the Resolve Auto Layout Issues icon and click Update Frames in the pop-
up (if Update Frames is grayed out, click the button in the storyboard and
try again). The button should now move to the center of the view in the
storyboard.

Open ViewController.swift in the Assistant Editor and Control-drag from
the button to the class definition to create an action method called
onButtonClicked(). That’s all we need to do in the iOS application for now,
so let’s switch over to the WatchKit application. Select Interface.
storyboard in the Project Navigator and then drag and drop a label and a
button from the Object Library onto it.

Select the label and change its Text attribute to No Message, its Alignment
attribute to Center, its Lines attribute to 0, and its Width attribute to Relative
to Container. Select the button and change its Title attribute to Clear.
Next, open InterfaceController.swift in the Assistant Editor (it should
already be open) and Control-drag from the label to the class definition to
create an outlet called label and from the button to the class definition to
create an action method called onButtonClicked(). Add the following code
to this method, to reset the label’s text when the button is pressed:

@IBAction func onButtonClicked() {
 label.setText("No Message")
}

Now let’s build the Objective-C bridge we’ll need to access the Darwin
notification center from Swift. Strictly speaking, we only need to wrap the
CFNotificationCenterAddObserver() function, but we’re actually going to
build wrapper functions for all the CFNotificationCenter functions that we’ll
be using, to keep our Swift code as simple as possible.

Tip Sometimes you’ll find that the Object Library does not update to show the
correct set of objects when you switch between iOS and WatchKit storyboards. If
that happens to you, you can fix it by clicking the Show the Media Library
button above the Object Library and then clicking the Show the Object
Library button.

CHAPTER 7: Building a WatchKit App300

We’re going to need to use the bridge in both the iOS application and the
WatchKit extension, so we’ll put the code in an embedded framework. To do
that, select File ➤ New ➤ Target... from Xcode’s menu. Choose Framework
and Library in the iOS section of the dialog that appears, followed by Cocoa
Touch Framwork, and click Next. On the next page of the dialog, set Product
Name to DarwinBridgeCode and click Finish to add the new target to the
project (see Figure 7-8).

Note There is an open source library called MMWormHole that provides similar
functionality to the bridge that we’re about to develop, which you can find at
https://github.com/mutualmobile/MMWormhole. It’s free and easy to
use, but I decided not to use it in the WatchKit weather application because I
think it’s useful to demonstrate how to write a bridge from Swift code to a Core
Foundation API and to show exactly how the notification process works.

Figure 7-8. Adding a shared framework target to the project

https://github.com/mutualmobile/MMWormhole

CHAPTER 7: Building a WatchKit App

301

Notice that the framework includes a header file called DarwinBridgeCode.h.
This is called the framework’s umbrella header. Code that uses the
framework must import its umbrella header file.

Now let’s implement the bridge itself as an Objective-C class. To do that,
right-click the DarwinBridgeCode group and select New File... from the
pop-up. Choose Cocoa Class from the iOS Source section of the dialog that
appears and click Next. In the next page of the dialog, change the Class
to DarwinNotificationCenterBridge and make it a subclass of NSObject.
Finally, change the language to Objective-C, click Next, and save the new
class in the DarwinBridgeCode group.

Let’s start by defining the API for the bridge. To do that, open Darwin
NotificationCenterBridge.h in the editor and add the following code
shown in bold to it:

#import <Foundation/Foundation.h>

@protocol DarwinNotificationObserver

- (void)onNotificationReceived:(NSString *)name;

@end

@interface DarwinNotificationCenterBridge : NSObject

+ (void)postNotificationForName:(NSString *)name;
+ (void)addObserver:(id<DarwinNotificationObserver>)observer
 forName:(NSString *)name;
+ (void)removeObserver:(id<DarwinNotificationObserver>)observer
 forName:(NSString *)name;

@end

The postNotificationForName: method is the one that code in the iOS
application will call to send a notification to the WatchKit extension. The
other two methods are used in the extension to register and remove an
observer for named notifications. The observer is required to conform to the
DarwinNotificationObserver protocol, which is also defined in this header file.

Note You may have noticed that these methods are all class methods. That’s
because we only need one logical instance of the bridge. You could implement
them as instance methods and then create a singleton bridge instance, but that
would require more code both in the implementation and in the application itself.
Feel free to change the implementation if you prefer an instance-based solution.

CHAPTER 7: Building a WatchKit App302

The Darwin notification center supports only a single observer for each
notification name. However, we’ll need to be able to support multiple
observers. To make that possible, the DarwinNotificationCenterBridge
class will keep a set of observers for each name and will register itself
with the Darwin notification center as the single observer for each name.
Whenever a notification for a given name is received, it will pass the
notification on to all the observers that registered with it for that name.

Now let’s implement the DarwinNotificationCenterBridge class, starting
with the class initializer. Add the code in bold to DarwinNotificationCenter
Bridge.m:

#import "DarwinNotificationCenterBridge.h"

static NSMutableDictionary *nameToObserversMap;

@implementation DarwinNotificationCenterBridge

+ (void)initialize {
 if (nameToObserversMap== NULL) {
 nameToObserversMap= [[NSMutableDictionary alloc] init];
 }
}

The nameToObserversMap is used to hold the registered observers for each
notification name. The key to this map is the notification name (a string), and
its value is an NSMutableSet containing the observers for that notification, all
of which are of type id<DarwinNotificationObserver>.

Next, we’ll implement the postNotificationForName: method. This is just a
direct pass-through to the CFNotificationCenterPostNotification
WithOptions() function. Add the code shown in bold:

+ (void)initialize {
 if (nameToObserversMap == NULL) {
 nameToObserversMap = [[NSMutableDictionary alloc] init];
 }
}

// Posts a notification for a given name.
+ (void)postNotificationForName:(NSString *)name {
 CFNotificationCenterPostNotificationWithOptions(
 CFNotificationCenterGetDarwinNotifyCenter(),
 (__bridge CFStringRef)name,
 NULL, NULL,

CHAPTER 7: Building a WatchKit App

303

 kCFNotificationDeliverImmediately |
 kCFNotificationPostToAllSessions);
}

@end

If you check the declaration of the CFNotificationCenterPostNotification
WithOptions() function in the API documentation, you’ll see that you can
specify the notification name, the source of the notification, and a dictionary
to be passed to observers. Here, however, we have used the value NULL
for the object (that is, the source) and userInfo (the dictionary) arguments,
because these arguments are not supported by the Darwin notification
center. That means we can deliver a notification to a given name, but we
can’t send any additional information along with the notification. Fortunately,
as you’ll see later, that’s enough for the WatchKit Weather application.

Now let’s add the implementation of the addObserver:forName: method.
This requires a little more code because we need to allow more than
one observer for each notification name. Add the following code to
DarwinNotificationCenterBridge.m:

// Adds an observer for a notification with a given name.
+ (void)addObserver:(id<DarwinNotificationObserver>)observer
 forName:(NSString *)name {
 BOOL needRegister = NO;
 NSMutableSet *observers =
 (NSMutableSet *)[nameToObserversMap objectForKey:name];
 if (observers == nil) {
 observers = [[NSMutableSet alloc] init];
 [nameToObserversMap setObject:observers forKey:name];
 needRegister = YES;
 }
 [observers addObject:observer];

 if (needRegister) {
 CFNotificationCenterAddObserver(
 CFNotificationCenterGetDarwinNotifyCenter(),
 (const void *)self,
 onNotificationCallback,
 (__bridge CFStringRef)name,
 NULL,
 CFNotificationSuspensionBehaviorDeliverImmediately);
 }
}

The first part of this function sets the needRegister variable to YES and adds
an NSMutableSet to the nameToObserversMap if this is the first observer for
the given notification name. The observer is then added to the set, and if

CHAPTER 7: Building a WatchKit App304

needRegister is YES, the CFNotificationCenterAddObserver() function is
called to register with the Darwin notification center. There is a compilation
error for this call, because the callBack argument references a function that we
haven’t yet added. Add the definition of that function using the following code:

// Callback from Darwin Notification Center.
void onNotificationCallback(CFNotificationCenterRef center,
 void *observer, CFStringRef name,
 const void *object,
 CFDictionaryRef userInfo) {
 NSString *notificationName = (__bridge NSString *)name;
 NSArray *observers =
 [nameToObserversMap objectForKey:notificationName];
 if (observers != NULL) {
 for (id<DarwinNotificationObserver> observer in observers) {
 [observer onNotificationReceived:notificationName];
 }
 }
}

This code is very straightforward. The notification name is cast from
CFStringRef to NSString and then used to get the set of observers for that
notification from the nameToObserversMap. If there are any observers, their
onNotificationReceived: methods are called with the notification name as
argument.

Finally, we need to implement the removeObserver:forName: method. This
just reverses the steps in the addObserver:forName: method. Add this code
to DarwinNotificationCenterBridge.m:

// Removes an observer for a notification with a given name.
+ (void)removeObserver:(id<DarwinNotificationObserver>)observer
 forName:(NSString *)name {
 BOOL needUnregister = NO;
 NSMutableSet *observers =
 (NSMutableSet *)[nameToObserversMap objectForKey:name];
 if ([observers containsObject:observer]) {
 [observers removeObject:observer];

Note Notifications from CFNotificationCenter are always delivered on
the main thread.

CHAPTER 7: Building a WatchKit App

305

 if (observers.count == 0) {
 [nameToObserversMap removeObjectForKey:name];
 needUnregister = YES;
 }
 }

 if (needUnregister) {
 CFNotificationCenterRemoveObserver(
 CFNotificationCenterGetDarwinNotifyCenter(),
 (const void *)self,
 (__bridge CFStringRef)name,
 NULL);
 }
}

That completes the implementation of the Darwin notification center
bridge. Now let’s try to make use of it in our example application. Open
ViewController.swift and add the following code to the onButtonClicked()
method to send a notification with name TestNotification when the button
in the iOS application is clicked:

@IBAction func onButtonClicked(sender: AnyObject) {
 DarwinNotificationCenterBridge.postNotificationForName(
 "TestNotification")
}

This doesn’t compile because the identifier DarwinNotificationCenterBridge
is unknown. To fix that, we need to import the framework:

import UIKit
import DarwinBridgeCode

class ViewController: UIViewController {

This still doesn’t work, because we have a couple of steps to complete
back in the framework itself. Select the framework’s umbrella header
(DarwinBridgeCode.h) and add an import line for DarwinNotificationCenter
Bridge.h:

#import <UIKit/UIKit.h>
#import "DarwinNotificationCenterBridge.h"

//! Project version number for DarwinBridgeCode.
FOUNDATION_EXPORT double DarwinBridgeCodeVersionNumber;

This makes the definitions in DarwinNotificationCenterBridge.h available
to users of the framework (provided that they import its umbrella header,
of course), but there is still a problem beacsue the header is private to the

CHAPTER 7: Building a WatchKit App306

framework. We need to make it public. To do that, select DarwinNotification
CenterBridge.h in the Project Navigator and open the File Inspector (1).
In the Target Membership area, you’ll see that the file is assigned to the
DarwinBridgeCode target, but its visibility is currently Project. Change this to
Public, as shown in Figure 7-9.

Figure 7-9. Making a framework header public

Now rebuild the project, and the compilation error should go away.

Next, we need to register to receive notifications with name
TestNotification from the Darwin notification center whenever the interface
controller of the WatchKit app is active. To do that, we first need to import
the DarwinBridgeCode framework and conform the interface controller class
to the DarwinNotificationObserver protocol. To do that, add the following
code in bold to InterfaceController.swift:

import WatchKit
import Foundation
import DarwinBridgeCode

class InterfaceController:
 WKInterfaceController, DarwinNotificationObserver {
 @IBOutlet weak var label: WKInterfaceLabel!

 func onNotificationReceived(name: String!) {
 label.setText("Received notification")
 }

CHAPTER 7: Building a WatchKit App

307

Finally, we need to register as an observer for this notification when the
interface controller is activated and unregister when it’s deactivated. We can
do each of these things with a call to methods in our new framework:

override func willActivate() {
 super.willActivate()
 DarwinNotificationCenterBridge.addObserver(self,
 forName: "TestNotification")
}

override func didDeactivate() {
 super.didDeactivate()
 DarwinNotificationCenterBridge.removeObserver(self,
 forName: "TestNotification")
}

That’s it. Now run the WatchKit application from Xcode and then launch
the iOS application from the home screen of the simulator (or the iPhone if
you are using real hardware). Press the Send Notification button, and you
should see the message Received notification appear in the WatchKit
app, as shown in Figure 7-10.

Figure 7-10. WatchKit extension receiving a notification from the iOS application

Press the Clear button to reset the label in the WatchKit user interface and
check that you can send as many notifications as you want.

CHAPTER 7: Building a WatchKit App308

Building the WatchKit Weather App
We now have everything we need to start implementing the WatchKit
Weather application. We’re going to use the Xcode project for the iOS
Weather application as the starting point and enhance it in stages, as
follows:

1. Add an embedded framework for the classes that
need to be shared between the iOS application and
the WatchKit extension.

2. Add the Darwin notification center bridge we
developed in the preceding section to the framework
and move the model classes that need to be shared
into it.

3. Create an app group and change the shared model
classes to persist their state into the group’s shared
container. At this point, we’ll be able to run the iOS
application again and verify that it still works.

4. Add a WatchKit target and give it access to the
shared container.

5. Modify the DisplayedCityInfoModel class to notify
changes made in the iOS application’s configuration
screens to the WatchKit extension.

6. Add code to the iOS application that will handle the
WatchKit extension’s openParentApplication(_:
reply:) method calls.

7. Create a subclass of WeatherModel for the extension
that will use the openParentApplication(_:reply:)
method to request new forecast details from the iOS
application.

8. Implement the main interface controller of
the WatchKit app, to show a summary of the
current weather for the cities configured in the
DisplayedInfoCityModel. This interface controller
provides the screen on the left in Figure 7-2.

9. Implement the WatchKit app’s detail screen, to show
the details of the forecast for one city. This is the
screen on the right in Figure 7-2.

CHAPTER 7: Building a WatchKit App

309

Take a copy of the 7 – LWKWeather – Initial folder from the example
source code archive and open it in Xcode. Build the project and run it on
the simulator or an iPhone to check you have a good starting point for the
changes we are about to make. Let’s start by moving the code that we need
to share to an embedded framework.

Moving Shared Code to a Framework
With the Weather application project open in Xcode, create an embedded
framework using the same steps we used in the last section. Select File ➤
New ➤ Target... from the menu, in the iOS Framework & Library section of
the dialog, choose Cocoa Touch Framework, and click Next. On the next page
use SharedCode as the Product Name and make sure the language is Swift.
Click Finish to create the framework.

After Xcode creates the framework, select the LWKWeather node at the top
of the Project Navigator to display the project info and build settings in the
editor area. In the Info section, select the LWKWeather project and take a
note of the value of the iOS Deployment Target setting (it’s probably 8.0).
Select the SharedCode target and make sure the General tab is showing.
We need to change two settings in the Deployment Info section of this
tab. First, make sure the Deployment Target matches the value of the iOS
Deployment Target on the LWKWeather project page, which probably means
changing it to 8.0. Second, check the Allow app extension API only check
box. Because the framework is going to be used in an extension, we need
to make sure it doesn’t make use of APIs that extensions are not allowed to
use. Enabling this setting causes the compiler to flag an error if you try to
use an API that is not safe for use in an extension. Your settings should now
be as shown in Figure 7-11.

CHAPTER 7: Building a WatchKit App310

Adding the Darwin Bridge to the Framework
Our first task is to add the code for the Darwin Bridge to the framework.
When Xcode added the shared framework target, it also added two new
groups called SharedCode and SharedCodeTests in the Project Navigator.
Right-click the SharedCode group and add a new group nested beneath it
called Darwin Notifications. Locate the DarwinNotificationCenterBridge.h
and DarwinNotificationCenterBridge.m files from the framework that we
created earlier and drag and drop them under the Darwin Notifications
group, making sure that the Copy items if needed check box is selected in
the dialog that appears before the copy occurs.

Select DarwinNotificationCenterBridge.h, open the File Inspector, and
change the visibility of the file in the Target Membership section from
Project to Public. Finally, open the SharedCode.h header file and add the

Tip You can find these files in the 7 – DarwinBridge/DarwinBridgeCode
folder of the example source code archive.

Figure 7-11. Configuring the SharedCode framework

CHAPTER 7: Building a WatchKit App

311

following line at the end of the file, to make the declarations in Darwin
NotificationCenterBridge.h visible to code that imports the framework’s
umbrella header:

#import <SharedCode/DarwinNotificationCenterBridge.h>

You now have an embedded framework that includes the Darwin Bridge
functionality.

Moving the Shared Model Classes
Next, we’ll move the model classes that we need to share into the
framework. Start by creating a new group called Weather Model under
the SharedCode group. Drag and drop the files WeatherModel.swift and
WeatherData.swift from the Weather Model group in the iOS application into
it. Select the Displayed City Model group, drag it into the SharedCode group,
and then do the same with the City Model group. The last file we need to
move is WeatherUtilities.swift. This file doesn’t really fit under any of the
existing groups, so create a group called Utilities under SharedCode and
drag WeatherUtilities.swift into it.

Even though we’ve moved all the model files, they are not yet part of the
embedded framework because they still belong to the LWKWeather target. To
fix that, open the File Inspector, select each file in the SharedCode group in
the Project Navigator individually then, and in the Target Membership section
of the File Inspector, uncheck LWKWeather and check SharedCode. If you’ve
done this correctly, you should see a lot of compilation errors reported in
the Activity View, because the classes that you’ve just moved are no longer
visible to the code in the LWKWeather target. If you open the Issue Navigator
(4), you’ll see that this change has affected six files: AppWeatherModel.
swift, WeatherPageViewController.swift, CityWeatherViewController.
swift, CityListViewController.swift, AppDelegate.swift, and
SettingsViewController.swift. Open each of these files and add the
following line after the existing imports:

import SharedCode

Now rebuild, and all should be well. If you try running the application
on the simulator, you may find that almost immediately after it starts, it
crashes. This only happens if you ran the application at least once before
we started making changes to it. The reason it crashes is that the weather
data from the earlier run of the application is archived using different class
names. When it was part of the LWKWeather project, the full name of the
CityWeather class was LWKWeather.CityWeather, but now it has changed
to SharedCode.CityWeather. When the application tried to load the weather

CHAPTER 7: Building a WatchKit App312

model, it crashed because the NSKeyedUnarchiver cannot find a class
called LWKWeather.CityWeather. I referred to a similar problem that arises
when you try to archive files that belong to more than one target in the
section “Shared Code” earlier in this chapter. Here, we get the problem
because the application is trying to make sense of data stored by a
previous, incompatible version. You can fix that immediately by deleting
the application from the simulator and then running it again. Everything will
work, but you will have lost any configuration changes that you made. If you
were making a change like this to an application that’s already in the App
Store, you wouldn’t be able to get away with telling your users to uninstall
and reinstall and then manually restore their settings. Fortunately, there is
an easy way to make the application work with archives generated by the
previous version: you just have to tell NSKeyedUnarchiver what to do when
it finds references to classes that it doesn’t know about. To do that, add the
following lines of code shown in bold to AppDelegate.swift:

func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [NSObject: AnyObject]?) -> Bool {
 // Load cached weather.
 NSKeyedUnarchiver.setClass(CityWeather.self,
 forClassName: "LWKWeather.CityWeather")
 NSKeyedUnarchiver.setClass(DayForecast.self,
 forClassName: "LWKWeather.DayForecast")
 NSKeyedUnarchiver.setClass(WeatherDetails.self,
 forClassName: "LWKWeather.WeatherDetails")

 AppWeatherModel.sharedInstance().loadWeatherModel()

 return true
}

The setClass(_:forClassName:) method tells NSKeyedUnarchiver to use the
class given by its first argument whenever it needs to unarchive data for a
class with the name given by its second argument. You should now be able
to successfully run the application.

Adding the WatchKit Extension and Creating the
App Group
The next step is a simple one and one that you are, by now, very familiar
with. Add a WatchKit App target to the project in the usual way, making sure
to choose Swift as the language and to exclude the notification and glance
scenes.

CHAPTER 7: Building a WatchKit App

313

If you build the project at this point, you may see the error “WatchKit apps
must have a deployment target equal to iOS 8.2.” It’s not obvious why
Xcode should force you to downgrade the deployment target for your Watch
app to iOS 8.2, but if you get this error, you have no choice but to do so. To
do that, select LWKWeather in the Project Navigator. Select the LWK Weather
WatchKit App target in the editor area and open the Build Settings tab. In
the Deployment section, you’ll see that the iOS Deployment Target is set to
iOS 8.3 (or iOS 8.4 or higher, depending on when you read this). Change
that setting to iOS 8.2, as shown in the bottom right corner of Figure 7-12,
and build again.

Figure 7-12. Changing the iOS Deployment Target for the WatchKit extension

The WatchKit extension is automatically given access to the code in the
SharedCode framework—to prove that, add the following import line in bold
to InterfaceController.swift and rebuild:

import WatchKit
import Foundation
import SharedCode

Now let’s see if the extension can use the weather data model. Add this
code to the awakeWithContext() method in InterfaceController.swift:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 let model = DisplayedCityInfoModel.sharedInstance()
 println(model.displayedCities)
}

This code should print the city codes for the cities that are configured in the
settings screen of the iOS application. Run the WatchKit app and look at
the Xcode console—you’ll see that it appears to have worked:

[5128581, 4887398, 2147714]

CHAPTER 7: Building a WatchKit App314

Unfortunately, those are actually the city codes for the cities that are used
by default if no persisted state was found. Why did that happen? Because
when we initialized the DisplayedCityInfoModel in the awakeWithContext()
method, it retrieved the displayed city list from NSUserDefaults—but that’s
the NSUserDefaults object in the extension’s container, not the one in the
iOS application’s container, which is where the displayed city list is persisted
(refer back to Figure 7-7 if you need some clarification on this point). Moving
the code to the shared framework was not enough—as I said in the section
“Sharing Displayed City Info” earlier in this chapter, we need to change
the model so that it uses the shared NSUserDefaults objects. Making that
change is very simple: open DisplayedCityInfoModel.swift and make the
following modification:

public class DisplayedCityInfoModel {
 // Holder for the shared instance of this model.
 private static var token: dispatch_once:t = 0
 private static var instance: DisplayedCityInfoModel?
 private static let userCitiesDefaultsKey = "displayedCityInfo"
 private static let useCelsiusDefaultsKey = "useCelsius"

 // Access to user defaults.
 private let userDefaults = NSUserDefaults.standardUserDefaults()
 private let userDefaults =
 NSUserDefaults(suiteName: "group.com.apress.lwkweathertest")!

Here, we’re using the NSUserDefaults initializer that looks for the user
defaults object in the shared container for an app group called group.com.
apress.lwkweathertest. The name of the app group is required to start with
“group.”, but the rest of the name is up to you. It’s made globally unique
because Xcode prepends to it your iOS developer program team id, which
means that if you use the same app group name as I did, your use of it won’t
clash with mine. You can, of course, choose a different group name if you
want to, as long as you use the same name everywhere.

We need to make a similar change in the implementation of the weather data
model. To do that, open WeatherModel.swift and make the following change
to the init() method:

public init() {
 let baseURL = NSFileManager.defaultManager().URLsForDirectory(
 NSSearchPathDirectory.CachesDirectory,
 inDomains: .UserDomainMask)[0] as! NSURL
 weatherDirURL = baseURL.URLByAppendingPathComponent("LWKWeather")
 let baseURL = NSFileManager.defaultManager().
 containerURLForSecurityApplicationGroupIdentifier(
 "group.com.apress.lwkweathertest")!
 weatherDirURL = baseURL.URLByAppendingPathComponent("LWKWeather")

CHAPTER 7: Building a WatchKit App

315

The containerURLForSecurityApplicationGroupIdentifier() method of
NSFileManager returns a URL that refers to the shared container for the
app group passed as its argument (the one labeled “Shared Container” in
Figure 7-7). With this change, the weather model code in the iOS application
and in the extension will look for their persisted data in the same place.

There’s one more thing we need to do before we can test whether these
changes work. By default, your application and WatchKit extension are not
permitted to use app groups. To fix that, you’ll need to add the App Group
capability to both the application and extension targets. You can only do
that if you have a paid iOS developer program membership. If you don’t
have one yet, you’ll need to sign up and wait until you are approved.

To add the App Group capability to the iOS application, select the
LWKWeather node at the top of the Project Navigator and then the LWKWeather
target in the left column in the editor area.

Select the Capabilities tab, and a little way down the screen you’ll see the
App Groups section and a segmented control that indicates that the App
Groups capability is currently turned off for this target (see Figure 7-13).

Caution Be sure to select the LWKWeather node in the Targets section, not
the one in Project section.

Figure 7-13. Configuring App Groups for the iOS application target

CHAPTER 7: Building a WatchKit App316

Toggle the segmented control to the ON position, and Xcode will prompt you
to choose your development team. Choose your team (if you are individual
developer, you only have one), and Xcode will do some work and then show
you the list of App Groups that your development team has already created,
which may be empty. Click the + icon under the group id list, and Xcode
will open a dialog that lets you enter a new group id. Enter the group name
that you want to use (choose com.apress.lwkweathertest if that’s what you
used in DisplayedCityInfoModel.swift and WeatherModel.swift) and click
OK. Xcode will add the app group you chose to your developer account and
update the display to show that the group is active, as shown in Figure 7-14.

Figure 7-14. The app group has been created and the App Groups capability is enabled for
the iOS application

Now you need to repeat the process to enable App Groups for the WatchKit
extension. Start by selecting LWK Weather WatchKit Extension in the Targets
section and then follow the same steps as before. This time, you’ll find that
the group id you need is already in the group id list, so you’ll just have to
select it.

Now the iOS application and the WatchKit extension both have access to
the shared container, but, of course, there’s no useful data there to recover.
In a production application, you would write code to migrate the data from
the iOS application’s container to the shared container when the user
upgrades to the version of your application that contains the WatchKit app.

CHAPTER 7: Building a WatchKit App

317

I’m not going to describe in detail how to do that here because the details
depend on how your data is persisted. For the weather application, two
simple steps would be required:

	Copy the relevant values from the NSUserDefaults
object in the application’s container to the one in the
shared container.

	Copy the files containing persisted weather data
from the iOS application’s LWKWeather directory in the
application’s container to the corresponding directory in
the shared container.

To demonstrate that we can now share data between the application and the
WatchKit extension, run the iOS application in the simulator (by choosing the
LWKWeather scheme) and add San Francisco to the list of displayed cities.
Stop the iOS application and use the LWK Weather WatchKit App scheme to
run the WatchKit app. Now, the code we added to InterfaceController.
swift will load the displayed city list from the shared NSUserDefaults object,
and you should see four city codes in the Xcode console:

[5128581, 4887398, 2147714, 5391959]

Updating the DisplayedCityInfoModel Class
As you saw earlier in this chapter, the DisplayedCityInfoModel class contains
the list of cities for which the user wants to see weather data and the setting
that controls whether temperatures are shown in Farenheit or Celsius. The
content of this model is persisted in the shared NSUserDefaults object, so
it’s accessible to both the iOS application and the WatchKit extension. The
model state can be changed by using the iOS application’s settings screens.
When any changes are made in these screens, we would like the WatchKit
app to update itself immediately to reflect those changes, if it’s active.
Usually, a notification is sent for changes to an NSUserDefaults object, but
that does not happen for a shared NSUserDefaults object, so we’ll have to
handle the notification ourselves. We’ll do that by using the Darwin bridge.

CHAPTER 7: Building a WatchKit App318

Here’s a summary of the modifications we’ll need to make to the
DisplayedCityInfoModel class:

	Whenever the value of its displayedCities or useCelsius
property changes, we’ll send a notification via the Darwin
bridge. We’ll also change the code that saves the new
property value to the NSUserDefaults object so that it does
nothing if the change is made in the extension. The code
in the extension that uses the DisplayedCityInfoModel
class doesn’t actually change these properties, but we’ll
make this change anyway, to guarantee that changes can
be only persisted in the iOS application.

	When it’s used in the extension, the
DisplayedCityInfoModel class will register to receive
notifications from the Darwin bridge. When it receives
a notification that a change has been made in the iOS
application’s version of the model, it will update itself
from the state in the shared container and notify its
delegate that something has changed. As you’ll see later,
in the extension, the model’s delegate will be an interface
controller, so the effect of this will be to cause the user
interface to update to reflect whatever the user changed.

Open DisplayedCityInfoModel.swift in the editor and let’s start working on
these changes. The first thing we need to do is make the class conform to
the DarwinNotificationObserver protocol so that it can receive notifications
sent over the Darwin bridge. To do that, make the changes shown in bold:

public class DisplayedCityInfoModel: DarwinNotificationObserver {
 // Code not shown

 // Notifies the delegate of a change in the model. This call is
 // always made in the main thread.
 private func notifyDelegate() {
 delegate?.displayedCityInfoDidChange(self)
 }

 // DarwinNotificationReceiver protocol conformance.
 // Handles notification of a change made in the iOS app.
 // Update the model state. As a side-effect, this will
 // notify the delegate if anything actually changes.
 @objc public func onNotificationReceived(name: String) {
 loadDisplayedCities()
 loadUseCelsius()
 }
}

CHAPTER 7: Building a WatchKit App

319

When a message is received from the Darwin bridge, the
onNotificationRecieved() method is called, which in turn calls the
(existing) loadDisplayedCities() and loadUseCelsius() methods.
These methods update the model state from the shared NSUserDefaults
object and, if anything actually changes, notify the registered
DisplayedCityInfoModelDelegate.

Next, we need to register the model to receive Darwin bridge notifications,
but only if it’s running in the extension. The following code takes care of that:

public class DisplayedCityInfoModel: DarwinNotificationObserver {
 // Holder for the shared instance of this model.
 private static var token: dispatch_once:t = 0
 private static var instance: DisplayedCityInfoModel?
 private static let userCitiesDefaultsKey = "displayedCityInfo"
 private static let useCelsiusDefaultsKey = "useCelsius"
 private static let inExtension: Bool =
 NSBundle.mainBundle().bundleIdentifier?.hasSuffix(
 "watchkitextension") ?? false
 private static let darwinPath = "DisplayedCityInfoModel"

 // Code not shown

 // Private initializer. Initializes the displayed cities
 // and use celsius properties from user defaults or to default values.
 private init() {
 loadDisplayedCities()
 loadUseCelsius()

 if (DisplayedCityInfoModel.inExtension) {
 DarwinNotificationCenterBridge.addObserver(self,
 forName: DisplayedCityInfoModel.darwinPath)
 }
 }

Note If you’re wondering why the onNotificationReceived() method
has the @objc attribute, it’s because it needs to be called from an Objective-C
method in the Foundation framework. To make that possible, you need to either
tag the method with @objc or make the class a subclass (directly or indirectly)
of NSObject. Here, the class is not derived from NSObject, so the @objc
attribute is required.

CHAPTER 7: Building a WatchKit App320

We set the inExtension property to true if the code is executing in an
extension. There is no direct way to know that’s the case, so we use an
indirect way—the bundle identifier of a WatchKit extension has the suffix
watchkitextension, so we can tell we are running in an extension by looking
at the identifier of the bundle in which the code was packaged.

We use the value of the inExtension property in several places in this class,
including in the initializer, shown previously, where we register to receive
Darwin notifications that have the name given by the darwinPath property,
which we initialize with the string DisplayedInfoCityModel. We can safely
define the notification name as a local constant because this class contains
both the sender and the observer of these notifications.

Next, we need to ensure that changes are saved to the NSUserDefaults
object only when they occur in the iOS application. To do that, update the
saveDisplayedCities() and saveUseCelsius() methods as shown here:

// Saves the updated displayed cities to the user defaults.
private func saveDisplayedCities() {
 if (!DisplayedCityInfoModel.inExtension) {
 userDefaults.setObject(displayedCities,
 forKey: DisplayedCityInfoModel.userCitiesDefaultsKey)
 userDefaults.synchronize()
 }
}

// Loads the use-celsius value from the user defaults.
private func loadUseCelsius() {
 useCelsius = userDefaults.boolForKey(
 DisplayedCityInfoModel.useCelsiusDefaultsKey)
}

// Saves the useCelsius value to the user defaults.
private func saveUseCelsius() {
 if (!DisplayedCityInfoModel.inExtension) {
 userDefaults.setBool(useCelsius,
 forKey: DisplayedCityInfoModel.useCelsiusDefaultsKey)
 userDefaults.synchronize()
 }
}

Tip To see the bundle identifier for the WatchKit extension, open the Info.
plist file in the LWK Weather WatchKit Extension group and check the
value of the Bundle Identifier key.

CHAPTER 7: Building a WatchKit App

321

In both cases, we change the code so that the updates are saved only if
the inExtension property is false, indicating that the code is running in the
iOS application. Notice that we also call the synchronize() method to make
sure that the iOS application’s change has been persisted before we send
a notification to the extension. To send that notification, we’ll add some
code to the notifyDelegate() method, which is always called to inform the
model’s delegate of a change after either of the two methods that we just
modified have been called:

// Notifies the delegate of a change in the model. This call is
// always made in the main thread.
private func notifyDelegate() {
 delegate?.displayedCityInfoDidChange(self)
 if (!DisplayedCityInfoModel.inExtension)
 // Notify extension across Darwin bridge
 DarwinNotificationCenterBridge.postNotificationForName(
 DisplayedCityInfoModel.darwinPath)
 }
}

Once again, we use the inExtension property to ensure that the notification
can only be sent from the iOS application to the extension and not vice versa.

That completes our work in the DisplayedCityInfoModel class. Let’s run a
quick test to make sure that the code works. Open InterfaceController.
swift and add the following code in bold:

class InterfaceController: WKInterfaceController {
 var delegate: DisplayedCityInfoModelDelegate?

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 let model = DisplayedCityInfoModel.sharedInstance()
 println(model.displayedCities)

 class ModelDelegate: DisplayedCityInfoModelDelegate {
 func displayedCityInfoDidChange(model: DisplayedCityInfoModel) {
 println("Displayed cities: \(model.displayedCities)")
 println("Use celsius: \(model.useCelsius)")
 }
 }
 delegate = ModelDelegate()
 model.delegate = delegate
 }

CHAPTER 7: Building a WatchKit App322

We create an internal class called ModelDelegate that conforms to the
DisplayedCityInfoModelDelegate protocol and assign an instance of it to be
the delegate of the DisplayedCityInfoModel. Any changes that are reported
to this class are printed to the console.

Notice that we also save a reference to the delegate in the delegate
property of the InterfaceController class. That’s necessary because
DisplayedCityInfoModel keeps only a weak reference to its delegate (which is
the correct way to manage delegates). If we didn’t keep a strong reference to
it in the delegate property, the ModelDelegate instance would be deallocated
as soon as the awakeWithContext() method returns control to its caller.

Now run the WatchKit application on the simulator, start the iOS application
manually from the iPhone simulator’s main screen, and open the settings
screen (the screen in the center in Figure 7-1). If you toggle the temperature
setting between Celsius and Farenheit, you should see the change reported in
the console, indicating that it’s being reflected in the extension’s copy of the
DisplayedCityInfoModel. You should also see changes to the displayed cities
reported if you reorder the cities in the list at the top of the screen, or press
the Add/Remove button and change the population of the displayed cities list.

Updating the Weather Model Classes
We discussed the changes that we would need to make to share weather
data between the iOS application and the extension in the section “Sharing
Weather Data” earlier in this chapter. The idea is that the extension will load
its in-memory copy of the weather model with the current state from the
shared container. When it needs to get updated data, the extension will send
a request to the iOS application, using the WKInterfaceController openPar
entApplication(_:reply:) method. Whenever the iOS application updates
the model, either in response to a request from the extension or because
it needed to use forecast data that had expired, it first persists the update
and then sends a message over the Darwin bridge, to which the extension
responds by getting updated data from the shared container and installing it
in its own copy of the model. In this section, we’ll implement the extension’s
implementation of the weather model.

Recall that the WeatherModel class is a base class that contains all the
weather data and some common code used to manage it. The iOS
application uses a concrete subclass called AppWeatherModel, together
with a loader class called OpenWeatherMapLoader, to fetch forecast data
from openweathermap.org and install it in the model. For the extension, we’ll
create a new subclass of WeatherModel and a new loader that requests
updated data from the iOS application instead of over the Internet.

In the Project Explorer, create a new group under LWK Weather WatchKit
Extension and call it Watch Weather Model. Right-click on the new

CHAPTER 7: Building a WatchKit App

323

group and select New File.... In the dialog that appears, select Cocoa
Touch Class from the iOS Source section. Click Next, name the class
WatchAppWeatherModel, and make it a subclass of WeatherModel. Ensure that
the language is Swift, click Next, and save the new class. You’ll immediately
be confronted with a compilation error because the WeatherModel base class
is in the shared framework. To fix that, make the following change at the top
of WatchAppWeatherModel.swift:

import UIKit
import WatchKit
import SharedCode

Now make the changes shown here in bold in the same file, to implement
the WatchAppWeatherModel class:

// MARK: -
// MARK: WATCH APP WEATHER MODEL

// The Watch App implementation of the weather model.
class WatchAppWeatherModel : WeatherModel {
 // Holder for the shared instance of this model.
 private static var token: dispatch_once:t = 0
 private static var instance: WatchAppWeatherModel?

 // Determines whether this model can update the persistent storage.
 // Overrides the default to not allow updates.
 override var readOnly: Bool {
 return false
 }

 // Gets the shared instance of this model.
 class func sharedInstance() -> WeatherModel {
 dispatch_once(&token) {
 self.instance = WatchAppWeatherModel()
 }
 return instance!
 }

 // Creates the loader for the weather data. Returns a
 // loader that fetches weather data from the iOS application
 override func createWeatherModelLoader() -> WeatherModelLoader {
 return WatchAppWeatherModelLoader(model: self)
 }
}

There are only two things worth commenting on in this code. The first is the
createWeatherModelLoader() method, which is called from the base class
when the model’s loader is required for the first time. It creates and returns an

CHAPTER 7: Building a WatchKit App324

instance of the WatchAppWeatherModelLoader class, which doesn’t exist yet, so
there should be a compilation error for this code. The other point of interest
is the readOnly property. This property determines whether new model data
will be persisted into the shared container. We only want the iOS application
to persist model data, so in the AppWeatherModel class this property is always
true, but here we override the property definition so that it’s always false.

Now let’s implement the loader class. Add the following code at the bottom
of the same file:

// MARK: -
// MARK: WATCH APP WEATHER MODEL LOADER
private class WatchAppWeatherModelLoader:
 WeatherModelLoader, DarwinNotificationObserver {
 // The model for which this class will load data.
 private let model: WeatherModel
 private var registeredCityCodes = Set<Int>()

 init(model: WeatherModel) {
 self.model = model
 }

 // Requests that the loader obtain weather details for a given
 // set of cities. This method is always called on the main thread.
 func fetchWeatherForCities(cityCodes: [Int]) {
 let userInfo: [NSObject: AnyObject] =
 [WatchAppWeatherInterface.LoadWeatherCommandName : cityCodes]
 for cityCode in cityCodes {
 if !registeredCityCodes.contains(cityCode) {
 registeredCityCodes.insert(cityCode)
 DarwinNotificationCenterBridge.addObserver(self,
 forName: "\(cityCode)")
 }
 }
 let result = WKInterfaceController.openParentApplication(
 userInfo, reply: { (results, error) in
 if let replyData = results?[
 WatchAppWeatherInterface.LoadWeatherReplyName] as? NSData {
 if let cityWeatherItems =
 NSKeyedUnarchiver.unarchiveObjectWithData(replyData)
 as? [CityWeather] {
 for cityWeather in cityWeatherItems {
 let cityCode = cityWeather.cityCode
 self.model.installNewWeatherForCity(cityCode,
 detailsByDay: cityWeather.detailsByDay)
 }
 }
 }
 })
 }

CHAPTER 7: Building a WatchKit App

325

 // Handles notification of data received for a city. The
 // name is the city code as a string
 @objc func onNotificationReceived(name: String) {
 if let cityCode = name.toInt(),
 let cityWeather = model.getArchivedWeatherForCity(cityCode) {
 model.installNewWeatherForCity(cityCode,
 detailsByDay: cityWeather.detailsByDay)
 }
 }
}

The core of this class is in the fetchWeatherForCities() method, which is
called when forecast data is required, but the data is either not currently in
the model or is out of date. In this case, we need to delegate the task of
getting new data to the iOS application by calling the openParentApplicatio
n(_:reply:) method of WKInterfaceController. The iOS application figures
out what it’s being asked to do from the information in a dictionary that’s
passed with the call. Here, we’re creating the dictionary and initializing it with
an array containing the city codes for the cities we need data for, using the
key LoadWeatherCommandName. That key is not defined in this class because
it also needs to be used by the code in the iOS application that handles
the request. Instead, it’s in a small class called WatchAppWeatherInterface,
which we’ll create shortly.

The next block of code deserves a little explanation:

for cityCode in cityCodes {
 if !registeredCityCodes.contains(cityCode) {
 registeredCityCodes.insert(cityCode)
 DarwinNotificationCenterBridge.addObserver(self,
 forName: "\(cityCode)")
 }
}

The iOS application informs us that new data is available by sending a
notification over the Darwin bridge using the string form of the city code
as the notification name. We need to register as an observer of the Darwin
bridge for each city we request data for, but we only need to do that the
first time we request data for any given city. To ensure that we don’t register
more than once, we keep the city codes we have registered for in the
registeredCityCodes array. Once we have registered, we never unregister.
There is little reason to unregister—the model is a singleton that should
remain alive as long as the extension is active, and staying registered means
that we’ll also be updated if the iOS application fetches new weather data
for itself, which could save a round trip if the extension needs that same
data at some future point (which is likely, because the iOS application and
the WatchKit application always display forcasts for the same cities).

CHAPTER 7: Building a WatchKit App326

Next, we make the call to the iOS application, passing a closure that
processes the reply and the dictionary containing the command and the
array of city codes

let result = WKInterfaceController.openParentApplication(
 userInfo, reply: { (results, error) in
 if let replyData = results?[
 WatchAppWeatherInterface.LoadWeatherReplyName] as? NSData {
 if let cityWeatherItems =
 NSKeyedUnarchiver.unarchiveObjectWithData(replyData)
 as? [CityWeather] {
 for cityWeather in cityWeatherItems {
 let cityCode = cityWeather.cityCode
 self.model.installNewWeatherForCity(cityCode,
 detailsByDay: cityWeather.detailsByDay)
 }
 }
 }
})

We’ll implement the handler code in the iOS application that processes this
request in the next section, so for now, I’ll just describe what it does. When
it’s called, the handler checks whether it already has current data for any of
the cities in the request that it received. It collects the CityWeather objects for
each city for which current data is available into an array, serializes the array
into an NSData object using NSKeyedArchiver, and places it into a dictionary
under the key LoadWeatherReplyName, which is (or rather, soon will be) defined
in the WatchAppWeatherInterface class and returns that dictionary by calling
the reply closure that’s passed to it along with the request. The closure in
the previous code is invoked when the reply is received in the extension. It
checks whether the reply data contains a key called LoadWeatherReplyName
with a value of type NSData, and if it does, the closure tries to unarchive it into
an array of CityWeather objects. If this works, it uses the WeatherModel’s inst
allNewWeatherForCity(_:detailsByDay:) method to add the forecast data to
the in-memory copy of the model. This will cause notifications to be delivered
to registered observers of the model in the usual way.

It’s more likely that the iOS application does not have the weather data that
was requested, in which case the handler will request it. When it arrives, it
sends a notification over the Darwin bridge, which will be delivered to the
WatchAppWeatherModelLoader class since we registered it to receive these
notifications earlier in the implementation of this method. We still need to

CHAPTER 7: Building a WatchKit App

327

add the method that handles the notification. To do that, add the following
code at the end of the class:

// Handles notification of data received for a city. The
// name is the city code as a string
@objc func onNotificationReceived(name: String) {
 if let cityCode = name.toInt(),
 let cityWeather = model.getArchivedWeatherForCity(cityCode) {
 model.installNewWeatherForCity(cityCode,
 detailsByDay: cityWeather.detailsByDay)
 }
}

The notification name is the city code for the city new data is available for,
in string form, which is first converted to an Int. The data itself cannot
be sent over the Darwin bridge along with the notification. Instead,
it will have been written to the shared container. To get it, we call the
getArchivedWeatherForCity() method, passing the city’s code. You’ll find
the implementation of this method, which is not discussed here, in the
WeatherModel class. If the data is present (and it should be, because it’s just
been updated), the getArchivedWeatherForCity() method returns it as a
CityWeather object, and we use the WeatherModel installNewWeatherFor
City(_:detailsByDay:) method to add it to the local, in-memory copy of
the model, just as we did with data that was returned directly from the call
to the iOS application. Adding the data causes a notification to be sent. The
observers are actually interface controllers, so this notification will cause
the user interface to be updated with the new data.

The only thing left to do is create the WatchAppWeatherInterface class
containing the constants that are used in the informal API between the
extension and the iOS application. Because it’s used in both places, this
class needs to be in the embedded framework, so right-click the Weather
Model group under the SharedCode group and select New File.... From the
iOS Source section of the dialog, choose Swift File and click Next. Name
the file WatchAppWeatherInterface and save it. When the file opens in the
editor, add the following code in bold to it:

public class WatchAppWeatherInterface {
 // Command used to request loading of weather for cities.
 // Data must be an array of city codes.
 public static let LoadWeatherCommandName = "LoadWeatherCommand"

 // Reply used to return city weather data. Data is an array
 // of CityWeather objects, archived as NSData.
 public static let LoadWeatherReplyName = "LoadWeatherReply"
}

CHAPTER 7: Building a WatchKit App328

You should now be able to build the project without any compilation errors.

Adding the WatchKit Request Handler
As you just saw, the WatchAppWeatherModelLoader class requests forecast
information from the iOS application by using the openParentApplicatio
n(_:reply:) method of WKInterfaceController. For this to work, the iOS
application’s UIApplicationDelegate needs to implement the application(_
:handleWatchKitExtensionRequest:reply:) method. In “Sending a Request
to an iOS Application” earlier in this chapter, you saw how this application
delegate method is typically implemented. For the weather application,
we’re going to use the same basic code that you saw earlier to implement
the application(_:handleWatchKitExtensionRequest:reply:) method,
but the logic that is specific to the weather application will be in a separate
class. To get started, open the file AppDelegate.swift in the editor and add
the following code just above the closing brace:

 // MARK: -
 // MARK: Handler for requests from the WatchKit extension
 func application(application: UIApplication,
 handleWatchKitExtensionRequest userInfo: [NSObject : AnyObject]?,
 reply: (([NSObject : AnyObject]!) -> Void)!) {
 var taskId: UIBackgroundTaskIdentifier = 0
 taskId = application.beginBackgroundTaskWithExpirationHandler({
 // Out of time -- just send a nil reply.
 reply(nil)
 application.endBackgroundTask(taskId)
 })

 dispatch_async(dispatch_get_main_queue(), {
 let results =
 WatchAppWeatherRequestHandler.sharedInstance().
 handleWatchExtensionRequest(userInfo!)
 reply(results)

 let endTime = dispatch_time(DISPATCH_TIME_NOW,
 Int64(2 * NSEC_PER_SEC))
 dispatch_after(endTime, dispatch_get_main_queue(), {
 application.endBackgroundTask(taskId);
 })
 });
 }
}

CHAPTER 7: Building a WatchKit App

329

You should recognize most of this code from our earlier discussion. The
part that’s specific to the weather application is bracketed by the dispatch_
async() call, where we call the handleWatchExtensionRequest() method of
the WatchAppWeatherRequestHandler class, which we’ll create shortly. We
decided what this method needs to do during the implementation of the
WatchAppWeatherModelLoader class in the previous section: if it has current
forecast data for any of the cities in the request from the extension, it should
return it in the form of an array of CityWeather objects. Whatever is returned
is sent back to the WatchKit extension by calling the reply closure. For the
other cities, it needs to request a new forecast and send notifications via the
Darwin bridge when it arrives.

Now let’s implement the WatchAppWeatherRequestHandler class. Select
the LWKWeather group in the Project Navigator, right-click, and add
a nested group called Watch Communication. Right-click on the new
group, select New File..., and then select Swift File from the iOS
Source section of the dialog that appears. Click Next, name the file
WatchAppWeatherRequestHandler.swift, and save it.

This class is going to be a singleton, so let’s first add the boilerplate code
that’s needed to implement a sharedInstance() method that returns the
singleton instance:

import Foundation
import SharedCode

public class WatchAppWeatherRequestHandler {
 // Holder for the shared instance of this class.
 private static var token: dispatch_once:t = 0
 private static var instance: WatchAppWeatherRequestHandler?

 // Gets the shared instance of this class.
 public class func sharedInstance() -> WatchAppWeatherRequestHandler {
 dispatch_once(&token) {
 self.instance = WatchAppWeatherRequestHandler()
 }
 return instance!
 }
}

From our earlier discussions about the way in which this class should
work, we know that it needs to register itself as an observer of the iOS
application’s in-memory weather model so that it can notify the extension

CHAPTER 7: Building a WatchKit App330

when the model changes. The natural place to register for this notification is
in an initializer. Add the code for the initializer and a method that handles the
notifications:

 // Gets the shared instance of this class.
 public class func sharedInstance() -> WatchAppWeatherRequestHandler {
 dispatch_once(&token) {
 self.instance = WatchAppWeatherRequestHandler()
 }
 return instance!
 }

 // Private initializer to ensure a single instance
 private init() {
 // Register for notifications of weather changes/load errors.
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "onNotification:",
 name: nil, object: AppWeatherModel.sharedInstance())
 }

 // Handler for notifications from the iOS app weather model.
 @objc public func onNotification(notification: NSNotification) {
 if notification.name ==
 WeatherModel.NotificationNames.weatherModelChanged
 || notification.name ==
 WeatherModel.NotificationNames.weatherModelLoadFailed {
 // Notification that weather data has been loaded or
 // load failed. Send to WatchKit extension via Darwin
 // notification center, if the expected payload is present.
 if let userInfo = notification.userInfo,
 let cityCodes = userInfo["cityCodes"] as? [Int] {
 for cityCode in cityCodes {
 // Send a Darwin center notification using the
 // city code as the name.
 DarwinNotificationCenterBridge.
 postNotificationForName("\(cityCode)")
 }
 }
 }
 }
}

The notification from the model (which is the application’s AppWeatherModel
instance) will report either a change in the model due to the arrival of new
forecast data, or a failure to load updated weather. In either case, the
notification should include the city or cities to which it relates as an array
of city codes stored in the userInfo directionary under the key cityCodes.

CHAPTER 7: Building a WatchKit App

331

If it does, the onNotification() method sends over the Darwin bridge
one notification for each city, with the city code (in string form) as the
notification name. You’ve already seen the code that receives and handles
these messages—it’s in the onNotificationReceived() method in the
WatchAppWeatherModel class. Review the code or the description of it in
“Updating the Weather Model Classes” if you have forgotten how these
notifications are processed in the WatchKit extension.

Finally, we need to implement the handleWatchKitExtensionRequest()
method. Add the following code to the WatchAppWeatherRequestHandler
class:

// Handles a request from the Watch extension. The command name
// is extracted from the request dictionary, the request is handled
// and the reply is stored in a new dictionary, which is returned to
// the caller. This method must be called in the main thread.
public func handleWatchExtensionRequest(
 request: [NSObject : AnyObject]) -> [NSObject : AnyObject] {
 assert(NSThread.isMainThread())

 // Create the reply dictionary.
 var reply = [NSObject : AnyObject]()

 // Get the city codes for which we need to get weather data.
 if let cityCodes = request
 [WatchAppWeatherInterface.LoadWeatherCommandName] as? [Int] {
 let timeNow = NSDate()
 var citiesToLoad = [Int]()

 // For each requested city, get the current weather state. If
 // there is none or if the weather is old, request a reload.
 for cityCode in cityCodes {
 let currentWeather = AppWeatherModel.sharedInstance().
 weatherByCity[cityCode]
 if currentWeather == nil || currentWeather!.shouldReload {
 // No weather or the weather is out of date
 citiesToLoad.append(cityCode)
 }
 }

 // Initiate load for any cities for which we do not have
 // current data. Later, we will get notification of success or
 // failure from the notification center and we will send a message
 // to the WatchKit extension as a Darwin notification
 if !citiesToLoad.isEmpty {
 AppWeatherModel.sharedInstance().fetchWeatherForCities(
 citiesToLoad, always: false)
 }

CHAPTER 7: Building a WatchKit App332

 // Now get the current state for each requested city.
 var cityWeatherList = [CityWeather]()
 for cityCode in cityCodes {
 if let currentWeather = AppWeatherModel.sharedInstance().
 weatherByCity[cityCode] {
 cityWeatherList.append(currentWeather)
 }
 }

 // Encode the reply data as NSData and add it to the reply map.
 let data = NSKeyedArchiver.archivedDataWithRootObject(
 cityWeatherList)
 reply[WatchAppWeatherInterface.LoadWeatherReplyName] = data
 }

 return reply
}

You already know what this method does, so let’s briefly go through how it
does it. The first few lines get the array of city codes for which weather data
is required from the request dictionary. For each city, the AppWeatherModel’s
weatherByCity dictionary is checked to see if there is current data. If there
isn’t, the city code is added to the citiesToLoad array. Once all of the
requested cities have been checked, if this array is not empty, it is passed
to the AppWeatherModel’s fetchWeatherForCities() method, which will
arrange for new data for each city to be requested from the openweathermap.
org server. That data will arrive at some time in the future, and its arrival will
be notified to the WatchKit extension by the code in the onNotification()
method that we just added to this class.

Next, the CityWeather objects for all the cities that were in the request
dictionary passed to the method are added to the cityWeatherList array,
which is then archived into an NSData object and returned to the caller of this
method. For those cities for which current data is available, the CityWeather
object that is sent to the extension will contain the weather data and will be
in the LOADED state. For the cities for which weather data has not yet been
loaded or has expired, the CityWeather object will be in LOADING state and
will contain the expired data, if there is any.

That completes the implementation of the WatchAppWeatherRequestHandler
class. All that remains is to implement the two interface controllers for the
WatchKit application screens, which is our task for the final two sections of
this chapter.

Note You’ll find a copy of the source code for the project in its current state in
the folder 7 – LWKWeather – Interim in the example source code archive.

CHAPTER 7: Building a WatchKit App

333

Implementing the Main Interface Controller
Finally, we are going to start building the user interface of our WatchKit
weather application. We’ll start, logically enough, with the main interface
controller, the screen that the user sees when the application is launched.
A typical example of this is shown in Figure 7-15.

Figure 7-15. The main interface controller

This screen consists of a table that displays the cities that are configured
in the DisplayedCityInfoModel. The rows in the table map one-to-one to
the city codes in the model’s displayedCities property. Because the rows
are all of the same type, we’re going to need only one table row controller
class, which will contain three user interface objects: two labels to display
the city name and the temperature and an image that displays an icon
that represents the forecast weather. We can get the city name from the
city’s City object in the CityModel, and the weather information will come
from the WatchAppWeatherModel class. Let’s start by building the table
row controller in the storyboard and then we’ll discuss how to create and
manage the table itself.

Adding the Table to the Storyboard
Select Interface.storyboard in the Project Navigator to open the
storyboard in the editor. Then drag a table from the Object Library and drop
it onto the empty interface controller that Xcode gave us when we created

CHAPTER 7: Building a WatchKit App334

the project. Open InterfaceController.swift in the Assistant Editor and
Control-drag from the table to the top of the class definition to create
an outlet called table. While we have this file open, delete the delegate
property and the test code that we added to the awakeWithContext()
method earlier. When you’ve done that, the top of the class definition should
look like this:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var table: WKInterfaceTable!

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 }

Now let’s construct the table row controller. Drag a label from the Object
Library and drop it onto the table row in the storyboard. This is the label that
will display the city name, so we want it to always be aligned to the left of
the row, which is the default. We would also like it to be vertically centered,
so change the Vertical attribute to Center. City names vary considerably in
width, from Paris at one extreme to Bridgetown, Barbados at the other. It’s
not really going to be possible to always fit the whole name in the space
available on the screen, especially given that we also need to include the
temperature and an icon. Furthermore, we don’t want a long city name to
steal space from the other two items in the row. To stop that from
happening, fix the width of the city label by setting its Width attribute to
Relative to Container and the associated value to 0.55. We’ll also allow
WatchKit to reduce the font size a little so that the user can see as much as
possible of the city name even if it’s quite long. To do that, set the Min Scale
attribute to 0.6. You can see the effect of this in the row for San Francisco in
Figure 7-15.

Now let’s add the temperature label. Drag another label onto the row
controller and drop it to the right of the city name label. To position it
properly, set its Horizontal attribute to Right and its Vertical attribute to
Center. To get an idea of how wide it’s going to be at run time, change its
text to 82.

Note Instead of allowing the font to scale, we could set the Lines attribute
to 0 to allow long names to overflow onto a second line. That has the effect of
automatically making the table row taller to match, but unfortunately, it doesn’t
look very appealing—try it and see for yourself.

CHAPTER 7: Building a WatchKit App

335

Finally, drag and drop an image object to the right of the temperature label.
If you have difficulty positioning it properly, drag it over the Document
Outline instead and drop it below the temperature label (which shows up as
82). Set its Mode attribute to Center, its Horizontal attribute to Right, and
its Vertical attribute to Center. At the moment, the image is taking up too
much space in the storyboard and it’s hiding the temperature label. That’s
because it’s set to fit its content, and the storyboard editor has no idea how
large the image that it contains will be. In fact, the weather icons are all
24-point squares, so we might as well use that fact to make the storyboard
look like it will at run time. To do that, change the Width and Height
attributes of the image to Fixed and set their associated values to 24. The
row controller should now look like the one shown in Figure 7-16.

Figure 7-16. The table row controller for the main interface controller

Our next task is to create the row controller class and add outlets that are
linked to the user interface objects that we just added in the storyboard.
In the Project Navigator, right-click the LWK Weather WatchKit Extension
group and in the pop-up, select New Group. Change the group’s name
to Main Interface Controller. We’re going to use this group to keep
the code for the main interface controller in one place, so drag the
file InterfaceController.swift into it. Right-click on the group and
select New File... from the pop-up. In the dialog that appears, choose
Swift File from the iOS Source section and click Next. Name the file

CHAPTER 7: Building a WatchKit App336

CityTableRowController.swift and save it. With the file open in the editor,
add the import statement and the following empty class definition to it:

import Foundation
import WatchKit

class CityTableRowController : NSObject {
}

Now switch back to Interface.storyboard and select the table row
controller in the Document Outline. In the Attributes Inspector, set the
Identifier attribute to CityTableRowController and leave the Selectable
attribute checked because we want the user to be able to tap on a row
to push another interface controller with a more detailed view of the
weather for the city in that row. Open the Identity Inspector and set the
Class attribute to CityTableRowController to link the row controller in the
storyboard to its implementation class. With the link made, we can create
outlets for the three user interface objects in the row controller. Open
CityTableRowController.swift in the Assistant Editor and Control-drag
from the city name label to the top of the class definition to create an outlet
called cityLabel. Do the same with the temperature label and the image,
naming the outlets temperatureLabel and image respectively. When you’ve
done that, the row controller class should look like this:

class CityTableRowController : NSObject {
 @IBOutlet weak var cityLabel: WKInterfaceLabel!
 @IBOutlet weak var temperatureLabel: WKInterfaceLabel!
 @IBOutlet weak var image: WKInterfaceImage!
}

That completes the storyboard for the main interface controller. We’re
almost ready to write the controller code. The last thing we need to do is
add the weather icons for the image object. You’ll find these icons in the
7 – LWKWeather Images folder. Select Images.xcassets in the LWK Weather
WatchKit App group and then drag all the images apart from AppIcon40@2x.
png into it. The image you didn’t drag is the application’s home screen icon.
To install that, select the AppIcon image set and drag AppIcon40@2x.png into
the slot labeled Home Screen (All), as shown in Figure 7-17.

http://mailto:AppIcon40@2x.png/
http://mailto:AppIcon40@2x.png/
http://mailto:AppIcon40@2x.png/

CHAPTER 7: Building a WatchKit App

337

Building and Maintaining the Table
All the code in the interface controller is concerned with constructing the
table based on the content of the DisplayedCityInfoModel and the WatchKit
extension’s copy of the weather model and keeping it up to date with
changes in either of those models. Here’s the overall plan:

	We’ll build the initial set of table rows when the
controller’s awakeWithContext() method is called.
Because the extension may not have been active for
some time (or at all, if this is the first time the user has
started the WatchKit app), some or all of the weather
data that is available may not be current, so we’ll
request updated data if necessary.

	When the interface controller is activated, we’ll check
whether the table is still displaying current data. This
is necessary because while the controller was inactive,
the user could have changed the list of displayed cities
or the temperature display preference, and some or all
of the weather data may have expired. In order to be
notified when new weather data arrives, we’ll register as
an observer of the weather model.

	Although it’s unlikely, weather data may expire while
the controller is active. To handle that, we’ll run a timer
that’s set to expire when the oldest data in the table
passes its reload time. When this happens, we’ll refresh
the data and restart the timer.

	Also while the controller is active, the user may use
the iOS application’s configuration screens to change
the list of displayed cities or the temperature display
preference. To keep track of this, we’ll register as an
observer of the DisplayedCityInfoModel and we’ll
update the table if any changes are notified.

Figure 7-17. The asset catalog with the home screen icon installed

CHAPTER 7: Building a WatchKit App338

	Finally, the iOS application may fetch new weather data
at any time. When it does so, it will send a message
over the Darwin bridge. If the WatchKit app is active
(that is, not suspended and not terminated) when this
happens, it will update its copy of the weather model,
and we’ll need to show the new data. This will happen
automatically, because the interface controller is already
an observer of the weather model for the purpose of
receiving new data in responses to its own requests.

As you can see, most of the logic is going to be concerned with building and
updating the table rows. We’ll implement this logic in two methods:

	The updateTable() method will assume that the current
set of table row controllers matches the list of cities in
the DisplayedCityInfoModel and will update the user
interface objects in each row based on the data that’s
currently in the WatchKit app’s copy of the weather
model. As it does so, it will check the reloadTime in the
CityWeather object for each city in the table and set a
timer to expire at the earliest reload time, at which point
new data will be requested if it hasn’t already been
received.

	The checkAndRebuildTable() method will compare the
cities in the table row controllers to the list of displayed
cities in the DisplayedCityInfoModel. If they don’t
match, the table will be rebuilt, and the updateTable()
method will then be called to install the data in each row.

We’ll start by implementing these two methods. Once we’ve done so, it
will be a simple task to write the rest of the code. First, let’s add some
properties that these methods need. Add the following code shown in bold
at the top of the InterfaceController class:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var table: WKInterfaceTable!

 // The cities for which data is currently displayed.
 private var displayedCityCodes = [Int]()

 // Timer used to reload weather.
 private var reloadTimer: NSTimer?

 // Next city for which data should be reloaded.
 private var reloadCityCode: Int?

CHAPTER 7: Building a WatchKit App

339

The reloadTimer property keeps a reference to the timer that will fire
when the oldest weather data in the table expires and the reloadCityCode
property is the city code of the city for that row. The displayedCityCodes
array keeps the city codes for each row in the table, in display order. In
the checkAndRebuildTable() method, we’ll compare this array to the
displayedCities property of the DisplayedCityInfoModel to determine
whether we need to rebuild the table.

Next, add an initializer:

private var reloadCityCode: Int?

// MARK: -
// MARK: Initialization
override init() {
 super.init()
 WatchAppWeatherModel.sharedInstance().loadWeatherModel()
}

The initializer just loads the WatchAppWeatherModel from the persisted state
in the shared container. It’s possible that neither the WatchKit application
nor the iOS application has been used for some time, in which case some or
all of the data that was loaded may have expired. We’ll find out whether this
is the case when we call checkAndRebuildTable() in the awakeWithContext()
method.

Now add the implementation of the checkAndRebuildTable() method:

// MARK: -
// MARK: Table construction
// Rebuilds the table rows if the displayed cities list
// changes and recreates the table data if so.
private func checkAndRebuildTable() {
 DisplayedCityInfoModel.sharedInstance().loadDisplayedCities()
 let cityCodes =
 DisplayedCityInfoModel.sharedInstance().displayedCities;
 let citiesChanged = cityCodes != displayedCityCodes
 if citiesChanged {
 // Cities changing.
 displayedCityCodes = cityCodes
 table.setNumberOfRows(displayedCityCodes.count,
 withRowType: "CityTableRowController")
 WatchAppWeatherModel.sharedInstance()
 .fetchWeatherForCities(displayedCityCodes, always: false)
 }
}

CHAPTER 7: Building a WatchKit App340

This method first loads the list of displayed cities from the shared container,
to be sure it is up to date. Then the list of cities in its displayedCityCodes
is compared to cityCodes, the property we just added to hold the list of
city codes that are in the table. If these are the same, then the table already
has the correct set of rows (although their content may be out of date). If
they are not the same, we update the cityCodes variable and then call the
setNumberOfRows(_:withRowTypes:) method of the table to replace the
existing rows (if any) with the correct number of new ones, all using the row
controller with identifier CityTableRowController. We then call the fetchWe
atherForCities(_:always:) method of WatchAppWeatherModel to get up-to-
date weather data for all the cities in the table. This will only actually request
new data for a city if the data that is already in the model has expired, so it’s
possible that this call will not actually need to do anything.

The checkAndRebuildTable() method makes sure that the table contains the
correct rows, but it does not populate those rows with any data. That’s the
function of the updateTable() method, which loops over all the table rows,
installing the forecast data for each city. Add the implementation shown here
to the InterfaceController class:

// MARK: -
// MARK: Table updates
// Updates the table based on the current weather data.
private func updateTable() {
 var reloadTime = NSDate.distantFuture() as! NSDate
 reloadCityCode = nil;
 for index in 0..<displayedCityCodes.count {
 var imageName: String?
 var temperature = ""
 let rowController = table.rowControllerAtIndex(index)
 as! CityTableRowController
 let cityCode = displayedCityCodes[index]
 let cityName = CityModel.sharedInstance().cityForCode(
 cityCode)?.name ?? "Unknown City"
 if let cityWeather = WatchAppWeatherModel.sharedInstance().
 weatherByCity[cityCode],
 let weatherDetails = cityWeather.currentWeather
 where cityWeather.state == .LOADED {
 if let temp = weatherDetails.temperature {
 temperature = WeatherUtilities.temperatureString(temp)
 }
 imageName = WeatherUtilities.selectWeatherImage(
 weatherDetails.weather,
 day: weatherDetails.day ?? true)

 // Update the reloadTime to the earliest reload time
 // encountered so far

CHAPTER 7: Building a WatchKit App

341

 let thisReloadTime = cityWeather.reloadTime
 if thisReloadTime.compare(reloadTime) == .OrderedAscending {
 reloadTime = thisReloadTime
 reloadCityCode = cityCode
 }
 }

 rowController.cityLabel.setText(cityName)
 rowController.temperatureLabel.setText(temperature)
 rowController.image.setImageNamed(imageName)
 }

 // Start a timer so that the weather is reloaded when it expires.
 if (reloadCityCode != nil) {
 if (reloadTimer == nil || !reloadTimer!.valid ||
 reloadTimer!.fireDate.compare(reloadTime)
 == .OrderedDescending) {
 reloadTimer?.invalidate()
 reloadTimer = NSTimer(fireDate: reloadTime, interval: 0,
 target: self, selector: "reloadWeather:",
 userInfo: nil, repeats: false)
 NSRunLoop.currentRunLoop().addTimer(reloadTimer!,
 forMode: NSDefaultRunLoopMode)
 }
 }
}

The city code for row N in the table can be obtained from the entry with
index N in the displayedCityCodes property, which will have been set by the
checkAndRebuildTable() method. The updateTable() method loops over
this property, getting the city code and the row controller for the current
row. Given the city code, the city name can be obtained from the City
object in the CityModel and the weather information from the weatherByCity
dictionary of the weather model. If the weather data exists and it’s in
loaded state, the temperature is converted to string form and an image
that represents the current weather condition is obtained by calling the
selectWeatherImage(_:day:) method in the WeatherUtilities class, which
is shared with the iOS application. I’m not going to show that method here
because it’s just a big switch statement that maps a weather condition (of
type WeatherDetails.WeatherCondition, such as Thunder, Drizzle, and
so on) to the name of one of the images we added to the Images.xcassets
file of the WatchKit App target. The only slight twist is that there are two
different images for each different weather condition: one to be used
when it’s daytime, the other for the night, selected by the value of the day
argument. If there is no weather data available or the weather is still being
loaded, the temperature string will be empty and the image is nil. Finally,
the city name, temperature, and weather icon are installed in the two labels
and the image in the row controller for the current row.

CHAPTER 7: Building a WatchKit App342

Once all the table rows have been updated, a timer is started that will expire
at the earliest reloadTime of all the items of weather data in the table. The
rather complicated if statement at the end of the method ensures that a
timer is not started if there’s already a timer running that expires at the same
time, or if none of the table rows contains valid data. When the timer expires,
the reloadWeather() method will be called. Here’s the code for that method,
which you should add to the class:

// Reloads data for the all cities for which the weather
// data has expired.
func reloadWeather(_: NSTimer) {
 var citiesToReload = [Int]()
 let cityCodes = DisplayedCityInfoModel.sharedInstance().displayedCities
 for cityCode in cityCodes {
 if let cityWeather = WatchAppWeatherModel.sharedInstance().
 weatherByCity[cityCode] {
 if cityWeather.shouldReload {
 citiesToReload.append(cityCode)
 }
 }
 }

 if citiesToReload.count > 0 {
 WatchAppWeatherModel.sharedInstance().
 fetchWeatherForCities(citiesToReload, always: true)
 }
}

This method is another loop over all the displayed cities, checking whether
its weather data needs to be reloaded by inspecting the shouldReload
property of its CityWeather object. This is a computed property that returns
true if the reload time has passed and the weather data is not currently
being reloaded. The city codes of all the cities for which this property is true
are added to the citiesToReload array, which is then passed to the fetchWea
therForCities(_:always:) method of the WatchAppWeatherModel class, with
which you should by now be very familiar.

We’ve almost completed the implementation of this class. All we need to do
now is handle the interface controller’s lifecycle events and the notifications
that are delivered when the weather model or the DisplayedCityInfoModel
changes. Let’s start with the lifecycle methods. Add the code shown in bold
to awakeWithContext(), willActivate(), and didDeactivate():

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 setTitle("Weather")

CHAPTER 7: Building a WatchKit App

343

 // Configure interface objects here.
 // Build the table based on the current displayed
 // cities.
 checkAndRebuildTable()
}

override func willActivate() {
 super.willActivate()

 // Listen to changes in the displayed city list and
 // the celsius/farenheit setting.
 DisplayedCityInfoModel.sharedInstance().delegate = self

 // Rebuild the table if the displayed cities list or the
 // temperature setting has changed. Update based on the
 // current weather data.
 checkAndRebuildTable()
 updateTable()

 // Observe notification of weather model changes.
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "onNotification:", name: nil,
 object: WatchAppWeatherModel.sharedInstance())
}

override func didDeactivate() {
 DisplayedCityInfoModel.sharedInstance().delegate = nil
 NSNotificationCenter.defaultCenter().removeObserver(self)
 reloadTimer?.invalidate()
}

We’ve already mentioned what needs to be done in these methods, so this
code should not contain any surprises. In the awakeWithContext() method,
we set the controller title (although we could also have set that in the
storyboard) and call the checkAndRebuildTable() method to make sure that
table has the correct initial set of rows.

In willActivate(), we register ourselves as the delegate of the
DisplayedCityInfoModel so that we are notified when the user changes any
configuration information. At the moment, there is a compilation error for this
code because the InterfaceController class does not yet conform to the
delegate protocol. We’ll fix that shortly. Next, we call checkAndRebuildTable()
and updateTable() to install the most current data in the table, and finally we
register for notifications of changes in the weather model.

The didDeactivate() method simply reverses some of the steps
we took in willActivate(), unregistering as the delegate of the
DisplayedCityInfoModel and for notifications from the model.

CHAPTER 7: Building a WatchKit App344

Now let’s add the conformance to the DisplayedCityInfoModel delegate
protocol. Start by declaring conformance in the class definition:

class InterfaceController:
 WKInterfaceController, DisplayedCityInfoModelDelegate {

Then, add the method that’s called to report changes in the model:

// MARK: -
// MARK: DisplayedCityInfoModelDelegate implementation
// Method called when the list of displayed cities or the temperature
// setting changes. Rebuild the table if necessary and update the
// table content.
func displayedCityInfoDidChange(model: DisplayedCityInfoModel) {
 checkAndRebuildTable()
 updateTable()
}

If this method is called, then either the user has switched between Celsius
and Farenheit or the list of displayed cities has changed. We handle both
cases by calling checkAndRebuildTable() followed by updateTable().

Finally, add the following method to handle notifications from the weather
model:

// MARK: -
// MARK: Notification handling
// Handles a notification, which means that some data
// in the weather model has changed. If it affects any of
// the cities that we are displaying, update the table.
func onNotification(notification: NSNotification) {
 if let userInfo = notification.userInfo,
 let cityCodes = userInfo["cityCodes"] as? [Int] {
 for cityCode in cityCodes {
 if find(displayedCityCodes, cityCode) != nil {
 updateTable()
 break
 }
 }
 }
}

Note Theoretically, if the user switched between Celsius and Farenheit, we
only need to call updateTable(). We could add information or a second
delegate method so that these cases can be distinguished, but there’s little point
because neither of these will happen very frequently.

CHAPTER 7: Building a WatchKit App

345

All notifications from this model include a key with the name cityCodes, the
value of which is an array containing the codes for the cities that are
affected by the notification (typically, new forecast data has been received).
This method checks whether any of the cities in the notification are in the
interface controller’s table and, if so, calls updateTable() to redisplay
everything.

That’s it! Now you should be able to run the WatchKit application and see
the weather for your configured cities appear, as shown in Figure 7-15.
With the WatchKit app running, start the iOS application by tapping its
icon on the home screen and open its configuration screen. If you change
the order of cities by dragging up and down, you should see the changes
reflected immediately on the watch. This happens because the iOS
instance of the DisplayedInfoCityModel class sends a notification of the
change over the Darwin bridge. The notification is received by the WatchKit
application’s instance of the model, which reloads itself from the shared
NSUserDefaults and then notifies its delegate, which, as you’ve just seen,
is the InterfaceController. Similarly, if you add or remove cities, you’ll see
that change take effect immediately on the watch, and, after a short delay,
the weather for a newly added city will appear.

Implement the Forecast Detail Interface Controller
When the user taps on a row in the main interface controller, we’re going
to push another controller to display the forecast for that city for today and
tomorrow. Figure 7-18 shows what that interface controller looks like.

Note Again, we could make this more efficient by only updating rows for the
cities that are affected by the notification. However, the benefit of doing so is
minimal because new forecast data is only obtained once per hour, by default.

CHAPTER 7: Building a WatchKit App346

The interface consists of a summary area at the top and a table with the
detailed forecast information, broken down into three-hour blocks. The
summary information is taken from the city’s CityWeather object, and the
data to populate the table comes from the first two DayForecast entries in
its detailsByDay property. As we did with the main interface controller, we’ll
start by configuring the new controller in the storyboard and then we’ll write
the code.

Adding the Controller to the Storyboard
Let’s start by creating the new controller’s implementation class. Add a
new group called Details Interface Controller nested inside the LWK
Weather WatchKit Extension group, right-click the new group, and select
New File... from the pop-up that appears. From the iOS Source section
of the dialog, choose Cocoa Touch Class and press Next. Name the class
DetailsInterfaceController, make it a subclass of WKInterfaceController,
click Next, and save it. Now open the storyboard by selecting Interface.
storyboard in the Project Navigator. Drag an interface controller
from the Object Library, drop it next to the main interface controller,
and in the Identity Inspector, set the new controller’s class name to
DetailsInterfaceController.

The summary information at the top of the controller has three parts: at
the top and bottom are labels that show the city name and the weather
summary, and in the middle is a horizontal group containing an image for

Figure 7-18. The forecast detail interface controller

CHAPTER 7: Building a WatchKit App

347

the current weather condition and a label for the temperature. To create
this layout, drag a label, a group, and another label onto the controller and
configure the labels as follows:

	For the top label, change the Text attribute to City, set
the font to Headline so that it stands out a little, and
set the Alignment to center and the Width attribute to
Relative to Container.

	For the bottom label, change the Text attribute to
Summary, the Text Color to Light Gray, Alignment to
center, and Width to Relative to Container.

Next, we’ll add an image and a label to the group. Drag an image onto the
group and then select the group again and drag a label onto it, dropping
it to the right of the image. Select the image and set its Mode to Center, its
Vertical attribute to Center, its Width to Relative to Container with an
associated value of 0.5 so that it takes up exactly half of the available width,
and its Height to Fixed with a value of 24 points. Now select the label, set its
Text attribute to 82, its Alignment to center, its Vertical attribute to Center,
and its Width to Relative to Container with a value of 0.5.

Between the summary and the table, we need to add a separator, but we
don’t want it to completely fill the width of the screen. To create a little space
on the left and right of the separator, we’ll place it in a group and set the
group’s insets. Drag a group from the Object Library and drop it below the
Summary label. In the Attributes Inspector, set its Layout attribute to Vertical,
its Insets attribute to Custom and set the Top, Bottom, Left, and Right inset
values to 2, 2, 8, and 8 respectively. Then drag a separator and drop it into
the group. You should see the effect of the group’s insets to the left and right
of the separator. Change the separator’s Color attribute to Dark Gray. At this
point, the interface controller should look like Figure 7-19.

CHAPTER 7: Building a WatchKit App348

The last piece of the controller’s interface is the table. Drag a table from the
Object Library and drop it below the group containing the separator. This
table needs two different row styles—one will act as a section header and
will show a date, and the other will display weather information. That means
we’ll need two different row controllers, so set the table’s Rows attribute to 2.

Before we start work on the row controllers, let’s create the outlets in the
DetailsInterfaceController class for the user interface objects that we’ve
already added. Open DetailsInterfaceController.swift in the Assistant
Editor and create outlets as follows:

	Control-drag from the City label to the top of the
DetailsInterfaceController class and create an outlet
called cityNameLabel.

	Control-drag from the image to create an outlet called
image.

	Control-drag from the temperature label, creating an
outlet called tempLabel.

Figure 7-19. The summary area of the forecast detail interface controller in the storyboard

CHAPTER 7: Building a WatchKit App

349

	Control-drag from the summary label and call the outlet
summaryLabel.

	Finally, Control-drag from the table to create an outlet
called table.

Next, let’s create the table’s row controller classes so that we can link the
user interface objects in the storyboard to outlets as we create them. In the
Details Interface Controller group, add a new Swift file called Details
TableRowControllers.swift, open that file in the editor, and add these two
empty class definitions:

import Foundation
import WatchKit

// Table row that contains the date.
public class DateRowController : NSObject {
}

// Table row that contains the weather details for
// part of a day.
public class DetailsRowController : NSObject {
}

Now go back to Interface.storyboard and select the top table row. In the
Attributes Inspector, set its Identifier to DateRowController. Select the
second row controller and set its Identifier to DetailsRowController.

Now open DetailsTableRowControllers.swift in the Assistant Editor so
that you can easily access it when creating outlets. Select the top table row
in the storyboard, open the Identity Inspector, and set the Class attribute
to DateRowController. If you are having trouble doing this, it’s probably
because you selected the group inside the table row. You can fix that by
selecting the row in the Document Outline instead. Once you’ve done that,
select the other table row and set its Class to DetailsRowController.

The top row controller will be used to display a date, so we just need to add
a label to it. Drag a label from the Object Library and drop it onto the table
row in the storyboard. In the Attributes Inspector, set its Text attribute to
Date and its Font to Caption 2. Next, select the table row’s group and set
its Insets attribute to Custom. Leave all four inset values at 0 so that the row
occupies as little space as possible. Also set the group’s Color attribute to
something that’s a little lighter than the background, but not too light—you’ll
probably find the RGB values (55, 55, 55) work well. Finally, set the Height
attribute to Size To Fit Content.

This table row requires just one outlet. Control-drag from the label to the
DateRowController class and create an outlet called dateLabel.

CHAPTER 7: Building a WatchKit App350

The bottom table row requires two labels and an image. Drag and drop two
labels and then an image into the table row and use the Attributes Inspector
to set their attributes as follows:

	For the first label, set the Text Color to Light Gray and
the Vertical attribute to Center.

	For the second label, again set the Text Color to Light
Gray and the Vertical attribute to Center. Also set
the Horizontal attribute to Right. When you do that,
the label will temporarily move to the other side of the
image.

	For the image, set the Mode to Center, the Horizontal
attribute to Right (which will make it move back to the
right side of the second label), the Vertical attribute
to Center, and the Width and Height attributes to Fixed
with a value of 24.

To complete this row, select the row’s group in the Document Outline and
change its Insets attribute to Custom, set the Left and Right inset values to
4 and 2 respectively, and set the Height attribute to Size To Fit Content.

To create the outlets, Control-drag from the left label to the
DetailsViewController to create an outlet called timeLabel. Then create an
outlet called tempLabel for the second label and another called image for the
image.

There’s only one more thing to do in the storyboard: arrange for the
DetailsViewController to be pushed when the user taps a table row in the
main interface controller. We can do that in code by handling the table row
selection event, but here we’re going to use a storyboard segue instead. In
the Document Outline, select the table row for the main interface controller
(the node labeled CityTableRowController) and Control-drag from it to
the Details interface controller (either in the Document Outline or in the
storyboard). To create the segue, release the mouse button and choose push
from the pop-up that appears. When you’ve done that, your storyboard is
complete, and it should look like Figure 7-20.

CHAPTER 7: Building a WatchKit App

351

If you run the WatchKit application now and tap on a city in the main
interface controller, you’ll see that the details interface controller is pushed,
but it does not yet display any useful information. We’ll take care of that in
the next section. Before we do so, we’ll need to arrange for the city code
of the city whose weather the details interface controller should display to
be passed to it. As discussed in Chapter 5, the way to do that is to supply
the city code as the context argument of the details interface controller’s
awakeWithContext() method. When, as here, a controller is pushed as a
result of a storyboard segue, the initiating controller is required to supply the
context by overriding a method of the WKInterfaceController class. In the
case of a segue from a table row, we need to override the contextForSegueW
ithIdentifier(_:inTable:rowIndex) method. To do that, add the following
code to the InterfaceController class:

// Gets the context for the segue from a table row.
override func contextForSegueWithIdentifier(segueIdentifier: String,
 inTable table: WKInterfaceTable,
 rowIndex: Int) -> AnyObject? {
 return DisplayedCityInfoModel.sharedInstance().displayedCities[rowIndex]
}

This method obtains the city code for the row that was tapped
by using the row number that’s passed to it as an index into the
DisplayedCityInfoModel’s displayedCities array, which is in one-to-one
correspondence with the rows in the table. If you now run the WatchKit
example again with a breakpoint on the details interface controller’s
awakeWithContext() method, you’ll see that it receives the correct city code
when it is pushed.

Figure 7-20. The completed storyboard

http://dx.doi.org/10.1007/9781484210260_5

CHAPTER 7: Building a WatchKit App352

Implementing the DetailsInterfaceController class
The task of the DetailsInterfaceController class is to display the data
for the city whose city code is passed to its awakeWithContext() method. It
needs to get the current city weather from the weather model and update
itself if that data changes. It also needs to request new data when the
data that it currently has expires, or if it has already expired. Let’s start by
importing the SharedCode framework and adding some properties that we’ll
need and the implementation of the awakeWithContext() method:

import WatchKit
import Foundation
import SharedCode

class DetailsInterfaceController: WKInterfaceController {
 @IBOutlet weak var cityNameLabel: WKInterfaceLabel!
 @IBOutlet weak var image: WKInterfaceImage!
 @IBOutlet weak var tempLabel: WKInterfaceLabel!
 @IBOutlet weak var summaryLabel: WKInterfaceLabel!
 @IBOutlet weak var table: WKInterfaceTable!

 // Maximum number of days of weather to display
 private static let maxDays = 2
 private var cityCode: Int!
 private var reloadTimer: NSTimer?

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 setTitle("Weather")

 cityCode = context as! Int
 let cityName = CityModel.sharedInstance().cityForCode(
 cityCode)?.name ?? "Unknown City"
 cityNameLabel.setText(cityName)
 }

In the awakeForContext() method, we set the controller’s title and get the
city code by casting the context value to an Int and then store it in the
cityCode property. Given the city code, we get the city name from the
CityModel object and use it to set the Text property of the city name label.
In the (very unlikely) case that we don’t find an entry for the city in the
CityModel, we use the text Unknown City instead. This should only happen
if there is programming error, or if the city has not been included in the
cities.plist file. If you run the example now, you can verify that the correct
city name is shown when you tap a row of the main interface controller.

CHAPTER 7: Building a WatchKit App

353

Now add the following code in bold to the willActivate() and
didDeactivate() methods:

override func willActivate() {
 super.willActivate()

 // Update the view and arrange to reload weather
 // when it expires.
 updateDetails()

 // Observe notification of weather model changes.
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "onNotification:", name: nil,
 object: WatchAppWeatherModel.sharedInstance())
}

override func didDeactivate() {
 super.didDeactivate()
 NSNotificationCenter.defaultCenter().removeObserver(self)
 reloadTimer?.invalidate()
}

In willActivate(), we first invoke a method called updateDetails() that
we haven’t yet implemented (so there is a compilation error for this line at
the moment). This method updates the summary information at the top of
the interface controller and, if necessary, it also populates (or repopulates)
the forecast table. You’ll see the implementation of this method shortly. We
also register for notifications from the weather model so that we can keep
the user interface up to date when the city’s weather forecast changes.
The didDeactivate() method removes this registration and also invalidates
the reload timer, which is used to request new data when the current data
expires.

Next, add the onNotification() method, which is called when a notification
from the weather model is received:

// Method called when weather updates are received. Updates the
// view if the current city weather has been updated.
func onNotification(notification: NSNotification) {
 if let cityCodes = notification.userInfo?["cityCodes"] as? [Int] {
 if find(cityCodes, cityCode) != nil {
 updateDetails()
 }
 }
}

CHAPTER 7: Building a WatchKit App354

The notification’s payload is an array of city codes for which the forecast
data has changed. This method checks whether the array includes the city
code for the controller’s city and, if so, it calls the updateDetails() method,
thus making sure that the controller is always displaying the most up-to-
date data. Here’s the code for that method, which you should add to the
controller class:

// Updates the view from the current model state
private func updateDetails() {
 var updateTable = false
 if let cityWeather = WatchAppWeatherModel.sharedInstance().
 weatherByCity[cityCode] {
 var temperature = " "
 var imageName: String?
 var condition = " "

 switch cityWeather.state {
 case .INIT:
 // Nothing to do
 break
 case .LOADING:
 condition = "Loading Weather"

 case .ERROR:
 condition = "Failed to Load Weather"

 case .LOADED:
 if let weatherDetails = cityWeather.currentWeather {
 let reloadTime = cityWeather.reloadTime
 if reloadTime.compare(NSDate()) == .OrderedDescending {
 // All data is available
 updateTable = true
 if let temp = weatherDetails.temperature {
 temperature = WeatherUtilities.
 temperatureString(temp)
 }

 if let cond = weatherDetails.weatherDescription {
 condition = cond
 }
 imageName = WeatherUtilities.selectWeatherImage(
 weatherDetails.weather,
 day: weatherDetails.day ?? true)
 }
 }
 }
 tempLabel.setText(temperature)
 image.setImageNamed(imageName)
 summaryLabel.setText(condition)

CHAPTER 7: Building a WatchKit App

355

 // Start a timer to reload the weather data when it expires.
 reloadTimer?.invalidate()
 reloadTimer = NSTimer(fireDate: cityWeather.reloadTime,
 interval: 0, target: self,
 selector: "reloadWeather:", userInfo: nil,
 repeats: false)
 NSRunLoop.currentRunLoop().addTimer(reloadTimer!,
 forMode: NSDefaultRunLoopMode)
 } else {
 image.setImage(nil)
 tempLabel.setText(" ")
 summaryLabel.setText("No weather available")
 }

 if updateTable {
 // Update the table content from the current weather.
 updateTableContent()
 } else {
 // Clear the table.
 table.setRowTypes([String]())
 }
}

The first part of this method gets the CityWeather object for the controller’s
city from the weather model and uses it to update the summary information
at the top of the screen. If there is no CityWeather object, the weather
image and temperature are cleared and the condition label shows the text
No Weather Available. This is a transient state that occurs before the city’s
weather has been loaded for the first time. In practice, it’s not likely that you’ll
ever see this because this controller is always reached from the main interface
controller, which will have already attempted to load the weather details.

When there is a CityWeather object, what happens depends on its state.
If the state is INIT, there is nothing more to display. If it’s LOADING, the
summary label is set to Loading Weather and everything else is blanked
out. Similarly, if the state is ERROR, the text Failed to Load Weather will be
displayed and everything else will be blank. In the LOADED state, assuming
that the weather data has not expired, we get the current weather and
use it to set the temperature label and the weather image. The code that’s
used here is the same code you saw in our discussion of the main interface
controller earlier in this chapter.

Next, a timer is started to trigger a reload of the weather data when its
reload time is reached. This timer may or may not expire while the controller
is active. If it does not, then, as you have already seen, it is cancelled in the

CHAPTER 7: Building a WatchKit App356

didDeactivate() method. If the timer does fire, the reloadWeather() method
is called. Add the code for that method, which simply requests updated
forecast data, to the DetailsInterfaceController class:

// Reloads weather data when the current data has expired.
func reloadWeather(_: NSTimer) {
 WatchAppWeatherModel.sharedInstance().
 fetchWeatherForCities([cityCode], always: true)
}

Returning to the updateDetails() method, you’ll see the following code at
the end:

 if updateTable {
 // Update the table content from the current weather.
 updateTableContent()
 } else {
 // Clear the table.
 table.setRowTypes([String]())
 }

The updateTable variable is true only if there is valid weather data (that is,
the CityWeather object exists and it is in the LOADED state). If this is the case,
then we need to populate the table with the forecast information—otherwise,
we call the WKInterfaceTable setRowTypes() method with an empty array,
which has the effect of removing all rows from the table. The table is
populated by the updateTableContent() method, shown here:

// Updates the table from the current weather information.
private func updateTableContent() {
 // Define the row controller types
 var rowTypes = [String]()
 var dayCount = 0
 if let cityWeather = WatchAppWeatherModel.sharedInstance().
 weatherByCity[cityCode] {
 dayCount = min(cityWeather.detailsByDay.count,
 DetailsInterfaceController.maxDays)
 for dayIndex in 0..<dayCount {
 let dayForecast = cityWeather.detailsByDay[dayIndex]
 rowTypes.append("DateRowController")
 for weatherDetails in dayForecast.details {
 rowTypes.append("DetailsRowController")
 }
 }
 }
 table.setRowTypes(rowTypes)

CHAPTER 7: Building a WatchKit App

357

 // Configure each row
 if let cityWeather = WatchAppWeatherModel.sharedInstance().
 weatherByCity[cityCode] {
 var rowIndex = 0
 for dayIndex in 0..<dayCount {
 let dateController = table.rowControllerAtIndex(rowIndex++)
 as! DateRowController
 let dayForecast = cityWeather.detailsByDay[dayIndex]
 dateController.dateLabel.setText(dayForecast.dayString)
 for weatherDetails in dayForecast.details {
 let detailsController =
 table.rowControllerAtIndex(rowIndex++) as!
 DetailsRowController
 detailsController.timeLabel.setText(
 weatherDetails.timeString ?? "")

 var temperature = ""
 if let temp = weatherDetails.temperature {
 temperature = WeatherUtilities.temperatureString(temp)
 }
 detailsController.tempLabel.setText(temperature)

 let imageName = WeatherUtilities.selectWeatherImage(
 weatherDetails.weather,
 day: weatherDetails.day ?? true)
 detailsController.image.setImageNamed(imageName)
 }
 }
 }
}

The first section of this method constructs the array of row controller types for
the WKInterfaceTable setRowTypes() method. As discussed earlier, there are
two controller types: one for each day and which acts as a section header,
the other for the weather information rows for a given day. The following code
adds the correct row controller identifiers to the rowTypes array:

 dayCount = min(cityWeather.detailsByDay.count,
 DetailsInterfaceController.maxDays)
 for dayIndex in 0..<dayCount {
 let dayForecast = cityWeather.detailsByDay[dayIndex]
 rowTypes.append("DateRowController")
 for weatherDetails in dayForecast.details {
 rowTypes.append("DetailsRowController")
 }
 }
 }

CHAPTER 7: Building a WatchKit App358

The dayCount variable is set to the smaller of the number of days for which
there is forecast data and the constant maxDays, which is set to 2. This
ensures that no more than two days of weather will be shown. The forecast
data for each day is held in a DayForecast object in the CityWeather’s
detailsByDay array. The loop iterates over this array dayCount times. On
each pass, it first adds row type DateRowController to generate the date
row and then adds row type DetailsRowController for each block of
weather details that we have for that day. The openweathermap.org server
returns forecaset data in blocks covering three hours, so there will be eight
weather blocks in a full day. Each of these blocks is represented by an
object of type WeatherDetails in the details array of the DayForecast object
for the day that it corresponds to. Suppose this method were running at 6
p.m. on a particular day. At this point, there would be two WeatherDetails
objects in today’s DayForecast (covering the period 6 p.m.–9 p.m. and 9
p.m.–midnight) and eight WeatherDetails objects for tomorrow. The resulting
rowTypes array would contain these values:

DateRowController (for today)
DetailsRowController (for the 6pm – 9pm forecast)
DetailsRowController (for the 9pm – midnight forecast)
DateRowController (for tomorrow)
DetailsRowController (for the 12am to 3am forecast)
DetailsRowController (for the 3am to 6am forecast)
DetailsRowController etc...
DetailsRowController
DetailsRowController
DetailsRowController
DetailsRowController
DetailsRowController

Having populated the rowTypes array, we call the setRowTypes() method to
create the controller instances:

table.setRowTypes(rowTypes)

The rest of the method retrieves each of the newly created row controller
instance and populates its user interface objects. The details are very similar
to code that you have already seen, so let’s just concentrate on the part that
determines which data should be used for each row. Here’s the code that
does that:

var rowIndex = 0
for dayIndex in 0..<dayCount {
 let dateController =
 table.rowControllerAtIndex(rowIndex++) as! DateRowController
 let dayForecast = cityWeather.detailsByDay[dayIndex]
 dateController.dateLabel.setText(dayForecast.dayString)

CHAPTER 7: Building a WatchKit App

359

 for weatherDetails in dayForecast.details {
 let detailsController =
 table.rowControllerAtIndex(rowIndex++) as! DetailsRowController

 // Code not shown
 }
}

The rowIndex variable is initialized to 0 and will track the index of the
row controller that we’re working with. The outer loop processes each
day of the forecast. The row that corresponds to each day is always of
type DateRowController, so it’s always safe to cast the controller that we
get from the rowControllerAtIndex() method at the top of this loop to
DateRowController. The dateLabel in this controller is populated from the
DayForecast object for the day that we’re handling and then we iterate over
the WeatherDetails objects in its details array. We know that we have
created a row controller of type DetailsRowController for each of these
objects, so we can call rowControllerAtIndex() again and cast the returned
controller to DetailsRowController before populating it. If it’s still not clear
to you how this code works, try setting a breakpoint and stepping through it
yourself.

We’ve now finished writing the WatchKit weather application. Run the
finished product to make sure it works. If you weren’t typing in the code as
you were reading, you’ll find a snapshot of the completed source code in the
folder 7 – LWKWeather – Final.

Summary
In this very long chapter, we put together everything we learned in the
first six chapters of this book to develop a complete, non-trivial WatchKit
application. In the process, you saw how to modify the design of the original
iOS application to make it usable in the restricted screen space of the
watch. You also saw how to use an embedded framework to share code and
how to move code from the application into the framework. It’s important
to be able to share data as well as code, and we looked at how to create
a shared container and how to use it to share both data and user defaults.
For our simple application, we made use of flat binary files, but for more
sophisticated applications that use Core Data, it’s equally possible to move
the data store to the shared container so that both the iOS and WatchKit
applications can access it.

CHAPTER 7: Building a WatchKit App360

In addition to code and data sharing, it’s also useful to be able to communicate
by sending messages. We looked at two ways to do this: the Darwin bridge
and the WKInterfaceController openParentApplication(_:reply:) method.
I recommend that you make use of the example source code for this chapter
to experiment with both of these mechanisms to see what can be done
with them.

With this long chapter behind us, let’s move on to something simpler and
look at how to add a glance to our new weather application.

361

Chapter 8
Glances, Settings, and
Handoff
One of the first things I discovered when I got my Apple Watch is how
difficult it can be to launch an application. Starting from the watch face,
you have to press the digital crown to open the home screen. That’s where
the problems start. It’s easy to miss the digital crown and touch the screen
instead, or you might touch the digital crown in the wrong place, causing it
to rotate. On some watch faces (including Astronomy, which is my favorite),
either of these actions starts an animation. To stop the animation, you need
to press the digital crown to get back to where you started and then you
need to press it again to reach the home screen. Once you’re on the home
screen, your next task is to move the screen around to find the icon for the
application you want to launch. Having done that, you may need to move it
to the center, to make it large enough to hit reliably, and then touch it. That
doesn’t sound so bad, but it can be frustratingly difficult to do, especially if
you are on the move and also trying to see what’s in front of you.

Contrast that with how much easier it is to launch a glance—all you have to
do is swipe up from the bottom of the watch face then swipe right until you
find the glance that you’re looking for. Once you’ve found the glance and
seen enough, you can swipe down to hide it. What’s more, next time you
swipe up, the same glance will be the first thing you see. Swiping is much
easier than trying to click the digital crown! Any WatchKit application can
implement a glance, and the good news is that it’s easy to do.

In the first part of this chapter, we’ll add a glance to the Weather app we
developed in Chapter 7. Initially, we’ll have the glance show the weather for
whichever city the user last viewed in the WatchKit application, but that’s

http://dx.doi.org/10.1007/9781484210260_7

CHAPTER 8: Glances, Settings, and Handoff362

not the only possibility. In the second part of the chapter, we’ll add a couple
more options along with a settings bundle to the WatchKit app, allowing the
user to configure the behavior of the glance in the iPhone’s Apple Watch
application.

By default, touching a glance opens its owning WatchKit application and
shows its initial interface controller, or whichever screen the user was last
viewing if the WatchKit application is already running. To close the chapter,
we’ll improve on that behavior by using handoff to make the WatchKit
application switch immediately to the weather details for the city that the
user was viewing in the glance.

Glances
A glance is your opportunity to give the user a quick and easy way to view
and open your application. What you put in your glance depends entirely
on what your application does, but you need to choose wisely because you
can only have one glance, and its size is limited to that of the screen—no
scrolling is allowed. Furthermore, glances are passive—you can’t include
user interface objects like buttons and sliders that allow the user to interact
with your application. However, passive does not mean static; as you’ll see
later in this chapter, it’s possible for the content of the glance to change
over time or even while the user is looking at it. It’s a good idea to make the
content relevant and useful, because the user is at liberty to remove your
glance from his glance list if he doesn’t find it to be of value.

Adding a Glance to a Project
In this chapter, we’ll add the glance shown in Figure 8-1 to the Weather
application.

CHAPTER 8: Glances, Settings, and Handoff

363

Like all screens in a WatchKit application, a glance is configured in the
storyboard and is managed by an interface controller. Let’s get started by
taking a copy of the WatchKit weather application that we developed in
Chapter 7 and adding a glance to it. Make a copy of the folder
7 – LWKWeather – Final and open the copied project in Xcode. When you
add a WatchKit app extension target to a project, Xcode offers to include a
glance scene in the storyboard, as shown in Figure 8-2.

Figure 8-1. The glance for the Weather application

Figure 8-2. The glance and notification scene check boxes in Xcode

http://dx.doi.org/10.1007/9781484210260_7

CHAPTER 8: Glances, Settings, and Handoff364

In all of the examples so far in this book, we have left the Glance Scene
check box unchecked because we didn’t need a glance. We did just that
when we started working with project for the Weather application, so now
we’ll have to add the glance manually. Fortunately, that only requires a few
simple steps. Start by right-clicking on LWK Weather WatchKit Extension in
the Project Navigator and adding a nested group called Glance Controller.
Right-click on the new group, select New File..., and then choose Cocoa
Touch Class from the iOS Source section. Click Next. Name the class
LWKWeatherGlanceController, make it a subclass of WKInterfaceController,
and save it. Open the class in the editor and add the following code shown
in bold so that we can observe the glance controller’s lifecycle events:

class LWKWeatherGlanceController: WKInterfaceController {
 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
 println("awakeWithContext called")
 }

 override func willActivate() {
 super.willActivate()
 println("willActivate called")
 }

 override func didDeactivate() {
 super.didDeactivate()
 println("didDeactivate called")
 }
}

Next, select Interface.storyboard to open the storyboard in the editor.
Drag a glance interface controller from the Object Library and drop it
somewhere near the other two interface controllers. As you can see, a
glance controller is different from an ordinary controller in a couple of ways:
it has a glance entry point arrow linked to it, and it’s pre-populated with two
groups (see Figure 8-3).

CHAPTER 8: Glances, Settings, and Handoff

365

As you’ll see, you can’t add arbitrary content to a glance—you have to
use the layout templates that are included in Xcode, which restricts your
freedom of choice, but ensures that there is some degree of consistency
between applications in the way that glances appear. We’ll choose the
templates that we’ll use for the Weather application’s glance after we’ve
finished constructing the glance itself.

With the glance controller selected in the storyboard, open the Identity
Inspector and set the Class attribute to LWKWeatherGlanceController
to create the linkage between the storyboard and the controller’s
implementation class.

Running the Glance
Now let’s see how the glance looks in the simulator. To do that, we need to
add a scheme that will launch the glance instead of the watch application.
Had we elected to include a glance scene when we added the WatchKit app
target, Xcode would have done that for us. Because we didn’t, we need to
add the scheme manually. To do that, select the LWK Weather WatchKit App
scheme in the scheme selector, click on it, and choose Edit Scheme... from
the pop-up to open the scheme editor, shown in Figure 8-4.

Figure 8-3. Adding a glance interface controller to the storyboard

CHAPTER 8: Glances, Settings, and Handoff366

Click the Duplicate Scheme button on the bottom left of the editor to create
a new scheme based on the one we just opened. Change the scheme name
in the input field at the top left to Glance – LWK Weather WatchKit App
(see Figure 8-5) and click Close to create the scheme.

Figure 8-5. Changing the name of a scheme in the scheme editor

Figure 8-4. The Xcode scheme editor

CHAPTER 8: Glances, Settings, and Handoff

367

The new scheme should now be selected in the scheme selector. Click it and
select Edit Scheme... again to reopen the scheme editor. In the middle of
the editor, you’ll see a control labeled Watch Interface, which is currently set
to Main. Change it to Glance to cause the glance to be started instead of the
watch application when we run the scheme (see Figure 8-6). Then click Close.

Figure 8-6. Selecting Glance as the Watch Interface to be launched

Now we’re ready to try out the glance in the simulator. At the moment,
though, the glance scene is empty, so drag a date object from the Object
Library and drop it into one of the groups in the glance interface controller
in the storyboard, so that we can see when the glance has been activated.
Make sure the Xcode console is open (View ➤ Debug Area ➤ Activate
Console) and that the glance scheme is selected and press the Run button.
You should see our skeleton glance appear in the watch simulator display
(see Figure 8-7).

CHAPTER 8: Glances, Settings, and Handoff368

If you look at the Xcode console, you’ll see some output from the debug
statements we added to the controller class:

awakeWithContext called
willActivate called

The lifecycle of a glance is similar to that of any other interface controller,
except that it’s created and its awakeWithContext() method is called as soon
as the watch application is installed on the watch. As you might expect, the
willActivate() method is called when the glance is made visible. There’s
no way on the simulator to simulate swiping up and down to make the
glance appear and disappear, but there is one more thing we can do: use
the mouse to tap the glance. This launches the application and deactivates
the glance, so in the console, you’ll see this:

didDeactivate called

It’s important to realize that the lifecycle of the glance is not linked at all
to the lifecycle of the interface controllers in the application itself, or even
to the lifecycle of the application. The easiest way to see this is to run this
example on a real watch, which you can do by using the same scheme
in Xcode, selecting the iPhone that’s paired to your watch as the device
instead of the simulator, and then clicking the Run button.

Figure 8-7. A trivial glance in the watch simulator

CHAPTER 8: Glances, Settings, and Handoff

369

In the Xcode console, you should see that the glance controller was created
immediately, even though it hasn’t been brought into view yet:

awakeWithContext called

Now go to the watch face and swipe up from the bottom of the screen to
show your glances. You should see our glance in there somewhere—it’s
probably the first one but if not, swipe sideways until you find it. If you don’t
see the glance at all, open the Apple Watch app on the iPhone, scroll down
until you find the entry for LWKWeather, and tap on it to open the page for the
Weather app. Make sure the Show in Glances switch is in the on position as
shown in Figure 8-8.

Figure 8-8. The LWKWeather page in the iPhone Apple Watch app

Because the glance controller has now been activated, you’ll see this in the
Xcode console:

willActivate called

Lower your wrist or wait a few seconds for the display to time out, and the
Xcode console will show this:

didDeactivate called

Raise your wrist and swipe up from the bottom of the screen again to reveal
the glance. Then swipe right to show the previous glance. As our glance
moves offscreen, it’s deactivated.

Caution You may find that this doesn’t work. The first time I tried this on my
watch, the application failed to start properly. If that happens to you, uninstall
the application from the iPhone and try again.

CHAPTER 8: Glances, Settings, and Handoff370

While your glance remains in the user’s configured glance list, the watch uses
the same glance controller instance. The controller is discarded if the user
removes it from the glance list. To prove that, open the LWKWeather page in the
Apple Watch app on the iPhone (Figure 8-8), make sure the glance is visible
on the watch, Move the Show in Glances switch to the off position and then
move it back to on. You’ll see the following in the Xcode console:

didDeactivate called
awakeWithContext called
willActivate called

When you moved the switch to the off position, the glance was deactivated
and its controller was discarded. When you moved the switch back to
the on position, a new glance controller instance was created and its
awakeWithContext() method was called, followed by willActivate() as it
became visible. All of this is independent of what is happening to the other
interface controllers in your application.

Implementing the Weather App Glance
Now that you’ve seen how to add a glance scene to your project and how
to run it, let’s implement the glance for the Weather application. We’ll start
by creating the glance user interface in the storyboard, we’ll link the user
interface objects to outlets in the controller, and then we’ll implement the
controller itself.

Building the Glance Interface
Let’s first remove the date object we added for testing purposes by selecting
Interface.storyboard in the Project Navigator, clicking on the date object, and
pressing the delete key. This returns the glance controller to its initial state.

As I said earlier, you don’t have full control over your glance’s user interface.
Apple has created template layouts for the top and bottom parts of the
glance, and you have to stick with them. You can see all the available
templates by selecting the glance interface controller in the storyboard and
opening the Attributes Inspector. Initially, you’ll see the layout that’s selected
by default, which consists of two empty groups; the lower group is a little
more than twice the height of the one at the top (Figure 8-9).

CHAPTER 8: Glances, Settings, and Handoff

371

If you click on either group, you’ll see the templates that are available for
that part of the interface, as shown in Figure 8-10.

Figure 8-9. The default glance template selection in the Attributes Inspector

Figure 8-10. The glance layout templates

CHAPTER 8: Glances, Settings, and Handoff372

Some of the templates include a group. You are free to add other objects to
the group, including other groups. However, you can’t change the group’s
size or position and you can’t remove it. These same restrictions apply to all
of the objects in the template.

To select a template, just click on it. For the Weather app glance, I used the
default template for the upper part and the rightmost template on the top
row for the lower part, which is the one that contains a large group with two
labels below it, one marked as a footer. Select those two templates, and
they’ll be applied to your glance controller, as shown in Figure 8-11.

Figure 8-11. The Weather app glance layout

Note Glances are not interactive, so you can’t add objects that the user can
interact with to the user interface. Specifically, if you try to add a button, switch,
or slider, you’ll get a compilation error. In addition to these restrictions, Apple
recommends that you don’t use tables or maps due to the limited space available.

If you select either of the pre-defined groups in the glance and then open
the Attributes Inspector and compare its attributes to those of a group in
the main interface controller, you’ll see that the group in the glance does not
have a Size attribute (see Figure 8-12).

CHAPTER 8: Glances, Settings, and Handoff

373

If you do the same with one of the labels in the glance and compare its
attributes with those of a label in one of the other controllers, you’ll see that
there are even more attributes missing from the label in the glance. These
attributes are missing because you’re not allowed to do anything that would
change the overall layout of the template.

Now let’s start building the glance user interface that you saw in Figure 8-1.
For ease of reference, you can see the layout we’re aiming for in Figure 8-13.

Figure 8-12. A group in a glance (left) and in the main interface controller (right)

Figure 8-13. The glance user interface in the storyboard

CHAPTER 8: Glances, Settings, and Handoff374

First drag a label from the Object Library and drop it into the top group.
Change its Font attribute to System Bold 26, its Min Scale attribute to 0.6
(so that it can adjust for the larger city names), and its Vertical attribute to
Bottom. That’s all we need to do for the top part of the layout.

We’ll use the lower group to show the weather icon and the temperature.
Drop an image onto the group and drop a label to the right of it. We need to
set the attributes of these objects so that they appear as shown in Figure 8-13.
Start with the image. Set its Mode attribute to Center, its Vertical attribute
to Center, its Width to Relative to Container with an associated value
of 0.5 so that it takes up half of the group’s width, and its Height to Fixed
with a value of 48 points, which is the height of the images that we’ll use in
the glance. Now let’s configure the label. Change its Text attribute to 99 so
that we can judge whether it’s going to be wide enough, its Text Color to
Light Gray, its Font to System Bold 50, its Min Scale attribute to 0.6, and its
Alignment to center. To fix its position and size, set its Horizontal attribute to
Right, its Vertical attribute to Center, and its Width attribute to Relative to
Container with a value of 0.5. Your storyboard should now look like Figure 8-13,
and you can see that the temperature value fits neatly in the space available,
so we don’t need to adjust its font size any further.

Now let’s go through the usual routine to create outlets for the user
interface objects in the glance that we’ll need to access. Open
LWKWeatherGlanceController.swift in the Assistant Editor and do the
following:

	Control-drag from the label in the top group to the class
file and create an outlet called cityLabel.

	Control-drag from the image to the class file, creating
an outlet called image.

	Control-drag from the label on the right of the image to
the class file and name the outlet tempLabel.

	Control-drag from the label immediately below the
lower group to create an outlet called conditionLabel.

	Finally, Control-drag from the footer label to the class
file and create an outlet called footerLabel.

Next, delete the three debug lines that we added to the awakeWithContext(),
willActivate(), and didDeactivate() methods. When you’ve done that, the
glance controller class should look like this:

class LWKWeatherGlanceController: WKInterfaceController {
 @IBOutlet weak var cityLabel: WKInterfaceLabel!
 @IBOutlet weak var image: WKInterfaceImage!
 @IBOutlet weak var tempLabel: WKInterfaceLabel!

CHAPTER 8: Glances, Settings, and Handoff

375

 @IBOutlet weak var conditionLabel: WKInterfaceLabel!
 @IBOutlet weak var footerLabel: WKInterfaceLabel!

 override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)
 println("awakeWithContext called")
 }

 override func willActivate() {
 super.willActivate()
 println("willActivate called")
 }

 override func didDeactivate() {
 super.didDeactivate()
 println("didDeactivate called")
 }
}

We are now ready to start adding code to the glance interface controller.

Implementing the Glance Interface Controller
The glance interface is very much like the Weather app’s detail screen
(Figure 7-18, so the implementation is also very similar. We’ll need to get the
weather details for a city from the weather model and use them to populate
the screen. We’ll need to observe notifications from the model so that we
can update the interface if new data is received while the glance is visible,
and we also need to respond if the user changes the temperature scale from
Celsius to Farenheit, or vice versa. You’ve seen most of this code before—I
won’t describe it in any great detail.

Let’s start by importing the SharedCode framework at the top of the
LWKWeatherGlanceController class, adding a few properties that we’ll need
and making the class conform to the DisplayedCityInfoModelDelegate
protocol so that we can respond to temperature scale changes:

import WatchKit
import Foundation
import SharedCode

class LWKWeatherGlanceController:
 WKInterfaceController, DisplayedCityInfoModelDelegate {
 @IBOutlet weak var cityLabel: WKInterfaceLabel!
 @IBOutlet weak var image: WKInterfaceImage!
 @IBOutlet weak var tempLabel: WKInterfaceLabel!
 @IBOutlet weak var conditionLabel: WKInterfaceLabel!
 @IBOutlet weak var footerLabel: WKInterfaceLabel!

CHAPTER 8: Glances, Settings, and Handoff376

 private var cityCode = 0 { // Will be set by selectCity()
 didSet {
 if (cityCode != oldValue) {
 // Fetch the weather, if we don't already have it.
 WatchAppWeatherModel.sharedInstance().
 fetchWeatherForCities([cityCode], always: false)
 }
 }
 }

 // Whether we are using celsius for display.
 private var usingCelsius = false

 // Timer used to reload weather.
 private var reloadTimer: NSTimer?

Note that because we haven’t yet implemented the method that’s required
by the DisplayedCityInfoModelDelegate protocol, you’ll see a compilation
error in this code, which we’ll fix in due course.

The cityCode property is the code for the city whose weather the glance is
displaying. Initially, we’re going to use the last city that the user viewed in
the WatchKit app’s weather detail screen, but in the next section we’ll add a
setting that will allow the user to choose from a couple of other options. The
code that selects the city is encapsulated in a method called selectCity()
that you’ll see shortly. When the value of this property changes, we use the
weather model’s fetchWeatherForCities(_:always:) method to start loading
its forecast data. Recall from our discussion of this method in Chapter 7 that
this method does nothing if the data we require is already loaded.

The usingCelsius property records whether the temperature that’s currently
displayed is in Celsius. We’ll use this property to update the screen if the
user changes that preference. Finally, the reloadTimer is used to reload the
weather data when its expiry time is reached.

A glance is loaded and initialized when its watch application is first installed
and when the watch boots, so that it is immediately available when the user
swipes up from the bottom of the screen. To maximize the chances that
we have data available when this happens, we need to load the weather
model from the file store, select the city that we’re going to be displaying the
weather for, and then start fetching the most recent forecast data for it as

http://dx.doi.org/10.1007/9781484210260_7

CHAPTER 8: Glances, Settings, and Handoff

377

soon as the glance is initialized. To do that, add the following code shown in
bold to the awakeWithContext() method:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Load the weather model
 WatchAppWeatherModel.sharedInstance().loadWeatherModel()

 // Select the city based on current state
 selectCity()
}

Now let’s implement the selectCity() method. Add the following code to
the class definition:

private func selectCity() {
 var newCityCode: Int?

 // Use the last city that the user viewed.
 let userDefaults =
 NSUserDefaults(suiteName: "group.com.apress.lwkweathertest")
 if let lastCityCode =
 userDefaults?.integerForKey("LastViewedCityCode")
 where lastCityCode != 0 {
 newCityCode = lastCityCode
 }
 cityCode = newCityCode ?? 5128581
 // By default, show New York weather
}

We start by getting the code for the city that the user last viewed, which
is stored under the key LastViewedCity in the shared user defaults object.
There is, of course, no code that saves the last viewed city in the user
defaults at the moment. We’ll fix that later. If the LastViewedCity key is
present (which we can only detect by checking whether the value returned
from the integerForKey() method is nonzero), we’ll use it. Otherwise, we
default to showing the weather for New York City.

Now let’s implement the glance lifecycle methods. Add the following code in
bold to the willActivate() method:

override func willActivate() {
 super.willActivate()

 // Observe notification of weather model changes.
 NSNotificationCenter.defaultCenter().addObserver(self,
 selector: "onNotification:", name: nil,
 object: WatchAppWeatherModel.sharedInstance())

CHAPTER 8: Glances, Settings, and Handoff378

 // Become the delegate of the DisplayedCityInfoModel
 DisplayedCityInfoModel.sharedInstance().delegate = self

 // Set whether we are using celsius.
 usingCelsius = DisplayedCityInfoModel.sharedInstance().useCelsius

 // Update the city in case the user used the app
 selectCity()

 // Update the view
 updateDetails()
}

We start by registering as an observer of the weather model and as the
delegate of the DisplayedCityInfoModel class. I’ve already explained
why this is required. Next, we set the useCelsius property from the same
property of the DisplayedCityInfoModel, so that the code in the delegate
method (which we’ll add shortly) can detect when it changes. Next, we use
the selectCity() method to choose the city that we’re going to show in
the glance. We need to do this whenever the glance is activated because
the user could have used the WatchKit Weather app to view the weather
for a different city since the glance was last visible. Finally, we call the
updateDetails() method to populate the glance with weather data. Before
we implement the updateDetails() method, let’s add the code we need in
the didDeactivate() method:

override func didDeactivate() {
 super.didDeactivate()

 reloadTimer?.invalidate()
 NSNotificationCenter.defaultCenter().removeObserver(self)
 DisplayedCityInfoModel.sharedInstance().delegate = nil
}

Here, we are just tidying up by stopping the reload timer and removing
ourselves as an observer of the weather model and as the delegate of the
DisplayedCityInfoModel.

The code that populates the glance is in the updateDetails() method.
Add this code to the class definition:

private func updateDetails() {
 var imageName: String? = nil
 var temperature = "- -"
 var condition = ""
 var state = "Loading..."
 var reloadTime: NSDate?

CHAPTER 8: Glances, Settings, and Handoff

379

 let cityName =
 CityModel.sharedInstance().cityForCode(cityCode)?.name
 ?? "Unknown City"
 cityLabel.setText(cityName)

 if let cityWeather = WatchAppWeatherModel.sharedInstance().
 weatherByCity[cityCode],
 let weatherDetails = cityWeather.currentWeather
 where cityWeather.state == .LOADED {
 reloadTime = cityWeather.reloadTime
 if reloadTime!.compare(NSDate()) == .OrderedDescending {
 // Data has not expired...use it
 if let temp = weatherDetails.temperature {
 temperature = WeatherUtilities.temperatureString(temp)
 }
 imageName = WeatherUtilities.selectWeatherImage(
 weatherDetails.weather,
 day: weatherDetails.day ?? true,
 glance: true)
 condition = weatherDetails.weatherDescription ?? ""
 state = ""
 }
 }

 image.setImageNamed(nil) // Workaround for WatchKit bug
 image.setImageNamed(imageName)
 tempLabel.setText(temperature)
 conditionLabel.setText(condition)
 footerLabel.setText(state)

 reloadTimer?.invalidate()
 if let reloadTime = reloadTime {
 reloadTimer = NSTimer(fireDate: reloadTime, interval: 0,
 target: self, selector: "reloadWeather:",
 userInfo: nil, repeats: false)
 NSRunLoop.currentRunLoop().addTimer(reloadTimer!,
 forMode: NSDefaultRunLoopMode)
 }
}

The first part of this method gets the city’s weather data and uses it to
update the five user objects on the screen if it’s valid. If we don’t have valid
data, we blank out the weather image, change the temperature to two
dashes, and set the footer label to Loading.... The second part creates
and starts the reloadTimer so that the weather data will be reloaded when it
expires. We only need to do this if we currently have valid data.

CHAPTER 8: Glances, Settings, and Handoff380

You’ll currently have a compilation error for the call to the
selectWeatherImage() method in the WeatherUtilities class. We created
this method in Chapter 7 to return the weather image for a given weather
condition. The images that we used in Chapter 7 are all 24 points square,
but that’s too small for the space allocated to the image in the glance, so
we’re going to use 48-point images instead. Rather than duplicate the code
in the selectWeatherImage() method, I added a glance argument to it, which
requests the glance image instead of the normal image if its value is true.
Open the file WeatherUtilities.swift and make the following change to the
definition of the selectWeatherImage() method:

public static func selectWeatherImage(
 condition: WeatherDetails.WeatherCondition,
 day: Bool, glance: Bool = false) -> String {

The glance argument has a default value of false, so that existing calls
work as they did before. The other change that’s required is to the return
statement at the end of the method:

 return imageName
 return glance ? imageName + "Glance" : imageName
}

This simple change works because the names of the glance images in the
asset catalog are the same as those of the oridinary images with the string
Glance appended. With this change, the compilation error for this method in
the glance controller should go away.

Note The line image.setImageNamed(nil) really shouldn’t be required,
but without it, the image that’s installed by the following line of code sometimes
doesn’t show up. It’s a bug in the version of WatchKit included in (at least) iOS 8.3.

Note You may find that the compilation error does not go away, even after
you rebuild. To fix that, hold down the option key and select Product ➤ Clean
Build Folder... from Xcode’s menu. Click Clean when prompted and
build again.

While we’re dealing with the glance images, let’s add them to the asset
catalog. To do that, select Images.xcassets in the LWK Weather WatchKit App
group in the Project Navigator to open it in the editor area and then drag and
drop all of the images from the folder 8 – LWKWeather Glance Images onto it.

http://dx.doi.org/10.1007/9781484210260_7
http://dx.doi.org/10.1007/9781484210260_7

CHAPTER 8: Glances, Settings, and Handoff

381

Now let’s go back to the LWKWeatherGlanceController class and finish it up.
We just need to add a few more simple methods:

// DisplayedCityInfoModelDelegate conformance.
// Redisplay everything if we switched temperature scale.
func displayedCityInfoDidChange(model: DisplayedCityInfoModel) {
 if DisplayedCityInfoModel.sharedInstance().useCelsius != usingCelsius {
 usingCelsius = !usingCelsius
 updateDetails()
 }
}

// Method called when weather updates are received. Updates the
// view if the current city weather has been updated.
func onNotification(notification: NSNotification) {
 if let cityCodes = notification.userInfo?["cityCodes"] as? [Int] {
 if find(cityCodes, cityCode) != nil {
 updateDetails()
 }
 }
}

func reloadWeather(_: NSTimer) {
 WatchAppWeatherModel.sharedInstance().
 fetchWeatherForCities([cityCode], always: false)
 updateDetails()
}

The displayedCityInfoDidChange() method is required by the
DisplayedCityInfoModelDelegate protocol. It’s called if the user changes the
list of displayed cities or switches the preferred temperature display scale.
We’re only interested in the latter case, which we detect by comparing the
value of the model’s useCelsius propery to our saved value. If they differ, we
save the new value and call updateDetails() to update the screen.

The onNotificationMethod() method handles notification of a change in
the weather model. If the change is to the data for the city being displayed
in the glance, the updateDetails() method is called to update the screen.
Finally, the reloadWeather() method handles the expiry of the reload timer.
It requests new data and updates the screen, in case new data is available
because the iPhone Weather app has already loaded it.

The glance controller implementation is now complete, but there’s one
more thing to do. The selectCity() method expects the code for the
last city for which the user viewed detailed weather to be available in
the shared user defaults object. To make that happen, add the following

CHAPTER 8: Glances, Settings, and Handoff382

bold code to the awakeWithContext() method of the WatchKit app’s
DetailsInterfaceController class:

override func awakeWithContext(context: AnyObject?) {
 super.awakeWithContext(context)

 // Configure interface objects here.
 setTitle("Weather")

 cityCode = context as! Int
 let cityName = CityModel.sharedInstance().
 cityForCode(cityCode)?.name ?? "Unknown City"
 cityNameLabel.setText(cityName)

 let userDefaults = NSUserDefaults(
 suiteName: "group.com.apress.lwkweathertest")
 userDefaults?.setInteger(cityCode, forKey: "LastViewedCityCode")
 userDefaults?.synchronize()
}

To do the same thing when the user views weather on the iPhone, add
similar code to the iPhone app’s CityWeatherViewController class:

override func viewWillAppear(animated: Bool) {
 super.viewWillAppear(animated)
 installWeatherForCityCode(cityCode)

 let userDefaults = NSUserDefaults(
 suiteName: "group.com.apress.lwkweathertest")
 userDefaults?.setInteger(cityCode, forKey: "LastViewedCityCode")
 userDefaults?.synchronize()
}

With this change, the glance will show a weather summary for the city for
which the user last viewed weather details on the watch or on the iPhone,
although in the latter case the glance won’t update itself automatically if it is
visible while the user is swiping through the weather screens, because there
is no notification when the user defaults are updated. As an exercise, you
could add this by using the Darwin notification center to send a message
from the iPhone application to the glance controller in the viewWillAppear()
method.

Now build and run the application on the simulator using the Glance – LWK
Weather WatchKit App scheme to verify that the code works.

CHAPTER 8: Glances, Settings, and Handoff

383

Use the mouse to tap the glance interface and you’ll see that the WatchKit
app is launched. Once you’re convinced that everything is working, run
the code on a real watch, switch to the watch face, and swipe up from the
bottom to see the glance. Tap the glance to switch to the application then
tap a row to view a different city. Press the digital crown to return to the
watch face and swipe up again. You should see the glance reappear and
switch to show the city that you just viewed in the application.

Using Watch App Settings
Right now, the glance always shows the weather for the last city that
was viewed in the watch app’s detailed weather screen or in the iPhone
application. It would be nice to allow the user some other choices, such
as showing the weather for a random city, or rotating through all of the
cities that are selected in the displayed cities list. Implementing those other
choices is not difficult, but what about the configuration screen that we’ll
need to make them available to the user? We could implement that as part
of the watch app or the iPhone app, but in this section we’re going to use a
feature of the iPhone Apple Watch app that allows an iOS application with
an embedded WatchKit app to supply a settings bundle for it. If the iPhone
Apple Watch app finds such a bundle, it includes the settings in its page for
that watch app.

Creating the Watch App Settings Bundle
Let’s start by adding the settings bundle for the WatchKit app. It’s important
to note that this bundle has to be embedded in the iOS application, not in
the WatchKit app, and it must be called Settings-Watch.bundle. To create
the bundle, right-click on the LWKWeather group in the Project Navigator and
select New File.... In the dialog that appears, choose WatchKit Settings
Bundle from the iOS Apple Watch section and click Next. On the next screen,
make sure that name is Settings-Watch.bundle and click Create.

In the Project Navigator, expand the Settings-Watch.bundle node and
you’ll see that it contains a nested group called en.lproj (which is used for
localization) and a file called Root.plist. Click on Root.plist to open it in
the editor (see Figure 8-14).

Note If you haven’t been following the step-by-step instructions, you can find
a snapshot of the current state of the application in the folder 8 – Glance
Part 1 in the example source code archive.

CHAPTER 8: Glances, Settings, and Handoff384

Click on the disclosure triangle next to the Preference Items entry and
you’ll see four default items that Xcode added for us. We’re only going to
use the first of them, so let’s delete the other three. To do that, select the
row for Item 1, press the delete key, and then repeat for Item 2 and Item 3.
Next, click the disclosure triangle next to Item 0 to expose two nested
items called Type and Title. Change the value of the Title item to Glance
Configuration.

We are now going to add a multivalue item. A multivalue allows us to present
a set of options to the user, from which only one can be chosen. Each option
will represent one way to configure the glance. Click the disclosure triangle
next to Item 0 to close it and then press return. Xcode adds a new item and
pops up a chooser to allow the item type to be selected (see Figure 8-15).
Choose Multi Value.

Figure 8-14. The watch settings bundle

Figure 8-15. Adding a multivalue item to the watch settings bundle

CHAPTER 8: Glances, Settings, and Handoff

385

Click the disclosure triangle of the multivalue item to open it and you’ll see
four nested items. Change the value of the Title item to Glance Content,
the value of the Identifier item to GlancePreference, and the value of the
Default Value item to 0. Now we need to add the three options that the
user will be able to choose from. Each option will be mapped to a value.
When the user selects one of the options, the corresponding value will be
saved to the user defaults under the key given by the Identifier item,
which we just changed to GlancePreference.

To configure each option, we need to provide a title, which the user will
see, and a value. The titles and values are actually configured in separate
lists. Let’s create the titles list first. To do that, select the Default Value row
and press return. Xcode adds a new row and opens a pop-up to let you
select its type, from which you should choose Titles. The item that was
just added is a list, which is currently empty. Click its disclosure triangle so
that it points downward and press return. A new row will be added, and
Xcode helpfully opens an editor so that you can enter its value. Set the value
to Last Viewed City and press return. Now in the Key column of the same
row, you’ll see + and – icons. Click the + icon twice to add two more icons,
labeled Item 1 and Item 2. Set the value of the Item 1 row to Random City
and the value of the Item 2 row to Rotate Through Cities.

We’ve added all the option titles—now we need to add the values. Click the
disclosure triangle on the Titles row to close it, select that row, press the
return key, and select Values from the pop-up that appears in the new row.
Click the disclosure triangle on the newly added row to open it—it’s empty,
so you won’t see anything new appear. With the new row selected, click the
+ icon to add a new nested row and set its value to 0. This is the value that
will be stored in the user defaults for the Last Viewed City option. Select
the same row and click the + icon twice more to add two more rows. Set
their values to 1 (for Item 1) and 2 (for Item 2).

We have one more thing to do: we need to arrange for the user’s selections
to be stored in the user defaults object that’s shared between the iOS
application and the WatchKit application. By default, they will be stored
in the iOS application’s user defaults. To change that, set the value for the
ApplicationGroupContainerIdentifier key, which is the last row of the
editor, to group.com.apress.lwkweathertest, the identifier of the app group
that contains the shared user defaults object. When you have done that,
your settings bundle should be as shown in Figure 8-16. Before proceeding,
check and correct any errors.

CHAPTER 8: Glances, Settings, and Handoff386

You can check that the settings bundle works as expected by running the
WatchKit app and then opening the Apple Watch application on the iPhone
and selecting the page for the LWKWeather application. It should be as shown
on the left in Figure 8-17. Tap on the Glance Content row to expose the
three available choices, as shown on the right in Figure 8-17. As you can
see, the first entry (the one configured as the default in the settings bundle)
is currently checked.

Figure 8-16. The completed watch settings bundle

Note You can read more about settings bundles in the Preferences and Settings
Programming Guide, which you’ll find at https://developer.apple.com/
library/ios/documentation/Cocoa/Conceptual/UserDefaults/

AboutPreferenceDomains/AboutPreferenceDomains.html.

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/AboutPreferenceDomains/AboutPreferenceDomains.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/AboutPreferenceDomains/AboutPreferenceDomains.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/UserDefaults/AboutPreferenceDomains/AboutPreferenceDomains.html

CHAPTER 8: Glances, Settings, and Handoff

387

Implementing the Glance View Options
Now that we’ve built the settings bundle, we can add the code we need in
the glance controller. The idea is to modify the selectCity() method so that
it sets the cityCode property based on the value of the GlancePreference
key in the shared user defaults object. This is the key that we configured in
the settings bundle to store the user’s choice from the multivalue item. The
value will be 0, 1, or 2, depending on which option the user selected.

Select LWKWeatherGlanceController.swift in the Project Navigator and add
the properties shown in bold before the awakeWithContext() method:

// Timer used to reload weather.
private var reloadTimer: NSTimer?

// Timer used for rotating through cities
private var cityCycleTimer: NSTimer?

Figure 8-17. The watch app configuration pages in the Apple Watch application

CHAPTER 8: Glances, Settings, and Handoff388

// Index for the next city in rotation
private var nextCityIndex = 0

// Time between cities in rotation, in seconds
private let rotatingCityInterval: NSTimeInterval = 1

override func awakeWithContext(context: AnyObject?) {

These three new properties are used when the user selects the Rotate
Through Cities option. In this case, when the glance is activated, the
weather for the first city in the user’s displayed city list is shown. Then, one
second later, it is replaced by the data for the second city, and so on. This
continues until the glance is deactivated. The cityCycleTimer property
refers to the timer used to switch to the next city, the nextCityIndex
property is the index of the next city in the DisplayedCityInfoModel’s
displayedCities list for which weather is to be displayed in the glance, and
rotatingCityInterval is the time for which each city’s details are shown,
which is hard-coded to one second.

Because we’ll be creating a new timer, we need to make sure it is stopped
when the glance is deactiveated. To do that, add the following bold code to
awakeWithContext():

override func didDeactivate() {
 super.didDeactivate()

 cityCycleTimer?.invalidate()
 cityCycleTimer = nil
 reloadTimer?.invalidate()
 NSNotificationCenter.defaultCenter().removeObserver(self)
 DisplayedCityInfoModel.sharedInstance().delegate = nil
}

Note The time interval could be another user-settable preference. As an
exercise, you could try adding this preference to the settings bundle and
modifying the controller code to use it.

CHAPTER 8: Glances, Settings, and Handoff

389

Most of the work for this feature is done in the selectCity() method.
The changes to this method are such that it is easier to remove it completely
and then replace it with the following code than to try to show how to edit it
in place:

private func selectCity() {
 var newCityCode: Int?

 cityCycleTimer?.invalidate()
 let userDefaults =
 NSUserDefaults(suiteName: "group.com.apress.lwkweathertest")
 if let preference =
 userDefaults?.integerForKey("GlancePreference") {
 switch (preference) {
 case 0: // Last viewed city
 if let lastCityCode =
 userDefaults?.integerForKey("LastViewedCityCode")
 where lastCityCode != 0 {
 newCityCode = lastCityCode
 }

 case 1: // Random city
 let cityCount = DisplayedCityInfoModel.sharedInstance().
 displayedCities.count
 let index = Int(arc4random()) % cityCount
 newCityCode = DisplayedCityInfoModel.sharedInstance().
 displayedCities[index]

 case 2: // Rotate through all cities
 displayNextCity()
 return

 default:
 println("Unexpected glance preference value: \(preference)")
 }
 }

 cityCode = newCityCode ?? 5128581 // By default, show New York weather
}

The first part of this code gets the value stored for the key
GlancePreferences in the shared user defaults, defaulting it to 0 if it’s not
present (since 0 is the value returned by the integerForKey() method if no

CHAPTER 8: Glances, Settings, and Handoff390

value is found). Next, we enter a switch statement based on the value we
just retrieved. Here’s what the four cases in this switch do:

	The first case, corresponding to the Last Viewed City
option, is the same code we used in the original version
of this method, setting the newCityCode variable from
the last city the user viewed.

	The second case is entered when the user chooses the
Random City option. It generates a random number from
0 to the number of entries in the user’s displayed city list
minus 1 and then uses that as an index in the displayed
city list to get a city code.

	The third case corresponds to Rotate Through Cities.
This option requires too much code to be embedded
here, so it’s implemented in another method called
displayNextCity() that you’ll see shortly. In this case,
the displayNextCity() method is going to set the
cityCode property, so we return immediately after calling
it to avoid having the value overwritten by the code at
the end of the method.

	The default case should never be triggered, and we just
write a debug line if it is. In this case, the newCityCode
variable won’t be set, so the weather for New York City
will be displayed.

Finally, the value of the newCityCode variable is assigned to the cityCode
property. If this variable was not set (which happens when the glance is
used for the first time), then the city code for New York City will be used
instead.

Because we are using the arc4random() function to generate random
numbers, we’ll get a better result if we give it a chance to set itself
to a random initial value. To do that, add the following code to the
willActivate() method:

override func willActivate() {
 super.willActivate()

 // Stir up the random number generator
 arc4random_stir()

CHAPTER 8: Glances, Settings, and Handoff

391

Next, let’s add the displayNextCity() method together with a helper
method that it needs, both of which are shown here:

private func displayNextCity() {
 let cityCount = DisplayedCityInfoModel.sharedInstance().
 displayedCities.count
 let index = min(nextCityIndex, cityCount - 1)
 nextCityIndex = (nextCityIndex + 1) % cityCount
 cityCode = DisplayedCityInfoModel.sharedInstance().
 displayedCities[index]
 updateDetails()

 // Schedule a timer for the next city, if we don't have one.
 if cityCycleTimer == nil {
 cityCycleTimer = NSTimer.scheduledTimerWithTimeInterval(
 rotatingCityInterval,
 target: self, selector: "onNextCityTimer:",
 userInfo: nil, repeats: true)
 }
}

func onNextCityTimer(_: NSTimer) {
 displayNextCity()
}

The first part of the displayNextCity() method uses the value of the
nextCityIndex property to get the code for the next city to be displayed
from the DisplayedCityInfoModel’s displayedCities property, making sure
that the index is within the bounds of the array, and then increments
nextCityIndex modulo the length of the array, ready for next time. The city
code is assigned to the cityCode property, and the updateDetails() method
is called to display the weather for the new city on the screen.

Finally, the first time this method is called, we create a repeating timer that
will fire every rotatingCityInterval seconds (which, as you have seen, is
actually 1 second). When the timer fires, the onNextCityTimer() method is
called. That method just calls displayNextCity() to display the details for
the next city.

Note We need to bounds check the nextCityIndex property because the
user could remove an entry from the displayed cities list by using the iPhone
application’s configuration screens while the glance is displayed.

CHAPTER 8: Glances, Settings, and Handoff392

You now have all the code. You can test these changes either on the
simulator or on a device, but it’s easier to do so on a real watch. After
installing the application on the watch, open the Apple Watch app on the
iPhone and use the settings screens that we added to select and then try
out all three possible glance configurations. When you are testing the Rotate
Through Cities option, keep your wrist raised so that the screen doesn’t go
blank while you are cycling through the city list. If it does, you should be
able to swipe up to redisplay the glance, and the cycle should continue from
where it left off.

The Rotate Through Cities option demonstrates that although glances are
not interactive, they do not need to be static. Of course, you shouldn’t make
your glance do so much work that it starts using a significant amount of
battery power.

Implementing Handoff
In iOS 8, Apple added the handoff feature, which allows the user to start an
activity on one device and continue it on another. WatchKit provides a very
easy way to use handoff to allow you to react to state sent to the WatchKit
application when it is launched as a result of the user tapping on the glance.
Let’s see how to use this feature in the context of the Weather application.

What will happen is this: when the user taps on the glance, the WatchKit
application will launch and then push the detail interface controller for the
city that the user was viewing in the glance. This means, for example, that
the user can configure the glance to show a random city and then tap on it
to immediately see the two-day forecast for that city in the main application.
Implementing this turns out to be very easy.

The key to handoff is the concept of a user activity. What this means depends
entirely on the application. In the case of the weather application, there is
really only one activity and that is viewing weather for a city. The activity
needs to be assigned a type, which is a name that is conventionally a
reversed-DNS designator such as com.apress.lwkweather.viewcityweather.

Note You’ll find a copy of the project that contains all the code that you’ve
seen so far in the folder 8 – Glance Part 2 in the example source code
archive.

CHAPTER 8: Glances, Settings, and Handoff

393

Whenever the interface controller starts an activity, it needs to call the
following method in its base class:

func updateUserActivity(_ type: String,
 userInfo userInfo: [NSObject : AnyObject]?,
 webpageURL webpageURL: NSURL?)

The userInfo argument is a dictionary that holds information that describes
the activity. It is used by whatever picks up the handed-off activity. The
webPageURL argument can be used to pass the URL of a web page to open
in a browser. We’re not going to use that feature here. If, at any point, the
user activity ends, the controller should call the invalidateUserActivity()
method.

When the application is launched from the glance, if the glance has called
the updateUserActivity(_:userInfo:webPageURL:) method, the following
method of the WatchKit application’s initial interface controller is called
some time shortly after it is launched:

func handleUserActivity(_ userInfo: [NSObject : AnyObject]?)

The userInfo argument references a dictionary containing the values that
the glance supplied to updateUserActivity(_:userInfo:webPageURL:).

To implement handoff between the glance and the WatchKit Weather
application, all we need to do is follow the rules just given, passing the city
code for the city being viewed in the glance in the userInfo dictionary. Let’s
go through the implementation.

Open the LWKWeatherGlanceController class and add the following code in
bold to the property observer for the cityCode property:

private var cityCode = 0 { // Will be set by selectCity()
 didSet {
 if (cityCode != oldValue) {
 // Fetch the weather, if we don't already have it.
 WatchAppWeatherModel.sharedInstance().
 fetchWeatherForCities([cityCode], always: false)

 // Handoff
 if cityCode != 0 {
 updateUserActivity(
 "com.apress.lwkweather.viewcityweather",
 userInfo: ["cityCode": cityCode],
 webpageURL: nil)
 }
 }
 }
}

CHAPTER 8: Glances, Settings, and Handoff394

Whenever the code for the city being viewed in the glance changes, the user
activity will be updated with a dictionary containing the city code stored
under the key cityCode. We also need to invalidate the activity when the
glance is deactivated. To do that, we need to add just additional line of code
in the didDeactivate() method:

override func didDeactivate() {
 super.didDeactivate()

 cityCycleTimer?.invalidate()
 cityCycleTimer = nil
 reloadTimer?.invalidate()
 NSNotificationCenter.defaultCenter().removeObserver(self)
 DisplayedCityInfoModel.sharedInstance().delegate = nil

 invalidateUserActivity()
}

Note that we supply the user activity type com.apress.lwkweather.
viewcityweather as the first argument when we called the updateUser
Activity(_:userInfo:webPageURL:) method. In the main interface controller
of the WatchKit extension, we need to add the code that handles this
activity type. Open InterfaceController.swift and add this override of the
handleUserActivity(_:) method to it:

// MARK: -
// MARK: HANDOFF
override func handleUserActivity(userInfo: [NSObject : AnyObject]?) {
 if let dictionary = userInfo as? [String: AnyObject],
 let cityCode = dictionary["cityCode"] as? Int {
 pushControllerWithName("DetailsInterfaceController",
 context: cityCode)
 }
}

This code gets the cityCode value from the dictionary of information set
when the activity was created, if there is one, and uses it to push the
weather details interface controller. Recall from the last chapter that this
controller’s awakeWithContext() method expects to get the city code as its
context argument, so we pass it as the second argument to pushController
WithName(_:context:) method.

There’s just one more change to make. In the WatchKit weather application,
the details interface controller is pushed by WatchKit code as a result of the
user tapping a row in the table in the main interface controller, which triggers
a segue. The link between the two controllers is made in the storyboard, so
there was no need to give the details controller an identifier. Now, however,

CHAPTER 8: Glances, Settings, and Handoff

395

we need to push the same controller in code, so an identifier is required. To
assign one, open Interface.storyboard in the editor and select the details
interface controller. Open the Attributes Inspector and set the Identifier
field to DetailsInterfaceController, the same value we used when calling
pushControllerwithName(:context:) in the code above.

Now build and run the application on a real watch (you can’t test handoff in
the simulator).

Use the Apple Watch app on the iPhone to configure the glance to rotate
through cities and then open the iPhone Weather application and add a few
more cities to the displayed cities list. When you’ve done that, swipe up
on the watch screen to reveal the glance. As the glance cycles through the
cities in the displayed cities list, tap the screen and you’ll see the application
launch, and then the details screen for the city that you tapped on will be
pushed almost immediately. That’s handoff in action!

Summary
Glances provide a convenient way for the user to see your application’s
state and a quicker and less error-prone way to launch it than going
through the watch’s home screen. In this chapter, you saw how easy it is
to implement a glance. Although applications are not required to have one,
I recommend that you implement a glance if you have data that you could
usefully present to the user while your application is not running.

This chapter also introduced the watch application settings bundle.
Although we used it here to tailor the Weather application’s glance, you can
use it to configure any aspect of your watchkit application’s behavior.

Finally, you saw how to implement handoff from the glance to the WatchKit
application. Although the handoff functionality provided by WatchKit is very
simple, you can use it to implement a shortcut into your application’s user
interface that will save the user time and frustration.

Note You’ll find a copy of the completed project in the folder 8 – Glance
Part 3 in the example source code archive.

397

Chapter 9
Notifications
One of the best features of Apple Watch is that it can handle local and
remote notifications for your iOS application even if you haven’t bundled a
WatchKit application with it. It’s entirely possible that the default notification
handling is good enough, in which case you don’t need to add a watch
application—and even if you have added one, you still may not need to
enhance it to work with notifications. In the first part of this chapter, you’ll
see how notifications are handled when your application does not have a
WatchKit app.

If the default notification handling does not meet your requirements, you can
customize it in your WatchKit app. There are two levels of customization you
can choose from: the most basic form is configured entirely in the storyboard
and requires no code; the other gives you a great deal more flexibility but
requires you to create a specialized interface controller. You’ll see how to
customize the appearance of notifications in the second part of this chapter.

Note This chapter assumes that you are familiar with the concepts behind
local and remote notifications in iOS. Although there is some introductory
material in the first part of the chapter, this is not a notifications tutorial. If
you need more information on notifications, refer to Apple’s Local and Remote
Notification Programming Guide, which you can find at http://developer.
apple.com/library/ios/documentation/NetworkingInternet/

Conceptual/RemoteNotificationsPG/Introduction.html.

http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html
http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html
http://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html

CHAPTER 9: Notifications398

Default Notification Handling
As far as the user is concerned, Apple Watch makes no distinction between
local and remote notifications. As you’ll see later in this chapter, the same is
true when you add notification handling to your watch application. However, if
you have an Apple Watch, it’s easy to see what happens when an application
schedules a local notification. If you don’t have a watch, there is no way to
see what the default notification handling gives you because the iOS simulator
does not support it—your only option is to add a WatchKit application with a
simulated remote notification payload. You’ll see how to do this in the section
“Handling Notifications in Your WatchKit App” later in this chapter. The rest of
this section assumes that you have an Apple Watch available for testing.

Let’s build a simple iOS application that schedules a local notification and
see what happens when we force it to be delivered first on the iPhone and
then on the watch. Our application will have a simple user interface that
consists of a single button. When the button is pressed, we’ll schedule a
local notification to be delivered a short time into the future and we’ll see
how that looks on the watch.

Start by creating a new Single View application called
DefaultNotifications, but don’t add a WatchKit application target to it,
because in this section we’re experimenting with what happens when you
don’t customize notification handling.

Select Main.storyboard in the Project Navigator and drag a button from
the Object Library to the center of the view, adjusting its position until
you see blue horizontal and vertical guides indicating that it is centered.
Then drop it and select Editor ➤ Resolve Auto Layout Issues ➤ Add
Missing Constraints from Xcode’s menu to add Auto Layout constraints
that pin it to the center of the view. Change the button’s text to Schedule
Notification and then select Editor ➤ Resolve Auto Layout Issues ➤
Update Frames from the menu to adjust its size (if this menu item is not
enabled, make sure the button is selected in the storyboard and try again).
Next, open ViewController.swift in the Assistant Editor and Control-drag
from the button to the class definition to create an action method called
onButtonClicked(). We’re going to use this method to create and schedule
a local notification, but first we have to get the user’s permission to do so.

Note If you want a way to deliver remote notifications to your phone for test
purposes, take a look at the NWPusher project on GitHub at http://github.com/
noodlewerk/NWPusher.

http://github.com/noodlewerk/NWPusher
http://github.com/noodlewerk/NWPusher

CHAPTER 9: Notifications

399

As you probably already know, beginning with iOS 8, an application cannot
schedule or handle notifications unless it declares that it intends to do so.
The first time it does this, iOS prompts the user to give permission for the
application to use notifications. If the user declines, the application will not
be allowed to schedule local notifications or receive remote notifications.
To declare that our application needs to work with notifications, add the
following code shown in bold to the application(_:didFinishLaunchingWith
Options:) method in AppDelegate.swift:

func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [NSObject: AnyObject]?) -> Bool {
 let settings = UIUserNotificationSettings(
 forTypes: .Badge | .Alert | .Sound, categories: nil)
 application.registerUserNotificationSettings(settings)

 return true
}

The UIUserNotificationSettings object that we’re creating says that
we may include an alert message in our notifications and we may also
badge the application’s icon and/or play a sound. The nil categories
value indicates that we’re not going to include any action buttons. Later
in this section, you’ll see what happens when we add action buttons to a
notification.

Let’s give the app a simple icon. Open the folder 9 – DefaultNotifications
– Images in the finder. Then select Images.xcassets in the Project Navigator
to open the asset catalog in the editor and select the AppIcon image set.
Drag the file AppIcon@2x.png onto the iPhone App 2x slot at the top right
of the catalog and AppIcon@3x.png onto the iPhone App 3x slot. Now run
this application on your iPhone. The first time you run it, iOS prompts for
permission for the application to use notifications, as shown in Figure 9-1.

http://mailto:AppIcon@2x.png/
http://mailto:AppIcon@3x.png/

CHAPTER 9: Notifications400

This prompt only appears once, so click OK so that we’ll be able to use
notifications next time we launch it. In a real application, the user can deny
permission, or can initially grant permission and then revoke it in the Settings
app. We’re not concerned with such complications here, since our only
concern is to demonstrate what happens when notifications are enabled.

While we’re working in the AppDelegate.swift file, add the following method
to it:

func application(application: UIApplication,
 didReceiveLocalNotification notification: UILocalNotification) {
 println("Received local notification: \(notification)")
}

This method is called instead of displaying an alert if the application is
in the foreground when the notification is delivered. It’s also called if the
application is in the background and the user taps on the notification alert
when it’s displayed. In either case, we write a message to the console so
that we can see that the notification was delivered.

Figure 9-1. Getting permission to use notifications

CHAPTER 9: Notifications

401

Now let’s add the code to schedule a notification. Back in ViewController.
swift, add the following code to the onButtonClicked() method:

@IBAction func onButtonClicked(sender: AnyObject) {
 let notification = UILocalNotification()
 notification.fireDate = NSDate().dateByAddingTimeInterval(5)
 notification.alertTitle = "Alert!"
 notification.alertBody = "Local notification!"
 notification.soundName = UILocalNotificationDefaultSoundName
 notification.hasAction = true
 notification.alertAction = "Do Something"
 UIApplication.sharedApplication().
 scheduleLocalNotification(notification)
}

This code schedules a local notification to be delivered five seconds into
the future.

Local Notifications on the iPhone
Run the application again and press the Schedule Notification button.
After five seconds, you should see a message in the Xcode console
indicating that the notification was delivered. Now press the button again
and immediately press the iPhone’s Home button to force the application
into the background. This time, the notification is not delivered to the
application—instead it’s shown in a banner at the top of the screen, as
shown in Figure 9-2.

Figure 9-2. A notification displayed as a banner on the iPhone

If you tap the banner, the notification is delivered to the application, as you
can see from the Xcode console.

In the onButtonClicked() method, we set the hasAction property to
true and the alertAction propery to Do Something, but we don’t see
any evidence of this in the banner in Figure 9-2. In fact, the alert action
is only shown if the user uses the Settings application to elect to receive
notifications as alerts. To try that out, open Settings, select Notifications,

CHAPTER 9: Notifications402

and then select the row for DefaultNotifications. At the bottom of the
screen that appears, select Alerts instead of Banners. Then return to our
application, schedule another notification, and press the Home button.
This time, the notification is delivered as an alert, including a button labeled
Do Something (see Figure 9-3).

Figure 9-3. A notification displayed as an alert on the iPhone

You can easily verify that the notification is delivered to the application if you
click the Do Something button, and that it is not delivered if you press Close.
The Do Something is not displayed when the notification is displayed as a
banner, because tapping the banner has the same effect.

Local Notifications on the Watch
Now let’s see what happens when we deliver the same local notification on
the watch. To force the notification to be delivered to the watch, you just
need to lock the iPhone.

Run the application again, press the Schedule Notification button, and
then quickly lock the iPhone’s screen. After a few seconds, you’ll see
the notification pop up on the watch. First, you’ll see a simplified version
of the notification, called the short look notification, which contains the
application’s icon, the text from the alertTitle property, and the application
name, as shown on the left in Figure 9-4.

Note The user can stop the notification from being delivered on the watch by
opening the Apple Watch application on the iPhone, going to the Notifications
screen, finding the entry for your application under “MIRROR IPHONE ALERTS
FROM,” and moving the enablement switch to the off position. In that case, the
system delivers the notification on the phone instead. The notification is also
delivered on the phone if the watch is not available for any reason.

CHAPTER 9: Notifications

403

After a short time, the short look notification transitions to the long look
notification, a larger version that contains everything that is in the short look
notification plus the text from the alertBody property and a Dismiss button.
The long look notification is shown on the right in Figure 9-4.

Tapping on the Dismiss button or swiping down from the top of the screen
clears the notification. Tapping anywhere else has no effect, and if you
do nothing, the notification will be removed but will remain in the watch’s
notification center. The user can reveal a shorter version of the notification
by swiping down from the top of the screen and can then choose to delete
it or tap on it to bring back the long look version. As you can easily verify by
looking at the Xcode console, whatever the user does, the notification is not
delivered to the iOS application.

Notifications with Actions
Notifications can be configured with one or more custom action buttons
that are displayed along with the other elements of the notification when it’s
delivered on the iPhone or on the watch. Let’s add a couple of buttons to
the notification in our test application to see how this looks. Start by making

Note If the user enables Notification Privacy on the Notifications page in the
Apple Watch application on the iPhone, the long look notification is not shown
until the user taps on the short look screen.

Figure 9-4. The short look (left) and long look (right) notifications

CHAPTER 9: Notifications404

the changes shown in bold in the application(_:didFinishLaunchingWith
Options:) method in AppDelegate.swift:

func application(application: UIApplication,
 didFinishLaunchingWithOptions launchOptions:
 [NSObject: AnyObject]?) -> Bool {
 let action1 = UIMutableUserNotificationAction()
 action1.identifier = "ACTION1"
 action1.title = "Action 1"
 action1.destructive = false
 action1.authenticationRequired = false
 action1.activationMode = .Background

 let action2 = UIMutableUserNotificationAction()
 action2.identifier = "ACTION2"
 action2.title = "Action 2"
 action2.destructive = true
 action2.authenticationRequired = false
 action2.activationMode = .Background

 let action3 = UIMutableUserNotificationAction()
 action3.identifier = "ACTION3"
 action3.title = "Action 3"
 action3.destructive = false
 action3.authenticationRequired = false
 action3.activationMode = .Foreground

 let actionCategory = UIMutableUserNotificationCategory()
 actionCategory.identifier = "BasicActions"
 actionCategory.setActions([action1, action2, action3],
 forContext: UIUserNotificationActionContext.Default)
 actionCategory.setActions([action1, action2],
 forContext: UIUserNotificationActionContext.Minimal)

 let settings = UIUserNotificationSettings(
 forTypes: .Badge | .Alert | .Sound, categories: nil)
 let settings = UIUserNotificationSettings(
 forTypes: .Badge | .Alert | .Sound,
 categories: Set([actionCategory]))
 application.registerUserNotificationSettings(settings)

 return true
}

This code creates three actions with identifiers ACTION1, ACTION2, and
ACTION3 and groups them into a category called BasicActions by calling the
category’s setActions(_:forContext:) method. The first call registers all
three actions for the default notification context. This context is used when

CHAPTER 9: Notifications

405

there is enough screen space available to display up to four actions, such
as when the notification is displayed in an alert. The second call registers
two of the actions for use in the minimal context, which is used when there
is limited space, such as when the notification is displayed in a banner or
on the phone’s lock screen. Having created the actions and linked them to
a category, we have to include them in the UIUserNotificationSettings
object that we use to register the application’s notification requirements.
Here, we have only one category, but you can declare as many as you need.

Also in AppDelegate.swift, add the following new method:

func application(application: UIApplication,
 handleActionWithIdentifier identifier: String?,
 forLocalNotification notification: UILocalNotification,
 completionHandler: () -> Void) {
 println("Handling action id \(identifier)")
 completionHandler()
}

Each action is represented in the user interface by a button. This method is
called when the user presses one of those buttons. It receives the identifier
from the action and the entire local notification. There is a similar method
that handles actions created from remote notifications. Here, we just print
the action identifier and then call the completion handler that is passed to
this method, which we are required to do.

To associate a set of custom actions with a notification, just set its
category property. To do that, add the line shown here in bold to the
onButtonClicked() method in ViewController.swift:

@IBAction func onButtonClicked(sender: AnyObject) {
 let notification = UILocalNotification()
 notification.fireDate = NSDate().dateByAddingTimeInterval(5)
 notification.alertTitle = "Alert!"
 notification.alertBody = "Local notification!"
 notification.soundName = UILocalNotificationDefaultSoundName
 notification.hasAction = true
 notification.alertAction = "Do Something"
 notification.category = "BasicActions"
 UIApplication.sharedApplication().
 scheduleLocalNotification(notification)
}

Now run the application again, press the Schedule Notification button,
and lock the iPhone’s screen to force the notification to be delivered on the
watch. When the notification arrives on the watch, you’ll see that the short
look version is unchanged, but the long look notification includes two of the
action buttons, as shown in Figure 9-5.

CHAPTER 9: Notifications406

Why are only two actions shown on the watch, whereas all three would be
shown on the iPhone? The long look notification is a default context, so it is
able to present up to four actions. The reason the third action is not shown
is because its activationMode property is set to Foreground:

let action3 = UIMutableUserNotificationAction()
action3.identifier = "ACTION3"
action3.title = "Action 3"
action3.destructive = false
action3.authenticationRequired = false
action3.activationMode = .Foreground

On the iPhone, this property determines whether the iOS application is
launched in the foreground or background to handle the action if the associated
button is pressed. The watch interprets this slightly differently—when the user
presses a button created from a foreground action, the main interface controller
of the WatchKit application is expected to handle it, while background actions
are handled by the UIApplicationDelegate of the iOS application. Because we
don’t have a WatchKit application, the foreground action cannot be handled, so
it’s not displayed.

With the long look notification ion displayed, press one of the action buttons
and you’ll see that the message we’re printing from the application(_:handle
ActionWithIdentifier:forLocalNotification:completionHandler:) method
appears in the console, confirming that background actions are handled by
the iPhone even when the notification was delivered to the watch.

Figure 9-5. A long look notification with custom actions

CHAPTER 9: Notifications

407

Handling Notifications in Your WatchKit App
When you add a WatchKit app to your application, you have three additional
options for handling notifications. Your first option is to just add the WatchKit
app and use the notification support that WatchKit gives you by default. If
that isn’t enough, you can add a notification scene to your storyboard, which
leaves the short look notification unchanged, but gives you two further
options for the long look notification—you can use the simpler static form,
which must be configured entirely in the storyboard, or you can choose the
dynamic version, which requires an additional interface controller and some
code. This section explores all three options.

Default WatchKit Notification Handling
Let’s start by doing nothing more than adding a WatchKit app target to our
simple notifications application. I made a copy of the project we have been
working with and changed its name to WatchNotifications so that it’s clear
that we’re now working with WatchKit notifications. You’ll find the copied
project in the 9 – WatchNotifications – Start folder of the example source
code archive. Open this project and make a couple of changes to it.

First, add a WatchKit target in the usual way, remembering not to create a
Notifications scene—we’ll add that scene ourselves in the next section. Second,
select Images.xcassets in the WatchNotifications WatchKit App group in the
Project Navigator, select the AppIcon image set in the left column of the editor
area, and delete it. Then open the folder 9 - WatchNotifications – Images
in the example source code archive and drag the folder Appicon.appiconset
that you’ll find there onto the editor area in Xcode. We’ve just added a full set
of icons to the WatchKit app. So that we can distinguish these icons from
the ones we are using for the iOS application, I used a copy of the Sun icon
from our weather application. Your asset catalog should now be as shown in
Figure 9-6.

Figure 9-6. Icons for the WatchKit notifications test application

CHAPTER 9: Notifications408

Note that a fully configured WatchKit application needs eight different icons.
Fortunately, it’s easy to create these if you use a vector graphics-based
editor such as Adobe Illustrator. By searching, you can easily find various
web-based services that will create icon sets for you.

Run the application on your iPhone. When it starts, press the Schedule
Notification button and quickly lock the screen so the notification is
delivered on the watch. After five seconds, the short look notification
appears, followed by the long look version. These are shown in Figure 9-7.

Figure 9-7. The short and long look notifications when there is a WatchKit app

If you compare Figure 9-7 with Figure 9-4, you’ll see that the only difference
is that the WatchKit App’s icon is used instead of the iOS application’s icon.
In practice, you would probably use the same icon for both applications, so
this would not be an important distinction. What about the action buttons?
You’ll recall that the notification uses a category that has three actions,
but previously only two of them were shown in the long look notification
because the third had foreground activation mode. If you scroll the long look
notification screen, you’ll see that there are still only two buttons. So far, we
don’t seem to have gained anything, but that’s not quite true—if you tap
the icon in the long look notification, your WatchKit application is launched
and replaces the notification on the screen. Unfortunately, there’s no way
for the WatchKit app to know why it was launched, so it can’t customize its
appearance based on the content of the notification. For that, you have to
add a notification scene.

Adding the Static Long Look Notification Scene
In every example in this book so far, we have politely declined Xcode’s offer
to include a notification scene in the storyboard when adding a WatchKit
target to our projects. Now, finally, we are going to use a notification scene.

CHAPTER 9: Notifications

409

Because our project already exists, we can’t have Xcode add the scene
for us, but it’s easy enough to do it ourselves, just as it was when we were
working with glances in Chapter 8. Open Interface.storyboard in the editor,
drag a Notification Interface Controller from the Object Library, and drop it
onto the storyboard. The controller is pre-initialized with a Dismiss button
and a sash that contains the WatchKit app’s title and icon, as shown in
Figure 9-8.

Figure 9-8. The static long look notification

The controller we just added is an example of a static long look notification.
It’s presented instead of the default notification shown on the right in
Figure 9-7 when a notification with a category that matches the one that
it’s configured with is received. If you run the iPhone application now and
schedule a notification to be delivered on the watch, you’ll see that the
watch uses our new controller and populates the label with the alertBody
property from the notification (see Figure 9-9).

http://dx.doi.org/10.1007/9781484210260_8

CHAPTER 9: Notifications410

If you scroll down a little, you’ll see that there are three action buttons,
as shown on the right in Figure 9-9. Recall that the default static long
look notification presentation (Figure 9-5) did not include the third button,
because its action is configured with foreground activation mode. I say more
about this in the section “Action Handling” later in this chapter.

Configuring the Static Notification
It’s very easy to use the static long look notification—you just have to add
a controller to your storyboard and you don’t have to write any code to
manage it. In fact, you can’t write any customization code because, unlike
all the other WatchKit interface controllers, the static long look notification
controller is not backed by a class. On the flip side, the layout of the static
long look notification is very simple, and it can only display the text in the
notification’s alertBody property in the pre-configured label. If you need
to display additional information from your notification, you’ll need to add
a long look notification controller, which I cover shortly. There are three
different sets of attributes that you can use to customize the short look
controller. Select the controller in the storyboard and open the Attributes
Inspector to reveal the interface controller’s attributes (see Figure 9-10).

Figure 9-9. Our static long look notification in use

CHAPTER 9: Notifications

411

Leave the Has Dynamic Interface Controller attribute unchecked for
now because we’re not concerned with the dynamic controller in this
section. The remainder of the attributes should look familiar to you—they
are very similar to the attributes of a group. You can use them to configure
the background of the area of the controller in which your notification
information is presented. This is the area that contains the label in Figure 9-9.
As you can see, it has a plain black background by default. Let’s make that
a little more interesting by adding an image and changing the background
color.

Select Images.xcassets from the WatchNotification WatchKit App group in
the Project Navigator to open the asset catalog in the editor then drop onto it
the two images that you’ll find in the folder 9 – WatchNotifications –
Backgrounds in the example source code archive. Now go back to the
storyboard and select the controller again. In the Interface Controller
section of the Attributes Inspector, click the + icon next to the Background
attribute (see Figure 9-10) and add an input field for the 42mm watch.
Select the image CloudAndSun38 in the original Background input field and
CloudAndSun42 for the 42mm watch. The image will look squashed in the
storyboard, because it’s being resized to fit the space available. Change the
Mode attribute to Center so that it’s shown at its correct size, as shown in
Figure 9-11.

Figure 9-10. Static long look notification controller attributes

CHAPTER 9: Notifications412

That’s not really the result we want. Unfortunately, the notification does not
resize itself based on the size of its background image, and there’s no way
to directly set its size. Maybe we can work around it by using the notification
controller’s insets? Let’s try. Set the Insets field to Custom and then try
increasing the Top and/or Bottom insets. This has the effect of making
the notification area smaller, but the image is always vertically centered.
Changing the Top inset value to 50 gives the result shown in Figure 9-12.

Figure 9-12. Changing the notification controller insets

Figure 9-11. Adding a background image the long look notification

CHAPTER 9: Notifications

413

That’s a little better, but it still isn’t quite right. Also, increasing the top insets
has pushed the alert label to the bottom of the notification area, which may
not be what you want. Although you can probably make this work for some
images, it’s not working in this case. Luckily, there is another way to fix this.
We can add a group to the notification controller, set the image as the
background of the group, and fix the group’s height based on the image
size. We can then move the label inside the group and position it according
to our requirements. The downside of this approach is that you can’t get the
image to cover any of the area behind the sash. If you need to do that, you
can use a hybrid approach where you put the label in a group, fix the group’s
height, and then design your image so that it’s exactly the same height as
the group plus the height of the sash and use it as the background of the
notification controller. Of couse, you’ll need to make sure this works properly
for both watch sizes.

Go back to the storyboard, reset the Insets attribute to Default, clear the
Background attribute, and press the X icon next to the 42mm input field. Now
drag a group from the Object Library and drop it directly above the label. In
the Document Outline, drag the label so that it’s nested inside the group.
When you’ve done that, your Document Outline should look like Figure 9-13.

Note You are free to add interface objects to the notification controller, as long
as you don’t add an interactive object (such as a button) or remove the alert
label. Like glances, notification controllers are not interactive.

Figure 9-13. Wrapping the alert label in a group

CHAPTER 9: Notifications414

Now we need to set the height of the group based on the image sizes. The
38mm image is 80 pts high, and the 42mm image is 100 pts high. Select the
group, change its Height attribute to Fixed, and set the value in the field that
appear underneath it to 80. Press the + icon next to it to add an input field
for the 42mm watch and set its value to 100. To set the background images,
select CloudAndSun38 as the Background attribute and then press the + icon
next to it, add a field for the 42mm watch and set its value to CloudAndSun42.
Finally, set the Mode to Center. Your controller should now look like Figure 9-14.

Figure 9-14. The group with the background image added

That black background doesn’t look right with the bright sun. Select the
interface controller and set its Color attribute to a nice sky blue (RGB values
70, 150, 200 give a nice result). Now your controller is beginning to look
much nicer (see Figure 9-15).

CHAPTER 9: Notifications

415

Next, let’s configure the alert label. This is just a standard label, so you
can configure it any way you need to. I recommend that you set the Lines
attribute to 0 to allow the notification text to wrap if necessary. Select the
label and do that now. For this example, we also need to choose a text
color that works well with the blue background and the white clouds. Any
dark color would be acceptable. I chose to use black and I set the font to
Headline for better readability. You can use the usual attributes to change
the position of the label relative to its enclosing group. Change the Vertical
attribute to Bottom to move it to the bottom of the group.

There are a few more configuration items that we can play with. To see
them, select the Notification Category item in the Document Outline and
then look at the Attributes Inspector (see Figure 9-16).

Figure 9-15. The group with the background image and color set

CHAPTER 9: Notifications416

Ignore the Name attribute for now—that’s covered in the section “Notification
Categories” later in this chapter. The Sash Color attribute sets the color of
the sash, which is the translucent band at the top of the notification area.
The Wants Sash Blur attribute, as its name suggests, applies a blur to the
content beneath the sash. Similarly, the Title Color attribute sets the color
of the text in the sash, which is the application name. Experiment with all
these attributes to see how they work, change the Sash Color attribute to
Clear Color, and select the Wants Sash Blur attribute.

Before we run the application again, let’s make a small change to the code
that creates our test notification. Open ViewController.swift and change
the value of the alertBody property as shown here in bold:

@IBAction func onButtonClicked(sender: AnyObject) {
 let notification = UILocalNotification()
 notification.fireDate = NSDate().dateByAddingTimeInterval(5)
 notification.alertTitle = "Alert!"
 notification.alertBody = "It’s Sunny!"
 notification.soundName = UILocalNotificationDefaultSoundName
 notification.hasAction = true
 notification.alertAction = "Do Something"
 notification.category = "BasicActions"
 UIApplication.sharedApplication().
 scheduleLocalNotification(notification)
}

Now run the application on the iPhone, press the Schedule Notification
button, and lock the screen. The static long look notification, when it
appears, should be as shown in Figure 9-17.

Figure 9-16. The notification category attributes

CHAPTER 9: Notifications

417

Figure 9-17. A customized static long look notification

Action Handling
When you add a notification scene to your WatchKit app, you gain the ability
to handle the foreground actions that are configured for that notification’s
category. When we defined the BasicActions category that we are currently
using for all our notifications, we include three actions, two of which were
background and one foreground. As you’ve already seen, background
actions are handled by launching the iPhone application in the background
and calling the application(_:handleActionWithIdentifier:forLocal
Notification:completionHandler:) method (or a similarly named method
for a remote notification) of its iPhone app’s application delegate. When you
tap the button for a foreground action, your WatchKit app is launched, and
the handleActionWithIdentifier(_:forLocalNotification:) method in your
WatchKit Extension’s main interface controller (or the handleActionWith
Identifier(_:forRemoteNotification:) method for a remote notification) is
called is to allow you to save state information that you can use to update
your user interface. Let’s modify the WatchNotifications WatchKit app to
demonstrate how this works.

Open Interface.storyboard in the editor and drop a label onto your main
interface controller (not the notification scene). In the Attributes Inspector,
set the label’s Lines attribute to 0 to allow text to wrap onto subsequent
lines, if necessary. Open InterfaceController.swift in the Assistant
Editor and Control-drag to it from the label to create an outlet called label.

CHAPTER 9: Notifications418

Then add a property called userInfo that we’ll use to save the user info
dictionary from the notification when we receive it:

class InterfaceController: WKInterfaceController {
 @IBOutlet weak var label: WKInterfaceLabel!
 private var userInfo: [NSObject: AnyObject]?

Now add the code shown here in bold to the willActivate() method:

override func willActivate() {
 super.willActivate()

 let text = userInfo?.description ?? "No notification payload"
 label.setText(text)
 userInfo = nil
}

This code uses the content of the userInfo dictionary, if it exists, to set the
text property of the label and installs a default message otherwise. Then it
clears the userInfo property for next time. Now add the following code to
the class:

override func handleActionWithIdentifier(identifier: String?,
 forLocalNotification localNotification: UILocalNotification) {
 userInfo = localNotification.userInfo
}

This is the method that is called when a button created from a foreground
action of a local notification is pressed. We extract the userInfo dictionary
from the notification and save it in the controller’s userInfo property, where
it is used by the willActivate() method. Notice that we don’t call the
superclass implementation of this method—it’s not necessary to do so
because the documentation says that it does nothing. Now run the application
on the iPhone, schedule a notification, and lock the screen. When the long
look notification appears on the watch, scroll down and press the button
labeled Action 3, which is the one that’s created from a foreground action.
The WatchKit application will be launched, and you’ll see the text No
notification payload on the screen. There’s no payload because we didn’t
set the userInfo property when we scheduled the notification. Let’s fix that
and try again. Open ViewController.swift in the WatchNotifications group
and add the following bold code to the onButtonClicked() method:

 notification.userInfo = ["Time" : NSDate()]
 UIApplication.sharedApplication().
 scheduleLocalNotification(notification)
}

CHAPTER 9: Notifications

419

Now run the same test again. This time, you’ll see the notification payload
on the screen, as shown in Figure 9-18.

Figure 9-18. Handling a foreground action from a static long notification

Notification Categories
Earlier, I mentioned that when a notification arrives, WatchKit looks in
the storyboard for a notification scene with a category that matches
the category property of the notification. The category property of the
notification that we have been using to test has the value BasicActions, but
we haven’t actually set the category attribute of our notification scene—
we would set it by using the Name field shown in Figure 9-16. If WatchKit
can’t find a notification scene with a matching category name, it tries to
find one that does not have a category name. That’s why our notification
scene is being used even though its category name does not match that of
the notification. The idea behind this is to allow you to present a different
interface based on the category of the incoming notification. You can add a
separate notification scene for each different category that your application
uses, setting the controller’s category property appropriately.

What happens if there is no scene with the correct category for a notification
and there also is no default scene? To find out, open Interface.storyboard
and select the Notification Category node in the Document Outline
(refer back to Figure 9-13 if you have forgotten where that node is). In the
Attributes Inspector, set the Name attribute to NO_MATCH (or anything other
than BasicActions), run the application again, and schedule a notification.

CHAPTER 9: Notifications420

This time, WatchKit won’t find a notification scene for category BasicActions
and there is no longer a default scene, so it just uses the default long look
controller, the same one that it used before we added the notification scene
to the storyboard (see Figure 9-7). Before moving on, reset the notification
category’s Name attribute to blank.

Adding the Dynamic Long Look Notification Scene
As you’ve seen, you can customize the static long look notification to make
it look a little more attractive than the default, but the only information you
can display from the notification is the value of the alertBody property. To do
anything more sophisticated, you need to add a dynamic long look scene.
Unlike the static version, the dynamic scene requires a controller class, and
you can add code to this class to customize the controller’s user interface,
using information from the notification, before it’s shown to the user.

Adding the Dynamic Controller to the Storyboard
Let’s add a dynamic long look notification scene to our example application.
To do that, open Interface.storyboard in the editor, select the static
notification controller in the Document Outline, and check the Has Dynamic
Interface check box in the Attributes Inspector (refer back to Figure 9-10
for the location of this check box).

Xcode adds the long look notification controller to the storyboard and links
it to the static controller using a segue arrow (which is just for presentation
since you can’t do anything with it), as shown in Figure 9-19.

CHAPTER 9: Notifications

421

Next, we need to add a controller class that will be linked to the scene.
Right-click the WatchNotifications WatchKit Extension group in the
Project Navigator and select New File... from the pop-up. From the iOS
Source section of the dialog that appears, select Cocoa Touch Class and
click Next. Name the new class BasicActionsNotificationController and
make it a subclass of WKUserNotificationInterfaceController, click Next,
and save the new class. Notice that notifications use a different controller
base class. WKUserNotificationInterfaceController is a subclass of
WKInterfaceController with two additional methods that you can override
to construct the notification’s user interface. You can see skeleton versions
of these methods in the source file that Xcode added to the project—one
for local and another for remote notifications—and you’ll see a typical
implementation of one of them shortly.

To link the controller class to the dynamic long look scene in the storyboard,
open Interface.storyboard again, select the Dynamic Notification Interface
Controller node in the Document Outline, open the Identity Inspector, and set
the Class attribute to BasicActionsNotificationController.

Next, let’s construct the user interface we want. We’re going to add a
group to display the same image that we are using in the static controller,
and we’re going to add three labels to it. We’ll use these labels to display
information that we’ll get from the notification. Building the interface is a

Figure 9-19. The long look notification scene in the storyboard

CHAPTER 9: Notifications422

mechanical process that you’re very familiar with by now. Fortunately,
we can save some time by copying the group that we constructed for the
static scene.

In the Document Outline, open the Static Notification Interface
Controller node so that you can see the nested Group node. Hold down
the (option) key and drag the Group node onto the storyboard until it’s
over the dynamic controller scene (which will be obvious because the
controller will be outlined in blue) and then drop it. The group, along with
its background image, will be copied into the content area of the dynamic
scene, as shown in Figure 9-20.

Figure 9-20. Copying a group from the static scene to the dynamic scene

Select the dynamic controller scene by clicking on its sash. Open the
Attributes Inspector and set its Color attribute to the same color that you
used for the group in the static scene.

When you copied the group, you also copied the alert label, which you can
see at the bottom of the group. We need three labels stacked one above
the other, aligned at the top of the group. Select the group and change its
Layout attribute to Vertical so that the labels will be arranged in a column.
To move the alert label to the top, select it and change its Vertical attribute
to Top. Next, select the label, hold down the (option) key, and drag the
label down to create a copy and drop it. Do the same thing again to create
the third label, as shown in Figure 9-21.

Note You can’t explicitly set the attributes of the sash in the dynamic
controller scene—they are inherited from the static controller.

CHAPTER 9: Notifications

423

Next, we need to create outlets for the labels. Open BasicActions
NotificationController.swift in the Assistant Editor. Then Control-drag
from each label in turn to the top of the class file, creating outlets called
alertBodyLabel for the top label, cityLabel for the middle label, and
tempLabel for the bottom label, as shown here in bold:

class BasicActionsNotificationController:
 WKUserNotificationInterfaceController {
 @IBOutlet weak var alertBodyLabel: WKInterfaceLabel!
 @IBOutlet weak var cityLabel: WKInterfaceLabel!
 @IBOutlet weak var tempLabel: WKInterfaceLabel!

That’s all we need to do in the WatchKit app storyboard.

Figure 9-21. Building the dynamic long look controller scene

CHAPTER 9: Notifications424

Implement the Dynamic Long Look Controller
Now that we have both a static and a dynamic long look controller, it’s
reasonable to wonder how WatchKit determines which one it should use.
Here’s how the decision is made:

1. If there is no dynamic interface in the storyboard, or
WatchKit determines that there is insufficient power
to warrant constructing the dynamic interface, the
static interface is used.

2. An instance of the dynamic controller class is
created, and its didReceiveLocalNotification
(_:withCompletion:) or didReceiveRemote
Notification(_:withCompletion:) method is called.
This method is expected to examine the notification
and determine whether the dynamic or static
interface would be more appropriate. Having made
this determination, it should customize the dynamic
controller interface (if it’s going to be used) and then
call the completion handler method with an argument
that indicates which interface is required.

3. If the completion handler was called in a timely
manner, WatchKit displays either the static or
dynamic interface based on the argument that was
passed to it. If the completion handler is not called
quickly enough, the static interface is used and the
dynamic controller instance is discarded.

Let’s try this out by enhancing the iPhone part of the application so that it
sends the additional notification fields that we need to populate the dynamic
interface. To make it more interesting, we’ll add a control to the iPhone
application so that we can decide which notification interface to trigger.

Open Main.storyboard in the editor, drag a segmented control from the
Object Library, and drop it a little way below the button that’s already there.
Change the text in the left segment to Static and the text in the right
segment to Dynamic then drag the control horizontally to center it. With
segmented control selected, select Editor ➤ Resolve Auto Layout Issues
➤ Add Missing Constraints in Xcode’s menu to complete the layout.

CHAPTER 9: Notifications

425

Open ViewController.swift in the Assistant Editor and Control-drag
from the segmented control to the class file to create an outlet called
typeSelector:

class ViewController: UIViewController {
 @IBOutlet weak var typeSelector: UISegmentedControl!

Now make the following changes to the onButtonClicked() method in
ViewController.swift:

@IBAction func onButtonClicked(sender: AnyObject) {
 let notification = UILocalNotification()
 notification.fireDate = NSDate().dateByAddingTimeInterval(5)
 notification.alertTitle = "Alert!"
 notification.alertBody = "It's Sunny!"
 notification.soundName = UILocalNotificationDefaultSoundName
 notification.hasAction = true
 notification.alertAction = "Do Something"
 notification.category = "BasicActions"
 notification.userInfo = ["Time" : NSDate()]
 if typeSelector.selectedSegmentIndex == 1 {
 // Dynamic interface selected
 notification.userInfo = [
 "cityLabel": "New York",
 "tempLabel": "82\u{00B0}"
]
 }
 UIApplication.sharedApplication().
 scheduleLocalNotification(notification)
}

The effect of this change is to add a userInfo dictionary with values defined
for the cityLabel and tempLabel keys if the dynamic interface is selected
in the segmented control. We’ll use the presence of these values to decide
whether to show the dynamic interface.

Now switch back to the WatchKit extension and open BasicActions
NotificationController.swift in the editor. Then add the following code:

override func didReceiveLocalNotification(
 localNotification: UILocalNotification, '
 withCompletion completionHandler:
 ((WKUserNotificationInterfaceType) -> Void)) {
 var interfaceType = WKUserNotificationInterfaceType.Default

CHAPTER 9: Notifications426

 if let userInfo = localNotification.userInfo,
 let cityText = userInfo["cityLabel"] as? String,
 let tempText = userInfo["tempLabel"] as? String {
 alertBodyLabel.setText(localNotification.alertBody)
 cityLabel.setText(cityText)
 tempLabel.setText(tempText)
 interfaceType = .Custom
 }

 completionHandler(interfaceType)
}

WatchKit calls this method when it receives a local notification (handling for
a remote notification is identical, but the method name is different). Recall
from our earlier discussion that this method needs to decide which interface
should be displayed, configure the dynamic interface if necessary, and then
call the completion handler method, the signature of which is as follows:

(WKUserNotificationInterfaceType) -> Void

The argument tells WatchKit that it should display the static interface if its
value is .Default and the dynamic interface if it is .Custom.

In the code just shown, we initialize the interfaceType variable to .Default
and then inspect the notification. If the notification includes a userInfo
dictionary and both the cityLabel and tempLabel keys are present and their
values are both strings, we use their values, along with the value of the
alertBody property of the notification, to configure the labels and set
interfaceType to .Custom. Finally, we call the completion handler, passing it
the value of the interfaceType variable. The effect of all this should be that
the selection of interface depends on the content of the notification’s
userInfo dictionary, which in turn depends on the segmented control
selection. That’s all the code we need to write.

Let’s try it out! Run the application on the iPhone. Leave the Static section of
the segmented control selected, schedule a notification, and lock the screen.
You should see the static interface on the watch. Now unlock the iPhone
screen, toggle the segmented control to Dynamic, press the Schedule
Notification button again, and lock the screen. This time, you’ll see that the
dynamic long look notification is used, and it should be as shown in Figure 9-22.

Note You’ll find a copy of the completed WatchNotifications project in the
folder 9 – WatchNotifications – Final in the example source code
archive.

CHAPTER 9: Notifications

427

Notifications and the Simulator
Throughout this chapter, we have been testing by scheduling local notifications
on a real iPhone and handling them on a real watch. Testing remote applications
on a real device is a little more difficult—unless you already have your
application’s push service in place, you’ll have to do a lot of setup and then
use something like the NWPusher client I referred to earlier to push notification
payloads to your application. However, you can do limited testing of remote
notifications using the simulator. Let’s see how that works by using the simulator
to test sending remote notifications to our WeatherNotifications application.

Start by taking a copy of the WeatherNotifications project to another folder.
If you haven’t been following the step-by-step instructions, you can take a
copy of the folder 9 – WatchNotifications – Final to use as your starting
point. Testing remote notifications in the simulator is just like testing glances:
to have the simulator show your notification user interface instead of running
your WatchKit app, you need to create a new scheme. If you want to test
both your static and dynamic interfaces, you need to create two schemes.

Note There is no way to test the short look notification interface in the
simulator. That’s not really an issue because the short look notification interface
is provided automatically for you by WatchKit itself.

Figure 9-22. The dynamic long look controller in action

CHAPTER 9: Notifications428

Open your new project and select WatchNotifications WatchKit App and a
simulator in the scheme selector. Click on the scheme name and select Edit
Scheme. When the scheme editor opens, click on Duplicate Scheme, change
the scheme name to Static Notification - WatchNotifications WatchKit
App, and click Close. Edit the new scheme, select Static Notification in
the Watch Interface selector, and then click Close. To create the scheme
for the dynamic notification, repeat the process starting with the static
notification scheme, but this time set its name to Dynamic Notification -
WatchNotifications WatchKit App and choose Dynamic Notification as
the Watch Interface type.

To test a remote notification, you need to create a file containing a simulated
remote notification payload in JSON format. The easiest way to do that
is to allow Xcode to create one for you and then modify it to suit your
requirements. Xcode creates a payload file when you add a notification
scene at the same time that you add a WatchKit app target to your project.
So, create a new Single View project and add a WatchKit App target to
it, making sure you select the Include Notification Scene checkbox.
In the Project Navigator, open the group for the WatchKit extension
followed by the nested Supporting Files group. There, you’ll a file called
PushNotificationPayload.apns. Drag this file and drop it into the Supporting
Files group under the WatchNotifications WatchKit Extension group in
your original project, making sure you select the option to copy the file when
prompted.

Open PushNotificationPayload.apns in the editor to show the initial remote
notification payload (see Figure 9-23).

Figure 9-23. A remote notification payload file

CHAPTER 9: Notifications

429

You can read about the format of this file and the keys you can use in
Apple’s Local and Remote Notification Programming Guide. Let’s make
some changes to it that will allow us to use it with the notification scene in
our WatchNotifications project. Modify the file as shown here:

{
 "aps": {
 "alert": {
 "body": "It's Sunny!",
 "title": "Optional title"
 },
 "category": "BasicActions"
 },

 "WatchKit Simulator Actions": [
 {
 "title": "First Button",
 "identifier": "firstButtonAction"
 }
 {
 "title": "Action 1",
 "identifier": "ACTION1"
 },
 {
 "title": "Action 2",
 "identifier": "ACTION2"
 },
 {
 "title": "Action 3",
 "identifier": "ACTION3"
 }
],

 "customKey": "Use this file to define a testing payload for your
notifications. The aps dictionary specifies the category, alert text and
title. The WatchKit Simulator Actions array can provide info for one or
more action buttons in addition to the standard Dismiss button. Any other
top level keys are custom payload. If you have multiple such JSON files
in your project, you'll be able to select them when choosing to debug the
notification interface of your Watch App."

 "cityLabel": "New York",
 "tempLabel": "82"
}

The basic details of the notification are in the aps section. The only part of
this that the simulator uses is the value of the body key, which we set to the
same value as the alertBody propery in our local notification. Next, there’s

CHAPTER 9: Notifications430

an array called WatchKit Simulator Actions. The simulator does not run
your iOS application before showing the notification scene, so it doesn’t
know what notification action categories you would register. Instead, you
need to configure the buttons that you want in this section, giving the action
title and identifier for each of them. Here, we’ve specified the same three
actions that we configure in our iOS application. Finally, we added entries
for the keys cityLabel and tempLabel that were included in the userInfo
dictionary in our local notification. These are used only for the dynamic
notification.

Now run the Static Notification - WatchNotifications WatchKit App
scheme, making sure that you have a simulator selected as the target.
You should see the static long look notification in the simulator window, as
shown in Figure 9-24. If you don’t see the alert text in the notification and
there’s an error message in the Xcode console telling you to add a remote
notification payload, then either you didn’t copy the payload file to the
correct location or there is a syntax error in the JSON in the file.

Note The simulator only displays the long look notification. The only way to
see the short look notification is to use a real watch.

Figure 9-24. The static long look notification in the simulator

CHAPTER 9: Notifications

431

Now run the Dynamic Notification - WatchNotifications WatchKit App
scheme. You probably expect to see the dynamic notification scheme, but
in fact you’ll just see the static notification scheme again. The reason is that
the simulator uses the same process to decide whether to show the static
or dynamic notification scheme that the real device does, but because
we are now testing a remote notification, not a local one, the notification
interface controller needs to implement the didReceiveRemoteNotificatio
n(_:completionHandler:) method in addition to didReceiveLocalNotifica
tion((_:completionHandler:). To do that, add the code in bold here to the
BasicActionsNotificationController class:

override func didReceiveRemoteNotification(
 remoteNotification: [NSObject : AnyObject],
 withCompletion completionHandler:
 ((WKUserNotificationInterfaceType) -> Void)) {
 var interfaceType = WKUserNotificationInterfaceType.Default

 if let cityText = remoteNotification["cityLabel"] as? String,
 let tempText = remoteNotification["tempLabel"] as? String {
 let aps = remoteNotification["aps"] as? [NSObject : AnyObject]
 let alert = aps?["alert"] as? [NSObject : AnyObject]
 alertBodyLabel.setText(alert?["body"] as? String)
 cityLabel.setText(cityText)
 tempLabel.setText(tempText)
 interfaceType = .Custom
 }

 completionHandler(interfaceType)
}

This method does the same as didReceiveLocalNotification
((_:completionHandler:), except that it gets the notification in the
form of nested dictionaries built from the JSON payload instead of as
a UILocalNotification object. So, to get the cityText and tempText
properties, we directly read the values with those keys from the payload
dictionary. It’s slightly harder to get the body text, because it’s nested inside
the alert section, which is in turn nested inside the aps section. Each
nesting level in the JSON corresponds to a nested dictionary, so we need a
couple levels of indirection to access the value that we need. Once we have
all the values, we configure the interface in the same way that we did for the
local notification.

Run the Dynamic Notification - WatchNotifications WatchKit App
scheme again and you will now see the dynamic notification interface
(see Figure 9-25).

CHAPTER 9: Notifications432

Summary
Notifications are, without doubt, one of the Apple Watch’s best features. In
this chapter, you saw how the watch handles notifications with and without
assistance from your WatchKit application. And you saw the differences
between the short look notification and the static and dynamic long look
notifications. Finally, we looked at how to use the simulator to test remote
notifications.

Note You’ll find the source code for the completed version of this project in
the folder 9 - WatchNotifications – Simulator in the example source
code archive.

Figure 9-25. The dynamic long look notification in the simulator

Tip If you want to see what happens if you take too long to initialize the dynamic
notification controller, place a breakpoint at the start of the didReceive
RemoteNotification(_:completionHandler:) method and run the
dynamic notification scheme again. When the breakpoint is hit, do nothing and
you’ll see a message in the Xcode console indicating that the controller took too
long to initialize and the static notification will be shown instead.

433

 ■A
Alignment attribute, 70–71
Animation

ImageAnimation1, 102–104
iOS Core Animation

framework, 99
network bandwidth, 99
programmatic control, 104–106
using Timer, 100–102

Annotation
addAnnotation(_\:withImage\

:centerOffset\:)/addAnnotati
on(_\:withImageNamed\
:centerOffset\:) method, 161

adding to map, 160
awakeWithContext() method, 160

Apple Watch 42 mm, 44, 47
Apple Watch application

smartwatches, 1
WatchKit framework, 2
Xcode, 2

Apple Watch Human
Interface Guidelines, 8

Apple Watch screen, 17
awakeWithContext() method, 28

 ■B
Beginning iPhone Development

with Swift\: Exploring
the iOS SDK, 2

Buttons
action method, 118, 131
adding first button background

group, 124–125

adding image to
button—part 1, 125–126

adding image to
button—part 2, 126

background image behind
two group rows, 123

background image partially
hidden, 123–124

buttonClicked()
method, 118–119

button1Clicked() method, 131
copies of image

button—stage 1, 126–127
creating outlet for group

wrapping first
button, 128–130

creating two rows
of equal height, 121–122

description, 115
embedding image,

group inside, 120–121
enabling and disabling, 120
ImageButtons, 121
making correct button

disappear, 133
making wrong button

disappear, 132
object, 116
setHidden() and

setAlpha(), 134
setTitle()/setAttibutedTitle()

method, 117
translucent white

background and
rounded corners, 117

Index

Index434

 ■C
CityModel

cities.plist file, 273
cityCode property, 272
City structures, collection of, 272
features, 272

CLLocation objects, 165
CLLocationManager, 164
Core Location services, 163
currentDevice() type method, 40
Custom font

adding, WatchKit application, 82
Info.plist file, 83–84
in simulator, 84–85
San Francisco, 82
Tangerine Bold font, 84
3–Tangerine Font, 82

Custom formatting
date and time, 144–145
format string, parts, 144
in storyboard, 144

 ■D, E
Data model sharing

app groups concept, 271
CityModel (see CityModel)
displayed city model (see

Displayed city model)
iOS application and WatchKit

extension, 270–271
weather model

(see Weather model)
Debug ➤ Locations menu, 165
DetailsInterfaceController class

awakeWithContext()
method, 352

CityWeather object, 355
dayCount variable, 358
DetailsInterfaceController

class, 356
onNotification() method, 353
rowTypes array, 357

table.setRowTypes
(rowTypes), 358–359

updateDetails()
method, 354–356

updateTableContent()
method, 356–357

willActivate() and didDeactivate()
methods, 353

didDeactivate() method, 29–30, 164
Displayed city model

boolean value, 273
DisplayedCityInfo

Model.swift, 273
updating class, 317–322
useCelsius property, 274

Document Outline, 63
Dynamic image content

caching image
animations, 111–113

caching images, 109–111
sending images, 106–108

Dynamic long look
notification scene

alertBody property, 420
controller to storyboard addition

alertBodyLabel, 423
color attribute, 422
Group node, 422
interface storyboard, 420
layout attribute, 422
WKUserNotification

InterfaceController, 421
Xcode, 420

implementation, 424–427

 ■F
Fonts

custom font (see Custom font)
fonts in code (see Fonts in code)
standard Text Styles, 78–80
system and system italic fonts

(see system and
system italic fonts)

Index

435

in code
awakeWithContext()

method, 86, 88, 90
definition, 85
Fonts WatchKit Extension, 87
Info.plist file, 88
NSFontAttributeName

attribute, 85
PostScript name, 89
preferredFontDescriptor

WithTextStyle() method, 90
standard text styles, 86
system fonts

with weights, 87
Tangerine Bold font, 89–90
UIFontDescriptor, 91
UIFont.preferred

FontForTextStyle()
method, 86

Forecast Detail Interface Controller
adding controller to storyboard

completed storyboard, 351
DateRowController

class, 349
DetailsInterface

ControlDetailsTableRow
Controllers.swift, 349

Details Interface
Controller, 346

DetailsInterfaceController.
swift, 348–349

DetailsViewController, 350
summary area, 347–348

representation, 345–346
42mm device, 41, 48–49

Adjusting insets, 50
row spacing, 49

 ■G
Glances

and interface controller, 372–373
and notification scene

check boxes, Xcode, 363
Apple Watch application, 387

ApplicationGroup
ContainerIdentifier key, 385

arc4random() function, 390
awakeWithContext, 369
awakeWithContext()

method, 370
change name of scheme

in scheme editor, 366
cityCode property, 376
cityCycleTimer property, 388
CityWeatherView

Controller class, 382
completed watch

settings bundle, 386
controller’s lifecycle events, 364
default glance template

selection, Attributes
Inspector, 370–371

displayedCityInfoDidChange()
method, 381

DisplayedCityInfoModel
class, 378

DisplayedCityInfoModelDelegate
protocol, 375

displayNextCity() method, 391
for Weather application, 362–363
GlancePreference key, 387
implemention,

Watch App settings, 383
integerForKey() method, 389
interface controller to

storyboard, 364–365
LastViewedCity, 377
layout templates, 371
LWKWeatherGlanceController

class, 381
LWKWeatherGlanceController.

swift, 374
LWKWeather page, iPhone

Apple Watch app, 369
multiple item addition, watch

settings bundle, 384
onNotificationMethod()

method, 381
quick and easy view, 362

Index436

selectCity()
method, 377, 381, 389

selection, Watch Interface, 367
selectWeatherImage()

method, 380
storyboard and controller’s

implementation class, 365
trivial, watch simulator, 367–368
updateDetails() method, 378
user interface,

storyboard, 373–374
usingCelsius property, 376
viewWillAppear() method, 382
watch settings bundle, 384
weather app glance layout, 372
willActivate() method, 368
Xcode scheme editor, 365–366

Global Tint, 36

 ■H
Handoff implemention, 392–394
HelloWatch

application, 14, 19–20, 45
HelloWatch WatchKit Extension

and HelloWatch
WatchKit App, 5

Hierarchical navigation
description, 168
initial interface controller

awakeWithContext()
method, 179

ImageController class, 178
ImageController

Context, 179–180
popController() method, 177
pushControllerWithName

(_:context:), 178
pushImageControllerWithNa

me(:title:), 180–182
WKInterfaceLabel’s

setText(), 180
outlets and action

methods, 173–174

push segues
action methods, buttons, 183
awakeWithContext()

method, 185
contextForSegue

WithIdentifier(), 185–187
pushControllerWithName

(_:context:), 183, 187
Xcode console, 185

second interface controller
awakeWithContext()

method, 176
features, 170
ImageController, 169
pushControllerWithName

(_:context:), 175–176
root interface controller, 170
WKInterfaceController

subclass, 169
user interfaces, 171–173

Home screen icon, 17

 ■I, J, K
Image interface object, 97–99
Images

adding text to
speech bubble, 97

Aspect Fit, Aspect Fill, and
Scale To Fill modes, 94

Background field, 95
background for group, 95
ControllerImage, 92
group’s Insets attribute, 97
interface controller,

configuration, 92
interface controller’s

background, 93
Mode selector, 93–94
speech bubble, group

background image, 96
WatchKit, interface object, 91

Images (see Animation; Dynamic
image content; image
interface object)

Glances (cont.)

Index

437

Info.plist file, Core Location
services, 163

init() method, 28
Interface Builder Document, 36
Interface controller

Adjustment field, 56
Apple Watch Screens, 39
Assistant Editor, 41
attributes, 33–34
awakeWithContext(), 213
Code, 31
color attribute, 34
ControllerPresentation, 211
currentDevice() type method, 40
didDeactivate() method, 29
dismissController()

method, 212–213
42mm device, 41
Horizontal and Vertical

attributes, 52–53
Horizontal layout, 58
init() method, 28
insets and spacing attributes, 50
iOS application, 31
label’s Width attribute, 61
layout, 38
Mode and Animate attributes, 35
navigation, 30
onPresentController

ButtonClicked(), 211
PresentedInterface

Controller, 212
rows and columns, 58
screen size, layout, 46–47
setting, 43
size, screens, 40
smiley face image, 44
spacing attribute, 42
storyboard, 26–27
StoryboardController

Presentation
application crashes, 216
Close button, 217
context object, 217
document Outline, 214

onPresentController
ButtonClicked(), 214

override method, 217
presentControllerWithName

(_:context:), 214
presented controller,

copies, 215
segues, 216

Text attributes, 65
text input

attributes inspector, 207–208
buttons, action method, 208
Change Text button, 209
microphone

button, 210–211
NSData object, 209
onChangeText

ButtonClicked(), 208
WKInterfaceController, 207
WKTextInputMode, 207

title attribute, 35
title bar, 213
WatchKit application, 25
width and height, 54, 57
willActivate() method, 28
WKInterfaceController, 27
WKInterfaceController

methods, 212
InterfaceController.swift, 74

 ■L
lastCoords property, 165
Layout, 60
Lines attribute, 73
Local and Remote

Notification Programming
Guide, Apple, 429

 ■M
Main Interface Controller

addition of table
to Storyboard, 333–337

DisplayedCityInfoModel, 333
example, 333

Index438

table building and
maintainence

awakeWithContext()
method, 337

awakeWithContext(),
willActivate() and
didDeactivate(), 342–343

checkAndRebuildTable(),
338–340, 344

didDeactivate() method, 343
Images.xcassets file, 341
InterfaceController class, 338
iOS application’s

configuration screens, 337
reloadWeather() method, 342
shouldReload property, 342
updateTable(),

338, 340–341, 345
WatchAppWeatherModel, 339
weather model, 337
weather notifications, 344

Menus
description, 252
implementation

clearAllMenuItems()
method, 257

color and font, 258
ConfigurationController

class, 257
custom icon, 259
force touch and table

selection, 258–259
image files, 260–262
Reset menu

item, 258, 264
WKInterfaceController

class, 257
interface controller, 252
storyboard

attributes, 253–254
Document

Outline, 253, 255

Object Library, 253
onConfigureClicked()

method, 255
Reset menu, 256
willActivate() method, 256

Min Scale attribute, 72

 ■N, O
Notification

and simulator
alertBody property, 429
dynamic long look

notification, 431–432
PushNotificationPayload.

apns, 428
remote notification

payload file, 428
static long look

notification, 430
WatchKit Simulator

Actions, 430
WeatherNotifications

application, 427
dynamic long look

notification scene
controller to storyboard

addition, 420–423
implementation, 424–426

handling
AppIcon image set, 399
DefaultNotifications, 398
getting permission, 399–400
onButtonClicked(), 398, 401
UIUserNotification

Settings, 399
WatchKit app

(see WatchKit
notification handling)

iPhone
alert action, 401
banner, 401
Do Something, 402

Main Interface Controller (cont.)

Index

439

onButtonClicked()
method, 401

Schedule Notification
button, 401

local notification, watch
Dismiss button, 403
long look notification, 403
Schedule Notification

button, 402
short look

notification, 402–403
with actions

activationMode property, 406
AppDelegate.swift, 405
BasicActions, 404
configuration, 403–404
long look notification, 406
onButtonClicked() method, 405
Schedule Notification

button, 405
NSDateFormatter, 74–75
NSExtensionContext, 32
NSForegroundColorAttributeName

attribute, 76
NSLocationWhenInUse

UsageDescription, 162
NSMutableAttributedString, 76

 ■P, Q, R
Page-based navigation

automatic scrolling
awakeWithContext()

method, 203, 205
becomeCurrentPage()

method, 203, 206
ImageController class, 205
onLikeButtonClicked() and

onDislikeButtonClicked()
methods, 206

SharedModel class, 204
controller linkage, code

image controller, 196
init() and awakeWithContext()

methods, 197

like and dislike buttons, 198
reloadRootControllersWith

Names(_:contexts:), 196
FixedPageNavigation, 188
image attribute, 189
initial interface controller,

results, 202
interface controller,

image object, 188–189
like and dislike counts

awakeWithContext()
method, 200

ControllerContext, 199, 201
ImageController class, 201
images properties, 199
InterfaceController class, 200
SharedModel class, 198

page segues, 190–192
runtime, 193–194
storyboard creation, 194–195

preferredFontDescriptorWith
TextStyle() method, 90

 ■S
setAttributedText() method, 76–78
setText() and setTextColor(), 75–76
Sharing mechanisms

AppDelegate.swift in Xcode, 293
application(_\:handleWatchKit

ExtensionRequest\:reply\:)
method, 294, 296

Call Application button, 294
callBack argument, 298
CFNotificationCenter, 297
CFNotificationCenter

AddObserver() function,
298–299, 304

CFNotificationCenterPost
NotificationWithOptions()
function, 303

code sharing, 288–290
Darwin Bridge addition, 310–311
DarwinBridge project, 298
Darwin notification center, 297

Index440

DarwinNotificationCenter
Bridge.h, 301, 305

DarwinNotificationCenter
Bridge.m, 302–305

Devices window, 293
framework header public, 306
implemention, 308
InterfaceController.

swift, 306–307
nameToObserversMap, 302
NSLog() output, 294
NSUserDefaults object, 288
onButtonClicked(), 292, 299
openParentApplication(_\:reply\:)

method, 290–292
Open System Log, 294
Open Xcode, 291
postNotificationForName\:

method, 301–302
sharedcode, 309–312
shared framework

target to project, 300
UIApplication beginBackground

TaskWithExpirationHandler()
method, 295

WatchKit extension notification,
iOS application, 307

weather data
app group, 285
AppWeatherModel class, 286
openweathermap.org

server, 286
sequence of events, 287–288
WeatherModel code, 286

WKInterfaceController class, 290
Single View Application project, 51
Sliders

configurable attributes, 135
Continuous checkbox and

color attribute, 136
continuous attribute

off and on, 136
custom images, 137
description, 134

InterfaceController.swift, 135
setValue method, 136

SmileyFace@2x.png, 13
Standard Text Styles, 78–80
Switches

changing tint color, 138
description, 137
InterfaceController.swift, 138
onSliderValueChanged()

method, 140
onSwitchValueChanged()

method, 138
to control enabled

state of slider, 139
System and system italic fonts

and sizes, 81
style values, 80–81

 ■T
Text Layout

Alignment attribute, 70–71
Interface.storyboard, 69
label attributes with

initial values, 70
Lines attribute, 73
Min Scale attribute, 72
text truncation and

font scaling, 71–72
Width and Height attributes, 70

Text, Text Color and Attributed Text
InterfaceController.swift, 74
NSDateFormatNS

DateFormatter, 75
NSDateFormatter object, 74
setAttributedText()

method, 76–78
setText() and

setTextColor(), 75–76
3–Tangerine Font, 82
Time and date display

default storyboard
and simulator, 141

different formats, 143
formatting options, 142–143

Sharing mechanisms (cont.)

Index

441

storyboard attributes,
WKInterfaceDate
class, 141–142

watch applications, 140
Timer behavior

buttons to control
WKInterfaceTimer
object, 152–153

Enabled attribute, 152
onStart(), onStop()

and onReset(), 153
setDate() method., 150
willActivate(), 152
WKInterfaceTimer, 154
WKInterfaceTimer class

in action, 150–151
Timer display

description, 148
WKInterfaceTimer object, 148

Timer formatting options
classification, 149
Units attribute, 149–150

Timezone and calendar
configuration

awakeWithContext()
method, 145, 147

Hebrew calendar, 147
setTimeZone() method, 145
switching to different

display, 146

 ■U
UIFontDescriptor, 91
UIFont.preferredFontForTextStyle()

method, 86
UINavigationController, 167
UIPageViewController, 167
User Interface

attributes inspector, 10–11
Image object, 12–13
iOS application, 9
setting, 14
WatchKit application, 9
Xcode, 10

 ■V
viewDidLoad() method, 162

 ■W
WatchKit application

animations, 22
host application, 3
iPhone, 3
InterfaceController.swift, 6–7
iOS Apple Watch section, 4
iOS application, 3, 32–33
Notification Scene

and Glance Scene, 4
user interface

(see User interface)
user interfaces, 22

WatchKit Extension, 8
WatchKit framework, 2
WatchKit maps

description, 154
displaying, 154–156
map region

setting, 156–159
WatchKit notification handling

action handling
foreground action, 417, 419
InterfaceController.swift, 417
onButtonClicked()

method, 418
userInfo dictionary, 418
ViewController.swift, 418
willActivate() method, 418

Appicon.appiconset, 407
categories, 419–420
icons, 407
Schedule Notification

button, 408
short and long

look notifications, 408
static long look

notification scene
alertBody property, 409
Dismiss button, 409

Index442

Notification Interface
Controller, 409

title and icon, 409
static notification configuration

alertBody property, 410, 416
background

images, 414–415
category attributes, 416
changing controller

insets, 412
controller attributes, 411
customized static long look

notification, 416–417
long look notification, 412
Wants Sash Blur

attribute, 416
wrapping, alert label, 413

WatchKit Request Handler
AppDelegate.swift, 328
application(_\:handleWatchKit

ExtensionRequest\
:reply\:) method, 328

AppWeatherModel instance, 330
CityWeather objects, 332
handleWatchExtensionRequest()

method, 329
handleWatchKitExtension

Request() method, 331–332
openParentApplication

(_\:reply\:) method, 328
sharedInstance() method, 329

WatchKit tables
configuration

body rows, 227
header rows, 225–226
table rows, 224

configuration controller
handling selection

changes, 242–243
information to initial

controller, 243–244
initial color and font

selection, 240–241

presentation, 232–233
row color and

font table, 233–235
table row Content, 236–240

Configuration Table WatchKit
Extension group, 223

Configure button, 220
database query, 219
description, 219
InterfaceController class, 223
interface controllers

awakeWithContext()
method, 228

colorNames and
fontNames arrays, 229

Configuration Table WatchKit
Extension group, 229

initial interface
controller, 230–232

TextAttributes, 229
InterfaceController.swift, 222
iOS Settings application, 220
Object Library, 222
row controller object, 220
row prototypes, 222
table manipulation

application storyboard, 245
Delete button, 249–250
InterfaceController, 248–249
New Row button, 251
row controller class, 246–247

types of row, 221
UITableView, 220

WatchKit weather application
App Groups configuration, 315
awakeWithContext()

method, 313
coding exercise, 270
containerURLForSecurity

ApplicationGroup
Identifier() method, 315

init() method, 314
iOS, 268
iOS deployment target, 313

WatchKit notification handling (cont.)

Index

443

LWKWeather directory, 317
NSUserDefaults initializer, 314
NSUserDefaults object, 317
screenshots, 269

Weather model
CityWeather class, 275
classes, 275
DayForecast object, 276
dayString property, 276
detailsByDay array, 279
detailsByDay property, 276
loading

AppWeatherModel, 280
cityCodes array, 279
fetchWeatherForCities(_\:alw

ays\:) method, 280–281
NSNotificationCenter, 281
openweathermap.org

server, 280
reloadTime property, 282
weatherByCity property, 279
weather data

and view updation, 282
WeatherModel base

class, 280
WeatherModelChanged

notification, 281

NSCoding protocol, 275–276
?. operator, 279
persistence, 283–284
public private(set) qualifier, 274
state property, 276
updating class, 322–328
WeatherDetails object, 277–278
WeatherModel.swift,

example source code, 274
willActivate() method, 28, 30
WKInterfaceController, 7, 32
WKInterfaceObject class

Apple developer websit/Xcode
documentation set, 67

class selector, storyboard, 69
common attributes, 67
interface objects, 68
labels, 69
on storyboard, 67
text input control, 68
Text Layout

(see Text Layout)
user interface controller, 68

 ■X, Y, Z
Xcode Devices window, 18

Learn WatchKit
for iOS

Kim Topley

Learn WatchKit for iOS

Copyright © 2015 by Kim Topley

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of
the work. Duplication of this publication or parts thereof is permitted only under the provisions of the
Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1026-0

ISBN-13 (electronic): 978-1-4842-1025-3

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Michelle Lowman
Technical Reviewer: Jeff Tang
Editorial Board: Steve Anglin, Gary Cornell, Louise Corrigan, James T. DeWolf,

Jonathan Gennick, Robert Hutchinson, Michelle Lowman, James Markham,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke,
Gwenan Spearing, Matt Wade, Steve Weiss

Coordinating Editor: Kevin Walter
Copy Editor: Corbin Collins
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover Photo: Michelle Lowman

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our
Special Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code,
go to www.apress.com/source-code/.

http:\\orders-ny@springer-sbm.com
www.springeronline.com
http:\\rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/

To the engineers at Apple who keep us coming back every year for more
and the staff at the Astronaut Scholarship Foundation for making it

possible for me to meet my boyhood heroes.

vii

Contents

About the Author �� xiii

About the Technical Reviewer ��xv

Acknowledgments ��xvii

 ■Chapter 1: Welcome to the Apple Watch �� 1

Your First Watch Application �� 2

Creating a WatchKit Application�� 3

Building the User Interface ��� 9

Running the Application on the Simulator �� 14

Running the Application on an Apple Watch ��� 16

Some Things That a WatchKit Application Can and Can’t Do ����������������� 21

Summary ��� 23

 ■Chapter 2: Interface Controllers and Layout ��������������������������������� 25

Interface Controllers �� 25

Interface Controller Lifecycle �� 26

Navigation and Lifecycle Events ��� 30

Lifecycle of the WatchKit App Extension ��� 31

Debugging the WatchKit App Extension and the iOS Application Together ������������� 32

Contentsviii

Interface Controller Attributes �� 33

Setting the Background Color ��� 34

Setting the Application Title �� 35

Interface Controller Layout �� 38

Spacing, Insets, and Screen-Dependent Layout ��� 40

Groups �� 57

Summary ��� 66

 ■Chapter 3: Watch User Interface Objects �������������������������������������� 67

Overview ��� 67

Labels �� 69

Text Layout ��� 69

Text, Text Color, and Attributed Text �� 74

Fonts ��� 78

Using the Standard Text Styles ��� 79

Using the System and System Italic Fonts ��� 80

Using a Custom Font��� 82

Setting Fonts in Code ��� 85

Images ��� 91

Using an Image as a Background ��� 92

The Image Interface Object �� 97

Animation ��� 99

Dynamic Image Content ��� 106

Summary ��� 113

 ■Chapter 4: More Watch User Interface Objects ��������������������������� 115

Buttons �� 115

Creating and Configuring Buttons��� 116

Actions and State ��� 118

Using a Group as the Content of a Button��� 120

Contents

ix

Sliders ��� 134

Switches �� 137

Displaying the Date and Time �� 140

Basic Usage �� 141

Custom Formatting ��� 144

Changing the Timezone and Calendar �� 145

Displaying a Timer ��� 148

Timer Formatting Options ��� 149

Timer Behavior ��� 150

WatchKit Maps �� 154

Displaying a Map �� 154

Setting the Map Region �� 156

Adding an Annotation ��� 160

Using Core Location to Get the User’s Location �� 161

Summary ��� 166

 ■Chapter 5: Controller Navigation �� 167

Hierarchical Navigation ��� 168

Manual Controller Navigation ��� 168

Using a Segue to Push a Controller �� 183

Page-Based Navigation ��� 188

Constructing a Page-Based Application in the Storyboard ����������������������������������� 188

Using Pages Constructed at Run Time �� 193

Presenting an Interface Controller �� 206

Getting Text Input �� 207

Presenting a Controller Programmatically �� 211

Presenting a Controller from the Storyboard �� 214

Summary ��� 218

Contentsx

 ■Chapter 6: Tables and Menus ��� 219

WatchKit Tables ��� 220

Adding the Controllers and the Table to the Storyboard ��������������������������������������� 222

Configuring the Table Rows �� 224

Defining the Interface between the Controllers �� 228

Implementing the Initial Interface Controller �� 230

Presenting the Configuration Controller ��� 232

Implementing the Configuration Controller �� 233

More Table Manipulation �� 245

Menus�� 251

Adding a Menu to an Interface Controller ��� 252

Adding a Menu in the Storyboard ��� 253

Adding Menu Items Programmatically ��� 257

Summary ��� 265

 ■Chapter 7: Building a WatchKit App ��� 267

The WatchKit Weather Application ��� 268

Sharing the Data Model �� 270

The Weather Application Data Model �� 272

Mechanisms for Sharing��� 285

Building the WatchKit Weather App ��� 308

Moving Shared Code to a Framework �� 309

Adding the WatchKit Extension and Creating the App Group �������������������������������� 312

Updating the DisplayedCityInfoModel Class ��� 317

Updating the Weather Model Classes ��� 322

Adding the WatchKit Request Handler �� 328

Implementing the Main Interface Controller ��� 333

Implement the Forecast Detail Interface Controller �� 345

Summary ��� 359

Contents

xi

 ■Chapter 8: Glances, Settings, and Handoff ��������������������������������� 361

Glances �� 362

Adding a Glance to a Project �� 362

Running the Glance �� 365

Implementing the Weather App Glance �� 370

Using Watch App Settings ��� 383

Creating the Watch App Settings Bundle �� 383

Implementing the Glance View Options �� 387

Implementing Handoff ��� 392

Summary ��� 395

 ■Chapter 9: Notifications �� 397

Default Notification Handling �� 398

Local Notifications on the iPhone ��� 401

Local Notifications on the Watch �� 402

Notifications with Actions ��� 403

Handling Notifications in Your WatchKit App ��������������������������������������� 407

Default WatchKit Notification Handling ��� 407

Adding the Static Long Look Notification Scene ��� 408

Adding the Dynamic Long Look Notification Scene �� 420

Notifications and the Simulator �� 427

Summary ��� 432

Index �� 433

xiii

About the Author

Kim Topley is a software engineer with more
than 30 years of experience, ranging from
mainframe microcode and the UNIX kernel
to graphical user interfaces and mobile
applications. He is the author of five books
on various aspects of Java and JavaFX and is
coauthor of Beginning iPhone Development
with Swift.

xv

About the Technical
Reviewer

Jeff Tang worked on enterprise and web app
development for many years before reinventing
himself to focus on building great iOS and
Android apps. He’s had an Apple-featured,
top-selling iOS app with millions of users and
was recognized by Google as a Top Android
Market Developer. He’s the author of Beginning
Google Glass Development published by Apress
in 2014. His favorite quote is The Man in the
Arena. Jeff loves simplicity, solving puzzles, and AI.
His LinkedIn profile is www.linkedin.com/
profile/view?id=1539384. He can be reached
at jeffxtang@gmail.com.

www.linkedin.com/profile/view?id=1539384
www.linkedin.com/profile/view?id=1539384
mailto:jeffxtang@gmail.com

xvii

Acknowledgments

Writing a book is always a long and often frustrating process, and this one
has been no exception. Apple released the first SDK for the Apple Watch
in November 2014, but didn’t give us hardware to test with for another five
months. During that period, developers had to create applications using a
bare bones simulator that didn’t let them test everything that they would
normally expect to. There is no doubt that some of those developers had
their fingers firmly crossed when they submitted their work for App Store
approval. As an author, I was fortunate that my deadline was a little later
than launch day for the Apple Watch, and I have at least been able to make
sure that everything in this book is up to date and all the example source
code works.

Of course, the tight deadlines involved in writing a book don’t only apply
to the author. There’s a whole team at Apress who have to do much of
their work as I was finishing mine. You’ll find their names on the second
page of this book. I would like to give special thanks to Michelle Lowman
for accepting my proposal for this book only a couple days after the first
version of Xcode with WatchKit included was shipped, to Kevin Walter
and Jim Markham for steering the book through the review and production
process at Apress, and to Jeff Tang for a great technical review (and for
not complaining about the ratio of the number of pages in Chapter 7 to the
number of days available to read and comment on it!). Finally, I would like
to thank the engineers at Apple for making my life over the last six months
interesting (in some sense of that word) again, as they seem to manage to
do every year.

	Contents at aGlance
	Contents
	About the Author
	About the TechnicalReviewer
	Acknowledgments
	Chapter 1: Welcome to the Apple Watch
	 Your First Watch Application
	 Creating a WatchKit Application
	 Building the User Interface
	 Running the Application on the Simulator
	 Running the Application on an Apple Watch

	 Some Things That a WatchKit Application Can and Can’t Do
	 Summary

	Chapter 2: Interface Controllers and Layout
	 Interface Controllers
	 Interface Controller Lifecycle
	 Navigation and Lifecycle Events
	 Lifecycle of the WatchKit App Extension
	 Debugging the WatchKit App Extension and the iOS Application Together
	 Interface Controller Attributes
	 Setting the Background Color
	 Setting the Application Title

	 Interface Controller Layout
	 Spacing, Insets, and Screen-Dependent Layout
	Changing Row Spacing
	 Setting the Interface Controller Insets
	Making an Attribute Value Depend on Screen Size
	Making Layout Depend on the Screen Size
	Controlling Position
	Adjusting Size

	 Groups
	Using a Group to Create a Horizontal Layout
	Using a Nested Group

	 Summary

	Chapter 3: Watch User Interface Objects
	 Overview
	 Labels
	 Text Layout
	 Text, Text Color, and Attributed Text

	 Fonts
	 Using the Standard Text Styles
	 Using the System and System Italic Fonts
	 Using a Custom Font
	 Setting Fonts in Code

	 Images
	 Using an Image as a Background
	 The Image Interface Object
	 Animation
	Animation Using a Timer
	Animating Images
	 Programmatic Control of Image Animation

	 Dynamic Image Content
	Sending Images to the Watch
	 Caching Images on the Watch
	 Caching Image Animations

	 Summary

	Chapter 4: More Watch User Interface Objects
	 Buttons
	 Creating and Configuring Buttons
	 Actions and State
	 Using a Group as the Content of a Button

	 Sliders
	 Switches
	 Displaying the Date and Time
	 Basic Usage
	 Custom Formatting
	 Changing the Timezone and Calendar

	 Displaying a Timer
	 Timer Formatting Options
	 Timer Behavior

	 WatchKit Maps
	 Displaying a Map
	 Setting the Map Region
	 Adding an Annotation
	 Using Core Location to Get the User’s Location

	 Summary

	Chapter 5: Controller Navigation
	 Hierarchical Navigation
	 Manual Controller Navigation
	Creating the Second Interface Controller
	Building the Controllers’ User Interfaces
	Creating Outlets and Action Methods
	Navigating to the Second Interface Controller
	Returning to the First Interface Controller

	 Using a Segue to Push a Controller

	 Page-Based Navigation
	 Constructing a Page-Based Application in the Storyboard
	 Using Pages Constructed at Run Time
	Creating the Storyboard
	Building the Controller Linkage in Code
	Implementing the Like and Dislike Counts
	Showing Results in the Initial Interface Controller
	Automatically Scrolling between Pages

	 Presenting an Interface Controller
	 Getting Text Input
	 Presenting a Controller Programmatically
	 Presenting a Controller from the Storyboard

	 Summary

	Chapter 6: Tables and Menus
	 WatchKit Tables
	 Adding the Controllers and the Table to the Storyboard
	 Configuring the Table Rows
	Configuring the Header Rows
	Configuring the Body Rows

	 Defining the Interface between the Controllers
	 Implementing the Initial Interface Controller
	 Presenting the Configuration Controller
	 Implementing the Configuration Controller
	Adding Rows to the Color and Font Table
	Configuring the Table Row Content
	Showing the Initial Color and Font Selection
	Handling Selection Changes
	Returning Information to the Initial Controller

	 More Table Manipulation
	Creating the Application Storyboard
	Creating the Table Row Controller Class
	Implementing the Interface Controller
	Implementing the Delete Button
	Implementing the New Row Button

	 Menus
	 Adding a Menu to an Interface Controller
	 Adding a Menu in the Storyboard
	 Adding Menu Items Programmatically

	 Summary

	Chapter 7: Building a WatchKit App
	 The WatchKit Weather Application
	 Sharing the Data Model
	 The Weather Application Data Model
	The City Model
	The Displayed City Model
	The Weather Model
	Weather Model Loading
	Weather Model Persistence

	 Mechanisms for Sharing
	Sharing Weather Data
	Sharing Displayed City Info
	Sharing Code
	Sending a Request to an iOS Application
	Sending a Notification to the WatchKit Extension

	 Building the WatchKit Weather App
	 Moving Shared Code to a Framework
	Adding the Darwin Bridge to the Framework
	Moving the Shared Model Classes

	 Adding the WatchKit Extension and Creating the App Group
	 Updating the DisplayedCityInfoModel Class
	 Updating the Weather Model Classes
	 Adding the WatchKit Request Handler
	 Implementing the Main Interface Controller
	Adding the Table to the Storyboard
	Building and Maintaining the Table

	 Implement the Forecast Detail Interface Controller
	Adding the Controller to the Storyboard
	Implementing the DetailsInterfaceController class

	 Summary

	Chapter 8: Glances, Settings, and Handoff
	 Glances
	 Adding a Glance to a Project
	 Running the Glance
	 Implementing the Weather App Glance
	Building the Glance Interface
	Implementing the Glance Interface Controller

	 Using Watch App Settings
	 Creating the Watch App Settings Bundle
	 Implementing the Glance View Options

	 Implementing Handoff
	 Summary

	Chapter 9: Notifications
	 Default Notification Handling
	 Local Notifications on the iPhone
	 Local Notifications on the Watch
	 Notifications with Actions

	 Handling Notifications in Your WatchKit App
	 Default WatchKit Notification Handling
	 Adding the Static Long Look Notification Scene
	Configuring the Static Notification
	Action Handling
	Notification Categories

	 Adding the Dynamic Long Look Notification Scene
	Adding the Dynamic Controller to the Storyboard
	 Implement the Dynamic Long Look Controller

	 Notifications and the Simulator

	 Summary

	Index

